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Abstract 
This thesis documents the development and validation of a MATLAB/Simulink 

simulation tool for the Attitude Determination and Control System (ADCS) of the LORIS 

CubeSat in development at Dalhousie University for the Canadian CubeSat Project. The 

simulation tool comprises an approximation of the space environment characteristic of the 

International Space Station’s orbit, a Simscape-based satellite dynamics model, two attitude 

controllers, models of the sensors onboard the LORIS CubeSat and the attitude 

determination algorithms that use them. Use of magnetic attitude control is assessed in 

simulation for both detumbling and pointing the satellite, while the latter forms the basis for 

the design of a reaction wheel-based controller capable of meeting LORIS mission 

requirements. For the conditions used in the simulations, the proposed ADCS control 

scheme exceeds mission accuracy requirements under many worst-case assumptions. 
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Chapter 1: Introduction  
The Dalhousie University Low Earth Orbit Reconnaissance Imagery Satellite (LORIS) 

CubeSat is a satellite in development for the Canadian Space Agency’s Canadian CubeSat 

Project, set to launch in 2021. This thesis describes the design and development of an 

Attitude Determination and Control System (ADCS) simulation tool for the LORIS project 

built in MATLAB/Simulink. Attitude is defined as the orientation of a satellite in orbit. The 

determination component of the ADCS includes the sensors used to estimate this 

orientation, while the control component of the ADCS includes the actuators and algorithms 

that orient the satellite and maintain it in its desired orientation throughout its mission life. 

The simulator aims to 1) propagate the LORIS orbit in a realistic environment with models 

of the external disturbances experienced by low-Earth orbiting (LEO) satellites, and 2) 

model the satellite attitude dynamics to aid in the design and validation of attitude 

determination and control algorithms for its mission.  

CubeSats are sized in terms of units (U), where 1U is a cube with dimensions 

10 × 10 × 10 cm. The LORIS CubeSat is 2U – having fixed dimensions of 10 × 10 × 20 cm – 

with four deployable solar panels extending outwards from the top. Its deployed 

configuration is depicted in the CAD rendering shown in Figure 1. 

 

Figure 1: LORIS CubeSat CAD Rendering [1] 
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 The satellite payload features two cameras on the Earth-pointing face of the satellite 

to photograph Earth’s surface. Two controllers – one for detumbling and one for pointing – 

are designed and validated with respect to the LORIS mission requirements dictated by its 

camera payload. “Detumbling” refers to the operational phase wherein the high angular 

rates of a spinning satellite are reduced. “Pointing” refers to the nominal operational phase 

where the payload is active, and the satellite enters and maintains a stable orientation in 

orbit with its cameras facing Earth. Relevant mission requirements are reproduced below: 

1. The ADCS should detumble the spacecraft in under 15 hours after the 30-minute 

waiting period post-deployment from the International Space Station (ISS). Launch 

requirements disallow the CubeSat to be powered on until 30 minutes have elapsed 

after its release from the ISS, whereinafter it is free to begin its detumbling phase as 

soon as enough power has been provided to the system.   

2. The LORIS ADCS shall sample attitude determination telemetry (data from its 

onboard Sun, magnetic field, and angular rate sensors) at a rate of at least 1 Hz.  

3. The ADCS shall have an attitude determination accuracy of at least ±10. The 

estimate of the satellite’s attitude calculated from its sensor measurements should 

be within ±10 of the actual orientation of the satellite during its pointing phase.  

4. The ADCS subsystem shall have an attitude pointing accuracy of at least ±10. This 

accuracy ensures that the camera payload can photograph its intended target. 

5. The LORIS ADCS shall implement a Proportional Derivative (PD) controller for 

nominal operations. “Nominal operations” means pointing at Earth during portions 

of the orbit where Sun is not eclipsed by Earth. 

6. The ADCS shall operate on a supply voltage of 5 V and 3.3 V during nominal 

operation. This requirement drives the modelling of the ADCS actuators in 

simulation.  

 In the interest of keeping costs for the project and complexity of the system low, this 

thesis will first examine the feasibility of solely magnetic attitude control for both the 

detumbling and nominal (pointing) mission phases of LORIS. Whether or not magnetic 

pointing control is deemed a viable choice, magnetic actuation is an inevitable inclusion to 

the ADCS. Actuators such as reaction wheels typically have desaturation periods where 

magnetic detumbling control is assumed until the actuators are able to resume operation, 

and the detumbling phase of the satellite’s mission necessitates magnetic detumbling 

control. 
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 The objectives of this thesis are, therefore, to: 

1. create a modular and realistic simulation tool for the LORIS CubeSat in which 

different ADCS approaches can be developed, validated, and assessed 

2. explore the feasibility of magnetic detumbling and magnetic pointing control using 

the simulation tool 

3. develop an ADCS solution to meet the LORIS mission requirements 

To achieve these objectives, this thesis is organized as follows: Chapter 2 carries out 

a literature review that forms a basis for the assessment of the feasibility of developing a 

solely magnetic control scheme for the LORIS CubeSat using the proposed onboard suite of 

sensors including a three-axis gyroscope for angular rate measurement, magnetometers for 

measurement of the local magnetic field, and an arrangement of 18 photodiode Sun sensors 

on its outer surfaces. Chapter 3 describes the overall structure of the simulator and the flow 

of data between its elements and develops a model of the space environment that can 

predict the disturbance torques experienced by the satellite in its orbit. Chapter 4 covers 

attitude determination – the implementation of realistic sensor models and the acquisition 

of a satellite attitude estimate from their measurements. The analysis and assessment of 

magnetic attitude control begins in Chapter 5, detailing first the model of the magnetic 

actuators implemented in the simulation followed by the development, validation, and 

results of a magnetic detumbling controller. Chapter 6 follows with design, validation, and 

assessment of a magnetic pointing controller, outlining where it succeeds and where it fails. 

Chapter 7 then proposes an alternate control solution using actuation with reaction wheels, 

detailing the actuator design, modelling, and corresponding results. Chapter 8 outlines the 

proposed control approach that was implemented in the simulation tool for conditionally 

switching between the detumbling and pointing controllers. The final pointing results are 

then presented and compared against relevant mission requirements. Chapter 9 then draws 

conclusions and makes recommendations.  
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Chapter 2: Literature Review 
The number of CubeSats being launched has dramatically increased from three per 

year in 2005 to about 288 per year in 2017] [2]. With about 1150 CubeSats launched to 

date, this chapter focuses on CubeSats described in the literature that exhibit solely 

magnetic active attitude control: actuation where controlling torques are provided solely by 

magnetic actuators (magnetorquer rods and/or coils) [3]. These actuators are desirable on 

the CubeSat scale for their relatively low cost, reliability, simplicity, and their significantly 

lower power requirement than that of a spinning wheel. Fully magnetic attitude control is 

defined as an underactuated system due to its inability to command control over all three 

axes instantaneously [4]. Control torques can only be generated in the plane normal to 

direction of the local magnetic field vector [5], [6]. This constraint necessitates a variation in 

the direction of Earth’s magnetic field vector throughout the orbit to ensure torques can be 

generated along all three axes [7]. Although this constraint redefines the control problem as 

a time-variant periodic system with non-linear characteristics, the periodicity and scale of 

the problem allow for a linear approximation of its dynamics [8]. Problems therein arise 

from the weakness in control torques generated due in part to this directional restriction 

and a resultant slower reorientation than is achievable by other, more complex means [9].  

CubeSat ADCS often contain a set of orthogonal reaction or momentum wheels and 

three orthogonal magnetorquers, the latter used exclusively for detumbling and momentum 

dumping. CubeSats employing reaction or momentum wheels are not considered within the 

scope of this review as the magnetorquers used in these CubeSats are not the primary active 

component of the satellite’s nominal attitude control scheme. Types of fully active 

magnetically-actuated control schemes where the magnetorquers alone control the 

satellite’s attitude include spin-stabilisation and three-axis stabilisation, both of which 

typically require a secondary controller to detumble the satellite after launch.  

All surveyed satellites travel in a circular low-Earth orbit (LEO). Earth’s magnetic 

field becomes weaker at higher altitudes, and thus LEO is optimal for magnetic control 

schemes where attitude depends on the behaviour of local magnetic field vectors 

throughout its mission. Focus is placed on surveying papers about small satellites only, 

ranging from 60 kg class small satellites to CubeSats and picosats. Larger satellites are not 

considered, though it is likely that magnetic control schemes that work on a larger scale 

could be adapted to and miniaturised for smaller satellites.  
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First, a tabulated summary of magnetically actuated CubeSats quantifies those 

named in the surveyed papers that have been successfully launched. Satellites and paper 

analyses for satellites that orbit in the same ISS orbit proposed for LORIS are then briefly 

explored, with an assessment of the common uses and constraints on magnetometers, Sun 

sensors, and gyroscopes following. Common attitude determination algorithms making use 

of measurements from these sensors are then analysed for theoretical and launched satellite 

cases, including an analysis of Kalman filtering techniques in the control context. The 

controller design section follows, focusing on proportional-derivative (PD) and B-dot 

control in line with the controller selections for LORIS. Lastly, conclusions about the most 

applicable ADCS components to the Dalhousie University CubeSat are then drawn. 

2.1 Launched CubeSats 
Table 1 (and its continuation in Table 2) on the following pages compile information 

found in the literature about launched CubeSat missions with fully active magnetic attitude 

control schemes onboard. These satellites are either spin-stabilised or three-axis stabilised 

– the former referring to establishing constant satellite rotation about a single fixed axis, the 

latter referring to pointing the satellite at a target according to mission payload objectives – 

and most utilise similar sensor information in their determination and control algorithms. 

Satellites that have not been launched, were cancelled, or that exist in theoretical name, such 

as the UYS-1 and AraMis-C1 CubeSats [4] [10] are not included in the table. Launch dates 

and some supplementary information in the table were taken from [3]. 
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Table 1: Launched CubeSat Missions with Active Magnetic Actuation – Part 1 
Satellite Launch Class Sun Sensor Gyroscope Magnetometer Magnetorquers Ref. 

AAU CubeSat 2003 1U 6 / 1 (3-axis) 3 coils [11] 

AAUSAT3 2013 1U 6 
1 (2-axis) 

1 (3-axis) 3 coils 
[12] 

1 (1-axis) [13] 

AeroCube 6A/6B 2014 0.5U 3 1 MEMS 2 3 rods 
[14] 

[15] 

AntelSat 2014 2U 6 3 (1-axis) 1 (3-axis) 3 coils 
[16] 

[17] 

Chasqui I 2014 1U Yes Yes 1 (3-axis) 3 
[18] 

[19] 

CINEMA 1 2012 3U 2 / 1 (3-axis) 2 coils [20] 

COMPASS-1 2008 1U 5 / 1 (3-axis) 3 coils [21] 

CSTB-1 2007 1U 16 / 5 (2-axis) 3 coils [22] 

CXBN 2012 2U 1 2 (3-axis) 2 (3-axis) 3 coils 
[23] 

[24] 

DICE 2011 1.5U 1 / 1 (3-axis) 3 coils [25] 

Dove-2 2013 3U Yes Yes Yes Yes [26] 

ESTCube-1 2013 1U 6 4 (3-axis) 2 (3-axis) 3 coils 
[27] 

[28] 

GomX-1 2013 2U Yes Yes Yes 3 coils [29] 

HIT-Sat 2006 1U 1 1 (1-axis) 1 (3-axis) 3 rods [30] 

MaSat-1 2012 1U Infrared (3-axis) (3-axis) 
2 

electromagnets 
[31] 

MOVE-II 2018 1U 5 5 (3-axis) 5 (3-axis) 5 coils [32] 

OPUSAT 2014 1U 4 3 1 (3-axis) 2 coils [33] 

ParkinsonSat 2015 1.5U Yes / Yes 3 coils [34] 

SamSat-QB50 2017 2U Yes 1 (3-axis) 1 (3-axis) 3 coils [35] 

QBUS 1,2,4 2017 2U Unknown Unknown Unknown 3 rods [36] 

UNSW-EC0 2017 2U 1 1 (3-axis) 1 (3-axis) 2 rods, 1 coil [37] 

VZLUSAT-1 2017 2U / / 1 (3-axis) 4 coils [38] 

RAIKO 2012 2U 6 / 1 (3-axis) 3 coils [39] 

SOMP 2013 1U 12 / 3 (1-axis) 3 coils [40] 

STUDSAT-1 2010 1U / 3 (1-axis) 1 (3-axis) 3 coils [41] 

SwissCube 2009 1U 6 3 (1-axis) 1 (3-axis) 3 coils [42] 

TigriSat 2014 3U Yes 1 (3-axis) 1 (3-axis) 3 coils [43] 

UKube-1 2014 3U 8 Yes Yes 6 coils 
[44] 

[45] 

VELOX-PII 2013 1U 6 2 (3-axis) 2 (3-axis) 3 coils 
[46] 

[47] 
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Table 2: Launched CubeSat Missions with Active Magnetic Actuation – Part 2 
Satellite Other ADCS Controller (Active) Pointing Error Ref 

AAU CubeSat / 
B-dot/Periodic constant gain 

LQR 
8° [11] 

AAUSAT3 Permanent magnet 
B-dot/Linearised state-space 

MPC 
5° [12] [13] 

AeroCube 

6A/6B 
Earth sensor Spin-stabilised 30° [14] [15] 

AntelSat / B-dot/LQR 10° [16] [17] 

Chasqui I 
2 permanent magnets, 

2 hysteresis foils 

B-dot/continuous sliding 

mode 
3°/20° [18] [19] 

CINEMA 1 / B-dot/Spin stabilisation 10° [20] 

COMPASS-1 / B-dot/Constant gain LQR 12° [21] 

CSTB-1 Unknown Unknown Unknown [22] 

CXBN Pipper (star sensor) B-dot/Spin-stabilised/PD 2° [23] [24] 

DICE / Spin-stabilised 5° [25] 

Dove-2 Hysteresis rods B-dot Unknown [26] 

ESTCube-1 / Spin-stabilised 3° [27] [28] 

GomX-1 / Unknown 10° [29] 

HIT-Sat / Spin-stabilised 10° [30] 

MaSat-1 
Permanent 

magnets/hysteresis 
Passive/Unknown Unknown [31] 

MOVE-II / B-dot/LQR/Spin-stabilised 10° [32] 

OPUSAT / Spin-stabilised 10° [33] 

ParkinsonSat / Spin-stabilised 23° [34] 

SamSat-QB50 Hysteresis rods Passive 20° [35] 

QBUS 1,2,4 Air drag panels MPC LQR 20° [36] 

UNSW-EC0 Earth horizon CMOS B-dot/LQR 20° [37] 

VZLUSAT-1 / 
Custom, B-vector rotation-

based 
20° [38] 

RAIKO / Detumbling N/A [39] 

SOMP Permanent magnet Detumbling 5° [40] 

STUDSAT-1 / B-dot/Constant gain LQR 8° [41] 

SwissCube / B-dot 7.5° [42] 

TigriSat / Modified B-dot/proportional Unknown [43] 

UKube-1 Permanent magnet B-dot/ Sun tracking 5° [44] [45] 

VELOX-PII / Unknown (3-axis stabilised) Unknown [46] [47] 
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2.2 ISS Orbit 
The LORIS CubeSat's orbit is to be identical to that of the International Space Station 

(ISS). The ISS orbit is near circular with an eccentricity on the order of 10−4 and an 

inclination of 51.6° relative to the equator [36]. Launched magnetically-actuated CubeSats 

from Table 1 and 2 that utilise this orbit include AAUSAT3 [13], Chasqui 1 [18], RAIKO [39], 

the three QBUS QB50 CubeSats [36] and UNSW-EC0 [37] – all of which employ linear 

detumbling and pointing control in an attempt to satisfy coarse pointing accuracy 

requirements of 10°-20°. Theoretical analyses and simulation cases wherein the ISS orbit is 

assumed include Sugimura et al. in [48], Santiago et al. in [49], Vedant and Ghosh in [50], 

Ivanov, et al. in [51], and Walker et al. in [52]. It is found that the ISS orbit provides less 

pointing accuracy and slower attitude convergence than a Sun-synchronous orbit, likely due 

to the extent of variability in local magnetic field direction between the two [48]. A Sun-

synchronous orbit is a near-polar circular retrograde orbit with an inclination around 100. 

The orbiting satellite experiences consistent illumination by Sun throughout its mission life 

and sees the same areas of Earth at the same time every day. Its high inclination subjects the 

satellite to significant directional variation in the local magnetic field vector which is a 

desirable feature for magnetic control. 

Many papers – such as [6] – suggest the magnetic field is periodic with period 2𝜋/𝑛, 

where n is the orbital rate. A higher orbit inclination implies a higher periodicity of the local 

magnetic field vector, and thus a higher degree of controllability [53]. An inclined orbit is 

necessary to avoid a constant-direction magnetic field vector (as experienced in equatorial 

and polar orbits). Inclination ensures the possibility of three-axis attitude control given the 

magnetorquers’ inability to produce torques outside of the plane perpendicular to Earth’s 

magnetic field vector. 

Though Sun-synchronous and near-polar orbits are the more popular choice, ISS 

orbits are generally preferred for university-level satellite projects like Dalhousie 

University’s LORIS CubeSat, likely given the simplicity of maintaining the launch orbit from 

the ISS without need for major correction and alteration. Changing a satellite’s orbit require 

propellant and thrusters which are an additional expense that occupies significant space on 

the small satellite body.  
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2.3 Attitude Determination 
This section briefly covers typical sensors and their applications onboard the 

satellites described in the surveyed papers, be it in simulation or in hardware development 

and flight. The sensors covered are magnetometers, Sun sensors, and gyroscopes. Having 

more than one sensor type is preferable to decrease attitude determination errors and to 

enable use of higher-fidelity attitude determination algorithms. Any attitude errors will 

propagate into control algorithms and degrade the pointing accuracy of the satellite.  

Magnetometers measure the strength of the local magnetic field and provide an 

actual three-dimensional vector to compare against the expected or desired vector. An 

accurate onboard model of Earth’s magnetic field is necessary for use as a reference in the 

most common attitude determination algorithms. The possibility of interference between 

the magnetometers and magnetorquers is high, and thus determination and control must be 

cycled. For example, the magnetometer onboard the launched AntelSat operates on a cycle 

in tandem with the magnetorquers; of the 500 ms controller cycle, the magnetometers run 

for 50 ms [16]. An 88% duty cycle was proposed for use onboard the AAUSAT3 [12]. In 

Ivanov et al.’s [54] simulation case, one second of the five second control phase is allotted to 

attitude determination, with magnetometers sampled at a rate of 1 Hz. The picosatellite 

simulated in [55] cycles the magnetometer operation at a 90% duty cycle, 1 second 

measuring for every 9 seconds of torqueing. With an ADCS cycle frequency of 3 Hz, the 

determination portion in Slavinskis et al.’s simulation takes only 0.013 seconds [27]. The 

LORIS CubeSat plans to use a sample rate of 1 Hz with a 90% duty cycle such that the 

magnetometers operate for 0.1s and the magnetorquers operate for 0.9s.  

Sun sensors measure light intensity and are used to determine the position of Sun 

relative to the satellite body – ideal for use onboard CubeSats as a low-cost and well-

documented choice for reliable attitude determination. At least three sensors must be 

illuminated for the satellite-to-Sun vector to be determined [16]. The Sun vectors measured 

are compared to theoretically-calculated reference Sun vectors (Earth to Sun in J2000), 

attainable within 0.01° accuracy [56]. The histogram in Figure 2 quantifies the number of 

Sun sensors onboard the satellites in the surveyed literature, with six sensors (one per each 

face) being the most common configuration. The legend of this and subsequent histograms 

distinguishes between “Launched” and “Simulated” CubeSats. “Launched” refers to those 

catalogued in Tables 1 and 2, while “Simulated” refers to theoretical simulations presented 
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in the papers included in the scope of this chapter. Papers pertaining to satellites yet to be 

launched are categorised as “Simulated.” 

  
Figure 2: Histogram of Number of Sun Sensors Used in Surveyed Papers 

Photodiodes arranged over all faces (occasionally excluding the Earth pointing face) 

of the launched satellites catalogued in Table 1 are present for the AAU CubeSat [11], 

AAUSAT3 [12], AntelSat [16], CSTB-1 [22], MOVE-II [32], OPUSAT [33], RAIKO [39], SOMP 

[40], UKube-1 [45], and VELOX-PII [46] missions. Sun sensors are assumed to be 

photodiodes unless otherwise stated, while “dual” or “two-axis” Sun sensors comprise two 

photodiodes arranged with a known angle between them or a fixed “mask” acting as an 

intensity threshold placed above them. Two photodiodes comprise the functional portion of 

the “dual Sun sensor” used onboard the launched CINEMA 1 [20], CXBN [24] and VELOX-PII 

[46] missions. In the literature, nonspecific Sun sensors are noted onboard the simulation 

cases presented in the work of Colagrossi et al. [57], Kinger et al. [58], Ovchinnikov et al. 

[59], Lovera and Silani [60], and for AraMiS-C1 in [10]. The simulated UYS-1 nanosatellite 

low-cost ADCS contains four “light transducers” affixed to its four body-length solar panels, 

creating a “line-of-sight” Sun sensor [4]. The launched ESTCube-1 contains six two-axis Sun 

sensors placed on each side of the satellite [27], while the UNSW-EC0 features a CMOS Sun 

sensor with a 150° field of view on one face of the satellite [61]. Microelectromechanical/ 

micro-optoelectromechanical systems (MEMS/MOEMS) Sun sensors are used onboard the 

launched AeroCube-6 [15], COMPASS-1 [21], DTUSat [62] and SwissCube [42] missions – a 

technology well-suited to the scale of a CubeSat. Photodiodes are sensitive to reflected light, 

termed “albedo”, from other celestial bodies and the satellite itself. AAUSAT3 considers the 

effects of Earth’s albedo as a reflected solar radiation disturbance and only considers the 
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three faces of the satellite that see the highest current to determine the Sun vector [12]. In 

the ADCS for the launched AntelSat albedo is ignored as “direct solar illumination is 

dominant” [17]. The same is true for launched COMPASS-1 as per its associated thesis [21]. 

Given the potential for Sun sensors to be in the shade from its deployed solar arrays, the 

LORIS CubeSat plans to use 18 photodiodes – three per side facing different directions – 

along with a “mask” for each sensor to apply a lower bound on the measured intensity by 

limiting its field of view. 

Gyroscopes (often contained within an inertial measurement unit (IMU) alongside a 

magnetometer and accelerometer) measure the angular rates of the satellite. For three-axis 

stabilised systems, the gyroscope may saturate post-launch and become unusable [63], or 

may be difficult to obtain data from in a sufficient resolution to satisfy mission pointing 

requirements [64]. As such, onboard models of the satellite’s attitude dynamics are often 

necessary. Gyroscopes appear less frequently than magnetometers and Sun sensors 

amongst the satellites in Table 1 but do appear onboard both three-axis stabilised and spin-

stabilised satellites. The LORIS CubeSat plans to use a three-axis gyroscope to measure the 

satellite’s angular rates. 

2.4 Attitude Determination Algorithms 
Sensors that detect the attitude of the satellite in a useful form – quaternions or 

Euler angles – do not exist, thus satellite attitude must be calculated based on values read 

from the various sensors onboard. The use of three common and oft-utilised determination 

algorithms amongst the papers in the scope of this review are catalogued in this section. 

These algorithms include TRIAD, quaternion estimation (QUEST) and Kalman filtering 

including both Extended Kalman Filters (EKF) and Unscented Kalman Filters (UKF). As 

shown in Figure 3, the extended Kalman filter is the favoured method of attitude 

determination amongst the surveyed papers. 

 
Figure 3: Histogram of Determination Algorithms Used in Surveyed Papers 
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2.4.1 TRIAD and q-Method/QUEST 
The TRIAD algorithm for attitude determination estimates an attitude matrix 

between two frames of reference – one inertial and one fixed to the rotating satellite’s 

principal inertial axes – from two different reference vectors in the former and their 

corresponding sensor measurements in the latter. Most commonly, a calculable standard 

Sun vector from Earth to Sun is used alongside the Sun vector from satellite to Sun obtained 

from Sun sensor measurements as the first vector pair. The second pair typically comprises 

a local magnetic field vector calculated according to the International Geomagnetic 

Reference Field (IGRF) or World Magnetic Model (WMM) geomagnetic field models 

alongside the body magnetic field vector measured by onboard magnetometers. The TRIAD 

algorithm is used with Sun sensor and magnetometer readings onboard the launched DICE 

spacecraft [25], Boeing’s CSTB-1 [22], VELOX-PII [47], and exists as one of the options for 

the H-I-L simulation of the generic IlliniSat-2 bus [65]. The launched UNSW-EC0 CubeSat 

uses data from its Sun sensors, Earth sensor, and/or magnetometers in its algorithm [61].  

The q-Method and quaternion estimator (QUEST) algorithms produce least-squares 

estimates of satellite attitude using the same vector concept as in the TRIAD algorithm with 

improved accuracy [66]. Typically, as with the TRIAD algorithm, QUEST estimates the 

attitude quaternion based on measured magnetic field and Sun vectors from magnetometers 

and Sun sensors in the satellite’s body frame and modelled reference field and Sun position 

vectors in an inertial or orbital reference frame. In the literature, “q-Method” and “QUEST” 

are, on occasion, used interchangeably to refer to the method of quaternion attitude 

determination via eigen decomposition, though the papers included in this section all refer 

explicitly to their respective determination algorithms as “QUEST”. QUEST is demonstrated 

in simulation by Kamal et al. in [67] and Kinger et al. in [58]. The launched COMPASS-1 [21] 

uses the QUEST algorithm with magnetometer and Sun sensor readings, and the same is 

developed (but not implemented) as a mechanism of attitude determination for the 

launched AntelSat and AAU CubeSat [17] [66]. 

2.4.2 Extended and Unscented Kalman Filter 
Kalman filtering is a common means by which attitude and angular rate are 

estimated onboard satellites, utilising discrete measurements of sensor data, models of their 

expected values, and models of expected bias and noise for each. Its predictive functionality 

allows attitude to be predicted in the event of the loss of a sensor and can compensate for 

the worsening of onboard sensor noise and bias with time [67]. Lovera and Silani [60] note 

the necessity of a Kalman filter to attain unbiased state vector estimation when direct 
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measurement is otherwise unavailable, as it is in the case of satellite attitude. Its most used 

forms are the nonlinear Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). 

The EKF linearises a nonlinear system model with respect to current estimates of the 

system states [68]. The UKF is deterministic and models the system states as a probability 

distribution [69]. 

Searcy and Pernicka [64] develop an algorithm in simulation with two EKFs using 

only magnetometer measurements for spinning satellites capable of determining attitude 

within 1 of accuracy. Si Mohammed et al. discuss the design of an EKF combining 

magnetometer and Sun sensor readings with modelled values in [70] and compare the 

results with those of a UKF in [71], the former preferable for its computational simplicity. 

Ivanov et al. develop an EKF using a linearized angular rate dynamics model, quaternion 

attitude, and measurements of induced EMF in the magnetorquers [51]. These authors use 

the same Kalman filter for the small satellite simulation study in [54] and [72]. A similar EKF 

using only magnetometer data was implemented for the generic IllinSat-2 bus H-I-L 

simulation described in [65]. Tortora et al. [73] developed an EKF applicable to tumbling 

spacecraft, while Sugimura et al. [48] developed a determination algorithm using two EKFs. 

Pointing the launched UNSW-EC0 CubeSat involves an EKF with readings from all onboard 

attitude sensors listed in Table 1 [61], as does the launched StudSat-1 [41]. Habib presents a 

simulation case in [74] for the small EGYPTSAT-2 satellite wherein an EKF is developed 

based on magnetometer, GPS, and gyro measurements. A “standard” Kalman filter is used 

onboard the UKube-1 for gyroscope bias correction using readings from the satellite’s Earth 

horizon sensor and magnetometers [45]. The launched AAU CubeSat uses an EKF with Sun 

sensor and magnetometer data as one of two determination methods onboard [66]. Lastly, 

Li et al. [63] present a “gyro-less” rate filtering algorithm with an EKF.  

Launched AAUSAT3 implements a UKF with measured Sun vector, magnetic field 

vector, and angular rates in the body frame, and predicted eclipse status, control torque, Sun 

and magnetic field vectors in the standard Earth-centred-inertial reference frame [12]. A 

simulation case for the ESTCube-1 mission is studied in [27] wherein a UKF is used for both 

attitude and bias estimation. The UKF developed for the AntelSat uses Sun, magnetic field, 

and rate sensor readings and includes quaternion axial error among its state variables [17]. 

The launched GOMX-1 mission contains a similar UKF that uses Sun, magnetic field, and 

angular rate as inputs [75]. de Oliveira et al. [4] design an “unscented quaternion estimator” 

for the attitude determination component of the UYS-1 nanosatellite ADCS. 
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The LORIS CubeSat plans to use the q-Method algorithm analogous to the QUEST 

algorithm first proposed by Shuster in 1981 [76] in combination with a dynamic model 

integrated into an EKF based on Yang [77] to estimate the attitude and angular rates of the 

satellite. 

2.5 Attitude Controllers 
This review focuses on the use of B-dot detumbling control and proportional-

derivative pointing control; however, other commonly used magnetically actuated 

controllers include the linear quadratic regulator (LQR) – another type of state feedback 

control – and model predictive control (MPC), which, as the name suggests, predicts “future” 

values from discrete measurements over a finite horizon [12]. 

2.5.1 B-dot Control 
The B-dot algorithm is a proportional controller typically used during a satellite’s 

post-launch detumbling phase and can be modified to act as a coarse nominal attitude 

controller. Its simplicity can cause instability and poor controllability in the presence of 

external disturbances, and it tends to best suit inclined orbits with significant variation in 

their magnetic field direction [78]. Typical B-dot controllers are used for coarse attitude and 

detumbling control onboard the launched AAU CubeSat [11], AAUSAT3 [12], AntelSat [16], 

ARC-1 [79], Chasqui 1 [19], CINEMA 1 [20], COMPASS-1 [21], CXBN [24], Dove-2 [26], 

DTUSat [62], MOVE-II [80], UNSW-EC0 [37], STUDSAT-1 [41], SwissCube [42], and UKube-1 

[45] missions. The generic IlliniSat02 bus H-I-L simulation implements the typical algorithm 

as a control option [65]. 

The B-dot algorithm is often modified to better suit specific mission requirements. 

Ovchinnikov et al. [59] propose a B-dot control algorithm for a simulated axisymmetric 

satellite to reorient its axis of symmetry/spin axis and damp satellite nutation using only the 

magnetorquer along its spin axis. Roldugin and Testani [81] simulate the B-dot algorithm to 

detumble the satellite using the same nutation-damping modification (and reorientation 

controllers). The module for active debris removal proposed and simulated in [78] attaches 

itself via tether to an “uncooperative” target to detumble it via a modified B-dot control 

scheme eliminating the “speed term” in the magnetic field time derivative, stabilising faster 

than the unmodified law while consuming less power. The B-dot control scheme designed 

for the proposed nanosatellite IITMSAT by Kumar et al. [82] adds a magnetic moment offset 

component. The offset aligns the satellite with the local magnetic field along a chosen 

satellite axis as opposed to an arbitrary axis as in the unmodified algorithm [82]. In the low-
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cost attitude simulator proposed by Santiago and Velasco [49], the time derivative of the 

magnetic field is estimated from subsequent samples and their sampling interval, and the 

current required to power the magnetorquer is solved from the calculated magnetic dipole 

moment vector. Li et al. [63] propose an improved B-dot method unaffected by 

magnetometer measurement noise to work in tandem with an extended Kalman filter 

angular rate estimation scheme. Lastly, the launched TigriSat uses a modified B-dot 

controller that adds a proportional term to the dipole moment acting on the pointing error 

[43].  

2.5.2 Proportional-Derivative Control 
Proportional-derivative (PD) controllers are a common choice for attitude control 

wherein the control torque is calculated relative to attitude quaternion error and satellite 

angular rate error [48]. These errors are defined as the difference between the orbital 

reference frame (oriented in the satellite’s desired pointing orientation) and the body 

reference frame fixed to the satellite. Controller gains can be designed in any number of 

ways, including pole-placement techniques or through trial and error. The same restrictions 

on torque apply as in the B-dot case: the achievable magnetic moment is determined from 

the pseudoinverse of the local magnetic field vector (or some variation thereof [48]) to 

constrain the torque normal to its direction. The references for the controller are a rate 

error of zero and a quaternion error of 𝑞 = [1 0 0 0]𝑇  (unity scalar part) as 

demonstrated, for example, in the simulated design by Lovera and Astolfi [83]. Theoretical 

PD controllers operating under these conditions are proposed by Celani [84] who simplifies 

Lovera and Astolfi’s design to comprise solely the attitude quaternion component, by 

Sugimura et al. [48] with a singularity robust (SR) inverse matrix for a nadir-pointing 

microsatellite, by Ivanov et al. [54] based on the authors’ previous work in [72], by Si 

Mohammed et al. [71] with gains designed by selecting a desirable damping ratio and 

undamped natural frequency, and by Torcyznski et al. in [85]. Torcyznski et al. [85] report 

that the PD controller performs better in simulation than an LQR under the same conditions, 

settling 700 seconds faster within an equal degree of accuracy. In [6], Celani designs a PD 

control law based on his previous work in [84], where exponential stability of the control 

law is proven at length [6]. The case study for a near-polar circular orbit converges within 

five orbits – a common result with papers [84] [86], and [6]. Giri et al. [86] note in the design 

of their PD controller that issues may arise under high initial angular rate conditions with 

generating sufficient magnetic moments, though the periodicity of the magnetic field 

renders the system “controllable on average” [86]. The simulated magnetically-actuated 
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tethered nanosatellite in descent studied by Kamal et al. in [67] is controlled by a simple PD 

controller with Euler angle and angular rate feedback [67]. Della Rossa, Lovera, and Dercole 

[87] propose an adaptive PD-like control law for an Earth pointing satellite. Lovera and 

Astolfi’s previous work in [88] and [83] form the control law’s basis and echo its design 

utilising averaging theory [87]. The launched CXBN CubeSat utilises a “simple” PD controller 

onboard for pointing [24]. Lastly, Inamori et al. [89] propose a PD controller to perform a 

series of sequential rotations to attain simulated three-axis control. 

2.6 Pointing Accuracy 
In this section, magnetic attitude control pointing accuracies are considered to hold 

only for simulation cases, as on-orbit accuracies could not be numerically verified for the 

majority of satellites successfully launched.  

Among the spin-stabilised solely-magnetically-actuated CubeSats listed in Table 1, 

the ParkinsonSat mission requires an on-orbit accuracy of ±23 in pointing its side panels 

towards Sun for a slow spin about its Z-axis [34]. Similarly, the Z-axis spin-stabilised 

AeroCube 6A/6B mission requires a pointing accuracy in the vicinity of 30 [14], having 

achieved an average steady-state error of 20 during its differential drag profile phase and 

6 during its spin control phase in simulation [15]. A 20° pointing accuracy was specified as 

a mission requirement for the Chasqui 1 mission to maintain ground communication, 

though its failure to communicate post-launch means its success cannot be assessed [18]. 

The proposed SamSat-QB50 [35] and other launched QB50 CubeSats VZLUSat-1 [38], X-

CubeSat [90], and QBUS satellites [36] are designed to meet a 20 pointing accuracy 

requirement for the QB50 mission, and mission requirement for the pointing accuracy of the 

QB50 UNSW QB50 EC0 CubeSat was set at 10°, with a determination accuracy of 2° [37]. 

Specific pointing accuracies achieved for the QB50 satellites post-launch are not noted. The 

best QB50 accuracy in simulation was obtained for the Aalto-2 at 15 [91].  

Ivanov et al. [51] obtain a pointing accuracy of 13° for their simulated ADCS that 

uses electromotive force measurements, an EKF, and a PD control law. A mean pointing 

error of 12 was achieved in simulation in the design of the ADCS for the COMPASS-1 

CubeSat, though its on-orbit success cannot be assessed due to bugs in its software resulting 

in an inability to estimate its attitude in orbit [21]. AntelSat obtains a pointing accuracy of 

under 10° with its B-dot control law and nominal linear PD-like control law in simulation 

only [16]. The simulation case studied by Ovchinnikov et al. [54] achieves a worst-case 

pointing accuracy of 10° with its PD controller and EKF, worsening in the presence of 
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external disturbances [54]. Ovchinnikov et al. [72] also achieve a simulated pointing 

accuracy of 10° in the presence of modelled disturbances and measurement noise and a 

simulated pointing accuracy of 20° at low orbit inclinations for a PD controller. In line with 

typical picosat pointing requirements, Colagrossi and Lavagna [57] achieve a pointing 

accuracy of 10° to 15° for their simulation test-case 3U CubeSat. The genetically tuned LQR 

controller designed in [92] obtained a pointing accuracy in simulation within the 10° range, 

at the cost of a complex and time-consuming controller tuning process. Wiśniewski obtains 

a pointing accuracy in line with the required 10° in pitch and roll and 20° in yaw for the 

small Ørsted satellite infinite horizon LQR simulation case studied in [93]. In [94], Ørsted 

requirements are altered to be 10° about each axis, obtained via the PD control law and 

stability assessment simulations within. For the CubeSat simulation case in [52], a 10° 

pointing accuracy is achieved via the genetic control algorithm with fuzzy logic. GomX-1 

[29], HIT-Sat [30], OPUSAT [33], and CINEMA 1 [20] CubeSats have pointing accuracy 

mission requirements of 10 specified, though their respective on-orbit results cannot be 

verified. For the MOVE-II in [80], it is noted that increasing the spin rate of the satellite can 

increase its pointing accuracy beyond the 10° obtained in simulation. 

Accuracies obtained in the range of 2° – 8° were common amongst the surveyed 

papers in simulation only. The AAU CubeSat [11], STUDSAT-1 [41], and SwissCube [42] had 

pointing accuracy mission requirements of 8, though it is not apparent if this requirement 

was satisfied for the missions. IITMSAT [80] is designed to meet a pointing requirement of 

5° maintained for the majority of the orbit but drops to around 20° at the poles for the 

proposed control algorithm. The LQR and PD controllers simulated in Torczynski et al.’s 

analysis in [85] obtain maximum steady-state errors of 5.5° and 2° respectively, both in the 

range of the required 5° about each axis. The LQR controller designed and simulated in [95] 

meets its pointing requirement accuracy of 5° within 5 orbits. Accuracies of 5° were 

required of the SOMP [40], UKube-1 [44], DICE [25], and AAUSAT3 [12] missions, though 

results were not numerically reported. The simulation of UniSat-5 [81] (excluding the 

reaction wheels later added to the mission) obtains a pointing accuracy of 4° for its spin-

stabilised magnetic attitude control system. Pointing accuracies of 3° in each axis were 

obtained in simulation for the low-cost ADCS system on the proposed UYS-1 nanosatellite 

[4]. The proposed alternate high-precision ADCS for the UYS-1 nanosatellite with a suite of 

reaction wheels and a star tracker could obtain accuracies better than 0.5° in simulation [4].  
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The most accurate of the relevant simulated cases include the simulation case 

considered by Sugimura et al. [48] where an orbit average pointing accuracy of 1.56° was 

obtained for the Sun-pointing orbit and of 2.64° for the ISS orbit. The finest accuracies 

catalogued in Table 2 were for the CXBN and ESTCube-1 missions. The pointing accuracy for 

the slowly spinning CXBN mission [24] was proposed to be around 2°, though numerical on-

orbit results were not reported. Some difficulty was experienced in initially obtaining the 

desired photographs from the ESTCube-1 [28] (with an estimated pointing accuracy of 3°) 

due in part to the necessity of recalibrating the ADCS after launch, though eventually it 

achieved its mission objective. These papers suggest that accuracies better than 5° are 

theoretically achievable, more so for magnetic spin stabilisation, but sources of noise and 

robustness in the presence of high initial spin rates should be carefully considered in the 

ADCS design. Obtainable pointing accuracies for magnetic control vary greatly in simulation 

depending primarily on the magnitude of disturbances assumed to be acting upon the 

satellite.  

2.7 Literature Review - Summary 
This survey offers an in-depth look at the field of solely-magnetic attitude control for 

CubeSats, focusing on those with particular relevance to the proposed LORIS satellite ADCS 

design. Solely-magnetic three-axis stabilisation is yet to obtain high degrees of pointing 

accuracy validated in orbit. As shown in the simulated results of many of the papers, 

satellite pointing in its steady state adopts a slowly exponentially decreasing sinusoidal 

profile, indicating constant side-to-side motion of the satellite about all three axes. Some 

examples of this sinusoidal motion are in Sugimura et al. [48] with an approximate period of 

1.5 oscillations/hour and one oscillation per orbit for both the PD control law and LQR 

control law in Torczynski et al.’s simulations [85].  

Based on this review, magnetometers, gyroscopes, and Sun sensors, all of which are 

planned for use onboard LORIS, are the most commonly documented and utilised attitude 

determination sensors for CubeSats – preferable for their low cost and relative ease of 

implementation. Focus will be placed in this thesis on developing models for these sensors 

and incorporating them into a LORIS CubeSat simulation tool. An attitude determination 

system capable of estimating the LORIS CubeSat’s orientation and angular rates using q-

Method (analogous to the QUEST algorithm first proposed by Shuster in 1981 [76]) and 

extended Kalman filtering will then be incorporated into the simulator. The performance of 
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B-dot and magnetically-actuated PD control will initially be investigated using the simulator, 

after which the performance of reaction wheels will be investigated. 

Therein lies the primary goal for the simulation tool designed in this thesis: the 

creation of a modular and realistic environment in which different attitude controllers and 

determination algorithms can be developed, validated, and assessed in regards to the LORIS 

mission requirements.   
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Chapter 3: Simulator Development 
Appendices A and B contain the coordinate frame definitions and transformations 

between them upon which all subsequent simulator development and validation are based. 

The LORIS simulation environment was built in MATLAB/Simulink, with satellite 

dynamics modelled using Simulink’s Simscape multibody toolbox. As shown in Figure 4, the 

simulator is organised into “blocks” functionally equivalent to Simulink subsystems, sorted 

into five overarching categories: orbit, environment, determination, control, and satellite. 

Orbit blocks contain the algorithms that define the orbit geometrically and propagate the 

satellite’s orbital motion in time. Environment blocks model the space environment and 

external disturbances experienced by the satellite throughout its mission. Determination 

and control blocks model the hardware and software components of the ADCS, producing 

control torques which are then carried to the satellite blocks containing the Simscape model 

of the satellite.  

In reference to Figure 4, the “Orbit Propagator” block propagates the satellite’s orbit 

from which the “Orbital Elements” that geometrically define the orbit and the satellite’s 

position therein and the corresponding “Coordinate Transformations” from Appendix B are 

calculated. The location of the CubeSat within its orbit alongside readings from Earth’s 

“Local Magnetic Field” model for a given “Time and Date” are used to determine the “LEO 

Disturbance Torques” the CubeSat experiences from the environment. The CubeSat’s 

location and given “Time and Date” is also used to locate Sun via a “Sun Reference” vector 

and to determine if the CubeSat is transiting through “Eclipse”. The “q-Method Attitude” 

block calculates the quaternion describing the orientation of the CubeSat based on noisy 

measurements from both the “Sun Sensor Subsystem” and “Magnetometer Models” in 

combination with the calculated “Sun Reference” and “Local Magnetic field” reference 

vectors. The resulting attitude quaternion from “q-Method Attitude” and noisy angular rate 

measurements from the “Gyroscope Model” are combined with an internal attitude 

dynamics model in an “Extended Kalman Filter” to provide the best estimate of the 

CubeSat’s orientation and angular rates. A “Control Switch and Duty Cycle” block controls 

which controller is being used to control the CubeSat’s attitude: “Magnetic B-dot Control”, 

“Magnetic PD Control”, or the “Reaction Wheel Subsystem”. The block labelled “Simscape” 

simulates the attitude dynamics of the CubeSat, and encompasses the “Satellite Model”, “Sun 

Sensor Subsystem”, and the “Reaction Wheel Subsystem”. Table 3 provides a detailed 

description of each of the blocks in Figure 4 and includes the inputs and outputs to each 
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block. In the table, inputs from the MATLAB workspace are indicated with an asterisk. 

Workspace variables are compiled into two bus structures. The first, “Satellite”, contains the 

mass, inertia matrix, and other relevant geometric properties of the Simscape satellite 

model for use outside of Simscape in the simulator. The second, “Earth”, contains the 

planetary constant parameters for Earth, defining its shape and gravitation. The set of initial 

conditions (IC) are grouped together as input “IC” and are described subsequently in Section 

3.1.1. 
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Figure 4: Simulator High-Level Subsystem Block Diagram 
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Table 3: Simulator Guide 

O
rb

it
 

Block Inputs Outputs Description 

Orbit 
Propagator 

Earth* 
IC* 

Orbital radius 
Orbital velocity 

This block contains a simple 
acceleration-based feedback 
loop that propagates the 
orbit based on the initial 
conditions described in 
Section 3.1.1 

Orbital 
Elements 

Earth* 
Orbital radius 
Orbital velocity 

Orbital elements 
True anomaly 
(∞) 

This block calculates the 
classical orbital elements at 
each timestep, and contains 
a function allowing true 
anomaly to increase 
infinitely 

Coordinate 
Transformations 

Earth* 
Orbital radius 
GMT 

Altitude 
Latitude  
Longitude 

This block contains 
MATLAB function blocks for 
each of the coordinate 
transformations described 
in Appendix B. 

E
n

v
ir

o
n

m
en

t 

Time and Date 
IC 
Simulation time 
Vector date* 

GMT 
Vector date 
Decimal date 
Julian date 

This block uses simulation 
time to increase the time 
and date based on the epoch 
value assigned in the driving 
routine. Its outputs include 
the current date in three 
formats and the local 
sidereal time 

Sun Reference 
and Eclipse 

Earth* 
Orbital radius 
Julian date 
Sun vector estimate 

Sun reference 
Eclipse 

This block calculates the 
relative position between 
Earth and Sun, and uses this 
value to determine when 
the satellite is in eclipse 

Local Magnetic 
Field 

Altitude 
Latitude 
Longitude 
Decimal date 
GMT 
Orbital elements 

Magnetic field 

This block contains the local 
magnetic field model and 
coordinate transformations 
thereof 

LEO Disturbance 
Torques 

Earth* 
Satellite* 
Orbital radius 
Orbital velocity 
Magnetic field 

Disturbance 
torques 

This block outputs the 
summation of the four 
modelled external 
disturbance torques 

D
et

er
m

in
at

io
n

 Magnetometer 
Models 

Magnetic field 
Noise parameters* 

Magnetic field 
(noisy) 

This block models sensor 
noise for two 
magnetometers, and 
outputs BF magnetic field 
vectors that emulate noisy 
sensor readings from each 

Gyroscope 
Model 

Actual angular rate 
Noise parameters* 

Angular rate 
(noisy) 

This block models sensor 
noise and drift for the 
gyroscope and outputs a BF 
rate vector that emulates its 
noisy sensor readings 
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Block Inputs Outputs Description 

q-Method 
Attitude 

Sun reference 
Sun vector 
Magnetic field 
Magnetic field (noisy) 

Attitude estimate 

This block estimates the 
satellite’s attitude 
quaternion based on 
modelled sensor readings 
and their associated 
reference vectors  

Extended 
Kalman Filter 

Satellite* 
EKF tuning* 
Angular rate (noisy) 
Attitude estimate 

EKF attitude 
EKF angular rate 

This block contains the 
extended Kalman filter, 
whose attitude quaternion 
and angular rate vector 
estimate outputs improve 
upon those based on raw 
sensor readings 

EKF 
Transformations 

EKF attitude 
EKF angular rate 

EKF attitude 
error 
EKF rate error 

This block transforms the 
EKF attitude quaternion and 
angular rate estimates from 
ECI to BF/NP, redefining 
each as the error between 
the desired attitude/rate 
and the current 
attitude/rate  

C
o

n
tr

o
l 

Magnetic B-Dot 
Control 

Magnetic field (noisy) 
B-dot tuning* 

B-dot control 
torque 

This block contains the B-
dot detumbling controller 

Magnetic PD 
Control 

EKF attitude error 
EKF rate error 
Magnetic PD tuning*  

PD control torque 
This block contains the 
magnetic PD controller, 
presently unused 

Control Switch 
and Duty Cycle 

B-dot control torque 
Simulation time 
Sun vector 
Angular rate 

Control torque 
(cycle) 
Control switch 

This block applies a 90% 
duty cycle to the B-dot 
control torque signal. The 
control switch signal that 
switches between the 
detumbling and pointing 
controllers is computed 
separately 

Sa
te

ll
it

e 

Simscape 

True anomaly (∞) 
Disturbance torques 
Magnetic control 
torques 
Control torque (cycle) 
Sun reference 
EKF attitude error 
EKF rate error 
Control Switch 

Actual attitude 
Actual angular 
rate 
Actual attitude 
error 
Actual rate error 
Actual Euler 
angles 
Actual wheel 
speeds 
 

This block contains all 
Simscape components for 
simulating the satellite’s 
body dynamics. Its “actual” 
outputs are gleaned from 
multibody transform 
sensors and are used as a 
basis of comparison for 
their matching estimated 
values  

Satellite Model Satellite* 
Satellite model 
Sun sensor 
locations 

This block contains the 
Simscape model to be 
actuated, with reference 
frames defined along its 
principal inertial axes and 
on each of its surfaces to 
locate the Sun sensor 
assembly 



25 
 

 
 

Sa
te

ll
it

e 

Block Inputs Outputs Description 

Sun Sensor 
Subsystem 

Noise parameters* 
Sun reference 
Sun sensor locations 

Sun vector 
Sun sensor status 

This block computes the 
Sun vector estimate 
between satellite and Sun 
with added photodiode 
sensor noise and geometric 
interference from the 
satellite model. The use 
status of each Sun sensor is 
output to the workspace to 
track the frequency of 
shadowing from the 
satellite’s deployed solar 
panels 

Reaction Wheel 
Subsystem 

EKF attitude error 
EKF rate error 
Control switch 
DC motor model* 

Wheel torques 
Wheel speeds 

This block contains all 
reaction wheel components, 
including PD controllers for 
their individual voltages and 
separate DC motor models 
for each  

3.1 Orbit Definition 
 Within the simulator, parameters defining the geometry and orientation of the 

satellite’s orbit are obtained from the North American Aerospace Defense Command 

(NORAD) two-line element (TLE) set for the ISS Zarya module, effectively duplicating its 

orbit for the simulated CubeSat. A single TLE set is used to obtain the initial parameters for 

the CubeSat orbit including its epoch time and date which define the point at which orbit 

propagation is set to begin. The initial orbital position is calculated for the satellite at epoch 

and the orbit is propagated from this point. Equations in this section are defined relative to 

the Earth-centred inertial (ECI) coordinate frame defined in Appendix A. 

3.1.1 Two-Line Elements 
 The TLE defining the simulator’s initial conditions is shown in Table 4 with the 

corresponding definition of each TLE entry “A” through “R” shown in Table 5. Of the 

eighteen TLE entries, only the following six are needed in the simulator: the epoch ordinal 

date “E”, mean anomaly “Q”, inclination “M”, right ascension of the ascending node “N”, 

eccentricity “O”, and argument of perigee “P”. The data in Table 4 was obtained in the early 

afternoon of 26 April 2019. 

Table 4: Two-Line Element Set [96] 
ISS (ZARYA)  

1 25544U 98067A 19116.54834 .00001183 00000-0 26373-4 0 9995 

2 25544 51.6413 257.8729 0001068 231.7821 251.6112 15.5259257 
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Table 5: Two-Line Element Set Entry Definitions [96] [97, p. 60] 

A 

B C D E F G H I J 

K L M N O P Q R 

A Satellite name 

B Line number 
C NORAD satellite number (U = unclassified) 
D International designator (launch year | launch number of the year | object number of launch) 
E Epoch year | day number of the year.current fraction of day 

F First derivative of mean motion (rate of change of number of orbit revolutions in rev/day) 
G Second derivative of mean motion (terminal orbit decay in rev/day3) 

H BSTAR drag term and its associated power of 10 in 𝑅⨁
−1 

I Ephemeris/orbital propagation model (SGP4 model assumed, value is always zero) 

J Checksum/total number of TLE generated for spacecraft 
K Line number 
L NORAD satellite number 

M Inclination (deg) 
N Right ascension of the ascending node (deg) 
O Orbit eccentricity (assume 0.xxxxxxxx) 
P Argument of perigee (deg) 

Q Mean anomaly (deg) 
R Mean motion (rev/day) | orbit number at ascending node epoch | checksum 

 The right ascension of the ascending node, argument of perigee and inclination 

obtained from the TLE are illustrated Figure 5, where 𝒓𝑝,𝐼 is the radius of perigee in the ECI 

frame, and 𝑵 is the line of nodes. 

 
Figure 5: RAAN, Argument of Perigee, and Inclination in ECI 
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The right ascension of the ascending node (RAAN) (alternatively termed the 

“argument of the ascending node”) defines the angle between the ECI X-axis and the line of 

nodes 𝑵 directed along the intersection between the orbital and equatorial planes [97, p. 

54]. It is calculated in the simulator via the following [97] [98]: 

 
sinΩ =

𝒉𝐼 ∙ 𝑰𝑥

ℎ𝐼 sin 𝑖
 (1) 

   
 

cosΩ =
−𝒉𝐼 ∙ 𝑰𝑦

ℎ𝐼 sin 𝑖
 (2) 

where 𝑰𝑥 and 𝑰𝑦 are unit vectors in ECI defined as [1 0 0]𝑇 and [0 1 0]𝑇 , respectively, 

and the orbital angular momentum is given by the ECI radius and velocity via [97, p. 54]: 

 𝒉𝐼 = 𝒓𝐼 × 𝒗𝐼  (3) 

Then, 

 Ω = atan2(sinΩ , cosΩ) (4) 

Orbit inclination defines the angle between the orbital and equatorial planes. The 

initial value for orbit inclination 𝑖 is obtained from the TLE; it is assumed that this value is 

maintained throughout an unperturbed orbit. Inclination can be calculated from the ECI 

orbital angular momentum vector 𝒉𝐼 via the following relation [97, p. 54]: 

 
𝑖 = cos−1 (

𝒉𝐼 ∙ 𝑰𝑍

ℎ𝐼
) (5) 

Within the scope of this simulator, a two-body orbit propagator is used which 

neglects the gravitational effects of Moon, Sun, and Earth’s oblateness. As a result of this 

assumption, Ω, 𝜔, and 𝑖 should not change with time. To validate the orbit propagation 

within the simulator, each of these three angles are calculated at each time step using 

Equations 1 through 5 to ensure they remain constant with respect to the initial TLE values. 

These angles constitute three of six classical orbital elements which can be used to 

describe a satellite’s orbit. The remaining three classical orbital elements are: orbit 

eccentricity, orbit semimajor axis, and the true anomaly. Orbit eccentricity and orbit 

semimajor axis should remain constant when using a two-body propagator, while the true 

anomaly can be calculated from the mean anomaly obtained from the TLE.  
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 Eccentricity defines the oblateness of the orbit. The eccentricity vector is directed 

along the semimajor axis and is considered positive in the perigee direction. It is calculated 

as follows [97, p. 53]: 

 
𝒆 =

𝒗𝐼 × 𝒉𝐼

𝜇⨁
−

𝒓𝐼

𝑟𝐼
 

 
(6) 

where 𝒉𝐼 is the orbital angular momentum, defined in ECI as [97, p. 53]: 

 𝒉𝐼 = 𝒓𝐼 × 𝒗𝐼  (7) 

The scalar value for eccentricity is found via the norm of its vector: 

𝑒 = ‖𝒆‖ 

Eccentricity should maintain a constant value in the absence of external perturbations, 

equivalent to that initially obtained from the TLE. An eccentricity of zero corresponds to a 

circular orbit while elliptical orbits have values ranging between 0 and 1. 

The argument of perigee angle 𝜔 is drawn between the line of nodes 𝑵 and the 

perigee of the orbit 𝒓𝑝,𝐼 . The line of nodes is defined by the following [97, p. 54]: 

 𝑵 = 𝑰𝑧 × 𝒉𝐼  (8) 

As the perigee radius coincides with the eccentricity vector, the argument of perigee can be 

found as follows [97, p. 54]: 

 
𝜔 = cos−1 (

𝑵 ∙ 𝒆

𝑁𝑒
) 

(9) 

The quadrant condition is as follows [97, p. 54]: 

       0 ≤ 𝜔 ≤ 180°     if       𝒆 ∙ 𝑰𝑍 ≥ 0 

180° < 𝜔 < 360°     if       𝒆 ∙ 𝑰𝑍 < 0 

The argument of perigee taken from the TLE appears in the first quadrant and thus no logic 

is required to place it in the correct quadrant after the initial calculation. 

With the line of nodes direction defined using the RAAN as [98]: 

𝑴 = [
cosΩ
sinΩ

0
] 

and the orbit normal defined as [98]: 

𝒏 =
𝒉𝐼

ℎ𝐼
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the argument of perigee can then be defined relative to the true anomaly [98]: 

sin(𝜔 + 𝜃) =
𝒏𝑇(𝑴 × 𝒓𝐼)

𝑟𝐼
 

cos(𝜔 + 𝜃) =
𝒓𝐼

𝑇(𝑴)

𝑟𝐼
 

 𝜔 = atan2(sin(𝜔 + 𝜃) , cos(𝜔 + 𝜃)) − 𝜃 (10) 

This approach is currently implemented in the simulator. To maintain the argument of 

perigee within the range of 0° to 360°, 2𝜋 is added to the radian value if the difference in the 

above equation results in a negative value for 𝜔. 

 The initial value for the semimajor axis 𝑎 of the orbit is defined from the radius at 

perigee and the TLE eccentricity. Perigee radius 𝑟𝑝 in the simulator was obtained from 

perigee altitude ℎ𝑝 from the TLE data compiled on [99]. The semimajor axis is then obtained 

as [97, p. 39]: 

 𝑎 =
𝑟𝑝

(1 − 𝑒)
 (11) 

 The true anomaly defines the satellite’s angular position in orbit with respect to the 

orbit’s perigee. Its initial value is obtained from the mean anomaly given in the TLE, where 

the mean anomaly 𝑀 is defined by the mean motion 𝑛 – the number of orbit revolutions per 

day as reported in the TLE – and the time since perigee passage for the dataset [100, p. 88]. 

To obtain the true anomaly from this reported angle, it is necessary to define an eccentric 

anomaly which arises from the definition of the orbit ellipse in polar form [100, p. 84]. The 

TLE epoch time as given by the ordinal date entry defines the start time for the simulator. As 

such, the true anomaly given by the mean anomaly is nonzero (i.e. simulations do not start 

at orbit perigee). The mean anomaly is given in degrees and must be converted to radians 

for use in the equations that follow.  

Figure 6 illustrates the true anomaly, eccentric anomaly, and mean anomaly for a 

highly elliptical orbit at an arbitrary orbital radius drawn in red. The radius of the outer grey 

circle is equal to the semimajor axis of the elliptical orbit and thus both orbits have equal 

values of mean motion 𝑛. At any position 𝑟 occurring at time 𝑡 with true anomaly 𝜃 and 

known time of perigee passage 𝑡𝑝, the expression 𝑀 = 𝑛(𝑡 − 𝑡𝑝) determines the mean 

anomaly in terms of Kepler’s third law: the area of the circular orbit “swept” during (𝑡 − 𝑡𝑝) 

at 𝑀 is equivalent to that area “swept” during (𝑡 − 𝑡𝑝) in the elliptical orbit at 𝜃 [97, p. 46]. 

These areas are denoted on the diagram as A and B, respectively.  
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Figure 6: True Anomaly, Eccentric Anomaly, and Mean Anomaly for an Arbitrary Point in an 
Elliptical Orbit  

The eccentric anomaly can be obtained from the mean anomaly via the following relation 

[97, p. 47]:  

 𝑀 = 𝐸 − 𝑒 sin𝐸 (12) 

The true anomaly is then obtained from the eccentric anomaly by solving [97, p. 47]: 

 

tan
𝜃

2
= √

1 + 𝑒

1 − 𝑒
tan

𝐸

2
 (13) 

To obtain the true anomaly at any subsequent point in the orbit, the following relation is 

used [98]: 

sin𝜃 =
𝑝

ℎ𝑒𝑟𝐼
𝒓𝐼

𝑇𝒗𝐼 

cos 𝜃 =
𝑝 − 𝑟𝐼
𝑒𝑟𝐼

 

 𝜃 = atan2(sin𝜃 , cos 𝜃) (14) 

The true anomaly varies between 0° to 360° with 0° defined at perigee and is 

positive in the satellite’s direction of travel. A correction is made in the simulator’s code to 

round calculated values of cos 𝜃 > 1 down to 1. This correction is the result of numerical 

integration errors during orbit propagation which, at worst, are on the order of 10−6 when 

recalculating the orbital elements at each time step.  

To prevent anomalous and discontinuous results that would otherwise arise in the 

simulator at the point where the true anomaly resets from 360° back to 0°, the value of the 
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true anomaly is allowed to monotonically increase with time beyond 360°. This continuity 

compensation is handled in the simulator using a custom MATLAB function block with a 

discretized input true anomaly value (between 0° to 360°), calculated via Equation 14 at a 

sample time of one second. The calculated true anomaly value is compared to the value from 

the previous timestep; if the current value is less than the previous value, an appropriate 

integer multiple of 2𝜋 is added to the current true anomaly value to ensure continuity of the 

true anomaly being calculated.  

3.2 Orbit Dynamics 
 The final equations needed to define the orbit dynamics within the simulator are 

those required for orbit propagation: orbital radius, orbital velocity, and orbital 

acceleration. These equations are defined relative to the Earth-centred inertial (ECI) and 

perifocal reference frames described in Appendix A. 

In the simulator, initial vectors are obtained for the orbital radius and velocity in the 

ECI frame. These values are used to calculate the orbital acceleration at each time step, and 

subsequent values are obtained by integrating this acceleration term.  

 An initial value for the ECI radius at epoch is obtained in the perifocal frame of 

reference using initial values obtained from the TLE. The orbital radius can be expressed in 

the perifocal frame as follows [97, p. 51]: 

 
𝒓𝑃 = (

𝑟 cos𝜃
𝑟 sin𝜃

0
) (15) 

where 𝜃 is the initial value of the true anomaly at epoch and r is the radius at epoch, 

calculated via the orbit equation [97, p. 51]: 

 
𝑟 =

𝑎(1 − 𝑒2)

1 + 𝑒 cos 𝜃
 (16) 

The initial orbital radius in ECI is then obtained via the perifocal to ECI rotation matrix: 

𝒓𝐼 = 𝑪𝐼𝑃𝒓𝑃 

Angle data used in the rotation matrix 𝑪𝐼𝑃 is obtained from the epoch TLE. This 𝒓𝐼  vector is 

used as an initial condition in the corresponding integrator block in the simulator.  
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Similarly, the initial velocity is obtained in the perifocal frame as follows [97, p. 52]: 

 

𝒗𝑃 =

[
 
 
 
 
 
 

−√
𝜇⨁

𝑝
sin 𝜃

√
𝜇⨁

𝑝
(𝑒 + cos 𝜃)

0 ]
 
 
 
 
 
 

 (17) 

where values for the eccentricity 𝑒 and semilatus rectum 𝑝 are obtained from the same TLE 

as the epoch. The ECI initial velocity used as the initial condition in its corresponding 

integrator block is obtained as follows for the same rotation matrix as used for the orbital 

radius: 

𝒗𝐼 = 𝑪𝐼𝑃𝒗𝑃 

 The method of orbit propagation used in the simulator centres around the 

calculation of the Keplerian instantaneous acceleration at each timestep, and the integration 

of this value to obtain its associated orbital velocity and radius. The instantaneous 

acceleration is given by [97, p. 72]: 

 𝒂𝐼 = −
𝜇⨁

𝑟𝐼
3 𝒓𝐼 + 𝒇𝑝 (18) 

where 𝒇𝑝 is the sum of all perturbing accelerations acting upon the satellite. For the scope of 

this research, 𝒇𝑝 it is assumed to be zero.  It is also assumed that the location of the CubeSat 

within its orbit can be precisely determined at any given time. This assumption eliminates 

the potential for errors in determining the reference attitude of the satellite.  

3.2.1 Simscape Coordinate Frame Definition  
Appendix A defines the coordinate frames used throughout simulator development, 

four of which are of relevance to this section. The ECI and perifocal frames define the 

location of the centre of the Earth and position of orbital plane relative to it, while the Nadir-

Pointing (NP) and Body-Fixed (BF) frames defined the desired nadir-pointing attitude and 

the orientation of the rotating satellite relative to the satellite’s centre of mass. The 

transformations between these frames are detailed in Appendix B.  

Three main coordinate frames with respect to which satellite dynamics are defined 

are used within Simscape. The Simscape multibody “World Frame” block represents the ECI 

frame described in Appendix A. The NP frame is defined from the ECI frame via a three-step 

sequence combining the transformations drawn in Appendix B. The ECI to perifocal 
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transformation matrix 𝑪𝐼𝑃 is set constant in a rigid transform block, which is connected as 

the “base” frame to a multibody revolute joint with an input motion signal taking in the 

infinitely increasing true anomaly value. The “follower” frame from this joint is connected to 

another rigid transform block containing the last component of the perifocal to NP 

transformation, the transpose of the product 𝑪3(𝜋/2)𝑪2(−𝜋/2):  

𝑪𝑃𝑁𝑃 = (
0 0 −1
1 0 0
0 −1 0

) 

Lastly, the BF frame is defined as a reference frame in the satellite model multibody solid 

block, with+ Z oriented along the proper axis according to the model being used.  

3.2.2 Satellite Model 
Simulator development, initial analyses and algorithm validation were based on two 

simplified geometries – a 1U cube and a 2U prism – while final results were obtained for 

geometry based on an interim model of the LORIS CubeSat. The three geometries along with 

the orientation of the body-fixed (BF) axes are illustrated in Figure 7, Figure 8, and Figure 9, 

respectively. The body-fixed frame is aligned with the satellite’s principal inertial axes with 

its origin at the satellite’s centre of mass such that its +Z axis points nadir (aligned with the 

orbital radius) and its +X axis lies in the direction of spacecraft propagation (aligned with 

the body-fixed spacecraft velocity vector).  

 

Figure 7: “1U” Geometry 

 

Figure 8: “2U” Geometry  

 

Figure 9: “Final” Geometry [1] 

Relevant mass properties for the three geometries are detailed in Table 6. For the 1U and 2U 

models, the mass and inertia matrices were calculated based on a default density value of 

1000 kg/m3 assigned in their respective Simscape multibody solid blocks. The properties 

and dimensions for the final geometry were obtained from the LORIS satellite SolidWorks 

assembly’s mass properties. 
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Table 6: Parameters for Satellite Geometries 
Model Parameter Value 
1U 
 Dimensions 0.1 × 0.1 × 0.1 m 

Mass  𝑚 = 1 kg 
Principal Moments of Inertia 𝐽𝑥 = 0.001667 kgm2 

𝐽𝑦 = 0.001667 kgm2 

𝐽𝑧 = 0.001667 kgm2 
Centre of Mass 

CoM = [
0
0
0
]  m 

Model Parameter Value 
2U 
 Dimensions 0.1 × 0.1 × 0.2 m 

Mass  𝑚 = 2 kg 
Principal Moments of Inertia 𝐽𝑥 = 0.00833 kgm2 

𝐽𝑦 = 0.008333 kgm2 

𝐽𝑧 = 0.003333 kgm2 
Centre of Mass 

CoM = [
0
0
0
]  m 

Final 
 Mass  𝑚 =  1.7856 kg 

Principal Moments of Inertia 𝐽𝑥 = 0.01580 kgm2 
𝐽𝑦 = 0.01581 kgm2 

𝐽𝑧 = 0.01591 kgm2 

Centre of Mass 
CoM = [

0.01971
−0.02466
0.07851

]  m 

3.3 Space Environment 
Elements of the space environment both benefit and detriment the ability of the 

ADCS to acquire and maintain its attitude. Thus, assessing control performance and 

robustness of the proposed system requires a realistic representation of the environment 

that the satellite will be subjected to throughout its mission life. This section details the 

equations and theory behind the aspects of the space environment modelled in the 

simulator. 

3.3.1 Time and Date 
Decimal time is tracked in the simulator in units of hours. Simulation time output by 

Simulink’s clock is added to the starting UTC time to propagate the simulation from the 

epoch assigned in the driving routine. Calendar date is tracked with persistent year, month, 

and day variables in a MATLAB function block and carried through the simulator as a YMD 

vector. The day integer increases when the decimal time passes exactly 24 hours, while 
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month and year integers increase according to the day integer. Leap year recognition has 

been hardcoded into the date and time subsystem until 2024.  

3.3.2 Geomagnetic Field 
Earth’s LEO geomagnetic field is modelled using the International Association of 

Geomagnetism and Aeronomy (IAGA)’s International Geomagnetic Reference Field 12 

(IGRF-12) model block from the Simulink Aerospace Blockset [101]. The model’s magnetic 

field estimates are considered accurate until 2020 [101]. Inputs of altitude in meters, 

geodetic latitude and longitude in degrees, and decimal year are fed into the block at one-

second intervals to obtain the local magnetic field vector in nanotesla relative to the North-

East-Down (NED) reference frame described in Appendix A. This field is transformed to the 

BF reference frame to emulate both readings from the magnetometers and the “actual” 

magnetic field reference vector that interacts with outputs from the magnetic attitude 

controllers to produce Simscape torque inputs.  

3.3.3 Sun Reference Vector 
The second reference vector used in most attitude determination algorithms is the 

vector distance between Earth and Sun, which is calculated based on Seidelmann’s 1992 

“low precision ephemeris” algorithm [102, p. 485]. This vector lies in the ecliptic – the plane 

formed by the apparent orbit of the Sun as viewed from Earth. Definition of the vector 

requires knowledge of the time in Julian centuries 𝑇𝐽𝐷
 [103, p. 261]: 

 

𝑇𝐽𝐷 =
𝐽𝐷(ℎ,𝑚,𝑠) − 2451545

36525
 (19) 

for the accurate-to-time Julian date defined below, with year 𝑌, month 𝑀, day 𝐷, hour ℎ, 

minute 𝑚, and second 𝑠 [104, p. 33]: 

𝐽𝐷(ℎ,𝑚,𝑠) = 1721013.5 + 367𝑌 − fix {
7

4
[𝑌 + fix (

𝑀 + 9

12
)]} + fix (

275𝑀

9
) + 𝐷 +

60ℎ + 𝑚 + 𝑠/60

1440
  (20) 

The quantity 𝑇𝐽𝐷
is then used to calculate four “solar arguments” [102, p. 485]. The first two, 

the mean longitude 𝜙⨀ and mean anomaly 𝑀⨀ for the Sun in degrees, are defined below 

[104, p. 420]: 

 𝜙⨀ = 280.460 + 36000.771 𝑇𝐽𝐷
 (21) 

 𝑀⨀ = 357.5277233 + 35999.05034 𝑇𝐽𝐷
 (22) 
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Quantities 𝜙⨀ and 𝑀⨀ are constrained within the bounds 0 - 360 using MATLAB’s modulo 

function in the simulator. These quantities are then used to calculate the remaining two 

solar arguments: the ecliptic longitude 𝜙𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐 and the angle between Earth’s equatorial 

plane and the ecliptic termed the obliquity 𝜖 [104, p. 421]. 

 𝜙𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐 = 𝜙⨀ + 1.914666471 sin𝑀⨀ + 0.019994643 sin(2𝑀⨀) (23) 

 𝜖 = 23.439291 − 0.0130042𝑇𝐽𝐷
 (24) 

The magnitude of the distance between Earth and Sun is then found relative to the mean 

anomaly [104, p. 421] 

𝑟⨁⨀ = 1.000140612 − 0.016708617 cos𝑀⨀ − 0.000139589 cos2𝑀⨀ (25) 

which is multiplied by a unit vector to obtain the distance vector [104, p. 421] 

 

𝒓⨁⨀𝐼
= 𝑺𝐼 = 𝑟⨁⨀ [

cos𝜙𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐

cos 𝜖 sin𝜙𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐

sin 𝜖 sin𝜙𝑒𝑐𝑙𝑖𝑝𝑡𝑖𝑐

] (26) 

in Astronomical Units (AU). One AU is equivalent to the average distance between Earth and 

Sun, namely: 

1 AU =  149597870700 m 

For April 26th 2019 at 13:09:36 UTC, the following Sun vector was obtained from the 

above series of equations implemented in the simulator: 

𝑺𝐼 = [
0.813805
0.542968
0.235377

]  Au = [
1.217435 × 108

0.812269 × 108

0.352119 × 108

]  km 

𝑆𝐼 = ‖𝑺𝐼‖ = 1.505296 × 108 km 

This Sun vector was validated using the NASA JPL Horizons System (accessed through 

telnet) from which the following ephemeris data was obtained from a generated vector 

table with the target body as Sun’s centre (code @Sun) and the coordinate centre as Earth’s 

“geocenter” (code 399) in the ICRF/J2000 reference frame “frame” (with respect to “Earth 

mean equator and equinox of reference epoch”). For 13:09:00 UTC (Julian time 

2458600.047916667): 

𝑺𝐼 = [
0.816526
0.539517
0.233877

]  Au = [
 1.221505 × 108

0.807106 × 108

0.349875 × 108

]  km 

𝑆𝐼 = ‖𝑺𝐼‖ = 1.505293 × 108 km 
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There exists a magnitude error of 273.07 km (1.814 × 10−4 %) and an error in angle of 

𝜃𝑒𝑟𝑟 = cos−1 (
𝑎⃑ ⋅ 𝑏⃑⃑

𝑎𝑏
) = 0.2644 

between the calculated and actual vectors. Additional vector calculations and their actual 

values over a wide range of times and dates are compiled in Table 7. Absolute errors in 

angle between the calculated and actual vectors never exceed 1 and thereby fall within the 

desired range of attitude determination accuracy 

Table 7: Sun Reference Vector Error Calculations  
Date and Time Calculated 𝑆𝐼 (km) Actual 𝑆𝐼 (km) Magnitude Error Angle Error 

2018-Sep-10  

18:45:00 
2458372.28125 

[
−1.473442 × 108

0.287086 × 108

0.124453 × 108

] [
−1.472059 × 108

0.293146 × 108

0.127089 × 108

] 3497.91 km 0.257 

2008-Nov-04  

23:27:00 

2454775.47708 

[
−1.086163 × 108

−0.926718 × 108

−0.401759 × 108

] [
−1.088292 × 108

−0.924625 × 108

−0.400852 × 108

] 918.52 km 0.121 

1993-Aug-08  

10:24:00 

2449207.93333 

[
−1.088910 × 108

0.968786 × 108

0.420037 × 108

] [
−1.090539 × 108 
0.967157 × 108

0.419332 × 108

] 6400.97 km 0.091 

1981-May-27 

03:24:00 

2444751.64167 

[
0.622251 × 108

1.268146 × 108

0.549872 × 108

] [
0.616012 × 108

1.270752 × 108

 0.551003 × 108

] 4440.92 km 0.259 

1970-Oct-22  

18:08:00 

2440882.25556 

[
−1.302823 × 108

−0.660491 × 108

−0.286410 × 108

] [
−1.297611 × 108

−0.669025 × 108

−0.290116 × 108

] 2371.52 km 0.411 

  Average: 3525.99 km 0.228 

3.3.4 Eclipse 
The orbiting satellite is considered to be “in eclipse” while it is travelling through 

Earth’s shadow, a period wherein its attitude cannot be determined due to inadequate Sun 

sensor data. Figure 10 illustrates the eclipse region of an arbitrary elliptical orbit as the 

solid portion of the orbit trace.  
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Figure 10: Eclipse Region for a Near-Circular LEO Orbit 

The eclipse condition is determined in the simulator from the orbital radius in ECI 𝒓𝐼 

and the vector from Earth to Sun 𝒓⊕⊙𝐼
 via the following relation [104, p. 422]: 

 
𝒓𝐼 ∙ 𝑟⊕⊙𝐼

< −√𝑟𝐼
2 − 𝑅⊕

2  (27) 

where 𝑅⊕ is Earth’s equatorial radius. When this condition is satisfied, the satellite is in 

Earth’s shadow and attitude is considered inestimable. The satellite spends 2111 s or about 

38% of each orbit in eclipse. 

3.3.5 Disturbance Torques 
In LEO, gravity gradient, atmospheric drag, and solar radiation pressure are the 

primary external torque disturbances perturbing a satellite’s attitude throughout its orbit. 

The torque that arises from the satellite’s residual magnetic dipole is the sole internal 

torque disturbance. These four torque disturbances are implemented in the simulator and 

can be summed together with the calculated control torque from the magnetorquers as an 

input to the Simscape model where all torques are resolved in the BF frame. To validate the 

simulated disturbance torques, the values reported in subsequent sections were calculated 

using a simplified 2U prism model with the inertia tensor reported in Table 6.  

Two attitude cases are considered: inertially-fixed and nadir-pointing. These 

attitudes are illustrated at four points in the orbit in Figure 11 and Figure 12, respectively. 
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Figure 11: Inertially-Fixed Attitude for 
Disturbance Torque Validation  

 

Figure 12: Nadir-Pointing Attitude for 
Disturbance Torque Validation 

3.3.5.1 Gravity Gradient 

The vector representation of the gravity gradient (GG) disturbance torque 𝑇⃑⃑𝐺𝐺  is 

defined in BF coordinates as [105, p. 324]: 

 
𝑇⃑⃑𝐺𝐺 =

3𝜇

𝑟𝐵
3 𝑢⃑⃑𝑒 × (𝑱 ∙ 𝑢⃑⃑𝑒) (28) 

where 𝜇 = 3.9859 × 1014 m3/𝑠2 is the gravitational parameter of Earth, 𝑟𝐵 is the BF vector 

distance between Earth’s centre and the spacecraft’s CoM in m, 𝑢⃑⃑𝑒 is the BF unit vector 

towards nadir which emanates from the spacecraft CoM, and 𝑱 is the spacecraft inertia 

tensor about the CoM. The dot product of the inertia tensor and the nadir direction unit 

vector can be represented as: 

(𝐽 ∙ 𝑢⃑⃑𝑒) = [

𝐽𝑥 0 0
0 𝐽𝑦 0

0 0 𝐽𝑧

] ∙ 𝑢⃑⃑𝑒 = [

[𝐽𝑥 0 0]𝑇 ∙ 𝑢⃑⃑𝑒

[0 𝐽𝑦 0]𝑇 ∙ 𝑢⃑⃑𝑒

[0 0 𝐽𝑧]
𝑇 ∙ 𝑢⃑⃑𝑒

] 

Figure 13 plots the magnitude of the GG torque disturbance as a function of time 

over one orbit for the inertially-fixed 2U Prism Model illustrated in Figure 8, while Figure 14 

plots the individual torque components about each of the BF axes. The variation in the unit 

vector towards nadir relative to the satellite’s principal axes for the inertially-fixed case 

results in a cyclic profile for the BF X and Y GG torque components and zero for the Z GG 

torque component. The torque norm reaches zero at the two points in the orbit where the 

satellite crosses the equatorial plane. 
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Figure 13: Gravity Gradient Disturbance Torque Magnitude Over One Orbit for 2U Prism 

Model – Inertially-Fixed Attitude 

  
Figure 14: Gravity Gradient Disturbance Torque Components in BF Over One Orbit for 2U 

Prism Model – Inertially-Fixed Attitude 

The maximum GG torque for the inertially fixed attitude case is: 

𝑻𝐺𝐺 = [
7.31 × 10−9

6.18 × 10−9

0

]  Nm 

𝑇𝐺𝐺 = ‖𝑻𝐺𝐺‖ = 9.57 × 10−9 Nm 

For the nadir-pointing prism satellite illustrated in Figure 8, the GG torques 

generated demonstrated virtually no variation in magnitude, coinciding with the prediction 



41 
 

 
 

of a constant profile for circular orbits stated in [105, p. 366]. The maximum GG torque was 

obtained for the nadir pointing case as follows, notably one order of magnitude lower than 

that for the inertially-pointing case.   

𝑻𝐺𝐺 = [
4.01 × 10−11

2.66 × 10−10

0

]  Nm 

𝑇𝐺𝐺 = ‖𝑻𝐺𝐺‖ = 2.69 × 10−10 Nm 

To validate the simulation results, the worst-case scalar formulation of the gravity gradient 

disturbance torque defined in BF coordinates was evaluated as follows [105, p. 366]: 

 
𝑇𝐺𝐺 =

3𝜇

2𝑟𝐵
3 |𝐽𝑧 − 𝐽𝑦| sin(2𝜃) (29) 

where 𝜃 is the “maximum deviation of the Z-axis from the local vertical in radians.” This 

equation can be assumed maximised when sin(2𝜃) = 1 and 𝑟𝐵 is taken at perigee:  

𝑟𝐵,𝑝 = 6.78 × 106 m 

𝑇𝐺𝐺 = 9.57 × 10−9 Nm 

This worst-case value is equivalent to the maximum magnitude obtained for the 

inertially-pointing case, suggesting a valid implementation of the vector equation in the 

simulator. To further validate the simulation results, the worst-case gravity gradient torque 

value of 9.57 × 10−9 Nm was compared to that predicted for the 2U LEO CubeSat AntelSat 

reported at 3.9 × 10−9 Nm [106]. The discrepancy between the values can be ascribed to the 

difference in moments of inertia; For the AntelSat, |𝐽𝑧 − 𝐽𝑦| was reported as 0.002524, i.e. 

less than that for the 2U prism by a factor of 0.5048 [106]. The AntelSat also calculates the 

torque at an orbital radius of 7000 km, a factor of 0.9103 larger than that for the 2U prism 

[106]. Taking the product of these factors implies that the GG torque obtained for the 

AntelSat should be a factor of 0.4031 less than that obtained using Equation (29) for the 2U 

prism: 

(9.57 × 10−9)(0.4031) = 3.86 × 10−9 

The adjusted value is approximately equivalent to the reported AntelSat value of 3.9 × 10−9 

which further validates the vector implementation of the GG torque within the simulator. 
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3.3.5.2 Aerodynamic Drag 

The aerodynamic drag vector torque can be calculated via the following relation 

[105, p. 324]: 

 
𝑻𝐷 =

1

2
𝜌𝑣𝐵

2𝐶𝐷𝐴(𝒖𝑣 × 𝒔𝑐𝑝) (30) 

where 𝜌 = 2.72 × 10−12 kg/m3 is the atmospheric density at 400 km altitude (assumed 

constant in the simulator) [105, p. 502], 𝑣𝐵 is the magnitude of the orbital velocity vector in 

BF, 𝐶𝐷 is the drag coefficient, 𝐴 is the projected area of the spacecraft perpendicular to the 

orbital velocity vector, 𝒖𝑣 is the unit velocity vector in BF, and 𝒔𝑐𝑝 is the vector distance 

from the centre of pressure to the satellite’s centre of mass. The value of the drag coefficient 

𝐶𝐷 typically falls between 2 and 2.5, with the median value 2.25 selected for use in the 

simulator according to [105, p. 324] [105, p. 366]. The projected area is assumed to be 

constant for the 2U prism at a nominal value of 0.02 m2, while 𝒔𝑐𝑝 is assumed to be fixed 

along the +X direction at 0.02 m – a value selected to facilitate comparison with the 

aerodynamic drag reported for two existing CubeSats – AntelSat and COMPASS-1 [106] 

[107]. Figure 15 and Figure 16 plot the magnitude and vector components of the 

aerodynamic drag torque over one orbit for the inertially-fixed 2U prism attitude. The cyclic 

nature of the magnitude in Figure 17 is the result of fixed axes travelling in a circular orbit – 

the torque at each timestep is proportional to the cross product of a fixed vector in +X and a 

vector that rotates about it within the inclined orbital plane.  

 

Figure 15: Aerodynamic Drag Disturbance Torque Magnitude Over One Orbit for 2U Prism 
Model – Inertially-Fixed Attitudeig 
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Figure 16: Aerodynamic Drag Disturbance Torque Components in BF Over One Orbit for 2U 

Prism Model – Inertially-Fixed Attitude 

The maximum aerodynamic drag torque obtained for the inertially-fixed case was found to 

be: 

𝑻𝐷 = [
0

1.84 × 10−8

6.95 × 10−8
]  Nm 

𝑇𝐷 = ‖𝑻𝐷‖ = 7.19 × 10−8 Nm 

In the nadir-pointing orientation, the value of the torque is near-constant across the 

orbit as expected for a circular orbit [105, p. 324]. Torques in the nadir-pointing orientation 

are an order of magnitude lower than those for the inertially-fixed case. When the satellite is 

oriented nadir, the unit velocity vector maintains its direction throughout the orbit when 

viewed in the BF frame under the assumption of an unchanging centre of pressure vector. 

When 𝒔𝑐𝑝 is fixed, therefore, the magnitude of the cross product in the vector definition will 

vary little. This invariance is not the case when the satellite is inertially-fixed, and as a result 

the magnitude of the cross product varies cyclically as the velocity vector rotates about the 

fixed 𝒔𝑐𝑝. The maximum aerodynamic drag torque for the nadir-pointing case was calculated 

in the simulator to be: 
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𝑻𝐷 = [
0

−9.96 × 10−9

−9.56 × 10−9
]  Nm 

𝑇𝐷 = ‖𝑻𝐷‖ = 1.38 × 10−9 Nm 

For validation, the worst-case aerodynamic drag scalar torque can be calculated via 

the following relation [105, p. 366]: 

 
𝑇𝐷 =

1

2
𝜌𝑣𝐵

2𝐶𝐷𝐴(𝑐𝑝 − 𝑐𝑔) (31) 

where (𝑐𝑝 − 𝑐𝑔) is the scalar distance between the centre of aerodynamic pressure and the 

centre of gravity [105, p. 366]. Assuming a maximum distance of 0.02 (as with the vector 

case in Equation (30)), and assuming the equation is maximised when orbital velocity is 

maximised with 

𝑣𝐵 = 7.67 × 103 m/s 

then the maximum aerodynamic torque value is obtained from Equation (31) as: 

𝑇𝐷 = 7.19 × 10−8 Nm 

This scalar value is equal in magnitude to the value of 7.19 × 10−8 Nm obtained from the 

inertially-fixed vector case, implying the vector equation as implemented in the simulator to 

be valid. To further validate the aerodynamic drag calculations within the simulator, the 

predicted maximum aerodynamic value of 7.19 × 10−8 Nm was compared with the 

maximum aerodynamic drag torque was reported for the 2U, ISS-orbiting AntelSat as 

2.60 × 10−8 Nm and as 1.34 × 10−7 for the 1U LEO COMPASS-1 [106] [107]. Table 8 

compares parameter values used in their respective worst-case torque computations using 

Equation (31) to those used in the torque computation for the 2U prism in the simulator.  

Table 8: Parameter Comparison for Aerodynamic Drag Torque Validation 
Parameter 2U Prism AntelSat [106] COMPASS-1 [107] 

𝐶𝐷 2.25 2.2 2.2 
𝑣 (m/s) 7665 7558 7558 

𝜌 (kg/m3) 2.72 × 10−12 1 × 10−12 6.2 × 10−12 
𝐴 (m2) 0.02 0.02041 0.1 

(𝑐𝑝 − 𝑐𝑔) (m) 0.02 0.02 0.02 

The worst-case torque obtained for AntelSat is of the same order of magnitude as that of the 

2U prism, which is expected given the similarity between their parameter values. The worst-

case projected area of COMPASS-1 reported as 0.1 m2 is one order of magnitude higher than 

both the 2U prism and AntelSat, and it follows that its aerodynamic drag torque is one order 
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of magnitude higher as well. Thus, the implementation of the torque equation within the 

simulator can be considered valid. 

For the actual model of the satellite, the simplified geometries for the nominal 

projected area (area perpendicular to the satellite’s direction of travel when the satellite is 

nadir-pointing) and the worst-case projected area are shown in Figure 17 and Figure 18. 

The simulator assumes a constant projected area, and the user can select between these two 

values in the simulator’s driving routine depending on the desired strength of the 

aerodynamic drag torque applied in the simulation. Results shown in this thesis assume the 

Figure 18 case.  

 

Figure 17: Nominal Projected Area (+X 
Projection) where 𝑛⃑⃑𝐴 = [1 0 0] and 𝐴 =

0.02208 m2 

 

Figure 18: Worst-Case Projected Area 
(Trimetric Projection) where 𝑛⃑⃑𝐴 =

[0.75 0.45 0.47] and 𝐴 = 0.05721 m2 

3.3.5.3 Solar Radiation Pressure  

The solar radiation pressure (SRP) vector and scalar torques 𝑇𝑆𝑅𝑃 are calculated via 

the following expression [105, p. 366]: 

 
𝑇𝑆𝑅𝑃 =

𝐹𝑠

𝑐
𝐴(1 + 𝑞) cos(𝑙) (𝑐𝑝𝑠 − 𝑐𝑔) (32) 

where 𝐹𝑠 = 1367 W/m2 is the solar constant (at neither solar maximum nor minimum), 𝑐 =

3 × 108 m/s is the speed of light, 𝐴 is the exposed area of the satellite, 𝑞 = 0.6 is the 

reflectance factor (typically 0.6-2.2, with 0.6 selected for the simulator [105, p. 366]), 𝑙 is the 

angle of incidence of Sunlight, and (𝑐𝑝𝑠 − 𝑐𝑔) is the distance between the centre of solar 

pressure and the centre of gravity of the satellite. To utilise the body frame Sun vector in 

lieu of the angle of incidence of Sunlight (eliminating the need for an additional calculation), 

the SRP torque can be rewritten using the cross product of (𝑐𝑝𝑠 − 𝑐𝑔) and the unit vector 

from the satellite to Sun in BF 𝒖𝑟𝐵
: 
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𝑻𝑆𝑅𝑃 =

𝐹𝑠

𝑐
𝐴𝑠(1 + 𝑞)[(𝒄𝑝𝑠 − 𝒄𝑔)  × 𝒖𝑟𝐵

] (33) 

Unit vector 𝒖𝑟𝐵
 is determined from the reference vector from Earth to Sun 𝒓⊕⊙𝐼

 and the 

orbital radius in ECI 𝑟𝐼, rotated into BF by 𝑞𝐵𝐼: 

𝒖𝑟𝐵 = 𝑞𝐵𝐹𝐼 ∗
𝒓⊕⊙𝐼

− 𝒓𝐼

‖𝒓⊕⊙𝐼
− 𝒓𝐼‖

  

The greatest distance between the satellite’s centre of mass and centre of solar pressure 

(𝑐𝑝𝑠 − 𝑐𝑔) is 0.1 m directed along the BF +Z axis; this assumes 𝑐𝑝𝑠 is centred on the top face 

of the satellite at the maximum surface distance possible given its geometry.  

The magnitude and vector components of the SRP torque over one orbit for an 

inertially-fixed 2U prism model are found to be near constant. This result is expected given 

that the distance between Earth and Sun changes little over the duration of an orbit, and the 

relative magnitude of the orbital radius in comparison to its magnitude results in little 

variation in the direction of 𝒖𝑟𝐵 over a single orbit. Therefore, the torque calculated from 

the cross product of this marginally changing vector with a fixed (𝑐𝑝𝑠 − 𝑐𝑔) vector should 

remain near-constant. The maximum SRP torque obtained for the inertially-fixed case is: 

𝑻𝑆𝑅𝑃 = [
7.88 × 10−9

−1.18 × 10−8

0

]  Nm 

𝑇𝑆𝑅𝑃 = ‖𝑻𝑆𝑅𝑃‖ = 1.42 × 10−8 Nm 

Figure 19 plots the magnitude of the SRP torque as a function of time over one orbit 

for a nadir-pointing 2U prism while Figure 20 plots its vector components in the BF frame. 

Though the same fixed (𝑐𝑝𝑠 − 𝑐𝑔) vector was defined, the torque adopts a cyclic profile as 

the BF axes rotate in orbit. The direction and magnitude of the torque itself do not change 

significantly versus the inertial case attesting again to the influence of the magnitude of the 

Earth-Sun vector on the SRP torque’s profile. 
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Figure 19: Solar Radiation Pressure Disturbance Torque Magnitude Over One Orbit for 2U 

Prism Model – Nadir-Pointing Attitude 

 
Figure 20: Solar Radiation Pressure Disturbance Torque Components in BF Over One Orbit 

for 2U Prism Model – Nadir-Pointing Attitude 

For the nadir-pointing case, the maximum SRP torque was obtained as follows and is close 

in magnitude to that of the inertial case: 

𝑻𝑆𝑅𝑃 = [
5.71 × 10−9

−1.34 × 10−8

0

]  Nm 

𝑇𝑆𝑅𝑃 = ‖𝑻𝑆𝑅𝑃‖ = 1.46 × 10−8 Nm 
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For the scalar case, assuming the equation is maximised when cos(𝑙) = 1 (Sun is directly 

incident on the satellite) and (𝑐𝑝𝑠 − 𝑐𝑔) = 0.1 m, the SRP torque is calculated to be 

equivalent to that obtained for the nadir-pointing case: 

𝑇𝑆𝑅𝑃 = 1.46 × 10−8 Nm 

The difference in maxima between the inertial and nadir-pointing cases is 

attributable their respective orbits – the nadir-pointing data was obtained 5 orbits after the 

inertial case, resulting in a slight difference in the direction of the Earth-Sun vector 

increasing the magnitude of its cross product with the constant (𝑐𝑝𝑠 − 𝑐𝑔) vector. 

For the 3U CINEMA CubeSat, the SRP torque was obtained as 2.48 × 10−9 Nm using 

equivalent values of 𝐹𝑠 and 𝑞 under the same assumption that the maximum occurs when 

the Sun’s angle of incidence is zero [108, p. 24]. A projected area of 0.034 m2 and a 

(𝑐𝑝𝑠 − 𝑐𝑔) distance of 0.01 m were chosen as its worst-case parameters [108, p. 24]. The 

area is larger than that used for 2U prism by a factor of 1.7 while the (𝑐𝑝𝑠 − 𝑐𝑔) distance was 

less by a factor of 0.1, implying that the CINEMA torque should be approximately 0.17 times 

smaller than that obtained for the 2U prism – which was shown to hold true: 

(1.46 × 10−8)(0.17) = 2.48 × 10−9 Nm 

and thus, the implementation of the vector SRP torque can be considered valid.  

3.3.5.4 Residual Magnetic Dipole  

The vector residual magnetic dipole moment torque is defined [12, p. 149]: 

 𝑻𝑀 = 𝑫 × 𝑩 (34) 

where 𝐷 is the residual dipole moment of the satellite and 𝐵 is Earth’s magnetic field 

expressed in BF in units of tesla. The torque is calculated assuming a typical dipole moment 

value of 0.01 Am2 presumed to lay along the +Z direction. The maximum torque value is 

shown below, which is expected to occur when the residual magnetic field vector is 

perpendicular to the local magnetic field vector.  

𝑻𝑀 = [
3.15 × 10−7

−3.35 × 10−7

0

]  Nm 

The scalar residual magnetic dipole moment torque is defined as [105, p. 366]:  

 𝑇𝑀 = 𝐷𝐵 (35) 
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The magnitude over one orbit for the residual dipole moment torque is plotted in Figure 21, 

with its components plotted individually in Figure 22.  

 
Figure 21: Residual Dipole Moment Disturbance Torque Magnitude Over One Orbit for 2U 

Prism Model 

 
Figure 22: Residual Dipole Moment Disturbance Torque Components Over One Orbit for 2U 

Prism Model 

The torque is obtained from the product of the maximum magnitude magnetic field for the 

current orbit and the scalar dipole moment value 0.01 Am2, equivalent to the norm of the 

above maximum torque vector: 

𝑇𝑀 = 4.60 × 10−7 Nm 
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The value of residual dipole torque depends solely upon the value of the satellite’s 

residual magnetic dipole moment (in units of Am2) and the value of the local magnetic field 

(in units of T). Worst-case values reported for the CADRE and COMPASS-1 satellites were 

identical in magnitude and near-identical in value at 4 × 10−7 Nm and 4.587 × 10−7 Nm, 

respectively [109, p. 17] [107, p. 43]. The COMPASS-1 value is obtained using the relation 

2𝑀/𝑅3 (where 𝑀 = 7.96 × 1015 T/m3 is Earth’s magnetic moment and 𝑅 is the orbit 

radius) to calculate Earth’s magnetic field – an approximation of scalar field strength as an 

“ideal dipole” [107, p. 43]. For CADRE, a similarly simplified model is used with an 

additional factor accounting for magnetic latitude [109, p. 17]. Geomagnetic field values, 

model simplicity notwithstanding, fall on the order of 10−5 T, and the resultant order of 

torque maxima depends solely upon the order of magnitude of the residual dipole moment.  

The following chapter develops the sensor models and attitude determination 

algorithms that compare their output against the reference values described in this chapter.   
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Chapter 4: Attitude Determination 
The attitude determination system of the LORIS ADCS comprises eighteen 

photodiode Sun sensors and one inertial measurement unit (IMU) including one three-axis 

gyroscope and one three-axis digital magnetometer. Quaternion attitude is estimated from 

these sensor measurements via the q-Method, and the estimate and its sensor 

measurements are improved using an extended Kalman filter whose output provides the 

basis for the satellite’s pointing controller. Sensor models are based on experimentally 

obtained noise parameters to obtain as accurate an assessment as possible of obtainable 

satellite attitude and of the performance of the pointing controller.  

Noise is generated in the simulator using Simulink Band-Limited White Noise blocks, 

each of which requires a noise power input to be specified. Each sensor has a sample rate 

𝑡𝑠 of 1 second via the following relation where 𝑁𝑃 is noise power and 𝜎2 is noise variance. 

In accordance with the approximation within the Band-Limited White Noise block, it is 

assumed that the required noise power input is equal to the noise variance for each sensor 

case [110]. 

 𝑁𝑃 = 𝜎2𝑡𝑠 (36) 

4.1 Sun Sensors 
Sun sensor photodiodes measure incident sunlight as a current intensity, with 

intensity presumed directed along the sensor normal. With each normal fixed relative to the 

BF coordinate frame, the vector between the satellite and Sun can be obtained using the 

relative intensity readings of multiple Sun sensors. The simulated measure of intensity was 

based on the OSRAM SFH 2430-Z photodiode selected for use onboard the LORIS satellite 

[111].  

A threshold value for incident light intensity was sought to improve the accuracy of 

the Sun vector estimation. Setting a limit on the intensity that constitutes a sensor as being 

in view of Sun serves to eliminate secondary sources of light – primarily Earth and Moon 

albedo – thereby ensuring that only the most illuminated sensors are used to estimate the 

location of the Sun vector. Assuming the angle of incident light 𝜑 is measured relative to the 

sensor normal, Figure 23 compares the directional characteristic plot from the SFH 2430-Z 

datasheet with the approximation cos𝜑 used in the simulator to relate intensity and angle 

of incidence, with a root-mean-square (RMS) error of 0.0026 or 0.26% between the two 

[111]. For light incident at 60, the spectral sensitivity of the sensor drops to 50%. As 

Earth’s albedo commonly reaches a maximum of 30-40%, a threshold angle of 60 
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corresponding to a spectral sensitivity of 0.5 was deemed sufficient to ensure the sensors 

could distinguish between Earth albedo and Sunlight [12, p. 154]. 

 

Figure 23: Comparison between SFH 2430-Z Relative Spectral Sensitivity and cos𝜑 versus 
Light Incident Angle Showing 0.26% Agreement [111] 

Photodiode noise characteristics were obtained experimentally. To account for 

nonlinearities resulting from inconsistencies in ambient light during the experiment, only a 

small, near-linear portion of the experimental data was used to identify variance and noise 

power. This experimental data is shown in the first subplot of Figure 24. The equivalent 

white Gaussian noise power for the photodiodes 𝑁𝑃𝑃𝐷 was identified from the variance 

𝜎𝑃𝐷
2 of the recorded rates in rad/s for a sample rate of 1 s according to Equation 36.  

𝑁𝑃𝑃𝐷 = 𝜎𝑃𝐷
2 = 1.13 × 10−4 V2 

The quantisation interval for the noise (placed into a Quantizer Simulink block) was 

experimentally identified as 0.0098 V. Subplots 2 and 3 in Figure 24 compare the generated 

white Gaussian noise and quantised white Gaussian (WG) noise with the experimental data. 

The variance of the resulting quantised data is 1.23 × 10−4 V2; a 9% error between it and 

the experimental data. 
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Figure 24: Comparison between Experimentally Obtained Photodiode Noise  

and Generated White Gaussian Noise 

4.1.1 Sensor Placement 
To further maximise Sun vector availability, three photodiodes are arranged in a 

triad on each face of the satellite illustrated in Figure 25, tilted 60 degrees from the face 

itself with 120 degrees separating the three in the set. Each sensor has a conic field of view 

of 120 imposed by an aluminium “mask” to accommodate the aforementioned 60 intensity 

threshold. In addition to limiting the field of view of the Sun sensors to the desired 120, the 

mask acts as a mounting fixture that sets the photodiodes at the correct angles and offers 

some protection to the sensors during CubeSat assembly, testing and launch when the solar 

panels are undeployed.  
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Figure 25: SolidWorks Sun Sensor Assembly [112] 

4.1.2 Sun Vector Determination 
For a Sun vector to be estimated, at least three Sun sensors must be illuminated by 

Sun – limiting the availability of the Sun vector to periods of the orbit outside eclipse. 

Additionally, in certain orientations, the Sun vector may not be estimable due to shadows 

cast on the sensors by the solar panels. Figure 26 demonstrates the shade effect of the solar 

panels with an arbitrary, nearby light source. For the sample orientation and Sun location 

shown in the figure, nine sensors (depicted as circles on the top and two sides of the 

CubeSat) have the potential to see Sun if not for the presence of the solar panels. Of the nine 

sensors, only one is completely in shade due to solar panel shade – denoted in red – leaving 

eight sensors from which the Sun vector can be determined. The remaining sides of the 

satellite are completely in shadow, and any residual illumination detected in their sensors 

can be assumed to be Earth’s albedo.  

 
Figure 26: Satellite Orientation Showing Effect of Shadowing 
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The normal directions for each of the eighteen Sun sensors are concatenated into an 

18 × 3 matrix 𝑯 and remain constant in the BF frame. In the simulator, the illumination 𝐼 of 

each sensor (indices 𝑖 = [1…18]) is equivalent to the dot product of the sensor normal 𝒏 

with the incoming reference Sun vector 𝑺 defined in Section 3.3.3, transformed into BF: 

𝐼𝑖 = 𝒏𝒊 ∙ 𝑺𝐵𝐹 

The eighteen illumination readings, each ranging between 0 and 1, are concatenated into the 

18 × 1 matrix 𝒚. Before adding the experimentally determined quantised sensor noise to 

each illumination value, the noise was scaled by 5 V (to correctly scale the sensor noise; the 

sensor full-scale reading is 5 V, while the illumination readings 𝐼𝑖 used in the simulator have 

a full-scale reading of 1). A threshold value of 0.5 is applied to each sensor to account for 

Earth’s albedo – assuming any nonzero illumination reading less than 0.5 in magnitude to be 

light reflected off Earth. Sensors whose illumination values in the simulator pass this 

threshold are flagged as “potentially” seeing Sun and are further checked against a line-

plane intersection algorithm to determine if they lie in the shade of the solar panels. Sensors 

that cannot see Sun are removed from both the 𝑯 and 𝒚 matrices, and the following relation 

is used to solve for the Sun vector 𝒔, making use of the pseudoinverse of 𝑯 [113, p. 59]: 

𝒚 = 𝑯𝒔 

 𝒔 = (𝑯𝑇𝑯)−1𝑯𝑇𝒚 (37) 

If the Sun vector cannot be determined, it is set to a zero value of 𝒔 = [0 0 0]𝑇 . Over 100 

orbits excluding time spent in eclipse (342,866 seconds), only one sensor could see Sun 

0.10% (351 seconds) of the total duration, only two sensors could see Sun 0.32% (1,056 

seconds) of the total duration, and only three sensors could see Sun 4.84% (16,591 

seconds) of the total duration – implying that shadowing presents issues for Sun vector 

determination less than 1% of the total time the satellite is in orbit. 

4.2 Gyroscope Model  
The IMU gyroscope measures the satellite’s body angular rates in units of rad/s. The 

first row of subplots in Figure 27 shows experimental rate vector data obtained for a 

BNO055 IMU gyroscope. Gyroscope noise powers 𝑵𝑷𝐺  were identified from the variance of 

these rates 𝝈𝐺
2 in rad/s for a sample time of 1 s, according to Equation 36: 

𝑵𝑷𝐺 = 𝝈𝐺
2 = [2.18 × 10−6 2.99 × 10−6 1.30 × 10−6] (rad/s)2 

with an experimentally determined quantisation interval of 0.0011 rad/s. Placing these 

values into their respective Band-Limited White Gaussian Noise and quantizer Simulink 
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blocks produced the results in the remaining Figure 27 subplots. Variances of the resulting 

quantised noise data are listed below, with errors of 6%, 4% and 9% relative to the 

experimental data. 

𝝈𝟐 = [2.32 × 10−6   3.09 × 10−6   1.42 × 10−6] (rad/s)2 

 
Figure 27: Comparison between Experimentally Obtained BNO055 Gyroscope Noise  

and Generated White Gaussian Noise  

A “random walk” model of gyroscope drift as used by Yang [77] was then added to 

this noisy sensor data to simulate the zero-rate offset and temperature/voltage relative 

angular velocity drift specified for the BNO055 sensor [114]. Because the experimentally 

collected data did not exhibit any noticeable drift over a several hour sampling period, a bias 

value of 1 × 10−3 was empirically selected. This value was supplied as a noise power to a 

Band Limited White Noise block whose output is integrated to produce a noisy drifting 

signal. This drifting value is summed with the above sensor noise to the Simscape angular 

rate output to emulate a gyroscope reading. Figure 28 shows this added drift isolated over 

100 seconds. This estimate likely exceeds a realistic value of drift – the BNO055 datasheet 

suggests ± 3 deg/s maximum at near-zero angular rates – but can be considered a worst-

case assumption.  
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Figure 28: Gyroscope Drift 

4.3 Magnetometer Model 
The three-axis magnetometer measures the strength of the local magnetic field (in units of 

microtesla) with respect to the BF frame axes. Two magnetometers are modelled in the 

simulator – one from an MPU-9250 IMU and one from the same BNO055 IMU described in 

Section 4.2. Though the LORIS ADCS initially included two separate magnetometers for 

redundancy, the hardware plan for the system has since been revised to only include one. 

Regardless, both magnetometers are modelled in the simulator and either can be used at 

will. In the simulator, both noise power values are scaled by a factor of 106 to obtain units of 

tesla. 

The experimental data in units of microtesla obtained for the MPU-9250 

magnetometer (shown in the first row of subplots in Figure 29) was collected with a sample 

time of 0.0080 seconds. Variances of the recorded magnetic fields were determined as: 

𝝈𝑀𝑃𝑈
2 = [0.56 0.59 0.56] μT2 

Noise powers were then identified according to Equation 36 as: 

𝑵𝑷𝑀𝑃𝑈 = [0.0045 0.0047 0.0044] μT2 

with an experimentally determined quantisation interval of 0.7242 μT. Variances were 

obtained for the quantised white Gaussian noise shown in the Figure 29 bottom row of 

subplots as follows, with errors of 9%, 10% and 9% versus the experimental data: 

𝝈𝟐 = [0.61   0.65   0.61] μT2 
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Figure 29: Comparison between Experimentally Obtained MPU-9250 Magnetometer Noise  

and Generated White Gaussian Noise  

Via Equation 36 for the BNO055 magnetometer, Noise powers were identified from 

the variance of the recorded field in microtesla with a sample time of 1 second:  

𝑵𝑷𝐵𝑁𝑂 = 𝝈𝐵𝑁𝑂
2 = [0.39 0.21 0.37] μT2 

with a quantisation interval of 0.44 μT. The quantised white Gaussian noise in Figure 30 has 

the following variances, with errors of 5%, 9%, and 6% in comparison to the experimental 

data: 

   𝝈𝟐 = [0.41   0.23   0.39] μT2 
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Figure 30: Comparison between Experimentally Obtained BNO055 Magnetometer Noise  

and Generated White Gaussian Noise  

4.4 Attitude Determination - q-Method Algorithm 
The q-Method for attitude determination implemented in the simulator is analogous 

to the QUEST (QUaternion ESTimation) algorithm first proposed by Shuster in 1981 [76]. 

The algorithm compares sets of nonparallel unit vectors defined in two reference frames – 

“reference” vectors 𝑽𝑖 and “observation” vectors (from sensor readings) 𝑾𝑖  [76, p. 71]. 

Shuster’s QUEST algorithm seeks an “optimal attitude matrix” 𝑨𝑜𝑝𝑡 to maximise the gain 

function 𝑔(𝑨) [76, p. 73]: 

 
𝑔(𝑨𝑜𝑝𝑡) = ∑𝑎𝑖𝑾𝑖

𝑇𝑨𝑽𝑖

𝑛

𝑖=1

 (38) 

An “attitude profile matrix” 𝑩 is defined below, where 𝑎𝑖  are positive (unity) weights [76, p. 

73]: 

 
𝑩 = ∑𝑎𝑖𝑾𝑖𝑽𝒊

𝑇

𝑛

𝑖=1

  (39) 
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Based on 𝑩, Shuster defines the quantities 𝝈, 𝑺, and 𝒁 [76, p. 73] 

 𝝈 = tr(𝑩) (40) 
 𝑺 = 𝑩 + 𝑩𝑇 (41) 
 

𝒁 = ∑𝑎𝑖(𝑾𝑖 × 𝑽𝑖)

𝑛

𝑖=1

 (42) 

as components in the coefficient matrix 𝑲 for the “bilinear form” of the gain function, 

obtained by redefining Equation 38 in quaternion terms [76, p. 73]: 

 𝑔(𝑞̅) = 𝑞̅𝑇𝑲𝑞̅ 
(43) 

 
𝑲 = [

𝑺 − 𝝈𝑰3 𝒁

𝒁𝑇 𝝈
] (44) 

 

For the quaternion to satisfy a constraint 𝑞̅𝑇𝑞̅ = 1, the derivative of Equation 43 can be 

written according to the method of Lagrange multipliers [76, p. 73] as 

 𝑔′(𝑞̅) = 𝑞̅𝑇𝑲𝑞̅ − 𝜆𝑞̅𝑇𝑞̅ (45) 

from which a stationary value is obtained when [76, p. 73] 

 𝑲𝑞̅ = 𝜆𝑞̅ (46) 

The optimal attitude quaternion 𝑞̅ that maximises Equation 43 is derived from the eigen 

decomposition of 𝑲 as the eigenvector corresponding to the maximum eigenvalue.  

The eigenvector takes the form of vector|scalar, and thus the output of the q-Method 

block is reordered to match the scalar|vector quaternion format used elsewhere in the 

simulator. Two vector sets are used in the simulator: the estimated Sun vector from Sun 

sensor readings in BF 𝑺𝐵𝐹 , the reference Sun vector in ECI 𝑺𝐼 , the measured local magnetic 

field vector 𝑩𝐵𝐹 and the reference IGRF-12 ECI magnetic field vector 𝑩𝐼.  

This chapter outlined the components of the attitude determination system and the 

algorithms used to obtain attitude estimates from them. The next chapter uses these sensors 

to devise a B-dot detumbling controller capable of reducing the high angular rates of the 

satellite down to a range from which the pointing controller can be used within.  
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Chapter 5: Magnetic Detumbling Control 
When the satellite is first launched into orbit, it will be unable to power on until its 

batteries are sufficiently charged, meaning it will orbit Earth uncontrolled for some duration 

of time. Throughout this period, the satellite is typically “tumbling” – spinning at an 

unknown potentially-high residual angular rate from launch. Once it becomes operational, 

the satellite will enter directly into its detumbling phase to reduce these residual launch 

body angular rates before it can be pointed to carry out its mission objective. Throughout its 

mission life, it may start to spin up again and require additional detumbling. This 

detumbling phase is handled entirely by a proportional B-dot controller acting on sensor 

inputs. Torqueing using three orthogonal magnetorquers and sensing using three-axis 

magnetometers must be cycled to reduce the influence of the magnetorquers on the 

magnetometers. This section covers the experimental determination of a feasible 

sensing/actuation duty cycle to fit within the desired 1 second sample time of the sensors, 

and then outlines the design and validation process of the B-dot detumbling controller in the 

simulator.   

5.1.1 Magnetorquer Model 
The LORIS satellite ADCS includes three NewSpace Systems NCTR-M002 

magnetorquer rods arranged orthogonally along its BF axes. Each magnetorquer rod 

consists of a magnetically permeable metallic core of diameter 0.9 cm wound with 2000 

turns of 34-36 AWG copper magnet wire along 6 cm of its total length.  

 
Figure 31: Magnetorquer Rod Key Dimensions 

These torque rods are capable of generating a nominal magnetic dipole moment of 

0.2 Am2 for a current of 31 mA, up to a saturation magnetic dipole moment of 1.4 Am2 for a 

current of 215 mA [115, p. 9]. The wire on the purchased magnetorquers was damaged, and 

thus each rod was rewired using the coil winder apparatus in Figure 32 with the same 

number of turns of a higher-gauge appropriately-insulated copper wire. Properties of the 

new wire and final magnetorquer assembly are compiled in Table 9.  
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Table 9: Rewired Magnetorquer Parameters 
Parameter Value 
Material Enamelled copper, polyester with polyamideimide overcoat  
Wire Gauge 32 AWG 
Wire Diameter 0.23622 mm (nominal) 
Number of Turns 2000 
Length of Wire (Approx.) 66.44 m 
Rod Diameter 9.24 mm 
Rod Cross-Sectional Area 6.71 × 10−5 m2 

 

 

Figure 32: Coil Winder Apparatus 

For a typical solenoid electromagnetic coil – essentially analogous to a 

magnetorquer without a core – the scalar magnetic moment 𝑚 is calculated via the 
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following relation, where 𝑁 is the number of turns of wire in the solenoid, 𝐼 is the supplied 

current, and 𝑆 is the cross-sectional area of the solenoid [116]: 

 𝑚 = 𝑁𝐼𝑆 (47) 

The current passing through the magnetorquer was measured by connecting it to a 5 V 

power supply carried through a TB6612FNG motor driver. The voltage over the 

magnetorquer was measured at 5.07 V with a measured resistance value of 24.7 Ω and these 

values were used to estimate the maximum (steady state) current across the magnetorquer 

via Ohm’s law: 

𝐼 =
𝑉

𝑅
 

𝐼 = 0.2053 A = 205.3 mA 

Based on this current estimate falling within 10 mA of the datasheet saturation current of 

215 mA, it can be assumed that the new wire generates magnetic dipole moments 

essentially equivalent to the ±1.4 Am2 magnetic dipole moment of the original. A saturation 

limit of ±1.4 Am2 is, therefore, imposed upon any magnetic moment signal in the simulator. 

5.1.1.1 Time Constant Identification  

To identify a feasible duty cycle to avoid interference between torqueing and 

sensing the local magnetic field, time constants for the start up and shutdown of the rewired 

magnetorquers were determined using an Arduino-based experimental setup with two 

components: a circuit driving the magnetorquer and a circuit for measuring its generated 

magnetic field with an IMU magnetometer.  

The magnetorquer is powered by a constant 5 V source provided by the 5 V Arduino 

pin. Current travels from the Arduino through a TB6612FNG motor driver used to change 

the direction of the field the magnetorquer generates. These three components are wired as 

shown in Figure 33, and descriptions of all wire connections are compiled in Table 10. 

Specifying the motor driver to run “clockwise” defines terminal A01 as the voltage input, 

while “counter-clockwise” defines A02 as the voltage input. The corresponding wires on the 

magnetorquer are undifferentiated, and field direction depends entirely upon how the user 

connects the magnetorquer to the motor driver and subsequently orients the magnetorquer 

in the experiment. The setup is controlled using a MATLAB-created UI with functions from 

the MATLAB Support Package for Arduino Hardware used to write values to the digital pins 

and read values from the analogue pins.  
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Table 10: Motor Driver Interface Table 
Motor Driver Arduino Description 
VM Vin Motor power from barrel jack – unused 
VCC 5V Logic voltage and main 5 V source from regulated USB 

connection 
GND GND Common ground 
A01 A1 Motor A output 1, connected to one magnetorquer wire 
A02 A2 Motor A output 2, connected to other magnetorquer wire 
PWMA D11 PWM speed control for A I/O channels (square wave output) 
AI2 D13 Direction input to A channel  
AI1 D12 Direction input to A channel 
STBY D8 Internal h-bridge standby input 

 

 

Figure 33: Magnetorquer Experimental Arduino Circuit Diagram 

For the magnetometer setup, an MPU-9250 IMU breakout board is used to acquire 

magnetometer data with a maximum sample rate of 200 Hz and measurement range of 

±4800 μT at its I2C interface. Table 11 compiles the wire connections between the IMU and 

Arduino shown in Figure 34.  

Table 11: IMU Magnetometer Interface Table 
IMU Arduino Description 
SCL A5 12C serial clock  
SDA A4 12C serial data output 
VDD 3.3V Main 3.3 V source from regulated USB connection 
GND GND Common ground 
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Figure 34: Magnetometer Experimental Arduino Circuit Diagram 

The time constants for the start up and shutdown of the magnetorquer were determined 

using voltages read from an oscilloscope. To “Start” the torquers, the motor driver was 

commanded to run CW at a 100% duty cycle with current flowing through the 

magnetorquer from A01 to A02. To “Stop” the torquer, the motor driver was powered off to 

0% duty cycle. 

Raw oscilloscope voltage data is plotted in Figure 35 when the motor driver is 

commanded to start and stop. The torquer powers up quickly and maintains a constant A01 

voltage of 5.25 V with A02 close to zero V. When the torquer is powered off, the input 

voltage from A01 is severed manifesting as a brief sign inversion on A02 when read by the 

oscilloscope. 
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Figure 35: Individual Channel Voltages and Voltage Over Magnetorquer for Clockwise Motor 
Driver Command 

For both start up and shutdown, the current over the magnetorquer was calculated via the 

following formula based on the resistance value (24.7 Ω) of the magnetorquer: 

 
𝑖 =

𝑉𝐴01 − 𝑉𝐴02

24.7
 (48) 

Exponential curves were fit to the start up and shutdown data according to the following 

relation, with a different gain 𝐾 and time constant 𝜏 identified for each. 

 −𝐾𝑒−𝑡/𝜏  (49) 

Figure 36 plots the experimental start up data against an exponential curve with 

empirically identified gain and time constant listed below. Zero seconds on the time-axis of 

the plot corresponds to the point when the magnetorquer was turned on.  
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𝐾 = 2.15 × 10−1 A 

𝜏 = 7.00 × 10−7 s 

−2.15 × 10−1𝑒−𝑡/7.00×10−7
 

 
Figure 36: Start Up Current Over Magnetorquer Compared with Exponential Fit 

The steady-state current maintained an average value of 2.15 × 10−1 A, with an exponential 

settling time (3𝜏 criterion) of approximately 2.1 × 10−6 s.  

Figure 37 plots the same for the experimental shutdown data with zero seconds on 

the time axis of the plot corresponding to the point when the magnetorquer was turned off. 

The gain and time constant were identified empirically for the portion of the plot after the 

initial dip in current as: 

𝐾 = 2.63 × 10−1 A 

𝜏 = 3.00 × 10−4s 

−2.63 × 10−1𝑒−𝑡/3.00×10−4
 

 
Figure 37: Shutdown Current Over Magnetorquer Compared with Exponential Fit 
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The settling time of the current (3𝜏 criterion) is approximately 3.50 × 10−3 s including the 

initial negative spike, with a settling time of the exponential portion alone (3𝜏 criterion) of 

9.00 × 10−4 s. 

 The experimental start up and shutdown behaviour defines a 99.70% duty cycle for 

the magnetorquers based on a 1 second magnetometer sample time. This exact behaviour is 

not modelled in the simulator, and instead a conservative duty cycle of 90% is applied as a 

square wave to any magnetic input torque signals in Simulink. This estimate allows time for 

any residual magnetic field and consequent residual dipole moment to dissipate before 

another magnetic field measurement is taken.  

5.2 B-Dot Algorithm 
The B-dot algorithm describes a proportional controller that acts on the time-

derivative (or rate of change) of the local magnetic field expressed in the body-fixed frame: 

B-dot or 𝑩̇ [117, p. 79]. This term is defined as the cross-product of the local magnetic field 

in tesla and the satellite’s rotation rate in rad/s [117, p. 80]: 

 𝑩̇ = 𝑩 × 𝝎 (50) 

This 𝑩̇ value is then utilised in a proportional control law to determine the desired magnetic 

dipole moment 𝑚 in units Am2 commanded to the magnetorquers. The scalar gain 𝐾 is 

negative to apply a restoring moment about the desired axis to the rotating spacecraft [117, 

p. 79]: 

 𝒎 = −𝐾(𝑩 × 𝝎) = −𝐾𝑩̇ (51) 

Current is supplied to the magnetorquer to meet this desired moment. The resulting 

magnetic dipole moment from the magnetorquers generates an external control torque on 

the satellite according to the following equation in units of Nm [117, p. 79]: 

 𝑻𝑐 = 𝒎 × 𝑩 (52) 

All vectors in subsequent equations are expressed in the BF frame. B-dot control cannot be 

used in its generic form for accurate three-axis pointing control. Most typically, the B-dot 

algorithm is used during the initial detumbling phase of the satellite’s orbit before control is 

switched over to a three-axis attitude controller.  

As a first step towards validating the implementation of the B-dot algorithm in the 

simulator, the 𝑩̇ values obtained using Equation (50) were checked for the case when the 
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satellite is rotating at a constant angular rate about its body-fixed Z-axis in an equatorial 

orbit.  

The initial angular rates of the satellite were defined to be equivalent to one rotation 

about the Z axis per orbital period as follows: 

𝝎𝑖𝑛𝑖 = [

0
0
2𝜋

𝑇

] rad/s 

Using Equation (50), the resulting expression 𝑩̇ = 𝑩 × 𝝎 yields: 

𝑩̇ = 𝑩 × 𝝎 = 𝑩𝑥𝝎 = [

0 −𝐵𝑧 𝐵𝑦

𝐵𝑧 0 −𝐵𝑥

−𝐵𝑦 𝐵𝑥 0
] [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] 

𝑩̇ = [

0 −𝐵𝑧 𝐵𝑦

𝐵𝑧 0 −𝐵𝑥

−𝐵𝑦 𝐵𝑥 0
] [

0
0
2𝜋

𝑇

] 

𝑩̇ =

[
 
 
 
 

2𝜋

𝑇
𝐵𝑦

−
2𝜋

𝑇
𝐵𝑥

0 ]
 
 
 
 

 

The resulting relation shows that the X component of the 𝑩̇ vector should be equivalent to 

the Y component of the local magnetic field in BF scaled by the constant angular rate, while 

the Y component of the 𝑩̇ vector should be equal in magnitude but opposite in direction to 

the X component of the body-fixed local magnetic field vector scaled by the same angular 

rate. The simulation was run for 5562 seconds corresponding to one orbit. Figure 38 plots 

the simulation results of the calculated X and Y components of 𝑩̇ in nT/s as a function of 

time and superimposes the corresponding 
2𝜋

𝑇
𝐵𝑦 and −

2𝜋

𝑇
𝐵𝑥 components in nT. As expected, 

there is excellent agreement between these values with an average error on the order of 

10−17. 
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Figure 38: X and Y Component Comparison of 𝐵̇ and 𝐵 in the Body-Fixed Frame, Slow 

Angular Rate 

The relation for 𝑩̇ was then validated for a higher initial constant satellite angular rate. 

𝜔𝑖𝑛𝑖 = [
0
0

0.1
] rad/s 

𝐵̇ = [
0.1𝐵𝑦

−0.1𝐵𝑥

0

] 

The simulation was again run for one orbit (5562 seconds) and the results are shown in 

Figure 39. Due to the density of the plot resulting from the higher angular rate only 1000 

seconds of the simulation are shown. The average errors for the obtained data were on the 

order of 10−15.  Thus, the calculation of 𝑩̇ as implemented in the simulator can be 

considered valid.  
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Figure 39: X and Y Component Comparison of 𝐵̇ and 𝐵 in the Body-Fixed Frame, Fast 

Angular Rate 

The inability to attain three-axis B-dot control over a satellite in an equatorial orbit 

due to the invariability in the direction of the local magnetic field vector is well-documented. 

Without significant changes in local magnetic field direction, control torques can only be 

applied in one plane and one degree of freedom of control is lost. To validate the 

implementation of the B-dot control algorithm, a simplified constant-direction geomagnetic 

field case for a circular equatorial orbit was considered. The magnetic field shown in Figure 

40 is defined as constant with magnitude 4000 nT in the ECI Z direction. Within the B-dot 

algorithm itself, an arbitrary constant gain was selected:  

𝐾 = −1 × 106 A2𝑠3m2/rad-kg 
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Figure 40: Constant Magnetic Field in ECI Z Direction 

For the first test case, an initial velocity of 0.1 rad/s was applied to the satellite along 

the body-fixed Z-axis with the B-dot algorithm applied over the full orbit. The resulting 

simulations show that the angular rates in both the ECI and BF frames remain 

unchanged across the entire orbit and the resulting applied control torquers are zero. 

One can understand the reason for this observation by examining Equation (50) which, 

for this case, would result in 𝑩̇ being zero. From Equation (51), the dipole moment 𝑚 

induced by the magnetorquers would then be zero and, from Equation (52), the resulting 

applied control torque 𝑻𝑐  on the satellite would be zero. Thus, this first validation case 

ensures that the satellite cannot be detumbled when its angular rate vector is directed along 

the local magnetic field axis, as is the characteristic limitation of the B-dot algorithm.  

For the constant magnetic field along the ECI Z direction, one would expect that an 

initial spin about all three BF axes would result in the rates about X and Y to tend towards 

zero while the rate about Z would remain unchanged. To illustrate this concept, the angular 

rate vector in Figure 41 with distinct components in X, Y, and Z was applied to the satellite.  

Y
I
 

Z
I
 

X
I
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Figure 41: Angular Rate Vector for Second B-Dot Test Case 

𝝎𝑖𝑛𝑖 = [
0.11

−0.12
0.13

]  rad/s 

Figure 42 plots the angular rate components and magnitudes over one orbit for 

the case where an initial angular rate is applied about all three body axes. The initial 

0.13 rad/s component of the angular velocity is shown to remain constant in the ECI frame 

over one orbit – demonstrated by the datacursor in subplot 6 – as it is unaffected by B-dot 

control while the remaining rate components in ECI tend exponentially towards zero. 

Corresponding components of the magnetic dipole moments and control torques are 

plotted in Figure 43, with datacursors on the latter near zero across the majority of the 

orbital period indicating that no further control is possible in this case.  

38.61 

-47.49 

XI 

ZI 

YI 
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Figure 42: Body Angular Rates for 𝜔𝑖𝑛𝑖 = [0.11 −0.12 0.13]𝑇 rad/s, Field Along ECI Z Axis 

 

 
Figure 43: Magnetic Dipole Moment and Control Torque for Figure 42 Case 
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These two cases prove the proper implementation of the B-dot algorithm in the simulator 

and the significance of its limitations, with results exhibiting no change in angular rate when 

rate and field vectors are aligned and clear exponential profiles in the reduction of angular 

rate when they are not. Furthermore, Figure 42 demonstrates that the profile of the change 

in angular rates of the satellite when B-dot control is applied is exponential, as documented 

under ideal conditions [117, p. 80]. Additional cases (not shown) produced similar expected 

results for all possible combinations of rate and field directions. 

 The final step in validating the implementation of the B-dot algorithm in the 

simulator is to test its functionality with more realistic magnetic fields obtained from the 

IGRF-12 model. Two orbit cases are examined – an equatorial orbit where the magnetic field 

is oriented predominantly in the ECI Z direction and the ISS orbit defined in Section 3.1.1. 

The constant B-dot gain value was reduced in magnitude from the previous cases to avoid 

potential over-saturation of the magnetorquers in the presence of varying magnetic field 

strength. This gain was selected as: 

𝐾 = −1 × 104 A2𝑠3m2/rad-kg 

In both cases, the initial orbital radius was selected as 𝑟𝑖𝑛𝑖 = 6785 km and the initial angular 

rate vector of the satellite was specified as: 

𝝎𝑖𝑛𝑖 = [
0.1
0.1
0.1

]  rad/s 

The equatorial orbit case is defined by the following parameters with its ground track 

shown in Figure 44.  

𝑒 = 0 

𝑖 = 0.0001 rad 

𝜔 = 0.0001 rad 

Ω = 0.0001 rad 

𝑇 = 5562 s 

𝜃𝑖𝑛𝑖 = 0 

𝑡𝑝 = 0 

𝑡𝑖𝑛𝑖 = 13: 09: 36 UTC 
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Figure 44: Equatorial Orbit Ground Track [118] 

Magnetic field vectors in the ECI frame around the equator are shown in Figure 45, 

with the approximate 23° offset due to Earth’s obliquity between each orbit illustrated in 

Figure 44 excluded.  

 

Figure 45: ECI Magnetic Field Vector Directions Over One Equatorial Orbit 

From this figure, the geomagnetic field direction appears to be oriented predominantly in 

the Z direction with very little variation in the X and Y directions. This observation is 

supported by the field strength vector components over one orbit plotted in Figure 46, 

showing Z to be greatest in magnitude throughout the orbit.  

                                  Z 

 

Y                                                                                    

                                                                    X 



77 
 

 
 

 
Figure 46: ECI Magnetic Field Strength Over One Equatorial Orbit 

Body angular rates are shown in Figure 47 for one orbit in the BF and ECI frames. 

The rates tend towards zero but do not reach it in a single orbit, as expected given the 

general Z-axial trend in geomagnetic field direction for an equatorial orbit shown in Figure 

45. Corresponding magnetic dipole moments and control torques are plotted in Figure 48 as 

a function of time. It was expected that the equatorial orbit will be unfavourable for B-dot 

control given the lack of variation in magnetic field strength and direction across a single 

orbit, which has proven to hold true – the satellite will need to orbit significantly longer to 

reduce the body angular rates to zero. 
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Figure 47: Body Angular Rates Over One Equatorial Orbit with B-dot Control 

 

 

Figure 48: Magnetic Dipole Moment and Control Torques Over One Equatorial Orbit with B-
dot Control 
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The previously defined ISS orbit is used as the second realistic geomagnetic field test 

case; its orbital elements are reproduced below with its ground track following in Figure 49.  

𝑒 = 0.0001068 

𝑖 = 51.6413° 

𝜔 = 231.7821° 

Ω = 257.8729° 

𝑇 = 5562 s 

𝜃𝑖𝑛𝑖 = 251.5996° 

𝑡𝑝 = 1673 s 

𝑡𝑖𝑛𝑖 = 13: 09: 36 UTC 

 

Figure 49: Inclined ISS Orbit Ground Track [118] 

The local magnetic field direction plotted in Figure 50 is shown to vary about all three axes 

across one orbit. Figure 51 plots the individual components of the field over one orbit, 

showing greater variations in magnitude and direction than in the equatorial orbit case. 



80 
 

 
 

 

Figure 50: ECI Magnetic Field Vector Directions Over One Inclined ISS Orbit 

 

 

Figure 51: ECI Magnetic Field Strength Over One Inclined ISS Orbit 

                                  Z 

  

           

Y                                                                      X 
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Controlled body angular rates over one orbit follow in Figure 52 with associated 

magnetic dipole moments and control torques plotted in Figure 53. The angular rates 

approach zero and magnetic dipole moments and corresponding torques approaching 

virtually zero. As demonstrated by comparing geomagnetic field directions in Figure 45 and 

Figure 50, inclined orbits experience far greater directional variation and are hence 

favoured for use with magnetically controlled LEO satellites for their ability to reduce 

angular rate more significantly within the same timeframe. 

 

Figure 52: Body Angular Rates Over One Inclined ISS Orbit with B-dot Control 
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Figure 53: Magnetic Dipole Moment and Control Torques Over One Inclined ISS Orbit with 
B-dot Control 

5.2.1 Gain Tuning 
The B-dot control algorithm is considered optimised for the lowest possible settling 

time in accordance with the mission requirement of detumbling in under 15 hours (around 

10 orbits). The designed B-dot controller makes use of a constant proportional gain in the 

interest of reducing the potential for controller error in flight. To select a suitable gain, 

different values were tested under ideal conditions with no external disturbance torques 

and perfect knowledge of the attitude, local magnetic field, and angular rate. The absence of 

external disturbances implies that the satellite should remain motionless once detumbled, 

and thus is considered settled once the angular rate reaches 10−6 rad/s. To determine the 

significance of changes in CubeSat geometry on the ability of the controller to function as 

designed, the simplified 1U and 2U geometries shown in Table 6 were analysed.  

The initial angular rate vector was chosen as in previous validation cases, 

approximately equivalent to a 10 deg/s tumble: 

𝝎𝑖𝑛𝑖 = [
0.1
0.1
0.1

]  rad/s 

Figure 54 plots settling times for the 1U geometry as a function of B-dot gains 𝐾 in 

the absence of external disturbances and assuming perfect attitude, local magnetic field, and 
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angular rate knowledge. The inset plot shows the settling times for additional gains between 

6,000 and 10,000 A2s3m2/rad ∙ kg – the best performing region in the dataset. Under these 

conditions, a gain of 𝐾 =  7900 A2s3m2/rad ∙ kg yielded the lowest settling time of 4224 

seconds (less than one orbital period) for the 1U geometry. 

 
Figure 54: 1U Geometry B-dot Settling Times for Different Gains 𝐾 [119] 

A similar range of B-dot gains were then simulated for the 2U geometry. Figure 55 compares 

the resulting settling times for both geometries, the 1U denoted by cubes and the 2U by 

diamonds. A gain of 𝐾 =  40,000 A2s3m2/rad ∙ kg yielded the lowest settling time at 7258 

seconds (18 minutes more than one orbital period) for the 2U geometry, circled in red in 

Figure 55. While the lowest settling times for the 1U and 2U CubeSats are similar, the 2U 

geometry requires a B-dot gain approximately 5 times higher than that for the 1U geometry. 

Figure 55 further suggests there exists a relatively wide range of B-dot gain values that 

enable both 1U and 2U satellites to settle in 10 orbits or fewer, thus easily meeting the 

relevant LORIS system requirement. Should the satellite geometry or its mass distribution 

characteristics change in orbit, there is potential for the B-dot controller to retain its base 

functionality to detumble the satellite within a reasonable timeframe with its launch 

parameters.  
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Figure 55: Comparison of B-dot Settling Times with Different Gains 𝐾 for 1U and 2U 
Geometries [119] 

 These results are presented for idealised geometry, environment, and sensor data; 

the settling time can be expected to worsen as more realistic conditions are added. These 

results can be taken as a baseline to assess final controller performance against. The 

following section relates to the last point – instead of assuming the angular rate to always be 

known, it is assumed that the angular rate cannot be measured and can only be 

approximated from existing sensor data.  

5.3 B-Dot Algorithm with Derivative  
Reliance on a gyroscope to provide accurate readings of Earth’s magnetic field 

becomes problematic when the satellite’s rates are reduced beyond the typical gyroscope’s 

operational range. An overcompensating detumbling algorithm may further destabilise the 

satellite without an accurate read on the satellite’s body rates and may prevent the rates 

from ever being reduced to an appropriate range for use of the three-axis pointing 

controller. An alternative to using a gyroscope to determine the satellite’s angular rates is to 

instead use the change in magnetic field direction with time [120]. 

The expression for magnetic dipole moment 𝒎 in Section 5.2 may be redefined with 

𝑩̇ equal to the time derivative of the local magnetic field: 

 
𝒎 = −𝐾𝑩̇ = −𝐾

𝑑𝑩

𝑑𝑡
  (53) 
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For a sample time 𝑡𝑠 of 1 second, the time derivative can be calculated at a timestep 𝑘 from 

the difference of its current and previous (𝑘 − 1) measurements: 

 
𝑩̇𝑘 =

𝑩𝑘 − 𝑩𝑘−1

𝑡𝑠
 (54) 

Measured magnetic field data is noisy, and therefore an infinite impulse response (IIR) low-

pass filter is applied to the calculated derivative to produce a cleaner derivative estimate 

according to [121]: 

 𝑩̇𝑘 = 𝛼𝑩̇𝑘 + (1 − 𝛼)𝑩̇𝑘−1 (55) 

where smoothing factor 𝛼 was selected empirically to produce the most consistent results 

as:  

𝛼 = 0.03 

Figure 56 compares the low-pass-filtered derivative of the noisy magnetic field to 

the derivative of the noiseless angular rate in the same reference frame over a 3500 second 

period. The MPU-9250 magnetometer noise described in Section 4.3 is used for the former. 

The filtered derivative approximates the amplitude of higher-frequency regions less 

accurately than lower-frequency regions, though any detriment this causes to the overall 

performance of the controller quickly resolves itself once the rates are attenuated within a 

certain frequency.  
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Figure 56: Comparison of Magnetic Field Derivatives Over Portion of Two Orbits 

 The next section compares the performance of this form of the B-dot controller to 

that derived in Section 5.2 for the final geometry of the satellite.  

5.4 B-dot Final Results 
With the form of the B-dot controller finalised, another iteration of gain tuning was 

completed for the final geometry of the satellite. With noisy differentiated inputs, body 

angular rates will never truly reach zero. Thus, the settling time criteria was redefined for 

this tuning iteration – the satellite is considered settled once its angular rates remain within 

the threshold of ±0.005 rad/s for 500 seconds with the settling time taken once the rates 

about all axes enter and remain within this range. At higher gains, it was found that the 

satellite would occasionally leave this threshold after some duration of time. For a proper 

comparative basis with the results presented in Section 5.2.1, settling times greater than 

150000 seconds (27 orbits) were excluded from the analyses and initial angular rates were 

set to 0.1 rad/s about every axis. Environmental disturbance torques are summed to the B-

dot control torques before being applied to the satellite in Simscape.  
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Figure 57 plots different B-dot gains versus settling time over a similar range as in Figure 

55. Once again, the settling times formed a parabolic profile with respect to the logarithmic 

gain axis. Gains on the highest and lowest ends of the spectrum exhibited more noise in their 

rate behaviour than those in the vicinity of the vertex of the parabola and would 

occasionally spike outside of the 0.005 rad/s threshold for durations of less than 100 

seconds. The fastest settling time is circled on the plot for a gain 𝐾 = 7 × 104 A2s3 m2/

rad kg at 6716 seconds, or approximately 1.2 orbits. 

 

Figure 57: New B-dot Settling Times for Different Gains 𝐾 

 The following three plots present different detumbling case studies for the final low-

pass filtered derivative B-dot controller with disturbance torques and sensor noise present 

for the final satellite geometry. The two grey lines imposed on each plot show the 

detumbling threshold of ±0.005 rad/s. For all cases, the body angular rates are maintained 

within this threshold once the satellite is detumbled.  

For the first case study, Figure 58 plots the body angular rates for the tuning case 

with an initial angular rate of 0.1 rad/s about each axis (a total initial rate magnitude of 

0.1732 rad/s (approximately 10 deg/s)). The satellite settles as stated in approximately 

6716 seconds or 1.2 orbits. 
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Figure 58: Best Case B-Dot Gain Detumbling from 0.1 rad/s about All Axes 

Figure 59 shows the results for the second case study where the satellite started 

from a much higher initial angular rate of 0.35 rad/s (20 deg/s) about each axis, with an 

absolute magnitude of 0.6061 rad/s (approximately 34 deg/s). Though detumbling takes 

approximately 10 times as long to settle versus the previous case at 12 orbits, the body 

angular rates are still reduced and maintained within the threshold.  

 
Figure 59: Best Case B-Dot Gain Detumbling from 0.35 rad/s about All Axes 
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For the final case study, detumbling a random initial tumble rate with different 

magnitudes and directions about each body axis is shown in Figure 60. The initial rate 

vector is shown below, having a magnitude of 0.2333 rad/s (approximately 13 deg/s). 

𝝎 = [
−0.12
0.2

0.005
] 

The satellite detumbles in approximately 2.5 orbits, with the highest initial rate in Y settling 

last within the threshold.  

 
Figure 60: Best Case B-Dot Gain Detumbling from 𝝎𝑖 = [−0.12 0.2 0.005] rad/s 

Figure 61 reproduces Figure 58 in its bottom subplot to compare the detumbling 

profile directly with the performance of the original B-dot controller derived in Section 5.2. 

The top subplot uses the original controller with the best-case gains identified in 5.2.1 with 

the final satellite geometry, noisy gyroscope and magnetometer readings, and disturbance 

torques summed to its control signal output. Though the original controller exhibits the 

expected exponential profile characteristic of the B-dot algorithm, it does not settle in 

significantly less time than the low-pass filtered derivative controller – 0.8 orbits versus 1.2 

orbits. Neither destabilise once their rates have entered the detumbling threshold. Thus, the 

new B-dot simplifies the ADCS with little effect on overall control performance.  
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Figure 61: Comparison of Both B-dot Controllers for the Final Satellite Geometry with Noisy 

Input and Disturbance Torques 

 With the detumbling controller finalised, the implementation of the first of the two 

operational phases of the LORIS CubeSat in the simulator has been completed. The 

controller is stable in the presence of worst-case disturbance torques and is capable of 

detumbling the satellite over a wide range of angular rates to the order of magnitude at 

which the pointing controller can operate, easing the transition between operational phases. 

The next chapter outlines the design of and problems encountered for a magnetically-

actuated PD pointing controller.  
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Chapter 6: Magnetic Pointing Control 
The second of the LORIS CubeSat’s two main ADCS operational phases is the three-

axis pointing phase, wherein the satellite tracks a desired attitude that enables its payload to 

complete its Earth-pointing objective using a three-axis stabilised control algorithm. This 

chapter investigates the feasibility of using only magnetic actuators with a proportional-

derivative (PD) attitude controller to achieve the desired pointing accuracy within a 

reasonable timeframe. Improvements to the attitude estimate and raw sensor data used as 

inputs to the pointing controller are assessed, and problems encountered with magnetic 

actuation are presented.  

6.1 PD Controller 
Three-axis magnetic attitude control for the satellite can be accomplished using a PD 

controller defined as follows [48, p. 5]: 

 𝑻𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑
= −𝐾𝑝𝑞̂ − 𝐾𝑑𝝎̂ (56) 

where 𝑻𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑
 is the desired control torque expressed in the BF frame, 𝑞̂ is the vector part 

of the quaternion error, 𝝎̂ is the body angular rate error, and 𝐾𝑝 and 𝐾𝑑 are the controller 

proportional and derivative gains, respectively. The quaternion error 𝑞̂ and body angular 

rate error 𝝎̂ are defined as the attitude quaternion and body angular rates in the body-fixed 

frame expressed relative to the nadir-pointing frame. Both proportional and derivative 

terms are negative; taking the negative of the quaternion vector elements defines the 

opposite-direction axis, thus representing the “error” with the nadir-pointing attitude as the 

desired orientation [122, p. 9]. Angular rate error is taken directly from Simscape (with the 

optional addition of noise). Noiseless quaternion error is taken directly from Simscape for 

initial validation cases, while subsequent simulation testing calculates the error quaternion 

using the following relation: 

𝑞̂ =  𝑞𝐵𝐹𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
−1 𝑞𝑁𝑃𝐼 ≡ 𝑞𝐵𝐹𝑁𝑃 

where 𝑞𝐵𝐹𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
 is the estimated attitude quaternion from the q-Method representing the 

orientation of BF frame with respect to the ECI frame, and 𝑞𝑁𝑃𝐼 represents the orientation of 

the NP frame with respect to ECI frame. The quaternion inverse is calculated as follows, 

where 𝒊, 𝒋, and 𝒌 are unit vectors along the BF X, Y, and Z axes, respectively [123]:  

 
𝑞−1 =

𝑞𝑠 − 𝒊𝑞𝑥 − 𝒋𝑞𝑦 − 𝒌𝑞𝑧

𝑞𝑠
2 + 𝑞𝑥

2 + 𝑞𝑦
2 + 𝑞𝑧

2
 (57) 



92 
 

 
 

The desired outcome of magnetic PD control is aligning the CubeSat’s BF frame with 

the NP frame such that it rotates at its same relative rate with respect to the ECI frame. The 

corresponding desired vector of angular rates 𝜔𝑑𝑒𝑠𝑖𝑟𝑒𝑑  and attitude quaternion 𝑞𝑑𝑒𝑠𝑖𝑟𝑒𝑑  are 

as follows: 

𝜔𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = [

0

−
2𝜋

𝑇
0

]  rad/s 

𝑞𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = [

1
0
0
0

] 

where the first element of 𝑞𝑑𝑒𝑠𝑖𝑟𝑒𝑑  is the scalar component of the quaternion. 

 The desired control torque 𝑻𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑
 obtained from Equation 56 is not necessarily 

attainable given the nature of the local magnetic field. To calculate the achievable (actual) 

control torque 𝑻𝑐𝑎𝑐𝑡𝑢𝑎𝑙
 the magnetic moment 𝑴𝐵𝐹  is first calculated using 𝑻𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑  and the 

local magnetic field strength 𝑩𝐵𝐹 as follows: 

 𝑴𝐵𝐹 = 𝑩𝐵𝐹
−1 𝑻𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑

 (58) 

The actual control torque 𝑻𝑐𝑎𝑐𝑡𝑢𝑎𝑙
 that can be applied is then calculated from the desired as 

follows [48, p. 5]: 

 𝑻𝑐𝑎𝑐𝑡𝑢𝑎𝑙
= 𝑴𝐵𝐹 × 𝑩𝐵𝐹 (59) 

where all vectors in these equations are expressed in the BF frame. 

The difference between the desired and actual control torques is illustrated in 

Figure 62; the actual control torque is the component of the desired control torque that lies 

in the plane normal to the local magnetic field direction.  

 

Figure 62: Attainable (Actual) PD Control Torque versus Desired PD Control Torque 
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6.1.1 Gain Tuning 
For initial investigation of the effect of different gains on magnetic PD control, the 

simplified 1U and 2U CubeSat geometries in Table 6 were used. The CubeSat was given an 

initial rotation rate of 10−3 rad/s about all three body axes and was simulated under ideal 

conditions assuming no environmental disturbance torques, perfect attitude knowledge, 

and an absence of sensor noise. The amount of time for the satellite to settle to within 5% of 

the desired orbital NP rate of 1.1297 × 10−3 rad/s was then determined. The corresponding 

orientation of the satellite at this settling time was also checked to ensure that the satellite’s 

attitude matched the desired NP frame: if the attitude error was less than 10 degrees, then 

the satellite was considered to have “settled”. 

When attempting to select suitable proportional and derivative gains for the 

magnetic PD control of a 1U CubeSat, it was observed that many gain combinations did not 

enable the CubeSat to settle within 500 orbits and some gain combinations could not 

attenuate the errors. For the simulation conditions used in this research, PD controller gains 

of 𝐾𝑝  =  1 × 10−9 Nm and 𝐾𝑑  =  1 × 10−7 Nms/rad were found to successfully enable the 

1U CubeSat to track the desired NP frame within ~500 orbits (about 32 days.)  

Using 𝐾𝑝 = 1 × 10−9 Nm as a starting point, equally spaced values of 𝐾𝑑 ranging 

between 10−7 ≤ 𝐾𝑑 ≤ 10−3 Nms/rad (i.e. 1 × 10−7, 2 × 10−7, 3 × 10−7, … ) were simulated. 

Figure 63 plots the corresponding settling times as a function of 𝐾𝑑 for gain values that 

successfully enabled the 1U CubeSat to “settle”. Although this figure shows a local minimum 

when 𝐾𝑑 = 1 × 10−5 Nms/rad, it was observed that a gain of 𝐾𝑑  =  2 × 10−5 Nms/rad 

exhibited a less oscillatory response at steady-state which would be preferable for an Earth-

pointing satellite. Therefore, 𝐾𝑑  =  2 × 10−5 Nms/rad was selected as the derivative gain 

for the next iterative stage of tuning. 
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Figure 63: PD Settling Time for 1U CubeSat With Constant 𝐾𝑝 = 1 × 10−9 Nm and Different 

Values of 𝐾𝑑 [119] 

Holding 𝐾𝑑 =  2 × 10−5 Nms/rad fixed, the value of 𝐾𝑝 was then varied for the 1U 

CubeSat from 1 × 10−9 to 1 × 10−8 Nm. For comparison, these gains were also used to 

simulate the 2U CubeSat and the resulting settling times as a function of 𝐾𝑝 are 

superimposed for both geometries in Figure 64. Note that the two values absent for the 1U 

CubeSat (𝐾𝑝  =  9 × 10−9 and 𝐾𝑝 =  1 × 10−8 Nm) did not successfully settle within 500 

orbits and are, therefore, excluded from the plot to maintain a reasonable scale. 



95 
 

 
 

 
Figure 64: PD Gain Comparison for 1U and 2U CubeSat Geometries with Constant 𝐾𝑑 =

2 × 10−5 Nms/rad and Different Values of 𝐾𝑝 [119] 

This iterative gain tuning process can be repeated as desired. For example, if one 

were to use Figure 64 and continue to tune the gains for the 2U CubeSat, then one would 

select the lowest settling time (corresponding to 𝐾𝑝  =  7 × 10−9 Nm) and, holding this gain 

fixed, vary the 𝐾𝑑 values. As an example, Figure 65 plots the corresponding settling times for 

the 2U CubeSat as a function of 𝐾𝑑 showing that the lowest settling time of 13,707 seconds 

(2.5 orbits) corresponds to 𝐾𝑑 =  9 × 10−6 Nms/rad. 

Tuning was stopped at this stage for the scope of this thesis, although the iterative 

process may be continued if desired. For the simulation conditions used, it can be concluded 

that the selection of magnetic PD attitude controller gains is far more sensitive to both 

changes in satellite geometry and combinations of control gains when compared to a 

magnetic B-dot detumbling controller. Improper PD control gain selection could result in 

significant settling times or an ineffective attitude control system. 
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Figure 65: Figure 66. PD settling time for 2U CubeSat with constant 𝐾𝑝 = 7 × 10−9 Nm and 

different values of 𝐾𝑑 [119] 

 This section assumed no disturbance torques and perfect attitude knowledge with 

no sensor noise in its analyses. More realistically, the controller will be acting on noisy 

inputs gleaned from the q-Method attitude determination algorithm and the gyroscope. As 

magnetic PD control performance notably degrades in the presence of noise, next section 

proposes a method to improve the performance of this control under non-ideal conditions.  

6.2 Extended Kalman Filter – Magnetic Attitude Control 
Improving magnetic PD controller performance and stability necessitates measures 

taken to reduce the impact of sensor noise. In lieu of directly using raw gyroscope sensor 

data and raw output from the q-Method algorithm in the PD controller, this raw data was 

applied to an extended Kalman filter (EKF) which was implemented in the simulator with 

the express purpose of producing cleaner input for use with the PD controller. Use of a 

Kalman filter to improve attitude estimates from QUEST/q-Method has been documented in 

the literature for CubeSats such as AntelSat [16], AAUSAT3 [12], InnoSat [124], and ITASAT 

[125].   

The EKF and its internal nonlinear state-space dynamics model of the satellite are 

based on the “reduced quaternion model” proposed by Yang, expanded to include all four 

elements of the attitude quaternion [77, p. 90]. The EKF operates at a sample rate of 1 
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second, with a 10% model uncertainty added to the dynamic model by multiplying the 

satellite inertia matrix 𝑱 by a factor of 1.10. In this section, identity matrices are denoted 𝑰𝑖 

and zero matrices are denoted ∅𝑚×𝑛. 

The 10 × 1 state matrix 𝒙 comprises the three components of the BF satellite angular 

rate 𝝎 (from the gyroscope) in rad/s, the four components of the BF/ECI attitude 

quaternion q (from the q-Method), and the three components of the gyroscope bias vector 

𝜷: 

 𝒙 = [𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑠 𝛽𝑥 𝛽𝑦 𝛽𝑧]𝑇 (60) 

The execution of the EKF consists of a prediction phase and an update phase. For the former, 

an internal discrete-time state-space dynamics model of the satellite is used to estimate the 

current state of the system 𝒙𝑘|𝑘−1 from the previous estimate of the state 𝒙𝑘−1|𝑘−1 and 

previous control input 𝒖𝑘−1 as follows [77, p. 91]: 

 𝒙𝑘|𝑘−1 = 𝑭(𝒙𝑘−1|𝑘−1, 𝒖𝑘−1) (61) 

where the subscript notation 𝑘|𝑘 − 1 indicates that the current estimate at time step 𝑘 is 

made given the previous measurement from the sensors at time step 𝑘 − 1. The function 

𝑭(𝒙𝑘−1|𝑘−1, 𝒖𝑘−1) in Equation 84 is given by [77, p. 91]: 

𝑭(𝒙𝑘−1|𝑘−1, 𝒖𝑘−1) = 𝑥𝑘−1|𝑘−1 +

[
 
 
 
 
 
 

−𝑱−1𝝎𝑘−1|𝑘−1
x (𝑱𝝎𝑘−1|𝑘−1) + 𝑱−1𝒖𝑘−1

−
1

2
𝝎𝑘−1|𝑘−1

x 𝒒𝑘−1|𝑘−1 +
1

2
𝑞0𝑘−1|𝑘−1

𝝎𝑘−1|𝑘−1

−
1

2
𝝎𝑘−1|𝑘−1

𝑇 𝒒𝑘−1|𝑘−1

∅3×3 ]
 
 
 
 
 
 

dt (62) 

where 𝝎𝑘−1|𝑘−1, 𝒒𝑘 and 𝑞0𝑘
 are the angular velocity and quaternion elements of 𝒙𝑘−1|𝑘−1 

and 𝒖𝑘−1 is the applied control torque from the previous time step 𝑘 − 1. The superscript 𝑥 

in 𝝎𝑘−1|𝑘−1
x  corresponds to the skew-symmetric matrix given by: 

 

𝝎𝑥 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] (63) 

The corresponding 7 × 1 output vector 𝒚𝑘|𝑘−1 is defined based on the estimated state 𝒙𝑘|𝑘−1 

which includes only the angular rate and quaternion estimates [77, p. 92]:  

 𝒚𝑘|𝑘−1 = 𝑯𝒙𝑘|𝑘−1 (64) 
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where 𝑯 is the observation (or measurement) matrix: 

 

𝑯 = [

𝑰3 ∅3×3 ∅3×1 𝑰3

∅3×3 𝑰3 ∅3×1 ∅3×3

∅1×3 ∅1×3 1 ∅1×3

] (65) 

To obtain the covariance prediction matrix 𝑷𝑘|𝑘−1 containing the variance and correlation 

between states, the state transition Jacobian 𝑭𝑘−1 is defined as [77, p. 93]: 

𝑭𝑘−1 =

[
 
 
 
 
 
 𝑰3 − 𝑱−1(𝝎𝑘−1|𝑘−1

x 𝑱 − (𝑱𝝎𝑘−1|𝑘−1)
𝑥
)dt ∅3×3 ∅3×1 ∅3×3

1

2
(𝒒𝑘−1|𝑘−1

x + 𝑞0𝑘−1|𝑘−1𝑰3)dt 𝑰3 −
1

2
𝝎𝑘−1|𝑘−1

x dt
1

2
𝝎𝑘−1|𝑘−1dt ∅3×3

−
1

2
𝒒𝑘−1|𝑘−1

𝑇 dt −
1

2
𝝎𝑘−1|𝑘−1

𝑇dt 1 ∅1×3

∅3×3 ∅3×3 ∅3×1 𝑰3 ]
 
 
 
 
 
 

  (66)  

such that 𝑷𝑘|𝑘−1 can be calculated as [77, p. 93]:  

 𝑷𝑘|𝑘−1 = 𝑭𝑘−1𝑷𝑘−1|𝑘−1𝑭𝑘−1
𝑇 + 𝑳𝑸𝑳𝑇 (67) 

where 𝑷𝑘−1|𝑘−1 is the covariance prediction matrix from the previous state estimate, 𝑸 is 

the process noise covariance matrix, and 𝑳 is the control input matrix, defined for a sample 

time 𝑡𝑠 = 1 as: 

 𝑳 = 𝑰10𝑡𝑠 (68) 

As a result of the prediction phase, the EKF produces a state prediction 𝒙𝑘|𝑘−1and 

covariance prediction 𝑷𝑘|𝑘−1 for the current time step 𝑘 using only the measurement of the 

states from previous time step 𝑘 − 1. The next step in the EKF is the update phase, which 

compares these predictions against measurements of the angular rates from the gyroscope 

and attitude quaternion from the q-Method 𝒚𝑘 , noting that gyroscope bias is not a 

measurable quantity. The output prediction error (or “innovation”) 𝒚̃𝑘  is defined as [77, p. 

93]:  

 𝒚̃𝑘 = 𝒚𝑘 − 𝑯𝒙𝑘|𝑘−1 (69) 

The innovation covariance is then defined as follows [77, p. 93]: 

 𝑺𝑘 = 𝑯𝑷𝑘|𝑘−1𝑯
𝑇 + 𝑹 (70) 

where 𝑹 is the measurement noise covariance matrix. The computation of the Kalman gain 

𝑲𝑘 is dictated by the invertibility of the innovation covariance. If 𝑺𝑘 is invertible then [77, p. 

93]:  

 𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯
𝑇𝑺𝑘

−1 (71) 
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else, 𝑲𝑘 = ∅10×7. Finally, the updated state estimate 𝒙𝑘|𝑘 and updated covariance prediction 

matrix 𝑷𝑘|𝑘 for time 𝑘 are computed as follows only if a nonzero attitude estimate 

measurement from the q-Method algorithm is available at the current timestep.  

 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝑲𝑘𝒚̃𝑘 

𝑷𝑘|𝑘 = (𝑰10 − 𝑲𝑘𝑯)𝑷𝑘|𝑘−1 
(72) 

If an attitude estimate is not available as a measured state, the state prediction is not 

updated and is output as computed at the end of the prediction phase: 

 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 

𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 
(73) 

The values in the measurement noise covariance matrix 𝑹 are based on the variances 

obtained through experiment for each state’s associated sensor. The values in the process 

noise covariance matrix 𝑸 were empirically set to be an order of 10 larger than R to improve 

EKF performance:  

𝑸 = diag

[
 
 
 
 
 
 
 
 
 
0.00003
0.00003
0.00002

0.02
0.02
0.10
0.04
1
1
1 ]

 
 
 
 
 
 
 
 
 

× 10−3 𝑹 =

[
 
 
 
 
 
 
0.000003
0.000003
0.000002

0.002
0.002
0.01
0.004 ]

 
 
 
 
 
 

 

6.2.1 q-Method Problems and EKF Solutions 
The attitude estimate provided by the q-Method algorithm becomes predictably 

worse with the introduction of sensor noise into the system. Further to that, three 

limitations that can cause major issues with control were discovered during simulator 

development. The first issue concerns the availability of sensor measurements and how 

attitude is handled in the simulator when it cannot be estimated, the second issue relates to 

the duality property of the quaternion and the resultant control instability, and the third 

issue involves compensating for geometric limitations within the q-Method algorithm itself. 

All three solutions proposed in this thesis involve use of the EKF attitude prediction in 

tandem with that from the q-Method.  

6.2.1.1 Attitude Availability  

The first issue relates to the requirement that at least three Sun sensor 

measurements be available at each 1 second sample rate for the q-Method algorithm to 
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calculate the current orientation quaternion. When the Sun vector is not available due to 

eclipse or shadowing of more than 15 of the 18 sensors at once, the q-Method does not have 

enough information to calculate the quaternion and produces Not a Number (NaN) values. 

Predictably, propagating a NaN through to the controllers causes countless numerical errors 

throughout the simulator. To avoid such errors, the NaN quaternion is overwritten with an 

invalid quaternion where all elements are set to zero to flag the EKF downstream to omit 

the update phase. Figure 67 illustrates noiseless q-Method output showing an example of 

periods where the attitude cannot be determined and is therefore overwritten with the zero 

quaternion for a freely tumbling satellite, where 𝑞𝑠 corresponds to the scalar portion of the 

quaternion and 𝑞𝑥, 𝑞𝑦 and 𝑞𝑧 correspond to the vector portion of the quaternion.  

 
Figure 67: q-Method Issues – Availability of Two Distinct Measurement Input Vectors 

This missing data can be further improved upon by using the Kalman filter 

prediction. When all four incoming attitude states are zero, the prediction state and 

covariance matrices are output from the EKF without being updated.  
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6.2.1.2 Quaternion Duality 

The second issue with the q-Method estimate is the issue of duality. Quaternions are 

not unique representations of a given attitude; a quaternion and its negative counterpart 

represent equivalent orientations, one along the positive direction of its axis with a counter-

clockwise rotation angle and one along the negative direction of its axis with a clockwise 

rotation angle. This duality is shown in Figure 68 which compares the q-Method quaternion 

estimate to Simscape’s quaternion output. The q-Method quaternion appears to “flip” 

somewhat indiscriminately, though its clear the profile of the flipped portions is the 

negative of the non-flipped portions. Rapid sign changes will negatively affect the controller 

and the directions of the torques it produces, potentially destabilising the satellite through 

over-actuation under the assumption that the attitude error between timesteps is much 

greater than it is.  

 
Figure 68: q-Method Issues – Quaternion Duality  

This problem is expounded for the QUEST algorithm by authors Campos and 

Furtado [126]. Their analysis proposes a solution based on use of the second derivative of 
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the quaternion scalar element to identify discontinuities in the quaternion output signal: if 

the second derivative of the scalar is greater than some limit value, then a “point filter” 

inverts the output until the next discontinuity is detected [126]. Their solution, however, 

falters when noise is added to the system, with results noting a minimum signal-to-noise 

ratio of 160 dB required for an accurately corrected quaternion to be obtained [126]. A 

more robust solution was therefore sought that did not require taking the derivative of the 

noisy signal. 

A logic condition is therefore proposed in this thesis that compares the q-Method 

output against the attitude estimate from the EKF. If the 2-norm of the difference between 

the q-Method quaternion and EKF prediction is greater than the 2-norm of the difference 

between the negative q-Method quaternion and EKF prediction, the q-Method quaternion is 

flipped. Figure 69 demonstrates this condition. In Case 1, the difference between the q-

Method and EKF quaternions is smaller than the difference between the negative q-Method 

and EKF quaternions, and thus the q-Method estimate would not be flipped. For Case 2, the 

difference between the q-Method and EKF quaternions is larger than the difference between 

the negative q-Method and EKF quaternions, and thus the q-Method quaternion would be 

flipped.  

 
Figure 69: Quaternion Duality Logic Condition 

6.2.1.3 Parallel Inputs 

The third issue with the q-Method estimate relates to the relative orientation of the 

pairs of its input vectors corresponding to the measurement and reference Sun vectors as 

well as the measurement and reference Earth magnetic field vectors. When either the two 

measurement vectors or two reference vectors approach parallel, the attitude is rendered 
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not uniquely determinable. For the noiseless q-Method results shown in Figure 70 the 

satellite was held at a zero-error pointing attitude for two orbits. The top plot shows the 

angle between the Sun reference vector and IGRF-12 vector – both expressed in ECI – 

approaching 180 degrees around the end of the first orbit, and the quaternion scalar and 

vector components in the plots below worsening as a result. Peak Euler angle errors are 

[4.5 3 1] 

 
Figure 70: q-Method Issues – Parallel Inputs 

To overcome this issue, this thesis proposes to incorporate the following logic: When the 

input vectors are directed within 10 of parallel to one another (i.e. > 170 or < 10), the q-

Method outputs a zero quaternion which, similar to the first issue, flags the downstream 

EKF to omit the update phase. 

6.2.2 EKF Results 
With the three solutions to the issues with attitude availability implemented, the top 

subplots of Figure 71 and Figure 72 show the raw noisy gyroscope angular rates and q-
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Method attitude estimates, respectively, while the bottom subplots of these figures illustrate 

the improvements achieved with the EKF. Results are shown for one orbit excluding eclipse.  

 
Figure 71: Comparison between Gyroscope Body Angular Rates and EKF Body Angular 

Rates Over One Orbit 

The significant magnitude of noise in the upper plot of Figure 71 is reduced to 

approximately the same level as the orbital rate (0.001130 rad/s) while still following the 

same general profile. A lower noise amplitude will help improve the precision of the 

magnetic PD control torques and reduce settling time overall by eliminating the potential 

issue of overcompensating for noise masquerading as a higher rate. Similarly, the results 

shown in Figure 72 comparing the noisy q-Method output with the three issues fixed as 

outlined greatly reduce the sensor noise and predict the attitude within a fair degree of 

accuracy when it is unavailable.   
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Figure 72: Comparison between q-Method Attitude Quaternion and EKF Attitude 

Quaternion Over One Orbit 

Development and validation of the PD controller and its associated attitude 

determination algorithms has heretofore assumed the absence of external disturbance 

torques. The next section outlines the issues that arise when disturbance torques are 

introduced into the simulation.  

6.2.3 Problems with Magnetic PD Control 
For a typical magnetic PD simulation for the 2U prism geometry using the derived 

best-case gains, no environmental disturbance torques, noisy sensors, EKF error inputs to 

the controller, and a 90% magnetorquer duty cycle, the results in terms of attitude and rate 

errors are produced as shown in Figure 73 for an initial angular rate condition of 0.1 rad/s 

about all axes. In the beginning oscillatory region, the maximum magnitude of applied 

magnetic moment is approximately 6 × 10−3 Am2, resulting in a maximum applied magnetic 

PD control torque magnitude of approximately 1.5 × 10−7 Nm. The steady-state region 

beginning around 3.5 orbits has an average pointing error of 9.1888 ± 2.4591, falling 

generally within the 10 pointing accuracy requirement for LORIS.  
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Figure 73: Magnetic PD Control Results with Best-Case Gains, Noisy Sensor Data, and No 

External Disturbances 

Until this point, results have been gradually worsening as the simulation becomes 

less idealised with the additions of sensor noise and imperfect estimations of attitude and 

rate. However, even with such modifications to the idealised case, settling time has not 

increased significantly versus previous analyses. The addition of disturbance torques is the 

next logical step in making the simulation more realistic.  

The estimated magnitude of the worst-case disturbance torques from Section 3.3.5 

sums, at its peak, to a value of 7.16 × 10−7 Nm. The order of magnitude of the peak magnetic 

control torque generated in the above simulation was 1.5 × 10−7 Nm – implying that the 

nominal magnetic control torque is weaker than the nominal external disturbance. Applying 

a sinusoidal worst-case disturbance torque one order of magnitude lower than the 

maximum (amplitude 1 × 10−8Nm) to the satellite with the same simulation conditions as 

the previous case produced the results shown in Figure 74. Though the rate error in the 

bottom plot attenuates, neither it nor the attitude error reach a steady-state value. The 

satellite instead tumbles at a low rate, with no indication that it may eventually settle to its 

desired value. The maximum magnetic moment applied is unchanged at 6 × 10−3 Am2, as is 

the maximum magnetic control torque of approximately 1.5 × 10−7 Nm. 
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Figure 74: Magnetic PD Control Results with Best-Case Gains, Noisy Sensor Data, and Worst-
Case External Disturbances 

Attempting to counter the disturbance torques by increasing the gains only serves to further 

destabilise the satellite; magnetically torqueing too strongly oscillates the satellite back and 

forth too quickly, and with the inability to apply the exact calculated desired torque, the 

satellite merely ends up oscillating instead of settling to its desired steady state. Thus, for 

the conditions used in this research, the magnetic PD controller cannot be improved by 

simply increasing the gains and moving the controller’s magnetic moments closer to their 

saturation range. To obtain behaviour similar to that in Figure 73, the lowest possible 

sinusoidal disturbance torque that can be added to the simulation is of magnitude 

4 × 10−9 Nm: two orders of magnitude smaller than the estimated maximum. 

At the preliminary design review for the LORIS CubeSat, the Canadian Space Agency 

suggested that accurate pointing control using only magnetorquers may not be attainable 

under realistic environmental conditions. One potential solution is to incorporate reaction 

wheels into the satellite ADCS design. The next chapter, therefore, details the reaction wheel 

design process for a three-axis stabilised PD control scheme capable of overcoming these 

environmental disturbances.  
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Chapter 7: Reaction Wheel Pointing Control  
One of the most common solutions to the three-axis control problem is the 

implementation of a flywheel-based actuator system. Reaction wheels are flywheels 

attached to DC motors whose individual speeds are controlled to produce torques about 

their respective axes of rotation. Unlike magnetic torque rods, the control torque strength of 

reaction wheels is independent of external factors like magnetic field direction. This chapter 

presents the design of a reaction wheel system consisting of three orthogonally-oriented 

reaction wheels (one for each BF axis) capable of countering the worst-case disturbance 

torques presented in Section 3.3.5. Limitations on the use of the reaction wheels are then 

discussed, and operational results are presented.  

7.1 Reaction Wheel Design 
The reaction wheels are designed based principally on rejection of the estimated 

worst-case disturbance torques. Assuming a worst-case disturbance torque magnitude of 

𝑇𝑊𝐶𝐷 = 7.16 × 10−7 Nm from Section 3.3.5, the maximum countering reaction wheel torque 

required with a design margin of 10 is determined as [105, p. 357]: 

 𝑇1 = 10𝑇𝑊𝐶𝐷 = 7.16 × 10−6 Nm (74) 

The momentum storage required to reject this worst-case torque over a fraction 𝑥 = 0.5 of 

the 5,562 s orbital period 𝑃 is then defined as [105, p. 357]: 

 𝐻 = 0.637𝑇1𝑃𝑥 = 0.013 Nms (75) 

where 0.637 is the root mean square average value of a sinusoidal function and setting 𝑥 =

0.5 assumes that the sum of all disturbance torques is cyclic over half an orbit with period 

𝑃 = 5,562 s. This momentum storage is then used to obtain the desired moment of inertia of 

the reaction wheel capable of reaching a maximum wheel speed of 𝜔𝑚𝑎𝑥 = 10,000 RPM 

(1047 rad/s) as follows [105, p. 357]: 

 
𝐼𝑅𝑊 =

𝐻

𝜔𝑚𝑎𝑥
= 1.21 × 10−5 kgm2 (76) 

The flywheel radius was chosen empirically as 𝑟𝑅𝑊 = 0.016 m, to resolve a solid cylindrical 

design wider than it is tall. Using the common density of brass of 𝜌𝑅𝑊 = 8,730 kg/m2, a 

mass and wheel height are obtained as follows: 

 
𝑚𝑅𝑊 =

2𝐼𝑅𝑊

𝑟𝑅𝑊
2 = 0.095 kg (77) 

 ℎ𝑅𝑊 =
𝑚𝑅𝑊

𝜋𝑟𝑅𝑊
2 𝜌𝑅𝑊

= 0.013 m (78) 
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The final flywheel design is summarised in Table 12. 

Table 12: Reaction Wheel Design Parameters 
Parameter  Variable Value 
Maximum Torque with Design Margin  𝑇1 7.16 × 10−6 Nm 

Momentum Storage Requirement  𝐻 0.013 Nms 

Flywheel Moment of Inertia  𝐼𝑅𝑊 1.21 × 10−5 kgm2 

Flywheel Radius  𝑟𝑅𝑊 0.016 m 
Flywheel Mass  𝑚𝑅𝑊 0.095 kg 
Flywheel Height  ℎ𝑅𝑊 0.013 m 

 These design parameters are used to determine a simplified first-order DC motor 

model in the next section, which outlines the PD control scheme for the reaction wheel 

system.  

7.2 Reaction Wheel PD Control 
The magnetic PD controller defined in Section 6.1 – with the proportional gain acting 

on the vector portion of the EKF quaternion attitude error and the derivative gain acting on 

the EKF angular rate error – was reappropriated for use with the reaction wheels. The new 

controller, defined for each wheel via the following equations, computes a scalar reaction 

wheel motor voltage 𝑉𝑐 which saturates at ± 5 V.  

 𝑉𝑐,𝑥 = −𝐾𝑝𝑞̂𝑥 − 𝐾𝑑𝜔̂𝑥 (79) 

 𝑉𝑐,𝑦 = −𝐾𝑝𝑞̂𝑦 − 𝐾𝑑𝜔̂𝑦 (80) 

 𝑉𝑐,𝑧 = −𝐾𝑝𝑞̂𝑧 − 𝐾𝑑𝜔̂𝑧 (81) 

These voltages are set to change once per second to match the sample rate of the EKF 

inputs. The voltages are input to a simplified first-order DC motor model, with steady-state 

gain 𝐾𝑠𝑠 and time constant 𝜏 defined with respect to the maximum reaction wheel speed 

𝜔𝑚𝑎𝑥 and orbital period 𝑃: 

 
𝐾𝑠𝑠 =

𝜔𝑚𝑎𝑥

5 V
= 209.4 

rad

V ∙ s
 (82) 

 
𝜏 =

𝑃/2

5
= 556.2 s  (83) 

The steady-state gain and time constant define the following first-order transfer function: 

𝐺(𝑠) =
209.4

556.2𝑠 + 1
 

Figure 75 plots the resulting 5 V simulated step response for the reaction wheel system, 

showing a rise time of 1,221 seconds and a settling time of 2,190 seconds (2% settling time 

criterion).  
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Figure 75: Reaction Wheel 5 V Step Response  

The corresponding required motor torque as a function of time to achieve the angular rates 

in Figure 98 is plotted in Figure 76 as follows. This value falls well within the range of the 

rated torque for the FAULHABER Series 2610 B reaction wheel motors selected for LORIS at 

2.85 mNm [127]:  

𝑇𝑚𝑎𝑥 = 2.2805 × 10−5 Nm 

 

Figure 76: Reaction Wheel Torque from 5 V Step Response  

Lastly, Figure 77 plots the torque-speed curve for the motors. Speeds up to 600 rad/s (5730 

RPM) correspond to torques that exceed the maximum external disturbance torque by two 

orders of magnitude – offering a wide range of moderate wheel speeds guaranteed to 

produce torques that can overcome the disturbances. 
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Figure 77: Reaction Wheel Torque-Speed Curve 

7.3 Extended Kalman Filter – Reaction Wheel Attitude Control 
The addition of reaction wheels to the ADCS introduces additional inertias and 

dynamics into the system, requiring revision of the state-space system model and its 

associated EKF first presented in Section 6.2. The revised EKF is based on Yang’s “reaction 

wheel desaturation control” expansion to his reduced quaternion dynamics model EKF [77, 

p. 151]. Beyond expanding the state-space model to include reaction wheel dynamics, the 

formulation of the EKF is identical to that presented in Section 6.2.  

A second inertia quantity 𝑱𝑅𝑊 representing the inertia matrix of the three reaction 

wheels aligned with the satellite BF axes is introduced [77, p. 152]. Using the following 

formula for the transverse moment of inertia of a cylinder, the reaction wheel inertia matrix 

is defined:  

 
𝐽𝑅𝑊 =

1

12
𝑚(3𝑟𝑅𝑊

2 + ℎ𝑅𝑊
2 ) (84) 

𝑱𝑅𝑊 = [
1.4977 × 10−5 0 0

0 1.4977 × 10−5 0
0 0 1.4977 × 10−5

] kgm2 

The formulation of this matrix assumes that the three reaction wheels coincide at the 

satellite’s centre of mass, as illustrated in Figure 78. The configuration of the reaction 

wheels in the simulator is shown in the figure adjacent, with the three wheels offset from 

the geometry’s centre of mass by -0.03 m in their corresponding BF directions. 

Superimposed reaction wheels are a physical impossibility; thus, the dynamic model 

contains inherent inaccuracies propagating within the EKF. 
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 Figure 78: Reaction Wheel Configuration 
Assumed for Dynamic System Model with 

Reaction Wheel Dynamics 

 

Figure 79: Actual Reaction Wheel 
Configuration for Dynamic System Model 

used in Simulation 

Both the satellite inertia matrix 𝑱 and the reaction wheel inertia matrix 𝑱𝑅𝑊 are assumed 

diagonal. A 10% model uncertainty is added to the EKF by multiplying both inertia matrices 

by a factor of 1.10. 

Three additional states are added to the original state matrix from Equation 60 – the 

BF X, Y, and Z reaction wheel speeds Ω in rad/s – to define the new 13 × 1 state matrix 𝒙: 

 𝒙 = [Ω𝑥 Ω𝑦 Ω𝑧 𝜔𝑥 𝜔𝑦 𝜔𝑧 𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑠 𝛽𝑥 𝛽𝑦 𝛽𝑧]𝑇  (85) 

The current state of the system 𝒙𝑘|𝑘−1 is estimated via the new dynamic model, where the 

first equation defines the reaction wheel speeds with respect to their generated torques and 

the second defines the overall satellite angular rates to incorporate both control torques 

from the magnetorquers 𝒖𝑘−1 (set to zero) and from the reaction wheels 𝑻𝑐,𝑅𝑊𝑘−1.  

𝒙𝑘|𝑘−1 = 𝒙𝑘−1|𝑘−1 +

[
 
 
 
 
 
 
 

𝑱𝑅𝑊𝑻𝑐,𝑅𝑊𝑘−1 

−𝑱−1𝝎𝑘−1|𝑘−1
x (𝑱𝝎𝑘−1|𝑘−1 + 𝑱𝑅𝑊𝛀𝑘−1|𝑘−1) + 𝑱−1𝒖𝑘−1 − 𝑱−1𝑻𝑐,𝑅𝑊𝑘−1

−
1

2
𝝎𝑘−1|𝑘−1

x 𝒒𝑘−1|𝑘−1 +
1

2
𝑞0𝑘−1|𝑘−1

𝝎𝑘−1|𝑘−1

−
1

2
𝝎𝑘−1|𝑘−1

𝑇 𝒒𝑘−1|𝑘−1

∅3×3 ]
 
 
 
 
 
 
 

dt 
(86) 
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The 10 × 1 output vector 𝒚𝑘|𝑘−1 is defined as before with the addition of the reaction wheel 

angular rates: 

 𝒚𝑘|𝑘−1 = 𝑯𝒙𝑘|𝑘−1 (87) 

where observation matrix 𝑯 is defined:  

 

𝑯 = [

𝑰3 ∅3×3 ∅3×3 ∅3×1 ∅3×3

∅3×3 𝑰3 ∅3×3 ∅3×1 𝑰3

∅3×3 ∅3×3 𝑰3 ∅3×1 ∅3×3

∅1×3 ∅1×3 ∅1×3 1 ∅1×3

] (88) 

Calculating the covariance prediction matrix 𝑷𝑘|𝑘−1 requires the definition of the new state 

transition Jacobian 𝑭𝑘−1: 

𝑭𝑘−1 = ⋯ 

[
 
 
 
 
 
 
 

𝑰3 ∅3×3 ∅3×3 ∅3×1 ∅3×3

−𝑱−1𝝎𝑘−1|𝑘−1
𝑥 𝑱𝑅𝑊dt 𝑰3 − 𝑱−1(𝝎𝑘−1|𝑘−1

𝑥 𝑱 − (𝑱𝝎𝑘−1|𝑘−1 + 𝑱𝑅𝑊𝛀𝑘−1|𝑘−1)
𝑥
)dt ∅3×3 ∅3×1 ∅3×3

∅3×3

1

2
(𝒒𝑘−1|𝑘−1

𝑥 + 𝑞0𝑘−1|𝑘−1
𝑰3) dt 𝑰3 −

1

2
𝝎𝑘−1|𝑘−1

𝑥 dt
1

2
𝝎𝑘dt ∅3×3

∅1×3 −
1

2
𝒒𝑘−1|𝑘−1

𝑇 dt −
1

2
𝝎𝑘−1|𝑘−1

𝑇 dt 1 ∅1×3

∅3×3 ∅3×3 ∅3×3 ∅3×1 𝑰3 ]
 
 
 
 
 
 
 

 

 (89) 

The covariance predication matrix 𝑷𝑘|𝑘−1 is then computed as follows: 

 𝑷𝑘|𝑘−1 = 𝑭𝑘−1𝑷𝑘−1|𝑘−1𝑭𝑘−1
𝑇 + 𝑳𝑸𝑳𝑇 (90) 

with the process noise covariance matrix 𝑸 and 𝑳 defined for a sample time 𝑡𝑠 = 1 as: 

 𝑳 = 𝐼13𝑡𝑠 (91) 

The innovation 𝒚̃𝑘 is defined as 

 𝒚̃𝑘 = 𝒚𝑘 − 𝑯𝒙𝑘|𝑘−1 (92) 

with innovation covariance 𝑺𝑘  

 𝑺𝑘 = 𝑯𝑷𝑘|𝑘−1𝑯
𝑇 + 𝑹 (93) 

where 𝑹 is the measurement noise covariance matrix. If 𝑺𝑘 is invertible, the Kalman gain is 

calculated via 

 𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯
𝑇𝑺𝑘

−1 (94) 
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otherwise, 𝑲𝑘 = ∅13×10. The updated state estimate 𝒙𝑘|𝑘  and covariance prediction matrix 

𝑷𝑘|𝑘 are computed as follows if and only if a nonzero attitude estimate is available at the 

current timestep. 

 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝑲𝑘𝒚̃𝑘 

𝑷𝑘|𝑘 = (𝑰13 − 𝑲𝑘𝑯)𝑷𝑘|𝑘−1 
(95) 

If attitude is unavailable, nether prediction is updated: 

 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 

𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 
(96) 

Values of the measurement noise covariance matrix 𝑹 are again based on the variances 

obtained through experiment for each state’s associated sensor, while the values for 𝑸 were 

tuned to improve EKF performance:  

𝑸 = diag

[
 
 
 
 
 
 
 
 
 
 
 
 
0.0003
0.0003
0.0002
0.00003
0.00003
0.00002

0.02
0.02
0.10
0.04
1
1
1 ]

 
 
 
 
 
 
 
 
 
 
 
 

× 10−3 𝑹 =

[
 
 
 
 
 
 
 
 
 
0.000003
0.000003
0.000002
0.000003
0.000003
0.000002

0.002
0.002
0.01
0.004 ]

 
 
 
 
 
 
 
 
 

 

7.4 Gain Tuning 
Using the attitude and angular rate estimates from the EKF, the reaction wheel PD 

controller gains were tuned via the same process presented for the magnetic PD controller 

in Section 6.1.1. These gains were tuned for the final geometry in Figure 9 with sensor noise 

applied throughout and worst-case external disturbances present. It was assumed that 

pointing must be completed within the non-eclipse regions of the orbit and the satellite was 

considered settled and pointing once all three Euler angles crossed the ±10 accuracy 

threshold. Gains that settled with steady-state errors exceeding 5 were rejected with the 

preferred PD gain combination retaining stability (i.e. exhibiting non-oscillatory behaviour 

once settled), having a low steady-state error, and settling as fast as possible to leave the 

majority of the Sun period available for pointing.  

Settling times were considered from a stationary initial condition with a 71 offset 

from Nadir. Figure 80 fixes an initial value of 𝐾𝑝 = 50/3 = 16.7 V and varies 𝐾𝑑 over two 
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orders of magnitude. The settling times notably do not exhibit a parabolic profile as they did 

for the magnetic PD controller under ideal conditions, and instead appear to be randomly 

distributed. 𝐾𝑑 values less than 20 V ∙ s/rad and greater than 200 V ∙ s/rad exhibited steady-

state errors exceeding 5 and were deemed insufficient at attaining the desired attitude 

behaviour. The best-case derivative gain was selected as 𝐾𝑑 = 90 V ∙ s/rad with a settling 

time of 141 seconds within 10. This gain further settled and maintained a pointing error 

within 5 in 263 seconds.  

 
Figure 80: PD Gain Analysis with Constant 𝐾𝑝 = 50/3 V and Different Values of 𝐾𝑑 – Settling 

from Stationary Initial Body Angular Rates and 71 Offset from Nadir 

Holding 𝐾𝑑 = 90 V ∙ s/rad constant, 𝐾𝑝 values were then similarly analysed and 

plotted against their respective settling times in Figure 81. Again, limitations were observed 

for 𝐾𝑝 values less than 11 V and greater than 20 V as they exhibited steady-state errors in 

excess of 5 and, in the latter case, displayed oscillations in their settled behaviour. The best-

case gain remains unchanged from the original value of 𝐾𝑝 = 50/3 = 16.7 V, settling within 

10 in 141 seconds and within 5 in 263 seconds as previously reported. Thus, the best-case 

PD gains for the reaction wheel voltage controller are: 

𝐾𝑝 = 50/3 V 

𝐾𝑑 = 90 V ∙ s/rad 
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Figure 81: PD Gain Analysis with Constant 𝐾𝑑 = 90 Vs/rad and Different Values of 𝐾𝑝 – 

Settling from Stationary Initial Body Angular Rates and 71 Offset from Nadir 

These plots show a wide range of derivative gains for a narrow range of 

proportional gains with little variation in performance beyond a worsening steady-state 

error. The majority of settling times fall in the 400 second range corresponding to one tenth 

of the available time the satellite sees Sun in a typical orbit.  

For these best-case gains, from the same stationary starting conditions as above, 

Figure 82 shows the settling behaviour in terms of quaternion error and rate error. This 

figure shows a marked improvement in settling time versus the best-case magnetic PD 

controller with zero disturbance torques shown in Figure 73, allowing for the majority of 

the time the satellite spends in Sun during a typical orbit to be spent pointing.  

 
Figure 82: Rate and Quaternion Errors for Best Case Reaction Wheel PD Gains 
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The proposed PD reaction wheel controller requires satellite attitude as an input 

which is unavailable for a minimum of 38% of each orbit due to eclipse. A control scheme is 

proposed in the following sections using the EKF attitude prediction to enable the reaction 

wheels to obtain a sufficient pointing accuracy while not in eclipse.  

7.5 Threshold Solution 
Though the EKF was designed to improve upon noisy sensor data and provide a 

cleaner, more accurate estimate of both attitude and rate errors, its internal model cannot 

be expected to produce consistently accurate state predictions after extended periods of 

time without receiving measurement updates. This section proposes a control switch based 

on this “threshold” of time wherein the EKF can be used to confidently provide accurate 

satellite attitude and rate estimations.  

To determine the appropriate threshold of time (after which the EKF is unable to 

accurately predict the satellite’s attitude in the absence of Sun sensor measurements) Figure 

83 plots the BF/ECI quaternion result from the EKF against the Simscape (“actual”) 

quaternion attitude for a stationary satellite initial condition, 71 offset from nadir. Attitude 

measurements are initially provided to the satellite for 1,500 seconds to allow a consistent 

pointing orientation to be established (attitude availability = 1). At 1,500 seconds, the q-

Method attitude input to the EKF is zeroed (attitude availability = 0), resulting in the EKF 

output propagating based on its internal model for the remainder of the simulation without 

any sensor updates. It can be seen from Figure 83 that the EKF predictions begin to deviate 

from the actual Simscape Quaternion after approximately 100-300 seconds depending on 

the quaternion element. 



118 
 

 
 

 
Figure 83: EKF Quaternion State Prediction Versus Simscape Quaternion without No q-

Method Attitude Available 

The threshold value was selected to be 300s – a value that should suffice in filling 

gaps in attitude availability. After 300 seconds, the EKF will need to be shut off entirely as it 

no longer can accurately predict the attitude in the absence of measurements (i.e. all states 

are set to zero except the quaternion scalar set to 1) and the satellite tumbles freely until the 

attitude becomes available again.  

To test this threshold value, a series of “gaps” in attitude were sent in lieu of the 

standard eclipse signal to the control system. To better illustrate the effects of switching the 

EKF on and off, it was assumed that the satellite could always see Sun except during 

intentional gap periods. Five gaps comprise the series for gradually increasing durations of 

100 seconds, 300 seconds, 500 seconds, 1,000 seconds, and 2,781 seconds (half of an orbit), 

with 1,000 seconds between the gaps to allow the satellite to regain attitude as needed.  

Figure 84 plots the elements of the EKF quaternion against the elements of the 

Simscape (actual) quaternion for this gap signal with the satellite starting from a stationary 

initial condition, 71 offset from Nadir. As expected, the 100 and 300 second gaps are 

successfully predicted by the EKF without issue. As the satellite exits the three longer gaps, 

the satellite quickly regains attitude with no regions of destabilisation.  
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Figure 84: EKF Quaternion State Prediction Versus Simscape Quaternion with Gap Attitude 

Availability Signal 

 Another issue with control performance was observed in relation to the reaction 

wheel speeds. Figure 85 plots sample simulation results for reaction wheel speed and Euler 

angle attitude with no eclipse, disturbance torques and sensor noise present, and perfect 

attitude knowledge where the reaction wheels were allowed to run for the entire duration 

of 4.5 orbits. It can be seen in the top subplot of Figure 85 that, over time, the reaction wheel 

speed and attitude errors gradually increase. This gradual increase in attitude error with 

increase in reaction wheel speed is likely because a spinning flywheel induces a gyroscopic 

stiffness effect which creates a degree of rigidity or resistance to disturbance torques – 

similar to the way a spinning top appears to defy gravity as it resists gravitation torques. 

The faster the rotational speed, the stronger the gyroscopic stiffness.  
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Figure 85: Increasing Reaction Wheel Speed and Corresponding Worsening of Attitude 

Error 

It was observed that PD controller performance was reduced as the reaction wheel 

speed increased and, therefore, a solution was proposed to maintain the wheel speeds 

below a certain value by detumbling the satellite during eclipse using magnetic B-dot 

control while zeroing the reaction wheel speeds and only reactivating the reaction wheels 

when the magnitude of the satellite’s body angular rate is less than 0.04 rad/s 

(approximately 0.02 rad/s about each axis).  

 To implement this proposed solution, logic control switches were incorporated into 

the simulator for three conditions. The first: if an attitude estimate is unavailable for less 

than 300 seconds, replace the EKF output with the EKF prediction (without the update step) 

and continue using reaction wheels. The second: if an attitude estimate is unavailable for 

more than 300 seconds, turn off the EKF, zero the reaction wheel control and switch to 

detumbling the satellite. The third: if the body angular rate magnitude exceeds 0.04 rad/s at 

any point in the simulation, switch to detumbling the satellite. To illustrate the proposed 

control switches, Figure 86 and Figure 87 plot the EKF quaternion output versus the actual 

quaternion taken from Simscape and the associated body angular rates, respectively, for the 

same gap signal used for Figure 84. The satellite starts from an initial angular rate of 0.02 

rad/s about every axis. The 100 and 300 second gaps are again filled without issue. The 
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discontinuity after the 500 second gap occurs due to a sign change in the attitude 

quaternion between where the prediction ends and where attitude is regained. The final 

value of the scalar part of the predicted quaternion approaches -1 before it is overridden 

with +1 due to the 300 second threshold being exceeded. The light tumble resulting from 

the disturbance torque/no pointing controller combination during the gap coupled with the 

sudden command to the wheels to orient the satellite back towards the actual attitude 

causes the satellite’s angular rates at that instant to exceed the rate threshold. The 

detumbling controller is switched on until the angular rates are reduced to within the 

angular rate threshold (around the 9000 second mark in Figure 86). The EKF regains 

attitude after the half orbit gap without issue, likely due to the less drastic difference in sign 

between the overridden attitude and the actual attitude.  

 

 
Figure 86: EKF Attitude Quaternion versus Simscape Output with Control Switching 
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Figure 87: Body Angular Rates with Control Switching 

7.6 Wheel Performance Results 
Noting the degradation in PD controller pointing accuracy observed in the previous 

section, it becomes necessary to assess wheel speed and controller performance over a 

longer time frame. With the angular rate threshold solution proposed, each reaction wheel 

is given the chance to desaturate and unload its momentum during the eclipse period of 

every orbit. If the wheel speeds are maintained within a consistently low range, excess 

momentum should not increase over time. Figure 88 plots the reaction wheel speeds over 

100 orbits. A linearly increasing trend is not present in the speeds about any axis, and the 

profile of the switch between reaction wheel and B-dot control follows the same general 

profile orbit to orbit. Though speeds increase sharply at orbit 89 – an orbit where the Sun 

vector is unavailable for a greater percentage of its duration than usual – the speeds 

decrease back to the typical range in under 5 orbits as desired.  
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Figure 88: Reaction Wheel Speeds over 100 Orbits 

Similarly, reaction wheel torques are plotted for the 100-orbit duration in Figure 89. 

The magnitude of the spikes corresponds to 𝑇𝑚𝑎𝑥 defined for the DC motor model in Section 

7.2, while the nominal torques rarely exceed 5 × 10−6 Nm. Again, a consistent pattern is 

followed orbit-to-orbit with no evidence of momentum buildup.  
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Figure 89: Reaction Wheel Torques over 100 Orbits 

With the reaction wheel system operating as intended and successfully desaturating 

over the set interval, the control approach can be finalised. The following chapter 

summarises when and where each controller is used throughout the mission life and 

presents the final PD control performance results in the context of the LORIS mission 

requirements.  
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Chapter 8: Control Approach 
LORIS operates in two configurations. Post-launch its four deployable solar panels 

are closed until initial detumbling is complete. Once LORIS is detumbled, its solar panels and 

antennae are deployed and remain open for the remainder of its mission life.  

The control approach while the solar panels are deployed alternate between 

detumbling and pointing, as expounded in previous section. The progression through the 

control scheme appears in Figure 90, and all control switching is handled in an aptly named 

“control switch” MATLAB function block containing the logic illustrated by the flowchart.  

 

 

Figure 90: Control Switch Logic Flowchart 

Referring to Figure 90, if the body angular rates exceed a magnitude of 0.04 rad/s at 

any time during the simulation, the reaction wheels are shut off and the satellite is 

||Rate|| < 0.04 rad/s? 

Detumble 

Use EKF Predicted State 

Zero EKF State 

How Long Without Sun? 

  

Sun Vector Available? 

Update EKF 

Use Reaction Wheels 

Detumble 

Use Reaction Wheels 

 Yes No 

 Yes No 

 < 300 s > 300 s 
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detumbled until the rates fall below this threshold. Once they do, the availability of the Sun 

vector is checked. If the Sun vector is available, then the satellite attitude can be estimated 

by the q-Method algorithm and the EKF can enter and remain in its update phase. The 

updated EKF state estimates are carried through to the reaction wheel PD controller, and 

the wheels maintain the satellite in its desired pointing attitude. Once the Sun vector 

becomes unavailable, the EKF output switches to its prediction phase and continues to carry 

its predicted state output through to the reaction wheels until the “gap” duration threshold 

of 300 seconds has been reached. Once 300 seconds have passed without a Sun vector, the 

EKF outputs and reaction wheel inputs are zeroed and the detumbling controller is switched 

on, whereupon the journey through the logic tree resets. In the simulator, the control switch 

is set to “1” when the reaction wheels are on and “0” when the detumbling controller is on.  

As shown in Section 7.6, the reaction wheels desaturate frequently enough to not 

require an official “wheel desaturation” mode of operation. If the ADCS is turned back on 

after a period where the satellite has been switched to safe mode or due to some fault, it will 

automatically detumble until the residual rates from this period are reduced back into the 

control range, then automatically regain its pointing attitude when Sun is in view. The 

control scheme detumbles the satellite for all but 300 seconds of every eclipse period, 

leaving the majority of the period the satellite is in Sun available for pointing. This solution 

also fits with the normal operation of the payload cameras, as daytime photographs are 

preferred.  

8.1 Attitude Determination Results 
The ability of the satellite’s ADCS to maintain pointing attitude throughout its 

mission life hinges upon its ability to obtain an accurate estimate of the satellite’s attitude. 

As such, this section focuses on assessing the accuracy of the attitude determination system 

– the ability of the EKF to predict the satellite’s attitude accurately and consistently. Results 

in this section are obtained from regions where the reaction wheels are actively maintaining 

pointing attitude, thus excluding eclipse periods and the settling periods thereafter. The 

satellite is given a conservative bound of 800 seconds post-eclipse before attitude error 

calculations begin.  

Figure 91 compares the q-Method, EKF and “actual” Simscape quaternions over a 

settled 1900 second portion of one orbit to show the difference in the three quaternion 

profiles. The q-Method estimation is notably the noisiest, though both the q-Method and 

EKF follow the general profile of the actual attitude within a reasonable degree of accuracy.   
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Figure 91: EKF, q-Method, and “Actual” Quaternion Profile Comparison 

Attitude determination error is defined as 𝑞𝑒𝑟𝑟, the quaternion representing the 

quaternion transformation between the estimated and “actual” quaternions, represented by 

the relation below. Two pairs of quaternions are considered: EKF and Simscape and q-

Method and Simscape.  

 𝑞𝑒𝑟𝑟 = 𝑞𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
−1 𝑞𝑆𝑖𝑚𝑠𝑐𝑎𝑝𝑒 (97) 

This transformation quaternion is converted into axis-angle representation via the MATLAB 

function quat2axang, and the attitude determination error is taken as its angle component.   

The following analyses consider the average attitude determination accuracy per 

orbit. Outliers with errors greater than 60 degrees – the result of occasional instantaneous 

Simscape quaternion inversion and gap periods of Sun unavailability that were not caught in 

the error calculation logic - are excluded from average calculations. Based on the data, for 

regions where the EKF filled gaps, attitude determination error reached a maximum of 
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approximately 25. Figure 92 plots the average q-Method-Simscape error per orbit for 100 

orbits. 

 
Figure 92: Average Attitude Determination Error per Orbit between q-Method Quaternion 

Estimate and “Actual” Simscape Quaternion – 100 Orbit Duration 

This data has an average and standard deviation of: 

4.33 ± 0.72° 

Despite the noisier estimation, the q-Method is still capable of obtaining an accurate 

estimate of the satellite’s attitude that fits well within the LORIS requirement of ±10. 

Figure 93 plots the average attitude determination error per orbit over 100 orbits for the 

EKF-Simscape pair. 

 
Figure 93: Average Attitude Determination Error per Orbit between EKF Quaternion 

Estimate and “Actual” Simscape Quaternion – 100 Orbit Duration 
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The attitude determination error with the EKF quaternion estimate in Figure 93 is generally 

lower than the attitude determination error with the q-Method in Figure 92. Outliers in 

Figure 93 typically occur for periods where the satellite is detumbled. The satellite 

experiences higher initial angular rates pre-settling and the averages may include some of 

this pre-settled data. The final attitude determination accuracy for the ADCS is taken from 

the mean data in Figure 93 as: 

2.6 ± 1.1° 

which lies well within the attitude determination requirement of ±10. 

8.2 PD Control Performance Results 
With the hard limit on CubeSat angular rates determining when the reaction wheels 

may operate and in reference to the control switch logic in Figure 90, the satellite’s angular 

rates may still be above the 0.04 rad/s body angular rate threshold when it comes out of 

eclipse. The satellite will then need to continue detumbling until the angular rates drop 

below the threshold before nadir pointing can resume. As a result, even when not in eclipse, 

some time may be lost per orbit where the satellite will not be able to point at its target. 

Under the simplifying assumption that the satellite is “pointing” and “viewing” its target any 

time the wheels are active, Figure 94 plots viewing time as a percentage of each orbit, while 

Figure 95 plots the percent loss in viewing time per orbit, calculated as the difference 

between the maximum viewing time and the percent viewing time from Figure 94. The 

reaction wheels can point the satellite for a maximum of about 62% of an orbit, the period 

when the satellite is in Sun. This maximum is marked in Figure 94 with a dotted line.  
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Figure 94: Viewing Time Per Orbit – 100 Orbit Duration 

 

 
Figure 95: Percent Loss in Viewing Time Per Orbit – 100 Orbit Duration 

From the data in Figure 94, the average viewing time per orbit over 100 orbits is 57%, with 

a maximum of 62% reached during orbit 2, a minimum of 36% reached during orbit 89, and 
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a standard deviation of about 6%. Only 10 orbits had less than 50% of their duration 

available for viewing. 

Pointing error is assessed over the same 100 orbits in terms of the Euler angles [roll 

pitch yaw] in Figure 96. The satellites are considered to be pointing after 800 seconds have 

elapsed post-eclipse, based on the range of settling times observed during PD gain tuning 

analyses. Figure 96 plots the average errors in roll, pitch, and yaw for each of the 100 orbits. 

Three orbits fall outside the range of the plot: orbit 27 with an average error [40 16 33], 

orbit 43 with an average error of [47 21 41], Orbit 89 with an average error of [67 26 

58]. The orbits with the worst pointing performance correspond to those with the greatest 

reduction in viewing time, which themselves correspond to orbits where the Sun vector is 

unavailable for the greatest period of time or that exceed the control switching body angular 

rate threshold – conditions that often occur in tandem. Statistics for the three orbits with the 

highest pointing errors noted in the preface for Figure 96 are compiled into Table 13 to 

illustrate this correlation.  

Table 13: Statistics for the Three Worst-Performing Orbits  
Orbit Number Viewing Time Roll Pitch Yaw Period Sun Unavailable 
89 36% 67 26 58 21% 

27 46% 40 16 33 16% 

43 42% 47 21 41 26% 
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Figure 96: Average Euler Angle Pointing Error Per Orbit for 100 Orbits with Standard 

Deviations Noted 

Standard deviations of the pointing errors are calculated excluding any outlier orbits with 

average pointing errors greater than 15 degrees about any axis. This condition eliminates 

only 6% of the simulated orbits. Standard deviations for each Euler angle (where 𝑅 = roll, 

𝑃 = pitch, and 𝑌 = yaw) are indicated as follows: 

𝜎𝑅 = 1.5 

𝜎𝑃 = 1.1 

𝜎𝑌 = 1.8 
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The average errors over 100 orbits are calculated excluding the same 6 outliers as: 

𝑅 = 1.9 

𝑃 = 3.4 

𝑌 = 2.1 

The absolute pointing error can be determined by the angle component of the axis-

angle representation of attitude by converting the set of Euler angles to a quaternion and 

converting that quaternion to an axis-angle rotation via the associated MATLAB function 

quat2axang. The final absolute pointing error was obtained from the average errors per 

orbit excluding outliers as: 

4.4 ± 2.7 

This absolute pointing error satisfies the LORIS mission requirement of an attitude pointing 

accuracy of at least ±10, achieving nearly double the required degree of accuracy on 

average.  
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Chapter 9: Conclusions and Recommendations  
This thesis details the development of a robust simulation tool for the LORIS 

CubeSat ADCS. A simplified orbit propagator that propagates the ISS orbit ad infinitum 

based on a set of TLE elements in an environment containing accurate models of Earth’s 

geomagnetic field, Sun and eclipse, and prominent LEO worst-case disturbance torques was 

designed. Realistic sensor noise and magnetorquer behaviour based on experimentally-

obtained data was modelled, and a quaternion-based attitude determination scheme based 

on the q-Method algorithm and an extended Kalman filter capable of producing an accurate 

estimate of satellite attitude was designed and validated. For the simulation conditions used 

in this research, the attitude determination scheme was found to satisfy and perform almost 

five times better than the ±10 LORIS mission requirement at an average accuracy of 2.6 ±

1.1°. A B-dot detumbling controller that operates solely based on filtered differentiated 

geomagnetic field readings was designed and validated and was found to detumble well 

within the required range of 15 hours (10 orbits) for a variety of initial angular rate 

conditions. The design and validation of a simple PD pointing control scheme based around 

three orthogonal reaction wheels capable of attaining the required pointing accuracy of 10 

with an average pointing error was completed, with a final pointing accuracy of 4.4 ± 2.7 

obtained for the simulation conditions used in this research.  

The contributions of this research are: 

1. the development of a simulation tool for the LORIS CubeSat ADCS 

2. the use of the simulation tool to validate that the proposed sensor suite, actuators, 

and control algorithms for LORIS meets its mission requirements 

3. the completion of gain sensitivity analyses for B-Dot and magnetic PD control, and 

the assessment of the impact of different levels of sensor noise on the performance 

of each controller. The results of these analyses were published in [119] 

4. the development of an EKF-based correction scheme for the “duality” problem 

inherent to q-Method attitude determination that performs well even in the 

presence of sensor noise. 

5. the proposed control scheme for cycling between pointing the CubeSat during 

portions of the orbit where Sun is available to the satellite’s Sun sensors for attitude 

determination, and simultaneous detumbling of the satellite and desaturation of its 

reaction wheels during eclipse. 
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Future work includes the implementation of a high-fidelity orbit propagator that 

incorporates accurate orbital perturbations, such as the standard Simplified General 

Perturbations (SGP4) model. This propagator is best suited to long running simulations 

where the effects of drag will have a significant effect on orbit shape and altitude, thereby 

changing key characteristics of the satellite’s environment (namely magnetic field strength 

and eclipse period). It follows that quotidian disturbance torques (rather than worst-case) 

be implemented to assess how the satellite fares during typical operation. The addition of an 

orbit determination algorithm further based on periodic GPS measurements would remove 

the current simulator assumption of perfect orbit knowledge and allow the investigation of 

the effect of satellite positioning errors on the proposed control algorithms. Further 

improving the realism of the simulator would also require the implementation of an EKF 

with improved reaction wheel dynamics and no simplifying reaction wheel location 

assumptions, preferably such that the location of the wheels on LORIS can be accurately 

represented in the dynamic model. As well, reaction wheel and satellite geometry and 

properties should be continually updated as the project design continues to change and 

approach its final version. 
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Appendix A: Coordinate Frame Definition  
This appendix summarizes the coordinate frames used to develop the CubeSat simulation 

tool. The coordinate frames place the satellite and its orbit relative to Earth and Sun in space 

throughout its mission life, drawn by the orbit propagator.  

A.1 Coordinate Frames 
This section defines the reference coordinate systems to which orbit geometry and 

orbital dynamics are referenced. Coordinate frames are considered as belonging to one of 

two categories. Earth frames reference geodesy and the orientation of Earth within its 

heliocentric orbit and Satellite frames which depend upon the geometry of the satellite and 

its geocentric orbit.  

A.1.1 Earth Frames  
 Three Earth reference frames are defined: a fixed Earth-centred inertial, a rotating 

Earth-centred-Earth-fixed, and a geodetic latitude, longitude, altitude frame. Simulation 

results are chiefly expressed in a combination of these three frames. 

A.1.1.1 Earth-Centered Inertial (ECI) 

 The Earth-centred inertial (ECI) frame – denoted ℱ𝐼 – is illustrated in Figure 97. This 

non-rotating reference frame has an origin that is fixed at the centre of Earth and translates 

with Earth. The +X axis points in the direction of the vernal equinox (and lies within Earth's 

equatorial plane). The +Z axis points towards the North Pole aligned with Earth's polar axis 

[128], and the +Y axis completes the triad. The vernal equinox direction is assumed to be 

constant throughout Earth's heliocentric orbit, and neither precession nor nutation of the 

polar axis are considered in this definition. Over multiple orbits, the Satellite’s unperturbed 

orbit trace should remain unchanged when viewed in the ECI frame and appear as a single, 

slightly elliptical path. 
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Figure 97: ECI Reference Frame 

A.1.1.2 Earth-Centred Earth-Fixed (ECEF) 

The Earth-centred Earth-fixed (ECEF) reference frame ℱ𝐹rotates with Earth and has 

its origin at Earth’s centre. As shown in Figure 98, the frame’s +X axis points along the 

prime meridian (line of zero longitude) and its +Z axis points towards the North Pole 

aligned with Earth's axis of rotation, coincident with the +Z axis of the ECI frame [97, p. 30]. 

The ECEF frame is essential for obtaining the satellite’s position in geodetic terms, as it 

tracks the position of the orbiting body with respect to a rotating Earth.  

 
Figure 98: ECEF Reference Frame 
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A.1.1.3 Latitude, Longitude, Altitude (LLA) 

 The Latitude, Longitude, Altitude (LLA) reference frame – denoted ℱ𝐿𝐿𝐴 – is 

illustrated in Figure 99 and defines the orbiting satellite’s position in terms of geodetic 

longitude 𝑙, geodetic latitude 𝜇, and altitude ℎ with respect to the surface of an oblate-

spheroidal model of Earth. Geodetic longitude is measured relative to the prime meridian at 

0°, with East longitude considered positive up to +180° and West longitude considered 

negative up to −180°. Geodetic latitude ranges from −90° at the South pole to +90° at the 

North pole. Figure 99 shows geodetic latitude 𝜇, altitude ℎ and compares 𝜇 with geocentric 

latitude 𝜆. Earth’s oblateness is exaggerated in this figure to better illustrate the difference 

between geocentric and geodetic latitudes. The satellite shown is in a circular orbit at an 

exaggeratedly low latitude for illustrative purposes.  

 
Figure 99: LLA Reference Frame Showing Geocentric Latitude 𝜆, Geodetic Latitude 𝜇, and 

Geodetic Altitude ℎ (Longitude not Shown) 

A.1.1.4 Satellite Frames 

 Four satellite reference frames are defined within the simulator: the perifocal frame, 

the Nadir-pointing frame, the body-fixed frame, and the North-East-Down frame.  

A.1.1.5 Perifocal (P) 

 The perifocal reference frame – denoted ℱ𝑃 – is shown in Figure 100. Its origin is 

located at Earth’s centre and its axes are oriented with respect to the orbital plane. The +X 
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axis points in the direction of the perigee of the orbit 𝑟𝑝⃑⃑  ⃑ while the +Z axis is normal to the 

orbital plane pointing in the direction of orbital angular momentum [97, p. 51].  

 
Figure 100: Perifocal Reference Frame 

A.1.1.6 Nadir-Pointing (NP) 

The nadir-pointing frame shown in Figure 101– denoted ℱ𝑁𝑃 – has its origin at the 

satellite’s centre of mass. It serves as a reference for spacecraft attitude defining the desired 

Earth-pointing orientation of the satellite. The +Z axis points nadir towards the centre of 

Earth and the +X axis points tangent to the orbit in the direction of travel. This reference 

frame is illustrated in Figure 101 for the same elliptical orbit as in Figure 100.  

 

Figure 101: NP Reference Frame 
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A.1.1.7 Body-Fixed (BF) 

 The body-fixed frame – denoted ℱ𝐵 – is aligned with the satellite’s principal inertial 

axes with its origin at the satellite’s centre of mass. The coordinate system shown in Figure 

102 is oriented such that its +Z axis points nadir (aligned with the orbital radius) and its +X 

axis lies in the direction of spacecraft propagation (aligned with the body-fixed spacecraft 

velocity vector).  

 

Figure 102: BF Reference Frame 

A.1.1.8 North-East-Down (NED) 

 The North-East-Down coordinate frame shown in Figure 103 – denoted ℱ𝑁𝐸𝐷- is 

fixed at the satellite’s centre of mass. “North” points parallel to the Earth’s surface towards 

the polar North, assigned as +X [128]. “East” points parallel to the lines of latitude, assigned 

as +Y, and “Down” points antiparallel to Earth’s surface normal, assigned as +Z [128]. It is 

necessary to note that – unlike all other satellite frames described in this section – the NED 

frame Z axis does not point towards the centre of Earth. Earth’s oblateness is exaggerated in 

Figure 103 to emphasise the difference between the intersection of the surface normal with 

the equatorial plane and the centre of Earth.  
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Figure 103: NED Reference Frame 

 The built-in MATLAB and Simulink functions for both the International Geomagnetic 

Reference Field (IGRF) and World Magnetic Model (WMM) express magnetic field vectors in 

the NED frame relative to geodetic latitude, longitude, and altitude. 

Appendix B: Coordinate Frame Transformations  
This appendix summarizes the coordinate frame transformations used to develop the 

CubeSat simulation tool. 

B.1 Coordinate Transformations 
 Certain orbital and simulator parameters are inherently expressed within certain 

frames of reference, such as MATLAB’s IGRF block producing magnetic field vectors in NED 

and data from the TLE reported in ECI. Coordinate system transformations become a 

necessity when reporting results and combining data with one another, e.g. translating the 

magnetic field strength into usable attitude control torques in the body-fixed frame or 

plotting the ground track of the satellite from its ECI radii over one period.  

 Transformations between each of the previously described coordinate systems 

follow the sequence shown in Figure 104. For example, a vector expressed in the ECI frame 

of reference can be expressed as the same vector relative to the body-fixed frame of 

reference by multiplying together the direction cosine matrices for the ECI to perifocal, 
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perifocal to nadir-pointing, and nadir-pointing to body-fixed transformations to produce the 

transformation matrix between two frames, and vice versa. This transformation matrix then 

multiplies the components of a vector expressed in the ECI frame to obtain the components 

of the same vector expressed in the body-fixed frame.  

 

Figure 104: Sequence of Coordinate Transformations 

B.1.1 Principal Rotations 
 The simplest form of a direction cosine matrix is the principal rotation matrix, which 

rotates a vector by some angle Θ about one of the three principal axes. Three principal 

rotation matrices are thus defined about the three principal axes X, Y, and Z denoted 

𝑪1, 𝑪2, and 𝑪3, respectively. The three principal rotation matrices are defined as follows for a 

rotation through an angle Θ as [100, p. 15]: 

 
𝑪1(Θ) = (

1 0 0
0 cosΘ sinΘ
0 − sinΘ cosΘ

) (98) 

 

 
𝑪2(Θ) = (

cosΘ 0 −sinΘ
0 1 0

sinΘ 0 cosΘ
) (99) 

 

 
𝑪3(Θ) = (

cosΘ sinΘ 0
− sinΘ cosΘ 0

0 0 1
) (100) 

 

For a rotation sequence between two arbitrary frames A and B, the principal 

rotation matrices are multiplied in their opposite order of appearance within the sequence. 

 

Perifocal ECEF 

NP LLA 

BF NED 

ECI 
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For example, a 1-2-3 sequence implies first a rotation about the initial X axis (1) of frame A, 

followed by a rotation about an intermediate Y axis (2), and a final rotation about an 

intermediate Z axis (3) to yield frame B. Assuming the rotations are through angles defined 

as Θ1, Θ2 and Θ3 corresponding to their respective rotation axes, the 1-2-3 rotation matrix 

𝑪123 is defined by the product of the principal rotation matrices in their reverse order of 

appearance (3-2-1): 

𝑪𝐵𝐴 = 𝑪123 = 𝑪3(Θ3)𝑪2(Θ2)𝑪1(Θ1) 

Reducing this matrix produces the result: 

𝑪𝐵𝐴 = 𝑪123 = (
cosΘ3 sinΘ3 0

− sinΘ3 cosΘ3 0
0 0 1

)(
cosΘ2 0 −sinΘ2

0 1 0
sinΘ2 0 Θ2

)(
1 0 0
0 cosΘ1 sinΘ1

0 − sinΘ1 cosΘ1

) 

𝑪𝐵𝐴 = 𝑪123

= (

cosΘ2 cos Θ3 cos Θ1 sin Θ3 + cosΘ3 sinΘ1 sin Θ2 sin Θ1 sin Θ3 − cosΘ1 cos Θ3 sin Θ2

− cosΘ2 sinΘ3 cos Θ1 cos Θ3 − sinΘ1 sinΘ2 sin Θ3 cos Θ3 sinΘ1 + cosΘ1 sin Θ2 sin Θ3

sinΘ2 −cosΘ2 sinΘ1 cos Θ1 cos Θ2

) 

To transform a vector 𝑣⃑ with components expressed in frame A 𝒗𝐴 to the same 

vector with components expressed in frame B 𝒗𝐵, the following relation is used, where 𝑪𝐵𝐴 

contains the transformation sequence between the two frames of reference: 

 𝒗𝐵 = 𝑪𝐵𝐴𝒗𝐴 (101) 

The leading letter, number, or initialism in the rotation matrix subscript indicates 

the resulting coordinate frame of the transform while the last indicates the base. In the 

following sections, this notation is used in accordance with the letters and initialisms for the 

different reference frames defined in Section A.1.  

B.1.2 Perifocal to ECI 
 The perifocal reference frame is obtained from the ECI reference frame via a 3-1-3 

rotation sequence through the classical orbital elements RAAN Ω, inclination 𝑖, and 

argument of perigee 𝜔, respectively [97, p. 52]. The transformation sequence angles are 

illustrated for an elliptical orbit alongside the two coordinate system axes in Figure 105. The 

Y axes are omitted from the diagram for ease of visualisation.  
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Figure 105: ECI to Perifocal Transformation for a Generic Inclined Elliptical Orbit 

In reference to Figure 105, first, a rotation about the ECI Z axis by Ω aligns the 

intermediate X-axis with the orbit line of nodes 𝑵. Then, the orbital plane is rotated by the 

inclination 𝑖 about this intermediate X-axis making the intermediate Z-axis normal to the 

orbital plane. Lastly, the orbit is rotated about this intermediate Z-axis from 𝑵 by the 

argument of perigee 𝜔 to align the intermediate X-axis with the eccentricity vector of the 

orbit (and, by extension, the radii at apogee and perigee). The transformation matrix for the 

above described sequence is shown below [97, p. 52]: 

 𝑪𝑃𝐼 = 𝑪3(𝜔)𝑪1(𝑖)𝑪3(Ω) (102) 

𝑪𝑃𝐼 = (
cosΩ cos𝜔 − sinΩ cos 𝑖 sin𝜔 sinΩ cos𝜔 + cosΩ cos 𝑖 sin𝜔 sin 𝑖 sin𝜔

−cosΩ sin𝜔 − sinΩ cos 𝑖 cos𝜔 cosΩ cos 𝑖 cos𝜔 − sinΩ sin𝜔 cos𝜔 sin 𝑖
sinΩ sin 𝑖 − cosΩ sin 𝑖 cos 𝑖

) 

To transform the components of a vector 𝑟 expressed in the ECI frame into the same vector 

with components expressed in the perifocal frame, the following relation is used: 

𝒓𝑃 = 𝑪𝑃𝐼𝒓𝐼 

To transform from perifocal to ECI, the above sequence is reversed: 

𝑪𝐼𝑃 = 𝑪𝑃𝐼
−1 

𝒓𝐼 = 𝑪𝐼𝑃𝒓𝑃 



155 
 

 
 

The perifocal to ECI rotation sequence 𝑪𝐼𝑃 is illustrated in Figure 106. The leftmost diagram 

– representing 𝑪3(Ω) – illustrates the rotation about the ECI Z axis by Ω where the X-axis of 

the perifocal frame is shown as the perigee radius in ECI 𝒓𝑝,𝐼 . The second diagram shows the 

rotation 𝑪1(𝑖) about the ECI X-axis, aligning the orbital and equatorial planes. Lastly, the 

rightmost diagram shows 𝑪3(𝜔) about the shared ECI/perifocal Z-axis, with the equatorial-

plane-coincident orbit trace omitted for visualisation purposes.  

 

Figure 106: Perifocal to ECI Transformation Steps 

B.1.3 ECI to ECEF 
As shown in Figure 107, the ECEF frame is obtained from the ECI frame via a single 

rotation about their shared Z axis through 𝜃𝐺 , the Greenwich sidereal time. The simplified 

method to determine this angle proposed in [103, pp. 258-262] is implemented in the 

simulator.  

The Julian day number 𝐽0 for the given start date at 0 UTC is determined from the 

following formula, where 𝑌 denotes year, 𝑀 denotes month, 𝐷 denotes day, and “fix” 

denotes a function which rounds towards zero [103, p. 259]: 

 

𝐽0 = 367𝑌 − fix

(

 
 

7(𝑌 − fix (
𝑀 + 9

12 ))

4

)

 
 

+ fix (
275M

9
) + 𝐷

+ 1721013.5 

(103) 

The Julian day is then used to determine the Julian day number at epoch 𝐽𝐷, where UT is the 

current universal time in hours [103, p. 259]. 

𝐽𝐷 = 𝐽0 +
UT

24
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With respect to the J2000 convention – the Julian epoch defined at 12:00:00 UTC 1 January 

2000 – the current time in terms of Julian centuries 𝑇0 is found [103, p. 261]: 

 

𝑇0 =
𝐽0 − 2451545

36525
 (104) 

This term is then used to calculate the Greenwich sidereal time at 00:00:00 UTC in degrees 

via the following [103, p. 261]: 

 𝜃𝐺0 = 100.4606184 + 36000.77004𝑇0 + 0.000387933𝑇0
2

− 2.583 × 10−8𝑇0
3 

(105) 

With respect to this angle, the Greenwich sidereal time at the given epoch (and at any time 

thereinafter) is determined as follows [103, p. 261]: 

 
𝜃𝐺 = 𝜃𝐺0 + 360.98564724

UT

24
 (106) 

Within the simulator, the simulation time (in seconds) is added (in hours) to the starting 

time (in hours) such that 𝜃𝐺  is recalculated for each time step. Figure 107 shows 𝜃𝐺  drawn 

between the two coordinate systems. 

 
Figure 107: Greenwich Sidereal Time Between ECI and ECEF  
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With 𝜃𝐺  defined, the rotation matrix to transform from the ECEF reference frame to the ECI 

reference frame is defined via the principal rotation matrix 𝑪3 as [97, p. 30]:  

 
𝑪𝐹𝐼 = (

cos 𝜃𝐺 sin𝜃𝐺 0
−sin𝜃𝐺 cos 𝜃𝐺 0

0 0 1

) (107) 

To transform the components of a vector 𝑟 expressed in the ECEF reference frame into the 

same vector with components expressed in the ECI reference frame, the following relation is 

used: 

𝒓𝐼 = 𝑪𝐼𝐹𝒓𝐹 

The rotation matrix 𝑪𝐹𝐼 from ECI to ECEF is obtained via the inverse of the above: 

𝑪𝐼𝐹 = 𝑪𝐹𝐼
−1 

B.1.4 ECEF to LLA 
 The ECEF to LLA transformation is implemented computationally according to the 

method outlined in MATLAB’s Aerospace Blockset documentation [129]. The directional 

components of the orbital position vector with components expressed in ECEF are given as: 

𝒓𝐹 = [

𝑟𝑥,𝐹

𝑟𝑦,𝐹

𝑟𝑧,𝐹

] 

Geodetic latitude is solved via Bowring’s iterative method summarised in [130]. The 

following four parameters are defined for use in the iterative equations, where 𝑠 is the 

distance between the polar axis and the point in orbit of interest, 𝑓 the flattening factor of 

Earth, 𝑅⊕ Earth’s equatorial radius, and 𝑒2 the square of first eccentricity [130] [129]. 

Values are obtained for each as [129]: 

𝑠 = √𝑟𝑥,𝐹
2 + 𝑟𝑦,𝐹

2  

𝑓 =
1

298.257223563
 

𝑅⊕ = 6378.137 km 

𝑒2 = 1 − (1 − 𝑓)2 

where the two Earth parameters 𝑓 and 𝑅 are assigned according to the World Geodetic 

System (WGS84) model in MATLAB. Initial guesses for the reduced latitude 𝛽̅and geodetic 

latitude 𝜇̅ are computed via [129]: 

𝛽̅ = tan−1 (
𝑟𝑧,𝐹

(1 − 𝑓)𝑠
) 
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𝜇̅ = tan−1 (
𝑟𝑧,𝐹 +

𝑒2(1 − 𝑓)
(1 − 𝑒2)

𝑅⨁ sin3(𝛽)

𝑠 − 𝑒2𝑅⨁ cos3(𝛽)
) (108) 

where 𝛽 for each subsequent iteration is computed as [129]: 

𝛽 = tan−1 (
(1 − 𝑓) sin 𝜇

cos 𝜇
) 

The solution of 𝜇 is considered converged when the error reaches 10−5 or after 50 

iterations, chosen in the interest of simulation speed.  

The geodetic longitude 𝑙 is calculated directly from the components of 𝑟𝐹⃑⃑⃑⃑  as [129]: 

 
𝑙 = tan−1 (

𝑟𝑦,𝐹

𝑟𝑥,𝐹
) (109) 

The altitude is found by [129]: 

 ℎ = 𝑠 cos 𝜇 + (𝑟𝑧,𝐹 + 𝑒2𝑁 sin𝜇) sin 𝜇 − 𝑁 (110) 

where 𝑁 is the radius of curvature in the vertical prime [129]: 

𝑁 =
𝑅⨁

√1 − 𝑒2 sin2 𝜇
 

B.1.5 LLA to ECEF 
  The inverse of the preceding transform – LLA to ECEF – is obtained computationally 

as follows from the geodetic latitude 𝜇, longitude 𝑙, and altitude ℎ. Defining the geocentric 

latitude at mean sea level 𝜆𝑠 and the radius at a surface point 𝑟𝑠 as [131]: 

𝜆𝑠 = tan−1((1 − 𝑓)2 tan 𝜇) 

𝑟𝑠 = √
𝑅2

1 + ((1 − 𝑓)2 − 1)−1 sin2 𝜆𝑠
 

The ECEF position vector is obtained [131]: 

 
𝒓𝐹 = (

𝑟𝑠 cos 𝜆𝑠 cos 𝑙 + ℎ cos 𝜇 cos 𝑙
𝑟𝑠 cos 𝜆𝑠 sin 𝑙 + ℎ cos 𝜇 sin 𝑙

𝑟𝑠 sin 𝜆𝑠 + ℎ sin𝜇
) (111) 

B.1.6 Latitude Conversion 
 Latitude can be expressed in geodetic or geocentric terms, the former measuring the 

angle between the intersection of the surface normal at the point of interest in orbit and the 

equatorial plane, while the latter measures the angle between the line through Earth’s 
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centre from the point of interest in orbit and the equatorial plane. Both latitudes are 

illustrated in Figure 108. 

 
Figure 108: Geocentric and Geodetic Latitudes 

 To obtain geocentric latitude 𝜆 given geodetic latitude 𝜇, the following relation is 

used [132, p. 25]: 

 𝜆 = tan−1((1 − 𝑓)2 tan 𝜇) (112) 

 To obtain geodetic latitude 𝜇 given geocentric latitude 𝜆 and mean sea-level altitude 

ℎ, the following relation is used, where the geocentric latitude at Earth’s surface 𝜆𝑠 is 

defined as above [129] [133]: 

𝜆𝑠 = tan−1((1 − 𝑓)2 tan 𝜇) 

 
𝜆 = tan−1 (

ℎ sin𝜇 + 𝑟𝑠 sin 𝜆𝑠

ℎ cos 𝜇 + 𝑟𝑠 cos 𝜆𝑠
) (113) 

B.1.7 ECEF to NED 
 The ECEF to NED transformation is described by a 3-2-2 rotation sequence through 

geodetic longitude 𝑙, negative geodetic latitude 𝜇 and −90° [134]. The two coordinate 

systems are illustrated in the following figure, with the transformation sequence following.  
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Figure 109: ECEF and NED Coordinate Frames for an Inclined Orbit 

 

 𝑪𝑁𝐸𝐷𝐹 = 𝑪2(−90)𝑪2(−𝜇)𝑪3(𝑙) (114) 

𝑪𝑁𝐸𝐷𝐹 = (
−sin𝜇 cos 𝑙 − sin𝜇 sin 𝑙 cos 𝜇

− sin 𝑙 cos 𝑙 0
−cos 𝜇 cos 𝑙 −cos 𝜇 sin 𝑙 −sin 𝜇

) 

To transform from the NED to the ECEF frame, the inverse of the direction cosine matrix is 

used: 

𝑪𝐹𝑁𝐸𝐷 = 𝑪𝑁𝐸𝐷𝐹
−1  

 
Figure 110: Geodetic and Geocentric Latitude Difference for Case 4 – Inclined Orbit 
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B.1.8 Perifocal to Nadir-Pointing 
 The perifocal to nadir-pointing transformation takes place entirely in the orbital 

plane. Both coordinate frames are shown in Figure 111, where the satellite’s position is not 

coincident with the perigee of the orbit and is offset by some non-zero value of true anomaly 

𝜃. 

 

Figure 111: Nadir-Pointing and Perifocal Coordinate Frames 

The transformation between the two frames follows a 3-2-3 rotation sequence through true 

anomaly 𝜃, -90°, and +90°. This sequence is calculated as: 

 𝑪𝑁𝑃𝑃 = 𝑪3(90)𝑪2(−90)𝑪3(𝜃) (115) 

𝑪𝑁𝑃𝑃

= (
cos2 90 sin𝜃 − sin90 sin𝜃 cos2 90 sin 𝜃 + cos 𝜃 sin 90 cos 90 sin90

−cos 90 sin𝜃 − cos90 sin90 cos 𝜃 cos 90 cos 𝜃 − cos90 sin90 sin𝜃 − sin2 90 
− cos 𝜃 sin 90 − sin90 sin𝜃 cos 90

) 

which reduces to: 

 
𝑪𝑁𝑃𝑃 = (

−sin 𝜃 cos 𝜃 0
0 0 −1

−cos 𝜃 − sin 𝜃 0
) (116) 

The inverse coordinate transformation from the nadir-pointing frame to the perifocal frame 

is: 

𝑪𝑃𝑁𝑃 = 𝑪𝑁𝑃𝑃
−1  
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B.1.9 Nadir-Pointing to Body-Fixed 
Satellite attitude is commonly described in terms of Euler angles drawn between the 

desired and actual attitudes of the orbiting satellite, represented respectively by the nadir-

pointing and body-fixed reference frames. The Euler angles roll 𝜙, pitch 𝜃, and yaw 𝜓 define 

the rotation of the satellite about its centre of mass and correspond to angular rotation 

about the X, Y, and Z axes, each illustrated in Figure 112, showing respective positive 

rotation directions.  

   

Figure 112: Roll, Pitch, and Yaw Directions in Orbit Relative to Body-Fixed Axes 

To describe how the body-fixed reference frame has been rotated relative to the 

nadir-pointing reference frame, a 3-2-1 rotation sequence is used to align the nadir-pointing 

and body-fixed coordinate axes at any point in orbit. First, a rotation by yaw 𝜓 about the NP 

Z-axis, followed by a rotation by pitch 𝜃 about the current Y-axis, and a rotation by roll 𝜙 

about the current X-axis. The transformation matrix from body-fixed to nadir-pointing is 

defined: 

 𝑪𝑁𝑃𝐵𝐹 = 𝑪1(𝜙)𝑪2(𝜃)𝑪3(𝜓) (117) 

𝑪𝑁𝑃𝐵𝐹 = (

cos𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃
sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓 sin𝜙 sin𝜃 sin𝜓 + cos𝜙 cos𝜓 sin𝜙 cos 𝜃
cos𝜙 sin𝜃 cos𝜓 + sin𝜙 sin𝜓 cos𝜙 sin𝜃 sin𝜓 − sin𝜙 cos𝜓 cos𝜙 cos 𝜃

) 

The inverse transformation matrix from the nadir-pointing frame to the body-fixed is 

calculated as: 

𝑪𝐵𝐹𝑁𝑃 = 𝑪𝑁𝑃𝐵𝐹
−1   

This direction cosine matrix uses Euler angles which vary continuously throughout 

the simulation over a range of 0 to 𝜋 radians. The issue of gimbal lock arises in the typical 3-

2-1 sequence, causing a “singularity” when 𝜃 = ±90° = 𝜋/2 . For the matrix as presented: 
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𝑪𝑁𝑃𝐵𝐹 = (

cos𝜃 cos𝜓 cos 𝜃 sin𝜓 − sin 𝜃
sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓 sin𝜙 sin𝜃 sin𝜓 + cos𝜙 cos𝜓 sin𝜙 cos 𝜃
cos𝜙 sin𝜃 cos𝜓 + sin𝜙 sin𝜓 cos𝜙 sin𝜃 sin𝜓 − sin𝜙 cos𝜓 cos𝜙 cos 𝜃

) 

Let 𝜃 = 90° = 𝜋/2. The matrix reduces to: 

𝑪𝑁𝑃𝐵𝐹 = (
0 0 −1

sin𝜙 cos𝜓 − cos𝜙 sin𝜓 sin𝜙 sin𝜓 + cos𝜙 cos𝜓 0
cos𝜙 cos𝜓 + sin𝜙 sin𝜓 cos𝜙 sin𝜓 − sin𝜙 cos𝜓 0

) 

which can be further reduced via the sum and difference trigonometric identities: 

𝑪𝑁𝑃𝐵𝐹 = (

0 0 −1
sin(𝜙 − 𝜓) cos(𝜙 − 𝜓) 0

cos(𝜙 − 𝜓) sin(𝜓 − 𝜙) 0
) 

Because the expression for 𝑪𝑁𝑃𝐵𝐹  contains only the difference between 𝜙 and 𝜓, these 

angles cannot be uniquely determined from the rotation matrix and one degree of freedom 

describing the satellite’s orientation is instantaneously lost in the system. To avoid this 

singularity, quaternions are instead used to describe how the body-fixed frame is rotated 

relative to the nadir-pointing frame. An arbitrary three-dimensional vector 𝑣⃑ expressed in 

the nadir-pointing frame 𝒗𝑁𝑃 can be placed in the body-fixed frame 𝒗𝐵𝐹 by arranging the 

four elements of the quaternion into a 3x3 rotation matrix. Quaternion rotation is 

accomplished in the simulator using the MATLAB function “quatrotate” whose transform 

syntax is reproduced as follows [135]: 

𝒗𝐵𝐹 = 𝑞𝐵𝐹𝑁𝑃𝒗𝑁𝑃𝑞𝐵𝐹𝑁𝑃
−1  

𝒗𝐵𝐹 = [

(1 − 𝑞𝑦
2 − 2𝑞𝑧

2) 2(𝑞𝑥𝑞𝑦 + 𝑞𝑠𝑞𝑧) 2(𝑞𝑥𝑞𝑧 − 𝑞𝑠𝑞𝑦)

2(𝑞𝑥𝑞𝑦 − 𝑞𝑠𝑞𝑧) (1 − 2𝑞𝑥
2 − 2𝑞𝑧

2) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑠𝑞𝑥)

2(𝑞𝑥𝑞𝑧 + 𝑞𝑠𝑞𝑦) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑠𝑞𝑥) (1 − 2𝑞𝑥
2 − 2𝑞𝑦

2)

] [

𝑣𝑁𝑃,𝑥

𝑣𝑁𝑃,𝑦

𝑣𝑁𝑃,𝑧

] 
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