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Abstract

Atmospheric aerosols have important impacts on climate and human health. This the-

sis advances our knowledge of the 3-dimensional distribution of atmospheric aerosols

by using state of the art tools and methods to new fields or new sources of data in

three applications.

First, I use adjoint modeling to provide the global health response to fine partic-

ulate matter with a diameter < 2.5 µm (PM2.5) by implementing the Global Burden

of Disease Project’s Integrated Response Function. The response of global mortality

to changes in local unit-mass anthropogenic emissions varied spatially by several or-

ders of magnitude; the largest reductions in mortality for a 1 kg km−2 yr−1 decrease

in emissions were for ammonia and carbonaceous aerosols in Eastern Europe. When

comparing relative responses, the greatest reductions in mortality for a 10% decrease

in emissions were found for secondary inorganic sources in East Asia.

Next, I applied the same adjoint to assimilate CALIOP Lidar profiles. Comparing

mean extinction height (Zα) between the baseline simulation and two optimised sim-

ulations to CALIOP observed Zα, both optimisations improved the slope and offset

of a linear fit across AEROCOM regions, but optimising initial conditions improved

agreement (R = 0.78) compared to the baseline (R = 0.72) while optimising emis-

sions decreased agreement (R = 0.65). In a global comparison of AOD, the optimised

emissions greatly improved agreement with observations in the Sahara in January,

but failed to capture the overall underestimate of AOD seen almost everywhere.

Finally, I used the modern machine learning framework Tensorflow to compute

a high resolution (0.01◦ × 0.01◦) map of probability distributions of PM2.5 fitted to

ground monitoring data from the World Health Organization’s cities database. This

model achieved an average correlation R2 of 0.93 and an average RMSD = 5.00 µg m−3

in 10-fold cross validation. Because the model outputs probability distributions at

each grid location, I was able to calculate a global probability density function for

population exposure to PM2.5. Based on the global PDF, 83% of the world’s popula-

tion exceeds the WHO guideline of 10 µg m−3.
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Chapter 1

Introduction

One of the most widely studied air pollutants are suspended particles with an aero-

dynamic diameter less than 2.5 µm (PM2.5). This size cutoff falls at a trough in a

typical ambient atmospheric volume distribution, roughly between the accumulation

and coarse modes (Seinfeld and Pandis, 2016, p. 342). Extensive in situ monitor-

ing of PM2.5 occurs around the globe but coverage is uneven, with dense monitoring

available in populated areas in North America, Europe, and more recently Asia, but

poor coverage even in densely populated regions in Africa and South America, along

with very little coverage in remote regions and over the ocean.

1.1 Background and Motivation

1.1.1 Human Health and Environment

Particulate matter has direct impacts on climate, with some aerosols such as black

and brown carbon absorbing radiation, while others such as SO4 reflect shortwave

radiation back to space. Particulate matter also influences climate indirectly through

increasing the number of cloud droplets (the first indirect effect) and increasing the

lifetime of clouds (the second indirect effect) (Boucher et al., 2013b). Because of

these different impacts, the uncertainty of climate forcing associated with PM2.5 is

large; even as recently as the IPCC 5th Assessment Report, the 95% confidence

interval included zero, indicating uncertainty as to not only the magnitude but also

the direction of the forcing (Boucher et al., 2013b). This thesis does not focus on

climate impacts, but it is worth mentioning them, as any improvement in modeling

the 3D distribution of aerosols stands to improve our understanding on their impact

on climate.

As Chapter 2 assumes a certain background knowledge in epidemiology, I will

briefly describe a few terms and concepts which may not be familiar to atmospheric

1
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scientists. The additional risk of a negative outcome (such as mortality) caused by

exposure to a risk factor is usually quantified with a relative risk or risk ration, RR.

This is the ratio of probability of the negative outcome at the exposed level to the

probability of the outcome in the unexposed population (Porta, 2016). These relative

risks are computed by gathering data about exposure levels and health outcomes,

and comparing the outcomes between differently exposed populations. Frequently

RRs are reported for inter-percentile ranges; for example, the RR of mortality for

an interquartile range would be the probability of mortality in the group at the 25th

percentile of exposure divided by the probability of mortality at the lowest exposure.

If the relationship between RR and exposure is a continuous function, this is often

referred to as a health impact function or exposure response curve. The excess mor-

tality caused by exposure to a risk factor is called the attributable fraction, which is

similar to a population-weighted RR based on the population exposure(Prüss-üstün

et al., 2003):

AF =

∫︁
P (x)RR(x)dx− 1∫︁

PxRRxdx
(1.1)

The AF can be multiplied by the baseline mortality to get the attributable deaths or

response of mortality; this can lead to a situation where the two populations with the

same exposure have different mortality responses because their baseline mortalities

differ.

Epidemiologic research has associated PM2.5 with human health impacts includ-

ing cardiovascular disease, stroke, Alzheimer’s, stroke, and cancer. The first study

to show a connection between PM2.5 and health was the Harvard Six Cities Study

(Dockery et al., 1993), which found a strong association with mortality by assign-

ing a single PM2.5 concentration to all people in each city. This is obviously a very

coarse metric, as PM2.5 concentrations vary significantly in space even down to the

hundreds of metres scale, especially for traffic-related sources (Franklin et al., 2018).

Additionally, the PM2.5 concentrations recorded for each city only ranged from 11–

29 µg/m3, which led to much discussion about the shape of the response function

at higher concentrations, such as those seen in Asia (Krewski et al., 2009; Burnett

et al., 2014; Nasari et al., 2016; Vodonos et al., 2018; Burnett et al., 2018). Recently,

the concentration response function has been extended to much lower concentra-

tions as well, showing an association with cardiovascular mortality down to below
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5 µg/m3(Pappin et al., 2019; Pope et al., 2019).

On the exposure side, new cohorts (groups of patients whose PM2.5 exposure and

health outcomes have been recorded), especially with a broader range of exposure

levels from different parts of the world have emerged, although Africa and South

America remain underrepresented. The Integrated Exposure Response (IER) model

was able to increase the range of the available exposure data by including indoor

air pollution (which can reach orders of magnitude higher than typical ambient con-

centrations) and smoking (Burnett et al., 2014). This meta analysis was able to

extend the response curve to the high levels experience by people in East Asia, and

was used as the basis for the Global Burden of Disease (GBD) Project’s estimate

of the global burden of disease due to exposure to ambient PM2.5. The GBD es-

timate for global PM2.5-related premature mortality for 2017 is 3.5 million people

(http://ghdx.healthdata.org/gbd-results-tool; GBD 2017 Risk Factor Collaborators,

2018). The main drawback of the method is the assumption that indoor PM2.5 and

cigarette smoking have the same exposure response on mortality as ambient PM2.5.

The most recent attempts to reconstruct the response curve include another meta

analysis, using mainly the averages of 53 studies of ambient PM2.5 exposure to extend

the curve out to > 40 µ/m3, and the Global Exposure Mortality Model (GEMM)

which includes cohorts with exposures from 0.9 µ/m3(Crouse et al., 2015) to 83.8

µ/m3(Yin et al., 2017)). The Yin et al. (2017) study concluded that the GBD may

have underestimated ambient PM2.5 mortality by 20%, but this value relies heavily

on the single study with the high exposure and is reduced to 6% when that one study

is excluded from the analysis (Burnett et al., 2018). The GBD project goes to great

lengths to ensure that the sum of mortality from each risk factor does not exceed

the observed total mortality, and thus, it seems this extra 20% mortality will have to

come from other risk factors if GBD chooses to update their methods.

From a policy perspective, the main goal of determining the exact shape of the

exposure response curve is to determine the human health impact of PM2.5 exposure,

and provide a path for mitigation. Since PM2.5 has many and complex sources,

not all of them even under human control, it may well be very costly to decrease

exposure levels. Therefore, cost-benefit analyses are required, and the benefit side of

the equation requires confidence in the shape of the response curve.
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Ultimately, the assessment of human exposure to PM2.5 and from that, the shape

of the exposure response curve, and the mitigation of health impacts, relies on high-

quality, high-resolution estimates of surface PM2.5 concentrations (Punger and West,

2013). These high-resolution estimates are the focus of this thesis, and the follow-

ing subsections focus on the chemistry/physics of PM2.5 and the generation of these

estimates.

1.1.2 Exposure Modeling

Because measuring PM2.5 is difficult and expensive, it is impossible to monitor ev-

erybody’s exposure directly. Exposure assessment typically assumes that the bulk

of each person’s exposure is determined by the average outdoor PM2.5 concentration

at their residence, although this is changing as time-activity and microenvironment

exposure are beginning to be considered in the literature (e.g., Malley et al., 2020;

Evangelopoulos et al., 2020; Richmond-Bryant and Long, 2020). Modern exposure

modeling is usually based on a combination of geophysical modeling in combination

with in situ monitoring and remote sensing. This combination is driven by the short-

comings of each of the components: in situ monitoring is sparse compared to the spa-

tial variability of PM2.5 concentrations and population (Martin et al., 2019); although

satellite remote sensing data provides more coverage than in situ monitoring, it can

be difficult to interpret; and while geophysical modeling provides unlimited coverage,

models have difficulty accurately reproducing existing measurements. Therefore the

“best” estimates combine these sources of data to produce computationally tractable,

high-resolution, high-accuracy exposure estimates (Brauer et al., 2012).

1.1.3 Aerosol Sources, Sinks and Microphysics

Aerosols can be emitted directly; these are called primary aerosols. They can also be

created by the condensation of vapours, usually after chemical conversion to a less

volatile form than the original emitted gas, which are called secondary aerosols. The

common types of primary emissions are carbonaceous particles such as soot, usually

created from combustion, sea-spray aerosols, and mineral dust. Secondary aerosols

are formed from inorganic compounds such as sulphate, nitrate and ammonia, or

organic compounds which are oxidised and condense out (Seinfeld and Pandis, 2016).
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Natural Sources

Aerosols emitted directly by natural processes include dust, sea-salt and primary

carbonaceous aerosols. Dust comes mostly from desert regions. Winds lift larger

particles (∼ 100 µm; Alfaro et al., 1997), but because of their weight they tend to be

deposited quickly and thus do not usually contribute greatly to atmospheric aerosol.

The dust that survives to be transported long distances is usually created through a

process called saltation, whereby larger particles transfer their momentum to smaller

particles when they impact the surface (Zender et al., 2003; Ju et al., 2018; Martin

et al., 2018; Ferreira et al., 2019). Sea-spray aerosol is created by splashed droplets of

sea water evaporating. These droplets can be created when waves entrain air into the

top layer of the ocean, then these bubbles rise to the surface and pop, creating many

tiny droplets. Primary carbonaceous aerosols such as soot, black carbon, elemental

carbon (frequently used as synonyms, although there a connotational differences),

and organic carbon are created by combustion processes. The main natural source of

primary carbonaceous aerosols is wild fires(Brewer et al., 2019).

Aerosol precursors, usually organic compounds, can also come from natural sources.

In the marine environment, biogenic activity in the surface layer can release volatile

organic compounds which either themselves condense to form aerosols, or their oxi-

dation products do (Petters et al., 2010). Plants can also release volatile and semi-

volatile organic species such as terpenes, which can condense or oxidise to condensable

products. A well-known example of this is the Great Smoky Mountains in the United

States (Blando et al., 1998). The The Model of Emissions of Gases and Aerosols

from Nature (MEGANv2.1) inventory estimates global biogenic VOC emissions at

760 Tg C yr−1 (Sindelarova et al., 2014).

Anthropogenic Sources

Carbonaceous aerosols are the most important primary anthropogenic emissions.

They can be generated by human activities such as fossil fuel and biomass combus-

tion. Dust is emitted by human activities including soil disturbance due to land-use

changes, resuspension of road dust by traffic, and industrial processes (Pouliot et al.,

2012; Philip et al., 2017). At present, I am unaware of any models that include an-

thropogenic activity in the calculation of sea spray aerosols. Any impacts caused by
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ships, turbines or human structures such as breakwalls, engineered beaches or bridges

would have a very small impact compared to the natural sources. However, one so-

lar radiation management idea which has been proposed to mitigate the impacts of

climate change is marine cloud brightening or sea spray geoengineering(e.g., Latham

et al., 2012; Partanen et al., 2012, 2016), so in future a significant amount (up to 17%

of total emissions, or up to 10 times the natural source of the fraction below 2.5 µm)

of sea spray may be anthropogenic (Horowitz et al., 2020).

Secondary organic aerosols can also be created by anthropogenic activity that

generates volatile organic carbon (VOC). These gases and semi-volatile species can

be generated by fossil fuel combustion, industrial processes such as fuel refining, paint

solvents, waste processing, and biomass burning. Anthropogenic emissions are a small

fraction of biogenic VOCs(Glasius and Goldstein, 2016), although in some parts of

the world they may contribute up to half of regional VOC emissions (Chaliyakunnel

et al., 2019).

Many anthropogenic aerosols are formed by the condensation of inorganic precur-

sor gases. The main secondary inorganic precursor gases are SO2 or sulphur dioxide,

NOx or nitrogen oxides, and NH3 or ammonia. These are oxidized to SO4, NO3, and

NH4, sulphate, nitrate and ammonium, which are the main inorganic constituents

of PM2.5. Although there are many sources of these inorganic precursor gases, each

tends to be associated with a different subset of human activities.

Anthropogenic SO2 comes mainly from coal and oil burning for industrial processes

and energy generation; the EDGAR emission inventory (Crippa et al., 2018), which is

used in GEOS-Chem, estimates 51.5 Tg S yr−1 of global anthropogenic SO2 emissions.

Anthropogenic NH3 is primarily emitted by agricultural practices; EDGAR estimates

global NH3 emissions from fertilizer and animal waste at 33.3 Tg N yr−1(Aneja et al.,

2020). Anthropogenic NOx is usually associated with traffic, as well as all the previ-

ously mentioned sources; EDGAR estimates global anthropogenic NOx emissions to

be approximately 50 Tg N Yr−1. Because of of its reactiveness and loss processes which

tend to be collocated, large uncertainties (11 Tg N yr−1) have been reported(Beusen

et al., 2008).
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1.2 Tools and Methods

In this thesis, I used 3 main computation tools: the GEOS-Chem chemical transport

model, the adjoint of GEOS-Chem, and the Tensorflow machine learning framework.

I used GEOS-Chem and its adjoint to compute sensitivities of global PM2.5-related

mortality to aerosol precursor emissions and to perform data assimilation on CALIOP

lidar profiles, while I used Tensorflow to produce a high-resolution map of surface

PM2.5 distributions from geospatial and remote sensing data, which I trained and

verified with surface PM2.5 monitoring data from the World Health Organization

(WHO) Cities Database.

1.2.1 Chemical Transport Modeling Using GEOS-Chem

Computer numerical modeling provides a number of advantages in studying the 3D

distribution of aerosols. Models allow us to fill in gaps in the uneven distribution

of surface monitoring networks, aid in interpreting satellite remote sensing data, and

allow us to account for the complex dynamical nature of the atmosphere. All these

help us to understand and predict the 3D distribution of aerosols, and its sensitivity

to exogenous factors such as emissions and meteorology.

To perform the work presented in this thesis I used GEOS-Chem, a chemical trans-

port model (CTM). First released in 2001(Bey et al., 2001), the model has undergone

many improvements and is currently on version 12(The International GEOS-Chem

User Community, 2020). The model runs globally at 4◦ × 5◦ or 2◦ × 2.5◦ resolution,

and regionally at up to 1
4

◦ × 3
8

◦
resolution in nested grids over North America(Kim

et al., 2015), Europe(Protonotariou et al., 2010), East Asia(Wang et al., 2004; Chen

et al., 2009; Zhang et al., 2015b) and West Africa. Recently, the ability to run par-

allelized across many processors was added, and is referred to as GEOS-Chem High

Performance (GCHP) (Eastham et al., 2018).

GEOS-Chem takes as input mainly two kinds of data: meteorological data and

emissions data. Many changes have occurred to both systems over the lifetime of

GEOS-Chem.

Meteorological inputs are generally from assimilated meteorological data from

the Goddard Earth Observation System (GEOS) of the NASA Global Modeling and
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Assimilation Office (GMAO), that is, satellite and other observational data are assim-

ilated using a 3D- or 4D-variational process and the resulting optimised model output

is archived. GEOS-Chem has used GEOS-4, GEOS-5, GEOS-FP, and MERRA me-

teorology. GEOS-4 data is from an older version of the GEOS model and is now

obsolete. The archives go from 1985 to 2007. GEOS-5 is also obsolete and data is

available for 2003 to 2013. The current operational assimilated meteorology archive

is GEOS-FP, which uses the GEOS-5 model and goes from 2012 to present. The

Modern-Era Retrospective analysis for Research and Applications (MERRA) is a

reanalysis which provides consistent historical data back to 1979, up until 2008(Rie-

necker et al., 2008, 2011). MERRA-2, which supersedes MERRA, goes from 1979 to

present (Randles et al., 2017). This meteorological data is used to drive the TPCORE

advection algorithm (Lin and Rood, 1996) in older versions of GEOS-Chem or the

new FV3 algorithm in GCHP, because it uses a different gridding scheme (Putman

and Lin, 2007).

Emissions data for GEOS-Chem has come from a variety of sources. The emis-

sions inventories are typically compiled from the bottom up, that is, the emissions

are computed from reported values for burned fuels or energy consumption multi-

plied by emissions factors. GEOS-Chem includes emissions of gases and particles

from anthropogenic activities, including energy generation, industry, transportation,

shipping, aircraft, trash burning, and other diffuse and inefficient sources, and natural

source, including lightning, volcanoes, oceans, and the biosphere.

Mineral dust emissions and sea spray aerosol emissions are two natural emissions

processes are of particular importance to Ch. 3 of this thesis, because it deals with

optimising global aerosol emissions and a large fraction of the Earth’s surface is

covered by ocean or desert, and also because I implemented the adjoint of the sea

spray portions of the model as part of this work. Both of these processes are the

result of meteorology-dependent physical processes and are usually parametrized as

a function of wind-speed in transport models.

In GEOS-Chem, the dust emissions scheme is based on the Dust Entrainment

and Deposition (DEAD) scheme (Zender et al., 2003). This scheme parametrises

dust emissions (Fd) as a linear function of frictional wind speed (u∗) in excess of a

threshold velocity (u∗t) modulated by a sand blasting efficiency (α) which depends
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only on soil characteristics (Alfaro et al., 1997):

Fd =

⎧⎪⎨⎪⎩
αcsρu3

∗
g

(︂
1 − u∗t

u∗

)︂(︂
1 + u∗t

u∗

)︂
, u∗ > u∗t

0, u∗ ≤ u∗t

(1.2)

where cs is an empirical constant determined in lab studies (White, 1979), ρ is air

density, and g is the acceleration of gravity.

The sea spray aerosol scheme is the Gong (2003) scheme as implemented by Jaeglé

et al. (2011). The shape of the size-dependent emissions curve is given by

B =
(0.380 − log r)

0.650
dF0

dr
= 1.373u3.41

10 r3
(︂

1 + 0.057r1.05 × 101.19e−B2
)︂ (1.3)

where u10 is the wind speed at 10 m above sea surface, and r is the particle radius at

80% RH.

In GEOS-Chem, chemistry is performed by the kinetic preprocessor (KPP) (Damian

et al., 2002). In short, chemical mechanisms are specified in a special KPP language

file, which the KPP system converts into FORTRAN code for the time derivative,

the Jacobian, and code for numerical integration of the partial differential equations.

Gas-aerosol thermodynamic equilibrium of sulphate, nitrate and ammonium was

performed by the RPMARES algorithm in older versions of GEOS-Chem (Binkowski

and Roselle, 2003). For version 8-03-01 and after, the algorithm was changed to

ISORROPIA-II, which describes thermodynamic algorithm for many species (Foun-

toukis and Nenes, 2007), although only sulphate, nitrate and ammonium were imple-

mented in GEOS-Chem(Pye et al., 2009).

1.2.2 Surface In Situ Monitoring of Aerosols

The simplest way to measure PM2.5 is gravimetric analysis, where air is drawn through

a filter at a known rate and the mass of the filter is compared before and after. The

filters can also be submitted to other analysis including light reflection, transmission,

and diffraction, and destructive chemical analysis to determine the composition of the

particles. Gravimetric analysis is complicated by various factors including obtaining

accurate measures of the air flow rate, filter size and chemical selectivity, tempera-

ture (which can drive condensation and evaporation of particles after capture), and



10

humidity (which can change particle size after capture).

In the context of exposure science and comparison to model or remote-sensing

data, it is worth pointing out that most in situ measurements are point measurements,

that is, they represent only a very small spatial area, compared with model grid cells

and satellite pixels which can be 10s to 100s of km on a side. Most people do not

live right next to a sampling station inlet and so there is always the question of how

representative a point measurement is for a given application.

1.2.3 Remote Sensing of Aerosols

Overview

Particulate matter interacts with electromagnetic radiation. Remote sensing is the

indirect detection of aerosol through measuring light emitted by, scattered by, or

transmitted through an air mass. At their roots, remote sensing algorithms are based

on the observation that the transmission of light, t(λ), through a solution, gas, or

aerosol is a function of the path length, L, and the concentration, c, and extinction

cross section, σλ, of the species. Mathematically, this is formulated as Beer-Lambert-

Bouger law:

t(λ) =
I(λ)

I0(λ)
= e−Lσλc (1.4)

By comparing the source radiance (the sun in the case of passive remote sensing,

or a known source in the case of active instruments) with the received radiance, the

concentration of aerosols can be inferred given certain assumptions about path length

and the composition and location of the aerosols. Remote sensing instruments can be

placed on the ground, on towers, on aircraft, or on satellites. There are many viewing

geometries available, but a few common ones have importance. Ground instruments

looking directly up are called zenith viewing. Satellite-borne instruments that are

facing directly down are called nadir viewing, and instruments which point across the

atmosphere are called limb viewing.

In reality, remote sensing of aerosols is complicated by several factors: the con-

centration is rarely, if ever, uniform over the entire path; aerosols are not the only

species causing extinction; aerosols may interact differently with different wavelengths

of light; extinction is affected by aerosol shape, size, and composition; in the case of



11

satellites, the light source is typically reflected off the surface of the Earth rather than

directly transmitted to the sensor. A number of factors and parameters are used to

handle these situations when performing retrievals.

Some important aerosol optical properties are the extinction, absorption, and scat-

tering cross sections, the extinction, absorption, and scattering efficiencies, which are

the ratios of the cross sections to the true size of the particle, the single-scattering

albedo (SSA), which is the ratio of the scattering cross section to the absorption cross

section, and the scattering phase function which measures the fraction of radiation

scattered as a function of the difference in angle from the incident angle of the radia-

tion. The total measure of extinction along a path is called the aerosol optical depth

(AOD) or optical thickness (AOT); this is the integral of the extinction coefficient

(τ = σc in equation 1.4). All of these parameters vary with wavelength. A measure of

how AOD varies with wavelength is the Ångström exponent (AE) and is represented

by α in the following equation:

τλ1

τλ0

=

(︃
λ0

λ1

)︃α

(1.5)

Remote Sensing Instruments Used in This Thesis

One of the most important and longest running sources of global AOD measurements

is the Aerosol Robotic Network (AERONET; Holben et al., 1998). AERONET is a

surface-based network of instruments which measure solar radiation by automatically

following the sun. The largest difficulty with AERONET measurements is filtering

cloud contamination while retaining real aerosol events which might appear like clouds

to screening algorithms (Smirnov et al., 2000). Recent updates to the algorithm have

improved this but difficulties still remain (Giles et al., 2019).

The Multi-angle Imaging SpectroRadiometer (MISR) was launched aboard the

NASA Terra satellite in December of 1999. The sensor has 4 forward-, one nadir-,

and 4 aft-facing cameras which measure the same spot on the ground at 9 different

angles over a span of 7 minutes. The cameras measure 4 wavelengths (446.6, 557.5,

671.7, and 866.4 nm). The retrieval was recently updated from v22, the standard

since 2007, which uses two different algorithms for land (Martonchik et al., 2009)

and deep water (Kalashnikova et al., 2013). V23 also uses different algorithms over

land and water, but went from 17.6 km to 4.4 km resolution and improved cloud
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screening and contamination from snow-covered surfaces and whitecap waves (Garay

et al., 2020).

The Moderate Resolution Imaging Spectrometer (which is inexplicably abbrevi-

ated as MODIS ) is a pair of 32-wavelength instruments which fly aboard NASA

satellites Aqua and Terra (SALOMONSON et al., 1989). The atmosphere product

consists of 3 separate algorithms: the Deep Blue(Hsu et al., 2013) and Dark Tar-

get(Levy et al., 2013) algorithms over land, and a separate Dark Target algorithm

over water. In the most recent collection, the science team has also been producing

a combined product which includes information from all 3 algorithms (Sayer et al.,

2014).

The Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument is a

space-borne lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder (CALIPSO)

satellite, launched in 2006 (Winker et al., 2009). Unlike MODIS and MISR, CALIOP

is an active remote sensing platform. Light detection and ranging (lidar) is a distance-

resolved active sensing technique which involves firing short pulses of collimated light

and measuring the strength of the reflected signal over time. This time is used to

infer the distance at which the reflection occurred (Wandinger, 2005). This provides

obvious advantages in studying the 3D distribution of aerosols; however, the active

nature of the measurement also means that the horizontal spatial coverage is sparse,

providing only 14 overpasses roughly-75 m-wide on the ground per day. Interpret-

ing lidar data can be difficult because the lidar equation can be both under- and

over-constrained at the same time. A space-borne lidar increases the difficulty as the

low-power requirements mean a low signal-to-noise ratio, especially on the daytime

leg of the orbit (Winker et al., 2009).

1.2.4 Inverse Modelling and Data Assimilation

As we have seen above, both models and measurements have strengths and shortcom-

ings, and all modeled or measured values are uncertain to some degree. Data assimi-

lation is the process of combining models and measurements to determine the bound-

ary conditions, which allows the model to best reproduce those measurements while

properly accounting for uncertainties in the model state and measurements. There

are many “flavours” of data assimilation (i.e., optimal interpolation (OI), Kalmann
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filtering, 3D- and 4D-variational, as well as empirical methods such as the successive

corrections method and nudging), but they are all mathematically equivalent under

certain assumptions or by limiting the analysis to certain dimensions (Kalnay, 2003).

Although the different methods are mathematically equivalent, they each hold dif-

ferent assumptions and their applications may be more or less suitable to certain

operational situations. I chose 4D-Variational (4DVAR) data assimilation for use in

this thesis, because of the availability of an adjoint model for GEOS-Chem (Henze

et al., 2007), which is a requirement for 4DVAR.

Data assimilation has been in use in oceanography and for numerical weather pre-

diction (NWP ) for many decades (Talagrand, 1997). The idea is to find an analysis,

xa, that combines the background, xb, or “first guess” field with observations, yo,

sometimes using an observational operator, H, to transform the model variables into

the observation space, e.g., if the observations are radiances, H would be a radiative

transfer model:

xa = xb + W(yo −H(xb)) (1.6)

The optimal weights, W, also called the gain matrix in Kalmann filtering, are

found by analogy to a least-squares, maximum-likelihood, or maximum a priori anal-

ysis:

W = BHT
(︁
R + HBHT

)︁−1
(1.7)

where B is the background error covariance matrix, R is the observation error covari-

ance matrix, and H is the linearised observational operator.

4DVAR provides a model analysis (i.e., the optimised model output) which is com-

pletely consistent with the model equations. The algorithm does this by optimising

the model boundary conditions such as the initial state of the atmosphere or physical

production and loss (i.e., emission and deposition) so that the model run best repro-

duces the observations at the time the observations occur, subject to the uncertainties

in the model and observations. Boundary conditions are optimised through an itera-

tive gradient-descent algorithm, which minimizes a scalar-valued cost function of the

model output. In most situations, this will be a weighted sum of squared differences

between the model fields and the observations, where the weights are provided by the

error covariance matrices.

In order to perform a gradient-descent optimisation, a gradient is required. This
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is provided by a complimentary set of model equations called the adjoint. Mathe-

matically, the adjoint is the transpose of the tangent linear model (TLM), which is

the model equations linearized about the local model state (Wang et al., 2001). In

practice, this means running the forward model equations backwards in time (it is

possible to run the adjoint forwards in time but the memory requirements become

prohibitive for realistic models).

The adjoint model of GEOS-Chem has existed since 2007 (Henze et al., 2007).

This model allows for the calculation of the local sensitivities of scalar-valued cost

functions with respect to model initial conditions or emissions. The adjoint model

includes full chemistry and transport for SIA (Henze et al., 2009). By extending the

model code, I used the adjoint of GEOS-Chem to compute the sensitivities of global

mortality to PM2.5 and precursor gas emissions in Chapter 2 and to perform 4DVAR

assimilation of CALIOP lidar profiles in Chapter 3.

1.2.5 Machine Learning

In Chapter 4 I use the Machine Learning (ML) framework Tensorflow to generate

global high-resolution maps of probability distributions of PM2.5. Machine learning is

a broad and vague term, but generally it is is the process of determining the param-

eters to some function or algorithm that can approximate some unknown function.

The parameters are inferred from data, typically very large sets of data, often through

some iterative process. A popular method is deep learning, which is based on deep

artificial neural networks.

Artificial neural networks are ostensibly modeled on biological neurological sys-

tems. An artificial neuron outputs some function of a weighted sum of its inputs

(Rumelhart et al., 1986). A network is divided into layers, which are groups of neu-

rons that operate on the output of the previous layer. Data is fed into the network

as a vector of all the input variables; this is called the input layer. The input layer

is followed by one or more layers of artificial neurons. If artificial neurons have many

inputs from the preceding layer, the network is said to be dense. If a network has

multiple layers it is described as deep.
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Supervised learning is the process of training a machine learning model with la-

beled data, i.e., a dataset where both the input and output are known. Neural net-

works are trained by computing some objective function on their input; for numerical

data, this is typically the sum of squared difference between the network’s output

and the data you wish to match. The weights of the individual neurons are then

tuned, usually through an iterative gradient descent. In this method, the network is

initialized with random weights, and the output is computed for some subset of the

available training data. The objective function is then computed on that output and

the known target values for those samples. The local gradient of the cost function

with respect to the artificial neurons are calculated and each weight is adjusted in

the negative direction. The process is repeated, usually with different subsets of the

training data, until the objective function converges to a stable value. To ensure the

training is not “overfitting” the training data, another set of labeled data is withheld

from the training process, the evaluation data.

Recently the inevitable increase in computing power due to Moore’s law (Moore,

1998) combined with publicly available frameworks such as KERAS, Torch and Ten-

sorflow, has lead to a renaissance in machine learning research, and especially in

applying the tools to novel fields and problems. In the past 5-10 years there have

been thousands of papers published on machine learning applied to air quality.

1.3 Structure of This Thesis

This thesis is an attempt to advance our knowledge of the 3-dimensional distribution

of atmospheric aerosol by applying state of the art tools and methods to new fields or

new sources of data. The subsequent chapters will comprise work already published

or in preparation for publication.

Chapter 2 is published in the journal Environmental Science and Technology and

focuses on using a new formulation of the exposure response function to fine particu-

late matter and the adjoint of GEOS-Chem to efficiently compute the response of hu-

man health impacts to changes in sources of anthropogenic aerosol. My contribution

to that work consists of the FORTRAN code for computing the Integrated Exposure

Response (IER) based cost function and injecting its forcing terms into the adjoint.

I performed all the adjoint model runs to calculate the impacts reported, performed
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the analysis, and generated all the graphics for the publication. The IER-based cost

function I wrote has since been used in a publication quantifying the contributions

of cookstove emissions to radiative forcing and human health effects (Lacey et al.,

2017).

In Chapter 3, I apply the same tool, the adjoint of GEOS-Chem, to the task

of assimilating lidar profile data from the space-borne lidar, CALIOP. In order to

perform this 4DVAR data assimilation, I wrote FORTRAN code to ingest CALIOP

L2 lidar profiles and compute the cost function. In addition, the adjoint code base

did not include the full adjoint of sea salt. I implemented this adjoint code because

CALIOP, as an active remote-sensing instrument, is not restricted to land, and sea

salt is an important contributor to global aerosol distributions, contributing up to

30Pg of aerosol mass per year (Lewis and Scwartz, 2004).

The recent development of easy-to-use machine learning tools such as TensorFlow

has created a boom in concentration and exposure estimation for particulate mat-

ter, (Rybarczyk and Zalakeviciute, 2018). In Chapter 4, I describe the application

of recently popularized machine learning techniques to the problem of estimating

global particulate matter concentrations from a sparse set of monitoring data. I im-

plemented a Mixture of Gaussians model (Bishop, 1994) in TensorFlow to provide a

high resolution (0.01◦) global PM2.5 concentration map, complete with quantitative

uncertainty estimates. The model reproduces the surface monitoring dataset with

similar accuracy as other recently published methods but with much lower computa-

tional cost.

The final chapter will attempt to draw some conclusions from the thesis as a whole

and recommend future work to further advance the field from the these findings.



Chapter 2

Response of global particulate-matter-related mortality to

changes in local precursor emissions1

2.1 Abstract

Recent Global Burden of Disease (GBD) assessments estimated that outdoor fine-

particulate matter (PM2.5) is a causal factor in over 5% of global premature deaths.

PM2.5 is produced by a variety of direct and indirect, natural and anthropogenic pro-

cesses that complicate PM2.5 management. This study develops a proof-of-concept

method to quantify the effects on global premature mortality of changes to PM2.5

precursor emissions. Using the adjoint of the GEOS-Chem chemical transport model,

we calculated sensitivities of global PM2.5-related premature mortality to emissions

of precursor gases (SO2, NOx, NH3) and carbonaceous aerosols. We used a satellite-

derived ground-level PM2.5 dataset at approximately 10 km x 10 km resolution to

better align the exposure with population density. We used exposure-response func-

tions from the GBD project to relate mortality to exposure in the adjoint calculation.

The response of global mortality to changes in local anthropogenic emissions varied

spatially by several orders of magnitude. The largest reductions in mortality for a

1 kg km2 yr−1 decrease in emissions were for ammonia and carbonaceous aerosols in

Eastern Europe. The greatest reductions in mortality for a 10% decrease in emissions

were found for secondary inorganic sources in East Asia. In general a 10% decrease in

SO2 emissions was the most effective source to control, but regional exceptions were

found.

1Reproduced with permission from Environmental Science and Technology: Lee, Colin & Martin,
Randall & Henze, Daven & Brauer, Michael & Cohen, Aaron & Donkelaar, Aaron. (2015). Response
of Global Particulate-Matter-Related Mortality to Changes in Local Precursor Emissions. Environ-
mental science & technology. 49. 10.1021/acs.est.5b00873. Copyright 2015 American Chemical
Society.
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2.2 Introduction

Long-term exposure to fine particulate matter with an aerodynamic diameter less

than 2.5 µm (PM2.5) is associated with morbidity and mortality(Dockery et al., 1993;

Jerrett et al., 2005). PM2.5 can be produced directly by combustion or mechanical

processes, and indirectly by condensation of aerosol precursor gases. The Global Bur-

den of Disease (GBD) project estimated that exposure to ambient PM2.5 contributed

to 3.2 million (5% of the global total) premature deaths worldwide in 2010(Lim et al.,

2012). Emission control strategies can be costly and the pathways from emissions to

exposure are complex(United States Environmental Protection Agency, 1999; Krup-

nick and Morgenstern, 2002; Cox, 2012). It is, therefore, important to determine how

future changes in PM2.5 sources would affect health outcomes. A variety of techniques

have been employed to estimate the impacts of emissions on the attributable fraction

of mortality due to PM2.5 exposure(Bell et al., 2011). In general, exposure is esti-

mated at some baseline and compared with exposure estimated after a perturbation

in emissions. This comparison can be based on measured concentrations before and

after a natural experiment such as the strict air-quality controls enacted for the 2008

Beijing Olympics(Li et al., 2010; Hou et al., 2010; Wu et al., 2010), or the U.S. Clean

Air Act(United States Environmental Protection Agency, 1997; Chay et al., 2003).

These types of studies are limited by the regional scope of the policy.

Alternatively, a chemical transport model can be used to calculate atmospheric

concentrations based on different emissions scenarios. For example, Anenberg et al.

(2010) used two model simulations, one with modern emissions and one with prein-

dustrial emissions, to estimate the additional burden of disease produced by modern

emissions for the whole world. West et al. (2009) perturbed NOx emissions separately
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in each of nine global regions to determine regional impacts on global O3 exposure,

while Anenberg et al. (2009) similarly perturbed ozone precursor emissions together

in each of five global regions. Similar methods have been used to test other specific

scenarios(Liu et al., 2009; Saikawa et al., 2011). While this approach has provided

valuable insights, it can be computationally prohibitive to examine more than a few

specific circumstances. Adjoint models allow for the simultaneous computation of an

entire field (e.g. > 10,000) of responses and thus explore novel policy-relevant ques-

tions. The recent development of the adjoint of a global chemical transport model

to include aerosols(Henze et al., 2007) offers an exciting opportunity to efficiently

determine the responses of global mortality to changes in local emissions.

In adjoint modeling a change in the final state is transformed backwards in time

to determine the sensitivities of the final state to model inputs, such as emissions.

Recently, adjoint chemical transport models have been used to constrain estimates of

sources of PM2.5 (Henze et al., 2009; Wang et al., 2012; Xu et al., 2013; Koo et al.,

2013). Pappin and Hakami (2013) used the gas-phase chemistry adjoint of a regional

model (CMAQ) to determine the benefits of reducing emissions that contribute to

trace-gas air pollutant exposure in Canada and the United States, demonstrating the

utility of this novel tool in health-impact studies. The relationship between gaseous

emissions and PM2.5 concentrations is complex. The main species that result in sec-

ondary formation of inorganic PM2.5 are sulphur dioxide (SO2), nitrogen oxides (NOx

= NO + NO2) and ammonia (NH3). In the atmosphere, SO2 is rapidly oxidized

to form sulphuric acid (H2SO4), which readily condenses to form sulphate (SO2−
4 )

PM2.5. NOx is oxidized to nitric acid (HNO3), which can exist in the gas phase. NH3

preferentially reacts with H2SO4 and remaining NH3 will react with HNO3 to form

ammonium nitrate (NH4NO3) particles. The relationship between any one of the pre-

cursor gases and PM2.5 concentrations is therefore a function of the concentrations of

the others. Furthermore, secondary inorganic aerosols are part of a complex mixture

of other PM2.5 components, some of which are more readily modifiable (e.g., primary

carbonaceous) than others (e.g., mineral dust, sea salt). Over the past decade SO2

and NOx emissions as well as PM2.5 concentrations have decreased in North America

and Europe, in contrast with increases in South Asia and East Asia(Wang et al.,

2012; Klimont et al., 2013; Boys et al., 2014; van Donkelaar et al., 2015). Globally
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NH3 emissions are more uncertain and generally increasing (Galloway et al., 2008;

Wang et al., 2011; Kurokawa et al., 2013).

Here, we introduce and evaluate the capability to determine the response of global

PM2.5-related mortality to local changes in inorganic PM2.5 precursor gases and pri-

mary carbonaceous emissions through use of a full (gas- and particulate-phase) adjoint

model.

2.3 Methods

To calculate responses of global premature mortality to changes in PM2.5 sources, we

employed the GEOS-Chem global chemical transport model(Bey et al., 2001; Park

et al., 2004) and its adjoint(Henze et al., 2007). We included information from a

satellite-derived PM2.5 climatology(van Donkelaar et al., 2010) to improve the ac-

curacy and spatial resolution of the model exposure, as described below. We then

calculated global premature mortality at the country level based on the exposure-

response relationship of the GBD project as presented by Burnett et al. (2014).

2.3.1 Estimation of exposure by satellite remote sensing

Adjoint modeling requires an initial estimate from which to calculate responses. The

initial ambient PM2.5 concentrations were obtained from satellite remote sensing and

modeling. Model spatial resolution has been shown to have a significant effect on pre-

dicted health outcomes; Punger and West (2013) found a 30% difference in premature

mortality due to PM2.5 exposure calculated at 200 km resolution compared with 12

km resolution. Satellite remote sensing offers global observational information about

PM2.5 through measurement of aerosol optical depth (AOD). van Donkelaar et al.

(2010) produced a long-term (2001-2006) global surface PM2.5 dataset at a resolution

of 0.1◦ × 0.1◦ (∼ 10km × 10km), by combining satellite AOD measurements with

knowledge of the relationship between surface PM2.5 and AOD from GEOS-Chem

simulations and found that these data well represented PM2.5 monitors in North

America (r = 0.77, slope= 1.07, n = 1057) and elsewhere in the world (r = 0.83,

slope= 0.86, n = 244). These data were used, along with surface measurements and

chemical transport model estimates, in the GBD project as described by Brauer et al.

(2012). We similarly used this information here. Supporting Information (SI) Table
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S-1 quantifies how the spatial resolution of the PM2.5 concentrations affects exposure.

We further scaled these satellite values by 1.16 to account for their overall bias versus

global ground-based PM2.5 monitors as found by van Donkelaar et al. (2010). We then

turn to a chemical transport model (GEOS-Chem; www.geos-chem.org) to temporally

distribute the satellite-derived PM2.5 dataset to be consistent with the processes used

in the adjoint model. The GEOS-Chem simulation solves for atmospheric transport

and chemistry of 72 chemical families, including PM2.5 precursors such as SO2, NH3

and NOx, based on emissions and assimilated meteorology; a full description of the

simulation is available in section S-2 and is evaluated in section S-3. Emissions are in

Table S-2. We focused on the year 2005 for which mortality and satellite data were

readily available.

2.3.2 Adjoint modeling to relate mortality to PM2.5 sources

We used the adjoint of GEOS-Chem to determine the response of global PM2.5-related

mortality to changes in emissions of carbonaceous particles and inorganic precursor

gases that form a large portion of ambient PM2.5. The GEOS-Chem adjoint(Henze

et al., 2007) allows for efficient computation of the partial derivatives of some scalar-

valued function of the model output, the cost function, with respect to input con-

ditions. In this work we extended the GEOS-Chem adjoint to include calculation

of sensitivity of global mortality to PM2.5 precursor emissions. We defined a cost

function (SI section S-5) as the total global premature mortality based on average

ambient PM2.5 concentrations as described in section 2.3.1. Then we used the adjoint

model to calculate for the entire year the field of partial derivatives of this cost func-

tion with respect to the modeled atmospheric state at each timestep in each model

grid box, which we refer to as the adjoint forcing. The adjoint evolves these forcings

chemically and through transport backwards in time towards emissions. The out-

puts provided by the adjoint, the sensitivities, are the partial derivatives of the cost

function with respect to emissions in each location. In this way, it can be said that

the adjoint method is a receptor-oriented approach, which calculates the regionally

distributed influences on a single outcome. After computing the model sensitivities,

we multiplied the field by a constant change in emissions (either 1 kg km−2 yr−1 or

10%), to provide the model response of global PM2.5-related mortality to a change
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(increase or decrease) in emissions. We refer to the responses in each location (a

single 2◦ × 2.5◦ GEOS-Chem grid box) as local responses to differentiate them from

regional responses aggregated over multiple grid boxes.

For this study, we calculated responses to absolute changes in NH3, SO2 and NOx

(inorganic precursor gases), as well as primary carbonaceous aerosols of organic mat-

ter (OM) and black carbon (BC). We considered responses to relative changes in

emissions of precursor gases from mainly land-based human activities and primary

carbonaceous aerosols from combustion of fossil fuels, open biomass burning and

biofuel burning. We focused on these sources because they comprise the dominant,

readily modifiable sources that contribute to PM2.5 exposure. These groupings also

suggest specific control policies, as they tend to come from different human activities.

We did not calculate responses to changes in mineral dust, secondary organic aerosol,

or sea salt, which are more challenging to modify through policy. Additionally, the

current adjoint model does not include secondary organic aerosol. This widely-used

model is developing rapidly to represent ongoing scientific advances in the challeng-

ing area of representing PM2.5 concentrations and formation processes. The initial

results presented in this proof-of-concept study are expected to evolve with ongoing

development.

2.3.3 Global mortality attributable to PM2.5 exposure

The ambient concentrations developed in section 2.3.1 were applied to a health-impact

function to calculate premature mortality for the adjoint cost function described in

section 2.3.2. Following Burnett et al. (2014), we calculated the burden of disease

due to PM2.5 as the number of deaths attributable to four leading causes: ischaemic

heart disease (IHD), chronic obstructive pulmonary disease (COPD), cerebro-vascular

disease (CEV) and lung cancer (LC). Burnett et al. (2014) used data from studies

including outdoor air pollution, household air pollution and first- and second-hand

smoking to provide a concentration-response relationship for concentrations that span

the entire range of observed long-term PM2.5 concentrations throughout the world.

We focused on this concentration-response curve as the most current representation of

the disease-specific outcomes for the range of concentrations worldwide. The relative
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risk (RR) was calculated as:

RR =

⎧⎨⎩1 + α
(︁
1 − e−β(x−x0)

ρ)︁
, ifx > x0

1, otherwise
(2.1)

where x is the time-averaged PM2.5 concentration at 10 km resolution, x0 is referred

to as the theoretical minimum risk exposure (TMRE), which is defined as the con-

centration below which it is assumed there are no health effects, and α, β, and ρ are

parameters describing the shape of the exposure-response curve. For each cause we

implemented the RR function as in Eq 2.1 using parameters estimated from data from

the Monte Carlo simulations performed by Burnett et al. (2014). Specific parameters

and graphs of the curves are in SI Section S-6. In order to examine the sensitivity of

our results to our choice of health-impact function, we compared the results using the

GBD health-impact function against those of two others: 1) curves fit to the GBD

RR data with no TMRE

RR = 1 + α
(︁
1 − e−βxρ)︁

(2.2)

and 2) assuming a log-linear response function

RR = eβx (2.3)

with the same parameters as in Anenberg et al. (2010).

From these grid-level RRs, we calculated country-level population-weighted RRs,

using population data from the Gridded Population of the World dataset(for Interna-

tional Earth Science Information Network , CIESIN). We then converted these RRs

to attributable fractions (AFs) using Eq 4:

AF =
RR − 1

RR
= 1 − 1

RR
(2.4)

We used country-level demographically-weighted, cause-specific mortality data, M,

from the GBD Project(Lozano et al., 2012), GPW population, P, and the AF to cal-

culate the cost function, J, global premature mortality attributable to PM2.5 exposure:

J =
countries∑︂

k

(Pk ×Mk × AFk) (2.5)

We calculated adjoint forcing, the derivative of J with respect to model concen-

trations, at the 2◦×2.5◦ GEOS-Chem resolution. Following the methods of the GBD
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project, we assumed that the health effects of exposure to PM2.5 are independent of

source and composition(Lim et al., 2012). PM2.5 mass is the most robust indicator of

mortality impacts in epidemiologic cohort studies of long-term exposure(Chen et al.,

2008). This assumption was followed in the GBD, is part of WHO air quality guide-

lines and the recent International Agency for Research on Cancer’s classification of

PM2.5 as a carcinogen(Loomis et al., 2013). This assumption also implies the assump-

tion that each of the diseases has the same component-specific sensitivity, which is

likely to also be an oversimplification. Exposure is typically a mixture including both

primary and secondary PM from a multitude of sources. SI S-7 presents an evaluation

of the adjoint responses. Section S-8 describes our uncertainty analysis.

2.4 Results

Figure 2.1 shows the modeled marginal damages, that is, the response of global mor-

tality to a 1 kg km−2 yr−1 change in emissions at 2◦ × 2.5◦ resolution. At the level

of individual grid cells, the responses ranged from -0.1 premature deaths for NOx to

+15 premature deaths for NH3. The highest marginal damages were for NH3 around

Moscow (15 deaths kg−1 km2 yr). Primary carbonaceous aerosols had the strongest

overall responses of the species we studied, however, marginal damages from NH3

emissions in eastern Europe and eastern North America exceeded those from organic

matter. NH3 had the strongest response of the secondary inorganic precursors. Re-

sponses to absolute changes in organic matter were higher than to black carbon due

to differences in hygroscopicity (1 kg of emitted dry OM absorbs more atmospheric

water that is retained by PM2.5 concentrations at 35% relative humidity).

Marginal damages were generally positive and varied smoothly in space. The

overall spatial patterns resembled population density. This was most true for primary

carbonaceous aerosols (R=0.71) and least true for ammonia (R=0.23), which had a

lower response in Northern India than would be expected by following population

density. Small positive marginal damages were seen in areas without population,

such as over coastal oceans, due to atmospheric transport.

Negative marginal damages, that is, a net reduction in global mortality caused

by an increase in emissions, were seen only for NOx emissions and only in two areas:

off the northwestern coast of New Guinea and to the southeast of Iceland, due to
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Figure 2.1: Annual response of global mortality (∆Mglobal) attributable to a
1 kg km−2 yr−1 change in local PM2.5 precursor emissions. The color in each location
indicates how increasing emissions by 1 kg km−2 yr−1 in that location would change
global mortality. Color scale is logarithmic. Numbers in bottom right corner represent
range of sensitivities for each map. Solid lines indicate GBD region boundaries.
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nonlinearities in atmospheric chemistry.

Table 2.1 and Figure S3 show marginal damages aggregated by GBD region. The

highest modeled regional response to a 1 kg km−2 yr−1 change was for NH3 in Eastern

Europe (290 attributable deaths kg−1 km2 yr). In all other regions except for Central

Asia, primary organic matter had the highest modeled response of the emissions we

studied. The marginal damages of BC, OM, and SO2 emissions in South Asia were

within 20% of those of East Asia. However, the modeled response of global mortality

to NH3 emissions in South Asia was an order of magnitude lower than in East Asia

(6.4 vs. 56 premature deaths per kg NH3 km−2 yr−1).

Figure 2.2 shows the relative response, or the response in global mortality to a

10% change in emissions at 2◦ × 2.5◦ resolution. The responses ranged from -0.5

(NOx) to 490 (SO2) global attributable mortalities. Responses to relative changes

in emissions of the three inorganic precursors generally exceeded those for primary

carbonaceous emissions.

Negative responses were small and again limited to NOx emissions near New

Guinea and Iceland.

Table 2.2 and Figure S4 show modeled responses to a 10% change in emissions

aggregated by GBD region. The highest response was for SO2 in East Asia (10,000

deaths). No single emission type dominated. East Asian emissions produced the

highest response for all 5 emission types. Responses were noteworthy for Western

Europe for NOx (3,900 deaths) and South Asia for SO2 emissions (5,600 deaths).

Table S-4 shows the rankings of the top 5 regions. Eastern Europe ranked first or

second in marginal damages for all species we studied. East Asia ranked highest in

all relative sensitivities.

For the health-impact function without a TMRE (Eq 2.2), the spatial pattern of

the responses was nearly identical (R=0.98) to those presented here, with differences

in magnitude of up to 20%.

The results obtained using a log-linear health-impact function also were spatially

similar (R=0.85) to the results using the base GBD health-impact function, however

responses in South and East Asia were roughly 60% stronger.
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Table 2.1: Global responses to absolute changes in regional emissions. Annual global pre-
mature mortalities prevented by reducing emissions by 1 kg km−2 yr−1 in each of 21 GBD
regions.

Region Pop(000s) NH3 NOx SO2 BC* OM†

Asia Pacific,
High Income

176979 13 (1.9)‡ 2.0 (0.23) 3.2 (0.31) 13 (1.7) 16 (2.0)

Asia
Central 85845 83 (7.3) 12 (0.61) 21 (1.1) 52 (3.4) 67 (4.3)
East 1347974 56 (2.2) 35 (1.6) 28 (1.0) 77 (3.2) 97 (4.0)
South 1447648 6.4 (0.41) 16 (0.84) 34 (1.7) 72 (3.7) 91 (4.7)
Southeast 579605 3.6 (0.38) 8.7 (0.49) 20 (1.3) 62 (4.5) 76 (5.4)
Australasia 24015 0.015 (0.0011) 0.47 (0.23) 5.1 (0.26) 4.1 (0.23) 5.5 (0.31)
Caribbean 33239 1.0 (0.32) 1.00 (0.13) 1.8 (0.21) 5.2 (0.67) 6.5 (0.83)
Europe
Central 132907 36 (5.3) 10 (1.6) 11 (1.4) 39 (5.7) 49 (7.1)
Eastern 208488 290 (28) 33 (2.7) 41 (2.6) 160 (13) 200 (17)
Western 400833 60 (3.9) 13 (7.4) 27 (1.6) 90 (6.2) 110 (7.7)
Latin America
Andean 51697 0.64 (0.087) 1.1 (0.14) 1.3 (0.15) 3.7 (0.45) 4.6 (0.55)
Central 219986 2.5 (0.27) 4.2 (0.38) 8.4 (0.88) 27 (2.9) 33 (3.5)
Southern 59838 1.9 (0.35) 1.3 (0.29) 2.1 (0.35) 6.6 (1.6) 8.2 (1.9)
Tropical 185912 0.29 (0.45) 0.49 (0.29) 3.1 (0.74) 5.5 (3.3) 6.9 (4.0)
North Africa
/Middle East

395799 23 (1.0) 10 (0.39) 32 (0.96) 41 (1.6) 54 (2.0)

North America,
High Income

326001 95 (4.7) 18 (0.88) 32 (1.4) 87 (5.2) 110 (6.4)

Oceania 5885 0.087 (0.057) 0.070 (0.065) 0.18 (0.049) 0.50 (0.18) 0.62 (0.21)
Sub-Saharan Africa
Central 86332 0.28 (0.043) 0.12 (0.015) 2.0 (0.14) 3.6 (0.31) 4.5 (0.38)
Eastern 306682 0.52 (0.041) 0.58 (0.039) 6.5 (0.30) 11 (0.85) 13 (1.0)
Southern 65633 0.66 (0.15) 0.12 (0.024) 1.2 (0.12) 2.1 (0.35) 2.7 (0.43)
Western 281349 0.97 (0.14) 1.6 (0.12) 5.2 (0.34) 5.3 (0.52) 6.9 (0.65)
Total 6422647 680 (31) 170 (8.3) 290 (4.8) 760 (19) 960 (24)

* BC represents primary black carbon aerosols from fossil fuel, biomass, and biofuel combustion.
† OM represents primary organic matter aerosols from fossil fuel, biomass, and biofuel combustion.
‡ Numbers in brackets represent ±1 error standard deviation.
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Figure 2.2: Annual response of global mortality (∆Mglobal) attributable to a 10%
change in local PM2.5 precursor emissions. The color in each location indicates how
increasing emissions by 10% in that location would change global mortality. Color
scale is logarithmic. Numbers in bottom right corner represent range of sensitivities
for each map. Solid lines indicate GBD region boundaries.
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Table 2.2: Global responses to relative changes in regional emissions. Annual global premature
mortalities prevented by reducing emissions by 10% in each of 21 GBD regions.

Region Pop(000s) NH3 NOx SO2 BCa OMb

Asia Pacific,
High Income

176979 730 (150)c 730 (140) 500 (69) 120 (26) 240 (51)

Asia
Central 85845 400 (57) 180 (24) 860 (97) 16 (1.7) 160 (18)
East 1347974 5800 (440) 8000 (670) 10000 (730) 550 (41) 2300 (170)
South 1447648 500 (42) 1600 (130) 5600 (460) 330 (25) 2000 (160)
Southeast 579605 89 (8.4) 430 (36) 1100 (120) 170 (19) 1100 (110)
Australasia 24015 0.066 (0.010) 2.1 (0.24) 74 (11) 3.3 (0.49) 57 (8.7)
Caribbean 33239 8.2 (1.9) 34 (5.1) 99 (15) 2.5 (0.34) 15 (2.1)
Europe
Central 132907 2400 (380) 2100 (340) 2800 (420) 72 (13) 350 (61)
Eastern 208488 5400 (740) 2600 (370) 3200 (420) 100 (25) 670 (140)
Western 400833 4000 (360) 3900 (460) 2200 (200) 150 (16) 360 (38)
Latin America
Andean 51697 9.4 (1.5) 18 (2.3) 110 (27) 2.0 (0.39) 17 (3.8)
Central 219986 84 (17) 290 (61) 470 (90) 25 (4.2) 140 (22)
Southern 59838 29 (6.6) 37 (11) 200 (49) 6.8 (5.3) 28 (17)
Tropical 185912 14 (26) 38 (52) 140 (100) 11 (15) 85 (70)
North Africa
/Middle East

395799 310 (22) 270 (16) 1900 (100) 18 (1.4) 74 (4.8)

North America,
High Income

326001 2600 (170) 1800 (120) 2100 (140) 150 (16) 620 (49)

Oceania 5885 0.50 (0.62) 0.063 (0.14) 0.14 (0.062) 0.018 (0.0062) 0.14 (0.047)
Sub-Saharan Africa
Central 86332 0.96 (0.18) 0.70 (0.16) 22 (5.3) 5.6 (0.58) 90 (8.3)
Eastern 306682 6.1 (0.59) 1.5 (0.19) 40 (6.8) 13 (1.6) 160 (16)
Southern 65633 13 (3.7) 10 (6.2) 96 (27) 2.4 (0.75) 19 (5.0)
Western 281349 12 (5.9) 8.1 (2.8) 48 (19) 5.1 (1.0) 70 (13)
Total 6422647 22000 (1000) 22000 (990) 32000 (1100) 1800 (71) 8500 (320)

a BC represents primary black carbon aerosols from fossil fuel, biomass, and biofuel combustion.
b OM represents primary organic matter aerosols from fossil fuel, biomass, and biofuel combustion.
c Numbers in brackets represent ±1 error standard deviation.
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2.5 Discussion

This study examined the response of global PM2.5-related mortality to changes in

precursor emissions. The responses presented here are based on current scientific

understanding of the factors affecting global PM2.5 concentrations, combined with

current scientific understanding of PM2.5-related mortality. The exposure distribu-

tion, exposure-response functions, and mortality distribution used in this study build

from the substantial effort undertaken as part of the GBD project. The responses gen-

erated using this novel method can therefore highlight some important geographical

patterns, such as the large global benefits from reducing South Asian SO2 emissions

instead of NH3 emissions. We presented responses to both absolute and relative

changes in emissions. Responses to absolute changes (i.e., marginal damages) are

more easily interpreted since they are less dependent on the initial emission rates.

Responses to relative changes are of more relevance for some policy applications such

as reducing vehicle-miles traveled.

In general, the response of global mortality to changes in precursor emissions was

proportional to population distribution. Responses were enhanced by high relevant

baseline mortality rates in Eastern Europe, East Asia, and Indonesia. The relation-

ship of population with relative responses was stronger than with marginal damages

because emissions tend to be correlated with population. Precursor emissions near

dense populations have the largest opportunity to affect exposure. Long-range trans-

port also can be important and has been extensively studied(on Hemispheric Trans-

port of Air Pollution, 2010). Some indication of the distances over which transport

affects exposure can be seen in Figure 2.1, where responses > 0.01 death kg−1 km2 yr

can be seen over the ocean hundreds of kilometers from populated shorelines.

Striking regional differences were found in responses. Global mortality was 2-10

times less sensitive to relative changes in emissions from South Asia than from East

Asia, in part because emissions and relevant baseline mortality rates in the South

Asia region tend to be lower. Eastern Europe ranked first in marginal damages to

all emissions studied except SO2, in part due to high regional relevant baseline mor-

tality rates for the diseases related to air pollution. Furthermore, the baseline PM2.5

concentrations in Eastern Europe make the RR highly sensitive (4–10 times more

sensitive than Eastern China or Northern India) to changes in PM2.5 concentrations
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because the slope of the RR curve decreases with increasing PM2.5 concentrations

(SI Figure S-2). Primary carbonaceous aerosols had the strongest overall marginal

damages because carbonaceous material is emitted as particulate matter, whereas

with secondary inorganics, only in limiting cases will precursor gases undergo 100%

conversion to the aerosol phase. Fann et al. (2009) similarly found large marginal

damages from carbonaceous emissions compared with emissions from secondary in-

organic precursors.

NH3 marginal impact was both the strongest response of the secondary inorganic

precursors and the least related to population. Formation of PM2.5 as (NH4)2SO4,

NH4HSO4, or NH4NO3 yields more mass formed than emitted. Low responses in

northern India arise from a large reservoir of NH3 that has already reacted with

the available SO2−
4 and NO3−. Our results are consistent with a recent European

Topic Centre review that found overall, NH3 was likely to be the most important

PM2.5 precursor species for continental Europe and especially the United Kingdom

(Beauchamp et al., 2013). Nonetheless, our NH3 responses may be greater than actual

responses in maritime-influenced regions such as the Mediterranean, because the Na+-

NO3− reaction (Athanasopoulou et al.) is not included in the aerosol thermodynamics

in the model version we used. Our NH3 sensitivities in Europe were 0.4 to 0.8 of the

original values for the month of January when we decreased NOx emissions by 50%

to simulate losing NO−
3 to NaNO3.

Our finite difference tests (section S-7) indicated that conclusions drawn from

these responses were as good as those calculated by perturbing emissions to the

forward model for a range of changes in emissions up to at least 10% from current

rates. Moreover, these local sensitivities for several species were calculated using

approximately three times the computing resources of a single forward model run.

Computing local sensitivities by the finite-difference method of perturbing emissions

would require tens of thousands of forward model runs.

The dominant sources of uncertainty in the simulation responses arose from rep-

resentation of PM2.5-formation processes and from uncertainty in health-impact func-

tion parameters (section S-8). The quality of the results from this method will con-

tinue to improve as results from region-specific PM2.5 mortality cohort studies become

available, and as higher-resolution simulations better capture the relation between



32

PM2.5 and emissions(Cohan and Napelenok, 2011).

It is possible that the model has missed not only the magnitude, but also the sign

of the true sensitivity, as a result of nonlinearities in the PM2.5 formation process and

differences between the true state of the atmosphere and the modeled state caused,

for example, by processes not included in the model. In the future, the very tool we

used in this study, the adjoint, could be used to assimilate observations, improving

the accuracy of emission inventories and model parameters so that the modeled state

better represents the true state (Xu et al., 2013).

The exposure response function produced by Burnett et al. (2014) included a

TMRE. In order to represent this, our fit parameters included a TMRE ranging

from 7.0 for IHD to 8.4 for stroke. Epidemiological research to date has not found

an exposure threshold where PM2.5 reductions provided no benefit (Correia et al.,

2013; Crouse et al., 2012). For example, a recent population-based study in Canada

observed no deviation from linearity in the relationship between concentrations and

mortality even at concentrations as low as 5 µg m−3, which is approaching the lowest

measured concentrations in populated areas (Crouse et al., 2012). Eliminating the

TMRE linearly changed our results (R=0.98), indicating that the spatial relationships

we found are robust.

Like the GBD project, this study assumed that the health effects of exposure to

PM2.5 are independent of source or composition. While this may not be true, the cur-

rent evidence is insufficient to determine composition-dependent exposure-response

curves. The role of chemical composition as a determinant of toxicity attributable

to ambient particulate matter is an active research area (Heal et al., 2012; Kelly and

Fussell, 2012). Future changes to exposure-response functions, which incorporate in-

formation about PM2.5 composition, could be readily incorporated into the framework

presented here, for example by applying component-specific concentration-response

functions. Other metrics such as disability-adjusted life years or monetary health

benefits could also readily be implemented.

We calculated these sensitivities based on population distributions, demographics,

and relevant baseline mortality rates from the year 2005, and for that reason our

estimates pertain to the burden of disease attributable to exposure to PM2.5 in 2005

and should not be assumed to reflect the burden that might be avoided in the future
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(Murray et al., 2004). Changes to the burden of disease due to exposure to PM2.5

that might be expected to occur in the future as a result of changes in the relative

contribution of various pollution sources would depend importantly on future cause-

specific mortality rates for cardiovascular and respiratory diseases, and lung cancer.

These rates changed dramatically between 1990 and 2010 and would be expected to

change further in the future due to changes in population age distributions and other

factors (Lozano et al., 2012; Mathers and Loncar, 2006). Increasing urbanization is

also likely to change exposure to particulate matter (Grimm et al., 2008). Therefore,

it is advisable to periodically update this analysis to reflect current demographics and

exposure in future.

In this study, changes in global mortality were not attributed to a particular area.

These results are, therefore, most relevant to global policy. In order to determine how

mortality in a specific area is affected by changes in another (or the same) specific

area, the adjoint would need to be run with the cost function defined for the area of

interest. This is planned for future study of country-specific mortality.

In summary, we used the adjoint of the GEOS-Chem chemical transport model to

efficiently determine the response of global mortality to changes in local emissions. We

found that global mortality exhibited dramatic differences in sensitivity to emissions

from different regions or different emission types. Overall, global mortality was more

sensitive to absolute changes in emissions of primary carbonaceous aerosols than of

secondary inorganic precursors. The highest responses for relative changes were found

in secondary inorganic precursor emissions from China and in SO2 emissions from

India. These responses imply regionally dependent policies, even when the regions

have similar populations. For example, controls on agricultural emissions of NH3

in East Asia could prevent 10 times more premature deaths than would these same

controls in South Asia. Our results also suggest that the benefits of China’s recent

controls on SO2 emissions may be partially offset by rising NOx and NH3 emissions.



Chapter 3

Insights into simulated global aerosol distribution and

processes from assimilation of space-based lidar profiles

3.1 Abstract

Atmospheric aerosols are frequently subject to long range transport > 1000 km. To

study the pathways from sources to endpoints, it is important to properly charac-

terise the global 3-dimensional distributions of aerosols. While other studies have

used the space-borne lidar CALIOP as a validation tool or for local assimilations, we

assimilated CALIOP aerosol extinction profiles for the entire globe for January and

June of 2007, although there is no reason that the framework we present cannot be

extended in time. Using the adjoint of GEOS-Chem, we assimilated CALIOP lidar

profiles at 532 nm. In order to test the importance of emissions versus initial model

conditions, we performed two separate assimilations, one optimising the models initial

state (initial conditions; ICs) with a 24-hour assimilation window, and another opti-

mising primary aerosol emissions (EMs) with a 31-day assimilation window. Because

of the influence of ocean emissions on this study, we also implemented the adjoint of

sea-salt chemistry and emissions, which was previously unimplemented.

Following the methods of the AEROCOM study, we compared mean extinction

height (Zα) between our baseline simulation and the two optimised simulations to

CALIOP observed Zα and found that both optimisations improved the slope and

offset of a linear fit across AEROCOM regions, but ICs improved agreement (R =

0.78) compared to the baseline (R = 0.72) while EMs decreased agreement (R =

0.65).

In a global comparison of AOD, the optimised emissions greatly improved agree-

ment with observations in the Sahara in January, but failed to capture the overall

underestimate of AOD seen almost everywhere. The IC optimisation greatly im-

proved AOD globally but showed only modest improvement over the Sahara. These

34
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same situations are borne out by examining the profiles; optimised emissions re-

produced observed profiles in the Sahara in January well, but this decreased model

agreement over the mid-Atlantic ocean downwind. Conversely, the optimised ICs

did only slightly better than the baseline model in the Sahara, but did not decrease

agreement downwind. These results indicate a bias in Saharan dust emissions, but

also a possible transport issue in the model; at present it appears to be impossible

to decrease aerosol loading over the Sahara to improve agreement with observations

without also decreasing loading downwind over the Atlantic, worsening agreement

with observations.

3.2 Introduction

The 3-dimensional global distribution of aerosols has wide-ranging impacts on cli-

mate and air quality processes. Aerosols have positive and negative climate forcing

implications in the short and long terms, (e.g., Boucher et al., 2013a). Some classes of

aerosols, especially fine particulate matter with an aerodynamic size less than 2.5 µm

(PM2.5) are an important contributor to global premature mortality and morbidity

(e.g., Cohen et al., 2015). Sources of PM2.5 are complex and the impacts of aerosols

are often felt far away from the sources, making it important to properly characterise

the transformation and transportation of aerosol through its lifetime. Understanding

and predicting the 3D distribution of aerosols is also important for the interpretation

of columnar satellite observations (van Donkelaar et al., 2010). Global in situ moni-

toring of PM2.5 concentrations, while improving, remains sparse in many regions, and

only provides a view of surface concentrations. Interpretation of satellite measure-

ments of the aerosol vertical profile could yield valuable information about processes

affecting the global 3D aerosol distribution.

GEOS-Chem is a global chemical transport model (CTM) based on assimilated

meteorology from either the GEOS-FP or MERRA-2 reanalyses (Bey et al., 2001).

Transport is performed by the TPCORE algorithm (Lin and Rood, 1996). The

model includes 72-chemical tracers including primary carbonaceous, dust and sea-

salt aerosols, and secondary inorganic aerosol precursor gases, sulphate, nitrate and

ammonia. The model runs globally at 4◦ × 5◦ or 2◦ × 2.5◦ resolution, with nested

grids at higher spatial resolutions available at many locations. Global emissions are
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provided by a number of inventories but are overwritten by regional inventories where

available.

The GEOS-Chem adjoint is a complimentary set of equations to the forward

GEOS-Chem CTM. The adjoint model allows for the computation of sensitivities of

a scalar-valued cost function with respect to model boundary conditions, i.e., tracer

concentrations at timestep 0, or emissions. 4DVAR data assimilation is a technique

for combining numerical modelling with observational data which allows for sparse

information to be spread through space and time by using a model adjoint (Wang

et al., 2001). The technique is an iterative algorithm that uses the adjoint sensitivities

to find model inputs which produce the simulation output that best matches a set of

observations, given the uncertainties in the observations and model output.

The Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument is a

space-borne lidar aboard the Cloud-Aerosol Lidar and Infrared Pathfinder (CALIPSO)

satellite, launched in 2006 (Winker et al., 2009). CALIOP measurements of backscat-

tered laser pulses offer height-resolved information about aerosol concentrations dur-

ing both the day and night. CALIOP is also able to see through optically thin features

which may otherwise confound passive measurements. CALIOP profiles have been

used to validate other satellite retrievals, (e.g., Gautam et al., 2013; Clarisse et al.,

2014), evaluate models, (e.g., Liu et al., 2011; Geng et al., 2015), and track plumes

aloft, (e.g., Yumimoto et al., 2009; Ford and Heald, 2012); to measure backscatter

from particles and phytoplankton suspended in the top layer of the ocean (Behrenfeld

et al., 2013); and to improve other satellite aerosol products, for example, in cloud

detection and filtering (Toth et al., 2013).

CALIOP and ground-based lidar data have been used in data assimilation previ-

ously. Yumimoto et al. (2007) assimilated a ground-based lidar network in Japan to

provide improved estimates of Asian desert dust emissions. Sekiyama et al. (2009,

2011) used an 4DVAR enKF method to also retrieve Asian desert dust emissions dur-

ing different seasons and meteorological conditions. Zhang et al. (2014) used CALIOP

in a suite of satellite measurements to improve global distribution of aerosols in the

NAAPS transport model, but CALIOP data was used only to provide a relative ver-

tical distribution. Lynch et al. (2016) used NAAPS to assimilate MODIS AOD for

an operational aerosol forecast. Both of these studies used the NAAPS model, which
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does not include chemistry such as SIA formation (Witek et al., 2007). Details of op-

erational assimilation schemes from NASA’s Global Modelling and Assimilation Office

(GMAO) and the European Centre for Medium-Range Weather Forecasts (ECMWF)

are difficult to find, but it does not appear that CALIPSO/CALIOP profiles are cur-

rently being assimilated into any operational product.

Previous global data assimilation studies of CALIOP lidar profiles have focused on

using aerosol transport models to constrain emissions of mineral dust. The adjoint

of GEOS-Chem allows for not only transport of dust, but for the assimilation to

account for chemically active species (Henze et al., 2007). In addition to emissions

inputs, simulations also rely on an initial state, which can be adjusted to reproduce

observations. Because CALIOP profiles provide data about the vertical as well as

the horizontal distribution, valuable insight can be gained by examining how the

assimilation optimises not only the emissions, which typically come from the Earth’s

surface, but also the 3D initial state from which the model state evolves over time. At

the time of writing, the adjoint of GEOS-Chem is not capable of optimising both these

sets of input parameters simultaneously, although that feature is under development.

Similar dual parameter optimisations have been performed with a high-resolution

nested simulation to optimise both emissions in the high resolution domain and the

low-resolution boundary conditions used as input (Wecht et al., 2014; Jiang et al.,

2015), however these studies were with gases, not aerosols, and optimised only the

3-dimensional model state in a lateral ring around the nested domain. Both studies

mentioned difficulties in setting the optimisation scheme meta-parameters to balance

the contributions of emissions and boundary conditions, an issue which is likely to

be exacerbated by trying to optimise not only a small 3-D area but the whole global

grid simultaneously with emissions. Therefore, it is important to understand how

vertical and horizontal information contributes separately to these two sets of input

parameters.

Another advantage of CALIOP profiles is the ability to penetrate optically thin

clouds, to gain a unique view of areas invisible to passive remote sensing. Grythe

et al. (2014) showed that the parts of the ocean which are least well measured by in

situ monitoring are also areas which are often cloud covered. That study also showed

a -45% bias versus a global sea-salt observation data set when using the sea-salt
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production scheme described by Jaeglé et al. (2011), which is the same scheme used

in GEOS-Chem. In general, global sea-salt is poorly constrained with global annual

emissions from commonly used source functions ranging 3 orders of magnitude from

1.83 to 2,444 Pg/yr (Grythe et al., 2014, Table 2).

In this study, I present a proof-of-concept 4DVAR data assimilation of CALIOP

L2 extinction profiles at 532 nm. Because it is difficult to find independent height-

resolved measurements of aerosol extinction, I validate the method by comparing the

model results after assimilation to other CALIOP profiles not used in the assimilation.

I used the assimilation framework to separately optimise model initial conditions or

emissions. To perform these tasks, I implemented a module for the adjoint of GEOS-

Chem to read in CALIOP Level-2 (L2) aerosol extinction profiles at 532nm. Prior

to this study, chemistry, emissions and deposition was available in the adjoint for

the aerosol and precursor species we used, except for sea-salt aerosol (SSA); only

the transport of SSA was implemented in the GEOS-Chem adjoint. In this study, I

added adjoint code for emissions, (wet and dry) deposition, and chemistry of SSA. By

expanding the use of the CALIOP profile data beyond inert tracers, we are able to

more fully represent the complex state of global atmospheric aerosols. Additionally,

because of the vertical information available in CALIOP profiles, we are able to

compare the optimisation of emissions to the optimisation of initial conditions to

help inform future endeavours to optimise both sets of parameters simultaneously.

To our knowledge this is the first study to use CALIOP lidar profiles in this way.

3.3 Methods

In this study, we used the chemical transport model GEOS-Chem and its adjoint to

assimilate level-2 (L2) extinction profiles at 532 nm. In section 3.3.1 we describe the

CALIOP L2 profiles and our data filtering. To achieve the processing we describe

with the adjoint of GEOS-Chem, we added an observational operator module that

reads the NASA data files directly into the adjoint. In section 3.3.2 we describe our

process for assimilating the profile data.
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3.3.1 CALIOP Lidar Profiles

CALIPSO is part of the A-train of satellites which fly in a sun-synchronous orbit with

an equator crossing time of approximately 1330 local time (Winker et al., 2009). The

CALIOP level-1 (L1) retrievals report the range-resolved total attenuated backscatter

at 532nm and 1064nm, and the perpendicularly polarized attenuated backscatter at

532nm. The L2 retrievals include a number of derived profile and layer products, such

as type and extinction for clouds, aerosols and polar stratospheric clouds. Aerosol

extinction profiles are calculated by fitting the measured backscatter to the two-

way transmission of light, which requires an extinction-to-backscatter coefficient, Sp

(Young and Vaughan, 2009). The Quality Control (QC) flag indicates whether the

retrieval was able to infer Sp from clean air regions above and below the layer or used

an assumed lidar ratio. The Cloud-Aerosol Discrimination (CAD) score indicates how

strongly the retrieved properties of the layer indicate aerosol or cloud type. CALIOP

is more sensitive to noise from background radiation than ground-based lidar due

to the power constraints of being aboard a satellite; this is especially important

during the day leg of the orbit. Other sources of uncertainty in the measurements

include the inferred or assumed lidar ratio, the assumed molecular profile, and the

calibration coefficient. These values are all accounted for in the reported L2 extinction

uncertainty.

In the more than 1 decade since its launch, CALIOP AOD retrievals have been

compared with other satellite products, (e.g., Chen et al., 2010; Kittaka et al., 2011),

and validated against AERONET measurements (e.g., Mielonen et al., 2009; Omar

et al., 2013). CALIOP backscatter profiles have been validated against ground-based

lidar measurements, (e.g., Kim et al., 2008; Mamouri et al., 2009; Balmes et al.,

2019), and airborne lidar measurements, (e.g., Rogers et al., 2011; Kacenelenbogen

et al., 2014). Previous research has shown that the CALIOP feature detection algo-

rithm tends to miss optically thin features beneath other features (Omar et al., 2013;

Pan et al., 2015; Kim et al., 2017), resulting in “clean air” values being reported

erroneously. Because of this, to avoid creating a low bias in our assimilation, we

ignored “clean air” values below other features. Aerosol features below other features
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were assumed to be accurate. In addition, CALIOP often requires an extinction-to-

backscatter ratio, Sp, to complete extinction retrievals, which results in the appli-

cation of a ratio for an assumed aerosol type (Young and Vaughan, 2009). These

assumed lidar ratios have been found to slightly underestimate Sp in clean cases,

especially in the case of changing surface geography (Kacenelenbogen et al., 2011;

Kanitz et al., 2014), while in more polluted air masses, Sp has been shown to be

both over- and under-estimated (Burton et al., 2013; Rogers et al., 2014), although

recently it has been shown that some of these biases may be the result of treatment of

below-detection-limit values rather than incorrect SP assumptions (Toth et al., 2018).

CALIOP extinction detection limits vary with altitude from 0.020 km−1 at the

surface to 0.0030 km−1 in the lower-to-mid stratosphere (Winker et al., 2009). The

correct treatment of below-detection-limit (BDL) values is a matter of some debate

(Ford and Heald, 2013; van Donkelaar et al., 2013; Toth et al., 2018). On the one

hand, BDL values are imprecise, and may therefore be inappropriate for inclusion in

a data assimilation. On the other hand, the presence of a BDL observation can be

valuable information in the case where the model extinction is above the detection

limit. For this proof-of-concept, we replaced BDL observations with the value of the

detection limit (DL) for that altitude and gave them an error of
√

10×DL. This allows

the assimilation to include BDL observations without putting excessive weight on the

exact values of those observations. It is difficult to evaluate the validity of this choice

without independent observations for comparison.

CALIOP extinction values at 532nm were taken from the L2 5km aerosol profile

product, version 3.01. Although version 4.10 has been released with changes to the

calibration procedures (Getzewich et al., 2016), as most of the changes to calibration

constants were on the order of a few percent, we do not expect the new data to

change any of the conclusions of this study. Measurements were filtered based on

the QC flag field, allowing only constrained and unconstrained retrievals, and a CAD

score between -100 and -20 (Ford and Heald, 2013; van Donkelaar et al., 2013). In

order to make the observations comparable to the model, for each model timestep,

we aggregated the CALIOP observations during that interval into 4◦ × 5◦ × h (where

h is the location-dependent GEOS-Chem grid box height) superobservations. Since

each superobservation may be composed of multiple CALIOP observations, we only
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included superobservations where at least 2
3

of CALIOP observations falling within a

given superobservation box met our quality screening criteria described above.

3.3.2 Data Assimilation Scheme

The adjoint of GEOS-Chem was developed in Henze et al. (2007). It has been used for

sensitivity studies and data assimilation studies focusing on black carbon and other

aerosol species (e.g. Xu et al., 2013; Zhang et al., 2015a; Lee et al., 2015; Xu et al.,

2017; Lacey et al., 2017).

Our starting point for this study was version 35f of the GEOS-Chem adjoint, to

which we added an observational operator module to perform a 4DVAR assimilation of

L2 CALIOP lidar aerosol profiles. GEOS-Chem is driven by assimilated meteorology

as produced by the NASA Global Modelling and Assimilation Office (GMAO). In

this study we used the GEOS-5 meteorology at 4◦ × 5◦ with 47 vertical levels. The

model includes primary and secondary sulphate-nitrate-ammonia (Park et al., 2004),

carbonaceous aerosols (Park et al., 2003), mineral dust (Fairlie et al., 2007), and sea-

salt (Jaeglé et al., 2011). Chemistry for 116 chemical species and 43 tracer families

is performed with the KPP solver (Damian et al., 2002). Heterogeneous chemistry

is described by Jacob (2000) with updates(Evans, 2005; Mao et al., 2013). Relative

humidity(RH)-dependent optical properties used in calculating simulated extinction

and optical depth are described in Martin et al. (2003). Dust optical properties are

described by (Ridley et al., 2012). In order to complete the simulations used in

this study, we implemented the previously undeveloped sea-salt aerosol adjoint which

allows for the tracking of emissions, chemistry, and wet- and dry-deposition of course

and accumulation mode sea-salt aerosols.

4DVAR data assimilation uses spatial and temporal information from observations

to find the model inputs which minimize a scalar cost function on the model output.

The assimilation first computes the model state, then a scalar function of that output

state, the cost function J . The gradient of that scalar cost function with respect to

the model output state (the forcing) is used as input to the model adjoint. The adjoint

transforms the forcing fields through the model equations into the gradient of J with

respect to model input conditions, such as emissions, or initial model state. A gradient

descent algorithm can then adjust all the selected input parameters simultaneously to
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change the model output state in a way that decreases J. By iterating over these steps,

the model output state will more accurately represent the state of the atmosphere

combining the best knowledge from the model equations and the observations.

For our 4DVAR data assimilation of CALIOP L2 aerosol profiles, we define J as

follows:

J =
1

2

∑︂
Ω

(︁
X−X

CAL

)︁T
S−1

CAL

(︁
X−X

CAL

)︁
+

1

2
γr (p− pa)

T
S−1
p (p− pa) (3.1)

where X is the vector of GEOS-Chem extinction coefficients in km−1, X
CAL

is the

vector of CALIOP retrieved extinction coefficients averaged onto the GEOS-Chem

4◦x5◦ horizontal grid and 47 vertical levels, S
CAL

is the error covariance matrix of

CALIOP extinction coefficients, p is a vector of initial aerosol mass, pa is the vector

of the original estimates of aerosol mass, Sp is the error covariance matrix of these

initial concentrations, γr is a regularization parameter, and Ω is the domain in time

and space over which observations are assimilated into the model. This cost function

was implemented as a new module to the GEOS-Chem adjoint which directly ingests

CALIOP L2 aerosol profile data files into the model, computing the superobservation

and gridded uncertainty data online.

The adjoint model calculates the gradient of this cost function with respect to

initial concentrations (ICs) or emissions (at present, not both simultaneously), ∇Jp,

which is then used in an iterative solution, the L-BFGS algorithm(Morales and No-

cedal, 2011), to find the initial conditions or emissions that minimize J . In practice,

we ran between 20 and 60 iterations instead of to convergence, because of limits on

computational resources. The cost function was still typically decreasing by around

1% per iteration by iteration 40 (compared to 5-10% for the first 10 iterations), indi-

cating the results we present here are similar to what would be obtained if we allowed

the process to run to convergence every time.

In our optimisation scheme, we set the regularization parameter to 0.01; our results

are not strongly sensitive to this parameter. Results from using a regularization

parameter of 10 had a correlation R > .95 with the 0.01 results, but the cost function

decreased approximately 20% less per L-BFGS iteration. We set the diagonal elements

of Sp, the error variances, to the larger of 100% of the local value or the 10th percentile

of that tracer’s global concentration distribution. The off-diagonal elements were set
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to zero, that is, errors were treated as uncorrelated in time, space and across species.

The observation error variances were computed by root-mean-squaring the errors from

the CALIOP L2 profiles used in each 4◦ × 5◦ × h box, i.e., if n observations with σ

reported uncertainty were averaged together in a grid box, the error for that grid box

would be 1√
n
σ. Once again, off-diagonal elements were set to zero.

In any data assimilation there are many free meta-parameters to choose. It would

be impossible to study the sensitivity of these results to every single one. I have chosen

the parameters that seem realistic in terms of allowing for the work to be computed

in less than real time and trying to extract meaningful data from the observations.

In order to demonstrate the different information gleaned by our system we per-

formed assimilation runs for January and July of 2007. Because the adjoint of GEOS-

Chem does not currently provide capability to optimise both emissions and ICs at the

same time, we did two separate types of optimisation. To demonstrate how CALIOP

profiles affect emissions, we did 1-month emissions optimisations for January and

July. In order to demonstrate the effects of CALIOP profiles on the initial state of

aerosol tracers, we did consecutive 24-hour assimilations to optimise ICs. That is,

we simulated from 0:00 on day 1 to 0:00 on day 2, then used the model state at the

final timestep of day 1 as the new initial conditions to simulate day 2. For the model

baseline condition, we simply ran each day once. For the optimised ICs condition, we

ran the assimilation for day 1, then used the optimised output of day 1 to initialize

day 2, making the first run of of day 2 a forecast. We then optimised day 2, and used

this output to initialize day 3, and so on. By using only the forecast output in our

analysis, we can avoid directly comparing with the data used in the assimilation.

3.3.3 Assessment of Assimilation Performance

Ultimately the goal of any assimilation is to improve the model’s representation of

the true tracer concentrations. However, CALIOP is the only available source of

global 3D measurements of aerosol, making it difficult to ascertain the true state

in many places where the assimilation was done. To assess the assimilation results,

we compared the vertical distribution of aerosol in the various simulations, and the

observations we used in the assimilation using the mean extinction height Zα, as in

Koffi et al. (2012, 2016). Mean extinction height provides a single number which
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Figure 3.1: The regions used to compare mean extinction height, designed to capture
different global environments and source profiles, modeled after Koffi et al. (2012,
2016).

indicates roughly at what altitude most of the extinction is located, and is calculated

as:

Zα =

6km∑︂
h=surf

bext · h

6km∑︂
h=surf

bext

(3.2)

Although this metric is limited, it does provide a fast comparison between groups of

columns. As in Koffi et al. (2012, 2016), we limited mean extinction height to below 6

km to avoid comparisons including the high troposphere, where CALIOP is known to

have low sensitivity when aerosol concentrations are low (Winker et al., 2009, 2013).

In order to examine our results in different global environments with different source

profiles, while staying within the context of the current literature, we used roughly

the same regions as Koffi et al. (2012, 2016), which we show in Figure 3.1. We chose

to aggregate the columns because of the spatial mismatch between the roughly 75m-

wide CALIOP profiles and the GEOS-Chem grid boxes which are hundreds of km on

a side.
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Figure 3.2: Simulated mean extinction height vs CALIOP mean extinction height
for: baseline simulation (left), optimised ICs (middle) and optimised emissions (right).
The colours of the markers correspond to the coloured outlines of the regions in figure
3.1.

3.4 Results

Figure 3.2 shows scatterplots of mean extinction heights for the base and optimised

simulations versus CALIOP observed mean extinction heights. The base model mod-

erately reproduces CALIOP observed Zα with a correlation R = 0.72, albeit with a

large slope (1.42) and offset (-0.87, or -53% of the mean observed Zα). Both assim-

ilation schemes improve the simulation’s ability to reproduce observed Zα, although

IC optimisation performs (R = 0.78, slope = 1.04, offset 0.12 or 7%) better than

emission optimisation (R = 0.65, slope = 1.00, offset = -0.27 or 16%). This is not

entirely surprising as the emissions have less direct control over the vertical distribu-

tion, and the AEROCOM regions represent a variety of environments with different

aerosol sources.

Figure 3.3 shows column AOD observed by CALIOP (top row) and the baseline

GEOS-Chem simulation coincidently sampled with CALIOP (bottom row) averaged

over January (left column) and July (right column) of 2007. GEOS-Chem values

which fell below the CALIOP detection limits were filled to the detection limit values,

as for the CALIOP observation data used in the assimilation. The simulation shows

lower column AOD than CALIOP observations over most of the globe, except in

northern Africa in the Sahara area, and over the mid-Atlantic ocean where GEOS-

Chem shows values up to 1.3, while CALIOP only reports up to 0.59.

In general, CALIOP reports slightly higher column AOD with a global average

difference AODGC − AODCAL = −0.02, with individual column differences ranging
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Figure 3.3: AOD below 10 km. Top row shows CALIOP superobservations averaged
over January (left) and July (right0) of 2007, bottom panel shows baseline simulation
sampled coincidentally with CALIOP observations.
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from -0.76 to 0.98. The highest values are (i.e., areas where CALIOP extinction is

lower than GEOS-Chem) observed only around the Sahara region (mean difference

= 0.2), while several other areas including southern Africa and northern India show

lower than average differences, indicating CALIOP extinction is higher than GEOS-

Chem. Although figure 3.3 shows values only below 10 km altitude, during the study

period, CALIOP reported mostly clean air above 10 km, as did the simulation.

Figure 3.4 shows how the different simulations (baseline, optimised emissions,

and optimised ICs) compare to observations of average AOD below 10km, sampled at

times and locations where CALIOP superobservations were available. The baseline

simulation (top row) underestimates observed AOD almost everywhere globally in

both January and July, but greatly overestimates AOD over the Sahara in January.

The optimised emissions simulation results in an slight increase in AOD everywhere

except (mean difference = -0.02) over the Sahara (mean difference = 0.02) and the

Middle East. IC optimisation resulted in a larger general increase in AOD (mean

difference = -0.008) but were only able to modestly decrease AOD over the Sahara

in January (mean difference = 0.18) in accordance with the observations.

Figure 3.5 compares the base simulated extinction profiles, as well as simulated

profiles after different optimisations, with observed extinction profiles averaged over

different geographical regions. In the Land and Ocean cases, the baseline simulation

underestimates aerosol extinction in the entire troposphere, but especially the bottom

1 km. Over the Sahara the situation is reversed with the baseline model overestimat-

ing aerosol extinction. The IC optimisation scheme improves results in all locations

for January and July (mean improvement in RMSD: 26%) except the Sahara Out-

flow region in January, which showed an 8% increase in RMSD from 0.0193 for the

baseline simulation to 0.0209 for the optimised results. Improvements were similar

for the emissions optimisations, with an average improvement of 26%.

Figure 3.6 shows the optimised scaling factors for SSA and dust, that is, the

ratio by which the local emissions are multiplied to get the optimised emissions.

The optimisation generally increased SSA emissions over the whole ocean, with the

exception of the northern Indian Ocean, where emissions decreased as much as 32%.

The mean value for SSA scaling factors over ocean pixels was 1.5, meaning on average

the optimisation increased sea-spray emissions by 50%. For dust, emissions were
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Figure 3.4: Difference between simulated column AOD and CALIOP observed AOD
from: baseline simulation emissions (top row), 1-month runs with optimised emissions
(middle row) and 1-day runs with optimised ICs, coincidently sampled with CALIOP
superobservations, for January (left column) and July (right column) of 2007. Dark
grey boxes indicate Sahara and Outflow regions used in figures 3.5.
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Figure 3.5: Average aerosol extinction profiles for January and July assimilation
periods for all land (top left), all ocean (top right), the Sahara region (bottom left)
and the Saharan outflow region over the Atlantic Ocean (bottom right). Observations
are shown in solid black with grey indicating the uncertainty bounds on the average
values. Other profiles show the baseline simulation, 1-day assimilation window for
ICs, and 1-month assimilation for emissions.
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Figure 3.6: Optimised emissions scaling factors for SSA and dust for 1-month emis-
sions optimisation averaged for January and July, 2007. The left plot shows the
optimised scaling factors for SSA and the right plot shows optimised scaling factors
for dust.

greatly decreased in the Sahara but increased on the Arabian peninsula. Slight shifts

in dust were also present in Australia and central Asia.

3.5 Discussion

Data assimilation performs best when both the model and observations are unbiased,

that is, on average, the difference between the model state or observations and the

true state is zero. However, it is still not entirely clear how to obtain this condition

and there is a rich literature on debiasing models and observations.

4DVAR data assimilation is generally designed to optimise the global state of the

atmosphere. In this study, there were large regional differences in the performance

of the assimilation. Optimised emissions were able to correct the high AOD over the

Sahara in January, which may indicate that emissions are the predominant driver

of concentrations there. At the same time, over the mid-Atlantic, the optimised

emissions decreased agreement with observations substantially in the Sahara outflow

region in January (179% increase in RMSD). The difficulty of the model to capture

the observed signals in both the Sahara and the mid-Atlantic regions simultaneously

may indicate a possible issue with model transport in this area. It is also possible

that model, the observations, or both are not properly capturing the size distribution

of aerosols in these regions leading to shifts in the burden due to incorrect deposition,

or changes in the radiative properties of the plume as it moves out over the ocean.
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With so many free parameters to optimise, it is impossible to guarantee that

assimilation converges to the global minimum. A number of methods have been

shown to improve the changes of finding the global minimum such as using the 2nd

derivative or Hessian matrix or adding random noise to the descent direction, but I

did not employ any of these techniques in this thesis. This would be a good future

project in general for the GEOS-Chem adjoint. I did perform a simple sensitivity

test where I randomly perturbed the initial conditions or emissions with 1% random

noise and the model solutions correlation with R2 > 0.99 with the base conditions,

indicating the solution is robust to changes in the model inputs, if not guaranteeing

uniqueness.

One weakness of this study is the lack of independent data for confirmation. To

partially account for this, for the IC optimisations I performed comparisons between

the assimilated model and CALIOP observations not used in the assimilation by

using the “forecast” values. This comparison allowed me to show quantitatively that

the assimilation allows us to better predict the state of the atmosphere past the

available observation data, but does not account for any systematic errors or biases

in the observation data. One possible source of data is the recently released NASA

Atmospheric Tomography Mission (ATom) dataset (Brock et al., 2019), however,

there were no observations of total aerosol data from this dataset; rather they are

synthesised from a variety of instruments, most of which operate on single particles

or very small sizes (< 0.5 µm).

The treatment of BDL values in the CALIOP profiles is a matter of some debate in

the literature (Toth et al., 2018). Our choice to include BDL observations but set them

to the detection limit may have biased our results positive compared to observations

with a higher signal-to-noise ratio. There are several other choices which should be

tested in this framework. One possibility would be not using BDL observations, but

this would greatly reduce the number of observations available, and in the event that

CALIOP reports BDL but GEOS-Chem reports elevated extinction, we have thrown

away useful information. In light of this, it seems the likely that the best option would

be to only include BDL observations when GEOS-Chem reports extinction above the

CALIOP detection limit.

The optimised sea-spray emissions enabled by the full adjoint of sea-salt aerosol
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are consistent with observations that the SSA burden is underestimated by up to

45%(Grythe et al., 2014), however, these results should be taken with a grain of salt

(pun intended). The marine atmosphere tends to be fairly clean, and these results

may be impacted by my decision to include BDL observations. A counter-argument

to this is that I included the BDL cutoff in the GEOS-Chem profiles in Figure 3.5

and they remain well below the observed CALIOP profiles.

3.6 Conclusions

In this study, I have presented a proof-of-concept 4DVAR data assimilation frame-

work for CALIOP L2 Lidar profiles using the GEOS-Chem CTM and its adjoint. To

perform this assimilation, I updated the adjoint of the GEOS-Chem to include the

adjoint of sea-salt aerosol. This will allow the adjoint model to match the forward

model more closely in areas where sea-salt aerosols are present and active. I also im-

plemented an observational operator for the assimilation of CALIP L2 Lidar profiles.

With this updated adjoint, I demonstrated 4DVAR data assimilation to optimise ei-

ther the initial model state or aerosol and precursor emissions. I showed that both

of these assimilation schemes can highlight different areas where simulations can be

improved. I showed that by optimising emissions, the models representation of PM2.5

over the Sahara is improved, but not the outflow area, whereas optimising initial con-

ditions improves representation of the outflow region but not over the Sahara. These

two contrasting outcomes suggest improvements can be made to both emissions and

model processes such as tropospheric mixing.



Chapter 4

Global Estimation of Ambient Particulate Air Pollution

Concentration and Uncertainty Using Mixture Density

Networks

4.1 Abstract

Epidemiological studies of fine particulate matter (PM2.5) require accurate, high-

resolution concentration data with well-characterised errors. In this study, we trained

a computationally efficient artificial neural network to produce probability distribu-

tions of ambient PM2.5 concentrations on a 0.01◦ × 0.01◦ grid based on input data

from a satellite-derived PM2.5 data set, and population and land-use data. We show

that training the model naively based only on monitoring data reproduces the mon-

itor data with high fidelity but predicts lower concentrations (∼20-30 µg m−3) in

the Sahara Desert than in central Africa (>100 µg m−3), which is inconsistent with

current understanding. To remedy this, we include roughly 2000 randomly selected

locations with data taken from the high-resolution satellite-derived PM2.5 dataset

used as input to our model but give it a high uncertainty. Our model achieved an

average correlation R2 of 0.93 and an average RMSD = 5.00 µg m−3 in 10-fold cross

validation against the World Health Organization Cities 2018 database.

4.2 Introduction

Ambient particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5)

ranks as the 10th highest risk factor for morbidity and the 5th highest for mortality

(GBD 2017 Mortality Collaborators, 2018; GBD 2017 Risk Factor Collaborators,

2018), making it one of the most important environmental health issues in the world.

While measurements of PM2.5 concentrations are available for many parts of the world,

the density of networks varies and still does not match the natural heterogeneity of

the distribution of PM2.5 concentrations.

53



54

The most successful techniques for estimating high-resolution PM2.5 concentra-

tions with geophysical models have included combining satellite measurement of

aerosol optical depth, however, these techniques have only recently been able to

reproduce surface-level measurements as well as statistical models based on those

measurements (van Donkelaar et al., 2015; Shaddick et al., 2017; Hammer et al.,

2020). At present, the high water mark is a correlation R2 of 0.92 against surface

monitor data.

The availability of user-friendly frameworks for machine learning such as Tensor-

Flow in the past few years has created a proliferation of new statistical models based

on surface monitors for PM2.5. A recent review study conducted using PRISMA

guidelines narrowed the field down to 46 papers, of which a total of 4 concerned

outdoor PM2.5 estimation (Rybarczyk and Zalakeviciute, 2018). The studies used a

variety of techniques including Random Forest, Support Vector Machines, Clustering,

Artificial Neural Networks (which is the approach taken in this study), or a combi-

nation of these methods. Most of the covariates used were meteorological, land-use,

and proxy measurement in nature. The resulting models achieved spatial correlation

R2s ranging from 0.8–0.91 on regional observation datasets. A few studies designed

to create high-resolution exposure/concentration estimates have been done recently

with good results, but they have all focused on limited geographic areas such as the

continental U.S. (Di et al., 2016), China (Shen et al., 2018) and Western Canada (Yao

et al., 2018).

TensorFlow is an open-source machine learning framework provided and main-

tained by Google [https://www.tensorflow.org]. The framework allows high-level op-

erations to be formed in the open-source programming language Python, which are

then efficiently executed using low-level libraries that can take advantage of vari-

ous computer hardware platforms. The available of Tensorflow allows researchers to

create machine learning systems without needing to be experts on the underlying

algorithms.

R-INLA is a Bayesian inference package for the R statistical programming lan-

guage (Rue et al., 2009; Martins et al., 2013). Recently a geostatistical method using

the R-INLA method provided a highly accurate, high-resolution global concentra-

tion map including uncertainty information (Shaddick et al., 2017). However, this
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method required high computational cost, which also had a minor secondary effect of

producing artefacts on the map because of the necessary geographical partitioning.

When PM2.5 concentrations are used in exposure assessments, it is particularly

important to quantify the uncertainties. Ignoring estimation errors in the exposures

used to compute concentration response functions can drastically change the shape

of those functions Cox (2018), while uncertainty in ambient PM2.5 concentrations

contributes over 20% of the uncertainty in PM2.5-related mortality estimates to in

China, India and Latin America (Kodros et al., 2018). In addition to being able to

reproduce surface monitoring data not used in training their model with high fidelity,

(Shaddick et al., 2017) produces probability distributions of PM2.5 concentrations for

each geographical point, providing not only a value but also an uncertainty. This is a

major innovation as most methods produce single values, and the uncertainty of these

values is usually calculated post hoc, by using propagation of error on the assumed

uncertainties in the covariates (Brauer et al., 2016). Because of its flexibility, rather

than simply making 1:1 predictions, machine learning can be trained to produce

probability distributions(Bishop, 1994).

In this study, I use the modern machine learning framework Tensorflow to produce

individual PM2.5 probability distributions on a high-resolution (0.01◦ × 0.01◦) global

grid. The input covariates include geophysical and land-use variables. The model is

trained and verified with the WHO2018 Cities surface monitor data. This method

allows high-accuracy global coverage with uncertainties and with no discontinuities

and low computational cost. To my knowledge this is the first study to use these data

in this way.

4.3 Methods

4.3.1 Summary

To create the high-resolution output, I ran an artificial neural network in TensorFlow

on all the covariates for each location on a global 0.01◦×0.01◦ grid, which is the highest

resolution available for the input satellite-derived PM2.5 (Hammer et al., 2020). The

network is trained by minimizing a loss function. This is achieved through an iterative

gradient descent algorithm where the gradient of the network’s internal parameters
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is computed with respect to the loss function, and the parameters are modified in

the “downhill” direction until the loss function remains stable for several iterations

(Duchi et al., 2011). To train the model, I used surface PM2.5 monitoring data; the

loss function was computed as the negative log probability that the monitor value

was drawn from the distribution produced by the model.

As input to the network, I used geolocation, satellite-derived PM2.5 data, aerosol

composition from geophysical model output, and land use data. The network is

run with those input variables for each location on a 0.01◦ × 0.01◦ grid and outputs

a probability distribution of PM2.5 mass concentration values for the corresponding

location; these variables are described in the next section, Section 4.3.2. I present this

probability distribution as a mean and standard deviation in the results, although,

in practice, the distribution can be almost any shape. Because different locations on

the globe share similar land-use and geophysical model data, information about these

relationships can be spread geographically by the network.

We used 200,000 iterations of a gradient descent approach to tune the network

parameters to minimize the loss function averaged over all available monitors. Because

the model is run separately for each point on the grid, resolution is limited only by

the resolution of the input covariate data. To generate the final high-resolution data

in this study, we applied the trained model to our input data at the highest resolution

available for the satellite-derived product which was 0.01◦ × 0.01◦ global grid.

4.3.2 Input Data

As predictor variables, or covariates, the network uses latitude, longitude, satellite-

derived PM2.5, PM2.5 composition from a geophysical model, the distance to the

closest grid cell with urban land-type, difference in elevation from closest geophysical-

model grid-cell centre, and the percentage of the grid cell that is water. The PM2.5

composition variables are the faction of PM2.5 that is mineral dust, and the fraction

of PM2.5 that is sulphate, nitrate, ammonium, or organic, and are taken from the

GEOS-Chem chemical transport model (CTM). The satellite-derived PM2.5 is gener-

ated by applying vertical surface-to-column ratios from GEOS-Chem simulations to

MODIS satellite aerosol optical depth (AOD) to arrive at a surface PM2.5 concen-

tration (van Donkelaar et al., 2015). Elevation data was taken from the ETOPO1
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dataset available from NOAA (https://ngdc.noaa.gov/mgg/global/global.html). The

land-type data used to determine the nearest urban land-type grid cell and per-

cent water was from MODIS Collection 5 land cover MCQ12Q1(Friedl et al., 2010),

which contains 17 different land types in 7 categories. The categories are Forests,

Woodlands, Grasses/cereals, Shrublands, Croplands and mosaics, Seasonally or per-

manently inundated, and Unvegetated. The “Urban” type falls in the Unvegetated

category.

4.3.3 Structure of the TensorFlow Model

An artificial neural network in TensorFlow model consists of m “layers.” A layer is

a matrix operation with output vector v = f (Wlu + bl), where u is the output of

previous layer, Wl is the weight matrix of layer l, b is the bias of the layer l, and f

is a function used to limit the values each element of v can take.

In producing estimates of air pollution for use in exposure studies, it is important

to include information on the quality of the predictions, i.e., an uncertainty metric.

In order to produce this for our dataset, we trained a Mixture Density Network

(Bishop, 1994) created using the TensorFlow framework. To achieve this, the output

vector of the final layer consisted of the parameters, i.e., mean and variance, for k

Gaussian probability distributions, and k weights, ϕk, such that
∑︁

k ϕk = 1. The

output of the model for each grid location was, therefore, a probability distribution

p =
∑︁

k ϕkN (µk, σ
2
k).

Our model had two densely-connected layers, each layer with 3000 hidden nodes.

The final layer consolidated the 3000 intermediate outputs from the second hidden

layer down to 9 outputs, which where the weights, means and standard deviations of

3 Gaussian distributions used to model the final probability distribution of the PM2.5

concentration at a point in space.

Machine learning models, and artificial neural networks in particular, are known

to be quite sensitive to the choice of meta-parameters (e.g., the number of layers, and

number of nodes per layer). Additionally, increasing the size of the network brings

computational expenses, so the optimal network is one which best reproduces the

validation data at the lowest computational cost. Although techniques for choosing

the best meta-parameters exist, I did not use any of these. To arrive at the size of the
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Figure 4.1: Locations of WHO 2018 monitors, in blue, and randomly-selected satellite-
derived locations, light green.

network I used, I arbitrarily chose two hidden layers. I started with a small number

of nodes and increased this number until the cross-validation R2 stopped increasing.

4.3.4 Training Data

We trained our model on the recently updated World Health Organization Pollution in

Cities dataset (WHO2018), which is extensive in time and space, although coverage is

far from complete. Rather than using the city or country averages, we used individual

monitoring locations. We filtered the data to exclude annual average measurements

that covered less than 75% of the year, leaving 17,247 annual measurements taken at

5,869 locations from the years 2003 to 2017, shown in Figure 4.1. For each monitor

value, the model was trained with the covariate data from that monitor location and

year.

4.3.5 Training the Model with Uncertainty

For each available monitor for training, we computed a loss function which was the

negative log probability that the PM2.5 value was drawn from the mixture of Gaussians
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produced by the model. That is,

L =
∑︂
k

ϕk
(PM2.5,obs − µk)2

2πσ2
k

(4.1)

where L is the loss function, and PM2.5,obs is the randomly perturbed monitor value

(described in the next paragraph). The monitors were grouped into minibatches of

100 and the network parameters were tuned based on the gradient of the average loss

function over the entire minibatch.

In order to represent the uncertainty in the observation data, we randomly drew

our monitor data from a normal distribution about the reported annual value with

a standard deviation of 30% for PM2.5 monitor data. These uncertainty values were

arbitrarily chosen but were intended to capture two sources of error: the error in the

individual measurements, and the representativeness error of the measurements, that

is, how much the measurements would vary if they were taken at other positions in

the 0.01◦ × 0.01◦ they are intended to represent. Individual uncertainties associated

with these kinds annual of measurements might be expected to be in the few percent

range (e.g., Dutton et al. (2009) reported 22% uncertainty on individual gravimetric

filter measurements, while Weagle et al. (2018) reported up to 5.2% uncertainty on

seasonal average measurements). Representativeness error is more uncertain but a

recent land-use regression study reported observed PM2.5 values with a 30% difference

between the highest monitor and the lowest monitor in within a roughly 5 km×5 km

area in Shanghai (Liu et al., 2016). The system is designed to allow for specific

uncertainties to be chosen for each individual measurement, and the shape of the

distribution from which the random observations is drawn is easy to change, if such

information is available.

By minimizing the loss function as described, we are able to create a model which

produces not only the expected value but also the distribution with uncertainty for

each location. The training procedure is described in the flow chart in Figure 4.2. In

summary, the model is trained by tuning the internal parameters so the output from

running the model on the training covariate data most closely reproduces the training

PM2.5 surface monitor data. Once this training procedure is complete, the model is

run on covariate data for which we have no monitor data to predict the distribution

of PM2.5 concentrations.
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Figure 4.2: Method flow chart for training machine learning model for predicting
PM2.5 distributions as a mixture of gaussians.

4.3.6 Dealing with Model Blind Spots

One of the main benefits to these kinds of geostatistical methods is the ability to fill

in values where there is little or no surface monitoring data. Similarly, the satellite-

derived dataset we use as one of our covariates is also useful for filling in spatial gaps in

the dataset. Because of the nature of our model, areas with little monitoring data are

not well constrained and are also overconfident. To that end, instead of simply train-

ing on the surface monitoring data sets we describe below, we included approximately

2000 randomly selected locations where we took values from the satellite-derived data

as our target, and gave them a 90% uncertainty. In essence, we trained the network

to pass through the satellite-derived values with very high uncertainty in the absence

of better information.

In order to examine the contribution of the extra satellite training data, we also

trained our system using only the surface monitoring data (the näıve dataset) for

comparison with the main results.
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4.3.7 Performance Evaluation

To evaluate the performance of the model on unseen data, we performed 10-fold cross

validation. That is we split the dataset in to 10ths and trained a model for each

possible subset of 90% of the data and compared that model’s results with the 10%

that was not used in training. We ensured that each split retained the same fraction

of monitors from each of the following concentration ranges, 0-25, 25-50, 50-75, 75-100

and > 100 µg m−3

After training the models on only the training data, we compared the mean value

produced at the monitoring locations by each model with the monitor value reserved

for testing.

4.3.8 High-Resolution Output

Finally, we produce maps of the mean and standard deviation of the final model

trained using 100% of the data from the surface monitoring dataset at 0.01◦ × 0.01◦.

Because of grid-registration issues between the high-resolution output and the avail-

able population data, we also generated global PM2.5 concentrations on a 0.1◦ × 0.1◦

grid to produce population-weighted statistics using the Gridded Population of the

World v 4.11 for the year 2015 (Center for International Earth Science Information

Network, 2018).

4.4 Results

Figure 4.3 shows an example scatter plot, including the model predictions on both

the 90% of data seen in training (blue) and the 10% of data reserved for validation

(red). Our full ten-fold cross validation test using the WHO2018 data set produced

an average correlation R2 = 0.93 (min=0.86, max=0.95) and an average RMSD =

5.00 µg m−3 (min=4.30, max=7.47 µg m−3) against the held-back 10% of monitors.

Average R2 against the training data was 0.95 (min=0.92, max=0.96). In general,

the model does very well but tends to underestimate in locations where measured

values were above 75 µg m−3 This was true for monitors with high concentrations

regardless of whether the monitors were included in the training data or not.

Figure 4.4 shows the high-resolution (0.01◦ × 0.01◦) map of the 2014 mean of the
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Figure 4.3: Scatterplot of the mixture model vs monitor data for WHO2018 dataset
with 90% of annual monitor values used for training and 10% reserved for validation.
The relative size of circles indicates standard deviation of mixture model. The monitor
data used for training model is shown in blue, while the values shown in red were not
used in training the model, i.e., they are validation data. Although randomly selected
satellite-derived data were included in the training data, they are not shown on this
plot.
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Figure 4.4: Mean PM2.5 calculated by our model trained on WHO2018 monitor values
and satellite-derived PM2.5.

PM2.5 distribution produced at each grid location on the globe when the model is

trained on the augmented WHO2018 dataset. The highest concentrations are seen

on the Indo-Gangetic Plain, in the Sahara and in eastern China.

Figure 4.5 shows the standard deviation of the distribution produced by our model

at each location (as a fraction of the mean), which we treat as a measure of the

uncertainty in the reported mean. The lowest relative uncertainties are in Europe,

eastern North America, and north-eastern China, areas with high densities of PM2.5

monitoring data. The highest relative uncertainties are seen in Eastern India and

Bangladesh, and the Malay Archipelago, areas with comparatively little monitoring

data available. Although the uncertainties are comparable to or even larger than the

means in some areas, this does not necessarily imply a high probability of negative

values since the output distribution can be any shape.

Since each grid location produces a probability distribution, we can combine these

in a population-weighted sense, to achieve a global population-weighted probability

density function (PDF) truncated at 0, since negative concentrations are non-physical

(Figure 4.6). Although the distributions do not directly contain information about

variability in exposure, it seems fair to combine them in this way since most of

the variance in our distributions comes from the representativeness error. The global
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Figure 4.5: Standard deviation as a fraction of mean of ML model PM2.5 based on
WHO2018 monitor values and satellite-derived PM2.5

Figure 4.6: Global population-weighted PM2.5 exposure probability density function
produced by the model.
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Figure 4.7: Mean PM2.5 values predicted by ML model, zoomed in on Eastern Asia
to show spatial heterogeneity.

mean PM2.5 exposure from our model was 36.1 µg m−3, which is somewhat higher than

the 32.0-32.6 µg m−3 found in recent works (Li et al., 2017; Weagle et al., 2018). The

global population-weighted distribution has a standard deviation of 35.9 µg m−3, but

this high standard deviation is at least partially caused by the skew of the distribution,

which has a sharp peak at low values but maintains a significant value well above

100 µg m−3 while tailing off above 200 µg m−3. Integrating from the WHO guideline

concentration of 10 µg m−3 to 1000 µg m−3 gives 83%, which equates to 5.9 billion

people living with exposures in excess of 10 µg m−3.

In previous geostatistical models, the contribution of the horizontal location to

the output must be smooth and its shape specified a priori, which can limit the

level of detail available in the output. Because the ML model is not constrained in

its choice of the shape of the function of the geographical location covariates, the

model produces a more heterogeneous estimate, while nevertheless maintaining good

correlation with the training data. Figure 4.7 shows a zoomed in section of China

with visible features as small as the grid-cell size although the standard deviation

values for the same map section appear smooth over large areas but decrease in the

highest concentration grid cells (appendix figures), lending confidence that the spatial

heterogeneity is not an artefact.
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Figure 4.8: Mean PM2.5 values predicted by ML model trained with only surface
monitoring data. This dataset provided equally good correlation with the training
and test data as the model trained with surface monitoring and some satellite-derived
data, but provides a drastically different global distribution.

In order to examine the effects of adding satellite-derived data to the training set,

we also trained a model on only the monitor data or comparison. When trained on

the näıve data set (with only the monitoring data), the model performs as well as the

model trained on the augmented dataset (the monitoring data plus satellite-derived

values) at predicting the values at monitor locations (Figure 4.9). The correlation R2

for held-back validation monitors had a mean value of 0.93 (0.91 to 0.94), and RMSD

was 5.18 µg m−3 (min=4.64 µg m−3, max=5.91 µg m−3) which is very close to the

correlation seen in our full model. However, because of the sparsity of monitoring

data in certain geographical areas and for certain land types, the naively-trained

model produces values which are not inline with our current understanding of global

PM2.5 distributions (Figure 4.8). Large differences appear over the Sahara, where the

naively-trained model shows very little PM2.5, and Central / Easter Africa and the

Middle East where the naively-trained model shows much higher PM2.5 than the full

model. In both regions the full model more closely matches other available estimates.

The uncertainties in these areas are also quite small (appendix figures), indicating

the model is quite confident in its values, even though they are inconsistent with our
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Figure 4.9: Scatterplot of mixture model trained using only monitor data vs monitor
data for WHO2018 dataset. Relative size of circles indicates standard deviation of
mixture model. Data used for training model shown in blue, while values shown in
red were not used in training the model.



68

current understanding.

Much of the power of deep learning models comes from essentially being able

to define different coefficients on the input covariates at each location based on the

other covariates at that location; even though there is no monitoring data for a given

location, the similarity of the underlying covariates to areas with monitoring data

allows the model to make an accurate prediction at the unmonitored location. The

complexity of these relationships can lead to some difficulty in interpreting the results,

whereas less complex techniques such as regression model present specific coefficients

indicating how strongly each input variable affects the output. We ran a sensitivity

analysis and produced a map for each covariate, indicating how strongly the final

PM2.5 mean at that location was impacted by that covariate (appendix figures), if all

other input covariates remain at their local values.

Globally, the largest contributors to the global distribution are the satellite-derived

PM2.5 (Figure S1-1), Dust Fraction (Figure S1-2) and sulphate-nitrate-ammonium-

OC (SNAOC) fraction (Figure S1-3), although the magnitude and direction of the re-

lationships vary widely. In particular, there are strong positive relationships between

satellite-derived PM2.5 and predicted PM2.5 in Central Africa and much of Asia, i.e.,

when all other variables are equal in this region, increasing satellite-derived PM2.5 in-

creases predicted PM2.5. Conversely, there are strong negative relationships in north-

western Africa and Eastern Europe, i.e., increasing satellite-derived PM2.5 decreases

predicted PM2.5. There is a strong positive relationship between dust fraction and

predicted PM2.5 in many arid regions including the Sahara, the middle East, central

Asia and Australia. Strong positive relationships appear between SNAOC fraction

and predicted PM2.5 (Figure S1-4) in the United States, South America, Northern

and Eastern Europe , much of the Indo-Gangetic Plane and northern Australia, while

strong negative relationships appear in eastern Europe, central and western Africa,

and East Asia. The relationships with distance to urban land type (Figure S1-5) and

elevation difference (Figures S1-6) are quite heterogeneous, reflecting the small-scale

nature of these covariates.

It is also worth noting that, in principle, this analysis can and has been done using

regression analysis, with similar performance (measured by correlation R2 and RMSE)

(Hammer et al., 2020), but because of the open development community and wide
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popularity of Tensorflow, this model is more flexible and requires less computation

time to train. It is also possible that relationships between the input covariates

not available to the regression model (i.e., higher-order terms, products of different

covariates) appear in my ML model, although this is difficult to prove.

4.5 Discussion

Overall, the model is able to accurately reproduce the monitoring data, achieving a

correlation R2 of 0.93 against the validation data. This compares very favourably

with Shaddick et al. (2017), a similar study on an older version of the surface mon-

itoring dataset, which achieved a correlation R2 of 0.91 against the training data

(where our model achieved 0.96; correlation against test data was not reported), and

Hammer et al. (2020) which achieved a validation correlation R2 of 0.92 on the WHO

2018 Cities database. Our model tends to underestimate the measurements at high

concentrations. However, this a problem that most other models have suffered to a

similar extent e.g. (Van Donkelaar et al., 2016; Shen et al., 2018). Some of the impact

of this on exposure estimation can be ameliorated by the fact that the model produces

probability distributions for each location and indeed, in Figure 4.3, it can be seen

that the values furthest from the linear best fit have the largest circles, indicating a

large variance in the model prediction.

The covariates used in this study were chosen largely to match previous similar

work and because of their ready availability. This framework is easily adaptable to

new covariates, although I did not test other variables. Future work could examine

the impact of systematic approaches for variable selection, such as forward selection

(Khan et al., 2017) or Markov Blankets(Tsamardinos et al., 2003). It is possible that

the limited number of covariates applied in this study contributed to the model’s

difficulty in producing good estimates in areas with especially sparse monitoring data.

However, we showed that using the best high-resolution geophysical model data as

part of the training process we were able to restore predictions in sparsely monitored

areas to be consistent with current understanding.

The satellite-derived PM2.5 covariate is in essence a compound covariate consist-

ing of satellite AOD and CTM output including vertical distribution. It would be

interesting to see how including these variables separately rather than combined into
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satellite-derived PM2.5 would affect the results. I would expect the satellite AOD to be

impacted by the fact that observations are only available in the day and under clear-

sky conditions. It is therefore possible that the ML model would find areas where the

AOD was more or less reliable than the satellite-derived PM2.5 input, strengthening

the model’s predictions.

One strength of this study is the high level of spatial heterogeneity in the modeled

means. Since the underlying spatially varying functional form is not specified a priori,

the model can infer high spatial resolution. Also, the model does not assume a linear

(or any other particular shape) response to the input variables. Because of the sparse

nature of the monitoring data, it is difficult to tell whether the spatial structure is

real or an artefact of the model. Additionally, the model output represents point

measurements while the map colours represent area averages. Nevertheless, similar

differences in the measurement data are seen over similar distance scales, so the spatial

structure is not inconsistent with the measurement data.

Based on the global PDF, we found that only 83% of the world’s population

exceeds the WHO guideline of 10 µg m−3. This value is less than the 87% reported

in Brauer et al. (2016) or 92% reported in Shaddick et al. (2017). If instead the

calculation is made based on grid squares whose medians exceed 10 µg m−3, we get

88% of the world’s population living in grid cells with medians exceeding 10 µg m−3

The difference in the two numbers is because the second method assumes all people in

a given grid cell are exposed to the exact same concentration, while the first method

applies a distribution to the population in each grid cell.

The choice of a mixture of Gaussian distributions was driven mainly by previous

work and the mathematical elegance of the loss function. One consequence of this

choice is the need to truncate the distribution at 0 to avoid non-physical negative

PM2.5 concentrations. It should in principle be possible to model the parameters of

a mixture of lognormal, gamma or Poisson distributions instead, making it possible

to achieve distributions with 0 probabilities for all PM2.5 concentrations < 0, but

care would have to be taken in defining the loss function to ensure the resulting

distributions accurately reflect the observation data.
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4.6 Conclusions

This work presents a new geostatistical machine learning framework that provides

global high-resolution data PM2.5 data including uncertainties at low computational

cost. The model produces maps for the entire populated land area of the globe

based on geophysical modeling, satellite observation, and land-use data. The model’s

resolution is only limited by the resolution of the available input covariate data.

Because the model produces probability distributions for each grid location, giving

detailed information about the spatial scale of uncertainty, this data is suitable for

epidemiological input.

In future, additional covariates should be tested to see if they improve the model’s

fit with the surface monitor data. As additional surface monitoring becomes available,

it would be interesting to test the model trained only on the older data to see if

the relationships the model has learned continue forward in time, although better

results would be expect if the model is retrained using new data. Because of the low

computational cost of training the model, this should be easy. The parameters of the

error distribution of the monitor data should also be revisited; it seems likely that a

lognormal distribution would be more appropriate, and a more rigorous determination

of an appropriate uncertainty should be performed.



Chapter 5

Conclusion

In this thesis I have attempted to take advantage of recent improvements in compu-

tational methods to understand the state of atmospheric aerosol and its impacts on

human health. In particular, I relied heavily on the adjoint of the chemical transport

model GEOS-Chem. Some of the benefits of using this powerful tool include global

coverage and results which are easy to understand in the context of a global chemical

transport model.

By extending the adjoint of GEOS-Chem I was able to take advantage of state-

of-the-science epidemiological models to provide quantitative analysis of the sources

of global mortality due to PM2.5 exposure. My model extensions were added to the

official codebase and have been used in other projects.

I was also able to use the model to assimilate CALIOP satellite lidar profiles to

improve GEOS-Chem’s 3D representation of aerosol. This analysis should provide

some guidance in the updating of the mineral dust and sea-salt aerosol schemes in

the model in future.

I also used recently available machine learning tools to provide the highest resolu-

tion global map of ambient PM2.5 concentrations, complete with localized uncertainty

information, which reproduces surface monitoring data at the highest fidelity yet seen.

I hope this data will be helpful to the epidemiological research community. Just as

with the future development of the adjoint, future developments in both machine

learning, and the underlying data source will improve PM2.5 concentration and expo-

sure estimates even further in the future.

5.1 Future Work

The adjoint of GEOS-Chem is not a complete copy of the forward model code. As

demonstrated by the requirement for me to write the sea-salt adjoint code 3.3.2,

some important processes have not been implemented, such as secondary organic
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aerosols, the HEMCO emissions system currently in use in the forward model, and

the massive parallelization now available through GCHP. Fortunately, as the model is

open-source and has a rich community of scientists working on it, it can be expected

that the adjoint will continue to add more code as time goes by, and I have been

working on developing the adjoint of GCHP as I finish this thesis.

Additionally, the adjoint of GEOS-Chem has fallen out of date with the forward

model codebase. The adjoint of GEOS-Chem is based on version 8, while the forward

model is approaching the release of version 13 at the time of writing. Since version

11, the forward model has provided support for high-performance computing, GCHP,

which allows the model calculations to be spread over many networked computers.

In version 8, global coverage is limited to 2◦ × 2.5◦ resolution, which means the

smallest grid boxes are 100s of km on a side. The recently developed GEOS-Chem

High Performance model (GCHP) allows the GEOS-Chem chemistry to be run at

resolutions as small as 15 km on a side (Eastham et al., 2018). Although no adjoint

currently exists for GCHP, it is under development at the time of writing. This

process will also be helped by the open-source nature of the model. The development

of an adjoint model for GCHP will open up many new opportunities for global high-

resolution sensitivities and data assimilations.

One limitation of my machine learning study is the arbitrary selection of a small

number of input variables. I wrote the code in such a way that it is agnostic to the

number or type of input variables, so with some data-preparation work, it is quite

possible the ML model could be improved. Additionally, the neural network used

was quite simple. A convolutional layer to incorporate data from surrounding pixels

while taking advantage of recurring patterns at the global scale could be added.

With the continued refinement of the health impact function by the epidemiology

community, eventually a reëvaluation of the response using these updated functions.

I hope by that time it will be possible to run the adjoint at higher spatial resolution.

Also, while PM2.5 mass remains the most robust impactor of health impacts, it seems

likely that the real function will be determined to be dependent on chemical com-

position or mircophysical properties other than total PM2.5 mass. A high-resolution,

full-chemistry adjoint model will be best positioned to study any new composition-

dependent health impact function which arise.
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In the CALIOP 4DVAR data assimilation study, I used L2 profiles, which is ad-

vantageous because the quality control and uncertainty information has already been

performed by a robust and vetted algorithm. However, the use of L2 profiles intro-

duces a number of uncertainties and unnecessary degrees of freedom into the process

as well as possibly throwing out useful measurements. It would be interesting to

develop an adjoint observational operator based on the L1 lidar returns. This would

require radiative transfer equations for the lidar returns of the simulated concentra-

tions and the adjoint forcing code for that radiative transfer model.
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Stéphane C. Alfaro, Annie Gaudichet, Laurent Gomes, and Michel Maillé. Mod-
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Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov.
AERONET—A Federated Instrument Network and Data Archive for Aerosol Char-
acterization. Remote Sensing of Environment, 66(1):1–16, oct 1998. ISSN 00344257.
doi: 10.1016/S0034-4257(98)00031-5. URL http://linkinghub.elsevier.com/

retrieve/pii/S0034425798000315.

Hannah M. Horowitz, Christopher Holmes, Alicia Wright, Tomás Sherwen, Xuan
Wang, Mat Evans, Jiayue Huang, Lyatt Jaeglé, Qianjie Chen, Shuting Zhai,
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Dana Loomis, Yann Grosse, Béatrice Lauby-Secretan, Fatiha El Ghissassi, Véronique
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S-1  Impacts of resolution 

In this study, satellite remote sensing was used to calculate global exposure. These data were 

used at a 0.1ºx0.1º resolution, while the GEOS-Chem adjoint operates at 2ºx2.5º. Table S-1 

quantifies how population-weighted PM2.5 concentrations are affected by resolution. 
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Table S-1: Population-weighted concentration by resolution, by source of PM2.5 concentration 

data, and by GBD region. 

 Population Weighted PM2.5 Concentration [µg/m3] 

Region 
GEOS-Chem 

2ºx2.5º 

GEOS-Chem 

0.1ºx0.1º 

Satellite-derived 

2ºx2.5º 

Satellite-derived 

0.1ºx0.1º 

Asia Pacific, 

High Income 16 18 13 15 

Asia     

Central 24 24 15 16 

East 45 48 50 54 

South 30 32 29 31 

Southeast 13 14 13 14 

Australasia 5.4 6.5 3.1 3.5 

Caribbean 7.6 7.7 8.1 8.2 

Europe     

Central 24 24 16 16 

Eastern 17 18 9.9 10 

Western 18 19 16 17 

Latin America     

Andean 5.3 5.6 7.1 7.4 

Central 7.1 7.1 11 11 

Southern 8.5 10 5.7 6.6 

Tropical 8 8.4 3.7 3.9 

North Africa/ 

Middle East 46 46 24 24 

North America, 

High Income 13 14 10 11 

Oceania 1.5 1.5 4.7 4.8 

Sub-Saharan 

Africa 22 22 12 12 

Central     

Eastern 21 21 10 10 

Southern 9.8 10 6 6.1 

Western 95 95 23 23 

 

S-2  GEOS-Chem and its adjoint 

In this study, we calculated the sensitivity of global premature mortality to PM2.5 precursor 

emissions using an open-source 3D chemical transport model, GEOS-Chem, and its adjoint. The 
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forward model takes calculated emissions, assimilated meteorology, and information about 

chemical and photochemical reactions in the atmosphere to compute hourly atmospheric 

concentrations of 72 chemical families. The adjoint model is an auxiliary set of equations which 

allow the calculation of the derivatives of a scalar function of the model output to model input 

conditions, i.e., initial state or emissions. 

For the forward model, we used version 8-02-01 of GEOS-Chem driven by assimilated 

meteorology from the Goddard Earth Observation System (GEOS-5) of the NASA Global 

Modeling and Assimilation Office (GMAO), averaged to 2ºx2.5º and 47 vertical levels. The 

thickness of the lowest layer is approximately 60 m. The model timesteps are 15 minutes for 

transport and 60 minutes for chemistry and emissions.  

The GEOS-Chem aerosol simulation includes the sulphate-nitrate-ammonium system(1), 

primary carbonaceous aerosols (2), mineral dust (3) and sea salt(4). The adjoint model version 

that we used does not include secondary organic aerosol. Aerosol thermodynamics, including 

sulphate-nitrate-ammonia chemistry and partitioning, are performed by the RPMARES 

module(5) as implemented by(6). We corrected errors in the nighttime boundary layer mixing 

and overproduction of HNO3 following Heald et al. (7). Aerosol dry deposition is based on a 

size-segregated parametrization described by Zhang et al.  (8) and wet deposition is treated by 

an ensemble of wet scavenging processes described in Liu et al. (9). We used a fixed organic 

matter to organic carbon ratio of 1.8. 

Anthropogenic emissions are based on a combination of global and regional inventories. 

Global monthly emissions for anthropogenic NOx and SO2 are from the EDGAR 3.2 inventories 

for the year 2000(10) and scaled to 2005 based on economic data, following van Donkelaar et al. 

(11). Anthropogenic NH3 inventories are from the GEIA inventory (12) with seasonal variation 
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implemented by Fisher et al. (13). These global inventories are overwritten by national 

inventories for the U.S. (NEI2005), Canada (CAC), Mexico (BRAVO), Europe (EMEP) and 

East Asia(14, 15). Asian NH3 emissions were scaled to 70% as recommended by Huang et al. 

(16). Monthly biomass burning emissions are from the GFED2 inventory(17). Biofuel 

inventories are from Yevich and Logan(18). Black carbon and organic carbon inventories are 

based on Bond et al. (19), scaled to 2005 as described by Leibensperger et al. (20). 

Particulate matter concentrations reported by GEOS-Chem have been extensively evaluated 

by comparison with surface monitors (7, 21-24), in situ aircraft measurements(11, 13, 25, 26), 

and satellite observations (21, 27-30). We calculated particle water content at 35% relative 

humidity to match the U.S. EPA reference method (http://www.epa.gov/ttnamti1/pmfrm.html).  

For this study, we used version 35 of the adjoint. The full adjoint of GEOS-Chem including 

gas-phase chemistry, heterogeneous chemistry, and aerosol thermodynamics is described by 

Henze et al. (31). Further refinements to the adjoint are described by Henze et al. (32). The 

adjoint has been applied to a variety of aerosol chemistry studies(32-36).  

S-3 Evaluation of speciated model concentrations 

For the adjoint method to provide realistic sensitivities, it is important that the model presents 

accurate concentrations. The method combining the GEOS-Chem model concentrations with 

satellite AOD has recently been evaluated against a suite of speciated PM2.5 concentrations from 

global surface monitors (37). Since the model version used in this study is different from that 

used by Philip et al. (37), in Figure S-1 we evaluate the annual PM2.5 concentrations in this study 

versus the surface monitor values collected by Philip et al. (37). Correlation coefficients range 

from 0.67 for NO3
- to 0.91 for SO4

2- and slopes range from 0.46 for organic matter to 1.4 for 
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NO3
-, which are similar values to those found globally by Philip et al.  (37).  This provides 

confidence that the results of this study are based on realistic surface concentrations. 

  

Figure S-1: Comparison of annual mean satellite-derived PM2.5 concentrations (background 

colors) used in this study versus global surface PM2.5 monitoring data (filled circles) with 

Pearson R and slope calculated by organic regression with a 0 y-intercept. These maps were 

generated using MATLAB and Mapping Toolbox Release 2013a, The MathWorks, Inc., Natick, 

Massachusetts, United States. 
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S-4  Model Emissions for 2005 

Table S-2: Model emissions in each of 21 GBD regions for the year 2005. BC & OM represent 

primary carbonaceous aerosols from fossil fuel, biomass, and biofuel combustion.  

Region kg NH3 / km2 kg NO / km2 kg SO2 / km2 kg BC / 

km2 

kg OM / 

km2 

Asia Pacific, 

High Income 

410 3200 970 290 320 

Asia      

Central 110 150 200 13 16 

East 880 1100 1300 130 150 

South 1100 680 670 100 130 

Southeast 210 420 240 150 170 

Australasia 66 130 110 10 19 

Caribbean 110 92 120 18 23 

Europe      

Central 790 1600 1600 100 120 

Eastern 110 240 180 14 16 

Western 460 970 260 47 51 

Latin 

America 

     

Andean 120 140 400 34 37 

Central 290 340 400 44 54 

Southern 240 200 360 21 25 

Tropical 250 140 84 75 80 

North 

Africa/ 

Middle East 

110 270 220 12 15 

North 

America, 

High Income 

130 700 200 37 44 

Oceania 16 5 3 2 2 

Sub-Saharan 

Africa 

     

Central 35 15 28 130 220 

Eastern 210 17 54 74 140 

Southern 110 350 300 34 39 

Western 110 49 48 36 110 
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S-5  Cost function 

In order to calculate sensitivity of global PM2.5-related mortality to precursor emissions, a cost 

function which relates PM2.5 concentrations to premature mortality is required. The main text 

presented simplified versions of the equations in the interest of readability. Here we provide the 

full set of equations for the cost function with subscripts retained. Global mortality, M, was 

summed by cause and country:  

 M = Pk ×M0,k,l × AFk,l( )
k

å
æ

è
ç

ö

ø
÷

l

å  (1) 

where l is the cause (IHD, stroke, COPD or LC), k is the country, Pk is the population of country 

k, M0,k,l is the baseline mortality rate in country k from cause l and AFk,l is the attributable fraction 

of deaths from cause l in country k:  

 AFk,l =1-
1

RRk,l

 (2) 

where RRk,l
 is the population-weighted average relative risk for cause l in country k:  

 RRk,l =
Pi, j

Pi, j
i, jÎk

å
× RRi, j,l

i, jÎk

å  (3) 

where i and j are 0.1ºx0.1º grid indices, Pi,j is the population in grid cell i,j, and RRi,j,l is the 

relative risk based on the assumption of 100% exposure at the PM2.5-concentration level of grid 

cell i,j:  
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 RRi, j,l =
1+al 1- e

-bl xi, j-x0,l( )
rlæ

è
ç

ö

ø
÷ if xi, j > x0,l

1 otherwise

ì

í
ï

î
ï

 (4) 

where αl, βl, and ρl are the HIF parameters for cause l and x0,l is the counterfactual concentration 

for cause l. 

xi,j is calculated by rescaling the 2ºx2.5º resolution values (XI,J) to the satellite values (sati,j) 

at 0.1ºx0.1º resolution.  

 xi, j = XI,J
sati, j

SATI ,J

SATI ,J

XI ,J
= sati, j  (5) 

where SATI,J are the satellite values averaged to 2ºx2.5º resolution. These rescaling factors are 

then treated as constants in calculating the adjoint forcing terms. 

S-6  Integrated Exposure Response Parameters 

This study built upon the work of the Global Burden of Disease Project by using the recently 

developed Integrated Exposure Response (IER) functions to relate PM2.5 concentrations to 

health impacts over a wide range of concentrations (38). Burnett et al.  (38) used a statistical 

approach to evaluate these impacts. The adjoint model requires a differentiable equation as its 

cost function. To that end, we fit IER curves to the median of the suite of IER functions used in 

the GBD project. Each curve takes the form  

 𝑅𝑅 =  {
1 + 𝛼(1 − 𝑒−𝛽(𝑥−𝑥0)𝜌

), if 𝑥 > 𝑥0

1, otherwise
 

(6) 

Specific values are given in Table S-3 and the graphs of these curves are showed in Figure S-2. 

Table S-3: Fit parameters based on median GBD IER data. 

 IHD Stroke COPD LC 

α 0.843 1.01 18.3 159 
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β 0.0724 0.0164 0.000932 0.000119 

ρ 0.544 1.14 0.682 0.735 

x0 6.96 8.38 7.17 7.24 

 

Figure S-2: The relative risk cuves used in this study versus ambient PM2.5 concentration.  
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S-7  Evaluation of adjoint responses 

We performed 1-week finite difference tests to evaluate how well the linearity assumption of 

the adjoint holds for the conditions of this study. Whereas the adjoint reports the instantaneous 

derivative of mortality to emissions, a finite difference test approximates this derivative as the 

slope over a finite range. 

We ran the forward model in its default state and with perturbed emissions for one species 

(n) in one GEOS-Chem grid cell (I,J) (with a perturbation, δ, of 10%). The cost function (J) 

was calculated for each of these runs and the sensitivity was approximated as: 

 
∂J

𝜕𝑝𝐼,𝐽,𝑛
≈

∆J

𝛿𝐼,𝐽,𝑛
 

Eq 1 

where p is the scaling factor of emission n, making 
𝜕J

𝜕𝑝𝐼,𝐽,𝑛
 the sensitivity of the cost function 

with respect to emissions scaling factor. 

In the ideal case where the cost function is completely linear with respect to the emissions, 

the sensitivities estimated using the finite difference method will be exactly equal to the 

adjoint sensitivities. In this way, a finite difference test can act as an indicator of the non-

linearity of the response of the cost function to changes in emissions. We performed this 

comparison in 10 locations for each of 5 emissions types. 

Figure S-3 shows the results of finite difference tests performed at 10 locations compared 

with adjoint sensitivities from those locations. The finite difference tests yielded a linear fit 

between the adjoint and finite difference sensitivities and small spread between the positive and 

negative finite-difference tests. 
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Figure S-3: Finite difference test for 4 species at selected locations; sensitivities reported by 

the adjoint vs. finite-difference sensitivities. X indicates positive finite difference (i.e., 

δ=+0.1), * represents negative finite difference (δ=−0.1) and + represents two-way finite 

difference test. Regression line is for adjoint vs. 2-way finite difference. 
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S-8  Uncertainty analysis 

The major sources of uncertainty in calculating the responses of premature mortality to 

precursor emissions are the relative-risk calculated by the health-impact function, satellite-

derived PM2.5 concentrations, and the simulation of the source-receptor relationship.  We used 

propagation of error to calculate uncertainties (𝜎𝜆) in the responses (𝜆): 

 

𝜎𝜆
2 = |

𝜕𝜆

𝜕RRCOPD
|

2

𝜎RRCOPD

2 + |
𝜕𝜆

𝜕RRIHD
|

2

𝜎RRIHD

2 + |
𝜕𝜆

𝜕RRLC
|

2

𝜎RRLC

2  

 + |
𝜕𝜆

𝜕RRstroke
|

2

𝜎RRstroke

2 + |
𝜕𝜆

𝜕PM2.5
|

2

𝜎PM2.5

2 + |
𝜕𝜆

𝜕G
|

2

𝜎G
2 

(6) 

where the partial derivatives, except in the case of the model parameters G, in Eq 6 were 

estimated by finite difference, using the magnitudes of the uncertainties as the finite 

differences. We calculated the partial derivatives by subtracting the responses of the base run 

of the model from the responses produced by running the model with each parameter perturbed 

by one standard deviation (𝜎).  
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To obtain σRR, we used the 1-standard-deviation of the GBD RR data from the Monte-Carlo 

output of Burnett et al. (2014). We took 𝜎PM2.5
 to be 30%, informed by the comparison of 

satellite-derived  PM2.5 versus individual ground-based monitors and propagation of error in 

(21). Since there are many uncertain parameters within the model, finding the contribution of 

the source-receptor relationship to the uncertainties is not straightforward (39). We chose a 

sensitivity |
𝜕𝜆

𝜕G
| = 1and parameter uncertainty 𝜎𝐺 = 40% to represent these uncertainties. We 

assumed that population and mortality data were more accurately known and that uncertainties 

in these two data sources would be outweighed by uncertainties in the exposure data and 

especially the exposure response.  

The 1-standard-deviation of uncertainties in the individual responses displayed a similar 

spatial pattern to the modeled responses and was typically 40-120% of the sensitivities. The 

main contributor to uncertainty in the sensitivities was from PM2.5 concentrations; considering 

uncertainties through propagation of errors in the PM2.5 concentrations alone resulted in global 

population-weighted average uncertainties ranging from 42% for organic matter to 120% for 

NOx. Uncertainties in the RR parameters also contributed significantly with global population-

weighted average uncertainties from 21% to 59% for CEV and 13% to 38% for IHD. 

S-9 Global responses by GBD region 

Figure S-4 and Figure S-5 show the same results as in Table 1 and Table 2 form the main text as a column chart. 
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Figure S-4: Global responses to absolute changes in regional emissions.  Annual global 

premature mortalities prevented by reducing emissions by 1 kg km-2 yr-1 in each of 21 GBD 

regions. 
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Figure S-5: Global responses to relative changes in regional emissions. Annual global 

premature mortalities prevented by reducing emissions by 10% in each of 21 GBD regions. 

 

S-10 Ranking of top contributing regions to global mortality 

Table S-4 shows the top 5 regions for responses of global mortality to changes in precursor 

emissions. 
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Table S-4: Rankings of top 5 regions by population, response to relative (10%) changes in 

emissions, and response to absolute (1 kg km-2 yr-1) changes in emissions. 

 Rank 1st 2nd 3rd 4th 5th 

 Pop South 
Asia East Asia Southeast Asia 

Western 
Europe 

North Africa/ 
Middle East 

Relative 

(10%) 

NH3 

East Asia 

Eastern 
Europe 

Western 
Europe 

High-income 
North 
America 

Central 
Europe 

NOx 

East Asia 

Western 
Europe 

Eastern 
Europe 

Central 
Europe 

High-income 
North 
America 

SO2 

East Asia South Asia 

Eastern 
Europe 

Central 
Europe 

Western 
Europe 

BC 

East Asia South Asia Southeast Asia 

High-income 
North 
America 

Western 
Europe 

OM 

East Asia South Asia Southeast Asia 

Eastern 
Europe 

High-income 
North 
America 

Absolute 

(1 kg 

km-2 

yr-1 ) 

NH3 

Eastern 
Europe 

High-income 
North 
America Central Asia 

Western 
Europe East Asia 

NOx 

East Asia 

Eastern 
Europe 

High-income 
North America South Asia 

Western 
Europe 

SO2 Eastern 
Europe South Asia 

High-income 
North America 

North Africa/ 
Middle East East Asia 

BC Eastern 
Europe 

Western 
Europe 

High-income 
North America East Asia South Asia 
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Figure B.1: Difference between CALIOP observed AOD below 2 km and simulated
AOD below 2 km from: baseline simulation emissions (top row), 1-month runs with
optimised emissions (middle row) and 1-day runs with optimised ICs, coincidently
sampled with CALIOP superobservations, for January (left column) and July (right
column) of 2007.



Appendix C

Supporting Information for Global Estimation of Ambient

Particulate Air Pollution Concentration and Uncertainty

Using Mixture Density Networks

126



127 
 

 

Chapter S1 Normalized Relative Sensitivity Figures 1 

Each figure shows the relative sensitivity of the mean PM2.5 predicted by the model to a single 2 

covariate, that is, the local relative difference in the mean predicted by the model when the 3 

model has been perturbed by plus and minus 10%, divided by the size of the total perturbation 4 

range.  Latitude and longitude not shown because relative changes in spatial distance are 5 

meaningless. 6 

Satellite-derived PM2.5:7 

 8 

Figure S1-1 Satellite-derived PM2.5 9 

Dust fraction:10 

 11 

Figure S1-2 Modeled dust fraction 12 
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SNAOC fraction:13 

 14 

Figure S1-3 Modeled sulphate-nitrate-ammonia-organic carbon fraction 15 

Distance to urban:16 

 17 

Figure S1-4 Distance to urban land type 18 
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Elevation difference w/2°x2.5° grid cell centre:19 

 20 

Figure S1-5 Elevation difference between local 0.1° and 2°x2.5° grid cell centre 21 

Chapter S2 Unnormalized Marginal Sensitivity Figures 22 

Each figure shows the sensitivity of the mean PM2.5 predicted by the model to a single 23 

covariate, that is, the difference in the mean predicted by the model when the model has been 24 

perturbed by plus and minus 10%, divided by the size of the total perturbation range.  In the 25 

case of lat and long, the perturbation of ±0.05°.  26 

Latitude: 27 

 28 

Figure S2-1 Sensitivity of PM with respect to Latitude 29 

µg/m3/° 
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Longitude:30 

 31 

Figure S2-2 Longitude 32 

  33 

Satellite-derived PM2.5:34 

 35 

Figure S2-3 Satellite-derived PM2.5 36 
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µg
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Dust fraction:37 

 38 

Figure S2-4 Modeled dust fraction 39 

SNAOC fraction:40 

 41 

Figure S2-5 Modeled sulphate-nitrate-ammonia-organic carbon fraction 42 

µg/m3 

µg/m3 
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Distance to urban:43 

 44 

Figure S2-6 Distance to urban land type 45 

Elevation difference w/2°x2.5° grid cell centre:46 

 47 

Figure S2-7 Elevation difference between local 0.1° and 2°x2.5° grid cell centre 48 

  49 

µg/m3/km 

µg/m3/log(m) 
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Chapter S3 Unnormalized Relative Sensitivity Figures 50 

Each figure shows the relative sensitivity of the mean PM2.5 predicted by the model to a single 51 

covariate, that is, the fractional local difference in the mean predicted by the model when the 52 

model has been perturbed by plus and minus 10%, divided by the size of the total perturbation 53 

range.  In the case of lat and long, the perturbation of ±0.05°.  54 

Latitude: 55 

 56 

Figure S3-1 Sensitivity of PM with respect to Latitude 57 

Longitude:58 

 59 

Figure S3-2 Longitude 60 

/° 

/° 
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  61 

Satellite-derived PM2.5:62 

 63 

Figure S3-3 Satellite-derived PM2.5 64 

Dust fraction:65 

 66 

Figure S3-4 Modeled dust fraction 67 

m3

µg
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SNAOC fraction:68 

 69 

Figure S3-5 Modeled sulphate-nitrate-ammonia-organic carbon fraction 70 

Distance to urban:71 

 72 

Figure S3-6 Distance to urban land type 73 

/km 
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Elevation difference w/2°x2.5° grid cell centre:74 

 75 

Figure S3-7 Elevation difference between local 0.1° and 2°x2.5° grid cell centre 76 

  77 

/log(m) 
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Chapter S4 Uncertainty of naively trained ML model 78 

 79 

Figure S4-1 Relative standard deviation of WHO2018-trained model for South Asia 80 

 81 

Figure S4-2 Relative standard deviation of predictions made by model trained on WHO2016 + satellite data. 82 



138 
 

 

 83 

Figure S4-3 Standard deviation predicted by naively trained model using only WHO2018 data. 84 
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