

MULTI-OBJECTIVE OPTIMISATION OF RTAB-MAP PARAMETERS USING

GENETIC ALGORITHM FOR INDOOR 2D SLAM

by

Nagamalar Nagarajan

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

December 2020

© Copyright by Nagamalar Nagarajan, 2020

ii

Dedicated to my family.

iii

TABLE OF CONTENTS

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

ABSTRACT ...x

LIST OF ABBREVIATIONS USED .. xi

ACKNOWLEDGEMENTS ... xiii

CHAPTER 1 INTRODUCTION ..1

1.1 THESIS OUTLINE ...3

CHAPTER 2 SIMULTANEOUS LOCALIZATION AND MAPPING AND ROS...........4

2.1 ROBOT OPERATING SYSTEM ...6

2.2 SLAM PACKAGES IN ROS ...8

2.2.1 Hector SLAM.. 8

2.2.2 GMapping ... 12

2.2.3 Karto SLAM ... 14

2.2.4 Real-Time Appearance-Based Mapping ... 16

2.3 PARAMETER OPTIMISATION USING GA ...18

CHAPTER 3 QBOT2 SENSORS AND THEIR APPLICATIONS20

3.1 WHEEL ENCODERS ...21

3.2 GYROSCOPE ...24

3.3 VISUAL SENSORS ...25

3.3.1 Microsoft Kinect Sensor ... 25

3.3.2 Visual Odometry ... 26

3.3.3 Feature Detection .. 27

3.4 ROBOT SIMULATION ...30

CHAPTER 4 ROS SETUP ...32

4.1 CREATING VIRTUALBOX VM AND ROS INSTALLATION32

4.2 PROGRAMMING WITH ROS ..33

4.3 ROS PACKAGES USED ...34

4.3.1 Gazebo .. 34

4.3.2 Turtlebot .. 35

iv

4.3.3 rtabmap and rtabmap_ros .. 36

4.3.4 rviz .. 37

4.3.5 explore_lite ... 37

4.4 PACKAGES FOR QBOT2 TESTING ...38

4.4.1 Kinect And Kobuki Software Installation... 39

4.4.2 Testing Connections and Sensors ... 40

CHAPTER 5 RTAB-MAP AND GENETIC ALGORITHM ..42

5.1 RTAB-MAP ..42

5.2 GENETIC ALGORITHM ...44

5.2.1 Selection Operator .. 45

5.2.2 Variation Operator .. 45

5.2.3 Objective ... 47

5.3 FIRST GENETIC ALGORITHM SLAM ...48

5.4 MULTI-OBJECTIVE GENETIC ALGORITHM ..50

5.5 DEFINING THE OBJECTIVES ..52

CHAPTER 6 IMPLEMENTATION AND RESULTS ..54

6.1 AUTONOMOUS EXPLORATION AND MAPPING54

6.2 MOGA FOR RTAB-MAP PARAMETER OPTIMISATION56

6.2.1 Selection and Replacement ... 56

6.2.2 Evaluation ... 57

6.2.3 Variation ... 58

6.3 SIMULATION EXPERIMENTS SETUP ..58

6.3.1 Experiment Setup 1 ... 60

6.3.2 Experiment Setup 2 ... 61

6.3.3 Experiment Setup 3 ... 62

6.4 RESULTS FROM SIMULATION EXPERIMENTS ...62

6.4.1 Experiment Setup 1 ... 63

6.4.2 Experiment Setup 2 ... 66

6.4.3 Experiment Setup 3 ... 71

6.5 QBOT2 EXPERIMENT SETUP ..76

6.6 RESULTS FROM QBOT2 EXPERIMENTS ...78

v

CHAPTER 7 CONCLUSION ..80

7.1 DIRECTION FOR FUTURE RESEARCH ..81

BIBLIOGRAPHY ..82

vi

LIST OF TABLES

Table 1 Partial list of parameters used in different SLAM packages. 18

Table 2 QBot2 specifications [22]. .. 20

Table 3 ROS Kinetic Installation Instructions [10]. .. 32

Table 4 Commands to update Gazebo from version 7.0 to 7.16. 35

Table 5 Commands to build Turtlebot package from source in ROS Kinetic [39]. 35

Table 6 Commands to build rtabmap and rtabmap_ros packages from source in ROS

Kinetic [40]. .. 36

Table 7 Instructions for Freenect Installation in ROS Kinetic [44]. 39

Table 8 Instructions for Kobuki Installation in ROS Kinetic [39]. 40

Table 9 RTAB-Map Algorithm [20]. ... 43

Table 10 ROS Commands RTAB-Map SLAM in simulation. 55

Table 11 Commands for map creation using RTAB-Map database. 55

Table 12 Number of MOGA Generations for each set of experiments. 59

Table 13 Experiment Setup 1- Results for Dominance Count. 63

Table 14 Experiment Setup 1- Results for Dominance Rank. 64

Table 15 Experiment Setup 1- Results for Switching Fitness. 65

Table 16 Experiment Setup 2- Results for Dominance Count. 66

Table 17 Experiment Setup 2- Results for Dominance Rank. 67

Table 18 Experiment Setup 2- Results for Switching Fitness. 69

Table 19 Experiment Setup 3- Results for Dominance Count. 71

Table 20 Experimental Setup 3- Results for Dominance Rank. 72

Table 21 Experiment Setup 3- Results for Switching Fitness. 74

Table 22 ROS Commands RTAB-Map SLAM for QBot2 experiments. 76

Table 23 Results from QBot2 experiments. .. 78

vii

LIST OF FIGURES

Figure 1 Overview of the SLAM process. .. 4

Figure 2 The SLAM problem [4]. ... 5

Figure 3 Measurement error [6]. ... 6

Figure 4 Motion error [6]. ... 6

Figure 5 Basic ROS computational graph [8]. .. 7

Figure 6 ROS Application Architecture [9]. ... 7

Figure 7 Overview of the ROS hector_slam mapping and navigation system [11]. 8

Figure 8 Typical graph-based SLAM system [17].. 14

Figure 9 RTAB-Map Memory management model [20]. ... 17

Figure 10 The Quanser QBot2 [22]. .. 21

Figure 11 Posture definition in the global reference frame and the robot local

reference frame for a wheeled differential drive robot [24]. 22

Figure 12 Xbox 360 Kinect sensor [26]. ... 25

Figure 13 QBot2 with tilted Kinect sensor [22]. ... 26

Figure 14 TurtleBot2, TurtleBot 2e and TurtleBot 2i [33].. 31

Figure 15 The different 3D coordinate frames of Willow Garage’s PR2 robot [37]. . 34

Figure 16 Unexplored frontiers detected by explore_lite package [43]. 38

Figure 17 The Kobuki mobile robot platform [22]. .. 39

Figure 18 Block diagram of RTAB-Map ROS node [21]. .. 42

Figure 19 The Generic Evolutionary Model. .. 45

Figure 20 Single-point string Crossover [46]. ... 46

Figure 21 Crossover in tree-based GP [45]. .. 46

Figure 22 Two-point string Crossover in LGP [45]. ... 47

Figure 23 Raw sensor data with the odometry trace and robot laser findings [48]. 49

viii

Figure 24 Corrected sensor data and the corresponding grid map [48]. 49

Figure 25 Illustration of Pareto front [52]. .. 50

Figure 26 Examples of Pareto based dominance measures [53]. 51

Figure 27 Map with (a) blurred wall and (b) accurate wall [55]. 52

Figure 28 Comparing maps based on corners and enclosed spaces. 53

Figure 29 ‘RoboticsLab’ environment simulated in Gazebo. 54

Figure 30 3D and 2D Maps of ‘RoboticsLab’ environment. 56

Figure 31 Flowchart of Multi-Objective Genetic Algorithm. 57

Figure 32 Experiment Setup 1- Evolution of fittest candidate- Dominance Count. ... 63

Figure 33 Experiment Setup 1- Evolution of fittest candidate- Dominance Rank. 64

Figure 34 Experiment Setup 1- Evolution of fittest candidate- Switching Fitness. 65

Figure 35 Experiment Setup 2- Evolution of fittest candidate- Dominance Count. ... 66

Figure 36 Experiment Setup 2- Evolution of fittest candidate (Eta)- DC. 67

Figure 37 Experiment Setup 2- Evolution of fittest candidate- Dominance Rank. 68

Figure 38 Experiment Setup 2- Evolution of fittest candidate (Eta)- DR. 68

Figure 39 Experiment Setup 2- MOGA results for 60th Generation. 69

Figure 40 Experiment Setup 2- Evolution of fittest candidate- Switching Fitness. 70

Figure 41 Experiment Setup 2- Evolution of fittest candidate (Eta)- SF. 70

Figure 42 Experiment Setup 3- Evolution of fittest candidate- Dominance Count. ... 71

Figure 43 Experiment Setup- Evolution of fittest candidate (Eta)- DC. 72

Figure 44 Experiment Setup 3- Evolution of fittest candidate- Dominance Rank. 73

Figure 45 Experiment Setup 3- Evolution of fittest candidate (Eta)- DR. 73

Figure 46 Experiment Setup 3- MOGA Results for 350th Generation. 74

Figure 47 Experiment Setup 3- Evolution of fittest candidate- Switching Fitness. 75

Figure 48 Experiment Setup 3- Evolution of fittest candidate (Eta)- SF. 75

ix

Figure 49 Qbot2 Kinect Camera- Initial Field of View. ... 77

Figure 50 3D Map of the world from RVIZ. ... 77

Figure 51 Maps for Best, Default and Worst candidates for DC. 79

Figure 52 Maps for Best, Default and Worst candidates for DR. 79

x

ABSTRACT

Currently, there are multiple packages available to implement different Simultaneous

Localisation And Mapping (SLAM) approaches in Robot Operating System (ROS). To

effectively obtain sensor data, these packages use parameters whose values are set from

prior knowledge and experience working with robots and SLAM. In this research, using a

Multi-Objective Genetic Algorithm (MOGA) to optimise the values for these parameters

is proposed. Using MOGA allows trade-offs between the objectives using Pareto

dominance technique. Three parameters from the RTAB-Map package are considered for

optimisation using three different MOGA mechanisms, Dominance Count, Dominance

Rank and Switching Fitness. The quality of the map generated for every set of parameters

is taken as the indicator of its performance. The number of corners, number of contours

and the proportion of occupied cells in the map are used as quantitative measures of map

quality. Finally, results obtained from the algorithm are tested on a Quanser QBot2 robot.

xi

LIST OF ABBREVIATIONS USED

SLAM Simultaneous Localization And Mapping

AGV Autonomous Ground Vehicle

GPS Global Positioning System

EKF Extended Kalman filter

PF Particle Filter

ROS Robot Operating System

GA Genetic Algorithm

RGB-D Red, Green, Blue-Depth

MOGA Multi-Objective Genetic Algorithm

LASER Light Amplification by Stimulated Emission of Radiation

RTAB-Map Real-Time Appearance-Based Mapping

LISP List Processing

MATLAB Matrix Laboratory

OS Operating System

SPA Sparse Pose Adjustment

LIDAR Light Detection And Ranging

RBPF Rao-Blackwellised Particle Filter

2D Two Dimensional

3D Three Dimensional

LM Levenberg-Marquardt

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

CPU Central Processing Unit

GB Giga Byte

GHz Giga Hertz

SSD Solid State Drive

VM Virtual Machine

RAM Random Access Memory

LTS Long-Term Support

xii

SDK Software Development Kit

USB Universal Serial Bus

IMU Inertial Measurement Unit

NUI Natural User Interface

GP Genetic Programming

LGP Linear Genetic Programming

SOO Single Objective Optimisation

MOO Multi Objective Optimisation

AFL Adaptive Fuzzy Logic

DC Dominance Count

DR Dominance Rank

SF Switching Fitness

GUI Graphical User Interface

OpenCV Open Computer Vision

xiii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Jason Gu for giving me the opportunity to work

with him as a graduate student and for his constant motivation and guidance. I would also

like to thank my supervisory committee, Dr. Kamal El-Sankary and Dr. William Phillips

for their support and guidance. I would like to extend my gratitude to the late Dr.

Mohamed El-Hawary for introducing me to fuzzy systems, Dr. Mae Seto for piquing my

interest in the SLAM problem and Dr. Malcolm Heywood for his immense patience and

motivation in developing my fascination with Genetic Algorithms.

I would like to thank Dr. Mathieu Labbe for sharing his knowledge on RTAB-Map and

answering my many questions. I would also like to thank my husband for his

unconditional support and encouragement.

Finally, I would like to thank all the faculty, staff and students of the Electrical and

Computer Engineering department for making my Master’s degree an enjoyable journey.

1

CHAPTER 1 INTRODUCTION

Initially robots were developed for industrial manufacturing and were stationary.

However, now they are engaged in tasks that are less repetitive and in environments that

are less structured for example, medical surgery, ocean and space explorations, search

and rescue operations, etc. Using an autonomous robot reduces risk to people and

increases persistence and reach. Autonomous Ground Vehicles (AGVs) can be used for

search and rescue missions in collapsed mines or under debris from natural calamities, to

scope hostile land in military applications, and as electric vehicles. In such cases, having

a-priori knowledge of the environment might not be very useful due to these changes and

in some cases, the environment will be dynamic and continuously changing.

Navigation is one of the most challenging features required of a mobile robot. A major

flaw in most navigation and localization techniques is the assumption that the

environment is known in advance. However, an autonomous mobile robot is required to

start from an unknown initial point and independently explore the environment. Using its

sensors, a mobile robot must not only determine its position in the environment, but also

build a map of the area. This method of autonomous map building is called Simultaneous

Localization And Mapping or SLAM [1]. It is especially useful in cases where GPS is

unavailable, so the maps developed by SLAM can be used for exploration and motion

planning. At the heart of most of the commonly used SLAM techniques, lies a Bayesian

probability filter like the Gaussian Extended Kalman filter (EKF) or the nonparametric

Particle filter (PF).

To avoid exerting effort in duplicating existing technology, Robot Operating System

(ROS) is a useful platform which makes many opensource packages and programming

codes readily available for research and educational purposes. Currently, there are

multiple ROS packages available that implement SLAM, like GMapping that uses PF,

Hector SLAM that uses EKF, RTAB-Map and Karto SLAM that use a simple Bayesian

filter for loop closure to implement a graph-based SLAM approach. There are numerous

parameters used by these packages for effective localisation and map generation. The

values and ranges for these parameters are defined from previous experiences with robots

2

and SLAM. However, to avoid ambiguity in setting the values for these parameters and

to customise them for specific research needs, using a Genetic Algorithm (GA) for

optimising these parameters would be a good choice. This is especially useful in cases

where map accuracy is of utmost importance and in long term projects that require a

robot to perform exploration repetitively.

In currently available literature, the use of GA for optimal implementation of SLAM is

limited and using MOGA in SLAM is uncharted territory; therefore, making the

approach proposed in this thesis unique. When using GA, multiple parameters can be

optimised simultaneously by implementing a Multi-Objective GA (MOGA). This allows

identifying parameter values that are best suited for the robot, its sensor set and the

environment to be employed in the task, and prevents having to rely on historical data

obtained by outdated technology. Using MOGA for this optimisation prevents premature

convergence to local optima and solves bootstrap problem, in other words, the absence of

selective pressure [2]. Unlike single objective GA, MOGA eliminates the need to define

a weight for the multiple objectives a-priori as it allows expressing the multiple

objectives using Pareto dominance techniques. Furthermore, the results obtained via

Pareto dominance techniques offer multiple trade-offs between the objectives which will

be useful in making a-posteriori choices between solutions.

In this thesis, a MOGA is employed to identify optimal values of select parameters used

by the RTAB-Map package for generating maps of the environment. The maps are

evaluated based on their number of corners, number of contours and proportion of

occupied spaces, to promote evolution of parameter sets that produce better maps.

Different Pareto dominance techniques have been explored to compare the promotion of

a single fittest individual versus the promotion of a pool of individuals that provide

equally good but different solutions.

The robot used for the different sets of experiments in this research, Quanser QBot2, is

an autonomous ground robot (AGV) with a Yujin Robot Kobuki platform, a Microsoft

Kinect RGB camera and depth sensor, and a Quanser data acquisition device with a

wireless embedded computer. The RTAB-Map package has been chosen from multiple

3

SLAM packages available in ROS primarily due to its ability to support a camera-based

robot out of the box and the continuous support available for the package. For simulation

purposes, a Turtlebot2 robot, which has a similar configuration as the QBot2, has been

used.

1.1 THESIS OUTLINE

This thesis consists of 7 chapters, where chapter 1 is the introduction. The other chapters

are organized in the following manner:

• Chapter 2 provides an overview of the SLAM problem. It introduces ROS and

lists the available ROS packages that implement different SLAM techniques.

• Chapter 3 introduces the AGV, its various sensors used to solve the SLAM

problem in this thesis and the simulated robot.

• Chapter 4 explains how the virtual machines were setup for the simulation

experiments and provides details on ROS installation and the different ROS

packages used.

• Chapter 5 is a basic outline of the RTAB-Map and genetic algorithms. It

discusses the RTAB-Map’s memory management model and the parameters

chosen for optimisation. It also introduces GA, how the first GA SLAM was

implemented, different MOGA mechanisms and the objectives used to optimise

maps produced by RTAB-Map.

• Chapter 6 presents the implementation of the MOGA methods developed for

parameter optimisation and details the observations made by the robot and the

results comparing the different MOGA approaches employed in the different

setups.

• Chapter 7 discusses the future scope of the algorithm and other ways MOGA can

be incorporated in SLAM.

4

CHAPTER 2 SIMULTANEOUS LOCALIZATION AND

MAPPING AND ROS

Mobile robots need to be able to explore unknown environments, especially those that are

remote or too hazardous. This necessitates that mobile robots be autonomous. In

autonomous mobile robotics, it is essential that a mobile robot is able to start from an

arbitrary initial point and autonomously explore the environment with its on-board sensors,

gain knowledge about it, interpret the scene, build an appropriate map, and localize itself

relative to this map [1]. This problem is called simultaneous localization and mapping.

Figure 1 Overview of the SLAM process.

5

Since its introduction in [3] SLAM has been implemented in multiple ways, an

example is shown in Figure 1 where the SLAM process consists of landmark

extraction, data association, state estimation, state update and landmark update with

multiple ways to solve each step [6]. The changes in odometry and observations are

updated in the filter, based on scans from different robot sensors and data association,

i.e., it determines if sensor measurements taken at different times correspond to the

same physical object. As shown in Figure 2, the prediction and measurement updates

at each step yield a map where the uncertainty at each step is compounded by the

uncertainty in estimation and the noise in sensor measurements and the environment.

This necessitates loop closure detection as it shrinks the robot pose uncertainty.

Figure 2 The SLAM problem [4].

Data association is the process of matching observed landmarks from different scans

from the robot sensor/s with each other, i.e., it determines if sensor measurements

taken at different times correspond to the same physical object [4]. This can also be

referred to as re-observing landmarks. In most SLAM algorithms with unknown data

association, i.e., ambiguous landmarks, multiple tracks/paths need to be maintained so

6

that a search for the appropriate track can be conducted. This increases the

computational complexity of these algorithms [5]. Errors in data association

commonly occur due to measurement error and motion error. As shown in Figure 3, if

two landmarks are very close to each other, observations could come from either

landmark.

Figure 3 Measurement error [6].

If a robot skids or its pose changes by a small amount, observations from a

single landmark could be associated with different landmarks as shown in

Figure 4 [6].

Figure 4 Motion error [6].

Probabilistic SLAM is sensitive to incorrect data associations and increasing the

complexity of environments makes it run out of computational time and storage space

eventually.

2.1 ROBOT OPERATING SYSTEM

ROS is an open-source framework for creating robot software. It provides tools, libraries

and conventions across a wide variety of robotic platforms that aim to simplify complex

programming tasks, so that developers and researchers can focus on new algorithm

development without having to cope with trivial low-level hardware communication

problems [7], [8]. It was introduced in 2007 by Stanford University and Willow Garage.

ROS is multilingual and supports languages with client libraries like Python, C++, LISP

7

and MATLAB [7]. The three typical components of ROS are illustrated in Figure 5. In

ROS, applications running in the landscape are called nodes or nodelets. The distinction

being, a node is mapped to a single OS process and ROS nodelets reside as threads

inside a process called ROS Nodelet Manager [9]. Topics are publish/subscribe methods

of exchange, services establish request/response communication model, and these three

components communicate via messages [8].

Figure 5 Basic ROS computational graph [8].

The nodelets communicate through a link between the ROS layers as indicated in Figure

6. Messages across nodes are transmitted through the operating system network layers

[9].

Figure 6 ROS Application Architecture [9].

Currently ROS only runs on Unix-based platforms like the Ubuntu and Mac OS X

systems and is fully supported. More recently, it can also be installed on Microsoft

Windows 10 through the Windows Subsystem for Linux, however the support is limited

with minimal or no access to hardware and subpar performance [10].

8

2.2 SLAM PACKAGES IN ROS

The most popular ROS packages that implement SLAM are gmapping which is a LASER

based SLAM approach, hector_slam which is LIDAR based, slam_karto which is again

LASER based, and rtabmap which is a camera (RGBD, stereo) based SLAM approach.

These packages are discussed in the following sections.

2.2.1 Hector SLAM

As shown in Figure 7, the Hector SLAM package uses an EKF filter for navigation where

it combines information from different sensors to provide a consistent 3D state estimation

and the robot’s position heading information are provided by a 2D SLAM system.

Figure 7 Overview of the ROS hector_slam mapping and navigation system [11].

EKF relaxes the linear assumption of the Kalman filter to include realistic non-linear

functions, however, it still assumes Gaussian noise. With the environment being

9

unknown, the robot’s pose at its initial point is taken as the origin. According to [12], the

initial mean and covariance will be:

𝜇0 = (0 0 0…0)𝑇 2.1

Σ0 =

(

0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0
0 0 0 ∞ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ ∞)

 . 2.2

When the robot moves the state vector changes,

𝑦𝑡 = 𝑦𝑡−1 +

(

−
𝑣𝑡
𝜔𝑡
sin 𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡 + 𝛾𝑡∆𝑡
0
⋮
0)

2.3

and only the first three elements in the above motion model update are non-zero as the

landmarks remain fixed. So,

𝑦𝑡 = 𝑦𝑡−1 + 𝐹𝑥
𝑇

(

−
𝑣𝑡
𝜔𝑡
sin 𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡 + 𝛾𝑡∆𝑡)

2.4

where, x, y and θ denote the pose of the robot at time t-1. 𝑣𝑡 is the translational

velocity and 𝜔𝑡 is the rotational velocity with Δt being the time frame of the

robot motion. 𝐹𝑥 is 3×(3N+3) matrix,

𝐹𝑥 = (
1 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0

) . 2.5

The noise-free full motion model with a random noise part is given by,

10

𝑦𝑡 = 𝑦𝑡−1 + 𝐹𝑥
𝑇

(

−
𝑣𝑡
𝜔𝑡
sin 𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡)

⏟
𝑔(𝑢𝑡,𝑦𝑡−1)

+𝑁(0, 𝐹𝑥
𝑇𝑅𝑡𝐹𝑥) 2.6

where 𝐹𝑥
𝑇𝑅𝑡𝐹𝑥 extends the covariance matrix to the dimension of the full state

vector squared. In EKF, linearization approximates the motion function, g, using

a first-degree Taylor expansion,

𝑔(𝑢𝑡, 𝑦𝑡−1) ≈ 𝑔(𝑢𝑡, 𝜇𝑡−1) + 𝐺𝑡(𝑦𝑡−1 − 𝜇𝑡−1) 2.7

where the function 𝑔(𝑢𝑡, 𝜇𝑡−1) is the estimation and 𝐺𝑡 is derivative of 𝑔 at the control

input 𝑢𝑡 and 𝜇𝑡−1 with respect to 𝑦𝑡−1. Equation 2.6 allows us to decompose the

Jacobian into an identity matrix and a low dimensional Jacobian 𝑔𝑡 that gives the robot

pose change as:

𝐺𝑡 = 𝐼 + 𝐹𝑥
𝑇𝑔𝑡𝐹𝑥 2.8

with

𝑔𝑡 =

(

0 0 −

𝑣𝑡
𝜔𝑡
cos 𝜇𝑡−1,𝜃 +

𝑣𝑡
𝜔𝑡
cos(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

0 0 −
𝑣𝑡
𝜔𝑡
sin 𝜇𝑡−1,𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

0 0 0)

 . 2.9

Substituting these in EKF gives the mean and covariance at time t,

𝜇̅𝑡 = 𝜇𝑡−1 + 𝐹𝑥
𝑇

(

−
𝑣𝑡
𝜔𝑡
sin 𝜇𝑡−1,𝜃 +

𝑣𝑡
𝜔𝑡
sin(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

𝑣𝑡
𝜔𝑡
cos 𝜇𝑡−1,𝜃 −

𝑣𝑡
𝜔𝑡
cos(𝜇𝑡−1,𝜃 + 𝜔𝑡∆𝑡)

𝜔𝑡∆𝑡)

2.10

Σ̅𝑡 = 𝐺𝑡Σ𝑡−1𝐺𝑡
𝑇 + 𝐹𝑥

𝑇𝑅𝑡𝐹𝑥 . 2.11

EKF also requires a measurement model with a noise component,

11

𝑧𝑡
𝑖 = (

𝑟𝑡
𝑖

𝜙𝑡
𝑖

𝑠𝑡
𝑖

) =

(

√(𝑚𝑗,𝑥 − 𝑥)

2
+ (𝑚𝑗,𝑦 − 𝑦)

2

𝑎𝑡𝑎𝑛2(𝑚𝑗,𝑦 − 𝑦,𝑚𝑗,𝑥 − 𝑥) − 𝜃
𝑚𝑗,𝑠)

⏟
ℎ(𝑦𝑡,𝑗)

+ 𝑁

(

0, (

𝜎𝑟 0 0
0 𝜎𝜙 0

0 0 𝜎𝑠

)

⏟
𝑄𝑡)

2.12

where 𝑚𝑗,𝑥 and 𝑚𝑗,𝑦 denote the landmark coordinates at time t and 𝑚𝑗,𝑠 is its

signature. 𝜙 is the bearing and r is the range of landmark j, which is the ith

component in the measurement vector and s is its signature as observed by the robot.

Therefore, the Taylor approximation gives us,

ℎ(𝑦𝑡, 𝑗) ≈ ℎ(𝜇̅𝑡, 𝑗) + 𝐻𝑡
𝑖(𝑦𝑡 − 𝜇̅𝑡) . 2.13

Here 𝐻𝑡
𝑖 is the derivative of h with respect to the full state vector 𝑦𝑡. Since the

measurement function h, only depends on the robot pose 𝑥𝑡 and the location of the jth

landmark 𝑚𝑗, the derivative factors into a low-dimensional Jacobian ℎ𝑡
𝑖 and a matrix

𝐹𝑥,𝑗 , which maps ℎ𝑡
𝑖 into a matrix of the dimension of the full state vector:

𝐻𝑡
𝑖 = ℎ𝑡

𝑖𝐹𝑥,𝑗 2.14

where, ℎ𝑡
𝑖 is the Jacobian of the function ℎ(𝑦𝑡, 𝑗) at 𝜇̅𝑡 calculated with respect to

𝑥𝑡 and 𝑚𝑗:

ℎ𝑡
𝑖 =

(

𝜇̅𝑡,𝑥 − 𝜇̅𝑗,𝑥

√𝑞𝑡

𝜇̅𝑡,𝑦 − 𝜇̅𝑗,𝑦

√𝑞𝑡
0

𝜇̅𝑗,𝑥 − 𝜇̅𝑡,𝑥

√𝑞𝑡

𝜇̅𝑗,𝑦 − 𝜇̅𝑡,𝑦

√𝑞𝑡
0

𝜇̅𝑗,𝑦 − 𝜇̅𝑡,𝑦

𝑞𝑡

𝜇̅𝑡,𝑥 − 𝜇̅𝑗,𝑥

𝑞𝑡
−1

𝜇̅𝑡,𝑦 − 𝜇̅𝑗,𝑦

𝑞𝑡

𝜇̅𝑗,𝑥 − 𝜇̅𝑡,𝑥

𝑞𝑡
0

0 0 0 0 0 1)

 . 2.15

The scalar 𝑞𝑡 = (𝜇̅𝑗,𝑥 − 𝜇̅𝑡,𝑥)
2 + (𝜇̅𝑗,𝑦 − 𝜇̅𝑡,𝑦)

2, and 𝑗 = 𝑐𝑡
𝑖 is the landmark

corresponding to 𝑧𝑡
𝑖. 𝐹𝑥,𝑗 is a 6×(3N+3) matrix which maps ℎ𝑡

𝑖 into a 3×(3N+3)

matrix.

12

𝐹𝑥,𝑗 =

(

1 0 0 0 ⋯ 0 0 0 0 0 ⋯ 0
0 1 0 0 ⋯ 0 0 0 0 0 ⋯ 0
0 0 1 0 ⋯ 0 0 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0
0 0 0 0 ⋯ 0 0 1 0 0 ⋯ 0
0 0 0 0 ⋯ 0 0 0 1 0 ⋯ 0)

 . 2.16

Inserting these equations in EKF gives us the Kalman gain and allows addition

of observations into the filter in equations 2.18 and 2.19,

𝐾𝑡
𝑖 = Σ̅𝑡𝐻𝑡

𝑖𝑇(𝐻𝑡
𝑖Σ̅𝑡𝐻𝑡

𝑖𝑇 + 𝑄𝑡)
−1

2.17

𝜇̅𝑡 = 𝜇̅𝑡 +𝐾𝑡
𝑖(𝑧𝑡

𝑖 − 𝑧̂𝑡
𝑖) 2.18

Σ̅𝑡 = (𝐼 − 𝐾𝑡
𝑖𝐻𝑡

𝑖)Σ̅𝑡 . 2.19

From the above derivation, it can be concluded that EKF is computationally

expensive. Additionally, it requires memory and update time that is quadratic in N,

the number of landmarks [12]. Also, EKF functions on single hypothesis data

association, i.e., it has no mechanism to represent uncertainty in data association. If a

landmark is incorrectly associated, it can never be undone [13], therefore using the

2D SLAM system for scan matching in the hector_slam ROS package prevents

overconfidence in the EKF estimates [11].

2.2.2 GMapping

The GMapping package uses a Rao-Blackwellized Particle Filter (RBPF) with raw

laser data from long range LASER scanners and odometry to create 2D grid maps.

Unlike the Gaussian Kalman filter and EKF, a PF is well suited for multimodal

beliefs. In PFs the posterior belief 𝑏𝑒𝑙(𝑥𝑡) is represented by a random set of state

samples or particles drawn from the parametric probability distribution of the

posterior and as explored in [12] is denoted by,

𝑥0:𝑡
[𝑚]

= 𝑥0
[𝑚], 𝑥1

[𝑚], … . , 𝑥𝑡
[𝑚] . 2.20

13

This algorithm can be easily modified by adding 𝑥𝑡
[𝑚]

 to 𝑥0:𝑡−1
[𝑚]

. The posterior is

calculated over all state sequences as opposed to the current state sequence:

𝑏𝑒𝑙(𝑥0:𝑡) = 𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) 2.21

where, 𝑢𝑡 is the control variable and 𝑧𝑡 is the measurement. Based on the Bayes

filter algorithm,

𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥0:𝑡, 𝑧1:𝑡−1, 𝑢1:𝑡)𝑝(𝑥0:𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) 2.22

based on the Markov assumption,

= 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥0:𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) 2.23

= 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥0:𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡) 2.24

𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) . 2.25

Here, the constant 𝜂 is the normalization factor. Maintaining all states in the

posterior leads to the absence of integral signs. Assuming the particle set at time

t-1 is distributed according to 𝑏𝑒𝑙(𝑥0:𝑡−1), for the mth particle in the set 𝑥0:𝑡−1
[𝑚]

,

the sample 𝑥𝑡
[𝑚]

 is generated from the proposal distribution:

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑏𝑒𝑙(𝑥0:𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) 2.26

with

𝑤𝑡
𝑚 =

𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
2.27

=
𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1)

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1)
2.28

= 𝜂𝑝(𝑧𝑡|𝑥𝑡) . 2.29

By resampling particles with probability proportional to importance weight 𝑤𝑡
𝑚,

the resulting particles are distributed according to,

14

 𝜂𝑤𝑡
𝑚𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥0:𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) = 𝑏𝑒𝑙(𝑥0:𝑡) . 2.30

If 𝑥0:𝑡
[𝑚]

 is distributed according to 𝑏𝑒𝑙(𝑥0:𝑡), then 𝑥𝑡
[𝑚]

 is distributed according to

𝑏𝑒𝑙(𝑥𝑡).

[12] discusses some practical considerations in the PF algorithm:

• variability due to random sampling,

• variation is amplified by resampling,

• choosing a set of samples from a distribution introduces sampling bias,

• exponential computation cost, and

• absence of particles in the correct state vicinity.

The RBPF method as introduced in [14] reduces computation effort as SLAM can

potentially have millions of dimensions to make it more suitable for the SLAM problem.

Using [15] and [16], the gmapping approach uses a PF in which each particle carries an

individual map of the environment. To reduce the number of particles, a selective

resampling strategy based on the effective sample size is applied considering the

movement of the robot and the most recent observation.

2.2.3 Karto SLAM

Karto SLAM uses a graph-based SLAM approach like the one shown in Figure

8.

Figure 8 Typical graph-based SLAM system [17].

The front-end of a graph-based SLAM deals with sensor data whereas the backend is

where the robot poses are corrected for an efficient environment map. As discussed in

[17], Karto SLAM uses the Levenberg-Marquardt (LM) algorithm as a framework to

15

optimise a set of poses, c which is a collection of the robot’s translation ‘t’ and angle ‘θ’

as given by,

𝑐𝑖 = [𝑡𝑖, 𝜃𝑖] = [𝑥𝑖 , 𝑦𝑖, 𝜃𝑖] 2.31

and constraints, which are the measurement of a node, 𝑐𝑖, from another, 𝑐𝑗. Their

offset,

ℎ(𝑐𝑖, 𝑐𝑗) ≡ {
𝑅𝑖
𝑇(𝑡𝑗 − 𝑡𝑖)

𝜃𝑗 − 𝜃𝑖
2.32

is the measurement equation, where 𝑅𝑖 is given by the 2×2 rotation matrix of 𝜃𝑖.

The error associated with each constraint is,

𝑒𝑖𝑗 ≡ 𝑧𝑖̅𝑗 − ℎ(𝑐𝑖, 𝑐𝑗) 2.33

and the total error is,

𝜒2(𝒄, 𝒑) ≡∑𝑒𝑖𝑗
𝑇Λ𝑖𝑗𝑒𝑖𝑗

𝑖𝑗

2.34

where, 𝑧𝑖̅𝑗 is the measured offset between 𝑐𝑖 and 𝑐𝑗 in 𝑐𝑖’s frame and Λ𝑖𝑗 is the

precision matrix. Each iteration of the LM algorithm,

• sets up the linear system by assigning the values of c to vector x and

error function to vector e,

Λ ≡ [
Λ𝑎𝑏

⋱
Λ𝑚𝑛

] 2.35

𝐉 ≡
𝜕𝑒

𝜕𝑥
2.36

𝐇 ≡ 𝐉𝑇Λ𝐉 2.37

• decomposes H,

(𝐇 + 𝜆 𝑑𝑖𝑎𝑔𝐇)∆x = 𝐉𝑇Λ𝑒 2.38

16

where λ is a small multiplier and J is the Jacobian of the measurement

function h given by,

𝜕𝑒𝑖𝑗

𝜕𝑡𝑖
≡ [−𝑅𝑖

𝑇

0 0
]

𝜕𝑒𝑖𝑗

𝜕𝜃𝑖
≡ [
𝜕𝑅𝑖

𝑇

𝜕𝜃𝑖
⁄ (𝑡𝑗 − 𝑡𝑖)

−1
]

𝜕𝑒𝑖𝑗

𝜕𝑡𝑗
≡ [𝑅𝑖

𝑇

0 0
]

𝜕𝑒𝑖𝑗

𝜕𝜃𝑖
≡ [0 0 1]𝑇 2.39

For the Jacobian 𝐽𝑖 of 𝑒𝑖𝑗 with respect to 𝑐𝑖, H is formed by adding 4

components for each measurement,

⋱
𝐽𝑖
𝑇Λ𝑖𝑗𝐽𝑖 … 𝐽𝑖

𝑇Λ𝑖𝑗𝐽𝑗
⋮ ⋱ ⋮

𝐽𝑗
𝑇Λ𝑖𝑗𝐽𝑖 … 𝐽𝑗

𝑇Λ𝑖𝑗𝐽𝑗

⋱

2.40

• and computes ∆x by solving the linear equation. Adding this increment

to the current value yields,

𝑡𝑖 = 𝑡𝑖 + ∆𝑡𝑖 𝜃𝑖 = 𝜃𝑖 + ∆𝜃𝑖 2.41

Karto SLAM applies a simple Bayesian filter as explored in [18] for scan matching

and recognizing previously visited locations, also known as loop closure, which then

removes irrelevant and poor-quality observations.

2.2.4 Real-Time Appearance-Based Mapping

RTAB-Map, as introduced in [19], is a graph-based SLAM approach which uses a

discrete Bayesian filter to track its appearance-based loop closure detection with an

efficient memory management approach [20] shown in Figure 9. Appearance based

methods use data collected from vision sensors for localization and building a map

of the environment.

17

Figure 9 RTAB-Map Memory management model [20].

As discussed in [19], [20] and [21], RTAB-Map uses SIFT/SURF local feature

descriptor to extract information from images captured by the vision sensor. The

discrete Bayesian filter tracks loop closures by calculating the probability that the

current location has already been visited using:

𝒑(𝑆𝑡|𝐿
𝑡) = 𝜂𝒑(𝐿𝑡|𝑆𝑡)⏟

Observation

∑ 𝒑(𝑆𝑡|𝑆𝑡−1 = 𝑖)⏟
Transition

𝑡𝑛

𝑖=−1

𝑝(𝑆𝑡−1 = 𝑖|𝐿
𝑡−1)

⏟
Belief

 . 2.38

Here, 𝑆𝑡 is the variable that represents the loop closure state, 𝐿𝑡 is the current

location, 𝑡𝑛 is the time index for the newest location, η is used for normalization and

𝐿𝑡 is the set of all observed locations. The observation model is estimated using:

𝑝(𝐿𝑡|𝑆𝑡 = 𝑗) = 𝔏(𝑆𝑡 = 𝑗|𝐿𝑡) = {

𝑠𝑗 − 𝜎

𝜇
, if 𝑠𝑗 ≥ 𝜇 + 𝜎

1, otherwise
2.39

where, 𝔏(𝑆𝑡|𝐿𝑡) is the likelihood function, 𝑠𝑗 is the score with σ standard

deviation and μ mean.

18

As the robot ventures deeper in the environment the number of images to compare will

increase making loop closure detection slower. To make the process more effective and

real-time, RTAB-Map’s memory management model uses only a certain number of

locations, stored in its working memory, for loop closure detection and rest of the

locations are stored in its long-term memory. This means that only the current map of

the environment is built locally while the global map is updated online. Loop closure

detection, like in all SLAM algorithms, helps optimise the map built. RTAB-Map will

be discussed further in chapter 5.

2.3 PARAMETER OPTIMISATION USING GA

In the packages discussed above, multiple parameters, like the ones mentioned in Table

1, with a range of values are used to produce effective maps. For example, in Karto

SLAM the radius of search area and the number of consecutive nodes can be used to

finetune the resultant map. The values for these parameters are set using prior

experience and knowledge in the field. Using a GA to get optimal values for these

parameters not only allows testing various combinations of parameter values, but also

most of these tests can be run in simulation. This means real-time testing can be limited

to the optimal set of values which makes it ideal when physical resources are limited or

available for a limited amount of time.

Table 1 Partial list of parameters used in different SLAM packages.

Hector SLAM GMapping Karto SLAM RTAB-Map

~map_update_distance

_thresh
~throttle_scans ~throttle_scans ~rgbd_cameras

~map_update_angle_th

resh

~map_update_i

nterval

~map_update_inter

val
~queue_size

~laser_min_dist ~maxUrange
~minimum_travel_

distance
~map_filter_angle

~laser_max_dist ~iterations
~minimum_travel_

heading
~iterations

19

Hector SLAM GMapping Karto SLAM RTAB-Map

~scan_subscriber_queu

e_size
~linearUpdate ~scan_buffer_size ~Vis/MinInliers

~map_resolution
~angularUpdat

e

~loop_search_maxi

mum_distance

~Mem/RehearsalSi

milarity

~map_size ~particles
~loop_search_space

_dimension
~Kp/MaxDepth

20

CHAPTER 3 QBOT2 SENSORS AND THEIR

APPLICATIONS

This chapter introduces the robot used for this research and briefly discusses its various

sensors. This setup uses a Quanser QBot2, shown in Figure 10, which is an AGV that is

mounted on a Kobuki mobile robot platform. Table 2 lists the main specifications of the

robot.

Table 2 QBot2 specifications [22].

Robots use a wide variety of sensors to obtain information about their surroundings.

These can be classified into sensors that sense a robot’s internal measurements, i.e.,

proprioceptive and sensors that obtain data from the environment, i.e., exteroceptive;

sensors that measure surrounding energy, i.e., passive and sensors that interact with the

territory, i.e., active [1]. The QBot2 has wheel encoders, cliff sensors, bumper sensors,

wheel drop sensors, overcurrent sensors, a 3-axis gyroscope, a battery voltage sensor

and a Microsoft Kinect RGB camera and depth sensor [22]. Here, the wheel encoders,

gyroscope and battery voltage sensors are examples of proprioceptive whereas the

bumper sensors and the Kinect sensor are exteroceptive. Additionally, bumper sensors,

gyroscope and Kinect sensor are passive whereas wheel encoders and cliff sensors are

active sensors. As mentioned in [22], the QBot2 contains three digital bumper sensors,

left, right and centre, located on the front frame of the Kobuki base. They return binary

outputs indicating contact or collision based on whether the frame is compressed or not.

21

Figure 10 The Quanser QBot2 [22].

There are three analog and digital cliff sensors, left, right and centre, located below the

Kobuki frame, that detect cliffs by identifying changes in the distance between the

robot base and the floor. The two, left and right, wheel drop sensors identify whether a

wheel has dropped or not, enabling the robot to perceive uneven ground.

3.1 WHEEL ENCODERS

The Kobuki robot platform is driven by two differential drive wheels with inbuilt high

accuracy wheel encoders that sense 2578.33 ticks/wheel revolution and 11.7 ticks/mm.

Wheel encoders are proprioceptive sensors used to estimate robot position over time

and this process is known as Odometry. The odometry data provides an approximate

position of the robot to serve as the initial estimate of where the robot might be in the

SLAM process. Inaccuracies due to drift and slippage make motion estimation prone

to error. For the QBot2, a differential drive robot, the motion can be modelled using

forward kinematics.

Kinematics is the study of the mathematics of motion without considering the

forces that affect the motion [23]. The forward kinematics of a differential drive

22

robot can be derived as discussed in [24] and [1]. For a robot moving with speed

V and angular velocity ω, let 𝜙r and 𝜙l be the rotational velocity of right and left

motors respectively, when sampling at an interval of Δt. The QBot2 has a wheel

radius r of 0.035(m) and half wheel distance l of 0.235/2(m). In Figure 11, I is

used to define arbitrary inertial basis, therefore, XI, YI axes are the axes for the

global reference frame.

𝜉𝐼 = [
𝑥
𝑦
𝜃
] 3.1

Figure 11 Posture definition in the global reference frame and the robot local

reference frame for a wheeled differential drive robot [24].

where, θ is the robot’s heading angle. The robot’s reference frame/local

reference frame R is,

𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 3.2

Using this to map motion from global to local reference frame,

𝜉𝑅̇ = 𝑅(𝜃)𝜉𝐼̇ 3.3

23

= [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] [

𝑥̇
𝑦̇

𝜃̇

] 3.4

= [

𝑥̇𝑐𝑜𝑠𝜃 + 𝑦̇𝑠𝑖𝑛𝜃
−𝑥̇𝑠𝑖𝑛𝜃 + 𝑦̇𝑐𝑜𝑠𝜃

𝜃̇

] . 3.5

From the forward kinematic model, the overall speed of robot in the global

reference frame,

𝜉̇𝐼 = [

𝑥̇
𝑦̇

𝜃̇

] = 𝑓(𝑙, 𝑟, 𝜃, 𝜙̇𝑟 , 𝜙̇𝑙) 3.6

𝜉̇𝐼 = 𝑅(𝜃)
−1𝜉̇𝑅 . 3.7

When the robot moves forward along the goal, if one wheel spins while the

other is stationary, since P is halfway between the 2 wheels, the robot will move

instantaneously with half the speed.

𝑉𝑟 =
𝑟𝜙̇𝑟
2

3.8

𝑉𝑙 =
𝑟𝜙̇𝑙
2
 . 3.9

Consider, the forward spin of right wheel results in anti-clockwise rotation,

𝜔𝑟 =
𝑟𝜙̇𝑟
2𝑙

3.10

because the wheel is instantaneously moving along the arc of a circle with

radius 2l. For the left wheel, forward spin results in clockwise rotation,

𝜔𝑙 =
𝑟𝜙̇𝑙
2𝑙
 . 3.11

The kinematic model for a differential drive robot,

24

𝜉̇𝐼 = 𝑅(𝜃)
−1

[

𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2

0
𝑟𝜙̇𝑟
2𝑙
−
𝑟𝜙̇𝑙
2𝑙]

3.12

𝑅(𝜃)−1 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] 3.13

assuming robot moves towards goal along θ.

Therefore,

𝜉̇𝐼 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

]

[

𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2

0
𝑟𝜙̇𝑟
2𝑙
−
𝑟𝜙̇𝑙
2𝑙]

3.14

𝜉̇𝐼 =

[

 𝑐𝑜𝑠𝜃 (

𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2
)

𝑠𝑖𝑛𝜃 (
𝑟𝜙̇𝑟
2
+
𝑟𝜙̇𝑙
2
)

𝑟𝜙̇𝑟
2𝑙
−
𝑟𝜙̇𝑙
2𝑙]

= [

𝑥̇
𝑦̇

𝜃̇

] . 3.15

This approach to kinematic modeling provides information about the motion of the

robot given its component wheel speeds.

3.2 GYROSCOPE

Gyroscopes are passive proprioceptive heading sensors used to determine the robot’s

orientation and inclination. They measure angular acceleration and therefore can be

used to measure the robot’s orientation in relation to a fixed reference frame [23]. The

QBot2 uses a L3G4200D 3-axis digital gyroscope manufactured by STMicroelectronics

[25]. It measures in the ±250 degrees/s range where the Yaw axis (angular rotation

along the Z-axis) is factory calibrated within the range of ±20 deg/s to ±100 deg/s. It is

25

also relatively immune to shocks and vibrations [25]. However, gyroscopes accumulate

small measurement errors over time resulting in gradual loss of accuracy.

3.3 VISUAL SENSORS

Recently visual sensors have grown in popularity in robotic applications. A visual

sensor or camera captures an image of the surrounding space and this digital image is

processed in order to obtain information like depth, motion, colour and feature [1].

Digital cameras capture light and process it into digital images. Placing red, green or

blue filters over the images allows them to measure light intensity of each colour and

produce a colour image. Ranging is an important aspect in sensing as it provides

information vital to collision avoidance. Generally, cameras measure scene structure as

opposed to the distance between the object and the robot in lasers and sonars [23].

Depth sensors in cameras make ranging and recreating 3D objects from the 2D images

easier.

3.3.1 Microsoft Kinect Sensor

Figure 12 Xbox 360 Kinect sensor [26].

The QBot2 comes equipped with a Microsoft Kinect sensor, as shown in Figure 12, that

includes an RGB camera for capturing image data as well as a 3D depth sensor that

captures 11-bit depth data at the resolution of 680 × 480 and several frame-rates [22].

The depth sensor consists of a monochrome infrared camera and an infrared projector

which evaluates distance from each point on an object based on the time of flight of

infrared light. As presented in [22], the depth sensor has a range of 0.5 m to 6 m. Once

it is mounted on the QBot2, the Kinect sensor can be tilted up and down whenever

needed as shown in Figure 13. The QBot2 Kinect sensor is optimal for indoor

26

applications and in locations without direct sunlight due to the type of infrared sensor

used.

Figure 13 QBot2 with tilted Kinect sensor [22].

3.3.2 Visual Odometry

The process of determining robot position using a sequence of images is called Visual

Odometry [27]. It can be used for map building and obstacle avoidance even in spaces

where little or no a-priori knowledge is available. Visual Odometry was successfully

implemented for the first time in [28] using monocular (one camera) and stereo (two

cameras) setups. When using two cameras the measurements can be obtained directly in

the global reference frame. However, when using a single camera, the global reference

frame needs to be determined in collusion with other sensors or from a-priori

knowledge of objects and surroundings [1]. In [28], it was observed that the stereo

vision scheme works better when compared to the monocular scheme as it can operate

efficiently even without camera motion. Like wheel encoders based odometry, visual

odometry also inevitably suffers from motion drift over time, however, this can be

overcome when the robot revisits an area. When compared to other sensors, vision

sensors are capable of place or location recognition which is like loop closure,

commonly discussed in the SLAM problem.

27

3.3.3 Feature Detection

When sensors, including cameras, detect objects, they identify either appearance or

features. Most common odometry and SLAM techniques use feature detection as

opposed to appearance detection since detecting features is faster and more accurate

than detecting appearances [29]. The two feature detection techniques reviewed in this

section are Scale Invariant Feature Transform or SIFT and Speeded Up Robust Features

or SURF.

SIFT was introduced in [30] as a method to generate image features that transform an

image into a large collection of local feature vectors, invariant to translation, rotation

and scaling and partially invariant to illumination changes and 3D projection. As

explored in [31] there are four major stages in generating image features.

Scale space extrema detection:

Identifying locations and scales that can be repeatedly assigned under different views of

the same object enables Keypoint detection. The scale space of an image is defined as

the function:

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) 3.16

where, * is the convolution operation in x and y and I(x, y) is the input image. The

variable-scale Gaussian is given by:

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒−(𝑥

2+𝑦2) 2𝜎2⁄ . 3.17

The difference between two nearby scales, separated by a constant multiplicative factor

k, enables efficient detection of stable keypoint locations in scale space,

𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)) ∗ 𝐼(𝑥, 𝑦)

= 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎). 3.18

The values of the difference-of-Gaussian function and the scale-normalized Laplacian

of Gaussian, 𝜎2∇2𝐺, are approximately close to each other. Here 𝜎2 provides true scale

invariance. From the heat diffusion equation:

28

𝜕𝐺

𝜕𝜎
= 𝜎∇2𝐺. 3.19

Therefore,

𝜎∇2𝐺 =
𝜕𝐺

𝜕𝜎
≈
𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎)

𝑘𝜎 − 𝜎
3.20

and,

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎) ≈ (𝑘 − 1)𝜎2∇2𝐺. 3.21

This shows that the difference-of Gaussian is already a scale-invariant Laplacian.

Keypoint localization:

Once a keypoint has been identified, location, scale and ratio of principal curvatures

need to be determined to reject low contrast points or points poorly localized on

edges. For the sample point to be the origin, the Taylor expansion of scale space

function, D(x, y, σ), is used:

𝐷(𝑥) = 𝐷 +
𝜕𝐷

𝜕𝐱

𝑇

𝐱 +
1

2
𝐱𝑇
𝜕2𝐷

𝜕𝐱2
𝐱 3.22

where, x = (𝑥, 𝑦, 𝜎)𝑇 is offset from the sample point. The local extremum is,

𝐱̂ = −
𝜕2𝐷

𝜕𝐱2

−1
𝜕𝐷

𝜕𝐱
 . 3.23

For rejecting unstable extrema,

𝐷(𝐱̂) = 𝐷 +
𝜕𝐷

𝜕𝐱

𝑇

𝐱̂ 3.24

is obtained by substituting equation 3.23 into equation 3.22.

Poorly determined locations along edges need to be eliminated as they are susceptible

to small noises. The difference-of-Gaussian function will have a large principal

curvature across the edge but a small perpendicular one, which can be determined by,

𝐇 = [
𝐷𝑥𝑥 𝐷𝑥𝑦
𝐷𝑥𝑦 𝐷𝑦𝑦

] 3.25

29

where, the components of the Hessian matrix H are estimated by the differences

between the neighbouring sample points. The sum and product of eigenvalues are

computed from the trace and determinant of H respectively as,

𝑇𝑟(𝐇) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 = 𝛼 + 𝛽 3.26

𝐷𝑒𝑡(𝐇) = 𝐷𝑥𝑥 + 𝐷𝑦𝑦 − (𝐷𝑥𝑦)
2
= 𝛼𝛽 3.27

where, α is the largest magnitude eigenvalue and β is the smaller one. The point will

be discarded for not being an extremum when the determinant is negative.

𝑇𝑟(𝐇)2

𝐷𝑒𝑡(𝐇)
=
(𝛼 + 𝛽)2

𝛼𝛽
=
(𝑟 + 1)2

𝑟
3.28

where the ratio r = α/β. The below equation is verified to check if the ratio of principal

curvatures is below threshold,

𝑇𝑟(𝐇)2

𝐷𝑒𝑡(𝐇)
<
(𝑟 + 1)2

𝑟
 . 3.29

Orientation assignment:

To accomplish image rotation invariance, a consistent orientation is assigned to each

keypoint. For scale-invariant computations, the keypoint scale is used to select the

closest scale Gaussian smoothed image, L. Using pixel differences, the gradient

magnitude is precomputed as,

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))
2

3.30

and the orientation as,

𝜃(𝑥, 𝑦) = tan−1 (
𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)
) 3.31

where L(x,y) is the image sample.

30

Keypoint descriptor:

In the above stages, a keypoint has been assigned an image location, scale and

orientation. Finally, a highly distinctive and invariant descriptor for the local image

region is computed that makes the keypoint immune to light and 3D viewpoint changes

as detailed in [31].

SURF was introduced in [32] as a faster technique for feature detection that balances

reducing dimensions and complexity with maintaining distinction. SURF constitutes a

detector and a descriptor that draws heavily from SIFT. The Hessian matrix-based

detector uses a basic approximation, similar to the difference-of -Gaussian function in

SIFT, that relies on integral images for image convolutions to reduce the computation

time. The SIFT descriptor is distinctive and relatively fast; however, high

dimensionality makes the matching step inefficient. Therefore, the SURF descriptor

describes a distribution of Haar-wavelet responses within the neighbourhood of interest

point and exploits integral images for speed. The dimensions are restricted to 64 and

based on the sign of the Laplacian a new indexing step is presented to reduce feature

computation and matching time and increase robustness. A further improvement

suggested to SURF is Upright-SURF, which is suited for applications with horizontally

positioned cameras, is even faster to compute.

3.4 ROBOT SIMULATION

A TurtleBot2 as shown in Figure 14, uses a Kinect 360 RGB-D sensor like the QBot2,

which means their cameras have the same resolutions and depth sensors. Because both

robots use a Kobuki base, same range of sensors like the cliff sensor, bumper sensor,

wheel encoders and gyroscope, and a similar payload of approximately 4.5 kg to 5 kg,

the TurtleBot2 robot is a good stand-in for the QBot2. Therefore, for easier

implementation we use the pre-existing TurtleBot2 ROS packages instead of creating

new simulation packages for a QBot2. The only minor differences are that the QBot2

uses a Raspberry Pi whereas the TurtleBot2 uses Intel Core i3-4010U as their onboard

computers and the TurtleBot2 is taller than the QBot2..

31

Figure 14 TurtleBot2, TurtleBot 2e and TurtleBot 2i [33].

32

CHAPTER 4 ROS SETUP

This chapter discusses the step by step instructions and the commands for the installation

and setup of

• Oracle VirtualBox VM

• ROS- Installation and Programming

• ROS packages for simulation experiments

• ROS packages for QBot2 experiments.

4.1 CREATING VIRTUALBOX VM AND ROS INSTALLATION

To setup ROS for the purpose of the simulation portion of this research, multiple Oracle

VirtualBox VMs were created using the following steps:

• Oracle VM VirtualBox version 6.1 was downloaded and installed using

instructions from [34]. Ubuntu 16.04 LTS was downloaded from [35].

• A new VM was created in the VirtualBox with 1 core CPU, 2 GB RAM and 30

GB fixed hard disk. As detailed in [36] the VM was powered on and Ubuntu

16.04 LTS was installed as the operating system on the VM. This step was

repeated to created multiple VMs so the different experiments could be

conducted simultaneously.

• The Kinetic Kame version of ROS was installed on these VMs along with its

dependencies and Ubuntu updates by following the instructions from table 3.

Kinetic Kame is the recommended ROS version for Ubuntu 16.04 LTS. It has

extended support till 2021 and with comprehensive documentation available.

Table 3 ROS Kinetic Installation Instructions [10].

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

$ sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

$ sudo apt-get update

33

$ sudo apt-get install ros-kinetic-desktop-full

$

$

$

$

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

sudo apt install python-rosdep python-rosinstall python-rosinstall-generator

python-wstool build-essential

sudo apt install python-rosdep

$ sudo rosdep init

$ rosdep update

4.2 PROGRAMMING WITH ROS

Before programming in ROS, a workspace needs to be created. The folder called ROS

workspace or catkin workspace is where new ROS packages are created, existing

packages are installed, and new executables are built and created [36]. catkin is a set of

tools that ROS uses to generate programs, libraries, scripts and interfaces that other code

can use [1]. To create a catkin workspace use [10]:

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/

$ catkin_make

A ROS package is a combination of code, data and documentation [7]. Instead of having

to change the source directory to the catkin workspace created above, every time a new

ROS package is created or an existing ROS package is edited, source the catkin_ws and

overlay it on your environment using:

$ source devel/setup.bash

One useful ROS package for programming robots is the tf package where tf stands for

transform. A robotic system typically has many 3D coordinate frames such as a world

frame, base frame, head frame, etc., that change over time as shown in Figure 15. The

RGB cylinders in the figure represent the X, Y, and Z axes of the coordinate frames. tf

keeps track of all these frames and maintains the relationship between coordinate frames

in a tree structure buffered in time [10].

34

Figure 15 The different 3D coordinate frames of Willow Garage’s PR2 robot [37].

The tf library was designed to provide a standard way to keep track of coordinate frames

and transform data from one system to another, in such a way that individual component

users can be confident that the data is in the coordinate frame that they want, without

requiring knowledge of all the coordinate frames in the system [37].

4.3 ROS PACKAGES USED

4.3.1 Gazebo

Gazebo is a tool in which 3D environments along with different types of robots can be

simulated with a high degree of precision [38]. The gazebo_ros package provides an

interface between Gazebo and ROS. It incorporates many, ready to work, simulated

sensors and robots and allows usage of existing standard ROS plugins for Gazebo. Being

able to control the world and the robot with command-line interface makes it the ideal

choice for this research. Currently Gazebo version 11.0 is available, however, ROS

kinetic supports Gazebo7 and comes preinstalled with Gazebo 7.0. For seamless

operation Gazebo7 needs to be updated to the latest version, which is currently version

7.16, using the commands in Table 4.

35

Table 4 Commands to update Gazebo from version 7.0 to 7.16.

 $ sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable

`lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'

 $ wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -

 $ sudo apt-get update && sudo apt-get install gazebo7 -y

4.3.2 Turtlebot

Install the ROS packages required to use TurtleBot2 with Gazebo using the following

commands [33]:

$ sudo apt-get install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps ros-kinetic-

turtlebot-interactions ros-kinetic-turtlebot-simulator ros-kinetic-kobuki-ftdi ros-kinetic-

ar-track-alvar-msgs

To be able to access the code and make changes to the Turtlebot package, it is built from

source following the instructions in Table 5.

Table 5 Commands to build Turtlebot package from source in ROS Kinetic [39].

 $

 $

 $

 $

 $

mkdir ~/rocon && cd ~/rocon

wstool init -j5 src https://raw.github.com/robotics-in-

concert/rocon/release/indigo/rocon.rosinstall

source /opt/ros/indigo/setup.bash

rosdep install --from-paths src -i -y

catkin_make

 $

 $

 $

 $

mkdir ~/kobuki

cd ~/kobuki

wstool init src -j5

https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/kobuki.rosi

nstall

source ~/rocon/devel/setup.bash

https://raw.github.com/robotics-in-concert/rocon/release/indigo/rocon.rosinstall
https://raw.github.com/robotics-in-concert/rocon/release/indigo/rocon.rosinstall
https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/kobuki.rosinstall
https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/kobuki.rosinstall

36

 $

 $

rosdep install --from-paths src -i -y

catkin_make

 $

 $

 $

 $

 $

 $

mkdir ~/turtlebot

cd ~/turtlebot

wstool init src -j5

https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/turtlebot.ro

sinstall

source ~/kobuki/devel/setup.bash

rosdep install --from-paths src -i -y

catkin_make

The rocon, kobuki and turtlebot workspaces created using the commands from the above

table are chained and source information from each other.

4.3.3 rtabmap and rtabmap_ros

The rtabmap and rtabmap_ros packages [40] build a step-by-step map of the

environment that is then optimized by loop closure detection, as illustrated by Figure 16.

By default, the maps are stored in "~/.ros/rtabmap.db". The rtabmap_ros package

contains the parameters for ROS and RTAB-Map. The ROS parameters connect the

RTAB-Map library, which constitutes RTAB-Map parameters, with ROS. Like the

turtlebot package in the previous section, to be able to access the code and make changes

to the rtabmap_ros package, it is built from source as shown in Table 6. To install the

dependencies for these packages, use the following commands:

$ sudo apt-get install ros-kinetic-rtabmap ros-kinetic-rtabmap-ros

$ sudo apt-get remove ros-kinetic-rtabmap ros-kinetic-rtabmap-ros

Table 6 Commands to build rtabmap and rtabmap_ros packages from source in

ROS Kinetic [40].

 $

 $

cd ~

git clone https://github.com/introlab/rtabmap.git rtabmap

https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/turtlebot.rosinstall
https://raw.github.com/yujinrobot/yujin_tools/master/rosinstalls/indigo/turtlebot.rosinstall
https://github.com/introlab/rtabmap.git

37

 $

 $

 $

 $

cd rtabmap/build

cmake ..

make

sudo make install

 $

 $

 $

cd ~/catkin_ws

git clone https://github.com/introlab/rtabmap_ros.git src/rtabmap_ros

catkin_make -j1

4.3.4 rviz

RViz is ROS’s 3D visualising tool. This is where the robot’s movements and map

building process can be observed in real time. To transform data from the robot’s local

reference frame to the global reference, rviz uses the tf package. The command [41] used

to install rviz is:

$ sudo apt-get install ros-kinetic-rviz

It also allows users to interactively set intermediate goals and exploration boundaries for

the robot using the 2D Nav goal setting.

4.3.5 explore_lite

To automate the robot movement, instead of having to continuously interact with the

robot using the keyboard or a joystick as shown in section 4.4, we use the explore_lite

ROS package. It is a frontier-based approach for autonomous exploration [42], where

based on the information of the world obtained via images from Kinect sensor the

algorithm processes intermediate goals for the robot. As detailed in [42], a robot will start

at the origin and will look for frontiers, i.e., boundaries between unknown and

unoccupied spaces in the environment. Once frontiers are detected, the nearest possible

frontier will be set as the intermediate goal for the robot. For path planning, this package

uses a depth first search to find the shortest path from the robot’s current location to its

intermediate goal. Once a frontier has been visited, it is added to a list of known

locations. explore_lite allows the robot to search its world greedily until no new frontier

https://github.com/introlab/rtabmap_ros.git

38

is detected. As shown in Figure 16, the blue arrows indicate unexplored areas or frontiers

in the environment. The explore_lite package [43] is more cost efficient than other

similar packages as it obtains map information from the rtabmap_ros package and

odometry information from the turtlebot package. Using this data, it sends commands to

the robot base for movement, so it does not need to create its own map. To install

explore_lite the command below is used:

$ sudo apt install ros-kinetic-multirobot-map-merge ros-kinetic-explore-lite

Figure 16 Unexplored frontiers detected by explore_lite package [43].

4.4 PACKAGES FOR QBOT2 TESTING

To setup the platform to test QBot2 robot, an Ubuntu laptop with 64-bit 16.04 LTS OS,

8.00 GB RAM, 256 GB SSD storage, Intel Core i5 7200 2.50 GHz to 2.71 GHz

processor was used. Following the instructions from Table 2 ROS Kinetic Kame was

installed and from section 4.2 a catkin_ws was created. Following the instructions from

tables 6 and 7 the turtlebot, rtabmap and rtabmap_ros packages were built from source.

The explore_lite package was also installed to enable autonomous navigation with the

QBot2.

39

4.4.1 Kinect And Kobuki Software Installation

To access the XBOX 360 Kinect sensor in Ubuntu, freenect_stack is built from source

as shown in table 7. This acts as a ROS interface to Microsoft Kinect using the

libfreenect library. It contains the freenect_camera and freenect_launch packages which

in turn contain the camera drivers and launch files, respectively.

Figure 17 The Kobuki mobile robot platform [22].

Table 7 Instructions for Freenect Installation in ROS Kinetic [44].

$ cd ~/catkin_ws/src

$ git clone https://github.com/ros-drivers/freenect_stack/tree/master

$ cd ..

$ catkin_make -j1

The QBot2 is seated on a Kobuki base like the one shown in Figure 17, therefore

Kobuki ROS packages need to be installed in the ubuntu laptop for connection to the

QBot2 using a USB A-B cable. Table 8 contains the list of commands for Kobuki

installation and controlling the QBot2 using the laptop keyboard.

40

Table 8 Instructions for Kobuki Installation in ROS Kinetic [39].

$ sudo apt-get install ros-kinetic-kobuki ros-kinetic-kobuki-core

$ sudo usermod -a -G dialout $USER

$ rosrun kobuki_ftdi create_udev_rules

 # Insert Kobuki’s USB cable and open a new shell

$. /opt/ros/kinetic/setup.bash

$ roslaunch kobuki_node minimal.launch --screen

 # In a second shell

$. /opt/ros/kinetic/setup.bash

$ roslaunch kobuki_keyop keyop.launch --screen

4.4.2 Testing Connections and Sensors

In preparation for conducting the experiments on QBot2, some basic initial tests were

performed. The QBot2 was tested in random walker mode B0 to confirm operating

condition. As discussed in [39], to test the connections and sensors the following

commands were executed.

• To check if the bumpers are working, one of the bumpers was tapped:

$ rostopic echo /mobile_base/events/bumper

• To check the wheel drop sensors, the QBot2 was lifted and then put down:

$ rostopic echo /mobile_base/events/wheel_drop

• To confirm that the QBot2 IMU (Gyroscope) is working and the robot can detect its

orientation, the robot was turned:

$ rostopic echo /mobile_base/sensors/imu_data

• To make the robot move around using the laptop keyboard:

$ roslaunch kobuki_node minimal.launch --screen

$ roslaunch kobuki_keyop safe_keyop.launch –screen

When using safe_keyop command the QBot2 uses the bumpers, cliff and wheel drop

sensors to ensure safe operation.

Furthermore, to test if the RGBD sensor works, connect the USB cable from the camera

and execute the following command:

41

 $ roslaunch freenect_launch freenect.launch depth_registration:=true

In the logs ‘Xbox NUI Camera(2ae) from Microsoft’ should show up as a device, in

another terminal execute:

$ roslaunch rtabmap_ros rtabmap.launch rtabmap_args:="--delete_db_on_start"

The RTAB-Map application should open-up with a window displaying the camera

output.

42

CHAPTER 5 RTAB-MAP AND GENETIC ALGORITHM

In this chapter, the RTAB-Map package and the parameters chosen for optimisation are

discussed. Also, Genetic Algorithm is introduced along with a glimpse of the first GA

SLAM and the MOGA. As the proposed approach employs a MOGA to optimise

RTAB-Map parameters so that the map generated as a result is more efficient and truer

to the environment, the objectives used to optimise RTAB-Map parameters are explored

briefly.

5.1 RTAB-MAP

RTAB-Map SLAM package uses inputs from wheel odometry and a RGBD camera to

create a map. While Hector SLAM and GMapping can be programmed to use the depth

sensor in the RGBD camera as a fake LIDAR or a fake laser respectively, RTAB-Map

works with a camera out of the box which makes it ideal to work with a QBot2 robot.

Figure 18 Block diagram of RTAB-Map ROS node [21].

As more areas of the environment are explored, the time required to process the data to

assemble the map also increases. In RTAB-Map to avoid such delays, a memory

management technique, depicted in Figures 9 and 18, is used where information from

sensors is obtained by the perception module and sent to the sensory memory. Here the

image is allotted a signature using the bag-of-words approach and a local map is created.

[20] and [21] detail how the short-term memory is used to observe similarities between

43

consecutive images and the working memory is used for loop closure detection. To

make loop closures less time-consuming, locations that are less likely to cause loop

closures are transferred to the long-term memory. In RTAB-Map the global map is

assembled online, therefore these local maps are added to its cache and global

occupancy grid is updated with new poses periodically. The overall process to detect

loop closures is outlined in Table 9.

Table 9 RTAB-Map Algorithm [20].

The rtabmap package provides a vast list of parameters that can be modified for an

optimal mapping and localization depending on the environment and hardware. For the

purpose of this research, the following parameters are considered:

• Mem/RehearsalSimilarity: As explained in [19] Rehearsal is the number of times

a location has been matched or consecutively viewed. Hence, Rehearsal

Similarity is the ratio between the number of matched word pairs between the

44

locations being compared and the total number of words in the signature of the

location with more words. It sets the threshold which determines if a location is

unique enough to be kept in the short-term memory or very much like another

location that they can be merged. The parameter key ‘Mem/’ in its name implies

that changing this parameter would make changes to the memory of the

framework. Rehearsal similarity ranges from 0 to 1 and is by default set to 0.3 in

the rtabmap package.

• Kp/MaxDepth: Max Depth filters extracted keypoints by depth. The parameter

key ‘Kp/’ in its name implies that this parameter is keypoint based. A feature’s

depth is estimated with depth image, changing the MaxDepth will change how

loop closures are detected. Depending on the number of loop closures that are

detected, the robot’s trajectory might be different. MaxDepth can range from 0 to

infinity and is by default set to 4.0m.

• Vis/MinInliers: It is the minimum number of feature correspondences required to

accept a loop closure. The parameter key ‘Vis/’ indicates that this is a Visual

registration parameter. Decreasing the value of Vis/MinInliers can help to accept

more localizations whereas increasing it would increase accuracy at the cost of

less localizations in cases with less matching visual features. By default, it is set

to 15 in the rtabmap versions 0.19.6 and 0.20.3.

5.2 GENETIC ALGORITHM

Genetic Algorithms are optimisation algorithms that mimic natural biological

evolutionary behaviour and are based on the Darwinian concept of “competition for a

finite resource”. Genetic programming (GP) is defined as the direct evolution or

breeding of computer programs for the purpose of intuitive learning [45]. GPs might be

linear (Linear Genetic Programming), tree (Syntactic Closure) or graph-based GP

(Neural Network). In a GA, as illustrated in Figure 19, every generation has its own

fixed population, and a selection operator decides which individuals get to be the

parents in each generation. A variation operator, like crossover or mutation, is used to

produce offspring relative to parents. Replacement operator is a type of selection

45

operator that replaces the current population with the children from the previous step, to

be the population for the next generation.

Figure 19 The Generic Evolutionary Model.

5.2.1 Selection Operator

At initialisation of a GA, the population is a random sample of candidate solutions.

Selection operators define processes for selection and replacement based on Darwin’s

natural selection. Fitness function is used to select individuals from the population and

compare them with respect to their fitness. The fitness measure defines the problem the

algorithm is expected to solve [45]. As candidates are evaluated, information is

retained regarding where the search effort should be directed, thus biasing the selection

of individuals, the way children are created and the formulation of a new population.

Efficiency of the process is dependent on the ability to utilize partial information

gleaned from the distribution of individuals and their fitness across the search

landscape.

5.2.2 Variation Operator

In genetic algorithm, variation operators direct the creation of new individuals.

Variation operators can be of three types: Local search – too expensive in practice,

46

Crossover, also known as recombination, and Mutation. In crossover substructures are

exchanged between two, in some cases more individuals resulting in as many children.

Figure 20 Single-point string Crossover [46].

It cannot introduce new genetic material that is not in the gene pool of the population,

therefore, is exploitative. It assumes that the material necessary for an optimal solution

exists in the population. Crossover can be single-point or multi-point. Single-point

crossover is when a point is chosen on the strings and everything after that point is

crossed over, so that everything in the first string after the point ends up in the second

string and vice-versa, as shown in Figure 20. Figure 21 shows crossover in tree-based

GP where subtrees in parents are selected and exchanged and Figure 22 illustrates the

two-point string crossover used in LGP for recombining two individuals.

Figure 21 Crossover in tree-based GP [45].

47

A segment is selected in each of the two parents and exchanged. If one of the resulting

children exceeds the maximum length, crossover is aborted and restarted with

exchanging equally sized segments [45]. When using crossover, a solution associated

with one peak in the search space can be replaced by the offspring associated with a

completely different peak, which can potentially result in the loss of an entire mode of

search space.

Figure 22 Two-point string Crossover in LGP [45].

The mutation operation, on the other hand, randomly replaces a substructure, i.e., a

waypoint, a sub-path, etc. Mutation Operates on a single individual, the parent,

producing a single new individual, the child. It generates new individuals whose

representation (potentially) does not currently exist in the population, i.e., mutation can

introduce new genetic material, hence it is explorative. Introduction of the new genetic

material is regulated by controlling the probability of application.

5.2.3 Objective

The fitness function and the objective for any GA form its cost function. The objective

finds the value of x that maximises the function y = f(x) and a problem can be defined

with a single objective or multiple objectives. When dealing with Single Objective

Optimisation (SOO) the aim is to find the best or approximately the best solution

available [47], for example the setups in [48], [49] and [50]. However, most real-world

problems have multiple objectives, which are sometimes in conflict with each other,

that require optimisation, like for the construction of a bridge minimum cost and

maximum safety is needed [47]. These problems with two or more objective functions

48

are called “multi-objective’’, like the setup in [2] that discusses Multi-Objective

Optimisation (MOO).

5.3 FIRST GENETIC ALGORITHM SLAM

Enhancing SLAM using a GA was introduced in [48] to consider SLAM as a global

optimisation problem, where the setup used a Pioneer Ⅰ mobile robot with a SICK laser

scanner. Using data from a lone laser sensor the robot perceived the environment and

built the map illustrated in Figure 23. This odometer trace was divided into segments of

fixed length and for each segment k, the chromosome contained two floating point

numbers −𝑑𝑚𝑎𝑥 ≤ ∆𝛿𝑘 ≤ +𝑑𝑚𝑎𝑥 and −𝑎𝑚𝑎𝑥 ≤ ∆𝛼𝑘 ≤ +𝑎𝑚𝑎𝑥, that encode the

correction factors applied to the distance d, and angle a, measurements respectively.

The initial population of chromosomes was obtained by randomly initializing the values

of ∆𝛿𝑘 and ∆𝛼𝑘, which were derived from the robot’s odometry and were assumed to

lie within a range of ±2% for both the distances and angles. This data was combined

with the recorded robot laser data to build an occupancy grid [51]. For each cell i in the

grid, the number of laser readings, 𝑜𝑐𝑐𝑖, to find if a cell was occupied and the number

of readings, 𝑒𝑚𝑝𝑖, which indicate if a cell was empty were determined to calculate the

following heuristics:

𝑀𝐶1 = Σ𝑖min(𝑜𝑐𝑐𝑖, 𝑒𝑚𝑝𝑖) 5.1

where 𝑀𝐶1 was Map Consistency, and

𝑀𝐶2 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) × (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) 5.2

where 𝑀𝐶2 was Map Compactness measured in the number of grid cells and 𝑥𝑚𝑎𝑥 and

𝑥𝑚𝑖𝑛 were the maximum and minimum x-coordinates of the bounding box respectively.

These heuristics were then combined to create the fitness function, F, for each map:

𝐹 = 𝑀𝐶1 + 𝑤𝑀𝐶2 5.3

here, w was the weight that determined the relative importance factor of the two

heuristics. The population was then sorted according to its fitness and each string, l,

was assigned an offspring count, 𝑒𝑙, based on its rank.

49

Figure 23 Raw sensor data with the odometry trace and robot laser findings [48].

Figure 24 Corrected sensor data and the corresponding grid map [48].

50

Offspring were allocated to every individual according to the integer part of 𝑒𝑙, and the

strings needed for the rest of the population were obtained by randomly generating new

offspring for each string with the probability of the fractional part of 𝑒𝑙. Pairs of selected

strings were then recombined by multipoint crossover, so that the encoded values in the

two mating strings were completely mixed up in the resulting offspring. Mutation

replaced very low probability single values within the strings with randomly generated

values. Figure 24 shows the corrected sensor data obtained from the fitness solution (left)

and the corresponding grid map (right).

5.4 MULTI-OBJECTIVE GENETIC ALGORITHM

MOO is an area of multiple-criteria decision making concerned with mathematical

optimisation problems involving more than one objective to be optimised

simultaneously [2]. It might be difficult to optimise a single objective by evolution for

certain problems because it may present many local optima or suffer from the bootstrap

problem.

Figure 25 Illustration of Pareto front [52].

Hence, it may be preferable to use a multi-objective formulation and find the most

favourable solution a-posteriori by a trade-off of the objectives from a pareto set. In

[52], Pareto dominance is defined as:

A solution 𝑥∗ is said to dominate another solution x, if both conditions 1 and 2 are true:

1. the solution 𝑥∗ is not worse than x with respect to all objectives.

51

2. the solution 𝑥∗ is strictly better than x with respect to at least one objective.

In Figure 25, the objectives optimised in the problem are represented by the x- and y-

axes, the larger the x and y values the better the solution for that objective. Here, point

A dominates B and all other points in the grey area, whereas A and C do not dominate

each other. The line represents the Pareto set, the set of nondominated solutions, like

point A. As explored in [2] and [47], using Multi Objective Optimisation:

i. promotes the evolution of a more varied set of behaviours by exploring multiple

trade-offs of the objectives to optimise,

ii. avoids premature convergence to local optima possibly introduced by multi-

component fitness functions, and

iii. solves the bootstrap problem by exploiting objectives to guide evolution in the

early phases.

Figure 26 Examples of Pareto based dominance measures [53].

In this research three different methods of implementing a MOGA have been explored,

two Pareto-based dominance measures, namely, dominance rank and dominance count,

and one by introducing a periodic switch in the objectives.

• Dominance rank (DR) is the count of the number of other solutions that

dominate each candidate solution. Figure 26 (a) shows how the lower ranked

52

solutions occupy the pareto front. This mechanism tends to result in a broad front

of solutions being maintained.

• Dominance count (DC) is the count of the number of solutions that each

candidate solution dominates. Figure 26 (b) illustrates solutions with higher

count values occupying the pareto front. This method tends to result in a

concentration of solutions about some focal point.

• Switching fitness (SF) where a switch is implemented to shift between the

objectives. Therefore, rather than attempting to optimise multiple objectives

simultaneously, there is only one objective optimised at any given time [54].

5.5 DEFINING THE OBJECTIVES

To find which set of parameters produces the most accurate map of an environment the

quality of the map needs to be examined. [55] lays out three metrics to evaluate a SLAM

algorithm using its map, namely

• The ratio between the number of occupied cells and the number of free cells,

𝜂 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑚𝑎𝑝

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑎 𝑚𝑎𝑝
 . 5.4

This measure helps determine whether features, such as walls on a map, are

blurred, like the one shown in Figure 27, or appear more than once due to a

failed execution of the algorithm. Lesser value of η indicates that the map is of

better the quality than a map with higher η.

Figure 27 Map with (a) blurred wall and (b) accurate wall [55].

53

• The number of corners in a map, 𝑛𝑐. A lower quality map would contain a

greater number of corners than one of higher quality. For example, consider the

maps in Figure 28, the map on the right side of the figure has 39 corners when

compared to the 107 corners in the map on the left.

• The number of enclosed areas, 𝑛𝑒, represents a similar idea as the number of

corners. If a map is skewed or there was a failed attempt at loop closure, maps

can have overlapping features. [56] suggests following borders to detect

enclosed spaces, hence finding the number of contours in the map could be a

useful technique to find 𝑛𝑒. When comparing the maps in Figure 28, the map

on the right side has 27 contours compared to the 55 contours of the one on the

left.

Figure 28 Comparing maps based on corners and enclosed spaces.

Therefore, it can be concluded that minimizing η, 𝑛𝑐 and 𝑛𝑒 can be considered

conducive to producing more accurate maps.

54

CHAPTER 6 IMPLEMENTATION AND RESULTS

This chapter discusses the steps followed in conducting the different sets of experiments,

the implementation of different MOGA techniques in each set of experiments and the

results of these experiments. The results from the set of simulation experiments are then

used to conduct experiments on the QBot2 robot. The experimental setup and results

from the experiments on the QBot2 are discussed as well.

6.1 AUTONOMOUS EXPLORATION AND MAPPING

For the scope of this research the robot is tested in a custom environment named

‘RoboticsLab’, which is modelled after the Robotics lab located at C160 in the C-

Building at Sexton campus, as shown in Figure 29. It is a 6m × 6m room with brick walls

that are 15 cm thick and 2.5m high and natural sunlight as the light source. There are

three long wooden tables, a café table, two wooden bookshelves, a wooden case, a

cardboard box and an extra TurtleBot2 placed in the room. The simulated world is

created using Gazebo 3D simulator

Figure 29 ‘RoboticsLab’ environment simulated in Gazebo.

55

The TurtleBot2 is initially tested in the ‘RoboticsLab’ world using the RTAB-Map

package in ROS with the parameters set to their default values, i.e.,

Mem/RehearsalSimilarity = 0.3, Kp/MaxDepth = 4.0 and Vis/MinInliers = 15. The

explore_lite package is used for autonomous navigation of the TurtleBot2 and the RViz

package to observe the robot movement and mapping. The commands executed to start

the exploration and navigation process are listed in Table 10. The TurtleBot2 starts from

the origin, depicted by the three axes in red, blue, and green, and explores the world from

there. RViz produces 3D maps like the one shown on the left side of Figure 30 where the

robot’s field of vision is shown by the coloured highlights in the map. Maps like the one

shown on the right side of Figure 30 could also be exported using rtabmap-

databaseViewer application GUI; here the blue lines depict the path followed by the

robot from the origin to its destination and the red lines indicate loop closures.

Table 10 ROS Commands used in simulation experiments.

 $ roslaunch turtlebot_gazebo turtlebot_world.launch

world_file:=/”file_path”/RoboticsLab.world

 $ roslaunch rtabmap_ros demo_turtlebot_mapping.launch simulation:=true

 $ roslaunch rtabmap_ros demo_turtlebot_rviz.launch

 $ roslaunch explore_lite explore.launch

For our experiments 2D maps are required for comparing the corners, contours and

occupied grids of these maps and these experiments will be run recursively for multiple

generations making the use of GUI impractical. Therefore, the rtabmap-database is

accessed through command-line interface using the commands in Table 11 to generate

maps, like the one in Figure 28, as .pgm files.

Table 11 Commands for map creation using RTAB-Map database.

 $ rosrun rtabmap_ros rtabmap _database_path:=~/.ros/rtabmap.db

 $ rosrun map_server map_saver map:=grid_map

 $ rosservice call /publish_map 1 1 0

56

Figure 30 3D and 2D Maps of ‘RoboticsLab’ environment.

6.2 MOGA FOR RTAB-MAP PARAMETER OPTIMISATION

For RTAB-Map parameter optimisation, the ranges for the selected parameters are

defined as follows:

• Mem/RehearsalSimilarity is a ratio so its values lie between 0 and 1.

• Kp/MaxDepth is the distance/depth at which the keypoints extracted are filtered

and the range is set between 0 and 10m.

• Vis/MinInliers’ value is a trade-off between the number of localizations and

accuracy and the range is set between 10 and 20.

Figure 31 illustrates the flow of events during the implementation of the MOGA.

6.2.1 Selection and Replacement

The population size |P| for the MOGA is set as 50. An initial population of |P| members,

is randomly generated, where each member is a set of parameter values within the

defined range. All members of population P(t) generate one offspring. Both parents and

offspring are ranked using the Pareto dominance techniques or the fitness switch

introduced in the previous chapter, and the top |P| individuals from this pool are retained

as the basis for population P(t + 1) and the rest of the individuals are discarded.

57

Figure 31 Flowchart of Multi-Objective Genetic Algorithm.

6.2.2 Evaluation

To evaluate every individual of the population, rtabmap_ros commands are executed for

each set of parameters and their maps are generated. These maps are converted from the

‘.pgm’ format to greyscale images. To calculate the number of corners, 𝑛𝑐, these

greyscale images are converted to float32 type and the OpenCV Harris corner detection

function, cv2.cornerHarris(), is applied. To calculate the number of contours, 𝑛𝑒, the

58

greyscale images are converted to binary images and the OpenCV function,

cv2.findContours, is applied. The rtabmap_ros logs provide the number of occupied,

empty and total grids in every local map that is added to the global map cache. To

calculate the proportion of occupied grids of each map, η for every local map is

calculated and their average is taken as the η of the final global map. The fitness function,

also the quality of the map, for this GA can be defined as:

𝑓(𝑥) = 𝑚𝑖𝑛{𝑛𝑐(𝑥), 𝑛𝑒(𝑥), 𝜂(𝑥)} . 6.1

6.2.3 Variation

To implement this MOGA, uniform mutation is used as the variation operator, i.e., for

every member of the parent population one of the three parameters will be changed at

random to produce an offspring. This helps in maintaining diversity in the population. To

prevent a solution associated with one peak in the search space being replaced by the

offspring associated with a completely different peak and potentially resulting in the loss

of an entire mode of the search space, crossover is not used and the variation operator is

limited to mutation alone [53]. The number of generations, N, is used as the stop criterion

for our MOGA setup.

6.3 SIMULATION EXPERIMENTS SETUP

Various python and shell scripts were created to control the automatic execution of the

commands used for testing the MOGA in simulation as described below:

• Shell script to launch Gazebo, RTAB-Map and explore_lite using the ROS

commands listed in Table 6.

• Shell script to create maps from the RTAB-Map database using the commands

from Table 7.

• Python script to calculate 𝑛𝑐 and 𝑛𝑒 using the maps generated above.

• Python script to calculate 𝜂 using data from RTAB-Map text logs.

• Python script for the appropriate MOGA mechanism.

59

These tests were executed for a total of 1,410 generations as detailed in Table 12 with a

population pool of 100 members, 50 parents and 50 children, per generation that sums up

to a total of 141,000 tests overall.

Table 12 Number of MOGA Generations for each set of experiments.

Experiment Setup Number of Generations

MOGA methods →
Dominance

Count

Dominance

Rank

Switching

Fitness

Experiment Setup 1 60 60 60

Experiment Setup 2 60 60 60

Experiment Setup 3 350 350 350

Total 470 470 470

Grand Total 1410

In this research the three MOGA methods, DC, DR and SF, are tested with RTAB-Map

using the different techniques listed below:

• For the first experimental setup, the path taken by the robot to explore its world,

i.e., the odometry, is kept constant for the entire test setup. The primary

requirement for evolution is that the population exhibit variation in traits. This

setup enabled evaluating the changes to the map quality when changing the

parameter values for every member of the population. Therefore, setting the

platform for this research.

• For the second experimental setup, we consider there are no motion errors and

measurement error in the setup and the robot takes the least cost path to explore

its environment. Therefore, the robot follows the same path to explore its

environment for a particular member of the population even on multiple reruns.

We observe which members of the population are promoted for their map quality.

• For the third experimental setup, the maps are evaluated considering the fact that

due to motion and measurement errors, every time the robot explores the world it

will take a different route, depending on the number of frontiers detected, even if

60

it is supplied the same set of parameters. Thus, producing a truly complex multi-

objective problem to solve.

6.3.1 Experiment Setup 1

In this setup the robot odometry is kept constant throughout the evolution process. To

achieve this,

• A default database containing the robot odometry and sensor information is

generated using RTAB-Map with the default values of the parameters by

executing commands from Table 6.

• 50 random members are generated as the initial population.

• 50 children are generated for the above members by applying uniform mutation.

• With the parents and children combined to form the population pool, rtabmap-

reprocess application is implemented for every member using the following

command, where the default database is supplied as the input to ensure constant

odometry:

$ rtabmap-reprocess --Mem/RehearsalSimilarity xxx --Kp/MaxDepth xxx --

Vis/MinInliers xxx Input.db Output.db

• Using the databases generated in the previous step, maps are created by executing

the commands from Table 7.

• As the robot does not explore the world for every member of the population, the

rtabmap_ros logs are unavailable. Therefore, in these sets of experiments only 𝑛𝑐

and 𝑛𝑒 are considered as the objectives to be optimised. For the maps generated in

the previous step, the values of 𝑛𝑐 and 𝑛𝑒 are calculated.

Appropriate MOGA method is then applied to assess the quality of these maps.

• When using DC, the 𝑛𝑐 and 𝑛𝑒 values of these maps are compared to find out the

fitness of each member i.e., the number of members each member dominates.

Based on these values, the members best suited to be the parents for next

generation are selected. In case of DC higher the count, better the quality of

member.

61

• When using DR, the values of the objectives are compared and members that are

not dominated by any other member, i.e., those with least DR are selected to

become parents for the next generation.

• With SF, the objective to be optimised is switched every five generations. For

example, when considering 𝑛𝑐 as the objective to be optimised, maps with least

number of corners (𝑛𝑐) will be considered the fittest, and the corresponding

members will be selected to form the parent population of next generation. After

five generations the process will be continued with 𝑛𝑒 as the objective for the next

five generations and so on. Hence in the SF approach, only one objective is

optimised at any given time

To be true to the random nature of GA, a different set of initial population and a different

default database is assigned to each of DC, DR and SF. The maximum number of

generations, N, is set to 60 for each type of MOGA.

6.3.2 Experiment Setup 2

For these sets of experiments,

• 50 random members are generated to create the initial population for GA.

• Considering them as parents, 50 children are generated by applying uniform

mutation

• With these 100 members as the population pool for the first generation

rtabmap_ros SLAM is executed using the commands from Table 6.

• A map is created for each member of the population pool using commands from

Table 7, i.e., 100 maps in total.

• The values of 𝑛𝑐, 𝑛𝑒 and 𝜂 are calculated for each of these maps.

• Applying the appropriate MOGA technique the 50 fittest members are identified.

In these experiments, to maintain the assumption that one member can only generate one

type of map due to the absence of motion and measurement errors, from the next

generation onwards rtabmap_ros SLAM is executed only for the children. This data is

then combined with the data of the parent population for GA evaluation. This process is

implemented for the DC, DR and SF techniques, each starting with a different initial

62

population. For the SF technique, the fitness is switched between 𝑛𝑐, 𝑛𝑒 and 𝜂 every five

generations. The cap is set at 60 generations for these sets of experiments as well.

6.3.3 Experiment Setup 3

Every time a robot explores an environment, it is bound to take a different path because

of motion and measurement errors leading to changes in the frontier detection process.

This setup is more practical than the two previous sets of experiments as it considers the

fact that rtabmap_ros SLAM might produce a different map even if it is supplied the

same set of parameters.

• 50 random members are generated as the initial population.

• 50 children are generated for the above members by applying uniform mutation.

• These 100 individuals form the population pool for the first generation of GA and

rtabmap_ros SLAM is executed for every member using the set of commands

from Table 6

• A map is created for each member of the population pool using commands from

Table 7, i.e., 100 maps in total.

• 𝑛𝑐, 𝑛𝑒 and 𝜂 are calculated for each member of the population pool.

• Applying the appropriate MOGA technique, the 50 fittest members are selected to

form the parent population for the next generation.

These steps are then repeated till the maximum number of generations, i.e., 350 is

reached. It should be noted that unlike setup 2, in this setup the rtabmap_ros commands

are executed for the entire population pool of 100 in every generation. This process is

implemented for DC, DR and SF. For the SF technique, the fitness is switched between

𝑛𝑐, 𝑛𝑒 and 𝜂 every five generations.

6.4 RESULTS FROM SIMULATION EXPERIMENTS

The following sections discuss the results and observations from the simulation

experiments conducted. The results for each experiment are presented in the below

format.

63

• A table listing the best and worst values of the RTAB-MAP parameters along

with the values calculated for the 3 objectives.

• A graph representing the evolution of the fittest candidate in terms of the three

objectives namely corners, contours and Eta.

Each sub-section below contains the results of experiments conducted for the Dominance

Count, Dominance Rank and Switching Fitness MOGA mechanisms.

6.4.1 Experiment Setup 1

Table 13 Experiment Setup 1- Results for Dominance Count.

RTABMAP Parameters Default Best Worst

Mem/RehearsalSimilarity 0.3 0.77 0.57

Kp/MaxDepth 4 3.77 4.46

Vis/MinInliers 15 13 10

𝒏𝒄 45 42 86

𝒏𝒆 19 18 35

Figure 32 Experiment Setup 1- Evolution of fittest candidate- Dominance Count.

64

For the first set of experiments, each MOGA method was started with a different default

rtabmap.db file, which means each database had different odometry and sensor data.

Tables 13, 14 and 15 present the results for map evaluation of the default, best and worst

members of the population for the DC, DR and SF MOGA methods, respectively.

Table 14 Experiment Setup 1- Results for Dominance Rank.

RTABMAP Parameters Default Best Worst

Mem/RehearsalSimilarity 0.3 0.41 0.77

Kp/MaxDepth 4 8.11 4.23

Vis/MinInliers 15 14 14

𝒏𝒄 49 42 49

𝒏𝒆 18 21 18

Figure 33 Experiment Setup 1- Evolution of fittest candidate- Dominance Rank.

Figures 32, 33 and 34 show the evolution of the fittest candidate for the DC, DR and SF

techniques, respectively, over generations. It can be seen that all three techniques

converge to produce a fittest candidate, albeit more than one. It is observed that over

generations each technique produces multiple candidates with the same fitness value.

65

Where DC converges in generation 24, DR in generation 31, SF converges to produce its

best result in the 41st generation. Because this setup is a two-objective problem, it is an

easier problem to optimise than the other two setups. It must also be noted that the best

and worst solutions in DR are both ranked 0, where they are a trade-off between 𝑛𝑐 and

𝑛𝑒 values.

Table 15 Experiment Setup 1- Results for Switching Fitness.

RTABMAP Parameters Default Best Worst

Mem/RehearsalSimilarity 0.3 0.5 0.44

Kp/MaxDepth 4 2.52 2.96

Vis/MinInliers 15 10 20

𝒏𝒄 100 45 83

𝒏𝒆 50 20 55

Figure 34 Experiment Setup 1- Evolution of fittest candidate- Switching Fitness.

Starting with a good map, the changes to parameter values in DR were not able to

produce a variety of maps, even though mutation maintains diversity in the population.

66

6.4.2 Experiment Setup 2

Table 16 Experiment Setup 2- Results for Dominance Count.

RTABMAP Parameters Best Worst

Mem/RehearsalSimilarity 0.72 0.72

Kp/MaxDepth 1.98 4.17

Vis/MinInliers 18 13

𝒏𝒄 39 132

𝒏𝒆 19 48

𝜼 0.24 0.27

In this set of experiments, we assumed that each candidate will produce the same map

even on multiple explorations by the robot. Hence, we only created maps for the children

and compared their qualities with the existing maps of their parents and promoted the

fitter half of the population every generation. As the GA progresses the members

producing lower quality maps are eliminated from the population pool. Additionally

uniform mutation ensures diversity in the population.

Figure 35 Experiment Setup 2- Evolution of fittest candidate- Dominance Count.

67

Figure 36 Experiment Setup 2- Evolution of fittest candidate (Eta)- DC.

Tables 16, 17 and 18 present the results for the best and worst candidates for the DC, DR

and SF MOGA mechanisms, respectively. From Figures 35, 37 and 40 the evolution of

the fittest candidates for the DC, DR and SF mechanisms, respectively, can be observed

over generations. For DC, the quality of optimal candidate converges in generation 49

and for DR in generation 39. Because this problem is truly multi-objective in nature,

there is no convergence when using the pseudo MOGA technique SF.

Table 17 Experiment Setup 2- Results for Dominance Rank.

RTABMAP Parameters Best Worst

Mem/RehearsalSimilarity 0.28 0.11

Kp/MaxDepth 9.08 7.32

Vis/MinInliers 14 13

𝒏𝒄 35 150

𝒏𝒆 18 126

𝜼 0.24 0.76

68

Figure 37 Experiment Setup 2- Evolution of fittest candidate- Dominance Rank.

Figure 38 Experiment Setup 2- Evolution of fittest candidate (Eta)- DR.

69

Figure 39 Experiment Setup 2- MOGA results for 60th Generation.

From Figure 40, it should be noted that the graph is stable for 5 generations, i.e., every

five generations SF is able to successfully optimise one of the objectives to produce a

fittest candidate.

Table 18 Experiment Setup 2- Results for Switching Fitness.

RTABMAP Parameters Best Worst

Mem/RehearsalSimilarity 0.17 0.02

Kp/MaxDepth 9.66 5.34

Vis/MinInliers 18 13

𝒏𝒄 49 93

𝒏𝒆 19 47

𝜼 0.21 2.57

70

Figure 40 Experiment Setup 2- Evolution of fittest candidate- Switching Fitness.

Figure 41 Experiment Setup 2- Evolution of fittest candidate (Eta)- SF.

When using the DC measure for Pareto dominance, individuals are rewarded to find a

spot in the Pareto front where they increase the count of individuals they dominate.

Therefore, it can be observed that DC results in a single optimal solution. The DR

measure rewards individuals to find a spot where no other individual dominates them.

71

Therefore, DR offers multiple optimal solutions, depicted in purple in Figure 39, that

offer a trade-off between the different objectives. For plotting the graph depicting the

evolution of the fittest candidate, the first individual appearing in the Dominance Rank

list of every generation is used. Figures 36, 38 and 41 offer a closer look at how 𝜂

converges to its optimal value.

6.4.3 Experiment Setup 3

Table 19 Experiment Setup 3- Results for Dominance Count.

RTABMAP Parameters Best Worst

Mem/RehearsalSimilarity 0.55 0.67

Kp/MaxDepth 5.2 9.9

Vis/MinInliers 17 15

𝒏𝒄 39 146

𝒏𝒆 19 87

𝜼 0.27 1.03

Figure 42 Experiment Setup 3- Evolution of fittest candidate- Dominance Count.

72

In this set of experiments, we observe that for the same set of parameters, a different map

is generated because the robot’s odometry changes. Therefore, compared to the other two

setups, this setup puts forth a more complex three-objective problem to solve.

Figure 43 Experiment Setup- Evolution of fittest candidate (Eta)- DC.

Table 20 Experimental Setup 3- Results for Dominance Rank.

RTABMAP Parameters Best Worst

Mem/RehearsalSimilarity 0.4 0.81

Kp/MaxDepth 9.67 4.24

Vis/MinInliers 16 15

𝒏𝒄 38 110

𝒏𝒆 20 71

𝜼 0.25 0.36

Tables 19, 20 and 21 present the results for the best and worst candidates for the DC, DR

and SF MOGA techniques respectively. In this setup, due to the continuously changing

robot odometry, the lower quality candidates are not entirely eliminated from the

73

population pool, even though their genetic information might not be selected to be passed

on to the next generation.

Figure 44 Experiment Setup 3- Evolution of fittest candidate- Dominance Rank.

Figure 45 Experiment Setup 3- Evolution of fittest candidate (Eta)- DR.

74

Figure 46 Experiment Setup 3- MOGA Results for 350th Generation.

Table 21 Experiment Setup 3- Results for Switching Fitness.

RTABMAP Parameters Best Worst

Mem/RehearsalSimilarity 0.42 0.12

Kp/MaxDepth 0.58 3.79

Vis/MinInliers 11 17

𝒏𝒄 52 190

𝒏𝒆 19 149

𝜼 0.22 2.09

Figures 42, 44 and 47 show the evolution of the fittest candidate for DC, DR and SF,

respectively, over generations. Figures 43, 45 and 48 contain the graphs for 𝜂

optimisation to provide a closer look at how it converges for the fittest members across

75

generations. For the DC technique, the GA presents one optimal candidate whose quality

does not change as drastically as the one from DR, however, because the robot odometry

keeps varying on every run, convergence is elusive till generation 350.

Figure 47 Experiment Setup 3- Evolution of fittest candidate- Switching Fitness.

Figure 48 Experiment Setup 3- Evolution of fittest candidate (Eta)- SF.

For the DR technique, the graph stabilises fairly after the first few generations, which

then converges further from generation 300. We observe that over generations, DR

76

presents multiple optimal solutions which provide a trade-off between the three

objectives. In Figure 46, the purple dots represent the pareto front for generation 350, i.e.,

solutions with rank 0. For the pseudo MOGA technique SF, this setup seems too complex

to handle. When compared to Figure 40, the graph in Figure 47 has more instabilities

even during the five generations each objective is optimised for. When comparing the

best candidate results, it can be noticed that DC and DR provide more balanced solutions

as opposed to the SF solution. This in turn emphasises the importance of using MOGA,

rather than single objective GA, when optimising complex problems like SLAM.

6.5 QBOT2 EXPERIMENT SETUP

University closure due to COVID-19 has made the C160, Robotics lab at Sexton campus

in Dalhousie University, inaccessible for testing the robot. Therefore, the QBot2 robot

was tested in an environment setup that closely resembles the environment created for the

simulation experiments, i.e., a 3.96m × 3.96m room with two wooden tables, a wooden

bookshelf, a wooden chest of drawers, a metal pedestal, four dining chairs and cylindrical

jar placed around for the robot to identify as shown in Figure 50. Because the QBot2 sits

on a Yujin Kobuki base like the TurtleBot2 and has a Kinect camera, the rtabmap

command for TurtleBot2 works with the QBot2 as well. Using the commands in Table 22

the QBot2 was able to autonomously explore its world and the commands in Table 7

were used to create maps from the databases generated.

Table 22 ROS Commands RTAB-Map SLAM for QBot2 experiments.

$ roslaunch turtlebot_bringup minimal.launch

$ export TURTLEBOT_3D_SENSOR=kinect

$ roslaunch rtabmap_ros demo_turtlebot_mapping.launch args:="--delete_db_on_start"

$ roslaunch rtabmap_ros demo_turtlebot_rviz.launch

$ roslaunch explore_lite explore.launch

The QBot2 robot was tested with the default values of the parameters and the best and

worst candidates for the three MOGA techniques from experimental setup 2 and

experimental setup 3. Figure 49 shows the how the Kinect camera detects its world.

77

Experiment setup 1 is used to establish that variation in the values of the chosen

parameters will change the quality of map generated by the robot. Hence, the candidates

from this setup are not used for QBot2 testing.

Figure 49 3D Map of the world from RVIZ.

Figure 50 Qbot2 Kinect Camera- Initial Field of View.

78

6.6 RESULTS FROM QBOT2 EXPERIMENTS

Table 23 presents the results from experiments conducted with the Qbot2 robot. The

numbers in parentheses denote if the results are for the data from experimental setup 2 or

experimental setup 3. In experiments conducted with the QBot2, the best candidates from

experiment setup 2 are not able to produce results similar to the simulation experiments

due to errors in motion and measurement. The best candidates for both DC and DR

generated maps that are worse than the map generated by the default candidate. The best

candidate for SF generated a better quality map than the default candidate’s map, i.e., the

number of corners and contours of the map generated by the best candidate for SF was

lesser than the map generated by the default candidate.

Table 23 Results from QBot2 experiments.

RTABMAP

Parameters →

Mem/Rehearsal

Similarity

Kp/MaxDept

h

Vis/MinInli

ers

𝒏𝒄 𝒏𝒆 𝜼

Default 0.3 4.0 15 66 29 0.74

DC Best (2) 0.72 1.98 18 86 31 0.80

DC Worst (2) 0.72 4.17 13 71 25 1.08

DR Best (2) 0.28 9.08 14 78 30 0.81

DR Worst (2) 0.11 7.32 13 78 42 0.63

SF Best (2) 0.17 9.66 18 63 25 0.80

SF Worst (2) 0.02 5.34 13 92 36 1.29

DC Best (3) 0.55 5.22 17 66 30 0.65

DC Worst (3) 0.67 9.9 15 105 29 0.85

DR Best (3) 0.4 9.67 16 66 17 0.62

DR Worst (3) 0.81 4.24 15 77 26 0.54

SF Best (3) 0.42 0.58 11 61 29 0.62

SF Worst (3) 0.12 3.79 17 81 24 0.60

The best candidate from experiment setup 3 for the DC approach, generated a map that

has the same number of corners and one more contour than the default candidate’s map,

however the map has a lower proportion of occupied grids than the default candidate’s

79

map. Hence, they offer two maps of similar quality with a trade-off between the number

of contours and the proportion of occupied grids. For the DR approach, the best

candidate generated a map with lesser number of contours and a lower proportion of

occupied grids than the default candidate’s map. Thus, making the best candidate’s map

no worse than the default candidate in all three objectives and better than the default

candidate in two objectives. Fig. 51 and 52 show the maps generated by the default, best

and worst candidates from experiment setup 3 for DC and DR respectively. For the SF

approach, despite there being no convergence to an optimal solution, the best candidate

was able to generate a better quality map with lesser number of corners and lower

proportion of occupied grids than the map generated by the default candidate.Using

multi-objective GA to optimise the values of RTAB-Map parameters aided in obtaining

the optimal set of parameter values for the QBot2 robot.

Figure 51 Maps for Best, Default and Worst candidates for DC.

Figure 52 Maps for Best, Default and Worst candidates for DR.

80

CHAPTER 7 CONCLUSION

In this thesis, parameter optimisation for the RTAB-Map package has been explored

using different multi-objective GA mechanisms- Dominance Count, Dominance Rank

and Switching Fitness, in three sets of simulation experiments.

• In the first set of experiments where two objectives were optimised considering

constant odometry for the entire setup, it is observed that all the three multi-

objective GA methods are able to fairly converge to an optimal solution.

• In the second set of experiments where three objectives were optimised

considering no motion and measurement errors, it is observed that the

Dominance Count and Dominance Rank methods are able to converge to an

optimal solution. However, the Switching Fitness, which is a pseudo multi-

objective GA method, is unable to converge to a solution that optimises all three

objectives equally well; although it is able to optimise each objective

individually.

• In the third set of experiments three objectives were optimised with noise in

motion and measurement to emulate real world, and it is observed that while the

Dominance Count method provides one optimal solution, the Dominance Rank

method provides multiple optimal solutions which offers a trade-off between the

objectives. However, the Switching Fitness method is unable to handle this

complex multi-objective problem effectively.

A sample set of best and worst candidates were identified from the above sets of

simulation experiments and tests were conducted with a physical QBot2 robot using these

candidates. When the best candidates from the Dominance Count and Dominance Rank

methods of the third set of experiments were used, the QBot2 generated more accurate

maps compared to the map generated when the default RTAB-Map parameters were

used.

The results indicate that for a combination of a given environment, robot and SLAM

package, implementing a Multi-Objective Genetic Algorithm to optimize the parameters

81

used by that SLAM package would enable the robot to explore the environment more

effectively and identify more frontiers resulting in more accurate maps.

While there are multiple packages available to implement the different SLAM

approaches, parameter optimisation using a GA does not appear often in the available

literature and applying multi-objective GA with SLAM is almost unheard of. For new

researchers in SLAM, relying on historical data from literature might not be a practical

approach to proceed with. Additionally, different robots come with different sensors.

The default set of parameters offered by the available SLAM packages would not be

uniformly efficient for all these sensors. In such scenarios, instead of relying on available

data to arrive at the optimal set of parameters for any experimental setup, it makes sense

to apply the proposed multi-objective GA to obtain the optimal values of parameters for

the required set of sensors. This would enable the researcher in achieving a more

efficient implementation of SLAM suitable to their specific requirements.

7.1 DIRECTION FOR FUTURE RESEARCH

In future, to obtain the optimal set of parameters for varied scenarios, this algorithm can

be tested

• in different environments,

• with different robots, and

• with different ROS SLAM packages.

This algorithm can be built upon and made package-independent by testing it with other

SLAM packages available in ROS.

With fuzzy logic, it can additionally be tested in different SLAM approaches for

odometry and loop closure optimisation to ultimately replace the various Bayesian filters

used, as suggested in the “Integrated fuzzy logic and genetic algorithmic approach for

simultaneous localization and mapping of mobile robots” paper [49].

82

BIBLIOGRAPHY

[1] R. Siegwart, I.R. Nourbakhsh and D. Scaramuzza, Ed., Introduction to Autonomous

Mobile Robots. 2nd ed. Cambridge, Mass.: MIT Press, 2011.

[2] V. Trianni and M. López-Ibáñez, “Advantages of Task-Specific Multi-Objective

Optimisation in Evolutionary Robotics,” PloS One, vol. 10, no. 8, p. e0136406, Aug.

2015. [Online]. Available: doi: 10.1371/journal.pone.0136406 [Accessed: Jan. 1,

2019].

[3] R. Smith, M. Self and P. Cheeseman, “Estimating uncertain spatial relationships in

robotics,” in UAI ’86 Proceedings of the Second Conference on uncertainty in

Artificial Intelligence, Philadelphia, PA, AUAI Press Corvallis, Oregon, August 8 - 10,

1986, pp. 267-288. [Online]. Available: arXiv:1304.3111 [Accessed: Jan. 1, 2019].

[4] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part I,”

IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99-110, Jun. 2006.

[Online]. Available: doi: 10.1109/MRA.2006.1638022 [Accessed: Jan. 2, 2019].

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Particle filter SLAM 2.0:

An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping

that Provably Converges,” in IJCAI ’03 Proceedings of the 18th International Joint

Conference on Artificial Intelligence, Acapulco, Mexico, Morgan Kaufman Publishers

Inc. San Francisco, Aug. 9 – 15, 2003, pp. 1151-1156. [Online]. Available:

http://robots.stanford.edu/papers/Montemerlo03a.pdf [Accessed: Jan. 6, 2019].

[6] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping with

unknown data association using FastSLAM,” in ICRA '03 Proceedings of the IEEE

International Conference on Robotics and Automation, vol. 2, Taipei, Taiwan, IEEE,

September 14 - 19, 2003, pp. 1985-1991. [Online]. doi:
10.1109/ROBOT.2003.1241885 [Accessed: Jan. 7, 2019].

[7] M. Quigley, B. Gerkey and W. D. Smart, Programming robots with ROS, 1st ed.

Sebastopol: O'Reilly & Associates Inc., 2015.

[8] J. Arents, R. Cacurs and M. Greitans, “Integration of Computervision and Artificial

Intelligence Subsystems with Robot Operating System Based Motion Planning for

Industrial Robots,” Automatic Control and Computer Sciences, vol. 52, no. 5, pp. 392-

401, Sep. 2018. [Online]. Available: doi: 10.3103/S0146411618050024 [Accessed:

Jan. 21, 2019].

[9] A. Hellmund, S. Wirges, O. Tas, C. Bandera and N. Salscheider, “Robot operating

system: A modular software framework for automated driving,” in ITSC ’16

Proceedings of the 19th International Conference on Intelligent Transportation

Systems, Rio de Janeiro, Brazil, IEEE, Nov. 1 – 4, 2016, pp. 1564-1570. [Online]. doi:

10.1109/ITSC.2016.7795766 [Accessed: Jan. 21, 2019].

https://arxiv.org/abs/1304.3111
http://robots.stanford.edu/papers/Montemerlo03a.pdf

83

[10] Open Source Robotics Foundation, ROS Start Guide, Ros.org, Feb. 2018.

[Online]. Available: http://wiki.ros.org/ROS/StartGuide [Accessed: Jan. 24, 2019].

[11] S. Kohlbrecher, O. von Stryk, J. Meyer and U. Klingauf, "A flexible and

scalable SLAM system with full 3D motion estimation," 2011 IEEE International

Symposium on Safety, Security, and Rescue Robotics, Kyoto, 2011, pp. 155-160.

[Online]. Available: 10.1109/SSRR.2011.6106777 [Accessed: Jul 05, 2020].

[12] S. Thrun, W. Burgard and D. Fox, Probabilistic robotics. Cambridge, Mass.:

MIT Press, 2006.

[13] M. Montemerlo and S. Thrun, FastSLAM a scalable method for the

simultaneous localization and mapping problem in robotics. Vol. 27. Berlin: Springer,

2007. [Online]. Available: https://link.springer.com/content/pdf/10.1007%2F978-3-

540-46402-0.pdf [Accessed: Jan. 2, 2019].

[14] A. Doucet, N. De Freitas, K. Murphy and S. Russell, “Rao-Blackwellised

Particle Filtering for Dynamic Bayesian Networks,” in UAI ’00 Proceedings of the

Sixteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA,

Morgan Kaufman Publishers Inc., June 30 – July 3, 2000, pp. 176-183. [Online].

Available: https://arxiv.org/ftp/arxiv/papers/1301/1301.3853.pdf [Accessed: Jan. 3,

2019].

[15] G. Grisettiyz, C. Stachniss and W. Burgard, "Improving Grid-based SLAM

with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective

Resampling," Proceedings of the 2005 IEEE International Conference on Robotics and

Automation, Barcelona, Spain, 2005, pp. 2432-2437. [Online]. Available:

10.1109/ROBOT.2005.1570477 [Accessed: Jul 05, 2020].

[16] G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for Grid

Mapping With Rao-Blackwellized Particle Filters," in IEEE Transactions on Robotics,

vol. 23, no. 1, pp. 34-46, Feb. 2007. [Online]. Available: 10.1109/TRO.2006.889486

[Accessed: Jul 05, 2020].

[17] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai and R.

Vincent, "Efficient Sparse Pose Adjustment for 2D mapping," 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Taipei, 2010, pp. 22-29.

[Online]. Available: 10.1109/IROS.2010.5649043 [Accessed: Jul 05, 2020].

[18] E. B. Olson, "Real-time correlative scan matching," 2009 IEEE International

Conference on Robotics and Automation, Kobe, 2009, pp. 4387-4393. [Online].

Available: 10.1109/ROBOT.2009.5152375 [Accessed: Jul 05, 2020].

[19] M. Labbé and F. Michaud, “Memory management for real-time appearance-

based loop closure detection,” in Proc. IEEE/RSJ International Conference on

Intelligent Robots and Systems, San Francisco: IEEE, Sep 2011, pp. 1271–1276.

[Online]. Available: 10.1109/IROS.2011.6094602 [Accessed: Jul 31, 2019].

http://wiki.ros.org/ROS/StartGuide
https://link.springer.com/content/pdf/10.1007%2F978-3-540-46402-0.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-46402-0.pdf
https://arxiv.org/ftp/arxiv/papers/1301/1301.3853.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/f/f0/Labbe11memory.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/f/f0/Labbe11memory.pdf
https://doi.org/10.1109/IROS.2011.6094602

84

[20] M. Labbé and F. Michaud, “Appearance-Based Loop Closure Detection for

Online Large-Scale and Long-Term Operation,” IEEE Transactions on Robotics, vol. 29,

no. 3, Jun 2013, pp. 734-745. [Online]. Available: IEEE Xplore, doi:

10.1109/TRO.2013.2242375 [Accessed: Jul 31, 2019].

[21] M. Labbé and F. Michaud, “RTAB-Map as an Open-Source Lidar and Visual

SLAM Library for Large-Scale and Long-Term Online Operation,” Journal of Field

Robotics, vol. 36, no. 2, Oct. 2018, pp. 416–446. [Online]. Available: Wiley Online

Library, doi: https://doi.org/10.1002/rob.21831 [Accessed: Jul 31, 2019].

[22] QBot2 for QUARC Set Up and Configuration Manual, Quanser Inc., Markham

Ontario, 2017. [Online]. Available: https://www.quanser.com/courseware-

resources/?fwp_resource_types=manuals&fwp_resource_related_products=1722

[Accessed: Jan. 16, 2019].

[23] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics, 2nd ed.

New York: Cambridge University Press, 2011.

[24] G. Campion, G. Bastin and B. Dandrea-Novel, “Structural properties and

classification of kinematic and dynamic models of wheeled mobile robots,” IEEE

Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47-62, Feb. 1996.

[Online]. Available: doi: 10.1109/70.481750 [Accessed: Jan. 15, 2019].

[25] Everything about STMicroelectronics’ 3-axis digital MEMS gyroscopes,

Technical Article TA0343, Rev 1, STMicroelectronics, 2011. [Online]. Available:

https://www.elecrow.com/download/TA0343.pdf [Accessed: Jan. 16, 2019].

[26] Kinect sensor manual and warranty, Microsoft Corporation, 2010. [Online].

Available: http://download.microsoft.com/download/f/6/6/f6636beb-a352-48ee-86a3-

abd9c0d4492a/kinectmanual.pdf [Accessed: Jan. 16, 2019].

[27] M. Kassir and M. Palhang, “Novel qualitative visual odometry for a ground:

Vehicle based on funnel lane concept,” in MVIP ’17 10th Iranian Conference on

Machine Vision and Image Processing, Isfahan, Iran, IEEE, Nov. 22 – 23, 2017, pp.

182-187. [Online]. doi: 10.1109/IranianMVIP.2017.8342345 [Accessed: Jan. 17,

2019].

[28] D. Nister, O. Naroditsky and J. Bergen, “Visual odometry,” in CVPR ‘04

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, vol. 1, Washington, DC, IEEE, Jun. 27 – Jul. 2, 2004. [Online].

doi: 10.1109/CVPR.2004.1315094 [Accessed: Jan. 17, 2019].

[29] D. Scaramuzza and F. Fraundorfer, "Visual Odometry [Tutorial]," IEEE

Robotics & Automation Magazine, vol. 18, no. 4, pp. 80-92, Dec. 2011. [Online].

Available: doi: 10.1109/MRA.2011.943233 [Accessed: Jan. 18, 2019].

https://doi.org/10.1109/TRO.2013.2242375
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/7/7a/Labbe18JFR_preprint.pdf
https://introlab.3it.usherbrooke.ca/mediawiki-introlab/images/7/7a/Labbe18JFR_preprint.pdf
https://doi.org/10.1002/rob.21831
https://www.quanser.com/courseware-resources/?fwp_resource_types=manuals&fwp_resource_related_products=1722
https://www.quanser.com/courseware-resources/?fwp_resource_types=manuals&fwp_resource_related_products=1722
https://www.elecrow.com/download/TA0343.pdf
http://download.microsoft.com/download/f/6/6/f6636beb-a352-48ee-86a3-abd9c0d4492a/kinectmanual.pdf
http://download.microsoft.com/download/f/6/6/f6636beb-a352-48ee-86a3-abd9c0d4492a/kinectmanual.pdf

85

[30] D. G. Lowe, “Object recognition from local scale-invariant features,” in

Proceedings of the Seventh IEEE International Conference on Computer Vision,

Kerkyra, Greece, IEEE, Sep. 20 – 27, 1999. [Online]. doi: 10.1109/ICCV.1999.790410

[Accessed: Jan. 18, 2019].

[31] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004.

[Online]. Available: doi: 10.1023/B:VISI.0000029664.99615.94 [Accessed: Jan. 18,

2019].

[32] H. Bay, T. Tuytelaars and L. Van Gool, “SURF: Speeded up robust features,”

in ECCV ’06 Proceedings of the 9th European Conference on Computer Vision, vol.

3951, Graz, Austria, Springer Verlag, May 7 – 13, 2006, pp. 404-417. [Online]. doi:

10.1007/11744023_32 [Accessed: Jan. 19, 2019].

[33] Tully Foote, Michael Ferguson and Melonee Wise, Turtlebot Tutorials,

Ros.org, 2016. [Online]. Available: http://wiki.ros.org/turtlebot/Tutorials/indigo

[Accessed: Jul 30, 2019].

[34] Oracle VM VirtualBox User Manual, version 6.0.10, Oracle Corporation, Dec.

2019. [Online]. Available:

https://download.virtualbox.org/virtualbox/6.0.10/UserManual.pdf [Accessed: July 20,

2019].

[35] Canonical Ltd., Ubuntu 16.04.5 LTS (Xenial Xerus), Ubuntu releases, 2018.

[Online]. Available: http://releases.ubuntu.com/16.04/ [Accessed: May 11, 2018].

[36] L. Joseph, Robot operating system for absolute beginners: Robotics

programming made easy. Berkeley, CA: Apress, 2018.

[37] T. Foote, “Tf: The transform library,” in TePRA ’13 Proceedings of the IEEE

International Conference on Technologies for Practical Robot Applications, Woburn,

MA, USA, IEEE, Apr. 22 – 23, 2013. [Online]. doi: 10.1109/TePRA.2013.6556373

[Accessed: Jan. 27, 2019].

[38] Open Source Robotics Foundation, Gazebo Tutorials, Gazebo, 2014. [Online].

Available: http://gazebosim.org/tutorials [Accessed: Jan 3, 2019].

[39] Open Source Robotics Foundation, Kobuki Tutorials, Ros.org, Mar. 2017.

[Online]. Available: http://wiki.ros.org/kobuki/Tutorials [Accessed: May 20, 2018].

[40] Mathieu Labbe, rtabmap_ros, Ros.org, 2019. [Online]. Available:

http://wiki.ros.org/rtabmap_ros [Accessed: Aug 1, 2019].

[41] Dave Hershberger, David Gossow and Josh Faust, rviz, Ros.org, 2016.

[Online]. Available: http://wiki.ros.org/rviz [Accessed: Aug 1, 2019].

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6412
https://doi.org/10.1109/ICCV.1999.790410
http://wiki.ros.org/turtlebot/Tutorials/indigo
https://download.virtualbox.org/virtualbox/6.0.10/UserManual.pdf
http://releases.ubuntu.com/16.04/
http://gazebosim.org/tutorials
http://wiki.ros.org/kobuki/Tutorials
http://wiki.ros.org/rtabmap_ros
http://wiki.ros.org/rviz

86

[42] B. Yamauchi, “A Frontier-Based Approach for Autonomous Exploration,” in

Proc IEEE International Symposium on Computational Intelligence in Robotics and

Automation, Monterey: IEEE, Jul 1997. [Online]. Available:

10.1109/CIRA.1997.613851 [Accessed: Aug 1, 2019].

[43] Jiri Horner, explore_lite, Ros.org, 2017. [Online] Available:

http://wiki.ros.org/explore_lite [Accessed: Aug 1, 2019].

[44] Open Source Robotics Foundation, freenect_stack, Ros.org, Dec. 2012.

[Online]. Available: https://wiki.ros.org/freenect_stack [Accessed: May 14, 2018].

[45] M. Brameier and W. Banzhaf, “A comparison of linear genetic programming

and neural networks in medical data mining,” IEEE Transactions on Evolutionary

Computation, vol. 5, no. 1, pp. 17-26, Feb. 2001. [Online]. Available: doi:

10.1109/4235.910462 [Accessed: Jan. 15, 2018].

[46] S. Luke, Essentials of Metaheuristics, Second edition, Lulu, 2013. [Online].

Available: http://cs.gmu.edu/⇠sean/book/metaheuristics/ [Accessed: Jan. 16, 2018].

[47] C.A. Coello Coello, “Evolutionary multi-objective optimization: A historical

view of the field,” IEEE Computational Intelligence Magazine, vol. 1, no. 1, pp. 28-

36, Feb. 2016. [Online]. Available: doi: 10.1109/MCI.2006.1597059 [Accessed: Jan.

17, 2018].

[48] T. Duckett, “A genetic algorithm for simultaneous localization and mapping,”

in ICRA '03 Proceedings of the IEEE International Conference on Robotics and

Automation, vol. 1, Taipei, Taiwan, IEEE, September 14 - 19, 2003, pp. 434-439.

[Online]. doi: 10.1109/ROBOT.2003.1241633 [Accessed: Jan. 1, 2019].

[49] M. Begum, G.K.I. Mann and R.G. Gosine, “Integrated fuzzy logic and genetic

algorithmic approach for simultaneous localization and mapping of mobile

robots,” Applied Soft Computing Journal, vol. 8, no. 1, pp. 150-165, Jan. 2008.

[Online]. Available: doi: 10.1016/j.asoc.2006.11.010 [Accessed: Jan. 1, 2019].

[50] A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour and B. Bouzouia,

“Optimal path planning and execution for mobile robots using genetic algorithm and

adaptive fuzzy-logic control,” Robotics and Autonomous Systems, vol. 89, pp. 95–109,

Mar. 2017. [Online]. Available: doi: 10.1016/j.robot.2016.12.008 [Accessed: Jan. 18,

2018].

[51] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in

ICRA’85 Proceedings of the IEEE International Conference on Robotics and

Automation, St. Louis, MO, USA, IEEE, Mar. 25 – 28, 1985, pp 116-121. [Online].

Available: 10.1109/ROBOT.1985.1087316 [Accessed: Jan. 27, 2019].

https://ieeexplore.ieee.org/author/37354780800
https://doi.org/10.1109/CIRA.1997.613851
http://wiki.ros.org/explore_lite
https://doi.org/10.1109/ROBOT.2003.1241633
https://doi.org/10.1016/j.asoc.2006.11.010
https://doi.org/10.1109/ROBOT.1985.1087316

87

[52] A.E. Eiben,and J.E. Smith, Introduction to Evolutionary Computing, 2nd

edition, Berlin, Heidelberg: Springer, 2015. [E-book]. Available:

https://link.springer.com/content/pdf/10.1007%2F978-3-662-44874-8.pdf [Accessed:

Jan. 20, 2018].

[53] M. Heywood. Introducing multi-objective GP. (2017, Winter). CSCI6506.

Halifax, Canada: Dalhousie University.

[54] S. Doncieux and J.-B. Mouret. Behavioral diversity with multiple behavioral

distances. In IEEE Congress on Evolutionary Computation, pages 1427–1434, 2013

[55] A. Filatov, A. Filatov, K. Krinkin, B. Chen and D. Molodan, “2d slam quality

evaluation methods,” Proceedings of the 2017 21st Conference of Open Innovations

Association, Helsinki, Finland, Nov. 2017, pp. 120–126. [Online]. Available:

arXiv:1708.02354 [Accessed: Aug 20, 2020].

[56] S. Suzuki et al., “Topological structural analysis of digitized binary images by

border following,” Computer vision, graphics, and image processing, vol. 30, no. 1,

pp. 32–46, 1985. [Online]. Available: https://doi.org/10.1016/0734-189X(85)90016-7

[Accessed: Aug 20, 2020].

https://link.springer.com/content/pdf/10.1007%2F978-3-662-44874-8.pdf
https://doi.org/10.1016/0734-189X(85)90016-7

