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ABSTRACT 

Species distribution models (SDM) use presence data and environmental layers to predict 
spatial distribution of species. SDM could be used to denote important habitat for river 
restoration of endangered species such as Atlantic salmon. However, the extraction of 
environmental layers from rivers is complicated due to flow, light penetration, turbidity 
and refraction. This thesis presents two studies that look at the accuracy and feasibility 
of using unmanned aerial vehicles (UAV) to extract environmental data from the Upper 
Salmon River. The first study demonstrates the high accuracy of substrate size analysis 
from a UAV created orthomosaic. The second study creates slope and flow layers from 
a digital elevation model (DEM) created from UAV imagery, as well as substrate and 
presence data to model an accurate SDM of important spawning habitat. This shows the 
potential of UAVs and the further need to explore the use of SDMs in river habitat. 
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CHAPTER 1 INTRODUCTION 
 

Rivers are critical habitat for many species, their complexity through elevation, 

substrate and flow allowing for niche habitats (Gorman & Karr, 1978; Schumm, 2007). 

The use of habitat can differ based on life stage (Kocik & Ferreri, 2011), or seasonally 

(Heggenes & Saltveit, 1990). Certain species, such as diadromous fish, require this 

diversity to help facilitate the survival of juvenile fish by altering their behavior and 

growth (Finstad et al, 2007; Clarke et al, 2016). An increase in microhabitats allows for 

an increase in species diversity, density, and predator avoidance (Schlosser, 1987; 

Holbrook & Schmitt, 2002; Casatti, 2005; Lapointe, Corkum & Mandrak, 2007). 

Changes in river environment that reduce their physical complexity can lead to negative 

effects on populations (Horan et al., 2000; Venter et al, 2008). The potential for river 

restoration to prior state relies on the understanding of the physical composition, three-

dimensional complexity and the use of these components. Species distribution models 

(SDM) can be used as a method to understand these variables, and how environmental 

characteristics affect habitat use and spatial distribution. SDM relies on environmental 

data and presence/absence data to predict species distribution (Elith & Leathwick, 2009). 

This is accomplished by observing the environmental patterns at the presence locals to 

understand how they affect spatial distribution. Used in a variety of fields, SDMs are 

particularly important in conservation as a spatial planning tool (Johnson & Gillingham, 

2005). Understanding the geographical extent of a species is crucial to its management 

and conservation and can allow for forecasting (Lawler et al., 2011). Although 

commonly used for terrestrial environments, SDM are more challenging to implement in 

aquatic environments where environmental data is harder to acquire due to flow, light 
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penetration, turbidity, and refraction (Woodget et al., 2015). To understand how habitat 

characteristics can affect abundance and begin mapping SDMs, adequate environmental 

data must first be gathered. Current methods of extracting environmental data from rivers 

include LiDAR (light detection and ranging), which is costly, or in situ surveys, which 

are not only time consuming, but hard to implement on a broad scale. More recently, the 

use of unmanned aerial vehicles (UAV) or drones have begun to be explored as a cost 

effective, rapidly deployable, and high-resolution alternative. Although preliminary, this 

research has already shown promise in the analysis of substrate within rivers using 

orthomosaics (Arif et al., 2017; Danhoff & Huckins, 2020), as well as the creation of 

digital elevation models (DEM) from UAV (Tamminga et al, 2015). With the varying 

physical conditions within the river, the accuracy of a substrate analysis using UAVs 

through changing flow, and depth of macrohabitats remains to be seen. 

 Pools, riffles and run exist as descriptive classification to delineate sections of 

differing flow, depth, and substrate. Pools are generally characterized by deeper, slower 

flowing water. Riffles on the other hand, are shallower with a faster flow and have breaks 

in the water surface. Runs have a moderate depth and flow, with no breaks in the water 

surface. As physical conditions within the classes are similar, this classification is often 

used to partition rivers for sampling (Jowett 1993). These classes have also been used to 

assess habitat use of fish (Rimmer & Paim, 1983). As this classification sections the river 

based on similar physical characteristics, it is ideal to test the accuracy or precision of a 

UAV substrate analysis. If UAVs are seen to be viable option for analysis, mapping 

could be used to help threatened species such as the Atlantic salmon, Salmo salar.  

Atlantic salmon are found spread across the Atlantic from Canada to the Baltic 



3  

Seas, including rivers located in America, Spain, France, the UK, Ireland, Norway, 

Sweden, and Finland (Hendry & Cragg-Hine, 2003). Important for food, social and 

ceremonial purposes of first nation communities, the salmon are also valued for 

recreational activities and eco-tourism (Fisheries and Oceans Canada, 2018). 

Anadromous, they migrate up freshwater rivers to spawn in the late fall, incubating over 

winter before emerging in the spring as fry (Hansen & Quinn, 1998). They spend the first 

2-4 years of their lives as parr in rivers before undergoing the smoltification process and 

entering the ocean (Mills, 1989).  The post-smolt mature in the ocean, generally after one 

winter, before returning to their native rivers to spawn (Thorstad et al, 2011). Unlike 

their Pacific counterparts Atlantic salmon can have multiple spawning seasons (Jonsson, 

1991). Connecting both the freshwater and saltwater systems through their migration, 

they are also important indicators of environmental quality (Fisheries and Oceans 

Canada, 2018). In recent years, they have seen a large decline in the abundance of 

returning salmon due to a variety of stressors, including pollution, dams, dewatering of 

streams, as well as other factors at sea (Parrish et al., 1998; Limburg & Waldman, 2009). 

There have been six regional groups of North American Atlantic salmon identified 

(Verspoor, 2005). Certain populations have been more affected than others, such as the 

Inner Bay of Fundy (IBoF) salmon. The IBoF salmon are found ranging between the 

Mispec river in New Brunswick to the Pereaux river in Nova Scotia. Designated as 

endangered by the Committee on the Status of Endangered Wildlife in Canada in 2001, 

IBoF salmon have seen population declines of up to 97% (Irvine et al., 2005). 

IBoF salmon occupy 32 of the 48 rivers in the Inner Bay of Fundy, a large 

embayment estuary located on the coasts of Nova Scotia and New Brunswick (Gibson et 
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al., 2003). Due to the declines in populations and the extended time they spend in the 

rivers, many projects have sought to do river restoration and salmon reintroduction 

(Einum et al., 2008; Trzcinski et al., 2004). The problems arise in determining which 

rivers will have the largest benefit in restoration, and where on the rivers should these 

efforts be concentrated. SDM could inform this analysis if suitable environmental layers 

were developed from the river.  

This research seeks to determine the accuracy and feasibility of drones to identify 

salmon spawning grounds. This was conducted through two branches of investigation. 

As substrate is a vital component of spawning salmon (Fjellheim, et al., 2003), Chapter 2 

looked at the accuracy of extracting substrate size from orthomosaics through the varying 

physical characteristics of pools, riffles and runs. Chapter 3 studied the creation of an 

SDM using environmental layers (slope & flow) extracted from a DEM, along with 

substrate from an orthomosaic and presence data to determine habitat preference of IBoF 

salmon within the Upper Salmon River. 
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CHAPTER 2 THE USE OF UAVS TO QUANTIFY SEDIMENT GRAIN 
SIZE THROUGH VARYING MACROHABITATS 
 
2.1 INTRODUCTION 
 

           Rivers are complex habitats with often steep gradients in elevation, substrate 

type, flow, and depth (Schumm, 2007). In addition, they interface with the coastal 

ocean as a link between terrestrial and marine habitats. Fish and invertebrates exploit 

the variety of river habitats as do mammals and birds (Schneider & Winemiller, 2008; 

Rushton & Carter, 1994; Dubuc et al., 1990). Diadromous fishes such as salmonids 

require the full diversity of river and marine environments to complete their life cycle. 

Since rivers are so integral to terrestrial landscapes, they are often subject to human 

disturbance including dams, siltation, course alteration, eutrophication and other 

changes in water quality (Wohl, 2005; Hamilton, 2002; Hilton et al., 2006). These 

alterations interact with climate change in negative ways, e.g. deforestation reduces 

both shade availability, by removing riverside vegetation (Garman & Moring, 1991) 

and bank stability, by removing the roots that anchor the soil (Horton et al., 2017). 

Changes to river habitat quality affect multiple species that depend on river structure 

and function for their life histories that include feeding, growth, reproduction, and 

migration (Thorstad et al, 2008).  

An understanding of the variety of river habitats, their arrangement in the 

riparian landscape, and relationship to useable habitat are critical in conserving river 

species. Habitat structure refers to the physical composition and three-dimensional 

complexity of an area (McCoy & Bell, 1991). In river environments, this complexity 

can refer to current velocity, structural density, rugosity, porosity of substrate and 
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substrate diversity (Willis et al, 2005). Increased complexity creates microhabitats that 

increase the niche space and species density in aquatic environments (Schlosser, 1987; 

Holbrook & Schmitt, 2002). Moreover, the potential for river restoration requires this 

information to ensure that physical structures are reconstructed at the appropriate 

spatial scale and diversity to provide suitable habitats (Finstad et al., 2007).  

Species distribution modelling (SDM) attempts to match presence/absence of a 

given species with habitat features to understand how habitat affects distribution (Elith 

& Leathwick, 2009). The essential component of SDM is the ability to spatially 

characterize habitat. Statistical models may be used to delineate the importance of 

upstream-downstream gradients in fish distribution (e.g. Buisson et al. 2008). Despite 

the importance of habitat categorization to describing river systems, there are relatively 

few examples that address detailed mapping of river habitat. For groups such as 

salmonids, habitat use is specific to egg deposition, juvenile feeding and predator 

avoidance. Habitat distribution for each life stage could be mapped based on the 

various physical requirements. Atlantic salmon (Salmo salar) spend between 2 to 4 

years of their life in rivers as parr (Mills, 1989), with subsequent smoltification and 

either single or multiple migrations between river and sea. 

Habitat mapping is used to show the geographic distribution of an organism. 

Because many river areas are isolated and/or inaccessible, habitat mapping is 

particularly difficult. As with any aquatic habitat, water cover precludes visual access. 

Despite these issues, remote sensing has been used successfully in rivers, and the 

application of unmanned aerial vehicles (UAV) to river mapping is a growing research 

tool (Zinke & Flener, 2013; Rusnák et al., 2018). Structural complexity is a large 
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influence on the success of Atlantic salmon in both hatcheries and in the wild. 

Therefore, understanding which rivers have areas of suitable substrate diversity is vital 

for the recovery of the species. The current methods used in river habitat surveys 

include LiDAR (light detection and ranging), which is costly (Woodget et al, 2015), or 

in situ surveys, which are time consuming and difficult for broad scale analyses. 

Beyond LiDAR, there have been rapid advancements in technology, UAVs or drones 

have become easy to use, rapidly deployable, high resolution and inexpensive research 

tools for remote sensing (Saska et al, 2012.; Tang & Shao, 2015). High resolution 

aerial images coupled with GPS and altitude data are used to model river morphology 

in a 3D approach referred to structure from motion (SFM) (Westoby et al., 2012). This 

approach matches features in overlapping images to create a three-dimensional model 

using photogrammetry, in addition to producing an accurate orthomosaic of the area. 

Using SFM on drone imagery DEMs (digital elevation models) and orthomosaics can 

be created, from which detailed information can be extracted about the substrate and 

structural complexity of the terrain. Although these techniques are widely used in 

terrestrial ecology (Cunliffe et al, 2016) they are a newer tool for analysis of riverbed 

morphology (Lane, 2000). Photogrammetry used in river habitat can run into issues 

regarding the depth of light penetration, turbidity, reflection and refraction in 

submerged areas (Woodget et al, 2015), but this technique is still applicable to model 

river topography and substrate analysis for fluvial morphology studies (Lane, 2000; 

Woodget et al, 2015; Arif et al, 2017). 

In the North Atlantic, Atlantic salmon are an iconic anadromous species, 

threatened or endangered throughout much of their range by river destruction, 
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overfishing in freshwater and at sea, climate warming, as well as predation and changes 

in pelagic food webs (Amiro, 2009). Rivers are the location of spawning and growth of 

early life stages, and juvenile fish spend several years in freshwater with subsequent 

returns (Jonsson et al., 1991). Many eastern Canadian populations undergo long 

distance ocean journeys to Greenland, with reduced survival at sea (Dadswell et al., 

2010). However, other populations in the Bay of Fundy and Gulf of Maine are 

restricted in migration, particularly those of the Inner Bay of Fundy (IBoF salmon) 

(Department of Fisheries and Oceans Canada, 2010). Most of these populations are 

critically endangered or their wild populations extinct in individual rivers, only 

remaining in existence in part by captive breeding and re-stocking programs.  

IBoF Atlantic Salmon have recently seen population declines of up to 97% 

(Irvine et al, 2005). With these rapid decreases in population, there has been an 

increase in projects seeking to restore breeding habitat (Einum et al, 2008), including a 

recovery strategy from the Government of Canada (Trzcinski, et al, 2004) and 

reintroduction through captive rearing programs (Clarke et al, 2016). Compromises to 

many of the ~40 rivers used in their life cycle play an important yet unknown role in 

their early life history. Protected areas such as those in national parks (e.g. Upper 

Salmon River in Fundy National Park) serve as templates for healthy river ecosystems 

and the distribution of natural habitats within these environments.  

Fundy National Park is the site of a major salmon recovery project formed as a 

partnership between Parks Canada, Cooke Aquaculture, Fort Folly First Nation, 

University of New Brunswick, and Dalhousie University (Clarke et al, 2016). Running 

through Fundy National Park is the Upper Salmon River (USR), which is thought to be 
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devoid of native salmon populations due to logging dams placed in the early 1900s 

(Dadswell, 1968). The dams have since been removed and salmon restoration efforts 

are underway. Using the live gene bank established by the Department of Fisheries and 

Oceans (DFO), genetically diverse wild salmon were reared from wild smolts (Clarke 

et al, 2016). These juveniles were then released into the rivers, before subsequently 

being recaptured and reared to maturity in marine net pens to increase adult survival 

rates. The adult salmon were then rereleased into the river for breeding. The rearing 

strategies employed in the Upper Salmon River led to the discovery that releasing 

juveniles before the onset of feeding increased their mass and fecundity over those that 

were kept in captivity for longer (Clarke et al, 2016), highlighting the importance of 

habitat in early life history. If this program is to expand to other rivers in the Inner Bay 

of Fundy, an assessment of available habitat is required to determine which rivers are 

best suited for restocking and/or restoration. 

The goal of this research is to delineate salmon habitat based on substrate type 

in a pristine river via use of an UAV.  Specifically, I explore the capability of a drone 

to determine substrate grain size as a component of structural complexity for salmon 

spawning habitat with the following objectives:  

 Test the utility of UAVs to obtain high resolution aerial imagery of a protected 

river used for salmon restocking and analyze the imagery for substrate size. 

 Evaluate the accuracy and validate the image-based substrate classification 

through varying macrohabitats to see the effects of physical characteristics 

(flow and depth) on imagery. 

 Compare substrate settlement in macrohabitats with known salmon preference 
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to evaluate if macrohabitats can be used as an indicator of salmon spawning 

grounds. 

2.2 MATERIALS AND METHODS 
 

2.2.1 Study Site 

The Upper Salmon River (45.599°N, 64.948°W) is located in Fundy National 

Park near Alma, New Brunswick, draining into Chignecto Bay in the Bay of Fundy 

(Fig. 1). An estuary with salt marsh and a macrotidal delta near the mouth of the river, 

it is considered critical salmon habitat by the Department of Fisheries and Oceans 

Canada (2010). The river, which descends from a plateau, was studied from the Forks, 

a junction with steep waterfalls that are considered the upper limit of salmon 

distribution, to near sea level. The study site includes 7 transects within ~10 kilometers 

that encompass the extent of the salmon habitat within the river (Fig. 1).   
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Figure 1: Map of the Upper Salmon River within New Brunswick. The black lines represent the 7 
transects. The inset shows the location of the Upper Salmon River (red box) within New Brunswick. 
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2.2.2 Data Collection 

2.2.2.1 Drone Data 

    Aerial imagery was collected using a DJI Phantom 4 drone at each of the transects 

described above, during times of low water level in the river, in late August. Drone 

positioning was calculated using the on-board GPS/GLONASS (global navigation 

satellite system), as well as the barometric pressure sensor for elevation. Imagery was 

taken using the high dynamic range, high definition camera standard on the DJI 

Phantom 4 drone. The drone was flown over the transects at 30 meters in height and 

encompassed >80% overlap in imagery covering the transect locations, above the 70% 

required by Pix4D. Still images were taken at 7 second intervals, with the drone paused 

in hover every 7 seconds to allow for clear imagery. This process was repeated for each 

transect location and included 730 images. The imagery was processed in the software 

package Pix4D, to create orthomosaics of each transect with a resolution of 1.7 cm per 

pixel.  

 

2.2.2.2 Groundtruth Data 

Groundtruth data were obtained by field inspection of the substrate at designated 

GPS (Global Positioning System) waypoints on transects, which were four quadrats 

wide and the length was the full width of the river, with each quadrat measuring 1 m2.  

Transects were placed in each of the river geomorphological zones, referred to herein 

as macrohabitat: (1) pool/riffle, (2) pool, (3) run/riffle, (4) pool/run, (5) riffle, (7) run. 

An additional run transect was added at the long-term monitoring site (6) as it is a well-

studied area of the river.  Pools are generally characterized by a slow current with 
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deeper water. Riffles are shallow areas with fast turbulent water, often with rocks 

protruding through the surface. Runs have a moderate current and depth, with a 

continuous water surface, and connect areas between riffles and pools. Although 

parameters exist to denote depths and water velocities of these macrohabitats, the 

classification is often subjective and analyzed visually (Jowett, 1993; Vadas & Orth, 

1998; Ward, 2003). The pool, riffle, run classification is often used by biologists to 

identify spawning habitat (Gibson, 1993). As salmon spawning habitat is characterized 

by shallow, faster water, it generally correlates with areas categorized by riffles, runs or 

the tail ends of shallow pools. Since these different zones contain different depths, and 

flow, both of which affect clarity, this classification method was chosen to select 

transect locations, and to test the ability of the drone to capture imagery in the differing 

physical conditions found in river macrohabitats. Zones were identified visually by 

water flow and depth.  

The substrate was classified within the quadrats, within each transect based on 

sediment grain size (Table 1), ranging from silt to bedrock (Borsányi., 2004). However, 

GPS mapping inconsistencies in the field team led to transects being unusable, with 

only transect 1 being properly situated. Therefore, the data from transect 1 was used to 

validate the results rather than inform them. For designation of wet, dry and riverside 

vegetation (RV) segmentation (see below) on the drone collected transects as well as 

substrate classification through object-based image analysis (boulders, gravel etc.), 

visual inspection of the orthomosaics was adopted. Although the GPS locations of 

substrate classes at each transect could not be verified, the designation of classes 

observed on the ground was still used qualitatively to validate comparison to classes 
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visually designated in aerial images. 

 

Table 1: Size classes used to classify substrate for the groundtruth data. 
 

Class Substrate 

1 Silt 

2 Sand (0.063-2mm) 

3 Fine gravel (2mm-2cm) 

4 Gravel (2-5cm) 

5 Large gravel (5-20cm) 

6 Boulders (20-40cm) 

7 Large boulders (>40cm) 

8 Bedrock 

9 Vegetation 

 

 

2.2.3 Classification 

 The substrate classification was based on a similar study conducted by Arif et al. 

(2017). Transects underwent a simple supervised classification to separate RV, 

dry/exposed substrate and wet/submerged substrate (Fig. 2). This subsequently allowed 

for an accurate classification to be conducted through an object-based image analysis 

(OBIA) in PCI Geomatics.  
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Figure 2: Data processing steps. The orthomosaic undergoes a supervised classification (ArcGIS) to 
separate the RV from the substrate. The substrate is then analyzed for texture. The pixel values of the 
substrate are used to segment the image into substrate sizes, which are assigned through another 
supervised classification in PCI. 
 

2.2.3.1 Supervised Classification for Removal of Riverside Vegetation 

Using ArcGIS, each orthomosaic was clipped around the transect locations to 

remove the edges and areas with insufficient overlap to be considered reliable (Fig. 3). 

Both wet and dry substrate categories were analyzed as habitat, since drone imagery 

was obtained during low water level where exposed substrate would equate to potential 

spawning habitat during the spawning season when the water is higher. A supervised 

classification involves user derived training sites for all the classes provided, using 

pixel information within the training site to segment and classify a given area. When 

selecting training sites, submerged substrate was considered to be any substrate that 

was underwater or wet. On each transect, sections were assigned using polygons, 

representing each of the classes, wet, dry and RV, for training. These training classes 

covered ~28% of the total area of all 7 transects. An object-based classification was 

used for sectioning into wet/dry/RV, which involved consideration of neighbouring 
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pixels for their spectral (color) and spatial (shape) characteristics. These characteristics 

are part of the Image Classification Tool in ArcGIS pro and work on a scale ranging 

from 1-20 to determine how to section the image. A higher spectral value allows for a 

more detailed classification among objects, while a higher spatial value allocates a 

greater importance to spatial proximity of features, allowing for more clustered 

features. The ideal values for spectral and spatial detail to provide the best overall 

accuracy for all 7 transects were determined to be 17.90 and 15 respectively, based on 

visual assessment and the accuracy assessment. The image underwent the supervised 

classification after training sites were selected from the manually sectioned polygons 

(Fig. 3), the resulting images were 3 separate RGB (Red Green Blue) images of dry, 

submerged and vegetated for each transect. Vegetated areas were clipped with only 

submerged and vegetated areas being analyzed further. 
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Figure 3: The process of classifying substrate demonstrated for transect 3.  A. The transect segment from 
drone imagery. B. Training sites are selected with RV (green), dry (brown) and submerged (yellow). C. 
This produces classified shape files which are used to extract dry (brown) and submerged substrate 
(yellow) from the RV (green). D. The resulting RV free raster layer. 
 

In order to assess the accuracy of the trained classification, 500 random points 

were selected by the toolset within the training polygons and omitted from training. 

Their predicted value (wet/dry/vegetated) was compared to the polygon designation. An 

error analysis was conducted by determining the % agreement between training 

categories and predictions from image analysis. 
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2.2.3.2 Substrate Classification Using Object-Based Image Analysis 

An object-based image analysis (OBIA) first segments an image based on 

spectral similarity while considering neighbouring pixel values (Hossain & Chen, 

2019). A portion of the segments are then assigned to training sites before undergoing a 

supervised/unsupervised classification to classify the remaining segments based on the 

attributes found in the training sites. For the OBIA of substrate type (Fig.4), the 

software package PCI Geomatics was used to create small segments within wet or dry 

sections based on the texture of the red band (homogeneity, contrast and mean 

intensity), evaluated on a 10 x 10 pixel grid (1.74 cm per pixel) (Fig. 5). Texture refers 

to the variations in intensity values of pixels (bumpy, rough, smooth, silky) and 

considers spatial relationships among neighbouring pixels by examining how often 

specific values of pixel pairs occur (Arif et al., 2017). Based on Arif et al. (2017) study, 

the submerged and dry images were run through the OBIA separately to increase 

accuracy. Substrate type based on visual designation was then assigned to a set of 

training segments (Fig. 4). As the PCI software relies on the manual designation of 

training and accuracy sites, fine gravel (0.2-2cm) was combined with the gravel (2-

5cm) into a fine gravel classification referring to 2mm-5cm, as they were not visually 

distinguishable from one another. This was considered to be acceptable as both classes 

were considered to be ideal spawning substrate. Accuracy of this trained classification 

was quantified by comparing a separate set of predicted substrate types to visual 

assessment of the same segment. An error analysis was then constructed for each 

substate class but reported as overall % agreement between training and predictions. 

The number of segments allocated to accuracy assessment was dependent on the 
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number of segments available, the size of the segments and the size of the transect. In 

total there were 94, 95, 86, 76, 107, 80, and 89 accuracy assessment segments 

assignments to transects 1, 2, 3, 4, 5, 6, and 7 respectively, with twice the amount of 

training segments than accuracy segments.  

Finally, substrate type categorized in the method above was compared to field 

data on substrate collected in groundtruthing studies of transect 1 as a further 

assessment of training accuracy. To conduct this accuracy assessment, a visual 

assessment was done on the orthomosaic for transect 1 (pool/riffle transition zone), 

where the GPS locations of the groundtruth data were mapped over the PCI analysis. 

The substrate type was determined for each GPS location. An error analysis was 

conducted between both sets of data, similarly to the supervised classification.  

 

Figure 4: An example of ground cover samples used as training sites in the supervised classification of 
substrate in both dry and submerged environments.  A. purple (large boulders), red (boulders), green 
(gravel), blue (fine gravel), B. black (sand), C. white (other vegetation), yellow (silt) 
 

A B C 
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Figure 5: Example of the segmentation through object-based image analysis conducted in PCI Geomatics 
on transect 3. A. Dry/submerged classified image of transect 3. B. Segmentation overlayed on top of the 
dry/submerged image. C. Classified result of the segmentation. D. The results of the object-based image 
analysis on transect 3 with the segmentation outlines removed. 
 
2.2.4 Spawning Habitat 

Although measurements vary, Atlantic salmon have been reported to breed in 

substrate as small as 5.4 mm to as large as 100 mm (Armstrong et al, 2003), with 16-64 

mm being considered an ideal range (Louhi et al, 2008).  In the present study, fine 

gravel (2mm-5 cm) was considered to be ideal spawning substrate, recognizing that 

other factors (e.g. flow) are also considered in spawning habitat.  
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2.3 RESULTS 
 

Imagery captured from the drone produced 7 orthomosaic images (Fig. 6), 

which were clipped and used to extract transect data. Transects 1-7 represented 

macroscale river habitat including pool/riffle (1), pool (2), run/riffle (3), pool/run (4), 

riffle (5), run/long term monitoring site (6) and the southernmost site (run; 7) 

respectively. Visual inspection indicated that the pool/riffle segment (Transect 1; Fig. 

6.1) had large boulders with breaks in the surface of the water (riffles), followed by 

deeper, calm water with smaller substrate boulders (pool). The pool segment (Transect 

2; Fig. 6.2) is dominated by deeper water and small substrate (fine gravel), interspersed 

with large boulders. The run/riffle segment (Transect 3; Fig. 6.3) had breaks in the 

surface of the water over large/medium substrate, followed by shallower calm water 

(run). The pool/run segment (Transect 4; Fig. 6.4) had shallow water dominated by 

medium substrate (run), followed by the deep, darker calm water (pools). The riffle 

segment (Transect 5; Fig. 6.5) had shallower water with breaks over the rocks. The run 

(Transect 6; Fig. 6.6) was dominated by medium substrate and consisted of shallower 

calm water. The long-term monitoring segment (Transect 7; Fig. 6.7) had shallow water 

dominated by small substrate and submerged vegetation.  

 



22  

 

Figure 6: Orthomosaics for transects 1-7, transect areas denoted by the red boxes, with black arrows to 
indicate downstream flow direction. Transect 1: Pool/Riffle, Transect 2: Pool, Transect 3: Run/Riffle, 
Transect 4: Pool/Run, Transect 5: Riffle, Transect 6: Run/Long term monitoring site, Transect 7: Run 
(Lowermost Site) 

2 

4 3 

1 

5 6 

7 
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2.3.1 Supervised Classification 

The supervised classification was conducted over all 7 transects and extracted 

submerged substrate, dry substrate and RV (Fig. 7). Certain large boulders were 

classified as both submerged and dry substrate when they were observed to protrude out 

of the water. Using the training sites, substrate was extracted with minimal 

misidentification in the RV class, while submerged and dry substrate had some areas of 

misidentification. Areas of dry substrate shaded by RV were occasionally misclassified, 

but areas of dry substrate shaded by large boulders were not. Classification error is 

further quantified below. 



24  

  

Figure 7: Classified orthomosaics for transects 1-7 with RV removed using a simple supervised 
classification. Yellow is submerged substrate and brown is dry substrate.  
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2.3.1.1 Accuracy Assessment 
 

 
Figure 8: Example from transect 3 of random point selection chosen by the ArcGIS toolset within the 
training areas used to produce the error matrix. The accuracy point is omitted from training and their 
predicted value compared to the polygon designation. Green polygons are vegetation, brown polygons 
are dry substrate and yellow polygons are the submerged substrate.  

 

Using the randomly assigned points within the training sites (Fig. 8) allowed 

predictions to be made for dry, wet, and RV categories for each transect. When 

compared to visual assessment the average accuracy of all 7 transects (% agreement 

between categories) was 90%, with no values lower than 74.7% (Table 2). The highest 

accuracy was in transects 5, 3, 4 and 1, representing transects in riffle, run/riffle, 

pool/run and pool/riffle respectively, with each transect scoring above 96% accuracy. 

The lowest accuracy was in transects 7, 2 and 6, representing transects in the southern 

most site, pool and run respectively, with transects scoring between 74.7% and 89.4% 
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accuracy.  These results indicate that regardless of river habitat, the imagery was able to 

adequately separate emerged and submerged substrate and RV with an accuracy of at 

least 75%, but in most cases exceeding 90%.   

 

Table 2: Overall accuracy of the supervised classification for segmentation transects 1-7, which is the 
percent agreement between categories in the accuracy points and classified image.  

Transect Overall Accuracy 

1 96% 

2 78.5% 

3 97.1% 

4 96.7% 

5 98.6% 

6 89.4% 

7 74.7% 

 

 

2.3.2 Spawning Habitat 

After supervised classification was used to separate larger habitat division (wet 

and dry), OBIA allowed delineation of texture.  Most of the substrate consisted of a 

range from fine gravel to boulders (Fig. 9). The end member categories of bedrock and 

silt were represented only in transects 1 and 7 respectively. Underwater vegetation, 

appearing as green moss was also only represented in transect 7, categorized as “other 

vegetation”. Two of the transects (2 and 6) had shadows across part of the transect 

which caused misclassification of the submerged and dry substrate but did not 
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noticeably affect the substrate classification (see below for accuracy assessment). 

Transect 1, near the Forks, had very little small substrate in the dry portion of the 

transect, therefore boulders, large gravel and gravel had to be combined (Fig. 10). 

Consequently, as fine gravel could not be separated from the other small substrate, none 

of the dry transect was considered to be ideal substrate. Of the submerged portion of the 

transect, 16% was ideal spawning grounds, leading to a total of 8% of transect 1 as 

ideal spawning substrate (Fig. 10.1).   On transect 2, very close to transect 1, large 

boulders were also present, but the substrate was dominated by sand and gravel, as 

might be expected in the quieter waters of a pool.  Thus, a total of 34% was ideal 

substrate in both the dry and submerged areas (Fig. 10.2). Transect 3 was similar to 

transect 1 with a dominance of large substrate especially in the dry portion.  It included 

a total of 17.5% area categorized as ideal spawning substrate with 6% in the dry area 

and 29% in the submerged area (Fig. 10.3).  Transect 4 consisted mostly of boulders 

and large gravel, similar in wet and dry areas, and contained 11.5% of ideal spawning 

grounds, 14% in the dry area and 9 % in the submerged (Fig. 10.4). Transect 5 although 

close to transect 4 was dominated by gravel in the submerged area, but by boulders in 

the dry habitat. It contained 4% total ideal spawning substrate with none in the 

submerged area and 8% in the dry area (Fig. 10.5). On both transects 4 and 5, despite 

the presence of gravel, the substrate was too coarse for abundant spawning habitat. 

Transect 6 was dominated by large gravel and boulders in both wet and dry areas, and 

thus only 2.5% of the area was determined to be ideal substrate, with none in the 

submerged and 5% in the dry area (Fig. 10.6).  Transect 7 is furthest downstream where 

there are depositional areas and the river broadens. It was the only transect with silt. It 
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was interesting that suitable spawning substrate was only present in dry areas. Based on 

this difference it contained 21% overall ideal substrate with 42% in the dry area (Fig. 

10.7).  
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Figure 9: Substrate size of transects 1-7 classified through OBIA. Substrate size includes “other” on 
transect 7 for submerged vegetation and “boulder and smaller” on transect 1 where small substrate was 
limited. Submerged and dry substrate are analyzed separately but presented together for ease of analysis.   
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Figure 10: Object-based image analysis results for transects 1-7 on both submerged and dry portions of 
the river, presented in percent coverage, along with the percent of ideal substrate on each transect. Dry 
and submerged are processed separately and % are calculated based on individual (dry or submerged) 
segments but presented together for comparison. Ideal substrate is the total amount of fine gravel found 
in the combined dry and submerged portions of the transect. 
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2.3.2.1 Accuracy Assessment: Substrate Texture 

Dry and Submerged substrate were identified as either silt, sand, fine gravel, 

large gravel, boulders, large boulders, bedrock or other vegetation with an overall 

accuracy of 79% for the dry substrate and 86% for the submerged substrate (Table 3). 

Over most of the transects, submerged substrate categorization had a higher accuracy 

than dry substrate categorization, with submerged substrate on transect 7 categorized 

with complete accuracy. Only on transect 1 (pool/riffle), did the dry substrate have a 

higher accuracy than the submerged substrate. Within the dry substrate the highest 

accuracy was on transects 6 (Run), and 3 (run/riffle), and the lowest accuracy was on 

transects 5 (riffle) and 4 (pool/run). The transect with the highest submerged substrate 

accuracy was 7 (run) and 6 (run), with transects 3 (run/riffle), 1 (pool/riffle) and 5 

(riffle) having the lowest accuracy. 
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Table 3: Accuracy assessment conducted on the object-based imagine analysis of transects 1-7 for both 
dry and submerged substrate.   

Transects Overall 

Accuracy (%) 

1 Pool/Riffle Dry 80.30 

Submerged 75 

2 Pool Dry 79.25 

Submerged 85.71 

3 Run/Riffle Dry 82.34 

Submerged 74.29 

4 Pool/Riffle Dry 78.38 

Submerged 87.18 

5 Riffle Dry 72.73 

Submerged 75.61 

6 Run  
Long-Term 
Monitoring Site 

Dry 82.5 

Submerged 95 

7 Run Dry 78.85 

Submerged 100 
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2.3.3 Groundtruth Data 

An assessment was conducted to compare the groundtruth data to the PCI 

analysis for transect 1. In this comparison, 75% of the substrate sizes matched between 

the two analyses. The most noticeable misclassification was that 12% of the 

groundtruth points were classified as large boulders while classified as boulders in the 

PCI analysis, with ~96% of this misclassification occurring in the submerged substrate. 

The 4% of the misclassification within the dry substrate occurred in areas where tree 

branches obscured the imagery.   

 

2.4 DISCUSSION 
 

 Pools, riffles, and runs have long been used as descriptive classifications within 

rivers in fluvial morphology (Allan & Castillo, 2007) and biological studies (Cunjak, 

1988). Descriptions vary in literature, with use of visual assessments or unstated criteria 

(Jowett, 1993) and removal of runs as a category in some studies (Montgomery et al., 

1999). These macrohabitat classifications are used to assess juvenile salmon habitat 

(Rimmer & Paim, 1983), as well as partition rivers for sampling, with the assumption 

that physical conditions within classes are similar (Jowett, 1993). The results of this 

study indicate that the substrate distribution within the macrohabitat designation is 

highly variable. In addition, the transects do not represent consistent substrate mixes for 

regions of the river since adjacent transects were also highly variable in composition. 

Although many studies agree that substrate is a vital component in salmon habitat 

(Armstrong et al., 2003), there are surprisingly few studies focused on river substrate 

classification methods using UAV, nor at fine spatial scales, with most methods relying 
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on small scale in-situ surveys. The available studies have focused more on general 

feasibility and not on how varying physical characteristics may affect the accuracy of 

the results (Arif et al., 2017; Danhoff & Huckins, 2020). These details are critical in 

accurately understanding the distribution of fish habitat.   

The drone was not used to classify the distribution of riffles, runs, and pools on 

the river either by visual or image analysis methods. While this might be feasible, 

examination of riffle areas as spawning habitat (Malcolm et al. 2004) may be inaccurate 

since substrate variation is so prevalent within the macrohabitats. Instead, a 

combination of substrate, flow, and slope is used in subsequent analysis (Chapter 3) to 

more broadly evaluate suitable spawning habitat. River restoration efforts work with a 

template of idealize spawning macrohabitat, but both substrate and riverbank 

morphology are controlled (Van Zyll De Jong et al., 1997). In wild rivers, my results 

suggest that the relationship of riffle/run designation to the location of redds is less 

certain. 

     

2.4.1 Object Analysis  

  The submerged substrate classification had an overall higher accuracy than the 

dry substrate classification, with the exception of the pool/riffle and run/riffle transects. 

Due to the depth of pools and ripples on the surface of riffles, both were a concern for 

accuracy. Refraction was also a concern and is discussed below. To limit these effects, 

the drone was flown during times of low flow, as suggested by Lane (2000). The Upper 

Salmon River has very clear water as expected of its coarse substrate, with the riverbed 

being visible even in deeper water. These coupled factors mitigated the effects of pools, 
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with only areas of riffles affecting accuracy (see below). Although this may have 

improved the accuracy of the submerged substrate, other factors caused a lower 

accuracy for the dry substrate, explored further below in terms of challenges for image 

analysis related to specific transects.  As many of the transects had similar features, 

only those with unique features or low accuracy are explored.  

 

2.4.1.1 Effects of Macrohabitat on Classification Accuracy 

Although transect 1 ran through a transition zone of a riffle and a pool, both of 

which are areas that could limit visibility of substrate, the analysis was still conducted 

with a 75 % accuracy. When comparing the raw RGB image (Fig. 6) to the classified 

substrate image (Fig. 9), it is evident that neither the riffled water nor the depth of the 

water obscured the image significantly. Areas of shade seemed to have the most effect 

on the classification, with some areas of substrate being misclassified as large gravel. In 

the transition zone at the tail end of a riffle, there were more large boulders rather than 

gravel, which matches that expected in a riffle, as smaller substrate would have 

difficulties being retained in high water flow areas (Jowett, 1993). 

Most issues in accuracy for both the dry and submerged transects stemmed from 

lack of training sites. As the transects covered relatively small areas of the river, the 

substrate that was less common within the transect limited selection of appropriate 

training sites. The dry portion of the pool/riffle transect 1 had very little of the smaller 

substrate. To have a large enough sample size for both the training and accuracy 

segments, all substrate below the large boulder class had to grouped. This caused a 

reduction in the number of classes. The reduction correlated with an increase in 
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accuracy of the transect. The accuracy may have been affected by the decrease in 

classes as the OBIA would have been less complex and therefore had larger thresholds 

for the pixel analysis. But this is not always desirable when aggregation of classes 

would obscure subtle changes in habitat distribution. When analyzing substrate, classes 

that serve different functions such as spawning suitability cannot be grouped.  

Riffle areas have the potential to be ideal spawning habitat, owing to swift 

flowing water, aeration and availability of small substrate (Coulombe-Pontbriand & 

Lapointe, 2004; Fitzsimons et al., 2013). In the submerged classification of transect 3 

run/riffle, there were patches of fine gravel in both the northeast and southwest areas 

that would have higher water flow and smaller substrate, both characteristics of 

potential salmon spawning grounds (Armstrong et al, 2003). The classification had the 

lowest accuracy of the submerged transects (74.29%). Since all three transects through 

riffles had lower accuracy, it is reasonable that this results from turbulence at the water 

surface of the riffles. The sub-classifications with the most overlap/error at this transect 

were boulders and large boulders, commonly in riffles, suggesting that the distortion at 

the water surface may have led to confusion error in OBIA. Arif et al (2017) used 

similar methods to analyze substrate from UAV imagery and found that the larger grain 

sizes resulted in a higher number of misclassifications. They concluded that altering 

texture layers could help mitigate this problem, without identifying the underlying 

cause. Casual examination of the images suggests that more turbulent sections of riffles 

had reduced accuracy compared to flatter water. We note that increased error at this 

large substrate size has minimal impact on the assessment of smaller substrate, such as 

the fine gravel, important in salmon spawning habitat.  
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Transect 7 through the run was situated in the southernmost site, the only one 

containing silt/mud, and submerged vegetation. The submerged area was difficult to 

assign training sites, as the silt/mud and other vegetation looked murky in the water on 

the RGB images. Although this may have seemed problematic to visual inspection, it 

had a 100% accuracy in PCI, because there were only two classes both expressing 

distinctive textures. This allowed the software to extract data that was more difficult to 

designate on the RGB images. Lacking the depth of the pools and the visual distortions 

of the riffles, the run transects had a higher accuracy.  

 

2.4.2 Spawning Grounds. 

The preferred substrate size for Atlantic salmon spawning reported in the 

literature ranges from gravel as fine as 0.54 cm to as large as 10 cm (Armstrong et al., 

2003). In the current study, ideal spawning substrate was based on the classifications 

assessed with object-based image analysis, with fine gravel (2 mm-5cm). The pool 

transect (2) had the largest area of ideal spawning ground (34%), as well as the highest 

amount of sand. Pools are characterized by deeper water and slower currents, and the 

low flow in these areas leads to sedimentation of smaller substrates (Jowett, 1993). 

However, low flow and finer sediment may also signify lower aeration in the substrate 

which can affect the survival rate of eggs (Lapointe et al., 2004). Redd digging 

behaviour in salmon aids in the removal of smaller sediments to increase oxygen to the 

eggs (Everest et al., 1987), but salmon also prefer higher water velocity of 31-55 cm s-1 

(Gibson, 1993), characteristically occurring in runs (Jowett, 1993). Although pools may 

contain the largest relative areas of ideal substrate, low flow/aeration makes them less 
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suitable for spawning. Transition zones at the downstream end of the pools (pool/run, 

pool/riffle), can lead to higher water velocity at the tail end of the pool while 

maintaining smaller substrate deposits. These areas have been linked to spawning 

(Malcolm et al., 2004) and are constructed for this purpose in river restoration (Payne 

& Lapointe, 1997). Runs are characterized by shallow, swift water that does not break 

at the surface (Jowett, 1993), but are variable in water velocity and substrate size. 

Among the transects in this study, ideal spawning substrate (fine gravel) comprised 

21% of total available substrate at on the long-term monitoring site (transect 7), and 

2.5% of total available substrate in the other run, transect 6. Although transect 6 did not 

have much fine gravel, it contained abundant large gravel. Salmon are able to spawn in 

larger substrate when other factors suit their needs (Gibson, 1993), such that among 

substrate and flow, runs contain many suitable variables for spawning habitat 

(Armstrong et al., 2003). Runs have also been linked to overwintering habitat of 

juvenile salmon (Cunjak, 1988), creating vital habitat for the salmon at other life stages.  

Riffles tend to have faster currents and are often characterized visually by a 

broken water surface (Jowett, 1993). Riffle transect 5 had mostly large gravel and 

boulders and very little ideal spawning habitat. Transect 3 had abundant large boulders, 

but also small patches of finer sediment typically located behind large protruding rocks, 

caused by a lower flow and settlement of smaller grain sizes. This resulted in an 

average of 17.5% of ideal spawning habitat. In the literature, riffles are considered to 

have good potential spawning characteristics (Malcolm et al., 2004). Although runs 

have the potential to be spawning habitat, not much is written linking runs or pools, 

with studies referencing riffle and pool/riffle transition zones (Fitzsimons et al., 2013). 
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As stated above, transition zones between riffles/runs and pools also allow for a 

decrease in flow and so the settling of smaller substrate. Although riffles may not be as 

suitable for spawning as transition zones, a study by Bagliniere & Champigneulle 

(1986) determined that they were very productive locations for juvenile salmon, even 

compared to runs.   

 

2.4.3 Groundtruth Data 

 An original goal of this study was to determine the accuracy of the analysis, 

this included observing how substrate size may be skewed by refraction caused from 

the water. The assumption was that refraction might cause the substrate to appear 

larger. Unexpectedly, all the misclassified substrate points were designated as smaller 

in drone images than in groundtruthing. These points were in areas of deeper water, 

where it may have been more difficult to measure the substrate due to depth and 

current. Although this does not signify that there was no refraction, it shows that the 

refraction was not significant enough to increase the substrate size class at these depths.   

In terms of salmon spawning habitat, two sources of uncertainty occur in this 

study. First, visual designation of gravel classes from orthomosaics would benefit from 

the greater precision of physical measurements. This approach applied to transect 1 

provided reasonable accuracy. Because the training points used in the other transects 

arose from the orthomosaics, misclassification in the gravel classes is an unknown. 

However, visual designation provided a consistent basis for gravel separation judged by 

the ability of OBIA to apply these designations. Secondly, a single substrate threshold 

was used for the delineation of spawning habitat. Ideal substrate for spawning is likely 
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not constant but was applied consistently among the transects and thus functions as a 

relative definition within this study.     

It is useful to compare the feasibility of both drone and ground team survey 

methods.  The drone was able to cover all 7 transects within 2 days, the foot travel 

between locations taking the most time. Two people can easily complete the drone 

survey, an extra person mostly due to wilderness safety concerns and avoiding river 

landings by the drone. Physical groundtruthing took much longer to complete, one day 

for each transect. In contrast, the image analysis took much more time to complete, and 

was largely dependent on computing power. Although both physical survey and remote 

sensing methods are valid, exploration into the object-based image analysis using 

UAV’s would allow for larger sections of rivers to be surveyed with higher accuracy 

and in shorter periods of time. These broad-scale substrate analyses could then be used 

to determine breeding potential of rivers or to analyze for restoration such as is 

currently being conducted in Norway, where substrate is being manipulated to increase 

salmon habitat (Fjellheim et al., 2003) as well as in North America (Mitchell et al., 

1998). It could also allow for further studies to be conducted, such as the shifts in 

substrate after large rainstorms or ice events. Seeing where ice is forming and on what 

substrate could also allow for a better understanding of how salmon are sheltering in 

the rivers during the winter (Linnansaari et al., 2009).  

 

2.4.4 Application 

Habitat degradation is a serious threat to the river productivity, affecting all life 

stages of the Salmo salar and other salmonids (Einum et al., 2008). Recent efforts, 
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including those in Norway and North America, have sought to increase salmon habitat 

by large scale manipulation of substrate (Fjellheim et al., 2003; Têtu et al., 2016; 

Emerson, 2014). Although substrate is a vital component of spawning habitat 

(Armstrong et al., 2003), it can also increase the fitness of other life stages, including 

prey availability (Mitchell et al., 1998).  Van Zyll De Jong et al (1997) suggested that 

the most effective way to increase the density of juvenile salmon was by manipulating 

substrate clusters and adding boulders. Current salmon habitat studies often utilize on-

ground sampling of the river, relying on observational data and photographs (Moir et 

al., 2009; Malcolm et al., 2004; Louhi et al., 2008). Although UAVs have become more 

popular in recent years, very few studies have looked at their potential for substrate 

analysis in rivers for biological study (Arif et al., 2017). Based on my results, they 

emerge as a powerful tool in river mapping, especially effective in otherwise 

inaccessible terrain.   

 This study demonstrated that diversity in substrate within macrohabitat lessens 

the value of this coarse traditional classification in categorizing spawning habitat. It 

also identified visibility issues in the broken water surface of the riffles as sources of 

inaccuracy for object-based image analysis. At the same time, substrate alone does not 

determine spawning habitat. Pool transect 1 had by far the highest amount of ideal 

spawning substrate, but other conditions in pools such as flow subtract from suitability 

indicated by substrate. River bottom texture should be viewed as a starting point for 

assessing habitat suitability, adding other data layers to better quantify spawning habitat 

as I undertake in the following chapter.  
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2.5 CONCLUSION 
 

This study has shown that substrate analysis on UAV-derived orthomosaics are 

possible despite the issues surrounding the collection of riverbed imagery through 

water. Pools, riffles and runs all had relatively high accuracies, the breaks in the river 

surface of riffles proved to have the highest impact on accuracy, with water depth 

within pools not substantially affecting accuracy. Although such analyses are possible 

using groundtruthing methods, the time needed in the field to gather the same amount 

of data is substantially less using a UAV. With a now established method for the 

object-based image analysis, the process within the laboratory could be streamlined to 

be more efficient, reducing the time needed for the substrate analysis. In conclusion due 

to the relatively high accuracy of the transects, the ease of use and speed of the UAV, 

this is an appropriate method in which to conduct substrate classification. The results 

can further be used to conduct preliminary analysis of suitable substrate for salmon 

spawning, or in subsequent species distribution model analyses to map potential 

spawning habitat.  
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CHAPTER 3 3D MAPPING AND ANALYSIS OF RIVER HABITAT 
FOR ATLANTIC SALMON CONSERVATION IN THE INNER BAY OF 
FUNDY 
 
3.1 INTRODUCTION 
 

The use of river habitats by fish is a complex topic because highly mobile 

species use a diversity of different microhabitats within the river. There is ample 

evidence that habitat diversity is important to fish life history as different life stages 

have different habitat requirements (Armstrong et al., 2003). The different levels of 

complexity found in rivers have allowed for the evolution of fish to take advantage of 

different habitats within the same river (Gorman & Karr, 1978). Different areas of the 

river are also used for different life stages, with each stage requiring a different set of 

environmental variables. Atlantic salmon (Salmo salar) parr, for example, tend to 

choose coarser substrate than their smaller fry counterparts (Hedger et al., 2006). In 

the absence of older salmon, fry will exploit higher velocity waters, due to their 

increase in food availability (Höjesjö et al., 2016). In the presence of older salmon, fry 

will retreat to slower flowing, coarser habitat, due to intraspecific competition and 

predation. This change in habitat use can also be observed seasonally, with juvenile 

salmon within Norwegian rivers displaying seasonal variations in habitat use caused 

by fluctuations in water flow and temperatures (Heggenes & Saltveit, 1990). The high 

variability found in river habitat can help facilitate the survival of juveniles.  

Habitat variability has also been found to alter behavioural and growth changes 

in fish, such as with Atlantic salmon in both wild populations (Finstad et al, 2007) and 

hatchery reared fish (Brown & Laland, 2001). In wild fish, when stream complexity 



44  

was decreased, fish were observed to alter daytime sheltering behaviour, and showed 

an overall decrease in body mass (Finstad et al, 2007). Similarly, hatchery reared fish 

raised in high densities with low structural complexity environments, have altered 

behaviours that lead to decreases in food conversion efficiency and growth 

(Brockmark et al. 2007).    

  Wild salmon are archetypal river species, important for recreation fisheries, 

food, and ceremonial uses including in First Nations practices. Moreover, Atlantic 

salmon have a role in linking marine and freshwater environments through their 

migration (Jonsson & Jonsson, 2003). Wild Atlantic salmon populations have been 

declining throughout Europe and North America due to pollution, dams and 

dewatering of streams, as well as other factors at sea (Parrish et al., 1998). Some 

populations are more affected than others, such as the Inner Bay of Fundy (IBoF) 

salmon, which were designated as endangered by the Committee on the status of 

Endangered Wildlife in Canada (COSEWIC) in 2001 (Government of Canada, 2013). 

Historically they were estimated to have over 40 000 returning adult salmon, but by 

1999, their numbers had declined to 500 (Irvine et al., 2005). The IBoF salmon are 

known to occupy 32 of the 50 rivers located in the Inner Bay of Fundy, their range 

spanning between the Mispec river in New Brunswick to the Pereaux river in Nova 

Scotia. Due to large declines in populations, there have been efforts in river restoration 

and repopulation projects (Einum et al., 2008; Trzcinski et al., 2004). Some of the 

most recent initiatives have been highly successful, focused on the Upper Salmon 

River in Fundy National Park, in New Brunswick. These initiatives involve a 

partnership between Parks Canada, Cooke Aquaculture, Fort Folly First Nation, 
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University of New Brunswick and Dalhousie University, and use the live gene bank 

program, established by the Department of Fisheries and Oceans (DFO), to re-

establish populations of genetically diverse wild salmon (Clarke et al, 2016). Due to 

logging dams placed in the early 1900s and the deterioration of their fishways, the 

Upper Salmon River is theorized to be vacant of native populations with returning 

adults being strays from surrounding rivers (Dadswell, 1968). These returning wild 

strays, along with Big Salmon River smolt were collected to be reared as broodstock 

for the Upper Salmon River, allowing for a genetically diverse population to be 

reintroduced into the river (Clarke et al, 2016). The rearing strategies for the IBoF 

recovery program, including keeping smolts in marine net pens, led to the finding that 

juveniles released into rivers before the onset of feeding had higher mass and 

fecundity than those that were kept in captivity for longer (Clarke et al, 2016), 

showing the importance of early life history in restocking success. 

Freshwater habitat use by Atlantic salmon is characterized by several 

categories based on life history stage (egg, alevins, fry, parr, smolt and adults). It is 

important to understand habitat use by these stages so that habitat assessment contains 

the scale and resolution to delineate them. Fish returning from the ocean to spawn will 

often traverse the river looking for spawning habitat and resting in holding sites. 

Spawning habitat selection is then based on physical factors within the river such as 

depth, water velocity, streambed substratum and cover (Armstrong et al., 2003). The 

decreasing number of salmon, and increasing number of restoration projects, has led 

to a need to understand the interactions between the environmental requirements of 

spawning habitat, helping to determine which rivers have the highest spawning 
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potential. Once spawning habitat is identified, the same methods can be used to 

determine the requirements of other life history stages such as juvenile habitat.  

Species distribution models (SDM) are an approach implemented to 

understand the spatial dynamics of animal populations in relation to environmental 

characteristics. They use environmental data layers coupled with presence/absence 

data to predict species distribution.  SDM are particularly important in conservation or 

restoration efforts, where potential habitat can be mapped or predicted. Although 

SDM are common in terrestrial and some aquatic environments, they are more 

difficult to apply in river systems, where spatial environmental data are less 

commonly available due to fast flow, light penetration, turbidity and refraction 

(Woodget et al., 2015). Rivers pose other challenges in measuring spatial 

environmental data including vegetation cover (e.g. trees and shrubs) obscuring aerial 

remote sensing surveys and accessibility to field sites. However, rapid advancements 

in remote sensing as a result of unmanned aerial vehicles (UAV) technology, have 

made river mapping more feasible and accessible (Nex & Remondino, 2014). 

 The goal of this research is to explore the use of UAV’s in creating a SDM of 

potential Atlantic salmon spawning habitat. My previous work determined that 

supervised classification could be applied to different types of river habitat (pool, 

riffle, run) with acceptable accuracy (Chapter 2). This chapter will explore the 

construction and results of an SDM through the following objectives: 

 Test the utility of UAV remote sensing for the creation of a DEM and extraction of 

spatially continuous environmental data sets for subsequent use in mapping IBoF 

salmon spawning habitat. 
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 Assess the use of UAV derived environmental layers in creating an SDM of 

potential salmon spawning habitat through accuracy analysis of both the 

environmental layers and the SDM. 

 Evaluate the results of the SDM by comparing them to known salmon spawning 

preferences.  

 
3.2 MATERIALS AND METHODS  
 

3.2.1 Study Site 

Located in the Bay of Fundy, the Upper Salmon River (USR) drains into 

Chignecto Bay near Alma, New Brunswick. It is considered by the Department of 

Fisheries and Oceans Canada (2010) to be critical salmon habitat. The river descends 

from a plateau to the sea through the protected wilderness of the park. Salmon habitat 

ranges from the estuary with a salt marsh and a macrotidal delta near the mouth of the 

river, to two large falls at either end of the “Forks” (a fork in the river), which they 

cannot cross (Fig. 11). 
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Figure 11: Map of the Upper Salmon River within New Brunswick. The solid black line depicts the 
extent of the study site, from the mouth of the river and ending at Match Factory Falls on the east side 
and Laverty Falls on the west side. The red lines show the 9 subsections of the river used in Pix4D to 
construct the DEM. 
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3.2.2 Data Collection 

3.2.2.1 Spawning Salmon 

IBoF salmon tagging data was provided from a post-release movement pattern 

and behaviour study. It tracked adult salmon, reared in captivity from smolt to 

maturity, after their release into the USR. Fish were tagged through surgically 

implanted (2015 & 2016) or externally attached (2017) MCFT2 coded radio tags from 

LOTEK Wireless Fish & Wildlife Monitoring (Samways, 2017). The anesthetic used 

was clove oil at a dosage of 50 – 70 ppm. Once in the anesthetic, fish were timed to 

ensure they were properly anesthetized within 2 minutes. During the procedure, which 

took 2-3 minutes, water was passed over their gills to ensure they did not suffocate. 

Fish were then placed in an oxygenated recovery tank. Fish were released in 2015, 

2016 and 2017. Tags were detected using a portable receiver by hiking the 10 km 

salmon accessible extent of the USR. Fish were deemed “in place” when antenna were 

perpendicular to the river and the signal strength reached its maximum. GPS (global 

positioning system) locations were then recorded from the riverbank. GPS points were 

mapped over orthomosaics to manually correct for any potential discrepancies in 

location and sorted by spawning habitat or holding habitat. The fish was assumed to 

be spawning if the location aligned with preferred habitat based on substrate and 

estimate flow, as well as known spawning locations. Salmon were not counted as 

spawning until November 10 as this was considered to be the earliest spawning time. 

If the location was determined to be in a low flow riffle or a run, they were considered 

to be spawning, but fish observed within a pool, were considered to be in holding. As 

salmon will often build practice redds in spawning habitat while traveling up and 
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down the river, individual tagged salmon could be counted as spawning on more than 

one occasion if on subsequent weeks were found in suitable spawning habitat. 

Although these do not represent guaranteed spawning locations, they were more likely 

spawning based on substrate, water flow and known spawning locations. After 

December 21, fish were considered to have completed spawning. Tracking data were 

provided for 2015, 2016 and 2017. A total of 305 fish were observed over 10 km of 

the river. Only the spawning presence data was used in the species distribution model.   

3.2.2.2 Drone and Pix4D 

A DJI Phantom 4 drone was used to obtain imagery of the Upper Salmon 

River during the fall of 2016, during a relatively low stage of river flow, in late 

August. The standard high dynamic range and high definition camera found on the 

DJI Phantom 4 drone was used. Drone positioning was calculated using the barometric 

pressure sensor for elevation and the on-board GPS/GLONASS (global navigation 

satellite system), with altitude corrected later using manual tie-in points in Pix4D from 

available LiDAR data. Approximately 5501 images were taken with ~80% overlap in 

the imagery, spanning the length of the salmon habitat range in the river. As riverbank 

varied in height due to trees, large rocks and cliffs, imagery was collected at 40 meters 

in height in 7 second intervals. In areas where trees and cliff height did not allow for 

the drone to be flown at 40 meters, a separate flight was also done at 60 meters. These 

flights only encompassed the top of the trees and were precluded from Pix4D if 

coverage for the river was over 80%, as well as were removed from the analysis in 

proceeding steps as only the riverbed was analyzed. Flights were also done at 30 

meters and video was taken for extra data, but these were precluded from Pix4D. As 
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suggested by Pix4D, flight heights did not differ by more than a factor of 2.  In order 

to process the data efficiently, photos were separated into 9 sections processed through 

Pix4D to produce orthomosaics and digital elevation models (DEM). The latter were 

constructed through structure from motion, which utilizes corresponding features in 

overlapping imaging to create a three-dimensional model of the terrain using 

photogrammetry (Chelsey et al., 2017; Burns & Delparte, 2017).   

 

3.2.3 Processing 

In order to prepare the DEM for further analysis, data were condensed for 

manageability via a set of transformations to convert from 1.74 cm per pixel 

resolution and 32-bit float data to a resolution of 3.48 cm per pixel and 16-bit signed 

data (Fig. 12). This was a required step as the large size of the data prevented it from 

running through the software. The transformations included an aggregate conversion, 

which combined cells in grids of 4 (2 by 2 pixels), using the mean value to represent 

the whole area.  Starting with high resolution, a reduction to this extent was not 

considered to affect the accuracy of the subsequent analyses. The DEM was clipped to 

remove as much of the forest vegetation as possible, since vegetation was not 

considered as a factor in the environmental layers.  

 

Figure 12: The transformations undergone by the DEM in post-processing.  
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3.2.3.1 Slope 

Slope was calculated in ArcGIS using the Slope Tool from the DEM which 

uses a moving window, with 3 by 3 cells. The output of the raster was in degrees, with 

values ranging from 0-90. The maximum rate of change was calculated using a planar 

slope algorithm taking into account the heights of the surrounding eight cells and the 

steepest descent. Slope was calculated and coded into each individual cell to create a 

continuous data raster layer, which was then converted into ASCII (American 

Standard Code for Information), the required format for MaxEnt (see below). 

Although slope is in degrees for MaxEnt, for ease of assessment it is presented as 

meters over distance.  

 

 

3.2.3.2 Water Flow 

Water velocity is considered to be an important factor in salmon spawning 

habitat but modeling this variable can be complicated for river habitats, since flow 

changes based on rain and snow events and salmon have a spawning season that lasts 

multiple months. Without a water input value, which was not available, water velocity 

could not be modelling. This layer was thus modelled in ArcGIS pro as patterns in 

water flow using a scale from slow (low accumulation) to fast (high accumulation) 

(see below). Since the result is to be used for SDM built in MaxEnt (see below), 

which concentrates on environmental patterns rather than number ranges, this 

classification approach was sufficient. Flow was modelled in a grid format by 

calculating water direction, accumulation and slope.  
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The DEM was first processed through a Sink Spatial Analyst Tool available in 

ArcGIS, which determines all the sinks (cells with no drainage direction) caused when 

all the surrounding cells are higher or when two cells cause a loop by flowing into 

each other. The Fill Spatial Analyst Tool was used to fill all the sinks on the grid as 

well as repair any discontiguous paths. If the sinks were not filled, there could be gaps 

in the drainage network affecting the subsequent steps. The sink filled DEM raster 

was then processed through a Flow Direction Spatial Analyst Tool available in 

ArcGIS which creates a raster showing the direction water will flow based on 

neighbouring cells and slope (or elevation raster), following the direction of steepest 

descent. The resulting raster is coded with values that indicate flow direction from 

every cell into its neighbours, identifying channels within the river, and taking into 

consideration the width of these channels. The Flow Accumulation Tool available in 

ArcGIS was then used, which takes into account the fine scale of the DEM, slope, and 

flow direction, which results in a coded raster of flow, which was then converted into 

ASCII, the required format for MaxEnt (see below). Cells with a flow accumulation of 

0 had no flow into them and were located on ridges or rocks protruding from the 

water. Low accumulation cells had less cells draining into them and so a slower flow. 

Cells that had a higher accumulation value had a more concentrated flow, this 

included narrow stream channels, where water will flow faster. As water velocity 

could not be modeled without more data, this approach allowed model generated 

mapping of water flow patterns to be incorporated. This method is often used to 

delineate watersheds, natural drainage direction, river order as well as other 

hydrological uses (Nurhamidah et at., 2018; Sten et al., 2016; Omran et al 2016). To 
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visually assess river flow, it was averaged for each section and graphed according to 

the linear distance covered by each section. The raster layer contains “paths” through 

tight channels, where flow is faster, but averaging may skew these values. Since the 

full raster layer is used in the MaxEnt analysis, this will not affect the results of SDM.    

 

3.2.3.3 Substrate 

Substrate is another important factor in spawning habitat, since it must be 

small enough for salmon to dig redds, but large enough to allow for aeration through 

the sediment. A substrate raster layer was created using object-based image analysis 

(Chapter 2). An object-based supervised classification was conducted in ArcGIS to 

exclude riverbank vegetation, leaving submerged and dry substrate (Fig. 13).  The 

latter was important to consider habitat at higher river flows. Visual inspection of 

drone images was used to designate dry and wet polygons for training, and training 

sites were selected along the entire length of the river sections, both in sun and shaded 

areas. 
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Figure 13: The process of classifying substrate.  A. The river orthomosaic segment from drone imagery. 
B. Training sites are selected with RV (green), dry (gray) and submerged (blue). C. This produces 
classified shape files which are used to extract dry (gray) and submerged substrate (blue) from the RV 
(green). D. The resulting RV free raster layer. 
 

A reference dataset of training locations was used as an accuracy assessment 

for distinguishing wet/dry/vegetated river habitat. Random sampling was used to 

assign 500 distributed points onto the training sites used in segmentation. An overall 

percentage agreement was calculated comparing the training sites to the classification. 

Submerged and dry substrate were imported separately into PCI Geomatics for 

substrate size analysis. Substrate size initially included silt, sand, fine gravel, gravel, 

large gravel, boulders, large boulders, and bedrock (Table 4). Large boulders 

encompassed all substrate larger than 40 cm that was not bedrock. Substrate that had 

broken off bedrock including rockfalls from riverbank cliffs had the same texture and 

pixel signature as the bedrock was classified as large boulders. Similarly, gravel and 
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fine gravel were merged since the visual difference between 2mm-2cm and 2cm-5cm 

were too small to distinguish accurately in the analysis (Table 4). 

 
Table 4: Size classes used to classify substrate in the object-based image analysis 

Class Substrate 

1 Silt 

2 Sand (0.063-2mm) 

3 Fine Gravel (2mm-5cm) 

4 Large Gravel (5-20 cm) 

5 Boulders (20-40cm) 

6 Large Boulders (>40cm) 

7 Submerged vegetation 

 

In PCI, an object-based image analysis (OBIA) was conducted to classify the 

size of the submerged and dry substrate based on Chapter 2. A texture analysis 

(homogeneity, contrast and mean gray-level values) was used to analyze the red band 

on 10 x 10 pixels. These layers and band were used based on the suggestions from the 

2017 study conducted by Arif et al. which did a preliminary examination of OBIA in 

river terrain. The image underwent an object-based segmentation based on these 

textures, and the red band. The software was manually trained and classified into the 

substrate categories in Table 4 based on visual assessment of the images. The validity 

of this approach was verified for different river macrohabitats such as riffles and pools 

(Chapter 2). Each class had a minimum of 50 training sites and 25 separate accuracy 

sites (see below), except when there were insufficient samples to meet the minimum 

requirements. The substrate polygons were then exported into ArcGIS and merged 
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into a single raster layer. 

One third of all training sites were allocated to an accuracy assessment. An 

error analysis was constructed between the unused training samples and the classified 

substrate for each of the nine river sections.  

 

3.2.4 MaxEnt 

MaxEnt is an open-source software used to model species distributions. 

Maximum entropy, referring to information entropy, assumes that every outcome on 

the model is as likely to occur as another. This concept is used to model species 

distributions (Harte & Newman, 2014; Philips, Dudík & Schapire, 2017). Through the 

combination of environmental variables which are geocoded into raster layers, along 

with species presence data (as GPS coordinates), it creates probability distribution 

models. This is done by observing the patterns in the environmental layers found at 

the presence data points. Each grid cell in the output has a predicted habitat suitability 

ranging from 0-1 with 1 being areas with the best predicted conditions. In this case the 

presence data represent fish in spawning habitat, and the map will indicate the relative 

likelihood of spawning habitat occurring in one cell compared to another. The 

environmental layers for water flow, slope, and substrate, were processed through 

MaxEnt along with GPS presence data that indicated spawning salmon. In order to 

validate the model, 20% of the presence locations were set aside for use in the receiver 

operating characteristic (ROC) curve, which compares the model performance to the 

results of a theoretical model with a prediction based on random distribution. As 

correlation between variables can skew their perceived contribution, the permutation 
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importance is calculated, which examines how altering variables within the training 

data will affect the AUC.  

In order to analyze the environemental variables, response curves are created. 

These show how the predictions created by the model for the probability of presence 

change as each of the individual environmental variables vary. Each variable is 

modelled as a cloglog expression, which corresponds to 1-exp(-c*r), where r is the 

raw model value and c is the predicted ommision rate (true abundance of the species 

over the model predicted abundance), resulting in an estimate of presence probablity 

between 0 to 1. This is graphed as a curve (continuous data) or a histogram 

(categorical data), where the y axis shows the presence probability against the x axis 

environmental data. It should be noted that flow, slope and substrate are all linked  

(correlated) variables, which can cause issues in the response curves. The curves are 

produced by changing one variable in the model, but the response can depend on 

interactions in ways that are not obviously interpretable in the curves, making the 

curves skewed, and therefore are analyzed with caution. 
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3.3 RESULTS  
 
3.3.1 Tracking Data 
 
  Out of 305 tracking points collected from 2015 through 2017, 81 were in 

probable spawning habitat with 224 in probable holding habitat (Fig. 14-16). Within 

the spawning habitat, 12 of the points were from 2015, 50 were from 2016 and 19 

were from 2017. Although holding areas were found within the northernmost sections 

of the river (section 1 and 2) there were no spawning fish observed there. The highest 

concentration of spawning fish were located within the mid-section of the river 

(sections 6-7), with lower concentrations in sections 3, 4, 5, 8 and 9.   
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Figure 14: Corrected tracking data showing the GPS locations of the spawning salmon (red) within the 
Upper Salmon River for 2015-2017, for sections 1-3, mapped on orthomosaics. Black lines mark the 
division between sections. Insets show areas where clusters of spawning points were located   
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Figure 15: Corrected tracking data showing the GPS locations of the spawning salmon (red) within the 
Upper Salmon River for 2015-2017, for sections 4-6, mapped on orthomosaics. Black lines mark the 
division between sections. Insets show areas where clusters of spawning points were located  
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Figure 16: Corrected tracking data showing the GPS locations of the spawning salmon (red) within the 
Upper Salmon River for 2015-2017, for sections 7-9, mapped on orthomosaics. Black lines mark the 
division between sections. Insets show areas where clusters of spawning points were located. 
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3.3.2 Environmental Layers 
 

The distinction between dry and wet areas of river substrate was important 

because substrate classification was conducted separately for each. However, for use 

in MaxEnt, substrate was merged between wet and dry since they overlap during other 

flood states of the river.  Segmentation of the substrate into dry, submerged and 

vegetation was accomplished with an overall accuracy ranging from 79%-95% in the 

various river sections, with most values above 90% (Table 5). An overall accuracy of 

89%, provides confidence for using these data in subsequent substrate classification. 

The northern upstream area of the river (sections 1-3) had the greatest relief and slope 

values, corresponding to large areas of riffles/pools, with the high elevation at the top 

of both waterfalls (Fig. 17). Macrohabitat types (pools, riffles, runs) are created by 

slope, flow and depth which also control scouring, gravel transport, and the 

distribution of substrate. Constriction of flow by boulders also influences the 

distribution of macrohabitat as well as wake regions behind the boulders leading to 

settlement of finer substrate. Image analysis indicated that northernmost river Section 

1 comprised 61% of the substrate as boulders or larger, with 79% in Section 2, and 

58% in Section 3 (Fig. 18). 

In contrast, the southern end of the river (section 9) encompassing the mouth 

was the widest area, and had on average, lower elevation (Fig. 17). The river terminus 

is the base of the plateau, approaching sea level. There were channels that led to 

higher flow values, which can be seen to the right of an island within the river, with 

flow lowering as the river mouth widened (Fig. 19). The substrate within this section 

was dominated by finer material, with 77% either large gravel or smaller (Fig. 18). 
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Although clear patterns were present at either end of the river study area, where there 

were obvious geographical differences (waterfalls vs. the mouth of the river), the mid-

section varied between riffles, runs and pools. The five middle sections (4-8) had large 

areas of both large gravel and large boulders (Fig. 18), and varying flow (Fig. 19) and 

slope (Fig. 17), with substrate and flow conditions indicative of suitable spawning 

habitat (Chapter 2). Object-based image analysis on substrate categorization of 

substrate (Table 6) had an accuracy of 79%-89%, with an overall accuracy of 83%. 

In order to visualize river slope and flow as integrated measures, they were 

averaged for each section and graphed according to the linear distance covered by 

each section (Figs. 17, 19).  Sections 1 and 2 had high areas of flow around the 

waterfalls that were averaged against the lows of the pools, causing an overall lower 

flow accumulation value. Flow accumulation peaked in sections 3 and 4, where the 

fork in the river converged, funneling water from both sections 1 and 2. From there, 

average flow accumulation steadily declined until sections 8 and 9, where the second 

peak occurred (Fig. 19). For section 8, the increase in flow may be attributed to flow 

constriction by an increase in large boulders this area had compared to sections 4-7 

(Fig. 18).  Section 9 had a higher percentage of smaller substrate (Fig. 18), but a large 

part of this section has islands and gravel bars, causing tighter channels that elevated 

the overall flow.  
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Table 5: Accuracy for the classification of dry, submerged and riverbank vegetation in each of the 
sections, where 1 is the most northern section and 9 is the most southern section. 

Section Accuracy 
1 0.78 
2 0.85 
3 0.9 
4 0.93 
5 0.93 
6 0.93 
7 0.95 
8 0.93 
9 0.79 

 
 

 
Figure 17: Average elevation values (meters) relative to the river graphed for each river section as 
broken up for Pix4D analysis, weighted by distance to show changes in slope between the upstream and 
downstream end of each section, with Section 1 & 2 being the furthest upstream and Section 9 being the 
mouth of the river. The orange line represents Section 1, graphed alongside Section 2, to show both 
extents of the forks meeting at Section 3 (~1500 m). 0 meter distance is the topmost point of Section 1 
of the river, with Section 2 being 500 meters shorter and so starting at the 500 meter mark. 
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Figure 18: Object- based image analysis results of substrate size for the Upper Salmon River, divided 
into 9 sections as broken up for the Pix4D analysis, with Section 1 & 2 being the furthest upstream and 
Section 9 being the mouth of the river. 

  
Figure 19: Average flow accumulation values graphed against the river sections as broken up for the 
Pix4D analysis, with each section shown as linear distance. Section 1 & 2 are the furthest upstream and 
Section 9 is the mouth of the river.  The red line represents Section 1, graphed alongside Section 2, to 
show both extents of the forks meeting at Section 3 (~1500 m). 0 meter distance is the topmost point of 
Section 1 of the river, with Section 2 being 500 meters shorter and so starting at the 500 meter mark.  
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Table 6: Accuracy for the extraction of substrate in each of the river sections in the object-based image 
analysis, where 1 is the northernmost section and 9 is the southernmost section. 

Section Accuracy 
1 0.81 
2 0.82 
3 0.79 
4 0.8 
5 0.89 
6 0.81 
7 0.84 
8 0.86 
9 0.86 

  

 
3.3.3 MaxEnt 
 
  MaxEnt software produced a predictive distribution model of the Upper 

Salmon River based on the water flow, slope and substrate raster layers, along with 

fish presence data (Fig. 20-22). Warmer colors represent areas that had better 

predicted spawning habitat. In general, the model predicted that there was less suitable 

habitat within the northern end of the river, where flow was higher, and substrate was 

larger. Suitable habitat increased throughout the mid- and lower section of the river 

where substrate decreased in grain size. To better visualize the results, the predictive 

distributional model for each section was graphed as a histogram with 0 being a very 

low likelihood and 1 being a very high likelihood of spawning habitat (Fig. 23-24). 

Sections 1, 2 and 3 had the lowest mean values, with 0.27, 0.31 and 0.33. Sections 4 

and 5 both had mean values of 0.41, with both models seeing peaks above 0.6. Section 

6 had the highest mean of 0.44, followed by 7, 9 and 8 with means of 0.43, 0.43 and 

0.37. The area under the curve (AUC) for the training data is 0.780 and 0.746 for the 

test data (Fig. 25), well above the 0.5 value that would result from a random 

prediction and considered to be acceptable (Mandrekar, 2010)  
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Figure 20: Predictive distributional model of salmon spawning grounds, red is a very high likelihood 
and green is a very low likelihood of spawning for sections 1-3. The arrangement of these sections 
along the river is indicated in the inset. A second inset shows a patch of high likelihood spawning 
grounds. 
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Figure 21: Predictive distributional model of salmon spawning grounds, red is a very high likelihood 
and green is a very low likelihood of spawning, for sections 4-6. The arrangement of these sections 
along the river is indicated in the inset. A second inset shows a patch of high likelihood spawning 
grounds. 
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Figure 22: Predictive distributional model of salmon spawning grounds, red is a very high likelihood 
and green is a very low likelihood of spawning, for sections 7-9. The arrangement of these sections 
along the river is indicated in the inset. A second inset shows a patch of high likelihood spawning 
grounds. 
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Figure 23: Maxent results of the predictive likelihood of Atlantic salmon spawning grounds for sections 
1-5 of the USR. 0 is a low probability while 1 is a high probability. Mean is shown as a red line on the 
histogram. 
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Figure 24: Maxent results of the predictive likelihood of Atlantic salmon spawning grounds for sections 
6-9 of the USR. 0 is a low probability while 1 is a high probability. Mean is shown as a red line on the 
histogram. 
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Figure 25: The receiver operating characteristic curves for the training and test data of the MaxEnt 
model. 
 

Within the model, substrate had the highest contribution to prediction (Table 

7) with 72.5%, followed by slope and flow accumulation. As correlated variables can 

skew the model contribution, permutation importance was also tested. Substrate had 

the highest permutation importance with 60.6% followed by slope and flow 

accumulation (Table 7). Response curves were graphed for each variables to better 

understand their affect on the model. Within the substrate, fine gravel had the highest 

response value, followed by boulders, and large gravel, with all other values showing 

a much lower response, and vegetation having a near zero response (Fig. 26A). Slope 

had a high response from 0 to 87 degrees, with a peak at 87 and a lull above 87 

degrees (Fig. 26B). Model response to  flow accumulation increased with flow 

accumulation,  peaking at 35500 (Fig. 26C).  
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Table 7: The percent contribution and importance of the environmental raster layers (substrate, flow 
direction, flow accumulation and slope) for the MaxEnt model. 

 
 

 
 
Figure 26: Response curves of the substrate (A), slope (B), and flow accumulation (C) raster layers in 
the MaxEnt model to the Atlantic salmon presence data for the full length of the river. Substrate 1-7 
referring to silt (1), sand (2), fine gravel (3), large gravel (4), block (5), large boulders (6) and 
vegetation (7).  
 
 
 
 
 
 
 

 

Variable Percent 
contribution 

Permutation 
importance 

Substrate 72.5 60.6 
Slope 19.5 29.5 
Flow 
Accumulation 8 9.9 

A B 

C 
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3.4 DISCUSSION 

This study sought to test the ability to create a species distribution model for 

Atlantic salmon using environmental layers from DEM’s created using imagery 

captured by UAV’s.  Chapter 2 results demonstrated that water depth and riffles did 

not greatly affect the accuracy of the raster layer, so that application of object-based 

image analysis was applicable to the entire orthomosaic. With the high resolution of 

the DEM, the accuracy of substrate classification (0.83), and the corrected 

georeferenced presence data, the model was considered to be a reasonable approach. 

Mapped spawning locations of Atlantic salmon with environmental data along an 

entire river section are not common as they require extensive groundtruthing, and so 

many models rely on fine scale sampling at spawning sites. 

3.4.1 MaxEnt 

When environmental variables are correlated in MaxEnt models, the response 

curves can be skewed as the variables are not independent (Philips et al., 2017). In this 

case, all variables were correlated as substrate settles based on water flow and slope is 

a determinant factor of said water flow. To counter this problem, permutation 

importance examines how randomly altering variables within the training points will 

affect the AUC, and their importance in the model. Although slope and flow both had 

impacts on the model, and thresholds for salmon spawning, substrate had the largest 

percent contribution and permutation contribution, making up over 60% in both cases. 

Overall, the model predicted substantial amounts of the middle and lower sections of 

the river to be potential spawning habitat, with little to no potential spawning habitat 

in the northern (upper) area of the river. This trend was caused by the highest 
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contributing factor, substrate. Generally, larger substrate was located more extensively 

upstream, while smaller substrate was relatively more important downstream. The 

settlement of sediment is due to fluvial sorting, causing smaller sediment to 

accumulate downstream (Rice, 1998; Davey & Lapointe, 2006). 

Although other factors such as flow play a role in habitat selection, spawning 

is strongly dependent on sediment (Heggenes, 1990; Armstrong et al., 2003; Louhi, 

2008; Davey & Lapointe, 2007).  Small substrate decreases aeration within the stream 

bed which lowers the survivability of eggs (Lapointe et al., 2004; Louhi, 2008). If 

substrate is too large salmon will be unable to move the sediment to dig redds.  

Salmon will select and successfully spawn in areas of reduced flow where substrate is 

adequate (Barlaup et al., 2008).  

3.4.1.1 Substrate 

Substrate is not only important for spawning, but at all life stages and has been 

directly linked to carrying capacities of rivers (Fjellheim, et al., 2003).  As Atlantic 

salmon spend a considerable portion of their lives as parr in the river, increasing 

habitat suitability for both spawning and juveniles is important. Substrate 

manipulation has been shown to be the most effective habitat restoration technique, 

with the addition of boulder clusters greatly increasing the density of juveniles (Van 

Zyll De Jong et al, 1997). The declining state of Atlantic salmon populations has led 

to a surge in habitat restoration, as well as repopulation programs (Clarke et al., 2016; 

Department of Fisheries and Oceans Canada, 2010; Hvidsten & Johnsen, 1992). 

Rivers are complex habitats made up of many interdependent features (Schumm, 

2007), but species distribution models may help to identify which variables are most 
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important as targets of habitat restoration. Running the model with presence data for 

juvenile salmon would be a valuable application of the approach since the 

environmental rasters are already established.  

In this study, ideal spawning substrate was considered to be fine gravel (2mm-

5cm) based on Armstrong et al (2003) and Louhi (2008), but it should be noted that 

salmon can spawn within the smaller grainsize range of the large gravel (5cm-20cm) 

up to 12.5 cm. Salmon eggs require high concentrations of oxygen (Louhi, 2008) and 

salmon prefer to spawn in well aerated fine gravel compared to substrates of smaller 

grainsize such as sand. The presence of fine-grained sediment can also obstruct the 

emergence of fry from the redds (Kondolf, 2000; Lapointe et al., 2005). The nests are 

dug in the gravel to allow for the protection against predation, gravel shifts, freezing 

and low water conditions (Fleming, 1998). Unexpectedly, boulders and large gravel 

which could not be moved by fish also had high habitat suitability in the SDM. This is 

most likely because substrate deposit patterns are related to water flow, which is 

variable (Kodama, 1994). Areas where water flow may have allowed for substrates of 

larger grainsize to deposit (e.g. due to a rainfall even) may lessen, allowing for 

substrate of smaller grainsize to be deposited in the same area. Moreover, coarser 

substrate depositing can also lessen the flow on an area, allowing for fine substrates to 

be deposited downstream of it. This is seen in core samples obtained at spawning sites 

which showed substrate the size of boulders compromising 40% of the cores 

(Peterson, 1978; Gibson, 1993). This interdependence between flow and substrate 

would cause the model to recognize both the boulders and large gravel where the 

salmon are spawning even though they are not utilized as spawning substrate. Less 
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frequently salmon will spawn in larger substrate, especially in larger rivers where they 

will also spawn in deeper water (Louhi, 2008). Other classes, both larger and smaller 

than the fine gravel – boulders and sand, were relatively less important in the model, 

matching the substrate preferences seen in other studies (Armstrong et al., 2003). 

Although substrate size categories were based off Borsányi et al., (2004) other studies 

use different size categories (Kondolf, 2000; Gibson, 1993). Even compilation studies 

exploring substrate size preferences do not allow consistent comparisons (Armstrong 

et al., 2003; Louhi, 2008).   

 Although the model included measurements of flow, slope and substrate, 

spawning habitat is also dependent on water depth (Armstrong et al., 2003) which was 

not included. With the variability of water levels in the river, and the fact that all 

measurements were obtained during low water levels, there was no way to calculate 

water depth from the DEM without more information such as an average water depth 

for the duration of the spawning season.  The salmon spawning dates varied from the 

start of November till the end of December, in which time the water level is likely to 

vary due to rain or snow events.  

 

3.4.2 Limitations, Advancements & Future Direction  

Often, limiting factors in broad-scale analysis include computing power and 

processing time. In this case, the model was limited by the number of runs it was able 

to process, with a single MaxEnt run taking upwards of 8 hours to complete. This 

limited the testing of multiple layers through the model e.g. different slope resolutions 

& additional layers. Model accuracy could be further improved through this testing. 
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Furthermore, as resolution was fine-scaled, slope values for the model were also fine-

scaled. Additional testing of slope layer resolutions may allow for further insight into 

salmon spawning habitat. 

Although there are studies that seek to characterize spawning habitat, models 

of this scale using similar technology are relatively new, with studies only beginning 

to explore the uses of RGB (Red Green Blue) images from UAV’s for substrate 

analysis (Arif et al., 2017; Danhoff & Huckins, 2020).  These models have wide 

applicability to determine which rivers have spawning potential for river restoration 

and restocking of Atlantic salmon. Similar models can be constructed in River 2D, 

which uses a hydrodynamic model to evaluate fish habitat, but these require extensive 

groundtruthing in the form of sampling (Gard, 2006). Although groundtruthing can 

provide the model with additional data such as water depth which was not included in 

my DEM analysis, substrate is extrapolated from point data. As substrate is arguably 

the most important feature in spawning habitat a UAV substrate analysis, which 

requires less sampling and provides more coverage, is more efficient for preliminary 

analysis of spawning habitat.  

Mapping the river by UAV substrate analysis is also beneficial to projects that 

seek to alter bed composition to enhance habitat, e.g. spawning substrate (Fjellheim et 

al., 2003). This type of model could also be applied to different life stages such as 

juvenile habitat. In the present work, substrate had the largest influence on prediction 

of spawning habitat. Further refinement such as changing the raster layers to test 

different substrate size categories may increase the response of ideal substrate and 

lead to a more standardized system. SDM are often limited by environmental layers 
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(Srivastava, Lafond & Griess, 2019), but UAV’s provide capacity to quantify habitat 

and more fully exploit this approach to identify spawning grounds, holding/feeding 

areas, and restoration potential in salmonid rivers (Roncoroni & Lane, 2019).  

 
3.5 CONCLUSSION 

This study has shown that UAV can be used to successfully extract 

environmental layers from rivers. Using both the UAV derived orthomosaics and 

DEM, raster layers containing substrate size, slope and flow were codded.  With the 

addition of presence data, an SDM was modelled successfully. The results of this 

model added evidence towards the importance of substrate to Atlantic salmon for 

spawning, as it was seen to have the largest impact on the model results. In 

conclusion, UAV are a practical high-resolution tool in habitat analysis of rivers for 

spawning salmon. Further study should look at implementing similar methods to 

juvenile habitat and other rivers.  
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CHAPTER 4 CONCLUSSION 
 

Current methods for habitat analysis of Atlantic salmon are expensive, time 

consuming and conducted at localized scales. Habitat mapping using the latest aerial 

remote sensing tools (UAVs) provides advantages to understanding salmon habitat 

preferences through improved understanding of the structural complexities of rivers. 

Understanding the structural complexity of rivers is vital to restoration projects that 

seek to increase the population of endangered species, such as IBoF salmon. With the 

potential that SDM have in analyzing spawning habitat, a practical way to extract 

environmental data from rivers was needed. With substrate being a vital component in 

the structural complexity, an accurate method for substrate grainsize analysis was also 

needed. This thesis explored the feasibility, limitations and accuracy of using a UAV 

to extract environmental data from river habitats. 

 Chapter 2 observed the accuracy of orthomosaics in the varying physical 

properties of the river found in macrohabitats. As pools, riffles and runs are ways to 

classify habitat by similar slope, flow and substrate, these were used to denote 

transects. The results showed that despite varying physical conditions found in the 

transects (e.g. Depth and clarity) accuracy was consistently high, with only riffles 

causing a decrease in accuracy. This chapter also compared the transects to 

groundtruthing data to determine if substrate size was skewed by water. No 

magnification effect was found to be apparent at the depths tested. Although the UAV 

could not measure all the variables available that groundtruthing can, it was far more 

efficient in the field and allowed for a larger section of the river to be surveyed with a 

high accuracy in a shorter timespan.  
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 Chapter 3 demonstrated how a UAV can be used to create environmental 

layers through analysis of both the orthomosaics and DEMs for the creation of an 

SDM. Building on the methods tested in Chapter 1, a substrate analysis was conducted 

for ~10 km of river on an orthomosaic. Along with this, slope and flow were 

determined from the DEM and incorporated as raster layers. This environmental 

information and presence data from spawning salmon were input into MaxEnt to 

model potential spawning habitat. The model was determined to be sound, and the 

results indicated that substrate size was a large determining factor in Atlantic salmon 

spawning habitat. With the success of the model on spawning habitat, further analysis 

should be conducted to expand to juvenile habitat.   

 As a whole, this thesis demonstrates that using a UAV to analysis river 

habitat is a viable option. Environmental data from the substrate, flow and slope can 

all be determined using a UAV with a relatively high accuracy despite varying 

physical conditions of a river. The methods, and techniques derived through this 

thesis, should be considered for future use in analyzing potential salmon spawning 

grounds, as well as expanded for juvenile habitat.  
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