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Abstract

In this thesis, a time-domain Doppler estimator, tracker, and compensator using
shift-orthogonal OFDM pilot sequences are designed based on the theory presented
and tested using simulations and real-life experiments. OFDM signals are assumed
and used throughout the dissertation, and a shift-orthogonal OFDM pilot sequence
is designed. The UWA channel is analyzed and a simplified theoretical model is
presented that holds under achievable conditions.

The Doppler estimator is then developed, which uses an approach reminiscent
of existing differential demodulation techniques. The estimator is developed with
the flexibility of handling any Mach number provided the designer has the liberty of
adjusting the signal’s bandwidth, carrier frequency, or preamble size. The CRLB for
the estimator is derived. The Doppler estimator performance is compared against
existing estimators in literature and is shown to outperform most existing estimators
in terms of MSE, with the added features of Doppler tracking and low computational
complexity. The Mach number estimates also have a closed-form expression.

A Doppler tracker is developed that reduces the size of the Mach number esti-
mates’ array while simultaneously tracking significant changes in the Mach number.
A novel and practical Doppler compensator based on the proposed estimator is de-
veloped, which compensates the Doppler effect in two stages. The first stage involves
resampling, which takes in the estimates at the tracker output and applies a form of
time-varying resampling which we call block-by-block resampling. The second stage
involves estimating the residual Doppler shift with the proposed Doppler estimator,
followed by eliminating the residual shift via a simple phase rotation. The proposed
tracker and compensator subsystem is shown to outperform most existing compen-
sators in terms of MSE, while also being more computationally efficient.

Each element of the proposed receiver subsystem is tested in simulations and the
results are shown to agree with theory. Finally the full receiver subsystem is tested
in real undersea experiments at various ranges, bandwidths and power levels, and the
subsystem is shown to yield minimal residual errors when tracking and compensating
the Mach number.
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Chapter 1

Introduction

1.1 Motivation

The underwater acoustic (UWA) channel ranks among the most difficult and unfor-

giving for wireless communications with multiple challenges. The major challenges

include attenuation with transmitted frequency, time-varying multipath propagation

and low speed of sound. Unlike other communications channels where the attenuation

is either constant or time-dependent, the attenuation affecting propagating signals in

UWA channels are both time- and frequency-dependent. Multipath is governed by

sound reflection off the surface and seabed as well as objects in mid-water column.

Sound refraction is another multipath source that is due to the spatial variability of

the local sound speed. This is governed by Snell’s law. Multipath effects delay the

signal differently along each propagation path, thereby dispersing the propagating

signal in time (time dispersion). This results in intersymbol interference (ISI). This

also results in delay spread, which appears in the channel’s delay power spectrum.

The third challenge, the low sound speed, which creates Doppler effects, is the

focus of this thesis. As the acoustic wave propagation speed in water is 5 orders of

magnitude less than the speed of light in air, the impact from Doppler effects are more

significant for UWA propagation than electromagnetic wave propagation in air. In

multipath environments, Doppler frequencies are different for each path, which results

in Doppler spread; this effect disperses the frequency content of the signal (frequency

dispersion). For multicarrier modulation, this results in intercarrier interference (ICI).

Thus the UWA channels of interest here are doubly dispersive (where time dispersion

1
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is due to multipath effects and frequency dispersion is due to Doppler effects).

In total, the three Doppler effects that persist in UWA channels are (i) Doppler

shift common to all paths, which manifests as carrier frequency offset (CFO) in the

received signal; (ii) spectral narrowing/broadening, which results in frequency disper-

sion appearing in the frequency spectrum, as well as Doppler spread, which appears in

the Doppler power spectrum; and (iii) time dilation/compression, which is a manifes-

tation of the Doppler effect in time; this causes the received samples to drift, thereby

causing channel taps to migrate in time.

Doppler effects are a consequence of relative motion between transmitter and

receiver — either by gravity waves, deliberate motion or another mechanism. This

manifests in Doppler shifts and Doppler spreading. There are two main sources

of Doppler shifts in UWA channels. The first is a deliberate (underway) relative

transmitter and receiver platform velocity. The second is wave motion in the medium,

specifically motion of gravity waves. Gravity waves occur underwater or on the air-

water interface when the medium density changes. Gravity wave motion gives rise

to different Doppler shifts on individual propagation paths, which in turn, further

gives rise to Doppler spread or dispersion. The underwater channel coherence time,

Tcoh (the larger, the better), is a statistical measure of the time duration over which

the channel impulse response, CIR, is unchanged or stationary. A channel that has

Doppler effects (i.e. transmitter and receiver in relative motion) will have a small

Tcoh since the channel is constantly changing.

Fast fading is notable changes in signal strength between transmitter and receiver

given small (fraction of a wavelength) changes in the range between them. This occurs

in a channel whose Tcoh is less than the duration of the propagating signal. The

Doppler effect is one of the main causes of fast fading, and results in the channel’s

low Tcoh. Other causes of fast fading are localized objects which results in signal

scattering or diffraction.



3

Due to multipath propagation, UWA channels are frequency selective. Frequency

selectivity occurs when the channel’s delay spread (time between first and last multi-

path return) exceeds the duration of the propagating signal. This gives rise to rapid

oscillations in the frequency response of the channel making it difficult to receive an

uncorrupted signal.

Left uncompensated, Doppler effects make it difficult, if not impossible, to recover

and extract information from the originally transmitted signal — especially relevant

for UWA communications and data transmission. Towards that, Doppler estima-

tion, tracking and compensation are active research areas in UWA communications.

Therefore, it is not unexpected that solutions have been proposed to address Doppler

effects though they are not without their limitations.

This treatise focuses on a proposed receiver processor which includes a novel

Doppler estimator, tracker and compensator designed for large Doppler effects like

those in channels where the transmitter and receiver have an underway relative ve-

locity (e.g. submarines, autonomous underwater vehicles (AUV) or marine mam-

mals). The novel receiver processor was validated by simulations and at-sea tests

with Doppler effects induced by waves. Simulations were also performed at Mach

numbers representative of transmitters and receivers with relative underway velocity.

Future work will address the at-sea validation of high Mach number cases using un-

derwater modems integrated on an underway autonomous underwater vehicle (AUV)

and deployed over-the-side transmitter-receiver modems.

1.2 Approach

The orthogonal frequency-division multiplexing (OFDM) modulation scheme is re-

silient to frequency selectivity as it transmits a signal over multiple subcarriers. In

the frequency domain, this means the channel’s frequency response is divided into

smaller subchannels, where each subchannel uniquely corresponds to a subcarrier. If
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the subchannel is small enough from taking a large-enough number of subcarriers, the

frequency response appears flat in the domain of the subchannel which is desirable.

After the time-of-arrival (TOA) estimates of acoustic signals, Doppler estimation

and compensation make up the first stage of the receiver processing in UWA channels

since understanding the channel time variations is necessary prior to channel esti-

mation (as quantified through the CIR). For the thesis work, pilots (a-priori known

signals) are used to estimate and track the channel dynamics as measured through

the CIR.

Doppler estimation and compensation are thus crucial for proper channel estima-

tion, and due to the rapid time variations in UWA channels, are more critical than

in, say, radio frequency channels. Doppler estimation and compensation in UWA

channels have been extensively studied and many approaches have been proposed.

Approaches that are relevant and contribute to the thesis will be presented.

The proposed Doppler estimator distinguishes itself from other estimators with

its built-in Doppler tracking and flexibility to handle any Mach number (ratio of

relative transmitter and receiver velocity relative to the local sound velocity) effects

provided the designer has the liberty to adapt the signal’s bandwidth, carrier fre-

quency, or preamble size. It is acknowledged that this is not always possible as the

application / customer may constrain the transmitted signal to specific bandwidths

or carrier frequencies in which case only the preamble size can be adjusted. Gener-

ally, there is no merit to constrain the preamble so this is (usually) available for the

designer to optimize. The proposed estimator and tracker will have greater utility

when software-defined sonar becomes more widespread. A measure of the proposed

estimator’s performance, the mean-square error (MSE), shows it outperforms most

other estimators while maintaining low computational complexity regardless of the

size of the Mach number. Once Doppler estimation is achieved, compensation be-

comes possible.
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However, prior to compensation for the proposed estimator, a Doppler tracking

stage is inserted between the estimation-compensation chain to reduce the compu-

tational load on the compensator while also tracking Mach number changes. Unlike

other estimators found in literature, the receiver yields estimates and tracks one sam-

ple at a time. This is computationally expensive and slow, and is difficult to execute on

an embedded platform, like an autonomous underwater vehicle (AUV), with its lim-

ited on-board processing. As well, computationally less-expensive receiver processing

of active sonar returns is of great value in real-time missions to track mobile targets

like submarines or marine mammals where timely compensation makes a difference in

the possible actions a ship could pursue. As an example, for a 5-second transmission

of a 20-kHz bandwidth signal, there are 100,000 samples to work through.

The Doppler effect is then compensated in two stages. The first stage involves

resampling, which takes in the estimates at the tracker output and applies a time-

varying resampling technique, referred to as block-by-block resampling. The second

stage estimates the residual Doppler shift based on the output of the proposed esti-

mator. The residual shift is then mitigated via a simple phase rotation. The proposed

tracker and compensator subsystem outperform most existing compensators as mea-

sured by the MSE, while also being more computationally efficient.

Performance tests of the full receiver were in the form of simulations and real

undersea trials. After confirming performance with simulations, the full receiver sub-

system was first tested in short-range sea trials, followed by a series of medium- and

long-range sea trials at different ranges, bandwidths and power levels.

Specifically, the research in this thesis addresses the quasi-stationary case of rel-

ative motion between the transmitter and receiver induced by waves. This is a mile-

stone towards developing, testing and validating the proposed receiver processing for

large Doppler effects.
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1.3 Contributions

This work builds on the M.A.Sc. thesis completed by the author in 2015. It provides

both theoretical and practical insights and contributions to UWA communications

in particular, and digital signal processing (DSP) in general. Specifically, it presents

novel methods and simulations founded on well-known assumptions and theories in

UWA communications. The main novel contribution is the theoretical framework and

simulation of the Doppler estimator, tracker and compensator, as well as a body of

at-sea UWA channel measurements, applicable to many underwater applications.

The estimator, tracker and compensator were tested and validated with synthetic

and real UWA channels. The results show that all three have performance acceptable

to practical underwater receivers. Specifically, the residual Doppler shift at the sub-

system output is shown to be consistently small relative to subcarrier spacings and

bandwidth. The channel tap migrations observed in the CIR due to Doppler effects

were also successfully eliminated.

The result is a fully functional UWA receiver processor which accurately estimates

and eliminates channel Doppler effects when the Mach number is assumed to vary

in time within each received block. This means the receiver is applicable to a wide

array of channels. The limiting assumption made about the channel is that the

channel taps are assumed to be slowly varying within the received block, though it is

found that this assumption becomes an accurate reflection of reality for short signal

durations, as will be seen later. This work contributed to Acoubit Communications

Inc.’s understanding of Doppler effects in UWA channels, and consequently, Acoubit

adopted the proposed estimator. It is not yet possible for Acoubit to adopt the

proposed tracker and compensator as the work for this was not completed until after

Dalhousie University’s collaboration with Acoubit. It is expected that this work

will benefit them and other parties in the future. The results clearly show that the
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estimator, tracker and compensator work well for the quasi-stationary case of relative

motion due to waves, which creates the relative motion between the transmitter and

receiver. Future work will study UWA channels with high Doppler effects like those

experienced by autonomous underwater vehicles (AUV) operations.

Below are the contributions of the thesis in the proposed receiver processor:

1. The proposed estimator is inherently capable of tracking the Doppler variations

in the channel.

2. The estimator has a necessary condition to ensure its validity regardless of the

size of the Mach number, provided the signal’s bandwidth, carrier frequency, or

preamble size can be adjusted.

3. The MSE of the proposed estimator outperforms most other estimators while

maintaining low computational complexity and regardless of the Mach number

size. This holds true for the proposed compensator as well.

4. The proposed tracker can track the Doppler variations without the need to use

the entire set of Mach number estimates. This smaller set of estimates reduces

the computational load on the compensator.

5. The resampler is driven by a variable resampling factor that depends on the

tracker output to eliminate the Doppler variations. The proposed resampling

technique is a form of time-varying resampling.

6. The proposed estimator has the added ability to estimate the residual Doppler

shift. It can therefore be used as a second-stage Doppler compensator as well.

1.4 Thesis Outline

An outline of the thesis progression is shown in Fig. 1.1. It shows the order and

rationale for the steps taken in the research. Essentially, the Doppler estimator was

developed first followed by the compensator. Insight into the novel compensator
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suggested the heavy computation load for Mach number tracking could be better

addressed through down sampling. Then, with all components developed and their

nominal performance validated in simulation, at-sea trials were undertaken.

Chapter 2 provides relevant background for the research. To start, it introduces

shift-orthogonal pilot sequences and their properties, followed by an overview of mul-

tipath fading channels, and introduces the WSSUS channel model used. It proves the

validity of the WSSUS assumption for UWA channels and shows how the assump-

tion can be realized under achievable conditions. The chapter then briefly delves

into the physics of UWA channels and the different losses encountered in transmis-

sion through such channels. The outcome is an impulse response model for UWA

channels. It presents a thorough analysis of Doppler effects during transmission in

UWA channels, which gives rise to a received signal model for the transmission chain.

Chapter 2 provides meaningful background for the literature review in Chapter 3.

Chapter 3 presents a state-of-the-art literature review of Doppler estimators and

compensators. This includes the approaches taken by the UWA community and

identified shortcomings against the present requirement for estimation, tracking and

compensation of large Doppler effects and implementation on mobile transmitter/re-

ceiver platforms. This shaped the approach for the receiver processor to be developed

in this thesis and set the stage for Chapters 4, 5 and 6 — the contributions from this

thesis.

Chapter 4 provides a rigorous derivation of the proposed Doppler estimator. The

chapter also includes a derivation for the Cramer-Rao Lower Bound (CRLB) used to

assess the proposed estimator’s performance. Then, the performance of the estimator

in simulation is presented to show that it met the requirements. The chapter ends

with an analysis that compares the proposed estimator against the relevant existing

ones introduced in Chapter 3. With the estimator defined, it was possible to move

forward with the Doppler compensator.
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Chapter 5 derives the proposed Doppler compensator with resampling as a first-

stage Doppler compensator. The chapter then goes into detail on the second stage of

compensation, namely residual Doppler compensation, where the use of the proposed

Doppler estimator is motivated as a valid way to estimate the residual Doppler shift.

A Doppler tracking approach which reduces the size of the Mach number estimates,

while simultaneously tracking the variations of the Mach number, is also presented.

Chapter 6 describes the at-sea validation of the novel estimator, tracker and com-

pensator. It describes the work-up (short-range) sea trials conducted, detailing the

trials matrix, apparatus, procedure, and results. The long-range deep-water trials

conducted are then comprehensively analyzed. The at-sea measurements confirm ex-

pected behaviours of UWA channels and thus the measurements are shown to be valid.

The results validate the proposed receiver and provide new insights into Doppler effect

mitigations.

Chapter 7 presents conclusions from the overall thesis as well as future work that

could build on the work presented.
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Figure 1.1: Outline of research activities and mapping to thesis chapters. Section
numbers are indicated in brackets.



Chapter 2

Background on the UWA Channel

2.1 Introduction

UWA channels are described as linear time-variant (LTV) multipath channels. Multi-

path propagation is a condition that results in signals reaching a receiver by multiple

(two or more) paths. Let the time a signal is observed (received) at the receiver be t

and the time for that signal to propagate from the transmitter to the receiver be τ .

A time-variant channel (or system) is a channel whose output response changes every

time a signal is transmitted. In other words, the impulse response depends on both

the time of observation, t, as well as the time the signal is transmitted, t− τ .

In multipath channels, transmitted signals are reflected and scattered, arriving at

the receiver along multiple paths. When these paths have similar delays, they add

either constructively or destructively, giving rise to fading. When these paths have

very different delays, they appear as signal echoes. Due to the relative speed between

the transmitter and receiver / scattering object, the channel changes with time. If it

is known how the channel modifies the signal, then it is possible to recover the original

transmitted signal. Therefore, channel estimation at the receiver is needed, however

the dynamic effects of the channel must be removed first via Doppler compensation.

In Chapter 6, the (LTV) UWA channel is assumed to be wide-sense stationary

with uncorrelated scattering (WSSUS). A wide-sense stationary channel is a channel

whose second-order moments are stationary. The uncorrelated scattering assumption

refers to the assumption that the channel scatterers at delay τ are uncorrelated with

the scatterers at a different delay τ ′. A direct consequence of the WSSUS assumption

11
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is that it allows for the characterization of the UWA channel in terms of scattering

functions like delay power profile and Doppler power spectrum.

This chapter presents the background for the thesis work. It starts by introducing

OFDM modulation and describing the shift-orthogonal pilot structure for estima-

tion. This is followed by a brief overview of multipath channels as well as a detailed

description of the WSSUS model. The UWA channel is then analyzed in detail, in-

cluding UWA channel physics and signal propagation in UWA channels. Finally, a

brief overview of the Cramer-Rao lower bound (CRLB) is presented, which sets the

stage for analyzing the performance of the estimator in the next chapter.

2.2 OFDM Theory

Orthogonal Frequency-Division Multiplexing (OFDM) modulation is a specific im-

plementation of multi-carrier modulation. It represents frequency-division signaling

with narrowly-spaced as well as mutually orthogonal carriers known as subcarriers.

Although the OFDM subcarriers overlap in frequency, they are orthogonal, and their

required spectrum is hence narrower compared to conventional frequency-division

multiplexing (FDM).

In OFDM modulation, expensive bandpass filters to isolate the carriers are not

required as in the case of FDM, but it is prone to crosstalk (the coupling of one carrier

into others) in fast fading channels or when timing errors occur [28, p. 696]. The main

advantage of OFDM signals is that they can be modulated / demodulated with the

fast Fourier transform (FFT). This means that OFDM signals can be generated at the

transmitter and processed at the receiver with relatively low complexity compared to

other modulation schemes. In fact, the FFT implementation allows one to equalize

frequency-selective channels via simple matrix multiplication in the frequency domain.

This is the main reason as to why new and emerging signaling standards are adopting

OFDM modulation or a variation thereof.
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OFDM suffers from two main disadvantages. First, the time variations of the

channel may cause frequency shifts in the signal’s spectrum that would destroy the

orthogonality of the subcarriers, thereby causing inter-carrier interference (ICI). Sec-

ond, OFDM signals have high peak-to-average power ratio (PAPR) due to the noise-

like statistics of the time-domain signal. This however is usually not an issue, since

amplifiers nowadays are advanced enough to bypass this problem in one way or an-

other. For example, in 5G cellular standards, both the uplink and downlink signaling

formats use an OFDM variant specifically designed to reduce the peak-to-average

power ratio, which in turn enables the use of cheaper amplifiers in handsets.

For PSK constellations, symbols are transmitted at equal energies. Thus for PSK

the ideal PAPR (where other effects such as filtering are ignored) is 1 on the base-

band and 2 on the passband. When PSK mapping is used for N -point OFDM

signals, the ideal PAPR becomes N on the baseband and 2N on the passband.

QAM constellations generally have higher PAPR than PSK, and it can be shown

that when large frames are transmitted, the single-carrier PAPR converges to the

value 3(
√
C − 1)/(

√
C + 1), where C is the modulation order [42]. It then follows

that PSK is a better mapping scheme than QAM if one wants to transmit OFDM

at lower PAPR. Furthermore, in channels such as UWA channels, the BER of the

communicaton system is a major concern. Since BPSK and QPSK have the best bit

error rate performance when compared to higher-order PSK mappings, and because

QPSK offers twice the bit rate of BPSK, QPSK-OFDM is used throughout this work.

OFDM works as follows: in baseband, the total bandwidth W is divided into N

subcarriers, so that each subcarrier has frequency fk given by

fk = k(W/N) (2.1)
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where k ∈ [0, N − 1]. The spacing between subcarriers is given by

∆f = fk+1 − fk. (2.2)

The symbol rate is hence

r = 1/T = ∆f = W/N (2.3)

where T is the symbol duration. HereW = 1/Ts where Ts is the single-carrier symbol

time, which by the Nyquist-Shannon sampling theorem is equal to the sample time.

Thus T = NTs, and fk = k/T .

OFDM modulation thus generates N mutually orthogonal signals, i.e. the inner

product of any two OFDM signals with different subcarriers is 0:

∫︂ T

0

ej2πflte−j2πfmtdt = 0 where l ̸= m

The orthogonality of the modulated subcarriers means that N symbols can be trans-

mitted and decoded independently under ideal transmission conditions. That is,

instead of serially transmitting N symbols at the sample rate rs = 1/Ts = N/T = W

(as in a time-domain system), each of the N symbols can be transmitted over its

corresponding subcarrier frequencyfk in parallel at the symbol rate of r = rs/N .

The complex lowpass signal generated at the output of an analog OFDM trans-

mitter is thus given by

x(t) =
1√
N

N−1∑︂
k=0

X[k]ej2πfkt =
1√
N

N−1∑︂
k=0

X[k]ej2πkt/T , 0 ≤ t ≤ T (2.4)

where X[k] is the kth constellation point (PSK QAM, etc.), and the constant 1/
√
N

normalizes the expression. Generally, the constellation points, and by extension
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OFDM blocks, vary with time, i.e. they are given byXk(t) instead ofX[k], but the no-

tation X[k] was chosen for simplicity without substantial loss of generality. Although

the OFDM signal is time-limited, it is also approximately band-limited, since X[k] is

approximately zero outside k ∈ [0, N − 1]. Using the fact that fk = k/T = k(W/N)

and sampling x(t) at times t = nTs yields the discrete-time samples

x[n] =
1√
N

N−1∑︂
k=0

X[k]ej2πk(W/N)nTs

Since Ts = 1/W , x[n] becomes

x[n] =
1√
N

N−1∑︂
k=0

X[k]ej2πkn/N , 0 ≤ n ≤ N − 1 (2.5)

which is the complex lowpass discrete-time sequence.

One can observe that x[n] is related to X[k] via the inverse discrete Fourier trans-

form, i.e., x[n] = IDFT{X[k]} (see Eq. (C.4)). Therefore, rather than working with

an analog transmitter, a digital transmitter can be used where, after generating X[k]

via PSK, QAM, etc., the transmitter performs an IDFT on the sequence, followed by

an interpolation filter. The IDFT can be implemented with an IFFT processor. This

makes OFDM systems more efficient computationally and economically.

The interpolation filter is used to oversample the discrete-time sequence. A strictly

bandlimiting interpolation filter uses sinc(x) = sin(πx)/(πx), as known from the

Nyquist-Shannon sampling theorem:

x(t) =
N−1∑︂
n=0

x[n]sinc(W (t− n/W )).

However, the sinc pulse has significant pre- and post-cursors and can easily generate

intersymbol interference (ISI) unless guard intervals are used. It is also difficult

to accurately generate due to its infinite duration in time and its brickwall nature
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in frequency. Furthermore, the step response of the sinc filter experiences the Gibbs

phenomenon, which gives rise to ringing artifacts (undesired oscillations) and possibly

clipping due to the overshoots and undershoots of these oscillations. Thus sinc filters

are not used much in practice. A filter g(t) like a root-raised-cosine filter with a

small-enough roll-off factor, or other appropriate low-pass transmit filters, is used to

avoid excessive temporal sidelobes. Thus

x(t) =
N−1∑︂
n=0

x[n]g(t− nTs) =
N−1∑︂
n=0

x[n]g(t− nT/N) (2.6)

After interpolation the lowpass signal can be upconverted to a real, bandpass signal.

The bandpass OFDM signal s(t) is generated from the complex equivalent lowpass

signal x(t) as

s(t) = Re{x(t)ej2πfct} = xi(t) cos 2πfct− xq(t) sin 2πfct (2.7)

where the real and imaginary components, xi(t) and xq(t), are the in-phase and

quadrature components of x(t) respectively and fc is the carrier frequency of the

upconverter. After transmitting the signal through the channel, the received signal is

downconverted first before passing through the root-raised-cosine filter at the receiver.

Assume that signals are transmitted on the baseband. Let the signal received

be y(t) and the AWGN be n(t). y(t) passes through the receive filter g∗(−t), the

filter matched to g(t), where it is sampled. In AWGN channels, the matched filtering

process results in the following expression for the received symbols:

y(t) =
N−1∑︂
n=0

x[n]q(t− nT/N) + z(t) (2.8)

where q(t) = g(t) ∗ g∗(−t) and z(t) = n(t) ∗ g∗(−t). q(t) satisfies the Nyquist ISI
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criterion. That is,

q(nT ) =

⎧⎪⎪⎨⎪⎪⎩
1, if n = 0,

0, if n ̸= 0.

This ensures no ISI at the receiver. Therefore y(t) = x(t)+z(t) and the sample values

y[n] obtained at the receiver are given as

y[n] = x[n] + z[n]

The FFT of y[n] can now be directly computed to retrieve X[k].

For multipath channels, inter-carrier interference (ICI) also needs to be eliminated.

This is accomplished by appending a cyclic prefix (CP), which is a copy of the last L

samples of x[n], to the beginning of x[n]. This is done digitally prior to interpolation

and transmission. In slow fading channels, given that the CP duration exceeds the

duration of the channel’s impulse response (CIR), this allows the receiver to interpret

the linear convolution of x(t) with the CIR as a circular convolution. This is the main

advantage of the CP. As a result, the received signal can be directly passed to an FFT

processor, after which a channel equalizer can be used to extract the constellation

points X[k] from the received signal. In fast fading channels, Doppler compensation

is required first before FFT processing and channel estimation, which in turn requires

Doppler estimation.

To estimate the channel and its dynamics (Doppler and channel estimation) a

training sequence is transmitted prior to data transmission, which can be a repetition

of pilot bursts (also called preambles). In this case, adding a CP is not necessary be-

cause a pilot preamble is repeated Npre times, where Npre is the number of preambles.

The duration of each burst should be equal or exceed the CIR duration in order to

avoid ISI in channel estimates.
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Assume transmission occurs in the baseband over slow fading channels, and let

the impulse response of the lowpass slow fading channel be h(t) (time variations are

very small). Then

y(t) = h(t) ∗ x(t) + n(t) (2.9)

After filtering, downsampling and CP removal (in case of non-repeated or data trans-

missions), the received sequence is given by

y[n] = h[n] ∗ x[n] + z[n] (2.10)

where h[n] is the discrete-time equivalent of h(t) that results from the downsampling

process. h[n] can be modelled with a tapped delay line model. If CP was added, the

length of the received sequence becomes N after CP removal. Furthermore, the linear

convolution becomes equivalent to circular convolution. By the circular convolution

theorem (Eq.(C.9)):

Y [k] = H[k]X[k] + Z[k] where 0 ≤ k ≤ N − 1.

Here H[k] = DFT{h[n]}.

To compensate for the channel distortion and recover X[k], in general, an equal-

izer or filter is required whose frequency response is the reciprocal of the channel’s

frequency response H[k]. Typically this filter is introduced at the output of the FFT,

which effectively results in scaling the values {Y [k]} by H[k]. Therefore the output of

the filter, disregarding noise, equals X[k] and is free of channel frequency gain distor-

tion. With noise, the filter outputs will be noisy estimates of X[k], which are noisy

constellation points of the transmitted signals. Now the data signal can be demapped

back into the discrete-time information sequence x[n]. This allows retrieving the data.
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Again, if transmission is performed on fast fading channels, Doppler compensation

is required prior to the receiver processing discussed above.

2.3 Shift-Orthogonal Pilot Sequences

When the transmitter is in relative motion with the receiver there is a need to estimate

the impact of the channel’s time variations on the transmitted signal due to Doppler

shifts and spreading. Many approaches have been studied for channel and Doppler

estimation applied to narrowband wireless communication systems. Usually, it is

assumed that some part of the transmitted signal is known at the receiver. The

transmitter can provide a training sequence or periodic pilot symbols, known to the

receiver, and used for channel estimation. It should be noted that the discrete-time

and discrete-frequency shifts in this work are circular shifts.

A particular piloting comb structure [1] is discussed which guarantees the orthog-

onality of the transmitted pilots and data, so that the pilot bins are well-defined and

do not interfere with the data bins. Start with a random M -periodic sequence of

QPSK symbols. This is the frequency-domain (FD) pilot sequence {BM [k]} where

k ∈ [0,M − 1] and |BM [k]| = 1. Such a pilot sequence is given by:

BM [k] =
M−1∑︂
m=0

amδ[k −m] (2.11)

where {am} are complex random coeffcients of magnitude 1. Note that BM [m] = am.

The energy (or power) spectrum is shown in Fig. 2.1 for the case of M = 64 pilots.

The IDFT gives the time-domain (TD) pilots as

bM [n] =
1√
M

M−1∑︂
m=0

ame
j2πmn/M (2.12)

(see Eq.(C.4) and Eq.(C.7)) where n ∈ [0,M − 1]. It can be shown after some
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Figure 2.1: Energy spectrum of BM [k], where M = 64.

simplification that this M -point sequence has the property

1

M

M−1∑︂
n=0

bM [n]b∗M [n− n′] =

⎧⎪⎪⎨⎪⎪⎩
1, n′ = 0,

0, 0 < n′ ≤M − 1.

(2.13)

Therefore

1

M

M−1∑︂
n=0

bM [n]b∗M [n− n′] = δ[n′] (2.14)

Fig. 2.2 shows the magnitude of bM [n]. Repeating bM [n] Npre times yields the N -point

TD pilots bN [n] given by

bN [n] =

Npre−1∑︂
r=0

bM [n− rM ] (2.15)
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Figure 2.2: Plot of the TD sequence |bM [n]|, where M = 64.

where N = NpreM and n ∈ [0, N − 1]. Here we redefined bM [n] to be

bM [n] =

⎧⎪⎪⎨⎪⎪⎩
1√
M

∑︁M−1
m=0 ame

j2πmn/M , if 0 ≤ n ≤M − 1,

0, if n ≥M.

(2.16)

M is conveniently chosen as a power of two; for most of the applications here,M = 64.

Fig. 2.3 shows both the magnitude of the TD sequence and the energy spectrum of

bN [n], where M = 64 and the number of preamble repetitions is Npre = 16. The

effect of TD repetitions in the FD pilots is clear; repeating the TD sequence Npre

times results in interpolating the FD sequence with an upsampling rate of Npre by

padding Npre − 1 zeros after every FD sample.
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Figure 2.3: Energy spectrum and the corresponding TD signal plot of bN [n], where
M = 64 and Npre = 16.

2.3.1 Transmission

The sequence bN [n] is then passed through a root-raised cosine transmit filter of

sampling period of Ts. The next part of the analysis can be in either discrete- or

continuous-time. The continuous-time approach is developed next.

Using the Nyquist-Shannon sampling theorem the continuous-time equivalent of

bN [n] can be written as:

b(t) =
1√
M

M−1∑︂
m=0

ame
j2πfmt (2.17)

where fm = mNpre/T is the m-th subcarrier frequency in the baseband, and T = NTs

where t ∈ [0, T ]. In terms of the transmit filter p(t), b(t) is given by:

b(t) =
N−1∑︂
n=0

bN [n]p(t− nTs). (2.18)

Mathematically, the two expressions for b(t) are shown to be the same as if a sinc

filter is applied.
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This is the end of the transmission chain. The correlation properties of the selected

pilot structure are presented in the next section.

2.3.2 Autocorrelation Properties

The circular cross-correlation of two N -point discrete-time signals f and g is defined

as

Rfg[n] = f [n] ⋆ g[n] =
N−1∑︂
l=0

f ∗[l − n]g[l]. (2.19)

(the shift l − n is assumed circular and is modulo N , which is a circular shift with

window of size N). When f = g, the result is the autocorrelation of f , given by

Rf [n]. Note mathematically, the circular cross-correlation and circular convolution

are related as follows:

f [n] ⋆ g[n] = f ∗[−n]⊛ g[n]. (2.20)

Using DFT properties (Eq.(C.8)), the DFT of the cross-correlation function is:

Rfg[k] = F ∗[k]G[k]. (2.21)

When f = g, the result is Rf [k] = |F [k]|2. The autocorrelation of bM [n] can be

computed from Eq.(2.19) using the definition in Eq.(2.12). Alternatively, using DFT

properties, use Eq.(2.21) and Eq.(2.11). Using the second approach:

Rb[k] =
1

M

M−1∑︂
m=0

M−1∑︂
m′=0

ama
∗
mδ[k −m]δ[k −m′]. (2.22)

Recall that the shift-orthogonal pilot sequence has the property ama
∗
m = 1. Since

δ[k −m]δ[k −m′] = δ[m−m′], after simplification:

Rb[k] = 1. (2.23)
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The IDFT is hence simply given by

Rb[n] = δ[n]. (2.24)

Therefore the autocorrelation of the shift-orthogonal pilot sequence is simply the

Kronecker delta function. This pilot structure is referred to as “shift-orthogonal” due

to this autocorrelation property. The cross-correlation of bM [n] with bN [n] can be

found with the same approach. Let the cross-correlation function be given by Rbb[n].

Using Eq.(2.15), Eq.(2.12) and Eq.(2.21), the DFT is computed as:

Rbb[k] =

Npre−1∑︂
r=0

e−j2πr/Npre ·BM [k] ·B∗
M [k] =

Npre−1∑︂
r=0

e−j2πr/Npre ·Rb[k] =

Npre−1∑︂
r=0

e−j2πr/Npre .

(2.25)

The IDFT yields the cross-correlation function

Rbb[n] =

Npre−1∑︂
r=0

δ[n− rM ] (2.26)

where the fact that M = N/Npre has been used. The cross-correlation of bM [n]

with bN [n] is found to just be Npre repetitions of the autocorrelation of bM [n], where

the distance between each repetition is M . Fig. 2.4 shows the cross-correlation for

M = 64 and Npre = 16.

With the pilot structure described a brief overview of the multipath channels that

the pilot structure is meant to characterize is discussed next.

2.4 Multipath Channels as Linear Time-Variant (LTV) Systems

Let s(t) be a bandpass signal transmitted through a linear time-varying channel of

bandpass impulse response, c(t, τ), with observation time, t, and propagation delay,
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Figure 2.4: Cross-correlation of bM [n] and bN [n], where M = 64 and Npre = 16.

τ . The channel output r(t) is then given by:

r(t) = s(t) ∗ c(t, τ) + n(t) (2.27)

where n(t) is additive noise.

In a time-varying multipath channel, a transmitted impulse is received as a train

of impulses due to dispersion (or spreading) in time. Due to time variations in the

channel, a different impulse train is received for every transmitted impulse [31, p. 831].

Therefore, the path delay and attenuation factor are time-varying, with the number

of impulses received differing each time. Taking all this into account, the received

signal r(t) can be written as:

r(t) =
∑︂
p

cp(t)s(t− τp(t)) + n(t) (2.28)
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where p is the path delay index and cp(t) is the attenuation factor. In UWA channels,

the attenuation factor is also frequency-dependent (see section 2.6) . It follows that

the time-varying multipath channel, as a bandpass impulse response, is given by:

c(t, τ) =
∑︂
p

cp(t)δ(τ − τp(t)). (2.29)

The impulse response c(t, τ) is the response of an impulse at time τ received at time

t (transmission occurs at time t− τ).

Since

s(t) = Re{x(t)ej2πfct} (2.30)

where x(t) is the lowpass equivalent of s(t), r(t) can be written as:

r(t) = Re

{︄∑︂
p

cp(t)x(t− τp(t))e
j2πfc[t−τp(t)]

}︄
+ n(t).

Denoting the lowpass equivalent of r(t) as y(t), y(t) can be given by:

y(t) =
∑︂
p

cp(t)e
jθp(t)x(t− τp(t)) + ñ(t). (2.31)

Here, θp(t) = −2πfcτp(t) and ñ(t) is the lowpass equivalent of n(t). It follows that

the lowpass impulse response is given by

h(t, τ) =
∑︂
p

hp(t)δ(τ − τp(t)) (2.32)

where hp(t) = cp(t)e
jθp(t).

The attenuation factor hp(t) varies significantly with time only if there are large

dynamic variations in the channel. If τp(t) changes by 1/fc, θp(t) changes by 2π

radians, and since fc is usually large compared to 1/τp(t), this means even small
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changes in τp(t) can cause θp(t) to vary rapidly (note that changes in τp(t) vary

with path). Fading is a result of the random time variations experienced by θp(t),

which can cause constructive or destructive interference of the quantities {hp(t)ejθp(t)}.

Destructive interference causes signals to “fade” out [31, p. 833] and constructive

interference causes signal amplification.

A mathematical description of the multipath channels determines the channel

propagation as impacted by its spatial variability. It is now appropriate to introduce

the wide-sense stationary uncorrelated scattering (WSSUS) assumption which pro-

vides a simplified statistical model to capture the UWA channel’s variability. The

WSSUS assumption will prove useful in Chapter 6.

2.5 Statistical Description of the Channel: The WSSUS Assumption

WSSUS provides a framework to characterize the UWA channel with scattering func-

tions like the Doppler power spectral density which is relevant for the thesis work.

Generally, not all UWA channels can be modelled as WSSUS, and so it is not used

too liberally in this work; it is used only to derive the Doppler power spectrum of the

channels in Chapter 6. However, over short durations the WSS assumption can be

satisfied, and over a limited frequency range the US approximation is satisfied. Fol-

lowing this rationale, the preambles used are of relatively short duration compared to

the observation time. In this section the WSSUS approximation is applied to lowpass

multipath channels.

Let h(t, τ) be a complex-valued random process at time t. The wide-sense sta-

tionary (WSS) assumption stipulates the second-order moments of a system are sta-

tionary. Mathematically, this can be expressed as:
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E [h(t, τ)] = mh(τ) (2.33)

Rh(t1, t2, τ1, τ2) = Rh(t2 − t1, τ1, τ2) = Rh(∆t, τ1, τ2) (2.34)

where mh(τ) is the mean, or expected value, of h(t, τ), Rh(t1, t2, τ1, τ2) is its autocor-

relation function, and ∆t = t2 − t1. Hence, the autocorrelation function under the

WSS assumption with zero mean becomes:

Rh(∆t, τ1, τ2) = E [h∗(t, τ1)h(t+∆t, τ2)]. (2.35)

Uncorrelated scattering means hp(t) and θp(t) for path p are uncorrelated with

those for path p′ (p ̸= p′), that is, the attenuation and phase shift at path delay τp

are uncorrelated with those at τp′ . Therefore, for uncorrelated scattering of paths 1

and 2:

Rh(∆t, τ1, τ2) = Rh(∆t, τ)δ(τ2 − τ1) (2.36)

where τ can be τ1 or τ2.

The assumption of wide-sense stationarity (WSS) and uncorrelated scattering

(US) is collectively called WSSUS. This assumption was applied for the channel

analysis in Chapter 6; the justification will be explained in the next section. The

WSSUS assumption makes it possible to cleanly extract channel scattering functions

like the delay and Doppler power spectra. Integrating over ∆t gives the delay power

spectrum (or multipath intensity profile), Rh(τ), which is the average power output

of the channel as a function of path delay. The duration τ for which Rh(τ) ̸= 0 is

the delay or multipath spread, denoted by Tm. A more practical definition of delay

spread is the square root of the second central moment of the normalized delay power

spectrum - this is known as the rms delay spread.
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Alternatively, the channel can be characterized in the frequency domain. Let

H(t, f) be the one-dimensional Fourier transform of h(t, τ). Since a WSS channel is

assumed, it can be shown, using Fourier transform properties, that:

RH(∆t, f1, f2) = E [H∗(t, f1)H(t+∆t, f2)] (2.37)

since RH(∆t, f1, f2) is the two-dimensional Fourier transform of Rh(∆t,−τ1, τ2). Us-

ing the uncorrelated scattering assumption in Eq.(2.36), it is found, via Fourier trans-

form properties, that

RH(∆t, f1, f2) = RH(∆t,∆f) (2.38)

where ∆f = f2 − f1 is the frequency spacing. Therefore, the uncorrelated scattering

assumption in τ in the time domain is equivalent to the WSS assumption in f in the

frequency domain.

As well, RH(∆t,∆f) is the one-dimensional Fourier transform of the delay power

spectrum Rh(t, τ1) from the τ1 time domain to the ∆f frequency domain. RH(∆t,∆f)

is the spaced-frequency, spaced-time correlation function of the channel. If ∆t = 0,

RH(∆t,∆f) becomes the spaced-frequency correlation function, RH(∆f).

The domain length of ∆f for which RH(∆f) ̸= 0 is the coherence bandwidth.

The coherence bandwidth is denoted by Bcoh. Bcoh is approximately the inverse of

the delay spread, i.e. Bcoh ≈ 1/Tm. Recall that T is the signal duration and let W be

the signal bandwidth. A channel where Tm > T (or Bcoh < W ) is said to be frequency-

selective (or wideband), where the propagating signal is significantly distorted by the

channel. A channel where Tm ≪ T or Bcoh ≫ W is frequency-nonselective (or flat or

narrowband).

In UWA communications, multipath in the channel causes large delay spreads,

which disperses the waveform in time, and results in severe ISI. In shallow water

environments, delay spread is typically ≈ O(10 ms), though there are scenarios where
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it can be as large as 100 ms. In deep water environments, delay spread is ≈ O(s)

[38]. Thus UWA channels are generally frequency-selective.

It is also important to analyze the channel’s time variations due to Doppler broad-

ening and Doppler shifting of the signal to arrive at their scattering functions. The

Doppler effects are characterized by the scattering functions SH(ν,∆f) and Sh(ν, τ),

which are the 1-D Fourier transforms of RH(∆t,∆f) and Rh(∆t, τ) in the ∆t domain,

respectively.

Integrating over ∆f yields the channel’s Doppler power spectrum SH(ν), which

is the average power output of the channel as a function of Doppler frequency. The

domain length, ν, for which SH(ν) = 0 is the Doppler spread (or Doppler broadening).

The Doppler spread is denoted by Bd. A more practical definition of Doppler spread

is the square root of the second central moment of the normalized Doppler power

spectrum - this is known as the rms Doppler spread. Note that SH(ν) = Sh(ν).

Integrating Sh(ν, τ) over τ gives the Doppler power spectrum of the channel.

The duration of ∆t for which RH(∆t) ̸= 0 is the coherence time, denoted Tcoh,

which is approximately the inverse of the Doppler spread, i.e. Tcoh ≈ 1/Bd. A

channel where Bd > W or Tcoh < T is referred to as fast fading (or time-selective),

where the signal experiences severe Doppler effect due to rapid time variations during

transmission. A channel where Bd ≪ W or Tcoh ≫ T is referred to as slow fading.

In UWA communications, large Doppler shifts and spreads can easily occur from

the relatively low speed of sound, which causes the waveform to disperse in frequency,

resulting in severe ICI [38]. This makes UWA channels dynamic, so they are classified

as fast fading channels.

As shown above, the uncorrelated assumption in τ is equivalent to assuming a

WSS process in frequency. It is possible to find another equivalence relationship from

this (along with Fourier transform properties). Let the 4-D Fourier transform of

Rh(t1, t2, τ1, τ2) be SH(ν1, ν2, f1, f2). Using Fourier transform properties and applying
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the WSSUS assumption yields:

SH(ν1, ν2,∆f) = SH(ν,∆f)δ(ν2 − ν1) (2.39)

where ν equals ν1 or ν2. This shows that a WSS process in time is equivalent to

uncorrelated scattering in ν. The WSSUS assumption and the Fourier transform

relationship between SH(ν1, ν2, τ1, τ2) and Rh(t1, t2, τ1, τ2) can be used to arrive at the

relationship:

SH(ν1, ν2, τ1, τ2) = SH(ν1, ν2, τ)δ(τ2 − τ1) = SH(ν, τ)δ(ν2 − ν1)δ(τ2 − τ1). (2.40)

Eq.(2.38) shows that WSSUS assumes a WSS process in both t and f while Eq.(2.40)

shows that the WSSUS assumption only assumes unccorrelated scattering in both ν

and τ .

So far justification for the WSSUS assumption is not presented. Furthermore,

while the WSSUS assumption simplifies the statistical model of the UWA channel, it

also impacts system performance. The next section addresses both of these crucial

points.

2.5.1 Impact of the WSSUS Assumption on System Performance

The assumption of a WSSUS channel simplifies the mathematical model of the chan-

nel, however, the WSS assumption does not hold for long-term fading since the envi-

ronment itself changes. The assumption holds approximately for short-term fading,

which is of primary interest in the communication channel’s performance. This means

that, over short periods, it is assumed the environment does not change rapidly.

If the carrier phase changes rapidly during the symbol time T , it creates challenges.

The frequency of the amplitude and phase variations during time t is on the order
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of the maximum Doppler frequency, νmax. The time constant for these variations is

given by the correlation time 1/νmax. Thus transmission becomes possible when T ≪

1/νmax, i.e. when the channel does not exhibit rapid time variations. This condition is

usually necessary due to the unpredictable UWA channel dynamics. Furthermore, the

correlation time, 1/νmax, must be large enough so there is high correlation between

channel samples. This makes it possible to find an approximate expression to relate

the variance of the Doppler power spectrum to the autocorrelation function of the

channel. This will be shown next.

For channels with small Doppler shifts, the maximum Doppler frequency is a rea-

sonable approximation forBd and thus can be used to classify the channel. Estimation-

wise, fast fading channels are quite challenging (sometimes impossible) to deal with,

which is expecially the case for OFDM signals. As mentioned earlier, OFDM is the

preferred modulation scheme as it is resilient to frequency selectivity. The way to

make the estimation achievable is to modify the transmitted signal so the slowly-

varying condition, T ≪ 1/νmax, is satisfied. Thus a flexible signal design scheme is

the best way to combat fast fading channels.

For example, if a 64-point OFDM signal of bandwidthW = 10 kHz is transmitted

with a 25-kHz carrier in a channel that introduces a maximum Doppler shift of 2.5

Hz, then νmaxT = 0.016. If the maximum Doppler shift introduced is 25 Hz then

νmaxT = 0.16; though this does not mean the channel is fast fading, it does not

necessarily mean the channel is slow fading either. If νmax = 250 Hz then νmaxT = 1.6

and the channel is a fast fading channel. In such a situation one might consider a 16-

or even an 8-point signal over a 64-point signal for transmission.

As mentioned earlier, the WSS assumption holds for small-scale analysis (short

time durations) and thus one only needs to consider Rh(t) for t≪ 1/νmax. The Taylor
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series for the autocorrelation function is:

Rh(t) =
∞∑︂
n=0

1

n!
tn
dn

dtn
Rh(t)|t=0. (2.41)

Knowing that Rh(t) is the inverse Fourier transform of Sh(ν), it is found that:

dn

dtn
Rh(t)|t=0 = (j2π)n

∫︂ ∞

−∞
νnSh(ν)dν. (2.42)

The integral is identified as the nth moment of the Doppler power spectrum. Let

the integral be given by µn. Since the process is zero-mean, µ1 = 0. Assuming a

normalized Doppler power spectrum, µ0 = 1, and therefore:

Rh(t) = 1− 1

2
(2πt)2µ2 +

∞∑︂
n=3

1

n!
tn
dn

dtn
Rh(t)|t=0. (2.43)

Note that µn ≤ (2νmax)
n, and as a result:

⃓⃓⃓⃓
⃓

∞∑︂
n=3

1

n!
tn
dn

dtn
Rh(t)|t=0

⃓⃓⃓⃓
⃓ ≤

∞∑︂
n=3

1

n!
|4πνmaxt|n. (2.44)

Since these terms are very small for t≪ 1/νmax, the result is:

Rh(t) ≈ 1− 1

2
(2πt)2µ2. (2.45)

Therefore, it is concluded that the second moment determines largely the coherence

time. Also, the second moment (equivalent to variance for zero-mean processes) of

the Doppler power spectrum affects the performance of the digital communication

system the most [32].

So far UWA channels have been discussed in the context of general multipath

channels and scattering functions under the WSSUS assumption. The next section
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delves into the physics of UWA channels, and the characteristics that make UWA

channels unique compared to other channels.

2.6 Physics and Characteristics of the UWA Channel

As mentioned earlier, the UWA channel is classified as a linear time-variant channel.

However, what differentiates UWA channels from most other communication channels

is the frequency dependence of its attenuation factor. Thus transmitted signals in

UWA channels experience increasingly severe attenuation with increasing frequency.

This means UWA transmissions favour lower carrier frequencies at the cost of less

bandwidth. The discussion of UWA channels presented in this chapter is similar to

that in [33, 34, 35].

An acoustic wave experiences power reduction as it propagates through underwa-

ter environments. This is path loss or transmission loss due to spreading. Spreading

loss is the energy loss due to the scattering of waves in a specific geometry and which

is range-dependent. Subsequently, path loss is also range-dependent.

The power intensity of radiant energy is defined as acoustic power per unit area:

I(R) =
PA
A(R)

. (2.46)

Here PA is acoustic power and A(R) is the cross-sectional area, written as a function

of range, R. Spreading loss is defined as the ratio of power intensity I(0) at a reference

location R0 to power intensity I(R) at the desired point R. Let the spreading loss in

dB be given by Ls(R). Then

Ls(R) = 10log10

(︃
R

R0

)︃κ
= κ(RdB −R0,dB) (2.47)

where 1 ≤ κ ≤ 2 and RdB = 10log10R. At longer ranges, where the acoustic waves
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reach the sea floor (a boundary), cylindrical spreading may be assumed depending

on the source depth. For cylindrical spreading, A(R) is proportional to R, which

corresponds to the case κ = 1. At shorter ranges where the acoustic waves do not

reach the sea floor, spherical spreading may be a better spreading model. For spherical

spreading, A(R) is proportional to R2, which corresponds to the case κ = 2. In reality,

the spreading geometry can be between cylindrical and spherical due to considerations

like refraction, which occurs due to the sound speed dependence on depth. Thus A(R)

is proportional to Rκ in general. Since κ represents the spreading geometry, it is called

the spreading loss exponent.

With acoustic absorption, a fraction of the acoustic energy is absorbed by the

medium then transformed into heat while the rest is transferred through the medium.

Absorption also contributes to path loss. Acoustic absorption is largely a function of

frequency with some dependency on temperature, depth, salinity and acidity. It is

measured in dB/meter. Many empirical models for acoustic absorption under different

sea conditions have been proposed ( [5, 6, 7, 8]). For frequencies up to about 50 kHz,

the absorption coefficient a(f) has a second-order approximation [33]:

a(f) ≈ α0 + α1f + α2f
2. (2.48)

Let the absorption loss in dB be given by La(R, f). Then,

La(R, f) = a(f)(R−R0). (2.49)

Therefore, the overall path loss L(R, f) can be written as:

L(R, f) = Ls(R) + La(R, f) = κ(RdB −R0,dB) + a(f)(R−R0). (2.50)
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On a linear scale the overall path loss, given by L(R, f), is:

L(R, f) =

(︃
R

R0

)︃κ
[a(f)]R−R0 . (2.51)

Due to path loss, the transmitted signal power in a given subchannel ∆f is de-

graded to S(f)/L(R, f) where S(f) is the power spectral density (PSD) of the signal

at the transmitter. Noise in UWA channels comes from wave motion, marine life,

and anthropogenic sources like seismic exploration, shipping, sonars, etc. [30]. These

sources contribute to a broadband background that is referred to as the ambient

noise. The ambient noise is not white, so it is modelled as a colored Gaussian random

process. If the noise power is N(f), the range and frequency-dependent SNR under

path loss is:

SNR(R, f) =
S(f)

L(R, f)N(f)
. (2.52)

Since S(f) is user-specified prior to transmission, variations in SNR arise from the

term 1/[L(R, f)N(f)], so bandwidth will depend on transmission range, indicating

that the SNR decreases with increasing range. Therefore bandwidth-efficient modu-

lation schemes are important to achieve spectral efficiency greater than 1 bps/Hz [33].

To achieve a given SNR, the bandwidth and power required as a function of range

can, respectively, be modelled by [34]:

W (R) = wR−β where β = 0, 1 (2.53)

PA(R) = pRψ where ψ ≥ 1 (2.54)

where β = 0 if there is no path loss. It is important to note that since the channel’s

bandwidth is on the order of its carrier or center frequency, which is usually small,

UWA channels are intrinsically wideband (i.e. frequency-selective).
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Reflection and refraction of acoustic waves result in multipath. Refraction occurs

due to the dependence of sound velocity profile with depth, which is significant in

deep water, while reflections occur at the water surface and sea bottom, and from

targets in the water column. Fig. 2.5 shows this [36, p. 2]. Let the total reflection
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Figure 2.5: Multipath propagation in underwater environments.

coefficient for path p be given by Γp. Under ideal conditions, the reflection coefficient

at the sea surface is -1, but the reflection coefficient at the sea bottom depends on

the bottom cover and the wave’s incident angle on it. The reflection coefficient yields

the channel’s attenuation factor, but the path loss should also be accounted for. The

frequency-dependent attenuation factor is therefore given by [33]:

Cp(t, f) =
Γp√︁

L(Rp(t), f)
. (2.55)

Thus each path is modelled as a lowpass filter, with a different dispersion for each

path. Due to Doppler effects Rp = Rp(t).

Given that each path has a time-varying delay, τp(t), the Fourier transform,

C(t, f), of the channel’s bandpass impulse response is:

C(t, f) =
∑︂
p

Cp(t, f)e
−j2πfτp(t). (2.56)
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Hence, when mapped back to the time domain, the bandpass impulse response of the

channel becomes c(t, τ), and is given by

c(t, τ) =
∑︂
p

cp(t, τ − τp(t)) (2.57)

where cp(t, τ) is the inverse Fourier transform of Cp(t, f). The transmitted bandpass

signal is given by s(t) = Re{x(t)ej2πfct}. Therefore, the received bandpass signal is:

r(t) = s(t) ∗ c(t, τ) + n(t). The received lowpass signal is y(t) = x(t) ∗ h(t, τ) + ñ(t),

where

H(t, f) =
∑︂
p

Cp(t, f)e
jθp(t)e−j2πfτp(t) (2.58)

and θp(t) = −2πfcτp(t). Letting Hp(t, f) = Cp(t, f)e
jθp(t), the equivalent lowpass

response can thus be written as

h(t, τ) =
∑︂
p

hp(t, τ − τp(t)) (2.59)

where hp(t, τ) = cp(t, τ)e
jθp(t).

The multipath model discussed in Section 2.4 is given by

c(t, τ) =
∑︂
p

cp(t)δ(τ − τp(t))

h(t, τ) =
∑︂
p

hp(t)δ(τ − τp(t)).

It is of interest sometimes to simplify the acoustic model to the form shown above.

In OFDM this assumption can be valid and can often easily occur, which is explained

below.

If the subcarrier signal’s bandwidth ∆f is small enough such that the channel’s

frequency response is almost flat or constant in the domain of that bandwidth, then
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the flat fading model for each signal, or symbol, in the OFDM block can be assumed,

and serves as a good approximation to the UWA channel. The number of subcarriers

should be large enough for this condition to be satisfied. This is the narrowband

assumption. For this reason, throughout the research, this simplified form of the

UWA channel model was assumed.

Given the physics of the propagating signal through an UWA channel, the next

section looks at how Doppler effects impact the propagating signals.

2.7 The Doppler Effect in UWA Channels

The UWA Doppler shift has two effects on a propagating signal. The first effect is

a common (to the signal) shift in the carrier frequency of the signal. The second

effect is dilation/contraction which manifests in the signal’s time and frequency do-

main, causing time and frequency samples to shift. This effect is usually negligible

in channels with small Mach numbers like radio channels, but is significant in UWA

channels.

The following discussion describes how these Doppler effects arise. In an envi-

ronment with Doppler shifts due to motion of the receiver and/or transmitter the

received frequency is related to the transmitted frequency as follows:

f ′ =

(︃
1 +

∆v

c

)︃
f (2.60)

where f is the frequency at the transmitter, f ′ is the frequency at the receiver, c is the

speed of sound, and ∆v is the relative velocity between the transmitter and receiver

platforms. The factor ∆v/c is the Mach number denoted by a. If the transmitting

carrier frequency is fc, then the carrier frequency is shifted by afc.
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Using the above expression for a channel with dominant Doppler effects, the trans-

mitted signal, s(t), is related to the received signal r(t) as follows:

R(f ′) = R((1 + a)f) = AS(f) (2.61)

where A is the amplitude at the receiver, and R(f) and S(f) are the Fourier trans-

forms of r(t) and s(t), respectively. Therefore,

R(f) = AS(f/(1 + a)) (2.62)

and in the time domain:

r(t) = (1 + a)As((1 + a)t) = A′s((1 + a)t) (2.63)

such that A′ = A(1 + a). The Doppler effect therefore scales the frequency domain

by a factor of 1/(1 + a) and the time domain by 1 + a. This means that when a is

negative, the spectrum is broadened and the TD signal is compressed, and vice-versa.

In underwater communications (in fact in all known physical channels), |a| < 1 and

so the factor 1 + a is always positive.

If a lowpass signal, x(t), is transmitted, then the bandpass signal transmitted with

carrier fc, is:

s(t) = Re{x(t)ej2πfct}. (2.64)

From the above discussion, the bandpass received signal is given by:

r(t) = A′Re{x((1 + a)t)ej2πfc(1+a)t}. (2.65)
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The complex equivalent lowpass received signal y(t) is then:

y(t) = A′x((1 + a)t)ej2πafct. (2.66)

If x(t) has duration T , then y(t) will have duration T/(1 + a). Further, a complex

lowpass independent and identically distributed (i.i.d.) additive white noise process,

ñ(t), completes the model:

y(t) = A′x((1 + a)t)ej2πafct + ñ(t). (2.67)

In the frequency domain:

Y (f) = AX

(︃
f − afc
1 + a

)︃
+ Ñ(f). (2.68)

Let the UWA channel be given by the time-variant channel model in (2.29).

Assume that the amplitude is constant (or experiences small variations) within an

OFDM block, i.e. cp(t) = cp. Also, assume that the delay variation for each path

τp(t) can be approximated by the first-order relation τp(t) ≈ τp(0) − ap(t)t. Since

the relative platform velocity can vary with time, the Mach number will also. These

assumptions are appropriate when T < Tcoh, which is on the order O(100 ms) at

most [38, p. 12].

Also assume, and without loss of generality, that the Mach number has a weak

dependence on p, i.e., there exists one common Mach number a(t) in a shortM -point

burst. This assumption is common when the Doppler distortion due to platform

motion is dominant or the angles of arrival experience small changes for the paths [40].

Alternatively, one can instead view a(t) as the average of the path-dependent Mach

numbers ap(t) (averaged over p); in this case a(t) becomes the channel’s average Mach

number that needs to be estimated and eliminated.
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At the transmitter each ith OFDM block occupies an interval t ∈ [iT ′, (i + 1)T ′]

where T ′ is defined as T+Tg, with Tg being the guard interval or cyclic prefix duration.

The UWA bandpass CIR, in the presence of Doppler effects, is now given by:

c(t, τ) =
P∑︂
p=1

cpδ(τ − (τp(0)− ta(t)). (2.69)

The frequency response of the channel is then:

C(t, f) = ej2πa(t)ft
P∑︂
p=1

cpe
−j2πfτp(0) = ej2πa(t)ftC(f) (2.70)

which shows time- and frequency-dependent phase shifts in the OFDM block.

According to (2.32), the lowpass equivalent of the channel is now given by

h(t, τ) = ej2πa(t)fct
P∑︂
p=1

cpe
−j2πfcτp(0)δ(τ − (τp(0)− ta(t))) (2.71)

where a(t)fc is the Doppler shift present in the channel. Hence the frequency response

is:

H(t, f) = ej2πa(t)(f+fc)t
P∑︂
p=1

cpe
−j2π(f+fc)τp(0) = ej2πa(t)(f+fc)tC(f) (2.72)

but it can also be expressed in other forms like:

H(t, f) = C(t, f + fc) = ej2πa(t)(f+fc)tC(f + fc). (2.73)

The channel taps {cp} are not deterministic, rather they are random. For a large

number of paths P , which often occurs in shallow water conditions, h(t, τ) can be

approximated as a complex-valued Gaussian random process. The random variable

of |cp| can be Rayleigh, Ricean, Nakagami, etc. Let |Cp| be the random variable

representing |cp|. Assuming that no line-of-sight component exists, one can assume
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that |Cp| has a Rayleigh distribution [38, 43, 44].

This is not always the case however, as the taps may follow a different distribution

under different transmission conditions and different water depths. In this case, one

needs to find the distribution of channel taps with a kernel distrubtion, which is

done via kernel density estimation. One of the reasons for this is due to the fact

that a more general UWA channel model includes the random time-varying effects

of the UWA channel on the channel taps as multiplicative noise (which is sometimes

assumed Gaussian) [45]. Let the multiplicative noise be given by Mp(t). Like cp,

if one assumes that Mp(t) slowly varies in time for short durations, then the UWA

channel is given by

h(t, τ) = ej2πa(t)fct
P∑︂
p=1

Mpcpe
−j2πfcτp(0)δ(τ − (τp(0)− ta(t)))

For the remainder of the thesis, Mp is assumed to be absorbed into cp.

The bandpass received signal is

r(t) = s(t) ∗ h(t, τ) + n(t) (2.74)

which is given by

r(t) =
P∑︂
p=1

cps((1 + a(t))t− τp(0)) + n(t). (2.75)

Now, each ith OFDM block at the receiver occupies an interval t ∈ [
iT ′+τp,i(0)
1+ai(t)

,
(i+1)T ′+τp,i(0)

1+ai(t)
]

where ai(t) and τp,i(0) are the Mach number and reference delay for that block, re-

spectively. It should be noted that since |a(t)| < 1, 1 + a(t) > 0. Similarly, the
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lowpass signal received can be written as:

y(t) = ej2πa(t)fct
P∑︂
p=1

cpe
−j2πfcτp(0)x((1 + a(t))t− τp(0)) + ñ(t) (2.76)

where t ∈ [
iT ′+τp,i(0)
1+ai(t)

,
(i+1)T ′+τp,i(0)

1+ai(t)
].

Assume a(t) experiences small variations within the block. Then, the Fourier

transform of y(t), after simplifying, is given by:

Y (f) =
1

1 + a
C

(︃
f

1 + a

)︃
X

(︃
f − afc
1 + a

)︃
+ Ñ(f). (2.77)

Note the similarity of this expression with Eq.(2.68), which was derived in the absence

of c(t, τ).

Recall that the OFDM representation of x(t) is given by:

x(t) =
1√
N

N−1∑︂
k=0

X[k]ej2πfkt. (2.78)

Substituting this into Eq.(2.76) and simplifying gives an alternative representation of

y(t):

y(t) =
1√
N
ej2πa(t)fct

M−1∑︂
m=0

C(fk)X[k]ej2πfk(1+a(t))t + ñ(t). (2.79)

A similar expression can be found in [41].

From the analysis so far two effects have persisted, which are more clearly seen

in Equations (2.76) and (2.79). Firstly, the signal duration from each path is scaled

by 1+ a(t). In UWA channels, a(t) can reach O(10−2) so the dilation/compression of

the block duration is small. However in the frequency domain, since a large number

of subcarriers is usually chosen, the ICI introduced is in most cases substantial, and

Doppler compensation is needed.
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Secondly, the frequency components in the signals experience a subcarrier-dependent

Doppler shift of a(t)(fc+fk), which effectively causes the bandwidth of each subcarrier

signal (or the subchannel bandwidth) to increase. This breaks down the narrowband

assumption discussed in the previous section. Doppler compensation resolves this

issue.

After deriving the received signal in the time domain, the frequency domain of

the received signal will now be analyzed.

2.8 Reception of Shift-Orthogonal Sequences in UWA Channels

In this section, assume the Mach number is slowly varying in the OFDM block to

facilitate derivation, so a(t) ≈ a. In terms of the shift-orthogonal pilot signals, the

received signal is given by Eq.(2.79) but with the proposed M -point pilot structure;

i.e.

y(t) =
1√
M
ej2πafct

M−1∑︂
m=0

C(fm)B[m]ej2πfm(1+a)t + ñ(t) (2.80)

where m is now the frequency index of the M -point pilots. Here BM [m] is written

as B[m] for simplicity. The frequency response (Fourier transform) Y (fk) (where

k ∈ [0,M − 1]) after the guard interval removal is given by:

Y (fk) =
1

T

∫︂ T+τp
1+a

τp
1+a

y(t)e−j2πfktdt+ Ñ(fk). (2.81)

Simplifying yields

Y (fk) =
1

1 + a

1√
M
C

(︃
fk

1 + a

)︃M−1∑︂
m=0

B[m]e−jπαk,msinc αk,m + Ñ(fk) (2.82)

where αk,m is given by

αk,m =
fk − (1 + a)fm − afc

1 + a
T. (2.83)
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In discrete time it can be shown that the DFT is given by:

Y [k] =
1√
M
C

(︃
fk

1 + a

)︃M−1∑︂
m=0

B[m]e−jπ(1−
1
N )αk,m

sin παk,m
sin π

N
αk,m

+ Z[k] (2.84)

where Z[k] is the DFT of z[n], which is the filtered lowpass noise in discrete time. In

terms of the frequency indices αk,m is:

αk,m =
k −mNpre − a(fcT +mNpre)

1 + a
(2.85)

The energy spectral density (ESD) for E[k] can now be computed from E[k] =

|Y [k]|2. Similar expressions are derived in [41]. The expressions show each tone shifts

by: (i) the value afcT , which is due to the common Doppler shift, and (ii) the value

amNpre, which is the pilot’s sample drift and is different for each pilot. The factor

1/(1 + a) narrows/broadens the spectrum as discussed previously.

One can also observe that, for a given pilot k = mNpre, if a(fcT +mNpre) ≪ 1,

then the channel is slow fading, ρk,k ≈ 1 and |ρk,m| < |ρk,k|. Therefore,

Y [k] =
1√
M
C

(︃
fk

1 + a

)︃
B[k] +

1√
M
C

(︃
fk

1 + a

)︃ M−1∑︂
m=0

mNpre ̸=k

B[m]ρk,m + Z[k]. (2.86)

The summation term in such a scenario is because of ICI, which is small due to

assuming slow fading conditions, and can hence be viewed as additional noise.

Although the expressions derived in this section show the Doppler effects on the

frequency spectrum of the received pilot signals, the derivation also motivates the

concept of Doppler estimation and compensation in the time domain as opposed to

the frequency domain. In this section slowly varying Mach numbers are assumed

to find closed-form expressions for the frequency response. If no such assumptions

for a(t) are made then closed-form frequency domain expressions will no longer be
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possible and the estimator would be based on approximate expressions. Furthermore,

visually observing the time variations of a(t) in the frequency domain is impossible,

so visual analysis and intuition are severely limited. In the proposed estimator, the

assumption of slowly varying Mach numbers is also applied, but only for short pilot

bursts as shown in Chapter 4.

Now that the Doppler effect is properly understood in the context of UWA chan-

nels, the Doppler estimation problem can be properly approached and analyzed. Re-

gardless of the estimator used, estimator performance needs to be properly defined

with a suitable metric. The next section discusses how estimator performance will be

quantified in the thesis and introduces the Cramer-Rao lower bound (CRLB)

2.9 Estimator Performance and the CRLB

The Doppler estimation problem is a parameter estimation problem that asks the

question of how to estimate the Mach number, ai(t), from the ith received signal

block. The ability of the estimator to output Mach number estimates accurately with

small-enough errors is what defines the estimator’s performance. In the case of UWA

channels, ambient noise is the random process that affects the Doppler estimator.

The likelihood function L(ai(t)|zi(t)) of ai(t) is the likelihood that the value of the

unknown parameter is ai(t) given the noisy outcome zi(t) is observed (zi(t) is the

filtered lowpass noise signal for the ith received signal block). It is defined as the

joint probability density function (PDF) of the noisy outcome zi(t) given that the

true value of the unknown parameter is ai(t); i.e.:

L(ai(t)|zi(t)) = f(zi(t)|ai(t)) (2.87)

where f(zi(t)|ai(t)) is the joint PDF of signal and noise. The joint PDF, f(zi(t)|ai(t)),

is viewed as a function of zi(t) with ai(t) fixed, while the likelihood function, L(ai(t)|zi(t)),
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is used to view f(zi(t)|ai(t)) as a function of ai(t) with zi(t) fixed.

In decision theory, an estimator is a decision rule whose performance is evaluated

via loss (also known as cost) functions. A loss function in statistics is a function of

the difference between the estimated parameter value and the true parameter value

for a given data instance. Quadratic loss functions are commonly used in estimation

problems as they are symmetric in the sense that errors, with the same magnitude,

above and below the true value of the parameter contribute to the same loss. As

well, the variance properties of quadratic loss functions are, more often than not,

mathematically more tractable than other loss functions. A quadratic loss function

in terms of the estimated Mach number âi(t) and the true Mach number ai(t) is of

the form (âi(t)− ai(t))
2.

The loss function here is a random variable because it depends on the estimates

extracted from the received signal, which is contaminated by ambient noise. In this

case the expected value of the loss function, E[(âi(t) − ai(t))
2], becomes a better

measure of estimator performance. But this is just the mean squared error (MSE) of

the Mach number estimate. In fact the MSE metric (and variance metric for unbiased

estimators) is the most commonly used metric for evaluating performance in channel

or Doppler estimation problems.

It can be shown with some algebra that the MSE is related to variance via the

equation

MSE[âi(t)] = VAR[âi(t)] + [bias(âi(t), ai(t))]
2 (2.88)

where VAR[âi(t)] is the variance of the estimator (defined as E[(âi(t) − E[âi(t)])
2])

and bias(âi(t), ai(t)) is the bias of the estimator, defined as

bias(âi(t), ai(t)) = E[âi(t)]− ai(t). (2.89)

An estimator is called unbiased if bias(âi(t), ai(t)) = 0. Unbiasedness is one of the
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desirable properties of an estimator, since the average Mach number estimate would

not be an overestimate or underestimate of the true value, i.e. the estimates on

average are not biased away from the true value.

Another property desired for any estimator is efficiency, also known as minimum

variance. It can be shown that if the estimator and the likelihood function satisfy

two weak regularity conditions, then the variance of the estimator is subject to the

following bound, called the Cramer-Rao lower bound (CRLB) [39]:

VAR[âi(t)] ≥

⃓⃓⃓
1 + ∂

∂ai
bias(âi(t), ai(t))

⃓⃓⃓2
I(ai(t))

(2.90)

where I(ai(t)) is known as the Fisher information, and is defined as

I(ai(t)) = E

[︄(︃
∂

∂ai
ln L(ai(t)|zi(t))

)︃2
]︄

(2.91)

(ln L(ai(t)|zi(t)) is the log-likelihood function). A minimum variance estimator is an

estimator whose variance equals the CRLB. A minimum variance unbiased estimator

(MVUE) has a variance that equals the CRLB and has zero bias. It will be shown in

Chapter 4 that the proposed Doppler estimator approaches the MVUE with increasing

SNR.

As mentioned above, two regularity conditions need to be satisfied in order to

derive the bound in Eq.(2.90). The first regularity condition states that the Fisher

information is always defined, which means that ∂
∂ai

ln L(ai(t)|zi(t)), known as the

score function, exists and is finite. The score functon has the useful property which

states that the expectation of the score function is zero.

The second regularity condition states that, in the expectation of the estimator,

the derivative with respect to ai can be interchanged with the integral with respect

to zi. This can occur when (i) the joint PDF has infinite domain, is continuously
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differentiable and its integral uniformly converges for all ai(t), or (ii) the joint PDF is

bounded in zi, with the bound being independent of ai(t). Let the Doppler estimator

be given by the random process T (Zi(t)|ai(t)), where Zi(t) is the random process

representing noise, and let the point estimate extracted be given by the statistic

T (zi(t)|ai(t)). In other words, let âi(t) = T (zi(t)|ai(t)). Then the second regularity

condition states:

∂

∂ai

∫︂
T (zi(t)|ai(t))f(zi(t)|ai(t)) dzi =

∫︂
∂

∂ai
[T (zi(t)|ai(t))f(zi(t)|ai(t))] dzi.

(2.92)

Note from Eq.(2.89) that E[T (zi(t)|ai(t))] = E[âi(t)] = ai(t) + bias(âi(t), ai(t)).

With this information in mind (regularity conditions and the expectation of the

statistic), the CRLB can be derived by applying the Cauchy-Schwartz inequality

on the covariance of the estimator and the score function. Furthermore, if the score

function is differentiable (i.e. if the log-likelihood function is twice-differentiable),

then the regularity conditions can be used to prove the following about the Fisher

information [39]:

I(âi(t)) = −E

[︃
∂2

∂a2i
ln L(ai(t)|zi(t))

]︃
. (2.93)

That is, Eq.(2.91) and Eq.(2.93) are equivalent. This property proves to be useful in

deriving the CRLB of the estimator in Chapter 4. Using Eq.(2.88), the CRLB for the

MSE can be derived:

MSE[âi(t)] ≥

⃓⃓⃓
1 + ∂

∂ai
bias(âi(t), ai(t))

⃓⃓⃓2
I(ai(t))

+ [bias(âi(t), ai(t))]
2. (2.94)

With this section, the necessary background that lays the foundation of this the-

sis is complete. The next chapter reviews the literature that was consulted when

researching for this work.



Chapter 3

Literature Review

3.1 Introduction

The problems of Doppler estimation and compensation have been studied exten-

sively. Many approaches have been suggested for each problem. One may expect

that Doppler estimation and compensation go hand-in-hand, however many of the

sources encountered treated exclusively one or the other. Related to Doppler estima-

tion is the training sequence structure used at the transmitter. Doppler tracking is

a feature present in some Doppler estimators or compensators. If present, it would

be an intermediary stage that follows estimation and precedes compensation (like it

is in this thesis), and it is usually studied as part of the estimation or compensation

processes.

This chapter presents the state-of-the-art literature that the present research was

informed by or that it built on. Then, these examples provide a basis to measure the

proposed estimator and compensator’s performance against. The chapter starts with

a review of existing Doppler estimators and the pilot structures used in estimation

for UWA channels. It follows with a review of Doppler compensators.

3.2 Doppler Estimation and Tracking

The Doppler estimation objective is to determine the time-varying Mach number (rel-

ative speed) between transmitter and receiver during transmission and thus quantify

the time-varying UWA channel. Continuously determining the Mach number during

51
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transmission gives rise to Doppler tracking. The particular Doppler estimation re-

quirements are wide estimation range, high MSE performance and low computational

complexity to provide accurate near-real-time solutions on platforms with potentially

limited on-board processing.

There are many piloting structures available for pilot-aided estimation in UWA

channel communications. They can be classified into three main categories: comb-,

block- and scatter-type pilots.

Comb-type pilots, like the one proposed in [1] (and used in this thesis; see Chap-

ter 2) occupy the entire time domain (TD) frame and a number of subcarriers in the

corresponding frequency domain (FD) with a uniform distribution. Block-type pilots

occupy the entire FD and a certain number of samples with a uniform distribution

in the corresponding TD frame. Scatter-type pilots occupy a certain number of sub-

carriers and TD samples, though the choice of samples changes in n frames before

repeating the same pattern again; i.e. given a frame duration of T seconds, this pilot

structure is periodic with period nT and occupies the same subcarriers in a uniform

distribution for all frames.

The suitability of each pilot type and its performance under different estimators

is the subject of many papers [2], [3] [4]. It is shown that comb-type pilots perform

best in tracking fast fading channels with smaller delay spreads, though they are

sensitive to frequency selectivity, whereas block-type pilots perform best when there

are longer delay spreads and when there is a high degree of frequency selectivity,

though they are sensitive to fast fading. Scatter-type pilots perform well in both

frequency selective and fast fading channels, though their receivers suffer from high

computational requirements, making them slower compared to comb-type or block-

type pilot receivers.

From the perspective of Doppler estimation, tracking the time variations of the

channel is the primary interest. Since frequency selectivity does not significantly
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hinder the proposed Doppler estimator (Chapter 4) comb-type pilots are appropriate

and used for this work. The correlation properties of these pilots (see Chapter 2) play

a major role in defining the proposed Doppler estimator.

There are several kinds of Doppler estimators, but most are based on grid search-

ing, i.e. finding the Mach number that best satisfies an objective function subject

to pre-defined constraints [10], [12] - [14], [17], [18], [21],[22] - [25]. Stojanovic [10]

uses frequency grid searching on the narrowband cross-ambiguity function (CAF) to

estimate the Doppler shift. The estimator accurately tracks the Mach number. Its

main problem is its computational complexity which scales with increasing Doppler

shift.

In [9] and [23] grid searching is also used on the narrowband CAF for Doppler

estimation, where the main objective is to find the peak of the narrowband CAF.

Both are capable of Doppler tracking, though unfortunately the narrowband CAF is

not an adequate choice for many UWA channels, since UWA channels are wideband

by nature.

In [22], [24] and [25] different methods are proposed to use wideband CAF for

grid searching. A grid search algorithm based on finding the peak of the wideband

CAF is presented in [22]. Two methods to estimate the Doppler effect: wideband

CAF searching and fractional Fourier transform are presented in [25]. However MSE

performance and Doppler tracking are not reported in [22] or [25]. The estimator

in [24] is based on grid searching with warping functions derived from the wideband

CAF, and it uses a backpropagation algorithm to accomplish this; unlike [22] and [25]

it is capable of Doppler tracking, but the estimator is limited to shallow underwater

environments.

The estimators in [12] - [14] are also based on grid searching, though they use the

maximum correlation peaks of the received signal. However in [12] and [13], Doppler

tracking is absent, while [14] does not provide MSE performance for their estimator.
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Also, there does not appear to be any at-sea trials for their validation.

The grid search in [21] tries to find the maximum energy peak of the received

signal, making it similar to [12] - [14] in intent and results. In [21] a grid-search-

based FD estimator based on the maximum energy peak of the chirp-z transform is

proposed, which can produce highly-accurate Mach number estimates; however the

MSE has an error floor at low SNRs, so it is easily outperformed by many of the

Doppler estimators discussed here.

In [17] four methods to estimate Doppler effects are outlined. These are null-

subcarrier-based estimation, pilot-aided estimation, and decision-aided estimation for

zero-padded OFDM, and cross-correlation-type estimation for CP-OFDM; all four

estimators use grid searches to arrive at the Mach number estimates and use objective

functions not unlike the CAF. However all approaches lack Doppler tracking.

Another popular approach to Doppler estimation is based on the autocorrelation of

the received signal against the transmitted one [15], [18], [19]. This approach typically

exploits the structure of the training sequence, which means that the estimator is only

as good as the training sequence used.

In [15] a correlation-based approach similar to the one proposed in this thesis is

used, but it is a one-shot estimator in that the estimates are not updated in real-

time, which means that it can not track the Mach number. In [19] a correlation-type

estimator is used, also similar to the one presented in this thesis, but the estimator’s

MSE performance is not reported. In [18] cyclo-stationarity is assumed (i.e. a periodic

WSS process) to derive a grid-search-based estimator which detects the peak of the

circular autocorrelation function. However MSE performance and sea trial results are

not shown so performance comparison is not possible.

Another approach is the fractional Fourier transform to estimate the Mach number

[20] [25]. In [20] the fractional Fourier transform is applied on linear frequency-

modulated signals to estimate the Mach number. The MSE of the estimator however
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has an error floor that starts at very low SNRs, which limits its performance. Doppler

tracking is also absent.

Other methods to estimate the Mach number exploit the sparsity of UWA channels

by using compressed sensing for channel estimation. In [11] delay-Doppler sparsity

is exploited to arrive at a recursive estimation scheme based on compressed sens-

ing to track the channel. However this approach to estimate the Mach number un-

derperforms compared to other estimators, and is usually reserved only for channel

estimation (estimating the channel taps) where it performs well.

It is also possible to use harmonic retrieval to estimate the Mach number [16],

but it has low MSE performance compared to other estimators. Gradient descent

methods have also been used [26] to find the peaks of the wideband CAF to reduce

the computational complexity of standard methods based on ambiguity function grid

searching, such as the ones outlined above. However MSE performance, or any other

error performance of the estimator is not reported.

From reviewing other contributions, the following observations can be made about

existing Doppler estimators.

For grid searchers, the objective functions are usually either narrowband or wide-

band CAFs. Other objective functions include cross-correlation functions and energy

spectral densities. By their nature, grid searchers do not provide a closed-form so-

lution to the Doppler estimation problem. In most cases the Mach number that

maximizes the objective function is taken to be the desired estimate. Though this

is sufficient to arrive at accurate estimates in most cases, there are cases where the

Mach number falls outside the constraints of the objective functions, or more than one

Mach number estimate equally satisfies the constraints. This means there is no solu-

tion with such estimators. Finally, these estimators suffer from high computational

complexity since the search typically requires small resolutions to arrive at accurate

estimates.
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The novel approaches to Doppler estimation problem exploit the UWA channel

sparsity so compressed sensing can be used to estimate the channel. Though these

are classified as channel estimators, they can be used to indirectly find Mach number

estimates. This method usually underperforms compared to estimators implemented

as pre-processors to channel estimators. Fractional Fourier transform, harmonic re-

trieval, and gradient descent methods have also been proposed as possible solutions

to the Doppler estimation problem for UWA channels.

For this thesis, the estimator is correlation-type which uses the shift-orthogonal

pilot structure discussed in Chapter 2. It will be shown that this results in a very

robust estimator with a wide estimation range, high MSE performance and low com-

putational complexity. In fact, the estimator will be shown to handle Mach numbers

as high as O(10−2), which is higher than that possible with the existing approaches

reviewed here. The estimator is sub-optimal though, in the sense that its MSE can be

outperformed by existing estimators. Nonetheless, it has features that distinguish it

from other estimators, namely high estimation range and relatively low computational

complexity. Its performance is also validated with comprehensive at-sea experiments

(Chapter 6).

3.3 Doppler Compensators

Since the Doppler effect dilates/compresses the transmitted signal, resampling is a

natural step in Doppler compensation. The overwhelming majority of Doppler com-

pensators, like the ones reviewed in this work, include some form of resampling in

their design.

For Doppler compensation, Stojanovic in [10] details an adaptive decision feedback

equalizer (DFE) that can track and compensate the Doppler effect. Resampling is per-

formed with time-scale interpolators, then residual Doppler compensation is applied

by implementing an equalizer with phase-locked loop (PLL). However as mentioned
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in the previous section, it is computationally intensive, and the computational load

increases with the Doppler shift. The compensator in [19] is similar to the one used

in [10], but the MSE performance is not reported.

In [27] resampling is followed by reduction of preamble duration to mitigate the

residual Doppler effect. It uses a time-varying interpolator to resample the received

signal. However, the compensator does not take residual Doppler shifts into account,

making it easily susceptible to performance degradation. A time-varying resampler

is also used in [22] but it is followed by recursive least squares (RLS) equalization to

compensate for, and track, the Doppler effect.

The problem with equalizers is that, like most other synchronization techniques,

they are often unreliable in UWA communications, due in large part to multipath

and fading. With PLL-aided DFEs [10], for example, the error loop filter bandwidth

required to track higher Mach numbers in many scenarios is unachievable. Further-

more, the MSE degrades with increasing Doppler shifts, and subsequently, equalizer

divergence occurs when attempting to equalize in fast fading channels. Due to these

disadvantages equalizers are better applied to track slow fading channels.

In [13], residual carrier frequency offset (CFO) compensation is performed after

resampling with a grid-search approach based on detecting the maximum autocorre-

lation peak of the training sequences used. It is however incapable of tracking the

Mach number, and results from real-life tests are not presented.

In [21] resampling is followed by the bisection method to compensate the residual

CFO, which is also based on grid searches. However, the MSE performance of the

algorithm is not reported, although the compensator has been validated with at-sea

trials.

In [24], warping functions are derived from the wideband CAF to derive a lag-

Doppler filter to estimate and then compensate the Doppler effect. The filter uses
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a backpropagation algorithm to accomplish this, which is another grid searching ap-

proach. As mentioned in the previous section, the filter is limited to shallow under-

water environments, and is unable to track the Mach number.

In [15] resampling is followed by a cross-correlation-based approach using training

sequences to estimate the residual CFO. This is similar to the compensation approach

proposed in this thesis, but this compensator lacks a tracking mechanism, as the

residual Doppler estimator is a one-shot estimator. The resampling factor is also

fixed.

After reviewing the above sources, the following observations can be made about

existing Doppler compensators.

Resampling, the first stage of Doppler compensation, was used in every source en-

countered. These papers have their contribution in the second stage of compensation,

namely residual Doppler compensation. This requires residual Doppler estimation

first. With respect to signal size, the residual Doppler shift has minimal impact if

high-performance Doppler estimators are used i.e. the Mach number estimate is close

enough to the true Mach number.

Some of the compensators reviewed only use resamplers as their Doppler compen-

sator and do not address residual Doppler compensation. This is an issue in practical

UWA channels because residual Doppler shifts, although orders of magnitude smaller

than common Doppler shifts, limit communication systems performance (more rele-

vant for underway platforms) in much the same way Doppler shifts limit performance

if left uncompensated.

A number of Doppler compensators follow resampling with PLL-equipped equal-

izers to track and compensate the Doppler shift. As mentioned previously these

compensators suffer from high computational complexity relative to other compen-

sators, with the complexity increasing with the Doppler shift. The inherent issue with

equalizers is their inability to track channels that suffer from severe multipath and
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fading which is inherent in UWA channels. The PLL’s error loop filter bandwidth to

track larger Mach numbers is often difficult to achieve, with the MSE degrading with

increasing Doppler shifts as well. Equalizer divergence is also a common issue in fast

fading channels.

One of the novel approaches to residual Doppler compensation is using warping

functions extracted from the wideband CAF to derive a grid-searching lag-Doppler

filter which estimates and compensates common and residual Doppler shifts. Another

approach found in literature is the use of the bisection method for regular and residual

Doppler estimation, which is also a grid-searching algorithm.

Most of the Doppler estimators reviewed in the previous section can also be applied

to residual CFO estimation. This is not generally the case, and it needs to be proven

first. It will be later shown (Chapter 5) that after resampling, the residual CFO can

be estimated with the proposed Doppler estimator. The residual CFO can then be

eliminated via simple phase rotation.



Chapter 4

Time-Domain Doppler Estimation

4.1 Introduction

Doppler estimation is a research problem in UWA communications, because the

Doppler effect is a direct consequence of the rapid variations that exist in UWA

environments, which can destroy the signal if left untreated. This is especially the

case when multicarrier modulation, like OFDM, is used to generate the transmit sig-

nal. It is therefore not surprising to find that many solutions are proposed to the

problem, though they are not without their disadvantages and constraints. This is

also true for the proposed estimator. There are no Doppler estimators which perfectly

recover the Mach number for all UWA channels. Most, if not all, treatises on Doppler

estimation make assumptions of the UWA channel, even when these assumptions are

not completely satisfied.

As mentioned in Chapter 2, reducing the duration of the transmitted signal to be

less than the channel’s coherence time helps combat fast fading channels. In other

words, the signal duration is made small enough so that the time variations in the

channel can be tracked. This also means that if the signal is modified to satisfy this

condition before or during transmission, the rapid variations of the UWA channel will

have less impact. This leads to adopting the channel assumptions outlined in Section

2.7, namely:

� The delay variations can be approximated by τp(t) ≈ τp(0)− a(t)t.

� The path-dependent channel gains, cp(t), and the Mach number, a(t), vary

60
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slowly within the OFDM pilot block. Therefore, it is valid to drop the depen-

dence on t in parts of the derivations.

Once the channel assumptions and the signal structure are established, the Doppler

estimator can be developed based on this. The assumption of short-time durations

also justifies using the WSSUS assumption, though the assumption is not used too

liberally in this work, and plays no part in deriving the proposed receiver, but it is

used in Chapter 6 to generate the Doppler power spectrum of the analyzed UWA

channels.

Other reported works make channel assumptions similar to the ones listed above,

though the WSSUS assumption may not be explicitly stated.

In this chapter, a correlation-type estimator is proposed which exploits the shift-

orthogonal pilot structure discussed in Chapter 2. This results in a highly-robust

estimator with a wide estimation range, low MSE and low computational complexity.

It will be shown that the estimator is capable of handling Mach numbers of O(10−2),

which is not possible in the references reviewed earlier. The proposed estimator is

sub-optimal though, in the sense that its MSE can be outperformed by existing ones.

Nonetheless it has strengths that distinguish it from other estimators, namely high

estimation range and relatively low computational complexity. Its performance is also

substantiated with comprehensive at-sea measurements (Chapter 6).

4.2 The Doppler Estimator: Derivation

The proposed Doppler estimator is a correlation-type estimator which relies on the pe-

riodicity of the transmitted lowpass shift-orthogonal pilot signal, b(t). The estimator

makes the following assumptions. Firstly, the M -point pilot sequence is sufficiently

short so the Mach number does not vary significantly with time, and the dilation/-

compression caused by the Mach number becomes small. Secondly, theM -point pilot
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sequence is short enough that path gains do not vary significantly with time. In

this way, when these pilot bursts are continuously transmitted in the form of pream-

bles, channel time variations can be observed and tracked by the estimator. In most

treatments, similar assumptions are made about variations in the channel gains and

delays.

Assume an i.i.d. additive white noise process. This is a typical assumption when

attempting to analyze performance under ideal, synthetic conditions. From Eq.(2.67),

the received preambles in a Doppler-dominant environment is given by:

y(t) = Ab((1 + a(t))t)ej2πa(t)fct + ñ(t). (4.1)

Signal b(t) is an N -point OFDM signal made of Npre preambles. Thus for n ∈

[0, N − 1], it is M -periodic (recall N = NpreM). Let the M -point OFDM pilot signal

received due to a single preamble be given by:

yi(t) = AbM((1 + ai)t)e
j2πaifct + ñi(t) (4.2)

where ai(t) can be represented by ai, for now, due to the assumptions above. The

lowpass received signal is multiplied with its conjugate delayed by MTs, resulting in:

yi(t)y
∗
i (t−MTs) = A2ej2πaifcMTsbM(t+ ait)b

∗
M(t+ ait−MTs)

+ Añ∗
i (t−MTs)e

j2πaifctbM(t+ ait)

+ Añi(t)e
−j2πaifc(t−MTs)b∗M(t+ ait−MTs) + ñi(t)ñ

∗
i (t−MTs).

The average is then calculated. Since an i.i.d. white noise process is assumed, the

average taken over the ensembles approximately equals the one taken over time. Due

to using short preamble durations, this is an approximation rather than an equality.

One can thus approximate the time average of the second and third terms in the
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equality to be equal to the ensemble average of ñi(t) and ñi(t −MTs) respectively,

which is 0 for both cases. Hence, one arrives at the expression:

1

MTs

∫︂
MTs

yi(t)y
∗
i (t−MTs)dt

= A2ej2πaifcMTs
1

MTs

∫︂
MTs

bM(t+ ait)b
∗
M(t+ ait−MTs)dt

+
1

MTs

∫︂
MTs

ñi(t)ñ
∗
i (t−MTs) dt.

It should be noted that bM((1 + ai)t) is a periodic sequence like bM(t), for:

bM((1 + ai)t−MTs) =
1√
M

M−1∑︂
m=0

B[m]ej2π(1+ai)fmte−j2πfmMTs

=
1√
M

M−1∑︂
m=0

B[m]ej2πm(1+ai)fmt = bM((1 + ai)t).

since fm = mNpre/T = m/(MTs). Since the preamble size is assumed to be small

enough for it not to experience significant dilation/compression, this also means that

1

MTs

∫︂
MTs

bM(t+ait)b
∗
M(t+ait−MTs) dt =

1

MTs

∫︂
MTs

|bM((1+ai)t)|2 dt ≈ 1 (4.3)

In discrete time, after Nyquist filtering and downsampling, the lowpass received

sequence yi[n] is ideally given by:

yi[n] = AbM [(1 + ai)n]e
j2πaifcnTs + zi[n] (4.4)

It can be shown by the Nyquist-Shannon sampling theorem that Eq.(4.4) is an ap-

propriate discrete-time representation of yi(t).
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The average of the differential product in discrete time becomes:

1

M

M−1∑︂
n=0

yi[n]y
∗
i [n−M ]

= A2ej2πaifcMTs
1

M

M−1∑︂
n=0

bM [(1 + ai)n]b
∗
M [(1 + ai)n−M ] +

1

M

M−1∑︂
n=0

zi[n]z
∗
i [n−M ]

= ej2πaifcMTsD +
1

M

M−1∑︂
n=0

zi[n]z
∗
i [n−M ]

where

D = A2 1

M

M−1∑︂
n=0

bM [(1 + ai)n]b
∗
M [(1 + ai)n−M ]. (4.5)

Analogous to the continuous-time case, bM [(1 + ai)n] is still periodic, for:

bM [(1 + ai)n−M ]

=
1√
M

M−1∑︂
m=0

B[m]ej2πm(1+ai)n/Me−j2πmn =
1√
M

M−1∑︂
m=0

B[m]ej2πm(1+ai)n/M

= bM [(1 + ai)n].

Therefore,

1

M

M−1∑︂
n=0

bM [(1 + ai)n]b
∗
M [(1 + ai)n−M ] =

1

M

M−1∑︂
n=0

|bM [(1 + ai)n]|2 ≈ 1. (4.6)

Therefore the differential product of the shift-orthogonal pilots is 1, so D = A2.

It should be noted that, while 1
M

∑︁M−1
n=0 zi[n]z

∗
i [n −M ] → E[zi[n]z

∗
i [n −M ]] for

sufficiently largeM (which evaluates to 0 given i.i.d. white noise), M may not always

be large enough for the correlation samples to be 0. In this case the noise quantity,

1
M

∑︁M−1
n=0 zi[n]z

∗
i [n −M ], while small, should not be neglected. This is confirmed by

simulations of the estimator in this work.
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Let:

∆̂i[n] = arg
M∑︂
j=1

yi[n+ j]y∗i [n−M + j] (4.7)

(the factor 1/M is irrelevant to the phase). This was said of yi[n]y
∗
i [n −M ] above,

and is also true for yi[n + j]y∗i [n−M + j], since these are just shifted samples. The

motive for this representation will be seen soon. It is observed that ∆̂i[n] yields a

Doppler shift estimate. The proposed Doppler shift estimator is hence given by:

ˆ︂∆f i[n] = W

2πM
arg

M−1∑︂
j=0

yi[n+ j]y∗i [n−M + j] (4.8)

and the Mach number estimator by:

âi[n] =
W

2πfcM
arg

M−1∑︂
j=0

yi[n+ j]y∗i [n−M + j] (4.9)

where W = T−1
s . Now the reasoning to represent ∆̂i[n] by Eq.(4.7) can be justified.

Note, in this form, the estimator is sample-based, which means it produces a Mach

number estimate for every received signal sample. The estimator is simply a moving

average (MA) model that updates the output estimate for every sample. Thus the

estimator is also a Mach number tracker. However, since the estimator is tracking the

estimates for every sample, it is computationally cumbersome to use these estimates

for Doppler compensation. The proposed solution would be to extract just enough

Mach number estimates for compensation and tracking without compromising accu-

racy. This is accomplished and described in Chapter 5. For real UWA channels, D

in Eq.(4.5) takes on a different expression. Under the same assumptions discussed in

Chapter 2, the discrete-time representation of the received signal in a UWA channel
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is given by:

yi[n] = ej2πaifcnTs
P∑︂
p=1

cpe
−j2πfcmpTsbM [(1 + ai)n−mp] + zi[n] (4.10)

where {cp} are the channel path gains and {mp} are the discretized path delays. In

such a channel,

D =
1

M

M−1∑︂
n=0

P∑︂
p=1

cpe
−j2πfcmpTsbM [(1+ai)n−mp]

P∑︂
p′=1

cp′e
j2πfcmp′Tsb∗M [(1+ai)n−M−mp′ ]

(4.11)

and from the assumptions about ai for short pilot sequences, the pilots are still

(approximately) periodic. Using this, along with the property in Eq.(2.14) and some

simplification yields:

D = |cp|2. (4.12)

Therefore, the proposed estimator still stands for UWA channels since D does not

contribute to the phase component.

The next section provides approximate models for the received signal under high

SNRs whence the variance is derived.

4.2.1 Approximation for High SNRs

It is possible to derive a closed-form approximation for the variance of yi[n+ j]y
∗
i [n+

j −M ] under high SNRs. Let

µi[n+ j] = yi[n+ j]y∗i [n+ j −M ]. (4.13)
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Then,

VAR[µi[n+ j]] = A2|bM [n]|2VAR[z∗i [n+ j −M ]]

+ A2|bM [n]|2VAR[zi[n+ j]] + VAR[zi[n+ j]z∗i [n+ j −M ]]

= 2A2|bM [n]|2σ2
i +VAR[zi[n+ j]z∗i [n+ j −M ]]

where σ2
i is the variance of zi[n]. Since zi[n+ j] and z∗i [n+ j −M ] are independent,

the transformations |zM [n+ j]|2 and |z∗i [n+ j−M ]|2 are also independent; therefore,

VAR [zi[n+ j]z∗i [n+ j −M ]] = E[|zi[n+ j]|2]E[|z∗i [n+ j −M ]|2] = (σ2
i )

2 (4.14)

and the result becomes:

VAR [µi[n+ j]] = 2A2|bM [n]|2σ2
i + (σ2

i )
2. (4.15)

Thus the variance depends on σ2
i , as expected.

There is no closed-form expression relating µi[n+ j] with arg µi[n+ j], hence no

closed-form relationship exists relating VAR [µi[n+j]] to VAR [arg µi[n+j]] (however,

it is possible to find a lower bound for the variance, as shown in the next section).

Instead, the objective is to find an approximate expression for sufficiently-high SNRs,

which is how most Doppler estimators operate. This also provides new insight into

the estimator. The following approximation to the model for high SNRs not only

gives a closed-form expression for the proposed estimator, as above, but also provides

closed-form expressions for the mean and variance of the proposed estimator.

Since the energy of the attenuated preamble is A2
∑︁N−1

n=0 |bM [n]|2 = MA2, its

power is given by A2. Let the SNR be defined as SNRi = A2/σ2
i , i.e. the ratio of

the attenuated signal power per preamble to the noise power per preamble. Thus the
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received signal can be written as:

yi[n] = A

(︃
bM [(1 + ai)n]e

j2πaifcnTs +
1

A
zi[n]

)︃
= A

(︃
bM [(1 + ai)n]e

j2πaifcnTs +
1√
SNRi

znorm[n]

)︃
(4.16)

such that zi[n] =
√︁
σ2
i znorm[n] where znorm[n] is the zero-mean, normally-distributed

complex random variable.

As the noise component is comparatively small at high SNRs, the above model

can be replaced with an approximate model which includes the direct effects of noise

on the phase, 2πaifcnTs, to get:

yi[n] ≈ AbM [(1 + ai)n]e
j(2πaifcnTs+1/

√
2·SNRi wnorm[n]) (4.17)

where wnorm[n] is viewed as a normally-distributed, real, white noise process with

zero-mean and variance = 1. Thus 1/
√
2 · SNRi wnorm[n] is zero-mean and has a

variance of σ2
i /(2A

2).

Since wnorm[n] is real, the factor 1/2 is added to be consistent with the defini-

tions of variance for real and complex Gaussian processes. The importance of this

approximation is that it helps analyze the effects of noise on the phase directly and

in a straightforward way. Note, while 1/
√
2 · SNRi wnorm[n] is a real Gaussian pro-

cess, ej/
√
2·SNRi wnorm[n] is a colored noise process. Thus for high SNRs, while the

phase is viewed as being contaminated with a real white Gaussian noise, the received

signal is viewed contaminated with a complex-valued colored noise (although it is

approximately white at high SNRs). For high SNRs, it is noted that:

1

M

M−1∑︂
j=0

arg µi[n+ j] = arg
M−1∑︂
j=0

µi[n+ j]. (4.18)
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From Eq.(4.17):

arg
M−1∑︂
j=0

µi[n+ j] = arg

{︄
A2ej2πaifcMTs

M−1∑︂
j=0

e
j· 1√

2·SNRi
(wnorm[n+j]−wnorm[n+j−M ])

}︄

= 2πaifcMTs + arg
M−1∑︂
j=0

e
j· 1√

2·SNRi
(wnorm[n+j]−wnorm[n+j−M ])

.

As the SNR is high, the noise difference is small so a first-order Taylor series approx-

imation yields:

arg
M−1∑︂
j=0

e
j· 1√

2·SNRi
(wnorm[n+j]−wnorm[n+j−M ])

≈ arg
M−1∑︂
j=0

(︃
1 + j

1√
2 · SNRi

(wnorm[n+ j]− wnorm[n+ j −M ])

)︃

≈ arg

[︄
M

(︄
1 + j

1√
2 · SNRi

M−1∑︂
j=0

1

M
(wnorm[n+ j]− wnorm[n+ j −M ])

)︄]︄
≈ 0.

The mean and variance of the estimators can be inferred from the above analysis:

E[ˆ︂∆f i[n]] = W

2πM

(︄
1

M

M−1∑︂
j=0

E[arg µi[n+ j]]

)︄
= aifc = ∆f (4.19)

E[âi[n]] = ai (4.20)

VAR[ˆ︂∆f i[n]] = (︃ W

2πM

)︃2
(︄

1

M2

M−1∑︂
j=0

VAR [arg µi[n+ j]]

)︄
=

σ2
i

MA2

(︃
W

2πM

)︃2

(4.21)

VAR[âi[n]] =
σ2
i

MA2

(︃
W

2πfcM

)︃2

. (4.22)

The theoretical mean of the estimators show they are unbiased. The variance of

the estimators is inversely proportional to the SNR A2/σ2
i as is common in most
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estimators.

The next section presents a derivation of the Cramer-Rao lower bound (CRLB) for

the estimator for a lower limit on the variance, since as mentioned earlier a closed-form

analytical expression is not possible.

4.2.2 CRLB Derivation and Analysis

First, the Fisher information is derived for a given unbiased Doppler shift estimator.

Recall that the filtered lowpass Doppler-shifted signal in discrete time is given by:

yi[n] = Aej2πaifcnTsbM [(1 + ai)n] + zi[n]. (4.23)

Here, the noise zi[n] is assumed to be a zero-mean complex Gaussian noise. The

likelihood function for zi[n] is given by:

L(ai|zi) =
M−1∏︂
n=0

1√︁
2πσ2

i

e
− |zi[n]|2

(2σ2
i
) =

1(︂√︁
2πσ2

i

)︂M exp

(︄
− 1

2σ2
i

M−1∑︂
n=0

|zi[n]|2
)︄
. (4.24)

In terms of yi[n],

L(ai|yi[n]) =
1(︂√︁

2πσ2
i

)︂M exp

(︄
− 1

2σ2
i

M−1∑︂
n=0

|yi[n]− Aej2πaifcnTsbM [(1 + ai)n]|2
)︄
.

(4.25)

The log-likelihood function in turn is given by:

ln L(ai|yi[n]) = − 1

2σ2
i

M−1∑︂
n=0

|yi[n]− Aej2πaifcnTsbM [(1 + ai)n]|2 −
M

2
ln 2πσ2

i . (4.26)
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Let νn = 2πfcnTs. The score function ∂
∂ai

[ln L(ai|yi[n])] can now be computed:

∂

∂ai
ln L(ai|yi[n]) = − A

2σ2
i

M−1∑︂
n=0

jνn[−ejaiνnbM [(1 + ai)n]
(︁
yi[n]− AejaiνnbM [(1 + ai)n]

)︁∗
+ e−jaiνnb∗M [(1 + ai)n]

(︁
yi[n]− AejaiνnbM [(1 + ai)n]

)︁
]

= − A

2σ2
i

M−1∑︂
n=0

jνn(−ejaiνny∗i [n]bM [(1 + ai)n] + e−jaiνnyi[n]b
∗
M [(1 + ai)n]).

(It is easily verified that the expectation, E[·], of the score function is 0). Now, the

second derivative can be computed as:

∂2

∂a2i
[ln L(ai|yi[n])] = − A

2σ2
i

M−1∑︂
n=0

[jνn(−jνnejaiνny∗i [n]bM [(1 + ai)n−

jνne
−jaiνnyi[n]b

∗
M [(1 + ai)n])]

= − A

2σ2
i

M−1∑︂
n=0

ν2n(e
jaiνny∗i [n]bM [(1 + ai)n] + e−jaiνnyi[n]b

∗
M [(1 + ai)n]).

The Fisher information, I(ai), can now be derived as:

I(ai) = −E

[︃
∂2

∂a2i
ln L(ai|yi[n])

]︃
=

A

2σ2
i

M−1∑︂
n=0

ν2n(e
jaiνnE [y∗i [n]]bM [(1 + ai)n] + e−jaiνnE [yi[n]]b

∗
M [(1 + ai)n])

=
A

2σ2
i

M−1∑︂
n=0

ν2n(Ab
∗
M [(1 + ai)n]bM [(1 + ai)n] + AbM [(1 + ai)n]b

∗
M [(1 + ai)n])

=
A2

σ2
i

M−1∑︂
n=0

ν2n|bM [(1 + ai)n]|2.

Given that νn = 2πfcnTs = 2πfcn/W , and the fact that the pilot duration is small

enough such that the dilation/compression it experiences is negligible, the Fisher
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information of the Doppler shift estimator is:

I(ai) =
A2

σ2
i

(︃
2πfc
W

)︃2 M−1∑︂
n=0

n2|bM [(1 + ai)n]|2 ≈
A2

σ2
i

(︃
2πfc
W

)︃2 M−1∑︂
n=0

n2|bM [n]|2

≈ SNRi ·
(︃
2πfc
W

)︃2 M−1∑︂
n=0

n2|bM [n]|2

(4.27)

which is independent of ai. The reciprocal of I(ai) is the CRLB of an unbiased

estimator. Note that:

M−1∑︂
n=0

n2|bM [n]|2 ≤
M−1∑︂
n=0

n2

M−1∑︂
n=0

|bM [n]|2. (4.28)

But
∑︁M−1

n=0 |bM [n]|2 =M (see Eq.(2.14)). Therefore,

I(ai) = SNRi ·
(︃
2πfc
W

)︃2 M−1∑︂
n=0

n2|bM [n]|2 ≤ SNRi ·
(︃
2πfc
W

)︃2
M2(M − 1)(2M − 1)

6
.

(4.29)

The bias of the estimator is given by bias (âi, ai) = E [âi] − ai. In this case the

bound is given as:

VAR [âi] ≥
[︁
1 + ∂

∂a
bias (âi, ai)

]︁2
I(ai)

. (4.30)

The estimator bias thus needs to be checked. Recall from Eq.(4.9) that:

âi[n] =
W

2πfcM
arg

M−1∑︂
j=0

µi[n+ j] (4.31)

so

bias (âi, ai) =
W

2πfcM
E

[︄
arg

M−1∑︂
j=0

µi[n+ j]

]︄
− ai[n]. (4.32)

The bias is expected to be very small since averaging the noise component in

arg
∑︁M−1

j=0 µi[n + j] over sufficiently many preambles mitigates it (the estimator is
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shown to be unbiased for high SNRs in the previous section). The quantity:

1 +
∂

∂ai
bias (âi, ai) =

W

2πfcM

∂

∂ai
E

[︄
arg

M−1∑︂
j=0

µi[n+ j]

]︄
(4.33)

was calculated numerically and found to be 1 + ∂
∂ai

bias (âi, ai) ≈ 1, i.e. the partial

derivative is approximately 0, again confirming unbiasedness. Therefore, the bound

for the estimator is given by:

VAR [âi] ≥

[︄
SNRi ·

(︃
2πfc
W

)︃2 M−1∑︂
n=0

n2|bM [n]|2
]︄−1

≥

[︄
SNRi ·

(︃
2πfc
W

)︃2
M2(M − 1)(2M − 1)

6

]︄−1

. (4.34)

It is interesting to note that the variance of ∆̂i is independent of W and fc. For

VAR [∆̂i] =

(︃
2πfcM

W

)︃2

VAR [âi] ≥
[︃
SNRi ·

(M − 1)(2M − 1)

6

]︃−1

. (4.35)

The relationship between MSE and variance is given by:

MSE [âi] = VAR [âi] + [bias (âi, â)]
2. (4.36)

Note that the MSE and variance bounds are nearly the same due to the fact that the

estimator is (approximately) unbiased, but it should be included for a more complete

description. Thus,

MSE [âi] ≥

[︄
SNRi ·

(︃
2πfc
W

)︃2
M2(M − 1)(2M − 1)

6

]︄−1

+

(︄
W

2πfcM
E

[︄
arg

M−1∑︂
j=0

µi[n+ j]

]︄
− ai[n]

)︄2

. (4.37)



74

In terms of ∆̂i,

MSE [∆̂i] ≥
[︃
SNRi ·

(M − 1)(2M − 1)

6

]︃−1

+

(︄
E

[︄
arg

M−1∑︂
j=0

µi[n+ j]

]︄
−∆i[n]

)︄2

.

(4.38)

The bounds in terms of
∑︁M−1

n=0 n2|bM [n]|2 are tighter, and they are the true CRLBs:

MSE [âi] ≥

[︄
SNRi ·

(︃
2πfc
W

)︃2 M−1∑︂
n=0

n2|bM [n]|2
]︄−1

+

(︄
W

2πfcM
E

[︄
arg

M−1∑︂
j=0

µi[n+ j]

]︄
− ai[n]

)︄2

. (4.39)

MSE [∆̂i] ≥

[︄
SNRi ·

1

M2

M−1∑︂
n=0

n2|bM [n]|2
]︄−1

+

(︄
E

[︄
arg

M−1∑︂
j=0

µi[n+ j]

]︄
−∆i[n]

)︄2

.

(4.40)

The next section outlines the design criteria for the estimator.

4.3 Design Criteria

The proposed Doppler estimator is a TD estimator which relies on estimating the

phase 2πai[n]fcMTs. Recall that

âi[n] =
W

2πfcM
arg

M−1∑︂
j=0

µi[n+ j]. (4.41)

Computing the argument involves an arctan operation, which takes on a value between

−π and π. One thus gets the condition:

⃓⃓⃓⃓
2ai[n]fcM

W

⃓⃓⃓⃓
< 1 (4.42)



75

or

|ai[n]| <
W

2fcM
. (4.43)

If the above condition is not satisfied, there will be angle ambiguity, which means the

estimator puts the phase estimates in the incorrect quadrant. Thus Eq.(4.43) is a

necessary condition for the estimator to satisfy. For example, if M = 64, fc = 24.414

kHz and W = 10 kHz, the pilot signals can be used with the Doppler estimator in

channels where the Mach number can be as high as 3.2× 10−3.

The estimation range can be extended if the bandwidth is increased, carrier fre-

quency is reduced, or shift-orthogonal pilot sequence length is reduced, thereby mak-

ing the Doppler estimator applicable over more dynamic channels. For example, using

a length of M = 8 fc = 24.414 kHz and W = 10 kHz means the Doppler estimator

can be used in channels where the Mach number is as high as 0.026.

However, it must be noted that there is a trade-off asscoiated with choosing the

length of the M -point pilot sequence. If the preamble is shortened, then it will be

able to handle faster time variations without experiencing pilot ambiguity, which as

mentioned previously increases the range of the estimator. However, if the preamble

is shortened to the point where it is less than the delay spread of the channel, then

the channel estimator using these preambles will not be able to correctly capture the

frequency selectivity of the channel. This trade-off needs to be kept in mind when

choosing preamble size.

It should be noted that it is possible to transmit preambles with varying sizes

as long as these sizes satisfy the design criterion, i.e. the preamble size M can

vary with i. For example, 8-point, 16-point and 64-point preambles can be serially

transmitted, and the estimator will be able to track the Mach number estimates across

the preambles. It is also possible to vary the bandwidth of each transmitted preamble

(W can vary with i) without hindering the performance of the estimator (provided
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the design criterion is satisfied).

With the theory and design requirements of the proposed estimator established,

next its performance will be benchmarked in simulations, in order to validate its

theoretical framework and performance expectations in real channels. Later (Chapter

6) these performance expectations will be measured against at-sea trials.

4.4 Performance in Simulations

Shown in Fig. 4.1 is the proof-of-concept estimator, in the baseband, realized with

MathWorks Simulink. It produces estimates of ∆̂i, which are used to find âi or ˆ︂∆f i.
Performance curves are presented for ∆̂i.

Repeat
16xprm.Preamble

TD-pilot

General
Block

Interleaver

u

k-C-

Interleaver	Indices

Model
Parameters

Variables	in	prm.*

DSP

Doppler	Shift

Vector	of	Noise

u y

Dilation/Compression

Mach	Numbers

Z-1

Moving
Average

|u|

u

Correlation	Magnitude

Figure 4.1: Simulink model used to test the Doppler estimator.

The model was first tested under noise-free conditions with only Doppler phase

offsets to confirm the estimator performs as expected under such ideal conditions,

before extending it to include noise, dilation/compression, etc.

After the M -point orthogonal pilot sequence is generated, the Doppler shift was

added as a carrier frequency offset for Mach numbers −10−3 < a < 10−3 and carrier

frequencies of 2048 Hz and 24414 Hz. The estimator consistently produced perfect
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phase estimates in the absence of noise. For example, withW = 400 Hz, fc = 2048 Hz,

and a = −5×10−5, the “MachNumbers” block (Fig. 4.1) produced phase estimates of

∆̂i[n] = −0.10294. This results in the estimate âi[n] = â = −4.9998× 10−5. Another

example with W = 10 kHz and fc = 24.414 kHz, yield the same results.

Then the model was tested with a combination of noise and signal dilation/com-

pression effects. The transmitted signal was checked to maintain a signal power of 1,

meaning the SNR is given by 1/σ2
i . In Simulink, the SNR definition is based on the

input sample size. When signals are handled on a per-sample basis, the signal power

is normalized to 1 per sample (though it is not necessary for the proposed pilot signal

as it has unit power) and the noise variance is also set on a per-sample basis.

For experimental purposes (Chapter 6), it is convenient to work with 64 samples

(OFDM preamble sizes) or 64Npre samples (OFDM block sizes); however when sim-

ulating the estimator with higher Mach numbers (greater than 10−3), the preamble

size was reduced to 8. These modes of operation do not affect the estimator’s MSE,

of course, rather they serve as a model reference, especially for the SNR calculations.

The results presented below are for sample sizes of 64. As a result, signal power is

normalized to 1 per 64 samples, and the AWGN block adds a 64-point noise sequence

to each preamble with a power of σ2
i .

The simulations were performed for Mach numbers 10−6 < a < 10−2. It was found

that the estimator’s performance has very weak dependence on the Mach number, i.e.

the estimator is unbiased. Two Mach number values will be highlighted as represen-

tative of the range expected from Doppler effects, where the low value represents calm

wave motion only and the high value repesents the relative platform motion scenario.

The two Mach number values selected are: a = −5 × 10−5 and a = −1 × 10−3, and

the results are shown for two combinations of bandwidth and carrier frequency.

Fig. 4.2 shows the Doppler estimator’s performance, quantified by MSE, with SNR

for W = 400 Hz, and fc = 2048 Hz given the aforementioned two Mach numbers. As
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shown, the performance is near-identical for both. For |a| > 1.5×10−3, the estimator

experiences “angle ambiguity,” i.e. the estimator yields bad estimates.

WhenW = 10 kHz and fc = 24.414 kHz, near-identical performance is seen, again,

for the two Mach numbers. This is expected as the variance of ∆̂ is independent of

W or M . The estimator similarly experiences angle ambiguities for |a| > 3 × 10−3,

which in practice is not too different from the previous case. Fig. 4.3 shows this.

These results are supported by the theory since 1 plus the derivative of the bias

was numerically computed and found to be 1. Thus, the bias factor is simply a

constant.

0 5 10 15 20 25 30

SNR (in dB)

10-5

10-4

10-3

10-2

10-1

a=-5e-5
a=-1e-3

Figure 4.2: Simulated Doppler estimator performance of ∆̂i[n], quantified by MSE,
for the two selected Mach numbers, given W = 400 Hz and fc = 2048 Hz.
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Finally, the CRLB of the estimator was computed for a lower bound on the vari-

ance (Eq.(4.40)). Fig. 4.4 shows the CRLB of the channel with a = −5× 10−5 given

W = 400 Hz and fc = 2048 Hz. The measured MSE (Chapter 6) is sufficiently close

to the theoretical CRLB, as it asymptotically approaches it with increasing SNR (as

seen from the decreasing MSE separation with increasing SNR).

It is noted that for SNR > 30 dB, MSE < 10−5 (≈ 0 as phase estimates will

be near-perfect). Furthermore, the CRLB performance curve for the channel at a =

−10−3 is found to be the same. The CRLB performance curve of the channel, under

any Mach number, is found to remain unchanged. Thus, the estimator is unbiased

under these conditions. Again, since ∆̂i is independent of fc and W , the MSE curves

for W = 10 kHz and fc = 24.414 kHz remain the same.

0 5 10 15 20 25 30

SNR (in dB)
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10-1
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a=-1e-3

Figure 4.3: Simulated Doppler estimator performance of ∆̂i[n], quantified by MSE,
for the two selected Mach numbers, given W = 10 kHz and fc = 24.414 kHz.
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Figure 4.4: Simulated Doppler estimator performance of ∆̂i[n], quantified by MSE.
Note that the measured MSE slowly approaches the theoretical CRLB.

If the MSE performance of âi[n] is measured instead of ∆̂i[n] as above, the

performance will depend on the parameters W , fc and M , since MSE [âi[n]] =(︂
W

2πfcM

)︂2
MSE [∆̂i[n]]. Fig. 4.5 shows the MSE performance of âi[n] when W = 400

Hz and fc = 2048 Hz, while Fig. 4.6 shows the MSE performance of âi[n] when

W = 10 kHz and fc = 24.414 kHz. Recall that results are presented for M = 64 in

this section.

In the next section, the performance of the proposed Doppler estimator is com-

pared against those reviewed in Chapter 3.
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Figure 4.5: Simulated Doppler estimator performance of âi[n], quantified by MSE,
givenW = 400 Hz and fc = 2048 Hz. Note that the measured MSE slowly approaches
the theoretical CRLB when shift-orthogonal pilots are used.
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Figure 4.6: Simulated Doppler estimator performance of âi[n], quantified by MSE,
given W = 10 kHz and fc = 24.414 kHz. Note that the measured MSE slowly
approaches the theoretical CRLB when shift-orthogonal pilots are used.
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4.5 Comparison to Existing Estimators

The proposed estimator performance is compared to others in the literature previously

reviewed (Chapter 2). As mentioned in this chapter’s introduction, it is sub-optimal as

its MSE can be outperformed (i.e. other methods have lower MSE), but nonetheless,

it has distinct strengths that contribute to its merit. It should be noted that none

of the reviewed estimators demonstrate their viability for Mach numbers as high as

≈ O(10−2). The MSE vs SNR results encountered are overlayed on the MSE curves

of the proposed estimator. All results are presented in terms of the MSE of the phase

estimates ∆̂i[n], as phase estimates of the proposed estimator are blind to the sampling

frequency and carrier frequency used, making for a fairer and more concise comparison

with other estimators. Where the MSE performance of the Mach number is presented,

the MSE is multiplied by the factor (2πfcMTs)
2 using the signal parameters presented

in the paper to arrive at the MSE of the Doppler phase estimates.

Recall that the CRLB in this work is derived with the M -point shift-orthogonal

pilots in mind. As such, the CRLB changes depending on the type of sequence used

for transmission, and it represents the best unbiased estimator (MVUE) that uses

the specified sequence. It is therefore not surprising to find estimators with MSEs

falling below the CRLB documented here, since different sequences were used for

transmission in the reviewed sources.

In terms of computational complexity, the proposed estimator has the lowest stor-

age requirements as well as the fastest runtime when compared to optimization al-

gorithms such as grid-searching algorithms. As mentioned previously, Eq. (4.7) is

implemented using a sliding-window moving average. The MA recursive relation for

the estimator is given by

∆̂i[n+ 1] = ∆̂i[n] +
µi[n+M ]− µi[n]

M
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From this expression, it is observed that each output requires three multiplications

and two additions; as such, it uses a constant amount of space. Thus the storage

requirement of each output value is of order O(1). Since it is desired to store the

output at each sample time, the storage complexity increases to O(N). The time

complexity for each output value is also a constant, and running the estimator across

the entire frame also results in a time complexity of O(N).

Optimization algorithms have higher time and space complexities as these algo-

rithms typically rely on finding the parameter that best maximizes or minimizes a

given objective function (under a set of constraints); as such, there is an element of

“trial and error” involved where the objective function is calculated for every element

in the constraint or search grid. These algorithms usually rely on high-resolution

grids, so the search grid is expected to have a high number of samples. The mem-

ory required for the search grid is on the order of the search grid size, while the

memory required for the objective function is proportional to the number of elemen-

tary operations required to compute each sample times the frame size; the number

of elementary operations in these algortihms is usually not constant, as it tends to

increase with increasing frame size. The time and storage complexities are thus of

order O(NsNoN) at best, where Ns is the size of the search grid, No is the number

of elementary operations in the objective function, and N is the frame size.

The Doppler estimator of Stojanovic [10] is based on frequency grid searching

using the narrowband CAF. The proposed Doppler estimator, on the other hand,

gives estimates for every sample in closed form. Also, unlike [10], the estimator

is sample-based and less intensive computationally. The paper does not provide

the MSE performance of the estimator, however it does provide the performance

of the compensator (compared in Chapter 5). Though the proposed estimator is not

computationally intensive while estimating the Mach number compared to [10], it is

computationally intensive during Doppler compensation mainly due to the resampling
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step, though the computational intensity does not increase with Doppler shift, which

is the case in [10]. This, however, becomes a non-issue since the Doppler effect

correction is performed with a subset of the Mach number estimates. These estimates

are systematically chosen without compromising accuracy (Chapter 5).

In [23] the grid searching algorithm is based on finding the peak of the narrowband

CAF. It also compensates the Doppler effect by resampling and equalization, enabling

Doppler tracking in the process. However, while the estimator is substantiated with

sea trials, its MSE is not shown.

In [22] the grid searching algorithm is based on finding the peak of the wideband

CAF. The Doppler effect is compensated via resampling and RLS equalization, which

is capable of tracking the Doppler effect. However, their MSE performance is not

presented.

The estimator in [24] is also based on grid searching using warping functions

derived from the wideband CAF, and accomplishes this with a backpropagation algo-

rithm. The estimator is limited to shallow underwater environments and outperform

existing message passing algorithms. However, there is no in-water validation. MSE

performance is not presented and tracking capabilities are not shown.

In [25] two methods are presented to estimate the Doppler effect: wideband CAF

searching and fractional Fourier transform. Both estimators are substantiated by

in-water measurements, with the fractional Fourier transform method outperforming

the grid searching method. However, their MSE values and Doppler tracking are not

reported.

In [20] the fractional Fourier transform is applied on linear frequency-modulated

signals to estimate the Mach number, but it is severely outperformed by the proposed

estimator; also the MSE of the estimator has an error floor that starts at very low

SNR, which limits its performance. For SNR > 0 dB, it under-performs compared

to the proposed estimator. Tracking is absent. Fig. 4.7 documents these results
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In [21] a grid-search-based frequency domain estimator is proposed based on the

maximum energy peak of the chirp-z transform, which can produce very accurate

Mach number estimates; however like [20] the estimator is outperformed and the

MSE has an error floor at very low SNRs. See Fig. 4.7.

In [12] - [14] correlation-type grid searching approaches are used that revolve

around finding the maximum peak of the autocorrelation function of the received

training sequence.

In [12] two such estimators are proposed, but they are both outperformed by the

proposed estimator as measured by the MSE and they do not track. The MSE for

the second method, claimed to be better, is presented, however it is documented in

terms of simulation time rather than SNR, where SNR is fixed at 12 dB. The MSE

of the Doppler phase estimates (estimates of ∆̂i[n]) floors at -5 dB. This corresponds

to an MSE of 10−5/10 ≈ 0.316. Due to the error floor present, the MSE stays at this

value for the remainder of the simulation. Thus this MSE value is shown as a point

at 12 dB in Fig. 4.7. It is worth noting that the first estimator outlined in [12] is

conceptually similar to the proposed estimator but since the training sequences lack

the orthogonality features adopted in this paper, closed-form estimates and tracking

are not possible, which forces the use of grid searching. The second method however,

which is based on equalization, is capable of Doppler tracking. The methods have

not been validated by in-water tests.

In [13] Mach number tracking is absent, and the estimator has higher MSE than

the proposed estimator when viewed in terms of phase estimates; furthermore there is

an error floor at around 8 dB (see Fig. 4.7). This is partly due to the longer training

sequences used in [13] for Doppler estimation, with the minimum length being 2560

(compared to 64 in the proposed estimator). The comparison however can still be

considered fair, as the MSE performance of the proposed estimator improves when

using longer sequences, albeit at the cost of smaller range of estimation. Recall that
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the piloting structure proposed in this thesis requires shorter lengths to better track

large magnitude channel dynamics. The estimator in [13] was also not shown tested

against real-life channels.

The MSE performance and real-life measurements in [14] were not provided so it

cannot be compared to the proposed estimator, though its performance is justified

through simulations.

In [17] four methods commonly used to estimate the Doppler effect are provided.

These are: null-subcarrier-based; pilot-aided; decision-aided for zero-padded OFDM,

and cross-correlation-type estimation for cyclic prefix-OFDM; all four estimators per-

form grid searching for the Mach number estimates. Fig. 4.7 shows the performance

of these four methods referenced to ∆̂i[n] corresponding to each estimator. The

null-subcarrier-based estimator is shown to have a better MSE performance for the

phase estimates, while the cross-correlation-based estimator is outperformed by the

proposed estimator. For SNRs less than 13 dB, both the pilot-aided and decision-

aided estimators have better MSE performance, but beyond that these estimators

get outperformed due to the error floor they experience at 7 dB. All estimators are

substantiated in real sea trials, however Doppler tracking is not demonstrated for any

of these estimators.

In [15] a correlation-based approach similar to the one proposed in this thesis is

used, albeit it is a one-shot estimator as the estimates are not updated in real-time,

which means that it is unable to track the Doppler effect. [18] assumes cyclostationar-

ity (i.e. a periodic WSS process) to derive a grid-search-based estimator that detects

the peak of the circular autocorrelation function. MSE performance and sea trial

results are not shown so comparisons against the proposed estimator is not possible.

[19] uses a correlation-type estimator similar to the one presented here though MSE

performance is not reported.
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In [11], delay-Doppler sparsity (inherent in UWA channels) is exploited to arrive at

a recursive estimation scheme based on compressed sensing that tracks the channel.

However the channel tracker is quite outperformed by the proposed estimator and

tracker. Furthermore, it is substantiated only with simulations; no measurements

from in-water experiments are reported. A direct MSE comparison may be unfair as

[11] tracks the channel delay taps and the Doppler shift simultaneously. The paper

can thus be considered a case study that enforces the following statement: Doppler

estimation and correction prior to channel estimation often has better performance

than attempting to estimate the time-varying channel directly.

In [16] an approach based on harmonic retrieval is used, but it is outperformed by

the proposed estimator as quantified through the MSE. Furthermore, the estimator

fails at SNRs less than 15 dB due to the high MSE documented at this range; the

estimator therefore has higher SNR requirements for good estimation (see Fig. 4.7).
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Figure 4.7: MSE performance comparison of existing estimators with the proposed
Doppler estimator. All performance curves are referenced to MSE [∆̂i[n]] in order
to avoid dependence on signal parameters such as carrier frequency and sampling
frequency.
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In [26] the projected gradient method is used to find the peaks of the wideband

cross-ambiguity function to reduce the computational complexity of standard meth-

ods based on ambiguity function grid searching, like the ones outlined, above. How-

ever, the MSE performance of the estimator is not demonstrated, and it is still more

computationally intensive than the proposed estimator.

4.6 Concluding Remarks

The chapter proposes a correlation-type receiver that exploits the apriori known

structure of the training sequence. The structure of the training sequence thus dic-

tates the performance of this kind of estimator. In this thesis the shift-orthogonal

pilot structure (Chapter 2) is chosen as it is more tolerant of fast fading channels than

other pilot structures. The training sequence from this design is then autocorrelated

at the receiver with a correlation delay, equal to the size of the training sequence,

from which Mach number estimates are derived. The estimator yields a closed-form

solution to the Doppler estimation problem and demonstrates low computational

complexity. It is also capable of Doppler tracking.

As discussed in the previous section, the MSE of the proposed estimator is shown

to outperform (be lower than) most grid-search-based estimators (when presented in

the paper for comparison). It is also shown to be less intense computationally com-

pared to grid searching, and as mentioned before, it produces a closed-form solution

to the problem, thus avoiding the estimation ambiguity from which grid searchers

suffer. Tracking is available in some of these estimators, but not sample-by-sample,

as in the proposed estimator. The proposed estimator’s MSE is lower than existing

correlation-type estimators, fractional Fourier transform methods, sparsity methods,

harmonic retrieval methods and gradient methods (when presented in the paper for

comparison) and most of these estimators do not track the Mach number. Projected

gradient estimators are also more computationally intensive.
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Some estimators are found to have better MSE performance, however they suffer

from other glaring issues, particularly their computational complexity, their inability

to perform Doppler tracking, and estimation ambiguity in the case of most available

grid searchers. In this regard, the proposed estimator excels.



Chapter 5

Doppler Compensation and Tracking

5.1 Introduction

After estimating the Mach number, the next task is to compensate the channel

Doppler effects. Since the Mach number dilates/compresses the signal, resampling is

a natural step in the Doppler compensation process. The overwhelming majority of

Doppler compensators include some form of resampling in their design. Resampling

results in mitigating signal dilation/compression as well as reducing the Doppler shift

of the signal, though it does not fully mitigate due to estimation errors. This results

in a small carrier frequency offset (CFO) known as the residual Doppler shift, which

can be estimated and corrected in a variety of ways. In short, Doppler compensation

is broken into the following steps:

� Perform signal resampling in the passband or baseband.

� Estimate residual Doppler shift, which manifests itself as a CFO.

� Perform CFO compensation to eliminate the residual Doppler shift.

Many approaches to Doppler compensation have been proposed, particularly for resid-

ual Doppler compensation since resampling is a staple in most compensators. In this

chapter, it will be shown that after resampling, the residual CFO can be estimated

with the proposed Doppler estimator (Chapter 4). This is followed by proposing

an alternative Doppler tracking strategy to reduce the computational load on the

resampler.

90
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5.2 The Doppler Compensator

5.2.1 Stage I: Resampling

Recall that the linear time-varying multipath channel in the passband is generally

given by:

c(t, τ) =

Np∑︂
p=1

cp(t)δ(τ − τp(t)) (5.1)

where cp(t) is the time-varying path gain and τp(t) is the time-varying path delay

model. Based on the assumptions in Section 2.7, the bandpass received signal can be

written as:

r(t) =

Np∑︂
p=1

cps((1 + a(t))t− τp(0)) + n(t) (5.2)

where s(t) is the bandpass transmitted signal and n(t) is its noise component. In

terms of the M -point shift-orthogonal pilot signals, the received signal is given by:

ri(t) =

Np∑︂
p=1

cpb
p
M((1 + ai(t))t− τp(0)) + n(t) (5.3)

where bpM(t) is the bandpass shift-orthogonal pilot sequence. The ith signal, ri(t),

is a block extracted from r(t) whose duration is t = iMTs seconds, where Nu is the

transmitter’s upsampling factor, i ∈ [1, Nb] and Nb is the number of received blocks;

ai(t) is the corresponding Mach number component extracted from a(t) within that

same duration. Recall that ai(t) is assumed to only experience small variations within

theM -point preamble block. The lowpass impulse response for such a channel is given

by:

h(t, τ) = ej2πai(t)fct
Np∑︂
p=1

cpe
−j2πai(t)fcτp(0)δ(τ − (τp(0)− ta(t))) (5.4)
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and the N -point lowpass signal y(t) is in general given by:

y(t) = ej2πa(t)fct
Np∑︂
p=1

cpe
−j2πa(t)fcτp(0)x((1 + a(t))t− τp(0)) + z(t) (5.5)

where x(t) is the lowpass transmitted signal and z(t) is the filtered noise. Again, in

terms of the M -point pilot signals:

yi(t) = ej2πai(t)fct
Np∑︂
p=1

cpe
−j2πai(t)fcτp(0)bM((1 + ai(t))t− τp(0)) + z(t). (5.6)

where bM(t) is the lowpass M -point pilot signal. Here, the lowpass signal, yi(t), is

extracted from y(t) for a duration of t = iMTs seconds; ai(t) is also extracted from

a(t) for the same duration. Looking at the expression for ri(t), the Doppler effect can

be compensated by either resampling in the passband or baseband. Now, consider

bandpass resampling and let the resampled signal be given by r′i(t). Then,

r′i(t) = ri

(︃
t

1 + âi(t)

)︃
=

Np∑︂
p=1

cpb
p
M

(︃
1 + ai(t)

1 + âi(t)
t− τp(0)

)︃
+ n′

i(t) (5.7)

where n′
i(t) is the resampled noise.

Let

di(t) =
1 + ai(t)

1 + âi(t)
. (5.8)

di(t) is the block’s residual resampling factor. Note, an accurate Doppler estimate

and an accurate resampling method mean that di(t) ≈ 1, which should eliminate

dilation/compression from the signal. Thus dilation/compression can be compensated
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with high accuracy by simply resampling at the passband using any of the many tried-

and-true resampling methods available. Downconverting r′i(t) yields:

y′i(t) = e
j2π

ai(t)−âi(t)

1+âi(t)
fct

Np∑︂
p=1

cpe
−j2πai(t)fcτp(0)bM (t · di(t)− τp(0)) + z′i(t). (5.9)

After resampling, the second stage of compensation is residual Doppler compensation

which is discussed next.

5.2.2 Stage II: Addressing the Residual Doppler

From Eq. (5.9) one can see the effects of resampling. Firstly, resampling ri(t) with the

resampling factor 1+ âi(t) reduces sample drift. Secondly, resampling in the passband

yields a residual Doppler shift in the baseband that manifests itself as a CFO. This

residual CFO should also be compensated. Let the residual Doppler shift be given

by:

δi(t) =
ai(t)− âi(t)

1 + âi(t)
fc. (5.10)

Therefore,

y′i(t) ≈ ej2πδi(t)t
Np∑︂
p=1

cpe
−j2πai(t)fcτp(0)bM(t− τp(0)) + z′i(t). (5.11)

Let the estimated residual Doppler shift be δ̂i(t). After finding δ̂i(t) the CFO can

be compensated by a simple phase rotation, allowing for recovery of the Doppler-free

lowpass received signal:

ya=0
i (t) ≈ e−j2πδ̂i(t)ty′i(t). (5.12)

The proposed Doppler estimator (Chapter 4) can be used to find δ̂i[n], the discrete-

time version of δ̂i(t). Recall δi(t) is assumed to experience only small variations within

the block.
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The sampled version of Eq. (5.11) is given by

y′i[n] ≈ ej2πδi[n]nTs
Np∑︂
p=1

cpe
−j2πai[n]fcmpbM [n−mp] + z′i[n] (5.13)

where mp is τp(0) rounded up to an integer. Now,

1

M

M−1∑︂
n=0

y′i[n]y
′∗
i [n−M ] = ej2πδi[n]MTsD +

1

M

M−1∑︂
n=0

z′i[n]z
′∗
i [n−M ] (5.14)

where

D =
1

M

M−1∑︂
n=0

[︄(︄
P∑︂
p=1

cpe
−j2πfcmpTsbM [n−mp]

)︄(︄
P∑︂

p′=1

cp′e
j2πfcmp′Tsb∗M [n−M −mp′ ]

)︄]︄
.

(5.15)

Using the property in Eq. (2.14) and simplifying yields

D = |cp|2 (5.16)

which is the same as Eq. (4.12). Therefore,

1

M

M−1∑︂
n=0

y′i[n]y
′∗
i [n−M ] = ej2πδi[n]MTs|cp|2 +

1

M

M−1∑︂
n=0

z′i[n]z
′∗
i [n−M ]. (5.17)

As noted in Section 4.2 the noise quantity 1
M

∑︁M−1
n=0 zi[n]z

∗
i [n−M ], while small, cannot

be neglected, mainly because of the small sample size used.

Now, following the same steps as in Section 4.2, the residual Doppler shift esti-

mator is given by:

δ̂i[n] =
W

2πM
arg

M∑︂
j=1

µ′
i[n+ j] (5.18)

where

µ′
i[n] = y′i[n]y

′∗
i [n−M ]. (5.19)
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Finally, the CFO can be compensated according to Eq. (5.12), resulting in the

Doppler-free received signal.

Equivalently, one can resample at the baseband, as it is observed from Eq. (5.9)

that:

y′i(t) = e
−j2π âi(t)

1+âi(t)
fctyi

(︃
t

1 + âi(t)

)︃
. (5.20)

The CFO term, here, is then added to the CFO ai(t)
1+âi(t)

fc inside yi(t/(1+ âi(t))) which

again yields the same residual CFO δi(t).

This concludes the Doppler compensation process. In its current state, Doppler

compensation is computationally cumbersome since the Doppler estimator outputs

Mach number estimates on a per-sample basis. Although this gives the estimator

leverage compared to most other estimators since it can track the Mach number

changes in the channel with great detail, it comes at the cost of overloading the

resampler. The next section provides an alternative approach to track the Mach

number, which then becomes an intermediary process between the estimation and

compensation ones.

5.3 Efficient Mach Number Tracking

Since the estimator outputs âi[n] for every sample n in a given block i, it is inherently

able to track the Mach number sample-by-sample. Currently, this is followed by

resampling using âi[n], which means that the resampling factor changes for every

sample in a given block.

Sample-by-sample compensation is computationally intensive. Instead of tracking

Mach number evolution every sample, one can track its evolution every I = NtrackM/α

samples, where Ntrack and α are positive integer multiples of M and α ∈ [1, NtrackM ].

For example, if α = 1, the Mach number is tracked every NtrackM samples. This

approach effectively amounts to downsampling the Mach number function âi[n] by
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the downsampling factor I, which is then fed to the compensator. Thus the Mach

number tracker is now just a downsampling filter, and in terms of an FIR filter, is

given by:

âIi [n] =
K−1∑︂
ℓ=0

hIi [ℓ]âi[nI − ℓ] (5.21)

where hIi [ℓ] is the impulse response of the FIR filter for a given block and K is the

filter order. The downsampling FIR filter can be implemented in various ways, for

example, as polyphase filters. Doppler compensation using âIi [n] is referred to as

block-by-block compensation; note that block-by-block resampling is a form of time-

varying resampling.

A necessary condition that the compensator must satisfy is its ability to eliminate

tap migrations in the channel impulse response (CIR). Channel tap migration is a con-

sequence of sample drift in the received pilots due to Doppler dilation/compression.

Thus the following approach is proposed:

� Attempt block-by-block compensation using I = NtrackM for a given Ntrack

(α = 1) and check if sample drift is eliminated from the CIR.

� If sample drift persists, increase α and repeat until sample drift is eliminated.

Since M is chosen sufficiently small so that âi[n] slowly varies in the M -point OFDM

block, sample drift should be eliminated by setting I = M . However, this may still

be computationally intensive since a large number of preambles may be transmitted

due to their short duration. Thus it is important to have a choice for Ntrack, which

depends on the channel in question. This is a crucial step to ensure accurate tracking

while simultaneously decreasing the computational load. Recall that the proposed

Doppler estimator tracks estimates every sample, but sample-by-sample tracking is

computationally cumbersome, whence the need for a more practical tracking mecha-

nism arose.
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Now that the proposed compensator is defined, its performance must be assesed in

simulations to validate the theory and establish performance expectations for at-sea

tests (Chapter 6).

5.4 Performance in Simulations

Simulations were performed under various Doppler scenarios. To demonstrate one

such scenario, let W = 10 kHz, fc = 24.414 kHz and assume that the channel has a

fixed Mach number of a = −0.001. According to the estimator’s design criterion,

|a|fcM
W

<
1

2
(5.22)

so a Mach number this large requires a correlation delay, or preamble size, ofM < 204.

Let M = 64 and recall the Simulink model used to test the estimator (Fig. 4.1).

Assuming sufficiently high SNR, the Doppler estimator yields a Mach number esti-

mate of â = −0.000999 · · · ≈ −0.001. In this example, the estimate does not vary

at all within the block due to the high SNR and absence of multipath. Thus block-

by-block compensation is not necessary and one can instead use the overall average

Mach number estimate â.

However, block-by-block compensation will be used here to demonstrate the ap-

proach. For channels with larger Mach numbers preamble size, carrier frequency, or

bandwidth must be adapted accordingly. For example, if bandwidth and carrier fre-

quency are set as above and it is desired to test the estimator in channels with Mach

numbers on the order of 0.01, it is required that M < 21, so the pilot sequence’s

length needs to be reduced for more aggressive channels.

Now, on to compensation. The Simulink estimator model (Fig. 4.1) is a base-

band model with no oversampling, so resampling can be viewed as performed on a

downsampled, lowpass signal, followed by residual Doppler estimation.
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Figure 5.1: Residual Doppler estimator.

From Eq. (5.20), it is required to multiply the received signal by e−j2πâfct before

resampling. The resampling process takes the received signal and the set of Mach

number estimates “MachNumbers” (both extracted from Simulink as time series vari-

ables) and performs block-by-block resampling. The MATLAB script that does this

is shown in Appendix 1. Sample-by-sample resampling is included in Appendix 2

for comparison; the computation time is significantly longer, and a program crash is

common. These scripts produce the resampled signal as a time series variable, which

is fed again to the Doppler estimator Simulink model for residual Doppler estimation

as shown in Fig. 5.1.

Since â = a = −0.001 no residual Doppler shift is expected. This is indeed the

case, as the average residual estimate is δ̂ ≈ −2.42 × 10−15 Hz. Since the Doppler

compensator is essentially just a resampler followed by the proposed Doppler esti-

mator to find the residual Doppler shift, the compensator performance is directly

tied to these two elements. Analyzing the resampling algorithm is not a focus here,

so compensation performance is viewed in lieu of the proposed Doppler estimator.

The Doppler estimator’s performance, along with the CRLB, have been documented

extensively in Chapter 4.

In Chapter 6, the Doppler estimator, compensator and tracker are tested against

real-life at-sea channels, where it is shown how the Mach number can be tracked and
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dynamic effects removed in the CIR.

In the next section, the proposed Doppler compensator is compared against those

reviewed in Chapter 3.

5.5 Comparison to Existing Compensators

The ultimate goal in compensation is the performance of the residual Doppler es-

timation step in the compensation process (where the proposed Doppler estimator

is applied), because as mentioned earlier, although this work provides two different

ways to resample, the focus of this work is not on resampling algorithms and their

performance. These are well-documented in the literature and it is left to the designer

to choose a suitable resampling technique (e.g. resampling with polyphase filters).

For Doppler compensation, Stojanovic in [10] uses an adaptive PLL-aided decision

feedback equalizer capable of tracking and correcting the Doppler effect. However it

is computationally intensive and has poorer MSE performance compared to the pro-

posed estimator. Computational load also increases with Doppler shift. Since the

proposed compensator uses block-by-block resampling, the proposed Doppler com-

pensation process is significantly faster, compared to [10] which requires resolutions.

The reported MSE is in terms of the PLL gain, and hence it cannot be overlayed

on the MSE curve of the proposed compensator for comparison. However the MSE

values documented are clearly higher. The SNR at which the equalizer is tested is

also not documented.

In [19] a compensator similar to the one in [10] is used, but MSE values are not

reported. Also similar to [10], the compensation process is slower than the block-by-

block resampling proposed here. In [22] time-varying resampling is followed by linear

RLS equalization to compensate and track the Doppler effect, though MSE is not

documented.



100

It should be noted that equalizers, like most other synchronization techniques,

are often unreliable in UWA communications, due to the ever-present multipath and

fading. When using PLL-aided DFEs, the error loop filter bandwidth to track higher

Mach numbers can also be difficult to achieve. This, coupled with the fact that the

MSE degrades with increasing Doppler shifts, means equalizers are better applied

to track slow fading channels. Also, equalizer divergence is possible when using

equalizers in fast fading channels.

In [27] a time-varying interpolator is used to resample the received signal. How-

ever, the compensator does not take into account residual Doppler shifts, making it

susceptible to performance degradation. Experimental MSE from simulations is not

recorded, although the compensator is validated in undersea experiments.

In [13], residual CFO compensation is performed after resampling with a grid-

search approach based on detecting the maximum autocorrelation peak of the training

sequences used by the author. As discussed in Section 4.5, [13] is incapable of tracking

the Mach number, and has higher MSE values than the proposed estimator, partly

due to their training sequence [13] being of longer length. Also, there are no in-water

tests presented. Fig. 5.2 documents the performance of the residual Doppler phase

estimates of [13]

In [21] resampling is followed with the bisection method to compensate the residual

Doppler, which is also based on grid searching. However their MSE performance is

not reported, although their compensator has been validated at-sea.

In [24], warping functions are derived from the wideband CAF to derive a lag-

Doppler filter to estimate and then compensate the Doppler effect. The filter uses

a backpropagation algorithm to accomplish this, which is a grid searching approach.

As mentioned in Section 4.5, the filter is limited to shallow underwater environments,

and the MSE performance is inferior to the proposed estimator. The filter is unable

to track the Mach number.
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In [15] resampling is also employed but is followed by an iterative algorithm known

as dichotomization for residual Doppler estimation. This compensator lacks a tracking

mechanism, as the residual Doppler estimator is a one-shot estimator. The resam-

pling factor is also fixed. MSE performance of the residual Doppler estimator is not

presented.

The performance curves in the previous chapter can also be used here since the

proposed estimator is used for find the residual Doppler shift. The comparisons of

the previous chapter therefore apply here if one excludes the resampling stage.
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Figure 5.2: MSE performance comparison of the residual Doppler estimator in [13]
with the proposed Doppler estimator. All performance curves are referenced to

MSE [∆̂
′
i[n]] in order to avoid dependence on signal parameters such as carrier fre-

quency and sampling frequency. Fig. 4.7 is also applicable here to demonstrate the
performance of the residual Doppler estimation process.
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5.6 Concluding Remarks

Many authors implement the same techniques for Doppler estimation to perform

residual Doppler estimation, namely the grid searchers and correlation-type estima-

tors encountered in Chapter 4. This is due to the residual Doppler shift appearing as

a CFO just like the common Doppler shift, though it still needs to be proven that this

is indeed the case for their particular estimator. This thesis uses the same approach,

insofar as the Doppler estimator proposed in Chapter 4 is also used as the residual

Doppler estimator. This was proven in detail in this chapter. The proposed Doppler

compensation performance is thus directly linked to the proposed Doppler estimator.

As mentioned earlier, the resampler is left to the designer as it is not the thesis’

main focus. Thus the resampler performance is not taken into consideration. This

treatment is also adopted in Doppler compensation papers that include resampling

as part of Doppler compensation.

It was shown that the proposed Doppler compensator outperforms most existing

compensators as quantified by the MSE (when available for comparison). Further-

more, the proposed compensator does not suffer the issues of PLL-equipped equalizers.

If the received signal is resampled block-by-block, it also performs faster than these

types of compensators. It was also observed that the proposed compensator, even

when outperformed by others, has unique strengths that distinguish it like the ability

to track the Mach number and its confirmed performance in at-sea trials.

Finally, although the proposed Doppler estimator tracks estimates every sample,

sample-by-sample tracking is computationally cumbersome. This motivated the need

for a more practical Doppler tracker. The proposed tracker downsamples the Mach

number estimates, with the choice of downsampling factor depending on the channel

in question. The downsampling factor is chosen so that significant changes in the

Mach number estimates can be tracked without overloading the resampler.
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The next chapter demonstrates how this approach is applied in practice with at-

sea measurements of the end-to-end estimator, compensator and tracker subsystem.



Chapter 6

Sea Experiments, Trials and Results

6.1 Introduction

The proposed Doppler estimator and compensator were tested under various under-

water channel conditions. Doppler effects are the cumulative results of wave motions,

relative platform (boat or buoy) motions if a transmitter or receiver is deployed from

it, and the inherent CFO from the transmitter and receiver carrier frequency mismatch

(i.e. the transmitter and receiver are not frequency-synchronized). The inherent CFO

must be compensated prior to receiver processing to isolate the wave and platform

motion effects from the effect of transmitter/receiver carrier mismatch. The CFO,

fc,RX − fc,TX , inherent in the equipment is ≈ −14 Hz, which corresponds to a system

Mach number of −5.7× 10−4.

A series of in-water experiments of increasing complexity was performed. The first

two trials were deployed off the piers near the Centre for Ocean Venture Enterprises

(COVE, Dartmouth, Nova Scotia) in 6 m of water. The third (final) at-sea experiment

culminated in the in-situ application and validation of the proposed estimator and

Doppler compensator developed. These were deployed in deep water (90 m) from a

boat offshore of Nova Scotia on the Scotian Shelf (Chebucto Head). The trials shared

resources (e.g. equipment, boat, labour, etc.) with Acoubit Communications Inc.

(Nova Scotia, Canada).

The setup for all three trials was similar in that the transmitter was deployed to the

same depth as the receiver. The transmitter-receiver separation and water depth were

varied for a variety of transmitted signals. The transmitter was housed in a custom

104



105

pressure vessel, which was lowered over-the-side of the pier or boat. The receiver used

was Acoubit Communication’s experimental gateway buoy, “AquaGate,” custom built

by Turbulent Research Inc. (Dartmouth, Canada). The AquaGate system (Fig. 6.1)

consisted of a free-floating surface buoy with a vertical line array of hydrophones

tethered at some depth beneathe the buoy. The hydrophones were separated by 20

cm.

Generally, the distance between adjacent hydrophones should be greater than λ
4

to capture significant change in field distribution, but not at multiples of λ. However,

to avoid coupling effects between hydrophones, the minimum distance suggested in

practice is λ
2
. In the case here, λ = 1500/24414 = 6.1 cm. Thus the minimum

distance is 3.05 cm. In practice the separation is larger, typically around 3λ − 8λ.

In all trials, the separation was 20 cm, which is about 3.28λ. This was observed in

the shallow and deep water trials. Five hydrophones were used in the shallow water

trials and two in the deep water ones.

The receiver array was wired to the above-water Wi-Fi antenna on the gateway

buoy so it was possible to observe the received signals in near real-time. The received

Wi-Fi signals were analyzed as soon as they were received. In this way, subsequent

runs could be modified based on the analysis towards better achieving the trial’s

goals.

The residual Doppler shift in all these trials was very small. This implies high

accuracy in estimating Mach numbers. The long-range sea trials focused on UWA

channels where wave motion produces the only time variations in the channel, i.e.

no platform motion was introduced. The goal of this chapter is to present a com-

prehensive analysis of the proposed receiver and its viability to estimate and track

the channel wave dynamics and efficiently compensate for it. These results serve as

the foundation for planned future work in which the Doppler impact of deliberate

motions on platforms like autonomous underwater vehicles will be investigated.
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Figure 6.1: Acoubit Communication’s “AquaGate” gateway receiver.

As the objective was to have the waves induce Doppler effects no mitigation mea-

sures were applied to decouple the surface motions from the ship to transmitter or

gateway buoy to receivers.

6.2 Preparations for Scotian Shelf At-Sea Experiments: Short-Range

Pier-to-Pier Trials

Prior to the at-sea experiments, short-range work-up trials were conducted to ensure

that the transmitter, receiver, auxiliary equipment and signal generation methods

used work as intended and to gain familiarity with their operations. These trials were

conducted pier-to-pier in shallow water environments (≈ 6 m depths) meaning the

transmitter and receiver were deployed off the pier. Five hydrophones in a vertical
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line array were the receivers as shown in Fig. 6.2.

transmitter
(𝑓𝑓𝑐𝑐 = 24.414 kHz)

hydrophone array with 
five passive hydrophones

gateway buoy

𝐷𝐷

𝑑𝑑
𝐷𝐷

20 cm

pier pier

Figure 6.2: Layout for short range, shallow water at-sea validation

Next, the two short-range shallow water trials are discussed.

6.2.1 Proof-Of-Concept: 15-m Short-Range Shallow Water Trials

sampling 
frequency, 𝑓௦ 

(kHz) 

carrier 
frequency, 𝑓௖ 

(kHz) 

power level, 
PL 

range, 𝑑 
(m) 

depth, 𝐷 
(m) 

transmission 
time 
(s) 

9.766 24.414 1 15 6 6
9.766 24.414 2 15 6 6
9.766 24.414 3 15 6 6
9.766 24.414 4 15 6 6

Table 6.1: Trials plan for shallow water work-ups at 15 m range separation between
transmitter and receiver (6 m deep water) off piers at the COVE

These trials were conducted on the 21st of August, 2019. The weather was warm

(ambient temperature of 20 °C) and the sea condition was fair (small sea swells). The

trials plan is summarized in Table 6.1. d = 15 m and D = 6 m in Fig. 6.2. Preambles

made of the shift-orthogonal pilot sequence have a QPSK constellation and a sampling

frequency of 9.766 kHz. The transmitted signal has bandwidth of W = 4.883 kHz.
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As will be seen in the long-range trials, more test bandwidths ranging from 2 kHz to

20 kHz will be used.

In long-range sea trials it is expected that at some range, the signal will fade. The

signals with the highest energy will be concentrated in specific time blocks. It is thus

not always beneficial to process all the received blocks. This channel will be used

to illustrate the approach for this series of tests. To achieve this, the received signal

blocks in the first 3 seconds of transmission will be analyzed.

Figure 6.3: CIR for the 15-m short-range UWA channel tests. The channel is shown
for a duration of ∆t = 3 s. Sampled time and sampled delay axes are unitless.

Fig. 6.3 shows the 3-second channel’s impulse response (CIR). Channel estimates

were provided courtesy of Acoubit Communications Inc.

The channel Doppler effects are more apparent in the CIR when it is viewed in

terms of its time axes t and τ (observation time and path delay, respectively). This

is depicted as a plane view of Fig. 6.3, in the form of a spectrogram (Fig. 6.4).

Fig. 6.4 shows the channel is quasi-stationary since the delay time, τ , for a channel

tap remains fixed for all sample times, t, analyzed. Quasi-stationary channels do not

require Doppler compensation. Doppler estimation is performed on the 3-second

received blocks, followed by tracking, to arrive at the results in Fig. 6.5.
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Figure 6.4: Plane view of the CIR in Fig. 6.3. Channel taps with the highest
energy are yellow while the green / gray hues correspond to the low-energy taps (see
colorbar). The vertical yellow line in Fig. 6.4 shows these channel taps are static. In
other words, a channel tap’s delay position remains approximately constant for any
observation time.
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Figure 6.5: 15 m range results for: (a) Mach number estimator and (b) tracker
outputs for the proposed receiver. Note how in real UWA channels, the Doppler
shifts vary with time. This gives rise to Doppler spread, which can be estimated as
(âmax − âmin)fc = 3.76 Hz. This Doppler spread is small w.r.t the subcarrier spacing
9766/64 ≈ 152.6 Hz. The Doppler spread is 3.76 × 64/9766 = 2.5% of fs/M . The
average Mach number estimate of the channel is −2.6113× 10−5.
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Fig. 6.5 shows the time variations of the Mach number. Thus the amount of

signal shift varies with variations in time t. This gives rise to Doppler spread, which

can defined as [38]:

Bd = max
i,j

{|ai(t)− aj(t)|fc} (6.1)

This is an alternative definition to Doppler spread, and is different than the one

introduced in Chapter 2: the root-mean-square of the Doppler power spectrum. This

definition is used later in this chapter when analyzing Doppler power spectrums for

the entire channel. However the definition above allows us to have a rough estimate

of the Doppler spread from â(t) vs t graphs for the RX blocks of interest. Thus rough

estimates of the Doppler spread can be extracted for RX blocks of interest without

the need to regenerate the Doppler spectrum for every cluster of RX blocks one wants

to analyze.

From Fig. 6.5 the Doppler spread of the analyzed signal block is around 3.76

Hz. This corresponds to 3.76/9766 = 0.038% of the sampling frequency or, more

importantly 0.038%× 64 = 2.5% of the subcarrier spacing. Thus the Doppler spread

of the channel over the 3-s duration has minimal effect on the signal. The average

Mach number of the channel is estimated to be −2.6113 × 10−5, which corresponds

to an average CFO (which is the average common Doppler shift) of 0.64 Hz (0.0026%

of fc). This, along with the result presented in Fig. 6.4, confirms that such a channel

does not require Doppler compensation.

Also of interest is comparing the Doppler analysis of received blocks, for specific

durations, to the overall channel Doppler content. This is most apparent in the

Doppler power spectrum of the overall channel (Fig. 6.6). Bin 8 corresponds to 0

Doppler frequency. The Doppler power spectrum is shifted by roughly 4.7789×10−4×

9.5367 = 4.557 × 10−3 Hz and the rms Doppler spread is 0.71068 × 9.5367 = 6.778

Hz.



111

0

0.5

1

1.5

2

2.5

106

2 4 6 8 10 12 14 16
Doppler frequency bins (bin width=  9.5367 Hz)

Figure 6.6: For the 15-m channel the spectrum is shifted by roughly 4.7789× 10−4 ×
9.5367 = 4.557× 10−3 Hz while the rms Doppler spread is about 0.71068× 9.5367 =
6.778 Hz. Thus the overall channel has a smaller average common Doppler shift and
a larger spread.

Thus the overall channel has a smaller (almost zero) common Doppler shift and

a larger Doppler spread. Although this can give rough average estimates of â and Bd

for the overall channel, the accuracy of these estimates are generally worse than the

proposed estimator, especially at longer ranges. This is because the channel estimator

provided by Acoubit Communications is a standard cross-correlation-type estimator

(i.e. matched filter) which is not ideal for UWA channels, although it has acceptable

performance in quasi-stationary UWA channels where there is little wave activity,

with the requirement of sufficiently high SNR. In the next series of trials, the effect

of Doppler compensation on these parameters is explored.

The scatter plot of the demodulated pilots, after channel equalization, is shown

in Fig. 6.7. The constellation has a QPSK structure which suggests the pilots were

correctly recovered.
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Figure 6.7: Scatter plot of the received QPSK pilots after channel equalization. The
tight clustering shows successful channel estimation and recovery of the pilots.

6.2.2 Proof-Of-Concept: 200-m Short-Range Shallow Water Trials

These trials were conducted on the 28th of August, 2019. The weather was warm

(ambient temperature of 20 °C) and the sea condition was fair (small sea swells). The

setup is as shown in Fig. 6.2 with d = 200 m and D = 6 m. The plan for this trial is

summarized in Table 6.2.

sampling 
frequency, 𝑓௦ 

(kHz) 

carrier 
frequency, 𝑓௖ 

(kHz) 

power level, 
PL 

range, 𝑑 
(m) 

depth, 𝐷 
(m) 

transmission 
time 
(s) 

9.766 24.414 1 200 6 6
9.766 24.414 2 200 6 6
9.766 24.414 3 200 6 6
9.766 24.414 4 200 6 6

 

Table 6.2: Trials plan for shallow water work-ups at 200 m range separation between
transmitter and receiver (6 m deep water) off piers at the COVE.



113

Preambles made of the shift-orthogonal pilot sequence have a bandwidth of 4.883

kHz. The total observation time in the channel is 6 seconds. Received blocks from

t = 0 to t = 5 s are used for this analysis. Fig. 6.8 shows the 5-second CIR and the

t vs τ spectrogram is shown in Fig. 6.9.

Figure 6.8: CIR for the 200-m short-range UWA channel.

Figure 6.9: Top view of the CIR. The largest channel taps are colored yellow while
the green/gray hues corresponds to the low-energy taps (see colorbar). The vertical
yellow line is not straight, showing channel tap migrations during transmission.
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Fig. 6.9 shows that the channel tap positions shift during transmission. This

phenomenon is tap migration and is a manifestation of the Doppler shift. This type

of UWA channel requires Doppler compensation over the specific interval, t. Doppler

estimation is applied to the 5-second received blocks, followed by tracking, to arrive

at the results in Fig. 6.10. The average Mach number estimated for the channel

over the 5-s duration is −9.096 × 10−5, which corresponds to an average common

Doppler shift of 2.22 Hz; this is 0.009% of fc; although the average shift is small, over

relatively long durations the received signal will nonetheless be dilated/compressed,

resulting in the tap migrations seen in Fig. 6.9. The Doppler spread, estimated using

Eq. (6.2), is 4.87 Hz, which is 0.05% of fs and 3.2% of the carrier spacing fs/M .

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time in seconds

-12

-10

-8

10-5

0.5 1 1.5 2 2.5 3 3.5 4 4.5
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-12

-10

-8
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estimates
tracked estimates

Figure 6.10: At 200 m transmitter-receiver separation: (a) Mach number estima-
tor and (b) tracker outputs for the proposed receiver. Note, in real UWA chan-
nels, Doppler shifts vary with time which gives rise to Doppler spread estimated as
(âmax − âmin)fc = 4.87 Hz. This Doppler spread is small w.r.t the subcarrier spacing
9766/64 ≈ 152.6 Hz. The Doppler spread is 4.87 × 64/9766 = 3.2% of fs/M . The
average channel Mach number estimate is −9.096× 10−5.

To compare this to the Doppler content of the overall channel, Fig. 6.11 shows

the Doppler power spectrum of the channel for the full 6-second duration.
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Figure 6.11: For the 200-m channel the spectrum is shifted by roughly −0.060105×
9.5367 = −0.57 Hz while the rms Doppler spread is about 0.96562×9.5367 = 9.21 Hz.
Thus the overall channel has a smaller average common Doppler shift and a larger
spread.

The Doppler shift given by the Doppler power spectrum is − 0.57 Hz, which is

smaller than the estimated common Doppler shift for the 5-s channel. The spread of

the 6-s channel however is 9.21 Hz which is larger than the one estimated from the

5-s channel. Doppler compensation is needed to compensate the channel in Fig. 6.9.

The result is shown in Fig. 6.12.

Figure 6.12: Channel impulse response: (a) before and (b) after Doppler compensa-
tion. The slanted lines become vertical after compensation, which indicates successful
correction of the channel tap migrations.
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The corrected CIR shows that the CIR tap locations are returned to their ver-

tical pattern. This shows, visually, that the Doppler effects in the 5-s channel are

successfully mitigated. The Doppler power spectrum of the overall channel after

compensation is shown in Fig. 6.13. From a comparison of Figs. 6.11 and 6.13, it

is apparent that a collateral benefit from compensating the 5-s channel, where most

channel taps are located, is that the Doppler shift and spread of the overall 6-s chan-

nel are also mitigated. This is due to reducing the dynamic effects in the overall

channel.

The scatter plot of the demodulated pilots, after channel equalization, is shown

in Fig. 6.14, which shows the QPSK mapping retained at the receiver as expected.
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Figure 6.13: For the 200-m channel after compensation the spectrum is shifted by
roughly 0.011081×9.5367 = −0.1 Hz while the rms Doppler spread is about 0.41409×
9.5367 = 3.95 Hz. Comparing with Fig. 6.11 shows that the overall channel is also
corrected by the Doppler compensation.
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Figure 6.14: Scatter plot of the received QPSK pilots after channel equalization. The
tight clustering shows successful channel estimation and recovery of the pilots.

6.3 Validation: Long-Range Deep Water Trials

Figure 6.15: Location of the validation experiments on the Scotian Shelf at Chebucto
Head.
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These trials were performed from 10 a.m. to 5 p.m on October 16th, 2019. The work

area (Fig. 6.15) was located just off Chebucto Head (44.505966 ◦ N, 63.512627 ◦

W), over an average 90 m water depth. The weather was moderate with 14 km/hr

winds and sea swells of 1 m, which will create the desired Doppler effects, since the

dominant motions for these experiments were intended to be sea surface ones. The

average ambient temperature was 14◦C. The experimental configuration in deep water

(Fig. 6.16) was similar to what was trialed in shallow waters (Fig. 6.2), the main

difference being the transmitter was deployed from a support boat (Fig. 6.17) and

two hydrophones were used at the receiver instead of five.

transmitter
(𝑓𝑓𝑐𝑐 = 24.414 kHz)

hydrophone array with
two passive hydrophones

gateway buoy

𝐷𝐷

𝑑𝑑

𝐷𝐷

20 cm

Figure 6.16: Experimental configuration for long range, deep water at-sea validation

For these trials, the transmitter depth was 30 m for d = 500− 5 m, and 60 m for

d = 5 km. Receiver depth was fixed at 30 m. The detailed trials plan is summarized

in Table 6.3. The transmitter carrier frequency was 24.414 kHz. In the transmissions,

each preamble was a 64-point shift-orthogonal pilot sequence with a 1 second guard

band between preambles.
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Figure 6.17: Support boat used for the October 16th, 2019 validation trials offshore
of Nova Scotia (in collaboration with Acoubit Communications, Inc.).

The preambles were transmitted at four different power levels where each level

was separated by 4 dB (e.g. power level 2 is 4 dB higher than power level 1 and so

on). Note that the transmitter’s depth was 30 m for all transmission ranges except

for the 5-km ranges, where the depth was increased to 60 m. Two hydrophones were

used at the receiver to allow for the potential of limited beam-forming. The proposed

receiver is designed for single receiver; thus outside of channel estimation, having all

hydrophones open was not necessary. Future work will look at extending the proposed

receiver for multiple hydrophones.

The transmitted files were designed beforehand and saved as .wav files. At sea,

these .wav files were used to drive the transmitter. The transmitted preambles contain

the shift-orthogonal pilot sequences discussed earlier in Chapter 2. The preambles

have a QPSK constellation. The transmitter upconverts the preambles with a carrier
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frequency of fc = 24.414 kHz prior to transmission. Over 60 runs were conducted.

The received signals were saved in a .wav format. These files were converted to digital

data using the Simulink block“From Multimedia File” Simulink block (see Fig. 6.18)

and analyzed using Simulink. The results from a run for a channel are captured by

the following:

1. The channel impulse response is displayed in the t− τ plane to highlight Doppler

effects affecting the channel. The plot duration is chosen so that the high-energy

channel samples are apparent.

2. The average Doppler power spectrum is shown in discrete time again, defined

as the discrete average sum (over τ) of the Fourier transform of the 2-D auto-

correlation function Rh(t, τ). The discrete Doppler frequency axis is normalized

to 16 bins for all channels.

3. The Doppler estimator output is shown, where a(t) = v(t)/c, and v(t) is the

relative velocity between the transmitter and receiver. Since the trials were

conducted with no relative platform motion, v(t) represents the water waves’

average relative velocity only. The Doppler tracker output is also shown.

4. The QPSK constellations of the demodulated pilots are shown for the entire

transmission duration. These are extracted after channel estimation and equal-

ization, but before QPSK demodulation.

6.4 Analysis Methodology

This section describes how the measurements from individual channels (runs), col-

lected as described in the previous section, are reduced, processed and interpreted

for the deep-water and long-range validation experiments on the Scotian Shelf. Some

detailed examples are presented at the end of the section.
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run 
# 

𝑓𝑓𝑠𝑠 
(kHz) 

𝑑𝑑 
(km) 

𝐷𝐷 
(m) 

power 
level (PL) 

(1 – 4) 

1 

1.953 

0.5 30 4 

2 

1.0 30 

2 

3 3 

4 4 

5 2 30 1 

6 5 60 4 

7 

4.883 

0.5 30 2 

8 1 30 4 

9 2 30 4 

10 5 60 4 

11 

9.766 

0.5 30 

1 

12 2 

13 3 

14 4 

15 
1 30 

3 

16 4 

17 
2 30 

3 

18 4 

19 

19.531 

0.5 30 
3 

20 4 

21 
1 30 

2 

22 3 

23 2 30 4 
 
Table 6.3: Support boat used for the October 16th, 2019 validation trials offshore of
Nova Scotia (in collaboration with Acoubit Communications, Inc.).
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After filtering and downconverting the received signals, the resulting lowpass and

downsampled signal passes through the Doppler estimator. Fig. 6.18 shows the

Simulink model that accomplishes this processing.

Matched	FilteringDown	Conversion

Time	Domain	Differential	Mach	Estimator

Square	root
Raised	Cosine

Receive	Filter	Ch	1DSP

LO:	determines
simulink	sample	

time	Ch	1

Z-64

Moving
Average

|u|

u

PilotSignal.wav
A:	96000	Hz,	64	bit,	mono Audio

Figure 6.18: Simulink analysis to estimate the Mach number for one hydrophone.
The Mach number estimates are tracked in MATLAB by downsampling (Chapter
6). The lowpass and downsampled signal is also fed to MATLAB, where the tracked
estimates are used to resample the signal block-by-block.

The proposed receiver is designed for one receiving hydrophone, hence the output

of one of the hydrophones is used for the analysis. Then, the Doppler tracker reduces

the array length of the Mach number estimates for more efficient compensation. These

tracker values are used to resample the signal block-by-block (script in Appendix A-

1). After resampling, the signal is fed to the Simulink model in Fig. 5.1 to estimate

the residual Doppler shift. Lastly, the output is modulated by e−j2πδ̂[n]nTs to recover

the Doppler-mitigated signal.
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As discussed in the previous section, the most revealing information from the

analysis of individual channels are the CIR (t vs τ), Doppler power spectrum, Mach

number and tracker estimates, and the constellation diagram of the demodulated

pilots. Appendix B shows these graphically for twenty-three of the channels acquired

during the Scotian Shelf experiment. Out of the sixty trials, these were the most

successful. The remaining trials either had corrupted files or experienced severe fading

to the point where the received signal was undetectable.

Table 6.4 summarizes the runs and lists averaged values that represent the results,

namely, the sample average of the Mach number estimates, sample average of the

residual Doppler shift and the rms Doppler spread of the average Doppler power

spectrum. The Mach number estimator results are shown as â(t) vs t plots. The

tracked estimates are overlaid on the â(t) vs t plots. Average Mach numbers in this

work have an order of magnitude between 10−5 and 10−4.

Mach numbers on the order of 10−5 are considered “small” and Mach numbers on

the order of 10−4 are classed as “large” by comparison. The downsampler to track

the Mach number has a downsampling factor of 256, meaning that a Mach number

estimate is extracted every four preambles.

The results of the Doppler compensation process are shown in lieu of CIR and

Doppler power spectrum plots. The CIR is shown in terms of t vs τ where time

variations of the channel taps due to Doppler effects are more apparent.

In Appendix B, CIR and Doppler power spectrum plots are shown before and

after compensation to highlight the Doppler compensation effectiveness. In the CIR,

the Doppler effect manifests as a migration of channel taps; ideally in the absence of

channel dynamics, at a given delay τ = τ0, a channel tap’s position should remain at

τ0 for all times t, and thus high-energy channel taps should appear as vertical lines

in a t vs τ spectrogram. Therefore, Doppler compensation should mitigate channel

tap migration and restore the CIR to this static behavior.
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The average Doppler power spectrum plots in Appendix B are computed by aver-

aging the Fourier transform of the channel’s autocorrelation function over τ . In such

plots, the Doppler effect manifests itself as a shift in the Doppler power spectrum

(equals the average Doppler shift in the entire channel) as well as a spread to other

Doppler frequencies. Walree et al.[37] show that the Doppler power spectrum in UWA

channels can be represented by an empirical stretched exponential model. That is,

the average Doppler power spectrum S̄H(ν) in UWA channels barring noise effects is

of the form:

S̄H(ν) = Ae−(|ν−ν0|/v)λ (6.2)

where ν is Doppler frequency, ν0 is the shift in the spectrum, v and A are scaling

factors and λ is the stretching exponent (λ > 0). This hints at one crucial aspect of

power content vs Doppler frequency, that being the power is concentrated around the

mean and decays away from the mean. This is found to be the case in all the runs

displayed in Appendix B, such as Fig. B-14.4 (shown in Fig. 6.20 below).

The shift ν0 is the average common Doppler shift of the overall channel. Note

that Doppler compensation is performed on signal blocks that include higher-energy

channel taps, and so the average common Doppler shift afc and spread (Eq. (6.2))

of the analyzed blocks are in general not equal to ν0 and Bd.

Though the main goal of Doppler compensation is mitigating afc (along with sam-

ple drift), it also reduces ν0 and Bd as a side benefit. The Doppler power spectra from

Appendix B, such as Figs. 6.20(a) and 6.20(b), represent the Doppler content before

and after compensation for the entire channel, and are therefore not representative

of the Doppler compensation performance. The discretized Doppler power spectrum

is used in the results instead of SH(ν).
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experimental parameters Doppler analysis 

run 
# 

𝑊 
(kHz) 

𝑑 
(km) 

 PL  
(1 – 4) 

estimation compensation spread 
Appendix

 
𝑎ො 𝛿෡  

(ൈ 10ିହ Hz) 
𝐵ௗ 

(Hz) ൈ 10ିସ ሺ~ 10ିସሻ 

1 

0.977 

0.5 4 -1.2957  -370 3.2024 B-1 

2 

1.0 

2 -0.76964  2.2632 3.2081 B-2 

3 3 -0.80691  -1.5696 3.1490 B-3 

4 4 -0.95010  23.713 3.4886 B-4 

5 2 1 -0.27641  -61.718 5.0873 B-5 

6 5 4 -1.5804  120 3.1324 B-6 

7 

2.441 

0.5 2 -1.4458  -61.644 6.5837 B-7 

8 1 4 -0.66986  -62.958 6.4144 B-8 

9 2 4 -0.63162  -45.686 5.7907 B-9 

10 5 4 -1.4432  -210 7.3581 B-10 

11 

4.888 
0.5 

1 -0.80060  -15.759 10.1375 B-11 

12 2 -1.2850  -20.413 11.4736 B-12 

13 3 -0.79488  -71.881 10.0078 B-13 

14 4 -0.76510  -7.6450 9.6378 B-14 

15 1 3 -0.92101  -72.206 10.4265 B-15 

16 

4.888 

1 4 -0.44963  -0.91021 9.3985 B-16 

17 
2 

3 -0.47873  -71.514 12.7553 B-17 

18 4 -0.36252  -30.248 9.0891 B-18 

19 

9.766 

0.5 
3 -1.0175  -11.911 14.3482 B-19 

20 4 -0.38944  -6.8015 10.8387 B-20 

21 
1 

2 -1.0445  -420 18.0317 B-21 

22 3 -0.8846  -380 14.7692 B-22 

23 2 4 -0.11636  -560 18.9764 B-23 

 

 
Table 6.4: Summary of results in Appendix B. â and δ̂ are sample averages of â(t) and
δ̂(t), respectively. Doppler spread values correspond to the pre-compensation chan-
nels. Post-compensation values are not taken into consideration as compensation was
applied to the higher-energy channel taps to reduce computational complexity. Thus
Doppler spread after compensation is not an indicator of compensation performance.
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Figure 6.19: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 500 m and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure 6.20: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 500 m, power level 4).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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The average common Doppler shift of the discrete spectrum is given by f̄d while

the Doppler spread is given by sd. These values are respectively the Doppler shift ν0

and Doppler spread Bd in bins (rather than Hz).

Scatter plots of the demodulated pilots are produced after performing channel

estimation (cross-correlation-type) on the Doppler-mitigated signals and equalizing

the channel (channel estimator and equalizer are provided courtesy of Acoubit Com-

munications Inc.). These scatter plots confirm whether the QPSK structure of the

pilots are properly recovered. As a scatter plot, if the scatter is tightly clustered then

the pilots were recovered correctly.

The Mach number estimates from the runs indicate that the Mach number of

the UWA channels encountered varied between -1.58e-4 and -1.12e-5. Larger Mach

numbers mean that the water waves encountered during transmission were more en-

ergetic.

To demonstrate the analysis approach, consider three UWA channels from Ap-

pendix B. The selected channels are examples of extreme cases tested: (1) shortest

range and smallest bandwidth (B-1); (2) longest range, and (3) highest bandwidth.

The processing for all cases was identical however, case (2) provided challenges with

longer ranges since there were not as many taps due to fading.

1. B-1: W = 0.977 kHz, d = 0.5 km, PL = 4, ∆t = 3.6 s (shortest range, lowest

bandwidth):

The received signal is taken from t = 1.4 s to t = 5 s (∆t = 3.6 s), where

highly-correlated channel taps can be observed. Fig. B-1.1 shows the Mach

number estimator and tracker, with the Mach number oscillating between -3e-4

and 0. The sample mean â = 1
N

∑︁
â[n] is -1.2957e-4. A downsampling factor

of 256 means that the Mach number is tracked every four preambles, i.e. every

256/1953 = 0.13 s. It can be seen from Fig. B-1.1(b) that the low-frequency
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envelope of the Mach number wave is successfully tracked with this approach,

ensuring that there will be no substantial loss of accuracy during compensation.

Fig. B-1.3 shows the CIR before and after Doppler compensation for the 3.5-

s transmission window. The Doppler effect gives rise to sample drift in the

received signal that dilates/compresses the signal, which causes channel tap mi-

gration in our channel estimates. Fig. B-1.3(a) clearly shows these migrations.

The Doppler compensator successfully mitigates this effect as is seen in Fig.

B-1.3(b). The channel’s Doppler power spectrum for the entire 5-s channel is

shown in Fig. B-1.4. The 8th bin corresponds to zero Doppler frequency. Com-

paring Fig. B-1.4(a) to Fig. B-1.4(b), it is observed that the overall channel’s

average Doppler shift is reduced from -1.5 bins (-2.85 Hz) to 0.074 bins (0.14

Hz), effectively eliminating Doppler shift.

The rms Doppler spread of the channel is relatively small (around 0.17% of fs

and 10.9% of fs/M). The Doppler compensator does not eliminate the spread

in general as it only compensates for select signal blocks where high-energy

channel taps are located. Consequently, the Doppler spread remains largely

unchanged (3.2 Hz estimated before compensation and 3.3 Hz estimated after

compensation). Nonetheless, Doppler spread provides insight on how dynamic

the UWA channel is.

Fig. B-1.2 shows the pilot signals recovered after Doppler compensation and

channel equalization does indeed have a QPSK constellation, indicating suc-

cessful signal recovery.

2. B-10: W = 2.442 kHz, d = 5 km, PL = 4, ∆t = 5 s (longest range, moderate

bandwidth):

For this channel, the entire 5-s signal is taken. Fig. B-10.1 shows the Mach
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number estimator and tracker, with the Mach number oscillating between -2.5e-

4 and 0.5e-4. The sample mean â = 1
N

∑︁
â[n] is -1.4432e-4. A downsampling

factor of 256 means the Mach number is tracked every four preambles, i.e. every

256/4883 = 0.052 s. It can be seen from Fig. B-10.1(b) that the low-frequency

envelope of the Mach number wave is successfully tracked with this approach,

ensuring minimal loss of accuracy during compensation.

Fig. B-10.3 shows the CIR before and after Doppler compensation for the 5-

s transmission window. The Doppler effect gives rise to sample drift in the

received signal that dilates / compresses the signal, which causes channel tap

migration in the channel estimates. Fig. B-10.3(a) clearly shows these migra-

tions. The Doppler compensator successfully mitigates this effect as is seen

in Fig. B-10.3(b). The channel’s Doppler power spectrum for the entire 5-s

channel is shown in Fig. B-10.4. The 8th bin corresponds to zero Doppler

frequency. Comparing Fig. B-10.4(a) to Fig. B-10.4(b), it is observed that the

overall channel’s average Doppler shift is reduced from -0.7 bins (-3.35 Hz) to

0.03 bins (0.14 Hz), effectively eliminating Doppler shift.

The rms Doppler spread of the channel is relatively small (around 0.15% of fs

or 9.6% of fs/M); the Doppler compensator does not eliminate the spread in

general as it only compensates for select signal blocks where high-energy channel

taps are located. However in this case, the Doppler spread is slightly reduced

from 1.54 bins (7.36 Hz) to 1.26 bins (6 Hz).

Fig. B-10.2 shows the pilot signals recovered after Doppler compensation and

channel equalization do indeed have a QPSK constellation, indicating successful

signal recovery.

3. B-20: W = 9.766 kHz, d = 0.5 km, PL = 4, ∆t = 0.7 s (shortest range, highest

bandwidth):
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Here, the received signal is taken from t = 3.3 s to t = 4 s (∆t = 0.7 s). Fig.

B-20.1 shows the Mach number estimator and tracker, with the Mach number

oscillating between -1.5e-4 and 5e-5. The sample mean â = 1
N

∑︁
â[n] is -3.8944e-

5. A downsampling factor of 256 means the Mach number is tracked every four

preambles, i.e. every 256/19531 = 0.013 s. It can be seen from Fig. B-20.1(b)

that the low-frequency envelope of the Mach number wave is successfully tracked

with this approach, ensuring minimal loss of accuracy during compensation.

Fig. B-20.3 shows the CIR before and after Doppler compensation for the

0.7-s transmission window. The Doppler effect gives rise to sample drift in

the received signal that dilates / compresses the signal, which causes channel

tap migration in the channel estimates. Fig. B-20.3(a) clearly shows these

migrations. The Doppler compensator successfully mitigates this effect as is

seen in Fig. B-20.3(b). The channel’s Doppler power spectrum for the entire

5-s channel is shown in Fig. B-20.4. The 8th bin corresponds to zero Doppler

frequency. Comparing Fig. B-20.4(a) to Fig. B-20.4(b), it is observed that the

overall channel’s average Doppler shift is reduced from -0.0135 bins (-0.26 Hz)

to -0.002983 bins (-0.057 Hz), effectively eliminating Doppler shift.

The rms Doppler spread of this channel is relatively small (around 0.055% of

fs or 3.5% of fs/M); the Doppler compensator does not eliminate the spread

in general as it only compensates for selected signal blocks where high-energy

channel taps are located. However in this case, the Doppler spread is slightly

reduced from 0.57 bins (10.8 Hz) to 0.5 bins (9.58 Hz).

Fig. B-20.2 shows that the pilot signals recovered after Doppler compensa-

tion and channel equalization do indeed have a QPSK constellation, indicating

successful signal recovery.
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The analysis of these channels is summarized in Table 6.4 with performance quan-

tified against the average Mach number â, rms Doppler spread (in Hz) and average

residual Doppler shift δ̂ (in Hz). These parameters are compared with the experi-

mental parameters fs, d and PL.

6.4.1 Aggregate Analysis

The previous section analyzed the channels individually and provided an overview of

the collected in-water measurements. This section will organize the analysis to observe

how the channel dynamics vary with parameters like transmission bandwidth, range

achievable and power level.

The Doppler compensation is directly affected by the signal-to-noise ratio of the

received signals. If the signal excess is zero then there is no signal compensation to

consider. Therefore, it is assumed that there will be sufficient SNR before Doppler

effects can be perceived and then compensated for. This can be an issue at the longer

transmitter-receiver ranges tested like 2 km and 5 km.

The next subsections organize the processed in-water measurements to observe

Doppler spread dependencies and validate the performance of the proposed Doppler

estimation, tracking and compensation.

i. Mach Number

The expectation was Doppler spread is independent of the Mach number. The per-

centage of Doppler spread and mean Mach number estimates â in Table 6.4 are plotted

in Fig. 6.21. As expected, there is no discernible relationship between the magnitude

of the channel’s Mach number and the effect of Doppler spread on the propagating

signal. That is, increasing Mach number does not impact Doppler spread.
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Figure 6.21: No relationship is apparent between Mach number and Doppler spread.

The Mach number depends on the relative motion between transmitter and re-

ceiver. Doppler spread on the other hand depends on time variations resulting from

propagation (environmental) factors such as scattering from surface waves and small

targets like fish, air bubbles, etc. It can also depend on the sound speed profile. If

there was a minimum (inflection) in the sound speed profile with depth, the acoustic

waves would propagate mostly horizontally around the depth of the inflection point.

Unfortunately, it was not clear what the sound speed profile was like in the work area

as no in-water sound speed measurements were made.

The micropaths spawned by scattering sources were not captured. This may have

a larger contribution than anticipated. This will be addressed in future modelling

and measurements.
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ii. Range
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Figure 6.22: Data sets denoted by ‘×’ are linearly fitted as they contain three or
more points. The effect of Doppler spread decreases with transmission range with the
exception of two outliers (red and yellow lines).

It is known from physics that Doppler spread generally gets smaller with transmission

range because at larger distances the propagation paths experience smaller grazing

angles at the moving sea surface. This geometrical trend results in smaller Doppler

contributions from these paths. Fig 6.22 shows two lines conforming to this relation-

ship, namely W = 0.9766 kHz and PL = 4, and W = 4.883 kHz and PL = 4. The

other two lines (W = 2.442 kHz and PL = 4, and W = 4.883 kHz and PL = 3)

shows the opposite behavior. This is because Doppler spread does not depend only

on range; other factors that contribute to Doppler spread include surface scattering

at sea surface and ocean bottom.
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iii. Transmission Bandwidth

The expectation is that with increasing transmission bandwidth the Doppler spread

would be lower. Doppler spread percentage and transmission bandwidth (W ) in Table

6.4 are plotted in Fig. 6.23, where range (d) and transmission power level (PL) are

held constant.
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Figure 6.23: Data sets denoted by ‘×’ are linearly fitted as they have three or more
points. The effect of Doppler spread on the signal reduces when transmission band-
width is increased. The first-order coefficients of the lines are in %/kHz while the
zero-order ones are in %.

Fig. 6.23 shows that Doppler spread percentage decreases with respect to band-

width. In other words, although the Doppler spread, in Hz, increases with bandwidth,
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as observed in Table 6.4, transmission signals with larger bandwidths are more re-

silient against Doppler effects. As Fig. 6.23 shows, the impact of Doppler spread

diminishes with increasing bandwidth. This is due to the subcarrier spacing increas-

ing when bandwidth is increased, which better combats Doppler spread.

The expectation is that the signals will always be transmitted with sufficient

bandwidth. Beyond a certain bandwidth the benefit of doing so (which is to mitigate

Doppler effects) is not there. The reason bandwidth is a consideration at all is because

it is computationally expensive to work with very high bandwidth transmissions.

Furthermore, the maximum bandwidth we are allowed to use is a little less than

the carrier frequency, as aliasing occurs beyond that. The result is hence useful for

ensuring sufficient bandwidth to significantly reduce Doppler effects (especially when

there is deliberate motion between transmitter and receiver).

For very dynamic (low coherence time) channels, the preamble can be adapted to

be within the channel coherence time to better track the channel variations. Given a

higher bandwidth the preamble can be made correspondingly shorter so it is possible

to be within the channel coherence time. For the proposed approach, the shift-

orthogonal OFDM pilots are more effective in dynamic channels for channel and

Doppler estimation.

iv. Transmission Range Achievable

The previous subsection showed that signals transmitted with sufficient bandwidth

combat Doppler spread better. Mach number effects are only from waves which have

semi-random relative back-and-forth motions between the transmitter and receiver.

The expectation is that the channel Mach number does not impact the transmission

range achievable. Transmission range is more impacted by propagation conditions.

Therefore, the common Doppler shift due to waves should not impact the transmission

range achievable.
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Figure 6.24: Data sets denoted by ‘×’ are linearly fitted as there are 3 or more points.
No correlation is observed between â and d which is as expected.

The Mach number estimate (â) and transmission range (d) in Table 6.4 are plotted

in Fig. 6.24, where the transmission bandwidth (W ) and power level (PL) are held

constant. Fig. 6.24 supports the assertion that there is no correlation between the

signal Doppler shifts and transmission range (given sufficient bandwidth) for the Mach

numbers studied. In the limiting case of high Mach numbers one encounters more

turbulent flows, which can create hydrodynamic flow noise, or pseudo-sound [29]; this

raises the ambient noise level and makes signal detection difficult but it should not

impact transmission range.
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v. Transmission Power Level
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Figure 6.25: Data sets denoted by ‘×’ are linearly fit since they contain three or more
points. The effect of Doppler spread decreases when power level is increased (with
the exception of the red line).

The expectation is that the Doppler spread should be less for increasing transmission

power. The Doppler spread percentage and power level (PL) in Table 6.4 are plotted

in Fig. 6.25, where bandwidth (W ) and range (d) are held constant. Barring the

outlier case with W = 0.977 kHz and d = 1 km, the measurements show the effect

of Doppler spread on the propagating signal can be reduced by increasing the signal

power.

This confirms that the developed system is correctly predicting and conforming to

the physics of the underwater channel. It is also possible to plot the spread percentage
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in terms of SNR, since the SNR can be measured from the received signals (see Fig.

6.26 below). The trends observed in Fig. 6.25 are observed here again.

Having investigated the Doppler spread correlations, the next subsections address

the compensator performance.
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Figure 6.26: Data sets denoted by ‘×’ are linearly fit since they contain three or more
points. The effect of Doppler spread decreases when power level is increased (with
the exception of the red line).

vi. Mach Number and Residual Doppler Shift

The residual Doppler shift is what remains after compensation is applied to the

Doppler shifted signals. Its magnitude could be a measure of the compensator’s

performance. Given the Mach numbers measured in-water are not high (purposely

so) it is not expected that the residual Doppler shift should be high.
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Figure 6.27: Each scatter point corresponds to a channel with its own Mach number
a. No single-variable relationship is found between δ̂ and â which is as expected.

While the Mach numbers successfully captured by the proposed receiver are bounded

by W/(2fcM), (which is 6.2× 10−4 - 0.0062 depending on transmission bandwidth),

the receiver performance is independent of channel Mach numbers less than the

bound. For higher Mach numbers, the estimator breaks down due to experiencing an-

gle ambiguity and, as shown in Chapter 5, higher Mach numbers are best addressed

through shorter preamble lengths (assuming bandwidth and carrier frequency are

pre-defined for the application).

The Mach number estimate (â) and estimated residual Doppler shift (δ̂) in Table

6.4 are plotted in Fig. 6.27. Fig. 6.27 shows no discernible correlation between δ̂ and
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â. This agrees with the theory where:

δ(t) =
a(t)− â(t)

1 + â(t)
fc = δ(a, â). (6.3)

The residual Doppler shift depends on both a and â and consequently, there should

not be a single-variable relationship between residual Doppler shift and Mach number.

This confirms the hypothesis but more importantly, follows what the theory suggests.

Fig. 6.27 also shows that for these trials, the resampling stage of Doppler com-

pensation yielded residual errors in the range of 0.056 Hz ≤ |δ̂| ≤ 9.1021× 10−6 Hz.

These errors are relatively small with respect to the transmission bandwidth used and

do not significantly impact performance.

vii. Residual Doppler Shift

Generally, the hypothesis is that with greater Doppler spread, a larger Doppler shift

residue is observed at the output of typical compensators. Recall the rms Doppler

spread, in Hz, is Bd such that Bd/W is the fractional Doppler spread normalized

to the bandwidth (alternatively we can consider Bd/∆f ; this will not change our

observations however since Bd/∆f = N · Bd/W ). This quantity offers insight into

the severity of the Doppler spread. The Mach number estimate (â) and Doppler

spread percentage in Table 6.4 are plotted in Fig. 6.28.

However, Fig. 6.28 does not support the general hypothesis. There is no dis-

cernible correlation between δ̂ and Bd. This is because the resampling in our case

accounts for Doppler shift variations (i.e. Doppler spread). This is a contribution

from the thesis over the standard static resampling used. The resampling factor 1+ â,

which varies block-by-block, accounts for Doppler shift variations, thereby mitigating

Doppler spread. In fact, its effectiveness will be pronounced in dynamic channels

with deliberate relative motions between the transmitter and receiver (future work).
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Figure 6.28: Scatter plot of the residual Doppler shift estimates versus percentage of
Doppler spread. No single-variable relationship is found between δ̂ and sd.

Given smaller Mach numbers to start and a resampling process that addresses

Doppler shift variations, it is acceptable that there is very little Doppler shift left. The

Doppler spread therefore does not significantly impact the residual Doppler estimator.

As shown earlier, with increasing bandwidth, W , the Doppler spread decreases. This

confirms the ability of the proposed resampler to address dynamic channel variations.

It is a testament to the compensation process’s effectiveness that the residual Doppler

shift is in the noise to the point where there is no apparent relationship between the

residual Doppler shift and the spread.



142

6.5 Concluding Remarks

A detailed analysis of 23 channels proves the proposed receiver’s successful perfor-

mance in UWA channels where the dominant source of Doppler effects is wave motion.

The tracker’s ability to accurately extract the Mach number estimates and the com-

pensator’s ability to eliminate Doppler effects from the channel are demonstrated in

Appendix B. The relatively small residual Doppler shifts estimated for each channel

are clear indications of the receiver’s high performance.

The results also show the dependence of Doppler spread on some of the trans-

mission parameters. It is shown that the effects of Doppler spread can be mitigated

by increasing the bandwidth of the transmitted signal. This observation has not

been seen recorded in existng literature, and in our trials it seems to hold true for

shift-orthogonal pilot signals. Increasing the signal power also reduces the effects of

Doppler spread. The results also imply that the effects of Doppler spread worsen

when the range of transmission is increased (though there have been two outliers to

this observation).

Finally the results show that transmission range does not affect the Mach number

of the channel. Thus the induced common Doppler shift due to gravity waves during

transmission is independent of the range of transmission.

In all these experiments, the Doppler spread generally had a small effect on the

propagating signal. This will not be the case in the presence of platfom motion (to

be tested in future work), which introduces more Doppler content to the problem.



Chapter 7

Conclusions and Future Work

A shift-orthogonal pilot strucutre was proposed for Doppler estimation in UWA chan-

nels. The correlation properties of the proposed pilot structure is the main motivator

behind using it in Doppler estimation, as the autocorrelation function of these pilots

is simply a Kronecker delta function. This means that the energy of the autocorrela-

tion output is concentrated at just one tap. This shift-orthogonal property facilitates

Doppler estimation as well as channel estimation in dynamic channels such as UWA

channels. Furthermore, if the duration of the propagating signal is less than the

channel’s Doppler spread, then the WSSUS assumption can be validated for UWA

channels.

The impulse response of the UWA channel was derived from first principles. The

model was then simplified by assuming a first-order model for the time- and path-

dependent delays and assuming that the preamble duration is small enough such that

the path attenuations and the Mach number vary slowly in time within the preamble

block.

The proposed Doppler estimator autocorrelates the shift-orthogonal pilots at the

receiver with a correlation delay equal to the size of the sequence, from which Mach

number estimates can be extracted. The estimator yields a closed-form solution to

the Doppler estimation problem, allowing us to avoid ambiguity problems other esti-

mators suffer from, such as grid-search-based estimators. The estimator also boasts

low computational complexity and is capable of Doppler tracking. The MSE of the

estimator was shown to outperform most estimators found in literature.

143
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The proposed Doppler compensator uses resampling for the first stage of com-

pensation as is common in most compensators. Resampling however is time-varying,

where the resampling factor is varied block by block to account for the different

dilations/compressions experiences by each receiver block. Although the Doppler es-

timator output is capable of tracking Mach number variations sample by sample, the

size of the data array at the output results in high computational complexity, making

the resampling process time-consuming. The proposed Doppler tracker downsamples

the time-varying Mach number estimates while simultaneously tracking the envelope

of the Mach number wave in order to minimize compensation errors. This gives rise

to block-by-block resampling.

The second stage of compensation, namely residual Doppler compensation, in-

volves the use of the proposed Doppler estimator to estimate the residual Doppler

shift. This is due to the fact that the residual Doppler shift appears as CFO just

like the common Doppler shift, and it was proven that the proposed estimator can

be applied in both cases. Doppler compensation performance is thus the same as

the Doppler estimation performance as well as the performance of the resampling

algorithm used.

It was shown that the proposed Doppler compensation approach outperforms most

existing compensators in terms of MSE. If the received signal is resampled block by

block (using a sufficiently large block size), it also outspeeds most existing compen-

stors. It was also observed that the propsed compensator, even when outperformed,

has unique features that can make it more viable, such as its ability to track the Mach

number and its confirmed performance in real-life sea trials.

The proposed receiver was verified via MATLAB and Simulink. More importantly,

the receiver was also validated via real sea experiments. It was shown to perform well

for short-range as well as long-range transmissions. The analysis proved the proposed

receiver’s success in UWA channels where the dominant source of Doppler effects is
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wave motion. The tracker’s ability to accurately extract the Mach number estimates

and the compensator’s ability to eliminate Doppler effects from the channel were

shown in the graphs plotted in Appendix B as well as the data recorded in Table

7.1. The relatively small residual Doppler shifts estimated for each channel show the

receiver’s high performance in the experiments and trials conducted with minimal

errors generated by the receiver.

The channel’s Doppler spread was shown to be mitigated by increasing the band-

width of the transmitted signal. This result was not observed in existing literature

and serves as a new discovery that is proven for shift-orthogonal pilot signals. In-

creasing the signal power also reduces the effects of Doppler spread; furthermore the

effects of Doppler spread seem to worsen when the range of transmission is increased,

though a concrete statement cannot be made due to the existence of two outliers.

Finally the results show that transmission range does not influence the Mach

number of the channel, indicating that range does not impact the common Doppler

shift due to gravity waves during transmission. Doppler spread was relatively small

during for each analyzed channel.

The proposed receiver is now fully justified for UWA channels where platform

motion is absent and wave motion is the prime contributor to Doppler effects. In the

future, new experiments will be conducted where platform motion will be induced on

the transmitter and/or receiver sides. This is expected to increase Doppler shift as

well as Doppler spread. After confirming the receiver’s success in these experiments,

AUVs will be used to fully implement the proposed receiver.



Appendix A

MATLAB Scripts

A-1 MATLAB script for block-by-block compensation

Below is the script developed for block-by-block resampling. Signals are frame-based.

“simout” is the received signal extracted as a timeseries variable.

M=64;

Fs =10000

corr_delay =1; %correlation delay in blocks; e.g. a value of 1 means a delay of M

%samples

%mean estimate

a_hat=mean(mean(squeeze(MachNumbers.Data(:,1,1+ corr_delay:end ))))*Fs/(2*pi *24414*...

corr_delay)

aa=squeeze(MachNumbers.Data)*Fs/(2*pi *24414* corr_delay ); %estimates per sample

a_h=mean(squeeze(MachNumbers.Data(:,1, corr_delay:end )))*Fs/(2*pi *24414*1);

%estimates per block

sout=zeros(length(simout.Data)-corr_delay ,M);

%initialize resampled output array and ignore the zero row vectors

ssout=zeros(length(simout.Data)-corr_delay ,M);

for i=1: length(simout.Data)-corr_delay

n=0+M*corr_delay:M-1+M*corr_delay;

n=n+M*(i-1)* ones (1 ,64);

%multiply by the carrier exp(-j*2pi*mach estimate*fc*t)

sout(i,:)= simout.Data(i+corr_delay ,:).* exp(-j*2*pi *24414/ Fc*aa(:,i+...

corr_delay )’.*n);

[ni ,di]=rat(1+ a_h(i));

sout1=resample(sout(i,:),ni,di); %block -by-block resampling

if length(sout1)<M

ssout(i,:)= padarray(sout1 ,[0 M-length(sout1)],’post ’);

else ssout(i,:)= sout1 (1:M);

end

end

ssout_ts=timeseries(ssout ); %convert array to time series
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A-2 MATLAB script for sample-by-sample compensation

Below is the script developed for sample-by-sample resampling. Signals are sample-

based. “RxBaseSamples.Data” is the received signal extracted as a timeseries vari-

able.

Fs =10000;

%correlation delay in samples; e.g. a delay of 64 corresponds to a delay of 64

%samples

corr_delay =64;

%mean estimate

a_hat=mean(squeeze(MachNumbers.Data(:,1, startpoint:edpoint )))*Fs/(2*pi *24414*...

corr_delay)

[nn ,dd]=rat(1+ a_hat );

aa=squeeze(MachNumbers.Data)*Fs/(2*pi *24414* corr_delay ); %estimates per sample

sout=zeros (1: endpoint -startpoint +1 ,1);

%a larger array for the resampled signal is used in order to take into account the

%extra samples in case of dilation

ssout=zeros (1:64+ endpoint -startpoint +,1);

for i=startpoint:endpoint -startpoint +1

n=startpoint;

n=n+1*(i-1);

sout(i-startpoint +1)= squeeze(RxBaseSamples.Data(1,1,n)).* exp(-j*2*pi*...

24414/10000* aa(i)*n);

[ni ,di]=rat(1+aa(i));

sout1=resample(sout(i-startpoint +1),ni ,di);

if length(sout1)>1

ssout(i-startpoint +1: length(sout1)+i-startpoint )= sout1;

else ssout(i-startpoint +1)= sout1;

end

end

ssout_ts=timeseries(ssout );



Appendix B

Chebucto Head’s Sea Experiments’ Results (fc = 24.414 kHz)

B-1 W = 0.9766 kHz, d = 500 m, PL = 4, ∆t = 3.6 s
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Figure B-1.1: Mach number estimator (a) and tracker (b) with W = 0.9766 kHz,
d = 500 m and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-1.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 0.9766 kHz for a range of d = 500 m amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-1.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 0.9766 kHz, d = 500 m and PL = 4. The CIR is projected onto t vs τ
where the effect of Doppler compensation is more evident. Channel taps with the
highest energy content (colored yellow) are shown. ‘x’ shows a test tap location
before and after compensation. The taps are aligned vertically after compensation,
demonstrating proper recovery of channel tap locations.
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Figure B-1.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 0.9766 kHz, d = 500 m, power level 4).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is severe. The centroid
of the spectrum is returned to bin 8 after compensation. Only the higher-energy taps
were corrected, so the Doppler spread of the channel was not mitigated.
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B-2 W = 0.9766 kHz, d = 1 km, PL = 2, ∆t = 5 s
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Figure B-2.1: Mach number estimator (a) and tracker (b) with W = 0.9766 kHz,
d = 1 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-2.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 0.9766 kHz for a range of d = 1 km amd power level 2. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-2.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 0.9766 kHz, d = 1 km and PL = 2. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. Channel taps with the highest
energy content (colored yellow) are shown. Only two high-energy taps exist in the
entire channel. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-2.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 0.9766 kHz, d = 1 km, power level 2). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is moderate. The centroid of the
spectrum is returned to bin 8 after compensation. Only the higher-energy taps were
corrected, so the Doppler spread of the channel was not mitigated.
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B-3 W = 0.9766 kHz, d = 1 km, PL = 3, ∆t = 5 s
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Figure B-3.1: Mach number estimator (a) and tracker (b) with W = 0.9766 kHz,
d = 1 km and PL = 3. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-3.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 0.9766 kHz for a range of d = 1 km amd power level 3. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-3.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 0.9766 kHz, d = 1 km and PL = 3. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. Channel taps with the highest
energy content (colored yellow) are shown. Only a few high-energy taps exist in the
entire channel. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-3.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 0.9766 kHz, d = 1 km, power level 3).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is severe. The centroid
of the spectrum is returned to bin 8 after compensation. Only the higher-energy taps
were corrected, so the Doppler spread of the channel was not mitigated.
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B-4 W = 0.9766 kHz, d = 1 km, PL = 4, ∆t = 3.4 s
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Figure B-4.1: Mach number estimator (a) and tracker (b) with W = 0.9766 kHz,
d = 1 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-4.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 0.9766 kHz for a range of d = 1 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-4.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 0.9766 kHz, d = 1 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-4.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 0.9766 kHz, d = 1 km, power level 4).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is severe. The centroid
of the spectrum is returned to bin 8 after compensation. Only the higher-energy taps
were corrected, so the Doppler spread of the channel was not mitigated.
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B-5 W = 0.9766 kHz, d = 2 km, PL = 1, ∆t = 0.7 s

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
time in seconds

-2

-1.5

-1

-0.5
10-4

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
time in seconds

-2

-1.5

-1

-0.5
10-4

estimates
tracked estimates

   (a)

 (b)

Figure B-5.1: Mach number estimator (a) and tracker (b) with W = 0.9766 kHz,
d = 2 km and PL = 1. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-5.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 0.9766 kHz for a range of d = 2 km amd power level 1. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-5.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 0.9766 kHz, d = 2 km and PL = 1. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-5.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 0.9766 kHz, d = 2 km, power level 1).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is severe. The centroid
is close to bin 8 before and after compensation. Only the higher-energy taps were
corrected, so the Doppler spread of the channel was not mitigated.
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B-6 W = 0.9766 kHz, d = 5 km, PL = 4, ∆t = 5 s

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time in seconds

-2.5

-2

-1.5

-1

10-4

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time in seconds

-2.5

-2

-1.5

-1

10-4

estimates

tracked estimates

   (a)

 (b)

Figure B-6.1: Mach number estimator (a) and tracker (b) with W = 0.9766 kHz,
d = 5 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-6.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 0.9766 kHz for a range of d = 5 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-6.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 0.9766 kHz, d = 5 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-6.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 0.9766 kHz, d = 5 km, power level 4).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is severe. The centroid
of the spectrum is returned to bin 8 after compensation. Only the higher-energy taps
were corrected, so the Doppler spread of the channel was not mitigated.
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B-7 W = 2.442 kHz, d = 500 km, PL = 2, ∆t = 3.7 s
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Figure B-7.1: Mach number estimator (a) and tracker (b) with W = 2.442 kHz,
d = 500 m and PL = 2. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.

-2 -1 0 1 2

in-phase

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

qu
ad

ra
tu

re

Figure B-7.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 2.442 kHz for a range of d = 500 m amd power level 2. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-7.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 2.442 kHz, d = 500 m and PL = 2. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-7.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 2.442 kHz, d = 500 m, power level 2). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is moderate. The centroid of the
spectrum is returned to bin 8 after compensation. Only the higher-energy taps were
corrected, so the Doppler spread of the channel was not mitigated.



162

B-8 W = 2.442 kHz, d = 1 km, PL = 4, ∆t = 5 s

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time in seconds

-2

-1

0

1

2
10-4

0.5 1 1.5 2 2.5 3 3.5 4 4.5
time in seconds

-2

-1

0

1

2
10-4

estimates
tracked estimates

  (a)

  (b)

Figure B-8.1: Mach number estimator (a) and tracker (b) withW = 2.442 kHz, d = 1
km and PL = 4. ‘x’ indicates every 256th sample retained due to downsampling (sam-
ple is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t). This data
reduction facilitates practical compensation. Note, the downsampled representation
captures the Mach number such that no lower frequency features relevant to tracking
are neglected. This practically tracks the Mach number variations.
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Figure B-8.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 2.442 kHz for a range of d = 1 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-8.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 2.442 kHz, d = 1 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-8.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 2.442 kHz, d = 1 km, power level 4). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is moderate. The centroid of
the spectrum is close to bin 8 before and after compensation. Only the higher-energy
taps were corrected, so the Doppler spread of the channel was not mitigated.
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B-9 W = 2.442 kHz, d = 2 km, PL = 4, ∆t = 4.3 s
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Figure B-9.1: Mach number estimator (a) and tracker (b) withW = 2.442 kHz, d = 2
km and PL = 4. ‘x’ indicates every 256th sample retained due to downsampling (sam-
ple is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t). This data
reduction facilitates practical compensation. Note, the downsampled representation
captures the Mach number such that no lower frequency features relevant to tracking
are neglected. This practically tracks the Mach number variations.
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Figure B-9.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 2.442 kHz for a range of d = 2 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-9.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 2.442 kHz, d = 2 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-9.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 2.442 kHz, d = 2 km, power level 4). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is moderate. The centroid of
the spectrum is close to bin 8 before and after compensation. Only the higher-energy
taps were corrected, so the Doppler spread of the channel was not mitigated.
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B-10 W = 2.442 kHz, d = 5 km, PL = 4, ∆t = 5 s
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Figure B-10.1: Mach number estimator (a) and tracker (b) with W = 2.442 kHz,
d = 5 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-10.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 2.442 kHz for a range of d = 5 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-10.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 2.442 kHz, d = 5 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-10.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 2.442 kHz, d = 5 km, power level 4). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is returned to bin 8 after compensation.
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B-11 W = 4.883 kHz, d = 500 m, PL = 1, ∆t = 5 s
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Figure B-11.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 500 m and PL = 1. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-11.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 500 m amd power level 1. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-11.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 500 m and PL = 1. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-11.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 500 m, power level 1).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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B-12 W = 4.883 kHz, d = 500 m, PL = 2, ∆t = 5 s
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Figure B-12.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 500 m and PL = 2. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-12.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 500 m amd power level 2. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-12.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 500 m and PL = 2. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-12.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 500 m, power level 2).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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B-13 W = 4.883 kHz, d = 500 m, PL = 3, ∆t = 5 s
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Figure B-13.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 500 m and PL = 3. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-13.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 500 m amd power level 3. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-13.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 500 m and PL = 3. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-13.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 500 m, power level 3).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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B-14 W = 4.883 kHz, d = 500 m, PL = 4, ∆t = 2.1 s

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
time in seconds

-2

-1

0

10-4

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
time in seconds

-2

-1

0

10-4

estimates

tracked estimates

Figure B-14.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 500 m and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-14.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 500 m amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.



175

Figure B-14.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 500 m and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-14.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 500 m, power level 4).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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B-15 W = 4.883 kHz, d = 1 km, PL = 3, ∆t = 2 s, ∆t = 2 s
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Figure B-15.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 1 km and PL = 3. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-15.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 1 km amd power level 3. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-15.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 1 km and PL = 3. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-15.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 1 km, power level 3). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is returned to bin 8 after compensation.
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B-16 W = 4.883 kHz, d = 1 km, PL = 4, ∆t = 1.6 s
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Figure B-16.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 1 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-16.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 1 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-16.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 1 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-16.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 1 km, power level 4). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is close to bin 8 before and after compensation.
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B-17 W = 4.883 kHz, d = 2 km, PL = 3, ∆t = 5 s
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Figure B-17.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 2 km and PL = 3. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-17.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 2 km amd power level 3. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-17.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 2 km and PL = 3. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-17.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 2 km, power level 3). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is returned to bin 8 after compensation.
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B-18 W = 4.883 kHz, d = 2 km, PL = 4, ∆t = 5 s
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Figure B-18.1: Mach number estimator (a) and tracker (b) with W = 4.883 kHz,
d = 2 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-18.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 4.883 kHz for a range of d = 2 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-18.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 4.883 kHz, d = 2 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.

2 4 6 8 10 12 14 16
Doppler frequency bins (bin width=9.5367 Hz)

(a)

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14 16
Doppler frequency bins (bin width=9.5367 Hz)

(b)

0

50

100

150

Figure B-18.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 4.883 kHz, d = 2 km, power level 4). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is close to bin before and after compensation.



184

B-19 W = 9.766 kHz, d = 500 m, PL = 3, ∆t = 5 s
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Figure B-19.1: Mach number estimator (a) and tracker (b) with W = 9.766 kHz,
d = 500 m and PL = 3. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-19.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 9.766 kHz for a range of d = 500 m amd power level 3. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-19.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 9.766 kHz, d = 500 m and PL = 3. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-19.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 9.766 kHz, d = 500 m, power level 3).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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B-20 W = 9.766 kHz, d = 500 m, PL = 4, ∆t = 0.7 s
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Figure B-20.1: Mach number estimator (a) and tracker (b) with W = 9.766 kHz,
d = 500 m and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-20.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 9.766 kHz for a range of d = 500 m amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-20.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 9.766 kHz, d = 500 m and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-20.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 9.766 kHz, d = 500 m, power level 4).
The average is computed over channel delays. The spectrum is shifted so that the
Doppler frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid
of the spectrum is returned to bin 8 after compensation.
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B-21 W = 9.766 kHz, d = 1 km, PL = 2, ∆t = 4.5 s
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Figure B-21.1: Mach number estimator (a) and tracker (b) with W = 9.766 kHz,
d = 1 km and PL = 2. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-21.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 9.766 kHz for a range of d = 1 km amd power level 2. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-21.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 9.766 kHz, d = 1 km and PL = 2. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-21.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 9.766 kHz, d = 1 km, power level 2). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is returned to bin 8 after compensation.
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B-22 W = 9.766 kHz, d = 1 km, PL = 3, ∆t = 1.6 s
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Figure B-22.1: Mach number estimator (a) and tracker (b) with W = 9.766 kHz,
d = 1 km and PL = 3. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-22.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 9.766 kHz for a range of d = 1 km amd power level 3. The plot indicates
that the QPSK symbols have been properly recovered.
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Figure B-22.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 9.766 kHz, d = 1 km and PL = 3. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-22.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 9.766 kHz, d = 1 km, power level 3). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is returned to bin 8 after compensation.
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B-23 W = 9.766 kHz, d = 2 km, PL = 4, ∆t = 1.3 s
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Figure B-23.1: Mach number estimator (a) and tracker (b) with W = 9.766 kHz,
d = 2 km and PL = 4. ‘x’ indicates every 256th sample retained due to downsam-
pling (sample is extracted every 4 preambles). Relative velocity is given by 1500 ·a(t).
This data reduction facilitates practical compensation. Note, the downsampled rep-
resentation captures the Mach number such that no lower frequency features relevant
to tracking are neglected. This practically tracks the Mach number variations.
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Figure B-23.2: Scatter plot of the compensated and demodulated RX pilots sampled
at W = 9.766 kHz for a range of d = 2 km amd power level 4. The plot indicates
that the QPSK symbols have been properly recovered.



193

Figure B-23.3: CIR comparison (a) before and (b) after Doppler compensation for
W = 9.766 kHz, d = 2 km and PL = 4. The CIR is projected onto t vs τ where
the effect of Doppler compensation is more evident. High-energy (yellow) taps are
compensated. ‘x’ shows a test tap location before and after compensation. The taps
are aligned vertically after compensation, demonstrating proper recovery of channel
tap locations.
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Figure B-23.4: Average Doppler power spectrum comparison (a) before and (b) after
compensation for the entire channel (W = 9.766 kHz, d = 1 km, power level 3). The
average is computed over channel delays. The spectrum is shifted so that the Doppler
frequency of 0 corresponds to bin 8. Doppler spread is small. The centroid of the
spectrum is close to bin 8 before and after compensation.



Appendix C

Chapter 2 Supplement: Fourier Transform and DFT

Properties

The Fourier transform X(f) of the function x(t) is defined by the Fourier integral

X(f) = F{x(t)} =

∫︂ ∞

−∞
x(t)e−j2πftdt (C.1)

with the inverse given by

x(t) = F−1{X(f)} =

∫︂ ∞

−∞
X(f)ej2πftdf. (C.2)

The N -point DFT X[k] of the sequence x[n] is defined by the Fourier sum

X[k] = DFT{x[n]} =
1√
N

N−1∑︂
n=0

x[n]e−j2πkn/N (C.3)

with the inverse (IDFT) given by

x[n] = IDFT{X[k]} =
1√
N

N−1∑︂
k=0

X[k]ej2πkn/N . (C.4)

The following Fourier transform and DFT properties are used in Chapter 3.
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Circular Shift Properties of the DFT

The circular shift property in time states that, for a given discrete-time shift n0,

DFT{x[n− n0]} = X[k]e−j2πkn/N . (C.5)

By the duality of the DFT, it also holds true that, for a given discrete-frequency shift

k0,

IDFT{X[k − k0]} = x[n]ej2πkn/N . (C.6)

The time and frequency shifts are modulo N . For example, if X[k] = δ[k], then

DFT{δ[k − k0]} = ej2πkn/N . (C.7)

Circular Cross-Correlation Theorem for the DFT

The circular cross-correlation theorem relates the circular cross-correlation of the two

sequences x[n] and y[n] with their DFT counterparts X[k] and Y [k]. It states that

DFT{x[n] ⋆ y[n]} = X∗[k]Y [k]. (C.8)

Circular Convolution Theorem for the DFT

The DFT of the circular convolution of x[n] and y[n] (modulo N) is given by

DFT{x[n]⊛ y[n]} = X[k]Y [k]. (C.9)
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Shift Properties of the Fourier Transform

The shift property in time states that, for a given time shift t0,

F{x(t− t0)} = e−j2πft0X(f). (C.10)

By the duality of the Fourier transform, it also holds true that, for a given frequency

shift f0,

F−1{X(f − f0)} = ej2πf0tx(t). (C.11)

Scaling Property of the Fourier Transform

For a given scaling factor w,

F{x(wt)} =
1

|w|
X

(︃
f

w

)︃
. (C.12)

Convolution Theorem for the Fourier Transform

The Fourier transform of the convolution of x(t) and y(t) is given by

F{x(t) ∗ y(t)} = X(f)Y (f) (C.13)

where Y (f) = F{y(t)}.
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Differentiation Property of the Fourier Transform

The qth derivative of x(t) has the Fourier transform property

F
{︃
dq

dtq
x(t)

}︃
= (j2πf)qX(f) (C.14)
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