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ABSTRACT 

 

Understanding the factors influencing the spatial distribution of intraspecific diversity is 

both a fundamental goal in evolutionary biology and necessary for the design of robust 

management strategies for harvested species. Intraspecific diversity can now be assessed 

using novel genomic techniques that enable the high-density screening of neutral and 

adaptive genetic variation. In this thesis, I used whole-genome resequencing of pooled 

DNA of Atlantic herring (Clupea harengus) to (i) identify patterns, genomic regions, 

evolutionary processes and environmental variables involved in the origin and 

maintenance of population divergence and local adaptation in the northwest Atlantic, and 

(ii) develop a diagnostic genetic tool that can inform conservation and fisheries 

management. I found fine-scale population structure in herring at putatively adaptive loci, 

despite low differentiation at neutrally evolving loci. Populations were distinguishable by 

spawning time and along a latitudinal cline defined by winter sea-surface temperature. 

Divergent selection leading to adaptation to seasonal reproduction and spawning at 

different latitudes is likely maintaining molecular divergence patterns for these traits in 

this environment. Each pattern was underpinned by thousands of outlier SNPs distributed 

in specific genomic regions spanning several candidate genes, some with a known role in 

the timing of reproduction (i.e. TSHR). Many spawning time-associated SNPs were 

shared with populations across the ocean, suggesting such adaptation predates the last 

glacial maximum. Finally, I developed and evaluated the efficacy of two cost-effective 

SNP-panels diagnostic of spawning season and latitudinal origin. Individual genotypes at 

these loci confirmed temporal stability of genetic differences among northern populations 

and between reproductive strategies despite their mixing outside of the spawning season, 

suggesting spawning time and site fidelity in ecological time scales. Admixture between 

reproductive and latitudinal components is unrestricted, and the proportion of admixed 

individuals vary across aggregations. Some individuals with intermediate admixture 

levels spawned in either season, suggesting that spawning time is not completely fixed. 

The analysis of mixture samples revealed the dynamic composition of aggregations 

outside of the breeding season and demonstrated the utility of the SNP-panels for mixed 

stock assessment. Altogether, these results contribute to the hypothesis that selection 

influences spatial distributions of genetic variation, highlighting the need to manage or 

conserve ecologically important adaptive variation in nature. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Background 

Species persistence over time relies on the capacity of populations to respond and adapt 

to shifting environments. Such capacity is largely determined by the amount of genetic 

variation existing among individuals within populations and between populations within 

a species (i.e. intraspecific variation). Intraspecific variation results from the interplay of 

four evolutionary forces: mutation, genetic drift, gene flow, and natural selection. 

Mutation, natural selection and genetic drift promote tend to increase genetic divergence 

among populations, whereas gene flow has a homogenizing effect counteracting natural 

selection and local adaptation by spreading new genetic variants between populations 

(Slatkin, 1987). Yet, it is not well understood how these evolutionary forces shape the 

contemporary distribution of genetic variation throughout a species’ geographic range. 

One of the main difficulties to address this matter resides in the overlapping signatures 

left in the genome by diverse evolutionary processes. For example, high differentiation in 

allele frequencies is often interpreted as a signature of natural selection; however, such 

pattern of genetic divergence can result from neutral evolutionary processes such as 

genetic drift leading to increased population structuring and/or allele surfing during range 

expansions (Excoffier, Foll, & Petit, 2009; Travis et al., 2007) as well as from divergent 

selection along an environmental gradient (Hoban et al., 2016). Another challenge is that, 

until the recent development of new sequencing technologies, it was not possible to 

assess neutral and adaptive genetic variation in a high genomic resolution using 

traditional genotyping methods (Allendorf, 2016). This was particularly limiting for the 

estimation of population structure in species characterized by high gene flow (Waples, 

1998) or in which natural selection played an important role. Thus, with the increased 

capacity to assess neutral and adaptive genetic variation with an unprecedented marker 

density, we are now in a new era of discoveries that promises solving many of the long 

standing questions in evolutionary biology, such how population divergence can lead to 

new species, what the genetic basis of local adaptation is, or how population divergence 

arises in the sea. 
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Given the general perception that there are no evident physical barriers to gene 

flow in the ocean and the commonly observed high dispersal potential, marine species 

were usually assumed to be genetically homogeneous or minimally structured (Hauser & 

Carvalho, 2008; Palumbi, 1994). Recent genomic studies however, are challenging this 

view by revealing fine-scale structuring never seen before in marine organisms (Benestan 

et al., 2015; Bradbury et al., 2013; Martinez Barrio et al., 2016). From a conservation 

perspective, this discovery is relevant and has several practical implications (Conover, 

1998). For example, fishery management practices that ignore species’ biocomplexity 

(i.e. diversity of reproductive strategies or locally adapted populations), could risk the 

species’ long-term persistence and of the economic activities derived from its harvesting 

(Ruzzante et al., 2006). The diversity of reproductive strategies and of locally adapted 

populations are some of the most crucial components of intraspecific diversity that should 

be protected in wild fish stocks. Such components are directly linked to adult 

reproductive success and offspring survival in stochastic environments, which ultimately 

determine the recovery capacity of populations to fishing pressure (Schindler et al., 

2010). When biologically relevant components of a species remain undetected or 

untraceable and are not accounted for in fish stock delineation, then they become 

vulnerable to overfishing. For instance, uninformed fishing targeting mixed stocks could 

remove biologically relevant biodiversity, compromising the species’ evolutionary 

potential (Frankham, 2010; Ruzzante et al., 2000). Therefore, in the case that 

reproductive strategies are genetically distinguishable, it would be ideal to have a genetic 

tool that allow the identification of reproductive components outside of the breeding 

season, which remains challenging using traditional methods. However, knowledge on 

the population structure and adaptive variation of most commercially harvested marine 

species remains limited. 

 

Local adaptation arises when organisms have increased reproductive success in 

their local environment than elsewhere (Blanquart, Kaltz, Nuismer, & Gandon, 2013; 

Savolainen, Lascoux, & Merilä, 2013). Consequently, local adaptation plays an important 

role in generating and maintaining biological diversity (Gavrilets, 2003). Genome scans 

using modern sequencing techniques are helping to identify and characterize genetic 
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regions involved in local adaptation, commonly identified by elevated allele frequency 

differences (Jones et al., 2012; Tavares et al., 2018). Nevertheless, the still high cost of 

sequencing many individuals, commonly required in population genomics studies, 

together with the scarcity of genomic resources (i.e. reference genome and gene 

annotations) available for non-model species, are restrictive. The study of local 

adaptation in the sea presents additional challenges. For instance, the genetic basis of 

adaptive traits remains largely unknown (Barrett & Hoekstra, 2011); it is difficult to 

disentangle genomic signatures of selection from signatures of demographic history 

(Hoban et al., 2016); and it is not well understood how population divergence and local 

adaptation arises in the presence of high gene flow (Feder, Egan, & Nosil, 2012; Tigano 

& Friesen, 2016). An alternative to expand our understanding of ecological adaptation in 

the sea, and overcome some of the limitations previously mentioned, is the study of 

widely distributed and abundant marine species. In species with extensive geographic 

distribution ranges, populations can be exposed to diverse ecological habitats and 

selective pressures, which opens up opportunities for local adaptation to take place 

(Yeaman & Whitlock, 2011). When, in addition, such species are very abundant and 

exhibit high levels of diversity (high effective sizes), the effect of genetic drift is 

negligible, meaning that patterns of population structure are likely due to natural 

selection. 

 

Several attributes then, make Atlantic herring (Clupea harengus L.) an ideal 

candidate species for the study of population divergence and adaptation in the sea: i) it is 

a highly abundant (average population size estimated to the order of 106, Martinez Barrio 

et al., (2016)) marine schooling pelagic fish, implying the role played by genetic drift in 

shaping patrons of population divergence is minor; ii) it is highly migratory and a 

broadcast spawner, for which its populations may be close to random mating; iii) it is 

widely distributed throughout diverse environments across the North Atlantic Ocean 

(including open ocean and the brackish waters of the Baltic Sea), which leaves 

opportunities for ecological adaptation; and iv) it has available an annotated reference 

genome that facilitates the identification and characterization of the genomic basis of 

local adaptation (Martinez Barrio et al., 2016). 
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The life history of herring is recognized by its high level of complexity and 

plasticity (McQuinn, 1997; Ruzzante et al., 2006; Geffen, 2009; Stephenson et al., 2009), 

especially in its reproductive system. In the Northwest (NW) Atlantic spawning takes 

place near the coast and in offshore banks from Cape Cod to northern Newfoundland, in 

predictable times and locations (Iles & Sinclair, 1982). Spawning occurs from April to 

October, mainly in spring (April to June) and fall (1st July to October) (Leblanc et al., 

2010), with a higher abundance of spring spawners in the north and fall spawners towards 

the south of the range, and a coexistence of both strategies in the Gulf of St. Lawrence 

(Melvin, Stephenson, & Power, 2009). Mature individuals (3-4 years old) spawn in 

schools once a year. Tagging data indicate that herring often return to the spawning 

ground they have used previously; however it is still not clear whether or not herring 

actually show natal homing (Geffen, 2009; Ian H. McQuinn, 1997; Melvin et al., 2009). 

Large females deposit around 360,000 eggs on gravel or rocks, which stay on the bottom 

until hatching (Messieh, 1988). Time for hatching varies depending of the spawning 

season and the geographic location of the spawning ground. For example, in the Gulf of 

St. Lawrence, where the two spawning types coexist, eggs deposited by spring spawners 

hatch after 30 days at 5°C, while eggs released by fall spawners hatch after 10 days at 

15°C. In Nova Scotia, where fall spawners dominate, eggs of fall spawners hatch in 11 

days at 10°C (Jean, 1956 cited at Scott & Scott, 1988). One can infer from this that 

special adaptations should have evolved for the survival of eggs in these two contrasting 

environmental conditions. Larvae remain aggregated and dispersion is influenced by 

oceanographic conditions, food concentrations and light intensity (Geffen, 2009). 

Juveniles and adults migrate annually among spawning, overwintering, and feeding areas. 

Adult overwintering and feeding aggregations generally consist of individuals of mixed 

origin.  

Atlantic herring is a key forage species in the marine ecosystem, feeding on 

plankton and being prey of numerous marine fishes, birds and mammals. Additionally, a 

profitable fishery is sustained by this species throughout the North Atlantic (FAO, 2019). 

In the last century though, some fish stocks have experienced significant collapse and 

others, signs of recovery, urging the implementation of better management practices that 

protect the biological complexity of the species. However, the resolution of the 
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population structure of Atlantic herring remains challenging due to its high 

biocomplexity (Iles & Sinclair, 1982; Ruzzante et al., 2006). 

 

Multiple attempts have been made to resolve the population structure of herring 

using a variety of genetic markers and at different spatial scales, mostly in the northeast 

(NE) Atlantic. These studies have commonly reported low levels of population 

differentiation at neutral loci (Andersson, Ryman, Rosenberg, & Ståhl, 1981; André et 

al., 2011; Jorgensen, Hansen, Bekkevold, Ruzzante, & Loeschcke, 2005). Most recently, 

by screening thousands of single nucleotide polymorphisms (SNPs) using novel 

sequencing approaches, significant genetic differentiation was detected at putatively 

adaptive loci that appear to respond to environmental gradients (Guo, Li, & Merilä, 2016; 

Lamichhaney et al., 2012; Limborg et al., 2012). Additionally, with the recent publication 

of a reference genome sequence for the Atlantic herring (Martinez Barrio et al., 2016), it 

is now possible to assess genetic variation at millions of SNPs, this being a major 

advance in the possibility to study the genetic basis of ecological adaptation in this 

species.  

 

In this thesis I assess neutral and adaptive genetic variation at the whole genome level in 

spawning herring aggregations throughout the NW Atlantic. Specifically, I addressed the 

following questions:  

 

i) What are the spatial scale and pattern of population structuring in herring?  

ii) What is the genetic basis of such structuring? 

iii) What is the potential functional effect of variant sites underlying population 

divergence? 

iv) Which evolutionary processes and environmental variables are associated with 

population structure patterns? 

v) Is it possible to develop a highly informative and cost-effective genetic tool 

for the diagnosis of adaptive components in aggregations of presumed mixed 

origin? 
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Ultimately, my work aims to contribute to an increased understanding of the patterns, 

genetic basis, and mechanisms underpinning population divergence in the sea, which 

ideally, would help in the implementation of effective conservation and sustainable 

fisheries management practices. 

 

1.2 Thesis structure 

My thesis consists of six chapters. Chapter 1 is the present introduction. In Chapter 2, I 

present a comprehensive review of whole-genome resequencing approaches, discuss their 

advantages and limitations, and provide recommendations for their application in 

conservation biology. In Chapter 3, I compare whole-genome resequencing data of 

pooled DNA of individuals (Pool-seq) of Atlantic herring populations. In total, 6 from the 

northwest (NW) and 19 from the northeast (NE) Atlantic Ocean were examined to 

elucidate shared and unique genomic patterns of differentiation between the spring and 

fall reproductive components, and among geographically close and distant populations. In 

Chapter 4, I focus on the northwest Atlantic region and analyze Pool-seq data of 14 

spawning aggregations distributed across the reproductive range of the species in North 

America to investigate fine-scale patterns of genomic divergence, their genomic basis, 

and their association with oceanographic variables. Exploring the practical applications 

of the findings of previous chapters, in Chapter 5, I developed two highly informative and 

reduced single nucleotide polymorphisms (SNPs) panels for NW Atlantic herring to 

examine spatial and temporal variation in allele frequencies. I genotyped 993 individuals 

collected from 30 locations, including spawning aggregations and inshore and offshore 

mixed aggregations. Finally, in Chapter 6, I discuss the general implications of my work 

and present some general conclusions. Specifically, I discuss the implications of my work 

for fisheries management as well as its limitations and some future potential directions.  

 

1.3 Statement of co-authorship  

This thesis consists of a critical literature review and three data chapters, each of them 

corresponding to a manuscript written for publication in a scientific journal. All co-

authors contributed to these manuscripts by providing crucial tissue samples or 



 7 

contributing in funding, experimental design, data analysis, interpretation of results, and 

writing of manuscripts. The publication status of each chapter is as follows:  

 

Chapter 2:  

This chapter was published as “Fuentes-Pardo, A.P. and D.E. Ruzzante. Whole-genome 

sequencing approaches for conservation biology: advantages, limitations, and practical 

recommendations” in Molecular Ecology. 2017;26:5369–5406. 

https://doi.org/10.1111/mec.14264 

 

Chapter 3:  

This chapter was published as “Lamichhaney, S.*, Fuentes-Pardo, A.P.*, Rafati, N., 

Ryman, N., McCracken, G.R., Bourne, C., Rabindra, S., Ruzzante, D.E. and L. 

Andersson. Parallel adaptive evolution of geographically distant herring populations on 

both sides of the North Atlantic Ocean” in PNAS. 2017;26:5369–5406. 

https://doi.org/10.1073/pnas.1617728114 

* equal contribution  

 

Chapter 4: 

This chapter was submitted for publication as “Fuentes-Pardo, A. P., Bourne, C., 

Rabindra, S., Emond, K., Pinkham, L., McDermid, J. L., Andersson, L. and D. E. 

Ruzzante. Adaptation to seasonal reproduction and thermal minima-related factors drives 

fine-scale divergence despite gene flow in Atlantic herring populations” to Molecular 

Ecology on March 2019, it is under revision and it is currently available as a preprint in 

BioRxiv, https://doi.org/10.1101/578484 

 

Chapter 5: 

This chapter is a manuscript and it is not published yet. 
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CHAPTER 2. WHOLE-GENOME SEQUENCING APPROACHES FOR 

CONSERVATION BIOLOGY: ADVANTAGES, LIMITATIONS, AND PRACTICAL 

RECOMMENDATIONS 

 

2.1 Abstract 

Whole-genome resequencing (WGR) is a powerful method for addressing fundamental 

evolutionary biology questions that have not been fully resolved using traditional 

methods. WGR includes four approaches: the sequencing of individuals to a high depth 

of coverage with either unresolved (huWGR) or resolved haplotypes (hrWGR), the 

sequencing of population genomes to a high depth by mixing equimolar amounts of 

unlabelled-individual DNA (Pool-seq), and the sequencing of multiple individuals from a 

population to a low depth (lcWGR). These techniques require the availability of a 

reference genome. This, along with the still high cost of shotgun sequencing and the large 

demand for computing resources and storage, has limited their implementation in non-

model species with scarce genomic resources and in fields such as conservation biology. 

Our goal here is to describe the various WGR methods, their pros and cons, and potential 

applications in conservation biology. WGR offers an unprecedented marker density and 

surveys a wide diversity of genetic variations not limited to single nucleotide 

polymorphisms (e.g. structural variants and mutations in regulatory elements), increasing 

their power for the detection of signatures of selection and local adaptation as well as for 

the identification of the genetic basis of phenotypic traits and diseases. Currently though, 

no single WGR approach fulfills all requirements of conservation genetics, and each 

method has its own limitations and sources of potential bias. We discuss proposed ways 

to minimize such biases. We envision a not distant future where the analysis of whole 

genomes becomes a routine task in many non-model species and fields including 

conservation biology. 

 

2.2 Introduction 

Over the last 40 years, genetics has emerged as an important tool in the conservation of 

threatened species. Based on the analysis of genetic variation of individuals and 

populations, genetics has provided insights on diverse areas in conservation biology 
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including species identification, hybridization, kinship, evolutionary history, effective 

population size (Ne), population substructure, population connectivity, adaptive genetic 

variation, local adaptation, and inbreeding (Haig et al., 2016; Hedrick & Miller, 1992; 

von der Heyden et al., 2014). 

 

Genetic variation has traditionally been examined using from a single to a handful 

(12-24) of molecular markers including allozymes, mitochondrial DNA, and 

microsatellites (see review by Allendorf (2017)). Most of these markers target a few 

neutral positions in the genome, limiting the ability to estimate genome-wide parameters 

(Avise, 2010). The development of high-throughput sequencing (HTS) technologies over 

a decade ago revolutionized the way genetic variation is assessed (Goodwin, McPherson, 

& McCombie, 2016). These technologies allow the massive sequencing of thousands to 

millions of loci in a short time for an affordable cost, resulting in a much higher marker 

density than experienced with past technologies. Today, individual research groups have 

the option of sequencing the reference genome of their focal species and re-sequencing 

genomes of individuals and populations for the detection of both, neutral and adaptive 

variation (Ellegren, 2014). The extraordinary increase in number of markers available 

with genomic approaches has sparked much expectation within the conservation 

community, reflected in several recent review papers on this topic (Allendorf, Hohenlohe, 

& Luikart, 2010; Angeloni, Wagemaker, Vergeer, & Ouborg, 2012; Avise, 2010; L. M. 

Benestan et al., 2016; Frankham, 2010; Funk, McKay, Hohenlohe, & Allendorf, 2012; 

Garner et al., 2016; McMahon, Teeling, & Höglund, 2014; Ouborg, Pertoldi, Loeschcke, 

Bijlsma, & Hedrick, 2010; Primmer, 2009; Shafer et al., 2015; Steiner, Putnam, Hoeck, 

& Ryder, 2013). The hype is a reflection of the promise of increased statistical power in 

population genetics tests, but most importantly, of the possibility of addressing long 

standing questions in conservation biology not fully resolved with traditional methods. 

Some of these questions are: What is the phylogenetic relationship between unresolved 

taxa? What are the loci responsible for speciation, for local adaptation, for interactions 

among species, or for inbreeding depression? What is the genetic basis of traits related to 

fitness? (Allendorf et al., 2010; McMahon et al., 2014; Ouborg et al., 2010). 
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The advances achieved with HTS promise an exciting time for genomics-based 

research, although these developments have their own limitations. For example, short-

read sequences (~100 base pairs (bp) long), that are commonly obtained with current 

sequencing technologies, are problematic for genome assembly and detection of large 

structural variants. The relatively high error rate of existing sequencing platforms makes 

it necessary to obtain high depth of coverage for the correct identification of variants 

(Goodwin et al., 2016) and sequencing cost is still high for population studies that require 

analysing multiple individuals. Currently, some alternatives to overcome the cost 

limitation are: (i) using reduced-representation sequencing (RRS) methods that screen a 

fraction of the genome (da Fonseca et al., 2016), (ii) obtaining whole-genome 

resequencing (WGR) data from pooled DNA of individuals per population to a high 

coverage [known as Pool-seq, (Schlötterer, Tobler, Kofler, & Nolte, 2014)], or (iii) low-

coverage WGR data of individuals from a population [known as lcWGR, (Nielsen, Paul, 

Albrechtsen, & Song, 2011)]. These approaches have successfully screened multiple loci 

genome-wide in several species, and have been instrumental in addressing a variety of 

questions in molecular ecology (Foote et al., 2016; Hohenlohe et al., 2010; S. 

Lamichhaney et al., 2017). These methods however, have their own restrictions and 

sources of bias and error that should be minimized for the correct inference of population 

parameters (Anderson, Skaug, & Barshis, 2014; Lowry et al., 2017a).  

 

Today, when the genome of virtually any species can be sequenced, it is pertinent 

to ask, when is the analysis of whole-genome data justified in conservation biology? 

What are the limitations of current WGR methods, and how could they be overcome? 

These questions are particularly important for three main reasons: 1) traditional 

molecular methods can solve some of the questions in conservation for a small fraction of 

the cost and effort relative to genomic approaches (e.g. dozens of polymorphic 

microsatellites generate acceptable estimates of population structure, gene flow, Ne, 

kinship) (Allendorf, 2016; McMahon et al., 2014); 2) RRS methods generate thousands 

of molecular markers genome-wide, increasing the power of statistical tests for a lower 

cost compared to whole-genome approaches (Andrews, Good, Miller, Luikart, & 
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Hohenlohe, 2016); 3) current short-read sequence data presents some restrictions that 

limit the kind of analysis that can be performed (Goodwin et al., 2016). 

 

Given the increased interest in the use of genomics in conservation biology, in 

this review we first provide a general background on sequencing technologies and whole-

genome sequencing (Box 1). We then describe the various WGR approaches used in 

population genomics (Box 2), discuss their limitations and potential solutions (Box 3 and 

4), and compare WGR to RRS methods (Table 2.1). We also discuss limitations of 

genome scans for detecting selection and inferring adaptation from genomic data (Box 5). 

We subsequently present case studies for the areas of conservation biology that can in 

principle be benefited by WGR analysis (Table 2.2). Finally, we provide guidelines for 

choosing between RRS and WGR methods depending on the type of genetic variation of 

interest and the expected haplotype block size, and explore recent innovations that 

promise overcoming the limitations of current methodologies. 

 

2.3 Genome sequencing techniques 

The improved understanding of the complexity of the genome architecture during the 

Human Genome Project (Human Genome Research Institute (NIH), 

https://www.genome.gov/12011239/), coupled with advances in molecular techniques 

and equipment set the basis for the beginning of the ‘genomic era’ in the last two 

decades. The development of sequencing technologies in particular, has revolutionized 

the way we examine and comprehend the genome. Three major sequencing generations 

have taken place thus far. Sanger-sequencing (or ‘chain-termination method’), considered 

the first generation, was introduced in 1977 (Sanger, Nicklen, & Coulson, 1977). This 

method provides high per-base accuracy (99,999%, Shendure & Ji (2008)) and medium-

read length (~1000 bp) but has the main limitations of low-throughput and relatively high 

cost per base. Genome assembly is achieved via sequencing of bacterial artificial 

chromosome libraries containing pieces of the whole-genome. Using specialized 

software, the sequence of each fragment is assembled into a contiguous sequence (NIH, 

https://www.genome.gov/12011239/). The first genome sequences of several model 

species (e.g. yeast, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis 

https://www.genome.gov/12011239/)
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thaliana) including humans were obtained with this technology, which incidentally, also 

led to the expansion of genetics research overall (Goodwin et al., 2016; Heather & Chain, 

2016; Pettersson, Lundeberg, & Ahmadian, 2009).  

The second-generation of sequencing technology, which is based on ‘sequencing-

by-synthesis’ and innovative high-throughput systems (i.e. 454-pyrosequencing, 

Illumina, Ion-Proton), appeared between 2005 and 2010. These technologies have a 

higher error rate (accuracy >99.5%) and produce shorter sequences (75-300 bp Illumina, 

<400 bp Ion-Proton, <700 bp 454-pyrosequencing) than Sanger-sequencing, but the 

massive parallel sequencing of fragments of sheared DNA significantly increased 

throughput. De novo genome assembly is achieved with data of paired-end short-reads 

(~100 bp) of various libraries with different insert size (350 bp to 40 Kilobases - Kb) to 

maximize genome coverage. The consensus sequence results from the computational 

assembly of short-reads. First, contigs [i.e. sequences resulting from the joint of 

overlapping smaller sequences with no gaps or runs of more than 10 ambiguous bases 

(Ns)] and scaffolds [i.e. larger sequences formed by joining contigs with no sequence 

overlap but gaps can be present] 

(https://www.ncbi.nlm.nih.gov/assembly/agp/AGP_Specification/) are obtained, and 

these are subsequently linked and ordered with data of long-insert-size short-read 

libraries and long-reads. Short-reads however, are problematic for the assembly of 

repetitive sequences; interruptions (gaps) are thus common in the consensus sequence. 

Similarly, the detection of large structural variants (SVs) and the ability to estimate 

haplotypes (i.e. ‘haplotype phasing’) are limited due to the short and fragmented nature 

of these sequences. The main contributions of second-generation technologies have been 

the substantial drop in sequencing cost and the exponential increase in throughput, 

unlocking genome-, exome-, transcriptome-, and epigenome- sequencing approaches to 

non-model organisms and in doing so, revolutionizing medicine, agriculture, and 

biological research (Goodwin et al., 2016; Heather & Chain, 2016; Pettersson et al., 

2009). 

The third-generation appeared between 2011 and 2014 with sequencing 

technologies that produce reads of unprecedented length (average ~2–10Kb). Currently, 

long-reads can be obtained with two methods, ‘single-molecule real-time’ sequencing 
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(SMRT-seq) [i.e. Pacific Biosystems (PacBio), Oxford Nanopore Technologies (ONT)] 

and ‘synthetic long-read’ sequencing (SLR-seq) [i.e. Illumina synthetic long-reads, 10X 

Genomics]. SMRT-seq methods produce long-reads of single DNA molecules, whereas 

the synthetic approaches do not; in the latter, long sequences are computationally 

assembled from barcoded short-reads coming from the same DNA molecule (Bleidorn, 

2016; Goodwin et al., 2016; Lee et al., 2016). Throughput, error rate, and cost vary 

between long-read approaches. For example, within SMRT-seq methods, throughput of 

PacBio is lower than any second-generation technique but nanopore’s sequencing 

competes with Illumina HiSeqX. In contrast, the throughput of SLR-seq methods is the 

same as in Illumina systems. Error rate is much higher in SMRT-seq methods than in any 

second-generation technique (15-20% in PacBio, although 99,99% accuracy can be 

achieved with ~50x coverage (Berlin et al., 2015); 30-40% in nanopore-sequencers). In 

SLR-seq, error rate is the same as in Illumina. In terms of cost, PacBio is pricey (~USD$ 

1000/Giga byte (GB), (Goodwin et al., 2016)) and nanopore-sequencing promises low 

cost (~USD$ 20/hour) though it has not yet been disclosed (Bleidorn, 2016). In SLR-seq 

methods, cost can be high as it includes short-read Illumina sequencing to very high 

coverage (~1000x (Lee et al., 2016)) and library preparation that incorporates barcodes. 

In 10X Genomics additional equipment is required. Genome assembly can be achieved 

with only long-read data (>50x), or with a combination of long- and short-reads. Long-

reads help resolve complex stretches of the genome (i.e. repetitive sequences and SVs) 

that are poorly handled by short-reads, significantly improving quality of genome 

assembly. With long-reads it is also possible to sequence entire transcripts, enhance 

metabarcoding and metagenomics, and perform direct haplotype assignment (i.e. 

phasing) of genomes (Bleidorn, 2016) that otherwise can only be limitedly inferred from 

population-level short-read data (Snyder, Adey, Kitzman, & Shendure, 2015). A 

haplotype refers to groups of genetic variants that are located in the same chromosome 

(Snyder et al., 2015)). The composition and extension of haplotypes constitute valuable 

information for many analyses including, demographic history, linkage disequilibrium, 

GWAS, genealogical tracing of mutations, and allele-specific expression, among others 

(Browning & Browning, 2011; Lee et al., 2016; Snyder et al., 2015). For a more detailed 
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description of sequencing techniques, see Goodwin et al. (2016); Lee et al. (2016); 

Bleidorn (2016).  

 

2.3.1 Comparison of whole-genome resequencing and de novo sequencing  

Whole-genome sequencing can be classified in two categories (Fig. 2.1): (1) de 

novo whole-genome sequencing (WGS); and (2) whole-genome resequencing (WGR). 

(1) The goal of WGS is the assembly of a genome sequence for the first time. This can be 

a demanding task depending on size and genome complexity, desired level of 

completeness, computing resources, and bioinformatics experience. Programming skills 

and understanding of assembly algorithms are fundamental for optimal results (Ekblom 

& Wolf, 2014). (2) The objective of WGR is instead, to compare genomic variability 

among individuals or populations. This approach requires previous availability of the 

reference genome for read mapping and variant identification. Sequencing is dedicated to 

obtaining reads from the genome of individuals or populations to a particular coverage 

depending on the application. 

 

The absence of the reference genome of the species of interest likely constitutes 

the main limitation faced by conservation geneticists when implementing a WGR 

approach, justifying the use of the genome sequence of a closely-related species 

(Dennenmoser, Vamosi, Nolte, & Rogers, 2017; Lamichhaney et al., 2012). Caution is 

however warranted with this procedure as differences in genomic organization (e.g. copy 

number variation, structural variants) can exist, even between closely related species 

(Ekblom & Wolf, 2014). The use of a reference genome of another species restricts the 

mapping of short reads to conserved regions between the two taxa. The power of WGR 

could be diminished as potentially informative variation present uniquely in the focal 

species is likely to be missed following this procedure. Additionally, the genomic 

differences between taxa can affect the accuracy of both, read mapping and SNP calling 

(Nevado, Ramos-Onsins, & Perez-Enciso, 2014). Thus, when possible, it is preferable to 

use the genome of the focal species for WGR analysis, unless the research question can 

be addressed examining conserved regions alone. A brief overview of genome assembly 

guidelines and completeness status of genomes sequenced to date is provided in Box 1.  
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The steady decrease in sequencing cost promised by new technologies suggests 

that access to the genome sequence may in the near future no longer be an 

unsurmountable obstacle for non-model species (Goodwin et al., 2016). Prove of this are 

the multiple international initiatives that are collaboratively sequencing genomes of 

various taxa including fungi (Grigoriev et al., 2014), invertebrates (GIGA, 2014), 

arthropods (Evans et al., 2013), birds (Zhang, 2015), fishes (Malmstrøm, Matschiner, 

Tørresen, Jakobsen, & Jentoft, 2017; The FAASG Consortium, 2016), mammals 

(Fontanesi et al., 2016), vertebrates (Koepfli, Paten, Genome 10K Community of 

Scientists, & O’Brien, 2015), among others. 

 

2.3.2 Comparison of whole-genome resequencing approaches for 
population genomics 

A population genomics study can be based on the analysis of individual sequences 

(individual-based approaches) or on the analysis of the sequences of a group of 

individuals as a whole (population-based approaches). In individual-based approaches the 

goal is obtaining high quality individual genotypes, required for analysis on population 

demographic history and Ne estimation, and genealogical tracing of mutations, among 

others. There are currently two techniques: (i) high-coverage haplotype-unresolved 

individual WGR (huWGR) and (ii) high-coverage haplotype-resolved individual WGR 

(hrWGR). In both techniques, high read depth (>30-50x depth) is targeted for achieving 

accurate SNP, short INDEL (>50bp), and genotype calling, as multiple reads 

(observations) help distinguish true variation from sequencing error (Nagasaki et al., 

2015). (i) In huWGR, short-read data per individual results in unphased individual 

genotypes that are used for subsequent analyses. If haplotype information is required, 

phasing can be indirectly achieved using statistical methods that rely on genotypes of 

several related or unrelated individuals. Such methods are then limited by the need for 

large sample sizes and by the extend of linkage disequilibrium blocks that vary across the 

genome (Browning & Browning, 2011). (ii) In hrWGR, the goal is to directly obtain 

haplotype-resolved genomes of single individuals using specific experimental procedures 

and short- and/or long-read sequencing, implying large sample sizes are not required 

(reviewed in Snyder et al. 2015). 
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In population-based approaches, the goal is obtaining population-level genomic 

data (e.g. allele frequencies or genotype likelihoods) from several individuals analyzed as 

a whole and sequenced to a high or a low depth (Buerkle & Gompert, 2013), to offset the 

cost of obtaining high-coverage per individual. Such population-level data can be used 

for inference of population structuring, detection of outlier loci and signatures of 

selection, among others. Two methods can be identified (Fig. 2.2): (i) Pool-seq, or the 

sequencing at a high coverage (>50x) of pooled DNA in equimolar concentration of 

unlabelled individuals from a population (Futschik & Schlötterer, 2010; Schlötterer et al., 

2014), and (ii) lcWGR, or low-coverage individual whole-genome resequencing of 

multiple barcoded individuals from a population (~2-4x per individual) (Durbin et al., 

2010; Nielsen et al., 2011). The general workflow for data acquisition with these 

approaches is presented in Box 2, and a comparison of requirements, technical aspects, 

and expected outcomes is shown in Table 2.1. 

These two methods have several pros and cons. The main advantage of Pool-seq 

is the cost reduction achieved from the preparation of a single sequencing library per 

pooled DNA instead of one library per individual. This allows using large sample sizes 

per population (Fig. 2.2). Also, pooling equal amounts of DNA of multiple individuals 

facilitates the sequencing of a few chromosomes several times, leading to an 

improvement in SNP allele frequency estimates (Ferretti, Ramos-Onsins, & Pérez-

Enciso, 2013; Gautier et al., 2013; Schlötterer et al., 2014). In Pool-seq the detection of 

variant sites and the estimation of population-level allele frequencies per SNP are derived 

from the relative proportion of read counts of each allele within a pool (Fig. 2.2). Pool-

seq has three main limitations: First, individual genotypes are missed after mixing DNA 

samples in a pool. This makes it impossible to track technical errors during library 

preparation. Second, allele frequency estimation is susceptible to multiple factors 

including uneven representation of individual DNA in a pool, and sequencing and 

mapping errors. Finally, rare alleles are likely to be underrepresented in this kind of 

datasets, which can lead to a truncated distribution of allele frequencies or site frequency 

spectrum (SFS). Pool-seq data is thus mostly biased toward the detection of frequent and 

large-effect alleles (Cutler & Jensen, 2010; Raineri et al., 2012). Potential solutions to 

these limitations are discussed in Box 3. Obtaining a complete SFS is important in 
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population genetics, as this metric synthesizes all the sequence variation at unlinked sites 

in a sample. Its shape varies with different evolutionary processes including bottlenecks 

or range expansions (Gutenkunst, Hernandez, Williamson, & Bustamante, 2009), and 

natural selection (Bustamante, Wakeley, Sawyer, & Hartl, 2001; Ronen, Udpa, Halperin, 

& Bafna, 2013), and is used to infer several metrics including Tajima’s D and FST 

(Durrett, 2008; Han, Sinsheimer, & Novembre, 2015). 

 

The main advantage of lcWGR is the low sequencing depth targeted per 

individual (~1-4x) that facilitates the analysis of a large number of samples per 

population, however one library needs to be prepared for each individual (Fig. 2.2). 

Individual library preparation is still cost restrictive for large sample sizes given the 

current high cost of commercial library preparation kits (Table 2.1). To overcome this 

limitation, the use of smaller reaction volumes and cheaper reagents has been advocated 

achieving a 6-10 times cost reduction per sample as shown for microbial genomes (<15 

Mb) (Baym et al., 2015) and a teleost fish genome (~730Mb) (Therkildsen & Palumbi 

2016). Despite the significant cost savings with this procedure, lcWGR is still slightly 

more expensive than Pool-seq for an equivalent sample size and sequencing depth 

(assuming 1x coverage per individual). The overall cost of Pool-seq and lcWGR is fairly 

equivalent, though, when ~50 individuals are included (~$USD 280 more in lcWGR as 

June 2017). Just like in Pool-seq, some of the disadvantages of lcWGR are that individual 

genotypes cannot be called: the low depth per individual impedes a reliable variant and 

genotype calling. Instead of read counts, this method detects variant sites and calculates 

genotype likelihoods (GLs) per site based on the accumulated sequence data of multiple 

individuals in a sample using a probabilistic framework that incorporates the uncertainty 

of the data due to sequencing, alignment and SNP calling errors. Based on GLs obtained 

across sites, a sample allele frequency per site is calculated from which other statistics are 

inferred, including the SFS (Korneliussen et al., 2014; Nielsen, Korneliussen, 

Albrechtsen, Li, & Wang, 2012; Nielsen et al., 2011). From the sample and population 

allele frequency likelihood, SNP and genotype calls can be obtained using a likelihood 

ratio test (Kim et al., 2011; Korneliussen et al., 2014). In theory, because SNP calling is 

avoided, all alleles present in a sample are considered in the GL calculation, resulting in 
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the SFS potentially being less biased than in Pool-seq data. Another disadvantage of this 

method is that GLs values can vary depending on several factors, and currently a few 

programs accept GLs. Potential solutions to these limitations are discussed in Box 4. 

 

2.3.3 Comparison of WGR with Reduced-Representation sequencing (RRS) 

RRS is a general category of techniques that sequence a subset of the genome following 

different strategies. These techniques can be classified in three major groups: (i) RAD-

seq (Restriction site Associate DNA sequencing) (Andrews et al., 2016), (ii) RNA-seq 

(sequencing of cDNA obtained from mRNA) (Ozsolak & Milos, 2011), and (iii) WES 

(Whole-Exome sequencing) (Warr et al., 2015). 

(i) RAD-seq refers to a group of methods (e.g. traditional RAD, ddRAD, ezRAD, RAD-

cap, among others) that evaluate the genetic variation present around restriction cut sites. 

The selection of restriction enzyme (frequent or rare cutter) ultimately determines the 

resulting marker density (i.e. number of loci sampled per physical genomic distance unit), 

making these methods flexible and customizable. These methods typically examine 

thousands of low-density genome-wide SNPs located in neutral and putatively functional 

loci that can be genotyped by sequencing in multiple individuals and populations for a 

relatively low cost (reviewed by Andrews et al. (2016)). (ii) RNA-seq focuses on genetic 

variants in parts of the genome that are being transcribed at the time of sampling. RNA-

seq is thus mostly used for gene expression quantification but also for the comparison of 

variants at genes being transcribed in a particular time/tissue (reviewed by Ozsolak and 

Milos (2011)). (iii) WES explores genetic variants in exons of protein-coding genes using 

capture probes usually developed from a well annotated reference genome (reviewed by 

Warr et al. (2015)). A reference genome is however, not indispensable, since capture 

probes can also be designed from PCR products of targeted loci, from de novo assembly 

of RNA-seq transcriptomes or expressed sequence tags (ESTs), RAD-seq or WGR data, 

and from the genome of a closely-related species as functional elements are usually 

located in highly conserved regions (reviewed by Jones & Good (2016)). 

 

The three RRS methods share the characteristic that they typically evaluate only a small 

fraction (~1–5 %) of the genome, which translates into reduced sequencing cost, 
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computing resources and storage requirements compared to WGR approaches (Ozsolak 

& Milos, 2011; Warr et al., 2015). RRS techniques provide hundreds to thousands of 

genome-wide SNPs, that in RAD-seq, for example, are plenty for robust population 

genetics analysis based on neutral SNPs (Andrews et al., 2016). Functional SNPs can also 

be detected from RAD-seq data, although this depends on experimental design. The 

target marker density should ensure sampling of loci that contribute to a trait which 

relates to the average linkage disequilibrium decay (Gagnaire & Gaggiotti, 2016) (more 

on this is discussed in Box 5). 

RNA-seq also can help in the identification of functional SNPs, although care 

needs to be taken during sampling, sequencing and SNP calling. This is because multiple 

factors can affect gene expression at the time of sampling, producing technical and 

biological variability that needs to be accounted for including replicates. Moreover, high 

read coverage is necessary to detect rare transcripts, and the intrinsic complexity of the 

transcriptome (e.g. alternative splicing) could make challenging read alignment for SNP 

detection (Conesa et al., 2016; Ozsolak & Milos, 2011). 

WES constitutes a cost effective alternative to WGR for functional SNPs 

identification, as it screens protein-coding regions that in humans, for example, represent 

less than 2% of the total genome (a 100-times reduction of the amount of data for the 

same coverage) and contains 85% of mutations related to diseases in Mendelian disorders 

(Rabbani, Tekin, & Mahdieh, 2014). WGR is, however, more robust than WES for the 

detection of exome variants as it provides a more homogeneous sequence read coverage 

and a better sequencing quality overall (Belkadi et al., 2015). A potential problem with 

WES is that the exon capture/PCR amplification steps can produce low coverage 

(limiting variant detection) when probes are poorly designed (span exon boundaries) and 

fail to bind to the target region (Bi et al., 2012; Jones & Good, 2016). 

Probably the most convenient advantage of RRS approaches is that they do not 

rely on a reference genome for SNP calling, since it can be accomplished by local 

assembly of reads. This has facilitated the broad use of RRS methods in population 

genomics studies of non-model organisms. The number and quality of markers, however, 

can be significantly improved when the reference genome is available (Andrews et al., 

2016; Jones & Good, 2016; Ozsolak & Milos, 2011; Warr et al., 2015). The well-
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documented pipelines, open access software, and affordability of RAD-seq and RNA-seq 

methods have made them the most popular RRS approaches in non-model species studies 

nowadays (Andrews et al., 2016; De Wit, Pespeni, Ladner, Barshis, & Palumbi, 2012). 

Nevertheless, as experience on these techniques accumulates, so have realizations on 

limitations and potential sources of bias and error. For example, in RAD-seq, potential 

bias can be introduced during library preparation, sequencing, and data analysis 

(reviewed in Cariou et al. 2016; Shafer et al. 2016). Also, the small fraction of the 

genome that is often interrogated and the variable linkage disequilibrium (LD) block size 

usually seen in nature may limit the power of this method for the detection of adaptive 

variation (Hoban et al., 2016; Lowry et al., 2017a, 2017b). Some researchers argue that it 

is possible to achieve with RAD-seq the high genome coverage required for detecting 

signatures of selection owing to the flexibility of protocols that allow fine-tuning of 

marker density (Catchen et al., 2017; McKinney, Larson, Seeb, & Seeb, 2017). Whereas 

every contribution of genomic information for species with little genomic knowledge 

counts and should be promoted, it is also important to realize methodological limitations 

to avoid false expectations and misinterpretation of results (Lowry et al., 2017b) 

(discussion expanded in Box 5).  

 

Unlike RRS, WGR approaches provide the highest marker density of the current genomic 

methods, facilitating the characterization of neutral and functional genetic variation as 

well as the discovery of the genetic basis of phenotypic traits (Ellegren, 2014). The 

proportion of the genome screened with WGR depends on read depth and completeness 

of the reference sequence. A comparison of the expected relative proportion of the 

genome covered by WGS, WES, and RAD-seq is shown in Fig. 2.3, and a comparison of 

requirements and outcomes of RAD-seq, Pool-seq and lcWGR is presented in Table 2.1. 

Another advantage of WGR approaches is that they examine multiple types of genetic 

variation including structural variations (SVs) (i.e. deletions, insertions, chromosomal 

rearrangements, copy number variation, (Alkan, Coe, & Eichler, 2011)) and mutations in 

regulatory elements (REs) (i.e. non-coding regions that regulate gene expression and 

function, (Wray, 2007)). In contrast, RRS techniques are mostly restricted to one base 

changes (i.e. SNPs), and RNA-seq and WES are to variation within coding sequences. 
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2.4 Applications of WGR in conservation and management 

Below, we describe contributions that WGR analysis can make to some of the main areas 

of interest in conservation. For each area we provide study cases that illustrate the type of 

questions that can be addressed with WGR. Table 2.2 lists key aspects of the 

experimental design of these studies. Within parentheses, we denote in the title of each 

conservation area, which WGR approach (huWGR, hrWGR, Pool-seq or lcWGR) 

applies.  

 

2.4.1 Phylogenomics, hybridization and taxonomical species resolution 
(approach: huWGR, hrWGR, lcWGR) 

The successful implementation of conservation plans relies on the correct identification 

of the taxonomic status of organisms target of protection (Mace, 2004). Whole-genome 

data constitutes a complete record of a species evolutionary process. By comparing large 

portions of the genome rather than the sequence of a few genes, as has traditionally been 

done, a more robust reconstruction of the evolutionary relationships among species can 

be achieved. This is the aim of phylogenomics (Chan & Ragan, 2013; Delsuc, 

Brinkmann, & Philippe, 2005). Recent studies have provided evidence of the power of 

whole-genome data for the reconstruction of the tree of life and for the detection of 

species hybridization events. More work needs to be done, however, to resolve algorithm 

limitations associated with the analysis of such large amount of data, and to overcome 

intrinsic genomic challenges such as protein-coding sequence convergence, genome 

rearrangements, lateral gene transfer, incomplete lineage sorting, among others (Chan & 

Ragan, 2013; Delsuc et al., 2005).  

huWGR and lcWGR approaches have been used in phylogenomics (Table 2.2) 

and in the detection of species hybridization. huWGR provides high genome coverage 

and taxonomic resolution whereas lcWGR offers a fragmented coverage that still can be 

useful for the development of phylogenetic markers (e.g. organellar genome assembly, 

ortholog genes, repetitive elements). For example, using huWGR, Jarvis et al. (2014) 

compared 48 modern bird species for the reconstruction of their phylogeny. They 

obtained a highly resolved tree that discriminates close relationships, identified the first 
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divergence of Neoaves, but found difficulties attempting to resolve deep branches. Zhou 

et al. (2014) sequenced and assembled the genome of snub-nosed monkey and compared 

it with those of three related monkey species. They found evidence of functional 

evolution and leaf-eating dietary adaptations in this group, and were able to reconstruct 

species-specific demographic histories more precisely than previous attempts. vonHoldt 

et al. (2016) sequenced 28 wolf genomes to demonstrate that two endemic species of the 

North American wolf (the red wolf and the eastern wolf) are actually hybrids of coyote 

and gray wolf. With lcWGR data, Straub et al. (2011) characterized for the first time 

phylogenetic markers for the common milkweed (Asclepias syriaca L.), including the 

complete chloroplast genome, a  partial mitochondrial genome sequence, and some single 

copy ortholog genes. Blischak et al. (2014) used ultra-low coverage genome data 

(~0.005x–0.007x) for annotation and gene prediction of more than 10,000 contigs for 

primer design of phylogenetic markers in the plant genus Penstemon. Wall et al. (2016) 

analyzed lcWGR data of yellow baboons (Papio cynocephalus), Anubis baboons (P. 

anubis), and their hybrids in the Amboseli ecosystem of Kenya. They found genetic 

differentiation between parent taxa and enough evidence to infer a complex admixture 

history involving intermittent but multiple hybridization events that did not indicate 

fitness reduction in hybrids. All these studies indicate the comparison of individual 

genomes can make significant contributions to conservation biology by helping resolve 

the phylogenetic status of species of concern and by identifying genomic regions that can 

be used for the development of cost-effective tools for species and hybrid identification. 

As phylogenomic inference relies on haplotypes, this kind of analysis cannot be 

performed using Pool-seq data but will be benefited by advances in hrWGR methods 

with long-read data. 

 

2.4.2 Demographic history and historical effective population size 
(approach: huWGR, hrWGR, lcWGR, Pool-seq) 

The study of a species’ demographic history, including bottlenecks, migration patterns, 

range expansion, and changes in historical effective population size (hNe), is of great 

interest in conservation as it helps understand past historical events and their influence on 

the genetic makeup of contemporary populations. Such studies also allow for the testing 

of hypotheses regarding the effect of dated environmental events (e.g. appearance of 
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barriers to gene flow, anthropogenic disturbance, climate change) on historical 

demographic processes that may have left a genetic imprint.  

huWGR and lcWGR approaches have been used for the reconstruction of the 

demographic history of different species (Table 2.2). For example, Zhao et al. (2012) 

analyzed huWGR data of 34 pandas finding genetic evidence of multiple demographic 

events such as population expansion, bottlenecks, and divergence, and inferred that 

human activities most likely contributed to their decline in the last 3000 years. Foote et 

al. (2016) reconstructed the ancestral demography of five distinct ecotypes of the killer 

whale (Orcinus orca) based on lcWGR data of 48 individuals and huWGR data of 2 

individuals. They discovered that patterns of differentiation between pairs of 

contemporary allopatric and sympatric ecotypes are most likely the consequence of 

ecological divergence and genetic drift resulting from bottlenecks experienced during 

past founder events. 

hNe has been estimated from huWGR data. For example, using pairwise 

sequentially Markovian coalescent (PSMC) analyses, Nadachowska-Brzyska et al. (2016) 

obtained hNe estimates of four species of Western Palearctic black-and-white flycatchers 

of the genus Ficedula based on whole-genome data of 200 individuals from 10 European 

populations. The hNe curves indicated the most recent common ancestor of the four 

species dates back to 1–2 million years (Mya) and each species followed separate 

evolutionary paths involving population growth, decline (~100–200 thousand years ago 

(Kya)) and expansion. Authors suggest a mean genome coverage of ≥18X per individual, 

a per-site filter of ≥10 reads and no more than 25% of missing data are required for a 

proper inference of demographic history using PSMC and huWGR data (Nadachowska-

Brzyska et al. 2016). Boitard et al. (2016) estimated Ne using an Approximate Bayesian 

Computation Approach and whole genomes of 15-25 individuals from each of four cattle 

breeds (Angus, Fleckvieh, Holstein, Jersey). They found evidence that historical 

domestication and modern breeding events were related to population decline. More 

recent statistical models promise the possibility to estimate hNe from lcWGR and Pool-

seq data, the first based on inbreeding Identity By Descent (IBD) tracts (Vieira, 

Albrechtsen, & Nielsen, 2016), and the latter on allele frequency changes between two 

temporal samples while correcting for the potential inflation of variance in allele 
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frequency due to the two sampling steps involved in Pool-Seq experiments (i.e. during 

the sampling of individuals and the sequencing of pools) (Jonas, Taus, Kosiol, 

Schlotterer, & Futschik, 2016). In summary, the studies above illustrate how huWGR and 

lcWGR can facilitate inference on hNe fluctuations and the tracing of historical 

demographic events that can help understand patterns of genetic diversity and structure in 

contemporary populations. These kinds of analyses can be extended to species of 

conservation interest. Haplotype-resolved genomes obtained with hrWGR approaches 

promise enhanced accuracy in demographic history and effective population size 

estimates as older long identical-by-descent portions of the genome can be assessed 

(Schiffels & Durbin, 2014; Snyder et al., 2015). 

 

2.4.3 Population structure and admixture (approach: huWGR, Pool-Seq, 
lcWGR) 

One of the main goals in conservation biology is to maintain high genetic diversity in 

vulnerable species. Natural populations are commonly structured in local subpopulations. 

Genetic differences can arise among subpopulations over time as a result of the interplay 

between gene flow (e.g. reduced due to geographical distance or presence of barriers to 

dispersal), genetic drift, and local adaptation (Allendorf, Luikart, & Aitken, 2013). 

Traditionally, the partitioning of genetic diversity within and among populations has been 

inferred using F-statistics, with FST being an estimate of the genetic differentiation 

among subpopulations (Holsinger & Weir, 2009). The assumption of this approach is that 

the average effect of neutral processes (e.g. gene flow and genetic drift) acting equally 

throughout the whole genome, can be estimated based on the average allele frequency at 

several neutral loci within subpopulations and over all subpopulations. A genomics 

approach, where multiple high-density loci are examined, allows instead the detection of 

the effect of different evolutionary forces (e.g., drift, selection) along the genome through 

the estimation of genetic diversity using a sliding window procedure (Allendorf, 2016). 

As the analysis of whole genomes provides the highest marker density, it allows the 

simultaneous evaluation of genome-wide patterns in neutral loci that act as a record of 

demographic and historical events, as well as locus-specific effects that can be associated 

to natural selection, fitness, and adaptation (Allendorf, 2016; Allendorf et al., 2013). This 

new perspective for the comparison of genetic diversity among populations is providing 
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novel insights on how different evolutionary forces have affected particular loci and how 

differentiation could arise among natural populations despite gene flow. Below we 

describe some studies that estimated population structure and admixture based on neutral 

loci surveyed with WGR (Table 2.2).  

 Parejo et al. (2016) used huWGR data of 151 haploid drones to assess the degree 

of admixture between native European dark honeybee (Apis mellifera mellifera) and two 

introduced honey bee subspecies (A. m. carnica and buckfast) in four conservation areas 

of A. millifera millifera in Switzerland and one in France. They found genetic 

differentiation between subspecies that coincided with geography and admixed 

individuals in protected areas. With the 50 most informative loci, they created a SNP 

panel for the genetic identification and monitoring of native and introduced bees. Fischer 

et al. (2017) compared genetic diversity and population differentiation estimates from 

Pool-seq and microsatellite data of 9 wild populations of the plant A. halleri in south-

eastern Switzerland and northern Italy. They found no concordance of expected 

heterozygosity (He) estimates between marker types, and microsatellite allelic richness 

was a better descriptor of genome-wide diversity than He. They found that a few thousand 

SNPs can provide a better estimate of genetic diversity and genetic differentiation among 

their populations than the 19 microsatellite loci tested. Velasco et al. (2016) conducted a 

genome-wide analysis of the effects of domestication and mating system on genetic 

diversity of almond (Prunus dulcis) and peach (P. persica). With lcWGR data of 13 

individuals from each species, they found that the genome-wide nucleotide diversity was 

~7-fold higher in almond than in peach, an excess of rare alleles in both species likely 

consistent with a recent population expansion event, no evidence of population bottleneck 

related to domestication, and a strong genetic differentiation between species. Overall 

these examples demonstrate WGR data is useful for the estimation of population structure 

and admixture in a variety of species.  

 

2.4.4 Signatures of selection, genetic basis of phenotypic traits, and local 
adaptation (approach: hrWGR, huWGR, Pool-seq, lcWGR) 

The identification of genomic regions involved in adaptation to local environmental 

conditions (local adaptation) is one of the main goals in evolutionary biology. This 

knowledge is crucial for conservation biology because of the importance of functional 
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genetic diversity potentially linked with persistence in novel environments (Allendorf et 

al., 2010). Establishing the connection between genotype, phenotype and fitness is 

usually difficult though, and requires additional testing to verify the effect of presumably 

adaptive loci on fitness (Barrett & Hoekstra, 2011; Nielsen, 2009). We thus refer as 

“putatively” adaptive variants the parts of the genome that exhibit genetic signatures of 

selection for which the effect on fitness has not yet been tested.  

There are three general strategies for the identification of loci under selection: (1) 

forward genetics [includes QTL mapping and Genome Wide Association Studies 

(GWAS)], when the phenotypic traits that underpin adaptation are known; (2) reverse 

genetics [includes genome scans via Genetic-Environment Association (GEA) analyses 

and outlier loci tests], when the adaptive phenotype is unknown; and (3) candidate genes 

examination. A complete explanation of these methods is reviewed elsewhere (Barrett & 

Hoekstra, 2011; Pardo-Diaz, Salazar, & Jiggins, 2015; Vitti, Grossman, & Sabeti, 2013). 

WGR is usually classified as reverse genetics as the traits under selection are generally 

unknown for non-model species. However, when there is particular interest in comparing 

contrasting phenotypes (e.g. ecotypes), a forward genetics approach following a GWAS-

type comparison is possible, as is the directed screening of candidate genes discovered 

via genome scans. Genome scans are probably the most common method to detect 

signatures of selection in genomic data. Despite their proven power for this purpose, 

numerous considerations need to be accounted for when designing a genome scan 

experiment (see Box 5). 

The advantage of WGR over other genomic approaches for the detection of loci 

under selection relies on the possibility to screen neutral and functional polymorphisms in 

high genomic resolution. Such high marker density is crucial for the identification of 

genetic signatures of selection such as, reduced nucleotide diversity, extended linkage 

disequilibrium, and high homozygosis (Ellegren, 2014). WGR has been used for the 

discovery and mapping of the genetic basis of phenotypic traits with adaptive importance 

(Table 2.2), for instance, the beak shape of Darwin finches (huWGR; Lamichhaney et al. 

2015a) or the age at maturity in Atlantic salmon (huWGR: Barson et al. 2015; Pool-seq: 

Ayllon et al. 2015). Other examples, all based on Pool-seq data, include: the red beak 

colour in canaries (Lopes et al., 2016), circadian timing in midges (Kaiser et al., 2016), 
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genes affecting brain and neuronal development associated with domestication of rabbits 

(Carneiro et al., 2014), genes associated with breeding related traits of pathogen 

resistance and reproductive ability in two highly inbred chicken lines (Fleming et al., 

2016), candidate genes potentially driving the morphological, life history and salt 

tolerance differences between ecotypes of the yellow monkey-flower plant (Gould, Chen, 

& Lowry, 2017), and immune related genes in Atlantic salmon (Kjærner-Semb et al., 

2016). Similarly, studies based on lcWGR data include the detection of a recent partial 

barrier (large inversion) to gene flow between subgroups of the mosquito Anopheles 

gambiae s.l. (Crawford et al., 2016), and the identification of loci presumably involved in 

adaptation to high altitude and arid environments in native sheep (Yang et al., 2016). 

 

Additionally, WGR allows the examination of SVs and mutations in regulatory 

elements (REs) (i.e. non-coding DNA sequences that control expression of neighboring 

genes), providing a more complete genome-wide spectrum of the amount and distribution 

of genetic variation. Both, SVs and mutations in REs have been shown to play an 

important role in the determination of phenotypic diversity, some of which could affect 

fitness (Wittkopp & Kalay, 2012), and the development of diseases (Melton, Reuter, 

Spacek, & Snyder, 2015). For example, a large deletion identified with Pool-seq data 

causes skeletal atavism in Shetland ponies (Rafati et al., 2016). A large chromosomal 

inversion discovered from huWGR data underlies the complex male mating morph 

diversity exhibited by the bird ruff (Küpper et al., 2015; Sangeet Lamichhaney, Fan, et 

al., 2015). And a chromosomal inversion is also responsible for the individual wing-

pattern of diverse mimetic morphs in butterflies (Joron et al., 2011). Inversions play an 

important role because they reduce recombination, thus preventing the disruption of co-

adapted gene complexes (Hoffmann & Rieseberg, 2008). Mutations in REs can affect 

gene expression having functional consequences in phenotypic traits (Wittkopp & Kalay, 

2012; Wray, 2007). For example, mutations in the regulatory sequence of genes related to 

pigmentation produce different coloration patterns in cuticle, wings, and abdomen of fruit 

flies (Drosophila melanogaster) (Wittkopp & Kalay, 2012). Changes in regulatory 

elements most likely are responsible for pelvic structure reduction in three-spine 

sticklebacks (Gasterosteus aculeatus) (Shapiro et al., 2006) and for some human limb 
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malformations (VanderMeer & Ahituv, 2011). Haplotype information obtained with 

hrWGR can help in the detection of haplotype-specific mutations and in the association 

of epigenetic factors and gene expression in tumors (Adey et al., 2013). 

 

With WGR it is also possible to perform GEA analyses for the identification of 

genetic variation associated with adaptation to local conditions. For example, using Pool-

seq data, Fischer et al. (2013) and Rellstab et al. (2016) evaluated the association of 

natural populations of Arabidopsis halleri with environmental factors in two time 

periods. For the first period, they analyzed 5 populations and detected two million SNPs.  

They found 175 genes to be highly associated with some of the five environmental 

factors tested. For the second period, they extended the study to 18 populations covering 

a larger geographic area. Only 11 genes were found with the same association in both 

time periods, which could be a result of the alpine environment heterogeneity for which 

selection may be acting at the population level. Martinez Barrio et al. (2016) compared 

Pool-seq data of 20 Atlantic herring populations across the brackish Baltic Sea and the 

northeast Atlantic Ocean finding significant allele frequency differences at multiple loci 

between brackish-water and oceanic populations and between spring and fall spawning 

populations, contrary to the common expectation of overall small genetic divergence 

within European populations previously observed in studies that only considered low 

density loci (Larsson, Laikre, André, Dahlgren, & Ryman, 2010; Limborg et al., 2012; 

Teacher, André, Jonsson, & Merilä, 2013; Teacher, André, Merilä, & Wheat, 2012). 

Similarly, Lamichhaney et al. (2017) observed a pattern of differentiation between 

herring populations on both sides of the North Atlantic that comprised minute genetic 

differences at neutral loci but significant allele frequency differences between spring and 

autumn spawning populations at 6 333 SNPs, some of which are most likely associated 

with spawning time regulation. A total of 25% of such loci where shared between the 

American and European populations, and the unique loci found on each side of the ocean 

presumably result from local adaptation. In summary, the WGR approach is a powerful 

tool for the detection of signatures of selection, for uncovering the genetic basis of 

phenotypic traits and diseases, and for the identification of signatures of local adaptation. 
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huWGR, Pool-seq, lcWGR approaches can contribute to the understanding of the genetic 

variants and mechanisms underlying adaptive traits. 

 

2.4.5 Inbreeding depression, conservation breeding and restoration 
(approach: huWGR, potential contributions of Pool-seq and lcWGR)  

Understanding the genetic basis and effects of inbreeding depression (defined as fitness 

reduction of the offspring resulting from the mating between closely related individuals) 

is a major goal in conservation biology as it affects the long-term viability of small 

isolated populations, whose persistence depends on targeted breeding, purging, and 

restoration programs (Allendorf et al., 2013). Numerous studies have tried to reveal the 

genetic basis underlying inbreeding depression in wild populations however, the major 

obstacle for this has been the limitation to estimate the degree of individual inbreeding 

following traditional methods, as they require parental analysis over several generations. 

WGR analysis can solve these limitations by providing a large amount of genomic data 

per individual, which relaxes the need for parental analysis (reviewed by Kardos et al. 

(2016b) and Hedrick et al.(2016)). For instance, Xue et al. (2015) obtained huWGR data 

of 44 wild individuals representing four subspecies of gorilla in Africa. They observed on 

average 34% homozygosis in individual genomes which indicates extensive inbreeding 

most likely as a result of severe recent population decline. They also found very low 

genetic diversity in two of the four subspecies likely resulting from steady population 

declines over the past 100 000 years. Myburg et al. (2014) compared huWGR data on 

one outbred Eucalyptus grandis parent tree and 28 offspring obtained through self-

fertilization. The progeny retained high and different heterozygosity percentage (52% to 

79%, average 66%), in disagreement with an expectation of 50% homozygosis Identical-

By-Descent (IBD) produced by selfing without selection. Hedrick et al. (2016) analysed 

the same dataset finding that pseudo-overdominance most likely explained the observed 

inbreeding depression, which could be underlined by 100 or more genes of large effect 

associated with viability.  

To our knowledge no study has thus far (June 2017) used the lcWGR approach 

for the study of inbreeding depression in wild populations, however, this method has 

been successful in the identification of causal mutations of three phenotypic traits in 

inbred rice varieties (Wang et al., 2016) and the estimation of individual inbreeding 
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coefficients (Vieira et al., 2016; Vieira, Fumagalli, Albrechtsen, & Nielsen, 2013). Thus, 

we envision lcWGR data is likely to be useful for this purpose in the near future. 

Inbreeding depression cannot be estimated from Pool-seq data as individual information 

is lost. However, this type of data can help in the identification of the genetic basis of 

phenotypic traits associated with inbreeding depression, as it has been used for the 

characterization of genetic variation underlying diseases (Rafati et al., 2016) and 

phenotypic traits in inbred organisms (Fleming et al., 2016). In conclusion, the examples 

presented here demonstrate WGR can help in the characterization of the genetic basis of 

inbreeding depression. This genetic information can be used for early diagnosis of 

inbreeding depression, assist in the planning of breeding programs so as to avoid the 

inclusion of individuals carrying deleterious mutations that can affect recovery of captive 

or wild populations, and for the prediction of purging efficacy (Allendorf et al., 2010). 

 

2.4.6 Units of conservation, mixed stock analysis, and genetic monitoring 

Genetic patterns obtained from the analysis of neutral and adaptive genetic variation are 

useful for the delineation of conservation and management units (Funk et al., 2012). As 

previously shown, WGR approaches generate a large amount of neutral and putatively 

adaptive genetic markers. A subset of these loci can be used for the development of cost-

effective genotyping tools suitable for the assessment of diverse aspects of interest in 

conservation and management (e.g. taxonomic status, hybrids, sex, carriers of genetic 

diseases, population structure, individual assignment and population of origin, among 

others). These tools can be incorporated in conservation plans of threatened species 

(Fussi et al., 2016; Grossen, Biebach, Angelone-Alasaad, Keller, & Croll, 2017; Ivy, 

Putnam, Navarro, Gurr, & Ryder, 2016; Muñoz et al., 2015; Norman, Street, & Spong, 

2013; Stetz et al., 2016; Vandergast, 2017), and in management plans of commercially 

valuable species (Aykanat, Lindqvist, Pritchard, & Primmer, 2016; Bekkevold et al., 

2015a; Bradbury et al., 2015; Habicht et al., 2012; Martinsohn & Ogden, 2009; Sinclair-

Waters, 2017). 
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2.5 Concluding remarks and future directions 

Our review synthesizes the advantages of WGR for addressing central questions in 

evolutionary biology that have not been fully answered using traditional techniques. The 

power of WGR resides in two main features: (i) it assesses neutral and functional genetic 

variation (including regulatory regions) at the highest genomic resolution among of 

current methods; and (ii) examines a wide variety of genetic variation, from one base 

changes to structural variants. The method thus facilitates the examination of the genetic 

basis of phenotypic traits and diseases as well as the detection of the genetic signatures of 

natural selection, some of which can be related to local adaptation. 

 

The scarcity of genomic resources for most species under conservation concern coupled 

with the still high cost of high-throughput sequencing and the elevated demand for 

computing resources, however, have limited the implementation of WGR in conservation 

biology. Some questions in conservation biology can be reasonably addressed using 

traditional or RRS approaches. The question then arises of when is a WGR approach 

justifiable? The answer depends on the research question, knowledge on the biological 

system, genomic resources available, the genetic architecture of phenotypic traits and 

ultimately on funding. If the research focus is the analysis of neutral processes, then 

WGR would not be necessary since RAD-seq methods would excel for an affordable 

price. If a highly accurate reconstruction of the species historical demography is sought, 

WGR would be justifiable since the estimation of coalescent events benefits from the 

information provided by haplotype-resolved genomes. A good approximation to the 

species historical demography can also be achieved with the data generated by RRS, 

though a larger sample size would be necessary (Manthey, Campillo, Burns, & Moyle, 

2016). The major motivation for using WGR is thus the detection of signatures of 

selection and the characterization of the genetic basis of phenotypic traits and diseases. 

RAD-seq can also be used for this purpose at the fraction of the genome screened, 

although its success may depend on the proportion of the genome covered. Ideally this 

proportion should match the extension of linkage disequilibrium blocks, but this is 

usually unknown. Previous knowledge of the system and genomic resources can assist in 

the choice between RNA-seq, WES, and WGR. For example, when there is a 



 36 

presumption that selection is operating on a specific tissue/life stage/time, then RNA-seq 

would be appropriate for assessing genetic variation in the genomic regions expressed at 

time of sampling. If the genes of interest are already described, then target capture and 

sequencing is the best strategy. When no candidate genes are known, a higher density 

screening such as WES or WGR would be preferable. When there is high confidence that 

selection is acting mostly on protein-coding parts of the genome, WES would be a cost-

effective approach compared with WGR. When there is a notion that selection could be 

acting in regulatory elements or could be mediated by large structural variations, then 

WGR is likely the best choice as it provides the highest marker density and diversity in 

genetic variants assessed. Given that in general we do not know how selection is acting 

on a particular species, life stage, tissue or part of the genome, WGR should be 

considered as a starting point for the exploration of genomic diversity assuming sufficient 

funding and a reference genome are available. In the absence of reference genome, RAD-

seq is an affordable alternative for the screening of neutral and putatively adaptive 

variation in a fraction of the genome (Catchen et al., 2017; McKinney et al., 2017) with 

some limitations (Hoban et al., 2016; Lowry et al., 2017a, 2017b). Fig. 2.4 summarizes 

the rationale for the selection of genomic approach as a function of expected linkage 

block size and type of genetic variation of interest. Once regions of interest are detected 

and mapped, then a more affordable and scalable genotyping approach can be developed 

for massive individual genotyping on such loci. 

 

The success of genome scans to detect adaptive variation depends on multiple 

factors including genetic architecture, effect size, sample size, percentage of the genome 

covered, effective population size and genetic drift, etc. (Box 5). Such information is 

usually unknown, making it hard to predict the success of RRS to reveal loci underlying a 

specific trait. Genome completeness, effect size and genetic architecture of a trait, and 

sampling design determine whether the entire genome is assessed, whether the genetic 

basis of a trait is traceable using genomics tools, and whether relevant individuals are 

included in the analysis, respectively. Also, genetic patterns resulting from demographic 

processes and drift may resemble those of local adaptation (Hoban et al., 2016). 

Therefore, outlier loci detected with genome scans should be treated as working 
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hypothesis for further functional testing. Experimental evaluation of the effect of 

mutations on phenotypic traits and fitness is required to confirm and understand their 

adaptive nature. Such experimentation is unlikely to be performed on threatened species, 

although model species can be used instead, as many biochemical pathways are 

conserved across taxa (Andersson et al., 2012), and advances in genome-editing tools 

(i.e. CRISPR/Cas9) may facilitate functional testing (Varshney et al., 2015). Despite its 

limitations, WGR has proven to be an alternative for revealing adaptive loci and the 

genetic architecture of traits in a variety of organisms (Table 2.2), including humans 

(Auer & Lettre, 2015; Durbin et al., 2010; Field et al., 2016; Nielsen et al., 2017). 

Additionally, genomic data alone may not fully explain phenotypic variation. Epigenetic 

mechanisms (i.e. modifications of gene expression not due to changes in DNA 

sequences) play an important role in phenotype determination (Bossdorf, Richards, & 

Pigliucci, 2008; Richards, Bossdorf, & Pigliucci, 2010) suggesting a holistic approach 

would be ideal for better understanding phenotypic diversity and evolution. 

 

Currently there is no single WGR method fulfilling all requirements in 

conservation geneticists, and each method has its own limitations including sources of 

potential error and bias (Box 3 and 4). However, the implementation of good practices 

can control and minimize such biases, resulting in informative and reliable datasets that 

can be used for population genomics inference (details in Box 2; Fracassetti et al. 2015; 

Wang et al. 2016a; Martinez Barrio et al. 2016). The field of genomics is rapidly 

changing, bringing new technologies and computing algorithms that promise solutions to 

present restrictions. For example, short-read sequences are of limited assistance for 

genome assembly, haplotype-phasing, and detection of large SVs. Long-reads from third-

generation sequencing can help overcome these limitations by resolving difficult parts of 

the genome (i.e., repetitive sequences and SVs) and by allowing the direct phasing of 

haplotypes. The relative low throughput, high error rate and cost have however, restricted 

the use of third-generation sequencing platforms (Bleidorn et al. 2016); though 

improvements promising even higher throughput and lower cost and error rate are 

underway. This implies that in the future lower coverage per individual will likely be 

needed, high-throughput sequencing will likely be cheaper making it more accessible 
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than otherwise, and larger sample sizes could be screened. Similarly, new computer tools 

and paradigms are being created, for example, graph-based genomes (Paten, Novak, 

Eizenga, & Garrison, 2017; The Computational Pan-genomics Consortium, 2016) aim to 

overcome the current limitations of genome assembly which produce haplotype genome 

sequences, excluding a great amount of genomic variation and limiting variant detection. 

 

For some conservation areas described above the benefit of a dense and large 

number of markers is not clear. Effective population size estimation is a case in point 

(Waples, Larson, & Waples, 2016). Genomic information gathered via WGR can make 

important contributions to conservation planning and management of commercially 

exploited species, for instance, by helping in the delimitation and monitoring of 

evolutionary and/or management units and in the prioritization of imperiled populations. 

At the fast pace of computational and sequencing development, we can envision a not 

very distant future where simplified procedures, analysis, and interpretation will make 

genomic tools accessible to managers (Garner et al., 2016; Shafer et al., 2015), the 

analysis of genomes will be performed in the field (Quick et al., 2016), and genomic 

analysis will become a routine task in many non-model species and fields. 
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2.6 Box 1: Genome assembly and completeness of genomes sequenced to 

date 

The assembly of a genome consists in joining sequences of the DNA of one or several 

conspecific individuals into a single sequence. DNA is first fragmented to a particular 

length and sequenced to a certain coverage depending on the sequencing platform. DNA 

sequences are then assembled using specialized computer algorithms. As per the current 

assembly algorithms, a haploid sequence is generally obtained, implying species genome 

diversity and assembly accuracy could be compromised (Baker, 2012; Paten et al., 2017).  

 

A genome project generally has the goal of obtaining a contiguous and complete 

genome sequence with annotated genes (Veeckman, Ruttink, & Vandepoele, 2016). To 

achieve this using current sequencing technologies of second- and third-generation, it is 

necessary to get high sequence depth (>50-60x) evenly distributed across the genome, 

counteracting the relatively high sequencing error rate (Bleidorn, 2016; Goodwin et al., 

2016; H. Lee et al., 2016). As mentioned, repetitive sequences and large structural 

variants are difficult to assemble using just short sequence reads. Thus, the combined 

assembly of short and long reads (or long reads only (Bickhart et al., 2017; Chakraborty, 

Baldwin-Brown, Long, & Emerson, 2016)) is common practice (Ekblom & Wolf, 2014). 

 

The quality of a genome assembly (how complete and accurate it is) has 

traditionally been assessed using different metrics such as N50 and L50. These two 

metrics assess contiguity, N50 estimates the contig/scaffold length at which 50% of the 

total bases fall in in a given assembly, and L50 is the number of contigs/scaffolds that are 

longer than or equal to the N50 length, including 50% of the total bases of a given 

assembly (https://www.ncbi.nlm.nih.gov/assembly/help/). However, these metrics have 

several limitations (Gurevich, Saveliev, Vyahhi, & Tesler, 2013; Salzberg et al., 2012) 

for which new ones have been proposed, for example NG50 and NA50 (Bradnam et al., 

2013; Earl et al., 2011). Guidelines for achieving high quality de novo genome assembly 

of non-model species are presented in Ekblom and Wolf (2014) and in Koepfli et al. 

(2015), and recent advances in genome assembly are addressed in a special issue of the 

journal Genome Research (Phillippy, 2017). 
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Genomes assembled to date are publicly available online in GenBank of the 

National Center for Biotechnology Information (NCBI) 

(https://www.ncbi.nlm.nih.gov/genbank/), the European Nucleotide Archive (ENA) 

(http://www.ebi.ac.uk/ena) and the DNA DataBank of Japan (DDBJ) 

(http://www.ddbj.nig.ac.jp/), institutions that constitute the International Nucleotide 

Sequence Database Collaboration. Ongoing genome projects are listed in GenBank in the 

Bioprojects page (https://www.ncbi.nlm.nih.gov/bioproject/) and in the Genomes Online 

Database (GOLD) (https://gold.jgi.doe.gov/projects) (Mukherjee et al., 2017). 

 

With the advances in sequencing technology and computation achieved with the 

Human Genome Project (HGP) (1990-2003) (Human Genome Sequencing Consortium, 

2004), there has been an exponential growth in the number of genomes published in 

GenBank per year (Box 1 Fig. 2.1A). The great majority of genomes correspond to 

viruses and prokaryotes, and within eukaryotes, fungi, animals and protists follow in 

representation. Within animals, mammals and insects have the highest number of 

genomes sequenced, whereas amphibians and reptiles have the lowest. Within plants, 

land plants have the highest representation (Box 1 Fig. 2.1B). Contrary to expectations, 

most prokaryotic and eukaryotic genome sequences to date are incomplete (Box 1 Figure 

C and D), as they are assembled to the scaffold level. In general, it is only prokaryotes, 

viruses, and a few model eukaryotic species (e.g. yeast, 12.1 Mega bases - Mb, and fruit 

fly, 175Mb) with relatively small, simple or only moderately complex genomes that have 

their sequence complete (Box 1 Figure C and D). Within animals, mammals, fishes, 

insects, and birds have their genomes assembled to the chromosome level, whereas 

mammals, insects, flat and round worms followed by fishes and birds have their genomes 

at the contig level. Land plants have also a great proportion of genomes at the 

chromosome and contig level. 

Within eukaryotes there is a great diversity in genome size, complexity, and 

proportions of repetitive sequence content [e.g., Atlantic salmon (Salmo salar): 2.97 Giga 

bases (Gb) with ~60%  repetitive elements (Lien et al., 2016); loblolly pine tree (Pinus 

taeda): 23.2 Billion bases (Bb) (largest genome sequenced to date with 82% repetitive 
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content (Neale et al. 2014)]. Genome complexity increases with the occurrence of 

duplicated genes (or paralogs), long repeat sequences, polymorphic genes (e.g. MHC, 

Trowsdale & Knight 2015), GC content, and ploidy (Treangen & Salzberg, 2011). The 

complexity of a genome, and especially its repetitive content (Goodwin et al., 2016; 

Reinert, Langmead, Weese, & Evers, 2015), imposes significant challenges for sequence 

assembly (Baker, 2012; Ekblom & Wolf, 2014; Ellegren, 2014; Treangen & Salzberg, 

2011). This could largely explain the varying degree of completeness observed in the 

genomes sequenced to date.  

 

How complete and accurate a genome assembly is will determine its suitability 

for posterior analyses. For example, a very incomplete genome can still be helpful for the 

identification of SNPs but it would fail in the detection of large structural variation (da 

Fonseca et al., 2016). Despite its usefulness in some applications, the general consensus 

is that incomplete draft genomes bring more problems than solutions, especially for the 

accuracy of SNP calling (Li & Wren, 2014).  



 42 

2.7 Box 2: General workflow for whole-genome resequencing data 

acquisition 

Schematic illustration of the general workflow is shown in (Box 2 Fig. 2.1). 

 

2.7.1 Wet-lab procedures 

Tissue sampling and preservation 

Damage of DNA should be avoided. Examples of tissue sampling protocols used in the 

10K vertebrates genome project (Koepfli et al., 2015) are described in Wong et al. 

(2012).  

 

DNA extraction, quality and quantity 

Quality of DNA can be assessed with ~0.8-1% agarose gel electrophoresis and a 25Kb 

molecular weight ladder. A single high molecular weight band (~23Kb) indicates good 

quality DNA. High purity DNA is necessary, which corresponds to 260/280nm 

absorbance ratio of ~1.8-2.0. Highly fragmented DNA should be avoided as it cannot be 

quantified accurately using fluorometric-based methods, typically recommended for 

accurate double-strand DNA quantification (Sedlackova, Repiska, Celec, Szemes, & 

Minarik, 2013). For Pool-seq this is particularly important as the even contribution of 

individual DNA in a pool relies on accurate quantification. The amount of starting DNA 

depends on the library preparation kits’ input requirements described in Table 2.1.  

 

Standardization of DNA concentration across samples (for Pool-seq and lcWGR) 

Each DNA sample is diluted or concentrated to a desired standard value (ng/l). The 

diluting liquid should stabilize and protect DNA from damage (e.g. lowTE). A liquid 

handling robot is recommended for this step to eliminate the potential for pipetting error. 

 

DNA pooling (Pool-seq) 

Pooling consists on mixing equimolar amounts of DNA of several individuals from a 

population. When the interest is to identify the genetic basis of a trait, pools should 

comprise individuals sharing the same trait (not necessarily form the same population) 

and extreme trait categories have increased potential to lead to clearer genetic signals. A 
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minimum of 50 individuals is recommended per pool, but including more (>100), 

(assuming proportional increase in sequencing depth) can help minimize slight 

unevenness in the representation of few individuals leading to more accurate allele 

frequency estimates (Gautier et al., 2013; Schlötterer et al., 2014). Individual DNA is 

then diluted to a standard concentration and verified through a quantification step. Once 

normalized, the same amount of DNA from individual samples can be pooled into a 

single tube. 

 

Sequencing library preparation 

Several kits for library preparation are available commercially. They differ in 

cost/sample, the need for a sonicator, the incorporation of a DNA amplification step 

using PCR, and the amount of input DNA. For current price and DNA input requirements 

of Illumina kits see Table 2.1. DNA amplification is convenient for low DNA amounts, 

but PCR can introduce biases (e.g. underrepresentation of GC-rich fragments, preferential 

amplification of short fragments, and duplicates) that can lead to uneven coverage in 

some loci. Some biases can be minimized by adjusting the PCR protocol (Aird et al., 

2011) and duplicates can be removed in silico using Picard tools, 

http://broadinstitute.github.io/picard, or SAMtools (Li et al., 2009). Small structural 

variants (INDELs and CNVs) can be detected from short-reads of standard libraries 

(~350-550bp insert size). For large structural variants detection (spanning Mbs) a Mate-

pair library is required (~2-20Kb insert size). Additional considerations are discussed in 

Head et al. (2015). 

 

High-throughput sequencing of DNA libraries 

Currently the most popular technology for short-read NGS is Illumina, though new 

technologies are being developed (Goodwin et al., 2016). Illumina offers an overall 

accuracy >99.5%, which is high relative to other platforms, but still restrictive as it is 

difficult to distinguish true genetic variation from technical artifacts (Laehnemann, 

Borkhardt, & McHardy, 2016). The suggested minimum coverage for huWGR is 

>30x/individual (Sims, Sudbery, Ilott, Heger, & Ponting, 2014), for Pool-seq it is 

>50x/pool (Schlötterer et al., 2014), though a much higher coverage should be targeted 
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(>100-200x) for rare allele detection (Jingwen Wang et al., 2016), and for lcWGR it is 1-

4x/individual (Buerkle & Gompert, 2013; Nielsen et al., 2011). The number of Illumina 

lanes needed depends on the trade-off between genome size, target coverage per 

sample/pool, and flow-cell yield. Illumina sequencing is potentially prone to lane-to-lane 

variation (Ross et al., 2013), a problem that can be minimized by distributing barcoded 

libraries across multiple lanes (Sergio Pereira TCAG DNA pers. comm.). 

 

2.7.2 Computer procedures 

Quality control of raw sequences 

Raw sequence data comes from the sequencer in the FASTQ format (Cock, Fields, Goto, 

Heuer, & Rice, 2009). To control for sequencing errors, low quality bases (PHRED 

quality scores <20) and adapter sequences are trimmed off using Trimmomatic (Bolger, 

Lohse, & Usadel, 2014) or Cutadapt (M. Martin, 2011) after an initial sequence quality 

assessment with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

  

Read mapping to a reference genome 

High-quality reads are mapped to a genome based on sequence similarity. Multiple 

algorithms for short-read mapping exist and have been reviewed elsewhere (Fonseca, 

Rung, Brazma, & Marioni, 2012; Hatem, Bozdaǧ, & Çatalyürek, 2013; Reinert et al., 

2015; Ye, Meehan, Tong, & Hong, 2015). Some of the most commonly used free aligners 

are BWA (Li, 2013; Li & Durbin, 2009a, 2010) (Table 2.2) and Bowtie2 (Langmead & 

Salzberg, 2012). Alignment artifacts could arise due to multiple factors, including 

misalignments around INDELs and divergence between the subject reads and the 

reference genome. It is thus important to understand how the various algorithms work to 

make informed decisions on how to optimize running parameters (see Box 3). The final 

product of read mapping is a SAM (Sequence Alignment/Map) file (several Gb in size), 

format that contains a line for each read and fields with associated information including 

read position and mapping quality score (MAPQ or MQ) (Li, Ruan, & Durbin, 2008) that 

can be used for SNP filtering. A BAM file, the compressed light-weighted binary version 

of the SAM file, is obtained using Picard tools (http://broadinstitute.github.io/picard), and 
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it is the format commonly preferred as input file by other programs. Other steps to 

prepare a BAM file for variant calling are described in (Van der Auwera et al., 2013). 

 

Quality control of mapped reads 

A visual exploration of the BAM file with the Integrative Genomics Viewer (IGV) 

(Robinson et al., 2011; Thorvaldsdóttir, Robinson, & Mesirov, 2013) can help identify 

regions with extremely high or low coverage, strand bias, misalignments around INDELs 

and repetitive regions, among others. As alignment errors can occur, it is important to 

verify that reads mapped evenly and correctly to minimize false variant calls. Evaluation 

of mapping quality can be complemented with summary statistics (e.g. average depth of 

coverage; insert size distribution, and number of mapped reads, properly paired reads, 

singletons, and ambiguous mappings) that can be obtained with SAMtools, ea-utils 

(http://expressionanalysis.github.io/ea-utils/), or Qualimap (Okonechnikov, Conesa, & 

García-Alcalde, 2015).  

 

Indel realignment (depending on SNP caller) 

Punctual mapping artifacts around INDELs may not be resolved by optimizing overall 

mapping parameters. Local INDEL realignments are a necessary prerequisite when using 

a site-based SNP calling algorithm like SAMtools (Li et al., 2009) or GATK-

UnifiedGenotyper (McKenna et al., 2010). This step is not needed when using haplotype-

based callers like FreeBayes (Garrison & Marth, 2012) or the GATK-HaploypeCaller 

(http://gatkforums.broadinstitute.org/gatk/discussion/7847). INDEL realignment can be 

done with specific functions in GATK (McKenna et al., 2010) (tutorial: 

https://software.broadinstitute.org/gatk/guide/article?id=7156). A file with known 

INDELs can help defining targets for realignment (Van der Auwera et al., 2013), but in 

its absence, INDELs identified during read mapping can be used instead (default 

mode)(https://software.broadinstitute.org/gatk/events/slides/1504/GATKwr7-X-3-

Non_human.pdf). 

 

Base recalibration (optional but recommended) 
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Per-base quality scores obtained from sequencers often present errors. Because SNP 

calling and genotype likelihood algorithms consider such quality scores, they should be 

corrected. This can be achieved using the base quality score recalibration (BQSR) 

implemented in GATK (DePristo et al., 2011; Van der Auwera et al., 2013). A known set 

of variants is required, but in its absence, an iterative bootstrapping approach can be 

implemented (Snyder-Mackler et al., 2016; Tung, Zhou, Alberts, Stephens, & Gilad, 

2015) 

 

Detection of variant sites 

Specific software exists for the detection of the different types of genetic variants (i.e. 

SNPs and INDELs, SVs, and CNVs). Such algorithms implement particular models of 

variation and sources of information for the discovery of polymorphisms from short-read 

data. Variant positions are detected differently in huWGR, Pool-seq, and lcWGR data. In 

the first two, polymorphic site detection is based on per-site read coverage and quality 

per individual or population, respectively, whereas in the latter, it is based on coverage 

and quality of all the reads covering a site from several individuals of a given sample. 

SNPs are not called in lcWGR, instead, per-site genotype likelihoods are calculated using 

software like ANGSD (Korneliussen et al., 2014). In huWGR and Pool-seq, SNPs are 

called using software like GATK-HaplotypeCaller, SAMtools, or FreeBayes (Table 2.2). 

A comprehensive review of SNP calling using NGS data can be found in Nielsen et al. 

(2011b) and (2012), and for structural variants in Alkan et al. (2011). Each SNP calling 

algorithm makes a series of assumptions that can lead to different results. Thus, a good 

practice is to compare the SNPs detected by at least two algorithms (O’Rawe et al., 

2013). The product of variant calling is a VCF (Variant Call Format) file containing raw 

polymorphisms and annotations (Danecek et al., 2011).  

 

The selection of a SNP calling algorithm for Pool-seq data requires consideration of 

whether it handles ploidies larger than 2. In theory, Pool ploidy=Ploidy per individual x 

Number of individuals. Assuming 50 diploid individuals are mixed, pool ploidy is 100. 

Such large ploidies, however, deplete system memory and multiply runtime (in GATK-

HaplotypeCaller 
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https://software.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_

haplotypecaller_HaplotypeCaller.php, and FreeBayes 

https://github.com/ekg/freebayes/commit/576bc703c246035342538a0feeecd1, accessed 

March 2017).  

Using the default ploidy (2) leads the software to call only the 2 most common alleles in 

a pool, as ploidy assumes 50/50 allele frequency 

(http://gatkforums.broadinstitute.org/gatk/discussion/6551/what-if-ploidy-is-set-to-2-for-

pooled-dna-sequencing-experiment, accessed March 2017). This might not be an issue 

when calling SNPs among closely related samples as SNPs are considered biallelic, but it 

would limit the overall number of alleles detected when comparing more distantly related 

samples. Use of large ploidies is now partially solved by establishing the maximum 

number of alternative alleles to be considered. In GATK v.3.7 this can be set with the 

flag –maxGenotypeCnt (https://software.broadinstitute.org/gatk/blog?id=8692), and in 

FreeBayes with --use-best-n-alleles and setting a pooled mode (--pooled). These settings 

make the algorithms run faster at the expense of missing low-frequency alleles in 

multiallelic loci (https://github.com/ekg/freebayes).  

 

Quality control of raw variants 

SNPs with low support should be removed from the final dataset as most likely are false 

calls. This can be achieved either using variant quality score recalibration (VQSR) or 

applying hard filters. The first, is generally preferred as it is an unbiased filtering based 

on a large number of validated variants that train the algorithm (Van der Auwera et al., 

2013). The latter, is usually used when such known variants are not available and 

includes SNPs removal based on annotation parameters assigned to each SNP during 

read-mapping and variant calling. Common filters include: Low complexity, maximum 

depth, allele balance, double strand, Fisher strand, and quality filter (Li & Wren, 2014; 

Van der Auwera et al., 2013), as well as mapping quality (MQ) (Li et al., 2008). Each 

mapping algorithm calculates the MQ score differently (Ruffalo, Koyutürk, Ray, & 

LaFramboise, 2012) for which scores should not be compared between programs. The 

application of hard filters, however, can bias the Site Frequency Spectrum by excluding 

low-frequency variants and is limited by the absence of guidelines to select which 
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annotations or cut-off values should be applied to a given data. The appropriate choice of 

cut-off values is a function of the data. The recommendation is thus to test different 

parameter combinations and thresholds to optimize these filters. This forum, 

https://software.broadinstitute.org/gatk/guide/article?id=6925, can offer some insight on 

hard filtering using GATK. Additionally, SNPs within low-complexity regions should be 

removed as these regions are troublesome for read mapping and SNP calling (Li & Wren, 

2014). The final VCF file after quality control will be ready for downstream analyses. 

 

Variant annotation 

Sequence ontology terms can be annotated to variants in a VCF file using for instance, 

Vcfanno (Pedersen et al., 2016), ANNOVAR (Yang & Wang, 2015), or SNPeff 

(Cingolani et al., 2012a) programs.  

 

Variant validation 

Variants detected from WGR data should be treated as putative polymorphisms, 

especially in Pool-seq and lcWGR. SNP genotyping PCR-based methods can be used for 

SNP validation. PCR amplification and Sanger sequencing can be used for SVs 

validation. 

 

For additional guidelines on how to obtain high-quality variants from high-throughput 

sequencing data see Van der Auwera et al. (2013); Pfeifer (2017).  
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2.8. Box 3: Limitations, sources of error and bias and potential solutions of 

the Pool-seq approach  

 

Individual genotypes are missed 

Pool-seq has been used for the estimation of genetic differences among populations, the 

detection of outlier loci, and for mapping genetic variation underlying phenotypic traits 

(see Table 2.2). This method, however, prevents the identification of individual reads as 

only one barcoded-library is prepared for the pooled DNA of individuals (Schlötterer et 

al., 2014). This has four important implications: (1) errors during library preparation or 

shotgun sequencing that could affect the homogeneous contribution of individual DNA to 

the final dataset cannot be detected; (2)  as individual genotypes are lost, presence of 

migrants in the sample cannot be evaluated; (3) individual haplotypes and linkage 

disequilibrium (LD) cannot be assessed (e.g. the LD method for the estimation of 

effective population size cannot be used); (4) only total allele frequencies can be 

calculated for a given pooled DNA. These factors can bias the population-level allele 

frequency estimates and limit population genetics analyses, leading to concern about the 

suitability of the Pool-seq method for population genomic studies (Anderson et al., 2014; 

Therkildsen & Palumbi, 2017).  

Several ways to mitigate these concerns have been proposed. Knowledge of 

population structure can help avoid accidentally pooling individuals of different origin. 

Mixed aggregations, however, can also be indirectly detected from Pool-seq data, and 

conveniently excluded of posterior analysis if required, as they exhibit extremely large 

branch lengths in a phylogenetic tree based on pairwise genetic distances (see 

Lamichhaney et al. (2017) Figs 2 and 5: WFB location). In the absence of prior 

information on population structure, ecological and biological knowledge (e.g. timing of 

reproduction, maturity stage at time of sampling, size and age, etc.) can help infer the 

local origin of individuals. Uneven representation of individual DNA samples in the final 

pool can be minimized following stringent laboratory procedures (Box 2). The limitations 

above concerning the lack of haplotype and hence individual genotypes and linkage 

disequilibrium information can be overcome by the selection of a subset of informative 

SNPs identified from the Pool-seq data and the subsequent genotyping of a number of 
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individuals per population at these informative SNPs using PCR-based or NGS-based 

genotyping methods. This SNP validation step should be performed anyways as part of a 

good practice protocol for the Pool-seq workflow (Box 2).  

 

lcWGR consists of individually barcoded DNA samples that allow the control of 

most of the concerns raised above for Pool-seq, except for the fact that individual 

genotypes cannot be reliably called. Instead, the raw sequence data is used to calculate 

per-site genotype likelihoods (GLs) based on the reads of multiple individuals in a 

sample. The sample allele frequency per site is calculated from the GLs and  is used for 

posterior population genetics analyses (Korneliussen et al., 2014; Nielsen et al., 2012, 

2011). 

 

Allele frequency estimation is susceptible to multiple factors 

A main weakness of Pool-seq is the uneven distribution of reads due to technical and 

computational artifacts (Anderson et al., 2014). Depth of coverage is the basis for variant 

detection where read counts are used for the estimation of allele frequencies in individual 

SNPs. Therefore, uneven coverage not resulting from biological processes can greatly 

increase false SNP calls or leave out informative SNPs, biasing downstream analysis and 

interpretation (Sims et al., 2014). Read depth of coverage can be affected by several 

factors including (1) duplicates and GC bias produced by PCR during library preparation 

(Sims et al., 2014); (2) amplification bias of NGS sequencing technologies (Goodwin et 

al., 2016); (3) incompleteness of the reference genome especially at repetitive regions 

that could produce misalignments and false calls (Li & Wren, 2014); (4) structural 

variations (e.g. CNVs, chromosomal inversions, transposable elements) can inflate allele 

frequency estimates (Schlötterer et al., 2014); and (5) poor read mapping can result in 

read misplacement or missing of divergent reads (Kofler, Langmuller, Nouhaud, Otte, & 

Schlotterer, 2016; Kofler, Orozco-terWengel, et al., 2011; Schlötterer et al., 2014). Factor 

(1) can be controlled by using PCR-free sequencing library preparation kits when plenty 

DNA is available; if this is not the case, then PCR duplicates can be easily removed using 

bioinformatic tools. Factor (2) is out of researchers’ control but to minimize lane-to-lane 

variation, DNA libraries should be spread in different lanes (Ross et al., 2013). Factor (3) 
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can be minimized by including an indel realignment step before variant calling (Van der 

Auwera et al., 2013), or by excluding variants detected in and around INDELs (Kofler, 

Orozco-terWengel, et al., 2011) and repetitive regions. The effect of factor (4) can be 

minimized by excluding structural variants of variant calling (Kofler, Orozco-terWengel, 

et al., 2011), though this type of variation should be included in genome scans for the 

detection of outlier loci or the characterization of the genetic basis of traits. And factor 

(5) requires the optimization of read mapping by selecting an adequate algorithm and 

running parameters that minimize misalignments.   

 

Mapping short reads against a reference sequence is a difficult task considering 

the large number of reads to process and the computational challenge of determining their 

exact position in the genome. For instance, repetitive sequences are difficult to map 

because their sequence can be present in multiple positions, and the genome could also 

have assembly errors. Moreover, there may be sequence differences between subject 

reads and the reference genome, because the latter is usually not representative of the 

species genetic diversity (usually a genome sequence is built from DNA of one or a few 

individuals). (reviewed by Treangen & Salzberg (2012), Phan et al. (2014), Laehnemann 

et al. (2016)). Thus, the optimal choice of a mapping algorithm depends on the sequence 

data structure (e.g. repetitive content) and degree of divergence between the reads and the 

reference genome. Multiple mapping algorithms exist which are optimized for different 

levels of sequence divergence. For example, BWA excels in the mapping of reads with 

low divergence (<2%) (Li, 2013), however, the running parameters can be modified for 

mapping divergent reads (Kofler et al. 2011). In contrast, Stampy is better for mapping 

reads with high-divergence as the user can input a substitution rate value (Lunter & 

Goodson, 2011). Default settings of mapping algorithms are usually optimized for 

specific datasets and highly curated genomes (e.g. humans), thus running a mapper with 

default parameters may not be ideal for all datasets as this can produce multiple spurious 

outlier loci and false positive SNPs (Kofler et al., 2016). Time investment into optimizing 

read mapping parameters before SNP calling is thus recommended. Unfortunately, there 

is no golden rule applicable to all datasets but, in general, the idea is to experiment with 

parameters (e.g. mismatch and gap opening penalties), conduct read mapping, compare 
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alignment statistics, and so on, following a multi-dimensional optimization process. The 

ideal parameter combination will maximize the number of properly paired-end reads 

while minimizing presence of discordant mates, singletons, and ambiguous mappings. 

This rationale is explained in detail for RAD-seq data by Jonathan Puritz  

(https://github.com/jpuritz/Winter.School2017/blob/master/Exercises/Day%201/Mapping

%20Exercise.md). 

Despite the various factors potentially affecting depth of coverage in Pool-seq 

data, numerous studies have demonstrated the method can produce reliable population-

level allele frequency estimates (Fracassetti et al., 2015; S. Lamichhaney et al., 2017; 

Martinez Barrio et al., 2016; Jingwen Wang et al., 2016). 

 

Rare and low-frequency variants are hard to detect 

It is generally assumed that Pool-seq only allows for the discovery of common variants of 

large effect as different factors can affect read coverage, making it difficult to distinguish 

low frequency variants from sequencing error. Recent studies by Wang et al. (2016), 

however, challenge this idea as they recovered rare variants from high-depth Pool-seq  

data of Bull Terrier dogs (average 130x) and humans (average 150x). Minor allele 

frequency errors were evaluated using three variant calling programs, SAMtools, GATK 

(ploidy setting) and Freebayes (ploidy setting). A good proportion of rare SNPs identified 

from the pooled data were validated through individual genotyping of several samples 

using the MassARRAY System (Agena Bioscience, U.S.) and the Illumina SNP array 

(Illumina, U.S.) systems. Thus, Pool-seq can be a fast and affordable initial approach for 

the assessment of rare variants in large-scale association studies. 
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2.9 Box 4: Limitations, sources of error and bias and potential solutions of 

the lcWGR approach 

 

Genotype likelihood (GL) values can vary 

Genotype likelihoods are the foundation of the statistical framework for population 

genetics inference from low-coverage sequencing data (Buerkle & Gompert, 2013; 

Nielsen et al., 2012, 2011). GLs and additional analyses for this type of data are 

implemented in the programs ANGSD (Korneliussen et al., 2014; Nielsen et al., 2012) 

and NgsTools (Fumagalli, Vieira, Linderoth, & Nielsen, 2014). GLs per polymorphic site 

are estimated based on the observed sequence reads covering the site from a given sample 

of individuals, and the reads’ PHRED quality scores. The base-error rate estimation 

method differs among GL models and error rates can be fixed or estimated from the 

quality scores or the sequence data. The 4 models for GLs and the 2 models for base-

error rate calculations implemented in ANGSD are described by Korneliussen et al. 

(2014). Previous studies indicate the GL models can generate different results in some 

circumstances (Korneliussen et al. 2014). Thus, the choice of model can potentially 

introduce bias 

(http://www.popgen.dk/angsd/index.php/Genotype_Likelihoods)(Korneliussen et al. 

2014) but models have not been compared nor, to our knowledge, has the procedure for 

model selection been discussed in the literature thus far. The base-error rate methods 

differ in how they model the error structures in the data, which is important in the 

calculation of GLs and downstream analyses. If the modelling misses error sources, then 

the GLs are likely to be biased and verification from mathematical derivations that the 

proper error structure in the data has been correctly incorporated is not straightforward.   

 

Genotype likelihoods can be affected by: (1) accuracy of base-calling and quality 

score (Fumagalli et al., 2013), (2) read coverage distribution and filtering, (3) sample size 

and individuals included in the sample, (4) how accurately model assumptions are met, 

including (5) the assumption that markers are diallelic and organisms are diploid. (1) 

Sequencing error is extensive in available sequencing platforms (Goodwin et al., 2016), 

and the per-base quality scores obtained directly from the sequencing machines also have 
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errors. Therefore, lcWGR data should be obtained using sequencing platforms that offer 

the lowest error possible, and the per-base quality scores need to be recalibrated before 

data analysis. It is also important to consider that the GL calculation assumes 

independence among reads, which may be violated in the presence of alignment error or 

PCR artifacts (Nielsen et al., 2011). (2) It is currently almost impossible to obtain an even 

read coverage distribution across the genome and among individuals. This is a result of 

the sequencing chemistry itself (usually following a Poisson distribution), and of 

laboratory procedures that can skew the representation of individual DNA samples added 

to a flow cell (errors in pipetting or DNA quantification, and variability in fragment sizes 

during library preparation). In addition, a very low sequencing depth per individual (<2x) 

could also limit the possibility of sequencing both alleles in a diploid organism 

(Fumagalli, 2013). Similarly, the joint effect of read filtering (including in silico coverage 

cut-offs across individuals in a sample), reference genome quality and completeness, and 

read mapping can also bias the individual read representation for a particular locus in the 

final dataset. Thus, a varying proportion of missing data per individual could be expected 

in lcWGR datasets, which implies polymorphic sites are covered by reads from a varying 

proportion of individuals in a sample. This could be a problem when reads of a small 

number of individuals are supporting a particular site because they may not be 

representative, potentially biasing GL estimates and downstream analyses. An excess of 

missing data can also bring convergence problems that impact the accuracy of many 

calculations including the individual admixture analysis implemented in NGSadmix 

(Skotte, Korneliussen, & Albrechtsen, 2013). In GWAS in humans, missing genotypes in 

extremely low-coverage sequencing data (0.1–0.5x/sample for 909 individuals) have 

been treated using imputation methods that rely on the availability of a set of known 

haplotypes (Pasaniuc et al., 2012). For non-model species such set is commonly absent, 

implying that imputation is not an option, unless individuals are highly inbred (Wang et 

al., 2016). In conclusion, lcWGR studies require a relatively even read coverage 

distribution among individuals (see Therkildsen & Palumbi, 2017). The removal of sites 

with large amounts of missing data (>80%) (Skotte et al., 2013) and a target read depth 

that assures both alleles are sequenced in a diploid organism (>2x) are recommended 

(Fumagalli, 2013). Similarly, (3) sample size and the actual individuals included in a 
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sample determine the alleles and sites assessed as well as the population structure and 

admixture estimates. Simulation studies have shown good accuracy in population 

genetics parameters using a low depth per individual (~1-2x) as long as the number of 

individuals in the sample is large (Buerkle & Gompert, 2013; Fumagalli, 2013). A 

minimum number of individuals per sample or population has, however, not been 

proposed. Presumably this is because such number depends on several factors including 

the species genomic architecture (e.g. LD decay, recombination rate, mutation rate) and 

effective population size, and the funding available, among other variables. However, it 

would be useful to have at least some reference obtained from real data that can be used 

in the design of sampling programs. The genetic makeup of individuals composing a 

sample would determine the alleles and sites evaluated, therefore it is important to ensure 

individuals are not closely related to avoid inflated estimates of genetic differentiation. 

When comparing populations, it is fundamental to verify the degree of individual 

admixture before performing GLs calculation as the presence of mixed individuals will 

likely bias the alleles represented and thus, subsequent analyses and interpretation. 

Individual admixture can be verified using the program NgsAdmix (Skotte et al., 2013). 

(4) The accuracy of GLs and subsequent metrics depend on the fulfilment of the 

assumptions made in the mathematical models, for instance, independence among reads 

for GLs calculation (Nielsen et al., 2011), independence among sites and Hardy-

Weinberg Equilibrium for calculation of the likelihood function for the site frequency 

spectrum (Nielsen et al., 2012), and independence among individuals for the estimation 

of allele frequencies (Kim et al., 2011). Finally, (5) the current four GL models were 

developed for diallelic markers in diploid organisms implying that lcWGR cannot 

currently be applied to non-diploid species or pooled DNA data. The method is thus 

limited to the assessment of genetic variation in SNP loci; INDELs are included in the 

models but not used for posterior analyses (Korneliussen et al., 2014). Putative structural 

variants could be detected, however, from high-density SNPs as they facilitate the 

identification of sweeps to a fixed allele, as observed in a cryptic subgroup of Anopheles 

gambiae s.l. (GOUNDRY) where ~500 SNPs allowed the detection of a putative large 

inversion (1.67-Mb) on the X chromosome (Crawford et al., 2016).  
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Few programs accept GLs 

Many traditional population genetics software packages require individual genotypes as 

input data, limiting the possibility of use for the analysis of lcWGR data. To solve this 

problem, the software ANGSD includes several genotype callers (Korneliussen et al., 

2014). 

 

It is a relatively new approach 

lcWGR was implemented in the 1000 Genomes Project (2008-2015) (Auton et al., 2015), 

where the initial statistical models, file formats, and programs were developed. Its use has 

been restricted mostly to humans and, more recently extended to agricultural and other 

non-model species. However, only few laboratories have used this approach thus far, 

explaining perhaps the scarcity of software available for this type of data. As this 

approach gains popularity, new computer packages are likely to be developed.  
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2.10 Box 5: Considerations and limitations of genome scans for detecting 

selection and inferring local adaptation 

 

Genome scans are currently one of the most popular methods for the detection of 

selection from genomic data (Barrett & Hoekstra, 2011; Hoban et al., 2016; Martin & 

Jiggins, 2013; Pardo-Diaz et al., 2015; Vitti et al., 2013), in particular for the detection of 

directional selection.  

 

Genome scans encompass a comprehensive survey of the genome of individuals 

and populations to identify molecular patterns that presumably result from selection, for 

example, increased linkage disequilibrium (LD) (i.e. long haplotype blocks) and reduced 

variation around beneficial mutations, abundance of rare alleles in the population site-

frequency spectrum, significant allele frequency differences between populations under 

contrasting selection regimes, among others (Ellegren, 2014; Jensen, Foll, & Bernatchez, 

2016; Vitti et al., 2013). Currently, genome scans are based on: (1) information on the 

physical distance (LD blocks) between loci for the detection of selective sweeps (Messer 

& Petrov, 2013; Vatsiou, Bazin, & Gaggiotti, 2016), or on (2) knowledge of allele 

frequency differences between unlinked loci using (i) outlier loci tests, or (ii) Genetic-

Environment Association (GEA) analysis (Bernatchez, 2016; Gagnaire & Gaggiotti, 

2016; Hoban et al., 2016). (1) Selective sweeps can be “hard”, when the beneficial 

mutations of large effect are new and increase in frequency in the population in a short 

period of time, or they can be “soft”, when they comprise numerous alleles of small 

effect that were already present in the population or resulted from recurrent independent 

mutational events (Messer & Petrov, 2013). The genetic signal for hard sweeps is 

generally easier to detect in genomic data as it includes elevated differentiation at 

particular loci, whereas the soft sweeps signal can be confounded with the genomic 

background because the genetic changes involved are more subtle. The detection of either 

type of selective sweeps and their distinction requires the use of specific statistical tools 

(reviewed by Messer & Petrov (2013) and Vatsiou et al. (2016)). (2)(i) Outlier loci tests 

rely on the detection of putatively selected loci showing elevated levels of differentiation 

with respect to expectations under a neutral model and usually involve a window-based 
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approach where summary statistics (e.g., FST) are estimated and averaged for all the 

variants present in the window (Barrett & Hoekstra, 2011). Window size choice is thus 

important as, by modifying the number and the range of physical separation between 

variants, the outcome could change. A very large window can lead to an overestimation 

of outlier loci due to false positives, whereas an excessively narrow window can lead to 

an underestimation of outlier loci by excluding from the window sections of low 

differentiated genomic background useful for outlier detection. Window size selection 

should thus account for average genome-wide LD or, in its absence, for the relative 

genomic position and separation of variants, population polymorphism level (Hoban et 

al., 2016), or could also be statistically inferred as breakpoints in the genomic data 

(Beissinger, Rosa, Kaeppler, Gianola, & de Leon, 2015). (ii) GEA analysis uncovers 

putatively adaptive loci through the comparison of the genetic variation between 

populations adapted to contrasting environments (Barrett & Hoekstra, 2011; Martin & 

Jiggins, 2013; Pardo-Diaz et al., 2015). The choices of populations and environmental 

variables to compare are relevant as they define the power of such comparison. The 

population spatial resolution and the temporal resolution of environmental variables need 

to be considered as they will directly affect the correlations between outlier loci and 

environment (Hoban et al., 2016).  

 

Other limitations of genome scans include the fact that: (i) some outlier loci may not 

themselves be under selection but may instead be located in the proximity of a causal 

mutation, implying that follow-up functional molecular studies testing the phenotypic 

effect of an outlier locus are needed to consider it adaptive (Barrett & Hoekstra, 2011); 

(ii) signals of selection can be confounded with footprints of demographic history (e.g. 

populations structure) (Tiffin & Ross-Ibarra, 2014); (iii) mutation and recombination 

rates, type and strength of selection, and the genetic architecture of adaptive traits all 

modulate the genomic heterogeneity of a species, restraining the capacity to detect the 

genetic basis of adaptation (Haasl & Payseur, 2016). Several solutions have been 

proposed to overcome these limitations (and others not commented here) and are 

described in more detail in the referenced papers.  
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The genetic architecture of an adaptive trait refers to the total number of genes 

contributing to a given character, their location, effect size and heritability, and the 

interactions among them (i.e. additivity, epistasis, dominance, pleiotropy) and with the 

environment (genetic-environment interactions) (Gagnaire & Gaggiotti, 2016; Hansen, 

2006). This architecture determines the range of allele frequency changes in a population 

responding to selection (Gagnaire & Gaggiotti, 2016). For instance, in oligogenic traits 

(i.e. characters underlined by a few large effect genes) a large shift in allele frequencies is 

expected, whereas a small change is assumed in polygenic traits where characters result 

from the interaction of multiple small effect genes. The power of genome scans to 

identify the genetic basis of quantitative traits based on allele frequency methods 

therefore depends on how much of the total adaptive genetic variation of a trait is 

explained by the summed effect of the outlier loci (Berg & Coop, 2014; Gagnaire & 

Gaggiotti, 2016). Sampling design in a complex environmental landscape (Lotterhos & 

Whitlock, 2015), as well as sample size and number and density of markers thus play an 

important role in our capacity to reveal the genetic basis of adaptive traits, especially for 

traits of polygenic architecture (Gagnaire & Gaggiotti, 2016) which are common in 

nature (Bernatchez, 2016; Rockman, 2012). The choice of sequencing technique for the 

collection of genomic data is thus not trivial as it will define the proportion and type of 

genetic variation in a genome that has been sampled and thus the potential inclusion or 

exclusion of relevant loci (Hoban et al., 2016). The marker density required for a genome 

scan should thus ideally account for the average LD decay to ensure that most variants 

contributing to a trait are surveyed (Gagnaire & Gaggiotti, 2016). 

 

The importance of a proper planning of sequencing approaches for the study of 

local adaptation has been brought into sharp focus by a recent debate on the power of 

RAD-seq for the detection of adaptive genetic variation in natural populations. Lowry et 

al. (2017) used computer simulations to argue that a large proportion of putatively 

adaptive loci are missed by RAD-seq studies because typically only a small fraction of 

the genome is surveyed with loci being too widely spaced. The problem is expected to be 

more important for species with large census and effective population sizes which tend to 

exhibit short LD blocks (high LD decay and high recombination rate). On the other hand, 
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McKinney et al. (2017) claim that a properly designed RAD-seq study that takes 

advantage of the flexibility of restriction enzymes, can provide enough markers to 

achieve high genome coverage. Authors also argue that LD and recombination are not 

homogeneous across the genome and adaptation signatures can frequently result in 

extended LD blocks [or genomic islands of divergence, Nosil et al. (2009)] spanning 

several Kb, that can be easily screened with the low marker density provided by RAD-

seq, regardless of effective population size (McKinney  et al.  2017). In addition, Catchen 

et al. (2017) argue that even with short LD blocks, RAD-seq has been successful at 

detecting adaptive loci (e.g., the Eda locus in three-spine sticklebacks), and that 

endangered species usually exhibit small effective population sizes for which large LD 

blocks should be expected. They also pointed out that some studies may be focused on 

detecting adaptive differentiation only at the fraction of the genome sampled and not at 

all adaptive loci present. Finally, Lowry et al. (2017b) emphasize that the average LD 

block size and variation of recombination rate along the genome is usually unknown for 

non-model species, thus, it is difficult to estimate a priori the minimum marker density 

required for a RRS approach. They propose RADseq studies aiming to detect adaptive 

loci should follow these basic principles: 1) report the limitations of a given study, 2) in 

the absence of a reference genome or linkage map, efforts should be centered first on 

obtaining this information, 3) complement genome scans with alternative sources of 

evidence (i.e. field experiments or functional molecular tests) that demonstrate the 

phenotypic effect of outlier loci, and 4) conduct pilot tests to assess the viability of a 

sequencing experiment plan. 

 

Although previous knowledge on the extend of LD decay or recombination rate is 

generally lacking for non-model species, LD block size can be estimated from a dense 

genetic map or from RAD-seq data with a reference genome (Catchen et al. 2017). Fig. 

2.4 synthesizes the decision making process for sequencing approach as a function of the 

existence of a reference genome; expected LD block size; whether the interest is on 

neutral, adaptive or both types of genetic variation; relative cost; and type of genetic 

variation assessed. 
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Sample size is another practical consideration that has not received much 

attention in population genomics, in part because of the perception that large sample sizes 

are not required because of the very large number of markers genotyped per individual. 

This may be fine in some cases (studies in Table 2.2 with small sample sizes), but in 

general, the establishment of a minimum sample size depends on the research question 

and the genetic architecture of the focal species. For example, in human genetics studies 

for the detection of small effect variants associated with rare diseases, even the screening 

of thousands of individuals has not provided enough power to detect and track such 

variation (Agarwala, Flannick, Sunyaev, & Altshuler, 2013; Lee, Abecasis, Boehnke, & 

Lin, 2014; Moutsianas et al., 2015). Therefore, a presumably large sample size may be 

required in studies of non-model species aiming to identify adaptive variation associated 

to polygenic traits. 

 

In conclusion, multiple considerations need to be taken into account when 

planning genome scans for the detection of signatures of selection and local adaptation 

from genomic data. The choice of minimum sample size and sequencing technique for 

the collection of genomic data should respond to the research question and should be 

informed by the expected (or ideally verified) LD block size (or physical LD), and the 

genetic architecture of a given phenotypic trait. These factors will determine the marker 

density needed for the successful detection of putatively adaptive variation in the 

genome. 
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2.13 Tables 

 

Table 2.1 Comparison of requirements and different aspects of RAD-seq, Pool-seq and lcWGR approaches for population 

genomics studies. 

 

Aspect RAD-seq (original protocol)1 Pool-seq lcWGR 

Expected percentage of the 

genome covered 

~1-5 % > 70 % (depending on reference genome 

completeness) 

> 70 % (depending on reference genome 

completeness) 

DNA quality High molecular weight High molecular weight High molecular weight 

DNA quantity per sample > 200 ng > 1 g per pool (for TruSeq PCR-free kit) 

> 200 ng per pool (for TruSeq Nano kit) 

> 50 ng (for Nextera kit), although it 

could be less2 

Need of a reference genome Not indispensable but desirable Required Required 

Type of library Usually non-commercial Commercial Commercial 

Library insert size ~350-550 bp (standard library) ~350-550 bp (standard library). For 

detection of large structural variants with 

short-read sequencing, ~2-20Kb (mate-

pair library)  

~350-550 bp (standard library) 

Cost of library preparation ~USD$ 5-10/individual3 ~$USD 46/pool3 ~$USD 6/individual2,3  

Minimum number of individuals 

per population 

Usually ≥ 204 ≥ 505 Number not established but usually ≥ 50 

Popular sequencing platform Illumina MiSeq and HiSeq, 

IonProton 

Illumina HiSeq Illumina HiSeq 

Type of sequence reads Single-end or paired-end reads,  

≥ 100 bp per read 

Paired-end reads, ≥ 100 bp per read Single-end or paired-end reads, ≥ 100 bp 

per read 

Minimum sequencing depth of 

coverage 

High coverage: ≥ 20x per individual 

for diploids and higher depth for 

polyploids7 

High coverage: ≥ 50-100x per pool5 Low coverage: ~1-4x (per individual) 

depending on ploidy, e.g. 2x 

recommended for diploid organisms8 

Minimum computing resources Desktop computer with multicore 

processor (≥ 24) and ≥ 64GB RAM 

QC and trimming of raw reads, read mapping, duplicate marking, and read sorting of 

small to large size genomes (~1Gb) can be performed in a desktop computer with 

multi-core processor (≥ 32) and ≥ 128-256GB RAM. Greater computing resources 

(i.e. computer cluster or computing facilities in the cloud) are required for larger gen 

omes (≥ 1Gb), specially for SNP calling 

Computer data storage9 MBs per sample (depending on 

genome size and depth) 

GBs per pool (depending on genome size 

and depth). For example, for one 

population of Atlantic herring (genome 

size ~900Mb, 50 individuals per pool, 

depth 50x per pool): 

raw data ~50GB, clean data ~40GB, 

BAM file ~35GB, gVCF file ~40GB 

GBs per individual (depending on 

genome size and depth) 

Programming skills Basic-Intermediate Intermediate Intermediate 

6
3 
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Aspect RAD-seq (original protocol)1 Pool-seq lcWGR 

Expected number of SNP loci per 

sample 

Thousands (without reference), 

hundreds of thousands (with 

reference genome) 

Millions 

 

Millions 

 

Type of variant assessed Mostly SNPs, inversions when a 

reference genome is available 

SNPs, INDELs, large SVs, CNVs SNPs, INDELs detected but not used in 

software, some SVs (depending on 

genome coverage per individual) 

Type of genetic variation 

screened 

Mostly neutral and sometimes 

functional (depending on marker 

density) 

Neutral and functional Neutral and functional 

Output data obtained per sample Individual SNP genotypes (based on 

coverage) 

Population-level allele frequency per SNP 

(based on read counts per variant site) 

Population-level genotype likelihood 

(based on reads of multiple individuals 

in a population) 

Possibility to do individual-based 

analyses 

Yes No, individual information is missed 

during library preparation 

No, reliable individual SNP calls cannot 

be obtained from low coverage data 

Scalability 

(+): most positive feature 

(−): most negative feature 

High 

(+) Cheaper method than Pool-seq 

and lcWGR enabling the analysis of 

numerous individuals and 

populations 

(−) Low marker density limits the 

capacity to detect adaptive variation   

High  

(+) Many individuals per population can 

be mixed in one pool for the same library 

preparation cost 

(−) Sequencing depth should be increased 

accordingly. More expensive than RAD-

seq but cheaper than lcWGR 

High  

(+) Low depth per individual enables the 

analysis of numerous individuals per 

population 

(−) More expensive than Pool-seq, 

especially for >50 individuals analyzed 

per population 

 
Abbreviations: GB = gigabytes, MB = megabytes, CNVs = copy number variations, SVs = structural variations, INDELs = insertions and deletions, SNPs = single nucleotide 

polymorphisms, QC = quality control. 

 
1 Baird et al. (2008), as cited in (Andrews et al., 2016). 
2 When following the protocol by Therkildsen & Palumbi (2017). 
3 Price for March 2017. 
4 Hohenlohe et al. (2010) 
5 Schlötterer et al. (2014) 
6 Fumagalli (2013) 
7 Andrews et al. (2016) 
8 Additional data storage space is required for temporary files generated during data analysis, which can exceed (2-3x) the size of the final data file (e.g. for Atlantic herring, SAM file 

~150GB) 

  

6
4 
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Table 2.2 Key methodological aspects of case studies using WGR in different conservation biology topics. 

 

Organism Main findings 
WGR 

method 

Sample 

size 

Sequencing design and 

output 

Number 

of 

markers 

Software for 

mapping 

[parameters] 

IR/ 

BQSR 

SNP 

calling 

software 

Ref. 

Topic: Phylogenomics, hybridization and taxonomical species resolution       

Modern birds 
(Neoaves) 

Genome-scale phylogenetic tree 
of 48 species representing all 

orders of Neoaves 

huWGR 48 species, 
1 ind. per 

species 

Illumina HiSeq 2000, 
Roche  

454, pair-end libraries 

of different insert sizes, 

24x-160x 

Whole-
genome 

DNA 

sequences 

SOAPdenovo1  - - Jarvis et 
al. (2014) 

Snub-nosed 

monkey 

(Rhinopithecus 
roxellana, R. bieti, 

R. brelichi, R. 

strykeri) 

Genome-scale phylogenetic 

relationships that indicate 

functional evolution and leaf-
eating dietary adaptations 

huWGR 4 species, 1 

ind. per 

species 

Illumina HiSeq, 30x 

huWGR, 146x de novo 

assembly, multiple 
paired-end and mate-

pair libraries spanning 

size range of 180 bp to 
20 kb 

Whole-

genome 

DNA 
sequences 

SOAPdenovo1  - - Zhou et 

al. (2014) 

North American 

wolves 

Lack of unique ancestry in eastern 

and red wolves 

huWGR 28 ind. Illumina HiSeq, paired- 

and single-end 
sequencing libraries, 

average insert size of 

300 to 500 bp, 4-29x 

5,424,934 

SNPs 

Stampy2  NI ANGSD6 vonHoldt 

et al. 
(2016) 

Common milkweed 

(Asclepias syriaca) 

 

Marker development including 

complete chloroplast genome, a 

nearly complete rDNA cistron and 
5S rDNA sequence, a partial 

mitochondrial genome sequence, 

and some single copy ortholog 
genes 

lcWGR 1 ind. Illumina GAII, 1 lane, 

40 cycles, 0.5x 

- - - - Straub et 

al. (2011) 

Beardtongue plant 

(Penstemon. 

centranthifolius, P. 
grinnellii) 

Primer design of phylogenetic 

markers in the plant genus based 

on annotation and gene prediction 
of more than 10 000 contigs 

lcWGR 1 ind. of 

each 

species 

Roche 454 platform, 

~0.005x–0.007x 

- - - - Blischak 

et al. 

(2014) 

Yellow baboons 

(Papio 
cynocephalus), 

Anubis baboons (P. 

anubis), and 

hybrids 

Genetic differentiation between 

parent taxa, complex admixture 
history involving intermittent but 

multiple hybridization events that 

did not indicate fitness reduction 

in hybrids 

lcWGR 46 ind. in 

total 

Illumina HiSeq, for 

huWGR, 2.09x-19.6x, 
paired-end 100 bp reads 

~2.1 

million 

BWA-MEM4 

[minimum 
seed length of 

20] 

Yes/Ye

s 

GATK 

UnifiedGen
otyper7, 

(discarding 

indels) 

Wall et al. 

(2016) 

Topic: Population structure and admixture        

Giant pandas 

(Ailuropoda 
melanoleuca) 

Multiple demographic events 

including population expansion, 
bottlenecks, and divergence, 

human activities most likely 

contributed to decline in the last 
3000 years 

lcWGR 34 ind. llumina HiSeq2000 

platform, and 100-bp 
paired-end reads, 4.7x 

13,020,05

5 SNPs 

BWA-ALN3 

[NI] 

NI SOAPsnp13 Zhao et 

al. (2012) 

6
5 



 

 66 

Organism Main findings 
WGR 

method 

Sample 

size 

Sequencing design and 

output 

Number 

of 

markers 

Software for 

mapping 

[parameters] 

IR/ 

BQSR 

SNP 

calling 

software 

Ref. 

Killer whale 

(Orcinus orca) 

Differentiations between pairs of 

contemporary allopatric and 
sympatric ecotypes most likely 

are the consequence of ecological 

divergence and genetic drift 
resulting from bottlenecks 

experienced during past founder 

events 

lcWGR (lcWGR): 

48 ind., 
(huWGR): 

2 ind. 

Illumina HiSeq 2000 

platform using single-
read 100-bp chemistry, 

2x 

603,519 

variant 
sites 

BWA3 [NI] NI ANGSD6 Foote et 

al. (2016) 

Western palearctic 

black-and-white 

flycatchers of the 
genus Ficedula (F. 

speculigera, F. 

albicollis, F. 
hypoleuca, F. 

semitorquata) 

Most recent common ancestor of 

the four species dates back to 1–2 

million years (Mya) ago and each 
species followed separated 

evolutionary paths involving 

population growth, decline 
(~100–200 thousand years ago) 

and expansion 

huWGR 200 ind. in 

total 

HiSeq 2000, paired-end 

100 bp, insert size ~450 

bp, ≥20x 

NI BWA3 [NI] Yes/Ye

s 

SAMtools8 Nadacho

wska-

Brzyska 
et al. 

(2016) 

Cattle (Bos taurus) Historical events such as 

domestication or modern breeding 
are related with population 

decline 

huWGR 15 to 25 

ind. from 
each of 4 

breeds 

Illumina NI BWA3 [NI] NI SAMtools8 Boitard et 

al. (2016) 

European dark 
honey bee (Apis 

mellifera mellifera) 

and two introduced 

honey bee 

subspecies (A. m. 

carnica and 
buckfast) 

Genetic differentiation between 
subspecies that coincides with 

geography. Observed presence of 

admixed individuals in protected 

areas 

huWGR 151 drones Illumina HiSeq2500, 
pair-end 2x125 bp 

reads, 10x 

3.375 
million 

SNPs 

BWA-MEM4 
[NI] 

Yes/Ye
s 

GATK-
UnifiedGen

otyper7 

Parejo et 
al. (2016) 

Arabidopsis halleri Weak genetic differentiation 

among populations. SNPs more 
informative than microsatellites 

about genome-wide genetic 

diversity 

Pool-seq 20 ind. in 9 

populations 

 (Pool-seq): Illumina 

HiSeq2000, paired-end 
2x100 bp reads, 250–

300 bp insert size, 60.7x 

(range 52.7 to 69.3x per 
pool) 

2,178,204 

SNPs  

BWA-ALN3 

and sampe 
[allowing 10% 

mismatch] 

NI SAMtools8 Fischer et 

al. (2017) 

Almond (Prunus 

dulcis) and peach 

(P. persica) plants 

Almond genome-wide nucleotide 

diversity was ~7-fold higher than 

in peach, excess of rare alleles 
likely consistent with a recent 

population expansion event, no 

evidence of population bottleneck 
related with domestication, and a 

strong genetic differentiation 

between almond and peach 
 

 

 
 

lcWGR 13 ind. per 

species 

Illumina HiSeq2000, 

100 bp paired-end reads, 

depth averaged 15.8x 
(4.7x to 34.6x) in 

almond and 19.7x 

(11.2x to 35.4x in peach 

NI BWA-MEM4 

[minimum 

seed length of 
10 and 

internal seed 

length of 2.85] 

NI ANGSD6 Velasco et 

al. (2016) 

6
6 
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Organism Main findings 
WGR 

method 

Sample 

size 

Sequencing design and 

output 

Number 

of 

markers 

Software for 

mapping 

[parameters] 

IR/ 

BQSR 

SNP 

calling 

software 

Ref. 

Topic: Signatures of selection, genetic basis of phenotypic traits, and local adaptation      

Darwin finches 
(Geospiza spp.) 

A 240 kilobase haplotype 
encompassing the ALX1 gene that 

encodes a transcription factor 

affecting craniofacial 
development is strongly 

associated with beak shape 

huWGR 200 ind. 
distributed 

in 15 

species 

Illumina Hiseq2000, 
2x100 bp paired-end 

reads, insert size ~400 

bp, 10x coverage 

44,753,62
4 SNPs 

BWA3 
[default] 

Yes/Ye
s 

GATK- 
UnifiedGen

otyper7 

Lamichha
ney et al. 

(2015a) 

Atlantic salmon, 

(Salmon salar) 
 

Locus that maintains variation in 

age at maturity 

huWGR 54 wild 

populations
, ~500 ind.,  

(SNP 

array), and 
32 ind. 

from 7 

populations 
(huWGR) 

(huWGR): HiSeq2500, 

paired-end reads 2x125 
bp, average coverage 

18x (8x to 32x) 

208,704 

SNPs 

BWA-MEM4 

[default] 

No/No FreeBayes9 Barson et 

al. (2015) 

Atlantic salmon, 

(Salmon salar) 

Locus vgll3 controls age at 

maturity in wild and domesticated 
Atlantic salmon males 

Pool-seq 20 ind. per 

river and 
phenotype 

Illumina HiSeq2000 

platform, 12.3x per pool 

4,326,591 

SNPs 

Bowtie25 [no 

soft clipping, 
end-to-end 

mode, seed 

length 18, 
only 1 

mismatch] 

NI SAMtools8 Ayllon et 

al. (2015) 

Red siskins (Spinus 
cucullata), common 

canaries (Serinus 

canaria), and”red 
factor” canaries 

Gene encoding a cytochrome 

P450 enzyme, CYP2J19, is the 

ketolase that mediates red 

coloration in birds 

Pool-seq 12 to 39 

ind. per 

pool 

Illumina Hiseq2500, 2x 

100 bp reads, 19.3x per 

pool 

9,414,439 

SNPs 

BWA-MEM4 

[default] 

Yes/NI SAMtools8 

and 

VarScan210 

Lopes et 
al. (2016) 

Marine midge 

(Clunio marinus) 

Locus calcium/calmodulin-

dependent kinase II.1 (CaMKII.1) 

splice variants strongly associated 
with circadian timing 

Pool-seq 5 

populations

, 100-300 
ind. each 

Illumina HiSeq2000, 

paired-end 2x100bp 

reads, 0.2-0.4Kb insert 
size, 68x to 251x per 

pool 

1,010,052 
SNPs  

 

BWA-ALN3 

and sampe 

[maximal 
insert size 

1500bp] 

Yes/No Poopolation

211 

Kaiser et 

al. (2016) 

Domestic and wild 
rabbits 

(Oryctolagus 

cuniculus) 

Mapped genes affecting brain and 
neuronal development likely 

associated with domestication 

Pool-seq 10-20 ind. 
in 7 

domestic 

populations 
and 14 wild 

populations 

Illumina Genome 
Analyzer II, paired-end 

2x76bp reads, average 

coverage ~10x per pool 
 

50,165,38
6 SNPs 

BWA3 
[default 

except –q 5, 

base quality 
cut-off for 

soft-clipping 

reads] 

NI SAMtools8 Carneiro 
et al. 

(2014) 

6
7 
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Organism Main findings 
WGR 

method 

Sample 

size 

Sequencing design and 

output 

Number 

of 

markers 

Software for 

mapping 

[parameters] 

IR/ 

BQSR 

SNP 

calling 

software 

Ref. 

Chicken (Gallus 

gallus domesticus) 

Genes associated to breed-related 

traits of pathogen resistance and 
reproductive ability 

Pool-seq 16 ind. for 

each of 2 
inbred lines 

Illumina Hiseq 2000, 

22-24x per pool 

~4 million 

SNPs 

BWA3 

[default] 

NI GATK- 

UnifiedGen
otyper7, 

down 

sampling 
was turned 

off, ploidy 

option was 
used 

Fleming 

et al. 
(2016) 

Yellow 

monkeyflower plant 
(Mimulus guttatus) 

Candidate genes potentially 

driving the morphological, life 
history and salt tolerance 

differences between the two 

ecotypes 

Pool-seq ‘Coastal 

perennial’ 
pool with 

101 ind., 

‘inland 
annual’ 

pool with 

92 
individuals 

Illumina HiSeq2500, 

2x250 bp paired-end 
reads,  

29,693,57

8 SNPs 

BWA3 [NI] NI SNAPE12 Gould et 

al. (2017) 

Atlantic salmon 

(Salmon salar) 

Mapped immune related genes Pool-seq 30 ind. in 

each of 19 

rivers 

Illumina HiSeq2000, 

paired-end reads, 

average 26.7x per pool 

~4.5 

million 

SNPs 

Bowtie25 

[without soft 

clipping, end-
to-end mode, 

seed length 18 
and the 

interval 

between 
extracted 

seeds set to 

S,1,1.5, 
maximum 

number of 

mismatches 
per seed set to 

L,0,0.1] 

NI SAMtools8 Kjærner-

Semb et 

al. (2016) 

Topic: Signatures of selection, genetic basis of phenotypic traits, and local 

adaptation 

      

Mosquito 

Anopheles gambiae 

s.l. (GOUNDRY) 

and A. coluzzii 

A genomic barrier (large 

inversion) to gene flow between a 

A. gambiae s.l. (GOUNDRY) and 

A. coluzzii 

lcWGR 11-12 ind. 

each 

Illumina HiSeq2000, 

paired-end 100-bp, 

insert size of 500 base 

pairs, 9.79x to 16.44x 

162 -180 

million 

SNPs per 

subgroup 

BWA-MEM4 

[NI] 

Yes/No ANGSD6 Crawford 

et al. 

(2016) 

Native sheep (Ovis 

aries) 

Loci presumably involved in 

adaptation to high altitude and 

arid environments in native 
sheeps 

lcWGR 77 ind. Illumina HiSeq 2000, 75 

ind. with average depth 

of ~5x and ~42x for 2 
samples 

~21.26 

million 

SNPs 

BWA3 [NI] Yes/No SAMtools8 

and  

ANGSD6 

Yang et 

al. (2016) 

6
8 
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Organism Main findings 
WGR 

method 

Sample 

size 

Sequencing design and 

output 

Number 

of 

markers 

Software for 

mapping 

[parameters] 

IR/ 

BQSR 

SNP 

calling 

software 

Ref. 

Shetland ponies 

(Equus caballus) 

Deletions at the SHOX locus 

associated with skeletal atavism 

Pool-seq 6 affected 

and 21 
control ind. 

Illumina, Hiseq2000, 

paired-end reads 
2x100bp, ~56x 

9,844,628 

SNPs and 
1,111,009 

INDELs 

BWA3 [NI] Yes/NI GATK 

UnifiedGen
otyper7 

Rafati et 

al. (2016) 

Bird ruff 
(Philomachus 

pugnax) 

Large chromosomal inversion 
underlines the variety of male 

mating morphs 

huWGR 15 
independen

t and 9 

satellite 
males from 

a single 

location 

Illumina HiSeq 2000, 
2x125 bp paired-end 

reads, average fragment 

size ~500 bp, average 
~8x 

 

NI BWA3 
[default] 

Yes/Ye
s 

GATK7 Lamichha
ney et al. 

(2015b) 

Bird ruff 
(Philomachus 

pugnax) 

Large chromosomal inversion 
underlines the variety of male 

mating morphs 

huWGR 300 ind. in 
total  

(huWGR): 80x for 5 
ind. and low- (SbfI) and 

high- (PstI) density 

RAD-seq data from a 
pedigree population 

1,068,556 
SNPs 

BWA-MEM4 
[default] 

Yes/NI GATK-
HaplotypeC

aller7 

(huWGR 
and lo-

density 

RAD-seq 
data), 

BCFtools 

(for high-
density 

RAD-sed 
data) 

Küpper et 
al. (2015) 

Plant Arabidopsis 

halleri 

175 genes highly associated with 

some of the five environmental 

factors tested (precipitation, slope, 
solar radiation, site water balance 

and temperature) 

Pool-seq 5 

populations

, 20 ind. per 
pool 

Illumina HiSeq2000, 

250–300 bp insert size, 

100 bp paired-end reads, 
average 99x per pool 

~2 million 

SNPs 

BWA-ALN3 

and sampe 

[allowing 10% 
mismatch with 

the A. thaliana 

reference 
genome] 

NI SAMtools8 Fischer et 

al. (2013) 

Atlantic/Baltic 

herring (Clupea 
harengus) and 

Pacific herring 

(Clupea pallasii) 

Genetic differences between 

populations spawning in different 
seasons and oceanic and brackish 

water in Europe 

Pool-seq 20 

populations 
of C. 

harengus, 1 

of C. 
pallasii, 47-

100 ind. per 

pool, 16 

ind. for 

WGR 

Illumina Hiseq2000, 

paired-end 2x100bp 
reads, insert size ~350 

bp, ~30x per pool, ~10x 

per individual 

8.83 

million 
SNPs 

(with 

Pacific 
herring), 

6.04 

million 

among 

Atlantic 

and Baltic 
herring 

BWA-MEM4 

[NI] 

No/No GATK-

HaplotypeC
aller7 

Martinez 

Barrio et 
al. (2016) 

6
9 
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Organism Main findings 
WGR 

method 

Sample 

size 

Sequencing design and 

output 

Number 

of 

markers 

Software for 

mapping 

[parameters] 

IR/ 

BQSR 

SNP 

calling 

software 

Ref. 

Atlantic/Baltic 

herring (Clupea 
harengus) and 

Pacific herring 

(Clupea pallasii) 

6 333 SNPs showed significant 

allele frequency differences 
between spring and fall spawning 

populations in Canada. About 

25% of these SNPs were 
previously observed in Baltic 

Sea/NE Atlantic populations 

Pool-seq (NE): 

Martinez 
Barrio et al. 

(2016) 

(NW): 6 
populations 

of C. 

harengus, 
41-50 ind. 

per pool, 12 

ind. for 
WGR 

(NE): Martinez Barrio 

et al. (2016) 
(NW): Hiseq2500, 

paired-end 2x125bp 

reads, insert size ~450-
550 bp, ~40x per pool, 

~10x per individual 

~8,9 

million 
SNPs 

BWA-MEM4 

[default] 

No/No GATK-

HaplotypeC
aller7 

Lamichha

ney et al. 
(2017) 

Topic: Inbreeding, conservation breeding and restoration       

Mountain gorilla 

(eastern species: 
Gorilla beringei 

beringei, G. 

beringei graueri, 
western species: G. 

gorilla gorilla, G. 

gorilla diehli) 

Extensive inbreeding (34% 

homozygosis) observed, 
indicating a steady population 

decline over the past 100 000 

years 

huWGR 44 ind. in 

total 

Illumina HiSeq 2000, 

average 26x 

1,649,453,

084 SNPs 

BWA-MEM4 

[default] 

NI FreeBayes9 Xue et al. 

(2015) 

Tree Eucalyptus 

grandis 

Progeny retained high and 

different heterozygosity 

percentage (52% to 79%, average 

66%), in disagreement with an 

expectation of 50% homozygosis 

(IBD) produced by selfing 
without selection 

huWGR 1 outbred 

parent, 28 

selfed 

offspring 

Illumina HiSeq, paired-

end 2x100bp reads, 

average 6.733x 

308,784 

heterozyg

ous SNPs 

BWA3 

[default, -q 

15] 

NI SAMtools8, 

BAQ scores 

disabled. 

Myburg et 

al. (2014) 

Tree Eucalyptus 

grandis 

Pseudo-overdominance most 

likely explains observed 
inbreeding depression, and it 

could be underlined by 100 or 

more genes of large effect 
associated with viability 

huWGR 1 outbred 

parent, 28 
selfed 

offspring 

Illumina HiSeq, paired-

end 2x100bp reads, 
average 6.733x 

308,784 

heterozyg
ous SNPs 

BWA3 

[default, -q 
15] 

NI SAMtools8, 

BAQ scores 
disabled. 

Hedrick et 

al. (2016) 

Rice (Oryza sativa) Identification of causal mutations 

of three phenotypic traits in 

inbred rice varieties 

lcWGR 203 

varieties 

Illumina Hiseq2000, 

peired-end 90bp reads, 

insert size 400-500 bp, 
average coverage 1.53x 

2,288,867 

SNPs 

BWA3 

[default, 

remapping 
using Stampy] 

Yes/NI ANGSD6 Wang et 

al. 

(2016b) 

 

Abbreviations: IR = INDEL recalibration, BQSR = base quality score recalibration, NI = no information, SNPs = single nucleotide polymorphisms, ind. = individuals, x = depth of 

coverage, huWGR = high-coverage individual whole-genome resequencing,  Pool-seq = whole-genome resequencing of pooled DNA, lcWGR = low-coverage individual whole-

genome resequencing. 
 

1 Li et al. (2010)  
2 Lunter & Goodson (2011) 
3 Li & Durbin (2009),  Li & Durbin (2010) 

7
0 
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4 Li (2013) 
5 Langmead & Salzberg (2012) 
6 Korneliussen et al. (2014) 
7 McKenna et al. (2010) 
8 Li et al. (2009a) 
9 Garrison & Marth (2012) 
10 Koboldt et al. (2012) 
11 Kofler et al. (2011b) 
12 Raineri et al. (2012) 
13 Li et al. (2009b) 
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2.14 Figures 

 

 

 

Figure 2.1 Whole-genome sequencing. (A) De novo whole-genome assembly consists 

on sequencing and assembling a species complete genome for the first time. First, high 

quality genomic DNA is fragmented for library preparation that involves addition of 

sequencing adaptors to DNA fragments. Paired-end short-reads (~100 bp) are obtained 

using high-throughput sequencing from libraries with different insert sizes to maximize 

coverage of the genome [standard libraries: ~350-550 bp, mate-pair libraries: ~2-20 

kilobases (Kb), fosmid-end libraries: ~40Kb, not shown]. Long-read sequences (~2-10Kb 

long) can also complement the sequence pool. (1) Read alignment starts with the building 

of local contigs (i.e. sequence formed by overlapping DNA fragments). (*) Repetitive 

regions are difficult to assemble with short-reads. (2) Mate-pair reads can help orient and 

link contigs, building larger sequence stretches called scaffolds (or supercontigs). Gaps in 

a scaffold are denoted with ‘Ns’. (3) Long-reads can help in the assembly of repetitive 

regions. The final product is the genome assembly that results in a consensus sequence 

often corresponding to a series of contiguous scaffolds separated by gaps of unknown 

sequence (represented by runs of ‘Ns’). (B) Whole-genome resequencing compares 

variable sites between the genomes of individuals or populations and requires the species 

genome sequence for read mapping. This image shows an example for one individual and 

using short-read sequencing. High quality genomic DNA of an individual is fragmented 

for library preparation that adds sequencing adaptors to the DNA fragments and have an 

insert size of ~350-500 bp. Paired-end short-reads (~100 bp) are obtained from the DNA 

library using high-throughput sequencing. Short-reads are mapped onto the species 

reference genome based on sequence similarity. A SNP is detected when the specific base 

observed in a position in the reference genome differs from the base observed in the 
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reads. Notice the uneven read coverage for some positions. (1) Variant sites correspond 

to a base change present only in the subject reads but not in the reference genome, (2) 

some SNPs may be lost because they are absent in the reference genome, (3) some SNPs 

may be heterozygous in the subject reads, (4) others may be lost because of low 

coverage. The final result is a file that contains the variable sites of the individual. In this 

image paired-end reads are represented by a rectangular shape with bases at both ends but 

not in the middle. The middle part is in grey and corresponds to unknown sequence in 

between paired reads. Figures 1-5 were created using the free software Inkscape 

(https://inkscape.org/en/). 
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Figure 2.2 Data acquisition in current population-based WGR methods. (A) Pool-seq 

starts with mixing in a single tube equimolar amount of DNA of several individuals from 

a population. An aliquot of the DNA pool is used for sequencing library preparation and a 

single barcode is assigned to each population. Barcodes are represented by different 

colours in the sequence reads, yellow for population A and green for population B. The 

pooled-DNA library is sequenced to a high depth of coverage (>50x). SNP detection and 

population-allele frequency estimation require the mapping of reads to the reference 

genome and are based on sequence read coverage. Allele frequency differences between 

populations are then detected from allele read counts for a given polymorphic site. (B) 

lcWGR, starts with the preparation of a single sequencing library per individual, each 

with its own barcode (represented as ten different colours of short-reads). Individual 

DNA libraries are sequenced to a low depth of coverage (~1-4x). Read mapping to the 

reference genome is required for SNP detection and sample genotype likelihoods 

calculation, which are based on the alleles present in the individual reads supporting a 

variant site. 
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Figure 2.3 Proportion of the genome assessed by different approaches. A real 

genome comprises mostly repetitive and non-coding sequences with a small percentage 

corresponding to protein-coding regions. (1) Currently, a “complete genome” reference 

sequence usually misses a great proportion of repetitive regions as they are particularly 

challenging for base-calling and assembly algorithms based on short-read sequences; (2) 

A scaffold genome consists of large sequence blocks, resulting from the overlapping of 

short-read sequences (or contigs), that have gaps in between, corresponding to unknown 

parts of the sequence. A few repetitive regions are usually represented in it; (3) An exome 

sequence encompasses protein-coding regions (exons) and flanking sequences only, 

missing variation in regulatory and other noncoding regions; (4) RAD-seq randomly 

screens a small and dispersed amount of a real genome and includes protein-coding, non-

coding, and repetitive regions; (5) When RAD-seq reads are aligned onto a scaffold 

genome, some RAD tags are lost because they are not present in the reference sequence. 

Repetitive regions would be collapsed to the fraction represented in the scaffold genome; 

(6) When there is no reference sequence available, RAD-seq reads are assembled to each 

other to form contigs (known as de novo assembly). Fewer unordered loci are usually 

recovered with this approach than when using a reference genome, mainly because of low 

read coverage. Also, (7) some contigs may be misaligned into different RAD loci when 

there are INDELs, and repetitive sequences may collapse into a single locus. Squares in 

gray and dashed lines indicate missing portions of the genome. The arrows point to the 

comparison being made and explained in the legend. Figure adapted from Hoban et al. 

(2016) with permission provided by The University of Chicago Press and Copyright 

Clearance Center.   
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Figure 2.4 Selection of sequencing approach for population genomics studies 

depending on reference genome availability, type of genetic variation of interest, 

and expected linkage disequilibrium block size. Abbreviations: RAD-seq = restriction 

associated DNA sequencing, INVs = inversions, huWGR = high-coverage unresolved-

haplotype whole-genome-resequencing methods, hr = high-coverage resolved-haplotype 

whole-genome-resequencing methods, LD block = Linkage disequilibrium block size. 

The red asterisk indicates RAD-seq methods commonly assess a reduced fraction of the 

genome and experimental adjustments are required to obtain higher marker density. 

Relative cost per sample is represented by the number of ‘$’ signs: ‘$’: affordable 

technique, ‘$$’: more expensive than ‘$’, and ‘$$$’: most expensive approach. For each 

block size category (large, small, or any size), the type of genetic variation surveyed is 

listed underneath. When the study of only neutral variation is sought, for any LD block 

size and in the presence or absence of a reference genome, the most cost-effective 

approach is low-density RAD-seq. This method screens single nucleotide polymorphisms 

(SNPs) mostly in non-coding regions, although some variants may fall in protein-coding 

regions and regulatory elements. Examination of large structural variants (SVs) (>50bp) 

is restricted by short-reads and low marker density. Haplotypes can be assigned although 

with some limitations (Arnold, Corbett-Detig, Hartl, & Bomblies, 2013). In the absence 

of a reference genome, when the interest is only analysing adaptive variation, there are 

two alternatives: RAD-seq and methods targeting protein-coding regions (i.e. RNA-seq, 

target capture, and in silico exome (Lamichhaney et al., 2012)). RAD-seq may require 

some fine-tuning to increase the chances of screening putatively adaptive loci (low-

density markers needed for large LD block size and high-density markers for small LD 

block size). The methods targeting protein-coding regions only assess variation in exons 

and introns and may allow the reconstruction of haplotype specific isoforms. When the 

interest is both, neutral and adaptive variation, RAD-seq is the best approach and may 
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require some fine-tuning depending on LD block size. In the case a reference genome is 

available, when the focus is the study of adaptive variation only there are three options, 

first, RAD-seq as it, inferred surveys SNPs genome-wide to a fraction of the genome 

determined by marker density adjusted to the expected LD block size. Inversions (Küpper 

et al., 2015) and haplotypes (Miller et al., 2012) can be assessed with this method, the 

latter being inferred from population data; second, whole-exome sequencing, screens 

SNPs located only in exons across the entire genome, and may allow for the 

reconstruction of some haplotypes; and third, whole-genome resequencing that offers the 

greatest marker density of all current approaches, assessing SNPs across the genome 

including non-coding and protein-coding regions, regulatory elements, as well as 

structural variants. Haplotype assignment can be achieved indirectly with huWGR and 

directly with hrWGR methods. WGR is the most expensive approach of all. When the 

interest is to evaluate both, neutral and adaptive variation, the same applies as in 

‘adaptive variation only’ and WGR is the best option for the multiple benefits it offers. 

Notice that the detection of adaptive variation not only depend on marker density, 

sampling size also plays an important role and depends on the effect size of a locus (see 

Box 5). 
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Box 1 Figure 2.1 State of the art of genomes publicly available in GenBank to date 

(data retrieved in June 2017). (A) Cumulative number of genomes per year for some 

major taxonomic groups. The gray shadow indicates eukaryotic groups. (B) Cumulative 

number of genomes per year for some taxonomic groups within animals and plants. (C) 

Genome completeness of some major taxonomic groups and within eukaryotes (inset). 

(D) Genome completeness of some taxonomic groups within animals and plants. Charts 

C and D were made based on the “assembly level” annotation associated to each genome 

listed in the Genome browser of Genbank 

(https://www.ncbi.nlm.nih.gov/genome/browse/#) and were used as proxy of genome 

completeness. Four levels of assembly were used (from lowest to highest): contigs, 

scaffolds, chromosomes, and complete genome 

(https://www.ncbi.nlm.nih.gov/assembly/help/#definition). 

  

https://www.ncbi.nlm.nih.gov/genome/browse/
https://www.ncbi.nlm.nih.gov/assembly/help/#definition
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Box 2 Figure 2.1 Schematic illustration of the general workflow of the four WGR 

approaches (i.e. huWGR, hrWGR, Pool-seq, and lcWGR). Explanation in Box 2. 
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CHAPTER 3. PARALLEL ADAPTIVE EVOLUTION OF GEOGRAPHICALLY 

DISTANT HERRING POPULATIONS ON BOTH SIDES OF THE NORTH 

ATLANTIC OCEAN 

 

3.1 Abstract 

Atlantic herring is an excellent species for studying the genetic basis of adaptation in 

geographically distant populations, because of its characteristically large population sizes 

and low genetic drift. In this study, we compared whole genome resequencing data of 

Atlantic herring populations from both sides of the Atlantic Ocean. An important finding 

was the very low degree of genetic differentiation among geographically distant 

populations (FST = 0.026) suggesting lack of reproductive isolation across the ocean. This 

feature of the Atlantic herring facilitates the detection of genetic factors affecting 

ecological adaptation because of the sharp contrast between loci showing strong genetic 

differentiation and the background noise due to genetic drift. We show that genetic 

factors associated with timing of reproduction are shared between genetically distinct and 

geographically distant populations. The genes for thyroid-stimulating hormone receptor 

(TSHR), the SOX11 transcription factor (SOX11) and calmodulin (CALM), all of which 

have established roles in photoperiodic regulation of reproduction, and estrogen receptor 

2 (ESR2A), with a significant role in reproductive biology in birds and mammals, were 

among the loci that showed the most consistent association with spawning time 

throughout the species range. In fact, the same two SNPs located at the 5’end of TSHR 

showed the most significant association to spawning time both in the East and West 

Atlantic. We also identified unexpected haplotype sharing between spring-spawning 

oceanic herring and autumn-spawning populations across the Atlantic Ocean and the 

Baltic Sea. The genomic regions showing this pattern are unlikely to control spawning 

time but may be involved in adaptation to ecological factor(s) shared among these 

populations. 

 

3.2 Significance Statement 

Identification of genetic changes that allow a species to adapt to different environmental 

conditions is an important topic in evolutionary biology. In this study, we analyzed whole 
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genome resequencing data of Atlantic herring populations from both sides of the Atlantic 

Ocean and identified a number of loci that show consistent associations to spawning time 

(spring or autumn). Several of these loci have a well-established role in reproductive 

biology, such as TSHR, whereas others have never been implicated in controlling 

reproduction. Genetic variants associated with adaptation to spring- or autumn-spawning 

are to a large extent shared among populations across the Atlantic Ocean and the Baltic 

Sea providing evidence for parallel adaptive evolution. 

 

3.3 Introduction 

Widely dispersed and abundant species generally exhibit populations inhabiting divergent 

habitats. Such populations need to adapt to local biotic and abiotic factors, a process that 

results in higher fitness in the local environment and leads to genetic and phenotypic 

differentiation among subpopulations (Miller et al., 2012; Savolainen et al., 2013). In 

addition to such local adaptation, if a trait responds to similar forces of natural selection 

independently across multiple populations or species, parallel evolution will lead to 

similar adaptive changes among geographically distant populations (Pearse & Pogson, 

2000). Such parallel adaptation may be caused by convergent evolution or the sharing of 

similar (or identical) genetic changes across populations (Hoekstra & Nachman, 2003; 

Jones et al., 2012; Stern, 2013). Identification of the genetic basis for ecological 

adaptation is a fundamental goal in evolutionary biology (Pearse, Miller, Abadia-

Cardoso, & Garza, 2014) and current technological advances in population-scale high-

throughput sequencing provide powerful tools to explore these processes at a genomic 

scale (Hohenlohe et al., 2010). However, many adaptive traits are expected to have a 

highly polygenic background (Pritchard & Di Rienzo, 2010) where genes of small effect 

are hard to detect with traditional genome scans, and adaptive changes can often be 

confounded with demographic history effects such as population structure and genetic 

drift (Luo, Widmer, & Karrenberg, 2015) making the dissection of such genetic 

differentiations challenging. 

Our recent population-scale genomic study on Atlantic herring has demonstrated 

that this species is an ideal model for the detection of signatures of selection 

(Lamichhaney et al., 2012; Martinez Barrio et al., 2016). The large effective population 
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size (one of the most abundant fish species on earth) probably combined with gene flow 

between populations results in extremely low levels of genetic differentiation at 

selectively neutral loci across populations exposed to different ecological conditions. 

This allowed us to identify about 500 independent loci associated with local adaptation as 

regards the colonization of the brackish Baltic Sea and timing of reproduction in 

Northeast (NE) Atlantic herring populations (Martinez Barrio et al., 2016). 

Atlantic herring is a schooling pelagic fish distributed throughout the North 

Atlantic Ocean and adjacent waters including the Baltic Sea (Fig. 3.1). The population 

structure of Atlantic herring is considered to be one of the most complex of any marine 

fish and there is a long history of attempts to describe it (14). Traditionally, herring 

stocks have been described based on morphology and life history traits such as spawning 

time and location (Gröger, Kruse, & Rohlf, 2009; Iles & Sinclair, 1982; McQuinn, 1997). 

Populations are known to spawn in different seasons with some spawning in the spring, 

others in the autumn and others still in between. In each case, spawning generally takes 

place over a protracted period of a few weeks. The optimal spawning time is generally 

linked to environmental conditions associated with plankton blooms (Sinclair & 

Tremblay, 1984b). Our recent study revealed highly significant genetic differentiation 

between spring- and autumn-spawning herring in the NE Atlantic with some of the loci 

involved in this differentiation likely controlling the timing of reproduction (Martinez 

Barrio et al., 2016). 

Our previous genome-scale studies of Atlantic herring were restricted to 

population samples from the NE Atlantic, but this species is ecologically important 

throughout the North Atlantic. In fact, herring support a commercially important fishery 

in the Northwest (NW) Atlantic (Department of Fisheries and Oceans Canada, 2011) 

where the species is recognized for the complexity and plasticity of its stocks (McQuinn, 

1997; Stephenson et al., 2009). Similar to the NE Atlantic populations, herring in the NW 

Atlantic also undergo north-south and inshore-offshore migrations for feeding and 

reproduction (Reid et al., 1999), with spawning taking place mostly during spring and 

autumn (Department of Fisheries & Oceans Canada, 2012) from Cape Cod to northern 

Newfoundland (Iles & Sinclair, 1982). Previous genetic studies based on a small number 

of microsatellite markers reported weak but significant genetic structuring between NW 
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and NE Atlantic populations as well as among spawning aggregations within the NW 

Atlantic (McPherson, O’Reilly, & Taggart, 2004; McPherson, Stephenson, O’Reilly, 

Jones, & Taggart, 2001). 

 The presence of spring- and autumn-spawning herring populations on both sides 

of the North Atlantic Ocean provides an exceptional opportunity to explore whether the 

same or similar genetic factors associated with spawning time are shared between 

geographically distant populations. In this study, we present the results of whole genome 

resequencing of six NW Atlantic populations (three spring- and three autumn-spawners) 

and compare their genetic architecture with that of NE Atlantic populations. We 

demonstrate that genetic factors associated with the timing of reproduction are to a large 

extent shared between herring populations from the NW and NE Atlantic Ocean. 

 

 

3.4 Materials and Methods 

 

3.4.1 Sample collection and DNA extraction 

Total genomic DNA was extracted from muscle tissue of 287 maturing individuals (or in 

spawning condition) collected in 2014 during the spawning season at six localities on the 

East coast of Canada (NW Atlantic), from Newfoundland to the Scotian Shelf (Fig. 3.1, 

Table 3.1). Tissue samples were stored in 95% ethanol at -20°C until DNA isolation was 

performed following a standard Phenol:Chloroform:Isoamyl alcohol protocol. The 

geographic location of sampling sites is shown in Fig. 3.1A. Maps were created using 

ArcGIS® © Esri. DNA concentrations were measured as ng/µl using the Quant-iT™ 

PicoGreen® dsDNA Assay (Thermo Fisher Scientific, U.S.) in a Roche LightCycler® 

480 Instrument. The integrity of DNA samples was verified with agarose gel 

electrophoresis and a molecular ladder, where non degraded genomic DNA corresponded 

to a high molecular weight band around 23 Kb. 

 

3.4.2 Whole genome resequencing and variant calling 

Genomic DNA of 41-50 individuals per population were pooled in equimolar 

concentrations, resulting in 6 DNA pools, one per population. An aliquot of each pool 
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was used for independent library preparations using the TruSeq Nano Illumina kit 

(Illumina, CA, U.S.). Fragment size selection was performed following the instructions of 

the manufacturer using AMPURE beads, for an insert size between 450-550 bp. Each 

population library was paired-end sequenced at 126 cycles in one lane of a HiSeq-2500 

sequencer to obtain a depth of coverage of >30x per pool. The quality of the raw reads 

was evaluated using FastQC v.10.1 (Andrews, 2010) and low quality reads were trimmed 

using Trimmomatic v.0.33 (Bolger et al., 2014). The trimming of reads followed a sliding 

window approach where a read was cut at the 3’-end when the average PHRED33 quality 

score fell below 20 within a 5 bp window. Remaining Illumina adapter sequences were 

removed using the function ILLUMINACLIP (settings 2:30:10) implemented in 

Trimmomatic. Only pairs where both reads were recovered after the quality-trimming 

step were used for downstream analysis. 

The high quality trimmed reads were aligned to the reference herring genome 

assembly (Martinez Barrio et al., 2016) using default parameters of the algorithm BWA-

MEM (v.0.6.2) (Li & Durbin, 2009b). The sequences of the six NW Atlantic populations, 

together with the data of 19 Baltic Sea/NE Atlantic populations and one Pacific herring 

population from our previous study (Martinez Barrio et al., 2016) were used to call SNP 

variants across all 26 populations. We followed the recommended workflows of the 

GATK tool (McKenna et al., 2010; Van der Auwera et al., 2013) for variant discovery. 

The raw variant calls were filtered using stringent in-house filtering pipeline set up in our 

previous study (Martinez Barrio et al., 2016). Various standard quality scores generated 

by GATK such as SNP quality, mapping quality, base quality, mapping quality rank sum, 

read positions rank sum, allele frequency, and minimum and maximum read depth were 

used to set up filtering parameters according to GATK best practices recommendations 

(DePristo et al., 2011). The cut-offs of these quality scores were chosen based on their 

genome-wide distributions. In addition, as the sequence data of NE and NW Atlantic 

pools were generated at two different places (NE Atlantic pool in Uppsala, Sweden and 

NW Atlantic pools in Halifax, Canada), there was a possibility of inflated genetic 

differentiation between NE and NW Atlantic due to sequencing platform specific 

technical bias. Hence, we applied more stringent hard filtering of these SNP quality 

scores, particularly while analyzing data for phylogenetic and NE vs. NW comparisons. 
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As individual sequencing for all NE and NW samples were done in Uppsala, we also 

utilized these individual data to evaluate the SNP calls from pooled DNA to exclude false 

calls that were specific to a sequencing platform. 

To explore the haplotype structure at highly differentiated genomic regions, we 

further performed whole genome resequencing of 37 individuals that included 12 samples 

from NW Atlantic (two from each population used for pooled sequencing) and nine 

autumn-spawning samples from NE Atlantic (Table 2). In addition, we also sequenced 

six individual Pacific herring samples to be used as outgroup (Table 2).  Sequencing 

libraries were constructed with average fragment size of 400 bp and 2x150 bp paired-end 

reads were generated using Illumina HiSeq2500 sequencing platform. Each library was 

sequenced to approximate 10x depth of coverage per individual. We combined these data 

with the whole genome resequencing data of 16 spring spawning NE populations (Table 

2) from our previous study (Martinez Barrio et al., 2016). The quality trimming, sequence 

alignments and variant calling was done using similar pipeline as for pooled sequencing 

described above. 

 

3.4.3 Genome-wide screens for genetic differentiation 

We separately combined the read depth count per SNP from the Pool-seq data of three 

spring-spawning and three autumn-spawning NW Atlantic populations, obtaining two 

separate super-pools, one for spring and one for autumn. Then we compared the allele 

frequency differences SNP by SNP between the super-pools using a 2 by 2 contingency 

2 test. We compared these results against the similar comparisons of autumn- vs. spring-

spawners from NE Atlantic populations of our previous study (Martinez Barrio et al., 

2016). In addition to the contingency 2 tests, we also screened for genetic differentiation 

using commonly used methods like FST and pooled heterozygosity (Rubin et al., 2010). 

The SNPs showing highly significant differentiation were clustered into independent 

genomic regions as described (Martinez Barrio et al., 2016). 

 

3.4.4 Simulations of genetic drift 

The simulations aimed at assessing the expected distribution of FST under selective 

neutrality were conducted as in our previous paper on divergence among herring 
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populations in the NE Atlantic (Lamichhaney et al., 2012). In brief, we used a slightly 

modified version of the Powsim software (Ryman & Palm, 2006) that mimics sampling 

from populations at a predefined level of expected divergence through random number 

simulations under a classical Wright–Fisher model without migration or mutation. An 

infinitely large base population segregating for a specified number of independent, 

selectively neutral loci is divided into s subpopulations of equal effective size (Ne) 

through random sampling of 2Ne genes. Each of the subpopulations is allowed to drift for 

t generations, and the expected degree of divergence in generation t is then FST = 1-(1-

1/2Ne)
t (Nei, 1987). The populations are sampled when the expected degree of 

differentiation has been reached, FST (Weir & Cockerham, 1984) is then calculated for 

each locus, and the distribution of simulated FST-values is compared to the observed one. 

To reduce statistical noise in the observed distribution we restricted the analysis to 

SNPs that had 40-45 reads in all populations, and among these SNPs we calculated FST 

for a random sample of 50 000 ones. The corresponding simulation was run with 

effective sizes of Ne = 5 000, the number of loci (SNPs) was 50 000, and the time of 

divergence (t) was set to result in an expected FST identical to the average of that found in 

the observed distribution. 

 

3.4.5 Phylogenetic analysis 

Genetic divergence between populations was calculated using PLINK (Purcell et al., 

2007) and phylogenetic trees based on allele frequencies estimated from pooled 

sequencing data were generated using PHYLIP (Felsenstein, 1989). Genetic distances 

were calculated using an identity by state (IBS) similarity matrix (Table S3.4). The 

bootstrapping of the phylogenetic tree was done using the Phylip Seqboot package 

(Felsenstein, 1989). The phased haplotypes were generated from the genomic regions 

showing high differentiation among populations using BEAGLE (Browning & Browning, 

2016) and maximum likelihood haplotype trees were built generated using FastTree 

(Price, Dehal, & Arkin, 2010). 

 

3.4.6 CNV analysis of the HCE locus 

We used GATK:DepthOfCoverage to extract read depth coverage of all populations. All 
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reads with mapping quality below 20 were filtered out. We then generated 1Kb non-

overlapping windows and normalized them against AB1 pool that had the highest 

sequence coverage among all samples in our previous study (Martinez Barrio et al., 

2016). We scanned the genome to identify copy number variation (CNV) between 

autumn- and spring-spawners from both side of Atlantic by selecting the following 

populations: 

i) Autumn spawners: WBoB, WGeB, WNsF, BF, BAH, NS. 

ii) Spring spawners: WFB, WInB, WNsS, BAV, BH, AB1. 

After filtering windows with low depth we compared both groups in 715 093 windows by 

analysis of variance ANOVA. 

 

3.4.7 Genotyping individual fish in a subset of SNPs 

To validate the candidate loci, we genotyped 384 individuals (192 from NW and 192 

from NE Atlantic populations, using a Sequenom SNP panel. To do so, we chose 105 

SNPs with the following three criteria: (i) 35 SNPs showing highly significant differences 

in allele frequencies between autumn- and spring-spawning populations that are shared in 

herring from NW and NE Atlantic; (ii) 35 SNPs that are unique to herring from the NE 

Atlantic and show highly significant differences in allele frequency between autumn- and 

spring-spawning populations; (iii) 35 SNPs that are unique to herring from NW Atlantic 

and show highly significant differences in allele frequency between autumn- and spring-

spawning populations. 

The genotype data were analyzed for standard quality control using PLINK 

(Purcell et al., 2007). SNPs with missing genotypes in >10% of the individuals were 

excluded. Similarly, individuals that had missing genotypes in >10% of SNPs were also 

excluded. 103 SNPs genotyped in 377 individuals passed the above-mentioned thresholds 

and were used for the subsequent downstream analysis. The allele frequency estimates 

from individual genotyping were compared with the estimates from pooled whole 

genome sequencing. The genotyping results were consistent with the results based on 

pooled sequencing. The correlation coefficients of allele frequency estimates from 

individual and pooled-sequencing were in the range r = 0.95 – 0.97 in respective 

populations. The haplotype structures of the candidate loci based on Sequenom 
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genotyping of individual fish resembled the ones generated by pooled sequencing (Figure 

4 and Figure S2). 

 

 

3.5 Results 

 

3.5.1 Whole genome resequencing 

Whole genome resequencing of pooled DNA of 40-50 individuals per location was 

conducted for six population samples from the NW Atlantic: two populations from 

Newfoundland, three from the Gulf of St Lawrence, and one from the Scotian Shelf (Fig. 

3.1, Table 3.1). Each library had a ~30-50x depth of coverage. These data were compared 

with pooled sequence data from 19 populations of Baltic Sea/NE Atlantic herring (Fig. 

3.1) and one population of Pacific herring from our previous study (Martinez Barrio et 

al., 2016); the Pacific herring data was used as an outgroup in the phylogenetic analysis 

and allowed us to reveal the ancestral state for candidate causal mutations. In addition, 37 

individual samples of spring- and autumn-spawning herring from both sides of North 

Atlantic and six individual samples of Pacific herring were sequenced to ~10x depth of 

coverage to characterize haplotypes showing genetic differentiation. These sequences 

were aligned to the reference herring genome (Martinez Barrio et al., 2016) and SNP 

calling was conducted using an in-house rigorous quality-filtering pipeline (see Methods) 

to identify 8.9 million SNPs that were polymorphic in at least one population (including 

Pacific herring). 

 

3.5.2 Phylogeny and population genetics 

In agreement with the results from our previous study (Martinez Barrio et al., 2016), the 

neighbor-joining tree generated using 1.2 million high-quality SNPs (see Methods) 

revealed a large genetic distance between the Pacific and all 25 Atlantic herring 

populations (Fig. 3.2, left panel). The Atlantic herring populations in general clustered 

according to their geographic origin (Fig. 3.2, right panel). The populations formed three 

major groupings: (i) Atlantic herring from NW Atlantic and NE Atlantic (AB1 and AI), 

(ii) Atlantic herring from the North Sea, Skagerrak and Kattegat and (iii) spring-
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spawning herring from the Baltic Sea. Two populations of autumn-spawning herring 

from the Baltic Sea (BÄH and BF) deviated from this pattern and did not cluster with 

spring-spawning herring from the Baltic Sea. Two populations stood out with relatively 

long branch lengths (NS and WFB); a careful examination of the data from these 

populations did not indicate that these long branch lengths were due to technical issues. 

Among the six NW Atlantic populations, spring- and autumn-spawners formed their own 

clusters, indicating that populations spawning in different seasons are genetically 

distinguishable. NW Atlantic autumn-spawning herring were more closely related to NW 

Atlantic spring-spawning herring than to autumn-spawning herring from the NE Atlantic. 

 The average FST among the 25 populations of Atlantic and Baltic herring was as 

low as 0.026, a value that drops to 0.019 if we exclude the WFB population. This result is 

consistent with the tight clustering of populations in the phylogenetic tree (Fig. 3.2). This 

minute level of genetic differentiation is remarkable given that our samples now include 

herring populations from both sides of the Atlantic, from North Sea, Skagerrak, Kattegat, 

and the brackish Baltic Sea (Fig. 3.1). We performed a computer simulation study to 

investigate if the genetic differentiation among these 25 populations seemed to be 

primarily driven by selection or drift. We used 50 000 randomly sampled SNPs with 40-

45 reads in each population and estimated FST (Weir & Cockerham, 1984) among all 25 

populations for each locus. We then used simulation to generate a dataset reflecting the 

expected distribution of FST values for 50 000 selectively neutral loci based on 25 

populations each with an effective population size of Ne = 5 000 that were separated for t 

= 263 generations and have an expected FST identical to the observed one (FST = 0.026; 

when excluding the WFB outlier population the corresponding values were FST = 0.019 

and t = 192 generations). The observed data deviated significantly from the simulated 

data due to a long tail of FST values > 0.10 (Fig. 3.3). We conclude that the great majority 

of SNPs in this dataset with FST > 0.10 and with significant allele frequency differences 

between populations are located in the vicinity of sequence polymorphisms showing 

genetic differentiation due to natural selection. 
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3.5.3 Genetic differentiation between spring- and autumn-spawning 
populations 

We explored the genomic regions showing differentiation between spring- and autumn-

spawners from NW Atlantic by comparing allele frequencies between the two groups 

SNP by SNP and identified 6 333 SNPs with significant allele frequency differences (P < 

1x10-10; Fig. 3.4A, upper panel). These SNPs are conservatively estimated to represent at 

least 182 independent genomic loci (Martinez Barrio et al., 2016). We compared these 

results with the loci that were associated with spawning time in the Baltic Sea/NE 

Atlantic populations (Fig. 3.4A, lower panel) (Martinez Barrio et al., 2016). About 28% 

(1 747 out of 6 333) of the associated SNPs in the NW Atlantic also reached statistical 

significance in the Baltic Sea/NE Atlantic comparison. The genetic signals associated 

with seasonal reproduction in the NE and NW Atlantic populations showed a 

considerable overlap (Fig. 3.4B). Six of eight previously identified genomic regions 

exhibiting the most consistent association with spawning time in NE Atlantic and Baltic 

populations replicated in the data from NW Atlantic (Table S3.1). At these six loci the 

same haplotype group is associated with autumn- or spring-spawning in all populations 

included in this study. 

 The results suggest that genetic factors affecting the timing of reproduction in 

herring are to a large extent shared among herring populations from both sides of the 

Atlantic. In contrast, genome-wide data indicate a closer genetic relationship between 

spring- and autumn-spawning herring from the same geographic region than between 

either spring- or autumn-spawning populations from different regions (Fig. 3.2, right 

panel). Although many loci associated with the onset of reproduction were shared 

between the NE and NW Atlantic herring populations, there were certain genomic 

regions unique to each geographic region (Fig. 3.4A, B). Apart from the timing of 

reproduction, spring- and autumn-spawning populations need to adapt to a variety of 

other ecological factors not considered in this study. The differentiated loci between 

spring- and autumn-spawners not shared between NE and NW Atlantic populations most 

likely reflect such local adaptations. The list of loci showing differentiation between 

spring- and autumn-spawners, the genes in their vicinity and additional annotations of 

these regions are in Table S3.2. 
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3.5.4 Evidence of parallel evolution at TSHR, a major locus associated with 
timing of reproduction 

TSHR, encoding thyroid-stimulating hormone receptor, has a key role in photoperiodic 

regulation of reproduction in birds and mammals (Hanon et al., 2015; Nakao et al., 2008; 

Ono et al., 2008). The TSHR region showed the most significant allele frequency 

difference between spring- and autumn-spawners in both NE and NW Atlantic 

populations (Fig. 3.4A). The signatures of genetic differentiation within the ~120 Kb 

block around TSHR were strikingly similar in NE and NW Atlantic populations (Fig. 

3.4C). All autumn- and spring-spawning populations clustered separately regardless of 

their geographic origin in a neighbor-joining tree based on allele frequency data on 940 

SNPs from this ~120 Kb region (Fig. 3.4D). 

 To reveal the haplotype structure at the TSHR locus, we used our whole genome 

resequencing data of individual fish (16 spring-/9 autumn-spawning herring from NE 

Atlantic populations, 6 spring-/6 autumn-spawning herring from NW Atlantic 

populations and 6 Pacific herring individuals as an outgroup). These data were used to 

generate a maximum likelihood tree for haplotypes at the 120 Kb TSHR region (Fig. 

3.4E). Consistent with the results from pooled DNA sequencing (Fig. 3.4D), haplotypes 

from spring- and autumn-spawning individuals clustered as two distinct groups and there 

was no clear sub-structuring related to geographic origin. The short branch lengths for 

TSHR haplotypes in spring-spawners most likely reflect a recent selective sweep. 

 Two SNPs (upstream of TSHR) were found to be the most differentiated in the 

spring- vs. autumn-spawning contrast in both NE and NW Atlantic herring populations 

(Fig. 3.4B). We generated phylogenetic conservation scores around these sites by 

comparing nine fish genomes, including Atlantic herring from our previous study 

(Martinez Barrio et al., 2016). One of these SNPs (Scaffold1420:133,030 bp) overlapped 

a conserved region. These highly differentiated TSHR SNPs are candidate mutations that 

may regulate TSHR expression in cells that are critical for the initiation of reproduction. 

 

3.5.5 Haplotype sharing between spring-spawning oceanic herring and 
autumn-spawning populations 

We compared allele frequencies across all populations of herring at the loci showing 
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highly significant allele frequency differences between spring- and autumn-spawners, 

partially to explore whether the very same alleles were associated with spawning time 

across the North Atlantic Ocean. The heat maps summarizing these data show two 

distinct patterns that we designate A and B (Fig. 3.5A). For loci belonging to pattern A, 

including the TSHR locus, allele frequency differences between spring- and autumn-

spawning herring were remarkably consistent, independent of geographic origin. In 

contrast, in pattern B involving SNPs located on eight different genomic scaffolds, the 

two oceanic spring-spawning herring populations sampled along the coasts of Norway 

(AB1) and Iceland (AI) were fixed for the same alleles as the autumn-spawners from the 

NW and NE Atlantic, whereas the alternative alleles dominated in the majority of spring-

spawning populations from both sides of the Atlantic including the Baltic Sea (Fig. 

3.5A). Six of these eight genomic scaffolds include members of Myosin heavy chain 

(MYHC) gene family. Intermediate allele frequencies at the majority of these loci were 

observed in the two samples from Skagerrak (SB and SH), the transition area between the 

North Sea and the Baltic Sea (Figs 1, 5A). 

A comparison with Pacific herring indicated that autumn spawners carried the 

ancestral allele at the great majority of SNPs (70.1%) belonging to pattern A, whereas 

they were associated with the derived allele at the majority of loci (69.9%) belonging to 

pattern B (Fig. 3.5A). The difference in the proportion of derived alleles associated with 

autumn-spawning among pattern A and B is highly significant (P = 2.0 x 10-18, Fisher’s 

exact test) and is most likely explained by linkage drag when alleles under selection have 

increased in frequency. 

 We further investigated individual haplotypes at the eight scaffolds associated 

with pattern B (Fig. 3.5B) in 43 fish including spring- and autumn-spawners from both 

sides of the Atlantic and six Pacific herring (Table 3.1). These eight loci showed very 

strong linkage disequilibrium across populations despite the fact that they are spread in 

several genomic regions. All autumn-spawning herring were essentially fixed for the 

same allele associated with spawning season whereas more heterogeneity was detected in 

spring-spawning populations (Fig. 3.5B). For example, in a spring-spawning population 

from the Baltic Sea (BH) considerable heterogeneity was observed. If these were 

sequence polymorphisms in a randomly mating population one would expect that 
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heterozygosity at these 189 SNPs from eight different scaffolds would be distributed 

more or less randomly among individuals, but in the BH population two individuals are 

heterozygous at most positions whereas five individuals are essentially homozygous at all 

positions. Thus, a possible explanation is that the heterozygous fish represent hybrids 

between populations fixed for different alleles at these genomic regions. Similarly, in a 

spring-spawning population from NW Atlantic (WFB) (Table 3.1), one fish was mostly 

homozygous for the autumn-spawning alleles while the other was heterozygous at most 

diagnostic sites. The latter fish was also heterozygous at the TSHR locus (Fig. 3.4E). The 

four individuals from the other two spring-spawning populations from NW Atlantic 

(WInB and WNsS) were all homozygous for spring-spawning alleles (Fig. 3.5B). The 

eight fish sampled in spring 2013 close to Bergen (Norway) (AB2) showed considerable 

heterogeneity at these eight loci in contrast to the homogeneity observed in the sample 

AB1 collected in the same geographic area in February 1980 (Fig. 3.5A). Some fish were 

homozygous for either (i) alleles associated with spring spawning or (ii) alleles abundant 

in autumn-spawning and oceanic herring whereas others had mixed haplotypes. It is 

possible that the AB2 sample represents a mix of individuals coming from different 

spring-spawning populations in Norway and their hybrids. Interestingly, data on somatic 

growth patterns and morphometric measurements indicated that interbreeding has 

occurred in the last 50 years between a resident, coastal spring-spawning population and 

the migratory, oceanic Norwegian spring spawning herring (Johannessen et al., 2014); the 

sample AB1 in the current study is expected to represent this latter stock (Fig. 3.5A). This 

interbreeding likely took place after the collapse of the oceanic Norwegian spring 

spawning population due to overfishing in the late 1960s. 

 

3.5.6 Validation of loci associated with spawning season 

The genome-wide scans used for the detection of genetic differentiation among herring 

populations were based on the comparison of allele frequencies estimated from pooled 

DNA sequencing data. Such data can be prone to biases due to different factors, such as 

sequencing and mapping errors or differences in library or sequencing protocols, that 

could lead to uneven read depth distribution among loci and populations which could 

affect allele frequency estimates (Schlötterer et al., 2014). Hence, to validate the results 
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from pooled DNA sequencing, we genotyped a subset of highly differentiated SNPs 

between spring- and autumn-spawning populations in 377 individual fish (about 30 

individuals per each of 13 populations). A total of 103 SNPs were selected using the 

following criteria, (i) those showing a consistent association with spawning time across 

the Atlantic and (ii) those unique to NE or NW Atlantic. The individual genotyping 

results were consistent with the genetic signatures detected by pooled sequencing (Fig. 

S3.1). 

For SNPs shared between NE and NW Atlantic, the spring-spawners tend to carry 

one haplotype whereas the autumn-spawners carry the alternative haplotype regardless of 

geographical location (Fig. S3.1A). For SNPs uniquely associated with spawning time in 

the NE Atlantic, there were two clear patterns (Fig. S3.1B). In the first pattern, the 

autumn-spawners from the North Sea carried unique haplotypes, not seen in any other 

population. In the second pattern, spring- and summer-spawners from the locations Gävle 

(BÄV and BÄS) and Kalix (BK) in the Baltic Sea (Table 3.1) shared a unique haplotype. 

For SNPs unique to the NW Atlantic, there was also a set of SNPs showing consistent 

differences between spring- and autumn-spawning populations only within the NW 

Atlantic (Fig. S3.1C). Some individuals from the autumn-spawning North Sea (NS) 

population were segregating for some of these alleles present in the autumn-spawning 

populations in the NW Atlantic whereas autumn-spawning herring from the Baltic Sea as 

well as all spring-spawning herring from the NE and NW Atlantic tended to be fixed for 

the alternative alleles. 

 

3.5.7 Validation of loci associated with adaptation to low salinity in the 
brackish Baltic Sea 

In our previous study (Martinez Barrio et al., 2016), we identified about 3 000 SNPs 

representing about 100 independent genomic regions showing the most consistent 

correlation of allele frequencies with salinity by comparing populations adapted to the 

brackish Baltic Sea and the marine NE Atlantic (Table S3.3). The loci that are directly 

related to adaptations to low salinity are also expected to show strong genetic 

differentiation between the populations from the Baltic Sea and NW Atlantic, but not 

between NE and NW Atlantic where salinity is the same (35‰). To test this, we 
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calculated delta allele frequencies (dAF) between pairwise comparisons of Baltic, NW 

Atlantic and NE Atlantic populations. The results showed that as many as 94.4% of the 

loci that showed a dAF>0.2 between Baltic and NE Atlantic also showed a dAF>0.2 in 

the comparison of Baltic vs. NW Atlantic (Fig. S3.2A). In contrast, few of these loci 

(12.7%) showed a dAF>0.2 in the contrast between NE and NW Atlantic populations 

(Fig. S3.2B). Thus, the great majority of loci showing a consistent association to 

differences in salinity reported in our previous study were supported using the new data 

from NW Atlantic populations. The statistical support for allele frequency differences in 

different pairwise comparisons among these groups are given in Table S3.3. 

We previously identified a copy number variation (CNV) overlapping the gene 

for high choriolytic enzyme (HCE) that correlated with salinity. Populations from the 

brackish Baltic Sea (3-12‰) had a high copy number whereas populations from marine 

waters in the NE Atlantic (20-35‰) had a relatively low copy number. As expected, all 

six NW Atlantic populations (35‰) showed a low copy number at this locus (Fig. 

S3.2C). 

 

 

3.6 Discussion 

Independent populations that are exposed to similar environmental conditions often 

evolve similar phenotypic traits. There are widespread examples of such parallel 

evolution in nature and in some cases the genetic basis is known to some extent e.g. 

(Bradbury et al., 2010; Hohenlohe et al., 2010; Jones et al., 2012). The Atlantic herring 

provides an opportunity to study the genetic basis of such repeated parallel evolution in 

geographically distant populations. In this study, we have demonstrated that genetic 

variants associated with adaptation to different spawning times (spring and autumn) are 

to a large extent shared among geographically distant populations of herring. This finding 

resembles the reuse of standing genetic variation for adaptation to marine and freshwater 

environments in the three-spine stickleback (5). Thus, even though autumn-spawning 

herring from the Baltic Sea, the North Sea and the NW Atlantic show genetic 

differentiation related to other traits (e.g. salinity) they share very similar haplotypes at 

loci that are strong candidates for underlying the timing of reproduction. This haplotype 
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sharing implies that these variants were present in a common ancestor of these 

subpopulations or that they have been spread among populations due to gene flow. The 

different populations are too closely related to efficiently distinguish which of these 

scenarios has been most important but the very low levels of genetic differentiation 

among the 25 population samples included in this study (FST = 0.026) suggests a lack of 

reproductive isolation throughout the species range. This result is in sharp contrast to the 

situation for Atlantic salmon which shows strong genetic differentiation between 

populations from different continents (King, Kalinowski, Schill, Spidle, & Lubinski, 

2001; Stahl, 1983). 

 We identified a total of six independent loci that show a consistent association 

with spawning time across populations from the NW and NE Atlantic Ocean as well as in 

the brackish Baltic Sea (Fig. 3.4A; Table S3.1). It is likely that these loci contribute to 

how the timing of reproduction is determined because one of the main environmental 

cues for this, the change in day length, should be the same on both sides of the Atlantic. 

In contrast, those loci that are only associated with spawning time in one geographic 

region may reflect local adaptation. However, at present, the allele substitution effects at 

these six loci and the extent to which spawning time is genetically determined are 

unknown. 

The TSHR locus shows the most convincing association with spawning time as 

the two SNPs located upstream of this gene exhibit the most significant allele frequency 

difference on both sides of the Atlantic (Fig. 3.4B). We propose that one of these, if not 

both, are causative changes. Another interesting finding is the large haplotype block 

around TSHR, about 120 Kb in size (Fig. 3.4C), associated with spawning time in 

contrast to the very rapid decay of linkage disequilibrium in parts of the herring genome 

not associated with ecological adaptation (Martinez Barrio et al., 2016). The large 

haplotype block may be maintained by an inversion or more likely by the presence of 

multiple causative mutations across the associated region. In our previous study 

(Martinez Barrio et al., 2016) we found no indications for the presence of an inversion at 

the TSHR locus but the ability to detect inversions using short insert, paired reads is 

limited. The branch lengths in the phylogenetic tree for TSHR haplotypes associated with 

spring spawning are much shorter than the branch lengths for the haplotypes associated 
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with autumn spawning, implying a more recent coalescence time for the former ones 

(Fig. 3.4E). This indicates that a relatively recent selective sweep has occurred in this 

region and that spring-spawning may be a derived trait in the herring. There is in fact a 

clear trend that spring-spawning haplotypes also carry the derived allele at many of the 

SNPs (70.1%) showing the most consistent association with spawning time (Fig. 3.5A, 

pattern A); the derived state was deduced using the Pacific herring as an outgroup. 

Furthermore, phylogenetic trees generated from individual haplotypes for other loci 

showing strong association to spawning time also showed a general trend for shorter 

coalescence time for spring-spawning haplotypes (Fig. S3.3). Thus, we propose that 

autumn-spawning is the ancestral state in Atlantic herring. 

 Three of the loci showing the most consistent association with spawning time in 

herring contain genes (TSHR, SOX11 and CALM) with an established role in 

photoperiodic regulation of reproduction in birds and mammals (Hanon et al., 2015; Kim 

et al., 2011; Melamed et al., 2012; Nakao et al., 2008; Ono et al., 2008). Functional 

studies are now required to confirm that these candidate loci contribute to photoperiodic 

regulation of reproduction also in herring. The robust associations reported here provide a 

unique opportunity to dissect the underlying molecular mechanisms for how increasing 

(spring) or decreasing (autumn) day length is translated to the initiation of spawning in 

different populations. The estrogen receptor beta 2 locus (ESR2A) has never been 

implicated in photoperiodic regulation of reproduction but has an established role in 

reproductive biology (Bondesson, Hao, Lin, Williams, & Gustafsson, 2015). Other loci 

also with very convincing associations to spawning season such as HERPUD2 

(Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain 

member 2) and SYNE2 (Spectrin Repeat Containing Nuclear Envelope Protein 2) have no 

known role in reproduction. Further studies on these associations provide an opportunity 

to establish new functional roles for these genes. SYNE2 is in fact the neighboring gene to 

ESR2 in all vertebrates sequenced to date and the peaks of association in the two genes 

are only about 100 Kb apart, but clearly separated by a region of weaker association (Fig. 

S3.4). It is an open question whether the SYNE2 association is related to SYNE2 function 

or if the region harbors long-range regulatory elements controlling ESR2 expression (or 

vice versa). An association study like this reveals the location of causal mutations but if 
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these are regulatory the target gene(s) showing altered expression may be located outside 

the associated region. 

 One of the most interesting observations in this study was the unexpected 

haplotype sharing between spring-spawning oceanic and autumn-spawning populations. 

There was an over-representation of members of the myosin heavy chain (MYHC) gene 

family in these regions. There are 23 annotated MYHC genes in the current herring 

genome assembly and as many as six (26%) of these are located in these regions that only 

constitute 0.04% of the assembly. MYHC genes play a critical role for myogenesis 

(Watabe, 1999). Previous studies have indicated that herring populations spawning at 

various times of the year have a variable degree of developmental plasticity as regards 

myogenesis (Johnston, Vieira, & Temple, 2001) and that differences in water temperature 

between spawning seasons are considered responsible for differential myogenesis in 

herring (Temple, Cole, & Johnston, 2001). Further research is required to reveal the 

ecological adaptation underlying the observed association. 

 This study has important practical implications for herring fishery in the NW 

Atlantic since it provides genetic markers that can distinguish spring- and autumn-

spawning herring outside the breeding season. Such diagnostic method can be applied to 

develop a more sustainable fishery by optimizing the intensity of fishing among stocks 

according to their abundance. 
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3.9 Tables 

Table 3.1 Population samples of herring used in the study. Abbreviations: n=number of fish; n2=number of fish used for 

individual sequencing. 

 

Localitya Sample n (n2) Position Salinity 

(‰) 

Date 

(yy/mm/dd) 

Spawning 

season 

Baltic Sea        

Gulf of Bothnia (Kalix)b BK 47 N 6552’ E 2243’ 3 800629 summer 

Bothnian Sea (Hudiksvall)b BU 100 N 6145’ E 1730’ 6 120419 spring 

Bothnian Sea (Gävle)b BÄV 100 N 6043’ E 1718’ 6 120507 spring 

Bothnian Sea (Gävle)b BÄS 100 N 6043’ E 1718’ 6 120718 summer 

Bothnian Sea (Gävle)b BÄH 100 (3) N 6044’ E 1735’ 6 120904 autumn 

Bothnian Sea (Hästskär)b BH 50 (8) N 6035’ E 1748’ 6 130522 spring 

Central Baltic Sea (Vaxholm)b BV 50 N 5926’ E 1818’ 6 790827 spring 

Central Baltic Sea (Gamleby)b BG 49 N 5750’ E 1627’ 7 790820 spring 

              Central Baltic Sea (Kalmar)b BR 100 N 5739’ E 1707’ 7 120509 spring 

Central Baltic Sea (Karlskrona)b BA 100 N 5610’ E 1533’ 7 120530 spring 

Central Baltic Seab BC 100 N 5524’ E 1551’ 8 111018 unknown 

Southern Baltic Sea (Fehmarn)b BF 50 N 5450’ E 1130’ 12 790923 autumn 

 

Kattegat, Skagerrak, North Sea, East Atlantic Ocean 

Kattegat (Träslövsläge)b KT 50 N 5703’ E 1211’ 20 781023 unknown 

Kattegat (Björköfjorden)b KB 100 N 5743’ E 1142’ 23 120312 spring 

Skagerrak (Brofjorden)b SB 100 N 5819’ E 1121’ 25 120320 spring 

Skagerrak (Hamburgsund)b SH 49 N 5830’ E 1113’ 25 790319 spring 

North Seab NS 49 (3) N 5806’ E 0610’ 35 790805 autumn 

Atlantic Ocean (Bergen)b AB1 49 N 6452’ E 1015’ 35 800207 spring 

Atlantic Ocean (Bergen)b AB2 8 N 6035’ E 0500’ 33 130522 spring 

Atlantic Ocean (Höfn)b AI 100 N 6549’ W 1258’ 35 110915 spring 

 

Pacific Ocean 

       

Strait of Georgia (Vancouver)b PH 50 (6) - - 35 121124 - 

 

West Atlantic Ocean 

       

Bonavista Bayc WBoB 49 (2) N 48º 49' W 53º 20' 35 140625 autumn 

Fortune Bayc WFB 50 (2) N 47º 17' W 55º 38' 35 140526 spring 

1
2

1 
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Localitya Sample n (n2) Position Salinity 

(‰) 

Date 

(yy/mm/dd) 

Spawning 

season 

Inner Baie Des Chaleursc WInB 41 (2) N 48º 00' W 65º 51' 35 140508 spring 

Northumberland Straitc WNsS 49 (2) N 46º 19' W 64º 09' 35 140506 spring 

Northumberland Straitc WNsF 50 (2) N 45º 44' W 62º 36' 35 140916 autumn 

German Banksc WGeB 48 (2) N 43º 16' W 66º 18' 35 140828 autumn 
 

a Places where the sample was landed (if known) are given in parenthesis 
b Samples from our previous studies (Lamichhaney et al., 2012; Martinez Barrio et al., 2016) 
c New samples sequenced in this study.  

1
2

2
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3.10 Figures 

 

 

Figure 3.1 Sampling sites. Geographic location of all population samples. Abbreviations 

for localities are given in Table 3.1. The relative locations of populations sampled from 

NW and NE Atlantic Ocean are indicated in the inserted globe. 
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Figure 3.2 Neighbor-joining phylogenetic tree. Right panel, zoom-in on the cluster of 

NE and NW Atlantic herring populations. Color codes for sampling locations are the 

same as in Fig. 3.1. Autumn-spawning populations are marked with an asterisk. To 

restrict the sampling variance and sequencing bias across NE and NW, the phylogenetic 

tree was based on ~1.2 million SNPs each represented by 40-45 reads per population (see 

Methods). 
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Figure 3.3 Comparison of genetic differentiation among herring populations against 

the expectation under genetic drift. The observed distribution is based on 50 000 

randomly selected SNPs and the simulated data is based on the same number of 

selectively neutral loci. Histogram of FST values in the simulated and observed datasets 

among all 25 Atlantic herring populations from both sides of the Atlantic (A) and in 24 

populations excluding the WFB population (B). The right tail of the distribution is 

highlighted in the insets. 
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Figure 3.4 Genetic differentiation between autumn- and spring-spawning herring. 

(A) Manhattan plot of P-values for allele frequency differences between autumn- and 

spring-spawners in the NW Atlantic (upper panel) and in NE Atlantic/Baltic herring 

(lower panel). (B) Correlation plot of P-values for allele frequency differences between 

autumn- and spring-spawners in NW Atlantic and in NE Atlantic/Baltic herring. (C) 

Distribution of P-values around the 120 kb region harboring the TSHR locus (D) 

Neighbor-joining tree based on allele frequencies, determined by pooled sequencing, for 

all SNPs (n=1 313) in the TSHR region. Color codes for sampling locations are the same 

as in Fig. 3.1. (E) Phylogenetic trees for haplotypes at the TSHR locus determined using 

whole genome individual sequencing; A and B refer to the two haplotypes from the same 

individual. 
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Figure 3.5 Loci showing highly significant allele frequency differences between 

spring- and autumn-spawning herring. (A) Heat map showing allele frequencies 

(estimated by pooled sequencing) in each of the 26 populations; color codes for each 

population are the same as in Fig. 3.1; genes overlapping these loci are listed at the 

bottom. (B) Haplotypes from individual herring samples at eight scaffolds showing 

pattern B (haplotype sharing between spring-spawning oceanic herring and autumn-

spawning populations). The total number of SNPs used in these analyses is 189. Blocks 

of SNPs from different scaffolds are separated by blank lines.  
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3.12 Supporting Information 

 

Table S3.1 Genomic regions that showed most consistent association with timing of spawning identified in our previous study 

(Martinez-Barrio et al, 2016). Loci that were not replicated in this study have their scaffold name, start and end base pair 

denoted in italic font. SNPs showing the strongest association with spawning time and that were common between NE and NW 

Atlantic populations are indicated with an asterisk. 
 

Scaffold Start (bp) End (bp) Strongest 

SNPa 

Strongest SNP 

(-log10P)a 

Strongest 

SNPb 

Strongest SNP 

(-log10P)b 

Associated candidate genes 

scaffold139 1,492,608 1,492,609 1,492,609 14.89 1,492,609 1.70 CPNE7 

scaffold1420 3,100 288,800 137,485* 151.19 137,485* 54.38 PSMC1, KCNK13, FOXN3, GTF2A, TSHR, CEP128, NRXN3B 

scaffold1440 895,800 1,255,255 1,128,662* 26.98 1,128,662* 11.93 SOX11, DCDC2, FEZ2, SMC6 

scaffold190 21,615 34,163 26,630 69.62 22,322 44.00 CALM1 

scaffold312 2,556,980 2,701,506 2,642,301 66.54 2,637,207 42.87 SYNE2 

scaffold312 2,704,099 2,885,098 2,744,359 90.42 2,761,114 44.61 ESR2A 

scaffold46 240,984 288,556 240,985 22.37 240,985 0.84 NELL1 

scaffold481 2,737,036 2,966,514 2,809,585* 134.74 2,809,585* 49.91 HERPUD2, BAL1 

 
a Spring- vs. autumn-spawning populations in NE Atlantic, -log10(P) values from standard chi-square tests to estimate the significance of allele frequency differences. 
b Spring- vs. autumn-spawning populations in NW Atlantic, -log10(P) values from standard chi-square tests to estimate the significance of allele frequency differences.  

1
2
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Table S3.2 List of loci showing strong genetic differentiation between spring- and 

autumn-spawning herring. An associated gene name is indicated if the SNP occurs within 

5 Kb upstream or 5 Kb downstream of annotated genes. Loci significant in both east and 

west population are highlighted in green, the ones significant only in west Atlantic 

populations are highlighted in pink. (electronic supplementary material) 

 

Table S3.3 Previously identified loci (Martinez Barrio et al., 2016) showing highly 

significant association to salinity. Loci with strong differentiation in Baltic vs NW 

Atlantic and non-significant differentiation in NE vs. NW Atlantic are highlighted in 

pink. *(-log10P, based on Chi-Square tests). (electronic supplementary material) 
 

Table S3.4 Genetic distance matrix used for building the phylogenetic tree among 26 

herring populations used for Figure 3.2. The details about sample ID are in Table 3.1. 

(electronic supplementary material) 
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Figure S3.1 Individual genotype data for a subset of highly differentiated SNPs. (A) 

Highly differentiated SNPs between spring- and autumn-spawning population shared 

between NE and NW Atlantic. (B) Highly differentiated SNPs between spring- and 

autumn-spawning populations unique to the NE Atlantic. (C) Highly differentiated SNPs 

between spring- and autumn-spawning populations unique to the NW Atlantic. 
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Figure S3.2 Loci associated with salinity identified in our previous study (Martinez 

Barrio et al., 2016). (A) Comparison of delta allele frequencies (dAF) in Baltic Sea vs. 

NE Atlantic and Baltic Sea vs. NW Atlantic populations. (B) Comparison of delta allele 

frequencies (dAF) in Baltic Sea vs. NE Atlantic and NE Atlantic vs. NW Atlantic 

populations. (C) Heat map showing copy number variation partially overlapping the HCE 

gene. Orientation of transcription is marked with an arrow; population samples and 

salinity at sampling locations are indicated to the right; abbreviations are explained in 

Table 3.1. The figure is adapted from Martinez Barrio et al. (Martinez Barrio et al., 

2016).
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Figure S3.3 Haplotype trees for four loci showing strong differentiation between autumn- and spring-spawners across 

the North Atlantic Ocean and Baltic Sea. Haplotypes were deduced from individual whole genome resequencing; A and B 

refer to the two haplotypes from the same individual. Candidate genes at each locus are indicated.

1
3
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Figure S3.4 Organization of SYNE2 and ESR2 genes in human and Atlantic herring 

genomes. The genetic differentiation in this region between autumn- and spring-

spawning herring populations in the NE and NW Atlantic is shown. 
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CHAPTER 4. ADAPTATION TO SEASONAL REPRODUCTION AND THERMAL 

MINIMA-RELATED FACTORS DRIVES FINE-SCALE DIVERGENCE DESPITE 

GENE FLOW IN ATLANTIC HERRING POPULATIONS 

 

4.1 Abstract 

High connectivity and low potential for local adaptation have been common assumptions 

for most marine species, given their usual high fecundity and dispersal capabilities. 

Recent genomic studies, however, have disclosed unprecedented levels of population 

subdivision in what were previously presumed to be panmictic or nearly panmictic 

species. Here we analyzed neutral and putatively adaptive genetic variation at the whole-

genome level in Atlantic herring (Clupea harengus L.) spawning aggregations distributed 

across the reproductive range of the species in North America. We uncovered genetic 

population structure at putatively adaptive loci, against the backdrop of low genetic 

differentiation at neutral loci. Our results revealed an intricate pattern of population 

subdivision associated with two overlapping axes of divergence: a temporal axis 

determined by seasonal reproduction, and a spatial axis defined by a latitudinal cline 

establishing a steep north-south genetic break. Genetic-environment association analyses 

indicated that winter sea-surface temperature is the best predictor of the spatial structure 

observed (explained 58.1% of the total genetic variance). Thousands of outlier SNPs 

distributed along specific parts of the genome spanning numerous candidate genes 

underlined each pattern of differentiation (seasonal reproduction: 14 724, latitudinal 

cline: 6 595), forming so-called “genomic regions or islands of divergence”. Our results 

indicate that timing of reproduction and latitudinal spawning location are features under 

natural selection leading to local adaptation in the herring. Our study highlights the 

importance of preserving adaptive and neutral intraspecific diversity, and the utility of an 

integrative seascape genomics approach for disentangling intricate patterns of 

intraspecific diversity in highly dispersive and abundant marine species. 

 

4.2 Introduction 

Population subdivision and connectivity are important topics in evolutionary and 

conservation biology, because they can help elucidate how local adaptation arises (Barrett 
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& Hoekstra, 2011; Lewontin, 2002) and can guide management plans aiming to protect 

intraspecific genetic diversity, a determinant factor for population persistence and 

adaptive divergence in changing environments (Allendorf et al., 2010). Yet, the difficulty 

in determining the relative importance of genetic drift, gene flow, and selection in 

shaping contemporary patterns of intraspecific genetic diversity, remains a major 

challenge (Ravinet et al., 2017). The increased power for assessing neutral and putatively 

adaptive genetic variation with next-generation sequencing (NGS) technologies (Nosil & 

Feder, 2012) is helping to uncover unprecedented levels of genetic structure in what were 

previously presumed to be panmictic or nearly panmictic species.  

 

Marine species are outstanding examples of such paradigm shifts, as they have 

often been expected and observed to exhibit low levels of population structure and low 

divergence potential (Palumbi, 1994), given their high fecundity and dispersal 

capabilities (Hauser & Carvalho, 2008). Recent genomic studies revealing fine-scale 

structuring are challenging this view [e.g., Atlantic cod (Gadus morhua) (Bradbury et al., 

2013); Atlantic herring (Clupea harengus) (Martinez Barrio et al., 2016); American 

lobster (Homarus americanus) (Benestan et al., 2015)]. Various mechanisms by which 

population structure could arise have been proposed, including: oceanographic barriers, 

isolation-by-distance, larval and adult behavior, recent evolutionary history (e.g. 

historical vicariance and secondary contact), and natural selection (Palumbi, 1994). There 

is great interest in understanding how natural selection can lead to population divergence 

and local adaptation, especially under the homogenizing effect of gene flow (Tigano & 

Friesen, 2016) because of its direct relationship with fitness, effective population size, 

population persistence, and evolution. However, the genetic basis of adaptive traits 

remains largely unknown (Barrett & Hoekstra, 2011). Genome scans performed with 

NGS methods are helping to identifying loci associated with adaptive phenotypes (Jones 

et al., 2012; Tavares et al., 2018). Such loci typically show elevated genetic divergence 

that is interpreted as a signature of selection. Nevertheless, disentangling genomic 

signatures of selection from signatures of demographic history has been limiting (Hoban 

et al., 2016). Species that are widely distributed are often exposed to diverse ecological 

habitats where selection can result in local adaptation (Yeaman & Whitlock, 2011). 
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Therefore, highly fecund marine species inhabiting heterogeneous environments offer 

ideal candidates for the study of ecological adaptation, since in these the effect of genetic 

drift is minuscule and the effectiveness of natural selection is greater. 

 

Atlantic herring is an abundant marine schooling pelagic fish that has colonized 

diverse environments throughout the North Atlantic, including open ocean and the 

brackish waters of the Baltic Sea. These characteristics, together with the increasing 

availability of genomic resources, make this species ideal for investigating the genetic 

basis and mechanisms involved in ecological adaptation. Juveniles and adults undertake 

annual migrations between feeding, overwintering, and spawning areas. Herring matures 

at 3-4 years of age and can live to 20+ years (Benoît et al., 2018). Spawning occurs 

mostly in spring and fall seasons at predictable times and locations near shore, which 

suggests strong spawning site fidelity (McQuinn, 1997; Stephenson et al., 2009; Wheeler 

& Winters, 1984a). Atlantic herring plays an important role in the marine ecosystem, 

feeding on plankton and being preyed upon by numerous marine fish, birds and 

mammals. It also sustains large fisheries throughout the North Atlantic (FAO, 2019), 

some of which have experienced severe periods of decline and signs of recovery in the 

last century (Britten, Dowd, & Worm, 2016; Engelhard & Heino, 2004; Overholtz, 2002; 

Simmonds, 2007). The ecological, economic, and cultural importance of herring has 

therefore motivated research on this species for more than a century (Stephenson et al., 

2009); however, its complex life history has made the description of its population 

structure elusive (Iles & Sinclair, 1982). 

 

Numerous studies have examined the population structure of herring using 

different genetic tools and at various spatial scales, mostly in the northeast (NE) Atlantic. 

Such studies have observed low levels of population differentiation at neutral loci (e.g.  

Andersson et al., 1981; André et al., 2011; Jorgensen et al., 2005). The expansion of these 

studies to the use of thousands of single nucleotide polymorphisms (SNPs) derived from 

various genomic techniques have revealed significant genetic differentiation at putatively 

adaptive loci in relation to environmental gradients (Guo et al., 2016; Lamichhaney et al., 

2012; Limborg et al., 2012). Moreover, the recent development of a high-quality genome 
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assembly for the Atlantic herring allowed the identification of many millions of SNPs 

and a breakthrough in the possibility to study the genetic basis of ecological adaptation in 

this species (Martinez Barrio et al., 2016). A few studies have addressed this question in 

the northwest (NW) Atlantic (Kerr, Fuentes‐Pardo, Kho, McDermid, & Ruzzante, 2019; 

Lamichhaney et al., 2017; McPherson et al., 2004); while they provided important insight 

on population structuring with seasonal reproduction and within the southern region, and 

reported temporal stability of genomic divergence between spring and fall spawners, they 

were limited by scarce sampling. 

 

In the NW Atlantic, herring spawn from Cape Cod to southern Labrador (Bourne, 

Mowbray, Squires, & Koen-Alonso, 2018; Sinclair & Iles, 1989) between April and 

November, but spawning peaks in spring and fall. Spring- and fall-spawners are therefore 

the main spawning types recognized in the region. The relative abundance of each 

reproductive strategy varies geographically: in the north (northern Newfoundland) 

spring-spawners were historically more abundant, at mid-range (Gulf of St. Lawrence) 

both strategies were common, and in the southern extreme (Bay of Fundy, Scotian Shelf, 

Gulf of Maine) fall-spawners predominate (Melvin et al., 2009). Changes in the 

prevalence of these components have been observed in the last decade; in particular, a 

significant decline of spring-spawners and a moderate abundance of fall-spawners in the 

Gulf of St. Lawrence (McDermid, Swain, Turcotte, Robichaud, & Surette, 2018) and 

Newfoundland (Bourne et al., 2018). Such changes have been attributed to varying 

elevated fishing mortality, declines in weight-at-age, and environmental conditions 

(Melvin et al., 2009), suggesting that the effects of climate change on population 

persistence of Atlantic herring are important. The concerning population declines (Britten 

et al., 2016) emphasize the need to disentangle the population structure of NW Atlantic 

herring.  

 

Here, we study neutral and adaptive variation of adult herring collected from 14 

spawning grounds distributed across the species’ reproductive range in the NW Atlantic. 

The two overarching questions were: i) What are the spatial scale and pattern of 

population structuring in herring and what is the genetic basis of such structuring, and ii) 
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What is the potential functional effect of variant sites underlying population divergence 

and which mechanisms and environmental variables are associated with population 

structure patterns? We used whole-genome re-sequencing of pools of individuals [Pool-

seq, (Schlötterer et al., 2014)] and individual genotyping along with multivariate 

statistical approaches, machine learning algorithms, and oceanographic information, to 

address these questions. Considering the particular attributes of the NW Atlantic Ocean 

(DFO, 1997; Townsend, Thomas, Mayer, Thomas, & Quinlan, 2004) and the importance 

of environment for shaping population divergence in herring, we predict that some of the 

divergent genomic regions exclusively found in Canada may be strongly associated with 

local environmental conditions. Our results provide insight into how population 

divergence arises in the presence of gene flow via temporal and spatial isolation and will 

help inform management and conservation practices. 

 

 

4.3 Materials and Methods 

 

4.3.1 Sample collection and DNA extraction 

Adult herring were collected from 14 inshore spawning aggregations distributed across 

Atlantic Canada and the Gulf of Maine (N per aggregate = 48-50, total of 697 

individuals), which represent most of the reproductive range of the species in the NW 

Atlantic (Fig. 4.1A and Table 4.1). Sampling took place during the local spawning peak 

in the spring and fall seasons from 2012 to 2016.  Spawning sites correspond to areas 

with recurrent annual spawning.. Because of the presumed spawning site fidelity and the 

mixing of populations during the non-spawning seasons, we targeted individuals in 

reproductive condition to assess population definition. Individual muscle or fin tissue 

samples were preserved in 95% ethanol at -20 ºC until processing. DNA was isolated 

from the tissue samples using a standard phenol chloroform protocol (Sambrook & 

Russel 2006). DNA concentration (in ng/µl) was measured in triplicates using the Quant-

iT PicoGreen dsDNA assay (Thermo Fisher Scientific, U.S.) and the Roche LightCycler 

480 Instrument (Roche Molecular Systems, Inc., Germany). DNA integrity was verified 
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with 0.8% agarose gel electrophoresis using 0.5x TBE buffer and a 1Kb molecular 

weight ladder. 

 

4.3.2 Pool-sequencing and read quality filtering 

Genome-wide patterns of genetic variation and population allele frequencies were 

assessed for each spawning aggregation using the Pool-seq approach. This method 

consists of performing whole-genome sequencing of pools of individuals using a single 

barcoded library, which implies that only population level data is recovered (individual 

genotype information is lost). In our case, each pool comprised equal amounts of DNA of 

~50 individuals collected on the same spawning ground (the terms spawning aggregation 

and sampling site will be interchangeably used hereafter). We aimed to include in the 

same pool only DNA from “ready-to-spawn” and “actively spawning” individuals 

[gonadal maturity stage 5 and 6, respectively, (Bucholtz, Tomkiewicz, & Dalskov, 

2008)]. Yet, in some spawning aggregations (BDO-S, NDB-S, NDB-F, TRB-F, and 

ME4-F, see pie charts in Fig. 4.1A) 25-50% of individuals were in “maturing” (stage 4) 

or “resting” (stage 8) condition at the time of sampling. The designation of “S” or “F” in 

the location name thus only reflects the season of collection and not necessarily the actual 

spawning season of all fish included in the pool. Individual DNA were normalized to a 

common concentration and pooled to a single tube using the liquid handling robot 

epmotion 5407 (Eppendorf, Germany). Sequencing library preparation and shotgun 

sequencing were outsourced. In brief, a single TruSeq Nano Illumina DNA library was 

built for each DNA pool (i.e. spawning aggregation). AMPURE beads were used for 

fragment size selection, targeting an insert size of ~550 bp. The 14 pooled-DNA libraries 

were sequenced using paired-end 126-bp reads on an Illumina Hiseq-2500 sequencer in 

two batches (5 libraries in 2015, 11 in 2016). Target read depth of coverage per pool was 

40-50x, for an estimated herring genome size of ~850 Mb (Martinez Barrio et al., 2016). 

Quality of raw sequence reads of each pool was checked using FastQC v0.11.5 

(Simon Andrews, 2010), and jointly evaluated for the 14 pools with MultiQC v.1.3 

(Ewels, Magnusson, Lundin, & Käller, 2016). Low quality bases (Phred score <20) and 

Illumina adapters were trimmed-off the reads, and reads shorter than 40 bp were removed 

from the dataset using Trimmomatic v.0.36 (Bolger et al., 2014) [parameters: 
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ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 SLIDINGWINDOW:5:20 MINLEN:40]. High 

quality paired-reads remaining after filtering were used for downstream analysis. 

 

4.3.3 Read mapping, SNP calling and filtering 

We adapted the Genome Analysis Toolkit (GATK) Best Practices workflow (Van der 

Auwera et al., 2013) to variant discovery in Pool-seq data and to our computing 

infrastructure. For this we first obtained a stitched version of the herring genome for 

optimal SNP caller performance in the computer cluster available. Then, sequence reads 

of each pool were independently aligned against the stitched herring genome using the 

Burrows-Wheeler Aligner (BWA) v0.7.12-r1039 [default parameters, MEM algorithm] 

(Li, 2013). SNP calling was performed using GATK v3.8 (McKenna et al., 2010) (see 

Fig. S4.1). Lastly, the raw variant calls were filtered using GATK (Fig. S4.2), 

Popoolation2, and custom python scripts (See Supporting Information for details). In 

Pool-seq applications, population allele frequencies are derived from the total read counts 

supporting a variant site. Read coverage though, can be biased by sequencing and read 

mapping artifacts (Dohm, Lottaz, Borodina, & Himmelbauer, 2008; Kolaczkowski, Kern, 

Holloway, & Begun, 2011). To control for these factors and minimize their potential 

effect on population allele frequency calculation, we applied the allele count correction 

proposed by (Feder, Petrov, & Bergland, 2012; Kolaczkowski et al., 2011). Details on the 

application of this correction method and population allele frequencies estimation can be 

found in the Supporting Information. 

 

4.3.4 Population structure 

Based on the population allele frequencies, we examined genetic structure among 

spawning aggregations with a Neighbor-Joining (NJ) tree and with pairwise FST 

estimates. We computed pairwise Nei (1972) genetic distance with Gendist and built a NJ 

tree with Neighbor, both programs implemented in the package PHYLIP v3.697 (Baum, 

1989). Bootstrapping was performed using the program Seqboot of PHYLIP, and the 

consensus tree was visualized with FigTree (Rambaut, 2007). We estimated unbiased FST 

for pools (𝐹̂ST
pool

) between all pairs of spawning aggregations using the R package 

poolfstat (Hivert, 2018). This algorithm computes F-statistics equivalent to Weir & 
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Cockerham (1984) estimates, while accounting for random sampling of chromosomes 

that may occur during DNA pooling and sequencing in Pool-seq applications. 

 

4.3.5 Outlier loci detection and genome-wide patterns of differentiation 

To identify loci potentially under selection, we performed genome scans for outlier loci 

detection using Principal Component Analysis (PCA), as implemented in the R package 

pcadapt v.4.0.2 (Luu, Bazin, & Blum, 2017). This algorithm assumes that divergent loci 

highly correlated to population structure are likely under selection. Outlier loci are 

detected based on the Mahalanobis distance calculated from the correlation coefficients 

between SNPs and a selected number of K principal components (PCs) (i.e. PCA 

loadings).  

We performed a genome scan for the first 13 PCs (default is K=number of pools-

1, 14-1= 13) using a minor allele frequency (MAF) of 0.05. Loci with Benjamini-

Hochberg (BH) adjusted P-values ≤0.01 were considered candidates for being under 

selection. To identify which PCs explained the greatest proportion of genomic variance, 

we examined the scree plot generated by pcadapt, as well as the allele frequency patterns 

revealed in heatmaps made with the R package ComplexHeatmap (Gu, Eils, & Schlesner, 

2016). The heatmaps depicted population allele frequencies (standardized to the major 

allele) of the 200 outlier loci most correlated to each PC (ranked by P-value in ascending 

order). We further explored the loci driving genomic differentiation in the herring by 

performing, with pcadapt, component-wise genome scans for the PCs exhibiting 

distinctive allele frequency patterns. To examine the distribution of outlier loci across the 

herring genome, for each informative PC we obtained Manhattan plots depicting the 

genomic position of outlier SNPs and their respective significance association value (–

log10P-value) using the R package qqman (Turner, 2014). 

 

4.3.6 Identification of the most informative outlier loci 

We ranked outlier loci based on their importance for classification to each of the 

categories (or classes) of distinctive genomic patterns of differentiation in herring. For 

this we used random forest (RF), a supervised learning algorithm implemented in the R 

package randomForest (Liaw & Wiener, 2002). For the seasonal reproductive pattern, 
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classes corresponded to spring or fall. For the latitudinal pattern, classes were northern 

(SIL-S, SPH-S, NTS-S, LAB-F, BLS-F, NDB-S, NDB-F, TRB-F, MIR-F, BDO-S, SCB-

F), intermediate (MUS-F, GEB-F), and southern (ME4-F) regions. The RF model was 

based on 50 individual genotypes per spawning aggregation simulated from population 

allele frequencies using the R function sample.geno implemented in pcadapt v3.0.4. For 

the RF runs, the parameter mtry was set to default (equals to sqrt(p), where p is the 

number of loci); ntree was set to 1,000,000; and sampsize was set to 2/3 of the class with 

the lower sample size. From a scatter-plot of importance values generated by the random 

forest classifier (Mean Decrease in Accuracy, MDA), loci before the point where the 

differences between importance values level-off (“elbow method”) were considered the 

most important (Goldstein, Hubbard, Cutler, & Barcellos, 2010). 

 

4.3.7 Validation of a subset of outlier SNPs related to seasonal reproduction 
and to latitudinal divergence 

We validated some of the top candidate loci detected with Pool-seq data that showed 

strong association with seasonal reproduction and latitudinal divergence with individual 

genotypes. For this, we genotyped 240 individuals (30 individuals from 8 locations) in 40 

SNPs related to seasonal reproduction and 90 SNPs related to latitude using the Agena 

MassARRAY SNP genotyping platform (Agena Bioscience, Inc.). These SNPs were 

chosen considering these criteria: (i) top ranked based on importance values (Mean 

Decrease in Accuracy, MDA) obtained from the random forest algorithm (as described in 

the previous section), (ii) had 150 bp of flanking sequence for primer design, (iii) did 

not fall within or a few bases away from repetitive regions and had fewer than 4 flanking 

SNPs, (iv) when two or more top ranked SNPs were located within the same scaffold, the 

ones separated by  1Kb were kept, in an attempt to minimize redundancy in the panel). 

The application of these filters and the retrieval and preparation of DNA sequences for 

primer design for the Agena platform were performed with custom R scripts. A quality 

control of raw SNP genotypes was performed using PLINK (Purcell et al., 2007), in 

which SNPs and individuals with more than 20% missing data, and SNPs with minor 

allele frequency (MAF) lower than 0.01 were removed. We obtained a heatmap plot 

using the R function heatmap.2 of the R package gplots for the visual inspection of 
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individual genotype patterns. File format conversions required for missing data filtering 

and heatmap plotting were conducted with PGDSpider (Lischer & Excoffier, 2012) and a 

custom python script (data was transformed to PLINK format, then to VCF file format, 

and finally to 0,1,2 format). 

 

4.3.8 Functional annotation of outlier loci 

We investigated the potential effect on gene function of outlier SNPs associated with 

seasonal reproduction and the latitudinal cline using SNPeff v4.1l (build 2015-10-03) 

(Cingolani et al., 2012b) [default parameters]. This program determines the position of a 

SNP with respect to the constituents of a nearby gene within 5Kb (i.e. exons, introns, 5’-

UTR region, etc.), and predicts its putative effect on gene and protein composition (i.e. 

synonymous and missense mutations, premature stop codon, etc., a complete list of 

effects is described in the program documentation). Variants located beyond 5Kb of a 

gene were annotated as ‘intergenic’. We based this analysis on the current herring 

genome assembly and annotations (Martinez Barrio et al., 2016). Further, we separately 

examined gene ontology (GO) terms of the genes annotated to the outlier loci most 

strongly associated with seasonal reproduction and the latitudinal cline (-log10P-value  

7, equivalent to P-value  1x10-7, lower threshold commonly used for significant 

association in human GWAS, (Fadista, Manning, Florez, & Groop, 2016; Panagiotou & 

Ioannidis, 2012).  Details of the analysis performed on the GO terms can be found in the 

Supporting Information. 

 

4.3.9 Genetic-Environment Association analysis 

We performed redundancy analysis (RDA) and random forest (RF) regressions to 

identify environmental variables significantly associated with spatial patterns of 

population divergence. 

The environmental dataset used for these analyses consisted of sea surface 

temperature (SST), sea bottom temperature (SBT), and sea surface salinity (SSS) for 

winter, spring, summer and fall seasons, for a total of 12 oceanographic variables. These 

variables  are relevant in population structuring of numerous marine species in the NW 

Atlantic (Stanley et al., 2018). 
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To obtain environmental measures for each sampling location, we acquired 

monthly data layers of SST, SBT, and SSS between 2008-2017 from NEMO 2.3 

(Nucleus for European Modelling of the Ocean), an oceanographic model developed by 

the Bedford Institute of Oceanography, Canada. A detailed description of oceanic 

(Madec, Delecluse, Imbard, & Levy, 1998) and sea ice (Fichefet & Maqueda, 1997) 

model components can be found in Wang, Brickman, Greenan, & Yashayaev (2016) and 

Brickman, Hebert, & Wang (2018). Data layers were converted to an ASCII grid with a 

NAD83 projection (ellipse GRS80), they had a nominal resolution of 1/12o (~5km2), and 

a uniform land mask. Four seasonal bins, corresponding to winter (January-February-

March), spring (April-May-June), summer (July-August-September), and fall (October-

November-December), were averaged across 9 years in order to capture long-term trends 

of oceanographic variation. Data extraction for the 14 geo-referenced locations was 

conducted using custom R scripts (Stanley et al., 2018). Environmental data were 

standardized to zero mean and unit variance in R for downstream analysis. Collinearity 

between environmental variables was estimated with pairwise correlation coefficients 

computed with the function pairs.panels of the R package psych (Revelle, 2018) (Fig. 

S4.11), and with variance inflation factors (VIF) obtained from RDA models built with 

the R package vegan (Dixon, 2003). Prior to RDA, the most collinear variables were 

removed based on biological/ecological criteria (Forester, Lasky, Wagner, & Urban, 

2018). Subsequently, remaining collinear variables were identified and removed one by 

one in consecutive RDA runs based on their VIF. The variable with the highest VIF was 

discarded in each run until all variables had a VIF < 5, following recommendations by 

(Zuur, Ieno, & Elphick, 2010). 

 

For RDA, we used the reduced environmental data as constraining variables for 

the population allele frequencies of the top 500 outlier loci exhibiting the latitudinal 

pattern.  RDA runs were performed with the R package vegan, following Jeffery et al. 

(2018) and Lehnert et al. (2018). Environmental variables that best explained genetic 

variance were identified using a bi-directional stepwise permutational ordination method 

(1 000 iterations) implemented in the R function ordistep. Significance of the overall 
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RDA model and of selected environmental variables was assessed with analysis of 

variance (ANOVA) using 1 000 permutations. In order to estimate the proportion of the 

genetic variance independently explained by environment, geographic distance, or both, 

we performed variance partitioning using partial redundancy analysis (pRDA), either 

conditioned on geographic distance (Cartesian coordinates) or selected environmental 

variables, respectively. Cartesian coordinates of each location, equivalent to the pairwise 

least-cost geographic distance between locations accounting for land as barrier, were 

obtained with the R function CartDist (Stanley & Jeffery, 2017). Concordance between 

Cartesian and geographic coordinates was assessed with a linear regression (Fig. S4.3).  

 

For RF regressions, we used the population allele frequencies of each outlier 

locus as single response vectors and the 12 standardized environmental variables as 

predictors. A RF regression was performed for each outlier locus with the R package 

randomForest, as described in Lehnert et al. (2018) and Sylvester et al. (2018). Default 

parameters for regression were applied to the RF runs (mtry = p/3, where p is the total 

number of predictors, or environmental variables in this case), except that ntree was set to 

10,000. The selected number of trees to grow per run (ntree) assured Mean Decrease in 

Accuracy (MDA) convergence, as demonstrated in a pilot test that compared MDA of 

predictors of 3 independent RF runs (correlation coefficient r = 0.9999, Fig. S4.4). 

Environmental variables were then ranked based on their relative importance to explain 

genetic variance from the averaged MDA values across loci, and the mean residual 

square error (MSE) of each location averaged across loci. 

 

4.3.10 Isolation-by-distance pattern test 

To evaluate whether global (all loci) and latitude-related population structure (subset of 

loci) corresponded to an isolation-by-distance (IBD) pattern, we determined the 

significance of the association between geographic and genetic distances for all possible 

pairs of sampled spawning sites using Mantel tests (Mantel 1967) with 9999 

permutations, implemented in the R package ade4 (Dray & Dufour, 2007). Genetic 

distances were linearized (𝐹̂ST = 
𝐹̂ST 

1−𝐹̂ST
) (Rousset, 1997) with 𝐹̂ST computed using all 

SNPs identified across the genome, in the first case, or solely outlier SNPs strongly 
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associated with latitudinal divergence, for the latter. Geographic distances were estimated 

with the R package CartDist (Stanley & Jeffery, 2017) as the least-coast oceanic distance 

in Km considering land as barrier. 

 

 

4.4 Results 

 

4.4.1 Pool-sequencing 

A total of ~800 GB of raw sequence data were obtained. After quality filtering and 

adapter trimming, 6 119 940 640 reads of optimal quality (Phred score > 20) were 

available for the genomic analysis. Read mapping statistics indicated that > 98.8% of 

read-pairs were correctly aligned to the stitched version of the herring reference genome 

(mapping quality MQ > 48, median insert size of 527 bp) (Table S4.1), confirming that 

misalignment errors, if present, were negligible. Average read depth of coverage per pool 

ranged between 25x to 44x and varied between sequencing batches [2015 batch mean 

28.7  4.0, 2016 batch mean 36.9  2.6 (Table S4.1). We monitored the potential effect 

of coverage variation in downstream analysis, in particular for collections with lower 

coverage (TRB-S, NTS-S, and GEB-F). Variant calling resulted in 11 154 328 raw SNPs 

of which 2 189 380 passed quality filters and were retained for further analysis. 

 

4.4.2 Population structure 

As observed in our previous study (Lamichhaney et al., 2017), spawning aggregations in 

the NW Atlantic clustered according to reproductive season in a Neighbor-Joining tree, 

with spring and fall spawning collections forming separate groups (Fig. 4.1B), although a 

few exceptions were observed. BDO-S sample was in an intermediate position with 

respect to these two main clusters, and a spring-collected sample in Newfoundland 

(NDB-S) clustered with the fall group, suggesting it may be composed of a large 

proportion of fall spawners. A closer examination of the fall group revealed clustering 

according to latitude. Southern collections in the Scotian Shelf (MUS-F, GEB-F), Bay of 

Fundy (SCB-F), and Gulf of Maine (ME4-F) were separated from northern collections in 

the Gulf of St. Lawrence (MIR-F, BLS-F), Newfoundland (TRB-F, NDB-S, NDB-F) and 
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Labrador (LAB-F). Such separation suggests genetic differences may exist between 

herring inhabiting these two geographic regions.  

 

The pairwise fixation index FST for pools (𝐹̂ST
pool

) ranged between 0.012 and 

0.043, indicating low levels of genetic structure among the 14 spawning aggregations 

studied (Fig. 4.1C, pairwise FST values in Table S4.2). Nevertheless, three clear patterns 

of subtle genetic differentiation were noticeable: i) between spring and fall spawners 

(SIL-S, SPH-S, NTS-S, vs. others, 𝐹̂ST
pool

 0.022-0.043), ii) within spring spawners, the 

sample from the NW of the Gulf of St. Lawrence (SIL-S) was the most genetically 

distinguishable (𝐹̂ST
pool

 ~0.030), and iii) within fall spawners, the two southernmost 

collections (GEB-F and ME4-F) were the most divergent (𝐹̂ST
pool

 0.020-0.031). In general, 

the largest genetic differentiation was observed between spring spawners and the most 

southern collections (𝐹̂ST
pool

 ~0.040). Interestingly, the two spring-collected samples 

BDO-S and NDB-S (two samples presumably containing both spring and fall spawning 

individuals, see below) exhibited similar levels of differentiation (𝐹̂ST
pool

 0.022-0.033) 

with samples comprising solely spring spawners (SIL-S, SPH-S, NTS-S) as with samples 

comprising solely fall spawners.  

 

4.4.3 Outlier loci detection and genome-wide patterns of differentiation 

A PCA-based whole-genome scan for the identification of SNPs putatively under 

selection revealed two main axes of genomic differentiation in NW Atlantic herring: 

spawning season, and geographic origin according to latitude. In a PCA plot based on 

2,189,380 SNPs (Fig. 4.1D), spring and fall spawning herring were distinguishable along 

the first principal component (PC1) (36% of variance explained). PC2 distinguished two 

collections, German Bank (GEB-F) and Northumberland Strait (NTS-S) from the rest 

(Fig. S4.5). These two collections exhibited the shallowest average sequencing coverage, 

suggesting this axis (PC2) is largely reflecting an artefact of sequencing. PC2 was 

therefore ignored (Fig. S4.5). On PC3, the southernmost collections, distributed on the 

Scotian Shelf, Bay of Fundy and Maine (MUS-F, SCB-F, GEB-F, ME4-F), were 

differentiated from the aggregations in the Gulf of St. Lawrence, Newfoundland, and 
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Labrador (30% of the variance explained) that formed a tight cluster. The sample from 

Maine (ME4-F) was the most differentiated of all, followed by German Banks (GEB-F), 

the southernmost location sampled on the Scotian Shelf. Along PC1, BDO-S and SIL-S 

were positioned in between the spring and fall spawners, BDO-S being closer to the fall 

samples and SIL-S to the spring samples. NBD-S clustered tightly with the fall spawners. 

In general, with the exception of the two southernmost samples (GEB-F and ME4-F), fall 

spawning aggregations grouped more closely together than the spring spawning ones, 

suggesting that more genetic differences may exist among the spring spawners than 

among fall spawners included in this study.  

 

In PC1, a total 14 724 outlier SNPs were detected (with Benjamini-Hochberg-

adjusted P-values and FDR ≤ 0.01). A Manhattan plot depicting significance values (–

log10P-value) of outlier loci for this PC disclosed numerous “peaks” or regions of 

divergence across the genome, spanning about 18 scaffolds and numerous genes (Fig. 

4.2A). The top SNPs of these scaffolds were in the proximity of genes with known 

function in reproduction (± 5Kb), such as TSHR, ESRA, HERPUD2, CALM (Martinez 

Barrio et al. 2016). Moreover, a new set of candidate genes linked to seasonal 

reproduction were ISO3, SERTM1, SIPA1L1, CAMKK1, TMEM150C, CBLB, ENTPD5, 

KCNJ6, LPAR6 and GPR119, as they were near top outlier loci in the unique islands of 

differentiation only observed in the NW Atlantic (Lamichhaney et al., 2017). A heatmap 

depicting standardized population allele frequencies of the top 200 outlier loci from the 

scaffolds identified with RF (ranked in descending order by -log10P-value) distinguished 

aggregations by spawning season (Fig. 4.2B), with fall spawners fixed for one allele and 

almost all spring spawners fixed for the alternative allele. The exceptions to this 

observation were three aggregations sampled in spring, BDO-S, SIL-S, and NDB-S. The 

first two collections exhibited allele frequencies around 0.5, while NDB-S showed 

population allele frequencies consistent with fall spawners. These results indicate that 

BDO-S and SIL-S either correspond to a mixture of spring and fall spawning individuals 

or to hybrids or both, and that NDB-S should be considered as a sample of fall spawners, 

suggesting possible mislabeling. 
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In PC3, a total of 6 595 outlier loci were detected (with BH-adjusted P-values and 

FDR ≤ 0.01). A Manhattan plot for this PC disclosed four main regions of divergence 

across the genome, corresponding to scaffolds 44, 122, 869 and 958, and a small number 

of outlier loci from other scaffolds (Fig. 4.2C). The top SNPs in the four main scaffolds 

were located within 5Kb of the genes FAM129B, FNBP1, SH3GLB2, and GPR107. A 

heatmap representing standardized population allele frequencies of the top 200 outlier 

loci from the scaffolds identified with RF (ranked in descending order by -log10P-value) 

revealed contrasting genetic patterns according to latitude (Fig. 4.2D). In northern 

collections, including Labrador (LAB-F), Newfoundland (NDB-S, NDB-F, TRB-F, SPH-

S), Gulf of St. Lawrence (BLS-F, SIL-S, MIR-F, NTS-S), Bras D’Or lake (BDO-S), and 

inner Bay of Fundy (SCB-F), one allele was close to fixation; in the southernmost 

collection, in Maine (ME4-F), the alternative allele was in high frequency; and in 

intermediate southern collections along the Scotian Shelf (MUS-F, GEB-F) allele 

frequencies were around 0.5. An extended examination of population allele frequencies 

of the 14,724 outlier SNPs detected in PC1 (Fig. S4.8), revealed that additional SNPs 

from the four scaffolds showing the latitudinal pattern were present in PC1 and showed 

the same pattern as the ones found in PC3 (3 378). Thus, these SNPs were removed from 

the PC1 set and added to the ones detected in PC3, for a total of 11,346 SNPs associated 

with seasonal reproduction and 9 973 SNPs associated with latitude. 

 

A closer examination of the genomic distribution of outlier SNPs revealed that 

seasonal reproduction-related outliers exhibited varying levels of significance (–log10P-

value up to 30) (Fig. 4.2A), were confined to a particular region within a scaffold (around 

50-500 Kb) and spanned a given set of genes (Fig. S4.6). In contrast, latitude-related 

outliers showed similar significance values (–log10P-value ~15) (Fig. 4.2C), were widely 

spread along scaffolds (covering between 480 Kb to 4.75 Mb) and spanned numerous 

genes (Fig. S4.7). 
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4.4.4 Validation of a subset of outlier SNPs related to seasonal reproduction 
and to latitudinal divergence 

A total of 230 individuals (NDB-F: 30, NDB-S: 29, SIL-S: 27, NTS-S: 30, BDO-S: 28, 

MUS-F: 29, GEB-F: 27, ME4-F: 30) and 52 and 74 SNPs related to seasonal 

reproduction and latitudinal divergence, respectively, passed the missing rate and MAF 

quality filters. Heatmaps depicting individual SNP genotypes for each of the two panels 

(Fig. S4.9) confirmed the overall patterns of population allele frequencies of the two axes 

of divergence detected with Pool-seq data (Fig. 4.2B,D), seasonal reproduction and 

latitude. 

The SNP panel discriminating spawning season revealed that the spring-collected 

samples SIL-S and BDO-S corresponded to a mixture of spring and fall spawners and 

putative hybrids, the latter defined as heterozygous individuals at many of the loci 

showing a high degree of fixation between groups. SIL-S comprised an even proportion 

of pure fall spawners and putative hybrids with a few pure spring spawners, whereas 

BDO-S comprised mostly pure fall spawners and a few hybrids and spring spawners. The 

other spring-collected samples, NTS-S, consisted of mostly pure spring spawners and a 

few putative hybrids, while NDB-S corresponded to pure fall spawners. In contrast, all 

the fall-collected samples genotyped (NDB-F, MUS-F, GEB-F and ME4-F) corresponded 

to pure fall spawners, with a few heterozygous loci. 

The SNP panel discriminating by latitude confirmed northern samples were 

characterized by high frequency of one allele, while the alternative allele had greater 

frequency in the southernmost sample (in Maine), although putative hybrids were present 

in both cases in varying proportions. Intermediate locations (BDO-S, MUS-F, GEB-F) 

exhibited a genotypic cline of increasing proportion of putative hybrids towards the 

south. 

 

4.4.5 Functional annotation of outlier loci 

A total of 2,977 and 1,257 outlier SNPs associated with seasonal reproduction and 

latitudinal divergence, respectively, were annotated with respect to a neighboring gene 

(within 5Kb). For both cases, the majority of outlier SNPs were located within introns 

and intergenic regions, or 5Kb upstream or downstream of genes (Fig. 4.3A). A small 
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number of outlier SNPs were predicted as synonymous (~2%) or missense variants (1.6% 

and 0.9%, for spawning- and latitude-related outliers, respectively).  

Excluding intergenic variants and genes that did not correspond to an orthologous 

gene in zebrafish, a list of 298 and 182 genes associated with seasonal reproduction and 

latitudinal divergence in herring, respectively, resulted from the annotated outlier loci. 

For seasonal reproduction-related genes, 126 had a GO term in the biological process 

category, 109 in the cellular component category, and 120 in the molecular function 

category (Fig. S4.10A). For latitude-related genes, 90 had a GO term in the biological 

process category, 72 in the cellular component category, and 80 in the molecular function 

category; considered together, close to half of the genes lacked GO classification. A 

comprehensive description of particular functions within the three GO categories and the 

number of genes in each of them is presented in Fig. S4.10B).  

The overrepresentation enrichment analysis (ORA) of both sets of candidate 

genes did not reach statistical significance (FDR of 5%) (Table S4.3 and S4.4), likely due 

to the large number of genes lacking GO annotation (Fig. S4.10). However, a closer 

examination of the top GO terms with P-value < 0.05 (ranked in ascending P-values from 

ORA, Table S4.3 and S4.4, GO terms indicated with an asterisk), suggested that seasonal 

reproduction-related candidate genes may participate in biological processes such as 

metabolism of lipids, cell adhesion, biosynthesis of cellular products, peptidyl-aminoacid 

modification, protein complex biogenesis, inositol lipid-mediated signaling, 

developmental maturation, regulation of developmental process, and cellular component 

organization (Fig. 4.3B-top, Table S4.3). These genes might primarily act in cellular 

components such the endoplasmic reticulum and the whole membrane (Fig. 4.3B-middle) 

and play a molecular function related to cell adhesion molecule and protein binding and 

lipid transporter and transferase activities (Fig. 4.3B-bottom). The top GO terms of 

candidate genes associated with latitudinal divergence were all involved in embryological 

and organ development processes (Fig. 4.3C-top, Table S4.4). These genes might act in 

cellular components such phosphatase complex, collagen trimer, and in the extracellular 

region (Fig. 4.3C-middle), and participate in sulfur compound binding and hydrolase and 

isomerase activities (Fig. 4.3C-bottom). 
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4.4.6 Genome-Environment Association analysis 

Collinearity among several of the environmental variables examined and redundancy 

analyses (See Supporting Information) allowed us to reduce the environmental data set to 

just three variables: summer SBT, winter SST, and spring SSS. Winter SST (Win_SST) 

(Fig. 4.4A) was the environmental variable that best explained the genetic variance of 

outlier loci exhibiting the latitudinal cline (F = 16.7, p = 0.001, from ordistep function) in 

the RDA approach (Fig. 4.4B). Other temperature or salinity variable in the reduced 

environmental dataset were statistically insignificant(from ANOVA with 1 000 

permutations, significance value = 0.05). Spawning aggregations were separated 

according to Win_SST on RDA axis 1, which explained 58.1% of the total genetic 

variance (R2 = 0.58, adjusted R2 = 0.55). pRDA however, showed that the Win_SST-

based RDA model was no longer significant when the effect of geographic distance 

between sites was removed from the model. A variance partitioning analysis revealed that 

the interaction between environment and geographic distance explained the greatest 

proportion of clinal genetic variation (44.9%). 

 

In agreement with RDA results, RF regressions also indicated that Win_SST was 

the most important environmental variable (MDA = 23.5), followed by Fall_SST (MDA 

= 21.8) (Fig. 4.4C). The other temperature variables had lower importance (MDA < 10), 

and salinity measures were the least important of all (MDA < 5). ME4-F, the 

southernmost spawning aggregation sampled, exhibited the highest mean square error 

(MSE = 0.21), followed by SCB-F and MUS-F (MSE ~ 0.05), whereas the other 10 

collections had lower MSE, below 0.03 (Fig. 4.4D). 

 

A closer examination of the map of the NW Atlantic depicting average Win_SST 

over the last 9 years and the predominant population allele frequency of the 14 sites 

studied (Fig. 4.4A), revealed that herring in “northern” collections in the Bay of Fundy, 

the Gulf of St. Lawrence, and Newfoundland and Labrador were characterized by being 

exposed to temperatures below zero (-2 ºC), whereas in “southern” collections they were 

mainly exposed to temperatures above zero (>2 ºC).  
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4.4.7 Isolation-by-distance test 

The Mantel test showed there is not a significant linear relationship between geographic 

and genetic distances for all loci across the genome (R2 = 0.04), whereas there is a 

significant linear relationship (R2 = 0.30) between geographic distance and genetic 

differentiation when only looking at outlier SNPs exhibiting the latitudinal break in 

population allele frequencies between northern and southern collections (Fig. 4.5). 

 

 

4.5 Discussion 

Here we described patterns of genetic variation at the whole-genome level in Atlantic 

herring populations distributed across the reproductive range of the species in North 

America. This study represents the most comprehensive assessment of this kind in the 

region to date. We uncovered fine-scale population structure at outlier loci putatively 

under selection, despite low differentiation at selectively neutral loci. This observation is 

consistent with previous genetic work on herring in both, the NE (Guo et al., 2016; 

Lamichhaney et al., 2012; Limborg et al., 2012; Martinez Barrio et al., 2016; Teacher et 

al., 2013) and the NW Atlantic (Lamichhaney et al., 2017; McPherson et al., 2004, 2001). 

The large population sizes, high potential for gene flow, and minute effect of genetic drift 

explain the low genetic differentiation observed at neutral loci (Palumbi, 1994). These 

conditions also favor the more efficient action of natural selection, which seems to be 

shaping the genetic differences observed at outlier loci. 

 

While prior genomic studies disclosed genetic structure with seasonal 

reproduction and salinity (Lamichhaney et al., 2012; Martinez Barrio et al., 2016), and 

others suggested structuring along the salinity/temperature gradient in the Baltic Sea from 

a dozens of markers (Gaggiotti et al., 2009; Guo et al., 2016; Limborg et al., 2012), here 

we successfully disentangled two main overlapping axes of divergence supported by 

thousands of outlier SNPs: seasonal reproduction and a latitudinal cline defining a north-

south genetic break. Our genetic-environment association analyses indicated that winter 

sea-surface temperature is the best predictor of the spatial structure observed. These 

results: demonstrate for the first time that herring from the north (Labrador, 
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Newfoundland, Gulf of St. Lawrence and Bay of Fundy) are genetically distinguishable 

from the ones in the south (Scotian Shelf and Maine) regardless of their spawning season; 

indicating that thermal-minima related factors are likely driving latitudinal genetic 

differentiation; and provide additional evidence supporting the recently described 

multispecies biogeographic break in eastern Nova Scotia (Stanley et al. 2018). 

 

Outlier SNPs exhibited remarkable clustering, forming so-called “genomic 

regions of divergence” (Nosil et al., 2009; Turner, Hahn, & Nuzhdin, 2005), and extreme 

allele frequency differences (i.e. alternative alleles were close to fixation in either spring- 

or fall-spawning, or in northern- or the southernmost populations). Theory predicts that 

formation of genomic regions of divergence (Schluter, 2009; Wu, 2001) and fixation of 

different alleles conducive to opposing phenotypes often result from natural selection 

acting in contrasting directions between environments (Vitti et al., 2013). Considering the 

heterogeneous environmental properties of the Northwest Atlantic (Melvin et al., 2009; 

Townsend et al., 2004) and having discarded an effect of genetic drift and an isolation-

by-distance pattern, we conclude that disruptive selection may be the main evolutionary 

force involved in population structuring in the region. 

A few exceptions to the allele fixation pattern were observed in both axes of 

divergence. In seasonal reproduction outliers, two aggregations sampled in spring, BDO-

S and SIL-S, exhibited allele frequencies around 0.5 at SNPs being close to fixation for 

opposite alleles in other populations of spring- and fall-spawning herring. This 

observation suggests these collections either correspond to a mixture of spring- and fall-

spawners, or to a unique population where allele diversity is favored. Individual 

genotypes of a subset of diagnostic SNPs of spawning time confirmed BDO-S and SIL-S 

comprised a mixture of spring and fall spawners and putative hybrids (i.e. heterozygous 

individuals at many of the loci showing a high degree of fixation between groups). In 

latitude-related outliers, intermediate allele frequencies were observed in MUS-F and 

GEB-F, two locations in southwestern Nova Scotia, mid-range in the latitudinal cline. 

Interestingly, these locations are few kilometers south of the biographic barrier described 

in the NW Atlantic (Stanley et al., 2018). Environmental conditions in the NW Atlantic 

vary between years in relation to oceanographic global trends (Townsend et al., 2004). It 
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is possible then that populations in southwestern Nova Scotia experience significant 

inter-annual environmental fluctuations during winter months, depending on the 

strengthening either of the warm Gulf Stream flowing north or of the cold Labrador 

Current flowing south. Under these dynamic circumstances, it is possible that balancing 

selection may be maintaining polymorphism at these loci. Additional studies including an 

extended sampling in the southern region could be used to test this hypothesis. 

 

A closer examination of the genomic regions of divergence revealed they vary in 

size and genomic location between the two axes of divergence. Seasonal reproduction-

related outliers were distributed across 18 scaffolds in which they spanned about 50-500 

Kb and a given set of genes. In contrast, latitude-related outliers were mostly spread in 

four scaffolds, covering a larger extension, from 480 Kb to 4.75 Mb, and larger number 

of genes. The observation that latitude-related outliers were widely distributed and 

consistently divergent across four large scaffolds suggests that they could be located 

within a chromosomal rearrangement. If this were the case, the expectation would be that 

populations from the north were homozygous for one state of the variant, the ones in 

southwest Nova Scotia were polymorphic, and in the Gulf of Maine were homozygous 

for the alternative state of the variant. Further research supported by a linkage map, not 

described yet for herring, is required for the evaluation of this hypothesis. 

 

A bioinformatic evaluation of the functional effect of outlier SNPs disclosed that, 

for both axes of divergence, the majority of SNPs were located within introns, intergenic 

regions, and 5Kb upstream or downstream of genes, and a smaller proportion 

corresponded to missense mutations (1.6% and 0.9%, for spawning- and latitude-related 

outliers, respectively). Mutations in introns can modify regulatory domains, intron-exon 

boundaries and RNA splicing (Pagani & Baralle, 2004); missense mutations result in a 

different amino acid; and mutations in regulatory elements can modify gene expression 

(Epstein, 2009; Metzger et al., 2016; Nei, 2007). While at this point is not possible to 

trace a direct link between single SNPs and gene function or identify causal mutations, 

our observations suggest that single base changes in introns, protein-coding, and 
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regulatory regions may be involved in adaptive divergence in NW Atlantic herring, in 

agreement with previous observations in the NE Atlantic (Martinez Barrio et al., 2016).  

Gene annotation of top outlier SNPs confirmed that TSHR, HERPUD2, SOX1, 

SOX11A, SYNE1, SYNE2, and ESR2A are candidate genes related to seasonal 

reproduction. These genes have a known function in reproduction and were previously 

linked to spawning time in NE Atlantic herring (Lamichhaney et al., 2017; Martinez 

Barrio et al., 2016). We discovered an additional set of candidate genes, ISO3, SERTM1, 

SIPA1L1, CAMKK1, TMEM150C, CBLB, ENTPD5, KCNJ6, LPAR6 and GPR119, 

corresponding to the genomic regions of differentiation uniquely observed in the NW 

Atlantic (Lamichhaney et al., 2017), hence, they can potentially be involved in local 

adaptation. Candidate genes related with the latitudinal cline are FAM129B, FNBP1, 

SH3GLB2, and GPR107. 

A qualitative examination of the top ranked GO terms indicated that candidate 

genes related to seasonal reproduction may be involved in biological processes such as 

metabolism of lipids, biosynthesis of cellular products, developmental maturation, 

regulation of developmental process, and cellular component organization. Similarly, 

latitude-related candidate genes may participate in embryological and organ development 

processes. These observations suggest that outlier SNPs underlying the two axes of 

divergence may be involved in different physiological pathways, and that natural 

selection along the latitudinal cline likely acts on early life stages, in agreement with the 

proposed hypothesis for the multispecies climatic cline (Stanley et al., 2018). It is likely 

that early life stages experience selection along the latitudinal cline given that larval 

retention areas are in the proximity of spawning grounds (Stephenson et al., 2009). If 

selection would act on juveniles or adults, which are highly migratory, then the pattern 

should not coincide with spawning locations. 

 

We provide genetic evidence that suggests timing of reproduction and latitudinal 

spawning location are features under disruptive selection leading to local adaptation. 

Several characteristics of herring biology and ecology seem to support this. For instance, 

(i) spawning occurs at predictable times and locations, the timing differs among 

geographic regions (Stephenson et al., 2009), and there is no evidence indicating that 
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individual fish can switch spawning season (Melvin et al., 2009); (ii) herring spawn once 

a year and exhibits spawning site fidelity (Wheeler & Winters, 1984); (iii) spring- and 

fall-spawners differ in morphometric characters, in life-history traits (fecundity, egg size 

and growth), and in phenotypic traits (number of vertebrae and otolith shape) (Baxter, 

1959; Cushing, 1967; Messieh, Anthony, & Sinclair, 1985); growth rate, otolith shape, 

and vertebral counts seem to be largely influenced by genetic factors (Berg et al., 2018); 

(iv) early life stages spawned in different seasons and locations experience contrasting 

environmental conditions (e.g. in the Gulf of St. Lawrence, eggs released by spring 

spawners hatch after 30 days at 5°C, while eggs of fall spawners hatch after 10 days at 

15°C; in Nova Scotia, eggs of fall spawners hatch in 11 days at 10°C) (Scott & Scott, 

1988); (v) larval retention areas occur near spawning grounds and are stable over time, in 

predictable patterns related to oceanographic conditions (Stephenson et al., 2009); and 

(vi) genetic differences between spring- and fall-spawners are temporally stable (Kerr et 

al., 2019). From this, we then infer that timing of reproduction and latitudinal spawning 

location can be adaptive strategies to increase offspring survival, particularly at 

vulnerable early life stages, in environments that vary seasonally and geographically. 

When timing of reproduction is largely heritable, the resulting temporal assortative 

mating may reduce gene flow between individuals breeding at different times (Hendry & 

Day, 2005). In herring, gene flow may be limited between early spring-spawners and late 

fall-spawners even if they are in sympatry (as their gonads are not ripe at the same time, 

as we observed in our samples). How do hybrids occur? We hypothesize hybridization 

could happen between late spring-spawners and early fall-spawners at geographic areas 

where both reproductive strategies coexist (e.g. in the Gulf of St. Lawrence), and when 

the onset of gonadal maturation coincides (likely temperature driven). Hybrids would 

survive then, if they can cope with the local environmental conditions.  

Although disruptive selection is a strong candidate for explaining latitudinal 

divergence in herring, other mechanisms are possible. For example, additional biotic or 

abiotic factors that covariate with temperature may be the actual drivers of adaptation. 

Pre- or post-zygotic reproductive incompatibilities that coincide with latitude (but are not 

dependent on) can result in the observed spatial genetic discontinuity (Bierne, Welch, 

Loire, Bonhomme, & David, 2011). The current latitudinal break may actually reflect 
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historical vicariance (Bradbury et al., 2010), not contemporary population dynamics 

(Palumbi, 1994). Further studies are required to evaluate these alternative hypotheses. 

 

Even though valuable information was obtained through this study, there were 

some limitations. In Pool-seq individual information is missed, thus it is not possible to 

correct accidental mixing of individuals with different origin/spawning season. To avoid 

this, we selected maturing and ripe fish collected in known spawning grounds during the 

local peak of reproduction. Despite these precautions, we found evidence of some mixed 

aggregations (SIL-S and BDO-S). Moreover, in the over-representation enrichment 

analysis statistical significance was not reached. This outcome may have been influenced 

by the restriction that only herring candidate genes with a zebrafish ortholog could be 

included, and that half of the total genes mapped to zebrafish lacked a GO term. We 

expect with a more complete reference genome and annotations, along with functional 

experiments, a better functional characterization of outlier loci will be achieved. 

 

Our findings have several implications and potential applications in fisheries. 

Firstly, our results support the maintenance of separate management of spring- and fall-

spawning components currently in place across most of the region. Secondly, 

management units should be revised in order to protect the functional intraspecific 

biodiversity revealed in this study, specifically considering a climate change scenario as 

spring-spawners seem to be less resilient to a warming ocean (Melvin et al., 2009). 

Thirdly, as we now have the molecular tools to distinguish herring spawning in spring or 

autumn and in northern and southern regions, a subset of outlier SNPs reported here can 

be used for genetic monitoring of stock composition already at the larval stage and out of 

breeding seasons to minimize the risk of overexploitation of vulnerable components 

within mixed stocks. And lastly, the current herring population models could be revised 

as none of them are in complete agreement with our genetic data, as similarly noted by 

McPherson et al. (2004). For instance, the discrete population concept proposes that gene 

flow is limited, hybrids have reduced fitness, and local populations are reproductively 

isolated by fixed spawning time, natal homing, spawning site fidelity, and larval retention 

areas with particular hydrographic features (Sinclair, 1988; Sinclair & Iles, 1989). While 
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our data agrees with most of this, the presence of numerous putative hybrids suggests that 

gene flow may be more extensive than expected under this model and they are viable. In 

the dynamic balance population concept there is significant gene flow, no stable 

population structure, no fixed spawning time, no philopatry, no larval retention areas, as 

populations respond to changing environmental conditions (Smith & Jamieson, 1986). 

The temporal and spatial structuring we observed is opposite to this model. And in the 

metapopulation concept (adopted migrant) there is repeated homing to traditional 

spawning grounds defined by hydrographic features, migration and homing patterns are 

socially transmitted, and significant gene flow can occur as vagrants are adopted by non-

natal local populations (McQuinn, 1997). This model implies an isolation-by-distance 

pattern and that spawning time is not genetically determined (it is learned), contrary to 

our observations.  

 

 In summary, our results confirm that Atlantic herring is a system that provides 

ideal conditions for the study of ecological adaptation with gene flow in the wild 

(Lamichhaney et al., 2017; Martinez Barrio et al., 2016), and provide insight into patterns 

and mechanisms of genomic divergence and local adaptation despite gene flow in an 

abundant and highly dispersive marine fish. 
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4.8 Tables 

 

Table 4.1 Characteristics of the 14 herring spawning aggregations included in this study.  

 

Locality Code 

Sample 

size 

(N) 

Geographic 

coordinates 

(longitude, latitude) 

Sampling 

(dd/mm/yy) 
Season 

Salinity 

(PPM) 

Sequencing 

year 

Seven Islands SIL-S 50 -66.33 50.09 06/06/2012 Spring 35 2016 

Stephenville SPH-S 48 -57.94 49.73 30/05/2012 Spring 35 2016 
Northumberland 

Strait 
NTS-S 50 -64.12 46.30 14/05/06 Spring 35 2015 

Labrador LAB-F 50 -55.50 52.25 
24/08/2014, 
22/08/2015 

Fall 35 2016 

Blanc Sablon BLS-F 49 -57.31 51.38 13/08/2014 Fall 35 2016 

Notre Dame Bay NDB-S 50 -55.44 49.55 03/05/2015 Spring 35 2016 
Notre Dame Bay NDB-F 50 -55.47 49.55 26/10/2015 Fall 35 2016 

Trinity Bay TRB-F 50 -53.47 47.84 28/09/2014 Fall 35 2015 

Miramichi MIR-F 50 -63.96 47.04 25/08/2014 Fall 35 2016 
Bras D’Or lake BDO-S 50 -60.85 45.93 20/04/2016 Spring 25 2016 

Scots Bays SCB-F 50 -64.92 45.17 24/08/2015 Fall 35 2016 
Musquodoboit MUS-F 50 -63.10 44.63 28/10/2015 Fall 35 2016 

German Banks GEB-F 50 -66.33 43.45 28/08/2014 Fall 35 2015 

Maine fishing area 
514 

ME4-F 50 -70.41 42.09 19/10/2015 Fall 35 2016 
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4.9 Figures 

 

 

 

Figure 4.1 Geographic location and population structure among 14 spawning 

aggregations in the NW Atlantic. (A) Map depicting sampling locations in the 

Northwest Atlantic. Location names as described in Table 4.1. Pie charts indicate the 

proportion of individuals in a given gonadal maturity stage for each spawning 

aggregation. Dark and light blue: maturing individuals (stages 3 and 4, respectively), 

light and dark orange: ready-to-spawn and actively spawning individuals (stages 5 and 6, 

respectively), pink: spent individuals (recently spawned) (stage 7), and black: individuals 

with resting gonads (stage 8) (Bucholtz et al., 2008). (B) NJ phylogenetic tree based on 

Nei’s distance calculated from population allele frequencies of 2 189 380 SNPs (percent 

bootstrap support is shown for all branches, based on 1000 bootstrapping). The 

collections clustered according to reproductive season into two main groups, spring (blue 

oval) and fall (red oval) spawners with a few exceptions. BDO-S was in an intermediate 

position between these two groups. The spring-collected sample NDB-S was closer to fall 



 

170 

 

spawners. Within the fall spawners, collections clustered depending on the latitude, 

forming the southern and northern sub-groups. (C) Heatmap depicting pairwise FST 

estimates based on population allele frequencies of 2 189 380 SNPs (values presented in 

Table S4.2). Samples are ordered by collecting season with “S” indicating spring and “F” 

fall. Within season of collection, samples are ordered by latitude. Shading represents the 

degree of genomic divergence. Pairwise FST ranged between 0.012 and 0.043, indicating 

overall and varying low levels of population genetic structure. The most significant 

genomic differentiation was observed between spring and fall spawning aggregations. 

Within spring spawners, the location SIL-S appeared as the most differentiated, and 

within fall spawners, the greatest genetic divergence was observed between the two 

southernmost collections (GEB-F and ME4-F) and all others. Notably, two spring-

collected samples (BDO-S and NDB-S) showed similar patterns of differentiation with 

respect to spring spawners as other fall spawners. Collection name abbreviations are as 

defined in Table 4.1. (D) Plot of principal components 1 and 3 explaining 36% and 30%, 

respectively, of the genetic variation among 14 herring spawning aggregations in the NW 

Atlantic (based on 2 189 380 SNPs). Each dot represents a spawning aggregation. Colors 

indicate spawning season, blue for spring, red for fall, and yellow for mix. Aggregations 

were distinguishable by spawning season along PC1 and by geographic origin along PC3. 
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Figure 4.2 Genome-wide patterns of differentiation associated with seasonal 

reproduction and latitude for 14 Atlantic herring spawning aggregations in the 

Northwest Atlantic. (A-C) Manhattan plots depicting the genomic position of outlier 

SNPs and their respective significance association value (–log10P-value) obtained with 

pcadapt, (A) for PC1 and (C) for PC3. Each dot of the Manhattan plots represents a 

single SNP locus. For the purpose of visualization, only outlier loci per PC are displayed 

(14 726 for PC1 and 6 570 for PC3). The top-ranked 500 SNPs based on importance 

values from a RF classifier are highlighted in blue. SNPs reported in (Lamichhaney et al., 

2017) as highly associated with seasonal reproduction are emphasized in red in (A). SNPs 

within the four scaffolds showing the latitudinal pattern in PC3 but present in PC1 were 

denoted in yellow (A). When available, annotation of the closest gene 5Kb upstream or 

downstream of both, the top SNP per scaffold and the SNPs reported in our previous 

study, are shown. The SNP annotated as TSHR* falls within the first exon of the TSHR 

gene (unpublished Leif Andersson com. pers.). (B and D) Heatmaps depicting 

standardized population allele frequencies of the top 200 outlier loci distinguishing 

collections by (B) seasonal reproduction (PC1), and (D) latitude (PC3). Each row in the 

heatmaps corresponds to a collection site and each column to a SNP. SNPs were ranked 

in descending order based on their significance association value, -log10P-value (from left 

to right). Cell colors represent the population allele frequency of the major allele; thus, 

purple indicates fixation of the major allele (allele frequency of 1) whereas orange 

represents fixation of the minor allele (major allele frequency of 0).  
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Figure 4.3 Functional characterization of outlier SNPs. (A) Functional classification 

of outlier SNPs associated with seasonal reproduction (dark gray) and with latitude (light 

gray), counts. (B-C) Bar plots showing the relative proportion of genes in each of the top 

GO terms associated with (B) seasonal reproduction and (C) latitude, for each biological 

category (i.e. biological process, cellular component, and molecular function). Top GO 

terms corresponded to the ones with P-value < 0.05 (ranked in ascending order based on 

their P-values obtained from ORA, Table S4.3 and S4.4, GO terms with an asterisk). 

Gene counts are indicated within parenthesis. 
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Figure 4.4 Genetic-environment association analysis. (A) Map depicting winter sea 

surface temperature averaged between 2008-2017 and the predominant population allele 

frequencies at diagnostic SNPs in the 14 spawning aggregations included in this study. A 

purple circle represents the prevalent alleles fixed in northern collections, a light purple 

square corresponds to southern collections with intermediate allele frequencies, and an 

orange tringle shows fixation of the minor alleles in the southernmost collection in 

Maine. (B) Redundancy analysis plot based on population allele frequencies of the top 

500 outlier loci, with respect to latitudinal cline, ranked with a random forest classifier. 

Each circle corresponds to a spawning aggregation and their color indicates the 

predominant population allele frequency; labelling as in Fig. 4.4A. The vector of the most 

significant environmental variable is shown in blue, in this case it is surface sea 

temperature in winter months (January-February-March) (F = 16.7, p = 0.001). The 

length of the vector indicates its level of correlation with genetic variance. RDA1 

explained 58.1% of the genetic variance, RDA2 is shown just for plotting purposes. (C-

D) Random forest regression results. (C) Mean decrease in accuracy (MDA) for 12 

environmental variables averaged across all runs and loci. Bars in light gray correspond 

to temperature values and bars in dark gray to surface salinity. Within temperature 

measures, surface is denoted with “S” whereas bottom is indicated with “B”. Average sea 

surface winter temperature is the most important variable explaining genetic variance, 

followed by Fall sea surface temperature. Salinity variables were the least important. (D) 

Mean squared error (MSE) for each location averaged across all runs and loci. The 

southernmost collection had the largest MSE, followed by the collection in the Bay of 

Fundy and in the Scotian Shelf.   
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Figure 4.5 Isolation-by-distance (IBD) test for 14 NW Atlantic herring populations 

based on all neutral and outlier SNPs or on latitude-related SNPs only. Regression 

between linearized genetic distance (FST/1-FST), calculated from either 2,189,371 SNPs 

(red “X”s) or from 6,595 latitude-related outlier SNPs (open black circles), and 

geographic distance (in km) between pairs of populations. The dashed red line and the 

continuous black line correspond to the best fit line in each case. R2 values indicate the 

correlation between geographic and genetic distance matrices used in the Mantel test 

(Mantel’s test for all SNPs: P < 0.001, R2 = 0.04, 9999 replicates; for latitude-related 

SNPs only: P < 0.001, R2 = 0.30, 9999 replicates). Note the IBD pattern is only observed 

in the latitude-related outlier SNPs, not in all SNPs. 
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4.10 Supporting Information 

 

Extended Materials and Methods 

 

Read mapping, SNP calling and filtering 

We adapted the Genome Analysis Toolkit (GATK) Best Practices workflow (Van der 

Auwera et al., 2013) to variant discovery in Pool-seq data and to our computing 

infrastructure. Firstly, a stitched version of the herring genome was obtained for optimal 

SNP caller performance in the computer cluster available. As GATK works best with 

small numbers of contigs (<100), we joined the 145,282 contigs of the current herring 

genome assembly into 94 super-scaffolds using the python script ScaffoldStitcher.py 

(O’Connor Lab, 2016). A long spacer (2000 N’s) was inserted between contigs to 

minimize the occurrence of unspecific paired-read mapping (an excessively large insert 

size, > 2000 bp, would help diagnose an affected read pair).  

Secondly, sequence reads of each pool were independently aligned against the 

stitched herring genome using the Burrows-Wheeler Aligner (BWA) v0.7.12-r1039 

[default parameters, MEM algorithm] (Li, 2013). Read mapping summary statistics per 

pool were obtained from the resulting binary alignment map (BAM) files using Qualimap 

v2.2.1 (Okonechnikov et al., 2015), and jointly assessed for all pools with MultiQC v1.3. 

We then sorted reads, marked PCR duplicates, and added read groups to each BAM file 

using Picard tools v2.10.2 (Broad Institute, 2018), and obtained an index file for each 

BAM file with SAMtools v1.5 (Li & Durbin, 2009a).  

Thirdly, SNP calling was performed using GATK v3.8 (McKenna et al., 2010) (a 

diagram summarizing SNP calling implementation is shown in Fig. S4.1). For this, we 

obtained an intermediate Genomic Variant Call Format (gVCF) file for each pool with 

the GATK-HaplotypeCaller algorithm (Poplin et al., 2017) [parameters: -ERC GVCF -

ploidy 10 --max_genotype_count 286 -newQual -mbq 20 -minPruning 5 --read_filter 

OverclippedRead. Note that actual pool ploidy was ~100, but 10 was used as this was the 

maximum ploidy successfully used by GATK-users at the time of run. Larger numbers 

exceeded algorithm capacity]. We then performed a joint SNP calling on the 14 gVCF 
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files using the GATK-GenotypeGVCFs algorithm [parameters: -T GenotypeGVCFs -

newQual] (Broad Institute, 2014).  

Lastly, the raw variant calls were filtered using GATK, Popoolation2, and custom python 

scripts. With GATK, we kept only biallelic SNPs present in all pools and SNPs with the 

most reliable sequence support as described by GATK-annotations. We removed SNPs 

with GATK annotations beyond cutoff values established from density plots made with 

the R package ggplot (Fig. S4.2) [filters: FS>60.0, SOR>3.0, MQ<40.0, MQRankSum<-

12.5, ReadPosRankSum<-8.0] (a description of each annotation can be found in (Broad 

Institute, 2016). With Popoolation2, we retained SNPs with a minimum coverage of 20x, 

a maximum coverage below the 2% of the empirical coverage distribution of each pool, 

and a minimum count of 4 reads supporting the minor allele across populations. With 

these filters we aimed to keep variants supported by a large number of reads, to exclude 

variants likely resulting from sequencing errors, and to exclude spurious SNPs likely 

falling within copy number variations (CVNs) or repetitive regions characterized by 

extremely high coverage, respectively. With custom python scripts we removed 

monomorphic SNPs that are not informative for allele frequencies and FST calculation.  

 

Allele count correction and population allele frequencies estimation 

In Pool-seq applications, population allele frequencies are derived from the total read 

counts supporting a variant site. Read coverage, however, can vary across the genome 

due to non-biological factors during sequencing and read alignment. For example, some 

genomic regions may accumulate more reads by chance during sequencing, because of 

lower efficiency of Illumina technology at GC regions (Dohm et al., 2008) or due to 

inherent limitations of read aligners, in particular at repetitive regions. In addition, 

chromosome sampling during DNA pooling and sequencing may result in pseudo-

replication, or the sequencing of a chromosome more than once (Feder et al., 2012; 

Kolaczkowski et al., 2011). To control for these factors and minimize their potential 

effect on the estimation of population allele frequencies, some correction methods of raw 

read counts have been proposed. Two of the most common methods are: 1) random 

subsampling of bases to a target coverage, implemented in Popoolation2 (Kofler, Pandey, 

& Schlötterer, 2011a); and 2) rescaling of read counts to the effective number of 
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chromosomes/alleles in a pool, also known as the effective sample size neff (Feder et al., 

2012; Kolaczkowski et al., 2011). For the first method, it has not been discussed in the 

literature how to select an optimal target coverage, nor its effect in downstream analysis. 

In contrast, the second method has a strong theoretical support and its utility has been 

demonstrated (Bergland, Behrman, O’Brien, Schmidt, & Petrov, 2014; Feder et al., 2012; 

Kolaczkowski et al., 2011; Wiberg, Gaggiotti, Morrissey, & Ritchie, 2017). Therefore, 

prior to estimating population allele frequencies, we applied the neff allele count 

correction to the raw read counts using a custom python script implementing this 

formula:  

𝑛eff =
(𝑛 ∗ 𝐶𝑇) − 1

𝑛 + 𝐶𝑇
 

where CT = read depth, and the number of chromosomes/alleles in the pool (n) is 2N (for 

diploid species). With a custom python script, we then computed population allele 

frequencies as the ratio of the reference allele read count to the total reads supporting a 

variant site. 

 

Functional annotation of outlier loci 

We excluded from this analysis SNPs predicted to be located in intergenic regions as no 

gene was reliably assigned to them. We also evaluated whether candidate genes were 

enriched in three biological categories, molecular function, biological process, or cellular 

component, using an overrepresentation enrichment analysis (ORA) of GO terms 

implemented in Webgestalt (Wang, Duncan, Shi, & Zhang, 2013). ORA statistically 

evaluates the number of genes reported in a particular pathway among a gene list of 

interest, for example, resulting from GWAS or gene expression studies (Khatri, Sirota, & 

Butte, 2012). For ORA we used the zebrafish (Danio rerio) homologs of the herring 

candidate genes related with seasonal reproduction or latitudinal divergence, the non-

redundant functional database for each of the three biological categories considered, and 

the genome protein coding database as reference set. P-values were adjusted for multiple 

testing with the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). 

Significantly enriched GO terms were identified using a false discovery rate (FDR) of 

5%. In addition, we examined the top GO terms with P-value < 0.05 of the two candidate 
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gene sets (i.e. seasonal reproduction and latitudinal cline) for each of the three biological 

categories considered. GO terms were ranked in ascending order based on their P-values 

obtained from ORA. 

 

Genome-Environment Association analysis 

Environmental variable reduction was conducted before performing environment 

association analysis, given the high collinearity observed between surface and bottom 

seasonal temperatures (Spring, r = 0.9; Fall, r = 0.92; Winter, r = 0.86; Summer, r = 

0.68) and among all seasonal surface salinity measures (r = 0.79-0.96) (Fig. S4.11). Since 

herring is a pelagic fish that spawns near shore in relatively shallow waters (50-100 m 

deep), we only retained surface temperatures for most seasons except for Summer, for 

which we kept both, surface and bottom measures, as their r < 0.7. A cutoff value of |r| > 

0.7 is generally used for removal of collinear variables (Forester et al., 2018). In addition, 

we only retained spring salinity (Spr_SSS) as it represents the general variation in salinity 

of other seasons. In summary, the reduced environmental dataset used in RDA had 6 

variables (spring, summer, winter, and fall sea surface temperature; summer sea bottom 

sea temperature; and spring sea surface salinity). This dataset was further reduced to 3 

variables (summer sea bottom temperature, winter sea surface temperature, and spring 

sea surface salinity) based on VIF values of RDA runs. 
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Supplementary tables 

 

Table S4.1 Read mapping summary statistics of the Pool-seq data of 14 herring spawning aggregations included in this 

study. Abbreviations, SD: Standard deviation, MQ: Mapping quality. 
 

Locality Code 
Number of 

reads 
  %GC 

Mapped 

reads, both in 

pair 

Mean 

MQ 

Median 

insert size 

Median 

coverage 

Sequence 

batch 

Seven Islands SIL-S 426105370  43 99.50 48.28 546 37 2016 

Stephenville SPH-S 460698330  43 99.06 48.43 505 41 2016 

Northumberland 

Strait 
NTS-S 391232819  44 98.98 47.21 531 28 2015 

Labrador LAB-F 449046570  43 98.60 48.33 534 41 2016 

Blanc Sablon BLS-F 436962768  43 98.71 48.3 532 37 2016 

Notre Dame Bay NDB-F 447042754  43 98.97 48.38 533 42 2016 

Notre Dame Bay NDB-S 422028368  43 98.99 48.17 517 36 2016 

Trinity Bay TRB-F 411425306  43 98.85 46.91 545 33 2015 

Miramichi MIR-F 454079824  43 98.13 48.37 536 43 2016 

Bras D’Or lake BDO-S 441958372  43 98.74 48.35 526 40 2016 

Scots Bays SCB-F 475694602  43 98.89 48.32 538 44 2016 

Musquodoboit MUS-F 445447932  43 98.83 48.36 533 41 2016 

German Banks GEB-F 377288622  43 98.60 48.33 534 25 2015 

Maine fishing area 

514 
ME4-F 492521602   44 98.85 47.39 478 41 2016 

 Total 6119940640 Average 43.1 98.8 48.1 527.7 37.8  

   SD 0.4 0.3 0.5 17.7 5.7  
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Table S4.2 Pairwise 𝐹̂𝑆𝑇
𝑝𝑜𝑜𝑙

 for 14 herring populations in the northwest Atlantic. 

 

 SIL-S SPH-S NTS-S LAB-F BLS-F NDB-F NDB-S TRB-F MIR-F BDO-S SCB-F MUS-F GEB-F ME4-F 

SIL-S 0 0.029 0.033 0.022 0.024 0.022 0.025 0.026 0.022 0.022 0.023 0.023 0.036 0.034 

SPH-S 0.029 0 0.028 0.025 0.027 0.024 0.027 0.029 0.024 0.023 0.027 0.026 0.04 0.038 

NTS-S 0.033 0.028 0 0.03 0.032 0.029 0.032 0.033 0.029 0.026 0.033 0.031 0.043 0.043 

LAB-F 0.022 0.025 0.03 0 0.015 0.012 0.015 0.017 0.013 0.014 0.013 0.013 0.026 0.024 

BLS-F 0.024 0.027 0.032 0.015 0 0.015 0.017 0.019 0.015 0.017 0.015 0.016 0.028 0.027 

NDB-F 0.022 0.024 0.029 0.012 0.015 0 0.015 0.017 0.013 0.014 0.013 0.013 0.025 0.023 

NDB-S 0.025 0.027 0.032 0.015 0.017 0.015 0 0.019 0.016 0.017 0.016 0.016 0.028 0.027 

TRB-F 0.026 0.029 0.033 0.017 0.019 0.017 0.019 0 0.017 0.018 0.018 0.017 0.029 0.027 

MIR-F 0.022 0.024 0.029 0.013 0.015 0.013 0.016 0.017 0 0.014 0.014 0.014 0.026 0.024 

BDO-S 0.022 0.023 0.026 0.014 0.017 0.014 0.017 0.018 0.014 0 0.015 0.014 0.026 0.024 

SCB-F 0.023 0.027 0.033 0.013 0.015 0.013 0.016 0.018 0.014 0.015 0 0.013 0.025 0.023 

MUS-F 0.023 0.026 0.031 0.013 0.016 0.013 0.016 0.017 0.014 0.014 0.013 0 0.024 0.02 

GEB-F 0.036 0.04 0.043 0.026 0.028 0.025 0.028 0.029 0.026 0.026 0.025 0.024 0 0.031 

ME4-F 0.034 0.038 0.043 0.024 0.027 0.023 0.027 0.027 0.024 0.024 0.023 0.02 0.031 0 

  1
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Table S4.3 Overrepresentation analysis of outlier SNPs associated with seasonal reproduction. Gene Ontology (GO) terms are 

listed for each of the three biological categories, biological process, cellular component, and molecular function. Analysis 

performed with Webgestalt, only outliers with a significance value -log10P-value > 7.0 were included. Top GOs (P-value < 

0.05) are indicated with an asterisk. 
 

Category   Gene set Description C O E R P-value FDR 

Biological * GO:0006629 lipid metabolic process 383 13 5.879 2.211 0.006 1.000 

process * GO:0021700 developmental maturation 32 3 0.491 6.108 0.013 1.000 

 * GO:0044711 single-organism biosynthetic process 454 13 6.969 1.865 0.022 1.000 

 * GO:0050793 regulation of developmental process 415 12 6.370 1.884 0.025 1.000 

 * GO:0051128 regulation of cellular component organization 384 11 5.894 1.866 0.033 1.000 

 * GO:0022610 biological adhesion 247 8 3.791 2.110 0.036 1.000 

 * GO:0018193 peptidyl-amino acid modification 342 10 5.250 1.905 0.037 1.000 

 * GO:0070271 protein complex biogenesis 250 8 3.837 2.085 0.038 1.000 

 * GO:0048017 inositol lipid-mediated signaling 23 2 0.353 5.665 0.048 1.000 

 * GO:0006082 organic acid metabolic process 311 9 4.774 1.885 0.049 1.000 

  GO:0001655 urogenital system development 99 4 1.520 2.632 0.065 1.000 

  GO:0071822 protein complex subunit organization 280 8 4.298 1.861 0.066 1.000 

  GO:0044087 regulation of cellular component biogenesis 101 4 1.550 2.580 0.069 1.000 

  GO:0006325 chromatin organization 245 7 3.761 1.861 0.082 1.000 

  GO:0048646 anatomical structure formation involved in morphogenesis 449 11 6.892 1.596 0.083 1.000 

  GO:0006259 DNA metabolic process 254 7 3.899 1.795 0.095 1.000 

  GO:0006839 mitochondrial transport 36 2 0.553 3.619 0.105 1.000 

  GO:0050808 synapse organization 36 2 0.553 3.619 0.105 1.000 

  GO:0051239 regulation of multicellular organismal process 419 10 6.431 1.555 0.109 1.000 

   GO:0048699 generation of neurons 478 11 7.337 1.499 0.116 1.000 

Cellular * GO:0005783 endoplasmic reticulum 401 14 6.236 2.245 0.003 0.079 

component * GO:0042175 nuclear outer membrane-endoplasmic reticulum membrane network 276 11 4.292 2.563 0.003 0.079 

 * GO:0098805 whole membrane 261 9 4.059 2.218 0.018 0.313 

  GO:0031975 Envelope 320 9 4.976 1.809 0.057 0.643 

  GO:0019867 outer membrane 59 3 0.917 3.270 0.063 0.643 

  GO:0048475 coated membrane 35 2 0.544 3.675 0.102 0.868 

  GO:0031982 Vesicle 275 7 4.276 1.637 0.133 0.890 

  GO:0005773 Vacuole 129 4 2.006 1.994 0.140 0.890 

  GO:0005694 Chromosome 236 6 3.670 1.635 0.159 0.898 

  GO:0005739 Mitochondrion 484 10 7.526 1.329 0.214 1.000 

  GO:0005667 transcription factor complex 110 3 1.711 1.754 0.244 1.000 

  GO:1903293 phosphatase complex 20 1 0.311 3.215 0.270 1.000 

  GO:0070603 SWI/SNF superfamily-type complex 21 1 0.327 3.062 0.281 1.000 

  GO:0099023 tethering complex 25 1 0.389 2.572 0.325 1.000 

  GO:0098588 bounding membrane of organelle 433 8 6.733 1.188 0.359 1.000 

  GO:0097458 neuron part 217 4 3.374 1.185 0.439 1.000 
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Category   Gene set Description C O E R P-value FDR 

  GO:0042579 Microbody 37 1 0.575 1.738 0.441 1.000 

  GO:0044815 DNA packaging complex 44 1 0.684 1.462 0.500 1.000 

  GO:1990204 oxidoreductase complex 45 1 0.700 1.429 0.508 1.000 

   GO:0044421 extracellular region part 367 6 5.707 1.051 0.512 1.000 

Molecular * GO:0050839 cell adhesion molecule binding 28 3 0.383 7.835 0.006 0.342 

function * GO:0042802 identical protein binding 91 5 1.244 4.018 0.008 0.342 

 * GO:0005319 lipid transporter activity 41 3 0.561 5.351 0.018 0.424 

 * GO:0016746 transferase activity, transferring acyl groups 156 6 2.133 2.813 0.020 0.424 

  GO:0000287 magnesium ion binding 62 3 0.848 3.539 0.053 0.679 

  GO:0005506 iron ion binding 106 4 1.449 2.760 0.057 0.679 

  GO:0046983 protein dimerization activity 264 7 3.610 1.939 0.069 0.679 

  GO:0070405 ammonium ion binding 34 2 0.465 4.302 0.078 0.679 

  GO:0016765 transferase activity, transferring alkyl or aryl (other than methyl) groups 35 2 0.479 4.179 0.082 0.679 

  GO:0019842 vitamin binding 36 2 0.492 4.063 0.086 0.679 

  GO:0044877 macromolecular complex binding 279 7 3.815 1.835 0.087 0.679 

  GO:0043177 organic acid binding 38 2 0.520 3.849 0.095 0.679 

  GO:0008565 protein transporter activity 42 2 0.574 3.482 0.112 0.742 

  GO:0005509 calcium ion binding 362 8 4.950 1.616 0.121 0.746 

  GO:0019904 protein domain specific binding 49 2 0.670 2.985 0.144 0.827 

  GO:0008289 lipid binding 220 5 3.008 1.662 0.182 0.980 

  GO:0000981 RNA polymerase II transcription factor activity, sequence-specific DNA binding 225 5 3.077 1.625 0.194 0.982 

  GO:0048037 cofactor binding 135 3 1.846 1.625 0.281 1.000 

  GO:0030246 carbohydrate binding 77 2 1.053 1.899 0.284 1.000 

   GO:0000988 transcription factor activity, protein binding 141 3 1.928 1.556 0.303 1.000 
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Table S4.4 Overrepresentation analysis of outlier SNPs associated with latitude. Gene Ontology (GO) terms are listed for each 

of the three biological categories, biological process, cellular component, and molecular function. Analysis performed with 

Webgestalt, only outliers with a significance value -log10P-value > 7.0 were included. Top GOs (P-value < 0.05) are indicated 

with an asterisk. 
Category   Gene set Description C O E R P-value FDR 

Biological * GO:0048598 embryonic morphogenesis 397 10 4.281 2.336 0.010 1 

process * GO:0007492 endoderm development 45 3 0.485 6.183 0.012 1 

 * GO:0031214 biomineral tissue development 22 2 0.237 8.431 0.023 1 

 * GO:0060322 head development 270 7 2.911 2.404 0.026 1 

 * GO:0007498 mesoderm development 63 3 0.679 4.416 0.030 1 

 * GO:0021675 nerve development 26 2 0.280 7.134 0.032 1 

 * GO:0009792 embryo development ending in birth or egg hatching 288 7 3.105 2.254 0.035 1 

 * GO:0007010 cytoskeleton organization 372 8 4.011 1.994 0.047 1 

 * GO:0009611 response to wounding 127 4 1.369 2.921 0.048 1 

  GO:0006818 hydrogen transport 79 3 0.852 3.522 0.053 1 

  GO:0016311 dephosphorylation 192 5 2.070 2.415 0.056 1 

  GO:0007049 cell cycle 389 8 4.194 1.907 0.058 1 

  GO:0031099 regeneration 83 3 0.895 3.352 0.060 1 

  GO:0001503 ossification 42 2 0.453 4.416 0.075 1 

  GO:0010035 response to inorganic substance 42 2 0.453 4.416 0.075 1 

  GO:0007417 central nervous system development 354 7 3.817 1.834 0.087 1 

  GO:0001501 skeletal system development 158 4 1.704 2.348 0.091 1 

  GO:0044087 regulation of cellular component biogenesis 101 3 1.089 2.755 0.095 1 

  GO:1901135 carbohydrate derivative metabolic process 444 8 4.788 1.671 0.105 1 

   GO:0048568 embryonic organ development 301 6 3.246 1.849 0.106 1 

Cellular * GO:1903293 phosphatase complex 20 2 0.215 9.289 0.019 0.672 

component * GO:0005581 collagen trimer 27 2 0.291 6.881 0.034 0.672 

 * GO:0044421 extracellular region part 367 8 3.951 2.025 0.040 0.672 

  GO:0048471 perinuclear region of cytoplasm 38 2 0.409 4.889 0.062 0.795 

  GO:0005667 transcription factor complex 110 3 1.184 2.533 0.114 1.000 

  GO:0031984 organelle subcompartment 68 2 0.732 2.732 0.166 1.000 

  GO:0031300 intrinsic component of organelle membrane 72 2 0.775 2.580 0.181 1.000 

  GO:1905360 GTPase complex 27 1 0.291 3.440 0.254 1.000 

  GO:1905368 peptidase complex 49 1 0.528 1.896 0.413 1.000 

  GO:0005739 mitochondrion 484 6 5.211 1.152 0.423 1.000 

  GO:0030054 cell junction 222 3 2.390 1.255 0.431 1.000 

  GO:0031975 envelope 320 4 3.445 1.161 0.456 1.000 

  GO:0005794 Golgi apparatus 331 4 3.563 1.123 0.483 1.000 

  GO:0098588 bounding membrane of organelle 433 5 4.661 1.073 0.506 1.000 

  GO:0043235 receptor complex 67 1 0.721 1.386 0.519 1.000 

  GO:0098552 side of membrane 73 1 0.786 1.272 0.549 1.000 

  GO:0005856 cytoskeleton 485 5 5.221 0.958 0.611 1.000 

  GO:0098796 membrane protein complex 295 3 3.176 0.945 0.625 1.000 
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Category   Gene set Description C O E R P-value FDR 

  GO:0019898 extrinsic component of membrane 96 1 1.033 0.968 0.650 1.000 

   GO:1990904 ribonucleoprotein complex 324 3 3.488 0.860 0.690 1.000 

Molecular * GO:1901681 sulfur compound binding 51 3 0.523 5.736 0.015 0.825 

function * GO:0016798 hydrolase activity, acting on glycosyl bonds 71 3 0.728 4.120 0.036 0.825 

 * GO:0016853 isomerase activity 77 3 0.790 3.799 0.044 0.825 

 

 GO:0098531 

transcription factor activity, direct ligand regulated sequence-specific DNA 

binding 39 2 0.400 5.000 0.060 0.825 

  GO:0005198 structural molecule activity 282 6 2.892 2.075 0.069 0.825 

  GO:0016757 transferase activity, transferring glycosyl groups 215 5 2.205 2.268 0.069 0.825 

  GO:0016746 transferase activity, transferring acyl groups 156 4 1.600 2.500 0.076 0.825 

  GO:0005509 calcium ion binding 362 7 3.713 1.885 0.077 0.825 

  GO:0016788 hydrolase activity, acting on ester bonds 397 7 4.072 1.719 0.111 1.000 

  GO:0003707 steroid hormone receptor activity 59 2 0.605 3.305 0.122 1.000 

  GO:0048037 cofactor binding 135 3 1.385 2.167 0.161 1.000 

  GO:0003690 double-stranded DNA binding 156 3 1.600 1.875 0.215 1.000 

  GO:0008066 glutamate receptor activity 26 1 0.267 3.750 0.235 1.000 

  GO:0019205 nucleobase-containing compound kinase activity 28 1 0.287 3.482 0.251 1.000 

  GO:0004896 cytokine receptor activity 35 1 0.359 2.786 0.303 1.000 

  GO:0005539 glycosaminoglycan binding 36 1 0.369 2.709 0.311 1.000 

  GO:0001067 regulatory region nucleic acid binding 191 3 1.959 1.532 0.312 1.000 

  GO:0016874 ligase activity 119 2 1.220 1.639 0.346 1.000 

  GO:0009055 electron carrier activity 46 1 0.472 2.120 0.379 1.000 

   GO:0016773 phosphotransferase activity, alcohol group as acceptor 492 6 5.046 1.189 0.392 1.000 
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Supplementary figures 

 

 

Figure S4.1 Workflow to perform SNP calling on Pool-seq data using GATK 3.8 in a cluster computer. Note that a newer 

GATK version (4.x) has been released, thus these steps may not apply. 
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Figure S4.2 Density plots of GATK variant annotations used as reference to determine 

cutoff values to apply hard filters to raw SNP calls. Plots obtained with the R package 

ggplot. The black vertical line shows the cutoff value used. Abbreviations: QualByDepth 

(QD) 2.0, FisherStrand (FS) 60.0, StrandOddsRatio (SOR) 3.0, RMSMappingQuality 

(MQ) 40.0, MappingQualityRankSumTest (MQRankSum) -12.5, ReadPosRankSumTest 

(ReadPosRankSum) -8.0. A complete explanation of each of these filters can be found in 

(Broad Institute, 2016). 
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Figure S4.3 Linear regression between Cartesian and geographic coordinates using least-

cost distances between 14 Atlantic herring spawning sites in the NW Atlantic. Distances 

were estimated with the R function CartDist (Stanley & Jeffery, 2017). Reprojection 

stress was good (< 0.05): 0.0448. 
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Figure S4.4 Correlation of Mean Decrease in accuracy (MDA) values between pairs of 

replicates of three random forest regression runs. Plots indicate very high correlation in 

MDA between runs (Cor = 0.9999). 
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Figure S4.5 Heatmaps representing standardized population allele frequencies (major 

allele) of the top 200 outlier SNPs detected with pcadapt R package (BH-FDR = 0.01) 

for PCs 1 to 13. 
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Figure S4.6 Genomic distribution of outlier loci detected in PC1 in four scaffolds 

showing the seasonal reproduction pattern of divergence in NW Atlantic herring. 

Significance values (-log10P-values) of outlier loci are represented as lines in blue. The 

position of annotated genes is shown on top of the significance values. (A) scaffold 1420, 

(B) scaffold 190, (C) scaffold 481, (D) scaffold 312. Note the clustering of outlier loci in 

restricted regions within each scaffold. Images obtained with JBrowse genome browser 

(Buels et al., 2016). 
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Figure S4.7 Genomic distribution of outlier loci detected in PC3 from the four scaffolds 

showing the latitudinal pattern of divergence in NW Atlantic herring. Significance values 

(-log10P-values) of outlier loci are represented as lines in blue. The position of annotated 

genes is shown on top of the significance values. (A) scaffold 44, (B) scaffold 122, (C) 

scaffold 869, (D) scaffold 958. Note the wide distribution of outlier loci across all 

scaffolds. Images obtained with JBrowse genome browser (Buels et al., 2016). 
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Figure S4.8 Population allele frequencies of the 14,724 outlier SNPs detected in PC1. 

Extended analysis from Fig. 4.2B. SNPs were ranked by -log10P-value (descending order) 

obtained from the genome scan performed with the R package pcadapt. The total number 

of SNPs was split in eight groups for practicality. Clustering by rows (SNPs) was used to 

facilitate the visualization of blocks of SNPs showing the latitudinal pattern detected in 

PC3, which are denoted with a red asterisk. Each row is a SNP and each column is a 

sampling location (SIL-S, SPH-S, NTS-S, LAB-F, BLS-F, NDB-F, NDB-M, TRB-F, 

MIR-F, BDO-M, SCB-F, MUS-F, GEB-F, ME4-F), abbreviations are as in Table 4.1. 
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Figure S4.9 Heatmaps depicting standardized individual genotypes for a subset of 

diagnostic SNPs. A total of 230 individuals (~28 in each location) were genotyped in 

SNP markers related with (A) seasonal reproduction (n=52), and (B) latitudinal 

divergence (n=37). Each row corresponds to an individual and each column corresponds 

to a single SNP. SNPs from the same scaffold are grouped same as individuals from the 

same location. Therefore, different scaffolds are separated by vertical white spaces while 

collections are distinguished by horizontal white spaces. The labels at the top of each 

block indicate scaffold number (Scf.) whereas the number at the bottom show the 

corresponding base pair position of the variant. Cell colors represent the individual 

genotypes, blue for homozygous A/A, yellow for heterozygous, red for homozygous B/B, 

and black for missing genotype.  
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A  

 

B 

 

 

Figure S4.10 Summary of GO terms corresponding to candidate genes associated with 

seasonal reproduction and with latitudinal divergence in NW Atlantic herring. Each color 

represents the GO term categories for biological processes (red), cellular components 

(blue), and molecular function (green). (A) For spawning-related genes, and for (B) 

latitude-related genes. Plots generated by Webgestalt (Wang et al., 2013). 
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Figure S4.11 Pairwise correlation of 12 environmental variables considered for 

environment association analyses. Below the diagonal a scatterplot for each pairwise 

comparison is shown, and above the diagonal the correspondent Pearson correlation 

coefficients are presented; their font size reflects their magnitude. Plot obtained with the 

function pairs.panels of the R package psych. 
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CHAPTER 5. MIXED COMPOSITION OF NORTHWEST ATLANTIC HERRING 

AGGREGATIONS OUTSIDE OF THE BREEDING SEASON REVEALED BY 

DIAGNOSTIC SNP PANELS 

 

5.1 Abstract 

The preservation of biologically relevant genetic diversity within species is often 

overlooked in fisheries management, imposing a risk for the long-term persistence of 

species and fisheries. The still high cost of genomic techniques is one of the limiting 

factors to integrate genetics into the conservation toolbox. Here we developed and 

demonstrated the utility of two highly informative reduced SNP panels for the 

identification of spawning season and latitudinal origin of northwest Atlantic herring 

(Clupea harengus L.); a highly migratory and abundant marine fish with an intricate life 

history and elusive definition of population structure. With these panels, we genotyped 

1010 fish from 30 locations distributed across the reproductive range of the species in the 

northwest Atlantic. Self-assignment simulations confirmed the high accuracy of both 

panels (>85%). Our genetic data confirmed the southwest-northeast gradient in the 

prevalence of spawning types and provided evidence that reproductive time diversity may 

be an adaptive strategy to cope with changing environments. Temporal stability in allele 

frequency differences between spring and fall spawners and in fall spawners from the 

northern region was confirmed for the short time period covered (1-9 years), implying 

selective pressures may be relatively constant in ecological time scales. The analysis of 

hybrid indices disclosed evidence of unrestricted hybridization between reproductive and 

latitudinal components. Hybrids between spawning seasons represented a varying 

proportion of spawning aggregations (0.0-60.0%), whereas hybrids between latitudinal 

regions were more prevalent towards the south (21.4-55.6%), suggesting high 

connectivity between regions and polymorphism is advantageous in this region. 

Interestingly, individuals with intermediate to high admixture levels seem to be capable 

of spawning in either season. Analysis of mixture samples confirmed the dynamic nature 

of aggregations outside of the breeding season. This work highlights the complexity of 

the herring mating system and the importance of preserving such intraspecific diversity. 

Additionally, it provides a novel genetic tool with which it is possible to estimate, in 
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close to real time, the relative contribution of reproductive and latitudinal components to 

herring aggregations of presumed mixed origin sampled either during or outside the 

spawning seasons. 

 

5.2 Introduction 

One often overlooked consideration in fisheries management is the presence of 

biologically relevant genetic diversity within and between populations of the same 

species (Bernatchez et al., 2017; Laikre et al., 2016; Reiss, Hoarau, Dickey-Collas, & 

Wolff, 2009). The preservation of such biological complexity is particularly important for 

commercially harvested species, because it determines their resilience to extreme 

environmental changes and to the increased mortality due to fishing (Hilborn, Quinn, 

Schindler, & Rogers, 2003; Ruzzante et al., 2006; Satterthwaite & Carlson, 2015). Yet, 

the intraspecific diversity of numerous harvested organisms remains largely unknown. 

This knowledge gap can risk the long-term persistence of both species and fisheries, and 

in turn, of the ecosystem functions and livelihood of communities that depend on them 

(Reiss et al., 2009; Schindler et al., 2010). For example, uninformed fisheries targeting 

mixed stocks could negatively affect adaptive or less-abundant components by making 

them more vulnerable to overfishing (Frank & Brickman, 2000; Ruzzante et al., 2000). 

The resulting loss of species’ biological diversity and evolutionary potential could then 

translate into longer time for recovery of fishing stocks or their complete depletion 

(Frank & Brickman, 2000; Melvin et al., 2009). Consequently, the protection of genetic 

diversity within species should be a central goal in wildlife conservation and fisheries 

management, as recognized by international agreements such the Convention on 

Biological Diversity (CBD; https://www.cbd.int/). 

 

Intraspecific genetic diversity has been traditionally examined using a handful of 

neutral genetic markers (i.e. that do not codify for proteins), which commonly reflect 

patterns of differentiation due to genetic drift (i.e. random loss of alleles due to small 

population size) (Allendorf, 2016). With the development of Next-Generation 

Sequencing technologies is now possible to assess both neutral and functional genetic 

diversity in high genomic resolution (i.e. with thousands to millions of genetic markers) 
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(Nosil & Feder, 2012). Recently, the screening of markers in functional parts of the 

genome is revealing fine-scale structuring in species characterized by low levels of 

population structure at neutral markers [e.g. Atlantic herring (Fuentes-Pardo et al., 2019; 

Lamichhaney et al., 2012; Martinez Barrio et al., 2016), Atlantic salmon (Freamo, 

O’reilly, Berg, Lien, & Boulding, 2011), pearl oyster (Nayfa & Zenger, 2016)]. The still 

high cost of high-throughput sequencing however, limits conducting large-scale genomic 

studies (Shafer et al., 2015), often required for fisheries management. Highly informative 

and reduced panels of microsatellite (i.e. short tandem repeat) or single nucleotide 

polymorphism (SNP) markers are becoming an affordable alternative with equivalent 

high accuracy for individual assignment and mixed stock analysis (Bekkevold et al., 

2015b; Bradbury et al., 2016; Jeffery, Wringe, et al., 2018), which is why its 

development has attracted great interest. 

   

Atlantic herring is an abundant and highly migratory pelagic fish that plays an 

important role in the marine ecosystem as a forage species. It also sustains a profitable 

fishery across the North Atlantic Ocean (FAO, 2019). Herring reaches first maturation at 

the age of 3-4 years and can live up to 20+ years (Benoît et al., 2018). Broadcast 

spawning occurs once a year at predictable and discrete locations in coastal and offshore 

waters near shore. Tagging data indicates herring exhibits strong spawning site fidelity, 

once a ground has been used before (Stobo, 1987; Wheeler & Winters, 

1984b). Differential trends in abundance and growth rate suggest herring may also 

exhibit “natal homing” (i.e. return to the place where they were hatched), although this 

has not been proven yet (Stephenson et al., 2009). After hatching, larvae remain grouped 

in areas with particular oceanographic characteristics (Iles & Sinclair, 1982). Juveniles 

and adults undertake annual migrations among spawning, overwintering, and feeding 

areas, forming large schools often composed by diverse populations that separate during 

the breeding season (Waters & Clark, 2005; Wheeler & Winters, 1984b). In the 

Northwest (NW) Atlantic, the species is widely distributed from Cape Hatteras to 

northern Labrador (Scott & Scott, 1988), but its reproduction is restricted from Cape Cod 

to northern Newfoundland, in U.S. and Canada, respectively (Iles & Sinclair, 1982). 

Spawning takes place from April to October but mainly between April and May (spring-
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spawning) and from August to October (fall-spawning). For management purposes, fish 

are currently classified as spring or fall spawners mainly based on their gonadal maturity 

stage at the month of capture. Individuals spawning before July 1st are considered spring 

spawners and, after this date they are assumed fall spawners (LeBlanc, Poirier, 

MacDougall, Bourque, & Roy, 2008; I. H. McQuinn, 1987). The prevalence of either 

spawning type appears to follow a southwest-northeast gradient, where fall-spawning 

prevails in the south (including the Scotian Shelf, the Bay of Fundy, and the Gulf of 

Maine), while spring- and fall-spawning coexist in the north (including the Gulf of St. 

Lawrence and Newfoundland) (Melvin et al., 2009). Fishing data indicates that spring-

spawning used to be prevalent in the northernmost part of the reproductive range 

(Winters & Wheeler, 1987), it was common in the brackish waters in Bras D’Or lake 

until its collapse due to overfishing in the 90’s (Denny, Clark, Power, & Stephenson, 

1998), and it was sporadically present in mid-coastal Nova Scotia (Bradford & Iles, 1992; 

Power et al., 2007). The shift in the prevalence of reproductive strategies observed in 

recent years appears to be linked with a sea warming trend, which has led to propose that 

spawn timing diversity may be an adaptive strategy of the species to increase 

reproductive success under changing environments (Melvin et al., 2009). The high 

biocomplexity (sensu Ruzzante et al., 2006) of NW Atlantic herring has historically made 

the description of its population structure difficult. More recent genomic studies revealed 

fine-scale population structuring in adaptive loci, despite low differentiation at neutral 

loci (Fuentes-Pardo et al., 2019; S. Lamichhaney et al., 2017). Specifically, contrasting 

allele frequencies in adaptive loci discriminate spawning aggregations by spawning 

season and latitudinal origin. 

 

Here, we evaluated the efficacy of highly informative reduced SNP panels for 

mixed stock assessment. Based on the genomic data available for herring, we developed 

two SNP panels diagnostic of spawning season (SPW-panel) and latitudinal origin (LAT-

panel), and obtained their genotypes for herring individuals from several spawning 

grounds throughout the reproductive range of the species in the NW Atlantic. The 

efficacy of the panels for individual assignment and mixed stock analysis was examined 

using samples from inshore and offshore mixed aggregations in the region. The two 
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overarching questions were: i) What is the relative contribution of spring- and fall- 

spawning and of northern and southern individuals to offshore aggregations of presumed 

mixed origin and to spawning aggregations? ii) Is this contribution temporally stable? 

This study constitutes the most comprehensive spatial genetic survey of spawning 

grounds and offshore aggregations in the reproductive range of the species in western 

Atlantic to date. The accurate assessment of the composition of mixed stocks, achieved 

here using genetic tools, is critical for the ongoing management of herring fisheries. 

 

 

5.3 Materials and Methods 

 

5.3.1 Sample collection and DNA extraction 

A total of 1010 adult herring were collected between 2005 and 2017 from 25 locations 

ranging from Newfoundland, Canada, to the Gulf of Maine, U.S. (Fig. 5.1 and Table 1). 

Twenty-two of these samples corresponded to inshore spawning aggregations (i.e. sites 

with known recurrent spawning activity over the years) and three were offshore 

aggregations (i.e. sites where individuals from different populations are known to gather 

outside of the breeding season). Individual gonadal maturity was recorded when possible 

(Fig. 5.1) (Maturity code equivalences, 1: Juvenile, 2: Early maturation, 3: Mid 

maturation, 4: Late maturation, 5: Spawning capable, 6: Spawning, 7: Spent, 8: Resting). 

To assess stability of allele frequencies over time, we obtained additional temporal 

replicates one, two to nine years apart from five locations, for a total of 30 samples 

available for the genetic study. For individual assignment analysis, collections from 

spawning sites were considered “baselines” and collections from offshore locations and 

from the Bras D’Or lake area were analyzed as “mixture” samples (see Table 5.1). 

Muscle or fin tissue samples were taken from each individual and stored in 95% ethanol 

at -20 ºC. DNA was isolated from the tissues following a standard phenol chloroform 

protocol. DNA integrity was evaluated with 0.8% agarose gel electrophoresis using 0.5x 

TBE buffer and a 1Kb molecular weight ladder. DNA concentration in ng/L was 

measured using the Quant-iT PicoGreen dsDNA assay (Thermo Fisher Scientific) and a 

Cytation4 plate reader (BioTek Instruments, Inc.).  
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5.3.2 Development of diagnostic SNP panels 

In our previous study based on whole genome resequencing of pooled DNA of 

individuals (Pool-seq; Fuentes-Pardo et al., 2019), we identified in NW Atlantic herring 

thousands of putatively adaptive outlier SNPs exhibiting contrasting allele frequency 

differences with respect to two main axes of population divergence: seasonal 

reproduction and a latitudinal climate-related cline (14 724 and 6 595, respectively). We 

thus aimed to find a reduced number of genetic markers that allow for the correct 

assignment of individuals to their spawning season (hereafter called SPW-panel and 

SPW-dataset), and geographic region of origin (hereafter called LAT-panel and LAT-

dataset). For this, we separately examined the informativeness of outlier SNPs underlying 

each pattern of population divergence using random forest (RF) (Breiman, 2001), a 

powerful machine learning algorithm widely used for ranking features (genetic markers 

in this case) based on their importance for classification (Jeffery, Wringe, et al., 2018; 

Sylvester et al., 2017). RF builds a collection of decision trees (“forest”) from randomly 

chosen subsets of samples (“in the bag”) and explanatory variables (or predictors) to 

predict the outcome of a response variable. RF models can be used for classification 

(response variable set as.factor), when the response variable is categorical, or for 

regression, when the response variable is continuous. In classification RF models, the 

incorrect assignment of out-of-bag (OOB) samples constitutes an estimate of the 

classification power of the model (OOB error rate, OOB-ER); and the mean decrease in 

accuracy (MDA) of the model caused by the exclusion (or permutation) of a predictor is a 

measure of the relative importance of the predictor for correct assignment. Model 

accuracy is thus expected to decrease when an important variable is permuted, and 

variables with the highest MDA score are considered the most important for 

classification. A more detailed explanation of RF can be found elsewhere (Breiman, 

2001; Brieuc, Waters, Drinan, & Naish, 2018; Goldstein et al., 2010; Schrider & Kern, 

2018). In our case, we used SNP allele frequencies as explanatory variables, and the 

classes (or categories) of each SNP panel as response variables. The classes in the SPW-

panel were spring and fall, and in the LAT-panel were north (southern Labrador, 
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Newfoundland, and the Gulf of St. Lawrence), center (the Bay of Fundy and the Scotian 

Shelf), and south (Gulf of Maine). 

 

For the RF runs, we simulated 50 individual genotypes per population based on 

the population-level allele frequencies obtained with Pool-seq for the outlier SNPs 

underlying each pattern of divergence. This simulation was performed using the function 

sample.geno implemented in the R package pcadapt v3.0.4 (Luu et al., 2017). This 

function samples genotypes using binomial random draws with the provided population 

allele frequencies. To avoid over-confidence of assignment accuracy (upward grading 

bias) (Anderson, 2010), the simulated genotype dataset was split into “training” and 

“testing” (hold-out) datasets (proportion 60:40). The training dataset was solely used for 

building the RF model and the testing dataset was used for cross-validation of the 

assignment power of a reduced number of SNP markers. We used the implementation of 

the RF algorithm in the R package randomForest (Liaw & Wiener, 2002; Andy Liaw & 

Wiener, 2018). In this package it is necessary to estimate three parameter values to build 

a RF model: (1) mtry, or the number of predictors randomly selected in each node of a 

tree; (2) ntree, or the total number of trees to build in a model; and (3) sampsize, or the 

number of samples per class included for building a classification model. The sampsize 

parameter assures a “balanced” representation of classes (i.e. same number of 

observations per class) during tree building, which avoids the RF model to be biased 

towards the majority class. To select optimal parameters for our dataset, we examined a 

combination of values following the recommendations of Brieuc et al. (2018) with some 

modifications. First, OOB-ER for different combinations of mtry and ntree values were 

compared. Values of mtry comprised default [sqrt(p)], twice default [2*sqrt(p)], half 

default [0.5*sqrt(p)], 0.1(p), 0.2(p), p/3, and p, where p is the number of loci. Values of 

ntree ranged from 100 to 1000, by increments of 100. The optimal mtry corresponded to 

the value where OOB-ER reached a plateau. Second, to ensure repeatability of RF 

models and convergence of importance values of the predictors, three independent 

classification RF runs were performed using the optimal mtry and a large ntree value 

(500 000 and 1 000 000). A correlation coefficient (Cor) was calculated for the 

importance values of each pair of RF replicates. The optimal ntree was the value with the 
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highest Cor. Finally, the parameter sampsize was set to 2/3 of the class with the lower 

sample size (Brieuc et al., 2018). 

The most informative SNPs for classification in each SNP panel were identified 

following the “elbow” method (Goldstein et al., 2010). In this method, the cut-off of 

importance values is determined based on a scatter plot of importance values of SNPs; 

predictors before the point where the differences between importance values level-off 

(“elbow”) are considered important. To determine the minimum number of informative 

loci required in each panel for accurate assignment (>70%) of individuals to their class, 

we performed individual assignment simulations using the leave-one-out (LOO) method 

implemented in the R package rubias (Anderson, Waples, & Kalinowski, 2008; Moran & 

Anderson, 2018) (self_assign function). We tested the top 10, 20, 40, 70, and 100 loci, 

and calculated metrics such as accuracy (the proportion of correctly assigned individuals 

to their class), efficiency (the proportion of the total number of individuals in a class that 

were correctly assigned), and power (power = efficiency x accuracy) (Vähä & Primmer, 

2006) using custom R scripts. Finally, we applied additional filters to the reduced panel 

of top loci: (1) loci with >2 flanking SNPs within 150bp were excluded, as high SNP 

abundance within a short DNA fragment suggests the presence of a repetitive sequence 

that could lead to a spurious SNP and difficulties for primer design; (2) if two or more 

informative variants were located within the same scaffold and were <1 Kb apart, only 

the variant with the highest importance value was kept in order to reduce redundancy in 

the final panel. 

 

5.3.3 SNP genotyping and quality filtering of raw data 

Individual genotypes of the loci included in the final SNP panel were obtained with the 

MassARRAY System (Agena Bioscience) through the service provided by Neogen 

Corporation (Lincoln, U.S.). About 6% of the total individuals analyzed (60/1010) were 

genotyped twice to estimate the genotyping error rate following the method described in 

Pompanon, Bonin, Bellemain, & Taberlet (2005). The multilocus genotype error rate was 

equal to 0.16%. Individuals and loci with more than 20% missing data and loci with a 

minor allele frequency (MAF) below 1% were removed from the dataset using PLINK 
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(Purcell et al., 2007). Loci that did not show expected allele frequency patterns were also 

excluded. 

 

5.3.4 Population structure 

To quantify genetic divergence among populations based on each SNP panel, we 

computed pairwise fixation index FST with ARLEQUIN v3.5 (Excoffier & Lischer, 

2010). To control for multiple comparisons, the correspondent P-values were adjusted for 

false discovery rate (FDR) using the R package p.adjust (R Core Development Team, 

2019). An alpha significance value of 0.05 was used. To estimate the proportion of the 

total genetic variation that is explained by genetic differences between groups (FST), 

among subpopulations within groups (FSC), and among individuals within subpopulations 

(FCT), we performed a hierarchical analysis of molecular variance (AMOVA) for each 

SNP panel using ARLEQUIN v3.5 (Excoffier & Lischer, 2010). In the SPW-panel, 

subgroups were spring and fall spawning collections, and in the LAT-panel, subgroups 

corresponded to collections from the north and south regions. Population structure was 

examined using ADMIXTURE (Alexander, Novembre, & Lange, 2009), a program that 

uses a maximum likelihood method to estimate individual ancestry values from SNP 

genotype data that are equivalent to the Q-value from the program STRUCTURE 

(Pritchard, Stephens, & Donnelly, 2000).   

 

5.3.5 Hybrid detection between reproductive and latitudinal adaptive 
components 

To investigate the presence of hybrids between the different genetic lineages identified 

with the SPW- and LAT-panels, we obtained a hybrid index (Hindex) (Buerkle, 2005), or 

admixture proportion estimate, for each individual and SNP panel using the maximum-

likelihood calculation implemented in GENODIVE (Meirmans & Van Tienderen, 2004). 

The calculation assumes that each locus presents independent information. For non-

independent loci, as it is in our case, the calculation will result in excess of confidence, 

but the point estimate of the hybrid index will be correct (Alex Buerkle comm. pers.).  

In addition, to assess phenotype-genotype correspondence of the SPW-panel, we 

compared individual gonadal maturities with hybrid indices in spring- and fall-spawning 



 

215 

 

aggregations where >60% of individuals were mature (i.e. capable or actively spawning, 

stages 5 and 6, respectively, see Table 5.1) at the time of capture. For comparison, we 

also performed this analysis in aggregations composed by a mixture of individuals in 

various gonadal maturity stages. 

 

5.3.6 Assessment of the predictive power of SNP panels 

The accurate determination of genetic group membership of individuals from mixture 

samples relies on the correct definition of baselines (or “reporting units”), as they are the 

basis for the development of classification models that are used to perform individual 

assignment (Chen et al., 2018). Hence, for each SNP panel separately, we examined the 

self-assignment accuracy of spawning grounds to two proposed baselines using 

simulations performed with the R package assignPOP (Chen et al., 2018). We did not use 

traditional programs for individual assignment and mixed stock analysis like rubias 

(Moran & Anderson, 2018) or ONCOR (Kalinowski, Manlove, & Taper, 2007), because 

they assume independency between loci and ours are in LD. We used assignPOP instead, 

because it includes a PCA-based data dimensionality reduction step when performing 

assignment tests. The new variables (PCs) used for building training models should 

summarize the overall variance of the input data. In this regard, the loci in LD should not 

influence or are less likely to influence assignment results (Alex Kuan-Yu Chen pers. 

comm.). The proposed baselines for SPW-dataset were, option 1: all inshore spring- and 

fall-collected samples, option 2: as option 1 but excluding SIL12S, SMB15S and PLB16S 

(sites with a mix of spring and fall spawners). The proposed baselines for LAT-dataset 

were, option 1: all inshore northern and southern sites with respect to the genetic break 

point identified for herring in northwest Nova Scotia at ~45°N (Fuentes-Pardo et al., 

2019), option 2: all inshore northern and the southernmost sites (ME415F, M314F) (Fig. 

S5.1). Data grouping and renaming was done with the R package genepopedit (Stanley, 

Jeffery, Wringe, DiBacco, & Bradbury, 2017) and file format conversions were achieved 

with PGDspider (Lischer & Excoffier, 2012).  

Self-assignment simulations of individuals from baselines consisted of four main 

steps. Firstly, individuals from each baseline group were randomly divided into training 

and testing datasets of different sizes using the Monte-Carlo cross-validation method (Xu 
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& Liang, 2001) implemented in the function assign.MC. The training dataset sizes 

evaluated corresponded to the number of individuals from each baseline representing the 

50%, 70%, and 90% of the baseline with smaller sample size. The remaining individuals 

in each case were assigned to the testing dataset. This resampling and dataset subdivision 

procedure therefore, assured the obtention of unbiased training datasets of equal size (i.e. 

“balanced”), which avoids upwardly biased estimates of accuracy commonly seen in 

“unbalanced” datasets (Anderson, 2010). Secondly, for each training set, three subsets of 

high‐FST SNP loci (or training features) were tested, top 25%, 50% and 100%. The 

dimensionality of the different training datasets was reduced using PCA. Thirdly, the 

resulting dataset from PCA was then used for building a classification model with the 

default machine learning algorithm in assingPOP, which is Support Vector Machines 

(SMV) from the R package e1071 (Meyer et al., 2015). And fourthly, assignment of 

individuals in the testing dataset to a baseline was then performed based on the 

classification model built with the training dataset. The whole process was repeated 1000 

times. Assignment accuracy estimates therefore correspond to the proportion of correctly 

assigned individuals to their known baseline group for 1000 iterations.  

 

5.3.7 Individual assignment of mixture samples 

Assignment probability to a baseline of individuals from mixture samples was calculated 

using the function assign.X from the R package assignPOP (Chen et al., 2018). For each 

SNP panel, individual assignment was performed based on the SMV classification model 

built with the proposed baselines showing the overall highest assignment accuracy 

(>70%). 

 

 

5.4 Results 

 

5.4.1 SNP panel development and genotyping 

We used RF for ranking outlier SNPs discovered from Pool-seq data, which distinguish 

NW Atlantic herring populations by their spawning season and broad geographic region 

of origin respect to a latitudinal climate-related cline. Pilot runs performed for parameter 
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optimization of the RF algorithm indicated that any of the mtry values tested results in a 

low OOB-ER when more than 300 trees are built (ntree >300) (Fig. S5.2A, B). We thus 

used the default mtry for subsequent runs. A comparison of MDA values between 

replicate runs indicated that a ntree of 500,000 and 1,000,000 ascertains a very high 

convergence of importance values (MDA) (e.g. for ntree = 1,000,0000, SPW-panel: Cor 

= 0.9959  0.00006, Fig. S5.3A; LAT-panel: Cor = 0.9982  0.0001, Fig. S5.4A). A 

scatterplot of importance values of SNPs in the SPW- (Fig. S5.3B) and LAT-datasets 

(Fig. S5.4B) revealed that about 500 loci were highly informative. The top 10, 20, 40, 70, 

and 100 SNPs from each dataset were then used for testing their individual assignment 

power to predetermined groups (SPW-panel: spring or fall, LAT-panel: north, center, and 

south) through simulations using the leave-one-out (LOO) method implemented in the R 

package rubias (Anderson et al., 2008; Moran & Anderson, 2018). For the SPW dataset, 

all the panel sizes examined produced an accuracy, efficiency, and overall power of 

100%, indicating that as few as 10 SNPs are enough to determine the spawning season of 

an individual with an accuracy of 100% (Fig. S5.3C). For the LAT-dataset, 10 SNPs also 

suffice to determine the broad geographic origin of individuals, for an overall power, 

accuracy and efficiency > 85%; however, a minimum of 70 SNPs are required to reach an 

accuracy of 100% (Fig. S5.4C). Given the possibility that genotyping of some of the top 

SNPs could be suboptimal (e.g. challenging primer design, poor PCR amplification, etc.), 

we decided to develop primers for the top 40 SNPs from the SPW-dataset and for the top 

80 SNPs from the LAT-dataset that fulfilled the requirements described in Materials and 

Methods. 

A total of 1010 individuals were successfully genotyped in 110 SNPs (SPW-

panel: 36, LAT-panel: 74). Of those, 993 individuals and 77 SNP loci (SPW-panel: 25, 

LAT-panel: 52) passed quality filters (missing rate < 20% and MAF > 1%) and 

constituted the dataset used for further analyses (Table S5.1). The individual genotype 

data confirms the observations made form Pool-seq data (Fuentes-Pardo et al., 2019) of 

close to fixation of opposite alleles between spring and fall spawners and northern and 

the southernmost sites (Fig. S5.5, Fig. S5.6). 
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5.4.2 Population structure 

For SPW-panel, pairwise FST between pure spring and fall spawners (as determined by 

gonadal maturity status at the time of capture, Fig. 5.4 as reference, and excluding 

mixture samples) varied between 0.242 and 0.910. Some FST estimates were non-

significant at α = 0.05 after False Discovery Rate (FDR) correction for multiple testing 

(Table S5.2). For LAT-panel, pairwise FST between the northern and southern spawners 

(excluding mixture samples) varied between 0.000 and 0.703. The majority of FST 

estimates were significant at α = 0.05 using a False Discovery Rate (FDR) correction for 

multiple testing (Table S5.3). For SPW-panel, AMOVA showed that 73.4% of the total 

genetic variance was explained by spawning season, 4.6% by differences between 

aggregations within the same spawning type, and 22.1% among individuals within 

aggregations (Table S5.4). All fixation indices were significant using 10,100 

permutations. Global FST between spawning types was high (FST = 0.78, P-

value < 0.0001), FSC between spawning aggregations of the same spawning type was 

lower (FSC = 0.17, P-value < 0.0001), and FCT between individuals within spawning 

aggregations was also high (FCT = 0.73, P-value < 0.0001). For LAT-panel, AMOVA 

showed that 47.2% of the total genetic variance was explained by the north-south genetic 

break along the latitudinal cline, 4.3% was explained by differences between 

aggregations within the same latitudinal region, and 48.6% by variation within spawning 

grounds (Table S5.5). All fixation indices were also significant with 10,100 permutations. 

Global FST between the north-south regions along the latitudinal cline was high 

(FST = 0.51, P-value < 0.0001), FSC between spawning aggregations of the same region 

was lower (FSC = 0.08, P-value < 0.0001), and FCT between individuals within spawning 

aggregations was also high (FCT = 0.47, P-value < 0.0001). 

 

 In the SPW-dataset, the analysis of individual ancestry performed with 

ADMIXTURE revealed a localized distribution of two lineages, one corresponding to 

spring spawners and the other to fall spawners (Fig. 5.2A, B). The spring-spawning 

lineage was present only in the Gulf of St. Lawrence and southwest Newfoundland and, 

in a smaller proportion, in an offshore sample in Musquodoboit, mid-coastal Nova Scotia. 

In contrast, the fall-spawn lineage was widely distributed across the study area. 
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Individuals with intermediate admixture coefficients were present across sites but more 

commonly in spring spawners than in fall spawners. Among spring-spawning sites, 

SIL12S (northwest Gulf of St. Lawrence) and SMB15S (southwest Newfoundland) were 

aggregations comprising a mix of spring, fall, and admixed individuals (Fig. 5.2B). 

Interestingly, all individuals from SIL12S were in ripening and spawning condition 

whereas individuals in SMB15S had different gonadal maturity stages (Fig. 5.1). This 

observation suggests different population dynamics may be occurring at these sites. 

Temporal replicates of spawning aggregations (FTB14S-16S, NTS05S-14S, PEI05F-14F) 

and of one offshore mixed aggregation (OMU14F-15F) indicated allele frequency 

stability over the short time span covered (1, 2 to 9 years). Exception to this observation 

was BDO16S-17S, where significant allele frequency variation was observed between 

samples collected one year apart. Given that individuals in this sample were in different 

maturity condition and their genotype assigned them to different spawning seasons (Fig. 

5.1, 2B), we infer different populations meet at this location (see also Kerr, Fuentes‐

Pardo, Kho, McDermid, & Ruzzante, 2018). The two offshore aggregations from 

southwest Newfoundland showed varying composition of spring and fall lineages, 

indicating diverse populations may reunite at these sites.  

ADMIXTURE results of the LAT-dataset disclosed a latitudinal distribution of two 

distinct genetic groups, the northern and the southern lineages (Fig. 5.3A, B). Individuals 

with intermediate admixture coefficients were observed across sites but predominantly in 

the southern region, being more abundant on the Scotian Shelf (MUS14F, GEB14F) and 

the Gulf of Maine (ME415F, ME314F), followed by the Bay of Fundy (SCB15F) and the 

mixed aggregations from Bras D’Or lake (BDO16S-17S) (Fig. 5.3B). Interestingly, 

SCB15F had a greater proportion of northern genotypes than the other southern sites, and 

a few individuals with the “southern” genotypes were present in the north (e.g. FTB15F, 

TRB14F) and vice versa (e.g. MUS14F, GEB14F, ME314F). All the temporal replicates, 

including spawning (FTB14S-16S, NTS05S-14S, PEI05F-14F), inshore (BDO16S-17S) 

and offshore (OMU14F-15F) aggregations, showed remarkable allele frequency stability 

between samples collected 1, 2 to 9 years apart. It is important to note though, that no 

temporal replicates were analyzed for the spawning aggregations from the southern 

region, except for one offshore aggregation from mid-coastal Nova Scotia (OMU14F-
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15F); thus, short term temporal stability of allele frequencies was only confirmed for the 

northern region. The two offshore aggregations from southwest Newfoundland showed 

different genetic composition; some individuals in OWN15S exhibited the southern 

genotypes while all the individuals in OEN15S had the northern genotypes. This 

observation reinforces the idea that different populations come together at these offshore 

locations. 

 

5.4.3 Hybrid detection between reproductive and between latitudinal 
adaptive components 

In the SPW-dataset, individual Hindex varied among sites of the same spawning type 

(spring or fall), ranging from 0% to 10% (0%: pure spring spawners, 100%: pure fall 

spawners). This variation in hybrid indices suggests the existence of first generation 

(Hindex 0.5) and recombinant hybrids (Hindex <0.5 and >0.5). In general, hybrids (i.e. 

offspring between parents of the same species but belonging to different populations, 

defined by 0.1 < Hindex <0.9) constituted a varying proportion of the total number of 

individuals collected from a given spawning aggregation (0.0-60.0%) and were more 

prevalent among spring (13.3-60.0%) than fall spawners (0.0-26.7%) (Fig. S5.7A, Fig. 

5.2C).  

The comparison of gonadal maturities and Hindex values in spring- (Fig. 5.4A) 

and fall-spawning (Fig. 5.4B) aggregations where most individuals were capable of, or 

actively spawning (gonads in stage 5-6), confirmed phenotype-genotype agreement in 

pure spring (Hindex 0-10%) and pure fall (Hindex 90-100%) spawners. This comparison 

also showed that individuals with Hindex <68.2% often spawn in spring while 

individuals with Hindex >53.8% commonly spawn in fall, suggesting that individuals 

with Hindex ~54-69% can either spawn in spring or fall. Moreover, contrary to 

expectations, this analysis revealed that in some cases capable/actively spawning adult 

individuals could be misclassified to a reproductive season, when solely gonadal maturity 

and the month of capture are considered. These are the two main criteria currently used 

for individual spawning season designation in the NW Atlantic (i.e. spawning individuals 

between January 1st and before July 1st are considered spring-spawners and after this date 

are designated fall spawners) (LeBlanc et al., 2008; McQuinn, 1987). For example, in 
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SIL12S (Fig. 5.4A) most individuals were spawning (stage 5-6) and a few spent (stage 7) 

in June. If the current criterion of spawning season designation were used, SIL12S would 

have been classified as a spring-spawning sample. In contrast, genetic data revealed that 

pure spring and fall spawners as well as hybrids were together at this site. In PLB16S 

some individuals were in late maturation (stage 4) and others in spawning condition 

(stage 5-6). From this we could have inferred individuals in stage 4 are likely fall 

spawners, and the ones in stage 5-6 are spring spawners. The genetic data indicated that 

some individuals in stage 4 were pure fall spawners, others pure spring spawners and 

hybrids. In NDB15F, there were also individuals in stages 4 and 5-6. The genetic data 

showed all individuals were fall spawners. The same comparison for sites comprising 

individuals at various maturity stages (Fig. 5.4C) confirmed the increased difficulty to 

assign individuals to a spawning season only based on gonadal maturation and date of 

collection, especially for non-actively spawning adult individuals (stages 3-4 and 7-8). 

For instance, in FTB14S there were individuals spawning and in late maturation (stage 

4). As this sample was collected in May, individuals would have been classified as spring 

spawners. Genetic data indicated one of the maturing individuals was a pure fall spawner 

and some of the maturing and spawning individuals were hybrids. In SMB15S, there was 

a mix of spawning, mid-maturation (stage 3) and spent (stage 7) individuals when the 

sample was collected in June. With the conventional criteria, this sample would have 

been classified as a mix of spring and fall spawners. Genetic data indicated that some of 

the spawning individuals were pure spring, pure fall or hybrids, and that the mid 

maturation and spent individuals were likely fall spawners or hybrids. 

 

In the LAT-dataset, Hindex values varied among sites following a latitudinal 

gradient, ranging from 0 to 100% in some cases (0%: pure south, 100%: pure north); for 

example, in TRB14F, MUS14F, GEB14F, ME314F, ME415F (Fig. 5.3C). In general, 

hybrids (i.e. offspring between parents of the same species but belonging to different 

populations, defined by 0.1 < Hindex <0.9) were observed across most sites but were 

predominant in the south, between BDO16S-17S and ME415F, where they appear to 

represent 21.4-55.6% (0.0-20.0% in the north) (Fig. S5.7B) of spawning aggregations. 

Interestingly, most hybrid individuals across sites exhibited a Hindex around 50%, 
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suggesting they likely result from a relatively recent hybridization event or 

polymorphism at these loci is advantageous.  

 

5.4.4 Assessment of the predictive power of SNP panels 

Simulations performed with the R package assignPOP (Chen et al., 2018) indicated that 

in the SPW-dataset, the two proposed baselines provided a high assignment accuracy 

(>85%) across spawning classes for all training dataset sizes (50%, 70%, 90% of the 

smallest class) and train loci proportions tested (top 25%, 50%, 100% high-FST SNPs) 

(Fig. 5.5A, Fig. S5.8A). Assignment accuracy was high and similar between spawning 

classes, just slightly lower and with more variation for the spring class, likely due to the 

presence of a higher number of heterozygote individuals in this class. The proposed 

baseline that excluded mixed locations (option 2) (Fig. 5.5A, right) however, exhibited 

the best performance of the two, providing an assignment accuracy >95% for both 

spawning classes (Fall: Median 0.96, 25% quartile 0.96, 75% quartile 0.97; Spring: 

Median 0.98, 25% quartile 0.97, 75% quartile 1.00). In the LAT-dataset, assignment 

accuracy was generally high but was lower and more variable in the southern than in the 

northern class. The exclusion of mixed samples from proposed baselines also resulted in 

a substantial improvement of assignment accuracy, particularly for the southern class, for 

all training dataset sizes and train loci proportions evaluated (Fig. 5.5B) (North: Median 

0.92, 25% quartile 0.92, 75% quartile 0.93; Maine: Median 0.86, 25% quartile 0.83, 75% 

quartile 0.90). For example, assignment accuracy of the south class in proposed baseline 

option 1 was ~65% (Fig. S5.8B), and it increased to >85% when only including the 

southernmost sites in proposed baseline option 2 (Fig. 5.5B). Overall, these results 

indicate that as few as 6 and 13 highly informative SNPs from the SPW- and LAT-panel, 

respectively, ascertain a high assignment accuracy >85%, confirming previous results of 

self-assignment baseline simulations based on Pool-seq data. 

 

5.4.5 Individual assignment of mixture samples 

We assigned individuals from one inshore (BDO16S-BDO17S) and three offshore 

(OEN15S, OWN15S, OMU14F-OMU15F) mixture samples, to a spawning season and 

geographic region using the classification models built with the best performing proposed 
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baselines for each SNP panel (option 2 in both cases). Individual assignment tests 

disclosed the dynamic nature of these mixed aggregations. 

The two spring-collected samples from Bras D’Or lake consisted of temporal 

replicates one year apart (BDO16S-17S) (Fig. 5.6A, B). In 2016, some pure spring and 

fall spawners as well as hybrids met at this site. Spring spawners and hybrids had the 

“northern” genotype, which suggests they likely came from the Gulf of St. 

Lawrence/Newfoundland/South Labrador (GNL) region. Some of the fall spawners had 

the southern and others the northern genotypes, indicating they possibly came from the 

Scotian shelf/Bay of Fundy/Gulf of Maine (SFM) and the GNL regions, respectively. In 

contrast, in 2017, all individuals captured were fall spawners and only one was likely a 

hybrid; most of the individuals came from GNL and two likely came from SFM. The 

offshore mixed aggregations sampled in spring 2015 at two sites in southern 

Newfoundland (OEN15S, OWN15S) exhibited different composition (Fig. 5.6C, D). In 

OEN15S, all individuals were pure fall spawners except one that was hybrid; all 

originated from GNL. In contrast, in OWN15S, pure spring- and fall-spawners and 

hybrids were present. The spring spawners and hybrids originated from GNL, while most 

of the fall spawners came from GNL and two came from SFM. The two fall-collected 

samples offshore Musquodoboit, mid-coastal Nova Scotia, comprised temporal replicates 

one year apart (OMU14F-15F) (Fig. 5.6E, F). The majority of individuals in these 

samples were fall spawners coming from GNL and SFM, and a few were pure spring 

spawners and hybrids from GNL. The composition of this aggregation appeared to be 

stable between these two temporal replicates. Overall, these results confirm the 

composition of inshore and offshore mixture aggregations in NW Atlantic herring is 

highly dynamic, implying mixing of different reproductive and geographic components at 

these sites, the proportions of which can be estimated with our methods.  

 

 

5.5 Discussion 

Here we developed two highly informative reduced SNP panels and demonstrate their 

utility for the genetic identification of spawning season (SPW-panel) and broad 

latitudinal origin (LAT-panel) of Atlantic herring, a highly migratory and abundant 
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marine pelagic fish characterized by an intricate life history and elusive definition of 

population structure. With these genetic tools, we examined the spatial and temporal 

distribution of distinct reproductive and latitudinal genetic components in numerous 

spawning aggregations across the reproductive range of the species in the NW Atlantic.  

 

5.5.1 SNP panel development and assignment accuracy power 

The SNP panels consisted in a few dozens of the thousands outlier SNPs putatively under 

selection discovered from Pool-seq data in our previous study (Fuentes-Pardo et al., 

2019). In that study, outlier SNPs revealed that population subdivision in NW Atlantic 

herring is mainly driven by temporal divergence due to seasonal reproduction, and by 

spatial divergence along a latitudinal climate-related cline defining a north-south genetic 

break. Opposite alleles close to fixation distinguished the different genetic groups found 

in each axis of genetic divergence (spring- and fall-spawning; north and southernmost 

regions, respectively). Individual genotype data generated here confirmed those 

observations. SNPs included in the final panels were selected following a genetic marker 

ranking procedure based on the importance values of loci for classification given by a 

random forest (RF) model. The RF model was built using the population allele 

frequencies obtained from Pool-seq data. Our results demonstrate that the top RF-ranked 

SNPs included in the panels are highly informative, which confirms the utility of machine 

learning algorithms for genetic marker selection for classification (Jeffery, Wringe, et al., 

2018; Sylvester et al., 2017). Further self-assignment simulations based on SNP-panel 

genotypes of 933 individuals from inshore spawning herring aggregations, confirmed the 

high assignment accuracy of both panels, averaging 0.95% and 0.85% for the SPW-panel 

and LAT-panel, respectively. The slightly lower accuracy in the LAT-panel likely results 

from the high presence of intermediate allele frequencies in the southern region. 

 

5.5.2 Spatial distribution of reproductive and latitudinal components 

We observed a southwest-northeast gradient in the prevalence of spawning types across 

the reproductive range of the species in the NW Atlantic. This result is in agreement with 

previous observations based on fishery data (Melvin et al., 2009). Spring-spawning was 

only present in the northern region, including the Gulf of St. Lawrence and southwest 
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Newfoundland, while fall-spawning occurred across the whole range, from southern 

Labrador to the Gulf of Maine. The current restricted distribution of spring-spawning to 

the north suggests that this reproductive strategy, often associated with colder conditions 

(Melvin et al., 2009), has only found favorable environmental conditions in this region. 

Fishing reports, however, indicate that spring-spawning occurred in the past at sites 

where now is absent or less frequent. For example, spring-spawning was sparsely 

observed in southern locations such Spectacle Buoy, in mid-coastal Nova Scotia, and the 

Gulf of Maine (Bradford & Iles, 1992; Power et al., 2007), where it is no longer being 

reported from (DFO, 2017). In the last decades, an important reduction in recruitment and 

spatial distribution of the spring-spawning component has been noticed at both extremes 

of the reproductive range, with a coupled increase of the fall-spawning component 

(Bourne et al., 2018; McDermid et al., 2018; Melvin et al., 2009) and a sea warming 

trend (Melvin et al., 2009). Melvin et al. (2009) proposed a conceptual model explaining 

that the shift in the prevalence of spawning type may be an adaptive reproductive strategy 

in response to changing environments, where fall-spawning is favored by warming 

conditions while colder conditions are beneficial for spring-spawning. Although the 

evaluation of this hypothesis was beyond the scope of our study, the data generated here 

provides genetic evidence supporting the adaptive nature of these reproductive strategies. 

In particular, the observation that opposite alleles are close to fixation between spawning 

types is indicative of differential reproductive success of contrasting genotypes. Fall-

spawning seems to be favored by the contemporary environmental conditions throughout 

the range, and the coupled effect of spawning time and specific adaptations. Some of 

such adaptations distinguish northern and southern fall-spawners along the latitudinal 

climate-related cline described in our previous study (Fuentes-Pardo et al., 2019). 

Considering that larvae remain aggregated near spawning grounds (Iles & Sinclair, 

1982), larvae of fall-spawned fish typically spend 5+ months before metamorphosis to 

juvenile in March/April (Messieh, 1975; Tibbo, Legare, Scatterwood, & Temple, 1958), 

and average sea-water temperature of winter months appears to be the best predictor of 

the latitudinal genetic cline (Fuentes-Pardo et al., 2019), we infer that adaptations to 

spawning in northern or southern regions likely respond to natural selection acting on 

differential survival of larval stages over the winter months. We also hypothesize that 
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adaptations to spawn in different seasons result from natural selection operating on 

differential reproductive success of spawning timing in adults and survivorship of early 

life stages of their offspring (from egg to hatching). 

  

We confirmed allele frequency differences between spring and fall spawners are 

temporally stable over a span of 1, 2 and 9 years; same as reported before in two 

locations in the Gulf of St. Lawrence (Kerr et al., 2019). In addition, we observed spring 

and fall spawners in different gonadal maturity stages at the same spawning ground, 

particularly in southwest and northeast Newfoundland. We hypothesize these locations 

may not be in equilibrium likely due to the recent environmental changes occurring in the 

region (Melvin et al., 2009). The asynchrony in reproductive strategies at these locations 

perhaps documents the transition of the prevalence of one spawning type to the other. 

The observation that overall patterns of genetic differentiation persists between spring 

and fall spawners despite mixing outside of the breeding season, provides strong 

evidence of spawning site fidelity. This also indicates that selective pressures favoring 

particular genotype combinations are relatively stable at ecological time scales. We 

consider however, that the cumulated genetic differences between spring and fall 

spawners are antique and most likely result from standing genetic variation present in the 

populations that colonized the NW Atlantic after the last glacial maximum (Lamichhaney 

et al., 2017). Analysis of mitochondrial DNA may provide some insights on this regard. 

The short-term temporal stability of allele frequencies along the latitudinal cline was 

largely confirmed for spawning grounds from the northern region and for one offshore 

sample from mid-coastal Nova Scotia in the south (OMU14F-15F); no other southern site 

had temporal replicates. Such short-term temporal stability suggests that natural selection 

may be strong and stable in an ecological time scale. We found a few individuals with 

pure southern genotypes in the north and vice versa, which suggests they might be recent 

migrants and there is connectivity between fall-spawning aggregations along the 

latitudinal cline. The high dispersal potential across the range is also supported by 

tagging data that showed, for example, individuals tagged in northwest Gulf of St. 

Lawrence were recovered in consecutive years in mid-coastal Nova Scotia (Kim Emond 

pers.  comm.). 



 

227 

 

 

5.5.3 Genetic evidence of hybridization 

Given the persistent genetic differences between reproductive and latitudinal 

components, a natural question to address is whether they can interbreed and how 

common and viable hybrid individuals are. The hybrid index (Hindex) (Buerkle, 2005) 

provided a metric to investigate individual level of hybridization based on the genotypes 

obtained with the SPW- and LAT-panels. Our results suggest that the different 

components described in herring can freely interbreed, but they appear to be more 

successful in specific situations. For example, hybrid individuals (i.e. offspring between 

parents of the same species but belonging to different populations, defined by 0.1 < 

Hindex <0.9) were present across spawning aggregations but, more frequently, among 

spring spawners and in aggregations from the southern region. The observation of first 

generation and recombinant hybrids suggests multigenerational hybridization has 

occurred between spring and fall spawners over an extended period of time. Hybrid 

individuals represented a varying proportion of a spawning aggregation (about 13.3-

60.0% of spring- and 0.0-26.7% of fall-spawning aggregations), suggesting perhaps that 

there is a reproductive advantage of being pure-spring or pure-fall spawner in some 

locations but not in others. It is not clear though, why most hybrids appear to be spring 

spawners. Perhaps spring-spawning hybrids have more chances to complete 

metamorphosis to juveniles during the favorable environmental window of the year 

(April and October) (Sinclair & Tremblay, 1984a), than fall-spawning hybrids. Further 

experiments are required to test this hypothesis. 

 

 The comparison of gonadal maturity and hybrid indices confirmed the high 

predictive power of the SPW-panel to determine the most likely spawning season of an 

individual, as previously observed in a smaller scale (Kerr et al., 2019). This analysis also 

revealed that different levels of hybridization may favor one spawning type over the 

other. In fact, we found that admixed individuals with a Hindex between ~54-69% can 

potentially spawn either in spring or fall. Further functional experiments are required to 

confirm this hypothesis, but in any case, this result points towards a genetic-based 

mechanism that could explain empirical observations based on otolith microstructure 
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indicating that some spring-hatched individuals can spawn in the fall, and vice versa 

(Graham, 1962). We hypothesize some of the genetic variants analyzed here may provide 

flexibility of day-length and environmental cues assessment that trigger maturation in 

hybrid individuals. Hybridization between largely temporally isolated reproductive 

strategies most likely occurs between sympatric late spring spawners and early fall 

spawners. Indeed, such overlapping of spawning strategies has been well documented in 

Newfoundland (Winters & Wheeler, 1996; Winters, Wheeler, & Dalley, 1986; Winters, 

Wheeler, & Stansbury, 1993). Winters & Wheeler (1996) propose that January sea 

temperature may play a role in the onset of spring maturation, which sometimes vary as 

much as 4-5 weeks between years in this region.  

 

 Hybrids represented about 21.4-55.6% and 0.0-20.0 % of spawning aggregations 

in the southern and northern regions, respectively. Our results indicate that most hybrids 

between southern and northern fall-spawning components likely correspond to the first 

generation of hybridization. An alternative explanation to this pattern is that 

polymorphism may be advantageous in the south, especially for individuals from mid-

coastal Nova Scotia and the Gulf of Maine. As discussed in our pervious study (Fuentes-

Pardo et al., 2019), interannual variation in sea temperature or associated factors could 

potentially explain this pattern.  

 

5.5.4 Analysis of mixture samples 

Individual assignment of mixture inshore and offshore samples confirmed the dynamic 

nature of aggregations outside of the breeding season. For example, the composition of 

spring and fall spawners at Bras D’Or lake (BDO16S-17S) varied from one year to the 

following. Two possible explanations to this observation are that this location is being 

colonized by individuals from the Gulf of St. Lawrence and the Scotian Shelf, or that the 

relative abundance of spawning type has changed after the collapse in 90’s of the spring 

component due to overfishing (Kerr et al., 2019). Offshore samples from mid-Nova 

Scotia (OMU14F-15F) comprised a few spring spawners from the north, where fall-

spawning prevails, and fall spawners from the north and south. Similarly, the two 

offshore samples from southern Newfoundland had different compositions. All 
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individuals in OEN15S were fall spawners from the north, whereas in OWN15S, some 

individuals were spring spawners from the north and others were fall spawners from the 

north and south. In summary, these results indicate the utility of the developed SNP 

panels for monitoring of stock composition outside of the breeding season. 

 

5.5.5 Limitations 

Despite our sampling effort, some locations were still underrepresented. For example, the 

southern region lacked temporal replicates and no spring-spawning samples were 

collected from northeast Newfoundland. In addition, the SNP panels described were 

designed to trace the adaptive genetic variation distinguishing the reproductive and 

latitudinal components revealed by Pool-seq data. Since such data did not reveal finer 

geographic differentiation, for example, among spawning aggregations within the north 

and south regions, individual assignment was restricted to a broad regional scale. 

 

5.5.6 Implications in fisheries management and final remarks 

This work demonstrates the utility of the reduced SNP panels developed here for the 

diagnosis of relevant biological components in the NW Atlantic herring. This means that 

it is now possible to estimate the relative composition of samples of mixed origin in close 

to real time for an affordable cost. Hence, we expect this genetic tool will facilitate mixed 

stock assessments even outside of the breeding season, which are important for the 

implementation of effective conservation and fisheries plans. Our results show that the 

joint analysis of gonadal maturation and SNP genotypes provides augmented accuracy of 

spawning season assignment than the currently implemented method, mostly based on the 

comparison of month of capture and inspection of gonads (LeBlanc et al., 2008; I. H. 

McQuinn, 1987). Moreover, our data indicates it is pertinent to review the current date of 

July 1st for the designation of spring and fall spawners, as it does not necessarily reflect 

the complex composition of some spawning grounds, such as in the northwest of the Gulf 

of St. Lawrence (SIL12S). Our results support the hypothesis that spawning at different 

seasons and geographic regions (i.e., biocomplexity, Ruzzante et al., 2006) may be an 

adaptive strategy of the species to increase the chances of successful reproduction and 

offspring survival under unpredictable changes in the environment (Melvin et al., 2009), 
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namely a “portfolio effect” (Hilborn et al., 2003; Schindler et al., 2010). This work 

highlights the complexity of the herring mating system. It also warns that with the loss of 

adaptive genetic diversity some fish stocks could be restricted to a single reproductive 

strategy, implying increased vulnerability, reduced resilience and recovery potential to 

fishing pressure, if not stock depletion. Recent studies discuss the negative effects of 

fishing during the spawning period (van Overzee & Rijnsdorp, 2015). Therefore, it would 

be important to evaluate current fishing practices mostly targeting spawning grounds. Our 

results demonstrate the critical importance of characterizing and maintaining intraspecific 

genetic diversity for a sustainable use of harvested species to secure the ecological 

processes and economic activity that depend on them for the future. 

 

5.6 Acknowledgements 

We thank DFO staff, Lisa Pinkham from the Maine Department of Marine Resources, 

U.S., Comeau’s Seafoods Ltd, Cape Breeze Seafoods Ltd, fisherman Crystal and Donald 

Kent, Gordon McKay, and many others that provided herring samples. Special thanks to 

Quentin Kerr, James Kho, Connor Booker, and Gregory McCracken for collaboration in 

sampling and DNA extraction. SNP genotyping was done by Neogene Corporation 

(Lincoln, U.S.). Special thanks to Emma Sylvester, Sarah Lehnert, and Nick Jeffery for 

valuable data analysis advice. A.P.F.P. and D.E.R. thank the Killam Trust. A.P.F.P. 

thanks to the Vanier Canada Graduate Scholarship, the President’s Award of Dalhousie 

University, the Nova Scotia Graduate Scholarship, the NSERC Discovery of D.E.R., and 

the Lett Fund and NSERC for graduate studies funding. This study was funded by 

NSERC Discovery and Strategic grants to D.E.R. 

 

5.7 Author contributions 

D.E.R. and A.P.F.P. designed and conceived the study; A.P.F.P performed tissue 

collection, lab work and data analysis; C.B., R.S., H.B., and C.V. contributed tissue 

samples; A.P.F.P. drafted the manuscript and all authors contributed to writing and 

editing of the final version. All authors approved the manuscript before submission. 

Abbreviations of names as described in the statement of co-authorship (page 7). 



 

231 

 

5.8 Tables 

Table 5.1 Characteristics of samples included in this study. Offshore samples are denoted with an asterisk as part of the 

population ID name. Temporal replicates are indicated by paired letters from “a” to “e”. Fish with gonads in maturity stages 5 

and 6 (ripening and actively spawning, respectively) were considered mature individuals. Abbreviations, IA: individual 

assignment, N: sample size. 

 

Population ID Location Longitude Latitude N 
Collection date 

(DD/MM/YY) 

Proportion of 

mature 

individuals 

Sample type 

for IA 

Temporal 

replicate 

pairs 

 

ME415F Maine, area 514 -70.593 42.524 30 19-10-2015 0.20 Baseline   

ME314F Maine, area 513 -69.640 43.607 27 25-08-2014 0.00 Baseline   
GEB14F German Banks -66.333 43.450 27 28-08-2014 1.00 Baseline   

MUS14F Musquodoboit -63.100 44.634 29 27-09-2014 1.00 Baseline   

OMU14F* Offshore Musquodoboit -62.300 44.417 49 04-10-2014 0.02 Mixture a  
OMU15F* Offshore Musquodoboit -62.133 44.483 48 28-10-2015 0.00 Mixture a  

SCB15F Scots Bay -64.917 45.167 30 24-08-2015 1.00 Baseline   

BDO16S Bras D'Or lake -60.849 45.929 28 20-04-2016 0.25 Mixture b  
BDO17S Bras D'Or lake -60.905 45.854 30 05-2017 NA Mixture b  

NTS05S Northumberland Strait -64.527 46.397 30 28-04-2005, 06-05-2005 1.00 Baseline c  

NTS14S Northumberland Strait -64.122 46.303 30 01-05-2014 0.97 Baseline c  
NTS14F Northumberland Strait -63.088 45.807 31 16-09-2014 1.00 Baseline   

PEI05F Prince Edward Island -63.926 47.029 31 31-08-2005, 06-09-2005 0.94 Baseline d  

PEI14F Prince Edward Island -63.960 47.037 30 25-08-2014 1.00 Baseline d  

FTB14S Fortune Bay -55.633 47.283 29 03-05-2014, 26-05-2014 0.28 Baseline e  

FTB16S Fortune Bay -55.373 47.509 29 16-05-2016, 18-05-2016 0.03 Baseline e  
FTB15F Fortune Bay -54.934 47.575 30 12-10-2015 0.00 Baseline   

SMB15S St. Mary's Bay -53.646 46.917 30 14-06-2015, 11-04-2015 0.27 Baseline   

PLB16S Placentia Bay -54.077 47.734 29 08-06-2016, 07-05-2016 0.66 Baseline   
PLB15F Placentia Bay -54.007 47.407 30 14-12-2015 0.00 Baseline   

OEN15S* Offshore Newfoundland -56.907 46.997 50 17-04-2015 0.18 Mixture   

OWN15S* Offshore Newfoundland -58.102 47.210 50 22-04-2015 0.00 Mixture   
TRB14F Trinity Bay -53.473 47.842 30 28-09-2014 0.33 Baseline   

IBC14S Inner Baie Des Chaleurs -65.877 48.023 30 08-05-2014 0.60 Baseline   

OBC14F Outer Baie Des Chaleurs -64.435 47.894 30 20-08-2014 1.00 Baseline   
SPH12S Stephenville -57.940 49.732 30 30-05-2012 0.97 Baseline   

NDB15F Notre Dame Bay -55.469 49.550 30 26-10-2015 0.70 Baseline   

SIL12S Seven Islands -66.327 50.090 27 06-06-2012 0.81 Baseline   

BLS14F Blanc Sablon -57.314 51.379 30 13-08-2014 1.00 Baseline   

LAB15F Labrador -55.499 52.252 30 22-08-2015, 24-08-2014 0.40 Baseline    

2
3

1 
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5.9 Figures 

 

 

Figure 5.1 Map depicting sampling sites across the NW Atlantic. Pie charts represent 

the proportion of individuals in a given gonadal maturity stage at the time of collection. 

Collection date and site information are described in Table 5.1. Sample IDs in bold script 

letters indicate pairs of temporal replicates. 
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Figure 5.2 Population structure based on the SPW-panel. (A) Map showing the 

proportion of admixture coefficients per location, blue corresponds to the fall lineage and 

red to the spring lineage. (B) Bar plot depicting individual ancestry values (Q-value) 

obtained with ADMIXTURE (Alexander et al., 2009). Colors represent the same as in A. 

Each column represents the ancestry value of each individual. (C) Hybrid index (Hindex) 

per individual per sampling site. Hindex = 0 identify pure spring spawners, while Hindex 

= 1 identify pure fall spawners. The bars in gray show the median and the lower (25%) 

and upper (75%) quartiles. 
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Figure 5.3 Population structure based on the LAT-panel. Map showing the proportion 

of admixture coefficients per location, purple corresponds to the northern lineage and 

orange to the southermost lineage. (B) Bar plot depicting individual ancestry values (Q-

value) obtained with ADMIXTURE (Alexander et al., 2009). Colors represent the same 

as in A. Each column represents the ancestry value of each individual. (C) Hybrid index 

(Hindex) per individual per sampling site. Hindex = 0 identify pure south spawners, 

whereas Hindex = 1 identify pure north spawners. The bars in gray show the median and 

the lower (25%) and upper (75%) quartiles.  
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Figure 5.4 Comparison of gonadal maturity at the time of collection and Hindex 

values representing individual assignment to a spawning type based on the SPW-

panel. (A) Pure spring spawning samples, (B) Pure fall spawning samples, (C) Samples 

with individuals in various maturity conditions. Colors of the dots represent gonadal 

maturity stage. 1 = Juvenile, 2 = Early maturation, 3 = Mid maturation, 4 = Late 

maturation, 5 = Spawning capable, 6 = Spawning, 7 = Spent-recovery, 8 = Resting. An 

index of 0% corresponds to a pure spring spawner, and of 100% to a pure fall spawner.  
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Figure 5.5 Self-assignment accuracy of spawning aggregations corresponding to the 

best performing baseline groups (option 2). Number of individuals used in training set 

were equivalent to 0.5, 0.7, 0.9 of the class with smaller sample size. Number of train loci 

used were equal to the top 0.25, 0.50 and 1.0 high-FST loci. (A) SPW-panel, (B) LAT-

panel. 
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Figure 5.6 Barplots depicting assignment probability of individuals from mixed 

samples to baseline groups. (A) SPW-panel, (B) LAT-panel. Red represents spring-

spawning, blue fall-spawning, purple spawning in the northern region, and orange, 

spawning in the southern region.  
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5.10 Supplementary Information 

 

Supplementary Tables 

 

Table S5.1 SNP loci that passed quality filters and constitute the SPW- and LAT-panels. 

(electronic supplementary material). 

 

Table S5.2 Pairwise FST and P-values for the SPW-panel. (electronic supplementary 

material). 

 

Table S5.3 Pairwise FST and P-values for the LAT-panel. (electronic supplementary 

material). 

 

 

Table S5.4 Global AMOVA between spring- and fall-spawning individuals genotyped 

with the SPW-panel (10 100 permutations). 

 

Source of variation d.f. Sum of 

squares 

Variance 

components 

Percentage 

of variation 

Fixation 

indices 

Significance 

(P-value)  

Among groups 1 3650.61 5.86 Va 73.39 FST = 0.78 *** 

Among populations within groups 21 489.41 0.36 Vb 4.55 FSC = 0.17 *** 

Within populations 1341 2364.01 1.76 Vc 22.06 FCT = 0.73 *** 

Total 1363 6504.03 7.99    

 

 

Table S5.5 Global AMOVA between northern- and southern-spawning individuals 

genotyped with the LAT-panel (10 100 permutations). 

 

Source of variation d.f. Sum of 

squares 

Variance 

components 

Percentage 

of 

variation 

Fixation 

indices 

Significance 

(P-value)   

Among groups 1 1764.54 3.81 Va 47.16 FST = 0.51 *** 

Among populations within 

groups 

22 536.90 0.35 Vb 4.28 FSC = 0.08 *** 

Within populations 1394 5471.26 3.93 Vc 48.56 FCT = 0.47 *** 

Total 1417 7772.70 8.08    
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Supplementary Figures 

 

A 

 

B 

 

 

Figure S5.1 Proposed baselines used for self-assignment accuracy assessment of baseline 

groups. (A) SPW-panel, (left) baseline option 1, (right) baseline option 2; (B) LAT-panel, 

(left) baseline option 1, (right) baseline option 2. Explanation in the Materials and 

Methods section.  
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A                                                                                      B                             

       

Figure S5.2 Testing of a combination of parameters for random forest runs. (A) For 

SPW-dataset, (B) For LAT-dataset. 
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Figure S5.3 Random forest classification results and individual assignment for SPW-

panel development. (A) Pairwise comparison of importance values (Mean Decrease in 

Accuracy – MDA) obtained in 3 random forest runs, (B) Scatterplot of importance values 

per loci, 14 052 SNPs, (C) Self-assignment metrics. 
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Figure S5.4 Random forest classification results and individual assignment for LAT-

panel development. (A) Pairwise comparison of importance values (Mean Decrease in 

Accuracy – MDA) obtained in 3 random forest runs, (B) Scatterplot of importance values 

per loci, 6 493 SNPs, (C) Self-assignment metrics. 

 



 

243 

 

 

 

Figure S5.5 Heatmap representing the individual genotypes of the SNP loci in the SPW-

panel. Each row corresponds to an individual which are clustered in a block representing 

a collection group. Each column is a SNP locus and a group of SNPs within the same 

scaffold are shown as a vertical group. Colors represent each genotype, blue for 

homozygote for the major allele, yellow is for heterozygotes, and red is for homozygotes 

for the alternate allele. 
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Figure S5.6 Heatmap representing the individual genotypes of the SNP loci in the LAT-

panel. Each row corresponds to an individual which are clustered in a block representing 

a collection group. Each column is a SNP locus and a group of SNPs within the same 

scaffold are shown as a vertical group. Colors represent each genotype, purple for 

homozygote for the major allele, light blue is for heterozygotes, and orange is for 

homozygotes for the alternate allele. 
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A 

 

B 

 

Figure S5.7 Barplot indicating the relative proportion of components represented in 30 NW Atlantic herring aggregations. (A) 

Respect to the SPW-panel, pure spring-spawning individuals are denoted in red, pure fall-spawning in blue, and admixed 

individuals are shown in gray. (B) Respect to the LAT-panel, pure northern individuals are denoted in purple, pure southern in 

orange, and admixed individuals are shown in gray.  

2
4
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Figure S5.8 Assignment accuracy of the best performing baseline groups (option 1). 

Number of individuals used in training set corresponded to the 0.5, 0.7, 0.9 of the class 

with smaller sample size. Number of train loci corresponded to the top high-FST loci. (A) 

SPW-panel, (B) LAT-panel. 
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CHAPTER 6. CONCLUSION 

 

6.1 Summary 

The preservation of diverse reproductive strategies and of locally adapted populations is 

crucial for species’ persistence and resilience to environmental change and to human 

pressures (Hilborn et al., 2003; Ruzzante et al., 2006; Schindler et al., 2010). Yet, in 

marine organisms, typically assumed to be genetically homogeneous or minimally 

subdivided, it is not well understood at what spatial scale intraspecific diversity is 

distributed across the species’ range; which evolutionary processes and environmental 

variables play a role in the origin and maintenance of population divergence and local 

adaptation in the presence of gene flow; or which parts of the genome underpin adaptive 

phenotypes nor what potential function they have. These questions have been limitedly 

addressed, in part, because of the still high cost of high-throughput sequencing and the 

minimal genomic resources existing for most non-model organisms. The lack of 

knowledge on intraspecific diversity and on the appropriate genetic tools that facilitate its 

assessment, can be detrimental from a conservation and fisheries perspective, as this lack 

of knowledge increases their vulnerability to depletion. 

 

In this thesis, I used Atlantic herring (C. harengus) as a model species to address 

these questions, given its large population size implying minute effect of genetic drift, 

high dispersal capability, and extensive geographic distribution, characteristics that make 

this species ideal for the study of ecological adaptation. The overarching goals of my 

thesis were to try to (i) identify the patterns, genomic regions, evolutionary processes and 

environmental variables involved in the origin and maintenance of population divergence 

and local adaptation in the northwest Atlantic, and to (ii) develop a diagnostic genetic 

tool that can inform conservation and fisheries management. An expanded 

comprehension of the patterns, genetic basis, and mechanisms underpinning population 

divergence in the sea has several evolutionary and practical implications. From an 

evolutionary point of view, this knowledge will expand our understanding on how 

biodiversity arises in the sea, and how adaptation occurs despite gene flow. From a 

conservation and management perspective, this knowledge will help in the 
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implementation of effective conservation plans and sustainable fisheries. A better 

understanding of the spatial scale of population subdivision will improve fish stock 

delineation, so it reflects the biological complexity of a species. Moreover, genetic tools 

that facilitate the assessment of the relative abundance of population components will 

help resolve the composition of mixed stocks, and as such, they can help in the 

prioritization for the protection of vulnerable population components. Ultimately, 

improved conservation and management practices ideally informed by genetics, will 

contribute to the preservation of species, and of the ecosystem functions, livelihood and 

commercial activities derived from them.  

 

6.2 Main conclusions 

In chapter 2, I conducted a critical evaluation of the literature on whole-genome 

resequencing (WGR) approaches and their uses in population genomics to identify 

advantages and limitations of the current techniques, discuss potential solutions, and 

explore areas of conservation biology and management to which the analysis of whole 

genomes could make important contributions. I found that the main benefits of using 

WGR are the possibility of screening neutral and functional genetic variation at the 

highest genomic resolution possible and in diverse variant types, from single mutations to 

structural modifications. The augmented marker density therefore, increases the power to 

detect genomic signatures of selection necessary for the identification of local adaptation 

and of the genetic basis of phenotypic traits. The comparison of the two commonly used 

WGR methods in population genomics, low coverage whole-genome resequencing of 

numerous individuals (i.e., lcWGR), and high coverage whole-genome resequencing of 

pooled DNA of numerous individuals (i.e., Pool-seq), indicated that the implementation 

of barcoded individuals in lcWGR is preferred, as opposed to using a single barcode for a 

pool of individuals as in Pool-seq, particularly in species with unresolved population 

structure. The reason being that mixed samples and potential migrants can be identified 

when individual sequence reads are distinguishable. Yet, both techniques provide 

equivalent high genomic resolution and have their own limitations. The lack of a 

reference genome, the relatively high cost of high-throughput sequencing, the need for 

bioinformatic expertise and for large computer resources, however, are some of the main 
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factors limiting the application of WGR in the study of non-model species. The question 

then becomes: When is the investment in WGR justified (either lcWGR or Pool-seq)? It 

entirely depends on the main goal of the research and on the availability of genomic 

resources for the species of interest. Assuming funding and a reference genome are not 

restrictive, WGR would be the most powerful technique to detect signatures of selection, 

to resolve population structure mediated by natural selection, to identify the genetic basis 

of phenotypic traits and diseases, and to obtain a detailed reconstruction of species’ 

historical demography. Studies focused on resolving species’ population structure derived 

from genetic drift or on the estimation of effective population size using traditional 

methods, are some of the examples in which having high marker density does not 

necessarily provide an added benefit or even, could be problematic (Waples et al., 2016). 

Consequently, the justification for using WGR in my thesis resided in the need of 

screening adaptive and neutral variation in a marine fish species characterized by high 

gene flow, large effective population size, minute effect of genetic drift, and low 

population structure at neutral markers, for which the tracing of signatures of selection 

and local adaptation was sought. In conclusion, WGR data can help inform conservation 

and management plans by providing a refined assessment of intraspecific genetic 

diversity.  

In Chapter 3, I analyzed Pool-seq data of 6 NW and 19 NE Atlantic herring 

populations to evaluate if genetic differences exist between spring and fall spawners in 

the NW Atlantic, as previously found in NE Atlantic populations (Martinez Barrio et al., 

2016), and to estimate to what extent such differences are shared between populations at 

each side of the ocean. I discovered that indeed, significant genetic divergence exists at 

putatively adaptive loci between spring and fall spawners in the NW Atlantic, despite low 

genetic differentiation at neutral loci. In addition, I found that, to a large extent, the 

genetic factors underlying such genetic divergence are shared with populations in the NE 

Atlantic Ocean and the Baltic Sea. This result provides evidence for parallel evolution of 

adaptations to seasonal reproduction that most likely result from standing genetic 

variation predating the last glacial maximum. Many of the shared loci are near genes with 

a known role in reproduction, such as the thyroid-stimulating hormone receptor (TSHR), 

the SOX11 transcription factor (SOX11), calmodulin (CALM), and the estrogen receptor 
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2 (ESR2A). Two SNPs near the TSHR gene exhibited the strongest association with 

seasonal reproduction in both, the NW and NE Atlantic populations. Overall, these 

results indicate that the large population sizes, wide geographic distribution, and 

available genomic resources make Atlantic herring an ideal species for the study of 

ecological adaptation, given the negligible participation of genetic drift in shaping 

patterns of population divergence, which opens up an opportunity for the identification of 

the genetic basis of local adaptation in a widely distributed and highly migratory marine 

fish. Notably, in addition to the shared loci, numerous loci strongly associated with 

seasonal reproduction were uniquely found in NW Atlantic populations, which suggests 

local adaptation and justify further research. 

Consequently, in Chapter 4, sampling coverage in the NW Atlantic was increased, 

thus I analyzed Pool-seq data of a total of 14 spawning aggregations distributed across 

the reproductive range of the species in the region. The goals of this chapter were to 

examine fine-scale patterns of genomic differentiation, to identify their genomic basis, 

and to determinate their possible association with environmental conditions in the sea.  

As in the previous chapter, I found fine-scale population structure at putatively adaptive 

loci, notwithstanding low genetic differentiation at neutral loci. In addition, I 

disentangled an intricate pattern of population subdivision mainly driven by two factors, 

seasonal reproduction (discriminating between spring and fall spawners) and a latitudinal 

cline (distinguishing northern and southern spawning aggregations). Each pattern of 

divergence was underlined by thousands of outlier SNPs putatively under selection that 

were characterized by exhibiting opposite alleles close to fixation between the contrasting 

genetic groups (e.g. spring vs. fall, and north vs. south). These genetic variants were 

distributed in particular parts of the genome spanning a specific set of genes, forming so-

called “genomic regions or islands of divergence” (i.e. sections of the genome that 

underlie reproductive isolation or adaptation and appear to be resistant to gene flow 

(Nosil et al., 2009)). Winter sea-surface temperature appears to be the best environmental 

predictor of the latitudinal differentiation. Overall, the results of this chapter revealed that 

seasonal reproduction and latitudinal spawning location are features under disruptive 

selection leading to local adaptation in herring.  
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Taking advantage of the whole genome data generated in previous chapters and 

using state-of-the-art machine learning algorithms, in Chapter 5, I developed two highly 

informative and cost-effective SNP panels that allow for the genetic identification of 

spawning season (SPW-panel) and latitudinal origin (LAT-panel) of northwest Atlantic 

herring. Based on the individual genotypes obtained with these panels, I examined spatial 

and temporal variation of SNP allele frequencies in 993 individuals from 30 sites, 

including spawning aggregations and inshore and offshore mixed aggregations, 

distributed thorough the reproductive range of the species in the western Atlantic.  

The high self-assignment accuracy (>85%) obtained for both panels through 

cross-validation simulations based on machine learning algorithms, together with the 

confirmation of phenotype-genotype agreement (i.e. gonadal maturity status at the date of 

capture match genetic-based spawning season assignment), demonstrate the high 

predictive power of these SNP panels. The genetic data obtained in this chapter 

confirmed a southwest-northeast gradient in the prevalence of spawning types. This data 

also provided genetic evidence supporting the hypothesis that the diverse reproductive 

strategies in herring have an adaptive basis for increasing the chances of adult 

reproductive success and offspring survival under stochastic changes in the environment. 

The analysis of temporal replicates indicated stability in allele frequency differences 

between spawning types and in fall spawners from the northern region for the time period 

covered (1 to 9 years). Short-term temporal persistence of the genetic differences 

between reproductive strategies despite their mixing outside of the spawning season, 

suggests spawning time and site fidelity as well as stability of selective pressures shaping 

the current patterns of divergence in an ecological time scale. I found that hybridization 

between reproductive and latitudinal components is not restricted. Hybrids between 

spawning seasons constituted a varying proportion of spawning aggregations (13.3-

60.0% in spring- and 0.0-26.7% in fall-spawning grounds, respectively). Hybrids 

between latitudinal regions were more predominant towards the south (21.4-55.6%) than 

in the north (0.0-20.0 %). The varying proportion of hybrids found across the 

reproductive and latitudinal components suggests that perhaps there is a reproductive 

advantage of being pure-spring or pure-fall spawner in some locations but not in others, 

that polymorphism at loci related to the latitudinal cline increases reproductive success in 



 

 258 

the southern region, and that variable levels of connectivity between regions may exist. 

Moreover, intermediate to high admixture levels were commonly observed in individuals 

that spawned in either season, suggesting the possibility that some individuals hatched in 

one season are capable of spawning in the other season. Further functional studies are 

necessary to corroborate this observation. The analysis of mixture samples demonstrated 

the utility of the SNP panels developed here for the assessment of mixed stock 

composition. For example, it was possible to determine that groups of fish spawning in 

different seasons and latitudinal regions congregate in both, the offshore aggregations in 

southwest Newfoundland and in mid-Nova Scotia. Overall, the results of this chapter 

corroborate the highly complex mating and migratory system of herring as well as the 

mixed composition of aggregations outside of the spawning season. These results also 

highlight the significance of preserving biologically relevant genetic diversity for long-

term species and fisheries persistence, and demonstrate the utility of the genetic tools 

developed here for the close to real time assessment of the composition of mixed stocks 

at any life stage. 

 

In conclusion, with this thesis I demonstrate the utility of studying adaptive and 

neutral genetic variation at the whole genome level to increase our understanding of 

patterns and processes involved in the arising of population divergence and local 

adaptation in a highly migratory and abundant marine fish. 

 

6.3 Implications 

The findings of this thesis have numerous implications and potential applications in NW 

Atlantic herring fisheries management and, by extension, to other marine species. First, 

the SNP panels made available here can facilitate the assessment of the composition of 

mixed stock fisheries, spawning grounds, offshore aggregations, and larval retention 

areas. These genetic tools can diagnose reproductive season and latitudinal origin with 

high accuracy at any life stage from a small well-preserved tissue sample, for an 

affordable cost and a small fraction of the time that would take to process a large number 

of samples using traditional methods. Genetically informed fisheries management thus, 

will help implement more sustainable fishing practices that, for instance, adjust fishing 
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intensity according to the abundance of relevant biological components in a given stock. 

Secondly, the discovery of diverse reproductive and latitudinal components throughout 

the reproductive range of the species in the NW Atlantic requires revision of current 

management units to reflect the biological complexity of the species. Thirdly, the 

mismatch between the genetic data and the current method used for spawning season 

assignment (based on the comparison of month of capture and gonadal maturity stage) 

(McQuinn, 1987; LeBlanc et al., 2008) indicates the latter as well as the July 1st cut off 

used for spring- and fall- spawning designation of individuals should be revised. 

Fourthly, the genetic data here obtained are not in complete agreement with the currently 

proposed herring population models, suggesting they could be revised or a holistic model 

could be proposed in light of the new findings. Fifthly, as fishing targeting spawning 

grounds can have negative effects on species recovery and persistence (van Overzee & 

Rijnsdorp, 2015), it will be important to revise current practices and perhaps consider the 

implementation of rotational closures. Lastly, the findings of this thesis highlight the 

critical importance of characterizing and maintaining intraspecific genetic diversity of a 

commercially harvested species, as it constitutes the required knowledge for the 

implementation of sustainable fishing practices that assure the long-term persistence of 

the species and of the economic activity that it sustains. 

 

6.4 Limitations 

Despite the valuable findings described in this thesis, there are some limitations that need 

to be addressed. For example, population divergence was defined by genetic variation at 

loci exhibiting large allele frequency differences, meaning that variation characterized by 

more subtle changes in allele frequencies (commonly observed in polygenic traits) was 

excluded. The nature of the Pool-seq method did not provide the confidence to explore 

such genetic variation, given the uncertainty in the equal representation of individual 

DNA in a pool. Also, DNA pooling implies that individuals collected at the same time 

and location belong to the same genetic pool or breeding group. Certainly, this could not 

be assured with the methods available at the time of collection. The co-occurrence of 

spring and fall spawners in a pool was attempted to be controlled by selecting individuals 

with mature gonads at the time of capture (which would be considered as “spawners of 



 

 260 

the season”). Even if spawners of the same season were assured, it would not be possible 

to determine whether they come from different regions, as observed in fall spawners from 

the north and south. Thus, either individual targeted sequencing or genotyping, or the use 

of individual barcodes in whole genome sequencing are preferred. Regardless, the Pool-

seq data allowed the discovery of general patterns of genetic divergence between 

reproductive strategies and geographic regions in herring. Despite the significant increase 

in sampling coverage achieved in this thesis, some locations remain understudied. For 

example, no temporal replicates were analyzed for the southern region, nor were spring-

spawning aggregations from northeast Newfoundland examined. Finally, the SNP panels 

developed in this thesis are only diagnostic of the adaptive genetic variation 

distinguishing the reproductive and latitudinal components revealed by Pool-seq data. 

Thus, further studies using different or a combination of sets of markers are necessary to 

detect genetic differences in a smaller spatial scale, if possible. 

 

6.5 Future research 

The findings achieved in this thesis set the foundation for further research that will help 

expand our knowledge on the biology and population dynamics of Atlantic herring. For 

instance, the analysis of additional samples from the southern region will allow to 

examine whether the genetic differences observed among spawning aggregations in the 

south are temporally stable. In fact, the analysis of time series samples will be ideal, as it 

would be possible to monitor temporal changes in mixed stock composition as well as 

fluctuations of the latitudinal genetic cline and associated oceanographic variables. 

Another interesting venue will be the genetic study of stocks at different life stages, for 

example in eggs, larvae, and adults. This kind of study will help elucidate at which period 

of the herring life cycle natural selection mainly acts on. Moreover, functional 

experiments are required to establish a direct link between the genetic variants identified 

here and specific phenotypic traits and to confirm that hybrids can spawn either in spring 

or fall and that minimum temperature regimes are involved in the shaping of the 

latitudinal genetic cline. Finally, the genetic tools developed here, can certainly facilitate 

fisheries stock assessment. Thus, the implementation of a high-throughput genetic 
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diagnosis method will significantly reduce sequencing costs and will provide close to real 

time assessment of stock composition, facilitating the work of fisheries managers. 

 

6.6 References 

Hilborn, R., Quinn, T. P., Schindler, D. E., & Rogers, D. E. (2003). Biocomplexity and 

fisheries sustainability. Proceedings of the National Academy of Sciences, 100(11), 

6564–6568. https://doi.org/10.1073/pnas.1037274100 

Martinez Barrio, A., Lamichhaney, S., Fan, G., Rafati, N., Pettersson, M., Zhang, H., … 

Andersson, L. (2016). The genetic basis for ecological adaptation of the Atlantic 

herring revealed by genome sequencing. ELife, 5(MAY2016), 1–32. 

https://doi.org/10.7554/eLife.12081 

Nosil, P., Funk, D. J., & Ortiz-Barrientos, D. (2009). Divergent selection and 

heterogeneous genomic divergence. Molecular Ecology, 18(3), 375–402. 

https://doi.org/10.1111/j.1365-294X.2008.03946.x 

Ruzzante, D. E., Mariani, S., Bekkevold, D., André, C., Mosegaard, H., Clausen, L. A. 

W., … Carvalho, G. R. (2006). Biocomplexity in a highly migratory pelagic marine 

fish, Atlantic herring. Proceedings of the Royal Society B: Biological Sciences, 

273(1593), 1459–1464. https://doi.org/10.1098/rspb.2005.3463 

Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & 

Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited 

species. Nature, 465(7298), 609–612. https://doi.org/10.1038/nature09060 

van Overzee, H. M. J., & Rijnsdorp, A. D. (2015). Effects of fishing during the spawning 

period: implications for sustainable management. Reviews in Fish Biology and 

Fisheries, 25(1), 65–83. https://doi.org/10.1007/s11160-014-9370-x 

Waples, R. K., Larson, W. A., & Waples, R. S. (2016). Estimating contemporary 

effective population size in non-model species using linkage disequilibrium across 

thousands of loci. Heredity, 117(4), 233–240. https://doi.org/10.1038/hdy.2016.60 

  



 

 262 

BIBLIOGRAPHY 

Adey, A., Burton, J. N., Kitzman, J. O., Hiatt, J. B., Lewis, A. P., Martin, B. K., … Shendure, J. 

(2013). The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell 

line. Nature, 500(7461), 207–211. https://doi.org/10.1038/nature12064 

Agarwala, V., Flannick, J., Sunyaev, S., & Altshuler, D. (2013). Evaluating empirical bounds on 

complex disease genetic architecture. Nature Genetics, 45(12), 1418–1427. 

https://doi.org/10.1038/ng.2804 

Aird, D., Ross, M. G., Chen, W., Danielsson, M., Fennell, T., Russ, C., … Gnirke, A. (2011). 

Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome 

Biology, 12(2), R18. https://doi.org/10.1186/gb-2011-12-2-r18 

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in 

unrelated individuals. Genome Research, 19(9), 1655–1664. 

https://doi.org/10.1101/gr.094052.109 

Alkan, C., Coe, B. P., & Eichler, E. E. (2011). Genome structural variation discovery and 

genotyping. Nature Reviews. Genetics, 12(5), 363–376. https://doi.org/10.1038/nrg2958 

Allendorf, F. W. (2016). Genetics and the conservation of natural populations: Allozymes to 

genomes. Molecular Ecology, 38(1), 42–49. https://doi.org/10.1111/mec.13948 

Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of 

conservation genetics. Nature Reviews Genetics, 11(10), 697–709. 

https://doi.org/10.1038/nrg2844 

Allendorf, F. W., Luikart, G., & Aitken, S. N. (2013). Conservation and the Genetics of 

Populations (2nd ed.). Wiley-Blackwell. 

Anderson, E. C. (2010). Assessing the power of informative subsets of loci for population 

assignment: standard methods are upwardly biased. Molecular Ecology Resources, 10(4), 

701–710. https://doi.org/10.1111/j.1755-0998.2010.02846.x 

Anderson, E. C., Skaug, H. J., & Barshis, D. J. (2014). Next-generation sequencing for molecular 

ecology: a caveat regarding pooled samples. Molecular Ecology, 23(3), 502–512. 

https://doi.org/10.1111/mec.12609 

Anderson, E. C., Waples, R. S., & Kalinowski, S. T. (2008). An improved method for predicting 

the accuracy of genetic stock identification. Canadian Journal of Fisheries and Aquatic 

Sciences, 65(7), 1475–1486. https://doi.org/10.1139/F08-049 

Andersson, L., Ryman, N., Rosenberg, R., & Ståhl, G. (1981). Genetic variability in Atlantic 

herring (Clupea harengus harengus): description of protein loci and population data. 

Hereditas, 95(1), 69–78. https://doi.org/10.1111/j.1601-5223.1981.tb01330.x 

Andersson, L. S., Larhammar, M., Memic, F., Wootz, H., Schwochow, D., Rubin, C.-J., … 

Kullander, K. (2012). Mutations in DMRT3 affect locomotion in horses and spinal circuit 

function in mice. Nature, 488(7413), 642–646. https://doi.org/10.1038/nature11399 

André, C., Larsson, L. C., Laikre, L., Bekkevold, D., Brigham, J., Carvalho, G. R., … Ryman, N. 

(2011). Detecting population structure in a high gene-flow species, Atlantic herring (Clupea 

harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity, 

106(2), 270–280. https://doi.org/10.1038/hdy.2010.71 

Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing 

the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics, 

17(2), 81–92. https://doi.org/10.1038/nrg.2015.28 



 

 263 

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available 

online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc. 

Andrews, Simon. (2010). FastQC: a quality control tool for high throughput sequence data. 

Retrieved May 1, 2018, from http://www.bioinformatics.babraham.ac.uk/projects/fastqc 

Angeloni, F., Wagemaker, N., Vergeer, P., & Ouborg, J. (2012). Genomic toolboxes for 

conservation biologists. Evolutionary Applications, 5(2), 130–143. 

https://doi.org/10.1111/j.1752-4571.2011.00217.x 

Arnold, B., Corbett-Detig, R. B., Hartl, D., & Bomblies, K. (2013). RADseq underestimates 

diversity and introduces genealogical biases due to nonrandom haplotype sampling. 

Molecular Ecology, 22(11), 3179–3190. https://doi.org/10.1111/mec.12276 

Auer, P. L., & Lettre, G. (2015). Rare variant association studies: considerations, challenges and 

opportunities. Genome Medicine, 7(1), 16. https://doi.org/10.1186/s13073-015-0138-2 

Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Abecasis, G. R., Bentley, D. R., … 

Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 

68–74. https://doi.org/10.1038/nature15393 

Avise, J. C. (2010). Perspective: Conservation genetics enters the genomics era. Conservation 

Genetics, 11(2), 665–669. https://doi.org/10.1007/s10592-009-0006-y 

Aykanat, T., Lindqvist, M., Pritchard, V. L., & Primmer, C. R. (2016). From population 

genomics to conservation and management: a workflow for targeted analysis of markers 

identified using genome-wide approaches in Atlantic salmon Salmo salar. Journal of Fish 

Biology, 89(6), 2658–2679. https://doi.org/10.1111/jfb.13149 

Ayllon, F., Kjærner-Semb, E., Furmanek, T., Wennevik, V., Solberg, M. F., Dahle, G., … 

Wargelius, A. (2015). The vgll3 Locus Controls Age at Maturity in Wild and Domesticated 

Atlantic Salmon (Salmo salar L.) Males. PLoS Genetics, 11(11), 1–15. 

https://doi.org/10.1371/journal.pgen.1005628 

Baird, N., Etter, P., Atwood, T., Currey, M., Shiver, A., Lewis, Z., … Johnson, E. (2008). Rapid 

SNP discovery and genetic mapping using sequenced RAD markers. PloS One, 3(10), 

e3376. https://doi.org/10.1371/journal.pone.0003376 

Baker, M. (2012). De novo genome assembly: what every biologist should know. Nature 

Methods, 9(4), 333–337. https://doi.org/10.1038/nmeth.1935 

Barrett, R. D. H., & Hoekstra, H. E. (2011). Molecular spandrels: tests of adaptation at the 

genetic level. Nature Review Genetics, 12(11), 767–780. https://doi.org/10.1038/nrg3015 

Barson, N. J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G. H., Fiske, P., … Primmer, C. R. 

(2015). Sex-dependent dominance at a single locus maintains variation in age at maturity in 

salmon. Nature, 528(7582), 405–408. https://doi.org/10.1038/nature16062 

Baum, B. R. (1989). PHYLIP: Phylogeny Inference Package. Version 3.2 . Joel Felsenstein. The 

Quarterly Review of Biology, 64(4), 539–541. https://doi.org/10.1086/416571 

Baxter, I. G. (1959). Fecundities of winte-spring and summer-autumn herring spawners. J. Cons. 

Int. Explor. Mer., 25, 73–80. 

Baym, M., Kryazhimskiy, S., Lieberman, T. D., Chung, H., Desai, M. M., & Kishony, R. K. 

(2015). Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS 

ONE, 10(5), 1–15. https://doi.org/10.1371/journal.pone.0128036 

Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining 



 

 264 

window-boundaries for genomic analyses using smoothing spline techniques. Genetics 

Selection Evolution, 47(1), 30. https://doi.org/10.1186/s12711-015-0105-9 

Bekkevold, D., Helyar, S. J., Limborg, M. T., Nielsen, E. E., Hemmer-Hansen, J., Clausen, L. A. 

W., & Carvalho, G. R. (2015a). Gene-associated markers can assign origin in a weakly 

structured fish, Atlantic herring. ICES Journal of Marine Science: Journal Du Conseil, 

72(6), 1790–1801. https://doi.org/10.1093/icesjms/fsu247 

Bekkevold, D., Helyar, S. J., Limborg, M. T., Nielsen, E. E., Hemmer-Hansen, J., Clausen, L. A. 

W., & Carvalho, G. R. (2015b). Gene-associated markers can assign origin in a weakly 

structured fish, Atlantic herring. ICES Journal of Marine Science: Journal Du Conseil, 

72(6), 1790–1801. https://doi.org/10.1093/icesjms/fsu247 

Belkadi, A., Bolze, A., Itan, Y., Cobat, A., Vincent, Q. B., Antipenko, A., … Abel, L. (2015). 

Whole-genome sequencing is more powerful than whole-exome sequencing for detecting 

exome variants. Proceedings of the National Academy of Sciences, 112(17), 5473–5478. 

https://doi.org/10.1073/pnas.1418631112 

Benestan, L., Gosselin, T., Perrier, C., Sainte-Marie, B., Rochette, R., & Bernatchez, L. (2015). 

RAD genotyping reveals fine-scale genetic structuring and provides powerful population 

assignment in a widely distributed marine species, the American lobster (Homarus 

americanus). Molecular Ecology, 24(13), 3299–3315. https://doi.org/10.1111/mec.13245 

Benestan, L. M., Ferchaud, A.-L., Hohenlohe, P. A., Garner, B. A., Naylor, G. J. P., Baums, I. B., 

… Luikart, G. (2016). Conservation genomics of natural and managed populations: building 

a conceptual and practical framework. Molecular Ecology, 25(13), 2967–2977. 

https://doi.org/10.1111/mec.13647 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate : A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B, 

57(1), 289–300. https://doi.org/10.2307/2346101 

Benoît, H., Swain, D., Hutchings, J., Knox, D., Doniol-Valcroze, T., & Bourne, C. (2018). 

Evidence for reproductive senescence in a broadly distributed harvested marine fish. Marine 

Ecology Progress Series, 592, 207–224. https://doi.org/10.3354/meps12532 

Berg, F., Almeland, O. W., Skadal, J., Slotte, A., Andersson, L., & Folkvord, A. (2018). Genetic 

factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic 

herring (Clupea harengus). PLOS ONE, 13(1), e0190995. 

https://doi.org/10.1371/journal.pone.0190995 

Berg, J. J., & Coop, G. (2014). A Population Genetic Signal of Polygenic Adaptation. PLoS 

Genetics, 10(8), e1004412. https://doi.org/10.1371/journal.pgen.1004412 

Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S., & Petrov, D. A. (2014). 

Genomic Evidence of Rapid and Stable Adaptive Oscillations over Seasonal Time Scales in 

Drosophila. PLoS Genetics, 10(11), e1004775. 

https://doi.org/10.1371/journal.pgen.1004775 

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., & Phillippy, A. M. (2015). 

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. 

Nature Biotechnology, 33(6), 623–630. https://doi.org/10.1038/nbt.3238 

Bernatchez, L. (2016). On the maintenance of genetic variation and adaptation to environmental 

change: considerations from population genomics in fishes. Journal of Fish Biology, 1–38. 

https://doi.org/10.1111/jfb.13145 

Bernatchez, Louis, Wellenreuther, M., Araneda, C., Ashton, D. T., Barth, J. M. I., Beacham, T. 



 

 265 

D., … Withler, R. E. (2017). Harnessing the Power of Genomics to Secure the Future of 

Seafood. Trends in Ecology & Evolution, 32(9), 665–680. 

https://doi.org/10.1016/j.tree.2017.06.010 

Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., & Good, J. M. (2012). 

Transcriptome-based exon capture enables highly cost-effective comparative genomic data 

collection at moderate evolutionary scales. BMC Genomics, 13(1), 403. 

https://doi.org/10.1186/1471-2164-13-403 

Bickhart, D. M., Rosen, B. D., Koren, S., Sayre, B. L., Hastie, A. R., Chan, S., … Smith, T. P. L. 

(2017). Single-molecule sequencing and chromatin conformation capture enable de novo 

reference assembly of the domestic goat genome. Nature Genetics, 53(9), 1689–1699. 

https://doi.org/10.1038/ng.3802 

Bierne, N., Welch, J., Loire, E., Bonhomme, F., & David, P. (2011). The coupling hypothesis: 

Why genome scans may fail to map local adaptation genes. Molecular Ecology, 20(10), 

2044–2072. https://doi.org/10.1111/j.1365-294X.2011.05080.x 

Blanquart, F., Kaltz, O., Nuismer, S. L., & Gandon, S. (2013). A practical guide to measuring 

local adaptation. Ecology Letters, 16(9), 1195–1205. https://doi.org/10.1111/ele.12150 

Bleidorn, C. (2016). Third generation sequencing: technology and its potential impact on 

evolutionary biodiversity research. Systematics and Biodiversity, 14(1), 1–8. 

https://doi.org/10.1080/14772000.2015.1099575 

Blischak, P. D., Wenzel, A. J., & Wolfe, A. D. (2014). Gene Prediction and Annotation in 

Penstemon (Plantaginaceae): A Workflow for Marker Development from Extremely Low-

Coverage Genome Sequencing. Applications in Plant Sciences, 2(12), 1400044. 

https://doi.org/10.3732/apps.1400044 

Boitard, S., Rodríguez, W., Jay, F., Mona, S., & Austerlitz, F. (2016). Inferring Population Size 

History from Large Samples of Genome-Wide Molecular Data - An Approximate Bayesian 

Computation Approach. PLOS Genetics, 12(3), e1005877. 

https://doi.org/10.1371/journal.pgen.1005877 

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 

sequence data. Bioinformatics, 30(15), 2114–2120. 

https://doi.org/10.1093/bioinformatics/btu170 

Bondesson, M., Hao, R., Lin, C.-Y., Williams, C., & Gustafsson, J.-Å. (2015). Estrogen receptor 

signaling during vertebrate development. Biochim Biophys Acta, 1849(2), 142–151. 

https://doi.org/http://dx.doi.org/10.1016/j.bbagrm.2014.06.005 

Bossdorf, O., Richards, C. L., & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 

11(2), 106–115. https://doi.org/10.1111/j.1461-0248.2007.01130.x 

Bourne, C., Mowbray, F., Squires, B., & Koen-Alonso, M. (2018). 2017 Assessment of 

Newfoundland east and south coast Atlantic herring (Clupea harengus) stock complexes. 

DFO Can. Sci. Advis. Sec. Res. Doc. 2018/026, v + 45 p. 

Bradbury, I. R., Hamilton, L. C., Dempson, B., Robertson, M. J., Bourret, V., Bernatchez, L., & 

Verspoor, E. (2015). Transatlantic secondary contact in Atlantic Salmon, comparing 

microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA 

sequencing for the resolution of complex spatial structure. Molecular Ecology, 24(20), 

5130–5144. https://doi.org/10.1111/mec.13395 

Bradbury, I. R., Hamilton, L. C., Sheehan, T. F., Chaput, G., Robertson, M. J., Dempson, J. B., 

… Bernatchez, L. (2016). Genetic mixed-stock analysis disentangles spatial and temporal 



 

 266 

variation in composition of the West Greenland Atlantic Salmon fishery. ICES Journal of 

Marine Science, 73(9), 2311–2321. https://doi.org/10.1093/icesjms/fsw072 

Bradbury, I. R., Hubert, S., Higgins, B., Borza, T., Bowman, S., Paterson, I. G., … Bentzen, P. 

(2010). Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in 

response to temperature. Proceedings of the Royal Society of London B: Biological 

Sciences, 277(1701), 3725–3734. https://doi.org/10.1098/rspb.2010.0985 

Bradbury, I. R., Hubert, S., Higgins, B., Bowman, S., Borza, T., Paterson, I. G., … Bentzen, P. 

(2013). Genomic islands of divergence and their consequences for the resolution of spatial 

structure in an exploited marine fish. Evolutionary Applications, 6(3), 450–461. 

https://doi.org/10.1111/eva.12026 

Bradford, R. G., & Iles, T. D. (1992). Unique biological characteristics of spring-spawning 

herring (Clupea harengus L.) in Minas Basin, Nova Scotia, a tidally dynamic environment. 

Canadian Journal of Zoology, 70, 641–648. 

Bradnam, K. R., Fass, J. N., Alexandrov, A., Baranay, P., Bechner, M., Birol, I., … Korf, I. F. 

(2013). Assemblathon 2: evaluating de novo methods of genome assembly in three 

vertebrate species. GigaScience, 2(1), 10. https://doi.org/10.1186/2047-217X-2-10 

Breiman, L. (2001). Random Forest. Machine Learning, 45, 5–32. 

https://doi.org/10.1023/A:1010933404324 

Brickman, D., Hebert, D., & Wang, Z. (2018). Mechanism for the recent ocean warming events 

on the Scotian Shelf of eastern Canada. Continental Shelf Research, 156, 11–22. 

https://doi.org/10.1016/j.csr.2018.01.001 

Brieuc, M. S. O., Waters, C. D., Drinan, D. P., & Naish, K. A. (2018). A practical introduction to 

Random Forest for genetic association studies in ecology and evolution. Molecular Ecology 

Resources, 18(4), 755–766. https://doi.org/10.1111/1755-0998.12773 

Britten, G. L., Dowd, M., & Worm, B. (2016). Changing recruitment capacity in global fish 

stocks. Proceedings of the National Academy of Sciences, 113(1), 134–139. 

https://doi.org/10.1073/pnas.1504709112 

Broad Institute. (2014). Calling variants on cohorts of samples using the HaplotypeCaller in 

GVCF mode. Retrieved May 20, 2018, from 

https://software.broadinstitute.org/gatk/documentation/article.php?id=3893 

Broad Institute. (2016). Understanding and adapting the generic hard-filtering recommendations. 

Retrieved May 20, 2018, from 

https://gatkforums.broadinstitute.org/gatk/discussion/6925/understanding-and-adapting-the-

generic-hard-filtering-recommendations 

Broad Institute. (2018). Picard tools. Retrieved May 20, 2018, from 

http://broadinstitute.github.io/picard/ 

Browning, S. R., & Browning, B. L. (2011). Haplotype phasing: existing methods and new 

developments. Nature Reviews Genetics, 12(10), 703–714. https://doi.org/10.1038/nrg3054 

Browning, S. R., & Browning, B. L. (2016). Rapid and accurate haplotype phasing and missing-

data inference for whole-genome association studies by use of localized haplotype 

clustering. The American Journal of Human Genetics, 81(5), 1084–1097. 

https://doi.org/10.1086/521987 

Bucholtz, R. H., Tomkiewicz, J., & Dalskov, J. (2008). Manual to determine gonadal maturity of 

herring (Clupea harengus L.). In DTU Aqua-report. Retrieved from 



 

 267 

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Manual+to+determine+g

onadal+maturity+of+herring+(Clupea+harengus+L.)#0 

Buels, R., Yao, E., Diesh, C. M., Hayes, R. D., Munoz-Torres, M., Helt, G., … Holmes, I. H. 

(2016). JBrowse: a dynamic web platform for genome visualization and analysis. Genome 

Biology, 17(1), 66. https://doi.org/10.1186/s13059-016-0924-1 

Buerkle, A. C. (2005). Maximum-likelihood estimation of a hybrid index based on molecular 

markers. Molecular Ecology Notes, 5(3), 684–687. https://doi.org/10.1111/j.1471-

8286.2005.01011.x 

Buerkle, A. C., & Gompert, Z. (2013). Population genomics based on low coverage sequencing: 

how low should we go? Molecular Ecology, 22(11), 3028–3035. 

https://doi.org/10.1111/mec.12105 

Bustamante, C. D., Wakeley, J., Sawyer, S., & Hartl, D. L. (2001). Directional selection and the 

site-frequency spectrum. Genetics, 159(4), 1779–1788. 

Cariou, M., Duret, L., & Charlat, S. (2016). How and how much does RAD-seq bias genetic 

diversity estimates? BMC Evolutionary Biology, 16(1), 240. https://doi.org/10.1186/s12862-

016-0791-0 

Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alfoldi, J., Barrio, A. M., … Andersson, 

L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during 

domestication. Science, 345(6200), 1074–1079. https://doi.org/10.1126/science.1253714 

Catchen, J. M., Hohenlohe, P. A., Bernatchez, L., Funk, W. C., Andrews, K. R., & Allendorf, F. 

W. (2017). Unbroken: RADseq remains a powerful tool for understanding the genetics of 

adaptation in natural populations. Molecular Ecology Resources, 38(1), 42–49. 

https://doi.org/10.1111/1755-0998.12669 

Chakraborty, M., Baldwin-Brown, J. G., Long, A. D., & Emerson, J. J. (2016). Contiguous and 

accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic 

Acids Research, 44(19), 1–12. https://doi.org/10.1093/nar/gkw654 

Chan, C. X., & Ragan, M. A. (2013). Next-generation phylogenomics. Biology Direct, 8(1), 3. 

https://doi.org/10.1186/1745-6150-8-3 

Chen, K.-Y., Marschall, E. A., Sovic, M. G., Fries, A. C., Gibbs, H. L., & Ludsin, S. A. (2018). 

assignPOP: An r package for population assignment using genetic, non-genetic, or 

integrated data in a machine-learning framework. Methods in Ecology and Evolution, 9(2), 

439–446. https://doi.org/10.1111/2041-210X.12897 

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012a). 

A program for annotating and predicting the effects of single nucleotide polymorphisms, 

SnpEff. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695 

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. 

(2012b). A program for annotating and predicting the effects of single nucleotide 

polymorphisms, SnpEff. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695 

Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2009). The Sanger FASTQ 

file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. 

Nucleic Acids Research, 38(6), 1767–1771. https://doi.org/10.1093/nar/gkp1137 

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., … 

Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome 

Biology, 17(1), 13. https://doi.org/10.1186/s13059-016-0881-8 



 

 268 

Conover, D. O. (1998). Local adaptation in marine fishes -evidence and implications for stock 

enhancement. Bulletin of Marine Science, 62(2), 477–493. 

Crawford, J. E., Riehle, M. M., Markianos, K., Bischoff, E., Guelbeogo, W. M., Gneme, A., … 

Lazzaro, B. P. (2016). Evolution of GOUNDRY, a cryptic subgroup of Anopheles gambiae 

s.l., and its impact on susceptibility to Plasmodium infection. Molecular Ecology, 25(7), 

1494–1510. https://doi.org/10.1111/mec.13572 

Cushing, D. H. (1967). The grouping of herring populations. J. Mar. Biol. Ass., U.K, 47, 193–

208. 

Cutler, D. J., & Jensen, J. D. (2010). To pool, or not to pool? Genetics, 186(1), 41–43. 

https://doi.org/10.1534/genetics.110.121012 

da Fonseca, R. R., Albrechtsen, A., Themudo, G. E., Ramos-Madrigal, J., Sibbesen, J. A., 

Maretty, L., … Pereira, R. J. (2016). Next-generation biology: Sequencing and data analysis 

approaches for non-model organisms. Marine Genomics, 30, 1–11. 

https://doi.org/10.1016/j.margen.2016.04.012 

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … Durbin, R. 

(2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. 

https://doi.org/10.1093/bioinformatics/btr330 

De Wit, P., Pespeni, M. H., Ladner, J. T., Barshis, D. J., & Palumbi, S. R. (2012). The simple 

fool’ s guide to population genomics via RNA-Seq : an introduction to high-throughput 

sequencing data analysis. Molecular Ecology Resources, 12, 1058–1067. 

https://doi.org/10.1111/1755-0998.12003 

Delsuc, F., Brinkmann, H., & Philippe, H. (2005). Phylogenomics and the reconstruction of the 

tree of life. Nature Reviews. Genetics, 6(5), 361–375. https://doi.org/10.1038/nrg1603 

Dennenmoser, S., Vamosi, S. M., Nolte, A. W., & Rogers, S. M. (2017). Adaptive genomic 

divergence under high gene flow between freshwater and brackish-water ecotypes of prickly 

sculpin (Cottus asper) revealed by Pool-Seq. Molecular Ecology, 26(1), 25–42. 

https://doi.org/10.1111/mec.13805 

Denny, S., Clark, K. J., Power, M. J., & Stephenson, R. L. (1998). The status of the herring in the 

Bras d’Or Lakes in 1996–1997. Canadian Stock Assessment Secretariat Research 

Document, 80, 1–32. 

Department of Fisheries & Oceans Canada. (2012). Assessment of Atlantic herring in the 

southern Gulf of St. Lawrence (NAFO Div. 4T). Available online at http://www.dfo-

mpo.gc.ca/csas-sccs/Publications/SAR-AS/2012/2012_014-eng.pdf. 

Department of Fisheries and Oceans Canada. (2011). Canadian fisheries statistics 2008, Available 

online at http://www.dfo-mpo.gc.ca/stats/commercial/cfs/2008/CFS2008_e.pdf. 

DePristo, M. a, Banks, E., Poplin, R., Garimella, K. V, Maguire, J. R., Hartl, C., … Daly, M. J. 

(2011). A framework for variation discovery and genotyping using next-generation DNA 

sequencing data. Nature Genetics, 43(5), 491–498. https://doi.org/10.1038/ng.806 

DFO. (1997). State of the Ocean: Northwest Atlantic. In DFO Science Stock Status Report G0-01. 

Retrieved from 

https://login.proxy.lib.duke.edu/login?url=https://search.proquest.com/docview/1668269133

?accountid=10598%0Ahttp://pm6mt7vg3j.search.serialssolutions.com?ctx_ver=Z39.88-

2004&ctx_enc=info:ofi/enc:UTF-

8&rfr_id=info:sid/ProQ%3Aasfabiological&rft_val_fmt=info 



 

 269 

DFO. (2017). Stock Status Update of 4VWX Herring. In DFO Can. Sci. Advis. Sec. Sci. Resp. 

2017/037. 

Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of 

Vegetation Science, 14(6), 927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x 

Dohm, J. C., Lottaz, C., Borodina, T., & Himmelbauer, H. (2008). Substantial biases in ultra-

short read data sets from high-throughput DNA sequencing. Nucleic Acids Research, 

36(16), e105–e105. https://doi.org/10.1093/nar/gkn425 

Dray, S., & Dufour, A.-B. (2007). The ade4 Package: Implementing the Duality Diagram for 

Ecologists. Journal of Statistical Software, 22(4). https://doi.org/10.18637/jss.v022.i04 

Durbin, R. M., Altshuler, D. L., Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., 

… Africa, W. (2010). A map of human genome variation from population-scale sequencing. 

Nature, 467(7319), 1061–1073. https://doi.org/10.1038/nature09534 

Durrett, R. (2008). Probability Models for DNA Sequence Evolution (2nd ed.). In Probability and 

Its Applications (2nd ed.). https://doi.org/10.1007/978-0-387-78168-6 

Earl, D., Bradnam, K., St. John, J., Darling, A., Lin, D., Fass, J., … Paten, B. (2011). 

Assemblathon 1: A competitive assessment of de novo short read assembly methods. 

Genome Research, 21(12), 2224–2241. https://doi.org/10.1101/gr.126599.111 

Ekblom, R., & Wolf, J. B. W. (2014). A field guide to whole-genome sequencing, assembly and 

annotation. Evolutionary Applications, 7(9), 1026–1042. https://doi.org/10.1111/eva.12178 

Ellegren, H. (2014). Genome sequencing and population genomics in non-model organisms. 

Trends in Ecology & Evolution, 29(1), 51–63. https://doi.org/10.1016/j.tree.2013.09.008 

Engelhard, G. H., & Heino, M. (2004). Maturity changes in Norwegian spring-spawning herring 

before, during, and after a major population collapse. Fisheries Research, 66(2–3), 299–

310. https://doi.org/10.1016/S0165-7836(03)00195-4 

Epstein, D. J. (2009). Cis-regulatory mutations in human disease. Briefings in Functional 

Genomics and Proteomics, 8(4), 310–316. https://doi.org/10.1093/bfgp/elp021 

Evans, J. D., Brown, S. J., Hackett, K. J. J., Robinson, G., Richards, S., Lawson, D., … Zhou, X. 

(2013). The i5K initiative: Advancing arthropod genomics for knowledge, human health, 

agriculture, and the environment. Journal of Heredity, 104(5), 595–600. 

https://doi.org/10.1093/jhered/est050 

Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results 

for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048. 

https://doi.org/10.1093/bioinformatics/btw354 

Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic Consequences of Range Expansions. Annual 

Review of Ecology, Evolution, and Systematics, 40(1), 481–501. 

https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to 

perform population genetics analyses under Linux and Windows. Molecular Ecology 

Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x 

Fadista, J., Manning, A. K., Florez, J. C., & Groop, L. (2016). The (in)famous GWAS P-value 

threshold revisited and updated for low-frequency variants. European Journal of Human 

Genetics, 24(8), 1202–1205. https://doi.org/10.1038/ejhg.2015.269 

FAO. (2019). Species Fact Sheets: Clupea harengus (Linnaeus, 1758). Retrieved from 



 

 270 

http://www.fao.org/fishery/species/2886/en 

Feder, A. F., Petrov, D. A., & Bergland, A. O. (2012). LDx: Estimation of Linkage 

Disequilibrium from High-Throughput Pooled Resequencing Data. PLoS ONE, 7(11), 

e48588. https://doi.org/10.1371/journal.pone.0048588 

Feder, J. L., Egan, S. P., & Nosil, P. (2012). The genomics of speciation-with-gene-flow. Trends 

in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009 

Felsenstein, J. (1989). PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164–

166. 

Ferretti, L., Ramos-Onsins, S. E., & Pérez-Enciso, M. (2013). Population genomics from pool 

sequencing. Molecular Ecology, 22(22), 5561–5576. https://doi.org/10.1111/mec.12522 

Fichefet, T., & Maqueda, M. A. M. (1997). Sensitivity of a global sea ice model to the treatment 

of ice thermodynamics and dynamics. Journal of Geophysical Research: Oceans, 102(C6), 

12609–12646. https://doi.org/10.1029/97JC00480 

Field, Y., Boyle, E. A., Telis, N., Gao, Z., Gaulton, K. J., Golan, D., … Pritchard, J. K. (2016). 

Detection of human adaptation during the past 2000 years. Science, 354(6313), 760–764. 

https://doi.org/10.1126/science.aag0776 

Fischer, M. C., Rellstab, C., Leuzinger, M., Roumet, M., Gugerli, F., Shimizu, K. K., … Widmer, 

A. (2017). Estimating genomic diversity and population differentiation – an empirical 

comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics, 

18(1), 69. https://doi.org/10.1186/s12864-016-3459-7 

Fischer, M. C., Rellstab, C., Tedder, A., Zoller, S., Gugerli, F., Shimizu, K. K., … Widmer, A. 

(2013). Population genomic footprints of selection and associations with climate in natural 

populations of Arabidopsis halleri from the Alps. Molecular Ecology, 22(22), 5594–5607. 

https://doi.org/10.1111/mec.12521 

Fleming, D. S., Koltes, J. E., Fritz-Waters, E. R., Rothschild, M. F., Schmidt, C. J., Ashwell, C. 

M., … Lamont, S. J. (2016). Single nucleotide variant discovery of highly inbred Leghorn 

and Fayoumi chicken breeds using pooled whole genome resequencing data reveals insights 

into phenotype differences. BMC Genomics, 17(1), 812. https://doi.org/10.1186/s12864-

016-3147-7 

Fonseca, N. A., Rung, J., Brazma, A., & Marioni, J. C. (2012). Tools for mapping high-

throughput sequencing data. Bioinformatics, 28(24), 3169–3177. 

https://doi.org/10.1093/bioinformatics/bts605 

Fontanesi, L., Di Palma, F., Flicek, P., Smith, A. T., Thulin, C.-G., & Alves, P. C. (2016). 

LaGomiCs—Lagomorph Genomics Consortium: An International Collaborative Effort for 

Sequencing the Genomes of an Entire Mammalian Order. Journal of Heredity, 107(4), 295–

308. https://doi.org/10.1093/jhered/esw010 

Foote, A. D., Vijay, N., Ávila-Arcos, M. C., Baird, R. W., Durban, J. W., Fumagalli, M., … 

Wolf, J. B. W. (2016). Genome-culture coevolution promotes rapid divergence of killer 

whale ecotypes. Nature Communications, 7(May), 11693. 

https://doi.org/10.1038/ncomms11693 

Forester, B. R., Lasky, J. R., Wagner, H. H., & Urban, D. L. (2018). Comparing methods for 

detecting multilocus adaptation with multivariate genotype–environment associations. 

Molecular Ecology, 27(9), 2215–2233. https://doi.org/10.1111/mec.14584 

Fracassetti, M., Griffin, P. C., & Willi, Y. (2015). Validation of pooled whole-genome re-



 

 271 

sequencing in Arabidopsis lyrata. PLoS ONE, 10(10), 1–15. 

https://doi.org/10.1371/journal.pone.0140462 

Frank, K. T., & Brickman, D. (2000). Allee effects and compensatory population dynamics 

within a stock complex. Canadian Journal of Fisheries and Aquatic Sciences, 57, 513–517. 

Frankham, R. (2010). Challenges and opportunities of genetic approaches to biological 

conservation. Biological Conservation, 143(9), 1919–1927. 

https://doi.org/10.1016/j.biocon.2010.05.011 

Freamo, H., O’reilly, P., Berg, P. R., Lien, S., & Boulding, E. G. (2011). Outlier SNPs show 

more genetic structure between two Bay of Fundy metapopulations of Atlantic salmon than 

do neutral SNPs. Molecular Ecology Resources, 11, 254–267. 

https://doi.org/10.1111/j.1755-0998.2010.02952.x 

Fuentes-Pardo, A. P., Bourne, C., Singh, R., Emond, K., Pinkham, L., McDermid, J. L., … 

Ruzzante, D. E. (2019). Adaptation to seasonal reproduction and thermal minima-related 

factors drives fine-scale divergence despite gene flow in Atlantic herring populations. 

BioRxiv. https://doi.org/https://doi.org/10.1101/578484 

Fumagalli, M. (2013). Assessing the effect of sequencing depth and sample size in population 

genetics inferences. PloS One, 8(11), e79667. https://doi.org/10.1371/journal.pone.0079667 

Fumagalli, M., Vieira, F. G., Korneliussen, T. S., Linderoth, T., Huerta-Sánchez, E., Albrechtsen, 

A., & Nielsen, R. (2013). Quantifying population genetic differentiation from next-

generation sequencing data. Genetics, 195(3), 979–992. 

https://doi.org/10.1534/genetics.113.154740 

Fumagalli, M., Vieira, F. G., Linderoth, T., & Nielsen, R. (2014). NgsTools: Methods for 

population genetics analyses from next-generation sequencing data. Bioinformatics, 30(10), 

1486–1487. https://doi.org/10.1093/bioinformatics/btu041 

Funk, W. C., McKay, J. K., Hohenlohe, P. a, & Allendorf, F. W. (2012). Harnessing genomics for 

delineating conservation units. Trends in Ecology & Evolution, 27(9), 489–496. 

https://doi.org/10.1016/j.tree.2012.05.012 

Fussi, B., Westergren, M., Aravanopoulos, F., Baier, R., Kavaliauskas, D., Finzgar, D., … 

Kraigher, H. (2016). Forest genetic monitoring: an overview of concepts and definitions. 

Environmental Monitoring and Assessment, 188(8), 493. https://doi.org/10.1007/s10661-

016-5489-7 

Futschik, A., & Schlötterer, C. (2010). The next generation of molecular markers from massively 

parallel sequencing of pooled DNA samples. Genetics, 186(1), 207–218. 

https://doi.org/10.1534/genetics.110.114397 

Gaggiotti, O. E., Bekkevold, D., Jørgensen, H. B. H., Foll, M., Carvalho, G. R., Andre, C., & 

Ruzzante, D. E. (2009). Disentangling the effects of evolutionary, demographic, and 

environmental factors influencing genetic structure of natural populations: Atlantic herring 

as a case study. Evolution, 63(11), 2939–2951. https://doi.org/10.1111/j.1558-

5646.2009.00779.x 

Gagnaire, P.-A., & Gaggiotti, O. E. (2016). Detecting polygenic selection in marine populations 

by combining population genomics and quantitative genetics approaches. Current Zoology, 

62(August), 1–14. https://doi.org/10.1093/cz/zow088 

Garner, B. A., Hand, B. K., Amish, S. J., Bernatchez, L., Foster, J. T., Miller, K. M., … Luikart, 

G. (2016). Genomics in Conservation: Case Studies and Bridging the Gap between Data and 

Application. Trends in Ecology & Evolution, 31(2), 81–83. 



 

 272 

https://doi.org/10.1016/j.tree.2015.10.009 

Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. 

ArXiv Preprint ArXiv:1207.3907, 9. https://doi.org/arXiv:1207.3907 

Gautier, M., Foucaud, J., Gharbi, K., Cézard, T., Galan, M., Loiseau, A., … Estoup, A. (2013). 

Estimation of population allele frequencies from next-generation sequencing data: pool-

versus individual-based genotyping. Molecular Ecology, 22(14), 3766–3779. 

https://doi.org/10.1111/mec.12360 

Gavrilets, S. (2003). Perspective: Models of speciation: what have we learned in 40 years? 

Evolution, 57(10), 2197–2215. https://doi.org/10.1111/j.0014-3820.2003.tb00233.x 

Geffen, A. J. (2009). Advances in herring biology: from simple to complex, coping with plasticity 

and adaptability. ICES Journal of Marine Science, 66(8), 1688–1695. 

https://doi.org/10.1093/icesjms/fsp028 

GIGA. (2014). The Global Invertebrate Genomics Alliance (GIGA): Developing Community 

Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 105(1), 1–18. 

https://doi.org/10.1093/jhered/est084 

Goldstein, B. A., Hubbard, A. E., Cutler, A., & Barcellos, L. F. (2010). An application of 

Random Forests to a genome-wide association dataset: Methodological considerations & 

new findings. BMC Genetics, 11(1), 49. https://doi.org/10.1186/1471-2156-11-49 

Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-

generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. 

https://doi.org/10.1038/nrg.2016.49 

Gould, B. A., Chen, Y., & Lowry, D. B. (2017). Pooled ecotype sequencing reveals candidate 

genetic mechanisms for adaptive differentiation and reproductive isolation. Molecular 

Ecology, 26(1), 163–177. https://doi.org/10.1111/mec.13881 

Graham, T. R. (1962). A relationship between growth, hatching and spawning season in Canadian 

Atlantic herring (Clupea harengus L .). J. Fish. Res. Bd. Canada, 19(5), 985–987. 

Grigoriev, I. V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., … Shabalov, I. (2014). 

MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 42(D1), 

D699–D704. https://doi.org/10.1093/nar/gkt1183 

Gröger, J. P., Kruse, G. H., & Rohlf, N. (2009). Slave to the rhythm: how large-scale climate 

cycles trigger herring (Clupea harengus) regeneration in the North Sea. ICES Journal of 

Marine Science: Journal Du Conseil . https://doi.org/10.1093/icesjms/fsp259 

Grossen, C., Biebach, I., Angelone-Alasaad, S., Keller, L. F., & Croll, D. (2017). Population 

genomics analyses of European ibex species show lower diversity and higher inbreeding in 

reintroduced populations. Evolutionary Applications. https://doi.org/10.1111/eva.12490 

Gu, Z., Eils, R., & Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in 

multidimensional genomic data. Bioinformatics, 32(18), 2847–2849. 

https://doi.org/10.1093/bioinformatics/btw313 

Guo, B., Li, Z., & Merilä, J. (2016). Population genomic evidence for adaptive differentiation in 

the Baltic Sea herring. Molecular Ecology, 25(12), 2833–2852. 

https://doi.org/10.1111/mec.13657 

Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for 

genome assemblies. Bioinformatics, 29(8), 1072–1075. 

https://doi.org/10.1093/bioinformatics/btt086 



 

 273 

Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring 

the Joint Demographic History of Multiple Populations from Multidimensional SNP 

Frequency Data. PLoS Genetics, 5(10), e1000695. 

https://doi.org/10.1371/journal.pgen.1000695 

Haasl, R. J., & Payseur, B. A. (2016). Fifteen years of genomewide scans for selection: Trends, 

lessons and unaddressed genetic sources of complication. Molecular Ecology, 25(1), 5–23. 

https://doi.org/10.1111/mec.13339 

Habicht, C., Munro, A., Dann, T., Eggers, D., Templin, W., Witteveen, M., … Volk, E. (2012). 

Harvest and Harvest Rates of Sockeye Salmon Stocks in Fisheries of the Western Alaska 

Salmon Stock Identification Program (WASSIP), 2006– 2008. Alaska, US. 

Haig, S. M., Miller, M. P., Bellinger, R., Draheim, H. M., Mercer, D. M., & Mullins, T. D. 

(2016). The conservation genetics juggling act: integrating genetics and ecology, science 

and policy. Evolutionary Applications, 9(1), 181–195. https://doi.org/10.1111/eva.12337 

Han, E., Sinsheimer, J. S., & Novembre, J. (2015). Fast and accurate site frequency spectrum 

estimation from low coverage sequence data. Bioinformatics, 31(5), 720–727. 

https://doi.org/10.1093/bioinformatics/btu725 

Hanon, E. A., Lincoln, G. A., Fustin, J.-M., Dardente, H., Masson-Pévet, M., Morgan, P. J., & 

Hazlerigg, D. G. (2015). Ancestral TSH mechanism signals summer in a photoperiodic 

mammal. Current Biology, 18(15), 1147–1152. https://doi.org/10.1016/j.cub.2008.06.076 

Hansen, T. F. (2006). The Evolution of Genetic Architecture. Annual Review of Ecology, 

Evolution, and Systematics, 37(1), 123–157. 

https://doi.org/10.1146/annurev.ecolsys.37.091305.110224 

Hatem, A., Bozdaǧ, D., & Çatalyürek, Ü. V. (2013). Benchmarking short sequence mapping 

tools. BMC Bioinformatics, 14(184), 1–25. Retrieved from 

http://www.biomedcentral.com/1471-2105/14/184%0ARESEARCH 

Hauser, L., & Carvalho, G. R. (2008). Paradigm shifts in marine fisheries genetics: ugly 

hypotheses slain by beautiful facts. Fish and Fisheries, 9(4), 333–362. 

https://doi.org/10.1111/j.1467-2979.2008.00299.x 

Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. 

R., & Ordoukhanian, P. (2014). Library construction for next-generation sequencing: 

Overviews and challenges. BioTechniques, 56(2), 167–203. 

https://doi.org/10.2144/000114133 

Heather, J. M., & Chain, B. (2016). The sequence of sequencers: The history of sequencing DNA. 

Genomics, 107(1), 1–8. https://doi.org/10.1016/j.ygeno.2015.11.003 

Hedrick, P. W., Hellsten, U., & Grattapaglia, D. (2016). Examining the cause of high inbreeding 

depression: Analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus 

grandis. New Phytologist, 209(2), 600–611. https://doi.org/10.1111/nph.13639 

Hedrick, P. W., & Miller, P. S. (1992). Conservation Genetics: Techniques and Fundamentals. 

Ecological Applications, 2(1), 30–46. 

Hendry, A. P., & Day, T. (2005). Population structure attributable to reproductive time: isolation 

by time and adaptation by time. Molecular Ecology, 14(4), 901–916. 

https://doi.org/10.1111/j.1365-294X.2005.02480.x 

Hilborn, R., Quinn, T. P., Schindler, D. E., & Rogers, D. E. (2003). Biocomplexity and fisheries 

sustainability. Proceedings of the National Academy of Sciences, 100(11), 6564–6568. 



 

 274 

https://doi.org/10.1073/pnas.1037274100 

Hivert, V. (2018). Measuring genetic differentiation from Pool-seq data. 

Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., … 

Whitlock, M. C. (2016). Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical 

Solutions, and Future Directions. The American Naturalist, 188(4), 379–397. 

https://doi.org/10.1086/688018 

Hoekstra, H. E., & Nachman, M. W. (2003). Different genes underlie adaptive melanism in 

different populations of rock pocket mice. Molecular Ecology, 12(5), 1185–1194. 

https://doi.org/10.1046/j.1365-294X.2003.01788.x 

Hoffmann, A. A., & Rieseberg, L. H. (2008). Revisiting the Impact of Inversions in Evolution: 

From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? Annual 

Review of Ecology, Evolution, and Systematics, 39(2008), 21–42. 

https://doi.org/10.1146/annurev.ecolsys.39.110707.173532 

Hohenlohe, P. a, Bassham, S., Etter, P. D., Stiffler, N., Johnson, E. a, & Cresko, W. a. (2010). 

Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced 

RAD Tags. PLoS Genetics, 6(2), e1000862. https://doi.org/10.1371/journal.pgen.1000862 

Holsinger, K. E., & Weir, B. S. (2009). Genetics in geographically structured populations: 

defining, estimating and interpreting F(ST). Nature Reviews. Genetics, 10(September), 639–

650. https://doi.org/10.1038/nrg2611 

Human Genome Sequencing Consortium, I. (2004). Finishing the euchromatic sequence of the 

human genome. Nature, 431(7011), 931–945. https://doi.org/10.1038/nature03001 

Iles, T. D., & Sinclair, M. (1982). Atlantic Herring: Stock Discreteness and Abundance. Science, 

215(4533), 627–633. https://doi.org/10.1126/science.215.4533.627 

Ivy, J. A., Putnam, A. S., Navarro, A. Y., Gurr, J., & Ryder, O. A. (2016). Applying SNP-derived 

molecular coancestry estimates to captive breeding programs. Journal of Heredity, 107(5), 

403–412. https://doi.org/10.1093/jhered/esw029 

Jarvis, E., Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., … Froman, D. P. (2014). Comparative 

genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 

1311–1320. https://doi.org/10.1126/science.1251385 

Jean, Y. (1956). A Study of Spring and Fall Spawning Herring (Clupea Harengus L.) at Grande-

Rivière, Bay of Chaleur, Québec. Department of Fisheries Québec Constribution, 49, 76p. 

Jeffery, N. W., Bradbury, I. R., Stanley, R. R. E., Wringe, B. F., Van Wyngaarden, M., Lowen, J. 

Ben, … DiBacco, C. (2018). Genomewide evidence of environmentally mediated secondary 

contact of European green crab ( Carcinus maenas ) lineages in eastern North America. 

Evolutionary Applications, 11(6), 869–882. https://doi.org/10.1111/eva.12601 

Jeffery, N. W., Wringe, B. F., McBride, M. C., Hamilton, L. C., Stanley, R. R. E., Bernatchez, L., 

… Bradbury, I. R. (2018). Range-wide regional assignment of Atlantic salmon (Salmo 

salar) using genome wide single-nucleotide polymorphisms. Fisheries Research, 206, 163–

175. https://doi.org/10.1016/j.fishres.2018.05.017 

Jensen, J. D., Foll, M., & Bernatchez, L. (2016). The past, present and future of genomic scans 

for selection. Molecular Ecology, 25(1), 1–4. https://doi.org/10.1111/mec.13493 

Johannessen, A., Skaret, G., Langard, L., Slotte, A., Husebo, A., & Ferno, A. (2014). The 

dynamics of a metapopulation: changes in life-history traits in resident herring that co-occur 

with oceanic herring during spawning. PloS One, 9(7), e102462. 



 

 275 

https://doi.org/10.1371/journal.pone.0102462 

Johnston, I. A., Vieira, V. L. A., & Temple, G. K. (2001). Functional consequences and 

population differences in the developmental plasticity of muscle to temperature in Atlantic 

herring Clupea harengus. Marine Ecology Progress Series, 213, 285–300. 

https://doi.org/10.3354/meps213285 

Jonas, A., Taus, T., Kosiol, C., Schlotterer, C., & Futschik, A. (2016). Estimating the Effective 

Population Size from Temporal Allele Frequency Changes in Experimental Evolution. 

Genetics, 204(2), 723–735. https://doi.org/10.1534/genetics.116.191197 

Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., … Kingsley, D. 

M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 

484(7392), 55–61. https://doi.org/10.1038/nature10944 

Jones, M. R., & Good, J. M. (2016). Targeted capture in evolutionary and ecological genomics. 

Molecular Ecology, 25(1), 185–202. https://doi.org/10.1111/mec.13304 

Jorgensen, H. B. H., Hansen, M. M., Bekkevold, D., Ruzzante, D. E., & Loeschcke, V. (2005). 

Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the 

Baltic Sea. Molecular Ecology, 14(10), 3219–3234. https://doi.org/10.1111/j.1365-

294X.2005.02658.x 

Joron, M., Frezal, L., Jones, R. T., Chamberlain, N. L., Lee, S. F., Haag, C. R., … ffrench-

Constant, R. H. (2011). Chromosomal rearrangements maintain a polymorphic supergene 

controlling butterfly mimicry. Nature, 477(7363), 203–206. 

https://doi.org/10.1038/nature10341 

Kaiser, T. S., Poehn, B., Szkiba, D., Preussner, M., Sedlazeck, F. J., Zrim, A., … Tessmar-Raible, 

K. (2016). The genomic basis of circadian and circalunar timing adaptations in a midge. 

Nature, 540(7631), 69–73. https://doi.org/10.1038/nature20151 

Kalinowski, S. T., Manlove, K. R., & Taper, M. L. (2007). ONCOR: software for genetic stock 

identification. 

Kardos, M., Taylor, H. R., Ellegren, H., Luikart, G., & Allendorf, F. W. (2016). Genomics 

advances the study of inbreeding depression in the wild. Evolutionary Applications, 9(10), 

1205–1218. https://doi.org/10.1111/eva.12414 

Kerr, Q., Fuentes‐Pardo, A. P., Kho, J., McDermid, J. L., & Ruzzante, D. E. (2019). Temporal 

stability and assignment power of adaptively divergent genomic regions between herring ( 

Clupea harengus ) seasonal spawning aggregations. Ecology and Evolution, (9), 500–510. 

https://doi.org/10.1002/ece3.4768 

Khatri, P., Sirota, M., & Butte, A. J. (2012). Ten Years of Pathway Analysis: Current Approaches 

and Outstanding Challenges. PLoS Computational Biology, 8(2), e1002375. 

https://doi.org/10.1371/journal.pcbi.1002375 

Kim, H.-D., Choe, H. K., Chung, S., Kim, M., Seong, J. Y., Son, G. H., & Kim, K. (2011). Class-

C SOX transcription factors control GnRH gene expression via the intronic transcriptional 

enhancer. Molecular Endocrinology, 25(7), 1184–1196. https://doi.org/10.1210/me.2010-

0332 

Kim, S., Lohmueller, K., Albrechtsen, A., Li, Y., Korneliussen, T., Tian, G., … Nielsen, R. 

(2011). Estimation of allele frequency and association mapping using next-generation 

sequencing data. BMC Bioinformatics, 12(1), 231. https://doi.org/10.1186/1471-2105-12-

231 



 

 276 

King, T. L., Kalinowski, S. T., Schill, W. B., Spidle, A. P., & Lubinski, B. A. (2001). Population 

structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite 

DNA variation. Molecular Ecology, 10(4), 807–821. 

Kjærner-Semb, E., Ayllon, F., Furmanek, T., Wennevik, V., Dahle, G., Niemelä, E., … 

Edvardsen, R. B. (2016). Atlantic salmon populations reveal adaptive divergence of immune 

related genes - a duplicated genome under selection. BMC Genomics, 17(1), 610. 

https://doi.org/10.1186/s12864-016-2867-z 

Koboldt, D. C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M. D., Lin, L., … Wilson, R. K. 

(2012). VarScan 2: Somatic mutation and copy number alteration discovery in cancer by 

exome sequencing. Genome Research, 22(3), 568–576. 

https://doi.org/10.1101/gr.129684.111 

Koepfli, K., Paten, B., Genome 10K Community of Scientists, & O’Brien, S. J. (2015). The 

Genome 10K Project: a way forward. Annual Review of Animal Biosciences, 3, 57–111. 

https://doi.org/10.1146/annurev-animal-090414-014900 

Kofler, R., Langmuller, A. M., Nouhaud, P., Otte, K. A., & Schlotterer, C. (2016). Suitability of 

Different Mapping Algorithms for Genome-wide Polymorphism Scans with Pool-Seq Data. 

Genes|Genomes|Genetics, 6(November), 1–20. https://doi.org/10.1534/g3.116.034488 

Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik, A., … 

Schlötterer, C. (2011). PoPoolation: A Toolbox for Population Genetic Analysis of Next 

Generation Sequencing Data from Pooled Individuals. PLoS ONE, 6(1), e15925. 

https://doi.org/10.1371/journal.pone.0015925 

Kofler, R., Pandey, R. V., & Schlötterer, C. (2011a). PoPoolation2: identifying differentiation 

between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 

(Oxford, England), 27(24), 3435–3436. https://doi.org/10.1093/bioinformatics/btr589 

Kofler, R., Pandey, R. V., & Schlötterer, C. (2011b). PoPoolation2: Identifying differentiation 

between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 

27(24), 3435–3436. https://doi.org/10.1093/bioinformatics/btr589 

Kolaczkowski, B., Kern, A. D., Holloway, A. K., & Begun, D. J. (2011). Genomic Differentiation 

Between Temperate and Tropical Australian Populations of Drosophila melanogaster. 

Genetics, 187(1), 245–260. https://doi.org/10.1534/genetics.110.123059 

Korneliussen, T. S. T., Albrechtsen, A., Nielsen, R., Nielsen, R., Paul, J., Albrechtsen, A., … 

Ballinger, Dge. (2014). ANGSD: Analysis of Next Generation Sequencing Data. BMC 

Bioinformatics, 15(356), 1–13. https://doi.org/10.1186/s12859-014-0356-4 

Küpper, C., Stocks, M., Risse, J. E., Remedios, N., Farrell, L. L., Mcrae, B., … Burke, T. (2015). 

A supergene determines highly divergent male reproductive morphs in the ruff. Nature 

Publishing Group, 48(1), 79–83. https://doi.org/10.1038/ng.3443 

Laehnemann, D., Borkhardt, A., & McHardy, A. C. (2016). Denoising DNA deep sequencing 

data-high-throughput sequencing errors and their correction. Briefings in Bioinformatics, 

17(1), 154–179. https://doi.org/10.1093/bib/bbv029 

Laikre, L., Lundmark, C., Jansson, E., Wennerström, L., Edman, M., & Sandström, A. (2016). 

Lack of recognition of genetic biodiversity: International policy and its implementation in 

Baltic Sea marine protected areas. Ambio, 45(6), 661–680. https://doi.org/10.1007/s13280-

016-0776-7 

Lamichhaney, S., Fuentes-Pardo, A. P., Rafati, N., Ryman, N., McCracken, G. R., Bourne, C., … 

Andersson, L. (2017). Parallel adaptive evolution of geographically distant herring 



 

 277 

populations on both sides of the North Atlantic Ocean. Proceedings of the National 

Academy of Sciences, 114(17), E3452–E3461. https://doi.org/10.1073/pnas.1617728114 

Lamichhaney, S, Barrio, A. M., Rafati, N., Sundstrom, G., Rubin, C.-J., Gilbert, E. R., … 

Andersson, L. (2012). Population-scale sequencing reveals genetic differentiation due to 

local adaptation in Atlantic herring. Proceedings of the National Academy of Sciences, 

109(47), 19345–19350. https://doi.org/10.1073/pnas.1216128109 

Lamichhaney, Sangeet, Berglund, J., Almén, M. S., Maqbool, K., Grabherr, M., Martinez-Barrio, 

A., … Andersson, L. (2015). Evolution of Darwin’s finches and their beaks revealed by 

genome sequencing. Nature, 518(7539), 371–375. https://doi.org/10.1038/nature14181 

Lamichhaney, Sangeet, Fan, G., Widemo, F., Gunnarsson, U., Thalmann, D. S., Hoeppner, M. P., 

… Andersson, L. (2015). Structural genomic changes underlie alternative reproductive 

strategies in the ruff (Philomachus pugnax). Nature Genetics, 48(1), 84–88. 

https://doi.org/10.1038/ng.3430 

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat 

Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 

Larsson, L. C., Laikre, L., André, C., Dahlgren, T. G., & Ryman, N. (2010). Temporally stable 

genetic structure of heavily exploited Atlantic herring (Clupea harengus) in Swedish waters. 

Heredity, 104(1), 40–51. https://doi.org/10.1038/hdy.2009.98 

LeBlanc, C. H., Poirier, A. G., MacDougall, C., Bourque, C., & Roy, J. (2008). Assessment of the 

NAFO Division 4T southern Gulf of St. Lawrence herring stocks in 2007. In Canadian 

Science Advisory Secretariat Research Document. 

Leblanc, C., Swain, D., MacDougall, C., & Bourque, C. (2010). Assessment of the NAFO 

Division 4T southern Gulf of St. Lawrence herring stocks in 2009. DFO Canadian Science 

Advisory Secretariat, (Research Document 2010/059), 143 p. 

Lee, H., Gurtowski, J., Yoo, S., Nattestad, M., Marcus, S., Goodwin, S., … Schatz, M. (2016). 

Third-generation sequencing and the future of genomics. BioRxiv, (Table 1), 048603. 

https://doi.org/doi.org/10.1101/048603 

Lee, S., Abecasis, G. R., Boehnke, M., & Lin, X. (2014). Rare-variant association analysis: Study 

designs and statistical tests. American Journal of Human Genetics, 95(1), 5–23. 

https://doi.org/10.1016/j.ajhg.2014.06.009 

Lehnert, S. J., DiBacco, C., Van Wyngaarden, M., Jeffery, N. W., Ben Lowen, J., Sylvester, E. V. 

A., … Bradbury, I. R. (2018). Fine-scale temperature-associated genetic structure between 

inshore and offshore populations of sea scallop (Placopecten magellanicus). Heredity, 1–12. 

https://doi.org/10.1038/s41437-018-0087-9 

Lewontin, R. C. (2002). Directions in Evolutionary Biology. Annual Review of Genetics, 36(1), 

1–18. https://doi.org/10.1146/annurev.genet.36.052902.102704 

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 

ArXiv Preprint ArXiv, 00(00), 3. https://doi.org/arXiv:1303.3997 [q-bio.GN] 

Li, H., & Durbin, R. (2009a). Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics, 25(14), 1754–1760. 

https://doi.org/10.1093/bioinformatics/btp324 

Li, H., & Durbin, R. (2009b). Fast and accurate short read alignment with Burrows–Wheeler 

transform. Bioinformatics, 25(14), 1754–1760. 

https://doi.org/10.1093/bioinformatics/btp324 



 

 278 

Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler 

transform. Bioinformatics, 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The 

Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079. 

https://doi.org/10.1093/bioinformatics/btp352 

Li, H., Ruan, J., & Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants 

using mapping quality scores. Genome Research, 18(11), 1851–1858. 

https://doi.org/10.1101/gr.078212.108 

Li, H., & Wren, J. (2014). Toward better understanding of artifacts in variant calling from high-

coverage samples. Bioinformatics, 30(20), 2843–2851. 

https://doi.org/10.1093/bioinformatics/btu356 

Li, R., Li, Y., Fang, X., Yang, H., Wang, J., Kristiansen, K., & Wang, J. (2009). SNP detection 

for massively parallel whole-genome resequencing. Genome Research, 19(6), 1124–1132. 

https://doi.org/10.1101/gr.088013.108 

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., … Wang, J. (2010). De novo assembly of 

human genomes with massively parallel short read sequencing. Genome Research, 20(2), 

265–272. https://doi.org/10.1101/gr.097261.109 

Liaw, A, & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(3), 

18–22. 

Liaw, Andy, & Wiener, M. (2018). Breiman and Cutler’s Random Forests for Classification and 

Regression. 

Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Matthew, P., Leong, J. S., … Vik, J. O. (2016). 

The Atlantic salmon genome provides insights into rediploidization. Nature, 533(6020), 

200–205. https://doi.org/10.1038/nature17164 

Limborg, M. T., Helyar, S., De Bruyn, M., Taylor, M. I., Nielsen, E. E., Ogden, R., … 

Bekkevold, D. (2012). Environmental selection on transcriptome-derived SNPs in a high 

gene flow marine fish, the Atlantic herring ( Clupea harengus ). Molecular Ecology, 21(15), 

3686–3703. https://doi.org/10.1111/j.1365-294X.2012.05639.x 

Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: an automated data conversion tool for 

connecting population genetics and genomics programs. Bioinformatics, 28(2), 298–299. 

https://doi.org/10.1093/bioinformatics/btr642 

Lopes, R. J., Johnson, J. D., Toomey, M. B., Ferreira, M. S., Araujo, P. M., Melo-Ferreira, J., … 

Carneiro, M. (2016). Genetic Basis for Red Coloration in Birds. Current Biology, 26(11), 

1427–1434. https://doi.org/10.1016/j.cub.2016.03.076 

Lotterhos, K. E., & Whitlock, M. C. (2015). The relative power of genome scans to detect local 

adaptation depends on sampling design and statistical method. Molecular Ecology, 24(5), 

1031–1046. https://doi.org/10.1111/mec.13100 

Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin, M. F., & Storfer, 

A. (2017a). Breaking RAD: an evaluation of the utility of restriction site-associated DNA 

sequencing for genome scans of adaptation. Molecular Ecology Resources, 17(2), 142–152. 

https://doi.org/10.1111/1755-0998.12635 

Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin, M. F., & Storfer, 

A. (2017b). Responsible RAD: Striving for best practices in population genomic studies of 

adaptation. Molecular Ecology Resources, 38(1), 42–49. https://doi.org/10.1111/1755-



 

 279 

0998.12677 

Lunter, G., & Goodson, M. (2011). Stampy: A statistical algorithm for sensitive and fast mapping 

of Illumina sequence reads. Genome Research, 21(6), 936–939. 

https://doi.org/10.1101/gr.111120.110 

Luo, Y., Widmer, A., & Karrenberg, S. (2015). The roles of genetic drift and natural selection in 

quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana. Heredity, 

114, 220–228. 

Luu, K., Bazin, E., & Blum, M. G. B. (2017). pcadapt: an R package to perform genome scans for 

selection based on principal component analysis. Molecular Ecology Resources, 17(1), 67–

77. https://doi.org/10.1111/1755-0998.12592 

Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of 

the Royal Society of London. Series B, Biological Sciences, 359(1444), 711–719. 

https://doi.org/10.1098/rstb.2003.1454 

Madec, G., Delecluse, P., Imbard, M., & Levy, C. (1998). OPA8.1 Ocean general Circulation 

Model reference manual. France. 

Malmstrøm, M., Matschiner, M., Tørresen, O. K., Jakobsen, K. S., & Jentoft, S. (2017). Whole 

genome sequencing data and de novo draft assemblies for 66 teleost species. Scientific Data, 

4, 160132. https://doi.org/10.1038/sdata.2016.132 

Manthey, J. D., Campillo, L. C., Burns, K. J., & Moyle, R. G. (2016). Comparison of Target-

Capture and Restriction-Site Associated DNA Sequencing for Phylogenomics: A Test in 

Cardinalid Tanagers (Aves, Genus: Piranga ). Systematic Biology, 65(4), 640–650. 

https://doi.org/10.1093/sysbio/syw005 

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. 

EMBnet.Journal, 17(1), 10–12. https://doi.org/http://dx.doi.org/10.14806/ej.17.1.200 

Martin, S. H., & Jiggins, C. D. (2013). Genomic Studies of Adaptation in Natural Populations. In 

eLS. https://doi.org/10.1002/9780470015902.a0024613 

Martinez Barrio, A., Lamichhaney, S., Fan, G., Rafati, N., Pettersson, M., Zhang, H., … 

Andersson, L. (2016). The genetic basis for ecological adaptation of the Atlantic herring 

revealed by genome sequencing. ELife, 5(MAY2016), 1–32. 

https://doi.org/10.7554/eLife.12081 

Martinsohn, J. T., & Ogden, R. (2009). FishPopTrace—Developing SNP-based population 

genetic assignment methods to investigate illegal fishing. Forensic Science International: 

Genetics Supplement Series, 2(1), 294–296. https://doi.org/10.1016/j.fsigss.2009.08.108 

McDermid, J. L., Swain, D. P., Turcotte, F., Robichaud, S. A., & Surette, T. (2018). Assessment 

of the NAFO Division 4T southern Gulf of St. Lawrence Atlantic herring (Clupea harengus) 

in 2016 and 2017. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/052, xiv + 122 p. 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., … DePristo, 

M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Research, 20(9), 1297–1303. 

https://doi.org/10.1101/gr.107524.110 

McKinney, G. J., Larson, W. A., Seeb, L. W., & Seeb, J. E. (2017). RADseq provides 

unprecedented insights into molecular ecology and evolutionary genetics: comment on 

Breaking RAD by Lowry et al . (2016). Molecular Ecology Resources, 17(3), 356–361. 

https://doi.org/10.1111/1755-0998.12649 



 

 280 

McMahon, B. J., Teeling, E. C., & Höglund, J. (2014). How and why should we implement 

genomics into conservation? Evolutionary Applications, 7(9), 999–1007. 

https://doi.org/10.1111/eva.12193 

McPherson, A., O’Reilly, P. T., & Taggart, C. T. (2004). Genetic Differentiation, Temporal 

Stability, and the Absence of Isolation by Distance among Atlantic Herring Populations. 

Transactions of the American Fisheries Society, 133(2), 434–446. 

https://doi.org/10.1577/02-106 

McPherson, A., Stephenson, R. L., O’Reilly, P. T., Jones, M. W., & Taggart, C. T. (2001). 

Genetic diversity of coastal Northwest Atlantic herring populations: implications for 

management. Journal of Fish Biology, 59(SUPPL. A), 356–370. 

https://doi.org/10.1006/jfbi.2001.1769 

McQuinn, I. H. (1987). New maturity cycle charts for herring stocks along the west coast of 

Newfoundland (NAFO Division 4R) and the north shore of Quebec (NAFO Division 4S). In 

Canadian Atlantic Fisheries Scientific Advisory Committee Research Document. 

McQuinn, Ian H. (1997). Metapopulations and the Atlantic herring. Reviews in Fish Biology and 

Fisheries, 7(3), 297–329. https://doi.org/10.1023/A:1018491828875 

Meirmans, P. G., & Van Tienderen, P. H. (2004). genotype and genodive: two programs for the 

analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4(4), 792–794. 

https://doi.org/10.1111/j.1471-8286.2004.00770.x 

Melamed, P., Savulescu, D., Lim, S., Wijeweera, A., Luo, Z., Luo, M., & Pnueli, L. (2012). 

Gonadotrophin-Releasing Hormone signalling downstream of Calmodulin. Journal of 

Neuroendocrinology, 24(12), 1463–1475. https://doi.org/10.1111/j.1365-2826.2012.02359.x 

Melton, C., Reuter, J. A., Spacek, D. V, & Snyder, M. (2015). Recurrent somatic mutations in 

regulatory regions of human cancer genomes. Nature Genetics, 47(7), 710–716. 

https://doi.org/10.1038/ng.3332 

Melvin, G. D., Stephenson, R. L., & Power, M. J. (2009). Oscillating reproductive strategies of 

herring in the western Atlantic in response to changing environmental conditions. ICES 

Journal of Marine Science, 66(8), 1784–1792. https://doi.org/10.1093/icesjms/fsp173 

Messer, P. W., & Petrov, D. A. (2013). Population genomics of rapid adaptation by soft selective 

sweeps. Trends in Ecology and Evolution, 28(11), 659–669. 

https://doi.org/10.1016/j.tree.2013.08.003 

Messieh, S. N. (1975). Maturation and spawning of Atlantic herring (Clupea harengus harengus) 

in the southern Gulf of St Lawrence. Journal of the Fisheries Research Board of Canada, 

32, 66–68. 

Messieh, S. N. (1988). Spawning of Atlantic Herring in the Gulf of St. Lawrence. American 

Fisheries Society Symposium, 5, 31–48. 

Messieh, S. N., Anthony, V., & Sinclair, M. (1985). Fecundities of Atlantic herring Clupea 

harengus L. populations in the Northwest Atlantic. ICES C.M. 1985/H:8., 22 pp. 

Metzger, B. P. H., Duveau, F., Yuan, D. C., Tryban, S., Yang, B., & Wittkopp, P. J. (2016). 

Contrasting Frequencies and Effects of cis - and trans -Regulatory Mutations Affecting 

Gene Expression. Molecular Biology and Evolution, 33(5), 1131–1146. 

https://doi.org/10.1093/molbev/msw011 

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. ‐C., & Lin, C. ‐C. 

(2015). e1071: Misc Functions of the Department of Statistics, Probability Theory Group 



 

 281 

(Formerly: E1071). 

Miller, M. R., Brunelli, J. P., Wheeler, P. A., Liu, S., Rexroad, C. E., Palti, Y., … Thorgaard, G. 

H. (2012). A conserved haplotype controls parallel adaptation in geographically distant 

salmonid populations. Molecular Ecology, 21(2), 237–249. https://doi.org/10.1111/j.1365-

294X.2011.05305.x 

Moran, B. M., & Anderson, E. C. (2018). Bayesian inference from the conditional genetic stock 

identification model. Canadian Journal of Fisheries and Aquatic Sciences, 1–10. 

https://doi.org/10.1139/cjfas-2018-0016 

Moutsianas, L., Agarwala, V., Fuchsberger, C., Flannick, J., Rivas, M. A., Gaulton, K. J., … 

McCarthy, M. I. (2015). The Power of Gene-Based Rare Variant Methods to Detect 

Disease-Associated Variation and Test Hypotheses About Complex Disease. PLoS 

Genetics, 11(4), 1–24. https://doi.org/10.1371/journal.pgen.1005165 

Mukherjee, S., Stamatis, D., Bertsch, J., Ovchinnikova, G., Verezemska, O., Isbandi, M., … 

Reddy, T. B. K. (2017). Genomes OnLine Database (GOLD) v.6: data updates and feature 

enhancements. Nucleic Acids Research, 45(D1), D446–D456. 

https://doi.org/10.1093/nar/gkw992 

Muñoz, I., Henriques, D., Johnston, J. S., Ch?vez-Galarza, J., Kryger, P., & Pinto, M. A. (2015). 

Reduced SNP Panels for Genetic Identification and Introgression Analysis in the Dark 

Honey Bee (Apis mellifera mellifera). PLOS ONE, 10(4), e0124365. 

https://doi.org/10.1371/journal.pone.0124365 

Myburg, A. A., Grattapaglia, D., Tuskan, G. A., Hellsten, U., Hayes, R. D., Grimwood, J., … 

Schmutz, J. (2014). The genome of Eucalyptus grandis. Nature, 510(7505), 356–362. 

https://doi.org/10.1038/nature13308 

Nadachowska-Brzyska, K., Burri, R., Smeds, L., & Ellegren, H. (2016). PSMC analysis of 

effective population sizes in molecular ecology and its application to black-and-white 

Ficedula flycatchers. Molecular Ecology, 25(5), 1058–1072. 

https://doi.org/10.1111/mec.13540 

Nagasaki, M., Yasuda, J., Katsuoka, F., Nariai, N., Kojima, K., Kawai, Y., … Yamamoto, M. 

(2015). Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese 

individuals. Nature Communications, 6, 8018. https://doi.org/10.1038/ncomms9018 

Nakao, N., Ono, H., Yamamura, T., Anraku, T., Takagi, T., Higashi, K., … Yoshimura, T. 

(2008). Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature, 

452(7185), 317–322. 

Nayfa, M. G., & Zenger, K. R. (2016). Unravelling the effects of gene flow and selection in 

highly connected populations of the silver-lip pearl oyster (Pinctada maxima). Marine 

Genomics, 28, 99–106. https://doi.org/10.1016/j.margen.2016.02.005 

Neale, D. B., Wegrzyn, J. L., Stevens, K. a, Zimin, A. V, Puiu, D., Crepeau, M. W., … Langley, 

C. H. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel 

assembly strategies. Genome Biology, 15(3), R59. https://doi.org/10.1186/gb-2014-15-3-r59 

Nei, M. (2007). The new mutation theory of phenotypic evolution. Proceedings of the National 

Academy of Sciences, 104(30), 12235–12242. https://doi.org/10.1073/pnas.0703349104 

Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia Univ Press. 

Nei, Masatoshi. (1972). Genetic distance between populations. The American Naturalist, 

1062(949), 283–292. https://doi.org/10.1086/285153 



 

 282 

Nevado, B., Ramos-Onsins, S. E., & Perez-Enciso, M. (2014). Resequencing studies of nonmodel 

organisms using closely related reference genomes: Optimal experimental designs and 

bioinformatics approaches for population genomics. Molecular Ecology, 23(7), 1764–1779. 

https://doi.org/10.1111/mec.12693 

Nielsen, R. (2009). Adaptionism - 30 years after gould and lewontin. Evolution, 63(10), 2487–

2490. https://doi.org/10.1111/j.1558-5646.2009.00799.x 

Nielsen, R., Akey, J. M., Jakobsson, M., Pritchard, J. K., Tishkoff, S., & Willerslev, E. (2017). 

Tracing the peopling of the world through genomics. Nature, 541(7637), 302–310. 

https://doi.org/10.1038/nature21347 

Nielsen, R., Korneliussen, T., Albrechtsen, A., Li, Y., & Wang, J. (2012). SNP Calling, Genotype 

Calling, and Sample Allele Frequency Estimation from New-Generation Sequencing Data. 

PLoS ONE, 7(7), e37558. https://doi.org/10.1371/journal.pone.0037558 

Nielsen, R., Paul, J. S., Albrechtsen, A., & Song, Y. S. (2011). Genotype and SNP calling from 

next-generation sequencing data. Nature Reviews. Genetics, 12(6), 443–451. 

https://doi.org/10.1038/nrg2986 

Norman, A. J., Street, N. R., & Spong, G. (2013). De Novo SNP Discovery in the Scandinavian 

Brown Bear (Ursus arctos). PLoS ONE, 8(11), e81012. 

https://doi.org/10.1371/journal.pone.0081012 

Nosil, P., & Feder, J. L. (2012). Genomic divergence during speciation: causes and consequences. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1587), 332–

342. https://doi.org/10.1098/rstb.2011.0263 

Nosil, P., Funk, D. J., & Ortiz-Barrientos, D. (2009). Divergent selection and heterogeneous 

genomic divergence. Molecular Ecology, 18(3), 375–402. https://doi.org/10.1111/j.1365-

294X.2008.03946.x 

O’Connor Lab. (2016). ScaffoldStitcher. Retrieved May 1, 2018, from 

https://bitbucket.org/dholab/scaffoldstitcher/src 

O’Rawe, J., Jiang, T., Sun, G., Wu, Y., Wang, W., Hu, J., … Lyon, G. J. (2013). Low 

concordance of multiple variant-calling pipelines: practical implications for exome and 

genome sequencing. Genome Medicine, 5(3), 28. https://doi.org/10.1186/gm432 

Okonechnikov, K., Conesa, A., & García-Alcalde, F. (2015). Qualimap 2: advanced multi-sample 

quality control for high-throughput sequencing data. Bioinformatics, 32(2), btv566. 

https://doi.org/10.1093/bioinformatics/btv566 

Ono, H., Hoshino, Y., Yasuo, S., Watanabe, M., Nakane, Y., Murai, A., … Yoshimura, T. (2008). 

Involvement of thyrotropin in photoperiodic signal transduction in mice. Proceedings of the 

National Academy of Sciences, USA, 105(47), 18238–18242. 

https://doi.org/10.1073/pnas.0808952105 

Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K., & Hedrick, P. W. (2010). Conservation 

genetics in transition to conservation genomics. Trends in Genetics, 26(4), 177–187. 

https://doi.org/10.1016/j.tig.2010.01.001 

Overholtz, W. . (2002). The Gulf of Maine–Georges Bank Atlantic herring (Clupea harengus): 

spatial pattern analysis of the collapse and recovery of a large marine fish complex. 

Fisheries Research, 57(3), 237–254. https://doi.org/10.1016/S0165-7836(01)00359-9 

Ozsolak, F., & Milos, P. M. (2011). RNA sequencing: advances, challenges and opportunities. 

Nature Reviews Genetics, 12(2), 87–98. https://doi.org/10.1038/nrg2934 



 

 283 

Pagani, F., & Baralle, F. E. (2004). Genomic variants in exons and introns: identifying the 

splicing spoilers. Nature Reviews Genetics, 5(May), 389–396. 

Palumbi, S. R. (1994). Genetic Divergence, Reproductive Isolation, and Marine Speciation. 

Annual Review of Ecology and Systematics, 25(1), 547–572. 

https://doi.org/10.1146/annurev.es.25.110194.002555 

Panagiotou, O. A., & Ioannidis, J. P. A. (2012). What should the genome-wide significance 

threshold be? Empirical replication of borderline genetic associations. International Journal 

of Epidemiology, 41(1), 273–286. https://doi.org/10.1093/ije/dyr178 

Pardo-Diaz, C., Salazar, C., & Jiggins, C. D. (2015). Towards the identification of the loci of 

adaptive evolution. Methods in Ecology and Evolution, 6(4), 445–464. 

https://doi.org/10.1111/2041-210X.12324 

Parejo, M., Wragg, D., Gauthier, L., Vignal, A., Neumann, P., & Neuditschko, M. (2016). Using 

Whole-Genome Sequence Information to Foster Conservation Efforts for the European 

Dark Honey Bee, Apis mellifera mellifera. Frontiers in Ecology and Evolution, 

4(December), 1–15. https://doi.org/10.3389/fevo.2016.00140 

Pasaniuc, B., Rohland, N., McLaren, P. J., Garimella, K., Zaitlen, N., Li, H., … Price, A. L. 

(2012). Extremely low-coverage sequencing and imputation increases power for genome-

wide association studies. Nature Genetics, 44(6), 631–635. https://doi.org/10.1038/ng.2283 

Paten, B., Novak, A. M., Eizenga, J. M., & Garrison, E. (2017). Genome graphs and the evolution 

of genome inference. Genome Research, 27(5), 665–676. 

https://doi.org/10.1101/gr.214155.116 

Pearse, D E, & Pogson, G. H. (2000). Parallel evolution of the melanic form of the California 

legless lizard, Anniella pulchra, inferred from mitochondrial DNA sequence variation. 

Evolution; International Journal of Organic Evolution, 54(3), 1041–1046. 

Pearse, Devon E, Miller, M. R., Abadia-Cardoso, A., & Garza, J. C. (2014). Rapid parallel 

evolution of standing variation in a single, complex, genomic region is associated with life 

history in steelhead/rainbow trout. Proceedings. Biological Sciences / The Royal Society, 

281(1783), 20140012. https://doi.org/10.1098/rspb.2014.0012 

Pedersen, B. S., Layer, R. M., Quinlan, A. R., Li, H., Wang, K., Li, M., … Kang, H. (2016). 

Vcfanno: fast, flexible annotation of genetic variants. Genome Biology, 17(1), 118. 

https://doi.org/10.1186/s13059-016-0973-5 

Pettersson, E., Lundeberg, J., & Ahmadian, A. (2009). Generations of sequencing technologies. 

Genomics, 93(2), 105–111. https://doi.org/10.1016/j.ygeno.2008.10.003 

Pfeifer, S. P. (2017). From next-generation resequencing reads to a high-quality variant data set. 

Heredity, 118(2), 111–124. https://doi.org/10.1038/hdy.2016.102 

Phan, V., Gao, S., Tran, Q., & Vo, N. S. (2014). How genome complexity can explain the 

hardness of aligning reads to genomes. 2014 IEEE 4th International Conference on 

Computational Advances in Bio and Medical Sciences, ICCABS 2014, 16(Suppl 17), 1–15. 

https://doi.org/10.1109/ICCABS.2014.6863916 

Phillippy, A. M. (2017). New advances in sequence assembly. Genome Research, 27(5), xi–xiii. 

https://doi.org/10.1101/gr.223057.117 

Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: causes, 

consequences and solutions. Nature Reviews Genetics, 6(11), 847–859. 

https://doi.org/10.1038/nrg1707 



 

 284 

Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Auwera, G. A. Van 

der, … Banks, E. (2017). Scaling accurate genetic variant discovery to tens of thousands of 

samples. BioRxiv, 1–22. https://doi.org/https://doi.org/10.1101/201178 

Power, M. J., Clark, K. J., Fife, J. F., Knox, D., Melvin, G. D., & Stephenson, R. L. (2007). 2007 

evaluation of 4VWX herring. In Canadian Science Advisory Secretariat Research 

Document, 2007/040. 

Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – approximately maximum-

likelihood trees for large alignments. PLoS ONE, 5(3), e9490. 

Primmer, C. R. (2009). From conservation genetics to conservation genomics. Annals of the New 

York Academy of Sciences, 1162, 357–368. https://doi.org/10.1111/j.1749-

6632.2009.04444.x 

Pritchard, J. K., & Di Rienzo, A. (2010). Adaptation - not by sweeps alone. Nature Reviews. 

Genetics, 11(10), 665–667. https://doi.org/10.1038/nrg2880 

Pritchard, J., Stephens, M., & Donnelly, P. (2000). Inference of population structure using 

multilocus genotype data. Genetics, 155(2), 945–959. 

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. 

C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based 

Linkage Analyses. The American Journal of Human Genetics, 81(3), 559–575. 

https://doi.org/10.1086/519795 

Quick, J., Loman, N. J., Duraffour, S., Simpson, J. T., Severi, E., Cowley, L., … Carroll, M. W. 

(2016). Real-time, portable genome sequencing for Ebola surveillance. Nature, 530(7589), 

228–232. https://doi.org/10.1038/nature16996 

R Core Development Team. (2019). R: A language and environment for statistical computing. 

Vienna, Austria: R Foundation for Statistical Computing. 

Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in 

medical genetics. Journal of Human Genetics, 59(1), 5–15. 

https://doi.org/10.1038/jhg.2013.114 

Rafati, N., Andersson, L. S., Mikko, S., Feng, C., Pettersson, J., Janecka, J., … Evan, E. (2016). 

Large Deletions at the SHOX Locus in the Pseudoautosomal Region are associated with 

Skeletal Atavism in Shetland ponies. Genes|Genomes|Genetics, 6(July), 2213–2223. 

https://doi.org/10.1534/g3.116.029645 

Raineri, E., Ferretti, L., Esteve-Codina, A., Nevado, B., Heath, S., & Pérez-Enciso, M. (2012). 

SNP calling by sequencing pooled samples. BMC Bioinformatics, 13(1), 239. 

https://doi.org/10.1186/1471-2105-13-239 

Rambaut, A. (2007). FigTree. Retrieved May 20, 2018, from 

http://tree.bio.ed.ac.uk/software/figtree/ 

Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, M., … Westram, A. M. 

(2017). Interpreting the genomic landscape of speciation: a road map for finding barriers to 

gene flow. Journal of Evolutionary Biology, 30(8), 1450–1477. 

https://doi.org/10.1111/jeb.13047 

Reid, R. N., Cargnelli, L. M., Griesbach, S. J., Packer, D. B., Johnson, D. L., Zetlin, C., … 

Berrien, P. L. (1999). Atlantic Herring, Clupea harengus, Life History and Habitat 

Characteristics, Available online at 

http://www.nefsc.noaa.gov/publications/tm/tm126/tm126.pdf. 



 

 285 

Reinert, K., Langmead, B., Weese, D., & Evers, D. J. (2015). Alignment of Next-Generation 

Sequencing Reads. Annual Review of Genomics and Human Genetics, 16, 133–151. 

https://doi.org/10.1146/annurev-genom-090413-025358 

Reiss, H., Hoarau, G., Dickey-Collas, M., & Wolff, W. J. (2009). Genetic population structure of 

marine fish: mismatch between biological and fisheries management units. Fish and 

Fisheries, 10(4), 361–395. https://doi.org/10.1111/j.1467-2979.2008.00324.x 

Rellstab, C., Fischer, M. C., Zoller, S., Graf, R., Tedder, A., Shimizu, K. K., … Gugerli, F. 

(2016). Local adaptation (mostly) remains local: reassessing environmental associations of 

climate-related candidate SNPs in Arabidopsis halleri. Heredity, 118(July), 1–9. 

https://doi.org/10.1038/hdy.2016.82 

Revelle, W. (2018). psych: Procedures for Personality and Psychological Research. Retrieved 

from https://cran.r-project.org/package=psych 

Richards, C. L., Bossdorf, O., & Pigliucci, M. (2010). What Role Does Heritable Epigenetic 

Variation Play in Phenotypic Evolution? BioScience, 60(3), 232–237. 

https://doi.org/10.1525/bio.2010.60.3.9 

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E., Getz, G., & 

Mesirov, J. P. (2011). Integrative Genomics Viewer. Nature Biotechnology, 29(1), 24–26. 

https://doi.org/10.1038/nbt0111-24 

Rockman, M. V. (2012). The QTN program and the alleles that matter for evolution: All that’s 

gold does not glitter. Evolution, 66(1), 1–17. https://doi.org/10.1111/j.1558-

5646.2011.01486.x 

Ronen, R., Udpa, N., Halperin, E., & Bafna, V. (2013). Learning natural selection from the site 

frequency spectrum. Genetics, 195(1), 181–193. 

https://doi.org/10.1534/genetics.113.152587 

Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R., … Jaffe, D. B. 

(2013). Characterizing and measuring bias in sequence data. Genome Biology, 14(5), R51. 

https://doi.org/10.1186/gb-2013-14-5-r51 

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under 

isolation by distance. Genetics, 145(April), 1219–1228. 

Rubin, C.-J., Zody, M. C., Eriksson, J., Meadows, J. R. S., Sherwood, E., Webster, M. T., … 

Andersson, L. (2010). Whole-genome resequencing reveals loci under selection during 

chicken domestication. Nature, 464(7288), 587–591. https://doi.org/10.1038/nature08832 

Ruffalo, M., Koyutürk, M., Ray, S., & LaFramboise, T. (2012). Accurate estimation of short read 

mapping quality for next-generation genome sequencing. Bioinformatics, 28(18), 349–355. 

https://doi.org/10.1093/bioinformatics/bts408 

Ruzzante, D. E., Mariani, S., Bekkevold, D., André, C., Mosegaard, H., Clausen, L. A. W., … 

Carvalho, G. R. (2006). Biocomplexity in a highly migratory pelagic marine fish, Atlantic 

herring. Proceedings of the Royal Society B: Biological Sciences, 273(1593), 1459–1464. 

https://doi.org/10.1098/rspb.2005.3463 

Ruzzante, D. E., Taggart, C. T., Lang, S., Cook, D., Applications, E., & Aug, N. (2000). Mixed-

stock analysis of Atlantic cod near the Gulf of St. Lawrence based on microsatellite DNA. 

Ecological Applications, 10(4), 1090–1109. 

Ryman, N., & Palm, S. (2006). POWSIM: a computer program for assessing statistical power 

when testing for genetic differentiation. Molecular Ecology Notes, 6(3), 600–602. 



 

 286 

https://doi.org/10.1111/j.1471-8286.2006.01378.x 

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., … Yorke, J. a. 

(2012). GAGE: A critical evaluation of genome assemblies and assembly algorithms. 

Genome Research, 22(3), 557–567. https://doi.org/10.1101/gr.131383.111 

Sambrook, J. & Russel D.W. (2006) Purification of Nucleic Acids by Extraction with 

Phenol:Chloroform. Cold Spring Harb Protoc. doi:10.1101/pdb.prot4455 

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating 

inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463–5467. 

https://doi.org/10.1073/pnas.74.12.5463 

Satterthwaite, W. H., & Carlson, S. M. (2015). Weakening portfolio effect strength in a hatchery-

supplemented Chinook salmon population complex. Canadian Journal of Fisheries and 

Aquatic Sciences, 72(12), 1860–1875. https://doi.org/10.1139/cjfas-2015-0169 

Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of local adaptation. 

Nature Reviews. Genetics, 14(11), 807–820. https://doi.org/10.1038/nrg3522 

Schiffels, S., & Durbin, R. (2014). Inferring human population size and separation history from 

multiple genome sequences. Nature Genetics, 46(8), 919–925. 

https://doi.org/10.1038/ng.3015 

Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., Rogers, L. A., & 

Webster, M. S. (2010). Population diversity and the portfolio effect in an exploited species. 

Nature, 465(7298), 609–612. https://doi.org/10.1038/nature09060 

Schlötterer, C., Tobler, R., Kofler, R., & Nolte, V. (2014). Sequencing pools of individuals — 

mining genome-wide polymorphism data without big funding. Nature Reviews Genetics, 

15(11), 749–763. https://doi.org/10.1038/nrg3803 

Schluter, D. (2009). Evidence for Ecological Speciation and Its Alternative. Science, 323(5915), 

737–741. https://doi.org/10.1126/science.1160006 

Schrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A 

New Paradigm. Trends in Genetics, 34(4), 301–312. 

https://doi.org/10.1016/j.tig.2017.12.005 

Scott, W. B., & Scott, M. G. (1988). Atlantic fishes of Canada. Canadian Bulletin of Fisheries 

and Aquatic Sciences, bulletin 219. Toronto, CA: University of Toronto Press. 

Sedlackova, T., Repiska, G., Celec, P., Szemes, T., & Minarik, G. (2013). Fragmentation of DNA 

affects the accuracy of the DNA quantitation by the commonly used methods. Biological 

Procedures Online, 15(1), 5. https://doi.org/10.1186/1480-9222-15-5 

Shafer, A. B. A., Peart, C. R., Tusso, S., Maayan, I., Brelsford, A., Wheat, C. W., & Wolf, J. B. 

W. (2016). Bioinformatic processing of RAD-seq data dramatically impacts downstream 

population genetic inference. Methods in Ecology and Evolution, 1–11. 

https://doi.org/10.1111/2041-210X.12700 

Shafer, A. B. A., Wolf, J. B. W., Alves, P. C., Bergström, L., Bruford, M. W., Brännström, I., … 

Zieliński, P. (2015). Genomics and the challenging translation into conservation practice. 

Trends in Ecology and Evolution, 30(2), 78–87. https://doi.org/10.1016/j.tree.2014.11.009 

Shapiro, M. D., Marks, M. E., Peichel, C. L., Blackman, B. K., Nereng, K. S., Jónsson, B., … 

Kingsley, D. M. (2006). Corrigendum: Genetic and developmental basis of evolutionary 

pelvic reduction in threespine sticklebacks. Nature, 439(7079), 1014–1014. 

https://doi.org/10.1038/nature04500 



 

 287 

Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 

1135–1145. https://doi.org/10.1038/nbt1486 

Simmonds, E. J. (2007). Comparison of two periods of North Sea herring stock management: 

success, failure, and monetary value. ICES Journal of Marine Science, 64(4), 686–692. 

https://doi.org/10.1093/icesjms/fsm045 

Sims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and 

coverage: key considerations in genomic analyses. Nature Reviews. Genetics, 15(2), 121–

132. https://doi.org/10.1038/nrg3642 

Sinclair-Waters, M. (2017). Genomic perspectives for conservation and management of Atlantic 

cod in costal Labrador. (Unpublished master’s thesis). Dalhousie University, Halifax, 

Canada. 

Sinclair, M. (1988). Marine Populations: an Essay on Population Regulation and Speciation. 

Seattle: Washington Sea Grant/Univ. Wash. Press. 

Sinclair, M., & Iles, T. D. (1989). Population regulation and speciation in the oceans. J. Cons. Int. 

Explor. Mer, 45, 165–175. 

Sinclair, M., & Tremblay, M. J. (1984a). Timing of Spawning of Atlantic Herring ( Clupea 

harengus harengus ) Populations and the Match–Mismatch Theory. Canadian Journal of 

Fisheries and Aquatic Sciences, 41(7), 1055–1065. https://doi.org/10.1139/f84-123 

Sinclair, M., & Tremblay, M. J. (1984b). Timing of Spawning of Atlantic Herring (Clupea 

harengus harengus) Populations and the Match–Mismatch Theory. Canadian Journal of 

Fisheries and Aquatic Sciences, 41(7), 1055–1065. https://doi.org/10.1139/f84-123 

Skotte, L., Korneliussen, T. S., & Albrechtsen, A. (2013). Estimating individual admixture 

proportions from next generation sequencing data. Genetics, 195(3), 693–702. 

https://doi.org/10.1534/genetics.113.154138 

Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science, 

236(4803), 787–792. https://doi.org/10.1126/science.3576198 

Smith, P. J., & Jamieson, A. (1986). Stock discreteness in herrings: a conceptual revolution. Fish. 

Res., 223–234. 

Snyder-Mackler, N., Majoros, W. H., Yuan, M. L., Shaver, A. O., Gordon, J. B., Kopp, G. H., … 

Tung, J. (2016). Efficient genome-wide sequencing and low-coverage pedigree analysis 

from noninvasively collected samples. Genetics, 203(2), 699–714. 

https://doi.org/10.1534/genetics.116.187492 

Snyder, M. W., Adey, A., Kitzman, J. O., & Shendure, J. (2015). Haplotype-resolved genome 

sequencing: experimental methods and applications. Nature Reviews Genetics, 16(6), 344–

358. https://doi.org/10.1038/nrg3903 

Stahl, G. (1983). Differences in the amount and distribution of genetic variation between natural 

populations and hatchery stocks of Atlantic salmon. Aquaculture, 33(1–4), 23–32. 

https://doi.org/http://dx.doi.org/10.1016/0044-8486(83)90383-6 

Stanley, R. R. E., DiBacco, C., Lowen, B., Beiko, R. G., Jeffery, N. W., Van Wyngaarden, M., … 

Bradbury, I. R. (2018). A climate-associated multispecies cryptic cline in the northwest 

Atlantic. Science Advances, 4(3), eaaq0929. https://doi.org/10.1126/sciadv.aaq0929 

Stanley, R. R. E., & Jeffery, N. W. (2017). CartDist: Re-projection tool for complex marine 

systems. https://doi.org/10.5281/zenodo.802875 



 

 288 

Stanley, R. R. E., Jeffery, N. W., Wringe, B. F., DiBacco, C., & Bradbury, I. R. (2017). 

<scp>genepopedit</scp> : a simple and flexible tool for manipulating multilocus molecular 

data in R. Molecular Ecology Resources, 17(1), 12–18. https://doi.org/10.1111/1755-

0998.12569 

Steiner, C. C., Putnam, A. S., Hoeck, P. E. A., & Ryder, O. A. (2013). Conservation genomics of 

threatened animal species. Annual Review of Animal Biosciences, 1, 261–281. 

https://doi.org/10.1146/annurev-animal-031412-103636 

Stephenson, R. L., Melvin, G. D., & Power, M. J. (2009). Population integrity and connectivity in 

Northwest Atlantic herring: a review of assumptions and evidence. ICES Journal of Marine 

Science, 66(8), 1733–1739. https://doi.org/10.1093/icesjms/fsp189 

Stern, D. L. (2013). The genetic causes of convergent evolution. Nat Rev Genet, 14(11), 751–764. 

Stetz, J. B., smith, S., Sawaya, M. A., Ramsey, A. B., Amish, S. J., Schwartz, M. K., & Luikart, 

G. (2016). Discovery of 20,000 RAD–SNPs and development of a 52-SNP array for 

monitoring river otters. Conservation Genetics Resources, 8(3), 299–302. 

https://doi.org/10.1007/s12686-016-0558-3 

Stobo, W. T. (1987). Atlantic herring (Clupea harengus) movement along the Scotian Shelf and 

management considerations. Proceedings of the Conference on Forage Fishes of the 

Southeastern Bering Sea, Anchorage, Alaska, 4–5 November 1986, Pp. 75–85. US 

Department of the Interior, Minerals Management Services, Alaska OCS Region, MMS 

Report, 87-0017. 122 Pp. 

Straub, S. C. K., Fishbein, M., Livshultz, T., Foster, Z., Parks, M., Weitemier, K., … Liston, A. 

(2011). Building a model: developing genomic resources for common milkweed (Asclepias 

syriaca) with low coverage genome sequencing. BMC Genomics, 12(1), 211. 

https://doi.org/10.1186/1471-2164-12-211 

Sylvester, E. V. A., Beiko, R. G., Bentzen, P., Paterson, I., Horne, J. B., Watson, B., … Bradbury, 

I. R. (2018). Environmental extremes drive population structure at the northern range limit 

of Atlantic salmon in North America. Molecular Ecology, 27(20), 4026–4040. 

https://doi.org/10.1111/mec.14849 

Sylvester, E. V. A., Bentzen, P., Bradbury, I. R., Clément, M., Pearce, J., Horne, J., & Beiko, R. 

G. (2017). Applications of random forest feature selection for fine-scale genetic population 

assignment. Evolutionary Applications, (September 2016), 1–13. 

https://doi.org/10.1111/eva.12524 

Tavares, H., Whibley, A., Field, D. L., Bradley, D., Couchman, M., Copsey, L., … Coen, E. 

(2018). Selection and gene flow shape genomic islands that control floral guides. 

Proceedings of the National Academy of Sciences, 115(43), 11006–11011. 

https://doi.org/10.1073/pnas.1801832115 

Teacher, A. G., André, C., Jonsson, P. R., & Merilä, J. (2013). Oceanographic connectivity and 

environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. 

Evolutionary Applications, 6(3), 549–567. https://doi.org/10.1111/eva.12042 

Teacher, A. G., André, C., Merilä, J., & Wheat, C. W. (2012). Whole mitochondrial genome scan 

for population structure and selection in the Atlantic herring. BMC Evolutionary Biology, 

12, 248. https://doi.org/10.1186/1471-2148-12-248 

Temple, G. K., Cole, N. J., & Johnston, I. A. (2001). Embryonic temperature and the relative 

timing of muscle-specific genes during development in herring (Clupea harengus L.). 

Journal of Experimental Biology, 204(21), 3629–3637. 



 

 289 

The Computational Pan-genomics Consortium. (2016). Computational pan-genomics: status, 

promises and challenges. Briefings in Bioinformatics, (August), 1–18. 

https://doi.org/10.1093/bib/bbw089 

The FAASG Consortium. (2016). Functional Analysis of All Salmonid Genomes (FAASG): an 

international initiative supporting future salmonid research, conservation and aquaculture. 

1–18. https://doi.org/http://dx.doi.org/10.1101/095737 

Therkildsen, N. O., & Palumbi, S. R. (2017). Practical low-coverage genomewide sequencing of 

hundreds of individually barcoded samples for population and evolutionary genomics in 

nonmodel species. Molecular Ecology Resources, 17(2), 194–208. 

https://doi.org/10.1111/1755-0998.12593 

Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013). Integrative Genomics Viewer 

(IGV): High-performance genomics data visualization and exploration. Briefings in 

Bioinformatics, 14(2), 178–192. https://doi.org/10.1093/bib/bbs017 

Tibbo, S. N., Legare, J. E. H., Scatterwood, L. W., & Temple, R. F. (1958). On the occurrence 

and distribution of larval herring (Clupea harengus L.) in the Bay of Fundy and the Gulf of 

Maine. Journal of the Fisheries Research Board of Canada, 15, 1451–1469. 

Tiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using population genetics to 

understand local adaptation. Trends in Ecology and Evolution, 29(12), 673–680. 

https://doi.org/10.1016/j.tree.2014.10.004 

Tigano, A., & Friesen, V. L. (2016). Genomics of local adaptation with gene flow. Molecular 

Ecology, n/a-n/a. https://doi.org/10.1111/mec.13606 

Townsend, D. W., Thomas, A. C., Mayer, L. M., Thomas, M. A., & Quinlan, J. A. (2004). 

Oceanography of the Northwest Atlantic Shelf (1, W). In A. R. Robinson & K. H. Brink 

(Eds.), The Sea: The Global Coastal Ocean: Interdisciplinary Regional Studies and 

Syntheses (pp. 1–57). Harvard University Press. 

Travis, J. M. J., Munkemuller, T., Burton, O. J., Best, A., Dytham, C., & Johst, K. (2007). 

Deleterious Mutations Can Surf to High Densities on the Wave Front of an Expanding 

Population. Molecular Biology and Evolution, 24(10), 2334–2343. 

https://doi.org/10.1093/molbev/msm167 

Treangen, T. J., & Salzberg, S. L. (2011). Repetitive DNA and next-generation sequencing: 

computational challenges and solutions. Nature Reviews Genetics, 13(1), 36–46. 

https://doi.org/10.1038/nrg3117 

Trowsdale, J., & Knight, J. C. (2013). Major Histocompatibility Complex Genomics and Human 

Disease. Annual Review of Genomics and Human Genetics, 14(1), 301–323. 

https://doi.org/10.1146/annurev-genom-091212-153455 

Tung, J., Zhou, X., Alberts, S. C., Stephens, M., & Gilad, Y. (2015). The genetic architecture of 

gene expression levels in wild baboons. ELife, 4, 1–22. https://doi.org/10.7554/eLife.04729 

Turner, S. D. (2014). qqman: an R package for visualizing GWAS results using Q-Q and 

manhattan plots. BiorXiv. https://doi.org/https://doi.org/10.1101/005165 

Turner, T. L., Hahn, M. W., & Nuzhdin, S. V. (2005). Genomic Islands of Speciation in 

Anopheles gambiae. PLoS Biology, 3(9), e285. 

https://doi.org/10.1371/journal.pbio.0030285 

Vähä, J.-P., & Primmer, C. R. (2006). Efficiency of model-based Bayesian methods for detecting 

hybrid individuals under different hybridization scenarios and with different numbers of 



 

 290 

loci. Molecular Ecology, 15, 63–72. https://doi.org/10.1111/j.1365-294X.2005.02773.x 

Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, 

A., … DePristo, M. A. (2013). From FastQ Data to High-Confidence Variant Calls: The 

Genome Analysis Toolkit Best Practices Pipeline. In Current Protocols in Bioinformatics 

(Vol. 11, pp. 11.10.1-11.10.33). https://doi.org/10.1002/0471250953.bi1110s43 

van Overzee, H. M. J., & Rijnsdorp, A. D. (2015). Effects of fishing during the spawning period: 

implications for sustainable management. Reviews in Fish Biology and Fisheries, 25(1), 65–

83. https://doi.org/10.1007/s11160-014-9370-x 

Vandergast, A. (2017). Incorporating genetic sampling in long-term monitoring and adaptive 

management in the San Diego County Management Strategic Plan Area, Southern 

California. https://doi.org/10.3133/ofr20171061 

VanderMeer, J. E., & Ahituv, N. (2011). cis-regulatory mutations are a genetic cause of human 

limb malformations. Developmental Dynamics, 240(5), 920–930. 

https://doi.org/10.1002/dvdy.22535 

Varshney, G. K., Pei, W., LaFave, M. C., Idol, J., Xu, L., Gallardo, V., … Burgess, S. M. (2015). 

High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome 

Research, 25(7), 1030–1042. https://doi.org/10.1101/gr.186379.114 

Vatsiou, A. I., Bazin, E., & Gaggiotti, O. E. (2016). Detection of selective sweeps in structured 

populations: A comparison of recent methods. Molecular Ecology, 25(1), 89–103. 

https://doi.org/10.1111/mec.13360 

Veeckman, E., Ruttink, T., & Vandepoele, K. (2016). Are We There Yet? Reliably Estimating the 

Completeness of Plant Genome Sequences. The Plant Cell, 28(8), 1759–1768. 

https://doi.org/10.1105/tpc.16.00349 

Velasco, D., Hough, J., Aradhya, M., & Ross-Ibarra, J. (2016). Evolutionary Genomics of Peach 

and Almond Domestication. Genes|Genomes|Genetics, 6(December), 3985–3993. 

https://doi.org/10.1534/g3.116.032672 

Vieira, Filipe G., Albrechtsen, A., & Nielsen, R. (2016). Estimating IBD tracts from low 

coverage NGS data. Bioinformatics, 32(14), 2096–2102. 

https://doi.org/10.1093/bioinformatics/btw212 

Vieira, Filipe Garrett, Fumagalli, M., Albrechtsen, A., & Nielsen, R. (2013). Estimating 

inbreeding coefficients from NGS data: Impact on genotype calling and allele frequency 

estimation. Genome Research, 23(11), 1852–1861. https://doi.org/10.1101/gr.157388.113 

Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting Natural Selection in Genomic Data. 

Annual Review of Genetics, 47(1), 97–120. https://doi.org/10.1146/annurev-genet-111212-

133526 

von der Heyden, S., Beger, M., Toonen, R. J., van Herwerden, L., Juinio-Meñez, M. A., Ravago-

Gotanco, R., … Bernardi, G. (2014). The application of genetics to marine management and 

conservation: examples from the Indo-Pacific. Bulletin of Marine Science, 90(1), 123–158. 

https://doi.org/10.5343/bms.2012.1079 

vonHoldt, B. M., Cahill, J. A., Fan, Z., Gronau, I., Robinson, J., Pollinger, J. P., … Wayne, R. K. 

(2016). Whole-genome sequence analysis shows that two endemic species of North 

American wolf are admixtures of the coyote and gray wolf. Science Advances, 2(7), 

e1501714–e1501714. https://doi.org/10.1126/sciadv.1501714 

Wall, J. D., Schlebusch, S. A., Alberts, S. C., Cox, L. A., Snyder-Mackler, N., Nevonen, K. A., 



 

 291 

… Tung, J. (2016). Genomewide ancestry and divergence patterns from low-coverage 

sequencing data reveal a complex history of admixture in wild baboons. Molecular Ecology, 

25(14), 3469–3483. https://doi.org/10.1111/mec.13684 

Wang, H., Xu, X., Vieira, F. G., Xiao, Y., Li, Z., Wang, J., … Chu, C. (2016). The Power of 

Inbreeding: NGS-Based GWAS of Rice Reveals Convergent Evolution during Rice 

Domestication. Molecular Plant, 9(7), 975–985. https://doi.org/10.1016/j.molp.2016.04.018 

Wang, J., Duncan, D., Shi, Z., & Zhang, B. (2013). WEB-based GEne SeT AnaLysis Toolkit 

(WebGestalt): update 2013. Nucleic Acids Research, 41(W1), W77–W83. 

https://doi.org/10.1093/nar/gkt439 

Wang, Jingwen, Skoog, T., Einarsdottir, E., Kaartokallio, T., Laivuori, H., Grauers, A., … Jiao, 

H. (2016). Investigation of rare and low-frequency variants using high-throughput 

sequencing with pooled DNA samples. Scientific Reports, 6(August), 33256. 

https://doi.org/10.1038/srep33256 

Wang, Z., Brickman, D., Greenan, B. J. W., & Yashayaev, I. (2016). An abrupt shift in the 

Labrador Current System in relation to winter NAO events. Journal of Geophysical 

Research: Oceans, 121(7), 5338–5349. https://doi.org/10.1002/2016JC011721 

Waples, R. K., Larson, W. A., & Waples, R. S. (2016). Estimating contemporary effective 

population size in non-model species using linkage disequilibrium across thousands of loci. 

Heredity, 117(4), 233–240. https://doi.org/10.1038/hdy.2016.60 

Waples, R. S. (1998). Separating the wheat from the chaff: patterns of genetic differentiation in 

high gene flow species. Journal of Heredity, 89(5), 438–450. 

https://doi.org/10.1093/jhered/89.5.438 

Warr, A., Robert, C., Hume, D., Archibald, A., Deeb, N., & Watson, M. (2015). Exome 

Sequencing: Current and Future Perspectives. Genes|Genomes|Genetics, 5(8), 1543–1550. 

https://doi.org/10.1534/g3.115.018564 

Watabe, S. (1999). Myogenic regulatory factors and muscle differentiation during ontogeny in 

fish. Journal of Fish Biology, 55(A), 1–18. https://doi.org/10.1111/j.1095-

8649.1999.tb01042.x 

Waters, C. L., & Clark, K. J. (2005). 2005 summary of the weir herring tagging project with an 

update of the HSC/PRC/DFO herring tagging program. In Canadian Science Advisory 

Secretariat Research Document, 2005/025. 

Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population 

Structure. Evolution, 38(6), 1358. https://doi.org/10.2307/2408641 

Wheeler, J. P., & Winters, G. . (1984a). Homing of Atlantic herring (Clupea harengus harengus) 

in Newfoundland waters as indicated by tagging data. Can. J. Fish. Aquat. Sci., 41, 108–

117. 

Wheeler, J. P., & Winters, G. H. (1984b). Migrations and stock relationships of east and southeast 

Newfoundland herring (Clupea harengus) as shown by tagging studies. Journal of 

Northwest Atlantic Fishery Science, 5, 121–129. 

Wiberg, R. A. W., Gaggiotti, O. E., Morrissey, M. B., & Ritchie, M. G. (2017). Identifying 

consistent allele frequency differences in studies of stratified populations. Methods in 

Ecology and Evolution, 8(12), 1899–1909. https://doi.org/10.1111/2041-210X.12810 

Winters, G. H., & Wheeler, J. P. (1987). Recruitment dynamics of spring-spawning herring in the 

Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 44, 882–900. 



 

 292 

Winters, G. H., & Wheeler, J. P. (1996). Environmental and phenotypic factors affecting the 

reproductive cycle of Atlantic herring. ICES Journal of Marine Science, 53, 73–88. 

https://doi.org/10.1006/jmsc.1996.0007 

Winters, G. H., Wheeler, J. P., & Dalley, E. L. (1986). Survival of a herring stock subjected to a 

catastrophic event and fluctuating environmental conditions. Journal Du Conseil 

International Pour l’Exploration de La Mer, 43, v. 

Winters, G. H., Wheeler, J. P., & Stansbury, D. (1993). Variability in the reproductive output of 

spring-spawning herring in the north-west atlantic. ICES Journal of Marine Science, Vol. 

50, pp. 15–25. https://doi.org/10.1006/jmsc.1993.1003 

Wittkopp, P. J., & Kalay, G. (2012). Cis-regulatory elements: molecular mechanisms and 

evolutionary processes underlying divergence. Nature Reviews Genetics, 13(1), 59–69. 

https://doi.org/10.1038/nrg3095 

Wong, P. B., Wiley, E. O., Johnson, W. E., Ryder, O. A., O’Brien, S. J., Haussler, D., … 

Murphy, R. W. (2012). Tissue sampling methods and standards for vertebrate genomics. 

GigaScience, 1(1), 8. https://doi.org/10.1186/2047-217X-1-8 

Wray, G. A. (2007). The evolutionary significance of cis-regulatory mutations. Nature Reviews 

Genetics, 8(3), 206–216. https://doi.org/10.1038/nrg2063 

Wu, C.-I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 

14(6), 851–865. https://doi.org/10.1046/j.1420-9101.2001.00335.x 

Xu, Q. ‐S., & Liang, Y. ‐Z. (2001). Monte–Carlo cross validation. Chemometrics and Intelligent 

Laboratory Systems, 56, 1–11. 

Xue, Y., Prado-Martinez, J., Sudmant, P. H., Narasimhan, V., Ayub, Q., Szpak, M., … Scally, A. 

(2015). Mountain gorilla genomes reveal the impact of long-term population decline and 

inbreeding. Science, 348(6231), 242–245. https://doi.org/10.1126/science.aaa3952 

Yang, H., & Wang, K. (2015). Genomic variant annotation and prioritization with ANNOVAR 

and wANNOVAR. Nature Protocols, 10(10), 1556–1566. 

https://doi.org/10.1038/nprot.2015.105 

Yang, J., Li, W. R., Lv, F. H., He, S. G., Tian, S. L., Peng, W. F., … Liu, M. J. (2016). Whole-

Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme 

Environments. Molecular Biology and Evolution, 33(10), 2576–2592. 

https://doi.org/10.1093/molbev/msw129 

Ye, H., Meehan, J., Tong, W., & Hong, H. (2015). Alignment of short reads: A crucial step for 

application of next-generation sequencing data in precision medicine. Pharmaceutics, 7(4), 

523–541. https://doi.org/10.3390/pharmaceutics7040523 

Yeaman, S., & Whitlock, M. C. (2011). The genetic architecture of adaptation under migration-

selection balance. Evolution, 65(7), 1897–1911. https://doi.org/10.1111/j.1558-

5646.2011.01269.x 

Zhang, G. (2015). Genomics: Bird sequencing project takes off. Nature, 522(7554), 34–34. 

https://doi.org/10.1038/522034d 

Zhao, S., Zheng, P., Dong, S., Zhan, X., Wu, Q., Guo, X., … Wei, F. (2012). Whole-genome 

sequencing of giant pandas provides insights into demographic history and local adaptation. 

Nature Genetics, 45(1), 67–71. https://doi.org/10.1038/ng.2494 

Zhou, X., Wang, B., Pan, Q., Zhang, J., Kumar, S., Sun, X., … Li, M. (2014). Whole-genome 

sequencing of the snub-nosed monkey provides insights into folivory and evolutionary 



 

 293 

history. Nature Genetics, 46(12), 1303–1310. https://doi.org/10.1038/ng.3137 

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid 

common statistical problems. Methods in Ecology and Evolution, 1(1), 3–14.   



 

 294 

APPENDIX 1. DESCRIPTION OF ELECTRONIC SUPPLEMENTS 

 

I have co-authored other relevant work as part of my PhD (Kerr et al. 2018) that is not 

included in this thesis. In addition, some of the tables generated in the thesis are too large 

for a printed format (contain thousands of rows). Therefore, all these files have been 
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Chapter 3: 

Table S3.2 Loci showing strong genetic differentiation between spring- and autumn-

spawning herring. Gene names are indicated if the SNP occurs within 5 kb upstream or 5 

kb downstream of annotated genes. Loci significant in both NE and NW Atlantic 

populations are highlighted in green; loci significant only in the NW Atlantic populations 

are highlighted in pink. 

 

Table S3.3 Previously identified loci showing the most consistent association with 

differences in salinity 

 

Table S3.4 Genetic distance matrix used for building the phylogenetic tree among 26 

herring populations used for Fig. 3.2. Details for sample IDs are given in Table 3.1. 

 

Chapter 5: 

Table S5.1. SNP loci that passed quality filters and constitute the SPW- and LAT-panels. 

 

Table S5.2. Pairwise FST and P-values for the SPW-panel. 

 

Table S5.3. Pairwise FST and P-values for the LAT-panel. 
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