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Abstract

Structural design requirements need to be updated to account for the projected in-

creases in the frequency and intensity of extreme wind events due to climate change.

This study investigates the effects of climate change on the wind loading design pa-

rameters used in the National Building Code of Canada. The projected changes to

wind speed statistical distributions and the magnitude of uncertainty in these pro-

jections are assessed using state-of-the-art climate change models. Three new wind

loading design methods that can be used under climate change are developed based on

the “ultimate return period” and Load and Resistance Factor Design methods. Anal-

yses of these three methods, proposed herein, demonstrate that the “Hybrid Ultimate

Return Period” (HURP) method performs the best under climate change, since its

probabilities that the HURP design wind speeds are exceeded over the 50-year design

lifetime are most consistent across Canada, compared to the other two methods.
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Chapter 1

Introduction

1.1 Motivation

Greenhouse gas emissions caused by human activity have undoubtedly raised the

global average temperature relative to pre-industrial levels. In 2017, human-induced

global average warming reached approximately 1°C relative to the average tempera-

ture from 1850 to 1900 (Allen et al., 2018). While past emissions alone are unlikely

to raise the global average temperature more than 1.5°C (Allen et al., 2018), future

human behaviour will dictate the magnitude of global warming over the next century.

In addition to global warming, increased concentrations of greenhouse gas emissions

have also greatly disrupted other aspects of the atmospheric climate. The term cli-

mate change refers to significant variation in long-term weather patterns. Changes

in the frequency, intensity, spatial extent, duration and timing of extreme weather

events due to climate change are a major global concern. Observational data collected

since 1950 already shows evidence of changes in extremes, such as heavy precipita-

tion events, daily temperature extremes and extratropical storms (Seneviratne et al.,

2017). Natural climate variability, including phenomena such as El Niño, as well as

decadal and multi-decadal variations influence many weather and climate extremes.

For example, hurricanes are heavily influenced by ocean water temperatures. In

addition, there is strong evidence that anthropogenic factors also influence such ex-

treme weather events (Seneviratne et al., 2017). The results of some of these extreme

weather events can be dire. In the period 2017 to 2020 extreme weather events have

been the top-ranked global risk in terms of likelihood, while climate action failure was

ranked second in 2019 and 2020. Climate action failure was the top-ranked global

risk in terms of impact in 2020, while extreme weather event ranked fourth in terms

of impact (behind weapons of mass destruction and biodiversity loss) (World Eco-

nomic Forum, 2020). In other words, urgent action is required to reduce vulnerability

1
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and exposure to the harmful effects of climate change, but determining the most ap-

propriate response can be challenging. Projected changes are unknown due to the

uncertainty in future human behaviour, and ill-designed mitigation plans could pose

negative socioeconomic consequences, especially for poverty stricken regions.

Canadian structural design requirements are one area that needs to be updated

to account for projected changes in extreme climatic events. Building codes are

developed to ensure structures will resist extreme lifetime climatic loads, such as

wind, rainfall and snow loads, to an acceptable probability. The National Building

Code of Canada (NBCC), provides design load requirements for most locations across

the country. Climatic design values include quantities such as the 50-year return

period “worst storm” climatic loads. The current climatic loads were developed using

historical data, and assume “steady” conditions. That is, the mean and variance of

these storms are assumed constant over time. However, it is highly probable that the

Canadian climate will change significantly in the future as a result of global warming.

In the current NBCC, it is acknowledged that some regions may see an increase in the

frequency and intensity of many weather extremes, but specific guidelines to account

for these changes are not provided (National Research Council of Canada (NRCC),

2015).

Studies on updating wind loading design requirements and analysis of uncertain-

ties in wind speed projections are currently a high priority. At this time, there is

low confidence in extreme wind projections, meaning that whether the extreme wind

speeds will increase or decrease is currently poorly known. This lack of certainty is

due to the limited number of studies completed, and inconsistencies in the projected

changes resulting from deficiencies in the simulation models (Seneviratne et al., 2017).

While there is some literature that attempts to predict future wind speeds and un-

certainties, to the author’s knowledge there are no studies that assess the effects of

climate change on wind loading for structural design requirements.

1.1.1 Thesis Objective

The objective of this thesis is to develop future wind loading design requirements

that (a) account for the projected changes in wind speeds and uncertainties due to

climate change and (b) improve exceedance probability consistency across Canada.
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This study suggests reformulations of the statistical distributions typically used to

model wind speeds across the country. State-of-the-art climate change models are

used to develop these reformulated statistical distributions. Additionally, the sources

of uncertainty, and associated magnitudes, in these climate change models are assessed

and incorporated into the new design wind load requirements. To improve exceedance

probability consistency, alternative design methods are implemented and compared

to the current design method used in the NBCC.

1.2 Load and Resistance Factor Design Methodology

Both the Canadian Highway Bridge Design Code (CHBDC) and the NBCC utilize the

Load and Resistance Factor Design (LRFD) methodology, a probabilistic approach to

structural design that aims to achieve reliability targets, or acceptable probabilities

of failure. The definition of failure is dependent on whether the limit state being

considered is the ultimate limit state (ULS) or the serviceability limit state (SLS).

The ULS is primarily concerned with structural collapse, while the SLS refers to

conditions that impede the intended use of the structure. The LRFD methodology

breaks down the various types of loads and applies a separate factor to each load type

and to the resistance. This factor accounts for the uncertainty associated with each

component. The general LRFD equation for the ULS is given as

φR̂u ≥
∑
k

αkF̂k (1.1)

where φ is the resistance factor, R̂u is the characteristic ultimate resistance, αk is

the load factor corresponding to the k’th load, and F̂k is the k’th characteristic load

(NRCC, 2015). The characteristic value refers to the predicted design value.

Load or resistance factors are calibrated using the statistical distributions of the

corresponding load or the resistance. This ensures that the probability of failure meets

target reliability levels, where the probability of failure is the probability that the load

exceeds the resistance capacity. Figure 1.1 demonstrates the importance of consider-

ing each load component’s statistical distribution when calibrating its associated load

factor.
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Figure 1.1: Three geotechnical systems having resistance R under load F can have
precisely the same mean factor of safety and yet very different failure probabilities,
P [F > R] (Fenton et al., 2015).

The mean load and resistance in each plot in Fig. 1.1 are equal, but the differences in

variability result in the probability of failure being 400 times greater in the bottom

plot than that of the top plot. Consequently, each load factor should be different,

taking into account the width of the associated load distribution. In the NBCC, the

LRFD equation for wind loading, where the wind is acting as a principal load, is given

as

φR̂u ≥ 1.25F̂D + 0.5F̂L + 1.4F̂W (1.2)
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where F̂D is the dead load, which is a “permanent load due to the weight of building

components”, F̂L is the live load, “a variable load due to intended use and occupancy”,

and F̂W is the wind load, which is also variable (NRCC, 2015).

In eq. (1.2) the dead load factor, 1.25, is less than the wind load factor, 1.4,

because there is less variability in the dead load than in the wind load. The live load

factor is 0.5, in this particular load combination, since there is a very low probability

of the lifetime maximum wind load and maximum live load occurring simultaneously.

The resistance factor, φ, is dependent on the material and design of the structure.

It should be noted that the research presented in this thesis is solely focused on the

wind load factor, αW , and characteristic wind load, F̂W . Specifically, this research

investigates how these values need to be modified to achieve consistent reliability

across Canada, given projected changes in extreme wind loads due to climate change.

1.2.1 Calibration of Load Factors

Load factor values used for design are calibrated considering the distributions of the

loads and the way that they are combined in the LRFD formulation. Two main

approaches to combining loads could be used in the LRFD equation. The first is the

so-called companion-action format, the approach used in the current NBCC, which

is a reliability-based approach that combines loads simultaneously. The second is the

so-called probability factor design format, used in the NBCC up until 2005, which

involves the use of a separate load combination factor (Madsen et al., 2006). The

objective of these load combination formats is to develop simple, structured design

methodologies that account for the temporal and spatial variations of the individual

loads (Kariyawasam, 1996). The companion-action format is based on Turkstra’s rule

which states that the maximum lifetime load is most likely to occur when one variable

is at its maximum lifetime value, and the others are at more frequent values (Madsen

et al., 2006). The companion-action format is now utilized in the NBCC because it

is simple, and it models real load combinations more accurately than the probability

factor method (Bartlett et al., 2003b). The companion-action load combinations take

the general form

αpSp + αiSi +
∑
i �=j

αijSj (1.3)
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where αp is the load factor for the permanent load (e.g. dead load), Sp, and αi is

the load factor for the principle transient load, Si, (normally the live load) assumed

to be at its maximum lifetime value. The load factors αij are for the companion-

action transient loads, Sj, that act on the structure while the principle load is at its

maximum value (Bartlett et al., 2003b).

The basic steps of the load factor calibration procedure include (1) estimating the

implied target reliability, βT , used in current design standards, and (2) estimating the

load factors such that the desired βT levels is achieved. The subscript T refers to the

design lifetime, so that βT is the target reliability index over T years. (Ellingwood

et al., 1980). In the NBCC, the extensively employed first-order reliability method

(FORM) is commonly used to estimate the reliability index for various design situa-

tions (see, e.g., Bartlett et al., 2003a). Given βT , the load factors are then determined

as those values, αi, that minimize a function which measures the “distance” between

the target reliability, βT , and the reliability of the particular load combinations, β

(Ellingwood et al., 1980). The reliability index of the given load combination, β, is

also typically evaluated using the FORM.

In order to achieve target reliability levels for the designed system, the calibration

of load factors must include consideration of the variability of the resistance side

of the LRFD equation, as well as the load side. To include the resistance side,

the calibration must be specific to various possible failure modes of the system, for

example, bending of a steel beam, crushing of a masonry block, etc. To simplify

the calibration problem, the wind speed exceedance probability alone may be held

constant from that obtained from current design levels. This assumption allows the

calibration of load factors to proceed simply by looking at the factors required to

achieve a sufficiently small probability that the wind speed will exceed the factored

design wind speed. The research performed in this thesis makes this assumption. The

target exceedance probability is then selected from currently acceptable exceedance

probabilities so that the system reliability is as predicted by previous calibrations of

load factors (e.g., Bartlett et al., 2003a).
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1.2.2 Reliability Indices

The current target reliability indices used in design codes were developed by cali-

brating to older practices and making any necessary adjustments, as target reliability

indices are dictated by what society deems acceptable in terms of balancing safety

requirements and economic considerations. Bartlett et al. (2003a) determined the

current target reliability index used in the NBCC by implementing the FORM to

evaluate the implied reliability indices for steel structural members designed using

the 1995 edition of the NBCC. Bartlett et al.’s (2003a) results suggested a 50-year

design life target reliability index of 3.0 for the load combination including the dead

load acting simultaneously with the live load, and 2.8 for load combinations involv-

ing the dead load plus either the wind load or snow load. Bartlett et al. (2003a)

then calibrated load factors for the NBCC based on these findings. The load factors

estimated by Bartlett et al. (2003a) are still used in the current NBCC (2015).

The current NBCC target reliability index is consistent with results in the lit-

erature. For example, Allen (1992) determined a reliability index between 2.0 and

3.75 for Canadian highway bridge design (i.e., Clause 12 of CAN/CSA-S6-88) based

on calibration to past experience and life-safety considerations. The target reliability

index varies because it is chosen by the evaluator as a function of structural behaviour

(e.g., gradual or sudden failure), level of inspection and evaluation, and traffic cat-

egory. Additionally, Ellingwood et al. (1980) analysed the 1980 ANSI A58 building

and structural design standard and found that for steel beams the target reliability

index was 3.0 for load combinations of dead load plus live load, and dead load plus

snow load. However, the target reliability index was 2.5 for the dead load acting

simultaneously with the live load and wind load. Similar results were also found for

concrete beams with Grade 40 and Grade 60 reinforcement (Ellingwood et al., 1980).

The lower reliability indices for load combinations involving wind loads are a result

of calibrating to inconsistent older practice (Ellingwood, 1994). This may suggest the

minimum value of 2.8 used in the NBCC for load combinations with wind or snow

loads should be increased to 3.0.
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1.3 Traditional Statistical Modelling of Extreme Wind Speeds

The characteristic wind load, F̂W , used in the NBCC is a function of the reference wind

velocity pressure, as well as several factors related to the importance of the building

(e.g., hospital vs. residential home), the topography of the location (i.e., urban or

rural), and the size and shape of the building. The reference wind velocity pressure is

the 50-year return period annual maximum one-hourly average wind pressure, qA1,50,

where the subscript A refers to annual maximum, the subscript 1 refers to one hour

average, and the subscript 50 refers to the defined return period. Using the static

procedure provided in the NBCC, F̂W is given as

F̂W = IW qA1,50CeCtCgCp (1.4)

where IW is the importance factor, Ce is the exposure factor, Ct is the topographic

factor, Cg is the gust effect factor, and Cp is the external pressure coefficient. The

design wind pressure is defined as

qA1,50 =
1

2
ρairv

2
A1,50 (1.5)

where ρair is the density of air, and vA1,50 is the 50-year return period annual maximum

one-hourly average wind speed. Statistical models of qA1,50 typically focus on the 50-

year return period wind speed, vA1,50, because the density of air can be considered

constant with time at any specific elevation. This study only investigates vA1,50 and

Cg, since IW , Ce, Ct and Cp are assumed to not be affected by climate change.

1.3.1 Stochastic Processes in Time

Extreme wind speeds at a specific location can be derived using a stochastic process

in time. A stochastic process is a collection of random variables indexed by some set

S, usually representing time, and can be written as X(t), where t ε S. Each random

variable in a stochastic process, X(t), takes a value from the common sample space,

Ω. A stochastic processes may be either discrete or continuous in time, and can be

characterized by its mean function, μX(t) = E[X(t)], and autocovariance function,

Cov(Xt1 , Xt2) = E[(X(t1)− μX))(X(t2)− μX)].

A stochastic process is considered strictly stationary if all the random variables

are identically distributed, meaning for any t ε S the random variable X(t) has the



9

same probability distribution. A stochastic process is considered weakly stationary

if the mean is constant and the autocovariance function depends only on the time

difference, τ = t2 − t1. Therefore, a stationary stochastic process is independent of

where it is formed along the time axis.

Currently, extreme wind speeds are assumed to be weakly stationary. That is,

the probability distribution of the annual maximum wind speed is assumed to have a

constant mean and autocovariance. The cumulative distribution function (CDF) used

to model the annual maximum one-hourly average wind speed distribution is given

by FvA1
(v), and is determined based on historical data using extreme value theory.

1.3.2 Extreme Value Theory

The probability distribution of the annual maximum one-hourly average wind speed,

FvA1
(v) is determined using extreme value theory (EVT). EVT is a branch of statistics

that deals with modelling the probability distribution of rare events (i.e., the tails

of a distribution). The two main approaches to extreme value analysis are the block

maxima method and the peaks over threshold (POT) method. The block maxima

method involves dividing the data series into non-overlapping blocks of equal size and

selecting the maximum (or minimum) value in each period (Faranda et al., 2011). This

method was first developed by Fisher and Tippett (1928) and formalized by Gnedenko

(1943) who showed that the distribution of block maxima of a sample of independent

and identically distributed (i.i.d.) variables follow the so-called generalized extreme

value distribution (GEVD), of which the Gumbel, Fréchet and Weibull distributions

are special cases. The CDF of the GEVD is defined as

GEVD(x) =

⎧⎪⎨
⎪⎩
exp

(
− [

1 + ξ(x−u
a
)
]−1/ξ)

, for ξ �= 0

exp
(− exp(x−u

a
)
)
, for ξ = 0

(1.6)

where u is the location parameter, a is the scale parameter, and ξ is the shape

parameter. The main problem with the block maxima method is data are typically

limited in practical applications and using only the maximum value of each block

further reduces this limited sample size, inhibiting the ability to accurately determine

the extreme value distribution.

The POT method also estimates the probabilities of extreme events, but uses
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data more efficiently than the block maxima approach, as the POT method uses all

observations above a threshold, r. While information loss is minimized, the problem

of selecting an appropriate threshold arises. The POT method was introduced by

Pickands et al. (1975) who showed that the distribution of exceedances over a large

threshold r, (i.e., Zt = Xt − r|Xt > r) follows the generalized Pareto distribution

(GPD), as r → ∞. The GPD CDF is given as

GPD(z) =

⎧⎪⎨
⎪⎩
1− (

1 + ξ( z−u
a
)
)−1/ξ

, for ξ �= 0

1− exp(−y−u
a
), for ξ = 0

(1.7)

Both the block maxima and POT methods have been used to model the distribu-

tion of extreme wind speeds. The Gumbel distribution (GEVD where ξ = 0) is the

most widely used model for the extreme wind speed analysis, however, the GEVD

and GPD have also been considered (Hong et al., 2014a). The block maxima method

is the most commonly used approach because of its simplicity in data processing

by using the annual extremes. In comparison, the POT method requires selecting

a threshold and inspecting each point to ensure they are from independent events

(Hong et al., 2014a). Using the POT method for the NBCC is also impractical, as

multi-year wind speed records from hundreds of weather stations would need to be

analyzed. Consequently, the block maxima method is used for determining the design

wind speeds in the NBCC.

Hong et al. (2014a) used the block maxima method to determine the most appro-

priate distribution for extreme wind speeds. Hong et al. (2014a) compared fitting the

Gumbel distribution and the GEVD to annual maximum wind speed data from 235

stations using the method of maximum likelihood (MML) and found that the Gumbel

distribution is preferred in over 70% of cases based on the Akaike information crite-

rion (AIC). Their results validated that the Gumbel distribution should be the most

widely used model for extreme wind speed analysis. The CDF used in this thesis

then for the annual hourly-average maximum wind speed is the Gumbel distribution,

given by

FvA1
(v) = exp

(
− exp

(
−v − uvA1

avA1

))
(1.8)

where uvA1
is the location parameter and avA1

is the scale parameter. The mean,

μvA1
, and standard deviation, σvA1

, are given by uvA1
+ 0.5772avA1

and avA1
π/

√
6,
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respectively.

1.3.3 Return Period Under Stationary Conditions

Traditionally, return period is defined as the inverse of the probability that the annual

maximum event exceeds a threshold, rm, in any given year (Cooley, 2013). Simply

put, the m-year return period has an annual exceedance probability p = 1/m. Under

stationary conditions, an equivalent interpretation of the m-year return period is that

the expected number of exceedance events in m years is one (Cooley, 2013; Olsen

et al., 1998). To derive these relationships, the annual exceedance probability, p, is

assumed to be constant and annual exceedance events are assumed to be independent

and identically distributed (i.i.d.). The number of years until the next exceedance

event, Nn, then follows the geometric distribution (treating each year as a discrete

trial) with probability mass function (PMF) given as (Read and Vogel, 2015)

f(nn) = Pr(Nn = nn) = (1− p)y−1p, nn = 1, 2, ... (1.9)

The expected return period is therefore

m = E[Nn] =
∞∑

nn=1

nn(1− p)nn−1p =
1

p
(1.10)

If Nm is the number of exceedance events in m years, then Nm follows the binomial

distribution (in the discrete case) given as (Cooley, 2013)

f(k) = Pr(Nm = k) =

(
m

k

)
pj(1− p)m−k (1.11)

The expected number of exceedance events in m years is therefore

E[Nm] = mp = 1 (1.12)

Given the above definitions, the 50-year return period annual maximum one-

hourly average wind speed, vA1,50, is the value that has an annual exceedance proba-

bility of 2%, or 1-in-50. This 50-year return period wind speed is estimated as

v̂A1,50 = F−1vA1

(
1− 1

50

)
(1.13)

where FvA1
(v) is the annual maximum one-hourly average wind speed distribution

given in eq. (1.8) with parameters to be discussed in Section 3.2.



12

1.3.4 Effects of Wind Speed Averaging Duration

Instantaneous wind speeds, V (t), can be considered to be the sum of a longer term

average wind speed over duration W , VW (t), plus an instantaneos unsteady com-

ponent, U(t), that fluctuates around VW (t) (Reynolds, 1895; Harper et al., 2010).

That is, V (t) = VW (t) + U(t), where both VW (t) and U(t) are stationary stochastic

processes. Therefore, to predict the expected maximum lifetime wind speed used for

structural design, it is necessary to estimate the distributions of both VW (t) and U(t).

These distributions can then be used to evaluate the design wind speed, which is the

m-year return period W -average annual maximum wind speed, VAW,m, as well as the

expected maximum short-term deviation from VAW,m. The expected maximum short-

term deviation from VAW,m is referred to as the peak gust speed, defined as the highest

short-duration average wind speed within a stated observation period (Harper et al.,

2010), which is W in this case. The peak gust speed should be considered for the

design of small buildings that are “completely enveloped by wind gusts”, however, the

peak gust has a less significant effect on larger buildings because gusts are typically

not well correlated over the different parts of the structure (NRCC, 2015). Therefore,

the NBCC advises that the product of the longer term average wind pressure, qA1,50,

and the gust effect factor, Cg (see eq. 1.4), should be used to account for the effects of

wind gusts on larger buildings (NRCC, 2015). Note that the peak gust speed should

still be considered when designing smaller components of large buildings, such as in-

dividual windows, as small components will almost certainly be enveloped by wind

gusts.

Both the longer term average design wind speed and peak gust speed are estimated

based on wind speed measurements of specific averaging durations. This subsection

discusses the impact these averaging durations have on estimates of the distributions

of VW (t) and U(t). Figure 1.2 illustrates how the duration of the averaging period

can affect estimates of wind speed mean and variance.
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Figure 1.2: Different measures of the average wind speed (Harper et al., 2010). Note
that shorter averaging lengths lead to more variability in the averages, but that the
overall mean is constant.

Figure 1.2 shows ten minutes of wind speed data, where the thin curve is the 1

sec average wind speed, the open circles are the 3 sec average wind speeds, thick

horizontal bars are the 1 min average wind speeds and the thin horizontal bar is

the ten min average wind speed (Harper et al., 2010). The figure demonstrates

that shorter averaging lengths better represent wind speed variability, while longer

averaging lengths lead to closer estimates of the true mean with lower variability.

Consequently, shorter averaging periods, typically 3 sec, are useful for determining

the peak gust (i.e., the maximum 3 sec average within a period), while longer averages

should be used to estimate the mean.

To estimate the mean wind speed, the World Meteorological Organization rec-

ommends using “the longest practical interval that can be regarded as stationary”,

which is generally the ten min average (Harper et al., 2010). However, a one hour

average is used in the NBCC. A one hour average is used because hourly averaged

wind data were recorded historically (i.e., the mileage of wind passing through the



14

anemometer over the entire hour). Although most stations now record shorter dura-

tion averages at the top of every hour (Hong et al., 2014a), the NBCC has maintained

historical methods by adjusting the more recent one, two or ten minute average wind

speed measurements to be equivalent to the expected one hour average (Hong et al.,

2014a). Note that when estimating the mean, any averaging duration is an unbiased

estimate of the mean as long as the measurement is a random sample (Harper et al.,

2010). For example, the ten one min average wind speed measurements shown in

Fig. 1.2 are unbiased estimates of the ten min average, meaning they are all equally

valid. However, these shorter duration averages are likely to be higher or lower than

the true ten min average due to a higher variance. Therefore, shorter duration aver-

ages are less reliable (Harper et al., 2010), unless more short duration averages are

averaged.

Wind speed data recorded at six aviation stations in southern Ontario are anal-

ysed to further demonstrate how estimates of wind speed mean and variance change

with averaging duration. The NAV CANADA - TO2015 Pan and Parapan American

Games dataset, published by Environment and Climate Change Canada (ECCC), is

used for this analysis. The dataset contains two min average wind speed measure-

ments from May 25 to August 31, 2015, recorded in Sarnia, Kitchener/Waterloo,

Oshawa, Toronto City Center, Peterborough and Muskoka. The Peterborough and

Muskoka station data are not used for this analysis because they are missing 18% and

9% of data, respectively. The remaining four stations are each missing between 4%

and 6% of the two min average wind speed measurements, and the missing data points

are randomly spaced throughout the 3 months. For this analysis, these missing data

are ignored, and all data points at each station are assessed as one continuous time

series. To determine the average wind speed for durations longer than two minutes,

the average of consecutive two min average values is taken (i.e., 3 consecutive two

min average wind speed measurements are used to determine the six min average).

Figure 1.3 shows the sample mean and variance of the wind speed measurements

at Toronto City Centre Airport for the T -average wind speed, VT (t), for averaging

durations 2 ≤ T ≤ 240 min (i.e., μ̂V T
and σ̂2

V T
, respectively ).
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Figure 1.3: Average and sample variance of the wind speed measurements at Toronto
City Centre Airport for averaging durations from 2 to 240 min.

As expected, Fig. 1.3 shows averaging length has no affect on the average of averages,

while the sample variance decreases with longer duration averages. The results for

the other three locations, not shown here, are similar to Fig. 1.3. The average is

constant with averaging duration at all locations, although the shape and magnitude

of the sample variance reduction curve changes slightly by location (see Fig. 1.4).

The average is constant because all two min wind speed measurements within the

observation period are used to calculate the average for each averaging duration. For

example, the average at an averaging duration of six min uses all six min wind speed

averages, which were each determined as the average of three consecutive two min

averages. The figure demonstrates that any averaging duration is an equally valid

estimate of the mean when averaged over the entire sample duration, but longer

averaging durations have a lower variance. Consequently, wind speed measurements

averaged over even longer durations are more likely to be closer to the true mean.

The amount that the variance of a stochastic process decreases due to averaging

over duration T can be described by the so-called variance reduction function, γ(T ).

The variance reduction function is equal to 1.0 at T = 0, and decreases towards zero

as T increases. The variance of wind speed measurements at averaging duration T
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can therefore be defined in terms of the variance reduction function as

σ2
V T

= σ2
V γ(T ) (1.14)

where σ2
V is the variance of the instantaneous wind speed (i.e., at T = 0). The

variance reduction function is defined as

γ(T ) =
1

T 2

∫ T

0

∫ T

0

ρ(t2 − t1)dt2dt1 (1.15)

where ρ(τ) is the correlation function. Equation (1.15) demonstrates that the variance

reduction function is the average correlation coefficient between every pair of points

in the interval [0,T] (Fenton and Griffiths, 2008). If the correlation between points

decreases rapidly with distance, the variance reduction function will also decrease.

Conversely, if all points in the interval [0,T] are highly correlated γ(T ) will be close

to 1.0. Note that γ(T ) = 1.0 corresponds to perfect correlation (Fenton and Griffiths,

2008).

Second-moment behaviour can be represented by two types of covariance models:

finite-scale stochastic models and fractal models (Fenton, 1999). Finite-scale stochas-

tic models have limited correlation lengths and are considered short-memory models.

In contrast, fractal models have significant correlation over very large durations and

are considered long-memory models (Fenton, 1999). One of the most commonly used

finite-scale models in engineering practice is the 1D Markov model. The popularity

of the Markov process is due to its simplicity, as the “future” of the process is only

dependant on the “present” and not the entire past history (Fenton and Griffiths,

2008). The Markov process has an exponentially decaying correlation function given

as

ρ(τ) = exp

(
−2|τ |

θ

)
(1.16)

where θ is the correlation length, and τ is the distance between the data points. The

correlation length is the distance beyond which data points are largely uncorrelated

(i.e., less than about 10%) (Fenton and Griffiths, 2008). The Markov process is

considered a finite-scale model because the correlation decays rapidly enough for τ > θ

that the correlation length remains finite (Fenton, 1999). The variance reduction

function of the Markov process is given as

γ(T ) =
θ2

2T 2

[
2|T |
θ

+ exp

(
−2|T |

θ

)
− 1

]
(1.17)
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Fractal models, the second type of covariance model, are also known as statistically

self-similar, long-memory, and 1/f noise models. Fractal models have an infinite

correlation length and thus retain significant correlations even at very large distances

(Fenton and Griffiths, 2008). Fractal processes are made up of a sum of successively

smaller amplitude, higher frequency sinusoids. Therefore, fractal processes look the

same, statistically, as one progressively “zooms” in on the random process, or out

(Fenton and Griffiths, 2008). The one-sided spectral density function is often used to

describe fractal processes and is given by

G(ω) =
GO

ωζ
(1.18)

where ω is a given frequency, ζ defines how the spectral power varies across low

and high frequencies, and GO is the spectral intensity (Fenton and Griffiths, 2008).

Fractional Gaussian noise results when 0 ≤ ζ ≤ 1. Fractional Gaussian noise is a

stationary process with infinite high frequency spectral power. Fractional Brownian

motion results when ζ > 1. Fractional Brownian motion is a non-stationary process

that has infinite spectral power in the lower frequencies and decays more rapidly at

higher frequencies. Historical wind speeds, as well as future wind speeds over short

time periods (e.g., within 1 day) can be considered a stationary process. Therefore, a

fractional Gaussian noise model should be used for wind speeds. However, in practice

neither fractional Gaussian noise nor fractional Brownian motion is physically realiz-

able because variance cannot be infinite. Consequently, the spectral density function

must be truncated such that the fractal process has a finite variance. Mandelbrot

and Van Ness (1968) showed that by locally averaging over some distance δ, frac-

tional Gaussian noise becomes physically realizable since local averaging damps out

high frequency sinusoids, effectively truncating the spectral density function at the

high end (Fenton, 1999). Mandelbrot and Van Ness (1968) determined the resulting

correlation function to be

ρ(τ) =
1

2δ2H

[
|τ + δ|2H − 2|τ |2H +|τ − δ|2H

]
(1.19)

whereH = 1
2
(ζ+1) is the Hurst coefficient. The Hurst coefficient must be in the range

1
2
≤ H ≤ 1, where H = 1

2
corresponds to white noise, and H = 1 corresponds to per-

fect correlation (Fenton and Griffiths, 2008). The corresponding variance reduction
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function of fractional Gaussian noise is (Fenton and Griffiths, 2008)

γ(T ) =
|T + δ|2H+2 −|T |2H+2 +|T − δ|2H+2 − 2δ2H+2

T 2(2H + 1)(2H + 2)δ2H
(1.20)

Note that local averaging causes eq. (1.20) to be only an approximation of fractional

Gaussian noise, where the accuracy improves as δ approaches 0 (although the variance

increases without limit).

Both the Markov and fractional Gaussian noise variance reduction functions were

used to fit eq. (1.14) to the empirical wind speed variance for each location (e.g.,

the variance reduction curve shown in Fig. 1.3). The best-fit correlation length, θ,

for the Markov process variance reduction function was found by minimizing the sum

of squared errors (SSE) between the given Markov variance reduction function and

the wind data variance. Similarly, for the fractal process, δ and H were estimated

simultaneously as the values at which the SSE was minimized. The following steps

were used to estimate σ2
V and the variance reduction function parameters (i.e., θ, δ

and H):

1. The empirical variance reduction curve was normalized, such that σ̂2
V T

=
σ̂2
V T

σ̂2V 2 min
,

where σ̂2
V T

is the empirical variance reduction curve, and T is the averaging du-

ration

2. Both the Markov and fractal process variance reduction functions were fit to

σ̂2
V T

, and the best-fit parameters (i.e., θ, δ and H) were determined based on

the SSE, as described above

3. The estimated variance, σ̂2
V , was determined for both the Markov and fractal

process functions based on eq. (1.14) to be the average of
σ̂2
V T

γ(W )
across all aver-

aging durations, T . That is, σ̂2
V = 1

120

∑
T

σ̂2
V T

γ(T )
for T = 2, 4, 6, ... 240. Note that

γ(T ) is either the best-fit Markov variance reduction function where θ = θ, or

the best-fit fractal process variance reduction function where δ = δ and H = H

4. The Markov and fractal process variance reduction functions were then fit to

the empirical variance reduction curve, σ̂2
V T

, using the corresponding estimated

variance, σ̂2
V , found in step 3. That is, the best-fit parameters (i.e., θ, δ and H)

of γ(T ) were determined based on the SSE between σ̂2
V T

and σ̂2
V γ(T )
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The results are shown in Fig. 1.4. The black lines show the empirical variance

reduction curve at each location. The best-fit Markov and fractal process variance

reduction functions are shown as the blue and orange lines, respectively. The variance

reduction function parameters, and the SSE for each function are included in the

legend.

Figure 1.4: Estimate of wind speed variance reduction function using the Markov and
fractal process for (a) Sarnia, (b) Kitchener/Waterloo, (c) Oshawa and (d) Toronto
City Center.

Figure 1.4 demonstrates that the fractal process provides a significantly better fit to

the data for all locations, based on the SSE. The average SSE for the Markov process

was 372% higher than that of the fractal process. The results agree with the physical

understanding of wind speeds, which is that wind speeds have long-range correlations

and, therefore, should be represented by a fractal process (Feng et al., 2009). The

average best-fit local averaging distance, δ, is 11.1, while the average best fit Hurst

coefficient, H, is 0.963. A fractal process with these “average” coefficients is used as

the wind speed variance reduction function in this thesis, and is assumed to be valid

across Canada. Note that δ is relatively high for all locations, meaning that the model
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is not an accurate approximation of fractional Gaussian noise. However, there is no

physical reason to believe that wind speed variance should be represented by true

fractional Gaussian noise (especially since wind speeds do not have infinite variance,

in practice). Therefore, δ should be selected such that the model best fits the data,

rather than constrained close to 0 to more accurately model fractional Gaussian noise.

This analysis of wind speed variance reduction functions also confirms Harper

et al.’s (2010) recommendation, which states that the longest averaging duration that

can be considered stationary should be used to estimate the mean wind speed since

longer averaging durations are more reliable due to their lower variance. However,

the importance of this claim, that is, how much the design wind speed changes as a

function of averaging duration, should be investigated. As previously discussed a one

hour averaging duration is used in the NBCC, while Harper et al. (2010) recommends

a ten min average. To evaluate if the averaging duration used in the NBCC should

be updated, the value of the design wind speed of longer term averaging duration W ,

where 2 min ≤ W ≤ 4 hours, should be compared to the design wind speed with a

one hour averaging duration. Let the design wind speed be denoted as

vAW,m = μV W
+ zmσV W

(1.21)

where μV W
and σV W

are the mean and standard deviation, respectively, of W -average

wind speed measurements over a given observation period, and zm is the distance from

μvW to the m-year return period annual maximum W -average wind speed, vAW,m,

measured in standard deviation units. Given that wind speed is considered to be

normally distributed, zm = the point such that Pr[VW > zm] =
1

8760m
= Φ−1(1 −

1
8760m

), since there are 8760 hours per year. Any averaging duration is an unbiased

estimate of the mean, therefore, μvW is assumed to be constant with respect to the

averaging duration, W . This is a valid assumption as long as measurements are taken

over a sufficiently long observation period, which is true for the NBCC. The following

ratio can then be used to evaluate the effect of averaging duration on the design wind

speed

vAW,m − μvW

vA1,m − μv1 hr

=
zmσV W

zmσV 1 hr

(1.22)

where vA1,m is the m-year return period annual maximum one-hourly average wind
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speed. Using eq. (1.21) and eq. (1.14), eq. (1.22) can be equivalently written as

zmσV W

zmσV 1 hr

=
σV W

σV 1 hr

=

√
σ2

V γ(W )

σ2
V γ(1 hr)

=

√
γ(W )

γ(1 hr)
(1.23)

Equation (1.23) demonstrates that the design wind speed ratio is only dependant

on the shape of the variance reduction function, γ(W ), and not on the magnitude

of the instantaneous wind speed variance, σ2
V . The variance reduction functions of

the four southern Ontario stations, shown in Fig. 1.4, as well as the average fractal

process, are used to evaluate eq. (1.23). The results are shown in Fig. 1.5(a) and (b).

Figure 1.5(b) has narrowed the vertical scale to more clearly illustrate the differences

between locations.

Figure 1.5: Effect of averaging duration on the ratio of W -average design wind speed
residual to the one hour average design wind speed residual (eq. 1.22) with y-axis
scaled from (a) 0 to 1.2 and (b) 0.9 to 1.1.

Figure 1.5 demonstrates that averaging duration does not have a large effect on the

design wind speed. The average design wind speed ratio for the ten min average

design wind speed relative to the one hour design wind speed for the four locations

is 1.036, while the maximum ratio is 1.041 for Oshawa. The ratio of
vAW,m

vA1,m
is actually

of more interest since it gives a direct relationship from which design wind speeds

for any averaging length can be determined. The ratio shown in Fig. 1.5 is not

exactly equal to
vAW,m

vA1,m
. However, since the product of zm and σV W

is large relative

to the mean speed, μV W
, the ratio

vAW,m−μvW

vA1,m−μv1 hr
, shown in Fig. 1.5 is a reasonable and

conservative estimate of
vAW,m

vA1,m
. For example, using the average instantaneous wind

speed mean and standard deviation across the four locations, μV = 11.69 kmh−1 and
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σV = 7.48 kmh−1, respectively, the average ratio of the ten min and one hour 50-year

design winds speed without their means subtracted is

vA10 min,50

vA1,50

=
7.48 + (4.584)(11.69)(1.036)

7.48 + (4.584)(11.69)
= 1.032 (1.24)

Therefore, the ten min average design wind speed is only 3.2% greater than the one

hour design wind speed in southern Ontario, while Fig. 1.5 shows a ratio of 1.036.

Figure 1.5(b) also demonstrates that the best-fit fractal process slightly overestimates

the increase in the design wind speed due to averaging, especially for lower averaging

durations. The design wind speed ratio of the ten min average relative to the one

hour average for the fractal process is 1.054. In either case, this small discrepancy

is considered to be negligible, and the one hour average wind speed is considered

satisfactory for use in the NBCC. This conclusion is also supported by Hong et al.

(2014a), who found that annual maximum one or two minute wind speed averages

are valid estimates of the annual maximum one-hourly average wind speed.

For the design of small buildings, or building components such as windows, the

peak gust must also be considered in addition to the m-year return period design

wind speed. Most major structural design codes, including the NBCC, use the “gust

factor” approach to estimate wind loads. The gust factor approach estimates the

peak gust wind speed as the product of the W -averaged m-year return period design

wind speed, vAW,m, and a gust factor, G. The gust factor, G, is not to be confused

with the gust effect factor, Cg, used in the NBCC (see eq. 1.4). The gust factor, G,

is applied to wind speed, while the gust effect factor, Cg, is applied to wind pressure

which is equal to wind speed squared. Therefore, G =
√

Cg.

The gust factor, G, is a function of the averaging duration used for the short-term

gust wind speed, w, and the longer time period, W , which the design wind speed is

averaged over. Durst (1960) first proposed the gust factor curve, which provides an

estimate of the relationship between the peak gust wind speed averaged over w, and

the one-hourly average wind speed (i.e., VW where W = 1 hr). To develop the curve,

Durst (1960) assumed that short-term averaged gust wind speeds are independent of

each other and normally distributed about the longer term average wind speed (as

reported by Miller, 2011). The estimated w-average peak gust wind speed is then

given by (Miller, 2011)
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v̂w = μVW
+ g(w,W )σu(w,W ) (1.25)

where v̂w is a statistical measure of the w-averaged peak gust wind speed, μVW
is

the mean of VW (t), g(w,W ) is the peak factor which is a function of w and W ,

and σu(w,W ) is the standard deviation of the gust fluctuations (i.e., the unsteady

component U(t)). Dividing eq. (1.25) by vW gives the gust factor, G, as

G(w,W ) = 1 + g(w,W )
σu(w,W )

μVW

(1.26)

Durst (1960) determined the variances, σu(w,W ), and averages, vW , based on data

from Giblett (1932), which contains 5 sec average wind speed data taken over obser-

vational periods of up to ten min. Durst (1960) defined the peak factor, g(w,W ), as

the value of the standard normal distribution with a cumulative probability equal to

1−w/W . For example, for w = 3 sec andW = 3600 sec, g(w,W ) = Φ−1(1−3/3600) =

3.142.

The gust factor estimates developed by Durst (1960) are still commonly used today

for non-hurricane winds. Krayer and Marshall (1992) developed an updated curve for

hurricane winds, as they were found to have higher gust factors than extratropical

storms. Krayer and Marshall’s (1992) results were used to update the wind speed map

in the ASCE-7-95 (Vickery and Skerlj, 2005). Krayer and Marshall (1992) determined

the hurricane gust factor curve using data from four separate hurricanes by simply

calculating the gust factor as

G(w,W ) =
1

N

N∑
i=1

v̂w,i/vW,i (1.27)

where v̂w,i is the maximum w-averaged gust speed, vW,i is the corresponding longer

term W -averaged wind speed, and N is the number of observations. Durst (1960)

found that the gust factor for w = 3 sec and W = 1 hour is approximately 1.53, while

that proposed by Krayer and Marshall (1992) is approximately 1.67. In comparison,

the NBCC has adopted a gust effect factor, Cg, of “2.0 for the building as a whole

and main structural members, or 2.5 for external pressures and suctions on secondary

members, including cladding” (NRCC, 2015). Note that Cg = 2.0 correponds to a

gust factor, G, of
√
2.0 ≈ 1.41, and Cg = 2.5 corresponds to G =

√
2.5 ≈ 1.58. The
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NBCC gust factor (i.e., G = 1.41 for main strucutural members) is lower than that

found by Durst (1960) (i.e., G = 1.53) because the gust factor found by Durst (1960)

estimates the peak gust, while the NBCC gust factor is intended for the design of

larger buildings, which are not affected by the peak gust (NRCC, 2015). Additionally,

the NBCC used averaging durations of approximately 3 to 7 seconds to evaluate the

peak gust (NRCC, 2015). At w = 7 sec and W = 1 hour, Durst (1960) found

G = 1.46, which is closer to the NBCC gust factor (G = 1.41). The NBCC does not

state the gust factor that should be used for the peak gust.

The gust factor, G, can also be derived analytically based on the variance reduction

function results described above, as σu(w,W ) and μVW
are the only unknown values in

the gust factor equation defined by Durst (1960) (see eq. 1.26). Let the longer termW -

averaged wind speed and the short-term w-averaged wind speed be random variables,

VW (t), and Vw(t), respectively. These two wind speeds can be then be written in

terms of their first and second moments as Vw(t) = μV w + σV wYw(t) and VW (t) =

μV W
+ σV W

YW (t) where Yw(t), YW (t) ∼ N(0, 1) and may be cross-correlated. Gust

fluctuations can then be defined as U(t) = Vw(t)−VW (t), where U(t) is instantaneous

as w → 0. The variance of U(t) is then

σ2
u(w,W ) = Var[U(t)]

= Var[Vw(t)− VW (t)]

= Var[(μV w + σV wYw(t))− (μV W
+ σV W

YW (t))]

(1.28)

Since the mean wind speed is independent of averaging duration, as demonstrated in

Fig. 1.3, it can be assumed that the mean wind speed of any averaging duration, i,

μV i
, can be written as μV , which is the mean of the instantaneous wind speed. That

is, μV w = μV W
= μV . Consequently, eq. (1.28) becomes

σ2
u(w,W ) = Var[σV wYw(t)− σV W

YW (t)]

= σ2
V w

Var[Yw(t)] + σ2
V W

Var[YW (t)]− 2σV wσV W
Cov(Yw, YW )

= σ2
V w

+ σ2
V W

− 2σV wσV W
Cov(Yw, YW )

= σ2
V

[
γ(w) + γ(W )− 2

√
γ(w)γ(W )Cov(Yw, YW )

]
(1.29)

where Cov(Yw, YW ) is the covariance between Yw(t) and YW (t). Using the result of
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eq. (1.29), the gust factor is then

G(w,W ) = 1 + g(w,W )

√
σ2

V

[
γ(w) + γ(W )− 2

√
γ(w)γ(W )Cov(Yw, YW )

]
μVW

= 1 + g(w,W )
σV

μVW

√
γ(w) + γ(W )− 2

√
γ(w)γ(W )Cov(Yw, YW )

= 1 + g(w,W )
σV

μV

√
γ(w) + γ(W )− 2

√
γ(w)γ(W )Cov(Yw, YW )

= 1 + g(w,W )CVV

√
γ(w) + γ(W )− 2

√
γ(w)γ(W )Cov(Yw, YW )

(1.30)

where CVV is the wind speed coefficient of variation.

The covariance, Cov(Yw, YW ), can be determined both analytically and empiri-

cally. The covariance, Cov(Yw, YW ), is found empirically by calculating the Pearson

correlation coefficient using wind speed data from the NAV CANADA - TO2015

Pan and Parapan American Games dataset. While, Cov(Yw, YW ) is solved analyti-

cally based on the variance reduction function, γ(T ). First, Cov(Yw, YW ) is defined

in terms of the covariance between the short-term w-averaged wind speed and the

longer term W -averaged wind speed, Cov(Vw, VW ), as

Cov(Vw, VW ) = Cov
(
μV w + σV wYw(t), μV W

+ σV W
YW (t)

)
= Cov

(
σV wYw(t), σV W

YW (t)
)

= σV wσV W
Cov(Yw, YW )

= σ2
V

√
γ(w)γ(W )Cov((Yw, YW )

(1.31)

Therefore, Cov(Yw, YW ) is

Cov(Yw, YW ) =
Cov(Vw, VW )

σ2
V

√
γ(w)γ(W )

(1.32)

The covariance, Cov(Vw, VW ), is then defined in terms of the correlation function

corresponding to the average fractal process variance reduction function (see eq. 1.19)

Cov(Vw, VW ) =
σ2

V

wW

∫ w

0

∫ W

0

ρ(t2 − t1)dt2dt1 (1.33)

where ρ(τ) has the same parameters values as those of γ(T ) (i.e., δ = 11.1 and

H = 0.963). Substituting eq. (1.33) into eq. (1.32) gives the following analytical

result for Cov(Yw, YW )

Cov(Yw, YW ) =
1

wW
√
γ(w)γ(W )

∫ w

0

∫ W

0

ρ(t2 − t1)dt2dt1 (1.34)
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For this thesis, Cov(Yw, YW ) is calculated for the range 0 min< w ≤ 60 min with

W = 60 min, hereinafter Cov(Yw, Y1 hr), because the gust factor curve developed

by Durst (1960) uses these same parameters, allowing for comparison. Note that the

shortest averaging duration available in the dataset is two minutes. Consequently, the

empirical results are not available for gust averaging durations less than w = 2 min.

Figures 1.6(a) and (b) show the empirical and analytical results for Cov(Yw, Y1 hr),

where the integral in eq. (1.34) was solved numerically. The vertical scale is reduced

in Fig. 1.6(b) to more clearly show the discrepancy between the results.

Figure 1.6: Analytical and empirical results for Cov(Yw, Y1 hr) determined using eq.
(1.34) and the average Pearson correlation coefficient across the four meteorological
stations, respectively, with the vertical scale from (a) 0 to 1.1 and (b) 0.90 to 1.01

Figure 1.6 shows that Cov(Yw, Y1 hr) approaches 1, as w approaches one hour in both

the analytical and empirical cases. This is expected as the two time series (i.e.,

Vw(t) and VW (t)) are identical when averaged over the same duration, resulting in

perfect correlation. Figure 1.6 also demonstrates that the results of the empirical and

analytical solutions are very close, although, the analytical Cov(Yw, Y1 hr) is slightly

lower at shorter gust averaging durations. The analytical solution is used in this

thesis, because it can be extended to gust averaging durations less than two min,

and it is relatively consistent with the empirical result. This covariance function (i.e.,

eq. 1.34) can then be used to calculate the gust factor given in eq. (??). Meaning, G

can be solved analytically based only on the parameters g(w,W ), CVV , and γ(T ).

The final values required to determine G are the peak factor, g(w,W ), and the

coefficient of variation, CVV . The coefficient of variation was determined empirically,

as the average CVV across the four locations in the dataset, and was found to be
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0.64. While, g(w,W ) = Φ−1(1 − w/W ), which is equivalent to the mode of the w
W
-

return period extreme value distribution. However, Miller (2011) recommends that

the mean of the w
W
-return period extreme value distribution be used instead. The

gust factor curve was determined using both peak factors, and the results are shown

in Fig. 1.7. The black line shows the gust factor curve determined by Durst (1960),

hereinafter referred to as the “Durst Curve”. The orange and blue lines show the

analytical results using the mode and mean of the extreme value (EV) distribution,

respectively.

Figure 1.7: Comparison of the gust factor curves determined analytically and that
determined by Durst (1960).

Figure 1.7 shows that the analytical gust factor curve determined using eq. (??)

is significantly higher than the Durst Curve, particularly at lower gust averaging

durations. For example, at w = 3 sec the analytical gust factor using the EV mode to

determine g(w,W ) is 22% higher than that found by Durst (1960) (i.e., 1.86 compared

to 1.53). These higher analytical gust factor values are caused by a higher value of

CVV (see Fig. 1.8), which is likely a result of the difference in the location where

the data were recorded, and potentially the time period as well. Durst (1960) used

data from the late 1920s recorded at Cardington, Bedforshire, England (as reported by

Miller, 2011), while the analytical gust factor curve is based on southern Ontario data

recorded almost a century later, in 2015. Figure 1.7 also demonstrates that using the
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EV distribution mean to determine the peak factor, g(w,W ), results in gust factors

4.8% higher, on average, than those determined based on the EV distribution mode.

This is consistant with the results of Miller (2011), who found that using the mode of

the EV distribution underestimates the gust factor by 2%, relative to using the mean.

The difference between using the mean and the mode is slightly greater in Fig. 1.7

compared to that found by Miller (2011) (i.e., 4.8% vs. 2%) because the CVV value

is also larger. To be conservative, the mean of the EV distribution will be used to

determine g(w,W ) in this thesis.

Figure 1.8 demonstrates the effect of CVV and the fractal process parameters (δ

and H) on the difference between the analytical gust factor curve and the Durst

Curve. The blue line in Fig. 1.8(a) is the analytical gust factor curve calculated using

the empirical results of CVV , δ and H, which were each determined as the average

value across the four locations. This blue gust factor curve is the same as the blue

line in Fig. 1.7, and uses the mean of the EV distribution for the peak factor. The

dashed orange line in Fig. 1.8(a) uses the best-fit values of CVV , δ and H, which were

determined as the values that minimize the SSE with respect to the Durst Curve.

The dashed orange gust factor curve, along with all analytical gust factor curves

in Fig. 1.8(b) also use the mean of the EV distribution for the peak factor. The

analytical curves in Fig. 1.8(b) use a combination of empirical and best-fit values for

CVV , δ and H. The red line shows the gust factor curve with the best-fit value of

CVV when δ and H are held at their empirical values. Conversely, the green line

shows the gust factor curve with the best-fit values of δ and H when CVV is held at

its empirical value.

Figure 1.8: Comparison of the gust factor curve determined by Durst (1960) and
analytical gust factor curves with varying CVV , δ and H.
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Figure 1.8 shows that the analytical gust factor curve with the best-fit values of CVV ,

δ and H is equivalent to the Durst Curve, as the SSE between the Durst Curve and

the dashed orange line is 0.00. Note that the SSE between the blue gust factor curve

and the Durst Curve is 11.96. Figure 1.8 also demonstrates that the discrepancy

between the empirical gust factor curve and the Durst Curve is mainly attributed to

a difference in estimations of CVV . The SSE between the Durst Curve and the red

gust factor curve is 1.56, while that for green curve is 6.68. These red and green lines

in Fig. 1.8(b) show that by adjusting CVV the error between the analytical gust factor

curve and the Durst Curve is reduced by 87% (from 11.96 to 1.56), while adjusting

the fractal process parameters only reduces this same error by 44% (from 11.96 to

6.68).

To confirm the most appropriate value of CVV for Canada, the empirical value

CVV (0.64) was validated against CVV values determined by Hong et al. (2014b)

using one-hourly average wind speed data from the Environment Canada (EC) HLY01

archive. Hong et al. (2014b) calculated the sample mean and standard deviation of

the hourly-average wind speed for 14 stations across Canada which each had between

34 and 50 years of data. To determine CVV based on Hong et al.’s (2014b) results,

the hourly-average sample mean, μV 1 hr
, and standard deviation, σV 1 hr

, must first be

converted to the corresponding instantaneous values, σV and μV . Equation (1.14) is

used to convert σV 1 hr
to σV , where γ(1 hr) is the value of the average fractal process

variance reduction function from Fig. 1.4 at T = 1 hr. While, μV = μV 1 hr
since, as

discussed, the sample mean is constant with averaging duration. The instantaneous

coefficient of variation, CVV , can then be written in terms of the one-hourly average

wind speed sample mean and standard deviation as

CVV =
σV

μV

=
σV 1 hr

μV 1 hr

√
γ(1 hr)

(1.35)

Table 1.1 shows the wind speed statistics for the 14 selected meteorological stations.

The data in columns 1 to 5 are from Hong et al. (2014b), while columns 6 and 7 are

calculated based on eq. (1.14) and eq. (1.35), respectively.

Table 1.1 demonstrates that the empirical CVV found based on the NAV CANADA

- TO2015 Pan and Parapan American Games dataset (0.64) is very close to that for

Toronto Int’l A based on the EC HLY01 dataset (0.69). Toronto Int’l A is used here
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Location Province μV 1 hr
σV 1 hr

CVV1 hr
σV CVV

Victoria Int’l A BC 3.01 2.27 0.75 2.42 0.80
Whitehorse A YT 3.74 2.85 0.76 3.04 0.81
Yellowknife A NT 3.79 2.29 0.60 2.44 0.64
Iqaluit A NU 4.13 3.46 0.84 3.69 0.89
Edmonton Int’l A AB 3.47 2.39 0.69 2.55 0.73
Regina Int’l A SK 5.32 3.06 0.58 3.26 0.61
Winnipeg Int’l A MB 4.93 2.85 0.58 3.04 0.62
Ottawa Int’l A ON 4.32 2.70 0.62 2.88 0.67
Toronto Int’l A ON 4.76 3.10 0.65 3.30 0.69
Quebec Int’l A QC 4.14 2.90 0.70 3.09 0.75
Fredericton A NB 3.70 2.66 0.72 2.83 0.77
Halifax Int’l A NS 5.14 2.90 0.56 3.09 0.60
Charlottetown A PE 5.01 2.74 0.55 2.92 0.58
St. John’s A NL 6.87 3.86 0.56 4.11 0.60

Table 1.1: Wind speed statistics for selected Canadian meteorological stations.
Adapted from Hong et al. (2014b).

for comparison because all the stations in the NAV CANADA dataset are located

in southern Ontario. Table 1.1 also shows that the CVV for the 14 locations varies

between a minimum of 0.58 for Charlottetown A, and a maximum of 0.89 for Iqaluit

A. The resulting variation in the gust factor between these locations caused by the

difference in CVV values is shown in Fig. 1.9. Note that Fig. 1.9 uses the EV dis-

tribution mean to determine g(t, T ), and assumes the variance reduction function is

constant across locations.

Figure 1.9: Comparison of analytical gust factor curves for various locations across
Canada due to varying CVV , shown in Table 1.1, with the vertical scale from (a) 0
to 3.5 and (b) 0.90 to 1.01
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Figure 1.9 demonstrates that the gust factor varies significantly between locations.

For example, G(w = 3 sec, W = 1 hour) = 1.82 for Charlottetown A, G(w = 3 sec,

W = 1 hr) = 1.98 for Toronto Int’l A, and G(w = 3 sec, W = 1 hr) = 2.26 for

Iqaluit A. While it is unclear how the values Cg currently used in the NBCC were

determined, these results suggest that Cg may need to be updated in the NBCC to

account for the higher wind speed variability levels in Canada than those estimated

by Durst (1960). Additionally, the results demonstrate that the NBCC gust effect

factor should vary by location to achieve consistent exceedance probabilities in cities

such as Victoria, BC, Whitehorse, YT and Iqualuit, NU, that have high CVV values

relative to the rest of Canada.

Alternative models to that in eq. (??) above can also be developed based on

slightly different assumptions. One modification is to assume that the longer term

averaging duration value, VW (t), is not a random variable, and is instead, constant.

That is, VW (t) = μvW , or in other words, changes in longer term average wind speed

are negligible. This assumption changes the variance of U(t) to be defined as

σ2
u(w,W ) = Var[U(t)]

= Var[Vw(t)− VW (t)]

= Var[(μV w + σV wYw(t))− μV W
]

= Var[σV wYw(t)]

= σ2
V w

Var[Yw(t)]

= σ2
V γ(w)

(1.36)

The second modification is to assume that Vw(t) and VW (t) are independent. It is

unlikely this assumption is true since the covariance results showed that Cov(Yw, Y1 hr)

is greater than 0.90 for w > 0.1 seconds. Regardless, it was tested as the variance of
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U(t) would change to

σ2
u(w,W ) = Var[U(t)]

= Var[Vw(t)− VW (t)]

= Var[(μV w + σV wYw(t))− (μV W
+ σV W

YW (t))]

= Var[σV wYw(t)− σV W
YW (t)]

= σ2
V w

Var[Yw(t)] + σ2
V W

Var[YW (t)]− 0

= σ2
V [γ(w) + γ(W )]

(1.37)

The results of the analytical gust factor curve using these two modified cases

are compared to the original analytical gust factor curve (eq. ??) to validate that

the assumptions of the original analytical gust factor curve are correct. Figure 1.10

shows the Durst Curve, the original analytical gust factor curve, as well as the two

modified analytical cuves. Note all analytical curves in Fig. 1.10 use the mean of the

EV distribution to determine the peak factor.

Figure 1.10: Comparison of the gust factor curve determined by Durst (1960) and
analytical gust factor curves assuming Vw(t) and VW (t) are independent, and assuming
VW (t) = μV W

.

Figure 1.10 demonstrates that these two alternative models significantly overestimate

the gust factor. For example, assuming VW (t) = μV W
, G(w = 3 sec,W = 1 hr) = 3.14,

which is 64% higher than the original analytical curve (G(w = 3 sec,W = 1 hr) = 1.91
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for the blue curve). Additionally, if Vw(t) and VW (t) are assumed to be independent

G(w = 3 sec, W = 1 hr) = 3.92, a 106% increase relative to the original analytical

curve. The alternative models overestimate the gust factor because they neglect the

variability in VW (t), and the correlation between VW (t) and Vw(t). The variability

in VW (t) and the correlation between VW (t) and Vw(t) cause the peak gust to occur

while the value of VW (t) is also relatively high, reducing the value of the gust factor

(or increasing the gust factor when neglected). Therefore, Fig. 1.10 confirms that

the original analytical gust factor curve (eq. ??) is the most appropriate model for

determining the gust factor.

1.4 Effect of Climate Change on Statistical Modelling of Extreme Wind

Speeds

As mentioned above, a key assumption of both extreme value theory and return

period values is that extreme wind speed distributions are stationary. Additionally,

the gust factor is also defined under the assumption that the short- and long-term

averaged wind speed, Vt(t) and VT (t), respectively, are stationary stochastic processes.

However, these assumptions may not remain true as human activity causes changes

to the global climate. Climate change will probably affect wind speed distributions

in the future, such that they are no longer stationary. Consequently, the current

methods for determining the 50-year return period design wind speed, vA1,50, may no

longer satisfy structural reliability standards. For future building code development,

it is important to assess the potential effects of non-stationarity on extreme wind

speed distributions and return period, as well as the effect of changes in CVV on

the gust factor. Note that in this study, it is assumed that climate change will not

significantly change the variance reduction function, γ(T ), and will only affect the

mean and variance of wind speeds.

1.4.1 Effect of Non-Stationarity on Extreme Value Distributions

There has been a growing interest in developing non-stationary extreme value models,

as the frequency and magnitude of extreme climatic events are likely to continue

changing in the future. A general, pragmatic approach is to assume the data are

still realizations of a given extreme value distribution family (e.g., GEVD, GPD,
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etc.), but where the parameters may vary with time (Renard et al., 2013). For the

block maxima method, which is used in this thesis, non-stationarity is introduced by

expressing one or more of the parameters of the GEVD as a function of time (Katz,

2013). That is, μ(t), σ(t), and ξ(t), for t = 1, 2, .... The parameter values at each time

step are different, which makes them impossible to estimate based on a single series

of observations (Renard et al., 2013). Consequently, the form of the non-stationarity

model must be hypothesized for each parameter (Renard et al., 2013). For example,

the GEVD with

μ(t) = μ(0)
(
1 + Δμt

)
, σ(t) = σ(0) (1 + Δσt) , ξ(t) = ξ (1.38)

where Δμ and Δσ are the rates of change in the mean and standard deviation, re-

ceptively, relative to their initial values. This model incorporates a linear trend in

the location and scale parameters but no trend in the shape parameter, so the type

of GEVD is constant over time. Alternative forms of each parameter model may

also be used, including log-linear trends, polynomial trends, step changes, or some

combination of them (Renard et al., 2013).

The non-stationary extreme value model used in this thesis for the annual max-

imum one-hourly average wind speed in year y, VA1(y), is similar to eq. (1.38),

except time, t, is discretized into steps of length one year so that y = 1, 2, ..., al-

lowing for numerical solutions. Additionally, ξ(t) = 0 because the Gumbel distribu-

tion was found to be most appropriate for extreme wind speeds (see Section 1.3.2).

This non-stationary Gumbel distribution is assumed to have a linearly increasing

mean and standard deviation with year y (i.e., μvA1
(y) = μvA1

(0)
(
1 + Δμy

)
and

σvA1
(y) = σvA1

(0) (1 + Δσy)). Therefore, the CDF of the annual maximum one-hourly

average wind speed in year y, vA1(y), is given by

FvA1
(v; y) = Pr(vA1(y) ≤ v(y)) = exp

(
− exp

(
−v(y)− uvA1

(y)

avA1
(y)

))
(1.39)

where avA1
(y) =

σvA1
(y)
√
6

π
and uvA1

(y) = μvA1
(y) − 0.5772avA1

(y) are the scale and

location parameters for year y, respectively. A linear model is selected because it

is useful for modelling the expected long-term trend in extreme wind speeds, even

though the behaviour of extremes due to climate is unlikely to increase linearly. Re-

cent mean temperature data shows periods of sharp increases followed by plateaus
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(Cooley, 2013). Also note that eq. (1.38) assumes that the scale parameter increases

with time, which ensures σvA1
(y) ≥ 0. This is a reasonable assumption because un-

certainties in extreme events are increasing as a result of climate change (Seneviratne

et al., 2017).

Estimating the parameters, Θ, of the non-stationary Gumbel distribution (i.e.,

Δμ, and Δσ for eq. 1.38) can be done using several techniques. Katz (2013) describes

a straightforward approach using the MML. The MML estimates the Gumbel distri-

bution parameters, Θ, by minimizing the negative log likelihood (NLLH) function,

−ln L(b1, b2, ..., bn; Θ), with respect to Θ. The NLLH function measures how prob-

able the n observed block maxima, bi, are as a function of Θ. Bayesian techniques,

while more complex than the MML, are also used for non-stationary GEVD param-

eter estimation (Renard et al., 2013; L. Cheng et al., 2014). Bayesian inference has

become increasingly popular due to the ability to quantify estimation and predictive

uncertainties (Renard et al., 2013). However, as usual, the Bayesian results are highly

dependent on the assumed prior, which can very much decrease its accuracy.

After the model parameters are estimated, several candidate models can be quanti-

tatively assessed to determine the model that best represents the observations. These

candidate models may include the linear trend model given in eq. (1.38), as well as

models with various alternative forms for each parameter, including log-linear trends,

polynomial trends, etc. Two common criteria used to evaluate the model of best-fit

based on the MLL framework are the AIC and the Bayesian information criterion

(BIC) (e.g. Friedman et al., 2001). Both criteria aim to select the model with the

minimum NLLH function value, while also penalizing the number of parameters used

to prevent over fitting (Katz, 2013). Bayesian inference may also be used for model

selection as described by Renard et al. (2013).

1.4.2 Effect of Non-Stationarity on Return Period

Under non-stationary conditions, the equations for return period provided in Sec-

tion 1.3.3 do not remain valid, as the annual exceedance probability, p, changes with

time. Consequently, the two interpretations of return period, (1) expected time to

the next exceedance event and (2) expected number of exceedance events (discussed

in Section 1.3.3), are no longer equivalent, leaving the definition of return period
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ambiguous. This subsection examines the effect of non-stationarity on these two in-

terpretations of return period and provides an example to demonstrate the difference

in results.

To define the non-stationary exceedance probability for year y, p(y), letMy denote

the random variable representing the annual maximum for year y, and let F (x; y) =

Pr(My ≤ x) denote the CDF of My. The exceedance probability p(y) then is the

probability My exceeds a threshold r during year y, given by

p(y) = Pr(My > r) = 1− F (r; y) (1.40)

where F (x; y) is a non-stationary extreme value distribution (e.g., eq. 1.39).

Given the yearly exceedance probability p(y), the definition of return period m1,

which is the expected number of years until the next exceedance event, can be defined.

The distribution of the waiting time, Nn (from y = 0), until an exceedance over r

occurs is given by (Cooley, 2013; Olsen et al., 1998)

Pr(Nn = n) = Pr(M1 ≤ r) Pr(M2 ≤ r)...Pr(Mn−1 ≤ r) Pr(Mn > r)

= p(n)
n−1∏
y=1

[
1− p(y)

] (1.41)

The expected time to the next exceedance event is therefore (Cooley, 2013)

m1 = E[Nn] =
∞∑
n=1

n p(n)
n−1∏
y=1

(1− p(y))

= 1 +
∞∑
i=1

i∏
y=1

[
1− p(y)

] (1.42)

where m1 is the return period corresponding to the threshold r.

Next, the return period m2, which has an expected number of exceedances above

the threshold r in m2 years equal to one is considered. Let Nm2 be the number of

exceedances in m2 years, and I be an indicator variable. The number of exceedances

in m2 years is defined as (Cooley, 2013)

Nm2 =

m2∑
y=1

I(My > r) (1.43)
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The expected number of exceedance events is therefore

E[Nm2 ] =

m2∑
y=1

E[I(My > r)]

=

m2∑
y=1

p(y)

(1.44)

The m2-year return period can then be solved numerically by computing the upper

limit of the summation, m2, such that (Cooley, 2013; Read and Vogel, 2015)

1 =

m2∑
y=1

p(y) (1.45)

The following example investigates the potential effects of non-stationarity on ex-

treme wind speed return periods in Toronto, Ontario. As discussed in Section 1.4.1,

under climate change, the annual maximum hourly-average wind speed is assumed to

follow a non-stationary Gumbel distribution with linearly increasing mean and stan-

dard deviation, and the CDF of the annual maximum one-hourly average wind speed

in year y is given by eq. (1.39). The initial mean and standard deviation used in this

example are μvA1
(0) = 76.7 kmh−1 and σvA1

(0) = 7.27 kmh−1, respectively, which are

the current mean and standard deviation of vA1 for Toronto, Ontario found by Hong

et al. (2014b). Hong et al. (2014b) determined these results by fitting the Gumbel

distribution to 47 years of hourly-average wind speed data recorded at Toronto Pear-

son Int’l Airport. The expected change in μvA1
(0) and σvA1

(0) due to climate change

is currently poorly known, therefore, this example provides a parametric analysis for

0 ≤ Δμ = Δσ ≤ 0.01, where Δμ and Δσ, are the annual rates of change in μvA1
and

σvA1
, respectively, relative their initial values.

The probability of exceedance over a threshold r, in year y is then defined as

p(y) = 1− Pr(vA1(y) ≤ r) = 1− FvA1
(r; y) (1.46)

where, in this example r is the current 50-year return annual maximum wind speed

for Toronto, Ontario given by r = F−1vA1
(1 − 1

50
; 0) = 95.5 kmh−1. Figure 1.11(a)

demonstrates three cases of how the non-stationary probability of exceedance, p(y),

changes over 50 years for Δμ = Δσ = 0.005 in Toronto, Ontario. Figure 1.11(b)

shows the probability of exceedance in year 50, p(50), for the same three cases for

0 ≤ Δμ = Δσ ≤ 0.01.
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Figure 1.11: Non-stationary probability of exceeding r = 95.5 kmh−1, p(y), for
Toronto, Ontario when (a) 0 ≤ y ≤ 50 for Δμ = Δσ = 0.005, and (b) 0 ≤ Δμ = Δσ ≤
0.01 for y = 50.

In Fig. 1.11(a), case 1 (green line) shows that when μvA1
(y) linearly increases by 0.5%

each year (25% over 50 years) and σvA1
(y) is constant, p(y) increases from 2% to

44.8%. In comparison, case 2 (orange line) shows that when σvA1
(y) linearly increases

by 0.5% each year and μvA1
(y) is constant, p(y) only increases to 3.8%. Finally, case

3 (blue line) demonstrates that linearly increasing both μvA1
(y) and σvA1

(y) by 0.5%

each year results in p(y) increasing to 44.5%. The figure demonstrates that for the

same annual increase, Δ, increasing the mean of the annual maximum wind speed

results in approximately a ten times greater increase in p(50), compared to increasing

the standard deviation of vA1. This is expected as μvA1
(0) is also approximately ten

times greater than σvA1
(0), resulting in the absolute value of the increase in μvA1

(y)

being significantly larger than that of σvA1
(y). Figure 1.11(b) demonstrates that for

the entire range 0 ≤ Δμ = Δσ ≤ 0.01, increases in the mean have a more significant

impact on p(50) than those in the standard deviation. Case 1 consistently has a higher

exceedance probability in year 50 than case 2, although, the difference between p(50)

for case 1 and case 2 is lower for smaller values of Δ. Figure 1.11(b) also shows

that as Δ approaches 0.01, p(50) approaches 100% for case 1 and case 3, meaning if

the mean of vA1 increases by 50% (1% increase per year over 50 years) it is almost

certain the current 50-year return annual maximum wind speed will be exceeded in

any given year. Additionally, note that p(50) for case 1 exceeds that of case 3 for

Δ ≥ 0.005, resulting from the increase in standard deviation having a more dominant
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effect on decreasing location parameter than on increasing the scale parameter (recall

u(y) = μ(y)− 0.5772a(y) and a(y) = σ(y)
√
6

π
).

Given the non-stationary probability of exceedance, both definitions of return

period can be solved numerically. The return period, m1 (eq. 1.42), which is the

expected number of years until the next exceedance event, is solved by truncating

the infinite sum when the solution to m1 converges to within some tolerance, here

assumed to be 10−7. For this example, an upper limit of 105 is used, as the solution

to m1 for the range 0 ≤ α ≤ 0.5 is constant within 10−7 from an upper limit of 105

to 106. The second definition of return period, m2 (eq. 1.45), which has an expected

number of exceedances above the threshold r in m2 years equal to one, is solved

by determining m2, where 1 =
∑m2

y=1 p(y). Linear interpolation is used between the

points where the sum of p(y) is just less than 1 and just greater than 1 to solve for

m2. Figure 1.12(a) shows the expected number of years until next exceedance event

(m1) over r = 95.5 kmh−1 in Toronto, Ontario, while Fig. 1.12(b) shows the solution

to m2 for the same conditions.

Figure 1.12: Return period for exceedance event over r = 95.5 kmh−1 vs. the yearly
rates of increase, Δμ and Δσ, in μvA1

(0) and σvA1
(0), respectively, for Toronto, Ontario

when return period is defined as (a) m1 and (b) m2.

Figure 1.12 shows bothm1 andm2 are significantly reduced even with a small increase

in mean and standard deviation if the current design wind speed continues to be used

in the future. For example, a 0.2% yearly increase in μvA1
and σvA1

causes the expected

return period of the current design wind speed to be reduced from 50 years to 30 years

for m2, or less for m1. Figure 1.12 also demonstrates that m1 is slightly smaller than
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m2 for the same increase, Δ. In other words, the expected time to the next exceedance

event is less than the expected number of years with one exceedance event.

Figures 1.11 and 1.12 show the effects of non-stationarity on the probability of

exceedance and return period, respectively, in the scenario where the current design

wind speed continues to be used in the future (i.e., r is constant). Conversely, Fig. 1.13

shows the increase in the current design wind speed, vA1,50, required to maintain a 50-

year return period. Figures 1.13(a) and (b) are based on return period definitions m1

and m2, respectively. The required increase in vA1,50 shown on the y-axis is defined

as the factor, c, such that cvA1,50 is the design wind speed required to maintain a

50-year return period.

Figure 1.13: Increase in design wind speed (r = 95.5 kmh−1) required to maintain
50-year return period vs. the yearly rates of increase, Δμ and Δσ, in μvA1

and σvA1
,

respectively, for Toronto, Ontario when return period is defined as (a) m1 and (b)
m2.

Figures 1.13(a) and 1.13(b) demonstrate that relatively small increases in the design

wind speed can have a significant effect on achieving a constant return period (50

years). As previously mentioned, the return period m2 was reduced by 40%, from 50

to 30 years, when both μvA1
(y) and σvA1

(y) are increased at Δ = 0.002. However,

increasing the design wind speed by only 5.5% (c = 1.055) results in the return period

(m2) remaining at 50 years. Similar results are also found using return period m1.

Note that the maximum difference between the magnitude of the design wind speed

based on m1 and m2 is 3.9% at Δ = 0.01. This corresponds to a 3.7 kmh−1 difference

in Toronto, Ontario.
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While m1 is slightly more conservative, m2 is more logical in the context of struc-

tural design, as the year of occurrence is less important than ensuring the structure

can withstand all expected loads over the design lifetime. This is confirmed by as-

sessing the 50-year lifetime exceedance probability, p50, defined as

p50 = Pr(Nm2=50 ≥ 1)

= 1− Pr(Nm2=50 = 0)

= 1−
50∏
y=1

[
1− p(y)

] (1.47)

where Nm2=50 is the number of exceedance events in 50 years. Under stationary

conditions p(y) = 0.02 for all y. Therefore, the current 50-year lifetime exceedance

probability is p50 = 1−0.9850 = 0.64. The 50-year lifetime exceedance probability for

non-stationary p(y) is calculated based on the scenario that the mean and standard

deviation of VA1 increase by ΔμμvA1
(0) and ΔσσvA1

(0), respectively, each year. Addi-

tionally, the design wind speed, r, used to calculate p50 is also based on these same

changes (Δμ and Δσ) in μvA1
(y) and σvA1

(y), shown in Fig. 1.13. In other words, the

calculation of p50 assumes the model used to determine the design wind speed, r, is

actually realized in the future. The current value of p50 as well as the results based

on the design speed required to maintain a 50-year return period for m1 and m2 are

shown in Fig. 1.14(a) and (b), respectively.

Figure 1.14: Fifty-year lifetime exceedance probability for Toronto, Ontario vs. the
yearly rates of increase, Δμ and Δσ, in μvA1

(0) and σvA1
(0), respectively. The design

wind speed, r, is also calculated assuming the same yearly rates of increase, Δμ and
Δσ, and r is the wind speed required to maintain a 50-year return period when return
period is defined as (a) m1 and (b) m2.
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Figure 1.14 shows that p50 is lower when the design wind speed is determined based

on m1, but that m2 results in a lifetime exceedance probability that is much closer

to the current value of p50. This demonstrates that m1 results in slight over design,

therefore, m2 is used in this thesis.

1.4.3 Effect of Non-Stationarity on the Gust Factor

The analytical gust factor model developed in Section 1.3.4 was developed assuming

that instantaneous wind speeds follow a stationary stochastic process. However, it is

likely that climate change will effect the instantaneous wind speed distribution such

that the mean and variance are no longer stationary, resulting in changes to CVV .

Therefore, eq. (??) is no longer valid. To account for the future non-stationary wind

speed distribution, the coefficient of variation, CVV , is redefined for year y as

CVV (y) =
σV (y)

μV (y)
(1.48)

where μV (y) and σV (y) are the mean and standard deviation of the instantaneous

wind speed in year y. For this study, the variance reduction function, γ(T ), used to

determined G in eq. (??) is assumed to be constant with time. The non-stationary

gust factor is then

Gy(w,W ) = 1 + g(w,W )CVV (y)

√
γ(w) + γ(W )− 2

√
γ(w)γ(W )Cov(Yw, YW )

(1.49)

where g(w,W ) remains as the mean of the w
W
-return period extreme value distribu-

tion.

The non-stationary gust factor, Gy, was evaluated at a short-term averaging du-

ration w = 3 sec and long-term averaging duration W = 1 hour for a range of values

of CVV (y) to evaluate the effect of μV (y) and σV (y). Figure 1.15(a) shows the gust

factor at year 50 when μV (y) increases by Δμ each year, and σV (y) is constant. That

is, μV (y) = μV (0)
(
1 + Δμy

)
, and σV (y) = σV (0) for all y. Conversely, Fig. 1.15(b)

shows the gust factor at year 50 when σV (y) increases by Δσ each year, and μV (y)

is constant (i.e., σV (y) = σV (0) (1 + Δσy), and μV (y) = μV (0) for all y). The initial

mean and standard deviation of the instantaneous wind speed were determined em-

pirically as the average of that of the four locations in Fig. 1.4, and were found to be

μV (0) = 11.69 and σV (0) = 7.45, respectively.
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Figure 1.15: Non-stationary gust factor, Gy(w = 3 sec,W = 1 hr), at y = 50
where (a) μV (y) = μV (0)

(
1 + Δμy

)
and σV (y) = σV (0) for all y, and (b) σV (y) =

σV (0) (1 + Δσy) and μV (y) = μV (0) for all y.

Figure 1.15 demonstrates that a 1% increase in the instantaneous wind speed variance

each year for 50 years results in CVV (50) = 0.95, and G50(w = 3 sec,W = 1 hr)

increasing from 1.90 to 2.34. While, a 1% yearly increase in the instantaneous wind

speed mean for 50-years results in CVV (50) = 0.43, and G50(w = 3 s,W = 1 hr)

decreasing from 1.90 to 1.60. Note that if the wind speed mean and variance increase

at the same rate (i.e., Δμ = Δσ = Δ) there is no change the coefficient of variation

since

CVV (y) =
σV (y)

μV (y)
=

σV (0) (1 + Δσy)

μV (0)
(
1 + Δμy

)
=

σV (0) (1 + Δy)

μV (0) (1 + Δy)

=
σV (0)

μV (0)
= CVV (0)

(1.50)

1.5 Organization of Thesis

The aim of this thesis is to understand the potential effects of climate change on

wind loading structural design requirements, and to develop an updated wind load-

ing design method that not only accounts for the projected increases in wind speeds

and uncertainties due to climate change, but also improves exceedance probability

consistency across Canada. In the following chapters, three new wind loading design

methods that can be used under climate change are developed. The three methods,
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proposed herein, are based on the “ultimate return period” and the Load and Re-

sistance Factor Design methods. An analysis consisting of quantitative metrics and

practical considerations is completed to determine which of the three wind loading

design methods best achieves the objectives of this thesis. Wind loading design pa-

rameters are recommended for three exceedance probability target levels and three

design lifetime durations under four climate change scenarios, with the intent of pro-

viding structural engineers with the flexibility to use their knowledge and experience

to select the design parameters that are most appropriate for future use.

Chapter 2 is comprised of a literature review of state-of-the-art climate change

models; the results of which are used to reformulate the statistical distributions typi-

cally used to model speeds. The sources of uncertainty in these climate change model

projections, and the associated magnitudes of uncertainty, are also assessed.

Chapter 3 expands on the discussion of the traditional wind loading design method

used in the NBCC, the LRFD method. Current design wind speed statistical param-

eters are introduced, and the current design wind speed exceedance probabilities are

investigated. An updated LRFD method that accounts for climate change is then

proposed. New LRFD-based design parameters and the corresponding design wind

speeds to be used under four climate change scenarios are presented. The 50-year ex-

ceedance probabilities of these updated design wind speeds are then evaluated under

a range of climate change scenarios. Further analysis of the effect of climate change

on the gust effect factor is also completed in Chapter 3.

Chapter 4 explores the application of the “ultimate return period” design method,

an alternative wind loading design method, under current climate conditions and

under climate change. An analysis comparing the ultimate return period method

to the LRFD method under current climate conditions is performed, which presents

the LRFD and ultimate return period design wind speeds. The advantages and

disadvantages of each method are also discussed. Two alternative ultimate return

period-based methods that account for climate change are then proposed. Similar

to Chapter 3, the design parameters and the corresponding design wind speeds are

presented for each of the two new methods under four climate change scenarios. The

50-year exceedance probabilities of these design wind speeds are then evaluated under

a range of climate change scenarios.
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Chapter 5 compares the three design methods, proposed herein, for wind loading

under climate change, and further analyzes the design method found to perform best

overall, the “Hybrid Ultimate Return Period” (HURP) method. The three wind

loading design methods are compared based on their ability to achieve the target 50-

year lifetime exceedance probability under climate change at all the locations across

Canada assessed in this thesis as consistently as possible. The sensitivity of the

HURP design parameters and wind speeds to the exceedance probability target is

then evaluated. Additionally, the effects of design lifetime on the HURP design

wind speeds and corresponding exceedance probabilities are investigated because in

practice the real lifetime of a well-maintained structure is significantly larger than the

design working life defined by structural codes (which is 50 years in the NBCC).

Chapter 6 presents conclusions and suggestions for future work.



Chapter 2

Climate Change Models

2.1 General

Climate models are used to make long-term predictions of the Earth’s climate system,

and are the primary tool for investigating the effects of various forcing scenarios over

the next century and beyond (Flato et al., 2018). The Intergovernmental Panel on Cli-

mate Change (IPCC) developed several future forcing scenarios, called Representative

Concentration Pathways (RCPs), which indicate different levels of radiative forcing

caused by anthropogenic factors. For example, RCP2.6 represents a low emission

pathway with a change in radiative forcing of 2.6Wm−2 (Seneviratne et al., 2017).

These RCPs enable standardization of conditional climate models for projections of

parameters such as wind speeds.

Climate models range in complexity from simple energy balance models to earth

system models (ESMs), the latter of which represent the climate system through

mathematical equations that describe thermodynamics and fluid dynamics (Asch

et al., 2016). ESMs expand upon their predecessor, general circulation models, to

include physical, chemical and biological processes, while general circulation mod-

els only represent physical processes in the atmosphere, ocean and cyrosphere (Asch

et al., 2016). Both general circulation models and earth system models can be con-

sidered global climate models, hereinafter referred to as GCMs. The disadvantage of

these highly complex GCMs is the enormous computational power required, limiting

models to coarse spatial scale projections.

Extreme weather events are generally difficult to realistically represent in climate

models because they are realizations of the tail of the distribution for a climate vari-

able (Flato et al., 2018). Additionally, extreme events often have smaller scale spatial

structures which are difficult to accurately represent in a model (Flato et al., 2018).

Extreme wind speeds are particularly challenging to model since wind flow is non-

linear and dependent on complex terrain (Goyette, 2008). Due to these complexities,

46
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wind speeds are typically modelled using GCMs combined with downscaling tech-

niques to increase the spatial resolution of the GCM. Downscaling techniques are

often applied to GCM results to provide climate projections at a finer spatial scale

because the resolution of GCMs is very low, typically around 1 to 3 degrees (100 to

300 km) (Vandal et al., 2017).

2.2 Global Climate Models

Global Climate Models (GCMs) are physics-based numerical models that simulate the

Earth’s response to various greenhouse gas emissions scenarios. GCMs represent the

fundamental laws of nature (e.g., energy, mass and momentum conservation) through

mathematical equations, which are developed based on theoretical and observational

work (Flato et al., 2018). These equations are then discretized using numerical meth-

ods, and implemented on a grid (e.g., latitude-longitude-height) (Flato et al., 2018).

Processes that cannot be represented by discretized equations due to their complex-

ity (e.g., biochemical processes in vegetation) or spatial and/or temporal scale (e.g.,

cloud processes and turbulence) are implemented using conceptual models that are

based on observations and comprehensive process models (Flato et al., 2018).

The disadvantage of GCMs over simple energy balance models is the enormous

computational resources required for GCMs. Limitations on supercomputer resources

results in three main areas where model accuracy may be compromised due to com-

putational constraints. These three areas include spatial and/or temporal model res-

olution, complexity of climate system processes, and understanding of uncertainties.

Spatial or temporal model resolution may be reduced to decrease the required com-

putational resources. Higher resolution models are generally more mathematically

accurate, but may not be feasible. It should be noted that higher resolution models

do not always lead to more reliable simulations (Flato et al., 2018). In addition to

decreasing model resolution, certain processes or components in the highly complex

climate system may be excluded, typically also reducing model accuracy while re-

ducing computational resources. These trade-offs are generally made based on the

relative importance of the process or component, which is dependent on the time

scale of interest (Flato et al., 2018). Limited computational resources has also led to
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poor knowledge of uncertainties in climate change models (see Section 2.4). Quanti-

fying uncertainties requires running several simulations, and consequently, immense

computational resources. Therefore, limited studies have been completed to date,

resulting in a deficient understanding of uncertainties in climate model projections.

2.3 Downscaling Techniques

Downscaling techniques are applied to GCMs to provide climate projections at finer

spatial scales, necessary for understanding climate change effects at the regional and

local scale. Downscaling is particularly important for understanding changes to ex-

tremes. The two main downscaling technique classes are dynamical and statistical

downscaling. Dynamical downscaling, or regional climate models (RCMs), are similar

to GCMs but are on a finer spatial scale and use the GCM results for boundary con-

ditions. Alternatively, the objective of statistical downscaling is to determine a sta-

tistical relationship between historical GCM results and high-resolution observations.

This relationship is then applied to future GCM results to produce high-resolution

climate projections. Statistical downscaling methods range from linear models to

neural networks.

Dynamical downscaling is often regarded as more accurate since the intricate

RCMs are better equipped to account for complex terrain and the non-linear be-

haviour of wind flow (Goyette, 2008). However, the value of RCMs has been ques-

tioned. Racherla et al. (2012) found that the most important factor in the skill of the

RCM is the credibility of the driving GCM, and that the RCM did not add significant

value beyond downscaling through simple interpolation.

The benefit of statistical downscaling techniques is that they are computation-

ally efficient, relative to dynamical downscaling methods. Computational efficiency

is particularly important when downscaling multi-model ensembles to understand

uncertainties, as RCMs can be prohibitively expensive.

2.4 Sources of Uncertainty

There are several sources of uncertainty in climate change models that make pre-

dicting climatic variables, such as wind speeds, challenging. The major sources of
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uncertainty include the emissions scenario realized in the future, model formulation

(i.e., GCM and RCM architecture) and internal (or natural) variability in the Earth’s

climate. Assessing the uncertainty associated with the emissions scenarios can be es-

timated by running identical models for various RCPs. While the amount of radiative

forcing emitted in the future is very uncertain, as it dependent on human behaviour,

it is important to assess how a range of plausible forcing scenarios will impact the

Earth’s climate system. That is, it is important to estimate how climatic variables

change as a function of uncertain radiative forcing.

Model uncertainty is the uncertainty associated with the GCM and RCM ar-

chitecture and resolution, which can be estimated by running different models for

the same RCP. GCM architecture and resolution uncertainty involves differences in

techniques used to discretize equations and represent sub-grid effects within various

GCMs (Pryor et al., 2012a). Differences in these techniques results in variations in

the lateral boundary conditions applied to the RCM. Therefore, GCM architecture

uncertainty is also referred to as boundary uncertainty. RCM architecture uncertainty

is estimated as the difference in projections between various RCMs that have the same

lateral boundary conditions but differing architecture and/or resolution (Pryor et al.,

2012a).

Finally, internal variability, which may also be referred to as sampling uncertainty,

is the variation in outcomes resulting from insufficient temporal windows (i.e., 20 vs.

50 years, 50 years being more accurate) (Pryor et al., 2012a). Assessing future climate

conditions based on a short time period can lead to errors in conclusions since there is

currently significant decadal variability in the climate. For example, the wind climate

varies with the North Atlantic Oscillation, which is a weather phenomenon resulting

in fluctuations in the atmospheric pressure at sea level (SLP) over the North Atlantic

Ocean.

The order of importance of these sources of uncertainty varies by the prediction

lead time (i.e., 10 vs. 50 years from present), the spatial and temporal averaging

scale of the predicted values, and the quantile of the distribution being predicted

(i.e., mean vs. extreme events). Regarding sources of uncertainty, Hawkins and

Sutton (2009) studied twenty-first-century surface air temperatures and found that

internal variability was most important for the first decade, then model uncertainty
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dominated out to 50 year lead time, after which the emissions scenario uncertainty

dominated. It is important to note that, while the relative importance of some sources

of uncertainty may decrease with time (e.g., internal variability) the total uncertainty

in mean temperature predictions increases with time (Hawkins and Sutton, 2009).

Hawkins and Sutton (2009) also found that, in general, internal variability uncertainty

was more significant for smaller spatial and temporal scales. Although Hawkins and

Sutton (2009) only studied surface air temperature, it is likely that their results

are transferrable to wind speed projections. S. C. Cheng et al. (2014) studied the

magnitude of uncertainty in wind gust predictions and found that model formulation

and emissions scenario uncertainty accounted for less than half the projected increase

in wind gust magnitude for wind gusts ≥ 28 kmh−1. However, the model formulation

and emissions scenario uncertainty were greater than the projected increase in wind

gust magnitude for wind gusts ≥ 90 kmh−1, partially due to rare cases of extreme

gusts (S. C. Cheng et al., 2014). S. C. Cheng et al.’s (2014) results demonstrate that

uncertainties are larger for more extreme wind speed events.

Studies that aim to quantify the magnitude of the sources of uncertainty are lim-

ited, as they require immense computational resources. Quantifying uncertainty is

challenging because there are over 40 GCMs that are currently part of the Coupled

Model Intercomparison Project Phase 5 (CMIP5), which the IPCC recognizes as con-

sistent and well-documented climate model experiments (Flato et al., 2018). Quan-

tifying uncertainties in model formulation, initial conditions and between-emissions

scenarios requires running several simulations across all these models, increasing com-

putational cost. Consequently, comprehensive studies of uncertainties have yet to be

completed. Nonetheless, smaller studies have been completed which provide some

insight into the magnitudes of the various sources of uncertainty in extreme wind

speed projections.

Emissions scenario projections are highly uncertain as future radiative forcing is

dependent on human behaviour. Accordingly, the IPCC has not attributed likelihoods

to the various emissions scenarios (i.e., RCPs). Regardless, it is important to evaluate

the difference in wind speed projections based on the various emissions scenarios to

understand the range in which climatic variables may change in the future. S. C.

Cheng et al. (2014) analysed interscenario uncertainties between the Special Report
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on Emissions Scenarios (SRES) A2 (slightly below RCP 8.5) and B1 (similar to RCP

4.5) in future hourly wind gust event projections based on eight GCMs and quanti-

tatively evaluated the region-averaged absolute difference between scenarios A2 and

B1. They found that the mean difference between scenarios in hourly wind gust pro-

jection magnitudes for hourly wind gust events ≥ 28 kmh−1 was 3 to 5 kmh−1, while

that for wind gusts ≥ 40 kmh−1 was 3 to 12 kmh−1, and wind gusts ≥ 70 kmh−1 had

a mean difference of 4 to 28 kmh−1. Therefore, a reasonable range for interscenario

uncertainty is 15% to 50%, as hourly wind gusts ≥ 28 kmh−1 have an uncertainty of

approximately 18%, while wind gusts ≥ 70 kmh−1 are approximately 40% uncertain.

Note that uncertainty increases for more extreme wind speed events, as previously

mentioned.

Nikulin et al. (2011) and Pryor et al. (2012b) both completed studies that analyse

model formulation uncertainty in wind speed predictions across small ensembles of

climate change models. Nikulin et al. (2011) studied the effect of the GCM architec-

ture on extreme wind speeds, by analysing a single RCM driven by six GCMs under

the SRES A1B scenario. Their study showed a high degree of dependency on the

GCM as the 20-year return period daily maximum wind gust differed by more than

10m s−1 amongst individual simulations – that is, the 20-year return period wind gust

was found to vary from 18 to 50m s−1 across simulations. Therefore, it appears that

GCM architecture uncertainty can range up to about 60% for wind gust projections.

Pryor et al. (2012b) completed a similar analysis, assessing the magnitude of GCM

and RCM architecture uncertainty seperately, for 90th percentile wind speeds. They

analysed an ensemble of thirteen climate simulations based on five RCMs and four

GCMs for the A2 emissions scenario (slightly below RCP 8.5) and found that the

root mean squared difference (RMSD) between simulations with a common RCM but

varying lateral boundary conditions (i.e., GCM) was 0.56 to 1.16m s−1. They also

found that the RMSD for models with a common lateral boundary conditions but

varying RCM was 0.53 to 1.73m s−1. Therefore, the uncertainty due to the GCM

architecture was suggested to be less than that due to the RCM architecture. Based

on Pryor et al.’s (2012b) results the maximum total model formulation uncertainty

is 2.89m s−1. Taking the mean annual 90th percentile wind speed to be 10m s−1, the

model formulation uncertainty is then suggested to be approximately 29% (17% from
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the GCM, and 12% from the RCM). While there is currently limited knowledge of

model formulation uncertainty, the above results demonstrate that model formula-

tion uncertainty may range from approximately 30 to 75% for extreme wind speeds,

providing a range that can used for parametric analysis.

Internal variability is the only main source of uncertainty in climate change models

that has also existed historically. Consequently, the magnitude of internal variability

is relatively conclusive in the literature. The wind energy industry often characterizes

the inter-annual variability of the annual average wind speed as having a normal

distribution with a coefficient of variation of 6% (Pryor et al., 2018). This variability

may also be accounted for by assessing wind data over a sufficient time period. The

wind speed projections used for this thesis are based on 30 years of simulated data,

therefore, the sampling uncertainty caused by internal variability is considered to be

accounted for.

2.5 Extreme Wind Speed Projections Under Climate Change

Advancements in computational resources have enabled researchers to employ state-

of-the-art climate change models to study the effects of future emissions scenarios on

wind speeds. These studies have been published with increasing frequency, particu-

larly over the past decade, due to an increasing urgency to understand the potential

negative effects of climate change. Currently, there are several published studies that

forecast changes in wind speeds using combinations of various GCMs and RCMs, as

well as other statistical downscaling techniques (e.g., Xu, 2019; Nikulin et al., 2011;

Pryor et al., 2012b,). However, to the author’s knowledge there are currently only

three studies that use GCMs to predict the effects of climate change on future extreme

wind speeds across Canada. Jeong and Sushama (2018) and Jeong and Sushama

(2019) studied changes in the 50-year return period wind speed across Canada and

North America, respectively. Both studies applied dynamical downscaling techniques

to two GCMs under RCP 4.5 and 8.5, but used different RCMs. Meanwhile, S. C.

Cheng et al. (2014) employed a statistical downscaling method on eight GCMs to

predict changes in the frequency of wind gust events under SRES A2 and B1 across

Canada. Details of these three studies are summarized below. Other analyses have

mainly focussed on Europe and the contiguous United States, although some global
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studies have been completed (e.g., Kumar et al., 2015). The disadvantage of using

a global analysis is that the computational resources required to downscale GCM

results over the entire globe are still prohibitively expensive. Without downscaling,

the larger spatial scale may result in unreliable wind speed forecasts. However, the

value addition of downscaling has been questioned, as a full ensemble of GCMs is

rarely run in a single analysis, increasing the uncertainty in the results (Kumar et al.,

2015). For this reason, a summary of Kumar et al.’s (2015) global study on wind

extremes under climate change, which did not implement any downscaling method,

is also included in this section for comparison.

To the author’s knowledge, the first Canadian future extreme wind speed analysis

was completed by S. C. Cheng et al. (2014), who analyzed the impacts of climate

change on the frequency of future wind gust events. S. C. Cheng et al. (2014) used

eight GCMs to simulate hourly wind gust data under SRES A2 and B1. They then

employed a statistical model to downscale the results of each GCM. The downscal-

ing function used three regression techniques including: multiple stepwise regression,

stepwise orthogonal regression, and autocorrelation correction regression. A leave-

one-year-out cross-validation procedure was used to calibrate the model, and the

downscaled results were then validated by comparison with observed data. S. C.

Cheng et al. (2014) found that for hourly wind gust events ≥ 90 kmh−1, the absolute

difference between the simulated and observed wind gusts was within 20% for 62% to

85% of locations, varying across different regions of Canada. The simulation projec-

tions showed that the frequency of wind gust events is expected to increase later in

the 21st century, especially for more severe wind gusts (S. C. Cheng et al., 2014). The

percent increase in the frequency of wind gust events ≥ 28 and ≥ 70 kmh−1 across

most regions of Canada is expected to be 10% and 20-30%, respectively (S. C. Cheng

et al., 2014). Meanwhile, the percent increase in the frequency of wind gust events ≥
90 kmh−1 is expected to be more than 100% (S. C. Cheng et al., 2014).

Jeong and Sushama (2018) completed the first detailed study on extreme wind

projections under climate change using RCM simulations for Canada. They evaluated

the projected changes to the annual maximum 3-hourly wind speed for the future

2071–2100 period, with respect to the current 1981–2010 period. The authors used

four different simulations from the fifth-generation Canadian Regional Climate Model
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(CRCM5). The CRCM5 simulations considered in the study were driven by two

GCMs (i.e., Canadian Earth System Model 2 (CanESM2) and Max-Planck-Institute

Earth System Model (MPI-ESM)) for two RCPs, 4.5 and 8.5. The annual maximum

wind speed time series, based on 3-hourly wind speed observations, was then used to

estimate changes in the annual maximum wind speed distribution for all grid points

over Canada. Note that “3-hourly” refers to observations taken on a 3-hourly basis,

and does not refer to a 3 hour average. The distribution of the annual maximum wind

speed based on the 3-hourly instantaneous observations, vA0, was estimated by fitting

the Gumbel distribution using the method of moments (MOM). This distribution was

then used to determined the percent change in the mean and standard deviation of

vA0, as well as that of the corresponding 50-year return period annual maximum wind

speed, vA0,50. To validate the climate models, Jeong and Sushama (2018) compared

the mean and 50-year return period annual maximum wind speed for the current 1981-

2010 period to that determined by Hong et al. (2014a), who used observed hourly-

average wind speed data from 235 meteorological stations. The spatial distributions

of the two studies are mostly consistent, but the wind speed magnitudes of Jeong

and Sushama (2018) are smaller. Jeong and Sushama (2018) presume the lower wind

speed magnitudes are due to the estimates being based on 3-hourly observations,

compared to hourly-average observations used by Hong et al. (2014a). The wind

speed underestimation should not effect Jeong and Sushama’s (2018) estimations of

future changes because the future wind speed projections are presented as the percent

change between the two time periods, and the underestimation should be consistent

across both time periods. Jeong and Sushama’s (2018) climate change projection

results are shown in Fig. 2.1.
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Figure 2.1: Projected changes to the mean and SD of the annual maximum wind
speed, vA0, (columns 1 and 2) and 50-year return period annual maximum wind
speed, vA0,50, and wind pressure (columns 3 and 4) for the future 2071–2100 period
with respect to the current 1981–2010 period (Jeong and Sushama, 2018).

Figure 2.1 shows that changes in the mean annual maximum wind speed are within

-4% to +4% across most regions of Canada for all four simulations. Meanwhile,

changes in the standard deviation are approximately -20% to +20%. The 50-year

return period annual maximum wind speed, vA0,50, is also expected to change between

-20% to +20% in some areas of Canada, but most regions are within -8% to +8%.

Strong spatial consistancy between the projected changes in the standard deviation

and vA0,50 is also evident. This demonstrates that the main cause of changes in vA0,50 is

the inter-annual variability of the annual maximum wind speed. Additionally, there is

significant variation in the expected changes to the standard deviation both spatially

and amongst the different simulations, which is also reflected in the 50-year return

levels. This variation demonstrates that the driving GCM and the emissions scenario

cause significant uncertainty in the results. There is notably less spatial variability

in the mean wind speed, which leads Jeong and Sushama (2018) to conclude that

“extreme wind speed might be influenced more by regional-scale features associated
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with instantaneous surface temperature and air pressure gradients and many other

similar effects”. Although the results of the simulations are inconsistent, general

increases in vA0,50 are evident in central and eastern Canada. Simulations of the

future mean sea level pressure (MSLP), not shown in the figure, demonstrate that

these increases in vA0,50 are caused by changes in MSLP and assocatiated changes

in the MSLP gradient, which “can increase/decrease intensities of low/high pressure

systems”, leading to changes in future wind speeds (Jeong and Sushama, 2018). While

an increasing trend in vA0,50 is evident, projected changes in the annual maximum

wind speed are generally statistically insignificant based on the two sample t-test at

the 10% significance level (Jeong and Sushama, 2018). Jeong and Sushama (2018)

also contribute to the ongoing debate on the value addition of downscaling, finding

that downscaling did add some value in reproducing historical observed magnitudes

and spatial patterns of seasonal and annual mean wind speed.

Jeong and Sushama (2019) completed a similar study to Jeong and Sushama

(2018), but enhanced their analysis to cover all of North America using a different

RCM, the Global Environmental Multiscale (GEM) model, which is used by Environ-

ment and Climate Change Canada (ECCC). Jeong and Sushama (2019) also expanded

their analysis to include a study on future changes in the mean, coefficient of varia-

tion (CV), and 50-year return period annual maximum wind gust, in addition to that

of the annual maximum wind speed. The GEM model uses a physical approach to

estimate wind gusts, which assumes wind gusts occur due to the transportation of air

particles to the surface of the boundary layer through turbulent eddies (Jeong and

Sushama, 2019). Similar to Jeong and Sushama (2018), Jeong and Sushama (2019)

used 3-hourly simulation observations to evaluate the annual maximum wind speed.

However, hourly data were used for the wind gust analysis because a higher temporal

resolution is required for robust wind gust results. Jeong and Sushama (2019) esti-

mated the 50-year return period annual maximum wind speed and gust by fitting the

Gumbel distribution using the MOM. They evaluated the simulation results over the

period 2011-2100, but found relatively small changes for the near future periods, and

therefore mainly present results for the future 2071-2100 period with respect to the

current 1981-2010 period. The same time periods are used by Jeong and Sushama
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(2018). Figure 2.2 shows Jeong and Sushama’s (2019) simulation results of the pro-

jected changes in the mean, CV, and 50-year return period of the annual maximum

wind speed, as well as the MSLP gradient. Note that “Can” and “MPI” denote using

the CanESM2 and MPI-ESM as the GCM in the given simulation, respectively.

Figure 2.2: Projected changes to the mean, coefficient of variation (CV), and 50-year
return period of the annual maximum wind speed for the future 2071–2100 period
with respect to the current 1981–2010 period. Projected changes to annual MSLP
gradient are provided in the fourth column (Jeong and Sushama, 2019).

As Fig. 2.2 demonstrates, the results over Canada are almost identical to the results

of Jeong and Sushama (2018). This suggests that the RCM has less of an effect on the

variability between simulations than the GCM and emissions scenario. The results

also further emphasize Jeong and Sushama’s (2018) conclusion that increased inter-

annual variability, as demonstrated by the CV, is the main cause of increases in vA0,50.

The right column in Fig. 2.2 shows that changes in the MSLP gradient coincide with

extreme wind speeds, specifically in GEM-CanRCP8.5 and GEM-MPIRCP8.5 over
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western Alaska and Hudson Bay coastal regions (Jeong and Sushama, 2019). These

cases reiterate Jeong and Sushama’s (2018) hypothesis that changes in the MSLP gra-

dient may lead to future extreme wind speeds (Jeong and Sushama, 2019). Although,

the increased inter-annual variability may also be due to quasi-periodic internal vari-

ability in the climate system, which is caused by large-scale climate oscillations (e.g.,

the North Atlantic Oscillation) (Jeong and Sushama, 2019).

Figure 2.3 shows the mean, CV, and 50-year return period of the annual maximum

wind gust, as well as the gust factor. In Jeong and Sushama’s (2019) analysis, the

gust factor is defined as the ratio of the 50-year return period annual maximum

wind gust speed to the 50-year return period annual maximum wind speed. This is

considered a valid estimate because the wind gust varies according to a stationary

normal distribution about the longer duration average wind speed (see Section 1.3.4).

Therefore, the annual maximum wind gust is likely to occur at the same time as the

annual maximum wind speed. Recall from Section 1.3.4 that this gust factor defined

by Jeong and Sushama (2019) is equal to G, and not the gust effect factor, Cg. The

first row in Fig. 2.3 shows the observations, while rows two and three show two GEM

simulations for the 1981-2010 period, driven by the ERA-Interim reanalysis dataset,

and CanESM2 (i.e., GEM-ERA and GEM-CanHist, respectively). Rows four and five

show the percent increases for the future 2071-2100 period with respect to the current

1981-2010 period.
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Figure 2.3: (a) Mean, coefficient of variation (CV), and 50-year return period annual
maximum wind gust, as well as gust factor (the ratio of the 50-year return period
annual maximum wind gust to the 50-year return period annual maximum wind
speed), for observations and two GEM model simulations (i.e., GEM-ERA and GEM-
CanHist), for the 1981–2010 period. (b) Projected changes to the same characteristics
as shown in (a) for the future 2071–2100 period with respect to the current 1981–2010
(Jeong and Sushama, 2019).

The current period results (i.e., GEM-ERA and GEM-CanHist) demonstrate that

the spatial distribution of the mean annual maximum wind gust is simulated well

relative to the observed data (Jeong and Sushama, 2019). Meanwhile, the simulated

CV magnitude and spatial variability are underestimated relative to the observed

data for the same time period, especially in southern Canada (Jeong and Sushama,

2019). Jeong and Sushama (2019) attribute this underestimated spatial variability to

missing data and observation error in the observation dataset, while underestimated

CV values may be due to “underrepresented inter-annual variability in the model”.

The 50-year return period wind gusts are also underestimated as a consequence of the

low CV values (Jeong and Sushama, 2019). The gust factor is notably higher in the
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western mountainous and boreal forest regions compared to the rest of Canada (Jeong

and Sushama, 2019). This may be caused by lower wind speeds due to a higher canopy

height and roughness length in forested areas, or general underestimation of vA0,50

in these areas (Jeong and Sushama, 2019). The value of the gust factor in western

mountainous and boreal forest regions is approximately 2.8, which is significantly

higher than the gust factor used by the NBCC (i.e.,
√
2 ≈ 1.41). However, the gust

factor over the rest of Canada is generally below 2, as well as the majority of the

observed data gust factors. This suggests that the model is likely underestimating

the wind speed in these forested areas, leading to overestimated gust factors. Despite

the overestimation, projected percent changes in the gust factor should still be valid,

as the error should be consistent across both time periods. Projected changes in the

gust factor due to the climate change are in the range of -12% to +12%, and show

similar results under both RCP 4.5 and 8.5.

Kumar et al. (2015) completed a global analysis using GCMs included in the

CMIP5 to assess changes in extreme wind speeds under RCP8.5. As discussed, Kumar

et al. (2015) chose not to downscale the GCM results because the authors believe

there is a higher value-addition in using a larger ensemble of GCMs to encapsulate

the variability in projections, than in downscaling a few GCMs to model climate

change effects at the regional and local scale. Outputs of 15 GCMs were used for the

analysis, but the results were mainly presented for the multimodel ensemble (MME)

mean (Kumar et al., 2015). Kumar et al. (2015) assessed future changes for the 2074-

2100 period relative to the historical 1979-2005 reference period (Kumar et al., 2015).

Figure 2.4 shows the MME mean 25-, 50-, and 100-year annual maximum wind speed

for the 1979-2005 period, as well as the projected change in the MME mean 25-, 50-,

and 100-year return period for the 2074-2100 period relative to the reference period.

The results are presented in m s−1.
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Figure 2.4: (a)–(c) The multimodel ensemble mean of annual maximum wind speeds
at 25, 50, and 100-year return periods for the period of 1979– 2005. (d)–(f) MME
change in projected extreme wind speeds at 25–100 year return periods (in m s−1)
(Kumar et al., 2015).

Figure 2.4 shows that the reference period values across Canada are underestimated

relative to the values determined by Hong et al. (2014a) for the NBCC. This is

consistent with what Kumar et al. (2015) found when validating the models. Kumar

et al. (2015) compared the results to the ERA reanalysis dataset, as a reliable observed

global dataset does not exist. They found a small negative bias in the simulated

annual maximum wind speed relative to that of ERA across most regions. This

negative bias may be due to the lack of downscaling. In contrast, a relatively strong

positive bias, approximately 5m s−1, was found for the mountainous regions of the

Himalayas, the Rocky Mountains, the Andes, and Siberia (Kumar et al., 2015). This

contradicts Jeong and Sushama (2019), who found that the annual maximum wind

speed was underestimated in mountainous regions and this contradiction highlights
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the variability in GCM projections. Additionally, Fig. 2.4 shows that the projected

change in the 50-year change in the annual maximum wind speed is within -10% to

+10% across Canada, which is similar to what Jeong and Sushama (2018) and Jeong

and Sushama (2019) found. Although, modelling uncertainties cause the results to

be spatially inconsistent (i.e., the same location shows an increase and decrease in

different models).

Given the uncertainty in extreme wind speed projections, it is difficult to de-

termine the effects of climate change on the wind speed parameters used for struc-

tural design (i.e., the annual maximum wind speed distribution and the gust factor).

Nonetheless, the above studies provide good estimates that can be combined with the

uncertainties provided in Section 2.4 to model how structural design values should be

updated to account for the effects of climate change. Based on the above studies it

can be concluded that for most regions of Canada the annual maximum wind speed

mean is likely to increase 4% over the next 50 years, although, in some locations the

mean may increase up to 8%. The maximum change in annual maximum wind speed

standard deviation is estimated to be 20% over the next 50 years across all regions.

Meanwhile, the gust factor, G, is expected to increase 12% over the same time period

across most regions of Canada, and up to 20% for some regions of the west coast. The

total uncertainty in each of these estimates is between 45% and 125%, as the emissions

scenario uncertainty is approximately 15-50% and the model formulation uncertainty

is approximately 30-75% (see Section 2.4). Therefore, to be conservative the pro-

jected changes in the mean and standard deviation of the annual maximum wind

speed should be increased by between 50 and 125%. Since the projected changes are

poorly known, a parametric analysis is completed in this thesis, which demonstrates

the change in the structural design parameters for various cities across Canada based

on a range of possible increases in the mean and standard deviation of the current

annual maximum hourly-average wind speed.



Chapter 3

Load Factor Design Methodology

3.1 General

The objective of Chapter 3 is to assess the current structural design methods used

in Canada for buildings under wind loading, and to update the wind loading param-

eters such that the current exceedance probability level is maintained under climate

change. The effect climate change on the gust effect factor is also analysed. As dis-

cussed in Section 1.2, both the CHBDC and the NBCC currently use the Load and

Resistance Factor Design (LRFD) methodology. The LRFD methodology is a proba-

bilistic approach to structural design that aims to achieve a target level of reliability,

or probability of failure, across all loading scenarios. Each type of load/resistance is

considered separately, and an individual factor is applied to each load/resistance that

accounts for the uncertainty in the given component. The load factors are calibrated

based on the statistical distributions of each load, as well as the target reliability

level. Consequently, more variable load components, such as wind loads, have higher

load factors. The current wind load factor used in the NBCC is αW = 1.4, see eq.

(1.2) (NRCC, 2015). The wind load factor was calibrated using a 50-year design life

and target reliability index of 3.0 (i.e., a target probability of failure of 1.35× 10−3)

(Hong et al., 2016). As discussed in Section 1.3, the characteristic wind load, F̂W

(see eq. 1.4), used in the NBCC is equal to the product of the 50-year return period

annual maximum one-hourly average wind pressure, qA1,50, the gust effect factor, Cg,

and several other factors relating to the size, shape, location and importance of the

building.

The current wind load design values specified in the NBCC have been developed

to account for current wind loading uncertainties including those of the wind speed,

pressure coefficient, exposure factor, gust effect factor, and topographic factor. Wind

speed is by far the most important parameter in estimating F̂W , as it contributes

to 70-80% of the uncertainty in F̂W (Vickery et al., 2010). Wind speed uncertainty

63
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is significantly higher than other sources of uncertainty since F̂W ∝ qA1,50 ∝ v2A1,50,

and so the uncertainty in the design wind speed, vA1,50 is doubled (using a first-order

approximation). Additionally, there is significant uncertainty in estimates of vA1,50

due to uncertainty in the data and in the probabilistic modelling process. Sources

of uncertainty in the data include sampling errors due to relatively short records,

low spatial resolution due to limited meteorological stations, and changes in sampling

procedures over time, the latter of which might have been quite arbitrary (Lombardo

and Ayyub, 2017). Uncertainties resulting from the probabilistic modelling process

include using short data records to estimate much longer return period wind speeds,

using a single extreme value model across several locations, and disregarding the

phenomenological cause of extreme winds (e.g., tornado, thunderstorm, extra-tropical

storm, etc.), which are represented by different probability distributions (Lombardo

and Ayyub, 2017).

All current sources of wind loading uncertainties, excluding climate change, are

considered to be accounted for in the NBCC wind loading parameters, αW and F̂W , as

the current NBCC is deemed acceptable by society. The aim of this chapter then is not

to adjust the current target reliabilities, but to find wind loading design values which

achieve the same target reliabilities over the design lifetime in the face of climate

change. Specifically, the objective of this chapter is to determine updated values

of αW and F̂W such that the exceedance probability remains constant in the future

under climate change. The exceedance probability is the probability that the factored

design wind load, αW F̂W , is exceeded over the design life of the structure. Note that

if the factored design wind load is selected to have a constant exceedance probability,

and if the distributions of the resistance and other load types are independent of the

design wind load, then the actual reliability index will be maintained at current levels.

Therefore, as stated in Section 1.2.1, the load factor calibration based on exceedance

probability is assumed to achieve target system reliability levels as determined by

Bartlett et al. (2003a).
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3.2 Current Design Wind Speed Statistical Information

As discussed in Section 3.1, the most important parameter used to determine the

characteristic wind load, F̂W , is the 50-year return period annual maximum one-

hourly average wind speed, vA1,50. The design wind speeds used in the NBCC were

most recently updated for the 2010 edition of the building code, and were determined

by fitting the Gumbel distribution to the annual maximum one-hourly average wind

speed using the method of moments (MOM) (NRCC, 2015). The dataset used to

determine vA1,50 consisted of one-hourly average wind speed data from 135 stations,

as well as one or two minute average wind speeds, or ten minute average wind speeds

recorded once per hour at the top of each hour from 465 stations (NRCC, 2015).

Each station had between 10 and 54 years of data, and the wind speed measurements

were adjusted to represent a one hour average at 10m above ground (the standard

anemometer height), and to account for differences in surface roughness (NRCC,

2015). The methods used to adjust the wind speed records were not provided by

NRCC (2015).

While the design wind speeds used in the NBCC have not been updated since

2010, Hong et al. (2014a) determined values of vA1,50 based on wind speed records

from the Environment Canada (EC) HLY01 archive, which consists of one, two or ten

minute average wind speed measurements recorded just before the top of the hour

at 235 stations across Canada. They found that the annual maximum of these short

duration wind speed averages is a “reasonable conservative” estimate of the annual

maximum one-hourly average wind speed (Hong et al., 2014a). This conclusion is

consistant with the results in Fig. 1.5, which show that the variance of the two min

average wind speed is only approximately 6.4% greater than the variance of one hour

average wind speed. Hong et al. (2014a) only used stations with a minimum of 20

years of data, and found that fitting these annual maximum one-hourly average wind

speed estimates to the Gumbel distribution using the generalized least-squares (GLS)

method provided the best estimate of vA1,50. Columns 1-5 of Table 3.1 show the scale

and location parameters of the Gumbel distribution, as well as vA1,50 for 14 Canadian

cities determined by Hong et al. (2014a). Column 6 of Table 3.1 shows the 50-year

return period annual maximum one-hourly average wind speed given in the NBCC,

vNBCC , at the closest location to that in column 1. Finally, column 7 shows the percent
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difference between vA1,50 and vNBCC , %Dv. That is, %Dv =
vA1,50−vNBCC

vNBCC
· 100%.

Table 3.1: Wind speed statistics for 14 Canadian meteorological stations (i.e.,uvA1
,

avA1
and vA1,50) determined by Hong et al. (2014a) (Hong, H. P. 2020, personal

communication, 5 May), as well the 50-year return period annual maximum one-
hourly average wind speed given in the NBCC (vNBCC) and the percent difference
between vA1,50 and vNBCC , %Dv.

Location Province uvA1
avA1

vA1,50 vNBCC %Dv

Victoria Int’l A BC 57.2 6.94 84.3 106.9 26.8
Whitehorse A YT 52.5 7.09 80.2 124.9 55.8
Yellowknife A NT 48.7 5.59 70.5 87.1 23.6
Iqaluit A NU 71.8 12.05 118.8 97.2 -18.2
Edmonton Int’l A AB 58.5 5.92 81.6 108.0 32.4
Regina Int’l A SK 71.9 6.85 98.6 95.0 -3.6
Winnipeg Int’l A MB 63.9 5.56 85.6 99.0 15.7
Ottawa Int’l A ON 62.7 6.80 89.2 95.0 6.5
Toronto Int’l A ON 73.1 6.58 98.8 90.7 -8.2
Quebec Int’l A QC 64.9 6.80 91.4 94.0 2.8
Fredericton A NB 57.0 4.81 75.8 90.7 19.7
Halifax Int’l A NS 69.3 9.26 105.4 87.1 -17.4
Charlottetown A PE 67.6 6.71 93.8 108.0 15.2
St. John’s A NL 87.0 8.40 119.8 105.8 -11.6

Table 3.1 shows that there is a relatively large difference between vA1,50 and vNBCC

for some locations. Hong et al. (2014a) found this large discrepancy to be a concern,

“especially if a location in the NBCC table is within 5 km from a meteorological

station whose [vA1,50] can be estimated with confidence”. The parameters determined

by Hong et al. (2014a) are considered by the author to be more accurate than the

NBCC values due to lower sampling error resulting from a higher minimum number of

years of data (i.e., 20 years vs. 10 years), and because the GLS method was employed

which results in a more accurate estimate of vA1,50 relative to using the MOM (Hong

et al., 2014a). Therefore, uvA1
, avA1

and vA1,50, derived from Hong et al. (2014a) and

as reported in Table 3.1, are the parameters used in this thesis.

3.2.1 Factored Design Wind Speed Exceedance Probabilities

The NBCC provides site-specific 1-in-50 year reference wind velocity pressures, qA1,50,

that are to be used with a calibrated load factor of 1.4. Wind pressure is proportional
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to wind velocity squared, therefore, the factored design wind speed is given as, vFD =√
1.4vA1,50. The annual probability that vFD is exceeded, pvFD

, is then

pvFD
= P [VA1 > vFD] = 1− FVA1

(vFD) = 1− FVA1
(
√
1.4vA1,50) (3.1)

The design wind speeds given in Table 3.1 were used to determine the factored

design wind speed and the annual probability that vFD is exceeded. The results are

given in Table 3.2

Table 3.2: Factored design wind speed and annual probability that vFD is exceeded
for 14 Canadian cities under current (2015) design assumptions.

City Province vFD pvFD

Victoria Int’l A BC 99.7 2.2e-03
Whitehorse A YT 94.9 2.5e-03
Yellowknife A NT 83.4 2.0e-03
Iqaluit A NU 140.6 3.3e-03
Edmonton Int’l A AB 96.5 1.6e-03
Regina Int’l A SK 116.7 1.4e-03
Winnipeg Int’l A MB 101.3 1.2e-03
Ottawa Int’l A ON 105.6 1.8e-03
Toronto Int’l A ON 116.9 1.3e-03
Quebec Int’l A QC 108.2 1.7e-03
Fredericton A NB 89.6 1.1e-03
Halifax Int’l A NS 124.7 2.5e-03
Charlottetown A PE 111.0 1.6e-03
St. John’s A NL 141.7 1.5e-03

Table 3.2 demonstrates that there is significant variability in pvFD
between locations.

For example, the minimum pvFD
is 1.1e-03 in Fredericton, NB, while the maximum

pvFD
is three times greater at 3.3e-03 in Iqaluit, NU. Consequently, the structural

reliability levels also likely vary between locations across Canada under current con-

ditions.

While there is significant variability in the current exceedance probabilities across

Canada, all pvFD
results given in Table 3.2 are considered acceptable by society.

Therefore, the range of pvFD
values in Table 3.2 is used to define three annual ex-

ceedance probability targets that are used in this thesis to determine updated wind

loading design parameters that account for climate change. The three target annual

exceedance probabilities, pe, are 1e-03, 2e-03 and 3e-03, where 3e-03 is considered
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to be the maximum acceptable exceedance probability, 1e-03 is considered to be a

conservative target, and 2e-03 is a mid-level exceedance probability target.

The variation in exceedance probabilities between locations is further emphasized

by analysing the 50-year lifetime exceedance probability, p50. Assuming independence

between years, the probability that a wind speed speed with a given annual exceedance

probability, p, is exceeded over a 50-year lifetime is

p50 = 1− (1− p)50 (3.2)

The blue bars in Figure 3.1 show p50 evaluated at each of the 14 locations included

in Table 3.1 (i.e., 1− (1− pvFD
)50). The green, orange, and red lines show the value

of p50 evaluated at the three annual exceedance probability targets, 1e-03, 2e-03 and

3e-03, respectively.

Figure 3.1: Probability that the factored design wind speed, vFD, is exceeded in the
50-year lifetime for 14 Canadian cities.

Figure 3.1 shows that the majority of the 14 locations have exceedance probabilities

well under the maximum and mid-level target exceedance probabilities. However, at

the Victoria, Whitehorse, Yellowknife, Iqaluit and Halifax stations p50 is significantly

higher than that of the other locations. Iqaluit even exceeds the maximum target

value for p50 (i.e., p50 evaluated at pe = 3e−3). Inconsistent exceedance probabilities

across the 14 locations is a result of a constant load factor (1.4) being used for all

locations across Canada, while the variability of the annual maximum wind speed

changes. This problem along with the proposed solution is discussed in Chapter 4.
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3.3 Effect of Climate Change on Wind Design Requirements

The mean and standard deviation of the annual maximum one-hourly average wind

speed are expected to increase in the future due to climate change, as discussed in

Chapter 2. Additionally, the uncertainty in these distribution parameters is also

expected to increase. This section analyses how αW and F̂W need to be updated

to account for these changes. Determining updated design values for the NBCC is

important because, as shown in Section 1.4.2, the current value of vA1,50 will almost

certainly be exceeded in any given year if the mean annual maximum one-hourly

average wind speed increases by 50% relative to the current value. Note that the

exceedance probability for the factored design wind speed is somewhat lower than

that of vA1,50 since vFD =
√
1.4vA1,50.

The method proposed in this chapter for updating the NBCC design wind speeds

under the LRFD methodology is to increase both αW and F̂W . The updated value

of αW will account for all current sources of uncertainty, as well as the increased

variability in the annual maximum one-hourly average wind pressure, qA1, due to

climate change. Meanwhile, F̂W is increased by adding a climate change effect factor,

Cc (proposed herein), to eq. (1.4). The climate change effect factor, Cc, accounts

for the projected increase in the mean of qA1 due to climate change. The resulting

characteristic wind load is then given as

F̂W = IW qA1,50CeCtCgCpCc (3.3)

where all parameters except Cc are as defined in eq. (1.4). Note that, in this approach,

the design wind pressure, qA1,50, remains the same as in the current NBCC (2015).

The updated factored design wind speed, accounting for climate change, is then

vFD,CC =
√
αWCcvA1,50 (3.4)

where vA1,50, remains at the current value.

Under climate change, the annual maximum one-hourly average wind speed is

assumed to follow a non-stationary Gumbel distribution with a linearly increasing

mean and standard deviation (see eq. 1.39), where the initial means and standard de-

viations are determined based on the current scale and location parameters for the 14

Canadian cities given in Table 3.1. The non-stationary mean and standard deviation



70

of the annual maximum one-hourly average wind speed, VA1, can be written in terms

of the projected annual change in the mean and standard deviation of VA1, Δμ and

Δσ, respectively, relative to their current values. That is, μvA1
(y) = μvA1

(0)
(
1 + Δμy

)
and σvA1

(y) = σvA1
(0) (1 + Δσy).

Increases in the mean and variance of VA1, due to climate change, are accounted

for separately by Cc and αW , respectively. Therefore, to determine Cc the scenario

where only the mean of VA1 increases with time, and the variance of VA1 remains

constant is considered. Let the design wind speed, vA1,50,CC , be the 50-year return

period annual maximum one-hourly average wind speed under a given climate change

scenario defined by Δμ > 0 and Δσ = 0. The climate change effect factor, Cc, is then

defined in terms of vA1,50,CC as

Cc =

(
vA1,50,CC

vA1,50

)2

(3.5)

where vA1,50,CC is evaluated based on the return period m2, as defined in Section 1.4.2

(recall that m2, which has an expected number of exceedances above the threshold r

in m2 years equal to one, was deemed to be the best measure of return period). Since

ρair is assumed constant under climate change at any specific elevation, Cc, which is

squared ratio of vA1,50,CC to vA1,50, can be interpreted as the increase in qA1,50 due to

the projected increase in the mean of VA1 under climate change.

Similarly, to determine the updated value of αW , the scenario where the variance

of VA1 increases with time, and the mean of VA1 remains constant can be used.

The design wind speed, vA1,50,CC , is now evaluated based on a given climate change

scenario with Δμ = 0 and Δσ > 0. The load factor, αW , can then also be defined in

terms of vA1,50,CC as

αW = 1.4

(
vA1,50,CC

vA1,50

)2

(3.6)

where vA1,50,CC is again evaluated using the return period m2, as defined in Sec-

tion 1.4.2. The squared ratio of vA1,50,CC to vA1,50 accounts for the increase in qA1,50

due to the projected increase in the standard deviation of VA1 under climate change,

while, the factor 1.4 accounts for the current sources of uncertainty.

Figure 3.2(a) shows Cc evaluated at each of the 14 Canadian cities listed in Ta-

ble 3.1 for Δμ = 0.001, 0.002, 0.003, and 0.004 and Δσ = 0. The corresponding
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dashed lines show the average value of Cc over the 14 locations for each scenario.

Figure 3.2(b) shows the average value over the 14 locations for 0.0 ≤ Δμ ≤ 0.005 and

Δσ = 0. The values of Δμ used to determine Cc in Fig. 3.2 were selected based on

the studies described in Section 2.5.

Figure 3.2: Climate change effect factor, Cc, required to maintain the current ex-
ceedance probability under climate change for varying Δμ and Δσ = 0 (a) at each of
the 14 Canadian cities and (b) on average, over the 14 stations.

Similarly, Fig. 3.3(a) shows αW evaluated at each of the 14 Canadian cities in

Table 3.1 for Δμ = 0 and Δσ = 0.004, 0.006, 0.008, and 0.01. The average values of

αW over the 14 locations are shown as the corresponding dashed lines in Fig. 3.3(a),

and Fig. 3.3(b) shows the average value of αW for Δμ = 0 and 0.0 ≤ Δσ ≤ 0.01. The

values of Δσ used to determine αW in Fig. 3.3 were also selected on the basis of the

results presented in Section 2.5.
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Figure 3.3: Load factor, αW , required to maintain the current exceedance probability
under climate change for varying Δσ and Δμ = 0 (a) at each of the 14 Canadian cities
and (b) on average, over the 14 stations.

Figures 3.2 and 3.3 demonstrate that, for small increases in μV A1
and σV A1

, Cc and

αW are relatively consistent across all 14 Canadian cities. However, as Δμ and Δσ

increase, the variability in Cc and αW between locations also increases (i.e., the vari-

ance of the yellow dots is greater than that of the purple dots). This observation

suggests that constant Cc and αW design values cannot achieve constant reliability

targets across the country. While reliability is inconsistent across Canada under cur-

rent conditions, Figs. 3.2 and 3.3 demonstrate that the variation between locations

will increase under climate change if constant values of Cc and αW are adopted across

Canada. As mentioned above, this problem and the proposed solution is discussed in

Chapter 4.

To determine the most appropriate values for Cc and αW , studies of state-of-the-

art extreme wind speed projections in Canada under climate change (see Section 2.5)

must be considered. Jeong and Sushama (2018) showed that for most regions of

Canada the annual maximum wind speed mean is likely to increase by about 4% over

the next 50 years, although, in some locations the mean may increase by up to about

8%. The maximum change in annual maximum wind speed standard deviation is

estimated to be about 20% over the next 50 years across all regions. Two climate

change cases are considered in this section based on these conclusions: case 1, Δμ =

0.04/50 = 0.0008 and Δσ = 0.20/50 = 0.004, and case 2, Δμ = 0.08/50 = 0.0016
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and Δσ = 0.004. Note that there is significant uncertainty in these projections

due to model formulation and uncertainty in the emissions scenario, the latter of

which is dependent on human behaviour (see Section 2.4). Based on the studies

discussed in Section 2.4, the expected uncertainty in these annual maximum wind

speed projections is between 50% and 125%. Meaning that, the true values of Δμ

and Δσ could be as much as 125% greater than the proposed values. A climate

change model uncertainty factor, uCC , is introduced to adjust the Δμ and Δσ values

to account for this uncertainty. That is, Δμ = 0.0008uCC for case 1, Δμ = 0.0016uCC

for case 2, and Δσ = 0.004uCC for both cases, where, for example, if there is a

50% model uncertainty in the wind speed projections then uCC = 1.5. Note that,

in this example, Δμ is increased by 50% to include model uncertainty, therefore,

Δμ = 0.0008(1.5), for climate change case 1.

Considering the results of climate change case 1 first: the lower bound of the

uncertainty range, 50% (i.e., uCC = 1.5 resulting in Δμ = 0.0008(1.5) = 0.0012

and Δσ = 0.004(1.5) = 0.006), led to αW = 1.510 (see Fig. 3.2b), and Cc = 1.047

(see Fig. 3.3b). The upper bound of the uncertainty range, 125% (i.e., uCC = 2.25,

resulting in Δμ = 0.0008(2.25) = 0.0018 and Δσ = 0.004(2.25) = 0.009), led to

αW = 1.568 (see Fig. 3.2b), and Cc = 1.072 (see Fig. 3.3b).

Under climate change case 2, αW is equivalent to that of case 1, since Δσ is the

same in both scenarios. For an uncertainty of 50% (i.e., Δμ = 0.0016(1.5) = 0.0024),

Cc = 1.099, while Cc = 1.157 assuming 125% uncertainty (i.e., Δμ = 0.0016(2.25) =

0.0036).

For simplicity, the wind loading design parameters, Cc and αW , are determined

by considering increases in μVA1
and σVA1

separately (see Figs. 3.2 and 3.3). However,

it is likely that the mean and variance of VA1 will increase simultaneously under cli-

mate change, resulting in a discrepancy between vFD,CC calculated using Cc and αW

as defined in Figs. 3.2 and 3.3, and vFD,CC determined when increases in μVA1
and

σVA1
are considered simultaneously. The magnitude of this discrepancy is assessed

by calculating the difference between αWCc and 1.4
(

vA1,50,CC

vA1,50

)2

, where vA1,50,CC is

determined for Δμ > 0 and Δσ > 0, and the same values of Δμ and Δσ are used

to determine vA1,50,CC , αW and Cc. The maximum difference was found for case 2,

assuming 125% uncertainty (i.e., uCC = 2.25), where αWCc was 0.007 (or 0.4%) less
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than 1.4
(

vCC,A1,50

vA1,50

)2

. The minimum difference was found for case 1, assuming 50%

uncertainty, where αWCc was 0.002 (or 0.15%) less than 1.4
(

vA1,50,CC

vAsimultaneously1,50

)2

. In

other words, considering increases in μVA1
and σVA1

separately, instead of simultane-

ously, results in the factored design wind load, αW F̂W , being underestimated by or

0.4% under the most extreme climate change case used in this thesis. Therefore, this

discrepancy is considered negligible for the purpose of determining Cc and αW .

Based on these results, four sets of values of Cc and αW are proposed; values of

Cc and αW are proposed for a model uncertainty of both 50% and 125%, under both

climate change cases 1 and 2. For climate change case 1, which is appropriate for most

regions of Canada, Cc = 1.05 and αW = 1.55 should be implemented to maintain the

current reliability levels over the next 50 years, assuming 50% model uncertainty in

extreme wind speed projections, while Cc = 1.1 and αW = 1.6 should be implemented

if 125% model uncertainty assumed.

Under climate change case 2, which includes regions expecting a greater increase

in the mean annual maximum wind speed, such as Quebec and Nunavut (see Fig. 2.1),

Cc = 1.15 and αW = 1.55 should be implemented assuming 50% model uncertainty.

In these regions, increased values of Cc = 1.2 and αW = 1.6 might be appropriate if

model uncertainty is as high as 125%.

The updated factored design wind speed accounting for climate change, vFD,CC

(see eq. 3.4), in the LRFD format can be determined using the aforementioned values

of Cc and αW . Figure 3.4 shows a comparison of the current factored design wind

speed, vFD, and the future factored design wind speed under climate change, vFD,CC .

Figure 3.4(a) shows the proposed case 1 design values for 50% and 125% model

uncertainty, and Fig. 3.4(b) shows the same for case 2.
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Figure 3.4: Current and future climate change factored design wind speeds, vFD

and vFD,CC , respectively, for 50% and 125% model uncertainty (uCC) in (a) case 1
(Δμ = 0.0008uCC , Δσ = 0.004uCC) and (b) case 2 (Δμ = 0.0016uCC , Δσ = 0.004uCC)
for 14 Canadian cities.

Figure 3.4 demonstrates that, on average, the factored design wind speed will increase

8.6 kmh−1 for case 1, and 14 kmh−1 for case 2, relative to the current value of vFD, if

the model uncertainty is assumed to be only 50%. By adopting the proposed values of

Cc and αW for 125% uncertainty, the average factored design wind speed will increase

13 kmh−1 for case 1, and 19 kmh−1 for case 2, relative to vFD.

The probability that vFD,CC is exceeeded in a given year can then be determined

using eq. (1.46), where FvA1
(r; y) is the non-stationary Gumbel distribution defined

by Δμ and Δσ, and the threshold, r = vFD,CC . The 50-year exceedance probability,

p50, of vFD,CC can then be found using eq. (1.47). Figures 3.5(a) and (b) show

p50 of vFD,CC evaluated under climate change case 1 assuming (a) 50% uncertainty

(uCC = 1.5) and (b) 125% uncertainty (uCC = 2.25) in Δμ and Δσ. The cyan squares

show p50 when uCC = 2.25 (i.e., Cc = 1.1 and αW = 1.6). While, the blue squares

show p50 when uCC = 1.5 (i.e., Cc = 1.05 and αW = 1.55). The purple squares

show p50 if no change is made to the NBCC (i.e., Cc = 1.0 and αW = 1.4). The

current values of p50 for vFD (black circles), as shown in Fig. 3.1, are also included

for reference, as well as the value of p50 evaluated at the three target exceedance

probabilities, pe = 1e-3, 2e-3 and 3e-3, shown by the green, orange and red lines,

respectively.
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Figure 3.5: Fifty-year lifetime exceedance probability for vFD,CC , under climate
change case 1 (Δμ = 0.0008uCC , Δσ = 0.004uCC) assuming (a) 50% model un-
certainty (uCC = 1.5) and (b) 125% model uncertainty (uCC = 2.25) for 14 Canadian
cities.

Figures 3.6(a) and (b) are similar to Figs. 3.5(a) and (b), but show the results

under climate change case 2. The cyan squares are based on case 2 design values for

125% uncertainty (i.e., Cc = 1.2 and αW = 1.6), and the blue squares use the case 2

design values for 50% uncertainty (i.e., Cc = 1.1 and αW = 1.55).

Figure 3.6: Fifty-year lifetime exceedance probability for vFD,CC , under climate
change case 2 (Δμ = 0.0008uCC , Δσ = 0.004uCC) assuming (a) 50% uncertainty
(uCC = 1.5) and (b) 125% uncertainty (uCC = 2.25) for 14 Canadian cities.

Figures 3.5(b) and 3.6(b) show that in both climate change cases, if the realized
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future scenario is that based on uCC = 2.25 (i.e., 125% uncertainty), assuming the

wind design values Cc and αW for 125% uncertainty will result in the 50-year life-

time exceedance probability being close to the current value at each location. While

adopting wind design values Cc and αW for 50% uncertainty causes p50 to be greater

than, or very close to the maximum lifetime exceedance probability (red line) for all

locations under the same future scenario (125% uncertainty). However, if the real-

ized future scenario is that based on uCC = 1.5 (i.e., 50% uncertainty), the current

reliability level will be maintained using the suggested design values Cc and αW for

50% uncertainty, and the suggested design values Cc and αW for 125% uncertainty

will result in over design.

Figure 3.7 shows the average 50-year lifetime exceedance probability over the 14

cities for climate change (a) case 1 and (b) case 2 for uncertainty factors 1.0 ≤ uCC ≤
2.25. The wind loading design values, Cc and αW , used to determine vFD,CC are the

same as those used in Figs. 3.5 and 3.6.

Figure 3.7: Average probability that vFD,CC is exceeded over a 50-year lifetime, where
the uncertainty factor, uCC , ranges from 1.0 to 2.25, for 14 Canadian cities under
climate change (a) case 1 and (b) case 2.

Figure 3.7 demonstrates that if the new values of Cc and αW are not adopted (i.e.,

the design values remain as Cc = 1.0 and αW = 1.4) the probability that the factored

design wind speed is exceeded during a 50-year lifetime will significantly increase.

Consequently, the probability that structures will fail under wind loading will also

increase if the design load and resistance factors are not increased. Figure 3.7 also

shows that adopting the suggested values of Cc and αW for 50% uncertainty may

result in the average value of p50 being greater than the maximum target exceedance
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probability (i.e., p50 at pe = 3e-3). For example, using Cc = 1.05 and αW = 1.55

under climate change case 1, p50 exceeds the maximum target exceedance probability

when uCC ≥ 2.05. Similarly, for climate change case 2, when Cc = 1.1 and αW =

1.55, p50 is greater the NBCC maximum 50-year lifetime exceedance probability when

uCC ≥ 2.23. Note that at uCC = 2.05 for case 1, Δμ = 0.0008(2.05) = 0.00164 and

ασ = 0.004(2.05) = 0.0082. While at uCC = 2.23 for case 2, Δμ = 0.0016(2.23) =

0.00357 and Δσ = 0.004(2.23) = 0.00892. If the realized future scenario is that based

on uCC = 2.25 (i.e., 125% uncertainty) and the suggested values of Cc and αW for

50% uncertainty are adopted, the average probability that vFD,CC is exceeded over a

50-year lifetime will increase by 44% relative to the current value under case 1, and

by 38% relative to the current value under case 2.

3.3.1 Effect of Climate Change on the Gust Factor

As shown in Section 1.4.3, the gust factor, G, and consequently, the gust effect factor,

Cg, will increase in the future if the instantaneous wind speed coefficient of variation,

CVV , increases. Recall that Cg is applied to wind pressure, while G is applied to wind

speed, therefore, G =
√

Cg. It is important to update the gust effect factor because

climate change is expected to cause an increase in the magnitude and frequency of

wind gust events (see Section 2.5).

The results of Section 1.3.4 found that even under the current, stationary climate

conditions the value of Cg in the NBCC may need to be increased because the CVV

values found across Canada are higher than CVV estimated based on the Durst Curve.

Additionally, Section 1.3.4 showed that under current conditions Cg should vary with

location because CVV varies across Canada. Section 1.4.3 then assessed the effect

of non-stationarity on the gust factor. That is, the change in the gust factor when

the instantaneous wind speed coefficient of variation, CVV , changes over time. As

expected, Fig. 1.15 showed that if CVV increases over time the gust factor will also

increase.

To the author’s knowledge, there are no studies to date on the effect of climate

change on CVV , however, the effect of climate change on the gust factor itself has

been studied. Jeong and Sushama (2019) used simulations to determine the expected

percent increase in the gust factor for the future 2071-2100 period relative to the
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current 1981-2010 period, where the gust factor was defined as the ratio of the 50-

year return period annual maximum wind gust to the 50-year return period annual

maximum wind speed. Jeong and Sushama (2019) found that a maximum increase

of 12% is expected across most regions of Canada, while the gust factor may increase

up to 20% in a few regions on the west coast. Given that model uncertainty may be

up to 125%, it is possible that the gust factor may increase by up to 27% (12%∗2.25)
across most regions of Canada, and up to 45% (20% ∗ 2.25) on the west coast.

The non-stationary gust factor was evaluated over a range of CVV values to

determine the relative increases in CVV that result in the gust factor increasing

by up to 45%. In this analysis, the non-stationary gust factor, Gy, is defined in

terms of the total relative increase in CVV over y years, ηCVy , instead of the an-

nual rate of increase (Δ). That is, the coefficient of variation at year y is defined as

CVV (y) = CVV (0)
(
1 + ηCVy

)
. Figure 3.8 shows Gy(w = 3 sec,W = 1 hr) evaluated

using eq. (1.49) for the range 0 ≤ ηCVy ≤ 1, where CVV (0) = 0.64 which is the average

CVV of the four locations in Fig. 1.4. The left y-axis label shows the relative increase

in Gy, that is, (Gy - G0)/G0, while, the right y-axis label shows the magnitude of Gy.

Figure 3.8: Non-stationary gust factor, Gy(w = 3 s,W = 1 hr), evaluated based on
a total relative increase in CVV over y years, ηCVy , for the range 0 ≤ ηCVy ≤ 1. Note
that Gy(w = 3 s,W = 1 hr) = 1.90 when ηCVy = 0.

Figure 3.8 demonstrates that a 58% increase in CVV results in the gust factor in-

creasing by 27%, from 1.90 to 2.42, which is the expected increase in G across most

areas of Canada, assuming 125% model uncertainty. While, when CVV increases 97%

the gust factor increases by 45%, from 1.90 to 2.77, which is the expected increase

in G for some regions of the west coast based on 125% model uncertainty. Note
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that the expected increases in the CV of instantaneous wind speeds (i.e., 58% and

97%) are significantly higher the expected increase in the CV of the annual maximum

one-hourly average wind speed, CVVA1
. Assuming 125% model uncertainty, CVVA1

is

expected to increase approximately 36% across most regions of Canada (i.e., 1− 1+Δσ

1+Δμ
,

where Δσ = 0.20 ∗ 2.25 = 0.45 and Δμ = 0.04 ∗ 2.25 = 0.09). However, there is no

reason to believe that CVV and CVVA1
should increase at the same rate under climate

change.

The results of Fig. 3.8 provide a range of possible values of Cg to be used under

climate change, but selection of the most appropriate future gust effect factor is

considered outside of the scope of this thesis. The future gust effect factor should be

determined such that the current peak gust speed lifetime exceedance probability is

equal to the peak gust speed lifetime exceedance probability under climate change,

which should account for increases in CVV , as well as the frequency of wind gust

events. Further climate change simulations and analysis are therefore required to

determine these lifetime exceedance probabilities.



Chapter 4

Ultimate Return Period Design Methodology

4.1 General

The load factor method, used in the NBCC, results in inconsistent exceedance proba-

bility levels across Canada, as demonstrated in Section 3.2.1. The load factor method

defines the factored design wind load as the product of the wind load factor, αW = 1.4,

and the characteristic wind load, F̂W . The problem with this method is that only F̂W

varies with location, while αW = 1.4 is constant across Canada. Figure 3.1 shows that

this method results in exceedance probabilities near the minimum target (i.e., pe =

1e-3) for locations such as Toronto, ON and Winnipeg, MB, while the exceedance

probability for other places in Canada, including Iqaluit, NU, exceeds the maximum

target (i.e., pe = 3e-3) because the variance of the annual maximum wind speed is

higher in these locations.

To illustrate the cause of inconsistent exceedance probability levels across Canada,

the relationship between the 50-year exceedance probability and wind speed is as-

sessed at various locations across Canada. The distribution of the 50-year return

period annual maximum wind speed, vA1,50 is first determined using the exact ex-

treme value distribution. Assuming each year is independent, the CDF of vA1,50 is

given as

FvA1,50
(v) =

[
FvA1

(v)
]50

=
[
exp(−exp(−(v − uvA1

)/avA1
))
]50

= exp(−50 exp(−(v − uvA1
)/avA1

))
(4.1)

Alternatively, the CDF of vA1,50 can be determined using the asymptotic extreme

value distribution of vA1. Since vA1 follows a Gumbel distribution, which has an

unlimited exponentially decaying tail, the 50-year extreme value distribution of vA1

also follows a Gumbel distribution (Fenton and Griffiths, 2008). The CDF of vA1,50

81
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is then given as

FvA1,50
(v) = exp(exp(−(v − uvA1,50

)/avA1,50
)) (4.2)

where the location parameter uvA1,50
is given as uvA1,50

= F−1vA1

(
1− 1

50

)
and the scale

parameter is defined as avA1,50
=

[
50fvA1

(uvA1,50
)
]−1

. Note that fvA1
(v) denotes the

PDF of vA1.

The CDF, FvA1,50
(v), was evaluated for the 14 Canadian cities given in Table 3.1

for wind speeds v = 1, 2, ...250 using both the exact and the asymptotic CDF (i.e.,

eq. 4.1 and eq. 4.2, respectively). The error between the two CDFs was then evalu-

ated. The average SSE over the 14 locations was 0.0011, and the maximum SSE was

0.0018. Therefore, the two methods of determining FvA1,50
(v) are considered equal.

The asymptotic extreme value distribution (i.e., eq. 4.2) is used in this thesis.

The 50-year exceedance probability, p50, of a given wind speed, v, can then be

determined using the CDF of vA1,50, as

p50 = 1− FvA1,50
(v) (4.3)

The 50-year exceedance probability was calculated for Fredericton, the city with

the lowest exceedance probability, and Iqaluit, the city with the highest exceedance

probability using the parameters given in Table 3.1. Figures 4.1(a) and (b) show the

results for Fredericton and Iqaluit, respectively. The factored design wind speed, vFD,

and 1-in-50 year value, vA1,50, are also included on the graph for comparison. Note

that the mode of FvA1,50
(v) is uvA1,50

, which is equal to vA1,50.

Figure 4.1: Fifty-year exceedance probability for (a) Fredericton A and (b) Iqaluit A.

Figure 4.1 shows that the 50-year probability of exceeding vFD (red line) in (a) for
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Fredericton is 0.06, while in (b) for Iqaluit it is 0.16. The current method for cal-

culating the factored design wind speed, vFD, multiplies vA1,50 by a constant load

factor of
√
1.4 ≈ 1.18. The constant load factor does not account for the changes

in variance of the distribution at different locations in Canada. It can be seen from

Fig. 4.1 that the width of the wind speed distribution is much wider (higher variance)

in (b) Iqaluit than in (a) Fredericton. Consequently, Iqaluit has a larger probability

of exceeding vFD, pvFD
, than Fredericton due to its larger variance.

An alternative to the load factor method is the so-called ultimate return period

method, which has been adopted in the United States in the ASCE-7 Minimum

Design Loads For Buildings and Other Structures (ASCE-7), beginning in the 2010

edition. The ultimate return period method defines the factored design wind speed,

vFD, as the product of a wind load factor of 1.0 and a much larger return period

annual maximum wind speed, vA1,mU
, where mU is the “ultimate” return period,

typically several hundred years. In other words, the factored design wind speed in

the NBCC, vFD =
√
1.4vA1,50 is replaced by vFD = vA1,mU

, where mU = 1/pvFD
,

where pvFD
is the annual exceedance probability of vFD. Recall that under stationary

conditions, the m-year return period has an annual exceedance probability p = 1/m

(see Section 1.3.3). Since pvFD
currently varies by location, as shown in Table 3.2,

the current corresponding value of the ultimate return period also varies by loca-

tion. However, adopting a constant mU across Canada will, by definition, result in

consistent exceedance probabilities. The most appropriate value of mU can then be

determined based on a given target annual exceedance probability, pe, as

mU =
1

pe
(4.4)

Using eq. (4.4), the ultimate return periods corresponding to the three target annual

exceedance probabilities defined in Section 3.2.1 (i.e., pe = 1e-3, 2e-3, and 3e-3) are

1000 years, 500 years and 333 years, respectively.

The advantage of improved exceedance probability consistency prompted the

ASCE (American Society for Civil Engineers) to adopt the ultimate return period

method beginning in the 2010 edition of the ASCE-7 (ASCE-7-10). The ultimate

return period method improves exceedance probability consistency because it elim-

inates the need for load factors, which may not accurately reflect the variability of

the extreme wind speeds across various regions (Vickery et al., 2010). The current
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ASCE-7 uses an ultimate return period of 700 years for nonhurricane prone regions of

the United States, which was calibrated based on a wind load factor of 1.6 and return

period of 50 years used in editions of the ASCE-7 prior to 2010 (Vickery et al., 2010).

Note that the current NBCC load factor accounts for uncertainty in all parameters of

eq. (1.4), including Cg and Ct, as well as the wind speed, while, the ultimate return

period only accounts for variability in the wind speed. Vickery et al. (2010) found

that it is valid to switch to the ultimate return period method because wind speed

uncertainty contributes 70-80% of the total uncertainty in the characteristic wind

load, as discussed in Section 3.1.

The possible disadvantage of the ultimate return period method is that there is

more uncertainty in estimates of vA1,mU
than in estimates of vA1,50, when mU � 50,

due to lack of historical records and sampling error. For the NBCC, the distribution

model parameters of FvA1
are estimated based on only 10 to 54 years of data. Conse-

quently, estimates of vA1,700, for example, are more uncertain than estimates of vA1,50.

Hong et al. (2016) studied uncertainty in Canadian factored design wind speeds using

both the load factor and ultimate return period method. They found that the load

factor method is preferred for a “statistically homogeneous wind climate”, meaning

that the distribution of vA1 is constant in both time and space (Hong et al., 2016).

However, the ultimate return period method is preferred for Canada because the

range of CVvA1
values across Canada causes significant variation in pvFD

, as shown in

Fig. 3.1. Hong et al. (2016) found that the variation in pvFD
caused by the range of

CVvA1
values across Canada was more than twice as large as that due to sample size

effect. Based on these findings Hong et al. (2016) concluded that the ultimate return

method should be used in future editions of the NBCC with mU between 500 and 700

years if the target reliability index remains at 3.0 for a 50-year service period.

Similar to Chapter 3, the objective of this chapter is to update the ultimate return

period wind loading parameters such that a target exceedance probability level is

consistently achieved across Canada under climate change.

4.2 Current Ultimate Return Period Design Wind Speeds

First the ultimate return period design wind speeds under current climate conditions

are considered. The ultimate return period design wind speed for a given return
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period, mU , is given as

vA1,mU
= uvA1

− avA1
ln

(
− ln

(
1− 1

mU

))
(4.5)

assuming the annual maximum one-hourly average wind speed follows a Gumbel

distribution. Using the scale and location parameters for the 14 Canadian cities listed

in Table 3.1, the ultimate return period design wind speeds were calculated using eq.

(4.5), and compared to the current factored design wind speeds in Fig. 4.2. The

ultimate return period design wind speeds were calculated based on the maximum,

mid-level and conservative target exceedance probabilities (i.e., 1e-3, 2e-3 and 3e-3),

which correspond to ultimate return periods of 1000, 500 and 333 years, respectively.

Figure 4.2 shows the current factored design wind speed, vFD, as well as the 1000-,

500- and 333-year ultimate return period design wind speeds.

Figure 4.2: Current factored design wind speeds, vFD, compared to ultimate return
period design wind speeds values for 14 Canadian cities when mU = 1000, 500 and
333 years.

Figure 4.2 demonstrates that the current factored design wind speed is closest to the

500-year return period design wind speed for most locations. However, as expected,

the current factored design wind speed for Victoria, Whitehorse, Yellowknife, Iqaluit

and Halifax is closer to the 333-year return period wind speed. The average 1000-year

return period design wind speed over the 14 locations is approximately 4% greater

than the average current value of vFD. While, vA1,500 and vA1,333 are 0.5% and 3%

less than vFD, on average, respectively. Therefore, to achieve a target exceedance
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probability equal to the current average exceedance probability, a 500-year return

period should be adopted, if the current climate conditions remain stationary. Al-

though the average difference between the factored design wind speed and ultimate

return period design wind speed is small, adopting an ultimate return period design

wind speed means the 50-year lifetime exceedance probability for all locations across

Canada will be equal to the target.

4.3 Effect of Climate Change on the Ultimate Return Period

Similar to Section 3.3, an updated wind loading design methodology is proposed

in this section that accounts for future increases in the mean and standard devia-

tion of the annual maximum one-hourly average wind speed due to climate change.

Two alternative methods are presented in this section that are based on the ulti-

mate return period method. The design parameters in both methods are selected

such that the 50-year exceedance probability, p50, is approximately equal to a target

50-year exceedance probability under a given climate change scenario. Note that a

50-year target exceedance probability is used instead of an annual exceedance proba-

bility target, since the annual exceedance probability is non-stationary under climate

change. The annual exceedance probability is non-stationary because the distribution

of VA1 changes with time under climate change. In the future, the annual maximum

one-hourly average wind speed, VA1, is assumed to follow a non-stationary Gum-

bel distribution with a linearly increasing mean and standard deviation. That is,

μvA1
(y) = μvA1

(0)
(
1 + Δμy

)
and σvA1

(y) = σvA1
(0) (1 + Δσy), where Δμ and Δσ are

the annual rates of change in the mean and standard deviation of VA1 relative to

μvA1
(0) and σvA1

(0), which are the initial mean and standard deviation.

4.3.1 Investigation of Possible Ultimate Return Period Methods Under

Climate Change

The first method proposed in this section will be called the “All-Inclusive Ultimate

Return Period” (AURP) method, which defines the AURP design wind speed under

climate change as vAU,CC = vA1,mAU
. The “all-inclusive ultimate return period”, mAU ,

is an updated value of mU that accounts for increases in both the mean and standard

deviation of VA1 due to climate change (note that currently mU = 500, as discussed
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in Section 4.2). The updated ultimate return period under climate change, mAU , is

determined such that the mAU -return period annual maximum one-hourly average

wind speed, vA1,mAU
, has a 50-year exceedance probability, p50, equal to a given

target 50-year exceedance probability. The probability that vAU,CC is exceeded over

50 years is determined using eq. (1.47). For example, if the target 50-year exceedance

probability is 0.049, vA1,mAU
, is obtained from

0.049 = 1−
50∏
y=1

[
FvA1

(vA1,mAU
; y)

]
(4.6)

where FvA1
(v; y) is the non-stationary Gumbel distribution defined in eq. (1.39) with

μvA1
(y) = μvA1

(0)
(
1 + Δμy

)
and σvA1

(y) = σvA1
(0) (1 + Δσy). Since vA1,mAU

accounts

for increases in both the mean and standard deviation of VA1, Δμ > 0 and Δσ >

0. In this thesis the solution to eq. (4.6) is found using trial and error, and linear

interpolation. Also, note that three 50-year exceedance probability targets are used

in this thesis: p50 = 0.049, 0.095 and 0.139. These exceedance probability targets

are the values of p50 = 1 − (1 − pe)
50, calculated based on the annual exceedance

probability targets introduced in Chapter 3 (i.e., pe = 1e-3, 2e-3 and 3e-3).

Using the AURP method, the characteristic wind load is then given as

F̂W = IW qA1,mAU
CeCtCgCp (4.7)

where qA1,mAU
= 1

2
ρairv

2
A1,mAU

. Note that for this method the load factor is αW = 1.0.

Figure 4.3 shows the all-inclusive ultimate return period, mAU , required to achieve

the mid-level 50-year exceedance probability target, p50 = 0.095, for 14 Canadian

cities. Although in practice the mean and standard deviation of VA1 will likely increase

simultaneously, Figure 4.3(a) shows the mAU for various Δμ > 0 with Δσ = 0, and

Fig. 4.3(b) shows the mAU for Δμ = 0 with various Δσ > 0. Figure 4.3 shows

the results for increases in the the mean and standard deviation of VA1 separately

to demonstrate how a given annual rate of change Δ = Δσ = Δμ impacts mAU

differently when the change is in the mean compared to when the change is in the

standard deviation of VA1. The effect of simultaneous increases in μvA1
and σvA1

on

mAU are assessed later in Section 4.3.2.
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Figure 4.3: All-inclusive ultimate return period, mAU , required to achieve 50-year
exceedance probability target p50 = 0.095 for 14 Canadian cities under climate change
for (a) varying Δμ and Δσ = 0, and (b) Δμ = 0 with varying Δσ.

Figure 4.3 demonstrates that there are two key differences between the resulting

values of mAU when μvA1
and σvA1

are increased separately. First, Fig. 4.3 shows that

higher values of mAU are required to achieve a given target p50 when the mean of VA1

is increased at Δμ, compared to when the standard deviation of VA1 is increased at

the same rate (i.e., Δσ = Δμ). For example, to achieve p50 = 0.095 when Δμ = 0.004

and Δσ = 0, the average ultimate return period needs to be increased to mAU = 1526

years, while when Δμ = 0 and Δσ = 0.004 the average mAU required to achieve

p50 = 0.095 is only 927 years. As discussed in Section 1.4.2, the annual rate of

increase in the mean has a more significant effect on the design wind speed than that

of the standard deviation because the initial mean, μVA1
(0), is approximately ten

times greater than the initial standard deviation, σVA1
(0). Therefore, for the same

relative increase, Δ = Δσ = Δμ, the magnitude of the mean increases more than that

of the standard deviation.

The second difference in mAU between Figs. 4.3(a) and (b) is that mAU is con-

stant for all locations for a given increase in σVA1
, as shown in Fig. 4.3(b), while

mAU varies across the 14 locations for a given increase in μVA1
(see Fig. 4.3a). The

corollary of the variation between locations in mAU in Fig. 4.3(a) is that if a constant

value of mAU is adopted across all locations (as proposed in the all-inclusive ultimate
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return period method), the 50-year exceedance probability will then vary with loca-

tion, assuming Δμ > 0. Therefore, this first method will not meet the objective of

consistent exceedance probability levels across Canada, although it may improve the

exceedance probability consistency relative to the LRFD methodology, discussed in

Chapter 3. This problem motivates the second ultimate return period based climate

change design methodology proposed in this section which will be called “Hybrid

Ultimate Return Period” (HURP) method.

As the name suggests, the Hybrid Ultimate Return Period method is a hybrid

approach, combining the ultimate return period and the climate change effect factor,

Cc (introduced in Section 3.3). In this hybrid method, the “hybrid ultimate return

period”, mHU , accounts for increases in the variability of qA1 due to climate change

while the HURP method climate change effect factor, Cc,HU , accounts for the pro-

jected increases in the mean of qA1 due to climate change. The hybrid ultimate return

period under climate change, mHU , is determined in the same way as mAU ; eq. (1.47)

is used to solve for mHU such that vA1,mHU
has a 50-year exceedance probability, p50,

equal to a given target 50-year exceedance probability. For example, if the target

50-year exceedance probability is 0.049, vA1,mHU
, is determined from

0.049 = 1−
50∏
y=1

[
FvA1

(vA1,mHU
; y)

]
(4.8)

where FvA1
(v; y) is the non-stationary Gumbel distribution defined in eq. (1.39) with

μvA1
(y) = μvA1

(0)
(
1 + Δμy

)
and σvA1

(y) = σvA1
(0) (1 + Δσy). Since vA1,mHU

accounts

for increases in σvA1
and not μvA1

, Δμ = 0 and Δσ > 0. In this thesis the solution to

eq. (4.8) is found using trial and error, and linear interpolation.

The HURP method climate change effect factor, Cc,HU , is defined in a similar way

to Cc used in the LRFD method (i.e., eq. 3.5) as

Cc,HU =

(
vCC

vA1,mU

)2

(4.9)

where vCC is the wind speed that has a 50-year exceedance probability, p50, equal to

a given target 50-year exceedance probability when Δμ > 0 and Δσ = 0, and vA1,mU

is the wind speed required to achieve the same 50-year exceedance probability target,

p50, but it is evaluated under current climate conditions (i.e., when Δμ = 0 and
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Δσ = 0). For example, if the 50-year exceedance probability target is 0.049, which

corresponds to an annual exceedance probability of 0.001, then mU = 1000 and the

denominator in eq. (4.9) is vA1,mU
= vA1,1000.

Using the definition of mHU provided by eq. (4.8) and the definition of Cc,HU

provided above, the characteristic wind load for the Hybrid Ultimate Return Period

method is then

F̂W = IW qA1,mHU
CeCtCgCpCc,HU (4.10)

Therefore, the HURP design wind speed is vHU,CC =
√

Cc,HUvA1,mHU
. Note that for

the HURP method αW = 1.0.

4.3.2 Application of the All-Inclusive and Hybrid Ultimate Return

Period Methods

This subsection evaluates the design parameters required to provide a given target

50-year exceedance probability, as well as the corresponding design wind speeds and

50-year exceedance probabilties under climate change for the all-inclusive and hybrid

ultimate return period design methods. The same two climate change cases considered

in Section 3.3 are also considered here: case 1 where Δμ = 0.0008uCC and Δσ =

0.004uCC , and case 2 where Δμ = 0.0016uCC and Δσ = 0.004uCC . Recall that uCC is

the uncertainty factor, which accounts for uncertainty in the model projections. Each

climate change case is assessed for 1.0 ≤ uCC ≤ 2.25.

As discussed above, the all-inclusive ultimate return period method requires de-

termining mAU such that vA1,mAU
has a 50-year exceedance probability equal to a

given target value. The resulting ultimate return period, mAU , accounts for increases

in both the mean and standard deviation of VA1. Figures 4.4(a) and (b) show the val-

ues of mAU required to achieve 50-year exceedance probability targets of p50 = 0.049,

0.095 and 0.139 under climate change cases 1 and 2, respectively. These 50-year

exceedance probability targets are calculated based on the annual exceedance proba-

bility targets used in Chapter 3 (i.e., pe = 1e-3, 2e-3 and 3e-3). Figure 4.4 shows the

average results over the 14 Canadian cities listed in Table 3.1 for a range of 0% to

125% model uncertainty (i.e., 1.0 ≤ uCC ≤ 2.25).
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Figure 4.4: Average all-inclusive ultimate return period, mAU , over 14 Canadian
cities required to achieve target 50-year exceedance probability p50 under climate
change cases (a) 1 (Δμ = 0.0008uCC , Δσ = 0.004uCC) and (b) 2 (Δμ = 0.0016uCC ,
Δσ = 0.004uCC) for 1.0 ≤ uCC ≤ 2.25.

Figure 4.4 demonstrates that the ultimate return periods required to achieve the

exceedance probability targets under climate change are significantly larger than the

current ultimate return period (i.e., mU = 500), and that mAU increases rapidly as

Δμ and Δσ increase (i.e., uCC increases). Additionally, the value of mAU required to

achieve p50 = 0.049 is significantly higher than that required to achieve p50 = 0.139.

For example, under climate change case 1 with 125% model uncertainty mAU = 2265

years for p50 = 0.139, while mAU = 9592 years for p50 = 0.049.

The mid-level exceedance probability target (p50 = 0.095) is used in this subsection

to determine recommended design values. The results of Fig. 4.4 are used to determine

the values of mAU required for climate change cases 1 and 2, assuming both 50%

and 125% model uncertainty. The results are rounded to the nearest hundred for

simplicity. For climate change case 1, the recommended value of mAU is 1900 years

assuming 50% model uncertainty, 3900 years if the model uncertainty assumed to be

125%. For climate change case 2, mAU = 2800 years assuming 50% model uncertainty,

and 7500 years assuming 125% model uncertainty. Using these recommended design

parameters, the future AURP design wind speeds to be used under climate change

(i.e., vAU,CC = vA1,mAU
) were calculated and are shown in Fig. 4.5. Figure 4.5(a)

and (b) show the results for climate change cases 1 and 2, respectively. The current

factored design wind speeds, vFD, are included for reference.
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Figure 4.5: Current design wind speeds and future AURP design wind speeds, vFD

and vAU,CC , respectively, for 50% and 125% model uncertainty (uCC) under climate
change (a) case 1 (Δμ = 0.0008uCC , Δσ = 0.004uCC) and (b) case 2 (Δμ = 0.0016uCC ,
Δσ = 0.004uCC) for 14 Canadian cities.

Figure 4.5 shows that the average design wind speed over the 14 stations will increase

by 9.0 kmh−1 for case 1, and 14 kmh−1 for case 2, relative to the current value of

vFD, if the model uncertainty is assumed to be 50%. If the proposed values of mAU

for 125% model uncertainty are adopted, the average design wind speed will increase

by 12 kmh−1 for case 1, and 19 kmh−1 for case 2, relative to the current vFD.

Figures 4.6 and 4.7 show the 50-year exceedance probabilities, p50, of the design

wind speeds for the 14 stations shown in Fig. 4.5. As in Figs. 3.5 and 3.6, the

probability that vAU,CC is exceeded over 50 years is determined using eq. (1.47), where

FvA1
(r; y) is the non-stationary Gumbel distribution which includes annual relative

increases in the mean and standard deviation, Δμ and Δσ, respectively. Figures 4.6(a)

and (b) show p50 for climate change case 1 assuming (a) 50% and (b) 125% model

uncertainty. The blue squares show p50 if the recommended design wind speeds for

50% model uncertainty are adopted, while the cyan squares demonstrate that for

125% model uncertainty. The purple squares show p50 if the current design wind

speeds are used under climate change case 1, and the black circles denote the current

50-year exceedance probability levels for reference.
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Figure 4.6: Fifty-year exceedance probability of vAU,CC for the AURP method, un-
der climate change case 1 (Δμ = 0.0008uCC , Δσ = 0.004uCC) assuming (a) 50%
model uncertainty (uCC = 1.5) and (b) 125% model uncertainty (uCC = 2.25) for 14
Canadian cities.

Figures 4.7(a) and (b) are similar to 4.6(a) and (b), but show p50 for climate

change case 2 assuming 50% and 125% model uncertainty, respectively.

Figure 4.7: Fifty-year exceedance probability of vAU,CC for the AURP method, un-
der climate change case 2 (Δμ = 0.0016uCC , Δσ = 0.004uCC) assuming (a) 50%
model uncertainty (uCC = 1.5) and (b) 125% model uncertainty (uCC = 2.25) for 14
Canadian cities.

The all-inclusive return periods, mAU , in Figures 4.6 and 4.7 were selected so that the

realized 50-year exceedance probability is reduced under climate change compared to
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p50 achieved using the current factored design wind speeds under climate change (i.e.,

vFD,CC where αW = 1.4 and Cc = 1.0, shown in purple). Figures 4.6 and 4.7 show that

the design wind speeds selected in Fig. 4.5 achieve the expected 50-year exceedance

probabilities. That is, p50 for the design wind speeds recommended for 50% model

uncertainty (blue squares) are approximately equal to 0.095 (orange lines) when 50%

model uncertainty is realized in the future, as shown in Figs. 4.6(a) and 4.7(a). Sim-

ilarly, Figs. 4.6(b) and 4.7(b) demonstrate that p50 for the 125% model uncertainty

design wind speeds (cyan squares) are also approximately equal to 0.095 (orange lines)

when 125% model uncertainty is realized in the future. If the 125% model uncertainty

design wind speeds are adopted and only 50% uncertainty is realized in the future,

p50 at the 14 locations will be approximately 0.049 (green line) under both climate

change cases 1 and 2, see Figs. 4.6(a) and 4.7(a), respectively. Meanwhile, if the 50%

uncertainty design wind speeds are adopted and 125% model uncertainty is realized

in the future, p50 will be at or above the maximum 50-year exceedance probability

target, p50 = 0.139, at all locations, as shown in Figs. 4.6(b) and 4.7(b).

Figures 4.6 and 4.7 also demonstrate that there is higher variability between loca-

tions in p50 as Δμ and Δσ increase. For example, there is higher variability between

the blue squares in Fig. 4.7(b) when Δμ = 0.0036 and Δσ = 0.009 (i.e., climate

change case 2 with 125% model uncertainty), than between those in Fig. 4.6(a) when

Δμ = 0.0012 and Δσ = 0.006 (i.e., climate change case 1 with 50% model uncer-

tainty). This increase in variability is consistent with the results in Fig 4.3(a), which

shows the values of mAU required to achieve p50 = 0.095 at Δμ = 0.001, 0.002, 0.003

and 0.004. Fig 4.3(a) shows there is higher variability in mAU between locations

when Δμ = 0.004, than when Δμ = 0.001. Note that climate change case 2 with

125% model uncertainty (where Δμ = 0.0036) is similar to the largest change in

mean shown in Fig 4.3(a) (i.e., Δμ = 0.004 shown in magenta), while climate change

case 1 with 50% model uncertainty (where Δμ = 0.0012) is similar to the smallest

change in mean shown in Fig 4.3(a) (i.e., Δμ = 0.001 shown in purple).

Figure 4.8 shows the average 50-year exceedance probability, p50, over the 14

locations in Figs. 4.6 and 4.7. Figure 4.8(a) and (b) show the results for climate

change cases 1 and 2, respectively, for 1.0 ≤ uCC ≤ 2.25.
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Figure 4.8: Average 50-year exceedance probability of vAU,CC over 14 Canadian cities
for the AURP method, where the uncertainty factor, uCC , ranges from 1.0 to 2.25
under climate change (a) case 1 and (b) case 2.

Figure 4.8 shows similar results to those of Fig. 3.7. The purple lines demonstrate that

the 50-year exceedance probability will increase significantly under climate change if

new design wind speeds are not adopted. Even under climate change case 1 with

50% model uncertainty (i.e., Δμ = 0.0012 and Δσ = 0.006) the average 50-year

exceedance probability would increase 174%, from 0.088 under current conditions to

0.24. Figure 4.8 also shows that if the design wind speeds recommended for 50% model

uncertainty are adopted (blue lines), p50 will remain under the maximum target (i.e.,

p50 = 0.139) for uCC ≤ 2.06 for climate change case 1, and for uCC ≤ 1.90 for climate

change case 2. Using the design wind speeds recommended for 125% uncertainty

(cyan lines) results in p50 increasing towards the mid-level target (i.e., p50 = 0.095) as

uCC increases towards 2.25 for both climate change cases. However, using the 125%

uncertainty design wind speeds will result in over-design (i.e., p50 < 0.049) when

uCC ≤ 1.41 for climate change case 1, and uCC ≤ 1.61 for climate change case 2.

The Hybrid Ultimate Return Period design method was developed to poten-

tially improve exceedance probability consistency across Canada. As demonstrated in

Fig. 4.3, the All-Inclusive Ultimate Return Period method does not lead to consistent

exceedance probabilities across Canada when the mean of VA1 increases over time.

The HURP method is a hybrid method where mHU only accounts for increases in

σvA1
, while Cc,HU accounts for increases in μvA1

. Figure 4.9 shows the average value

of mHU over the 14 Canadian cities listed in Table 3.1 required to achieve 50-year
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exceedance probability targets p50 = 0.049, 0.095 and 0.139. As discussed in Sec-

tion 4.3.1 mHU is evaluated with Δμ = 0 and Δσ > 0. Since Δσ is the same for both

climate change cases, the results in Fig. 4.9 represent those for both climate change

cases 1 and 2.

Figure 4.9: Average hybrid ultimate return period, mHU , over 14 Canadian cities
required to achieve target 50-year exceedance probability p50 under climate change
cases 1 and 2 (Δσ = 0.004uCC) for 1.0 ≤ uCC ≤ 2.25.

Figure 4.9 demonstrates that the updated hyrbid method ultimate return periods to

be used under climate change, mHU , are significantly higher than the current ultimate

return period, mU = 500, determined in Section 4.2. However, the values of mHU

are substantially lower than the mAU results in Fig. 4.4, since mHU only accounts for

changes in the standard deviation of VA1, and does not account for changes in the

mean as well. For example, to achieve p50 = 0.049 in climate change case 2 with 125%

model uncertainty, mAU = 18793 years (see Fig. 4.4b), but mHU is only 5158 years,

as shown in Fig. 4.9. Note that the HURP design wind speeds do not vary much from

the AURP design wind speeds, as discussed shortly, since the HURP method has an

additional factor, Cc,HU .

Figure 4.10 shows the average values of Cc,HU over the 14 Canadian cities in

Table 3.1 required to achieve the 50-year exceedance probability targets p50 = 0.049,

0.095 and 0.139. Figures 4.10(a) and (b) show the results for climate change cases 1

and 2, respectively.
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Figure 4.10: Average climate change effect factor, Cc,HU , over 14 Canadian cities
required to achieve target 50-year exceedance probability p50 under climate change
cases (a) 1 (Δμ = 0.0008uCC) and (b) 2 (Δμ = 0.0016uCC) for 1.0 ≤ uCC ≤ 2.25.

Figure 4.10 demonstrates that for each climate change case Cc,HU is approximately

equal for each of the three 50-year exceedance probability targets. For example,

under climate change case 2 with 125% uncertainty Cc,HU = 1.14 is required to

achieve p50 = 0.049, while Cc,HU = 1.13 achieves p50 = 0.139. Recall that Cc,HU

is the squared ratio of vCC to vA1,mU
, where vCC and vA1,mU

are the wind speeds

with 50-year exceedance probabilities equal to the same target under climate change

and under current conditions, respectively. Therefore, Cc,HU is the factor the current

wind pressure needs to be increased by to maintain the current exceedance probability

under climate change.

Consistent with the AURP method results, the mid-level exceedance probability

target (i.e., p50 = 0.095) is used to determine recommended design parameters for the

HURP method. Figures 4.9 and 4.10 are used to determine the values of mHU and

Cc,HU , respectively, required for climate change cases 1 and 2, assuming both 50% and

125% model uncertainty. For simplicity, the values of mHU are rounded to the nearest

hundred, while the values of Cc,HU are round to the nearest hundredth. For climate

change case 1 with 50% model uncertainty, it is recommended that mHU = 1300

and Cc,HU = 1.04, while for case 1 with 125% model uncertainty it is recommended

that mHU = 2100 and Cc,HU = 1.07. For climate change case 2, mHU = 1300 and

Cc,HU = 1.09 assuming 50% model uncertainty, while mHU = 2100 and Cc,HU = 1.14

for 125% model uncertainty. Figure 4.11 shows the future design wind speeds to be

used under climate change calculated using these recommended design parameters.
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The future HURP design wind speed is vHU,CC =
√

Cc,HUvA1,mHU
. Figures 4.11(a)

and (b) show the results for climate change cases 1 and 2, respectively. The current

factored design wind speeds, vFD (black squares), are included for reference.

Figure 4.11: Current design wind speeds and future HURP design wind speeds, vFD

and vHU,CC , respectively, for 50% and 125% model uncertainty (uCC) under climate
change (a) case 1 (Δμ = 0.0008uCC , Δσ = 0.004uCC) and (b) case 2 (Δμ = 0.0016uCC ,
Δσ = 0.004uCC) for 14 Canadian cities.

Figure 4.11 shows that under climate change case 1, the average future HURP design

wind speed, vHU,CC , over the 14 stations will increase 8.5 kmh−1 assuming 50% model

uncertainty and will increase 14 kmh−1 assuming 125% model uncertainty, relative

to the current average factored design wind speed, vFD. For climate change case 2,

the average vHU,CC will increase 11 kmh−1 and 18 kmh−1, assuming 50% and 125%

model uncertainty, respectively, relative to vFD.

The 50-year exceedance probabilities, p50, of the future design wind speeds, vHU,CC ,

shown in Fig. 4.11 were then determined using eq. (1.47), where FvA1
(r; y) is the non-

stationary Gumbel distribution defined by yearly relative increases in the mean and

standard deviation, Δμ and Δσ, respectively. Figures 4.12(a) and (b) show p50 for

the 14 Canadian cities under climate change case 1 assuming 50% and 125% model

uncertainty, respectively. The blue and cyan squares show p50 when the design pa-

rameters recommended for 50% and 125% model uncertainty, respectively, are used.

The purple squares show p50 when the current factored design wind speeds, vFD, are

used under climate change, while the black circles show p50 for vFD under current
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conditions.

Figure 4.12: Fifty-year exceedance probability of vHU,CC for the HURP method, un-
der climate change case 1 (Δμ = 0.0008uCC , Δσ = 0.004uCC) assuming (a) 50%
model uncertainty (uCC = 1.5) and (b) 125% model uncertainty (uCC = 2.25) for 14
Canadian cities.

Similarly, Figs. 4.13(a) and (b) show the 50-year exceedance probabilities, but for

climate change case 2 with 50% and 125% model uncertainty, respectively.

Figure 4.13: Fifty-year exceedance probability of vHU,CC for the HURP method, un-
der climate change case 2 (Δμ = 0.0016uCC , Δσ = 0.004uCC) assuming (a) 50%
model uncertainty (uCC = 1.5) and (b) 125% model uncertainty (uCC = 2.25) for 14
Canadian cities.

In Figs. 4.12 and 4.13, the design parameters for the blue squares were selected
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using an exceedance probability target of p50 = 0.095 under 50% model uncer-

tainty, while the design parameters for the cyan squares were selected to achieve

the same exceedance probability target, p50 = 0.095, but under 125% model uncer-

tainty. Figs. 4.12(a) and 4.13(a), which show climate change cases 1 and 2 with

50% model uncertainty, demonstrate that the blue squares are all approximately

equal to 0.095. While, the cyan squares are all approximately equal to 0.095 in

Figs. 4.12(b) and 4.13(b), which show climate change cases 1 and 2 with 125% model

uncertainty. This demonstrates that the realized 50-year exceedance probabilties are

approximately equal to the target p50, assuming the predicted climate change scenario

is realized in the future.

Similar to the AURP method results (see Figs. 4.6 and 4.7), the 125% uncertainty

HURP design wind speeds result in p50 near the minimum target (0.049) when 50%

uncertainty is realized in the future, and the 50% uncertainty HURP design wind

speeds results in p50 above the maximum target (0.139) when 125% uncertainty is

realized in the future. It can also be seen, in Figs. 4.12 and 4.13 there there appears

to be less variability between locations compared to when the AURP method is used.

For example, there is less variability between the blue squares in Fig. 4.13(b) than

between those in Fig. 4.7(b). The variability between locations in p50 is quantitatively

assessed in Section 5.1.

Figure 4.14 shows the average value of p50 over the 14 locations in Figs. 4.12

and 4.13. Figure 4.14(a) shows the results for climate change case 1 for 1.0 ≤ uCC ≤
2.25, while Fig. 4.14(b) shows that for climate change case 2.
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Figure 4.14: Average 50-year exceedance probability of vHU,CC over 14 Canadian
cities for the HURP method, where the uncertainty factor, uCC , ranges from 1.0 to
2.25 under climate change (a) case 1 and (b) case 2.

The results of Fig. 4.14 are similar to those for the LRFD climate change method (see

Fig. 3.7) and the AURP method (see Fig. 4.8). Figure 4.14 shows that for uCC ≥ 2.01

under climate change case 1 and for uCC ≥ 1.89 under climate change case 2, the

maximum p50 target (0.139) will be exceeded if the 50% uncertainty design wind

speeds are adopted. If the 125% uncertainty design wind speeds are adopted, p50 will

remain below the maximum target (0.139), and will only reach the mid-level target

as uCC approaches 2.25. However, adopting the 125% uncertainty design wind speeds

will result in over-design (i.e., p50 < 0.049) for uCC ≤ 1.38 and uCC ≤ 1.53 under

climate change cases 1 and 2, respectively.



Chapter 5

Discussion

5.1 Comparison of Design Methodologies

The objective of this thesis is to develop a future wind loading design methodology

that (a) maintains the current 50-year lifetime exceedance probabilities under cli-

mate change, and (b) improves the 50-year exceedance probability consistency across

Canada. This section compares how well the three wind loading design methods pro-

posed in this thesis (i.e., the LRFD based method and the two ultimate return period

based methods) are able to achieve these objectives.

Figure 5.1(a) shows the average future design wind speed over the 14 stations for

each wind loading design method under the four climate change scenarios: (1) climate

change case 1 with 50% model uncertainty, (2) climate change case 1 with 125% model

uncertainty, (3) climate change case 2 with 50% model uncertainty and (4) climate

change case 2 with 125% model uncertainty. The purple squares show the future

design wind speeds determined using the LRFD method, vFD,CC , while the cyan and

magenta squares show the design wind speeds determined using the AURP method

(vAU,CC) and the HURP method (vHU,CC), respectively. Recall that the LRFD design

parameters (i.e., Cc and αW ) were selected to achieve the current values of p50 (i.e.,

p50 = 0.088, on average), and that AURP and HURP design parameters (i.e., mAU ,

mHU and Cc,HU) were selected to achieve the mid-level p50 target used in this thesis

(i.e., 0.095). The current average factored design wind speed, vFD, is shown as the

black line for reference and was determined as the average value of vFD for the 14

Canadian cities given in Table 3.2. Figure 5.1(b) then shows the 50-year exceedance

probabilities for the design wind speeds in Fig. 5.1(a). The maximum, mid-level and

minimum p50 targets used throughout this thesis are included for reference as the

red, orange and green lines, respectively. The current average value of p50 (shown

as the black line) was determined by considering the current 50-year exceedance

probabilities for the 14 Canadian cities shown in Fig. 3.1, which are for the case of

102
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no climate change.

Figure 5.1: Comparison of the average (a) future design wind speeds and (b) fifty-
year exceedance probabilities, p50, over 14 Canadian stations for the three proposed
climate change design methodologies.

Figure 5.1 demonstrates that on average all three wind loading design methods achieve

very similar design wind speeds under each climate change scenario. Consequently,

the corresponding average 50-year exceedance probabilities of the three design meth-

ods are also very similar. The slight discrepancies between the design methods in

Fig. 5.1 are caused by the rounding of wind loading design parameters for simplic-

ity. Therefore, the results of Fig. 5.1 demonstrate that all three wind loading design

methods achieve the first objective of this thesis. That is, the current 50-year ex-

ceedance probabilities will be maintained under the projected changes to wind speed

distributions due to climate change.

Two metrics are then used to evaluate how well the design methods meet the

second objective of this thesis: improving 50-year exceedance probability consistency

across Canada. The first metric is the standard deviation of p50 over all 14 stations

under a given climate change scenario. Figure 5.2(a) shows the standard deviation of

each of the three wind loading design methods under the same four climate change

scenarios as shown in Fig. 5.1. The second metric is the difference in magnitude

between the maximum and average value of p50 over the 14 stations under a given

climate change scenario (shown in Figure 5.2b). As in Fig. 5.1(b), the current values of

both p50 consistency metrics (black lines in Fig. 5.2) are determined using the current
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values of p50 (see in Fig. 3.1), which are computed assuming no climate change.

Figure 5.2: Comparison of the fifty-year exceedance probability (a) standard deviation
and (b) maximum deviation from the mean using the three proposed climate change
design methodologies.

Figure 5.2 demonstrates that based on both metrics the Hybrid Ultimate Return

Period method achieves the most consistent exceedance probability levels under all

four climate change scenarios. The average standard deviation for the AURP method

over the four climate change scenarios is 0.009, while that for the HURP method is

0.004. Additionally, the average difference between the maximum and average value

of p50 is 0.014 for the AURP method, and 0.007 for the HURP method. This demon-

strates that accounting for increases in σvA1
(using vA1,mHU

) separately from increases

in μvA1
(using Cc,HU) leads to improved consistency in p50 across Canada, compared

to accounting for increases in μvA1
and σvA1

simultaneously using the ultimate return

period wind speed, vA1,mAU
. Note that Hong et al. (2016) demonstrated that under

current, stationary conditions the LRFD method exceedance probability variability,

due to the range of CVvA1
values, is greater than that of the ultimate return period

method, due to sample size effect, for return periods ranging from 500 to 700 years.

This study does not further investigate the uncertainty in the HURP method de-

sign wind speeds due to large return period values, mHU , but it is assumed that the

aforementioned results from Hong et al. (2016) still hold under climate change.

In addition to improved exceedance probability consistency, the HURP design

method has other benefits that make it a more preferable wind loading design method
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compared to the AURP method. Notably, there is less uncertainty in estimates of

vA1,mHU
than in estimates of vA1,mAU

, since estimates of larger return period wind

speeds have higher uncertainties due to lack of historical records and sampling error

(see Section 4.3). Recall from Section 4.3.2 that mHU values are substantially lower

than values of mAU , since mHU only accounts for increases in σVA1
, as opposed to

increases in both μVA1
and σVA1

. An additional benefit of the HURP method is that

it allows for simpler adjustment of the wind loading design parameters, Cc,HU and

mHU , as climate change projections continue to change and improve over time. For

the AURP method a different design parameter, mAU , is used for each combination

of possible values of Δμ and Δσ. While, for the HURP method there is one value of

Cc,HU for each possible increase in μVA1
(Δμ), and one value of mHU for each possible

increase in σVA1
(Δσ).

Based on this comparison, the HURP method is considered the best overall wind

loading design method to be used under climate change out of the three methods

proposed in this thesis. It should be used by the NBCC in the future, since it is a

simple method that improves exceedance probability consistency while also limiting

estimation error.

5.2 Sensitivity of HURP Design Parameters to Target Exceedance

Probability

This section assesses the effect of the target exceedance probability on the Hybrid

Ultimate Return Period method design parameters, and the resulting design wind

speeds. The effects of the target p50 on the AURP and LRFD methods are not eval-

uated because the HURP method is considered the best wind loading design method

to be used under climate change (see Section 5.1). Recall that Section 4.3.2 only

showed the design parameters required to achieve the mid-level 50-year exceedance

probability target (i.e., p50 = 0.095). Although the mid-level p50 target is close to

the current average 50-year exceedance probability (i.e., 0.088), the mid-level p50 tar-

get may or may not be the most appropriate p50 target for the NBCC. As shown in

Fig. 3.1, the probability that the current factored design wind speed, vFD, is exceeded

over 50-years varies from a maximum of 0.153 in Iqaluit, to a minimum of 0.055 in

Fredericton. Since the current NBCC design values are considered to be acceptable
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by society, it would be reasonable to adopt a p50 target in the NBCC anywhere within

the range 0.055 ≤ p50 ≤ 0.153. As previously stated, the aim of this thesis is not to

recommend target reliability levels for the NBCC, but to recommend design meth-

ods and parameters that achieve a given exceedance probability target under climate

change. Therefore, this section shows the design parameters and resulting design

wind speeds required to meet 50-year exceedance probability targets in the range

0.049 ≤ p50 ≤ 0.139. This range of p50 targets is selected because it is the range that

has been considered throughout the rest of this thesis, and is the range that corre-

sponds to stationary, annual exceedance probability targets of pe = 0.003 to 0.001.

Note that it is also more conservative than the current range of 0.055 ≤ p50 ≤ 0.153.

Figure 5.3 shows how the hybrid ultimate return period, mHU , varies as the p50

target increases from 0.049 to 0.139. The minimum, mid-level and maximum p50

targets used throughout this thesis are shown as the green, orange and red lines,

respectively. Since climate change cases 1 and 2 both project the same rate of increase

in σVA1
, Fig. 5.3 shows mHU when Δμ = 0 and Δσ = 0.004uCC , for uCC = 1.5 and

2.25. Note that the hybrid ultimate return period, mHU , is determined when Δμ = 0

and Δσ > 0 (see Section 4.3.1).

Figure 5.3: Sensitivity of the hybrid ultimate return period, mHU , to the 50-year
target exceedance probability when Δμ = 0 and Δσ = 0.004uCC .

Figure 5.3 demonstrates that mHU increases rapidly as the target p50 decreases. For

example, assuming uCC = 2.25, mHU = 5158 when p50 = 0.049, mHU = 2104 when
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p50 = 0.095 andmHU = 1249 when p50 = 0.139. If model uncertainty is only 50% (i.e.,

uCC = 1.5), mHU is significantly lower than when uCC = 2.25 and, mHU increases

less as the target p50 decreases. Assuming uCC = 1.5, mHU = 2899 when p50 = 0.049,

mHU = 1276 when p50 = 0.095 and mHU = 791 when p50 = 0.139.

Figure 5.4 shows how Cc,HU varies with the target p50 for climate change cases (a)

1 and (b) 2, for uCC = 1.5 and 2.25. The hybrid climate change effect factor, Cc,HU ,

is the squared ratio of vCC to vA1,mU
, where vCC and vA1,mU

are the wind speeds with

50-year exceedance probabilities equal to the same target under climate change and

under current conditions, respectively. Recall that vCC is calculated when Δμ > 0

and Δσ = 0 (see Section 4.3.1). Under climate change case 1 Δμ = 0.0008uCC and,

Δμ = 0.0016uCC under climate change case 2.

Figure 5.4: Sensitivity of the hyrbid climate change effect factor, Cc,HU , to the 50-year
target exceedance probability for climate change cases (a) 1 (Δμ = 0.0008uCC) and
(b) 2 (Δμ = 0.0016uCC) when Δσ = 0.

Figure 5.4 demonstrates that the target p50 does not have a significant effect on Cc,HU .

There is very minimal change in Cc,HU as the target p50 increases from 0.049 to 0.139,

under both climate change cases 1 and 2, assuming 50% or 125% model uncertainty.

The largest change occurs under climate change case 2 with 125% model uncertainty.

Under this climate change scenario Cc,HU = 1.133 when p50 = 0.049, Cc,HU = 1.139

when p50 = 0.095 and Cc,HU = 1.142 when p50 = 0.139. The total change even

in this most extreme climate change scenario is less than 0.01, therefore, the effect

of the target p50 on Cc,HU is considered negligible. The hybrid climate change effect
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factor, Cc,HU , does not significantly change with the target p50 because it is defined as

the squared ratio of the wind speed, vCC , evaluated under climate change conditions

to the wind speed, vA1,mU
, evaluated under current conditions, where both vCC and

vA1,mU
have the same 50-year exceedance probability. The target p50 is accounted

for in both the numerator and denominator of this ratio, therefore, the value of the

target p50 has a negligible effect on Cc,HU .

Figure 5.5 shows the HURP design wind speed, determined as vHU,CC =
√
Cc,HUvA1,mHU

,

calculated using the values of mHU and Cc,HU shown in Figs. 5.3 and 5.4, respectively.

Figures 5.5(a) and (b) demonstrate the effect of the target p50 on vHU,CC under climate

change cases 1 and 2, respectively. The black line shows the current average factored

design wind speed over the 14 Canadian cities in Table 3.1 (i.e., vFD = 109 kmh−1).

Figure 5.5: Sensitivity of the HURP design wind speed (i.e.,
√

Cc,HUvA1,mHU
) to the

50-year target exceedance probability for climate change cases (a) 1 and (b) 2.

For both climate change cases 1 and 2, Fig. 5.5 demonstrates that at a given target p50,

the difference between vHU,CC when model uncertainty is 50% and that when model

uncertainty 125% remains approximately constant over the entire range of p50 target

values from 0.049 to 0.139. Under climate change case 1 the maximum difference

between vHU,CC when uCC = 1.5 and vHU,CC when uCC = 2.25 is 5.5 kmh−1 and

the minimum difference is 4.6 kmh−1, while for case 2 the maximum difference is

7.1 kmh−1 and the minimum difference is 6.2 kmh−1. Figure 5.5 also demonstrates

that the total increase in vHU,CC from a target p50 of 0.139 to 0.049, is very similar

in all four of the climate change scenarios shown. Assuming 50% model uncertainty,
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vHU,CC increases 9 kmh−1, from 115 kmh−1 to 124 kmh−1 under climate change case

1, and also increases 9 kmh−1, from 117 kmh−1 to 126 kmh−1 under climate change

case 2. While, assuming 125% model uncertainty, vHU,CC increases 10 kmh−1, from

119 kmh−1 to 129 kmh−1 under climate change case 1, and also increases 10 kmh−1,

from 123 kmh−1 to 133 kmh−1 under climate change case 2.

5.3 Effect of Design Life on Wind Design Requirements Under Climate

Change

It is important to consider the difference between the real lifetime of a structure and

the design working life defined by structural codes. In the NBCC the design lifetime is

50 years, during which time the structure should meet, without major interventions or

repairs, the intended time-dependent performances (Croce et al., 2019). However, it is

evident in practice that the real lifetime of a well-maintained structure is significantly

greater, and consequently, the structure will be more susceptible to the effects of

climate change (Croce et al., 2019). This section aims to assess the effect of climate

change on design wind speed exceedance probabilities over design lifetimes of 50 to

100 years.

Figure 5.6 shows the average probability that the current factored design wind

speed, vFD, is exceeded under current (stationary) conditions over 14 Canadian cities

during a d-year lifetime for the range 50 ≤ d ≤ 100. The d-year minimum, mid-level

and maximum target exceedance probabilities are shown as the green, orange, and red

lines, respectively. The d-year exceedance probability is evaluated as pd = 1−(1−pe)
d,

where d is the design lifetime, and pe is the annual exceedance probability target

introduced in Chapter 3 (i.e., pe = 1e-3, 2e-3 or 3e-3).
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Figure 5.6: Average probability that the current factored design wind speed, vFD, is
exceeded over 14 Canadian cities during a d-year lifetime, where 50 ≤ d ≤ 100.

Figure 5.6 demonstrates that under current (stationary) climate conditions the av-

erage d-year exceedance probability (blue line) remains slightly below the mid-level

target for any design lifetime. Additionally, Fig. 5.6 shows that the difference between

the minimum and maximum d-year exceedance probability targets increases as the

design lifetime, d, increases. For example, the difference between pd at pe = 0.001

and that at pe = 0.003 is 0.090 (0.139 - 0.049) at d = 50 years, and is 0.165 (0.260 -

0.095) at d = 100 years.

The current exceedance probabilities, which are based on a 50-year design lifetime,

are deemed acceptable by society, even though it is known that the real lifetime of

a structure is much longer than the 50-year design life. Therefore, although the

average lifetime exceedance probability of vFD increases from 0.088 at d = 50 years

to 0.168 at d = 100 years (see Fig. 5.6), p100 = 0.168 is still assumed to be considered

acceptable. It follows that the longer lifetime exceedance probability targets (i.e., the

green, orange and red lines in Fig. 5.6) can also be considered acceptable.

Figures 5.7 and 5.8 show the 75- and 100-year lifetime exceedance probabilities

under climate change for the HURP design wind speeds (proposed in Section 4.3.2),

compared to the 75- and 100-year exceedance probability targets, respectively. The



111

75- and 100-year exceedance probability targets are as shown in Fig. 5.6 at d = 75

and d = 100 years, respectively. Figure 5.7 shows the average 75-year exceedance

probability, p75, over 14 Canadian cities under climate change cases (a) 1 and (b) 2,

using the design wind speeds proposed in Figs. 4.11(a) and (b), respectively. Both

climate change cases are evaluated over the model uncertainty range 1.0 ≤ uCC ≤
2.25. The 75-year exceedance probability targets are shown as the green, orange and

red lines, while the purple lines show p75 under climate change if the current design

wind speeds continue to be used in the future. The black lines show the average p75

of vFD under current conditions (i.e., the blue line in Fig. 5.6 evaluated at d = 75

years).

Figure 5.7: Average 75-year exceedance probability of vHU,CC over 14 Canadian cities
for the HURP method, where the uncertainty factor, uCC , ranges from 1.0 to 2.25
under climate change (a) case 1 and (b) case 2.

Figure 5.8 shows similar results to Fig. 5.7, except that the results are evalu-

ated over an 100-year lifetime, instead a 75-year lifetime. The 100-year exceedance

probability is denoted as p100.
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Figure 5.8: Average 100-year exceedance probability of vHU,CC over 14 Canadian
cities for the HURP method, where the uncertainty factor, uCC , ranges from 1.0 to
2.25 under climate change (a) case 1 and (b) case 2.

Figures 5.7 and 5.8 demonstrate that if the current factored design speeds continue

to be used under climate change, the lifetime exceedance probabilities will far surpass

the maximum targets at a 75-year lifetime, and will continue to increase further

if the structure remains in service. Even under climate change case 1 with 50%

model uncertainty p75 for vFD (purple line) is 0.477, which is 136% greater than the

maximum p75 target (i.e., 0.202).

Figures 5.7 and 5.8 also demonstrate that although the HURP design wind speed

exceedance probabilities are lower than those of the current vFD values, there is still

reason to be concerned about the structural integrity of buildings, designed using the

HURP method parameters, that remain in service longer than 50 years under climate

change. Using the HURP design parameters recommended for climate change case 1

with 125% uncertainty (i.e., mHU = 2100 years and Cc,HU = 1.07), the maximum p75

target will be exceeded when the model uncertainty is 88% under case 1. Meanwhile,

if the HURP design parameters recommended for climate change case 1 with 50%

uncertainty (i.e., mHU = 1300 years and Cc,HU = 1.04) are used, the maximum

p75 target will be exceeded when the model uncertainty is only 35% under case 1.

Recall that the recommended HURP design parameters were selected to achieve the

mid-level exceedance probability target over a 50-year design life. The above results

demonstrate that under climate change case 1 structures will not meet exceedance

probability targets at a 75-year lifetime, and under climate change case 2 the 75-year

exceedance probabilities are even greater than those under case 1. Therefore, Figs. 5.7
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and 5.8 suggest that under climate change a design lifetime larger than 50 years should

be used to ensure reasonable exceedance probability levels are maintained over the

entire real lifetime of structures.

Figures 5.9, 5.10 and 5.11 show the HURP design parameters required to achieve

the minimum, mid-level and maximum d-year lifetime exceedance probability targets

for the design lifetime range 50 ≤ d ≤ 100. Figure 5.9 shows the average hybrid

ultimate return periods, mHU , over the 14 Canadian cities in Table 3.1. Figures 5.9(a)

and (b) show the results for both climate change cases 1 and 2 (since both cases project

the same increase in σVA1
), assuming 50% and 125% model uncertainty, respectively.

Figure 5.9: Average hybrid ultimate return period, mHU , over 14 Canadian cities
required to achieve target d-year exceedance probability pd under climate change
cases 1 and 2 (Δσ = 0.004uCC) for 50 ≤ d ≤ 100, assuming uCC = (a) 1.5 and (b)
2.25.

Figure 5.9 demonstrates that the hybrid ultimate return period, mHU , required to

achieve a given exceedance probability level (i.e., pd at pe = 0.001, 0.002 or 0.003)

increases exponentially with design lifetime (note that the y-axis scale is logarithmic in

Fig. 5.9). Consequently, the difference between mHU at the various target exceedance

probability levels increases as the design lifetime increases (e.g., the difference between

mHU along the green line and mHU along the orange line increases as d increases).

Note that a consequence of increased design lifetime is that mHU increases as shown

in Fig. 5.9, and therefore, the uncertainty in estimations of vA1,mHU
increases. Recall

that there is greater uncertainty in higher return period wind speeds due to lack of

historical records and sampling error (see Section 4.3)

Figures 5.10(a) and (b) show the average hybrid climate change effect factor,
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Cc,HU , over the 14 Canadian cities in Table 3.1 for climate change case 1, assuming

50% and 125% model uncertainty, respectively.

Figure 5.10: Average hybrid climate change effect factor, Cc,HU , over 14 Canadian
cities required to achieve target d-year exceedance probability pd under climate change
case 1 (Δμ = 0.0008uCC) for 50 ≤ d ≤ 100, assuming uCC = (a) 1.5 and (b) 2.25.

Similarly, Figs. 5.10(a) and (b) show the average hybrid climate change effect

factor, Cc,HU , over the 14 Canadian cities in Table 3.1 for climate change case 2,

assuming 50% and 125% model uncertainty, respectively.

Figure 5.11: Average hybrid climate change effect factor, Cc,HU , over 14 Canadian
cities required to achieve target d-year exceedance probability pd under climate change
case 2 (Δμ = 0.0016uCC) for 50 ≤ d ≤ 100, assuming uCC = (a) 1.5 and (b) 2.25.

Figures 5.10 and 5.11 demonstrate that the hybrid climate change effect factor, Cc,HU ,

increases linearly with design lifetime. Additionally, Figs. 5.10 and 5.11 demonstrate

that the magnitude that Cc,HU must be increased by to maintain a given exceedance

probability level from d = 50 years to d = 100 years is larger for climate change
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case 2 relative to case 1, and for 125% uncertainty relative to 50% uncertainty. To

achieve the mid-level d-year exceedance probability target, Cc,HU increases by 0.044

and 0.0719 from d = 50 years to d = 100 years under climate change case 1, assuming

50% and 125% model uncertainty, respectively. Under climate change case 2 Cc,HU

increases by 0.104 and 0.177 from d = 50 years to d = 100 years for the mid-level

target, assuming 50% and 125% model uncertainty, respectively. Figures 5.10 and 5.11

also demonstrate that the values of Cc,HU at each exceedance probability level are

approximately equal under each of the four climate change scenarios. The maximum

difference occurs between p100 at pe = 0.001 and p100 at pe = 0.003 under climate

change case 2 with 125% model uncertainty (i.e., green and red lines in Fig. 5.11

at d = 100 years). At this point the difference in Cc,HU is 0.023, which can be

considered negligible given that the values of Cc,HU are rounded to the nearest half

tenth for simplicity.

The HURP design wind speeds for design lifetimes in the range 50 ≤ d ≤ 100

were then determined using the HURP design parameters in Figs. 5.9, 5.10 and 5.11.

Figure 5.12 shows the average HURP design wind speed, vHU,CC , over the same 14

Canadian cities required to meet the minimum, mid-level and maximum exceedance

probability target for 50 ≤ d ≤ 100 under climate change case 1, assuming (a) 50%

model uncertainty and (b) 125% model uncertainty.

Figure 5.12: Average future HURP design wind speed, vHU,CC , over 14 Canadian cities
required to achieve target d-year exceedance probability pd under climate change case
1 (Δμ = 0.0008uCC) for 50 ≤ d ≤ 100, assuming uCC = (a) 1.5 and (b) 2.25.

Figure 5.13 shows similar results to Fig. 5.12 but for climate change case 2, instead

of case 1.
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Figure 5.13: Average future HURP design wind speed, vHU,CC , over 14 Canadian cities
required to achieve target d-year exceedance probability pd under climate change case
2 (Δμ = 0.0016uCC) for 50 ≤ d ≤ 100, assuming uCC = (a) 1.5 and (b) 2.25.

Figure 5.12 shows that to achieve the mid-level exceedance probability target, on

average, vHU,CC will increase 10 kmh−1, from 118 kmh−1 at d = 50 years to 128 kmh−1

at d = 100 years under climate change case 1, assuming 50% uncertainty. Under

climate change case 1 assuming 125% model uncertainty, on average, vHU,CC will

increase 16 kmh−1, from 122 kmh−1 at d = 50 years to 138 kmh−1 at d = 100 years

to achieve this same mid-level exceedance target. Similarly, Fig. 5.13 shows that

for the mid-level target under climate change case 2 assuming 50% uncertainty the

average increase in vHU,CC from d = 50 to 100 years is 13 kmh−1, from 120 kmh−1 to

133 kmh−1, while, assuming 125% uncertainty the average increase in vHU,CC from d =

50 to 100 years is 22 kmh−1, from 127 kmh−1 to 149 kmh−1. Both Figs. 5.12 and 5.13

demonstrate that the HURP design wind speed increases linearly with design lifetime

(i.e., the difference between the green, orange and red lines is relatively constant from

d = 50 years to d = 100 years). Under the most extreme scenario considered in

this thesis (i.e., climate change case 2 with 125% model uncertainty) the difference

between the average value of vHU,CC at the maximum and minimum target exceedance

probability is 10 kmh−1 at d = 50 years and 13 kmh−1 at d = 100 years.

5.4 Design Recommendations

Under climate change, it is recommended that the Hybrid Ultimate Return Period

wind loading design method be adopted in the NBCC, as well as other structural
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design codes where applicable. As discussed in Section 5.1, the HURP method is

the best overall wind loading design method under climate change compared to the

LRFD and AURP methods. While all three methods meet the exceedance probabil-

ity targets on average, the HURP method results in the most consistent exceedance

probabilities across the 14 Canadian stations studied in this thesis. Recall from

Section 5.1 that under current, stationary conditions the LRFD method exceedance

probability variability, due to the range of CVvA1
values, is greater than that of the

ultimate return period method, due to sample size effect, for return periods ranging

from 500 to 700 years (Hong et al., 2016), and that it is assumed that the aforemen-

tioned results still hold under climate change. An additional benefit of the HURP

method compared to the AURP method is that there is less uncertainty in estimates

of vA1,mHU
than in estimates of vA1,mAU

. Recall that there is greater uncertainty in

higher return period wind speeds due to lack of historical records and sampling error,

and that mAU is much larger than mHU since mHU only accounts for increases in σVA1
.

The HURP method design parameters, mHU and Cc,HU , are also simpler to modify

when climate change projections change in the future as human behaviour evolves

and climate change models improve. Structural engineers simply need to select the

value of Cc,HU based on the projected relative increase in μVA1
, and select the value

of mHU based on the projected relative increase in σVA1
.

The recommended HURP wind loading design parameters, Cc,HU and mHU , are

presented in Tables 5.1, 5.2 and 5.3 for 50, 75 and 100-year design lifetimes, respec-

tively. The design parameters are evaluated at the minimum, mid-level and maximum

exceedance probability targets used in this thesis under the four climate change sce-

narios (i.e., climate change cases 1 and 2 with both 50% and 125% model uncertainty).

Recall that the objective of this thesis was to develop a wind loading design method to

be used under climate change that achieves consistent exceedance probabilities across

Canada, and not to determine the design lifetime, the target exceedance probability,

nor the projected change in the distribution of VA1. Therefore, the recommended

design parameters are presented for a reasonable range of possible values, determined

based on the literature, for the design lifetime, the target exceedance probability, and

the increase in the annual maximum wind speed distribution.
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Table 5.1: Fifty year lifetime HURP method design parameters for minimum, mid-
level, and maximum exceedance probability targets.

Scenario Parameter Minimum Mid-Level Maximum

Cc,HU 1.04 1.04 1.04C1, uCC = 1.5
mHU 2900 1300 800
Cc,HU 1.06 1.07 1.07C1, uCC = 2.25
mHU 5200 2100 1200
Cc,HU 1.08 1.09 1.09C2, uCC = 1.5
mHU 2900 1300 800
Cc,HU 1.13 1.14 1.14C2, uCC = 2.25
mHU 5200 2100 1200

Table 5.2: Seventy-five year lifetime HURP method design parameters for minimum,
mid-level, and maximum exceedance probability targets.

Scenario Parameter Minimum Mid-Level Maximum

Cc,HU 1.06 1.06 1.07C1, uCC = 1.5
mHU 5100 2100 1200
Cc,HU 1.1 1.1 1.1C1, uCC = 2.25
mHU 12600 4600 2500
Cc,HU 1.13 1.14 1.14C2, uCC = 1.5
mHU 5100 2100 1200
Cc,HU 1.21 1.22 1.23C2, uCC = 2.25
mHU 12600 4600 2500

Updated gust effect factor values, Cg, are not presented in this thesis due to

lack of data available for analysis. However, it is highly recommended that further

research be completed on this topic because the preliminary results in Section 1.3.4

demonstrated that the current NBCC gust effect factor recommended for the main

strucutural members of large buildings (i.e., Cg = 2.0) may be underestimated even

under the current, stationary climate conditions, and Sections 1.4.3 and 3.3.1 showed

that under climate change Cg may need to be increased even further. Section 1.3.4

showed that the value of CVV , estimated based on the “Durst Curve” (i.e., 0.16) is

much lower than the empirical CVV values estimated based on the NAV CANADA

- TO2015 and EC HLY01 datasets (i.e., 0.64 and 0.69, respectively), and that these

increased values of CVV lead to a significantly larger Cg. For example, assuming

CVV = 0.64, the three second gust effect factor is 3.9 (i.e., Cg = G(w = 3 sec, W = 1

hr)2 = 1.982), which is almost double the current value of Cg in the NBCC. However,

the analytical result (3.98) is for the peak gust speed, while the NBCC Cg value (2.0)
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Table 5.3: One hundred year lifetime HURP method design parameters for minimum,
mid-level, and maximum exceedance probability targets.

Scenario Parameter Minimum Mid-Level Maximum

Cc,HU 1.08 1.09 1.09C1, uCC = 1.5
mHU 9200 3500 2000
Cc,HU 1.13 1.14 1.14C1, uCC = 2.25
mHU 32000 10200 5200
Cc,HU 1.18 1.19 1.2C2, uCC = 1.5
mHU 9200 3500 2000
Cc,HU 1.3 1.32 1.32C2, uCC = 2.25
mHU 32000 10200 5200

is purposefully selected to be somewhat lower since wind gusts are not well correlated

over large buildings, resulting in the effects of individual gusts on large buildings being

less significant (NRCC, 2015). It is not clear how the Cg values in the NBCC were

determined, consequently, it is unknown if Cg needs to be updated. It should also be

noted that for the preliminary analysis of Cg in Section 1.3.4, the empirical CVV values

were estimated using the variance reduction function, γ(T ), which was determined

using only three months of two min average wind speed measurements recorded at four

southern Ontario stations (i.e., the NAV CANADA - TO2015 dataset). Therefore,

analysis of a much larger dataset is also required to justify increasing Cg. Further

research on Cg under climate change is also important because current climate change

models suggest that CVV will increase in the future, which would lead to increases in

Cg.



Chapter 6

Conclusions

In this thesis, structural design wind loading requirements were investigated to deter-

mine future design wind loads that will (a) account for the projected changes in wind

speeds due to climate change and (b) improve exceedance probability consistency

across Canada. In Chapter 1, the traditional statistical modelling methods used to

determine current wind design requirements were modified so that the wind speed

distributions were non-stationary, since both the mean and variance of wind speeds

are expected to increase in the future due to climate change. Common methods in

the literature were used to develop a non-stationary extreme value model for the

annual maximum one-hourly average wind speed in year y, FvA1
(v; y), and to inves-

tigate the effects of non-stationarity on return period. In this thesis FvA1
(v; y) is a

non-stationary Gumbel distribution where the mean and standard deviation increase

linearly with year y. The effects of non-stationarity on two interpretations of return

period, (1) the expected time to the next exceedance event (m1) and (2) the number

of years with one expected exceedance event (m2), were then assessed. The results

showed that both m1 and m2 are reduced rapidly when the annual rate of change in

the mean or standard deviation of VA1 increases. However, a relatively small increase

in the design wind speeds results in the return period being maintained at 50 years

under climate change (for both definitions, m1 and m2). It was also determined that

m2 is a more appropriate definition of return period under climate change because,

while m1 is more conservative, m2 is more logical in the context of structural design.

That is, it is more important to ensure structures can withstand all expected loads

over the design lifetime than to consider the year of occurrence of an exceedance event.

By evaluating the 50-year lifetime exceedance probability, p50, it was also shown that

m1 results in slight over design relative to the current p50, while m2 approximately

maintains the current p50.

120
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A study of the effects of wind speed averaging duration on the wind speed dis-

tribution, and consequently, the gust effect factor, Cg, and the m-year return period

annual maximum W -average wind speed, vAW,m, was also completed in Chapter 1.

The wind speed variance reduction function, γ(T ), was determined by fitting wind

speed measurements with averaging durations of two min to two hours to the frac-

tional Gaussian noise variance reduction function. The results of this study showed

that averaging duration does not have a large effect on vAW,m. An analytical solution

to the gust factor, G(w,W ), originally defined by Durst (1960), was also developed

(recall that w andW are the short and longer term averaging durations, respectively).

The analytical solution demonstrated that G(w,W ) can be solved based only on the

parameters g(w,W ), CVV , and γ(T ). The analytical gust factor, G(w,W ), was eval-

uated for short-term averaging durations ranging from 1 to 3000 seconds when W

= 1 hr, and where the instantaneous wind speed coefficient of variation, CVV , was

determined empirically. The results showed that the current gust effect factor used

in the NBCC for main strucutural members (i.e., Cg = 2.0) may be underestimated

under the current, stationary climate conditions, since the analytical gust factor curve

resulted in Cg = 3.98 at w = 3 sec (note that Cg = G2). However, the analytical

result (3.98) is for the peak gust speed, while the NBCC Cg value (2.0) is intended

for large buildings, which are less affected by individual gusts since wind gusts are

not well correlated over large buildings (NRCC, 2015). It is not clear how the NBCC

determined Cg values; therefore, it is unknown if Cg needs to be updated. Addition-

ally, the empirical CVV values used to determine G(w,W ) were estimated using only

three months of 2 min average wind speed measurements recorded at four southern

Ontario stations (i.e., the NAV CANADA - TO2015 dataset). Therefore, an analysis

of a much larger dataset should be completed before Cg is increased. The effect of

non-stationarity on the gust factor was also assessed, assuming that climate change

will cause the instantaneous wind speed mean and standard deviation to increase,

and that γ(T ) will not significantly change under climate change. It was found that

if μV and σV increase at the same rate (i.e., Δμ = Δσ = Δ) Cg will not change in the

future, while if Δμ < Δσ Cg will increase and if Δμ > Δσ Cg will decrease.

Chapter 2 provides a literature review of Canadian extreme wind speed projec-

tions, estimated using state-of-the-art climate change models. Based on the results of
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these studies, it was concluded that the annual maximum wind speed mean is likely

to increase 4% over the next 50 years across most regions of Canada, although, in

some locations the mean may increase up to 8%. The maximum change, across all

regions, in the annual maximum wind speed standard deviation is estimated to be

20% over the next 50 years. In addition, the results suggested that the gust factor, G,

is expected to increase 12% over the same time period across most regions of Canada,

and up to 20% for some regions of the west coast. The sources of uncertainty in these

climate models include the emissions scenario realized in the future, the model formu-

lation and the internal (or natural) variability in the Earth’s climate. While studies

that aim to quantify the magnitude of these sources of uncertainty are limited, it

was concluded that the emissions scenario uncertainty is approximately 15-50% and

the model formulation uncertainty is approximately 30-75%. Internal variability is

assumed to be accounted for in the model projections because the studies used in

this thesis are based on 30 years of simulated data, which is considered sufficient

when accounting for sampling uncertainty. The total uncertainty in the projected

changes in wind speed distributions is then between 45% and 125%. In this thesis,

total uncertainty was assumed to lie between 50 and 125%.

In Chapter 3, the current structural LRFD methods used in Canada for build-

ings under wind loading were assessed and updated such that the current wind load

exceedance probabilities are maintained under climate change. Specifically, updated

values of αW and F̂W were determined such the probability that the factored design

wind load, αW F̂W , is exceeded over the design life of the structure remains constant

in the future. The LRFD method to be used under climate change, proposed herein,

requires increasing αW such that αW accounts for all current sources of uncertainty,

as well as the increased variability in the annual maximum one-hourly average wind

pressure, qA1, due to climate change. Additionally, F̂W is increased in this LRFD

method by adding a climate change effect factor, Cc (proposed herein), which ac-

counts for the projected increase in the mean of qA1 due to climate change. Design

parameters to be used under climate change (i.e., αW and Cc), and the resulting de-

sign wind speeds were proposed for 14 Canadian locations under four climate change

scenarios. The 50-year exceedance probabilities of these design wind speeds are then

evaluated under a range of climate change scenarios. The results showed that under



123

the most extreme climate change case assessed in this thesis (i.e., climate change

case 2 with 125% uncertainty), the average design wind speed would need to increase

19 kmh−1 to maintain the current 50-year lifetime exceedance probabilities, while un-

der the least extreme climate change case assessed in this thesis (i.e., climate change

case 1 with 50% uncertainty), the average design wind speed would need to increase

8.6 kmh−1 to maintain the current 50-year lifetime exceedance probabilities.

Further analysis of the effect of climate change on the gust effect factor was also

completed in Chapter 3. The non-stationary gust factor, Gy, was evaluated in terms of

the total relative increase in CVV over y years, ηCV, for 0 ≤ ηCV ≤ 1. The increase in

CVV corresponding to the projected increases in G due to climate change estimated by

Jeong and Sushama (2019) was then determined. Assuming 125% model uncertainty

in Jeong and Sushama’s (2019) estimates, G will increase 27% across most regions

of Canada by 2071-2100, while on the west coast G will increase up to 45%. It was

found that CVV increases 58% when G increases 27%, and that CVV increases 97%

when G increases 45%. These expected increases in the instantaneous wind speed

coefficient of variation were found to be much greater than the expected increase in

CVvA1
(i.e., 36%, assuming 125% model uncertainty), however, there is no physical

reason for CVV and CVvA1
to be equal.

Chapter 4 assessed the ultimate return period method, an alternative wind loading

design method used in the ASCE-7, in which the factored design wind speed is defined

as the product of a wind load factor of 1.0 and a much longer return period annual

maximum wind speed, vA1,mU
. Under current climate conditions the ultimate return

period has been shown to achieve improved exceedance probability consistency across

Canada (Hong et al., 2016). The current ultimate return period design wind speeds

were evaluated at three annual exceedance probability targets: pe = 1e-3, 2e-3 and

3e-3 (which correspond to ultimate return periods of 1000, 500 and 333 years, respec-

tively). The results showed that the current factored design wind speed is closest to

the 500-year return period design wind speed at most of the 14 locations that were as-

sessed. Therefore, adopting the ultimate return period method under current climate

conditions with mU = 500 years will result in minimal changes to the design wind

speed at most locations, but will greatly improve exceedance probability consistency

across Canada such that the annual exceedance probability is 2e-3 at all locations.
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Two alternative ultimate return period methods were then proposed, which account

for the projected changes in the distribution of VA1 under climate change. Similar to

the LRFD method proposed in Chapter 3, the climate change ultimate return period

design parameters were selected such that the 50-year exceedance probability, p50, is

approximately equal to a target 50-year exceedance probability under a given climate

change scenario. The first method was named the “All-Inclusive Ultimate Return

Period” (AURP) method. The AURP design wind speed under climate change is

defined as vAU,CC = vA1,mAU
, where mAU is the“all-inclusive ultimate return period”.

The method was named “all-inclusive” to refer to the fact that mAU is an updated

value of mU that accounts for increases in both the mean and standard deviation of

VA1 due to climate change.

The second method was named the “Hybrid Ultimate Return Period” (HURP)

method because the HURP method combines the ultimate return period and the

climate change effect factor, the latter of which was proposed in the LRFD method

in Chapter 3. In the HURP method the “hybrid ultimate return period”, mHU ,

accounts for increases in the standard deviation of qA1 due to climate change, while

the HURP method climate change effect factor, Cc,HU , accounts for the projected

increases in the mean of qA1 due to climate change. Design parameters for both the

AURP and HURP method were proposed for the same four climate change scenarios

assessed in Chapter 3. The resulting design wind speeds and 50-year exceedance

probabilities were then presented. As expected the values of mAU were much greater

than mHU , since mHU only accounts for changes in the standard deviation of VA1,

and does not account for changes in the mean as well. The results also showed that,

on average, the design wind speeds and 50-year exceedance proabilities of the two

methods were similar, however, there appeared to be more variability in p50 between

locations for the AURP method compared to HURP method.

Finally, in Chapter 5, the effects of the target exceedance probability and design

lifetime on the HURP method design parameters and wind speeds were investigated,

since the HURP method was determined to be the best overall wind loading design

method. The three proposed climate change wind loading design methods were com-

pared by assessing which method best achieved the objectives of this thesis, that is,

to develop a future wind loading design methodology that (a) maintains the current
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50-year lifetime exceedance probabilities under climate change, and (b) improves the

50-year exceedance probability consistency across Canada. It was shown that on av-

erage all three methods maintain the current average exceedance probability, but that

the HURP method led to the most consistent exceedance probabilities across the 14

locations assessed in this thesis. Additional benefits of the HURP method were also

discussed including that there is less uncertainty in estimates of the HURP design

wind speeds than in estimates of the AURP design wind speeds, and that the HURP

method is the easiest method for structural engineers to modify as climate change

projections evolve in the future. Therefore, the HURP method is considered the best

overall wind loading design method to be used under climate change out of the three

methods proposed in this thesis. Note that under current, stationary conditions the

LRFD method exceedance probability variability, due to the range of CVvA1
values,

is greater than that of the ultimate return period method, due to sample size effect,

for return periods ranging from 500 to 700 years (Hong et al., 2016). This study does

not further investigate the uncertainty in the HURP method design wind speeds due

to large return period values, mHU , but it is assumed that the aforementioned results

from Hong et al. (2016) still hold under climate change.

The sensitivity of the HURP design parameters to the target exceedance probabil-

ity was also evaluated, and it was shown that mHU increases as the target exceedance

probability decreases, while Cc,HU remains approximately constant. Consequently,

the HURP design wind speed increases moderately as the target exceedance prob-

ability decreases. Under all four climate change cases assessed in this thesis, the

average design wind speed increased by approximately 10 kmh−1 when the 50-year

exceedance probability target is increased from 0.139 to 0.049. The effects of design

lifetime on the HURP method design wind speeds and exceedance probabilities were

then investigated because in practice the real lifetime of a well-maintained structure

is significantly larger than the design working life defined by structural codes (which

is 50 years in the NBCC). Under current, stationary climate conditions the lifetime

exceedance probability increases from 0.088 at 50 years to 0.168 at 100 years; it is

assumed that this increase is deemed acceptable by society. The results showed that

the proposed HURP method design wind speeds will not meet the target exceedance

probabilities (i.e., the currently accepted exceedance levels) under climate change
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even at a 75-year design lifetime. Therefore, design parameters should be selected

for a larger design lifetime, more representative of the real lifetime of a structure

to ensure its structural integrity. The HURP method design parameters, and cor-

responding wind speeds required to achieve the minimum, mid-level and maximum

exceedance probability targets for design lifetimes ranging from 50 to 100 years were

presented for the four climate change scenarios. The required increases in the design

wind speeds were relatively moderate. For example, the average design wind speed

increased 22 kmh−1 from 50 to 100 year under climate change case 2 with 125% model

uncertainty.

6.1 Recommendations for Future Work

For the HURP method, future research is recommended in the following areas:

• Expansion of the study of the HURP method performed in Chapter 4 across

more locations in Canada

• Comparison of the variability in the lifetime exceedance probabilities between

the LRFD method and the HURP method under climate change, where the

additional uncertainty in estimates of vA1,mHU
due to the large return period,

mHU , is considered

Further research on the gust effect factor is recommended in the following areas:

• Review of how Cg was determined in the current NBCC, and validation of the

current Cg by repeating the analysis performed in Section 1.3.4 using a dataset

of 1 sec wind speed measurements recorded at several locations across Canada,

over a time period which sufficiently accounts for seasonal changes

• Comprehensive study of Cg under climate change which considers peak gust

lifetime exceedance probabilities, accounting for projected changes in CVV and

in the frequency of wind gust events under climate change
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