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ABSTRACT 

Currently, there are multiple packages available to implement different Simultaneous 

Localisation And Mapping (SLAM) approaches in Robot Operating System (ROS). To 

effectively obtain sensor data, these packages use parameters whose values are set from 

prior knowledge and experience working with robots and SLAM. In this research, using a 

Multi-Objective Genetic Algorithm (MOGA) to optimise the values for these parameters 

is proposed. Using MOGA allows trade-offs between the objectives using Pareto 

dominance technique. Three parameters from the RTAB-Map package are considered for 

optimisation using three different MOGA mechanisms, Dominance Count, Dominance 

Rank and Switching Fitness. The quality of the map generated for every set of parameters 

is taken as the indicator of its performance. The number of corners, number of contours 

and the proportion of occupied cells in the map are used as quantitative measures of map 

quality. Finally, results obtained from the algorithm are tested on a Quanser QBot2 robot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 
 

LIST OF ABBREVIATIONS USED 

SLAM Simultaneous Localization And Mapping 

AGV Autonomous Ground Vehicle 

GPS Global Positioning System 

EKF Extended Kalman filter 

PF Particle Filter 

ROS Robot Operating System 

GA Genetic Algorithm 

RGB-D  Red, Green, Blue-Depth  

MOGA Multi-Objective Genetic Algorithm 

LASER Light Amplification by Stimulated Emission of Radiation 

RTAB-Map Real-Time Appearance-Based Mapping 

LISP List Processing 

MATLAB Matrix Laboratory 

OS Operating System 

SPA Sparse Pose Adjustment 

LIDAR Light Detection And Ranging 

RBPF Rao-Blackwellised Particle Filter 

2D Two Dimensional 

3D Three Dimensional 

LM Levenberg-Marquardt 

SIFT Scale Invariant Feature Transform 

SURF Speeded Up Robust Features 

CPU Central Processing Unit 

GB Giga Byte 

GHz Giga Hertz 

SSD Solid State Drive 

VM Virtual Machine 

RAM Random Access Memory 

LTS Long-Term Support 



xii 
 

SDK Software Development Kit 

USB Universal Serial Bus 

IMU Inertial Measurement Unit 

NUI Natural User Interface 

GP Genetic Programming 

LGP Linear Genetic Programming 

SOO Single Objective Optimisation 

MOO Multi Objective Optimisation 

AFL Adaptive Fuzzy Logic 

DC Dominance Count 

DR Dominance Rank 

SF Switching Fitness 

GUI Graphical User Interface 

OpenCV Open Computer Vision 

 
 
 
 
 
 
 
 
 
 
 
 



xiii 
 

ACKNOWLEDGEMENTS 

I would like to thank my supervisor Dr. Jason Gu for giving me the opportunity to work 

with him as a graduate student and for his constant motivation and guidance. I would also 

like to thank my supervisory committee, Dr. Kamal El-Sankary and Dr. William Phillips 

for their support and guidance. I would like to extend my gratitude to the late Dr. 

Mohamed El-Hawary for introducing me to fuzzy systems, Dr. Mae Seto for piquing my 

interest in the SLAM problem and Dr. Malcolm Heywood for his immense patience and 

motivation in developing my fascination with Genetic Algorithms. 

I would like to thank Dr. Mathieu Labbe for sharing his knowledge on RTAB-Map and 

answering my many questions. I would also like to thank my husband for his 

unconditional support and encouragement. 

Finally, I would like to thank all the faculty, staff and students of the Electrical and 

Computer Engineering department for making my Master’s degree an enjoyable journey. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

CHAPTER 1 INTRODUCTION 

Initially robots were developed for industrial manufacturing and were stationary. 

However, now they are engaged in tasks that are less repetitive and in environments that 

are less structured for example, medical surgery, ocean and space explorations, search 

and rescue operations, etc. Using an autonomous robot reduces risk to people and 

increases persistence and reach. Autonomous Ground Vehicles (AGVs) can be used for 

search and rescue missions in collapsed mines or under debris from natural calamities, to 

scope hostile land in military applications, and as electric vehicles. In such cases, having 

a-priori knowledge of the environment might not be very useful due to these changes and 

in some cases, the environment will be dynamic and continuously changing. 

Navigation is one of the most challenging features required of a mobile robot. A major 

flaw in most navigation and localization techniques is the assumption that the 

environment is known in advance. However, an autonomous mobile robot is required to 

start from an unknown initial point and independently explore the environment. Using its 

sensors, a mobile robot must not only determine its position in the environment, but also 

build a map of the area. This method of autonomous map building is called Simultaneous 

Localization And Mapping or SLAM [1]. It is especially useful in cases where GPS is 

unavailable, so the maps developed by SLAM can be used for exploration and motion 

planning. At the heart of most of the commonly used SLAM techniques, lies a Bayesian 

probability filter like the Gaussian Extended Kalman filter (EKF) or the nonparametric 

Particle filter (PF).  

To avoid exerting effort in duplicating existing technology, Robot Operating System 

(ROS) is a useful platform which makes many opensource packages and programming 

codes readily available for research and educational purposes. Currently, there are 

multiple ROS packages available that implement SLAM, like GMapping that uses PF, 

Hector SLAM that uses EKF, RTAB-Map and Karto SLAM that use a simple Bayesian 

filter for loop closure to implement a graph-based SLAM approach. There are numerous 

parameters used by these packages for effective localisation and map generation. The 

values and ranges for these parameters are defined from previous experiences with robots 
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and SLAM. However, to avoid ambiguity in setting the values for these parameters and 

to customise them for specific research needs, using a Genetic Algorithm (GA) for 

optimising these parameters would be a good choice. This is especially useful in cases 

where map accuracy is of utmost importance and in long term projects that require a 

robot to perform exploration repetitively.  

In currently available literature, the use of GA for optimal implementation of SLAM is 

limited and using MOGA in SLAM is uncharted territory; therefore, making the 

approach proposed in this thesis unique. When using GA, multiple parameters can be 

optimised simultaneously by implementing a Multi-Objective GA (MOGA). This allows 

identifying parameter values that are best suited for the robot, its sensor set and the 

environment to be employed in the task, and prevents having to rely on historical data 

obtained by outdated technology. Using MOGA for this optimisation prevents premature 

convergence to local optima and solves bootstrap problem, in other words, the absence of 

selective pressure [2]. Unlike single objective GA, MOGA eliminates the need to define 

a weight for the multiple objectives a-priori as it allows expressing the multiple 

objectives using Pareto dominance techniques. Furthermore, the results obtained via 

Pareto dominance techniques offer multiple trade-offs between the objectives which will 

be useful in making a-posteriori choices between solutions. 

In this thesis, a MOGA is employed to identify optimal values of select parameters used 

by the RTAB-Map package for generating maps of the environment. The maps are 

evaluated based on their number of corners, number of contours and proportion of 

occupied spaces, to promote evolution of parameter sets that produce better maps. 

Different Pareto dominance techniques have been explored to compare the promotion of 

a single fittest individual versus the promotion of a pool of individuals that provide 

equally good but different solutions.  

The robot used for the different sets of experiments in this research, Quanser QBot2, is 

an autonomous ground robot (AGV) with a Yujin Robot Kobuki platform, a Microsoft 

Kinect RGB camera and depth sensor, and a Quanser data acquisition device with a 

wireless embedded computer. The RTAB-Map package has been chosen from multiple 
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SLAM packages available in ROS primarily due to its ability to support a camera-based 

robot out of the box and the continuous support available for the package. For simulation 

purposes, a Turtlebot2 robot, which has a similar configuration as the QBot2, has been 

used. 

1.1 THESIS OUTLINE 

This thesis consists of 7 chapters, where chapter 1 is the introduction. The other chapters 

are organized in the following manner: 

• Chapter 2 provides an overview of the SLAM problem. It introduces ROS and 

lists the available ROS packages that implement different SLAM techniques.  

• Chapter 3 introduces the AGV, its various sensors used to solve the SLAM 

problem in this thesis and the simulated robot. 

• Chapter 4 explains how the virtual machines were setup for the simulation 

experiments and provides details on ROS installation and the different ROS 

packages used. 

• Chapter 5 is a basic outline of the RTAB-Map and genetic algorithms. It 

discusses the RTAB-Map’s memory management model and the parameters 

chosen for optimisation. It also introduces GA, how the first GA SLAM was 

implemented, different MOGA mechanisms and the objectives used to optimise 

maps produced by RTAB-Map. 

• Chapter 6 presents the implementation of the MOGA methods developed for 

parameter optimisation and details the observations made by the robot and the 

results comparing the different MOGA approaches employed in the different 

setups. 

• Chapter 7 discusses the future scope of the algorithm and other ways MOGA can 

be incorporated in SLAM. 
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CHAPTER 2 SIMULTANEOUS LOCALIZATION AND 

MAPPING AND ROS 

Mobile robots need to be able to explore unknown environments, especially those that are 

remote or too hazardous. This necessitates that mobile robots be autonomous. In 

autonomous mobile robotics, it is essential that a mobile robot is able to start from an 

arbitrary initial point and autonomously explore the environment with its on-board sensors, 

gain knowledge about it, interpret the scene, build an appropriate map, and localize itself 

relative to this map [1]. This problem is called simultaneous localization and mapping. 

 

Figure 1 Overview of the SLAM process. 
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Since its introduction in [3] SLAM has been implemented in multiple ways, an 

example is shown in Figure 1 where the SLAM process consists of landmark 

extraction, data association, state estimation, state update and landmark update with 

multiple ways to solve each step [6]. The changes in odometry and observations are 

updated in the filter, based on scans from different robot sensors and data association, 

i.e., it determines if sensor measurements taken at different times correspond to the 

same physical object. As shown in Figure 2, the prediction and measurement updates 

at each step yield a map where the uncertainty at each step is compounded by the 

uncertainty in estimation and the noise in sensor measurements and the environment. 

This necessitates loop closure detection as it shrinks the robot pose uncertainty. 

 

Figure 2 The SLAM problem [4]. 

Data association is the process of matching observed landmarks from different scans 

from the robot sensor/s with each other, i.e., it determines if sensor measurements 

taken at different times correspond to the same physical object [4]. This can also be 

referred to as re-observing landmarks. In most SLAM algorithms with unknown data 

association, i.e., ambiguous landmarks, multiple tracks/paths need to be maintained so 
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that a search for the appropriate track can be conducted. This increases the 

computational complexity of these algorithms [5]. Errors in data association 

commonly occur due to measurement error and motion error. As shown in Figure 3, if 

two landmarks are very close to each other, observations could come from either 

landmark. 

 

Figure 3 Measurement error [6]. 

If a robot skids or its pose changes by a small amount, observations from a 

single landmark could be associated with different landmarks as shown in 

Figure 4 [6]. 

 

Figure 4 Motion error [6]. 

Probabilistic SLAM is sensitive to incorrect data associations and increasing the 

complexity of environments makes it run out of computational time and storage space 

eventually. 

2.1 ROBOT OPERATING SYSTEM 

ROS is an open-source framework for creating robot software. It provides tools, libraries 

and conventions across a wide variety of robotic platforms that aim to simplify complex 

programming tasks, so that developers and researchers can focus on new algorithm 

development without having to cope with trivial low-level hardware communication 

problems [7], [8]. It was introduced in 2007 by Stanford University and Willow Garage. 

ROS is multilingual and supports languages with client libraries like Python, C++, LISP 
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and MATLAB [7]. The three typical components of ROS are illustrated in Figure 5. In 

ROS, applications running in the landscape are called nodes or nodelets. The distinction 

being, a node is mapped to a single OS process and ROS nodelets reside as threads 

inside a process called ROS Nodelet Manager [9]. Topics are publish/subscribe methods 

of exchange, services establish request/response communication model, and these three 

components communicate via messages [8]. 

 

Figure 5 Basic ROS computational graph [8]. 

The nodelets communicate through a link between the ROS layers as indicated in Figure 

6. Messages across nodes are transmitted through the operating system network layers 

[9]. 

 

Figure 6 ROS Application Architecture [9]. 

Currently ROS only runs on Unix-based platforms like the Ubuntu and Mac OS X 

systems and is fully supported. More recently, it can also be installed on Microsoft 

Windows 10 through the Windows Subsystem for Linux, however the support is limited 

with minimal or no access to hardware and subpar performance [10]. 
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2.2 SLAM PACKAGES IN ROS 

The most popular ROS packages that implement SLAM are gmapping which is a LASER 

based SLAM approach, hector_slam which is LIDAR based, slam_karto which is again 

LASER based, and rtabmap which is a camera (RGBD, stereo) based SLAM approach. 

These packages are discussed in the following sections. 

2.2.1 Hector SLAM 

As shown in Figure 7, the Hector SLAM package uses an EKF filter for navigation where 

it combines information from different sensors to provide a consistent 3D state estimation 

and the robot’s position heading information are provided by a 2D SLAM system. 

 

Figure 7 Overview of the ROS hector_slam mapping and navigation system [11]. 

EKF relaxes the linear assumption of the Kalman filter to include realistic non-linear 

functions, however, it still assumes Gaussian noise. With the environment being 
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unknown, the robot’s pose at its initial point is taken as the origin. According to [12], the 

initial mean and covariance will be:  

𝜇0 = (0 0 0…0)𝑇 2.1 

Σ0 =

(

  
 

0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 ∞ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ ∞)

  
 
 . 2.2 

When the robot moves the state vector changes, 

𝑦𝑡 = 𝑦𝑡−1 +

(

 
 
 
 
 

−
𝑣𝑡
𝜔𝑡
sin 𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡 + 𝛾𝑡∆𝑡
0
⋮
0 )

 
 
 
 
 

2.3 

and only the first three elements in the above motion model update are non-zero as the 

landmarks remain fixed. So, 

𝑦𝑡 = 𝑦𝑡−1 + 𝐹𝑥
𝑇

(

 
 
−
𝑣𝑡
𝜔𝑡
sin 𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡 + 𝛾𝑡∆𝑡 )

 
 

2.4 

where, x, y and θ denote the pose of the robot at time t-1. 𝑣𝑡 is the translational 

velocity and 𝜔𝑡 is the rotational velocity with Δt being the time frame of the 

robot motion. 𝐹𝑥 is 3×(3N+3) matrix, 

𝐹𝑥 = (
1 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0

) . 2.5 

The noise-free full motion model with a random noise part is given by, 
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𝑦𝑡 = 𝑦𝑡−1 + 𝐹𝑥
𝑇

(

 
 
−
𝑣𝑡
𝜔𝑡
sin 𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡 )

 
 

⏟                            
𝑔(𝑢𝑡,𝑦𝑡−1)

+𝑁(0, 𝐹𝑥
𝑇𝑅𝑡𝐹𝑥) 2.6

 

where 𝐹𝑥
𝑇𝑅𝑡𝐹𝑥 extends the covariance matrix to the dimension of the full state 

vector squared. In EKF, linearization approximates the motion function, g, using 

a first-degree Taylor expansion,  

𝑔(𝑢𝑡, 𝑦𝑡−1) ≈ 𝑔(𝑢𝑡, 𝜇𝑡−1) + 𝐺𝑡(𝑦𝑡−1 − 𝜇𝑡−1) 2.7 

where the function 𝑔(𝑢𝑡, 𝜇𝑡−1) is the estimation and 𝐺𝑡 is derivative of 𝑔 at the control 

input 𝑢𝑡 and 𝜇𝑡−1 with respect to 𝑦𝑡−1. Equation 2.6 allows us to decompose the 

Jacobian into an identity matrix and a low dimensional Jacobian 𝑔𝑡 that gives the robot 

pose change as: 

𝐺𝑡 = 𝐼 + 𝐹𝑥
𝑇𝑔𝑡𝐹𝑥 2.8 

with 

𝑔𝑡 =

(

 
 
0 0 −

𝑣𝑡
𝜔𝑡
cos 𝜇𝑡−1,𝜃 +

𝑣𝑡
𝜔𝑡
cos(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

0 0 −
𝑣𝑡
𝜔𝑡
sin 𝜇𝑡−1,𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

0 0 0 )

 
 
 . 2.9 

Substituting these in EKF gives the mean and covariance at time t, 

𝜇̅𝑡 = 𝜇𝑡−1 + 𝐹𝑥
𝑇

(

 
 
−
𝑣𝑡
𝜔𝑡
sin 𝜇𝑡−1,𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜇𝑡−1,𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡 )

 
 

2.10 

Σ̅𝑡 = 𝐺𝑡Σ𝑡−1𝐺𝑡
𝑇 + 𝐹𝑥

𝑇𝑅𝑡𝐹𝑥 . 2.11 

EKF also requires a measurement model with a noise component, 
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𝑧𝑡
𝑖 = (

𝑟𝑡
𝑖

𝜙𝑡
𝑖

𝑠𝑡
𝑖

) =

(

 
 
√(𝑚𝑗,𝑥 − 𝑥)

2
+ (𝑚𝑗,𝑦 − 𝑦)

2

𝑎𝑡𝑎𝑛2(𝑚𝑗,𝑦 − 𝑦,𝑚𝑗,𝑥 − 𝑥) − 𝜃
𝑚𝑗,𝑠 )

 
 

⏟                      
ℎ(𝑦𝑡,𝑗)

+ 𝑁

(

 
 
0, (

𝜎𝑟 0 0
0 𝜎𝜙 0

0 0 𝜎𝑠

)

⏟          
𝑄𝑡 )

 
 

2.12
 

where 𝑚𝑗,𝑥 and 𝑚𝑗,𝑦 denote the landmark coordinates at time t and 𝑚𝑗,𝑠 is its 

signature. 𝜙 is the bearing and r is the range of landmark j, which is the ith 

component in the measurement vector and s is its signature as observed by the robot. 

Therefore, the Taylor approximation gives us, 

ℎ(𝑦𝑡, 𝑗) ≈ ℎ(𝜇̅𝑡, 𝑗) + 𝐻𝑡
𝑖(𝑦𝑡 − 𝜇̅𝑡) . 2.13 

Here 𝐻𝑡
𝑖 is the derivative of h with respect to the full state vector 𝑦𝑡. Since the 

measurement function h, only depends on the robot pose 𝑥𝑡 and the location of the jth 

landmark 𝑚𝑗, the derivative factors into a low-dimensional Jacobian ℎ𝑡
𝑖  and a matrix 

𝐹𝑥,𝑗 , which maps ℎ𝑡
𝑖  into a matrix of the dimension of the full state vector: 

𝐻𝑡
𝑖 = ℎ𝑡

𝑖𝐹𝑥,𝑗 2.14 

where, ℎ𝑡
𝑖 is the Jacobian of the function ℎ(𝑦𝑡, 𝑗) at 𝜇̅𝑡 calculated with respect to 

𝑥𝑡 and 𝑚𝑗: 

ℎ𝑡
𝑖 =

(

  
 

𝜇̅𝑡,𝑥 − 𝜇̅𝑗,𝑥

√𝑞𝑡

𝜇̅𝑡,𝑦 − 𝜇̅𝑗,𝑦

√𝑞𝑡
0

𝜇̅𝑗,𝑥 − 𝜇̅𝑡,𝑥

√𝑞𝑡

𝜇̅𝑗,𝑦 − 𝜇̅𝑡,𝑦

√𝑞𝑡
0

𝜇̅𝑗,𝑦 − 𝜇̅𝑡,𝑦

𝑞𝑡

𝜇̅𝑡,𝑥 − 𝜇̅𝑗,𝑥

𝑞𝑡
−1

𝜇̅𝑡,𝑦 − 𝜇̅𝑗,𝑦

𝑞𝑡

𝜇̅𝑗,𝑥 − 𝜇̅𝑡,𝑥

𝑞𝑡
0

0 0 0 0 0 1)

  
 
 . 2.15 

The scalar 𝑞𝑡 = (𝜇̅𝑗,𝑥 − 𝜇̅𝑡,𝑥)
2 + (𝜇̅𝑗,𝑦 − 𝜇̅𝑡,𝑦)

2, and 𝑗 = 𝑐𝑡
𝑖 is the landmark 

corresponding to 𝑧𝑡
𝑖. 𝐹𝑥,𝑗 is a 6×(3N+3) matrix which maps ℎ𝑡

𝑖  into a 3×(3N+3) 

matrix. 
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𝐹𝑥,𝑗 =

(

  
 

1 0 0 0 ⋯ 0 0 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0 0 0 0 0 ⋯ 0
0 0 1 0 ⋯ 0 0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0 0 1 0 0 ⋯ 0
0 0 0 0 ⋯ 0 0 0 1 0 ⋯ 0)

  
 
 . 2.16 

Inserting these equations in EKF gives us the Kalman gain and allows addition 

of observations into the filter in equations 2.18 and 2.19, 

𝐾𝑡
𝑖 = Σ̅𝑡𝐻𝑡

𝑖𝑇(𝐻𝑡
𝑖Σ̅𝑡𝐻𝑡

𝑖𝑇 + 𝑄𝑡)
−1

2.17 

𝜇̅𝑡 = 𝜇̅𝑡 +𝐾𝑡
𝑖(𝑧𝑡

𝑖 − 𝑧̂𝑡
𝑖) 2.18 

Σ̅𝑡 = (𝐼 − 𝐾𝑡
𝑖𝐻𝑡

𝑖)Σ̅𝑡 . 2.19 

From the above derivation, it can be concluded that EKF is computationally 

expensive. Additionally, it requires memory and update time that is quadratic in N, 

the number of landmarks [12]. Also, EKF functions on single hypothesis data 

association, i.e., it has no mechanism to represent uncertainty in data association. If a 

landmark is incorrectly associated, it can never be undone [13], therefore using the 

2D SLAM system for scan matching in the hector_slam ROS package prevents 

overconfidence in the EKF estimates [11]. 

2.2.2 GMapping 

The GMapping package uses a Rao-Blackwellized Particle Filter (RBPF) with raw 

laser data from long range LASER scanners and odometry to create 2D grid maps. 

Unlike the Gaussian Kalman filter and EKF, a PF is well suited for multimodal 

beliefs. In PFs the posterior belief 𝑏𝑒𝑙(𝑥𝑡) is represented by a random set of state 

samples or particles drawn from the parametric probability distribution of the 

posterior and as explored in [12] is denoted by, 

𝑥0:𝑡
[𝑚]

= 𝑥0
[𝑚], 𝑥1

[𝑚], … . , 𝑥𝑡
[𝑚] . 2.20 
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This algorithm can be easily modified by adding 𝑥𝑡
[𝑚]

 to 𝑥0:𝑡−1
[𝑚]

. The posterior is 

calculated over all state sequences as opposed to the current state sequence: 

𝑏𝑒𝑙(𝑥0:𝑡) = 𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) 2.21 

where, 𝑢𝑡 is the control variable and 𝑧𝑡 is the measurement. Based on the Bayes 

filter algorithm, 

𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥0:𝑡, 𝑧1:𝑡−1, 𝑢1:𝑡)𝑝(𝑥0:𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) 2.22 

based on the Markov assumption, 

= 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥0:𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) 2.23 

= 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡) 2.24 

𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) . 2.25 

Here, the constant 𝜂 is the normalization factor. Maintaining all states in the 

posterior leads to the absence of integral signs. Assuming the particle set at time 

t-1 is distributed according to 𝑏𝑒𝑙(𝑥0:𝑡−1), for the mth particle in the set 𝑥0:𝑡−1
[𝑚]

, 

the sample 𝑥𝑡
[𝑚]

 is generated from the proposal distribution: 

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑏𝑒𝑙(𝑥0:𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) 2.26 

with 

𝑤𝑡
𝑚 =

𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
2.27 

=
𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1)

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1)
2.28 

= 𝜂𝑝(𝑧𝑡|𝑥𝑡) . 2.29 

By resampling particles with probability proportional to importance weight 𝑤𝑡
𝑚, 

the resulting particles are distributed according to, 
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 𝜂𝑤𝑡
𝑚𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) =  𝑏𝑒𝑙(𝑥0:𝑡) . 2.30 

If 𝑥0:𝑡
[𝑚]

 is distributed according to 𝑏𝑒𝑙(𝑥0:𝑡), then 𝑥𝑡
[𝑚]

 is distributed according to 

𝑏𝑒𝑙(𝑥𝑡). 

[12] discusses some practical considerations in the PF algorithm: 

• variability due to random sampling, 

• variation is amplified by resampling, 

• choosing a set of samples from a distribution introduces sampling bias, 

• exponential computation cost, and 

• absence of particles in the correct state vicinity. 

The RBPF method as introduced in [14] reduces computation effort as SLAM can 

potentially have millions of dimensions to make it more suitable for the SLAM problem. 

Using [15] and [16], the gmapping approach uses a PF in which each particle carries an 

individual map of the environment. To reduce the number of particles, a selective 

resampling strategy based on the effective sample size is applied considering the 

movement of the robot and the most recent observation.  

2.2.3 Karto SLAM 

Karto SLAM uses a graph-based SLAM approach like the one shown in Figure 

8. 

 

Figure 8 Typical graph-based SLAM system [17]. 

The front-end of a graph-based SLAM deals with sensor data whereas the backend is 

where the robot poses are corrected for an efficient environment map. As discussed in 

[17], Karto SLAM uses the Levenberg-Marquardt (LM) algorithm as a framework to 
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optimise a set of poses, c which is a collection of the robot’s translation ‘t’ and angle ‘θ’ 

as given by, 

𝑐𝑖 = [𝑡𝑖, 𝜃𝑖] = [𝑥𝑖 , 𝑦𝑖, 𝜃𝑖] 2.31 

and constraints, which are the measurement of a node, 𝑐𝑖, from another, 𝑐𝑗. Their 

offset, 

ℎ(𝑐𝑖, 𝑐𝑗) ≡ {
𝑅𝑖
𝑇(𝑡𝑗 − 𝑡𝑖)

𝜃𝑗 − 𝜃𝑖
2.32 

is the measurement equation, where 𝑅𝑖 is given by the 2×2 rotation matrix of 𝜃𝑖. 

The error associated with each constraint is, 

𝑒𝑖𝑗 ≡ 𝑧𝑖̅𝑗 − ℎ(𝑐𝑖, 𝑐𝑗) 2.33 

and the total error is, 

𝜒2(𝒄, 𝒑) ≡∑𝑒𝑖𝑗
𝑇Λ𝑖𝑗𝑒𝑖𝑗

𝑖𝑗

2.34 

where, 𝑧𝑖̅𝑗 is the measured offset between 𝑐𝑖 and 𝑐𝑗 in 𝑐𝑖’s frame and Λ𝑖𝑗 is the 

precision matrix. Each iteration of the LM algorithm, 

• sets up the linear system by assigning the values of c to vector x and 

error function to vector e, 

Λ ≡ [
Λ𝑎𝑏

⋱
Λ𝑚𝑛

] 2.35 

𝐉 ≡
𝜕𝑒

𝜕𝑥
2.36 

𝐇 ≡ 𝐉𝑇Λ𝐉 2.37 

• decomposes H,  

(𝐇 + 𝜆 𝑑𝑖𝑎𝑔𝐇)∆x = 𝐉𝑇Λ𝑒 2.38 
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where λ is a small multiplier and J is the Jacobian of the measurement 

function h given by, 

                      
𝜕𝑒𝑖𝑗

𝜕𝑡𝑖
≡ [−𝑅𝑖

𝑇

0 0
]                  

𝜕𝑒𝑖𝑗

𝜕𝜃𝑖
≡ [
𝜕𝑅𝑖

𝑇

𝜕𝜃𝑖
⁄ (𝑡𝑗 − 𝑡𝑖)

−1
]        

𝜕𝑒𝑖𝑗

𝜕𝑡𝑗
≡ [ 𝑅𝑖

𝑇

0 0
]                  

𝜕𝑒𝑖𝑗

𝜕𝜃𝑖
≡ [0 0 1]𝑇 2.39

 

For the Jacobian 𝐽𝑖 of 𝑒𝑖𝑗 with respect to 𝑐𝑖, H is formed by adding 4 

components for each measurement, 

⋱
𝐽𝑖
𝑇Λ𝑖𝑗𝐽𝑖 … 𝐽𝑖

𝑇Λ𝑖𝑗𝐽𝑗
⋮ ⋱ ⋮

𝐽𝑗
𝑇Λ𝑖𝑗𝐽𝑖 … 𝐽𝑗

𝑇Λ𝑖𝑗𝐽𝑗

⋱

2.40 

• and computes ∆x by solving the linear equation. Adding this increment 

to the current value yields, 

𝑡𝑖 = 𝑡𝑖 + ∆𝑡𝑖          𝜃𝑖 = 𝜃𝑖 + ∆𝜃𝑖 2.41 

Karto SLAM applies a simple Bayesian filter as explored in [18] for scan matching 

and recognizing previously visited locations, also known as loop closure, which then 

removes irrelevant and poor-quality observations. 

2.2.4 Real-Time Appearance-Based Mapping 

RTAB-Map, as introduced in [19], is a graph-based SLAM approach which uses a 

discrete Bayesian filter to track its appearance-based loop closure detection with an 

efficient memory management approach [20] shown in Figure 9. Appearance based 

methods use data collected from vision sensors for localization and building a map 

of the environment.  
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Figure 9 RTAB-Map Memory management model [20]. 

As discussed in [19], [20] and [21], RTAB-Map uses SIFT/SURF local feature 

descriptor to extract information from images captured by the vision sensor. The 

discrete Bayesian filter tracks loop closures by calculating the probability that the 

current location has already been visited using: 

𝒑(𝑆𝑡|𝐿
𝑡) = 𝜂𝒑(𝐿𝑡|𝑆𝑡)⏟      

Observation

∑ 𝒑(𝑆𝑡|𝑆𝑡−1 = 𝑖)⏟        
Transition

𝑡𝑛

𝑖=−1

𝑝(𝑆𝑡−1 = 𝑖|𝐿
𝑡−1)

⏟                      
Belief

 . 2.38 

Here, 𝑆𝑡 is the variable that represents the loop closure state, 𝐿𝑡 is the current 

location, 𝑡𝑛 is the time index for the newest location, η is used for normalization and 

𝐿𝑡 is the set of all observed locations.  The observation model is estimated using: 

𝑝(𝐿𝑡|𝑆𝑡 = 𝑗) = 𝔏(𝑆𝑡 = 𝑗|𝐿𝑡) = {

𝑠𝑗 − 𝜎

𝜇
, if 𝑠𝑗 ≥ 𝜇 + 𝜎

1, otherwise
2.39 

where, 𝔏(𝑆𝑡|𝐿𝑡) is the likelihood function, 𝑠𝑗 is the score with σ standard 

deviation and μ mean. 
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As the robot ventures deeper in the environment the number of images to compare will 

increase making loop closure detection slower. To make the process more effective and 

real-time, RTAB-Map’s memory management model uses only a certain number of 

locations, stored in its working memory, for loop closure detection and rest of the 

locations are stored in its long-term memory. This means that only the current map of 

the environment is built locally while the global map is updated online. Loop closure 

detection, like in all SLAM algorithms, helps optimise the map built. RTAB-Map will 

be discussed further in chapter 5. 

2.3 PARAMETER OPTIMISATION USING GA 

In the packages discussed above, multiple parameters, like the ones mentioned in Table 

1, with a range of values are used to produce effective maps. For example, in Karto 

SLAM the radius of search area and the number of consecutive nodes can be used to 

finetune the resultant map. The values for these parameters are set using prior 

experience and knowledge in the field. Using a GA to get optimal values for these 

parameters not only allows testing various combinations of parameter values, but also 

most of these tests can be run in simulation. This means real-time testing can be limited 

to the optimal set of values which makes it ideal when physical resources are limited or 

available for a limited amount of time. 

Table 1 Partial list of parameters used in different SLAM packages. 

Hector SLAM GMapping Karto SLAM RTAB-Map 

~map_update_distance

_thresh 
~throttle_scans ~throttle_scans ~rgbd_cameras 

~map_update_angle_th

resh 

~map_update_i

nterval 

~map_update_inter

val 
~queue_size 

~laser_min_dist ~maxUrange 
~minimum_travel_

distance 
~map_filter_angle 

~laser_max_dist  ~iterations 
~minimum_travel_

heading 
~iterations 
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Hector SLAM GMapping Karto SLAM RTAB-Map 

~scan_subscriber_queu

e_size 
~linearUpdate ~scan_buffer_size ~Vis/MinInliers 

~map_resolution 
~angularUpdat

e 

~loop_search_maxi

mum_distance 

~Mem/RehearsalSi

milarity 

~map_size ~particles 
~loop_search_space

_dimension 
~Kp/MaxDepth 

 

  



20 
 

CHAPTER 3 QBOT2 SENSORS AND THEIR 

APPLICATIONS 

This chapter introduces the robot used for this research and briefly discusses its various 

sensors. This setup uses a Quanser QBot2, shown in Figure 10, which is an AGV that is 

mounted on a Kobuki mobile robot platform. Table 2 lists the main specifications of the 

robot.  

Table 2 QBot2 specifications [22]. 

 

Robots use a wide variety of sensors to obtain information about their surroundings. 

These can be classified into sensors that sense a robot’s internal measurements, i.e., 

proprioceptive and sensors that obtain data from the environment, i.e., exteroceptive; 

sensors that measure surrounding energy, i.e., passive and sensors that interact with the 

territory, i.e., active [1]. The QBot2 has wheel encoders, cliff sensors, bumper sensors, 

wheel drop sensors, overcurrent sensors, a 3-axis gyroscope, a battery voltage sensor 

and a Microsoft Kinect RGB camera and depth sensor [22]. Here, the wheel encoders, 

gyroscope and battery voltage sensors are examples of proprioceptive whereas the 

bumper sensors and the Kinect sensor are exteroceptive. Additionally, bumper sensors, 

gyroscope and Kinect sensor are passive whereas wheel encoders and cliff sensors are 

active sensors. As mentioned in [22], the QBot2 contains three digital bumper sensors, 

left, right and centre, located on the front frame of the Kobuki base. They return binary 

outputs indicating contact or collision based on whether the frame is compressed or not. 
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Figure 10 The Quanser QBot2 [22]. 

There are three analog and digital cliff sensors, left, right and centre, located below the 

Kobuki frame, that detect cliffs by identifying changes in the distance between the 

robot base and the floor. The two, left and right, wheel drop sensors identify whether a 

wheel has dropped or not, enabling the robot to perceive uneven ground. 

3.1 WHEEL ENCODERS 

The Kobuki robot platform is driven by two differential drive wheels with inbuilt high 

accuracy wheel encoders that sense 2578.33 ticks/wheel revolution and 11.7 ticks/mm. 

Wheel encoders are proprioceptive sensors used to estimate robot position over time 

and this process is known as Odometry. The odometry data provides an approximate 

position of the robot to serve as the initial estimate of where the robot might be in the 

SLAM process. Inaccuracies due to drift and slippage make motion estimation prone 

to error. For the QBot2, a differential drive robot, the motion can be modelled using 

forward kinematics.  

Kinematics is the study of the mathematics of motion without considering the 

forces that affect the motion [23]. The forward kinematics of a differential drive 



22 
 

robot can be derived as discussed in [24] and [1]. For a robot moving with speed 

V and angular velocity ω, let 𝜙r and 𝜙l be the rotational velocity of right and left 

motors respectively, when sampling at an interval of Δt. The QBot2 has a wheel 

radius r of 0.035(m) and half wheel distance l of 0.235/2(m). In Figure 11, I is 

used to define arbitrary inertial basis, therefore, XI, YI axes are the axes for the 

global reference frame. 

𝜉𝐼 = [
𝑥
𝑦
𝜃
] 3.1 

 

Figure 11  Posture definition in the global reference frame and the robot local 

reference frame for a wheeled differential drive robot [24]. 

where, θ is the robot’s heading angle. The robot’s reference frame/local 

reference frame R is, 

𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 3.2 

Using this to map motion from global to local reference frame, 

𝜉𝑅̇ = 𝑅(𝜃)𝜉𝐼̇ 3.3 
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= [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] [

𝑥̇
𝑦̇

𝜃̇

] 3.4 

= [

𝑥̇𝑐𝑜𝑠𝜃 + 𝑦̇𝑠𝑖𝑛𝜃
−𝑥̇𝑠𝑖𝑛𝜃 + 𝑦̇𝑐𝑜𝑠𝜃

𝜃̇

] . 3.5 

From the forward kinematic model, the overall speed of robot in the global 

reference frame, 

𝜉̇𝐼 = [

𝑥̇
𝑦̇

𝜃̇

] = 𝑓(𝑙, 𝑟, 𝜃, 𝜙̇𝑟 , 𝜙̇𝑙) 3.6 

𝜉̇𝐼 = 𝑅(𝜃)
−1𝜉̇𝑅 . 3.7 

When the robot moves forward along the goal, if one wheel spins while the 

other is stationary, since P is halfway between the 2 wheels, the robot will move 

instantaneously with half the speed. 

𝑉𝑟 =
𝑟𝜙̇𝑟
2

3.8 

𝑉𝑙 =
𝑟𝜙̇𝑙
2
 . 3.9 

Consider, the forward spin of right wheel results in anti-clockwise rotation, 

𝜔𝑟 =
𝑟𝜙̇𝑟
2𝑙

3.10 

because the wheel is instantaneously moving along the arc of a circle with 

radius 2l. For the left wheel, forward spin results in clockwise rotation, 

𝜔𝑙 =
𝑟𝜙̇𝑙
2𝑙
 . 3.11 

The kinematic model for a differential drive robot, 
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𝜉̇𝐼 = 𝑅(𝜃)
−1

[
 
 
 
 
𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2

0
𝑟𝜙̇𝑟
2𝑙
−
𝑟𝜙̇𝑙
2𝑙 ]
 
 
 
 

3.12 

𝑅(𝜃)−1 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 3.13 

assuming robot moves towards goal along θ. 

Therefore, 

𝜉̇𝐼 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

]

[
 
 
 
 
𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2

0
𝑟𝜙̇𝑟
2𝑙
−
𝑟𝜙̇𝑙
2𝑙 ]
 
 
 
 

3.14 

𝜉̇𝐼 =

[
 
 
 
 
 
 𝑐𝑜𝑠𝜃 (

𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2
)

𝑠𝑖𝑛𝜃 (
𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2
)

𝑟𝜙̇𝑟
2𝑙
−
𝑟𝜙̇𝑙
2𝑙 ]

 
 
 
 
 
 

= [

𝑥̇
𝑦̇

𝜃̇

] . 3.15 

This approach to kinematic modeling provides information about the motion of the 

robot given its component wheel speeds. 

3.2 GYROSCOPE 

Gyroscopes are passive proprioceptive heading sensors used to determine the robot’s 

orientation and inclination. They measure angular acceleration and therefore can be 

used to measure the robot’s orientation in relation to a fixed reference frame [23]. The 

QBot2 uses a L3G4200D 3-axis digital gyroscope manufactured by STMicroelectronics 

[25]. It measures in the ±250 degrees/s range where the Yaw axis (angular rotation 

along the Z-axis) is factory calibrated within the range of ±20 deg/s to ±100 deg/s. It is 
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also relatively immune to shocks and vibrations [25]. However, gyroscopes accumulate 

small measurement errors over time resulting in gradual loss of accuracy. 

3.3 VISUAL SENSORS 

Recently visual sensors have grown in popularity in robotic applications. A visual 

sensor or camera captures an image of the surrounding space and this digital image is 

processed in order to obtain information like depth, motion, colour and feature [1]. 

Digital cameras capture light and process it into digital images. Placing red, green or 

blue filters over the images allows them to measure light intensity of each colour and 

produce a colour image. Ranging is an important aspect in sensing as it provides 

information vital to collision avoidance. Generally, cameras measure scene structure as 

opposed to the distance between the object and the robot in lasers and sonars [23]. 

Depth sensors in cameras make ranging and recreating 3D objects from the 2D images 

easier.  

3.3.1 Microsoft Kinect Sensor 

 

Figure 12 Xbox 360 Kinect sensor [26]. 

The QBot2 comes equipped with a Microsoft Kinect sensor, as shown in Figure 12, that 

includes an RGB camera for capturing image data as well as a 3D depth sensor that 

captures 11-bit depth data at the resolution of 680 × 480 and several frame-rates [22]. 

The depth sensor consists of a monochrome infrared camera and an infrared projector 

which evaluates distance from each point on an object based on the time of flight of 

infrared light. As presented in [22], the depth sensor has a range of 0.5 m to 6 m. Once 

it is mounted on the QBot2, the Kinect sensor can be tilted up and down whenever 

needed as shown in Figure 13. The QBot2 Kinect sensor is optimal for indoor 
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applications and in locations without direct sunlight due to the type of infrared sensor 

used. 

 

Figure 13 QBot2 with tilted Kinect sensor [22]. 

3.3.2 Visual Odometry 

The process of determining robot position using a sequence of images is called Visual 

Odometry [27]. It can be used for map building and obstacle avoidance even in spaces 

where little or no a-priori knowledge is available. Visual Odometry was successfully 

implemented for the first time in [28] using monocular (one camera) and stereo (two 

cameras) setups. When using two cameras the measurements can be obtained directly in 

the global reference frame. However, when using a single camera, the global reference 

frame needs to be determined in collusion with other sensors or from a-priori 

knowledge of objects and surroundings [1]. In [28], it was observed that the stereo 

vision scheme works better when compared to the monocular scheme as it can operate 

efficiently even without camera motion. Like wheel encoders based odometry, visual 

odometry also inevitably suffers from motion drift over time, however, this can be 

overcome when the robot revisits an area. When compared to other sensors, vision 

sensors are capable of place or location recognition which is like loop closure, 

commonly discussed in the SLAM problem. 
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3.3.3 Feature Detection 

When sensors, including cameras, detect objects, they identify either appearance or 

features. Most common odometry and SLAM techniques use feature detection as 

opposed to appearance detection since detecting features is faster and more accurate 

than detecting appearances [29]. The two feature detection techniques reviewed in this 

section are Scale Invariant Feature Transform or SIFT and Speeded Up Robust Features 

or SURF. 

SIFT was introduced in [30] as a method to generate image features that transform an 

image into a large collection of local feature vectors, invariant to translation, rotation 

and scaling and partially invariant to illumination changes and 3D projection. As 

explored in [31] there are four major stages in generating image features.  

Scale space extrema detection: 

Identifying locations and scales that can be repeatedly assigned under different views of 

the same object enables Keypoint detection. The scale space of an image is defined as 

the function: 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) 3.16 

where, * is the convolution operation in x and y and I(x, y) is the input image. The 

variable-scale Gaussian is given by: 

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒−(𝑥

2+𝑦2) 2𝜎2⁄ . 3.17 

The difference between two nearby scales, separated by a constant multiplicative factor 

k, enables efficient detection of stable keypoint locations in scale space, 

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦)

= 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎). 3.18
 

The values of the difference-of-Gaussian function and the scale-normalized Laplacian 

of Gaussian, 𝜎2∇2𝐺, are approximately close to each other. Here 𝜎2 provides true scale 

invariance. From the heat diffusion equation: 



28 
 

𝜕𝐺

𝜕𝜎
= 𝜎∇2𝐺. 3.19 

Therefore, 

𝜎∇2𝐺 =
𝜕𝐺

𝜕𝜎
≈
𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)

𝑘𝜎 − 𝜎
3.20 

and, 

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎) ≈ (𝑘 − 1)𝜎2∇2𝐺. 3.21 

This shows that the difference-of Gaussian is already a scale-invariant Laplacian. 

Keypoint localization: 

Once a keypoint has been identified, location, scale and ratio of principal curvatures 

need to be determined to reject low contrast points or points poorly localized on 

edges. For the sample point to be the origin, the Taylor expansion of scale space 

function, D(x, y, σ), is used: 

𝐷(𝑥) = 𝐷 +
𝜕𝐷

𝜕𝐱

𝑇

𝐱 +
1

2
𝐱𝑇
𝜕2𝐷

𝜕𝐱2
𝐱 3.22 

where, x = (𝑥, 𝑦, 𝜎)𝑇 is offset from the sample point. The local extremum is, 

𝐱̂ = −
𝜕2𝐷

𝜕𝐱2

−1
𝜕𝐷

𝜕𝐱
 . 3.23 

For rejecting unstable extrema, 

𝐷(𝐱̂) = 𝐷 +
𝜕𝐷

𝜕𝐱

𝑇

𝐱̂ 3.24 

is obtained by substituting equation 3.23 into equation 3.22. 

Poorly determined locations along edges need to be eliminated as they are susceptible 

to small noises. The difference-of-Gaussian function will have a large principal 

curvature across the edge but a small perpendicular one, which can be determined by, 

𝐇 = [
𝐷𝑥𝑥 𝐷𝑥𝑦
𝐷𝑥𝑦 𝐷𝑦𝑦

] 3.25 
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where, the components of the Hessian matrix H are estimated by the differences 

between the neighbouring sample points. The sum and product of eigenvalues are 

computed from the trace and determinant of H respectively as, 

𝑇𝑟(𝐇) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 = 𝛼 + 𝛽 3.26 

𝐷𝑒𝑡(𝐇) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 − (𝐷𝑥𝑦)
2
= 𝛼𝛽 3.27 

where, α is the largest magnitude eigenvalue and β is the smaller one. The point will 

be discarded for not being an extremum when the determinant is negative.  

𝑇𝑟(𝐇)2

𝐷𝑒𝑡(𝐇)
=
(𝛼 + 𝛽)2

𝛼𝛽
=
(𝑟 + 1)2

𝑟
3.28 

where the ratio r = α/β. The below equation is verified to check if the ratio of principal 

curvatures is below threshold, 

𝑇𝑟(𝐇)2

𝐷𝑒𝑡(𝐇)
<
(𝑟 + 1)2

𝑟
 . 3.29 

Orientation assignment: 

To accomplish image rotation invariance, a consistent orientation is assigned to each 

keypoint. For scale-invariant computations, the keypoint scale is used to select the 

closest scale Gaussian smoothed image, L. Using pixel differences, the gradient 

magnitude is precomputed as, 

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))
2

3.30 

and the orientation as, 

𝜃(𝑥, 𝑦) = tan−1 (
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
) 3.31 

where L(x,y) is the image sample. 
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Keypoint descriptor: 

In the above stages, a keypoint has been assigned an image location, scale and 

orientation. Finally, a highly distinctive and invariant descriptor for the local image 

region is computed that makes the keypoint immune to light and 3D viewpoint changes 

as detailed in [31]. 

SURF was introduced in [32] as a faster technique for feature detection that balances 

reducing dimensions and complexity with maintaining distinction. SURF constitutes a 

detector and a descriptor that draws heavily from SIFT. The Hessian matrix-based 

detector uses a basic approximation, similar to the difference-of -Gaussian function in 

SIFT, that relies on integral images for image convolutions to reduce the computation 

time. The SIFT descriptor is distinctive and relatively fast; however, high 

dimensionality makes the matching step inefficient. Therefore, the SURF descriptor 

describes a distribution of Haar-wavelet responses within the neighbourhood of interest 

point and exploits integral images for speed. The dimensions are restricted to 64 and 

based on the sign of the Laplacian a new indexing step is presented to reduce feature 

computation and matching time and increase robustness. A further improvement 

suggested to SURF is Upright-SURF, which is suited for applications with horizontally 

positioned cameras, is even faster to compute. 

3.4 ROBOT SIMULATION 

A TurtleBot2 as shown in Figure 14, uses a Kinect 360 RGB-D sensor like the QBot2, 

which means their cameras have the same resolutions and depth sensors. Because both 

robots use a Kobuki base, same range of sensors like the cliff sensor, bumper sensor, 

wheel encoders and gyroscope, and a similar payload of approximately 4.5 kg to 5 kg, 

the TurtleBot2 robot is a good stand-in for the QBot2. Therefore, for easier 

implementation we use the pre-existing TurtleBot2 ROS packages instead of creating 

new simulation packages for a QBot2. The only minor differences are that the QBot2 

uses a Raspberry Pi whereas the TurtleBot2 uses Intel Core i3-4010U as their onboard 

computers and the TurtleBot2 is taller than the QBot2.. 
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Figure 14 TurtleBot2, TurtleBot 2e and TurtleBot 2i [33]. 
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CHAPTER 4 ROS SETUP 

This chapter discusses the step by step instructions and the commands for the installation 

and setup of 

• Oracle VirtualBox VM 

• ROS- Installation and Programming 

• ROS packages for simulation experiments 

• ROS packages for QBot2 experiments. 

4.1 CREATING VIRTUALBOX VM AND ROS INSTALLATION 

To setup ROS for the purpose of the simulation portion of this research, multiple Oracle 

VirtualBox VMs were created using the following steps: 

• Oracle VM VirtualBox version 6.1 was downloaded and installed using 

instructions from [34]. Ubuntu 16.04 LTS was downloaded from [35]. 

• A new VM was created in the VirtualBox with 1 core CPU, 2 GB RAM and 30 

GB fixed hard disk. As detailed in [36] the VM was powered on and Ubuntu 

16.04 LTS was installed as the operating system on the VM. This step was 

repeated to created multiple VMs so the different experiments could be 

conducted simultaneously. 

• The Kinetic Kame version of ROS was installed on these VMs along with its 

dependencies and Ubuntu updates by following the instructions from table 3. 

Kinetic Kame is the recommended ROS version for Ubuntu 16.04 LTS. It has 

extended support till 2021 and with comprehensive documentation available. 

Table 3 ROS Kinetic Installation Instructions [10]. 

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > 

/etc/apt/sources.list.d/ros-latest.list' 

$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key 

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654 

$ sudo apt-get update 
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$ sudo apt-get install ros-kinetic-desktop-full 

$ 

$ 

$ 

 

$ 

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc 

source ~/.bashrc 

sudo apt install python-rosdep python-rosinstall python-rosinstall-generator 

python-wstool build-essential 

sudo apt install python-rosdep 

$ sudo rosdep init 

$ rosdep update 

4.2 PROGRAMMING WITH ROS 

Before programming in ROS, a workspace needs to be created. The folder called ROS 

workspace or catkin workspace is where new ROS packages are created, existing 

packages are installed, and new executables are built and created [36]. catkin is a set of 

tools that ROS uses to generate programs, libraries, scripts and interfaces that other code 

can use [1]. To create a catkin workspace use [10]: 

$ mkdir -p ~/catkin_ws/src 

$ cd ~/catkin_ws/ 

$ catkin_make 

A ROS package is a combination of code, data and documentation [7]. Instead of having 

to change the source directory to the catkin workspace created above, every time a new 

ROS package is created or an existing ROS package is edited, source the catkin_ws and 

overlay it on your environment using: 

$ source devel/setup.bash 

One useful ROS package for programming robots is the tf package where tf stands for 

transform. A robotic system typically has many 3D coordinate frames such as a world 

frame, base frame, head frame, etc., that change over time as shown in Figure 15. The 

RGB cylinders in the figure represent the X, Y, and Z axes of the coordinate frames. tf 

keeps track of all these frames and maintains the relationship between coordinate frames 

in a tree structure buffered in time [10]. 
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Figure 15 The different 3D coordinate frames of Willow Garage’s PR2 robot [37]. 

The tf library was designed to provide a standard way to keep track of coordinate frames 

and transform data from one system to another, in such a way that individual component 

users can be confident that the data is in the coordinate frame that they want, without 

requiring knowledge of all the coordinate frames in the system [37]. 

4.3 ROS PACKAGES USED 

4.3.1 Gazebo 

Gazebo is a tool in which 3D environments along with different types of robots can be 

simulated with a high degree of precision [38]. The gazebo_ros package provides an 

interface between Gazebo and ROS. It incorporates many, ready to work, simulated 

sensors and robots and allows usage of existing standard ROS plugins for Gazebo. Being 

able to control the world and the robot with command-line interface makes it the ideal 

choice for this research. Currently Gazebo version 11.0 is available, however, ROS 

kinetic supports Gazebo7 and comes preinstalled with Gazebo 7.0. For seamless 

operation Gazebo7 needs to be updated to the latest version, which is currently version 

7.16, using the commands in Table 4.  
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Table 4 Commands to update Gazebo from version 7.0 to 7.16. 

 $ sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable 

`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list' 

 $ wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add - 

 $ sudo apt-get update && sudo apt-get install gazebo7 -y 

4.3.2 Turtlebot 

Install the ROS packages required to use TurtleBot2 with Gazebo using the following 

commands [33]: 

$ sudo apt-get install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps ros-kinetic-

turtlebot-interactions ros-kinetic-turtlebot-simulator ros-kinetic-kobuki-ftdi ros-kinetic-

ar-track-alvar-msgs 

To be able to access the code and make changes to the Turtlebot package, it is built from 

source following the instructions in Table 5.  

Table 5 Commands to build Turtlebot package from source in ROS Kinetic [39]. 

 $ 

 $ 

 

 $  

 $  

 $ 

mkdir ~/rocon && cd ~/rocon 

wstool init -j5 src https://raw.github.com/robotics-in-

concert/rocon/release/indigo/rocon.rosinstall 

source /opt/ros/indigo/setup.bash 

rosdep install --from-paths src -i -y 

catkin_make 

 $ 

 $ 

 $ 

 

 

 $ 

mkdir ~/kobuki 

cd ~/kobuki 

wstool init src -j5 

https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/kobuki.rosi

nstall 

source ~/rocon/devel/setup.bash 

https://raw.github.com/robotics-in-concert/rocon/release/indigo/rocon.rosinstall
https://raw.github.com/robotics-in-concert/rocon/release/indigo/rocon.rosinstall
https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/kobuki.rosinstall
https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/kobuki.rosinstall
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 $ 

 $ 

rosdep install --from-paths src -i -y 

catkin_make 

 $ 

 $ 

 $ 

 

 

 $ 

 $ 

 $ 

mkdir ~/turtlebot 

cd ~/turtlebot 

wstool init src -j5 

https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/turtlebot.ro

sinstall  

source ~/kobuki/devel/setup.bash 

rosdep install --from-paths src -i -y 

catkin_make 

The rocon, kobuki and turtlebot workspaces created using the commands from the above 

table are chained and source information from each other. 

4.3.3 rtabmap and rtabmap_ros 

The rtabmap and rtabmap_ros packages [40] build a step-by-step map of the 

environment that is then optimized by loop closure detection, as illustrated by Figure 16. 

By default, the maps are stored in "~/.ros/rtabmap.db". The rtabmap_ros package 

contains the parameters for ROS and RTAB-Map. The ROS parameters connect the 

RTAB-Map library, which constitutes RTAB-Map parameters, with ROS. Like the 

turtlebot package in the previous section, to be able to access the code and make changes 

to the rtabmap_ros package, it is built from source as shown in Table 6. To install the 

dependencies for these packages, use the following commands: 

$ sudo apt-get install ros-kinetic-rtabmap ros-kinetic-rtabmap-ros 

$ sudo apt-get remove ros-kinetic-rtabmap ros-kinetic-rtabmap-ros 

Table 6 Commands to build rtabmap and rtabmap_ros packages from source in 

ROS Kinetic [40]. 

 $ 

 $ 

cd ~ 

git clone https://github.com/introlab/rtabmap.git rtabmap 

https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/turtlebot.rosinstall
https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/turtlebot.rosinstall
https://github.com/introlab/rtabmap.git
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 $ 

 $ 

 $ 

 $ 

cd rtabmap/build 

cmake .. 

make 

sudo make install 

 $ 

 $ 

 $ 

cd ~/catkin_ws 

git clone https://github.com/introlab/rtabmap_ros.git src/rtabmap_ros 

catkin_make -j1 

4.3.4 rviz 

RViz is ROS’s 3D visualising tool. This is where the robot’s movements and map 

building process can be observed in real time. To transform data from the robot’s local 

reference frame to the global reference, rviz uses the tf package. The command [41] used 

to install rviz is: 

$ sudo apt-get install ros-kinetic-rviz 

It also allows users to interactively set intermediate goals and exploration boundaries for 

the robot using the 2D Nav goal setting. 

4.3.5 explore_lite 

To automate the robot movement, instead of having to continuously interact with the 

robot using the keyboard or a joystick as shown in section 4.4, we use the explore_lite 

ROS package. It is a frontier-based approach for autonomous exploration [42], where 

based on the information of the world obtained via images from Kinect sensor the 

algorithm processes intermediate goals for the robot. As detailed in [42], a robot will start 

at the origin and will look for frontiers, i.e., boundaries between unknown and 

unoccupied spaces in the environment. Once frontiers are detected, the nearest possible 

frontier will be set as the intermediate goal for the robot. For path planning, this package 

uses a depth first search to find the shortest path from the robot’s current location to its 

intermediate goal. Once a frontier has been visited, it is added to a list of known 

locations. explore_lite allows the robot to search its world greedily until no new frontier 

https://github.com/introlab/rtabmap_ros.git
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is detected. As shown in Figure 16, the blue arrows indicate unexplored areas or frontiers 

in the environment. The explore_lite package [43] is more cost efficient than other 

similar packages as it obtains map information from the rtabmap_ros package and 

odometry information from the turtlebot package. Using this data, it sends commands to 

the robot base for movement, so it does not need to create its own map. To install 

explore_lite the command below is used: 

$ sudo apt install ros-kinetic-multirobot-map-merge ros-kinetic-explore-lite 

 

Figure 16 Unexplored frontiers detected by explore_lite package [43]. 

4.4 PACKAGES FOR QBOT2 TESTING 

To setup the platform to test QBot2 robot, an Ubuntu laptop with 64-bit 16.04 LTS OS, 

8.00 GB RAM, 256 GB SSD storage, Intel Core i5 7200 2.50 GHz to 2.71 GHz 

processor was used. Following the instructions from Table 2 ROS Kinetic Kame was 

installed and from section 4.2 a catkin_ws was created. Following the instructions from 

tables 6 and 7 the turtlebot, rtabmap and rtabmap_ros packages were built from source. 

The explore_lite package was also installed to enable autonomous navigation with the 

QBot2. 
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4.4.1 Kinect And Kobuki Software Installation 

To access the XBOX 360 Kinect sensor in Ubuntu, freenect_stack is built from source 

as shown in table 7. This acts as a ROS interface to Microsoft Kinect using the 

libfreenect library. It contains the freenect_camera and freenect_launch packages which 

in turn contain the camera drivers and launch files, respectively. 

 

Figure 17 The Kobuki mobile robot platform [22]. 

Table 7 Instructions for Freenect Installation in ROS Kinetic [44]. 

$ cd ~/catkin_ws/src 

$ git clone https://github.com/ros-drivers/freenect_stack/tree/master 

$ cd .. 

$ catkin_make -j1 

The QBot2 is seated on a Kobuki base like the one shown in Figure 17, therefore 

Kobuki ROS packages need to be installed in the ubuntu laptop for connection to the 

QBot2 using a USB A-B cable. Table 8 contains the list of commands for Kobuki 

installation and controlling the QBot2 using the laptop keyboard. 
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Table 8 Instructions for Kobuki Installation in ROS Kinetic [39]. 

$ sudo apt-get install ros-kinetic-kobuki ros-kinetic-kobuki-core 

$ sudo usermod -a -G dialout $USER 

$ rosrun kobuki_ftdi create_udev_rules 

 # Insert Kobuki’s USB cable and open a new shell 

$ . /opt/ros/kinetic/setup.bash 

$ roslaunch kobuki_node minimal.launch --screen 

 # In a second shell 

$ . /opt/ros/kinetic/setup.bash 

$ roslaunch kobuki_keyop keyop.launch --screen 

4.4.2 Testing Connections and Sensors 

In preparation for conducting the experiments on QBot2, some basic initial tests were 

performed. The QBot2 was tested in random walker mode B0 to confirm operating 

condition. As discussed in [39], to test the connections and sensors the following 

commands were executed. 

• To check if the bumpers are working, one of the bumpers was tapped: 

$ rostopic echo /mobile_base/events/bumper 

• To check the wheel drop sensors, the QBot2 was lifted and then put down:  

$ rostopic echo /mobile_base/events/wheel_drop 

• To confirm that the QBot2 IMU (Gyroscope) is working and the robot can detect its 

orientation, the robot was turned: 

$ rostopic echo /mobile_base/sensors/imu_data 

• To make the robot move around using the laptop keyboard: 

$ roslaunch kobuki_node minimal.launch --screen 

$ roslaunch kobuki_keyop safe_keyop.launch –screen 

When using safe_keyop command the QBot2 uses the bumpers, cliff and wheel drop 

sensors to ensure safe operation. 

Furthermore, to test if the RGBD sensor works, connect the USB cable from the camera 

and execute the following command: 
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 $ roslaunch freenect_launch freenect.launch depth_registration:=true 

In the logs ‘Xbox NUI Camera(2ae) from Microsoft’ should show up as a device, in 

another terminal execute: 

$ roslaunch rtabmap_ros rtabmap.launch rtabmap_args:="--delete_db_on_start" 

The RTAB-Map application should open-up with a window displaying the camera 

output.
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CHAPTER 5 RTAB-MAP AND GENETIC ALGORITHM 

In this chapter, the RTAB-Map package and the parameters chosen for optimisation are 

discussed. Also, Genetic Algorithm is introduced along with a glimpse of the first GA 

SLAM and the MOGA. As the proposed approach employs a MOGA to optimise 

RTAB-Map parameters so that the map generated as a result is more efficient and truer 

to the environment, the objectives used to optimise RTAB-Map parameters are explored 

briefly. 

5.1 RTAB-MAP  

RTAB-Map SLAM package uses inputs from wheel odometry and a RGBD camera to 

create a map. While Hector SLAM and GMapping can be programmed to use the depth 

sensor in the RGBD camera as a fake LIDAR or a fake laser respectively, RTAB-Map 

works with a camera out of the box which makes it ideal to work with a QBot2 robot. 

 

Figure 18 Block diagram of RTAB-Map ROS node [21]. 

As more areas of the environment are explored, the time required to process the data to 

assemble the map also increases. In RTAB-Map to avoid such delays, a memory 

management technique, depicted in Figures 9 and 18, is used where information from 

sensors is obtained by the perception module and sent to the sensory memory. Here the 

image is allotted a signature using the bag-of-words approach and a local map is created. 

[20] and [21] detail how the short-term memory is used to observe similarities between 
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consecutive images and the working memory is used for loop closure detection. To 

make loop closures less time-consuming, locations that are less likely to cause loop 

closures are transferred to the long-term memory. In RTAB-Map the global map is 

assembled online, therefore these local maps are added to its cache and global 

occupancy grid is updated with new poses periodically. The overall process to detect 

loop closures is outlined in Table 9. 

Table 9 RTAB-Map Algorithm [20]. 

 

The rtabmap package provides a vast list of parameters that can be modified for an 

optimal mapping and localization depending on the environment and hardware. For the 

purpose of this research, the following parameters are considered: 

• Mem/RehearsalSimilarity: As explained in [19] Rehearsal is the number of times 

a location has been matched or consecutively viewed. Hence, Rehearsal 

Similarity is the ratio between the number of matched word pairs between the 



44 
 

locations being compared and the total number of words in the signature of the 

location with more words. It sets the threshold which determines if a location is 

unique enough to be kept in the short-term memory or very much like another 

location that they can be merged. The parameter key ‘Mem/’ in its name implies 

that changing this parameter would make changes to the memory of the 

framework. Rehearsal similarity ranges from 0 to 1 and is by default set to 0.3 in 

the rtabmap package. 

•  Kp/MaxDepth: Max Depth filters extracted keypoints by depth. The parameter 

key ‘Kp/’ in its name implies that this parameter is keypoint based. A feature’s 

depth is estimated with depth image, changing the MaxDepth will change how 

loop closures are detected. Depending on the number of loop closures that are 

detected, the robot’s trajectory might be different. MaxDepth can range from 0 to 

infinity and is by default set to 4.0m. 

• Vis/MinInliers: It is the minimum number of feature correspondences required to 

accept a loop closure. The parameter key ‘Vis/’ indicates that this is a Visual 

registration parameter. Decreasing the value of Vis/MinInliers can help to accept 

more localizations whereas increasing it would increase accuracy at the cost of 

less localizations in cases with less matching visual features. By default, it is set 

to 15 in the rtabmap versions 0.19.6 and 0.20.3. 

5.2 GENETIC ALGORITHM 

Genetic Algorithms are optimisation algorithms that mimic natural biological 

evolutionary behaviour and are based on the Darwinian concept of “competition for a 

finite resource”. Genetic programming (GP) is defined as the direct evolution or 

breeding of computer programs for the purpose of intuitive learning [45]. GPs might be 

linear (Linear Genetic Programming), tree (Syntactic Closure) or graph-based GP 

(Neural Network). In a GA, as illustrated in Figure 19, every generation has its own 

fixed population, and a selection operator decides which individuals get to be the 

parents in each generation. A variation operator, like crossover or mutation, is used to 

produce offspring relative to parents. Replacement operator is a type of selection 
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operator that replaces the current population with the children from the previous step, to 

be the population for the next generation. 

 

Figure 19 The Generic Evolutionary Model. 

5.2.1 Selection Operator 

At initialisation of a GA, the population is a random sample of candidate solutions. 

Selection operators define processes for selection and replacement based on Darwin’s 

natural selection. Fitness function is used to select individuals from the population and 

compare them with respect to their fitness. The fitness measure defines the problem the 

algorithm is expected to solve [45].  As candidates are evaluated, information is 

retained regarding where the search effort should be directed, thus biasing the selection 

of individuals, the way children are created and the formulation of a new population. 

Efficiency of the process is dependent on the ability to utilize partial information 

gleaned from the distribution of individuals and their fitness across the search 

landscape. 

5.2.2 Variation Operator 

In genetic algorithm, variation operators direct the creation of new individuals. 

Variation operators can be of three types: Local search – too expensive in practice, 
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Crossover, also known as recombination, and Mutation. In crossover substructures are 

exchanged between two, in some cases more individuals resulting in as many children. 

 

Figure 20 Single-point string Crossover [46]. 

It cannot introduce new genetic material that is not in the gene pool of the population, 

therefore, is exploitative. It assumes that the material necessary for an optimal solution 

exists in the population. Crossover can be single-point or multi-point. Single-point 

crossover is when a point is chosen on the strings and everything after that point is 

crossed over, so that everything in the first string after the point ends up in the second 

string and vice-versa, as shown in Figure 20. Figure 21 shows crossover in tree-based 

GP where subtrees in parents are selected and exchanged and Figure 22 illustrates the 

two-point string crossover used in LGP for recombining two individuals. 

 

Figure 21 Crossover in tree-based GP [45]. 
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A segment is selected in each of the two parents and exchanged. If one of the resulting 

children exceeds the maximum length, crossover is aborted and restarted with 

exchanging equally sized segments [45]. When using crossover, a solution associated 

with one peak in the search space can be replaced by the offspring associated with a 

completely different peak, which can potentially result in the loss of an entire mode of 

search space. 

 

Figure 22 Two-point string Crossover in LGP [45]. 

The mutation operation, on the other hand, randomly replaces a substructure, i.e., a 

waypoint, a sub-path, etc. Mutation Operates on a single individual, the parent, 

producing a single new individual, the child. It generates new individuals whose 

representation (potentially) does not currently exist in the population, i.e., mutation can 

introduce new genetic material, hence it is explorative. Introduction of the new genetic 

material is regulated by controlling the probability of application.  

5.2.3 Objective 

The fitness function and the objective for any GA form its cost function. The objective 

finds the value of x that maximises the function y = f(x) and a problem can be defined 

with a single objective or multiple objectives. When dealing with Single Objective 

Optimisation (SOO) the aim is to find the best or approximately the best solution 

available [47], for example the setups in [48], [49] and [50]. However, most real-world 

problems have multiple objectives, which are sometimes in conflict with each other, 

that require optimisation, like for the construction of a bridge minimum cost and 

maximum safety is needed [47]. These problems with two or more objective functions 
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are called “multi-objective’’, like the setup in [2] that discusses Multi-Objective 

Optimisation (MOO). 

5.3 FIRST GENETIC ALGORITHM SLAM 

Enhancing SLAM using a GA was introduced in [48] to consider SLAM as a global 

optimisation problem, where the setup used a Pioneer Ⅰ mobile robot with a SICK laser 

scanner. Using data from a lone laser sensor the robot perceived the environment and 

built the map illustrated in Figure 23. This odometer trace was divided into segments of 

fixed length and for each segment k, the chromosome contained two floating point 

numbers −𝑑𝑚𝑎𝑥 ≤ ∆𝛿𝑘 ≤ +𝑑𝑚𝑎𝑥 and −𝑎𝑚𝑎𝑥 ≤ ∆𝛼𝑘 ≤ +𝑎𝑚𝑎𝑥, that encode the 

correction factors applied to the distance d, and angle a, measurements respectively. 

The initial population of chromosomes was obtained by randomly initializing the values 

of ∆𝛿𝑘 and ∆𝛼𝑘, which were derived from the robot’s odometry and were assumed to 

lie within a range of ±2% for both the distances and angles. This data was combined 

with the recorded robot laser data to build an occupancy grid [51]. For each cell i in the 

grid, the number of laser readings, 𝑜𝑐𝑐𝑖, to find if a cell was occupied and the number 

of readings, 𝑒𝑚𝑝𝑖, which indicate if a cell was empty were determined to calculate the 

following heuristics: 

𝑀𝐶1 = Σ𝑖min(𝑜𝑐𝑐𝑖, 𝑒𝑚𝑝𝑖) 5.1 

where 𝑀𝐶1 was Map Consistency, and 

𝑀𝐶2 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) × (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 5.2 

where 𝑀𝐶2 was Map Compactness measured in the number of grid cells and 𝑥𝑚𝑎𝑥 and 

𝑥𝑚𝑖𝑛 were the maximum and minimum x-coordinates of the bounding box respectively. 

These heuristics were then combined to create the fitness function, F, for each map: 

𝐹 = 𝑀𝐶1 + 𝑤𝑀𝐶2 5.3 

here, w was the weight that determined the relative importance factor of the two 

heuristics. The population was then sorted according to its fitness and each string, l, 

was assigned an offspring count, 𝑒𝑙, based on its rank.  
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Figure 23 Raw sensor data with the odometry trace and robot laser findings [48]. 

 

Figure 24 Corrected sensor data and the corresponding grid map [48]. 
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Offspring were allocated to every individual according to the integer part of 𝑒𝑙, and the 

strings needed for the rest of the population were obtained by randomly generating new 

offspring for each string with the probability of the fractional part of 𝑒𝑙. Pairs of selected 

strings were then recombined by multipoint crossover, so that the encoded values in the 

two mating strings were completely mixed up in the resulting offspring. Mutation 

replaced very low probability single values within the strings with randomly generated 

values. Figure 24 shows the corrected sensor data obtained from the fitness solution (left) 

and the corresponding grid map (right). 

5.4 MULTI-OBJECTIVE GENETIC ALGORITHM 

MOO is an area of multiple-criteria decision making concerned with mathematical 

optimisation problems involving more than one objective to be optimised 

simultaneously [2]. It might be difficult to optimise a single objective by evolution for 

certain problems because it may present many local optima or suffer from the bootstrap 

problem. 

 

Figure 25 Illustration of Pareto front [52]. 

Hence, it may be preferable to use a multi-objective formulation and find the most 

favourable solution a-posteriori by a trade-off of the objectives from a pareto set. In 

[52], Pareto dominance is defined as:  

A solution 𝑥∗ is said to dominate another solution x, if both conditions 1 and 2 are true:  

1. the solution 𝑥∗ is not worse than x with respect to all objectives.  
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2. the solution 𝑥∗ is strictly better than x with respect to at least one objective.  

In Figure 25, the objectives optimised in the problem are represented by the x- and y-

axes, the larger the x and y values the better the solution for that objective. Here, point 

A dominates B and all other points in the grey area, whereas A and C do not dominate 

each other. The line represents the Pareto set, the set of nondominated solutions, like 

point A. As explored in [2] and [47], using Multi Objective Optimisation: 

i. promotes the evolution of a more varied set of behaviours by exploring multiple 

trade-offs of the objectives to optimise,  

ii. avoids premature convergence to local optima possibly introduced by multi-

component fitness functions, and  

iii. solves the bootstrap problem by exploiting objectives to guide evolution in the 

early phases. 

 

Figure 26 Examples of Pareto based dominance measures [53]. 

In this research three different methods of implementing a MOGA have been explored, 

two Pareto-based dominance measures, namely, dominance rank and dominance count, 

and one by introducing a periodic switch in the objectives. 

• Dominance rank (DR) is the count of the number of other solutions that 

dominate each candidate solution. Figure 26 (a) shows how the lower ranked 



52 
 

solutions occupy the pareto front. This mechanism tends to result in a broad front 

of solutions being maintained. 

• Dominance count (DC) is the count of the number of solutions that each 

candidate solution dominates. Figure 26 (b) illustrates solutions with higher 

count values occupying the pareto front. This method tends to result in a 

concentration of solutions about some focal point. 

• Switching fitness (SF) where a switch is implemented to shift between the 

objectives. Therefore, rather than attempting to optimise multiple objectives 

simultaneously, there is only one objective optimised at any given time [54]. 

5.5 DEFINING THE OBJECTIVES 

To find which set of parameters produces the most accurate map of an environment the 

quality of the map needs to be examined. [55] lays out three metrics to evaluate a SLAM 

algorithm using its map, namely 

• The ratio between the number of occupied cells and the number of free cells, 

𝜂 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑚𝑎𝑝

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑚𝑎𝑝 
 . 5.4 

This measure helps determine whether features, such as walls on a map, are 

blurred, like the one shown in Figure 27, or appear more than once due to a 

failed execution of the algorithm. Lesser value of η indicates that the map is of 

better the quality than a map with higher η. 

 

Figure 27 Map with (a) blurred wall and (b) accurate wall [55]. 
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• The number of corners in a map, 𝑛𝑐. A lower quality map would contain a 

greater number of corners than one of higher quality. For example, consider the 

maps in Figure 28, the map on the right side of the figure has 39 corners when 

compared to the 107 corners in the map on the left.  

• The number of enclosed areas, 𝑛𝑒, represents a similar idea as the number of 

corners. If a map is skewed or there was a failed attempt at loop closure, maps 

can have overlapping features. [56] suggests following borders to detect 

enclosed spaces, hence finding the number of contours in the map could be a 

useful technique to find 𝑛𝑒. When comparing the maps in Figure 28, the map 

on the right side has 27 contours compared to the 55 contours of the one on the 

left.

 

Figure 28 Comparing maps based on corners and enclosed spaces. 

Therefore, it can be concluded that minimizing η, 𝑛𝑐 and 𝑛𝑒 can be considered 

conducive to producing more accurate maps. 
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CHAPTER 6 IMPLEMENTATION AND RESULTS 

This chapter discusses the steps followed in conducting the different sets of experiments, 

the implementation of different MOGA techniques in each set of experiments and the 

results of these experiments. The results from the set of simulation experiments are then 

used to conduct experiments on the QBot2 robot. The experimental setup and results 

from the experiments on the QBot2 are discussed as well. 

 

6.1 AUTONOMOUS EXPLORATION AND MAPPING 

For the scope of this research the robot is tested in a custom environment named 

‘RoboticsLab’, which is modelled after the Robotics lab located at C160 in the C-

Building at Sexton campus, as shown in Figure 29. It is a 6m × 6m room with brick walls 

that are 15 cm thick and 2.5m high and natural sunlight as the light source. There are 

three long wooden tables, a café table, two wooden bookshelves, a wooden case, a 

cardboard box and an extra TurtleBot2 placed in the room. The simulated world is 

created using Gazebo 3D simulator 

 

Figure 29 ‘RoboticsLab’ environment simulated in Gazebo. 
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The TurtleBot2 is initially tested in the ‘RoboticsLab’ world using the RTAB-Map 

package in ROS with the parameters set to their default values, i.e., 

Mem/RehearsalSimilarity = 0.3, Kp/MaxDepth = 4.0 and Vis/MinInliers = 15. The 

explore_lite package is used for autonomous navigation of the TurtleBot2 and the RViz 

package to observe the robot movement and mapping. The commands executed to start 

the exploration and navigation process are listed in Table 10. The TurtleBot2 starts from 

the origin, depicted by the three axes in red, blue, and green, and explores the world from 

there. RViz produces 3D maps like the one shown on the left side of Figure 30 where the 

robot’s field of vision is shown by the coloured highlights in the map. Maps like the one 

shown on the right side of Figure 30 could also be exported using rtabmap-

databaseViewer application GUI; here the blue lines depict the path followed by the 

robot from the origin to its destination and the red lines indicate loop closures. 

Table 10 ROS Commands used in simulation experiments. 

 $   roslaunch turtlebot_gazebo turtlebot_world.launch 

world_file:=/”file_path”/RoboticsLab.world  

 $  roslaunch rtabmap_ros demo_turtlebot_mapping.launch simulation:=true 

 $  roslaunch rtabmap_ros demo_turtlebot_rviz.launch 

 $  roslaunch explore_lite explore.launch 

For our experiments 2D maps are required for comparing the corners, contours and 

occupied grids of these maps and these experiments will be run recursively for multiple 

generations making the use of GUI impractical. Therefore, the rtabmap-database is 

accessed through command-line interface using the commands in Table 11 to generate 

maps, like the one in Figure 28, as .pgm files. 

Table 11 Commands for map creation using RTAB-Map database. 

 $   rosrun rtabmap_ros rtabmap _database_path:=~/.ros/rtabmap.db  

 $  rosrun map_server map_saver map:=grid_map 

 $  rosservice call /publish_map 1 1 0 
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Figure 30 3D and 2D Maps of ‘RoboticsLab’ environment. 

6.2 MOGA FOR RTAB-MAP PARAMETER OPTIMISATION 

For RTAB-Map parameter optimisation, the ranges for the selected parameters are 

defined as follows: 

• Mem/RehearsalSimilarity is a ratio so its values lie between 0 and 1. 

• Kp/MaxDepth is the distance/depth at which the keypoints extracted are filtered 

and the range is set between 0 and 10m. 

• Vis/MinInliers’ value is a trade-off between the number of localizations and 

accuracy and the range is set between 10 and 20. 

Figure 31 illustrates the flow of events during the implementation of the MOGA. 

6.2.1 Selection and Replacement 

The population size |P| for the MOGA is set as 50. An initial population of |P| members, 

is randomly generated, where each member is a set of parameter values within the 

defined range. All members of population P(t) generate one offspring. Both parents and 

offspring are ranked using the Pareto dominance techniques or the fitness switch 

introduced in the previous chapter, and the top |P| individuals from this pool are retained 

as the basis for population P(t + 1) and the rest of the individuals are discarded.  
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Figure 31 Flowchart of Multi-Objective Genetic Algorithm. 

6.2.2 Evaluation 

To evaluate every individual of the population, rtabmap_ros commands are executed for 

each set of parameters and their maps are generated. These maps are converted from the 

‘.pgm’ format to greyscale images. To calculate the number of corners, 𝑛𝑐, these 

greyscale images are converted to float32 type and the OpenCV Harris corner detection 

function, cv2.cornerHarris(), is applied. To calculate the number of contours, 𝑛𝑒, the 
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greyscale images are converted to binary images and the OpenCV function, 

cv2.findContours, is applied. The rtabmap_ros logs provide the number of occupied, 

empty and total grids in every local map that is added to the global map cache. To 

calculate the proportion of occupied grids of each map, η for every local map is 

calculated and their average is taken as the η of the final global map. The fitness function, 

also the quality of the map, for this GA can be defined as: 

𝑓(𝑥) = 𝑚𝑖𝑛{𝑛𝑐(𝑥), 𝑛𝑒(𝑥), 𝜂(𝑥)} . 6.1 

6.2.3 Variation 

To implement this MOGA, uniform mutation is used as the variation operator, i.e., for 

every member of the parent population one of the three parameters will be changed at 

random to produce an offspring. This helps in maintaining diversity in the population. To 

prevent a solution associated with one peak in the search space being replaced by the 

offspring associated with a completely different peak and potentially resulting in the loss 

of an entire mode of the search space, crossover is not used and the variation operator is 

limited to mutation alone [53]. The number of generations, N, is used as the stop criterion 

for our MOGA setup. 

6.3 SIMULATION EXPERIMENTS SETUP 

Various python and shell scripts were created to control the automatic execution of the 

commands used for testing the MOGA in simulation as described below:  

• Shell script to launch Gazebo, RTAB-Map and explore_lite using the ROS 

commands listed in Table 6. 

• Shell script to create maps from the RTAB-Map database using the commands 

from Table 7.  

• Python script to calculate 𝑛𝑐 and 𝑛𝑒 using the maps generated above. 

• Python script to calculate 𝜂 using data from RTAB-Map text logs. 

• Python script for the appropriate MOGA mechanism.  
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These tests were executed for a total of 1,410 generations as detailed in Table 12 with a 

population pool of 100 members, 50 parents and 50 children, per generation that sums up 

to a total of 141,000 tests overall. 

Table 12 Number of MOGA Generations for each set of experiments. 

Experiment Setup Number of Generations 

MOGA methods → 
Dominance 

Count 

Dominance 

Rank 

Switching 

Fitness 

Experiment Setup 1 60 60 60 

Experiment Setup 2 60 60 60 

Experiment Setup 3 350 350 350 

Total 470 470 470 

Grand Total 1410 

In this research the three MOGA methods, DC, DR and SF, are tested with RTAB-Map 

using the different techniques listed below: 

• For the first experimental setup, the path taken by the robot to explore its world, 

i.e., the odometry, is kept constant for the entire test setup. The primary 

requirement for evolution is that the population exhibit variation in traits. This 

setup enabled evaluating the changes to the map quality when changing the 

parameter values for every member of the population. Therefore, setting the 

platform for this research. 

• For the second experimental setup, we consider there are no motion errors and 

measurement error in the setup and the robot takes the least cost path to explore 

its environment. Therefore, the robot follows the same path to explore its 

environment for a particular member of the population even on multiple reruns. 

We observe which members of the population are promoted for their map quality.  

• For the third experimental setup, the maps are evaluated considering the fact that 

due to motion and measurement errors, every time the robot explores the world it 

will take a different route, depending on the number of frontiers detected, even if 
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it is supplied the same set of parameters. Thus, producing a truly complex multi-

objective problem to solve.  

6.3.1 Experiment Setup 1 

In this setup the robot odometry is kept constant throughout the evolution process. To 

achieve this,  

• A default database containing the robot odometry and sensor information is 

generated using RTAB-Map with the default values of the parameters by 

executing commands from Table 6.  

• 50 random members are generated as the initial population. 

• 50 children are generated for the above members by applying uniform mutation. 

• With the parents and children combined to form the population pool, rtabmap-

reprocess application is implemented for every member using the following 

command, where the default database is supplied as the input to ensure constant 

odometry: 

$ rtabmap-reprocess --Mem/RehearsalSimilarity xxx --Kp/MaxDepth xxx --

Vis/MinInliers xxx Input.db Output.db 

• Using the databases generated in the previous step, maps are created by executing 

the commands from Table 7. 

• As the robot does not explore the world for every member of the population, the 

rtabmap_ros logs are unavailable. Therefore, in these sets of experiments only 𝑛𝑐 

and 𝑛𝑒 are considered as the objectives to be optimised. For the maps generated in 

the previous step, the values of 𝑛𝑐 and 𝑛𝑒 are calculated. 

Appropriate MOGA method is then applied to assess the quality of these maps. 

• When using DC, the 𝑛𝑐 and 𝑛𝑒 values of these maps are compared to find out the 

fitness of each member i.e., the number of members each member dominates. 

Based on these values, the members best suited to be the parents for next 

generation are selected. In case of DC higher the count, better the quality of 

member. 
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• When using DR, the values of the objectives are compared and members that are 

not dominated by any other member, i.e., those with least DR are selected to 

become parents for the next generation. 

• With SF, the objective to be optimised is switched every five generations. For 

example, when considering 𝑛𝑐 as the objective to be optimised, maps with least 

number of corners (𝑛𝑐) will be considered the fittest, and the corresponding 

members will be selected to form the parent population of next generation. After 

five generations the process will be continued with 𝑛𝑒 as the objective for the next 

five generations and so on. Hence in the SF approach, only one objective is 

optimised at any given time 

To be true to the random nature of GA, a different set of initial population and a different 

default database is assigned to each of DC, DR and SF. The maximum number of 

generations, N, is set to 60 for each type of MOGA.  

6.3.2 Experiment Setup 2 

For these sets of experiments, 

• 50 random members are generated to create the initial population for GA. 

• Considering them as parents, 50 children are generated by applying uniform 

mutation 

• With these 100 members as the population pool for the first generation 

rtabmap_ros SLAM is executed using the commands from Table 6. 

• A map is created for each member of the population pool using commands from 

Table 7, i.e., 100 maps in total. 

• The values of 𝑛𝑐, 𝑛𝑒 and 𝜂 are calculated for each of these maps. 

• Applying the appropriate MOGA technique the 50 fittest members are identified. 

In these experiments, to maintain the assumption that one member can only generate one 

type of map due to the absence of motion and measurement errors, from the next 

generation onwards rtabmap_ros SLAM is executed only for the children. This data is 

then combined with the data of the parent population for GA evaluation. This process is 

implemented for the DC, DR and SF techniques, each starting with a different initial 
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population. For the SF technique, the fitness is switched between 𝑛𝑐, 𝑛𝑒 and 𝜂 every five 

generations. The cap is set at 60 generations for these sets of experiments as well.  

6.3.3 Experiment Setup 3 

Every time a robot explores an environment, it is bound to take a different path because 

of motion and measurement errors leading to changes in the frontier detection process. 

This setup is more practical than the two previous sets of experiments as it considers the 

fact that rtabmap_ros SLAM might produce a different map even if it is supplied the 

same set of parameters.  

• 50 random members are generated as the initial population. 

• 50 children are generated for the above members by applying uniform mutation. 

• These 100 individuals form the population pool for the first generation of GA and 

rtabmap_ros SLAM is executed for every member using the set of commands 

from Table 6 

• A map is created for each member of the population pool using commands from 

Table 7, i.e., 100 maps in total. 

• 𝑛𝑐, 𝑛𝑒 and 𝜂 are calculated for each member of the population pool. 

• Applying the appropriate MOGA technique, the 50 fittest members are selected to 

form the parent population for the next generation. 

These steps are then repeated till the maximum number of generations, i.e., 350 is 

reached. It should be noted that unlike setup 2, in this setup the rtabmap_ros commands 

are executed for the entire population pool of 100 in every generation. This process is 

implemented for DC, DR and SF. For the SF technique, the fitness is switched between 

𝑛𝑐, 𝑛𝑒 and 𝜂 every five generations. 

6.4 RESULTS FROM SIMULATION EXPERIMENTS 

The following sections discuss the results and observations from the simulation 

experiments conducted. The results for each experiment are presented in the below 

format.  
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• A table listing the best and worst values of the RTAB-MAP parameters along 

with the values calculated for the 3 objectives. 

• A graph representing the evolution of the fittest candidate in terms of the three 

objectives namely corners, contours and Eta. 

Each sub-section below contains the results of experiments conducted for the Dominance 

Count, Dominance Rank and Switching Fitness MOGA mechanisms. 

6.4.1 Experiment Setup 1  

Table 13 Experiment Setup 1- Results for Dominance Count. 

RTABMAP Parameters Default Best Worst 

Mem/RehearsalSimilarity 0.3 0.77 0.57 

Kp/MaxDepth 4 3.77 4.46 

Vis/MinInliers 15 13 10 

𝒏𝒄 45 42 86 

𝒏𝒆 19 18 35 

 

 

Figure 32 Experiment Setup 1- Evolution of fittest candidate- Dominance Count. 
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For the first set of experiments, each MOGA method was started with a different default 

rtabmap.db file, which means each database had different odometry and sensor data. 

Tables 13, 14 and 15 present the results for map evaluation of the default, best and worst 

members of the population for the DC, DR and SF MOGA methods, respectively.  

Table 14 Experiment Setup 1- Results for Dominance Rank. 

RTABMAP Parameters Default Best Worst 

Mem/RehearsalSimilarity 0.3 0.41 0.77 

Kp/MaxDepth 4 8.11 4.23 

Vis/MinInliers 15 14 14 

𝒏𝒄 49 42 49 

𝒏𝒆 18 21 18 

 

 

Figure 33 Experiment Setup 1- Evolution of fittest candidate- Dominance Rank. 

Figures 32, 33 and 34 show the evolution of the fittest candidate for the DC, DR and SF 

techniques, respectively, over generations. It can be seen that all three techniques 

converge to produce a fittest candidate, albeit more than one. It is observed that over 

generations each technique produces multiple candidates with the same fitness value. 
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Where DC converges in generation 24, DR in generation 31, SF converges to produce its 

best result in the 41st generation. Because this setup is a two-objective problem, it is an 

easier problem to optimise than the other two setups. It must also be noted that the best 

and worst solutions in DR are both ranked 0, where they are a trade-off between 𝑛𝑐 and 

𝑛𝑒 values. 

Table 15 Experiment Setup 1- Results for Switching Fitness. 

RTABMAP Parameters Default Best Worst 

Mem/RehearsalSimilarity 0.3 0.5 0.44 

Kp/MaxDepth 4 2.52 2.96 

Vis/MinInliers 15 10 20 

𝒏𝒄 100 45 83 

𝒏𝒆 50 20 55 

 

 

Figure 34 Experiment Setup 1- Evolution of fittest candidate- Switching Fitness. 

Starting with a good map, the changes to parameter values in DR were not able to 

produce a variety of maps, even though mutation maintains diversity in the population. 
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6.4.2 Experiment Setup 2  

Table 16 Experiment Setup 2- Results for Dominance Count. 

RTABMAP Parameters Best Worst 

Mem/RehearsalSimilarity 0.72 0.72 

Kp/MaxDepth 1.98 4.17 

Vis/MinInliers 18 13 

𝒏𝒄 39 132 

𝒏𝒆 19 48 

𝜼 0.24 0.27 

In this set of experiments, we assumed that each candidate will produce the same map 

even on multiple explorations by the robot. Hence, we only created maps for the children 

and compared their qualities with the existing maps of their parents and promoted the 

fitter half of the population every generation. As the GA progresses the members 

producing lower quality maps are eliminated from the population pool. Additionally 

uniform mutation ensures diversity in the population. 

 

Figure 35 Experiment Setup 2- Evolution of fittest candidate- Dominance Count. 
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Figure 36 Experiment Setup 2- Evolution of fittest candidate (Eta)- DC. 

Tables 16, 17 and 18 present the results for the best and worst candidates for the DC, DR 

and SF MOGA mechanisms, respectively. From Figures 35, 37 and 40 the evolution of 

the fittest candidates for the DC, DR and SF mechanisms, respectively, can be observed 

over generations. For DC, the quality of optimal candidate converges in generation 49 

and for DR in generation 39. Because this problem is truly multi-objective in nature, 

there is no convergence when using the pseudo MOGA technique SF. 

Table 17 Experiment Setup 2- Results for Dominance Rank. 

RTABMAP Parameters Best Worst 

Mem/RehearsalSimilarity 0.28 0.11 

Kp/MaxDepth 9.08 7.32 

Vis/MinInliers 14 13 

𝒏𝒄 35 150 

𝒏𝒆 18 126 

𝜼 0.24 0.76 



68 
 

 

 

Figure 37 Experiment Setup 2- Evolution of fittest candidate- Dominance Rank. 

 

Figure 38 Experiment Setup 2- Evolution of fittest candidate (Eta)- DR. 
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Figure 39 Experiment Setup 2- MOGA results for 60th Generation. 

From Figure 40, it should be noted that the graph is stable for 5 generations, i.e., every 

five generations SF is able to successfully optimise one of the objectives to produce a 

fittest candidate. 

Table 18 Experiment Setup 2- Results for Switching Fitness. 

RTABMAP Parameters Best Worst 

Mem/RehearsalSimilarity 0.17 0.02 

Kp/MaxDepth 9.66 5.34 

Vis/MinInliers 18 13 

𝒏𝒄 49 93 

𝒏𝒆 19 47 

𝜼 0.21 2.57 
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Figure 40 Experiment Setup 2- Evolution of fittest candidate- Switching Fitness. 

 

Figure 41 Experiment Setup 2- Evolution of fittest candidate (Eta)- SF. 

When using the DC measure for Pareto dominance, individuals are rewarded to find a 

spot in the Pareto front where they increase the count of individuals they dominate. 

Therefore, it can be observed that DC results in a single optimal solution. The DR 

measure rewards individuals to find a spot where no other individual dominates them. 
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Therefore, DR offers multiple optimal solutions, depicted in purple in Figure 39, that 

offer a trade-off between the different objectives. For plotting the graph depicting the 

evolution of the fittest candidate, the first individual appearing in the Dominance Rank 

list of every generation is used. Figures 36, 38 and 41 offer a closer look at how 𝜂 

converges to its optimal value. 

6.4.3 Experiment Setup 3  

Table 19 Experiment Setup 3- Results for Dominance Count. 

RTABMAP Parameters Best Worst 

Mem/RehearsalSimilarity 0.55 0.67 

Kp/MaxDepth 5.2 9.9 

Vis/MinInliers 17 15 

𝒏𝒄 39 146 

𝒏𝒆 19 87 

𝜼 0.27 1.03 

 

 

Figure 42 Experiment Setup 3- Evolution of fittest candidate- Dominance Count. 
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In this set of experiments, we observe that for the same set of parameters, a different map 

is generated because the robot’s odometry changes. Therefore, compared to the other two 

setups, this setup puts forth a more complex three-objective problem to solve. 

 

Figure 43 Experiment Setup- Evolution of fittest candidate (Eta)- DC. 

Table 20 Experimental Setup 3- Results for Dominance Rank. 

RTABMAP Parameters Best Worst 

Mem/RehearsalSimilarity 0.4 0.81 

Kp/MaxDepth 9.67 4.24 

Vis/MinInliers 16 15 

𝒏𝒄 38 110 

𝒏𝒆 20 71 

𝜼 0.25 0.36 

Tables 19, 20 and 21 present the results for the best and worst candidates for the DC, DR 

and SF MOGA techniques respectively. In this setup, due to the continuously changing 

robot odometry, the lower quality candidates are not entirely eliminated from the 
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population pool, even though their genetic information might not be selected to be passed 

on to the next generation.  

 

Figure 44 Experiment Setup 3- Evolution of fittest candidate- Dominance Rank. 

 

Figure 45 Experiment Setup 3- Evolution of fittest candidate (Eta)- DR. 
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Figure 46 Experiment Setup 3- MOGA Results for 350th Generation. 

Table 21 Experiment Setup 3- Results for Switching Fitness. 

RTABMAP Parameters Best Worst 

Mem/RehearsalSimilarity 0.42 0.12 

Kp/MaxDepth 0.58 3.79 

Vis/MinInliers 11 17 

𝒏𝒄 52 190 

𝒏𝒆 19 149 

𝜼 0.22 2.09 

Figures 42, 44 and 47 show the evolution of the fittest candidate for DC, DR and SF, 

respectively, over generations. Figures 43, 45 and 48 contain the graphs for 𝜂 

optimisation to provide a closer look at how it converges for the fittest members across 



75 
 

generations. For the DC technique, the GA presents one optimal candidate whose quality 

does not change as drastically as the one from DR, however, because the robot odometry 

keeps varying on every run, convergence is elusive till generation 350. 

 

Figure 47 Experiment Setup 3- Evolution of fittest candidate- Switching Fitness. 

 

Figure 48 Experiment Setup 3- Evolution of fittest candidate (Eta)- SF. 

For the DR technique, the graph stabilises fairly after the first few generations, which 

then converges further from generation 300. We observe that over generations, DR 
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presents multiple optimal solutions which provide a trade-off between the three 

objectives. In Figure 46, the purple dots represent the pareto front for generation 350, i.e., 

solutions with rank 0. For the pseudo MOGA technique SF, this setup seems too complex 

to handle. When compared to Figure 40, the graph in Figure 47 has more instabilities 

even during the five generations each objective is optimised for. When comparing the 

best candidate results, it can be noticed that DC and DR provide more balanced solutions 

as opposed to the SF solution. This in turn emphasises the importance of using MOGA, 

rather than single objective GA, when optimising complex problems like SLAM. 

6.5 QBOT2 EXPERIMENT SETUP 

University closure due to COVID-19 has made the C160, Robotics lab at Sexton campus 

in Dalhousie University, inaccessible for testing the robot. Therefore, the QBot2 robot 

was tested in an environment setup that closely resembles the environment created for the 

simulation experiments, i.e., a 3.96m × 3.96m room with two wooden tables, a wooden 

bookshelf, a wooden chest of drawers, a metal pedestal, four dining chairs and cylindrical 

jar placed around for the robot to identify as shown in Figure 50. Because the QBot2 sits 

on a Yujin Kobuki base like the TurtleBot2 and has a Kinect camera, the rtabmap 

command for TurtleBot2 works with the QBot2 as well. Using the commands in Table 22 

the QBot2 was able to autonomously explore its world and the commands in Table 7 

were used to create maps from the databases generated. 

Table 22 ROS Commands RTAB-Map SLAM for QBot2 experiments. 

$   roslaunch turtlebot_bringup minimal.launch 

$  export TURTLEBOT_3D_SENSOR=kinect  

$  roslaunch rtabmap_ros demo_turtlebot_mapping.launch args:="--delete_db_on_start" 

$  roslaunch rtabmap_ros demo_turtlebot_rviz.launch 

$  roslaunch explore_lite explore.launch 

The QBot2 robot was tested with the default values of the parameters and the best and 

worst candidates for the three MOGA techniques from experimental setup 2 and 

experimental setup 3. Figure 49 shows the how the Kinect camera detects its world. 



77 
 

Experiment setup 1 is used to establish that variation in the values of the chosen 

parameters will change the quality of map generated by the robot. Hence, the candidates 

from this setup are not used for QBot2 testing. 

 

Figure 49        3D Map of the world from RVIZ. 

 

Figure 50 Qbot2 Kinect Camera- Initial Field of View. 
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6.6 RESULTS FROM QBOT2 EXPERIMENTS 

Table 23 presents the results from experiments conducted with the Qbot2 robot. The 

numbers in parentheses denote if the results are for the data from experimental setup 2 or 

experimental setup 3. In experiments conducted with the QBot2, the best candidates from 

experiment setup 2 are not able to produce results similar to the simulation experiments 

due to errors in motion and measurement. The best candidates for both DC and DR 

generated maps that are worse than the map generated by the default candidate. The best 

candidate for SF generated a better quality map than the default candidate’s map, i.e., the 

number of corners and contours of the map generated by the best candidate for SF was 

lesser than the map generated by the default candidate. 

Table 23 Results from QBot2 experiments. 

RTABMAP 

Parameters → 

Mem/Rehearsal

Similarity 

Kp/MaxDept

h 

Vis/MinInli

ers 

𝒏𝒄 𝒏𝒆 𝜼 

Default 0.3 4.0 15 66 29 0.74 

DC Best (2) 0.72 1.98 18 86 31 0.80 

DC Worst (2) 0.72 4.17 13 71 25 1.08 

DR Best (2) 0.28 9.08 14 78 30 0.81 

DR Worst (2) 0.11 7.32 13 78 42 0.63 

SF Best (2) 0.17 9.66 18 63 25 0.80 

SF Worst (2) 0.02 5.34 13 92 36 1.29 

DC Best (3) 0.55 5.22 17 66 30 0.65 

DC Worst (3) 0.67 9.9 15 105 29 0.85 

DR Best (3) 0.4 9.67 16 66 17 0.62 

DR Worst (3) 0.81 4.24 15 77 26 0.54 

SF Best (3) 0.42 0.58 11 61 29 0.62 

SF Worst (3) 0.12 3.79 17 81 24 0.60 

The best candidate from experiment setup 3 for the DC approach, generated a map that 

has the same number of corners and one more contour than the default candidate’s map, 

however the map has a lower proportion of occupied grids than the default candidate’s 
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map. Hence, they offer two maps of similar quality with a trade-off between the number 

of contours and the proportion of occupied grids. For the DR approach, the best 

candidate generated a map with lesser number of contours and a lower proportion of 

occupied grids than the default candidate’s map. Thus, making the best candidate’s map 

no worse than the default candidate in all three objectives and better than the default 

candidate in two objectives. Fig. 51 and 52 show the maps generated by the default, best 

and worst candidates from experiment setup 3 for DC and DR respectively. For the SF 

approach, despite there being no convergence to an optimal solution, the best candidate 

was able to generate a better quality map with lesser number of corners and lower 

proportion of occupied grids than the map generated by the default candidate.Using 

multi-objective GA to optimise the values of RTAB-Map parameters aided in obtaining 

the optimal set of parameter values for the QBot2 robot. 

 

Figure 51 Maps for Best, Default and Worst candidates for DC. 

 

Figure 52 Maps for Best, Default and Worst candidates for DR. 
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CHAPTER 7 CONCLUSION 

In this thesis, parameter optimisation for the RTAB-Map package has been explored 

using different multi-objective GA mechanisms- Dominance Count, Dominance Rank 

and Switching Fitness, in three sets of simulation experiments. 

• In the first set of experiments where two objectives were optimised considering 

constant odometry for the entire setup, it is observed that all the three multi-

objective GA methods are able to fairly converge to an optimal solution. 

• In the second set of experiments where three objectives were optimised 

considering no motion and measurement errors, it is observed that the 

Dominance Count and Dominance Rank methods are able to converge to an 

optimal solution. However, the Switching Fitness, which is a pseudo multi-

objective GA method, is unable to converge to a solution that optimises all three 

objectives equally well; although it is able to optimise each objective 

individually. 

• In the third set of experiments three objectives were optimised with noise in 

motion and measurement to emulate real world, and it is observed that while the 

Dominance Count method provides one optimal solution, the Dominance Rank 

method provides multiple optimal solutions which offers a trade-off between the 

objectives. However, the Switching Fitness method is unable to handle this 

complex multi-objective problem effectively. 

A sample set of best and worst candidates were identified from the above sets of 

simulation experiments and tests were conducted with a physical QBot2 robot using these 

candidates. When the best candidates from the Dominance Count and Dominance Rank 

methods of the third set of experiments were used, the QBot2 generated more accurate 

maps compared to the map generated when the default RTAB-Map parameters were 

used. 

The results indicate that for a combination of a given environment, robot and SLAM 

package, implementing a Multi-Objective Genetic Algorithm to optimize the parameters 
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used by that SLAM package would enable the robot to explore the environment more 

effectively and identify more frontiers resulting in more accurate maps. 

While there are multiple packages available to implement the different SLAM 

approaches, parameter optimisation using a GA does not appear often in the available 

literature and applying multi-objective GA with SLAM is almost unheard of. For new 

researchers in SLAM, relying on historical data from literature might not be a practical 

approach to proceed with. Additionally, different robots come with different sensors. 

The default set of parameters offered by the available SLAM packages would not be 

uniformly efficient for all these sensors. In such scenarios, instead of relying on available 

data to arrive at the optimal set of parameters for any experimental setup, it makes sense 

to apply the proposed multi-objective GA to obtain the optimal values of parameters for 

the required set of sensors. This would enable the researcher in achieving a more 

efficient implementation of SLAM suitable to their specific requirements. 

7.1 DIRECTION FOR FUTURE RESEARCH 

In future, to obtain the optimal set of parameters for varied scenarios, this algorithm can 

be tested 

• in different environments, 

• with different robots, and  

• with different ROS SLAM packages. 

This algorithm can be built upon and made package-independent by testing it with other 

SLAM packages available in ROS. 

With fuzzy logic, it can additionally be tested in different SLAM approaches for 

odometry and loop closure optimisation to ultimately replace the various Bayesian filters 

used, as suggested in the “Integrated fuzzy logic and genetic algorithmic approach for 

simultaneous localization and mapping of mobile robots” paper [49]. 
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