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Abstract 

Atmospheric aerosols have significant impacts on climate and human health. However, the 

exact magnitude of the climate and health effects of aerosols remains highly uncertain, due to the large 

variability in aerosol physical and chemical properties. The use of satellite observations of aerosol 

properties in conjunction with global chemical transport models can improve our understanding of the 

interactions of aerosols with radiation and their impacts on health. 

Using GEOS-Chem coupled with a radiative transfer model, we develop a global simulation 

of the Ultraviolet Aerosol Index (UVAI) to interpret satellite UVAI observations. This simulation 

allows us to constrain the absorption by brown carbon (BrC) aerosol produced from biomass burning. 

Inclusion of absorption by BrC in GEOS-Chem reduces tropospheric hydroxyl radical by reducing the 

frequency of the photolysis of ozone.  We calculate the direct radiative effect (DRE) of BrC, and find 

that absorbing BrC changes the global annual mean all-sky top of atmosphere DRE by +0.03 W m−2 

and all-sky surface DRE by −0.08 W m−2. 

We interpret trends in satellite observed UVAI values using our UVAI simulation for 2005-

2015 to improve our understanding of trends in global aerosol composition. Trends in absorption by 

dust dominate the simulated UVAI trends over desert regions. The UVAI simulation underestimates 

positive UVAI trends over Central Asia, possibly due to an increasing dust source from the desiccating 

Aral Sea that may not yet be represented by models. Trends in absorption by BrC  dominate UVAI 

trends over biomass burning regions. Trends in scattering by secondary inorganic aerosol dominate 

UVAI trends over the eastern United States and eastern India. 

We estimate surface PM2.5 concentrations using information from satellites, simulation, and 

ground monitors for the years 2000-2017. These combined PM2.5 estimates benefit from recent updates 

to satellite AOD sources, developments in chemical transport models, and expanded ground monitor 

measurements. We find improved agreement between our PM2.5 estimates and ground monitors versus 

prior work.  We use our improved estimates to calculate trends in PM2.5 both globally and regionally 

in order to understand the exposures of the global population.  
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Chapter 1: Introduction 

1.1 Aerosols 

Aerosols are solid or liquid particles suspended in Earth’s atmosphere. They are emitted 

from a variety of sources, both natural (e.g. uplifted desert dust, ocean spray,) and anthropogenic 

(e.g. combustion of fossil fuels). These particles consist of a range of chemical compositions and 

sizes. The main mechanisms for removal from the atmosphere are wet and dry deposition, giving 

aerosols atmospheric lifetimes ranging from  ~ 1 day to ~ 1 week. 

Aerosols have significant climate impacts due to their interactions with solar radiation. 

Scattering aerosols have a cooling effect as they reflect solar radiation to outer-space. Aerosols 

that absorb solar radiation have a warming effect on the atmosphere and a cooling effect on the 

surface. The surface cooling due to the presence of aerosols over the past 45 years is estimated to 

have masked approximately one third of the warming due to greenhouse gases (Storelvmo et al., 

2016), while aerosol absorption is estimated to be the second largest source of atmospheric 

warming after carbon dioxide (Ramanathan and Carmichael, 2008; Bond et al., 2013; IPCC, 2014; 

Saleh et al., 2014). Although the radiative effects of aerosols are agreed to be significant, their 

overall magnitudes remain highly uncertain due to the large variability in aerosol chemical and 

physical properties as well as their various emission sources (Andreae and Gelencsér, 2006a; Mann 

and Emanuel, 2006; Mauritsen, 2016). Absorption of ultraviolet (UV) radiation by aerosols also 

decreases photolysis frequencies, leading to a reduction in the concentrations of atmospheric 

oxidants (Dickerson et al., 1997; Jacobson, 1998; Liao et al., 2003; Martin et al., 2003). 

Aerosols have significant impacts on air quality and human health. Aerosol particles with 

diameters less than 2.5 𝜇m are commonly referred to as PM2.5 (PM for particulate matter). Particles 

in this size range are sufficiently small that when inhaled they can enter the lungs and be 

subsequently absorbed into the bloodstream, causing various respiratory and cardiovascular 

related illnesses. The Global Burden of Disease (GBD) estimates that in 2016, exposure to PM2.5 

was responsible for 4.1 million deaths worldwide due to heart disease and stroke, lung cancer, 

chronic lung disease, and respiratory infections, making it the leading environmental risk factor 

for premature mortality (GBD 2016 Risk Factors Collaborators et al., 2017). The most highly 

polluted areas are often megacities with high populations, particularly in South and East Asia (HEI, 

2018). In recent decades, government regulations for specific air pollutants, including PM2.5, along 
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with emissions controls and technological changes have been remarkably effective at driving air 

quality improvements in North America and Western Europe, leading to demonstrable increases 

in life expectancy in these regions (Pope et al., 2009; Turnock et al., 2016). Despite this progress, 

there still remain many questions regarding the scientific understanding of particulate air pollution 

and its impacts on health (West et al., 2016). 

1.2 Aerosol Species 

Aerosols can be emitted directly to the atmosphere as particles, or they can be formed in 

the atmosphere through gas-to-particle conversion. Aerosols emitted directly as particles are 

known as primary aerosols while aerosols formed through secondary processes are known as 

secondary aerosols. 

1.2.1 Primary Aerosols 

Mineral dust is a main component of natural aerosol and is emitted directly to the 

atmosphere through wind acting on soil particles. The largest sources are the major desert regions 

of central Asia and the Sahara-Sahel in North Africa. Although most dust falls out of the 

atmosphere close to the source, fine dust can be transported long distances to the Caribbean from 

North Africa and to North America from central Asia (Fairlie et al., 2007). There are also 

significant anthropogenic dust emissions due to the disturbing of soils by human activities such as 

land use changes, deforestation, and agriculture (Tegen and Lacis, 1996), as well as anthropogenic 

fugitive, combustion, and industrial dust from urban sources (Philip et al., 2017). Mineral dust 

aerosol predominantly absorbs solar radiation and is a substantial contributor to the overall 

radiative effects of aerosol (Tegen and Lacis, 1996; Sokolik and Toon, 1996, 1999; Colarco et al., 

2002) . 

Sea salt is another main component of natural aerosol and is emitted to the atmosphere 

through the bursting of bubbles at the surface of the ocean. Sea salt emissions remain highly 

uncertain because they are primarily determined by wind speed (Jaeglé et al., 2011). Sea salt 

aerosols predominantly scatter solar radiation due to their ability to readily uptake water, and 

significantly affect the global radiation budget over the ocean (Ayash et al., 2008). 

Primary carbonaceous aerosols include black carbon (BC) and primary organic carbon 

(POC) aerosols. Both are predominantly emitted through the combustion of biomass and fossil 
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fuels. BC has a graphite-like structure and strongly absorbs radiation at all wavelengths (Bergstrom 

et al., 2002a). POC aerosols are a complex mixture of hundreds of organic compounds; the term 

“organic carbon” refers only to a fraction of the total organic material because the carbon fraction 

is typically measured directly (Seinfeld and Pandis, 2006). Measured OC values are multiplied by 

a conversion factor to obtain the total organic mass. POC emitted from fossil fuel combustion is 

largely non-absorbing (Saleh et al., 2014), while POC emitted from biomass burning has been 

found to display absorption that is strongest at ultraviolet wavelengths and decreases into the 

visible and near-infrared (Kirchstetter et al., 2004; Bergstrom et al., 2007; Yang et al., 2008; 

Martins et al., 2009; Chen and Bond, 2010; Saleh et al., 2014). This absorbing component of POC 

is commonly referred to as “brown carbon (BrC)” and is discussed in detail in Chapter 2. 

1.2.2 Secondary Aerosols 

Secondary inorganic aerosols (SIA) consist of sulfate, nitrate, and ammonium. The main 

sources of atmospheric sulfate are the oxidation of sulfur dioxide (SO2) in the gas phase by OH or 

in cloud droplets by hydrogen peroxide (Adams et al., 1999). SO2 is emitted to the atmosphere 

anthropogenically through biomass burning and fossil fuel combustion, and naturally through 

volcanic activity and the oxidation of oceanic dimethyl sulfide (DMS). Sulfate aerosols can be 

totally or partially neutralized by ammonia (NH3) to form ammonium sulfate (Park et al., 2004a). 

NH3 is emitted mainly from livestock and fertilizer use. Nitrogen oxides (NOx ≡ NO + NO2) are 

emitted to the atmosphere from the combustion of fossil fuel, lightning, soils, and wildfires. NOx 

can be oxidized to form nitric acid, which can dissolve directly in an aqueous aerosol solution or 

react with NH3 to form ammonium nitrate aerosol, if excess ammonia is available after sulfate 

neutralization. Secondary inorganic aerosols are highly scattering due to their sizes being in the 

range of shortwave radiation with highest scattering efficiency, and contribute significantly to the 

global radiation budget and the cooling effect of aerosols (Schwartz, 1996). 

Secondary organic aerosols (SOA) are formed when the atmospheric oxidation products of 

volatile organic compounds (VOCs) undergo gas-to-particle conversion. The formation of the low 

volatile (semi-volatile and possibly non-volatile) compounds that make up SOA is governed by a 

complex series of reactions of a large number of organic species. Overall, SOA formation is 

dominated by a few classes of VOCs. Biogenic precursors such as monoterpenes, sesquiterpenes, 

and isoprene are the main contributors in forested areas and on a global scale, while anthropogenic 
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precursors of aromatic hydrocarbons are the dominate component of SOA in large urban areas 

(Seinfeld and Pandis, 2006; Hallquist et al., 2009). Biogenic SOA has been found to be largely 

unabsorbing, while there is evidence of a light absorbing or “brown” SOA formed from aromatic 

hydrocarbons, however the light absorption properties of SOA remain highly uncertain (Xie et al., 

2017). 

1.3 Interactions of Aerosols with Radiation 

The optical properties of aerosols vary with their chemical composition, hygroscopicity, 

sizes, and shapes. Mie theory describes the scattering and absorption of radiation by spherical 

particles. According to Mie theory, the principal parameters that govern the scattering and 

absorption of light by a particle are the wavelength of the incident light, the particle size, and the 

wavelength-dependent complex refractive index 𝑁(𝜆) (Seinfeld and Pandis, 2006): 

𝑁(𝜆) = 𝑛(𝜆) + 𝑖𝑘(𝜆)                                                 (1-1) 

where 𝑛(𝜆) is the non-absorbing real part and 𝑘(𝜆) is the absorbing imaginary part. Larger values 

of 𝑘(𝜆) are associated with larger absorption. BC exhibits strong absorption at all wavelengths, 

reflected in its large 𝑘(𝜆) values. The refractive index of a particle is determined primarily by its 

chemical composition. 

Particle size can be expressed as the dimensionless size parameter: 

χ =
2𝜋𝑟

𝜆
                                                                 (1-2) 

where 𝑟 is the particle radius. 𝜒 describes the relationship between particle size and wavelength. 

The range of 𝜒 describes three main scattering regimes: 

𝜒 << 1, where the particle is small compared to the wavelength, is the Rayleigh scattering regime. 

Rayleigh scattering is often referred to as molecular scattering. An ideal atmosphere composed 

solely of air molecules and free of particles is referred to as a Rayleigh atmosphere. In the Rayleigh 

regime, the pattern of scattered radiation is symmetrical in the forward and backward directions 

and the amount of scattered radiation is proportional to 𝜆−4. Therefore small particles scatter light 

at short wavelengths more efficiently than longer wavelengths. 
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𝜒 ≈ 1, where the particle is approximately the same size as the wavelength, is the Mie scattering 

regime. It is this regime where scattering is most efficient. SIA aerosols typically lie in this regime 

for visible radiation, which is why they scatter solar radiation so effectively. 

𝜒 >> 1, where the particle is large compared to the wavelength, is the geometric scattering 

regime. In this regime, the scattering is described by geometrical optics of reflection, refraction, 

and diffraction, and is strongly dependent on particle shape and orientation relative to the incoming 

beam. As particle size increases, the amount of radiation scattered in the forward direction 

increases compared to the backward direction. 

The amount of energy removed from an incident beam of light by a particle is described 

by the wavelength-dependent single particle extinction cross section (units: m2) , which is equal to 

the sum of the scattering and absorption cross sections: 

𝜎𝑒𝑥𝑡 = 𝜎𝑠𝑐𝑎𝑡 + 𝜎𝑎𝑏𝑠                                                      (1-3) 

The extinction efficiency is the ratio of the extinction cross section and the cross-sectional 

area of the particle: 

𝑄𝑒𝑥𝑡 =
𝜎𝑒𝑥𝑡

𝐴
                                                             (1-4) 

Then, for a monodisperse ensemble of particles, the extinction coefficient (𝑏𝑒𝑥𝑡) can be 

used to describe the total extinction cross sections of particles per unit volume: 

𝑏𝑒𝑥𝑡 = 𝜋 𝑟2 𝑁 𝑄𝑒𝑥𝑡                                                      (1-5) 

where 𝑟 is particle radius and 𝑁 is the total number concentration (particles per m-3). The 

integration of the extinction coefficient over a vertical column of the atmosphere gives the total 

column aerosol optical depth (𝜏): 

𝜏 =  ∫ 𝑏𝑒𝑥𝑡 𝑑𝑧
𝑧𝑇𝑂𝐴

0
                                                         (1-6) 

The aerosol optical depth 𝜏 can also be obtained from the column aerosol mass loading per 

unit area (M), the particle extinction efficiency, the particle density 𝜌, and the particle effective 

radius 𝑟𝑒𝑓𝑓 is the effective radius (cross-section weighted radius over the size distribution (Tegen 

and Lacis, 1996)): 

𝜏 =
3 𝑀𝑄𝑒𝑥𝑡

4 𝜌 𝑟𝑒𝑓𝑓
                                                       (1-7) 
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The attenuation of the initial radiance over a path length 𝑧 can be given by the Beer-

Lambert Law: 

𝐼

𝑑𝑧
= −𝐼𝑜 𝑏𝑒𝑥𝑡                                                                (1-8) 

which is equivalent to: 

𝐼

𝐼0
=  −𝜏                                                                        (1-9) 

Therefore the loss of light passing through the atmosphere is equal to the columnar extinction due 

to the presence of aerosols, i.e. the aerosol optical depth (AOD). 

Other parameters helpful for describing the scattering and absorption by aerosols include 

the single-scatter albedo, 𝜔, which is the ratio of the scattering efficiency to the extinction 

efficiency 𝑄𝑠𝑐𝑎𝑡/𝑄𝑒𝑥𝑡. 𝜔 ≈ 1 indicates a completely scattering particle, while 𝜔 ≈ 0 indicates a 

completely absorbing particle. The scattering phase function describes the angular distribution of 

radiation scattered by a particle, and is the scattered radiance at a particle angle relative to the 

incident beam normalized by the integral of the scattered radiation at all angles. 

1.4 Satellite remote sensing of aerosols 

The interactions of aerosols with solar radiation allow for their detection using satellite 

remote sensing. Satellites measure the top of atmosphere (TOA) radiance. In a cloud free 

atmosphere, the TOA radiance is influenced by the scattering and absorption by aerosols, 

absorption by atmospheric gases, scattering by air molecules, and the surface reflectance. The most 

commonly used metric for aerosol information obtained from satellites is AOD (𝜏). In order to 

obtain AOD from satellite measured radiances, it is necessary to make assumptions about 

parameters such as aerosol size, aerosol chemical composition, and surface reflectivity. Due to the 

necessity of these assumptions, the calculation of AOD is considered to be a “retrieval” and not a 

direct measurement. It is therefore not possible to obtain independent information on aerosol 

composition from satellite AOD retrievals. It is possible to estimate surface concentrations of fine 

particulate matter PM2.5 from satellite AOD using the geophysical relationship between AOD and 

PM2.5 simulated with global Chemical Transport Models (CTMs). 
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At ultraviolet (UV) wavelengths, interaction of radiation with atmospheric gases is 

negligible and surface reflectance is very low. Aerosols and air molecules have the primary 

influence on TOA radiances in the UV. The presence of scattering aerosol increases the TOA UV 

radiance, while the presence of absorbing aerosol decreases the TOA UV radiance. The Ultraviolet 

Aerosol Index (UVAI) is a method of detecting aerosol absorption from the ratio of TOA radiances 

at two UV wavelengths. The UV-absorbing aerosols detected with the UVAI include biomass 

burning aerosol (black and brown carbon), and desert dust. Because the UVAI is calculated directly 

from measured radiances, it is therefore possible to obtain independent aerosol composition 

information. The UVAI is discussed in detail in Chapter 2. 

1.5 Chemical Transport Models (CTMs) 

Chemical transport models (CTMS) are 3-D numerical models that simulate the processes 

of transport, chemistry, and emissions to describe the spatial and temporal variability of 

atmospheric aerosols and gases (Brasseur and Jacob, 2017). They do so by solving the mass 

conservation continuity equations for atmospheric constituents. CTMs use meteorological 

information generated from general circulation models or meteorological reanalysis as inputs to 

represent atmospheric dynamics. In this work we use the 3-D global chemical transport model 

GEOS-Chem (http://geos-chem.org). GEOS-Chem is an Eulerian model that divides the 

atmosphere into millions of grid boxes, and solves the mass continuity equations for hundreds of 

species in each grid box. 

1.6 Goals of This Work 

In this work we will use satellite observations of aerosol properties in conjunction with the 

global chemical transport model GEOS-Chem to improve our understanding of the interactions of 

aerosols with radiation and their impacts on global air quality and human health. 

We develop a simulation of the Ultraviolet Aerosol Index (UVAI) using GEOS-Chem 

coupled with the vector radiative transfer model VLIDORT to interpret UVAI observations from 

NASA’s Ozone Monitoring Instrument (OMI) in Chapter 2. We use this simulation to constrain 

the absorption by brown carbon (BrC) aerosol produced from biomass burning. We then examine 

the impacts of the constrained BrC absorption on atmospheric photochemistry and the global 

radiation budget. 

http://geos-chem.org/
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We use our UVAI simulation to interpret trends in OMI observed UVAI values for 2005-

2015 in Chapter 3, to improve our understanding of trends in global aerosol composition. We also 

examine the contributions of individual aerosol species and their trends to the UVAI, improving 

our understanding of the underlying influence of changes in specific atmospheric constituents to 

the interactions of aerosols with radiation. 

In Chapter 4, we estimate surface PM2.5 concentrations using information from satellites, 

simulation, and ground monitors for the years 2001-2017. We use GEOS-Chem to simulate the 

geophysical relationship of surface PM2.5 and AOD, which is then applied to satellite retrievals of 

AOD to obtain global estimates of surface PM2.5 concentrations. We apply Geographically 

Weighted Regression (GWR) following van Donkelaar et al. (2016) to incorporate information 

from ground monitors. These combined PM2.5 estimates benefit from recent updates to satellite 

AOD sources, developments in chemical transport models, and expanded ground monitor 

measurements. 
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Chapter 2: Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite 

Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric 

Oxidation and Direct Radiative Effects 

Reproduced with permission from “Interpreting the Ultraviolet Aerosol Index Observed with the 

OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for 

Atmospheric Oxidation and Direct Radiative Effects” by Hammer, M. S., Martin, R. V., van 

Donkelaar, A., Buchard, V., Torres, O., Ridley, D.A., and Spurr, R.J.D., Atmos. Chem. Phys., 16, 

2507-2523, https://doi.org/10.5194/acp-16-2507-2016, 2016. Copyright 2016 by the Authors. CC 

Attribution 3.0 License. All text, figures and results were contributed by the first author. 

 

  2.1 Abstract 

 Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption 

of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. 

We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem 

coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The 

simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument 

(OMI) for the year 2007. Simulated and observed values are highly consistent in regions where 

mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between 

simulated and observed values in biomass burning regions. We determine effective optical 

properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into 

GEOS-Chem to better represent observed UVAI values over biomass burning regions. The 

addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from 

-0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from 

-0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in 

September. The spectral dependence of absorption after adding BrC to the model is broadly 

consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom 

Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR 

spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric 

photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. 

The inclusion of BrC decreases OH by up to 35% over South America in September, up to 25% 

over southern Africa in July, and up to 20% over other biomass burning regions. Global annual 
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mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, 

increasing the methyl chloroform lifetime from 5.62 years to 5.68 years, thus reducing the bias 

against observed values. We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem 

coupled with the radiative transfer model RRTMG (GC-RT). The addition of absorbing BrC to 

organic aerosol changes the global annual mean all-sky top of atmosphere (TOA) DRE by +0.05 

W m-2 and all-sky surface DRE by -0.06 W m-2. Regional changes of up to +0.5 W m-2 at TOA 

and down to -1 W m-2 at the surface are found over major biomass burning regions. 

2.2 Introduction 

 Absorption of solar radiation by aerosols plays a major role in radiative forcing and 

atmospheric photochemistry. Aerosol absorption has been estimated to be the second largest 

source of radiative forcing after carbon dioxide (Bond et al., 2013; IPCC, 2014; Ramanathan and 

Carmichael, 2008), although considerable uncertainty remains regarding the magnitude of the 

forcing (Stier et al., 2007; Wang et al., 2014). Absorption of ultraviolet (UV) radiation by aerosols 

decreases photolysis frequencies, leading to a reduction in the concentrations of atmospheric 

oxidants (Dickerson et al., 1997; Jacobson, 1998; Liao et al., 2003; Martin et al., 2003). Many 

atmospheric chemistry models tend to overestimate tropospheric hydroxyl radical (OH) 

concentrations compared to observations (Mao et al., 2013; Naik et al., 2013). Accurately 

representing aerosol absorption could help rectify the discrepancies between simulated and 

observed OH concentrations, and offer constraints on radiative forcing. 

 The Ultraviolet Aerosol Index (UVAI) is a method of detecting aerosol absorption using 

satellite measurements. The UVAI is calculated by separating the spectral contrast of radiances 

due to aerosol effects from those due to Rayleigh scattering at two wavelengths in the near-UV 

region (Herman et al., 1997; Torres et al., 1998, 2007). Two attributes of the UVAI method are 1) 

that aerosol optical properties are more readily detected over surfaces with low reflectance such as 

found in the UV (Torres et al., 2005), and 2) that the strong interaction between aerosol absorption 

and molecular scattering in the near-UV increases the sensitivity of UV-radiances to aerosol 

absorption (Torres et al., 1998). These attributes enhance the ability of the UVAI to detect aerosol 

absorption that affects UV photolysis and radiative forcing. 

 Traditionally, black carbon (BC) is treated as the predominant absorbing carbonaceous 

aerosol, and all organic carbon is assumed to be only very weakly absorbing. However, a growing 
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number of observations have found evidence of significant absorption by a subset of organic 

carbon, known as “brown carbon” (BrC), which is strongest in the ultraviolet and decreases into 

the visible and near-IR wavelength regions (Bergstrom et al., 2007; Chen and Bond, 2010; 

Kirchstetter et al., 2004; Martins et al., 2009; Yang et al., 2008; Zhong and Jang, 2014). The 

majority of BrC is emitted to the atmosphere through low-temperature, incomplete combustion of 

biomass and biofuel (Chen and Bond, 2010; Kirchstetter et al., 2004; Zhong and Jang, 2014). There 

is evidence of a possible source from residential coal burning (Bond, 2001), while the high-

temperature environment associated with other fossil fuel combustion is unfavorable to BrC 

formation  (Andreae and Gelencsér, 2006b; Saleh et al., 2014). BrC has been observed to 

contribute significantly to the overall absorption by biomass burning aerosol, especially in the UV 

(Clarke et al., 2007; Corr et al., 2012; Kirchstetter and Thatcher, 2012). The UVAI is sensitive to 

this absorption (Jethva and Torres, 2011). 

 Several studies have estimated the direct radiative effect (DRE) and/or direct radiative 

forcing (DRF) by BrC. In Heald et al. (2014) a clear distinction is made between the DRE, which 

is the instantaneous imbalance of out-going longwave and incoming shortwave radiation due to 

the presence of an atmospheric constituent, and the DRF, which is the difference in DRE between 

present-day and preindustrial conditions. Prior estimates of the change in all-sky top of atmosphere 

(TOA) DRE from treating organic aerosol as brown rather than weakly absorbing range from +0.04 

W m-2 to +0.25 W m-2 globally (Chung et al., 2012; Feng et al., 2013), with estimates of regional 

seasonal DRE of organic aerosol including absorbing BrC ranging from +0.5-1 W m-2 (Arola et 

al., 2015). Most studies estimate a TOA DRF between 0.07 and 0.57 W m-2 due to absorption by 

BrC (Lin et al., 2014; Park et al., 2010; Wang et al., 2014). To our knowledge, no chemical 

transport models have considered the effect of absorption by BrC on atmospheric photochemistry.   

 In this work we introduce brown carbon to the chemical transport model GEOS-Chem and 

examine its effect on atmospheric absorption and photochemistry, in particular in known biomass 

burning regions. To evaluate aerosol absorption, section 2.4 develops a simulation of the UVAI 

following Buchard et al. (2015) using the Vector Linearized Discrete Radiative Transfer model 

(VLIDORT) coupled with aerosol fields from GEOS-Chem. Section 2.5 compares the simulated 

UVAI values to observations from the Ozone Monitoring Instrument (OMI). The change in 

reflected solar radiation as observed by the UVAI tests the effective representation of the 

absorption of UV radiation by BrC. Section 2.6 examines the effect of the added BrC absorption 
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on ozone photolysis frequencies and tropospheric OH concentrations in the GEOS-Chem 

simulation. Section 2.7 calculates the DRE of absorbing brown carbon. Section 2.8 reports the 

conclusions.  

2.3 Observations 

2.3.1 OMI Ultraviolet Aerosol Index 

 The OMI Ultraviolet Aerosol Index is a method of detecting absorbing aerosols from 

satellite measurements in the near-UV wavelength region. The UVAI was first observed from the 

Nimbus-7 TOMS (Total Ozone Mapping Spectrometer) (Herman et al., 1997; Torres et al., 1998) 

and is currently a product of the OMI Near-UV algorithm (OMAERUV) (Torres et al., 2007). OMI 

flies on NASA’s Aura satellite and has been taking global daily measurements since 2004. The 

OMAERUV algorithm uses the 354 and 388 nm radiances measured by OMI to calculate the 

UVAI according to Torres et al. (1998, 2007): 

UVAI= - 100 log
10

[
I354
meas

I354
calc(R354

* )
]                                                   (2-1) 

where I354
meas is the TOA at 354 nm as measured by OMI, and I354

calc is the radiance at 354 nm 

calculated for a purely Rayleigh scattering atmosphere bounded by a Lambertian surface of 

reflectance R354
* , which is known as the adjusted Lambert Equivalent Reflectivity (LER) (Dave, 

1978). R354
*  is calculated by correcting the LER at 388 nm (R388

* ) for the spectral dependence of the 

surface reflectance at 354 nm. 

 Positive UVAI values indicate absorbing aerosol while negative values indicate non-

absorbing aerosol, and near-zero values indicate clouds, minimal aerosol, or other non-aerosol 

related effects such as unaccounted for land surface albedo wavelength dependence, ocean color 

effects or specular ocean reflection (i.e. sun glint). These second order effects yield UVAI values 

± 0.5 within the noise level (Torres et al., 2007). The OMAERUV product identifies clouds using 

the measured scene reflectivity and the UVAI (Torres et al., 2013). We reject cloudy conditions 

(quality flag of 1) to focus on cloud free conditions (quality flag 0).  

 In this work we use the OMI UVAI to evaluate simulated UVAI values, as described in 

section 2.4. 
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2.3.2 Absorption Angstrom Exponent (AAE) 

 We use observations of the Absorption Angstrom Exponent (AAE) for biomass burning 

aerosol to test our representation of the spectral dependence of absorption. The AAE is the slope 

of aerosol absorption optical depth (AAOD) versus wavelength (𝜆) with intercept k in log-log 

space. Using the AAE, the AAOD can be related to wavelength with the power-law relationship: 

AAOD = kλ
-AAE

                                                         (2-2) 

Aerosols with spectrally independent absorption display an AAE of about 1, while aerosols with 

spectrally dependent absorption have an AAE > 1. BC exhibits spectrally independent absorption, 

and is often accepted as having an AAE close to 1 (Bergstrom et al., 2002b; Bond and Bergstrom, 

2006). The AAE over the near-UV to near-IR spectral regions can indicate aerosol type, with urban 

pollution aerosols dominated by BC exhibiting an AAE near 1, biomass burning aerosols 

displaying an AAE near 2, and desert dust having an AAE > 2 (Bergstrom et al., 2007; Russell et 

al., 2009).  

 Several recent studies have attributed the spectrally dependent absorption by biomass 

burning aerosols to the presence of BrC (Clarke et al., 2007; Corr et al., 2012; Kirchstetter and 

Thatcher, 2012; Rizzo et al., 2011; Zhong and Jang, 2014). Kirchstetter et al. (2004) measured 

over the 300-1000 nm range an AAE of ~ 2 for biomass burning aerosol and an AAE of ~ 1 for 

motor vehicle aerosol. They found that after extracting the organic carbon from the samples using 

acetone, the AAE of the biomass burning aerosol decreased to around 1, while the motor vehicle 

aerosol AAE remained unchanged. They concluded that the spectral dependence of absorption by 

biomass burning aerosol was due to BrC, while the absorption by motor vehicle emissions was 

due to BC. 

 Table 2-1 contains a summary of measured AAE values for biomass burning aerosol. AAE 

values increase toward UV wavelengths as expected for BrC absorption. Variability in the AAE 

at visible wavelengths may reflect differences in burn conditions and fuel type. Observations in 

the ultraviolet, such as the UVAI, offer an exciting opportunity to exploit the large AAE of biomass 

burning aerosol at short wavelengths to assess the global magnitude of BrC absorption (Jethva and 

Torres, 2011).  
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Table 2-1: Absorption Angstrom Exponent (AAE) values for biomass burning regions from the 

literature. 

Wavelength (nm) AAE value Region Reference 

350-400 nm 

350-400  2.5-3.0 South America Jethva and Torres, 2011 

 

350-700 nm 

360-700 1.9 Rural California Kirchstetter and Thatcher, 

2012 

450-550 nm 

470-532 

470-532 

1.9 

1.4 

North-central Canada 

" 

Corr et al. 2012 

" 

                 Mean ± St. Dev = 1.7 ± 0.35 

400-700 nm 

400-700  

440-670 

440-670 

440-670 

440-670 

470-660 

470-660 

470-660 

470-660 

1.5-1.9 

1.8 

1.3 

1.4 

1.6 

1.7 

1.3 

1.5 

2.1 

Laboratory 

Boreal Forest 

Southern Africa 

South America 

Amazon 

Arctic 

Arctic 

Outside Beijing 

North America 

Schnaiter et al. 2005 

Russell et al. 2010 

" 

" 

" 

Corr et al. 2012 

" 

Yang et al. 2009 

Clarke et al. 2007 

                 Mean ± St. Dev = 1.6 ±0.26 

450-700 nm 

470-660                                   2.2                                North America                 Liu et al. 2015 

 

300-1000 nm 

325-1000 

325-1685 

330-1000 

370-950 

1.1 

1.5 

2 

1.5 

Southern Africa 

Southern Africa 

Southern Africa 

Outside Beijing 

Bergstrom et al. 2007 

 "   

Kirchstetter et al. 2004 

Yang et al. 2009 

                  Mean ± St. Dev = 1.5 ± 0.37 

400-1000 nm 

440-870 

440-870 

440-870 

440-870 

440-1020 

440-1020 

440-1020 

440-1020 

450-950  

1.6 

1.3 

1.4 

1.4 

1.5 

1.3 

1.3 

1.4 

1.7 

Boreal Forest 

Southern Africa 

South America 

Amazon 

Boreal Forest 

Southern Africa 

South America 

Amazon 

Amazon 

Russell et al. 2010 

" 

" 

" 

" 

" 

" 

" 

Rizzo et al. 2011 

                  Mean ± St. Dev = 1.4 ± 0.14 
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2.4. Simulated Ultraviolet Aerosol Index 

 We simulate the UVAI following Buchard et al. (2015) using the VLIDORT model (Spurr, 

2006), which includes polarization effects and uses the discrete ordinates method to solve the 

radiative transfer equation. We supply VLIDORT with the OMI pixel viewing geometry to 

calculate the UVAI for that pixel. The UVAI values are calculated from TOA radiances computed 

by VLIDORT at 354 and 388 nm, the wavelengths used by the OMAERUV product. 

 Following Buchard et al. (2015) we calculate simulated UVAI values as: 

UVAI = - 100 log
10

[
I354
RAY+AER

I354
RAY(R354

* )
]                                                (2-3) 

where I354
RAY+AER is the TOA radiance calculated with VLIDORT at 354 nm assuming an 

atmosphere containing aerosol and Rayleigh effects, and I354
RAY is the TOA radiance calculated with 

VLIDORT at 354 nm assuming a purely Rayleigh scattering atmosphere bounded by a Lambertian 

surface of reflectance R354
*  (adjusted Lambert Equivalent Reflectivity). 

 R354
*  is calculated by correcting the Lambert Equivalent Reflectivity at 388 nm (R388 

* ) for 

wavelength dependence: 

R354
*  = R388 

* - (R388 - R354)                                                    (2-4) 

where R388 and R354 are surface reflectance values from a revisited TOMS-based climatology 

dataset (Torres et al., 2013).   

 R388 
* is calculated by relating TOA radiance to diffuse reflectivity using the equation 

(Buchard et al., 2015): 

R388
* =

I388
RAY+AER

- I388
RAY

T388
RAY

+Sb388
RAY(I388

RAY+AER
- I388

RAY)
                                                  (2-5) 

where I388
RAY+AER is the TOA radiance calculated with VLIDORT at 388 nm assuming an 

atmosphere containing aerosol and Rayleigh effects, I388
RAY is the TOA radiance at 388 nm 

calculated with VLIDORT for a purely Rayleigh scattering atmosphere bounded by a Lambertian 

surface, T388
RAY is the simulated transmittance at 388 nm for a Rayleigh atmosphere, and Sb388

RAY
 is 

the spherical albedo of a Rayleigh atmosphere at 388 nm. 
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 For the calculation of TOA radiances, we provide VLIDORT with vertical profiles of 

aerosol extinction, single scattering albedo, and 32 Legendre-function expansion coefficients of 

the scattering phase function. We assume all aerosol particles are spherical. We obtain these 

aerosol optical properties using daily-averaged aerosol fields from GEOS-Chem version 9-01-03 

(http://geos-chem.org), a global three dimensional chemical transport model driven by assimilated 

meteorological data from the Goddard Earth Observation System (GEOS-5) of the NASA Global 

Modeling and Assimilation Office (GMAO). Our simulation is conducted at a spatial resolution 

of 2°x2.5° with 47 vertical levels for the year 2007.  

 GEOS-Chem contains a detailed oxidant-aerosol chemical mechanism (Bey et al., 2001; 

Park et al., 2004a). The aerosol simulation includes the sulfate-nitrate-ammonium system 

(Fountoukis and Nenes, 2007; Park et al., 2004a; Pye et al., 2009a), primary carbonaceous aerosol 

(Park et al., 2003), secondary organic aerosol (Henze et al., 2008; Henze and Seinfeld, 2006; Liao 

et al., 2007), mineral dust (Fairlie et al., 2007), and sea salt (Jaeglé et al., 2011). Aerosol optical 

properties are based on the Global Aerosol Data Set (GADS) (Kӧepke et al., 1997) as implemented 

by Martin et al., (2003), with updates for organics and secondary inorganics from aircraft 

observations (Drury et al., 2010), and for mineral dust (Lee et al., 2009; Ridley et al., 2012). We 

assume all aerosol particles are externally mixed as per the standard treatment used in GEOS-

Chem. We treat the density of organic aerosol as 1.3 g cm-3 (Duplissy et al., 2011; Kuwata et al., 

2012) and assume an organic aerosol mass to organic carbon fraction of 2.1 (Canagaratna et al., 

2015). 

 Anthropogenic emissions are from the EDGAR v32-FT2000 global inventory for 2000 

(Olivier et al., 2005) with emissions overwritten in areas with regional inventories for the United 

States (NEI 2005), Mexico (BRAVO; Kuhns et al., 2005), Europe (EMEP; http://www.emep.int/), 

and East Asia (Zhang et al., 2009). Emissions are scaled to the year 2007 following emissions of 

related CO2 sources as described in van Donkelaar et al. (2008). Global biofuel emissions (Yevich 

and Logan, 2003), global anthropogenic emissions for carbonaceous aerosols (Bond et al., 2007; 

Leibensperger et al., 2012), and emissions from open fires for individual years from the GFED3 

inventory (Mu et al., 2011) are included. 

 We calculate UVAI values for two cases.  The base case simulation treats the aerosol 

optical properties as currently implemented in GEOS-Chem in which all organic carbon aerosols 

http://www.emep.int/
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are very weakly absorbing (Table 2-2). The second case adds the more strongly absorbing BrC as 

described in section 2.5.2 below.  

Table 2-2: Imaginary part of the refractive index (k) values for the base case with weakly absorbing 

"white" organic carbon, and case 2 with brown carbon.  Case 2 includes k values associated with 

multiple densities (𝜌), and multiple fractions of brown carbon to primary organic carbon 

(BrC/POC).  All four columns for case 2 yield the same absorption.  

 Base Case Case 2 with BrC (𝝆 = 1.3 g cm-3) Case 2 with BrC (𝝆 = 1.8 g cm-3) 

Wavelength (nm) BrC/POC = 0 BrC/POC = 0.50 BrC/POC = 1.0 BrC/POC = 0.50 BrC/POC=1.0 

300 0.008 0.11 0.051 0.16 0.071 

350 0.005 0.077 0.037 0.11 0.051 

400 0.005 0.052 0.025 0.073 0.035 

450 0.005 0.035 0.014 0.049 0.019 

500 0.005 0.023 0.009 0.032 0.013 

550 0.006 0.015 0.007 0.021 0.010 

 

2.5 Comparison of simulated and OMI UVAI 

2.5.1 Base case simulation 

 

Figure 2-1: Monthly mean Ultraviolet Aerosol Index (UVAI) observations from the OMI satellite 

instrument for 2007. White space indicates cloud or snow contamination. Grey boxes outline 

regions examined in Tables 2-3 and 2-4. 
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Figure 2-1 shows the monthly mean OMI UVAI observations for January, April, July, and 

September of 2007. Clear signals are apparent over regions dominated by mineral dust and biomass 

burning (Herman et al., 1997; Torres et al., 1998). Absorption over desert regions occurs for all 

four months, giving UVAI values between 1 and 3, particularly over the Saharan, Iranian, and Thar 

deserts. Aerosol absorption from biomass burning primarily follows the seasonal cycle of 

agricultural burning (Duncan et al., 2003). In January, absorption over West Africa yields UVAI 

values between 1 and 2.5. In April aerosol absorption is visible over South Asia with UVAI values 

between 0.5 and 1. UVAI values of 1-1.7 occur over southern Africa in both July and September, 

while UVAI values of up to 3 occur over South America in September. 

 

Figure 2-2: Monthly mean UVAI values for 2007 simulated for OMI observing conditions using 

the vector radiative transfer model VLIDORT coupled with GEOS-Chem aerosol fields for the 

base case, which treats organic carbon aerosol as weakly absorbing, for 2007. White space 

indicates cloud or snow contamination. 

 Figure 2-2 shows the monthly mean UVAI values for our base case simulation, which treats 

organic carbon aerosol as weakly absorbing. The simulation captures the major absorption features 

compared to OMI over the desert regions, giving UVAI values of 1-3, however it fails to capture 

the absorption by biomass burning aerosol, giving UVAI values between -2 and 0 in all biomass 

burning regions for the four months. These negative values indicate that the UVAI simulation is 

insensitive to the absorption by BC and is dominated by the scattering from the weakly absorbing 



 
 

    19 

organic carbon aerosol. A sensitivity test with doubled BC concentrations increased UVAI values 

by only ~0.1. We also conducted a sensitivity test to determine if the heights of the biomass burning 

plumes could explain the underestimated absorption. Raising the aerosol layer height to unrealistic 

altitudes (~10 km above the surface) increased the UVAI by only 0.1-0.3, which is insufficient to 

account for the differences between the simulation and observations.  

 To further analyze the discrepancies between simulated and observed UVAI, we choose 

four regions corresponding to the seasonal biomass burning outlined in Figure 2-1: West Africa 

(5°S-25°N, 40°W-20°E) in January, South Asia (5-35°N, 60-110°E) in April, southern Africa (0-

30°S, 5°W-30°E) in July, and South America (0-40°S, 40-70°W) in September. Table 2-3 contains 

the correlation coefficients (r) between the simulated and OMI UVAI as well as the mean bias 

(simulated-OMI UVAI). The correlation between the OMI and simulated UVAI is low (0.09-0.48) 

in all regions, with large mean biases of -0.32 to -0.97 

Uncertainty in aerosol optical depth also cannot explain the UVAI bias. Table 4 shows the 

simulated AOD compared with AOD retrieved from the MODIS (Moderate Resolution Imaging 

Spectroradiometer) and MISR (Multi-angle Imaging Spectroradiometer) satellite instruments. 

Overall the simulated values are within the range of satellite retrieved AOD values. The maximum 

difference in simulated versus satellite AOD is found with the MODIS Dark Target algorithm over 

South America in September. Matching the simulated AOD to the satellite AOD changed the 

UVAI by less than 0.1.  

We attempt to reconcile the differences between the simulated and OMI UVAI in biomass 

burning regions by introducing absorbing BrC into GEOS-Chem, as described below. 
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Table 2-3: Comparison of the simulated versus observed (OMI) UVAI values for the biomass 

burning regions in the months examined. The base case corresponds to a simulation assuming 

weakly absorbing organic carbon, while Case 2 corresponds to a simulation including absorbing 

BrC. 

   Mean      Base Case  Case 2 with BrC 

Regiond nc Month OMI UVAI ra Mean Biasb r Mean Bias 

West Africa 381 January 1.25 0.48 -0.57 0.68 -0.09 

South Asia 280 April 0.34 0.46 -0.32 0.66 +0.0002 

Southern Africa 184 July 0.66 0.09 -0.97 0.63 -0.22 

South America 230 September 0.30 0.40 -0.50 0.57 +0.33 

a r: Pearson correlation coefficient 

b Mean bias = simulated UVAI – observed UVAI 

c n = number of GEOS-Chem grid boxes in region 

d regions are defined in Figure 1 

 

Table 2-4: The mean AOD values for each region from the GEOS-Chem (GC) base case 

simulation, the MISR instrument, and the MODIS Terra satellite instrument. The MODIS values 

are included for both the collection 6 Deep Blue and Dark Target algorithms.  

 Mean AOD 

Regiona GC MISR MODIS Deep Blue MODIS Dark Target 

West Africa 0.42 0.42 0.45 0.51 

South Asia 0.32 0.32 0.30 0.37 

Southern Africa 0.19 0.19 0.13 0.24 

South America 0.31 0.36 0.39 0.57 

a regions are defined in Figure 1 

 

2.5.2 Treatment of brown carbon 

 A great deal of uncertainty exists regarding the fraction of total primary organic carbon 

that is brown (BrC/POC). This uncertainty arises from the variety of methods used to measure BrC 

absorption as well as the variable nature of organic aerosols themselves. BrC absorption is often 

measured by subtracting the absorption attributed to black carbon from the total measured aerosol 

absorption, and attributing the difference to BrC (e.g. Arola et al., 2011; Yang et al., 2009). Lack 

and Langridge (2013) argue that this method is subject to the uncertainties associated with the 

measured absorption of BC as well as the possible presence of absorbing mineral dust. Filter-based 

measurements where the organic carbon is extracted from the total biomass burning aerosol sample 
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with the use of solvents provide a more robust estimate (Liu et al., 2013). Chen and Bond (2010) 

used methanol to extract organic carbon from a variety of burning wood samples generated in a 

laboratory and found that 92% of the total organic carbon present in the samples was brown. 

Kirchstetter et al. (2004) extracted organic carbon from biomass burning samples taken in southern 

Africa using acetone and found that 50-80% of the total organic carbon could be attributed to BrC. 

A broad range of BrC/POC values have been used to simulate absorption by brown carbon. For 

example, Feng et al. (2013) assume 66% of primary organic carbon from biomass and biofuel 

emissions is brown, Wang et al. (2014) assume 50% of POC from biomass and 25% of POC from 

biofuel emissions is brown, while Lin et al. (2014) assume 100% POC from biomass and biofuel 

emissions is brown.   

 Evidence for the existence of brown secondary organic carbon (Br-SOA) also exists. The 

majority of Br-SOA is from anthropogenic sources (Liu et al., 2013, 2014; Zhang et al., 2013b), 

while SOA formed from biogenic carbon is only very weakly absorbing (Flores et al., 2014; Liu 

et al., 2014). On a global scale it is estimated that the majority of SOA is formed from biogenic 

carbon (Hallquist et al., 2009b; Lack et al., 2004; Tsigaridis and Kanakidou, 2003). Therefore we 

do not modify the optical properties of SOA. We tested this approach in a sensitivity study by 

assigning 100% SOA as brown, and found that the contribution to overall absorption by SOA was 

negligible (UVAI changed by less than 0.1). 

 Several estimates of BrC absorption exist, but they all differ significantly. The imaginary 

part of the refractive index (k) for BrC derived by Kirchstetter et al. (2004) and Chen and Bond 

(2010) are often taken, respectively, as the upper (k ~ 0.168 at 350 nm) and lower (k ~ 0.074 at 

350 nm) limits in modelling studies (Arola et al., 2011; Feng et al., 2013; Lin et al., 2014).  

Different observations may reflect different burn conditions (Saleh et al., 2014) as well as chemical 

loss and evaporation of BrC (Forrister et al., 2015; Zhong and Jang, 2014). 

 Here we apply the OMI UVAI observations to estimate the effective absorption by BrC. 

We exploit the fact that the TOA radiances used in the OMI UVAI retrievals contain implicit 

information on the BrC from actual burn conditions, on the BrC that remains after chemical loss 

or evaporation, on Br-SOA, and on the BrC/POC fraction. We use the term effective to denote the 

implicit dependence of the UVAI upon these multiple processes. Through sensitivity simulations, 

we derive the effective k values for BrC and the BrC/POC fraction required to reproduce the 
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observed absorption by the OMI UVAI. This is accomplished by conducting the sensitivity 

simulations for several cases of BrC/POC fraction and assuming the same fixed spectral 

dependence for each case. We then adjust the magnitude of the effective k values to match the 

OMI UVAI. We treat the relative spectral dependence of k, log (Δ𝑘)/log (Δ𝜆), as 3 for wavelengths 

between 300 and 600 nm to represent the mean from laboratory and field measurements of 3.2 ± 

0.7 (Kirchstetter et al., 2004; Zhang et al., 2013; Zhong and Jang, 2014). At wavelengths ≥ 600 

nm we leave the absorption properties of POC unchanged since BrC absorption decreases 

significantly into the visible and near-IR (Bergstrom et al., 2007; Chen and Bond, 2010; Yang et 

al., 2008).  

The filled circles in Figure 2-3 show the effective k values of BrC derived from seven 

sensitivity simulations that all achieve the same simulated UVAI. Only the BrC/POC fraction 

varies between simulations. The choice of simulated UVAI was selected to represent the global 

OMI UVAI over major biomass burning regions. The imaginary part of the refractive index 

decreases with increasing wavelength following an exponential relationship as prescribed based 

on laboratory and field measurements, and decreases with increasing BrC/POC fraction as required 

to reproduce the OMI UVAI. The effective k values increase with decreasing BrC/POC fraction 

because as there is less BrC present, in order to match the absorption observed by OMI, the 

individual BrC particles must become more absorbing in order to counteract the scattering from 

the remaining fraction of very weakly absorbing organic carbon. Given the smoothly varying 
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Figure 2-3: Imaginary part of the refractive index (k) values for BrC as a function of wavelength 

and the fraction of primary organic carbon that is brown (BrC/POC). The background spectrum 

represents k values calculated using Eq. (6). The filled circles represent the k values obtained from 

sensitivity simulations. An organic carbon density of 1.3 g cm-3 is assumed. 

relationship between k and BrC/POC we develop the following expression to represent this 

relationship: 

𝑘 = 𝑐 ∙ 𝜌 ∙ 𝜆 ∙ [35.4 (
𝐵𝑟𝐶

𝑃𝑂𝐶
)

−1.25

∙ exp(−10.5𝜆)] ;   BrC/POC ≥ 0.4           (2-6) 

where 𝜆 is wavelength (𝜇m), 𝜌 is the density of organic carbon (g 𝜇m-3), and 𝑐 is a conversion 

constant equal to 1.0x1012/4𝜋 𝜇m2 g-1. 

 The background spectrum of Figure 2-3 shows the k values calculated using Eq. (2-6). This 

expression reproduces the full radiative transfer sensitivity simulations with a root mean squared 

error (RMSE) of 0.004 and a coefficient of determination (r2) value of 0.99. Equation (2-6) does 

not apply for BrC/POC fractions less than 0.4 since they do not reproduce the absorption observed 

by OMI. We emphasize that multiple choices of k and BrC/POC will yield the same TOA radiance 

and UVAI. The effects on tropospheric OH concentrations and radiative forcing remain unaffected 

as BrC/POC and effective k vary together, since the distribution of scattering and absorption 

remains the same.  



 
 

    24 

 Table 2-2 contains our derived imaginary parts of the refractive index for BrC/POC 

fractions of 0.5 and 1.0, compared to the k values for the weakly absorbing organic carbon used in 

our base case simulation. Table 2-2 also contains effective k values derived for an organic carbon 

density of 1.8 g cm-3 which has been assumed in prior studies of BrC. The range of values for k 

covered by varying the BrC/POC fraction encompasses the range of values for BrC found in the 

literature (Chen and Bond, 2010; Feng et al., 2013; Kirchstetter et al., 2004; Lin et al., 2014; Sun 

et al., 2007; Zhang et al., 2013; Zhong and Jang, 2014). The four columns with BrC yield identical 

wavelength dependent global distributions of scattering and absorption that in turn yield the same 

UVAI, OH, and DRE. 

2.5.3 Simulation including brown carbon 

Figure 2-4 shows the monthly mean UVAI values for the simulation including brown 

carbon for the months of January, April, July, and September of 2007. The simulated absorption 

features including BrC are much more consistent than the base case simulation at reproducing the 

OMI UVAI over biomass burning regions (Figure 2-2). The simulated UVAI in the four biomass 

burning regions now ranges from 0.5-3. As summarized in Table 2-3, the correlation coefficients 

between the simulated and OMI UVAI for the four biomass burning regions now range from 0.57-

0.68, with mean biases of -0.22 to +0.33.  

The simulated UVAI using global mean k values underestimates the OMI observations for 

the West Africa and southern Africa regions, but overestimates observations in the South 

American region. We tested how k would need to change to explain the regional UVAI bias if k 

were the only error source. We find that these regional biases could be eliminated by changing k 

at 350 nm by +2% over West Africa, by +10% over southern Africa, and by -30% over South 

America.  The presence of more absorbing BrC over West and southern Africa where savannah 

fires dominate, and less absorbing over the South America region where forest fires dominate, is 

consistent with work by Saleh et al. (2014) that found the absorptivity of BrC from biomass 

burning is greater for flaming fires associated with burning grasslands than for smoldering fires 

associated with burning forest.  
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Figure 2-4: Monthly mean UVAI values for 2007 simulated for OMI observing conditions using 

the vector radiative transfer model VLIDORT coupled with GEOS-Chem aerosol fields for case 

2, which assumes the presence of absorbing BrC aerosol. White space indicates clouds or snow 

contamination.  

 The absorption in the West and southern Africa cases appears to be concentrated closer to 

the source for the simulated values (Figure 2-4) compared to the OMI values (Figure 2-1), which 

show an even distribution of UVAI values away from the source. By contrast, the absorption in 

the South American region appears to be distributed farther from the source in the simulation than 

in the OMI observations. Evidence exists of atmospheric photochemical loss and evaporation of 

brown carbon that causes it to become less absorbing over a lifetime of less than a day (Forrister 

et al., 2015; Zhong and Jang, 2014). Representing these processes would improve the simulation 

in the South American region but degrade the simulation in the West Africa and southern Africa 

regions. Regional treatment of BrC loss processes may be warranted in future work. The current 

implementation offers our best representation of the effective BrC absorption at the global scale. 

 Table 2-5 shows the calculated AAE values for biomass burning aerosol (i.e. black carbon 

+ organic carbon aerosol) from our simulations for comparison with the literature values in Table 

2-1. Large biases are apparent for the base case simulation without BrC. We evaluate the case 2 
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Table 2-5: The Absorption Angstrom Exponent (AAE) values for major biomass burning regions 

and seasons obtained from the base case simulation assuming weakly absorbing organic carbon 

and the case 2 simulation including absorbing BrC.  

Wavelength 

(nm) 

January 

(West Africa) 

April 

(South Asia) 

July 

(Southern 

Africa) 

September 

(South America) 

Mean ± 

St. Dev 

Base Case 

350-400 1.2 1.2 1.2 1.2 1.2 ± 0.00 

350-700 1.0 1.2 1.0 1.1 1.1 ± 0.09 

450-550 0.8 1.1 0.7 1.0 0.9 ± 0.18 

400-700 1.0 1.2 0.9 1.1 1.1 ± 0.13 

450-700 1.0 1.1 0.9 1.0 1.0 ± 0.08 

300-1000 0.9 1.1 0.9 0.9 0.9 ± 0.10 

400-1000 0.7 0.9 0.7 0.7 0.8 ± 0.10 

Case 2 

350-400 2.9 2.5 3 2.9 2.8 ± 0.22 

350-700 2.3 2 2.4 2.3 2.2 ± 0.17 

450-550 2.5 2.3 2.6 2.6 2.5 ± 0.14 

400-700 2.2 1.9 2.2 2.2 2.1 ± 0.15 

450-700 1.9 1.7 1.9 1.9 1.8 ± 0.10 

300-1000 1.8 1.6 1.8 1.8 1.7 ± 0.15 

400-1000 1.3 1.3 1.3 1.3 1.3 ± 0.00 

 

simulation including BrC in detail. For the 350-400 nm wavelength region our mean AAE value 

of 2.8±0.22 for the four biomass burning regions is within the recommended values of 2.5-3.0 by 

Jethva and Torres (2011). In the 350-700 nm range our mean AAE of 2.2±0.17 is close to the 

value of 1.9 from Kirchstetter and Thatcher (2012). The slight positive bias could arise from the 

fact that Kirchstetter and Thatcher (2012) took their absorption measurements from wood smoke 

emitted from houses in rural California during the winter, which have different conditions than the 

tropical open burning considered here. We obtain a mean AAE value of 1.7 ± 0.15 for the 300-

1000 nm range, which falls within the literature values of 1.1 to 2. For the 450-550 nm wavelength 

region, we obtain a mean AAE value of 2.5 ± 0.14, which is biased high compared to the values 

from Corr et al. (2012) extracted from an examination of biomass burning plumes in North-Central 
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Canada, where burn conditions differ from the mostly tropical regions considered in our analysis. 

Over the 400-700 nm region we obtain a mean AAE of 2.1 ± 0.15, falling within the range of the 

literature values (1.3-2.1). In the 400-1000 nm region, we obtain a mean AAE value of 1.3 ± 

0.005, which is at the low end of the literature values (1.3-1.7). The overall consistency between 

observed and simulated AAE provides a measure of confidence in spectral dependence of aerosol 

optical properties from the UV to the IR. We now examine the implications of this absorption for 

OH and DRE. 

2.6. Analysis of the effect of absorption by BrC on OH concentrations in GEOS-Chem 

 The strong absorption in the UV by brown carbon aerosol decreases photolysis frequencies, 

which has implications for ozone photolysis and OH production. Here we examine the effect of 

the added absorption by BrC on the O3 → O(1D) photolysis frequency, J(O(1D)), and tropospheric 

OH concentrations. 

 Figure 2-5 shows the percent differences in lower tropospheric OH concentrations between 

the GEOS-Chem simulation including absorbing brown carbon versus the base case simulation 

with weakly absorbing organic carbon. The most significant decreases correspond with the major 

biomass burning regions. The addition of BrC decreases OH concentrations by up to 35% over the 

South American biomass burning region in September and up to 25% over the southern Africa 

biomass burning region in July. OH concentrations decrease by up to 20% over West Africa in 

January and southern Africa in September, with decreases of up to 15% over North America in 

July, South America in July, and South Asia in all four months. The spatial and seasonal pattern 

of J(O1(D)) differences closely reproduces the changes in OH (r2 = 0.85) (not shown). 
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Figure 2-5: Percent difference between OH concentrations in the lower troposphere from a GEOS-

Chem simulation including absorbing BrC minus a simulation including weakly absorbing organic 

carbon. The values are monthly means for January, April, July, and September of 2007. 

 Methyl chloroform observations provide a valuable constraint on global OH (Prather et al., 

2012; Spivakovsky et al., 2000). The addition of BrC to the GEOS-Chem simulation reduces 

global mean tropospheric OH concentrations. The reduction in global mean OH concentrations 

increases the methyl chloroform lifetime to tropospheric OH from 5.62 years to 5.68 years. This 

change is noteworthy given the buffered nature of OH. This change yields better agreement with 

estimates from observations giving a methyl chloroform lifetime of 6.0 (+0.5, -0.4) years (Prinn et 

al., 2005). 

2.7 Radiative impact of brown carbon 

 We calculate the direct radiative effect (DRE) of absorbing BrC relative to that of the  

weakly absorbing organic carbon assumed in our base case simulation. We use GEOS-Chem 

coupled with the radiative transfer model RRTMG (Iacono et al., 2008), a configuration known as 

GC-RT, that is described in Heald et al. (2014). GC-RT calculates both the longwave (LW) and 

shortwave (SW) instantaneous total radiative fluxes as well as the flux differences due to a specific 

constituent of the atmosphere (e.g. organic aerosol). The DRE is calculated by adding the LW and 

SW flux differences determined through perturbation of the constituent of interest. Our GC-RT 

simulations use version 10.1 of GEOS-Chem with the same aerosol emissions described in section 

3 (e.g. GFED3 open fire emissions). We calculate the DRE of absorption by BrC as the difference 
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in the DRE of organic aerosol when including BrC (Case 2) minus the DRE of organic aerosol 

when assuming weakly absorbing organic carbon (base case). We focus on the DRE rather than 

the DRF to avoid ambiguity in preindustrial BrC. 

 

Figure 2-6. Annual mean all-sky DRE values for 2007 (W m−2). The top two panels are the DRE 

values for organic aerosol from the case 2 simulation including BrC at (a) the surface and (b) 

TOA. The bottom two panels are the change in DRE values for absorption by BrC calculated as 

the difference between the DRE values for organic aerosol from the case 2 simulation and the 

base case simulation (without BrC) at (c) the surface and (d) TOA. 

 Figure 2-6 shows all-sky DRE values for 2007. The top two panels are the DRE values for 

organic aerosol from the case 2 simulation including BrC. The overall DRE of organic aerosol 

including BrC is negative, with the largest effects over major biomass burning regions. The bottom 

two panels show the DRE for absorption by BrC, calculated as the difference between the DRE of 

organic aerosol for the case 2 simulation including BrC minus the base case simulation with 

weakly absorbing organic carbon. At the surface BrC absorption reduces the DRE by -1.25 Wm-2 

over South America and southern Africa, and by -0.5 to -0.25 Wm-2 over South Asia, North 

America, West Africa, Australia, and Europe. At TOA, BrC absorption reduces the DRE by 0.55 

Wm-2 over South America and southern Africa, and by 0.1 to 0.25 Wm-2 over broad regions. This 



 
 

    30 

overall cooling effect at the surface and a warming effect on the atmosphere is consistent with 

previous work (e.g. Chen and Bond, 2010). 

 Table 2-6 contains LW and SW global annual mean flux differences as well as the resulting 

DRE values for both organic aerosol and brown carbon absorption. The values for organic aerosol 

are from the base case simulation assuming weakly absorbing organic carbon and the case 2 

simulation including BrC, while the values for BrC absorption are calculated as their difference. 

Absorption by BrC has a mean all-sky DRE at TOA of +0.05 W m-2 and at the surface of -0.06 W 

m-2.  

  Our findings fall within the range of values from other studies that estimate the DRE of 

BrC absorption. Feng et al. (2013) introduce absorption by BrC based on the optical properties 

from Kirchstetter et al. (2004) and Chen and Bond (2010) into a global model, and calculate an 

all-sky TOA DRE for BrC absorption of 0.04 to 0.11 W m-2, and an all-sky surface DRE for BrC 

absorption of -0.06 to -0.14 W m-2. Chung et al. (2012) estimate BrC absorption by subtracting the 

absorption by BC and desert dust from total aerosol AAE values from AERONET to calculate an 

all-sky TOA DRE for organic aerosol when including BrC between -0.15 and +0.12 W m-2 and an 

all-sky surface DRE between -1.50 and -0.75 W m-2. Arola et al. (2015) use AERONET retrieved 

imaginary parts of the refractive index for brown carbon at 440, 670, 870, and 1020 nm to estimate 

over the Indo-Gangetic plain monthly all-sky TOA DRE values for organic aerosol including BrC 

absorption up to +0.5 W m-2 in spring and as low as -1 W m-2 in the winter.   
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Table 2-6: Global annual mean LW and SW flux differences and resulting DRE values for 2007 

at TOA and the surface. The values for organic aerosol are shown for both the base case simulation 

with weakly absorbing organic carbon and the case 2 simulation including absorbing brown 

carbon. The DRE values for BrC absorption are calculated as the difference between the DRE of 

organic aerosol from case 2 minus the base case. 

 

 Organic Aerosol BrC Absorption 

 Base Case Case 2 Case 2 – Base Case 

TOA DRE, Clear Sky (Wm-2) -0.41 -0.37 +0.040 

LW +0.0044 +0.0044  

SW -0.41 -0.37  

TOA DRE, All Sky (Wm-2) -0.30 -0.25 +0.05 

LW +0.0033 +0.0033  

SW -0.30 -0.25  

Surface DRE, Clear Sky 

(Wm-2) 

-0.67 -0.74 -0.07 

LW +0.0076 +0.0076  

SW -0.67 -0.75  

Surface DRE, All Sky (Wm-

2) 

-0.53 -0.59 -0.06 

LW 0.0062 0.0062  

SW -0.54 -0.60  
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2.8. Conclusion 

 We interpret OMI observations of the Ultraviolet Aerosol Index (UVAI), which provides 

a measure of absorbing aerosols, by developing a simulation of the UVAI using the vector radiative 

transfer model VLIDORT coupled with GEOS-Chem aerosol fields. The base case simulation, 

which treats organic carbon as weakly absorbing, well represents the observed UVAI in most of 

the world but significantly underestimates the absorption in biomass burning regions. We apply 

the OMI UVAI to estimate absorption by brown carbon (BrC). This approach exploits the strong 

absorption by BrC at ultraviolet wavelengths and its effect on top of atmosphere (TOA) radiance. 

We express the imaginary part of the refractive index of BrC that is required to obtain near-

identical TOA radiance values as a function of the fraction of primary organic carbon that is brown. 

This effective refractive index and effective BrC fraction provide a measure of the degree of 

browness needed to represent the complex processes (e.g. burn conditions, photochemical loss) 

affecting global BrC and in turn the UVAI. 

 The simulation including absorbing BrC is much more consistent than the base case at 

reproducing the OMI UVAI over biomass burning regions. The mean bias between simulated and 

OMI UVAI values is reduced from -0.57 to -0.09 over West Africa in January, from -0.32 to 

+0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 

to +0.33 over South America in September. The updated optical properties for BrC result in AAE 

values for biomass burning aerosol ranging from 2.9 in the UV to 1.3 across the UV-Near IR, 

which are broadly consistent with field observations.  

 We apply this constraint on ultraviolet absorption to examine implications for the O3 → 

O(1D) photolysis frequency. We find that the inclusion of absorbing BrC into GEOS-Chem 

decreases J(O(1D)) and lower tropospheric OH by up to 35% over South America in September, 

up to 25% over southern Africa in July, up to 20% over West Africa in January and southern Africa 

in September, and up to 15% over North America in January, South America in July, and South 

Asia in all four months. The decrease in global mean OH concentration in GEOS-Chem increases 

the methyl chloroform lifetime to tropospheric OH from 5.62 years to 5.68 years, which is in better 

agreement with estimates from observations of 6.0 (+0.5, -0.4) years. 

 We calculate the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with the 

radiative transfer model RRTMG (GC-RT). We obtain global annual mean all-sky TOA DRE 
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values for BrC absorption of 0.05 Wm-2 and values of -0.06 Wm-2 at the surface. Regional changes 

of up to +0.5 W m-2 at TOA and down to -1 W m-2 at the surface are found over major biomass 

burning regions. Our results are within the range of prior estimates of DRE for BrC absorption.  

 Ample opportunities exist to further develop the simulations of BrC and more generally of 

the UVAI. These opportunities include explicitly accounting for the range of processes affecting 

BrC such as burn conditions, photochemical loss, secondary production, as well as regional 

treatment of BrC. Interpretation of the long observational record of the UVAI from 1979 to the 

present should offer constraints on trends in aerosol composition, ultraviolet absorption, and 

radiative effects. The forthcoming TROPOMI instrument and geostationary constellation (e.g. 

TEMPO, Sentinel-4, and GEMS) will offer UVAI observations at 5-20 times higher spatial 

resolution, as well as information on diurnal variation, both of which may offer additional 

constraints on BrC evolution. 

2.9 Acknowledgements: This work was supported by the Natural Science and Engineering 

Research Council of Canada. Computational facilities were provided in part by the Atlantic 

Computational Excellence Network consortium of Compute Canada. We thank Farhan Khan for 

assistance during the early stages of this work. 

 

 

 

 

 

 

 

 

 

 



 
 

    34 

Chapter 3: Insight into global trends in aerosol composition from 2005 to 2015 inferred from 

the OMI Ultraviolet Aerosol Index  

Reproduced with permission from “Insight into global trends in aerosol composition from 2005 to 

2015 inferred from the OMI Ultraviolet Aerosol Index” by Hammer, M. S., Martin, R. V., Li, C., 

Torres, O., Manning, M., and Boys, B. L., Atmos. Chem. Phys., 18, 8097-8112, 

https://doi.org/10.5194/acp-18-8097-2018, 2018. Copyright 2018 by the Authors. CC Attribution 

3.0 License. All text, figures and results were contributed by the first author. 

3.1 Abstract.  

Observations of aerosol scattering and absorption offer valuable information about aerosol 

composition. We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of 

detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the 

Ozone Monitoring Instrument (OMI) from 2005 to 2015 to understand global trends in aerosol 

composition. We conduct our simulation using the vector radiative transfer model VLIDORT with 

aerosol fields from the global chemical transport model GEOS-Chem. We examine the 2005–2015 

trends in individual aerosol species from GEOS-Chem and apply these trends to the UVAI 

simulation to calculate the change in simulated UVAI due to the trends in individual aerosol 

species. We find that global trends in the UVAI are largely explained by trends in absorption by 

mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol. Trends 

in absorption by mineral dust dominate the simulated UVAI trends over North Africa, the Middle- 

East, East Asia, and Australia. The UVAI simulation resolves observed negative UVAI trends well 

over Australia, but underestimates positive UVAI trends over North Africa and Central Asia near 

the Aral Sea and underestimates negative UVAI trends over East Asia. We find evidence of an 

increasing dust source from the desiccating Aral Sea that may not be well represented by the 

current generation of models. Trends in absorption by brown carbon dominate the simulated UVAI 

trends over biomass burning regions. The UVAI simulation reproduces observed negative trends 

over central South America and West Africa, but underestimates observed UVAI trends over 

boreal forests. Trends in scattering by secondary inorganic aerosol dominate the simulated UVAI 

trends over the eastern United States and eastern India. The UVAI simulation slightly 

overestimates the observed positive UVAI trends over the eastern United States and 
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underestimates the observed negative UVAI trends over India. Quantitative simulation of the OMI 

UVAI offers new insight into global trends in aerosol composition. 

3.2 Introduction 

Atmospheric aerosols have significant climate impacts due to their ability to scatter and 

absorb solar radiation and to their indirect effect through modification of cloud properties. The 

exact magnitude of the direct radiative forcing remains highly uncertain (IPCC, 2014), although 

most studies agree it is significant (Andreae and Gelencsér, 2006; Mann and Emanuel, 2006; 

Mauritsen, 2016). Storelvmo  et al. (2016) estimate that changes in global aerosol loading over the 

past 45 years have caused cooling (direct and indirect) that masks about one-third of the 

atmospheric warming due to increasing greenhouse gas emissions. Aerosol absorption has been 

estimated to be the second-largest source of atmospheric warming after carbon dioxide 

(Ramanathan and Carmichael, 2008; Bond et al., 2013; IPCC, 2014), although considerable 

uncertainty remains regarding the exact magnitude (Stier et al., 2007). The large uncertainty 

regarding the direct radiative impacts of aerosols on climate is driven by the large variability in 

aerosol physical and chemical properties, as well as their various emission sources, making it 

extremely difficult to fully understand their interactions with radiation (Pöschl, 2005; Moosmüller 

et al., 2009; Curci et al., 2015; Kristiansen et al., 2016). Global observations of trends in aerosol 

scattering and absorption would offer valuable constraints on trends in aerosol sources and 

composition. 

The emissions of aerosols and their precursors have changed significantly over the past 

decade. In North America and Europe, the anthropogenic emissions of most aerosol species (e.g. 

black carbon, organic aerosols) and aerosol precursors (e.g. sulfur dioxide and nitrogen oxides) 

have decreased due to pollution controls (Leibensperger et al., 2012; Klimont et al., 2013; Curier 

et al., 2014; Simon et al., 2015; Xing et al., 2015; Li et al., 2017). By contrast, emissions of aerosols 

and aerosol precursors have increased in developing countries due to increased industrial activity, 

particularly in China and India. Chinese emissions of black carbon (BC), organic carbon (OC), 

and nitrogen oxides (NOx ) have been increasing over the past decade (Cui et al., 2015; Zhao et 

al., 2013), although in the most recent years NOx emissions have been declining, driven by 

denitration devices at power plants (Liu et al., 2016a). Due to the wide implementation of flue-gas 

desulfurization equipment in most power plants in China, emissions of sulfur dioxide (SO2) in 
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some regions have been decreasing since about 2006–2008 (Lu et al., 2011; Wang et al., 2015; 

Fioletov et al., 2016). Indian emissions of anthropogenic aerosols and their precursors have been 

increasing over the past decade (Lu et al., 2011; Klimont et al., 2017). There have also been 

significant changes in global dust and biomass burning emissions. Shao et al. (2013) use synoptic 

data to estimate a global decrease in dust emissions between 1974 and 2012, driven largely by 

reductions from North Africa with weaker contributions from Northeast Asia, South America, and 

South Africa. By examining trends in burned area, Giglio et al. (2013) estimate a decrease in global 

biomass burning emissions between 2000 and 2012. Trends in aerosol composition produced by 

these changing emissions may be detectable from satellite observations of aerosol scattering and 

absorption. 

Detection of aerosol composition from passive nadir satellite observations is exceedingly 

difficult; few methods exist. The aerosol-type classification provided by retrievals from the MISR 

instrument, enabled by multi-angle viewing, is one such source of information about aerosol 

composition from constraints on particle size, shape, and single scattering albedo (SSA) (Kahn 

and Gaitley, 2015). MISR retrievals have been used to classify particles relating to events such as 

biomass burning, desert dust, volcanic eruptions, and pollution events (e.g. Liu et al., 2007; 

Kalashnikova and Kahn, 2008; Dey and Di Girolamo, 2011; Scollo et al., 2012; Guo et al., 2013). 

The most commonly used satellite product for aerosol information is aerosol optical depth (AOD), 

the columnar extinction of radiation by atmospheric aerosols. AOD can be retrieved from satellite 

measurements of top-of-atmosphere (TOA) radiance in combination with prior knowledge of 

aerosol optical properties. Several studies have examined trends in satellite AOD. Following trends 

in emissions, over the past decade positive trends in satellite AOD have been observed over Asia 

and Africa, corresponding to regions experiencing industrial growth (de Meij et al., 2012; Chin et 

al., 2014; Mao et al., 2014; Mehta et al., 2016), while negative trends in satellite AOD have been 

observed over North America and Europe, largely due to pollution controls  

(Hsu et al., 2012; de Meij et al., 2012; Chin et al., 2014; Mehta et al., 2016). Studies such 

as these demonstrate the information about the evolution of aerosol abundance offered by total 

column AOD retrievals, but measurements of absorption would complement the scattering 

information in AOD retrievals by providing independent information on aerosol composition. 
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The Ultraviolet Aerosol Index (UVAI) is a method of detecting aerosol absorption from 

satellite-measured radiances (Herman et al., 1997; Torres et al., 1998). Because the UVAI is 

calculated from measured radiances, a priori assumptions about aerosol composition are not 

required for its calculation, thus yielding independent information on aerosol scattering (Herman 

et al., 1997; Torres et al., 1998, 2007; de Graaf et al., 2005; Penning de Vries et al., 2009) and 

absorption. The UVAI has been widely applied to examine mineral dust (Israelevich et al., 2002; 

Schepanski et al., 2007; Badarinath et al., 2010; Huang et al., 2010) and biomass burning aerosols  

(Duncan et al., 2003; Guan et al., 2010; Torres et al., 2010; Kaskaoutis et al., 2011; Mielonen et 

al., 2012) including brown carbon (BrC) (Jethva and Torres, 2011; Hammer et al., 2016). The 

UVAI is not typically used to examine scattering aerosol, but aerosol scattering causes a net 

decrease in the overall value of the UVAI, meaning that the UVAI could be used to detect changes 

due to both aerosol absorption and scattering. Prior interpretation of the UVAI has been 

complicated by its dependence on geophysical parameters, such as aerosol layer height (Herman 

et al., 1997; Torres et al., 1998; de Graaf et al., 2005). Examining trends in the UVAI would 

provide an exciting opportunity to investigate the evolution of aerosol absorption and scattering 

over time, if the multiple parameters affecting the UVAI could be accounted for through 

simulation. 

In this work, we apply a simulation of the UVAI, which was developed and evaluated 

regionally and seasonally in Hammer et al. (2016), to interpret trends in recently reprocessed 

Ozone Monitoring Instrument (OMI) UVAI observations for 2005–2015 to understand global 

changes in aerosol composition. We interpret observed UVAI values by using a radiative transfer 

model (VLIDORT) to calculate UVAI values as a function of simulated aerosol composition from 

the global 3-D chemical transport model GEOS-Chem. By using scene-dependent OMI viewing 

geometry together with scene-dependent modelled atmospheric composition we enable 

quantitative comparison of model results with observations. Comparison of trends in observed 

OMI UVAI values to the trends in simulated UVAI values, which are calculated using known 

aerosol composition, enables qualification of how changes in aerosol absorption and scattering 

could influence the observed UVAI trends and identification of model development needs. We 

conduct our analysis at the global scale to understand trends worldwide. Section 3.3 describes the 

OMI UVAI observations and our UVAI simulation. Section 3.4 examines the trends in emissions 

of GEOS-Chem aerosols and their precursors for 2005–2015 to provide context for the trends in 
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our simulated UVAI. Section 3.5 compares the mean values during 2005–2015 of the OMI UVAI 

and our simulated UVAI. Section 3.6 compares the 2005–2015 trends in OMI and simulated UVAI 

values. In Sect. 3.7 we examine the sensitivity of the UVAI to changes in the abundance of 

individual aerosol species. Trends in our UVAI simulation are interpreted by applying the trends 

in the GEOS-Chem aerosol species to calculate the associated change in UVAI. Section 3.8 reports 

the conclusions. 

3.3 Methods 

3.3.1 OMI Ultraviolet Aerosol Index 

The OMI UVAI is a method of detecting absorbing aerosols from satellite measurements 

in the near-UV wavelength region and is a product of the OMI near-UV algorithm (OMAERUV) 

(Herman et al., 1997; Torres et al., 1998, 2007). The OMAERUV algorithm uses the 354 and 388 

nm radiances measured by OMI to calculate the UVAI as a measure of the deviation from a purely 

Rayleigh scattering atmosphere bounded by a Lambertian reflecting surface. Positive UVAI values 

indicate absorbing aerosol while negative values indicate non-absorbing aerosol. Near-zero values 

occur when clouds and Rayleigh scattering dominate. Negative UVAI values due to aerosol 

scattering are often weak and have historically been affected by noise in previous datasets (Torres 

et al., 2007; Penning de Vries et al., 2015). Because UVAI values are calculated from TOA 

radiance which contains total aerosol effects, the presence (or absence) of scattering aerosol along 

with absorbing aerosol can either weaken (or strengthen) the absorption signal. Therefore the 

UVAI could be used to detect changes over time due to both aerosol absorption and scattering. 

The main source of error affecting a trend analysis of the UVAI is the OMI row anomaly, 

which has reduced the sensor viewing capability for specific scan angles since 2008 

(http://projects.knmi.nl/omi/research/ product/rowanomaly-background.php, last access: 22 Au- 

gust 2017). The sudden suppression of observations for specific viewing geometries (i.e. the row 

anomaly) could cause an additional spurious trend in the UVAI trend calculation. We address this 

concern by considering only scan positions 3–23, which remain unaffected by the row anomaly, 

and also by using the recently reprocessed OMAERUV UVAI that is less sensitive to scan-angle-

dependent cloud artifacts due to the implementation of a Mie-scattering-based water cloud model 

(Torres et al., 2018). We focus on cloud-filtered observations by excluding scenes with OMI UVAI 

radiative cloud fraction exceeding 5 % to further reduce uncertainty due to clouds. Furthermore, 
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we focus on 10 years of observations so that multiple observations can reduce the random error of 

UVAI observations. 

Because the OMI UVAI is calculated directly from OMI- measured radiances, instrument 

degradation over time could be a significant source of uncertainty (Povey and Grainger, 2015). 

Schenkeveld et al. (2017) found that the OMI radiances in the channel used for the UVAI have 

changed by only ∼ 1–1.15 % over the entire OMI record. Applying this change to the radiances 

results in a change in the ab- solute UVAI of ∼ 10−4 , which is negligible. Schenkeveld et al. (2017) 

also calculated the trend in the ratio of the 354/380nm radiances measured by OMI for pixels 

unaffected by the OMI row anomaly and over the tropical Pacific where the presence of aerosol is 

expected to be minimal, to assess the change in the spectral dependence of OMI’s over- all radiance 

calibration over the course of the mission. They found that the trend in the 354/380 nm radiance 

ratio over the entire OMI record was < 0.5 % per decade. We estimate the effect of instrument 

degradation on our trend analysis by calculating the change in UVAI associated with the 0.5 % per 

decade trend in the 354/380 nm radiance ratio. Applying the trend in 354/380 nm radiance ratio to 

the UVAI calculation globally resulted in a negligible change in the UVAI of  ∼ 2 × 10−4 yr−1. To 

avoid the influence of any possible spurious trends due to instrument degradation on our trend 

analysis, we subtract the trend in global mean UVAI from the cloud-filtered UVAI prior to 

interpretation. 

We perform trend analysis on monthly mean time series data for the years 2005–2015 using 

generalized least squares (GLS) regression, as described by Boys et al. (2014). Prior to regression, 

the data are aggregated to monthly mean values, and the monthly time series data are 

deseasonalized by subtracting the monthly mean for the period 2005–2015 to focus on the long-

term trend. Deseasonalization is a recommended method to accurately calculate a long-term trend 

in a seasonally varying time series (Weatherhead et al., 1998, 2002; Wilks, 2011) and is widely 

employed for the trend analysis of geophysical data including temperature, chemical species 

concentrations, relative humidity, cloud cover, and aerosol parameters (Reynolds and Reynolds, 

1988; Prinn et al., 1992; Pelletier and Turcotte, 1997; Zhang et al., 1997; Dai, 2006; Norris and 

Wild, 2007; Boys et al., 2014; Ma et al., 2016). Each pixel is required to have data for at least 60 

% of the time period before regression is performed. In the following section, we discuss our UVAI 

simulation and the implementation of the new UVAI algorithm in the simulation. 
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3.3.2 Simulated UVAI 

We simulate the UVAI using the VLIDORT radiative transfer model (Spurr, 2006), 

following Buchard et al. (2015) and Hammer et al. (2016). We calculate the TOA radiances at 354 

and 388 nm needed for the UVAI calculation by supplying VLIDORT with the OMI viewing 

geometry for each scene, as well as the GEOS-Chem simulation of vertical profiles of aerosol 

extinction, spectrally dependent single scattering albedo, and the corresponding spectrally 

dependent scattering phase function. Thus these parameters account for the sensitivity of the UVAI 

to aerosol layer height and spectrally dependent aerosol optical properties. 

We introduce to the UVAI simulation a Mie-scattering-based water cloud model 

(Deirmendjian, 1964) for consistency with the reprocessed OMI UVAI dataset. Following Torres 

et al. (2018), we compute the radiances used in the UVAI calculation as a combination of clear 

and cloudy sky conditions. We use the same cloud fractions and cloud optical depths used in the 

OMI UVAI algorithm for coincident OMI pixels. We avoid cloudy scenes by considering only 

pixels with OMI radiative cloud fraction of less than 5 %. For the UVAI calculation we use the 

surface reflectance fields provided by OMI. We calculated the 2005–2015 trends in these surface 

reflectance fields and found that they were statistically insignificant globally and on the order of 

10−5 yr−1. We calculated the change in UVAI due to a change in surface reflectance of this order 

of magnitude and found that the change in UVAI was negligible. We also calculated the change in 

UVAI due to changes in simulated aerosol altitude, but found that the trends in aerosol altitude 

were negligible (order 10−5 hPa yr−1). Therefore we focus our analysis on trends in aerosol 

composition which have a larger effect on the UVAI as demonstrated below. 

We use the GEOS-Chem model v11-01 (http://geos-chem. org, last access: 22 August 

2017) as input to the UVAI simulation and to calculate the sensitivity of the UVAI simulation to 

aerosol composition. The simulation is driven by assimilated meteorological data from MERRA-

2 Reanalysis of the NASA Global Modeling and Assimilation Office (GMAO). Our simulation is 

conducted at a spatial resolution of 2◦ × 2.5◦ with 47 vertical levels for the years 2005–2015. We 

supply VLIDORT with GEOS-Chem aerosol fields coincident with OMI observations. 

GEOS-Chem contains a detailed oxidant-aerosol chemical mechanism (Bey et al., 2001; 

Park et al., 2004). The aerosol simulation includes the sulfate–nitrate–ammonium system (Park et 

al., 2004; Fountoukis and Nenes, 2007; Pye et al., 2009), primary carbonaceous aerosol (Park et 
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al., 2003) mineral dust (Duncan Fairlie et al., 2007), and sea salt (Jaeglé et al., 2011). Semivolatile 

primary organic carbon and secondary organic aerosol (SOA) formation is described in Pye et al. 

(2010). We update the original semi-volatile partitioning of SOA formed from isoprene with the 

irreversible up-take scheme in Marais et al. (2016). HNO3 concentrations are reduced following 

Heald et al. (2012). Aerosol optical properties are based on the Global Aerosol Data Set (GADS) 

(Koepke et al., 1997) as originally implemented by Martin et al. (2003) with updates for organics 

and secondary in- organics from aircraft observations (Drury et al., 2010), for mineral dust (Lee et 

al., 2009; Ridley et al., 2012), and for absorbing BrC (Hammer et al., 2016). Here we update the 

mineral dust optics at ultraviolet wavelengths using a refractive index that minimizes the difference 

between the mean simulated and OMI UVAI values to allow focus on trends. Aerosols are treated 

as externally mixed. 

Anthropogenic emissions are from the EDGARv4.3.1 global inventory (Crippa et al., 2016) 

with emissions over- written in areas with regional inventories for the United States (NEI11; Travis 

et al., 2016), Canada (CAC), Mexico (BRAVO; Kuhns et al., 2005), Europe (EMEP; http: 

//www.emep.int/, last access: 22 August 2017), China (MEIC v1.2; M. Li et al., 2017), and 

elsewhere in Asia (MIX; C. Li et al., 2017). Emissions from open fires for individual years from 

the GFED4 inventory (Giglio et al., 2013) are included. The long-term concentrations from this 

simulation have been extensively evaluated versus ground-based PM2.5 composition 

measurements where available and versus satellite- derived PM2.5 trends (Li et al., 2017). 

The Supplement evaluates trends in simulated SO2, NO2, and AOD versus satellite 

retrievals from multiple instruments and algorithms. We find broad consistency between our 

simulated NO2 and SO2 column trends with those from OMI (Supplement Figs. 3-S1 and 3-S2). 

Our simulated AOD trends are generally consistent with the trends in satellite AOD retrievals, 

with the exception of positive trends in AOD over western North America and near the Aral Sea 

in most retrieval products and a negative trend in AOD over Mongolia/Inner Mongolia in all 

retrieval products (Fig. 3-S3). 

We filter our GEOS-Chem aerosol simulated fields based on the coincident OMI pixels, 

which are regridded to the model resolution of 2◦ × 2.5◦. This allows for the direct comparison 

between our GEOS-Chem simulation and the OMI UVAI observations. 
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3.4 Trend in emissions of GEOS-Chem aerosols and their precursors 

Figure 3-1 shows the trends in emissions of aerosols and their precursors from our GEOS-

Chem simulation calculated from the GLS regression of monthly time series values for 2005– 

2015. Cool colours indicate negative trend values, warm colours indicate positive trend values, 

and the opacity of the colours indicates the statistical significance of the trends. The trends in 

emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) follow similar patterns (Fig. 3-1a and 

b, respectively). Negative trends (−1 to −0.01 kg km−2 yr−1) are present over North America and 

Europe, corresponding to pollution controls (Leibensperger et al., 2012; Klimont et al., 2013;  

 

Figure 3-1: Trend in emissions of (a) sulfur dioxide (SO2) (kg SO2 km−2yr−1), (b) nitrogen oxides 

(NOx) (kg NO km−2yr−1), ammonia (NH3) (kg NH3 km−2 yr−1), black carbon (BC) (kg C km−2 yr−1), 

primary organic carbon (POA) (kg C km−2 yr−1), and dust (kg km−2 yr−1) used in our GEOS-Chem 

simulation. The trends are calculated from the generalized least squares regression of monthly time 

series values during 2005–2015. 

Curier et al., 2014; Simon et al., 2015; Xing et al., 2015; C. Li et al., 2017). Positive trends (0.5 to 

1 kg km−2 yr−1) in both species are present over India and eastern China, but the positive trends in 
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emissions of SO2 over eastern China are interspersed with negative trends (−1 to −0.5 kg km−2 

yr−1) in SO2 emissions, corresponding to the deployment of desulfurization equipment in power 

plants in recent years (Lu et al., 2011; Klimont et al., 2013; Wang et al., 2015). Ammonia (NH3) 

emissions (Fig. 3-1c) have positive trends (0.001 to 0.05 kg km−2 yr−1) over most of South 

America, North Africa, the Middle East, and most of Asia with larger trends (0.1 to 0.5 kg km−2 

yr−1) over India and eastern China. There are positive trends (0.001 to 0.05 kg km−2 yr−1) in BC 

emissions (Fig. 3-1d) over North Africa, Europe, the Middle East, India, and China and negative 

trends (−0.05 to −0.001 kg km−2 yr−1) over North America, Europe, West Africa, and central South 

America. The trends in primary organic aerosol (POA) emissions (Fig. 3-1e) follow a similar 

pattern as the trends in BC emissions, except there are negative trends (−0.1 to −0.05 kg km−2 yr−1) 

over eastern China and the negative trends (−1 to −0.1 kg km−2 yr−1) over West Africa and central 

South America are larger in magnitude reflecting regional changes in fire activity (Chen et al., 

2013; Andela and van der Werf, 2014). There are also positive trends (0.001 to 0.05 kg km−2 yr−1) 

over the northern United States and Canada. The trends in dust emissions (Fig. 3-1f) show the 

largest magnitude of all the various species, although many have low statistical significance, with 

areas of positive and negative trends (> 1 and < −1 kg km−2 yr−1) over North Africa, positive trends 

(> 1 kg km−2 yr−1) parts of the Middle East, and negative trends (< −1 kg km−2 yr−1) over northern 

China and southern Australia. 

3.5 Mean UVAI values for 2005–2015 

We examine the seasonal long-term mean UVAI values for insight into the spatial 

distribution of the aerosol absorption signals. Figures 3-2 and 3-3 show the seasonal mean UVAI 

values for 2005–2015 for OMI and the simulation, respectively. Positive UVAI values between 

0.2 and 1.5 indicating aerosol absorption are present over major desert regions globally for both 

OMI and the simulation, particularly over the Saharan, Iranian, and Thar deserts. These positive 

signals are driven by the absorption by mineral dust (Herman et al., 1997; Torres et al., 1998; 

Buchard et al., 2015). The simulation underestimates some of the smaller dust features captured 

by OMI, such as over western North America, South America, Australia, and parts of Asia, perhaps 

reflecting an underestimation in the simulated mineral dust lifetime (Ridley et al., 2012) and 

missing dust sources (Ginoux et al., 2012; Huang et al., 2015; Guan et al., 2016; Philip et al., 

2017). The seasonal variation in the observed and simulated UVAI is similar albeit with larger 

simulated values in spring (MAM) over North Africa. In all seasons, the UVAI values driven by 
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absorption by dust in the simulation are concentrated mostly over North Africa, while for OMI the 

UVAI values are more homogeneous over the Middle East and Asia as well. Positive UVAI values 

of ∼ 0.2–1 over West and Central Africa appearing in both the OMI and simulated values 

correspond to absorption by BrC from biomass burning activities in these regions (Jethva and 

Torres, 2011; Hammer et al., 2016). Over ocean most data are removed by our strict cloud filter. 

 

Figure 3-2: Seasonal mean UVAI values for the 2005–2015 period as observed by OMI for MAM 

(May, April, March), JJA (June, July August), SON (September, October, November), and DJF 

(December, January, February). Grey indicates persistent cloud fraction greater than 5 %. 

 

Figure 3-3: Seasonal mean UVAI values for the 2005–2015 period from our simulation 

coincidently sampled from OMI for MAM (May, April, March), JJA (June, July August), SON 

(September, October, November), and DJF (December, January, February). Grey indicates 

persistent cloud fraction greater than 5 %. 
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3.6 Trend in UVAI values between 2005 and 2015 

 

Figure 3-4: Trends in OMI (a) and simulated (b) UVAI values coincidently sampled from OMI 

calculated from the generalized least squares regression of monthly time series values during 

2005–2015. The opacity of the colours indicates the statistical significance of the trend. Grey 

indicates persistent cloud fraction greater than 5 %. 

Figure 3-4 shows the trend in OMI and simulated UVAI values (coincidently sampled from 

OMI) calculated from the GLS regression of monthly UVAI time series values during 2005–2015. 

Several regions exhibit consistency between the OMI and simulated UVAI trends. There are 

statistically significant positive trends in both OMI and simulated UVAI values over the eastern 

United States (OMI: 1.0×10−5 to 2.5×10−4 yr−1; simulated: 2.5×10−4 to 5.0×10−4 yr−1) and Canada 

and parts of Russia (OMI: 1.0×10−5 to 2.5×10−4 yr−1; simulated: 5.0×10−4 to 2.0×10−3 yr−1). 
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Positive UVAI trends (1.0×10−5 to 2.5×10−4 yr−1) in both OMI and simulated values are 

present over Europe, although the simulated trends have low statistical significance. Statistically 

significant positive UVAI trends (5.0×10−4 to 2.0×10−3 yr−1 ) in OMI values are apparent over 

North Africa, which generally are captured by the simulation but with low statistical significance. 

Negative UVAI trends (−1.5×10−3 to −1.0×10−5 yr−1) in both OMI and simulated values are 

apparent over most of South America, southern Africa, and Australia. Negative UVAI trends 

(−2×10−3 to −5.0×10−4 yr−1 ) in both OMI and simulated values are present over West Africa, with 

low statistical significance that could be related to the filtering of persistent clouds. OMI and 

simulated UVAI values show negative trends (−2×10−3 to −5×10−4 yr−1) over India, although the 

simulated trends have lower statistical significance. 

Some regions have trends in OMI UVAI values which are not captured by the simulation. 

Statistically significant positive UVAI trends (2.5×10−4 to 1.5×10−3 yr−1) over the western United 

States are apparent in the OMI values but not in the simulation. Zhang et al. (2017) found positive 

trends in aerosol absorption optical depth from OMI retrievals that they attributed to positive trends 

in mineral dust over the region, which were not captured by their GEOS-Chem simulation. 

Statistically significant positive UVAI trends (5.0×10−4 to 2.0×10−3 yr−1) in OMI values exist over 

the Middle East, while the simulation has negative trends with low statistical significance. The 

OMI UVAI reveals a region of statistically significant negative trends (−2×10−3 to −5.0×10−4 yr−1) 

over Mongolia/Inner Mongolia which is not captured by the simulation. There is also a small area 

of statistically significant positive UVAI trends (1.5×10−3 to 2.0×10−3 yr−1) in OMI values of over 

Central Asia between the Caspian Sea and the Aral Sea which is not captured by the simulation. 

Trends in surface reflectance from the diminishing Aral Sea cannot solely explain the UVAI trends 

since they extend over the Caspian Sea. Trends in mineral dust are a more likely explanation as 

discussed further below. 

Figures 3-5 and 3-6 show the seasonality of the OMI and simulated UVAI trends 

respectively. The positive UVAI trends over the eastern United States are strongest in summer 

(JJA) for both OMI and the simulation. The positive UVAI trends over North Africa and the 

Middle East are present for all seasons for OMI and for most seasons in the simulation, except in 

JJA for North Africa and spring (MAM) for the Middle East. The simulation underestimates the 

observed UVAI trend over North Africa in SON, perhaps related to an under- estimation in trends 

in mineral dust emissions in the simulation during this season. He et al. (2014) examined the 2000–  
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Figure 3-5: Seasonality of the trends in OMI UVAI values calculated from the generalized least 

squares regression of monthly time series values during 2005–2015 for MAM (May, April, 

March), JJA (June, July August), SON (September, October, November), and DJF (December, 

January, February). The opacity of the colours indicates the statistical significance of the trend. 

Grey indicates persistent cloud fraction greater than 5 %. 

2010 trends in global surface albedo using the Global Land Surface Satellites (GLASS) dataset 

and found no significant trends over this region during SON. The negative trend in UVAI values 

over West Africa is most apparent in the fall (SON) and winter (DJF) for both OMI and the 

simulation. The negative OMI UVAI trends over Mongolia/Inner Mongolia and the positive OMI 

UVAI trends near the Aral Sea are strongest in JJA and weakest in DJF, providing evidence of a 

mineral dust source. The OMI UVAI trend over Mongolia/Inner Mongolia may be part of a longer-

term trend. Guan et al. (2017) examined dust storm data over northern China (including Inner 

Mongolia) for the period 1960–2007 and found that dust storm frequency has been declining over 

the region due to a gradual decrease in wind speed. The current generation of chemical transport 

models is unlikely to represent the source near the Aral Sea without an explicit parameterization 

of the drying sea. The desiccation of the Aral Sea over recent decades has resulted in a steady 

decline in water coverage over the area (Shi et al., 2014; Shi and Wang, 2015) and has led to the 

dried up sea bed becoming an increasing source of dust activity in the region (Spivak et al., 2012). 

Indoitu et al. (2015) found that most dust events are directed towards the west, consistent with the 
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OMI observations. An increase in surface reflectance due to the drying up of the sea bed could 

also positively influence trends in UVAI. He et al. (2014) found a positive trend over 2000–2010 

in surface albedo over the region in JJA and SON, corresponding to when the OMI UVAI trends 

are strongest. 

Figure 3-6: Seasonality of the trends in simulated UVAI values coincidently sampled from OMI 

calculated from the generalized least squares regression of monthly time series values during 

2005–2015 for MAM (May, April, March), JJA (June, July August), SON (September, October, 

November), and DJF (December, January, February). The opacity of the colours indicates the 

statistical significance of the trend. Grey indicates persistent cloud fraction greater than 5 %. 

3.7 Contribution of individual aerosol species to the simulated UVAI 

To further interpret the UVAI trends, we examine the trends in aerosol concentrations from 

our GEOS-Chem simulation (Fig. 3-7). Figure 3-7a shows the trends in secondary inorganic 

aerosol (SIA). There are statistically significant negative trends over the eastern United States (−1 

to −0.05 μg m−2 yr−1) and statistically significant positive trends over the Middle East (0.05 to 0.5 

μg m−2 yr−1), India (0.05 to 1 μg m−2 yr−1 ), South America, and southern Africa (0.05 to 0.25 μg 

m−2 yr−1 ). Figure 3-7b shows the trends in dust. Similar to the trends in emissions, the trends in 

dust concentrations are of the largest magnitude of the various species, but often with low statistical 

significance. There are positive trends over the Middle East (> 2 μg m−2 yr−1), India (0.05 to 2 μg 

m−2 yr−1), and northwest China (1 to 2 μg m−2 yr−1). There are also positive trends (0.05 to 0.25 μg 

m−2 yr−1) with low statistical significance over the United States, northern South America, southern  
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Figure 3-7: Trend in GEOS-Chem aerosol concentrations for (a) secondary inorganic aerosol 

(SIA), (b) dust, (c) total organic aerosol (OA), (d) brown carbon (BrC), (e) black carbon (BC), and 

(f) sea salt. The trends are calculated from the GLS regression of monthly aerosol concentration 

time series values during 2005–2015. The opacity of the colours indicates the statistical 

significance of the trend. Grey indicates persistent cloud fraction greater than 5 %. 

Africa, and northern Australia. There is a combination of positive and negative trends (> 2 and < 

−2 μg m−2 yr−1) over North Africa, and negative trends over China and Mongolia (< −2 μg m−2 

yr−1) and Australia (−1 to −0.5 μg m−2 yr−1). Figure 3-7c and d show the trends in total organic 

aerosol (OA) and the absorbing BrC component of OA, respectively. Positive trends over Canada 

and parts of Russia (0.05 to 0.5 μg m−2 yr−1) in total OA are mainly due to the positive trend in 

BrC. Statistically significant negative trends in total OA (−1 to −0.05 μg m−2 yr−1) over the eastern 

United States are dominated by scattering organic aerosol. Statistically significant negative trends 

(−2 to −0.05 μg m−2 yr−1) over West Africa and South America for total OA are dominated by the 

trend in absorbing BrC. Figure 3-5e and f show the trends in BC and salt, respectively. There are 
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positive trends (0.05 to 0.25 μg m−2 yr−1) in BC with low statistical significance over India and 

China. Sea salt trends are negligible. 

 

Figure 3-8: Annual mean change in simulated UVAI values for 2008 due to the doubling of 

concentrations of (a) secondary inorganic aerosol (SIA), (b) dust, (c) total organic aerosol (OA), 

(d) brown carbon (BrC), (e) black carbon (BC), and (f) sea salt from the GEOS- Chem simulation. 

Grey indicates persistent cloud fraction greater than 5 %. 

To gain further insight into how changes in aerosols effect the trends in simulated UVAI, 

we examine the sensitivity of the UVAI to changes in individual aerosol species. Figure 3-8 shows 

the change in annual mean UVAI due to doubling the concentration of individual aerosol species. 

This information facilitates interpretation of the observed UVAI trends by identifying the chemical 

components that could explain the observed trends. Doubling scattering SIA concentrations (Fig. 

3-8a) decreases the UVAI between −0.25 and −0.1 over most of the globe, with the largest changes 

over the eastern United States, Europe, parts of the Middle East, India, and southeast China. 

Doubling dust concentrations (Fig. 3-8b) produces the largest changes in UVAI, causing in- 

creases between 0.5 and 1 over North Africa and smaller increases between 0.2 and 0.5 over the 
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Middle East, Europe, and parts of Asia and Australia. Figure 3-8c and d show the changes in UVAI 

due to doubling total OA concentrations and the absorbing BrC component, respectively. The 

doubling of BrC increases the UVAI between 0.1 and 0.5 over Canada, West and Central Africa, 

India, parts of Russia, eastern China, and central South America. Doubling total OA concentrations 

over central South America causes a net decrease of ∼ −0.1 as the scattering component of total 

OA cancels out the absorption by BrC. Doubling BC concentrations (Fig. 3-8e) increases the 

UVAI of 0.1 over Central Africa, India, and southeast China, while doubling sea salt 

concentrations (Fig. 3-8f) has negligible effect on the UVAI. 

Figure 3-9 shows the change in simulated UVAI due to the 2005–2015 trends in individual 

aerosol species from our GEOS-Chem simulation. The change for each species is calculated by 

applying the aerosol concentration trends for the individual aerosol type while leaving the 

concentrations unchanged for the other aerosol species, then taking the difference between this 

perturbed UVAI simulation and an unperturbed simulation. Negative trends in scattering SIA (Fig. 

3-9a) increase the UVAI by 1.0×10−4 to 7.5×10−3 yr−1 over the eastern United States and by 

1.0×10−4 to 2.5×10−3 yr−1 over Europe, corresponding to regions of positive UVAI trends in both 

OMI and the simulation (Fig. 3-4). Increasing SIA decreases the UVAI by −2.5×10−3 to −1.0×10−4 

yr−1 over the Middle East, India, and east China. Trends in dust concentrations (Fig. 3-9b) cause 

the largest change in UVAI with regional increases > 1×10−2 yr−1 and regional decreases < −1×10−2 

yr−1. Simulated UVAI trends due to mineral dust are mostly negative over North Africa, East Asia, 

and Australia, while mostly positive over the Middle East. Noisy trends in regional meteorology 

cause heterogeneous trends in dust and in the UVAI, with low statistical significance. Figure 3-9c 

and d show the change in UVAI due to the trends in total OA and the absorbing BrC component 

of total OA, respectively. Most of the changes in UVAI due to the trends in total OA are caused 

by the trends in the absorbing BrC component, with increases in the UVAI between 2.5×10−3 and 

1×10−2 yr−1 over Canada and parts of Russia, corresponding to regions of positive UVAI trends 

for both OMI and the simulation (Fig. 3-4). There are decreases in the UVAI < −1×10−2 yr−1 over 

central South America and West Africa due to the negative trends in BrC, corresponding to regions 

of negative UVAI trends for both OMI and the simulation (Fig. 3-4). Over the eastern United 

States there is a mixture of increases and decreases in the UVAI due to the trends in scattering 

organic aerosol. Positive trends in BC increase the UVAI (Fig. 3-9e) by 1.0×10−4 to 2.5×10−3 yr−1 
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over India and China. There are no obvious changes in the UVAI due to the trends in sea salt (Fig. 

3-9f). 

 

Figure 3-9: Change in simulated UVAI values due to the 2005–2015 trends in (a) secondary 

inorganic aerosols (SIA), (b) dust, (c) total organic aerosol (OA), (d) brown carbon (BrC), (e) 

black carbon (BC), and (f) sea salt from the GEOS-Chem simulation. Grey indicates persistent 

cloud fraction greater than 5 %. 

3.8 Conclusions 

Observations of aerosol scattering and absorption offer valuable information about aerosol 

composition. We simulated the UVAI, a method of detecting aerosol absorption using satellite 

measurements, to interpret trends in OMI observed UVAI during 2005–2015 to understand global 

trends in aerosol composition. We conducted our simulation using the vector radiative transfer 

model VLIDORT with aerosol fields from the global chemical transport model GEOS-Chem. 
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We demonstrated that interpretation of the OMI UVAI with a quantitative simulation of 

the UVAI offers information about trends in aerosol composition. We found that global trends in 

the UVAI were largely explained by trends in absorption by mineral dust, absorption by BrC, and 

scattering by secondary inorganic aerosols. We also identified areas for model development, such 

as dust emissions from the desiccating Aral Sea. 

We examined the 2005–2015 trends in individual aerosol species from GEOS-Chem and 

applied these trends to the UVAI simulation to calculate the change in simulated UVAI due to the 

trends in individual aerosol species. The two most prominent positive trends in the observed UVAI 

were over North Africa and over Central Asia near the desiccating Aral Sea. The simulated UVAI 

attributes the positive trends over North Africa to increasing mineral dust despite an 

underestimated simulated trend in fall (SON) that deserves further attention. The positive trends 

in the observed UVAI over Central Asia near the shrinking Aral Sea are likely due to increased 

dust emissions, a feature that is unlikely to be represented in most chemical transport models. The 

most prominent negative trends in the observed UVAI were over East Asia, South Asia, and 

Australia. The simulation attributed the negative trends over East Asia and Australia to decreasing 

mineral dust, despite underestimating the trend in East Asia. The simulation attributed the negative 

trend over South Asia to increasing scattering secondary inorganic aerosols, a trend that the 

observations imply could be even larger. We found the positive trends in the UVAI over the eastern 

United States that were strongest in summer (JJA) in both the observations and the simulation were 

driven by negative trends in scattering secondary inorganic aerosol and organic aerosol. Observed 

negative trends in winter (DJF) were less well simulated. Over West Africa and South America, 

negative trends in UVAI were explained by negative trends in absorbing BrC. Thus, trends in the 

observed UVAI offer valuable information on the evolution of global aerosol composition that can 

be understood through quantitative simulation of the UVAI. 

Looking forward, the availability of the UVAI observations from 1979 to the present offers 

a unique opportunity to understand long-term trends in aerosol composition. The recent launch of 

the TROPOspheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012) and the 

forthcoming geo- stationary constellation offer UVAI observations at finer spatial and temporal 

resolution. The forthcoming Multi-Angle Imager for Aerosols (MAIA; Diner et al., 2018) satellite 

instrument offers an exciting opportunity to derive even more information about aerosol 
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composition by combining measurements at ultraviolet wavelengths with multi-angle observations 

and polarization sensitivity. 
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3.10 Supplement 

3.10.1. Comparison of simulated and OMI SO2 and NO2 columns 

We calculate the trends in simulated and OMI SO2 and NO2 columns (Figures 3-S1 and 3-

S2) to evaluate our GEOS-Chem simulation. There is broad consistency between the trends in our 

simulated SO2 and NO2 columns with those from OMI. There are negative trends in both OMI and 

simulated SO2 columns over most of North America, Europe, northern South America, central 

Africa, and east China. There is a mixture of negative and positive trends in SO2 over North Africa. 

There are positive trends in SO2 over southern South America, southern Africa, the Middle-East, 

India, most of China, and Australia. The trends in NO2 columns correspond to the trends in SO2 

columns in almost all regions except for eastern China, which shows positive trends in NO2 

columns for both the simulation and OMI. 

3.10.2. Comparison of simulated and satellite AOD 

Figure 3-S3 shows the trends in GEOS-Chem and satellite AOD for 2005-2015 filtered 

based on coincident OMI pixels with persistent cloud fraction greater than 5%. Overall the trends 

in simulated AOD are consistent with the range of trends in satellite AOD. The GEOS-Chem AOD 

(Figure 3-S3a) shows negative trends in AOD over the eastern United States and West Africa, and 

positive trends over the western United States, the Middle-East, India, and most of China. Figure 

3-S3b shows the trends in AOD from MISR. Significant negative trends are apparent over the 

eastern United States, Europe, central South America, parts of North Africa, West Africa, and 

Mongolia/Inner Mongolia. There are small positive trends over west and central United States, 

parts of South America, parts of North Africa, southern Africa, parts of the Middle-East, parts of 

China, and Australia, with stronger positive trends over India. AOD from MODIS Dark Target 

(Figure 3-S3c) shows negative trends over eastern United States, Europe, and central South 

America, with small positive trends over southern Africa, most of Asia, and Australia, and stronger 

positive trends over Canada, southern South America, India, and over Central Asia between the 

Caspian Sea and the Aral Sea. Figure S3d shows the trends in AOD from MODIS Deep Blue. 

There small negative trends over eastern United States, central South America, Europe, parts of 

North Africa and West Africa, with stronger negative trends over the Indo-Gangetic Plain and 

Mongolia/Inner Mongolia. There are positive trends over southern Africa, most of Asia, and 

Australia, and stronger positive trends over Canada, southern South America, parts of the Middle-
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East, India, and over Central Asia between the Caspian Sea and the Aral Sea. Figures 3-S3e and 

3-S3f show the trends in AOD from the OMI OMAERUV algorithm at 388 nm and 500 nm, 

respectively. Significant negative trends are apparent for both wavelengths over central South 

America, West Africa, the Indo-Gangetic Plain, and Mongolia/Inner Mongolia. Negative trends 

over Europe and parts of North Africa are more pronounced in the OMI AOD at 388 nm (Figure 

3-S3e) than at 500 nm (Figure 3-S3f). There are small positive trends over west and central United 

States, parts of South America, parts of North Africa, southern Africa, parts of China, and 

Australia, with stronger positive trends over Canada, India, and over Central Asia between the 

Caspian Sea and the Aral Sea. 

 

Figure 3-S1: Trends in OMI (top panel) and GEOS-Chem (bottom panel) NO2 columns calculated 

from the Generalized Least Squares regression of monthly time series values over 2005-2015. The 

OMI NO2 columns are from NASA’s OMNO2 version 2.1 product. The opacity of the colors 

indicates the statistical significance of the trend. Gray indicates persistent cloud fraction greater 

than 5%. 
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Figure 3-S2: Trends in OMI (top panel) and GEOS-Chem (bottom panel) SO2 columns calculated 

from the Generalized Least Squares regression of monthly time series values over 2005-2015. The 

OMI SO2 columns are from NASA’s OMSO2 version 1.2.0 product. The opacity of the colors 

indicates the statistical significance of the trend. Gray indicates persistent cloud fraction greater 

than 5%. 
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Figure 3-S3: Trends in aerosol optical depth from a) GEOS-Chem (550 nm), b) MISR v22 (550 

nm), c) MODIS Terra collection 6 Dark Target algorithm (550 nm), d) the MODIS Terra collection 

6 Deep Blue algorithm (550 nm), and the OMI OMAERUV algorithm for e) 388 nm and f) 500 

nm. The GEOS-Chem simulation is sampled coincidently with the OMI UVAI product. The trends 

are calculated from the Generalized Least Squares regression of monthly time series values over 

2005-2015. The opacity of the colors indicates the statistical significance of the trend. Gray 

indicates persistent cloud fraction greater than 5%. 
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Chapter 4: Improved Global Estimates of Fine Particulate Matter Concentrations and 

Trends Derived from Updated Satellite Retrievals, Modeling Advances, and Additional 

Ground-Based Monitors 

4.1 Abstract 

We investigate the effect of improved geophysical relationships and updated satellite retrieval 

products on global geophysical and hybrid geophysical-statistical estimates of fine particulate 

matter (PM2.5) concentrations for 2000-2017. We use aerosol optical depth (AOD) from several 

updated satellite products (MAIAC, MODIS C6.1, and MISR v23), including finer resolution, 

increased global coverage, and improved long-term stability. We use geophysical relationships 

between surface PM2.5 and AOD simulated by the GEOS-Chem chemical transport model to relate 

satellite AOD to surface PM2.5 concentrations. Updates to the GEOS-Chem simulation include 

improved dust and secondary organic aerosol chemistry schemes and updated emission 

inventories.  The resultant geophysical PM2.5 estimates are highly consistent with ground monitors 

(R2=0.81), driven by improvements to the AOD retrievals and GEOS-Chem simulation. We apply 

geographically weighted regression to the geophysical PM2.5 estimates to predict and account for 

the residual bias with ~9700 PM2.5 monitors, yielding further improved agreement (R2=0.91) with 

ground monitors, and demonstrating improved agreement compared to earlier estimates (R2=0.87). 

The consistent long-term satellite AOD and simulation enables trend assessment over 2000-2017. 

The populations of North America, Europe, and recently China experienced negative trends in 

PM2.5, while large amounts of the global population experienced positive trends in PM2.5 values, 

particularly in India. 

4.2 Introduction 

Exposure to fine particulate matter (PM2.5) is the leading environmental risk factor for the global 

burden of disease (GBD 2016 Risk Factors Collaborators et al., 2017) with an estimated 3 million 

attributable deaths worldwide in 2017. Additionally, the World Health Organization (WHO) 

estimates that 92% of the world’s population lives in areas with annual averaged PM2.5 greater 

than 10 g/m3 (Health Effects Institute, 2019), exceeding their air quality guideline for PM2.5 

exposure. With limited ground monitoring of PM2.5, satellites and global models are critical for 

constraining the magnitude and trends in concentrations of PM2.5 globally, and quantifying 

exposure-health relationships (West et al., 2016). Recent developments in satellite observations 
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and retrievals, simulation, and ground monitor sampling offer exciting opportunities to improve 

global PM2.5 estimates.  

Several recent advancements in satellite-retrieved aerosol optical depth (AOD) offer the prospect 

of improving global PM2.5 estimates. Collection 6.1 (C6.1) of MODIS (MODerate resolution 

Imaging Spectroradiometer) retrieved AOD includes updated radiometric calibration improving 

the stability of MODIS measured radiances over the entire record and important updates to the 

Dark Target (DT) (Gupta et al., 2016) and Deep Blue (DB) (Hsu et al., 2019; Sayer et al., 2019) 

algorithms. The MAIAC (Multi-Angle Implementation of Atmospheric Correction) algorithm 

(Lyapustin et al., 2018a) provides AOD retrieved from MODIS C6 radiances at a resolution of 1 

km and is now extended to global coverage for the entire MODIS record. The recently released 

MISR (Multi-angle Imaging Spectroradiometer) version 23 algorithm (Franklin et al., 2017; Garay 

et al., 2017) now provides AOD retrievals at 4.4 km resolution, finer than the 17.6 km resolution 

of the previous version 22. 

Concurrent development of chemical transport models offer the prospect of improved 

characterization of the PM2.5 distribution and the geophysical relationship of AOD to PM2.5. A 

recent assimilation (MERRA-2) (Gelaro et al., 2017) provides consistent meteorological inputs for 

1979-present. Improved representations of secondary organic aerosol (Pye et al., 2010; Marais et 

al., 2016)  and fine dust (Ginoux et al., 2012; Zhang et al., 2013a) better simulate surface PM2.5 

concentrations. The development of an anthropogenic fugitive, combustion, and industrial dust 

(AFCID) emission inventory now represents anthropogenic crustal material (Philip et al., 2017b). 

An updated fire emissions inventory (GFED4) (Giglio et al., 2013b) provides increased global 

coverage and finer resolution biomass burning emissions. Significant updates to regional 

emissions inventories of aerosols and their precursors over China (Li et al., 2017b), elsewhere in 

Asia (Li et al., 2017b), the United States (Travis et al., 2016), and Europe (http://www.emep.int) 

provide improved time-varying information, especially for recent years.  

The ground-based PM2.5 measurement network has expanded considerably in recent years with 

~9690 direct PM2.5 monitor sites (World Health Organization, 2018), increasing monitor density 

particularly in China and India. Improved statistical methods have been developed to obtain 

estimates of surface PM2.5 concentrations from satellite AOD and ground monitor data, including 

empirical relationships between satellite AOD and PM2.5 from ground monitors (Liu et al., 2005; 
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Kumar et al., 2007), Land Use Regression (LUR) models in conjunction with satellite AOD (de 

Hoogh et al., 2018), and Geographically Weighted Regression (GWR) with meteorological and 

land use information with satellite AOD at PM2.5 monitor sites (Ma et al., 2014; Song et al., 2014). 

Several studies have found that including geophysical fields from a chemical transport model aids 

statistical fusion at large spatial scales (Di et al., 2016; van Donkelaar et al., 2015, 2016; Friberg 

et al., 2017; Shaddick et al., 2018). 

In this work, we investigate the effects of recent developments in satellite AOD, simulation, and 

ground monitor data on satellite-derived PM2.5 estimates and produce global PM2.5 estimates for 

the years 2000-2017. We combine satellite AOD from the newly released MAIAC, MISRv23, and 

C6.1 MODIS products. We conduct an updated simulation using the global chemical transport 

model GEOS-Chem to represent the geophysical relationship between PM2.5 and AOD, and also 

as an additional AOD source. We investigate the impact of these changes on previous satellite-

derived PM2.5 estimates that follow a similar methodology (van Donkelaar et al., 2016). Taking 

advantage of the improved long-term consistency in satellite AOD and simulated meteorology, we 

calculate the 2000-2017 trends in geophysical PM2.5 values, and examine the monthly time-series. 

We then statistically fuse the geophysical PM2.5 surface with the recently released ground monitor 

dataset from the World Health Organization (WHO), and investigate the impact of increased 

ground-based monitoring. We examine the regional distributions of population as a function of 1) 

PM2.5 concentrations and 2) 2000-2017 PM2.5 trends to gain insight into the distribution of ambient 

PM2.5 effects worldwide.  

4.3 Methods 

4.3.1 Satellite AOD Sources 

A detailed description of the satellite AOD sources used is given in the Supplement. We use AOD 

at 550 nm retrieved from radiances measured by four satellite instruments: twin MODerate 

resolution Imaging Spectroradiometer (MODIS) instruments, the Multi-angle Imaging 

Spectroradiometer (MISR) instrument, and the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) instrument.  

The twin MODIS instruments have flown on the Terra and Aqua satellites since 2000 and 2002, 

respectively, providing daily global coverage (Sayer et al., 2014). We use AOD retrieved from 
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three retrieval algorithms that process MODIS measured radiances: Dark Target (DT), Deep Blue 

(DB), and the Multi-Angle Implementation of Atmospheric Correction (MAIAC).  

The DT retrieval algorithm (Levy et al., 2013) is designed to retrieve AOD over dark surfaces (e.g. 

vegetated land surfaces and dark soils). The DB retrieval algorithm (Hsu et al., 2019) uses blue 

wavelength measurements where the surface reflectance over land tends to be much lower than at 

longer wavelengths, allowing for the retrieval of aerosol properties over both bright and dark 

surfaces. We use the recently released collection 6.1 of the MODIS retrieved AOD products, which 

include spatial resolution of 10 km and several updates to the DT (Gupta et al., 2016) and DB (Hsu 

et al., 2019; Sayer et al., 2019) algorithms. 

The MAIAC algorithm (Lyapustin et al., 2018a) retrieves AOD at a spatial resolution of 1 km over 

both bright and dark land surfaces. MAIAC was officially released in May 2018, providing AOD 

globally for the entire MODIS record. However, this work started earlier and used an internally 

released MAIAC dataset that lacked parts of Canada, eastern Siberia, and the large Indo-Pacific 

region (see Fig. 4-2). 

The SeaWiFS instrument flew on SeaStar and was operational between 1997-2010. SeaWiFS 

maintained a highly accurate and stable calibration over its lifetime (Sayer et al., 2012) providing 

daily global coverage. We use the version 4 SeaWiFS Deep Blue (Sayer et al., 2012; Hsu et al., 

2013)  data set which has a spatial resolution of 13.5 km. 

The MISR instrument is also onboard the Terra satellite and has been operational since 2000 

providing global coverage once per week (Diner et al., 1998). The MISR retrieval algorithm 

provides AOD retrievals over bright and dark land surfaces (Martonchik et al., 2009). We use 

AOD retrieved from the recently released MISRv23 algorithm (Garay et al., 2017), which provides 

AOD at a spatial resolution of 4.4 km, a significant improvement over the 17.6 km resolution in 

the previous version of MISRv22. 

4.3.2 Simulated relationship of surface PM2.5 and total column AOD 

To estimate surface concentrations of PM2.5 from satellite AOD (AODSAT), we use the local, 

coincident ratio (𝜂) of simulated surface PM2.5 concentrations (PM2.5,SIM) to simulated total column 

AOD (AODSIM): 

                                          PM2.5,SAT = 𝜂 x AODSAT                                                      [4-1] 



 
 

    63 

where 

𝜂 = PM2.5,SIM / AODSIM                                                                                  [4-2]. 

𝜂 is a function of the factors that relate PM2.5 mass to satellite observations of AOD (e.g. aerosol 

size, aerosol composition, diurnal variation, relative humidity, and the vertical structure of aerosol 

extinction (van Donkelaar et al., 2010)). A full description of the derivation of 𝜂 can be found in 

van Donkelaar et al. (2006). To account for differences in temporal sampling of the AOD data 

sources, we calculate daily values of 𝜂 as the ratio of 24-hr ground-level PM2.5 for a relative 

humidity of 35%, to total-column AOD for ambient relative humidity sampled at satellite overpass 

time.  

Obtaining accurate 𝜂 values depends on the simulation’s ability to accurately model PM2.5 

concentrations and AOD. For our simulation, we use v11-01 of the GEOS-Chem chemical 

transport model (http://geos-chem.org). A detailed description of the simulation is included in the 

Supplement. Our simulation is driven by assimilated meteorological data from the recent MERRA-

2 Reanalysis of the NASA Global Modeling and Assimilation Office (GMAO), which offers a 

consistent assimilation from 1979 (Molod et al., 2015). We conduct our simulation for the years 

2000–2017 at a spatial resolution of 2◦ × 2.5◦ with a nested resolution of 0.5 x 0.625 over North 

America, Europe, and China, and 47 vertical levels. The top of lowest model layer is ~100 m. Our 

simulation includes improved representations of secondary organic aerosol (Pye et al., 2010; 

Marais et al., 2016) and fine dust (Ginoux et al., 2012; Zhang et al., 2013a) which better simulate 

surface PM concentrations. We also use the anthropogenic fugitive, combustion, and industrial 

dust (AFCID) emission inventory, which now provides a representation of anthropogenic crustal 

material (Philip et al., 2017b). An updated version of the Global Fire Emissions Database (GFED4) 

provides increased global coverage and finer resolution biomass burning emissions (Giglio et al., 

2013b). We include updated regional emissions inventories (summarized in Table 4-S1) of 

aerosols and their precursors over China (MEIC; Li et al., 2017b), India (Lu et al., 2011), elsewhere 

in Asia (MIX; Li et al., 2017b), the United States (EPA/NEI11; Travis et al., 2016), and Europe 

(EMEP; http://www.emep.int).  

4.3.3 Combined PM2.5 estimated from satellites and simulation 

We calculate geophysical PM2.5 estimates following van Donkelaar et al. (2016), with updates to 

(1) ground-based PM2.5 and AOD measurements, (2) satellite AOD products, (3) GEOS-Chem 
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simulation, and (4) resolution of our analysis. A detailed description of the algorithm is provided 

in van Donkelaar et al. (2016) and in the Supplement. There are two main steps of the algorithm: 

the intercalibration of the satellite and simulated AOD sources, and the calculation of combined 

PM2.5 from the calibrated AOD sources. 

For the intercalibration of satellite and simulated AOD sources, each source is first translated onto 

a common 0.05x0.05 grid by area-weighting satellite retrievals and linearly interpolating 

simulated values. This resolution is finer than the 0.1x 0.1 resolution used previously (van 

Donkelaar et al., 2016), given the finer resolution provided by the new versions of MISR (4.4 km) 

and MAIAC (1 km) AOD. For a consistent definition of uncertainty, we compare the daily satellite 

AOD values from each dataset with daily AOD measurements at 550 nm from AERONET 

(Aerosol Robotic Network) (Holben et al., 1998), a global sun photometer network that provides 

AOD measurements with high accuracy (uncertainty<0.02; Eck et al., 1999). We use level 2 of the 

recently released version 3 AERONET data (Giles et al., 2019). 

The different sources of error associated with satellite and simulated AOD require care in 

accounting for their relative uncertainties (van Donkelaar et al., 2016). Briefly, one of the main 

sources of uncertainty associated with satellite retrieved AOD is the surface treatment used in the 

retrieval (Li et al., 2009), which we assess by comparison with AERONET as a function of land 

type. For the simulated AOD, to account for errors due to species-specific emissions and assumed 

aerosol microphysical properties, we calculate the relative uncertainty based on the simulated 

fractional aerosol composition applied to each daily AERONET observation following van 

Donkelaar et al. (2013).  

The daily surface PM2.5 concentrations from each data source are obtained by applying the daily 

simulated AOD to PM2.5 ratios (𝜂) to the coincident daily calibrated AOD sources. Monthly means 

are calculated from the daily PM2.5 values. The monthly mean PM2.5 from each source are then 

combined using a weighted average (equation 4-S4). Where available, spatial information from 

the 1 km MAIAC AOD retrieval is incorporated by applying the climatology of its retrieved 

relative variation between 0.01 and 0.05. Where MAIAC is unavailable, monthly AOD and 

PM2.5 are linearly interpolated onto a 0.01x0.01 grid. 
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4.3.4 Hybrid PM2.5 estimates 

We use Geographically Weighted Regression (GWR) (Fotheringham et al., 1998; Brunsdon et al., 

2010) to predict and account for the bias in the annual mean of our geophysical PM2.5 estimates as 

described in van Donkelaar et al. (2016). We perform the GWR between our annual mean 

geophysical PM2.5 estimates and annual PM2.5 concentrations measured by ground monitors. We 

use monitor-specific ground-based measurements of PM2.5 from the WHO Global Ambient Air 

Quality Database (World Health Organization, 2018), which provides annual measurements for 

the years 2010-2017. Supplemental Table 4-S2 summarizes the global number of measurements 

for each year. The predictor variables used in the regression are associated with uncertainties in 

the simulated relation of PM2.5 to AOD, such as simulated aerosol types, sub-grid topographical 

variation and urban surfaces (equation 4-S5).  

4.4 Results and Discussion 

The first three panels of Figure 4-1 show the combined AOD, simulated 𝜂 (PM2.5/AOD),  and 

combined PM2.5 estimates for 2000-2017. The logarithmic PM2.5 color-scale (bottom) is directly 

proportional to the logarithmic AOD (top) and 𝜂 (middle) color-scales to facilitate comparison of 

features between plots. Several factors affect the simulated relation of AOD and PM2.5 (van 

Donkelaar et al., 2010; Jin et al., 2019). Since AOD is at ambient relative humidity and PM2.5 is at 

controlled relative humidity, high 𝜂 values exist over desert regions in North Africa and the 

Middle-East where aerosols are less hygroscopic (van Donkelaar et al., 2006; van Donkelaar et al., 

2010) .  Values of 𝜂 are lower for hygroscopic aerosols, as their dry volume is significantly smaller  
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Figure 4-1: The combined AOD (A), simulated η (PM2.5/AOD) (B),  and combined PM2.5 estimates 

(C) for 2000-2017. The logarithmic PM2.5 color-scale (C) is directly proportional to the logarithmic 

AOD (A) and η (B) color-scales, obtained by normalizing the global average AOD and global 

average η to that of PM2.5.  The bottom panel (D) shows the difference between this updated 

version (V4.GL.03) of geophysical PM2.5 estimates and the previous version (V4.GL.02) from van 

Donkelaar et al. (2016) for 2011-2016. Grey denotes water. 
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than under ambient conditions. Higher 𝜂 values over industrial regions in India and eastern China 

reflect the enhanced near-surface aerosol concentrations in source regions that increase the ground 

level to columnar fraction. Over southern China, higher AOD compared to PM2.5 (e.g smaller 𝜂 

values) in part reflect the transport of biomass burning aerosol from southeast Asia at high altitudes 

(Deng et al., 2008; Zhang et al., 2018). Relatively low 𝜂 values over northern regions in Canada 

and Russia occur where PM2.5 concentrations are lower and a higher fraction of the aerosol tends 

to be aloft. Enhanced 𝜂 values over the Andes and the Tibetan Plateau reflect the diminished AOD 

column over elevated topography.  

The bottom panel of Figure 4-1 shows the difference between this updated version (V4.GL.03) of 

geophysical PM2.5 estimates and the previous version (van Donkelaar et al., 2016) (V4.GL.02) for 

2011-2016. The largest differences are apparent over desert regions, with a decrease in PM2.5 

concentrations of ~-30 g/m3. This difference reflects the influence of the improved dust scheme 

(Ginoux et al., 2012; Zhang et al., 2013a) used in the updated GEOS-Chem simulation on 

simulated 𝜂. There are increases in PM2.5 concentrations of ~5-15 g/m3 over South America, 

central Africa, India, China, and South-east Asia, with smaller increases of ~2-5 g/m3 over parts 

of North America and Russia. These differences reflect the updated emissions inventories and 

secondary organic aerosol chemistry scheme (Pye et al., 2010; Marais et al., 2016) used in the 

updated GEOS-Chem simulation. 

Figure 4-2 shows the mean area-based weighting over 2000-2017 of each AOD source used in the 

combined estimate. For MODIS Dark Target and Deep Blue, only Terra-based retrievals are 

shown, although Aqua is also included in the combined estimate. Therefore a total of 8 sources 

contribute to the combined product, and an individual source of average quality would have a 

weighting of ~1/8 (12%). Values in black in the bottom-left of each panel indicate the population- 
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Figure 4-2: Mean contribution of each source to the combined PM2.5 estimate for 2000-2017. 

Values in black in the bottom-left of each panel indicate the population-based mean weighting at 

locations with available data, while purple values indicate the area-based mean weighting. The 

retrieval algorithm name is given in the lower left of each panel, with the instrument name in 

brackets. Dark Target and Deep Blue MODIS correspond to Terra- based retrievals only. Grey 

denotes missing data or water. 

based mean weighting at locations with available data, whereas purple values in parentheses 

indicate the area-based mean weighting. The MAIAC satellite source contributes the highest 

percentage to the population-based geophysical PM2.5 estimate with a mean weighting of 27% 

reflecting its strong overall performance including over arid and mountainous regions with 

difficult surface conditions. The large increase in MAIAC contribution compared to the 12% mean 

contribution in earlier work (van Donkelaar et al., 2016) is related to its near global coverage, 

which was not previously available.  MODIS Deep Blue performs well over most parts of the 

world, especially over deserts, with a population based mean weighting of 15%. MODIS Dark 
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Target (14% population-based) performs well over Central America, central Africa, and Southeast 

Asia. MISR (7% population-based mean weighting) is strongest over regions with difficult surface 

conditions such as deserts. SeaWiFS DB is weighted less heavily (4% population-based mean 

weighting) compared to the other sources, largely due to reduced sampling frequency. Simulated 

AOD has a population-based mean weighting of 17% due to large contributions over northern 

regions and south-eastern Asia where seasonal snow-cover and cloud-cover respectively inhibit 

satellite retrievals.   

 

Figure 4-3: Left: Geophysical PM2.5 for 2015. Black dots represent monitor locations. Grey denotes 

water. Right: Annual mean geophysical PM2.5 versus coincident annual mean in situ values for 

2015. Included on the plots are the coefficient of variation (R2), the normal distribution of 

uncertainty (N(bias,variance)), the line of best fit (y), and the number of comparison points (N). 

The color-scale indicates the number density of observations at each point. 

Figure 4-3 shows the geophysical PM2.5 estimates for 2015. Elevated concentrations are apparent 

over East Asia, South Asia, the Middle-East, North Africa, and central Canada (due to biomass 

burning). Evaluation of these geophysical estimates versus ground-based measurements yields 

excellent consistency on an annual mean basis with R2=0.81 and a slope of 1.03. This excellent 

agreement offers promise for satellite-derived PM2.5 in regions with low monitor density, as our 

geophysical estimates are independent of ground monitor data. 
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Figure 4-4: Trends in geophysical PM2.5 values calculated from the generalized least squares 

regression of monthly time series values during 2000-2017. Warm colors indicate positive trends, 

cool colors indicate negative trends, and the opacity of the colors indicate the statistical 

significance of the trends.  Grey denotes water. Magenta boxes indicate areas featured for regional 

analysis in Figure 4-5. 

The long-term radiometric calibration of the newly released satellite AOD products and the long-

term consistency of the meteorology and emissions used in the GEOS-Chem simulation enable 

assessment of trends. Figure 4-4 shows the trends in our geophysical PM2.5 values for 2000-2017, 

calculated using generalized least squares regression (GLS) (Weatherhead et al., 1998, 2002) as 

implemented by Boys et al. (2014). There are statistically significant (p-value<0.05) positive 

trends in PM2.5 of 1 to 1.5 g/m3/yr over India and of 0.25 to 0.5 g/m3/yr over the Middle-East, 

central and southern Africa, and Canada. There is a small area of positive trends of ~1 g/m3/yr 

over eastern China and a small region of negative trends of  -1 g/m3/yr over northern China, 

however most of East Asia does not exhibit statistically significant trends when taken over the 

entire time period. There are statistically significant, negative trends in PM2.5 values of -1 to -0.25 

g/m3/yr over the eastern US, Europe, central South America, and Australia.  
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Figure 4-5: Regional monthly time series anomaly plots of geophysical PM2.5 values for 2000-

2017 with their corresponding linear fits (in black). In the top panel, magenta lines indicate the 

time series and corresponding linear fit for EPA measurements over the Eastern U.S. In the third 

panel, the 2000-2007 linear fit over India is shown in pink, the 2005-2013 linear fit is shown in 

green, and the 2011-2017 linear fit is shown in dark blue. In the bottom panel, the 2000-2012 linear 

fit over East Asia is shown in yellow, while the 2011-2017 linear fit is shown in blue. 
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Figure 4-5 shows the regional time-series calculated using the GLS of monthly geophysical PM2.5 

anomalies for the eastern US, Europe, East Asia, and India. The time-series plots for the eastern 

US and Europe exhibit negative trends, with slopes of -0.410.05 g/m3/yr and -0.120.04 

g/m3/yr respectively. These negative trends reflect the emission controls implemented in these 

regions (Leibensperger et al., 2012; Klimont et al., 2013; Curier et al., 2014; Simon et al., 2015; 

Xing et al., 2015; Li et al., 2017a). Over the eastern US we evaluate the time-series coincidently 

sampled with EPA ground measurements for 2000-2016 and find excellent consistency with slope 

-0.430.04 g/m3/yr. There is a positive trend in PM2.5 concentrations over India with a slope of 

1.130.14 g/m3/yr, reflecting the increasing emissions of anthropogenic aerosol and their 

precursors ( Lu et al., 2011; Klimont et al., 2017).  Three separate regimes are visible over India: 

a small positive trend (slope 0.280.41 g/m3/yr; pink) for ~2000-2007, a period of a large positive 

trend (slope 2.260.29 g/m3/yr; green) for ~2005-2013 which seems to drive the positive 2000-

2017 trend, then another small positive trend (slope 0.340.45 g/m3/yr; dark blue) for ~2011-

2017. Over East Asia, there appears to be an insignificant long-term trend with a slope of 0.010.17 

g/m3/yr for 2000-2017. A positive trend in PM2.5 concentrations (slope 0.880.18 g/m3/yr; 

yellow) is visible until ~2012, after which the trend becomes strongly negative (-3.140.38 

g/m3/yr; light blue), reflecting the emissions controls placed on SO2 and NOx in China around 

this time (Lu et al., 2011; Wang et al., 2015; Fioletov et al., 2016). 

 

Figure 4-6: Left: Hybrid PM2.5 for 2015. Black dots represent monitor locations. Grey denotes 

water. Right: Annual mean geophysical PM2.5 versus coincident annual mean in situ values for 

2015. Included on the plots are the coefficient of variation (R2), the normal distribution of 

uncertainty (N(bias,variance)), the line of best fit (y), and the number of comparison points (N). 

The color-scale indicates the number density of observations at each point. 
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We next statistically fuse the geophysical estimates of PM2.5 with the in situ ground monitor data. 

Figure 4-S1 shows the predicted bias from GWR, while Figure 4-S2 shows the net impact of the 

individual predictors on the predicted bias. Figure 4-6 shows the resulting statistically fused 

(hybrid) estimates for 2015. The scatterplot shows 10-fold out of sample 10% cross validation at 

sites that were not used in the GWR regression. Statistical fusion explains 10% of the variance in 

the ground-based measurements, increasing to R2=0.91. The agreement for the entire dataset of 

hybrid PM2.5 values was very similar (R2=0.90) to the agreement of just the cross-validated sites 

described above, suggesting the impact of overfitting is small, and is comparable to other recent 

statistical fusion techniques (Shaddick et al., 2018).  

The agreement of our hybrid PM2.5 estimates (V4.GL.03) with ground monitors is significantly 

improved compared to the agreement of V4.GL.02 in van Donkelaar et al. (2016) for more recent 

years (2014-2016), as is shown in Table 4-S3.  There is also improved agreement within V4.GL.03 

for 2014-2016 compared to earlier years (Table 4-S3), demonstrating the value of increased 

ground-monitoring, particularly in China. The lack of a change in the agreement among the years 

2014-2016, where there was still a significant increase in the number of comparison points, 

suggests that estimates would benefit from increasing the number of monitors in underrepresented 

regions (e.g. India, Africa, the Middle-East, and South America), rather than increasing the number 

of monitors in regions where they are already available (i.e. North America, Europe, and China). 

The top three panels of Figure 4-7 show the regional distributions of the global population as a 

function of hybrid PM2.5 concentrations for 2000, 2010, and 2017, following the method of Apte 

et al. (2015). The bottom panel shows the regional distributions of the global population as a 

function of the 2000-2017 trends from Figure 4-4. Only statistically significant (p-value<0.05) 

trends were considered, therefore the populations in the bottom plot reflect those exposed to 

statistically significant trends, not the total populations.  

For all three years (top panels) the majority of the global population was exposed to PM2.5 

concentrations above the WHO air quality guideline of 10 g/m3. However, a significant fraction 

of the population in the Americas and Europe shifted toward lower PM2.5 concentrations over 

2000-2017, reflected in the fraction of these populations experiencing negative trends (bottom 

panel). Over 2000-2017, 85% of the total population in North America experienced statistically  
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Figure 4-7: Top: Regional distribution of population as a function of  PM2.5 concentrations for 

2000 (left), 2010 (middle), and 2017 (right). This data is summarized in Table 4-S4. Plotted data 

reflect local smoothing of bin-width normalized distributions computed over 400 logarithmically 

spaced bins (range 0.1-400 μg m-3) following Apte et at. (2015); equal-sized plotted areas reflect 

equal populations. Bottom: Regional distribution of population as a function of PM2.5 trends with 

statistical significance (p-value < 0.05) for 2000-2017.  

significant negative trends while 0.4% experienced positive trends. An increasing amount of the 

population of India was exposed to PM2.5 concentrations of 50-150 g/m3 over 2000-2017 (top 

panels), with 100% of the total population experiencing positive trends. A large fraction of the 

population in China shifted towards higher PM2.5 concentrations of 50-100 g/m3 (top panels) 

between 2000 and 2010, but between 2010 and 2017 that fraction significantly decreased as a large 

fraction of the population shifted towards ~50 g/m3. The population distribution is spread out 

over both negative and positive trends (bottom panel). Over 2000-2017, 18% of the total 
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population in China experienced negative trends, while 33% experienced positive trends. Globally, 

26% of the total population experienced negative trends, while 38% experienced positive trends. 

4.5 Conclusions 

Recent developments in satellite AOD, simulation, and ground monitor data enabled improved 

global PM2.5 estimates and trends over the years 2000-2017. The updated satellite AOD sources 

benefited from finer resolution (MISR), increased global availability (MAIAC), and updated 

radiometric calibration that improves the stability of all MODIS products over time. The updated 

GEOS-Chem simulation benefitted from consistent long-term meteorology (MERRA-2), 

improved dust and SOA chemistry schemes, updated biomass burning emissions, and updated 

emission inventories providing improved time-varying information for more recent years, 

especially over China and India. The geophysical PM2.5 estimates exhibited significant agreement 

with ground monitors with an R2=0.81, providing confidence in the utility of the geophysical 

estimates in regions with low monitor density. Trends for 2000-2017 over the eastern United States 

in our geophysical PM2.5 values (-0.410.05 g/m3/yr) were consistent with trends in 

measurements (-0.430.04 g/m3/yr). Statistical fusion explained an additional 10% of the 

variance in the PM2.5 estimates, yielding an improved agreement (R2=0.91) with cross-validated 

ground monitor sites. The populations of North America, Europe, and recently China experienced 

negative trends in PM2.5, while large amounts of the global population experienced positive trends 

in PM2.5 values, particularly in India. This new iteration of PM2.5 estimates provides an improved 

geophysical and hybrid dataset to be used for health impact studies, and is especially valuable for 

regions with low monitor density.  
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4.7 Supplement 

4.7.1. Description of Satellite AOD Sources 

We use AOD at 550 nm retrieved from radiances measured by four satellite instruments: twin 

MODerate resolution Imaging Spectroradiometer (MODIS) instruments, the Multi-angle Imaging 

Spectroradiometer (MISR) instrument, and the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) instruments.  

The twin MODIS instruments have flown on the Terra and Aqua satellites since 2000 and 2002, 

respectively. Terra has a descending orbit, passing the equator at 10:30 local time, while Aqua has 

an ascending orbit, passing equator at 13:30 local time. Both MODIS instruments have a wide 

spectral range of 0.41 m to 14.5 m and a broad swath width of 2330 km which allows for nearly 

global daily coverage (Sayer et al., 2014). We use AOD retrieved from three retrieval algorithms 

that process MODIS measured radiances: Dark Target (DT), Deep Blue (DB), and the Multi-Angle 

Implementation of Atmospheric Correction (MAIAC).  

The DT retrieval algorithm (Levy et al., 2013) performs a simultaneous inversion of two visible 

(0.47 m and 0.66 m) and one shortwave-IR (2.12 m) channel to retrieve AOD over dark 

surfaces (i.e. vegetated land surfaces and dark soils). DT also retrieves AOD over ocean, but we 

are not using those data here. The DB retrieval algorithm (Hsu et al., 2019) uses blue wavelength 

measurements where the surface reflectance over land tends to be much lower than at longer 

wavelengths, allowing for the retrieval of aerosol properties over both bright and dark surfaces. 

This is especially true over desert surfaces. Both MODIS DT and DB are reported at a nominal 

spatial resolution of 10 km at nadir. We use the recently reprocessed MODIS collection 6.1 (C6.1) 

products which employ (1) an updated radiometric calibration that improves instrument stability 

over time, (2) updates to the surface reflectance treatment used in the DT algorithm (Gupta et al., 

2016), (3) improvement to the surface modelling in elevated terrain, (4) reduction in artifacts in 

heterogeneous terrain, and (5) improved internal smoke detection masks used in the DB algorithm 

(Hsu et al., 2019; Sayer et al., 2019).  

The MAIAC algorithm (Lyapustin et al., 2018b) retrieves aerosol information over both bright and 

dark land surfaces simultaneously with surface bidirectional reflectance using time-series analysis 

of MODIS L1B radiance measurements for up to 16 days. With removal of the long-term 

calibration trends and cross-calibration of MODIS Terra to MODIS Aqua in Collection 6 
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(Lyapustin et al., 2014), MAIAC processes the two sensors jointly, which creates significantly 

increased observation frequency required for accurate surface characterization. MAIAC was 

officially released in May 2018, providing AOD at a fine spatial resolution of 1 km globally over 

the land and coastal ocean for the entire MODIS record. However, this work started earlier and 

used an internally released MAIAC dataset that lacked parts of Canada, eastern Siberia, and the 

large Indo-Pacific region (e.g., Indonesia, Oceania, Australia, New Zealand). 

The SeaWiFS instrument flew on SeaStar, which had a noon overpass time, and was operational 

between 1997-2010. SeaWiFS maintained a highly accurate and stable calibration over its lifetime 

(Sayer et al., 2012). SeaWiFS provided measurements in eight spectral bands between 402-885 

nm and had a 1500 km swath width that provided nearly daily global coverage. We used the version 

4 SeaWiFS Deep Blue (Sayer et al., 2012; Hsu et al., 2013) data set that offers AOD with a 

horizontal pixel size of 13.5 km at nadir. 

The MISR instrument is also onboard the Terra satellite and has been operational since 2000. 

MISR observes the earth at nine different viewing angles and four spectral bands (446, 558, 672, 

and 866 nm), with a swath width of 380 km all view angles that provides global coverage about 

once per week, every nine days at the equator, up to every two days near the poles (Diner et al., 

1998). The MISR retrieval algorithm uses the same-scene multi-angular views provided by the 

nine view-angles to solve for surface and top-of-atmosphere reflectance contributions, providing 

AOD retrievals over bright and dark land surfaces without absolute surface reflectance 

assumptions (Martonchik et al., 2009). We use AOD retrieved from the recently released MISR 

v23 algorithm (Garay et al., 2017), which provides AOD at a spatial resolution of 4.4 km, which 

is a significant improvement over the 17.6 km resolution in the previous version of MISR AOD, 

along with better cloud screening and pixel-level uncertainty estimates.  

4.7.2. Description of the GEOS-Chem simulation 

We use v11-01 of the GEOS-Chem chemical transport model (http://geos-chem.org) to simulate 

𝜂, and as an additional AOD source. The simulation is driven by assimilated meteorological data 

from the recent MERRA-2 Reanalysis of the NASA Global Modeling and Assimilation Office 

(GMAO), which offers a consistent assimilation from 1979, including updates in both the Goddard 

Earth Observing System Model and the assimilation system (Molod et al., 2015). Our simulation 

is conducted for the years 2000–2017 at a spatial resolution of 2◦ × 2.5◦ with a nested resolution of 
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0.5 x 0.625 over North America, Europe, and China, and 47 vertical levels. The top of lowest 

model layer is approximately 100 m. We follow the recommendations of Philip et al. (2016) to use 

a chemical and transport operator duration of 20 min and 10 min, respectively. We include a non-

local boundary layer mixing scheme (Lin and McElroy, 2010). We spin up the model for one 

month before each global and regional simulation to remove the effects of initial conditions. 

GEOS-Chem contains a detailed oxidant-aerosol chemical mechanism (Bey et al., 2001; Park et 

al., 2004b). The aerosol simulation includes the sulfate–nitrate–ammonium system (Park et al., 

2004b; Fountoukis and Nenes, 2007; Pye et al., 2009b), primary carbonaceous aerosol (Park et al., 

2003), sea salt (Jaeglé et al., 2011), and mineral dust (Fairlie et al., 2007) with an improved fine 

dust size distribution(Zhang et al., 2013a). We include an anthropogenic fugitive, combustion, and 

industrial dust (AFCID) emissions inventory (Philip et al., 2017b).  Semivolatile primary organic 

carbon and secondary organic aerosol (SOA) formation (Pye et al., 2010) is included with updated 

SOA formation from isoprene via an irreversible up-take scheme (Marais et al., 2016). HNO3 

concentrations are reduced to commensurate with prior work (Heald et al., 2012). Relative 

humidity dependent aerosol optical properties are based on the Global Aerosol Data Set (GADS) 

(Koepke et al., 1997; Martin et al., 2003) with updates for organics and secondary inorganics from 

aircraft observations (Drury et al., 2010), mineral dust (Lee et al., 2009; Ridley et al., 2012; Zhang 

et al., 2013a), and for absorbing brown carbon (Hammer et al., 2016).  

The anthropogenic emissions inventories in our simulation are summarized in Table S4. Global 

anthropogenic emissions are from the EDGAR v4.3.1 global inventory (Crippa et al., 2016), with 

speciated volatile organic compound (VOC) emissions from RETRO (Schultz et al., n.d.). 

Emissions are over-written in areas with regional inventories, including the US (NEI11; Travis et 

al., 2016),  Canada (CAC; http://www.ec.gc.ca/pdb/cac/), Mexico (BRAVO; Kuhns et al., 2005), 

Europe (EMEP; http://www.emep.int/), China (MEIC v1.2; Liu et al., 2016b), India (Lu et al., 

2011) and elsewhere in Asia (MIX; Liu et al., 2016b).  We doubled the Indian OC and BC 

emissions from Lu et al. (2011) based on Philip et al. (2014) and Fu et al. (2012). Emissions from 

open fires for individual years from the GFED4 inventory (Giglio et al., 2013b) are included 

covering the years 1998-2014.  

4.7.3. Algorithm for calculating combined PM2.5 from satellites and simulation  
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Our algorithm to combine information from satellites and simulation follows van Donkelaar et al. 

(2016), with updates to ground-based AOD measurements, to the satellite AOD products, to the 

GEOS-Chem simulation, and to the resolution of our analysis. 

The first step in the calculation of our combined PM2.5 estimates is the common calibration of the 

separate AOD sources. Each source is translated onto a common 0.05 x 0.05 grid. For a 

consistent definition of uncertainty, we compare each AOD source with AERONET (Aerosol 

Robotic Network) (Holben et al., 1998) AOD at 550 nm. AERONET is a global sun photometer 

network that provides multi-wavelength AOD measurements with a high level of accuracy (the 

uncertainty associated with AERONET measurements is <0.02). We use level 2 of the version 3 

AERONET data (Giles et al., 2019). 

There are different sources of error associated with satellite retrieved AOD than with simulated 

AOD, therefore their uncertainties need to be accounted for differently. For cloud-free and snow-

free daytime scenes, one of the main sources of uncertainty associated with satellite retrieved AOD 

is the surface treatment used in the retrieval (Li et al., 2009). Therefore the daily satellite AOD 

retrievals are sampled to within 0.25 of each AERONET site and binned according to the 

Normalized Difference Vegetation Index (NDVI), which represents seasonally based changes in 

vegetation. Locally, calibrations are calculated at each AERONET site as the median slope and 

offset from reduced major axis linear regression of retrieved AOD with the AERONET values. 

The local calibrations are then expanded globally by calculating each pixel as the weighted average 

of all AERONET site-specific local calibrations, using inverse squared distance and the inverse of 

the Land Cover Similarity (LCS): 

𝐿𝐶𝑆𝑖,𝑗,𝑘 =  ∑ |𝐿𝑇𝑖,𝑗,𝑛 − 𝐿𝑇𝑘,𝑛|
𝑁𝐿𝑇
𝑛=1                                               [4-S1] 

where 𝐿𝑇𝑖,𝑗,𝑛 is the land cover type percentage of the pixel (i,j) for each land cover type (n)  and 

𝐿𝑇𝑘,𝑛 is the land cover type percentage of AERONET site (k) for each land cover type (n). The 

land cover type categories are defined by the MODIS land cover product (Friedl et al., 2010). The 

LCS allows similar mixtures of land cover to be weighted more strongly. 

The residual uncertainty between the calibrated and observed AOD at each AERONET site is then 

calculated as the normalized root mean square difference: 
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𝑁𝑅𝑀𝑆𝐷 =
(𝑀𝐸𝐴𝑁(𝐴𝑂𝐷𝐶𝐴𝐿𝐼𝐵𝑅𝐴𝑇𝐸𝐷−𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇)2)

0.5

𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇
                                  [4-S2] 

Local NRMSD are globally extended using inverse squared distance and LCS, following the 

approach used for the local calibration factors. 

For the simulated AOD, to account for errors due to species-specific emissions and assumed 

aerosol microphysical properties, we calculate the relative uncertainty by applying the simulated 

fractional aerosol composition to each daily AERONET observation following van Donkelaar et 

al. (2013). The local calibration factors are calculated as the absolute error of each species at each 

station as a function of magnitude. The local calibration factors are then extended globally using 

inverse distance squared and the cross-correlation weighted average of each AERONET site to 

each global pixel. The residual uncertainty is calculated as the component-specific NRMSD, and 

is extended globally using the inverse squared distance and cross correlation. The daily surface 

PM2.5 concentrations from each source are obtained by applying the daily simulated AOD to PM2.5 

ratios (𝜂).  

The daily AOD and PM2.5  values are used to calculate monthly mean values. Missing AOD and 

PM2.5 values within areas of more than 50% coverage are approximated using the interpolated ratio 

with the same data source during other years, or if necessary the interpolated ratio with simulated 

values during the same time period. Monthly AOD values from all 𝑁 sources are combined using 

a weighted average, weighted by the product of the inverse residual AOD NRMSD, the inverse 

absolute percent difference between calibrated and uncalibrated AOD (
Δ𝐴𝑂𝐷𝑎𝑑𝑗

𝐴𝑂𝐷
)  and the local 

data density (𝑁𝑜𝑏𝑠) such that: 

𝐴𝑂𝐷 =
∑

1

𝑁𝑅𝑀𝑆𝐷𝑛
× (

Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛

𝐴𝑂𝐷𝑛
)

−1

×𝑁𝑜𝑏𝑠,𝑛
2 ×𝐴𝑂𝐷𝑛

𝑁
𝑛=1

∑
1

𝑁𝑅𝑀𝑆𝐷𝑛

𝑁
𝑛=1 × (

Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛

𝐴𝑂𝐷𝑛
)

−1

×𝑁𝑜𝑏𝑠,𝑛
2

                                    [4-S3] 

Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛 and 𝐴𝑂𝐷𝑛 are set to a minimum of 0.01, and 𝑁𝑜𝑏𝑠 is set to a maximum of 5 

observations per month for the purpose of weighting, even when more observations are included 

in the calculation. The squaring of 𝑁𝑜𝑏𝑠 penalizes sparse observation density. Values exceeding 3 

standard deviations of those within the surrounding 1 x 1 are replaced via linear interpolation. 

The monthly PM2.5 estimates are combined using similar weighting: 
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𝑃𝑀2.5 =
∑

1

𝑁𝑅𝑀𝑆𝐷𝑛
× (

Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛

𝐴𝑂𝐷𝑛
)

−1

×𝑁𝑜𝑏𝑠,𝑛
2 ×𝑃𝑀2.5,𝑛

𝑁
𝑛=1

∑
1

𝑁𝑅𝑀𝑆𝐷𝑛

𝑁
𝑛=1 × (

Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛

𝐴𝑂𝐷𝑛
)

−1

×𝑁𝑜𝑏𝑠,𝑛
2

                            [4-S4] 

Spatial information from the 1 km MAIAC AOD retrieval is then incorporated by applying the 

climatology of its retrieved relative variation between 0.01 and 0.05. Where MAIAC is 

unavailable, monthly AOD and PM2.5 are linearly interpolated onto a 0.01 x 0.01 grid. 

We use Geographically Weighted Regression (GWR) to predict and account for the bias in the 

annual mean of our geophysical PM2.5 estimates (𝐺𝐸𝑂 𝑃𝑀2.5). GWR is a statistical technique that 

allows the modelling of processes that vary over space (Brunsdon et al., 2010). GWR is an 

extension of least-squares regression that allows predictor coefficients to vary spatially by 

weighting the estimate-observation pairs at multiple geographic locations according to their 

inverse squared distance from individual observation sites. 

We fit our GWR model coefficients at 1 x 1 intervals using PM2.5 measured with ground-based 

monitors (𝐺𝑀 𝑃𝑀2.5) following the form: 

(𝐺𝑀 𝑃𝑀2.5 −   𝐺𝐸𝑂 𝑃𝑀2.5) = 𝛽1𝐷𝑆𝑇 + 𝛽2𝑆𝑁𝐴𝑂𝐶 + 𝛽3𝐸𝐷 × 𝐷𝑈              [4-S5] 

where 

𝛽1 to 𝛽3: represent spatially varying predictor coefficients, 

𝐸𝐷: the log of the elevation difference between the local elevation and the mean elevation within 

the simulation grid cell according to the 1 x 1 ETOPO1 Global Relief Model (from the National 

Geophysical Data Center; http://www.ngdc.noaa.gov/mgg/global/seltopo.html), 

𝐷𝑈: inverse distance to the nearest urban land surface based on the 1 resolution MODIS Land 

Cover Type Product (MCD12Q1) (Friedl et al., 2010), 

𝐷𝑆𝑇 and 𝑆𝑁𝐴𝑂𝐶: compositional concentrations of mineral dust (𝐷𝑆𝑇) and the sum of sulfate, 

nitrate, ammonium, and organic carbon (𝑆𝑁𝐴𝑂𝐶) are represented by the simulated relative 

contributions of each species applied to 𝐺𝐸𝑂 𝑃𝑀2.5 by weighting the near-surface aerosol 

concentration by the simulated compositional contribution of each species (Philip et al., 2014). 

We interpolate all predictors onto a common 0.01 grid. 
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Table 4-S1: Summary of anthropogenic emissions used in the GEOS-Chem simulation 

Region Inventory 

(Coverage) 

Used Species Annual Scale Factora Reference 

World EDGAR v4.3.1 

(1970-2010) 

CO, NOx, SO2, NH3, 

OC, BC 

N/A Crippa et al. 2016 

RETRO 

(2000) 

VOCs from EDGAR v4.3.1, 

1970-2010 

Schultz et al., n.d.  

U.S. EPA NEI11 

(2011) 

CO, NOx, SO2, NH3, 

OC, BC, VOCs 

NEI historical 

emission, 1990-2014 

US Environmental 

Protection Agency 

(Travis et al., 2016) 

Canada CAC 

(2002-2008) 

CO, NOx, SO2, NH3, 

OC, BC 

APEI, 1990-2014 Environment Canadab 

Mexico BRAVO 

(1999) 

CO, NOx, SO2 from EDGAR v4.3.1, 

1970-2010 

Kuhns et al., 2005 

Europe EMEP 

(1990-2012) 

CO, NOx, SO2, NH3 N/A Centre on Emissions 

Inventories and 

Projectionsc 

China MEIC v1.2 

(2000-2015) 

NOx, SO2, NH3, OC, 

BC 

N/A Li et al. 2017b 

India Lu et al.(Lu et 

al., 2011) 

(1998-2010) 

SO2, OC, BC N/A Lu et al. 2011 

Asia MIX 

(2008-2012) 

CO, NOx, SO2, NH3, 

OC, BC, VOCs 

CO, NOx, NH3,VOCs, 

from EDGAR v4.3.1, 

1970-2010, 

SO2, OC, BC from Lu 

et al.(Lu et al., 2011)  

Li et al. 2017b 

a. Annual scale factors are spatially resolved and applied only when the emission inventory 

lacks data for a certain year. Data in the closest available year is used if outside the available 

range. 

b. http://www.ec.gc.ca/pdb/cac/ 

c. http://www.emep.int/  
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Table 4-S2: The global number of direct PM2.5 measurements available each year from the World 

Health Organization (WHO) Ambient (Outdoor) Air Quality Database. 

Year Number of measurements 

2010 1591 

2011 1655 

2012 1739 

2013 2045 

2014 2673 

2015 3744 

2016 3541 

2017 16 

 

 

 

Table 4-S3: The agreement (R2) between the hybrid geophysical-statistical PM2.5 estimates (at 

cross validated sites) and in-situ values for V4.GL.03 (R2_03) from this work and V4.GL.02 

(R2_02) from van Donkelaar et al. (2016). N is the number of comparison points. 

Year R2_03 R2_02 N 

2010 0.72 0.76 1017 

2011 0.74 0.73 1092 

2012 0.74 0.74 1139 

2013 0.68 0.70 1330 

2014 0.90 0.81 1790 

2015 0.91 0.87 2240 

2016 0.90 0.84 2285 
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Table 4-S4: Population-weighted mean PM2.5 (μg/m3) by Global Burden of Disease (GBD) region 

according to geophysical (GEO), GWR-adjusted hybrid (HBR), and monitor for 2015. 

 At PM2.5 Monitor Locations 

Region 

 

Population 

[million 

people] 

GEO 

PM2.5 

HBR 

PM2.5 

GEO 

PM2.5 

HBR 

PM2.5 

Monitor 

PM2.5 

N 

[#] 

Global 7345 43.7 45.1 44.3 43.8 44.5 3744 

Asia Pacific, High Income 182 19.6 18.3 32.6 30.2 23.3 24 

Asia Central 86 15.8 26.0 - - - 0 

Asia East 1430 53.8 49.2 56.0 54.5 55.6 1453 

Asia South 1721 56.0 62.8 62.3 75.0 79.8 13 

Asia, Southeast 648 31.4 26.4 - - - 0 

Australasia 28 3.0 5.0 2.9 5.6 7.4 35 

Caribbean 39 7.4 9.3 - - - 0 

Europe, Central 115 14.8 18.8 15.5 21.2 22.4 145 

Europe, Eastern 209 12.4 13.6 4.4 5.3 9.7 48 

Europe, Western 423 11.1 12.8 10.8 13.8 14.3 910 

Latin America, Andean 57 12.2 22.5 10.0 54.0 25.0 1 

Latin America, Central 251 15.1 15.7 24.7 23.6 24.6 17 

Latin America, Southern 64 7.2 8.4 6.0 8.0 10.0 1 

Latin America, Tropical 214 9.2 9.9 - - - 0 

North Africa/Middle-East 488 23.0 26.9 44.4 55.6 72.4 3 

North America, High 

Income 

360 9.7 8.9 9.7 9.0 8.6 1068 

Oceania 10 5.6 4.8 2 2 8 1 

Sub-Saharan Africa, Central 113 30.5 30.4 - - - 0 

Sub-Saharan Africa, East 416 17.3 18.4 - - - 0 

Sub-Saharan Africa, 

Southern 

78 11.5 11.5 - - - 0 

Sub-Saharan Africa, West 391 55.4 72.5 - - - 0 
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Figure 4-S1: Bias predicted by geographically weighted regression between our geophysical PM2.5 

estimates (Figure 4-3) and in situ ground monitor data for 2015. Point locations correspond to 

individual monitors, with black dots representing direct PM2.5 observations. Grey denotes water. 
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Figure 4-S2: Net impact of individual predictors on the geographically weighted regression 

estimate of bias in geophysical PM2.5 for 2015. Gray denotes water. 
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Chapter 5: Conclusions 

5.1 Summary 

Atmospheric aerosols have significant impacts on climate and human health. Scattering 

and absorption by aerosols affects the global radiation budget. Absorption of ultraviolet (UV) 

radiation by aerosols also decreases photolysis frequencies, leading to a reduction in the 

concentrations of atmospheric oxidants. Exposure to aerosols with diameters less than 2.5 𝜇m in 

diameter (PM2.5) significantly impacts human health, causing cardiovascular and lung disease. 

However, the exact magnitude of the climate and health effects of aerosols remains highly 

uncertain, due to the large variability in aerosol physical and chemical properties. In this work, we 

used satellite observations of aerosol properties in conjunction with the global chemical transport 

model GEOS-Chem to improve our understanding of the interactions of aerosols with radiation 

and their impacts on health. 

We interpreted OMI observations of the Ultraviolet Aerosol Index (UVAI), which provides 

a measure of absorbing aerosols, by developing a simulation of the UVAI using the vector radiative 

transfer model VLIDORT coupled with GEOS-Chem aerosol fields. Simulated and observed 

values are highly consistent in regions where mineral dust dominates the UVAI, but a large 

negative bias (−0.32 to −0.97) exists between simulated and observed values in biomass burning 

regions. We applied the OMI UVAI to estimate absorption by BrC. This approach exploits the 

strong absorption by BrC at ultraviolet wavelengths and its effect on top of atmosphere (TOA) 

radiance. The simulation including absorbing BrC is much more consistent than the base case at 

reproducing the OMI UVAI over biomass burning regions. The mean bias between simulated and 

OMI UVAI values is reduced from −0.57 to −0.09 over West Africa in January, from −0.32 to 

+0.0002 over South Asia in April, from −0.97 to −0.22 over southern Africa in July, and from 

−0.50 to +0.33 over South America in September. 

We applied this constraint on ultraviolet absorption to examine implications for the O3 → 

O(1D) photolysis frequency J(O(1D)). We find that the inclusion of absorbing BrC into GEOS- 

Chem decreased J(O(1D)) and lower tropospheric OH by up to 30 % over South America in 

September, up to 20 % over southern Africa in July, up to 15% over West Africa in January and 

southern Africa in September, and up to 5 % elsewhere. The decrease in global mean OH 



 
 

    88 

concentration in GEOS-Chem increased the methyl chloroform lifetime to tropospheric OH from 

5.62 to 5.68 years, reducing the bias with estimates from observations of 6.0 (+0.5, −0.4) years.  

We calculated the direct radiative effect (DRE) of BrC using GEOS-Chem coupled with 

the radiative transfer model RRTMG (GC-RT). We found that absorbing BrC changes the global 

annual mean all-sky top of atmosphere (TOA) DRE by +0.03 W m−2 and all-sky surface DRE by 

−0.08 W m−2. Regional changes of up to +0.3 W m−2 at TOA and down to −1.5 W m−2 at the 

surface were found over major biomass burning regions. 

We used our UVAI simulation to interpret trends in satellite observed UVAI values for 

2005-2015 to improve our understanding of trends in global aerosol composition. Trends in 

absorption by mineral dust dominated the simulated UVAI trends over North Africa, the Middle 

East, East Asia, and Australia. The positive trends in the observed UVAI over Central Asia near 

the shrinking Aral Sea are likely due to increased dust emissions, a feature that is unlikely to be 

represented in most chemical transport models. Trends in absorption by BrC dominated the 

simulated UVAI trends over biomass burning regions. The UVAI simulation reproduced observed 

negative trends over central South America and West Africa, but underestimated observed UVAI 

trends over boreal forests. Trends in scattering by secondary inorganic aerosol dominated the 

simulated UVAI trends over the eastern United States and eastern India. This work demonstrated 

that trends in the observed UVAI offer valuable information on the evolution of global aerosol 

composition that can be understood through quantitative simulation of the UVAI. 

We calculated geophysically based estimates of surface PM2.5 concentrations using 

information from satellites, simulation, and ground monitors for the years 2000-2017. These combined 

PM2.5 estimates benefited from recent updates to satellite AOD sources, developments in chemical 

transport models, and expanded ground monitor measurements. We found that MAIAC retrieved 

AOD becomes a large contributor to the combined AOD, with a mean weighting of 27%, due to 

its increased global availability and high performance over regions with difficult surface 

conditions, such as deserts. We found that our geophysical combined PM2.5 estimates show 

excellent agreement with ground monitors (R2=0.91), providing confidence in their use for regions 

with low monitor density. 

We calculated the trends for 2000-2017 in our geophysical PM2.5 values using Generalized 

Least Squares Regression. We find statistically significant positive trends over India, the Middle-
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East, central and southern Africa, Canada, north western China, a small portion of east China, and 

parts of East Asia. The lack of statistically significant trends over East Asia is driven by a reversal 

in the slope of the trends after ~2012 when the slope turns negative. There are statistically 

significant negative trends over the eastern United States, Europe, Australia, and central South 

America. Statistical fusion explained an additional 10% of the variance in the PM2.5 estimates, 

yielding an improved agreement (R2=0.91) with cross-validated ground monitor sites. The 

populations of North America, Europe, and recently China experienced negative trends in PM2.5, 

while large amounts of the global population experienced positive trends in PM2.5 values, 

particularly in India.  

5.2 Looking Forward 

 Chapters 2 and 3 of this work demonstrate that simulation of the UVAI allows for the 

derivation of independent aerosol composition information from satellite observations of 

ultraviolet radiances. The availability of UVAI observations from 1979 to the present offers a 

unique opportunity to understand long-term trends in aerosol absorption. Ample opportunities 

exist to further develop the simulation of the UVAI. The recent launch of the TROPOspheric 

Monitoring Instrument (TROPOMI; Veefkind et al., 2012) and the forthcoming geostationary 

constellation offer UVAI observations at finer spatial and temporal resolution, as well as 

information on diurnal variation, both of which may offer additional constraints on the evolution 

of aerosol species. The forthcoming Multi-Angle Imager for Aerosols (MAIA; Diner et al., 2018) 

satellite instrument offers an exciting opportunity to derive even more information about aerosol 

composition by combining measurements at ultraviolet wavelengths with multi-angle observations 

and polarization sensitivity. 

Further investigation of the positive trend in satellite UVAI over central Asia that is not 

captured by simulation is required. This feature appears to be linked to the dessicating Aral Sea, 

which is possibly creating an increasingly important dust source, or a trend in surface reflectance. 

The negative trend in satellite UVAI values over Inner Mongolia that is not captured by simulation 

also requires further investigation. 

There are several opportunities for improving the simulation of brown carbon. These 

opportunities include explicitly accounting for the range of processes affecting BrC such as 

regional treatment, burn conditions, and photochemical loss. The absorption by BrC produced 
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from secondary organic aerosol remains highly uncertain, and observational studies of industrial 

organic aerosol are necessary to quantify the optical properties of brown SOA. 

Further  developments in satellite retrieved AOD and chemical transport models are crucial 

for future PM2.5 estimates. Using a hybrid geophysical-statistical approach for estimating PM2.5 

further improves the agreement with ground measurements. Future PM2.5 estimates would benefit 

from increased monitor density, especially in regions such as Africa, the Middle-East, and South 

America. Future possible improvements to the simulated PM2.5/AOD relationship include 

improvements to the representation of hygroscopic growth for organic and inorganic aerosols 

suggested by Latimer and Martin (2018), and improvements to the dust emissions scheme such as 

those suggested by Ridley et al. (2016). Inclusion of additional satellite sources should be explored, 

such as that from the Visible Infrared Radiometer Suite (VIIRS). Alternative statistical frameworks 

for the inclusion of ground monitor data could also be explored, such as deep learning or a 

Bayesian Hierarchical Framework similar to that used by Shaddick et al. (2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

    91 

References 

Adams, P. J., Seinfeld, J. H. and Koch, D. M.: Global concentrations of tropospheric sulfate, 

nitrate, and ammonium aerosol simulated in a general circulation model, J. Geophys. Res. Atmos., 

104(D11), 13791–13823, doi:10.1029/1999JD900083, 1999. 

Andela, N. and van der Werf, G. R.: Recent trends in African fires driven by cropland expansion 

and El Niño to La Niña transition, Nat. Clim. Chang., 4(9), 791–795, doi:10.1038/nclimate2313, 

2014. 

Andreae, M. O. and Gelencsér,  a.: Black carbon or brown carbon? The nature of light-absorbing 

carbonaceous aerosols, Atmos. Chem. Phys. Discuss., 6(3), 3419–3463, doi:10.5194/acpd-6-3419-

2006, 2006a. 

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing 

carbonaceous aerosols, Atmos. Chem. Phys., 6(10), 3131–3148, doi:10.5194/acp-6-3131-2006, 

2006b. 

Apte, J. S., Marshall, J. D., Cohen, A. J. and Brauer, M.: Addressing Global Mortality from 

Ambient PM 2.5, Environ. Sci. Technol., 49(13), 8057–8066, doi:10.1021/acs.est.5b01236, 2015. 

Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S. and Tripathi, S. N.: Inferring absorbing 

organic carbon content from AERONET data, Atmos. Chem. Phys., 11(1), 215–225, 

doi:10.5194/acp-11-215-2011, 2011. 

Arola, A., Schuster, G. L., Pitkänen, M. R. A., Dubovik, O., Kokkola, H., Lindfors, A. V., 

Mielonen, T., Raatikainen, T., Romakkaniemi, S., Tripathi, S. N. and Lihavainen, H.: 

Measurement-based direct radiative effect by brown carbon over Indo-Gangetic Plain, Atmos. 

Chem. Phys. Discuss., 15(15), 21583–21606, doi:10.5194/acpd-15-21583-2015, 2015. 

Ayash, T., Gong, S., Jia, C. Q., Ayash, T., Gong, S. and Jia, C. Q.: Direct and Indirect Shortwave 

Radiative Effects of Sea Salt Aerosols, J. Clim., 21(13), 3207–3220, 

doi:10.1175/2007JCLI2063.1, 2008. 

Badarinath, K. V. S., Kharol, S. K., Kaskaoutis, D. G., Sharma, A. R., Ramaswamy, V. and 

Kambezidis, H. D.: Long-range transport of dust aerosols over the Arabian Sea and Indian region 

— A case study using satellite data and ground-based measurements, Glob. Planet. Change, 72(3), 

164–181, doi:10.1016/j.gloplacha.2010.02.003, 2010. 

Bergstrom, R. W., Russell, P. B., Hignett, P., Bergstrom, R. W., Russell, P. B. and Hignett, P.: 

Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results 

from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo, J. 

Atmos. Sci., 59(3), 567–577, doi:10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2, 

2002a. 

Bergstrom, R. W., Russell, P. B. and Hignett, P.: Wavelength Dependence of the Absorption of 

Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications 

for the Aerosol Single Scattering Albedo, J. Atmos. Sci., 59(3), 567–577, doi:10.1175/1520-

0469(2002)059<0567:WDOTAO>2.0.CO;2, 2002b. 

Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K. and 

Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7(23), 

5937–5943, doi:10.5194/acp-7-5937-2007, 2007. 



 
 

    92 

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., 

Mickley, L. J. and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated 

meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073, 

doi:10.1029/2001JD000807, 2001. 

Bond, T. C.: Spectral dependence of visible light absorption by carbonaceous particles emitted 

from coal combustion, Geophys. Res. Lett., 28(21), 4075–4078, doi:10.1029/2001GL013652, 

2001. 

Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An Investigative 

Review, Aerosol Sci. Technol., 40(1), 27–67, doi:10.1080/02786820500421521, 2006. 

Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G. and Trautmann, 

N. M.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 

1850-2000, Global Biogeochem. Cycles, 21(2), GB2018, doi:10.1029/2006GB002840, 2007. 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, 

M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., 

Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. 

K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., 

Shindell, D., Storelvmo, T., Warren, S. G. and Zender, C. S.: Bounding the role of black carbon in 

the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118(11), 5380–5552, 

doi:10.1002/jgrd.50171, 2013. 

Boys, B. L., Martin, R. V., van Donkelaar, A., MacDonell, R. J., Hsu, N. C., Cooper, M. J., 

Yantosca, R. M., Lu, Z., Streets, D. G., Zhang, Q. and Wang, S. W.: Fifteen-Year Global Time 

Series of Satellite-Derived Fine Particulate Matter, Environ. Sci. Technol., 48(19), 11109–11118, 

doi:10.1021/es502113p, 2014. 

Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chemistry, Cambridge University 

Press, Cambridge., 2017. 

Brunsdon, C., Fotheringham, A. S. and Charlton, M. E.: Geographically Weighted Regression: A 

Method for Exploring Spatial Nonstationarity, Geogr. Anal., 28(4), 281–298, doi:10.1111/j.1538-

4632.1996.tb00936.x, 2010. 

Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., 

Torres, O., Campbell, J. and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical 

depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15(10), 5743–

5760, doi:10.5194/acp-15-5743-2015, 2015. 

Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt 

Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T. 

and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass 

spectrometry: characterization, improved calibration, and implications, Atmos. Chem. Phys., 

15(1), 253–272, doi:10.5194/acp-15-253-2015, 2015. 

Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. 

Chem. Phys., 10(4), 1773–1787, doi:10.5194/acp-10-1773-2010, 2010. 

Chen, Y., Morton, D. C., Jin, Y., Collatz, G. J., Kasibhatla, P. S., van der Werf, G. R., DeFries, R. 

S. and Randerson, J. T.: Long-term trends and interannual variability of forest, savanna and 

agricultural fires in South America, Carbon Manag., 4(6), 617–638, doi:10.4155/cmt.13.61, 2013. 



 
 

    93 

Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer, L. A., Yu, H., Sayer, A. M., 

Bian, H., Geogdzhayev, I. V., Holben, B. N., Howell, S. G., Huebert, B. J., Hsu, N. C., Kim, D., 

Kucsera, T. L., Levy, R. C., Mishchenko, M. I., Pan, X., Quinn, P. K., Schuster, G. L., Streets, D. 

G., Strode, S. A., Torres, O. and Zhao, X.-P.: Multi-decadal aerosol variations from 1980 to 2009: 

a perspective from observations and a global model, Atmos. Chem. Phys., 14(7), 3657–3690, 

doi:10.5194/acp-14-3657-2014, 2014. 

Chung, C. E., Ramanathan, V. and Decremer, D.: Observationally constrained estimates of 

carbonaceous aerosol radiative forcing., Proc. Natl. Acad. Sci. U. S. A., 109(29), 11624–9, 

doi:10.1073/pnas.1203707109, 2012. 

Clarke, A., McNaughton, C., Kapustin, V., Shinozuka, Y., Howell, S., Dibb, J., Zhou, J., 

Anderson, B. E., Brekhovskikh, V., Turner, H. and Pinkerton, M.: Biomass burning and pollution 

aerosol over North America: Organic components and their influence on spectral optical properties 

and humidification response, J. Geophys. Res. Atmos., 112(12), 1–13, 

doi:10.1029/2006JD007777, 2007. 

Colarco, P. R., Toon, O. B., Torres, O. and Rasch, P. J.: Determining the UV imaginary index of 

refraction of Saharan dust particles from Total Ozone Mapping Spectrometer data using a three-

dimensional model of dust transport, J. Geophys. Res., 107(D16), 4289, 

doi:10.1029/2001JD000903, 2002. 

Corr, C. A., Hall, S. R., Ullmann, K., Anderson, B. E., Beyersdorf, A. J., Thornhill, K. L., Cubison, 

M. J., Jimenez, J. L., Wisthaler, A. and Dibb, J. E.: Spectral absorption of biomass burning aerosol 

determined from retrieved single scattering albedo during ARCTAS, Atmos. Chem. Phys., 12(21), 

10505–10518, doi:10.5194/acp-12-10505-2012, 2012. 

Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., 

Van Dingenen, R. and Granier, C.: Forty years of improvements in European air quality: regional 

policy-industry interactions with global impacts, Atmos. Chem. Phys., 16(6), 3825–3841, 

doi:10.5194/acp-16-3825-2016, 2016. 

Cui, H., Mao, P., Zhao, Y., Nielsen, C. P. and Zhang, J.: Patterns in atmospheric carbonaceous 

aerosols in China: emission estimates and observed concentrations, Atmos. Chem. Phys., 15(15), 

8657–8678, doi:10.5194/acp-15-8657-2015, 2015. 

Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R., Brunner, D., Forkel, R., 

Giordano, L., Hirtl, M., Honzak, L., Jiménez-Guerrero, P., Knote, C., Langer, M., Makar, P. A., 

Pirovano, G., Pérez, J. L., San José, R., Syrakov, D., Tuccella, P., Werhahn, J., Wolke, R., Žabkar, 

R., Zhang, J. and Galmarini, S.: Uncertainties of simulated aerosol optical properties induced by 

assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective, Atmos. 

Environ., 115, 541–552, doi:10.1016/j.atmosenv.2014.09.009, 2015. 

Curier, L., Kranenburg, R., Timmermans, R., Segers, A., Eskes, H. and Schaap, M.: Synergistic 

Use of LOTOS-EUROS and NO2 Tropospheric Columns to Evaluate the NOX Emission Trends 

Over Europe, pp. 239–245., 2014. 

Dai, A.: Recent Climatology, Variability, and Trends in Global Surface Humidity, J. Clim., 19(15), 

3589–3606, doi:10.1175/JCLI3816.1, 2006. 

 

 



 
 

    94 

Dave, J. V: Effect of Aerosols on the Estimation of Total Ozone in an Atmospheric Column from 

the Measurements of Its Ultraviolet Radiance, J. Atmos. Sci., 35(5), 899–911, doi:10.1175/1520-

0469(1978)035<0899:EOAOTE>2.0.CO;2, 1978. 

Deirmendjian, D.: Scattering and Polarization Properties of Water Clouds and Hazes in the Visible 

and Infrared, Appl. Opt., 3(2), 187, doi:10.1364/AO.3.000187, 1964. 

Deng, X., Tie, X., Zhou, X., Wu, D., Zhong, L., Tan, H., Li, F., Huang, X., Bi, X. and Deng, T.: 

Effects of Southeast Asia biomass burning on aerosols and ozone concentrations over the Pearl 

River Delta (PRD) region, Atmos. Environ., 42(36), 8493–8501, 

doi:10.1016/J.ATMOSENV.2008.08.013, 2008. 

Dey, S. and Di Girolamo, L.: A decade of change in aerosol properties over the Indian 

subcontinent, Geophys. Res. Lett., 38(14), n/a-n/a, doi:10.1029/2011GL048153, 2011. 

Di, Q., Koutrakis, P. and Schwartz, J.: A hybrid prediction model for PM2.5 mass and components 

using a chemical transport model and land use regression, Atmos. Environ., 131, 390–399, 

doi:10.1016/J.ATMOSENV.2016.02.002, 2016. 

Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G. and Holben, 

B. N.: The impact of aerosols on solar ultraviolet radiation and photochemical smog., Science, 

278(5339), 827–830, doi:10.1126/science.278.5339.827, 1997. 

Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. 

V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J., Myneni, R. B., Sellers, 

P. J., Pinty, B. and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer (MISR) instrument 

description and experiment overview, IEEE Trans. Geosci. Remote Sens., 36(4), 1072–1087, 

doi:10.1109/36.700992, 1998. 

Diner, D. J., Boland, S. W., Brauer, M., Bruegge, C., Burke, K. A., Chipman, R., Di Girolamo, L., 

Garay, M. J., Hasheminassab, S., Hyer, E., Jerrett, M., Jovanovic, V., Kalashnikova, O. V., Liu, 

Y., Lyapustin, A. I., Martin, R. V., Nastan, A., Ostro, B. D., Ritz, B., Schwartz, J., Wang, J. and 

Xu, F.: Advances in multiangle satellite remote sensing of speciated airborne particulate matter 

and association with adverse health effects: from MISR to MAIA, J. Appl. Remote Sens., 12(04), 

1, doi:10.1117/1.JRS.12.042603, 2018. 

van Donkelaar, A., Martin, R. V., Leaitch, W. R., Macdonald, A. M., Walker, T. W., Streets, D. 

G., Zhang, Q., Dunlea, E. J., Jimenez, J. L., Dibb, J. E., Huey, L. G., Weber, R. and Andreae, M. 

O.: Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport 

Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada, Atmos. 

Chem. Phys., 8(11), 2999–3014, doi:10.5194/acp-8-2999-2008, 2008. 

van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C. and Villeneuve, 

P. J.: Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based 

Aerosol Optical Depth: Development and Application, Environ. Health Perspect., 118(6), 847–

855, doi:10.1289/ehp.0901623, 2010. 

van Donkelaar, A., Martin, R. V., Spurr, R. J. D., Drury, E., Remer, L. A., Levy, R. C. and Wang, 

J.: Optimal estimation for global ground-level fine particulate matter concentrations, J. Geophys. 

Res. Atmos., 118(11), 5621–5636, doi:10.1002/jgrd.50479, 2013. 

 



 
 

    95 

van Donkelaar, A., Martin, R. V., Brauer, M. and Boys, B. L.: Use of Satellite Observations for 

Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter, Environ. 

Health Perspect., 123(2), 135–143, doi:10.1289/ehp.1408646, 2015. 

van Donkelaar, A., Martin, R. V., Brauer, M., Hsu, N. C., Kahn, R. A., Levy, R. C., Lyapustin, A., 

Sayer, A. M. and Winker, D. M.: Global Estimates of Fine Particulate Matter using a Combined 

Geophysical-Statistical Method with Information from Satellites, Models, and Monitors, Environ. 

Sci. Technol., 50(7), 3762–3772, doi:10.1021/acs.est.5b05833, 2016. 

van Donkelaar, A., Martin, R. V and Park, R. J.: Estimating ground-level PM 2.5 using aerosol 

optical depth determined from satellite remote sensing, J. Geophys. Res, 111, 21201, 

doi:10.1029/2005JD006996, 2006. 

Drury, E., Jacob, D. J., Spurr, R. J. D., Wang, J., Shinozuka, Y., Anderson, B. E., Clarke, A. D., 

Dibb, J., McNaughton, C. and Weber, R.: Synthesis of satellite (MODIS), aircraft (ICARTT), and 

surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to 

improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources, J. 

Geophys. Res., 115(D14), D14204, doi:10.1029/2009JD012629, 2010. 

Duncan, B. N., Martin, R. V., Staudt, A. C., Yevich, R. and Logan, J. A.: Interannual and seasonal 

variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res., 

108(D2), 4100, doi:10.1029/2002JD002378, 2003. 

Duncan Fairlie, T., Jacob, D. J. and Park, R. J.: The impact of transpacific transport of mineral 

dust in the United States, Atmos. Environ., 41(6), 1251–1266, 

doi:10.1016/J.ATMOSENV.2006.09.048, 2007. 

Duplissy, J., DeCarlo, P. F., Dommen, J., Alfarra, M. R., Metzger, A., Barmpadimos, I., Prevot, 

A. S. H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A. C., Jimenez, J. L., Canagaratna, M. 

R., Worsnop, D. R., Collins, D. R., Tomlinson, J. and Baltensperger, U.: Relating hygroscopicity 

and composition of organic aerosol particulate matter, Atmos. Chem. Phys., 11(3), 1155–1165, 

doi:10.5194/acp-11-1155-2011, 2011. 

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’Neill, N. T., Slutsker, I. and 

Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust 

aerosols, J. Geophys. Res. Atmos., 104(D24), 31333–31349, doi:10.1029/1999JD900923, 1999. 

Fairlie, D. J., Jacob, D. J. and Park, R. J.: The impact of transpacific transport of mineral dust in 

the United States, Atmos. Environ., 41(6), 1251–1266, doi:10.1016/j.atmosenv.2006.09.048, 

2007. 

Feng, Y., Ramanathan, V. and Kotamarthi, V. R.: Brown carbon: A significant atmospheric 

absorber of solar radiation, Atmos. Chem. Phys., 13(17), 8607–8621, doi:10.5194/acp-13-8607-

2013, 2013. 

Fioletov, V. E., McLinden, C. A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S. and Moran, 

M. D.: A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring 

Instrument, Atmos. Chem. Phys., 16(18), 11497–11519, doi:10.5194/acp-16-11497-2016, 2016. 

Flores, J. M., Washenfelder, R. A., Adler, G., Lee, H. J., Segev, L., Laskin, J., Laskin, A., 

Nizkorodov, S. A., Brown, S. S. and Rudich, Y.: Complex refractive indices in the near-ultraviolet 

spectral region of biogenic secondary organic aerosol aged with ammonia., Phys. Chem. Chem. 

Phys., 16(22), 10629–42, doi:10.1039/c4cp01009d, 2014. 



 
 

    96 

Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L., Anderson, B., Diskin, G., 

Perring, A. E., Schwarz, J. P., Campuzano-Jost, P., Day, D. A., Palm, B. B., Jimenez, J. L., Nenes, 

A. and Weber, R. J.: Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42(11), 

4623–4630, doi:10.1002/2015GL063897, 2015. 

Fotheringham, A. S., Charlton, M. E. and Brunsdon, C.: Geographically Weighted Regression: A 

Natural Evolution of the Expansion Method for Spatial Data Analysis, Environ. Plan. A Econ. Sp., 

30(11), 1905–1927, doi:10.1068/a301905, 1998. 

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic 

equilibrium model for K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2−–NO3
−–Cl−–H2O aero, Atmos. Chem. 

Phys., 7(17), 4639–4659, doi:10.5194/acp-7-4639-2007, 2007. 

Franklin, M., Kalashnikova, O. V. and Garay, M. J.: Size-resolved particulate matter 

concentrations derived from 4.4 km-resolution size-fractionated Multi-angle Imaging 

SpectroRadiometer (MISR) aerosol optical depth over Southern California, Remote Sens. 

Environ., 196, 312–323, doi:10.1016/J.RSE.2017.05.002, 2017. 

Friberg, M. D., Kahn, R. A., Holmes, H. A., Chang, H. H., Sarnat, S. E., Tolbert, P. E., Russell, 

A. G. and Mulholland, J. A.: Daily ambient air pollution metrics for five cities: Evaluation of data-

fusion-based estimates and uncertainties, Atmos. Environ., 158, 36–50, 

doi:10.1016/J.ATMOSENV.2017.03.022, 2017. 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A. and Huang, 

X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new 

datasets, Remote Sens. Environ., 114(1), 168–182, doi:10.1016/J.RSE.2009.08.016, 2010. 

Fu, T.-M., Cao, J. J., Zhang, X. Y., Lee, S. C., Zhang, Q., Han, Y. M., Qu, W. J., Han, Z., Zhang, 

R., Wang, Y. X., Chen, D. and Henze, D. K.: Carbonaceous aerosols in China: top-down 

constraints on primary sources and estimation of secondary contribution, Atmos. Chem. Phys., 

12(5), 2725–2746, doi:10.5194/acp-12-2725-2012, 2012. 

Garay, M.J.; Witek, M.L.; Kahn, R.A.; Seidel, F.C.; Limbacher, J.A; Bull, M.A.; Diner, D.J.; 

Hansen, E.G.; Kalashnikova, O.V.; Lee, H.; Nastan, A.M.; and Yu, Y.: Introducing the 4.4 km 

Spatial Resolution MISR Aerosol Products., Atmos. Meas. Tech., (In preparation)., n.d. 

Garay, M. J., Kalashnikova, O. V. and Bull, M. A.: Development and assessment of a higher-

spatial-resolution (4.4 km) MISR aerosol optical depth product using AERONET-DRAGON data, 

Atmos. Chem. Phys., 17(8), 5095–5106, doi:10.5194/acp-17-5095-2017, 2017. 

 

 

 

 

 

 

 

 



 
 

    97 

GBD 2016 Risk Factors Collaborators, E., Afshin, A., Abajobir, A. A., Abate, K. H., Abbafati, C., 

Abbas, K. M., Abd-Allah, F., Abdulle, A. M., Abera, S. F., Aboyans, V., Abu-Raddad, L. J., Abu-

Rmeileh, N. M. E., Abyu, G. Y., Adedeji, I. A., Adetokunboh, O., Afarideh, M., Agrawal, A., 

Agrawal, S., Ahmadieh, H., Ahmed, M. B., Aichour, M. T. E., Aichour, A. N., Aichour, I., 

Akinyemi, R. O., Akseer, N., Alahdab, F., Al-Aly, Z., Alam, K., Alam, N., Alam, T., Alasfoor, 

D., Alene, K. A., Ali, K., Alizadeh-Navaei, R., Alkerwi, A., Alla, F., Allebeck, P., Al-Raddadi, 

R., Alsharif, U., Altirkawi, K. A., Alvis-Guzman, N., Amare, A. T., Amini, E., Ammar, W., 

Amoako, Y. A., Ansari, H., Antó, J. M., Antonio, C. A. T., Anwari, P., Arian, N., Ärnlöv, J., 

Artaman, A., Aryal, K. K., Asayesh, H., Asgedom, S. W., Atey, T. M., Avila-Burgos, L., 

Avokpaho, E. F. G. A., Awasthi, A., Azzopardi, P., Bacha, U., Badawi, A., Balakrishnan, K., 

Ballew, S. H., Barac, A., Barber, R. M., Barker-Collo, S. L., Bärnighausen, T., Barquera, S., 

Barregard, L., Barrero, L. H., Batis, C., Battle, K. E., Baumgarner, B. R., Baune, B. T., Beardsley, 

J., Bedi, N., Beghi, E., Bell, M. L., Bennett, D. A., Bennett, J. R., Bensenor, I. M., Berhane, A., 

Berhe, D. F., Bernabé, E., Betsu, B. D., Beuran, M., Beyene, A. S., Bhansali, A., Bhutta, Z. A., 

Bicer, B. K., Bikbov, B., Birungi, C., Biryukov, S., Blosser, C. D., Boneya, D. J., Bou-Orm, I. R., 

Brauer, M., Breitborde, N. J. K., et al.: Global, regional, and national comparative risk assessment 

of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-

2016: a systematic analysis for the Global Burden of Disease Study 2016., Lancet (London, 

England), 390(10100), 1345–1422, doi:10.1016/S0140-6736(17)32366-8, 2017. 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., 

Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., 

Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, 

R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. 

D., Sienkiewicz, M., Zhao, B., Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., 

Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., 

Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., Silva, A. M. da, Gu, W., Kim, G.-

K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., 

Rienecker, M., Schubert, S. D., Sienkiewicz, M. and Zhao, B.: The Modern-Era Retrospective 

Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 30(14), 5419–5454, 

doi:10.1175/JCLI-D-16-0758.1, 2017. 

Giglio, L., Randerson, J. T. and van der Werf, G. R.: Analysis of daily, monthly, and annual burned 

area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res. 

Biogeosciences, 118(1), 317–328, doi:10.1002/jgrg.20042, 2013a. 

Giglio, L., Randerson, J. T. and van der Werf, G. R.: Analysis of daily, monthly, and annual burned 

area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res. 

Biogeosciences, 118(1), 317–328, doi:10.1002/jgrg.20042, 2013b. 

Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., 

Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V. and Lyapustin, A. I.: 

Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated 

near-real-time quality control algorithm with improved cloud screening for Sun photometer 

aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12(1), 169–209, 

doi:10.5194/amt-12-169-2019, 2019. 

 

 



 
 

    98 

Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. and Zhao, M.: Global-scale attribution of 

anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue 

aerosol products, Rev. Geophys., 50(3), doi:10.1029/2012RG000388, 2012. 

de Graaf, M., Stammes, P., Torres, O. and Koelemeijer, R. B. A.: Absorbing Aerosol Index: 

Sensitivity analysis, application to GOME and comparison with TOMS, J. Geophys. Res., 

110(D1), D01201, doi:10.1029/2004JD005178, 2005. 

Guan, H., Esswein, R., Lopez, J., Bergstrom, R., Warnock, A., Follette-Cook, M., Fromm, M. and 

Iraci, L. T.: A multi-decadal history of biomass burning plume heights identified using aerosol 

index measurements, Atmos. Chem. Phys., 10(14), 6461–6469, doi:10.5194/acp-10-6461-2010, 

2010. 

Guan, Q., Sun, X., Yang, J., Pan, B., Zhao, S., Wang, L., Guan, Q., Sun, X., Yang, J., Pan, B., 

Zhao, S. and Wang, L.: Dust Storms in Northern China: Long-Term Spatiotemporal 

Characteristics and Climate Controls, J. Clim., 30(17), 6683–6700, doi:10.1175/JCLI-D-16-

0795.1, 2017. 

Guan, X., Huang, J., Zhang, Y., Xie, Y. and Liu, J.: The relationship between anthropogenic dust 

and population over global semi-arid regions, Atmos. Chem. Phys., 16(8), 5159–5169, 

doi:10.5194/acp-16-5159-2016, 2016. 

Guo, Y., Tian, B., Kahn, R. A., Kalashnikova, O., Wong, S. and Waliser, D. E.: Tropical Atlantic 

dust and smoke aerosol variations related to the Madden-Julian Oscillation in MODIS and MISR 

observations, J. Geophys. Res. Atmos., 118(10), 4947–4963, doi:10.1002/jgrd.50409, 2013. 

Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A. and Munchak, L. A.: A surface reflectance scheme 

for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm, 

Atmos. Meas. Tech., 9(7), 3293–3308, doi:10.5194/amt-9-3293-2016, 2016. 

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, 

J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., 

Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., 

McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., 

Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary organic aerosol: 

current and emerging issues, Atmos. Chem. Phys., 9(14), 5155–5236, doi:10.5194/acp-9-5155-

2009, 2009a. 

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, 

J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., 

Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., 

McFiggans, G., Mentel, T. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., 

Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary organic aerosol: 

current and emerging issues, Atmos. Chem. Phys., 9(14), 5155–5236, doi:10.5194/acp-9-5155-

2009, 2009b. 

Hammer, M. S., Martin, R. V., van Donkelaar, A., Buchard, V., Torres, O., Ridley, D. A. and 

Spurr, R. J. D.: Interpreting the ultraviolet aerosol index observed with the OMI satellite 

instrument to understand absorption by organic aerosols: implications for atmospheric oxidation 

and direct radiative effects, Atmos. Chem. Phys., 16(4), 2507–2523, doi:10.5194/acp-16-2507-

2016, 2016. 



 
 

    99 

He, T., Liang, S. and Song, D.-X.: Analysis of global land surface albedo climatology and spatial-

temporal variation during 1981-2010 from multiple satellite products, J. Geophys. Res. Atmos., 

119(17), 10,281-10,298, doi:10.1002/2014JD021667, 2014. 

Heald, C. L., J. L. Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, 

L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S., Martin, R. V. and 

Pye, H. O. T.: Atmospheric ammonia and particulate inorganic nitrogen over the United States, 

Atmos. Chem. Phys., 12(21), 10295–10312, doi:10.5194/acp-12-10295-2012, 2012. 

Heald, C. L., Ridley, D. A., Kroll, J. H., Barrett, S. R. H., Cady-Pereira, K. E., Alvarado, M. J. and 

Holmes, C. D.: Contrasting the direct radiative effect and direct radiative forcing of aerosols, 

Atmos. Chem. Phys., 14(11), 5513–5527, doi:10.5194/acp-14-5513-2014, 2014. 

Health Effects Institute: State of Global Air 2019., 2019. 

HEI: State of Global Air 2018. Special Report., Boston, MA., 2018. 

Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from isoprene oxidation, 

Geophys. Res. Lett., 33, L09812, doi:doi:10.1029/2006GL025976, 2006. 

Henze, D. K., Seinfeld, J. H., Ng, N. L., Kroll, J. H., Fu, T.-M., Jacob, D. J. and Heald, C. L.: 

Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. 

low-yield pathways, Atmos. Chem. Phys., 8(9), 2405–2420, doi:10.5194/acp-8-2405-2008, 2008. 

Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C. and Celarier, E.: Global distribution 

of UV-absorbing aerosols from Nimbus 7/TOMS data, J. Geophys. Res., 102(D14), 16911, 

doi:10.1029/96JD03680, 1997. 

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. 

A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I. and Smirnov, A.: AERONET—A 

Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. 

Environ., 66(1), 1–16, doi:10.1016/S0034-4257(98)00031-5, 1998. 

de Hoogh, K., Chen, J., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., van 

Donkelaar, A., Hvidtfeldt, U. A., Katsouyanni, K., Klompmaker, J., Martin, R. V., Samoli, E., 

Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K., Vienneau, D., Brunekreef, B. 

and Hoek, G.: Spatial PM2.5, NO2, O3 and BC models for Western Europe – Evaluation of 

spatiotemporal stability, Environ. Int., 120, 81–92, doi:10.1016/j.envint.2018.07.036, 2018. 

Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., Tsay, S.-C. and 

Holben, B. N.: Global and regional trends of aerosol optical depth over land and ocean using 

SeaWiFS measurements from 1997 to 2010, Atmos. Chem. Phys. Atmos. Chem. Phys., 12, 8037–

8053, doi:10.5194/acp-12-8037-2012, 2012. 

Hsu, N. C., Jeong, M.-J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., Huang, J. and 

Tsay, S.-C.: Enhanced Deep Blue aerosol retrieval algorithm: The second generation, J. Geophys. 

Res. Atmos., 118(16), 9296–9315, doi:10.1002/jgrd.50712, 2013. 

Hsu, N. C., Lee, J., Sayer, A. M., Kim, W., Bettenhausen, C. and Tsay, S. ‐C.: VIIRS Deep Blue 

Aerosol Products Over Land: Extending the EOS Long‐Term Aerosol Data Records, J. Geophys. 

Res. Atmos., 124(7), 4026–4053, doi:10.1029/2018JD029688, 2019. 

 



 
 

    100 

Huang, J., Minnis, P., Yan, H., Yi, Y., Chen, B., Zhang, L. and Ayers, J. K.: Dust aerosol effect 

on semi-arid climate over Northwest China detected from A-Train satellite measurements, Atmos. 

Chem. Phys., 10(14), 6863–6872, doi:10.5194/acp-10-6863-2010, 2010. 

Huang, J. P., Liu, J. J., Chen, B. and Nasiri, S. L.: Detection of anthropogenic dust using CALIPSO 

lidar measurements, Atmos. Chem. Phys., 15(20), 11653–11665, doi:10.5194/acp-15-11653-

2015, 2015. 

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and Collins, W. D.: 

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer 

models, J. Geophys. Res., 113(D13), D13103, doi:10.1029/2008JD009944, 2008. 

Indoitu, R., Kozhoridze, G., Batyrbaeva, M., Vitkovskaya, I., Orlovsky, N., Blumberg, D. and 

Orlovsky, L.: Dust emission and environmental changes in the dried bottom of the Aral Sea, 

Aeolian Res., 17, 101–115, doi:10.1016/j.aeolia.2015.02.004, 2015. 

IPCC: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral 

Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J., 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2014. 

Israelevich, P. L., Levin, Z., Joseph, J. H. and Ganor, E.: Desert aerosol transport in the 

Mediterranean region as inferred from the TOMS aerosol index, J. Geophys. Res. Atmos., 

107(D21), AAC 13-1-AAC 13-13, doi:10.1029/2001JD002011, 2002. 

Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis rate coefficient and 

temperature profiles over an urban airshed, J. Geophys. Res., 103(D9), 10593, 

doi:10.1029/98JD00287, 1998. 

Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B. and Lin, J.-T.: Global distribution of sea salt 

aerosols: new constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 

11(7), 3137–3157, doi:10.5194/acp-11-3137-2011, 2011. 

Jethva, H. and Torres, O.: Satellite-based evidence of wavelength-dependent aerosol absorption in 

biomass burning smoke inferred from Ozone Monitoring Instrument, Atmos. Chem. Phys., 11(20), 

10541–10551, doi:10.5194/acp-11-10541-2011, 2011. 

Jin, X., Fiore, A. M., Curci, G., Lyapustin, A., Civerolo, K., Ku, M., van Donkelaar, A. and Martin, 

R. V.: Assessing uncertainties of a geophysical approach to estimate surface fine particulate matter 

distributions from satellite-observed aerosol optical depth, Atmos. Chem. Phys., 19(1), 295–313, 

doi:10.5194/acp-19-295-2019, 2019. 

Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as retrieved by MISR, J. 

Geophys. Res. Atmos., 120(9), 4248–4281, doi:10.1002/2015JD023322, 2015. 

Kalashnikova, O. V. and Kahn, R. A.: Mineral dust plume evolution over the Atlantic from MISR 

and MODIS aerosol retrievals, J. Geophys. Res., 113(D24), D24204, doi:10.1029/2008JD010083, 

2008. 

Kaskaoutis, D. G., Kharol, S. K., Sifakis, N., Nastos, P. T., Sharma, A. R., Badarinath, K. V. S. 

and Kambezidis, H. D.: Satellite monitoring of the biomass-burning aerosols during the wildfires 

of August 2007 in Greece: Climate implications, Atmos. Environ., 45(3), 716–726, 

doi:10.1016/j.atmosenv.2010.09.043, 2011. 



 
 

    101 

Kirchstetter, T. W. and Thatcher, T. L.: Contribution of organic carbon to wood smoke particulate 

matter absorption of solar radiation, Atmos. Chem. Phys., 12(14), 6067–6072, doi:10.5194/acp-

12-6067-2012, 2012. 

Kirchstetter, T. W., Novakov, T. and Hobbs, P. V.: Evidence that the spectral dependence of light 

absorption by aerosols is affected by organic carbon, J. Geophys. Res. D Atmos., 109(21), D21208, 

doi:10.1029/2004JD004999, 2004. 

Klimont, Z., Smith, S. J. and Cofala, J.: The last decade of global anthropogenic sulfur dioxide: 

2000–2011 emissions, Environ. Res. Lett. Environ. Res. Lett, 8(8), 14003–6, doi:10.1088/1748-

9326/8/1/014003, 2013. 

Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J. and 

Schöpp, W.: Global anthropogenic emissions of particulate matter including black carbon, Atmos. 

Chem. Phys., 17(14), 8681–8723, doi:10.5194/acp-17-8681-2017, 2017. 

Koepke, P., Hess, M., Schult, I. and Shettle, E. P.: Global Aerosol Dataset, report, Max-Planck 

Inst. fur Meteorol., Hamburg, Germany., 1997. 

Kristiansen, N. I., Stohl, A., Olivié, D. J. L., Croft, B., Søvde, O. A., Klein, H., Christoudias, T., 

Kunkel, D., Leadbetter, S. J., Lee, Y. H., Zhang, K., Tsigaridis, K., Bergman, T., Evangeliou, N., 

Wang, H., Ma, P.-L., Easter, R. C., Rasch, P. J., Liu, X., Pitari, G., Di Genova, G., Zhao, S. Y., 

Balkanski, Y., Bauer, S. E., Faluvegi, G. S., Kokkola, H., Martin, R. V., Pierce, J. R., Schulz, M., 

Shindell, D., Tost, H. and Zhang, H.: Evaluation of observed and modelled aerosol lifetimes using 

radioactive tracers of opportunity and an ensemble of 19 global models, Atmos. Chem. Phys., 

16(5), 3525–3561, doi:10.5194/acp-16-3525-2016, 2016. 

Kuhns, H., Knipping, E. M. and Vukovich, J. M.: Development of a United States–Mexico 

Emissions Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) 

Study, J. Air Waste Manage. Assoc., 55(5), 677–692, doi:10.1080/10473289.2005.10464648, 

2005. 

Kumar, N., Chu, A. and Foster, A.: An empirical relationship between PM2.5 and aerosol optical 

depth in Delhi Metropolitan, Atmos. Environ., 41(21), 4492–4503, 

doi:10.1016/J.ATMOSENV.2007.01.046, 2007. 

Kuwata, M., Zorn, S. R. and Martin, S. T.: Using elemental ratios to predict the density of organic 

material composed of carbon, hydrogen, and oxygen., Environ. Sci. Technol., 46(2), 787–94, 

doi:10.1021/es202525q, 2012. 

Lack, D. A. and Langridge, J. M.: On the attribution of black and brown carbon light absorption 

using the Ångström exponent, Atmos. Chem. Phys., 13(20), 10535–10543, doi:10.5194/acp-13-

10535-2013, 2013. 

Lack, D. A., Tie, X. X., Bofinger, N. D., Wiegand, A. N. and Madronich, S.: Seasonal variability 

of secondary organic aerosol: A global modeling study, J. Geophys. Res., 109(D3), D03203, 

doi:10.1029/2003JD003418, 2004. 

Lee, C., Martin, R. V., van Donkelaar, A., O’Byrne, G., Krotkov, N., Richter, A., Huey, L. G. and 

Holloway, J. S.: Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air 

mass factor algorithm development, validation, and error analysis, J. Geophys. Res., 114(D22), 

D22303, doi:10.1029/2009JD012123, 2009. 



 
 

    102 

Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, 

P. J., Streets, D. G., Kumar, N. and Rind, D.: Climatic effects of 1950–2050 changes in US 

anthropogenic aerosols – Part 2: Climate response, Atmos. Chem. Phys., 12(7), 3349–3362, 

doi:10.5194/acp-12-3349-2012, 2012. 

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F. and Hsu, N. C.: 

The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6(11), 2989–

3034, doi:10.5194/amt-6-2989-2013, 2013. 

Li, C., Martin, R. V., van Donkelaar, A., Boys, B. L., Hammer, M. S., Xu, J.-W., Marais, E. A., 

Reff, A., Strum, M., Ridley, D. A., Crippa, M., Brauer, M. and Zhang, Q.: Trends in Chemical 

Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 

25 Years, Environ. Sci. Technol., acs.est.7b02530, doi:10.1021/acs.est.7b02530, 2017a. 

Li, M., Zhang, Q., Kurokawa, J., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., 

Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H. and Zheng, 

B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration 

framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17(2), 935–963, doi:10.5194/acp-

17-935-2017, 2017b. 

Li, Z., Zhao, X., Kahn, R., Mishchenko, M., Remer, L., Lee, K.-H., Wang, M., Laszlo, I., 

Nakajima, T. and Maring, H.: Uncertainties in satellite remote sensing of aerosols and impact on 

monitoring its long-term trend: a review and perspective, Ann. Geophys., 27(7), 2755–2770, 

doi:10.5194/angeo-27-2755-2009, 2009. 

Liao, H., Adams, P. J., Chung, S. H., Seinfeld, J. H., Mickley, L. J. and Jacob, D. J.: Interactions 

between tropospheric chemistry and aerosols in a unified general circulation model, J. Geophys. 

Res., 108(D1), 4001, doi:10.1029/2001JD001260, 2003. 

Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. and Mickley, L. J.: Biogenic secondary organic 

aerosol over the United States: Comparison of climatological simulations with observations, J. 

Geophys. Res., 112(D6), D06201, doi:10.1029/2006JD007813, 2007. 

Lin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L. and Zhou, C.: Radiative forcing of organic 

aerosol in the atmosphere and on snow: Effects of SOA and brown carbon, J. Geophys. Res. 

Atmos., 119(12), 7453–7476, doi:10.1002/2013JD021186, 2014. 

Lin, J.-T. and McElroy, M. B.: Impacts of boundary layer mixing on pollutant vertical profiles in 

the lower troposphere: Implications to satellite remote sensing, Atmos. Environ., 44(14), 1726–

1739, doi:10.1016/J.ATMOSENV.2010.02.009, 2010. 

Liu, F., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., Yan, L., Zheng, Y. and He, K.: Recent 

reduction in NO  x  emissions over China: synthesis of satellite observations and emission 

inventories, Environ. Res. Lett., 11(11), 114002, doi:10.1088/1748-9326/11/11/114002, 2016a. 

Liu, F., Zhang, Q., van der A, R. J., Zheng, B., Tong, D., Yan, L., Zheng, Y. and He, K.: Recent 

reduction in NO  x  emissions over China: synthesis of satellite observations and emission 

inventories, Environ. Res. Lett., 11(11), 114002, doi:10.1088/1748-9326/11/11/114002, 2016b. 

Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E. and Weber, R. J.: Size-resolved 

measurements of brown carbon in water and methanol extracts and estimates of their contribution 

to ambient fine-particle light absorption, Atmos. Chem. Phys., 13(24), 12389–12404, 

doi:10.5194/acp-13-12389-2013, 2013. 



 
 

    103 

Liu, J., Scheuer, E., Dibb, J., Diskin, G. S., Ziemba, L. D., Thornhill, K. L., Anderson, B. E., 

Wisthaler, A., Mikoviny, T., Devi, J. J., Bergin, M., Perring, A. E., Markovic, M. Z., Schwarz, J. 

P., Campuzano-Jost, P., Day, D. A., Jimenez, J. L. and Weber, R. J.: Brown carbon aerosol in the 

North American continental troposphere: sources, abundance, and radiative forcing, Atmos. 

Chem. Phys., 15(14), 7841–7858, doi:10.5194/acp-15-7841-2015, 2015. 

Liu, P. F., Abdelmalki, N., Hung, H.-M., Wang, Y., Brune, W. H. and Martin, S. T.: Ultraviolet 

and visible complex refractive indices of secondary organic material produced by photooxidation 

of the aromatic compounds toluene and m-Xylene, Atmos. Chem. Phys. Discuss., 14(14), 20585–

20615, doi:10.5194/acpd-14-20585-2014, 2014. 

Liu, Y., Sarnat, J. A., Kilaru, V., Jacob, D. J. and Koutrakis, P.: Estimating ground-level PM2.5 in 

the eastern United States using satellite remote sensing., Environ. Sci. Technol., 39(9), 3269–78 

[online] Available from: http://www.ncbi.nlm.nih.gov/pubmed/15926578 (Accessed 16 February 

2019), 2005. 

Liu, Y., Koutrakis, P. and Kahn, R.: Estimating fine particulate matter component concentrations 

and size distributions using satellite-retrieved fractional aerosol optical depth: part 1--method 

development., J. Air Waste Manag. Assoc., 57(11), 1351–9 [online] Available from: 

http://www.ncbi.nlm.nih.gov/pubmed/18069458 (Accessed 6 September 2017), 2007. 

Lu, Z., Zhang, Q. and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions 

in China and India, Atmos. Chem. Phys. Atmos. Chem. Phys., 11, 9839–9864, doi:10.5194/acp-

11-9839-2011, 2011. 

Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy, R., Franz, B., Korkin, S., 

Hilker, T., Tucker, J., Hall, F., Sellers, P., Wu, A. and Angal, A.: Scientific impact of MODIS C5 

calibration degradation and C6+ improvements, Atmos. Meas. Tech., 7(12), 4353–4365, 

doi:10.5194/amt-7-4353-2014, 2014. 

Lyapustin, A., Wang, Y., Korkin, S. and Huang, D.: MODIS Collection 6 MAIAC algorithm, 

Atmos. Meas. Tech., 11(10), 5741–5765, doi:10.5194/amt-11-5741-2018, 2018a. 

Lyapustin, A., Wang, Y., Korkin, S. and Huang, D.: MODIS Collection 6 MAIAC algorithm, 

Atmos. Meas. Tech., 11(10), 5741–5765, doi:10.5194/amt-11-5741-2018, 2018b. 

Ma, Z., Hu, X., Huang, L., Bi, J. and Liu, Y.: Estimating Ground-Level PM 2.5 in China Using 

Satellite Remote Sensing, Environ. Sci. Technol., 48(13), 7436–7444, doi:10.1021/es5009399, 

2014. 

Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L. and Liu, 

Y.: Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013., Environ. 

Health Perspect., 124(2), 184–92, doi:10.1289/ehp.1409481, 2016. 

Mann, M. E. and Emanuel, K. A.: Atlantic hurricane trends linked to climate change, Eos, Trans. 

Am. Geophys. Union, 87(24), 233, doi:10.1029/2006EO240001, 2006. 

Mao, J., Fan, S., Jacob, D. J. and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox 

coupling in aerosols, Atmos. Chem. Phys., 13(2), 509–519, doi:10.5194/acp-13-509-2013, 2013. 

Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J. and Xu, T. R.: Global aerosol 

change in the last decade: An analysis based on MODIS data, Atmos. Environ., 94, 680–686, 

doi:10.1016/j.atmosenv.2014.04.053, 2014. 



 
 

    104 

Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., 

Zhu, L., Kim, P. S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., 

Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J. and McNeill, V. F.: Aqueous-phase 

mechanism for secondary organic aerosol formation from isoprene: application to the southeast 

United States and co-benefit of SO&lt;sub&gt;2&lt;/sub&gt; emission controls, Atmos. Chem. 

Phys., 16(3), 1603–1618, doi:10.5194/acp-16-1603-2016, 2016. 

Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M. and Ginoux, P.: Global and regional 

decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res., 

108(D3), 4097, doi:10.1029/2002JD002622, 2003. 

Martins, J. V., Artaxo, P., Kaufman, Y. J., Castanho, A. D. and Remer, L. A.: Spectral absorption 

properties of aerosol particles from 350–2500nm, Geophys. Res. Lett., 36(13), 1–5, 

doi:10.1029/2009GL037435, 2009. 

Martonchik, J. V., Kahn, R. A. and Diner, D. J.: Retrieval of aerosol properties over land using 

MISR observations, in Satellite Aerosol Remote Sensing over Land, pp. 267–293, Springer Berlin 

Heidelberg, Berlin, Heidelberg., 2009. 

Mauritsen, T.: Arctic climate change: Greenhouse warming unleashed, Nat. Geosci., 9(4), 271–

272, doi:10.1038/ngeo2677, 2016. 

Mehta, M., Singh, R., Singh, A., Singh, N. and Anshumali: Recent global aerosol optical depth 

variations and trends — A comparative study using MODIS and MISR level 3 datasets, Remote 

Sens. Environ., 181, 137–150, doi:10.1016/j.rse.2016.04.004, 2016. 

de Meij, A., Pozzer, A. and Lelieveld, J.: Trend analysis in aerosol optical depths and pollutant 

emission estimates between 2000 and 2009, Atmos. Environ., 51, 75–85, 

doi:10.1016/j.atmosenv.2012.01.059, 2012. 

Mielonen, T., Portin, H., Komppula, M., Leskinen, A., Tamminen, J., Ialongo, I., Hakkarainen, J., 

Lehtinen, K. E. J. and Arola, A.: Biomass burning aerosols observed in Eastern Finland during the 

Russian wildfires in summer 2010 – Part 2: Remote sensing, Atmos. Environ., 47, 279–287, 

doi:10.1016/j.atmosenv.2011.07.016, 2012. 

Molod, A., Takacs, L., Suarez, M. and Bacmeister, J.: Development of the GEOS-5 atmospheric 

general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8(5), 1339–

1356, doi:10.5194/gmd-8-1339-2015, 2015. 

Moosmüller, H., Chakrabarty, R. K. and Arnott, W. P.: Aerosol light absorption and its 

measurement: A review, J. Quant. Spectrosc. Radiat. Transf., 110(11), 844–878, 

doi:10.1016/j.jqsrt.2009.02.035, 2009. 

Mu, M., Randerson, J. T., van der Werf, G. R., Giglio, L., Kasibhatla, P., Morton, D., Collatz, G. 

J., DeFries, R. S., Hyer, E. J., Prins, E. M., Griffith, D. W. T., Wunch, D., Toon, G. C., Sherlock, 

V. and Wennberg, P. O.: Daily and 3-hourly variability in global fire emissions and consequences 

for atmospheric model predictions of carbon monoxide, J. Geophys. Res. Atmos., 116(D24), 

D24303, doi:10.1029/2011JD016245, 2011. 

 

 

 



 
 

    105 

Naik, V., Voulgarakis, A., Fiore, A. M., Horowitz, L. W., Lamarque, J.-F., Lin, M., Prather, M. J., 

Young, P. J., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J., Dalsøren, S. B., 

Doherty, R., Eyring, V., Faluvegi, G., Folberth, G. A., Josse, B., Lee, Y. H., MacKenzie, I. A., 

Nagashima, T., van Noije, T. P. C., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R., Shindell, 

D. T., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S. and Zeng, G.: Preindustrial to present-day 

changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry 

and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13(10), 5277–5298, 

doi:10.5194/acp-13-5277-2013, 2013. 

Norris, J. R. and Wild, M.: Trends in aerosol radiative effects over Europe inferred from observed 

cloud cover, solar “dimming,” and solar “brightening,” J. Geophys. Res., 112(D8), D08214, 

doi:10.1029/2006JD007794, 2007. 

Olivier, J. G. J., Van Aardenne, J. A., Dentener, F. J., Pagliari, V., Ganzeveld, L. N. and Peters, J. 

A. H. W.: Recent trends in global greenhouse gas emissions:regional trends 1970–2000 and spatial 

distributionof key sources in 2000, Environ. Sci., 2(2–3), 81–99, 

doi:10.1080/15693430500400345, 2005. 

Park, R. J., Jacob, D. J., Chin, M. and Martin, R. V.: Sources of carbonaceous aerosols over the 

United States and implications for natural visibility, J. Geophys. Res., 108(D12), 4355, 

doi:10.1029/2002JD003190, 2003. 

Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. and Chin, M.: Natural and transboundary 

pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for 

policy, J. Geophys. Res., 109(D15), D15204, doi:10.1029/2003JD004473, 2004a. 

Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. and Chin, M.: Natural and transboundary 

pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for 

policy, J. Geophys. Res., 109(D15), D15204, doi:10.1029/2003JD004473, 2004b. 

Park, R. J., Kim, M. J., Jeong, J. I., Youn, D. and Kim, S.: A contribution of brown carbon aerosol 

to the aerosol light absorption and its radiative forcing in East Asia, Atmos. Environ., 44(11), 

1414–1421, doi:10.1016/j.atmosenv.2010.01.042, 2010. 

Pelletier, J. D. and Turcotte, D. L.: Long-range persistence in climatological and hydrological time 

series: analysis, modeling and application to drought hazard assessment, J. Hydrol., 203(1–4), 

198–208, doi:10.1016/S0022-1694(97)00102-9, 1997. 

Penning de Vries, M. J. M., Beirle, S. and Wagner, T.: UV Aerosol Indices from SCIAMACHY: 

introducing the SCattering Index (SCI), Atmos. Chem. Phys., 9(24), 9555–9567, doi:10.5194/acp-

9-9555-2009, 2009. 

Penning de Vries, M. J. M., Beirle, S., Hörmann, C., Kaiser, J. W., Stammes, P., Tilstra, L. G., 

Tuinder, O. N. E. and Wagner, T.: A global aerosol classification algorithm incorporating multiple 

satellite data sets of aerosol and trace gas abundances, Atmos. Chem. Phys., 15(18), 10597–10618, 

doi:10.5194/acp-15-10597-2015, 2015. 

Philip, S., Martin, R. V., van Donkelaar, A., Lo, J. W.-H., Wang, Y., Chen, D., Zhang, L., 

Kasibhatla, P. S., Wang, S., Zhang, Q., Lu, Z., Streets, D. G., Bittman, S. and Macdonald, D. J.: 

Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment, 

Environ. Sci. Technol., 48(22), 13060–13068, doi:10.1021/es502965b, 2014. 

 



 
 

    106 

Philip, S., Martin, R. V. and Keller, C. A.: Sensitivity of chemistry-transport model simulations to 

the duration of chemical and transport operators: a case study with GEOS-Chem v10-01, Geosci. 

Model Dev., 9(5), 1683–1695, doi:10.5194/gmd-9-1683-2016, 2016. 

Philip, S., Martin, R. V, Snider, G., Weagle, C. L., van Donkelaar, A., Brauer, M., Henze, D. K., 

Klimont, Z., Venkataraman, C., Guttikunda, S. K. and Zhang, Q.: Anthropogenic fugitive, 

combustion and industrial dust is a significant, underrepresented fine particulate matter source in 

global atmospheric models, Environ. Res. Lett., 12(4), 044018, doi:10.1088/1748-9326/aa65a4, 

2017a. 

Philip, S., Martin, R. V, Snider, G., Weagle, C. L., van Donkelaar, A., Brauer, M., Henze, D. K., 

Klimont, Z., Venkataraman, C., Guttikunda, S. K. and Zhang, Q.: Anthropogenic fugitive, 

combustion and industrial dust is a significant, underrepresented fine particulate matter source in 

global atmospheric models, Environ. Res. Lett., 12(4), 044018, doi:10.1088/1748-9326/aa65a4, 

2017b. 

Pope, C. A., Ezzati, M. and Dockery, D. W.: Fine-Particulate Air Pollution and Life Expectancy 

in the United States, N. Engl. J. Med., 360(4), 376–386, doi:10.1056/NEJMsa0805646, 2009. 

Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects, 

Angew. Chemie Int. Ed., 44(46), 7520–7540, doi:10.1002/anie.200501122, 2005. 

Povey, A. C. and Grainger, R. G.: Known and unknown unknowns: uncertainty estimation in 

satellite remote sensing, Atmos. Meas. Tech., 8(11), 4699–4718, doi:10.5194/amt-8-4699-2015, 

2015. 

Prather, M. J., Holmes, C. D. and Hsu, J.: Reactive greenhouse gas scenarios: Systematic 

exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39(9), 

L09803, doi:10.1029/2012GL051440, 2012. 

Prinn, R., Cunnold, D., Simmonds, P., Alyea, F., Boldi, R., Crawford, A., Fraser, P., Gutzler, D., 

Hartley, D., Rosen, R. and Rasmussen, R.: Global average concentration and trend for hydroxyl 

radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990, J. 

Geophys. Res., 97(D2), 2445, doi:10.1029/91JD02755, 1992. 

Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, 

A., Harth, C., Reimann, S., Salameh, P., O’Doherty, S., Wang, R. H. J., Porter, L. W., Miller, B. 

R. and Krummel, P. B.: Evidence for variability of atmospheric hydroxyl radicals over the past 

quarter century, Geophys. Res. Lett., 32(7), L07809, doi:10.1029/2004GL022228, 2005. 

Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K. and Seinfeld, J. H.: 

Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in 

the United States, J. Geophys. Res., 114(D1), D01205, doi:10.1029/2008JD010701, 2009a. 

Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K. and Seinfeld, J. H.: 

Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in 

the United States, J. Geophys. Res. Atmos., 114(D1), doi:10.1029/2008JD010701, 2009b. 

Pye, H. O. T., Chan, A. W. H., Barkley, M. P. and Seinfeld, J. H.: Global modeling of organic 

aerosol: the importance of reactive nitrogen (NO&lt;sub&gt;x&lt;/sub&gt; and 

NO&lt;sub&gt;3&lt;/sub&gt;), Atmos. Chem. Phys., 10(22), 11261–11276, doi:10.5194/acp-10-

11261-2010, 2010. 



 
 

    107 

Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, 

Nat. Geosci., 1(4), 221–227, doi:10.1038/ngeo156, 2008. 

Reynolds, R. W. and Reynolds, R. W.: A Real-Time Global Sea Surface Temperature Analysis, J. 

Clim., 1(1), 75–87, doi:10.1175/1520-0442(1988)001<0075:ARTGSS>2.0.CO;2, 1988. 

Ridley, D. A., Heald, C. L. and Ford, B.: North African dust export and deposition: A satellite and 

model perspective, J. Geophys. Res., 117(D2), D02202, doi:10.1029/2011JD016794, 2012. 

Rizzo, L. V., Correia, A. L., Artaxo, P., Procápio, A. S. and Andreae, M. O.: Spectral dependence 

of aerosol light absorption over the Amazon Basin, Atmos. Chem. Phys., 11(17), 8899–8912, 

doi:10.5194/acp-11-8899-2011, 2011. 

Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., 

Livingston, J. M., Redemann, J., Holben, B., Dubovik, O. and Strawa, A.: Absorption Angstrom 

Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. 

Phys. Discuss., 9(5), 21785–21817, doi:10.5194/acpd-9-21785-2009, 2009. 

Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., Sullivan, R. C., 

Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue, N. M. and Robinson, A. L.: Brownness of 

organics in aerosols from biomass burning linked to their black carbon content, Nat. Geosci., 7(9), 

647–650, doi:10.1038/ngeo2220, 2014. 

Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M.-J., Holben, B. N. and Zhang, J.: Global and 

regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS, Atmos. 

Meas. Tech., 5(7), 1761–1778, doi:10.5194/amt-5-1761-2012, 2012. 

Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C. and Jeong, M.-J.: MODIS 

Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and 

“merged” data sets, and usage recommendations, J. Geophys. Res. Atmos., 119(24), 13,965-

13,989, doi:10.1002/2014JD022453, 2014. 

Sayer, A. M., Hsu, N. C., Lee, J., Kim, W. V. and Dutcher, S. T.: Validation, Stability, and 

Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land, 

J. Geophys. Res. Atmos., 124(8), 4658–4688, doi:10.1029/2018JD029598, 2019. 

Schenkeveld, V. M. E., Jaross, G., Marchenko, S., Haffner, D., Kleipool, Q. L., Rozemeijer, N. 

C., Veefkind, J. P. and Levelt, P. F.: In-flight performance of the Ozone Monitoring Instrument, 

Atmos. Meas. Tech., 10(5), 1957–1986, doi:10.5194/amt-10-1957-2017, 2017. 

Schepanski, K., Tegen, I., Laurent, B., Heinold, B. and Macke, A.: A new Saharan dust source 

activation frequency map derived from MSG-SEVIRI IR-channels, Geophys. Res. Lett., 34(18), 

L18803, doi:10.1029/2007GL030168, 2007. 

Schultz, M., Rast, S., for Meteorology, M., Authors, H., van het Bolscher, M., Pulles, T., Brand, 

R., Jose Pereira, A., Mota, B., Allan Spessa, L., for Biogeochemistry, M. and Szopa, S.: REanalysis 

of the TROpospheric chemical composition over the past 40 years A long-term global modeling 

study of tropospheric chemistry funded under the 5 th EU framework programme EU-Contract N 

o Emission data sets and methodologies for estimating emissions Work Package 1, Deliverable 

D1-6 Editor: (modified Annex 4) RETRO deliverable D1-6: Report on emissions / 2 RETRO 

deliverable D1-6: Report on emissions / 3. [online] Available from: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.612.9945&rep=rep1&type=pdf 

(Accessed 31 July 2019), n.d. 



 
 

    108 

Schwartz, S. E.: The whitehouse effect—Shortwave radiative forcing of climate by anthropogenic 

aerosols: an overview, J. Aerosol Sci., 27(3), 359–382, doi:10.1016/0021-8502(95)00533-1, 1996. 

Scollo, S., Kahn, R. A., Nelson, D. L., Coltelli, M., Diner, D. J., Garay, M. J. and Realmuto, V. J.: 

MISR observations of Etna volcanic plumes, J. Geophys. Res. Atmos., 117(D6), n/a-n/a, 

doi:10.1029/2011JD016625, 2012. 

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics : from air pollution to climate 

change. [online] Available from: https://www.wiley.com/en-

us/Atmospheric+Chemistry+and+Physics%3A+From+Air+Pollution+to+Climate+Change%2C+

3rd+Edition-p-9781118947401 (Accessed 6 February 2019). 

Shaddick, G., Thomas, M. L., Green, A., Brauer, M., van Donkelaar, A., Burnett, R., Chang, H. 

H., Cohen, A., Dingenen, R. Van, Dora, C., Gumy, S., Liu, Y., Martin, R., Waller, L. A., West, J., 

Zidek, J. V. and Prüss-Ustün, A.: Data integration model for air quality: a hierarchical approach 

to the global estimation of exposures to ambient air pollution, J. R. Stat. Soc. Ser. C (Applied Stat., 

67(1), 231–253, doi:10.1111/rssc.12227, 2018. 

Shao, Y., Klose, M. and Wyrwoll, K.-H.: Recent global dust trend and connections to climate 

forcing, J. Geophys. Res. Atmos., 118(19), 11,107-11,118, doi:10.1002/jgrd.50836, 2013. 

Shi, W. and Wang, M.: Decadal changes of water properties in the Aral Sea observed by MODIS-

Aqua, J. Geophys. Res. Ocean., 120(7), 4687–4708, doi:10.1002/2015JC010937, 2015. 

Shi, W., Wang, M. and Guo, W.: Long-term hydrological changes of the Aral Sea observed by 

satellites, J. Geophys. Res. Ocean., 119(6), 3313–3326, doi:10.1002/2014JC009988, 2014. 

Simon, H., Reff, A., Wells, B., Xing, J. and Frank, N.: Ozone Trends Across the United States 

over a Period of Decreasing NOx and VOC Emissions, Environ. Sci. Technol., 49(1), 186–195, 

doi:10.1021/es504514z, 2015. 

Sokolik, I. N. and Toon, O. B.: Direct radiative forcing by anthropogenic airborne mineral 

aerosols, Nature, 381(6584), 681–683, doi:10.1038/381681a0, 1996. 

Sokolik, I. N. and Toon, O. B.: Incorporation of mineralogical composition into models of the 

radiative properties of mineral aerosol from UV to IR wavelengths, J. Geophys. Res. Atmos., 

104(D8), 9423–9444, doi:10.1029/1998JD200048, 1999. 

Song, W., Jia, H., Huang, J. and Zhang, Y.: A satellite-based geographically weighted regression 

model for regional PM2.5 estimation over the Pearl River Delta region in China, Remote Sens. 

Environ., 154, 1–7, doi:10.1016/J.RSE.2014.08.008, 2014. 

Spivak, L., Terechov, A., Vitkovskaya, I., Batyrbayeva, M. and Orlovsky, L.: Dynamics of Dust 

Transfer from the Desiccated Aral Sea Bottom Analysed by Remote Sensing, pp. 97–106, 

Springer, Berlin, Heidelberg., 2012. 

Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J., Foreman-Fowler, M., Jones, 

D. B. A., Horowitz, L. W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C. 

and McElroy, M. B.: Three-dimensional climatological distribution of tropospheric OH: Update 

and evaluation, J. Geophys. Res., 105(D7), 8931, doi:10.1029/1999JD901006, 2000. 

Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative 

transfer code for forward model and retrieval studies in multilayer multiple scattering media, J. 

Quant. Spectrosc. Radiat. Transf., 102(2), 316–342, doi:10.1016/j.jqsrt.2006.05.005, 2006. 



 
 

    109 

Stier, P., Seinfeld, J. H., Kinne, S. and Boucher, O.: Aerosol absorption and radiative forcing, 

Atmos. Chem. Phys., 7(19), 5237–5261, doi:10.5194/acp-7-5237-2007, 2007. 

Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P. C. B. and Wild, M.: Disentangling greenhouse 

warming and aerosol cooling to reveal Earth’s climate sensitivity, Nat. Geosci., 9(4), 286–289, 

doi:10.1038/ngeo2670, 2016. 

Sun, H., Biedermann, L. and Bond, T. C.: Color of brown carbon: A model for ultraviolet and 

visible light absorption by organic carbon aerosol, Geophys. Res. Lett., 34(17), L17813, 

doi:10.1029/2007GL029797, 2007. 

Tegen, I. and Lacis, A. A.: Modeling of particle size distribution and its influence on the radiative 

properties of mineral dust aerosol, J. Geophys. Res. Atmos., 101(D14), 19237–19244, 

doi:10.1029/95JD03610, 1996. 

Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z. and Gleason, J.: Derivation of aerosol 

properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. 

Geophys. Res., 103(D14), 17099, doi:10.1029/98JD00900, 1998. 

Torres, O., Bhartia, P. K., Sinyuk, A., Welton, E. J. and Holben, B.: Total Ozone Mapping 

Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 

ground-based observations, J. Geophys. Res., 110(D10), D10S18, doi:10.1029/2004JD004611, 

2005. 

Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P. and 

Levelt, P.: Aerosols and surface UV products from Ozone Monitoring Instrument observations: 

An overview, J. Geophys. Res., 112(D24), D24S47, doi:10.1029/2007JD008809, 2007. 

Torres, O., Chen, Z., Jethva, H., Ahn, C., Freitas, S. R. and Bhartia, P. K.: OMI and MODIS 

observations of the anomalous 2008–2009 Southern Hemisphere biomass burning seasons, Atmos. 

Chem. Phys., 10(8), 3505–3513, doi:10.5194/acp-10-3505-2010, 2010. 

Torres, O., Ahn, C. and Chen, Z.: Improvements to the OMI near-UV aerosol algorithm using A-

train CALIOP and AIRS observations, Atmos. Meas. Tech., 6(11), 3257–3270, doi:10.5194/amt-

6-3257-2013, 2013. 

Torres, O., Bhartia, P. K., Jethva, H. and Ahn, C.: Impact of the ozone monitoring instrument row 

anomaly on the long-term record of aerosol products, Atmos. Meas. Tech., 11(5), 2701–2715, 

doi:10.5194/amt-11-2701-2018, 2018. 

Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., 

Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair, 

J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack, 

I. B., Peischl, J., Neuman, J. A. and Zhou, X.: Why do models overestimate surface ozone in the 

Southeast United States?, Atmos. Chem. Phys., 16(21), 13561–13577, doi:10.5194/acp-16-13561-

2016, 2016. 

Tsigaridis, K. and Kanakidou, M.: Global modelling of secondary organic aerosol in the 

troposphere: a sensitivity analysis, Atmos. Chem. Phys., 3(5), 1849–1869, doi:10.5194/acp-3-

1849-2003, 2003. 

 

 



 
 

    110 

Turnock, S. T., Butt, E. W., Richardson, T. B., Mann, G. W., Reddington, C. L., Forster, P. M., 

Haywood, J., Crippa, M., Janssens-Maenhout, G., Johnson, C. E., Bellouin, N., Carslaw, K. S. and 

Spracklen, D. V: Environmental Research Letters The impact of European legislative and 

technology measures to reduce air pollutants on air quality, human health and climate, Environ. 

Res. Lett, 11, 24010, doi:10.1088/1748-9326/11/2/024010, 2016. 

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., 

de Haan, J. F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., 

Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H. and Levelt, P. F.: TROPOMI 

on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric 

composition for climate, air quality and ozone layer applications, Remote Sens. Environ., 120, 70–

83, doi:10.1016/J.RSE.2011.09.027, 2012. 

Wang, S., Zhang, Q., Martin, R. V, Philip, S., Liu, F., Li, M., Jiang, X. and He, K.: Satellite 

measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants, 

Environ. Res. Lett., 10(11), 114015, doi:10.1088/1748-9326/10/11/114015, 2015. 

Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., 

Liu, D. and Clarke, A. D.: Exploiting simultaneous observational constraints on mass and 

absorption to estimate the global direct radiative forcing of black carbon and brown carbon, Atmos. 

Chem. Phys., 14(20), 10989–11010, doi:10.5194/acp-14-10989-2014, 2014. 

Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X.-L., Choi, D., Cheang, W.-K., Keller, 

T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Oltmans, S. J. and Frederick, J. E.: 

Factors affecting the detection of trends: Statistical considerations and applications to 

environmental data, J. Geophys. Res. Atmos., 103(D14), 17149–17161, doi:10.1029/98JD00995, 

1998. 

Weatherhead, E. C., Stevermer, A. J. and Schwartz, B. E.: Detecting environmental changes and 

trends, Phys. Chem. Earth, Parts A/B/C, 27(6–8), 399–403, doi:10.1016/S1474-7065(02)00019-0, 

2002. 

West, J. J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., Bell, M. L., Brauer, 

M., Carmichael, G., Costa, D. L., Dockery, D. W., Kleeman, M., Krzyzanowski, M., Künzli, N., 

Liousse, C., Lung, S.-C. C., Martin, R. V., Pöschl, U., Pope, C. A., Roberts, J. M., Russell, A. G. 

and Wiedinmyer, C.: “What We Breathe Impacts Our Health: Improving Understanding of the 

Link between Air Pollution and Health,” Environ. Sci. Technol., 50(10), 4895–4904, 

doi:10.1021/acs.est.5b03827, 2016. 

Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press., 2011. 

World Health Organization: WHO Global Ambient Air Quality Database (update 2018), 2018. 

Xie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst, T. E. and Holder, 

A. L.: Light Absorption of Secondary Organic Aerosol: Composition and Contribution of 

Nitroaromatic Compounds, Environ. Sci. Technol., 51(20), 11607–11616, 

doi:10.1021/acs.est.7b03263, 2017. 

Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D. C., Wei, C., Gilliam, R. and 

Pouliot, G.: Observations and modeling of air quality trends over 1990–2010 across the Northern 

Hemisphere: China, the United States and Europe, Atmos. Chem. Phys., 15(5), 2723–2747, 

doi:10.5194/acp-15-2723-2015, 2015. 



 
 

    111 

Yang, M., Howell, S. G., Zhuang, J. and Huebert, B. J.: Attribution of aerosol light absorption to 

black carbon, brown carbon, and dust in China- interpretations of atmospheric measurements 

during EAST-AIRE, Atmos. Chem. Phys. Discuss., 8(3), 10913–10954, doi:10.5194/acpd-8-

10913-2008, 2008. 

Yevich, R. and Logan, J. A.: An assessment of biofuel use and burning of agricultural waste in the 

developing world, Global Biogeochem. Cycles, 17(4), 1095, doi:10.1029/2002GB001952, 2003. 

Zhang, L., Jacob, D. J., Kopacz, M., Henze, D. K., Singh, K. and Jaffe, D. A.: Intercontinental 

source attribution of ozone pollution at western U.S. sites using an adjoint method, Geophys. Res. 

Lett., 36, L11810 [online] Available from: http://dash.harvard.edu/handle/1/3627131 (Accessed 9 

May 2015), 2009. 

Zhang, L., Kok, J. F., Henze, D. K., Li, Q. and Zhao, C.: Improving simulations of fine dust surface 

concentrations over the western United States by optimizing the particle size distribution, 

Geophys. Res. Lett., 40(12), 3270–3275, doi:10.1002/grl.50591, 2013a. 

Zhang, L., Henze, D. K., Grell, G. A., Torres, O., Jethva, H. and Lamsal, L. N.: What factors 

control the trend of increasing AAOD over the United States in the last decade?, J. Geophys. Res. 

Atmos., 122(3), 1797–1810, doi:10.1002/2016JD025472, 2017. 

Zhang, M., Wang, Y., Ma, Y., Wang, L., Gong, W. and Liu, B.: Spatial distribution and temporal 

variation of aerosol optical depth and radiative effect in South China and its adjacent area, Atmos. 

Environ., 188, 120–128, doi:10.1016/J.ATMOSENV.2018.06.028, 2018. 

Zhang, X., Lin, Y.-H., Surratt, J. D. and Weber, R. J.: Sources, composition and absorption 

Ångström exponent of light-absorbing organic components in aerosol extracts from the Los 

Angeles Basin., Environ. Sci. Technol., 47(8), 3685–93, doi:10.1021/es305047b, 2013b. 

Zhang, Y., Wallace, J. M., Battisti, D. S., Zhang, Y., Wallace, J. M. and Battisti, D. S.: ENSO-like 

Interdecadal Variability: 1900–93, J. Clim., 10(5), 1004–1020, doi:10.1175/1520-

0442(1997)010<1004:ELIV>2.0.CO;2, 1997. 

Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J. and 

Amann, M.: NO x emissions in China: historical trends and future perspectives, Atmos. Chem. 

Phys, 13, 9869–9897, doi:10.5194/acp-13-9869-2013, 2013. 

Zhong, M. and Jang, M.: Dynamic light absorption of biomass-burning organic carbon 

photochemically aged under natural sunlight, Atmos. Chem. Phys., 14(3), 1517–1525, 

doi:10.5194/acp-14-1517-2014, 2014. 

 


