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ABSTRACT 

  

Site-specific water management can increase water use efficiency by up to 30% but determining 
whether adopting the technology for site-specific irrigation will be beneficial enough to consider 
the additional cost is still an open question. The objectives of this study are to determine the 
effect of site-specific water management has on soil moisture at a field scale and to determine 
whether site-specific water management can reduce yield variability. Additionally, the 
heterogeneity of soil apparent electrical conductivity and elevation was explored as driving 
factors in soil moisture differences between management zones delineated using these variables. 
Russet Burbank potatoes were grown in Southern Alberta in a field divided into three 
management zones. In a two-year study conducted in the growing seasons of 2018 and 2019, 
plots were delineated from each of the management zones and treated with site-specific 
irrigation prescriptions, while uniform irrigation was used for the rest of the study area. The 
effect of site-specific irrigation was monitored using soil moisture sensors installed in each of the 
plots. The effect of uniform irrigation was also monitored using soil moisture sensors installed in 
the management zones in areas under uniform irrigation prescriptions. The site-specific irrigation 
schedule was based on an 80% maximum allowable depletion of available soil moisture. Soil 
moisture depletion was calculated from soil moisture sensor data for each plot. Soil moisture 
sensors were also used to assess soil water movement in the rootzone. Soil moisture surveys 
were conducted at 15 cm and 30 cm depths and were used to spatially assess soil moisture by co-
kriging soil moisture surveys with soil apparent electrical conductivity and elevation. Yield 
variability was not improved under site-specific irrigation, but in some areas, a 10-30% reduction 
in total irrigation did not negatively impact yield. Hydrological differences were determined 
between the management zones, but relationships between soil moisture and the management 
zones could not be confirmed due to a lack of soil moisture sensor data. The reliance on soil 
moisture sensors to inform the irrigation prescriptions may have led to a moisture deficit which 
resulted in lower potato yields. This effect could be mitigated by installing additional soil moisture 
sensors in each of the management zones to provide a method to corroborate soil moisture 
observations. Assessing field properties for variability is a prudent step before determining 
whether a management zone derived site-specific irrigation management strategy informed by 
soil moisture sensor data as some fields may show more benefits using observational experience. 
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CHAPTER 1. INTRODUCTION 

For millennia, humans have recognized the benefits of irrigation practices. Jordan and 

Egypt have archeological evidence of irrigation practises dating back to 6000 BCE; 

meanwhile, the Incans, Mayans and Aztecs constructed irrigation systems in Meso and 

South America (Sojka, Bjorneberg, & Entry, 2002). Irrigation practices enable agriculture 

in areas where the evapotranspiration rate is high, and the precipitation rate is low, thus 

growing the land base that can be used for food production (Taylor, 2014). When 

comparing yields of corn, cotton, soybeans, and wheat grown under dryland conditions 

to their irrigated counterparts, irrigated fields show less variability and significantly higher 

yields (Assefa et al., 2012; Payero & Khalilian, 2017). It has been estimated that 40 % of 

the world’s food and fibre are grown on irrigated lands, which consist of 17 % of the total 

land cultivated for agriculture (Evans et al., 2013). 

Although Canada is ranked fourth in the world for freshwater resources (Gleick, 2014), 

these water resources are not evenly distributed throughout the country. The areas that 

are associated with large-scale agriculture are also some of the country’s driest, with 

nearly 70 % of farmland in Canada in the prairie provinces of Alberta and Saskatchewan 

(Statistics Canada, 2016). Both provinces have moisture deficits when comparing the 

yearly cumulative precipitation to yearly cumulative evapotranspiration which vary from 

100 mm in the northern parts of both provinces to 400mm in the south (Agriculture and 

Agri-Food Canada & Government of Canada, 2013). As agricultural food production is 

most efficient when the difference between evapotranspiration and available water 
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within a field is minimal, irrigation is necessary in these areas to maintain production 

values. 

In Southern Alberta, irrigation and agriculture are intrinsically linked. Precipitation is low 

in Southern Alberta’s prairie region, with average precipitation ranging between 350 and 

500 mm per year (Downing & Pettapiece, 2006) while potential evapotranspiration which 

ranges from 1050 mm to 1200 mm (Alberta Environment and Sustainable Resource 

Development, 2013). This results in a 500 mm deficit in moisture. However, the high 

number of growing degree days makes the area ideal for crop growth, if sufficient 

additional water resources can be brought to agricultural land (Downing & Pettapiece, 

2006). Because of this and good-quality surface water sources, irrigation is prevalent in 

Alberta, more than in any other province, accounting for 67 % of the total irrigated land 

in Canada (Statistics Canada, 2010). Irrigated agriculture accounts for 63 % of the total 

freshwater usage in Alberta (Alberta Environment, 2007). Irrigation water used in 

Southern Alberta is obtained from surface waters, most prevalently from the tributaries 

of the South Saskatchewan River (Alberta Agricultural and Rural Development, 2010). 

Climate change is expected to impact Southern Alberta by increasing temperatures and 

the increasing number of growing degree days (Barrow & Yu, 2005). These climatic 

changes are expected to increase the average moisture index 20-30% by 2050, indicating 

drier conditions as the climate continues to warm. These drier conditions are not likely to 

be offset by the expected increase in precipitation, leading to an increased reliance on 

irrigation for agriculture, especially during drought periods (Barrow & Yu, 2005). 

Furthermore, irrigated production is roughly seven times as valuable as dryland 
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production; the average production on irrigated farmland is approximately $2400/ha, 

compared to dryland production, which averages $329/ha (Kulshreshtha et al., 2016). 

Expanding irrigation in Southern Alberta would be economically beneficial for agricultural 

production, but limits on water allocation established in 2006 make expansion difficult 

(Alberta Environment and Parks, 2006). Studies have shown using site-specific irrigation 

management (SSIM) can improve water use efficiency by up to 30 % (Evans et al., 2013; 

Sadler et al., 2005). However, implementing SSIM is expensive and implementation may 

not be practical in all areas. Determining how SSIM can change soil moisture dynamics 

and crop production in a field is still an open question. Significant impacts will have to be 

achieved for SSIM to benefit individual producers. 

1.1 RESEARCH OBJECTIVES 

The study presented in this thesis addresses the knowledge gap regarding the effects 

site-specific irrigation management on potato production and soil moisture distribution, I 

have designed a study to compare the yield of areas with SSIM to those with uniform 

irrigation. The following questions will be answered: 

1. Are the three management zones delineated in the study area hydrologically 

different? 

2. Is heterogeneity of ECa and elevation the driving factor for soil moisture 

differences under uniform irrigation prescriptions? 

3. Can site-specific irrigation management be used to reduce potato yield 

variability? 
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CHAPTER 2. LITERATURE REVIEW 

2.1 IRRIGATION SYSTEMS OF ALBERTA 

Irrigation management technology and philosophy have undergone many changes over 

the past half-century. Up to the mid-1960’s, flood or gravity irrigation was the 

predominate form of irrigation used in Southern Alberta (Wang et al., 2015). This 

irrigation strategy used the simplest form of irrigation technology, whereby a waterway 

was dammed, and water would saturate a field beyond field capacity to ensure that 

water was available for crops during dry periods. Flood irrigation is an ineffective strategy 

for several reasons: it can increase the salinity of the soil as the water evaporates, 

increases leaching of essential nutrients, is an inefficient use of water resources because 

of water evaporation, and has a low application efficiency when compared to other 

irrigation methods (Cox et al., 2018; Howell, 2003). 

Starting in the 1970’s, farm operators began utilizing center pivot and wheel-move 

irrigation systems. Wheel-move systems were developed prior to center pivot systems 

and allow sprinkler systems to be moved in a field but apply irrigation when the system is 

stationary (Hill, 2000). Center pivot irrigation systems are self propelled overhead 

sprinkler systems which move in a circle from a central point (Daugherty & Eaton, 1975). 

They were first patented by Frank Zybach in 1952 (Hokcell, 2000; Splinter, 1976), but 

were used less often than wheel-move systems until the 1990’s (Alberta Agriculture and 

Rural Development, 2014). Center pivot irrigation systems have since become the most 

used irrigation system in Canada (Alberta Agriculture and Forestry, 2016).; by 2015, high- 
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and low-pressure pivot systems accounted for 80% of all irrigation systems in the 

province, with low-pressure systems being used in approximately 72% of farms with 

irrigation systems (Alberta Agriculture and Forestry, 2016).The most significant benefit 

for producers of a center pivot irrigation system is that it can be automated, and thus, 

have less intensive labor requirements than flood and wheel-move irrigation (Splinter, 

1976). Because it applies water in small increments, crops must be watered throughout 

the growing season, so there is a reduction in the erosion of topsoil and leaching of 

nutrients through the soil profile. It can also significantly improve yields on coarse-

textured soils, which have a limited water holding capacity and therefore need more 

frequent irrigation to produce crops (Splinter, 1976). Center pivot irrigation systems treat 

fields as uniform environments onto which uniform volumes of water are applied and 

thus are optimal for homogeneous field conditions. As most commercial fields have 

heterogeneous properties like soil texture, soil depth, and topography, which affect 

optimal crop growth, the management of center pivot irrigation systems is often based 

on the combination of properties  that cover the largest area in the field. 

2.2 PRECISION IRRIGATION 

Precision irrigation systems use differences in soil properties to subdivide a field into 

smaller sectors, or management zones, which share physical properties. The irrigation 

rate for the management zone is customized to the shared physical properties (Alaba, 

Chandra, & Aghil, 2016; Haghverdi et al., 2015; Villalobos & Fereres, 2016). This differs 

from conventional irrigation systems that apply a uniform volume of water over large 

sections of land, ignoring the inherent heterogeneity of soil and topography that can 
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occur in a single field (Evans et al., 2013). Precision irrigation is a relatively new irrigation 

system that requires large amounts of data and the use of novel technologies (Evans et 

al., 2013).  

Loyoza et al. (2016) identified five levels for the automation of irrigation systems (Table 

1).  

Table 1: Categories of automation within irrigation systems (Lozoya et al., 2016) 

Level 0 Empirical open loop 

irrigation 

No automation, irrigation systems are 

controlled manually; irrigation rate is 

determined using farmers observation 

and experience.  

Level 1 Time-based open-loop 

irrigation 

Simple automation of irrigation systems 

using a timer with no sensor inputs and 

is based on farmers observation and 

experience 

Level 2 Feed-forward open-

loop irrigation 

Automated irrigation which replaces 

water at the rate of evapotranspiration 

and crop use; the system uses sensors 

or weather station data to determine 

the irrigation rate and timing.  

Level 3 Closed-loop irrigation An automated irrigation system which 

applies irrigation based on in-field 

sensor data which detect 

predetermined low thresholds and 

stops irrigation when sensors detect a 

predetermined high threshold; it is 

often based on soil water content.  

Level 4 Model-based closed-

loop irrigation 

All irrigation systems are automated 

with a mathematical model which 

optimizes the irrigation rate based on 

predictive algorithms. 
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Precision irrigation is currently at Level 1 to 2, with attempts being made to increase 

automation to Level 3 (Lozoya et al., 2016) and Level 4 (Seidel et al., 2015). As the level of 

automation within an irrigation system increases, more data collection is necessary to 

create an accurate representation of conditions within a field. Soil moisture sensor data 

can help with this process, but sensors must be installed using a design that captures the 

spatial heterogeneity within the field. This may mean that many sensor stations are 

required throughout the field. Weather station data may also be used to provide 

information for evapotranspiration rates, such data should be collected as closely to the 

field as practically possible. This level of data acquisition can be expensive and time-

consuming, and the interpretation of the data acquired requires more expertise than 

current assessments of soil conditions and water availability for irrigation scheduling 

(Sadler et al., 2005).  

Precision irrigation systems, which can be adjusted to site-specific differences within a 

field and are automated by prescription maps, are also known as variable rate irrigation 

systems (Evans et al., 2013). VRI systems utilize in-field measurements and mathematical 

modelling to create irrigation management strategies that may vary within a field 

depending on environmental factors and differences in crop water requirements (Lozoya 

et al., 2016; Vukobratovic et al., 2014). Currently, VRI systems are commercially available, 

but have not been widely adopted by producers due to the expense of installing the 

systems. Those promoting precision irrigation technology have made claims about how 

the technology can benefit individual farm operators (Evans et al., 2013).  The potential 

benefits of precision irrigation are the positive effect that the technology may have on 
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crop production by improving resource use efficiency. VRI has been shown to use 

approximately 30% less water compared to conventional irrigation systems (Haghverdi et 

al., 2015), which is becoming a more important aspect to farming as climate change 

impacts typical water cycles. Precision irrigation technology can be used to reduce over- 

and under-irrigation in specific parts of fields, thereby having the potential for increased 

yields in heterogeneous fields (Evans et al., 2013; Lozoya et al., 2016). Incidentally, by 

using different irrigation rates throughout a single field, nitrogen leaching (Fridgen et al., 

2000) and the topsoil erosion are also reduced. Site-specific salinity problems may also 

be addressed by mapping the highly saline areas and delineating them into separate 

management zones that can have different irrigation rates from the rest of the field 

(Alaba et al., 2016). Topographic differences can be separated into management zones 

using slope and elevation as variables (Fridgen et al., 2000). There is also a promise of 

improved products from VRI systems; improving the quality of products has been 

suggested as another benefit of using VRI systems (Evans et al., 2013). However, there 

are very few studies on how VRI can improve yields; most studies to date have focused 

on either water management (Lozoya et al., 2016; Rowshon & Amin, 2010) or the 

development of tools to improve the delineation process (Evans et al., 2013; Haghverdi 

et al., 2015). 

VRI systems are controlled in two ways. The first is through varying the travel speed of 

the center pivot during its rotation; these are described as sector-controlled systems (Fig. 

1a). In sector-controlled systems, the travel speed of the system is increased or 

decreased to change the irrigation application rate. 



9 
 

 

Figure 1: Examples of management zones for sector controlled (a) and zone controlled (b) 
variable rate irrigation systems 

A GPS tracker system mounted onto the pivot arm helps control the speed as the pivot 

system moves around the field. Management zones for sector-controlled systems are 

shaped like wedges (Figure 1a). The second is through control of the sprinklers: these are 

described as zone-controlled systems (Figure 1b). Variable flow rate sprinklers can vary 

the effective irrigation rate by opening and closing the sprinkler head (King et al., 2005; 

Sadler et al., 2005). Management zones are shaped like concentric circles overlaid on top 

of the wedges (Fig 1b). Because of the level of automation necessary for implementation, 

zone controlled VRI requires the highest amount of data collection of all the precision 

irrigation techniques. The adoption of VRI in agriculture has been slow, because of high 

costs which is explained by the increased cost of VRI systems and the costs associated 

with the collection of data for the field, which include, the intensive monitoring required, 

and the expertise necessary for the technology to be successfully implemented (Sadler et 

al., 2005).  
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2.3 MANAGEMENT ZONE DELINEATION 

Delineation of management zones is a critical step in precision irrigation water 

management. Because precision irrigation techniques incorporate the spatial variability 

of plant available water, drainage conditions, infiltration rates, and soil water holding 

capacity rather than the average of these variables as is done with conventional irrigation 

techniques (Lozoya et al., 2016), mapping these attributes the first step in delineation. 

Direct determination of these variables is time-consuming and often requires significant 

disturbance, therefore indirect, proxy variables are preferred (Haghverdi et al., 2015). 

Topography and soil apparent electrical conductivity (ECa) are useful and popular for two 

reasons; first, they can be measured with an automated tool at a high spatial density 

throughout an entire field, and second, they require less invasive sampling or laboratory 

testing. ECa features well-established correlations with soil texture, bulk density, organic 

matter content, and cation exchange capacity (Alaba et al., 2016; Brady, 2008; de Lara, 

Khosla, & Longchamps, 2017; Haghverdi et al., 2015). Using ECa to directly predict soil 

texture has been explored, but due to the confounding factors of soil moisture, salinity, 

and organic matter, ECa can only be partially correlated with soil texture (McCutcheon et 

al., 2006). Fridgen (2000) explored the use of topography and ECa to create management 

maps in a field. The topographic details that were assessed were slope and elevation. 

There are clear correlations between topography, slope, soil texture and ECa, and the 

effect these characteristics have on hydraulic conductivity (Alaba et al., 2016; de Lara et 

al., 2017; Fridgen et al., 2000; Haghverdi et al., 2015). Alternatively, it has been suggested 

that an analysis of historical yield maps would provide a better indication of plant water 
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use (Haghverdi et al., 2015). Yield measurements in single field studies show that 

depressions outperform those on hills, unless ponding occurs, because of the higher 

moisture content found in toe-slopes (Fridgen et al., 2000). However, this may not 

provide the most appropriate information for the creation of management zones, 

because temporal differences of yield are difficult to determine, and yield is affected by 

other factors including pests and disease which differ from year to year.  

Delineation of management zones uses decision-making computer software by necessity. 

Soil properties which affect infiltration, water holding ability and drainage are never 

discrete and rely on a continuum of data points for assessment. As delineation is defined 

by creating clear boundaries surrounding areas with similar properties, it is necessary to 

determine where a data point lies along a spectrum. Various soil properties may have 

different spatial distributions; management zone delineation based on multiple 

properties can be achieved using statistical clustering methods (Alaba et al., 2016; de 

Lara et al., 2017; Haghverdi et al., 2015; Haghverdi et al., 2016). Principle component 

analysis is used to determine an individual parameter’s importance within a dataset by 

decoupling dependant variables and assessing them as independent variables (Haghverdi 

et al., 2015). Haghverdi, et al (2015) explored different modelling techniques which are 

used in the determination of management zones. The methods examined the use of 

fuzzy k-means, Gaussian mixture, integer limiting programming (ILP), and Iterative Self-

Organizing Data Organizing Technique (ISODATA). These modelling methods are all 

unsupervised clustering tools; unsupervised clustering uses algorithms to identify clusters 

within a data set while supervised clustering utilizes the experience of the software user 
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and requires controlled sites to train the algorithm. The benefit of using unsupervised 

clustering is that a user does not have to be trained to use the software or be familiar 

with the site, as unsupervised clustering use iterative processes that analyze the data into 

best-fit clusters (Fridgen et al., 2004). All four methods performed similarly in the 

determination of management zones; the methods were assessed using the overall 

variance of available water capacity (Haghverdi et al., 2015). All methods also identified 

the same number of optimal management zones (Haghverdi et al., 2015). Fuzzy k-means 

analysis benefits from being widely used, simple and efficient at determining clusters 

(Haghverdi et al., 2015). It is the method used by the Management Zone Analyst software 

(Fridgen et al., 2004), a popular operational package to determine management zones 

(Alaba et al., 2016; Al-Gaadi et al., 2015; de Lara et al., 2017). The Management Zone 

Analyst software features built-in evaluating tools which can assess the optimal number 

of management zones that need to be employed within a field. This is an important step 

in management zone delineation as the number of management zones should limit the 

variability of the measured field characteristics while not creating more management 

zones than necessary. Evaluating the optimal number of management zones in the 

statistical clustering process involves two measures: the fuzziness performance index 

(FPI) and the modified partition entropy (MPE). The goal of management zone 

delineation is to minimize the value of both FPI and MPE to assure the delineated zones 

have minimal overlap (FPI) and the smallest amount of disorganization (MPE) (Boydell & 

McBratney, 2002).  
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2.4 CONCLUSION 

The effects of VRI on decreasing water use in irrigated agriculture has been 

demonstrated in some environments (Sadler et al., 2005). Delineation methods for 

management zones based on proxy variables for soil properties & drainage 

characteristics have been established. However, firm evidence of the effects of VRI on 

yield improvement is limited. An important factor here is that methods for irrigation 

scheduling in management zones based on multiple field properties is poorly understood.  
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CHAPTER 3. METHODS 

3.1 FIELD DESCRIPTION 

The study site for the 2018 and 2019 field seasons is located at Alberta Irrigation 

Technology Centre (49.6903 N, -112.7341 W), 8 km east of Lethbridge, Alberta (Figure 2 

A&B). The mean elevation for the field site is 907.2 m with a minimum elevation of 903.6 

m and a maximum elevation of 911.9 m. The 30-year mean annual precipitation (1981 – 

2010) at the Lethbridge airport weather station, located approximately 7 km from the 

field site, is 360 mm of precipitation throughout the year, with 250 mm falling in the 

growing season (Government of Canada, 2019). The average growing season begins May 

14 and ends October 27, consisting of 166 days. The average number of frost-free days in 

Lethbridge is 124 days; the average date for last spring frost is May 17 and the average 

date for the first fall frost is September 18 (Government of Canada, 2019). The climate 

for the study area is characterized as Dfb 19 (Ackerman, 1941) with warm, dry summers 

and cold winters which are broken up by strong orographic winds from the west. The 

mean annual temperature is 5.9˚C with average minimum and maximum growing season 

temperatures of 3.9˚C and 26.1˚C (Government of Canada, 2019). The average annual 

wind speed is 18 km/h.  

The field is approximately 2.3 × 105 m2 and is divided into quarters which are managed 

using a four-year crop rotation of spring and winter wheat, potatoes, and sugar beets. 

Irrigation water is withdrawn from St. Mary River and is supplied by the St. Mary River 

Irrigation District (SMRID), one of 13 irrigation districts in Southern Alberta. The field site 
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is located on Orthic Dark Brown Chernozemic soil (Agriculture and Agri-Food Canada, 

Research Branch & Alberta Agriculture, Food and Rural Development, Conservation and 

Development Branch, 2005) with a sandy clay loam texture (Yari et al., 2017). Russet 

Burbank potatoes were chosen as the experimental crop and were seeded in the 

northwest quarter in 2018 and southwest quarter in 2019 (Figure 2C).  

The field is equipped with a Valley model 8000 center pivot irrigation system with 5 

spans, a length of 294 m and 129 sprinklers. The sprinkler system is a low elevation spray 

application package where sprinklers are installed on drop tubes approximately 2 m 

above ground level. Each sprinkler consists of a Nelson rotator sprinkler nozzle (R3000, 

D6-Red) and 1.2 bar pressure regulator (Nelson Irrigation Inc., Walla Walla, Washington, 

USA). The center pivot irrigation system was retrofitted with a Valmont VRI zone control 

system in 2012, which divided the lateral span into 12 sprinkler banks. Each sprinkler 

bank consists of 10-12 individual sprinklers. 
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Figure 2: General site map for study areas in 2018 and 2019. 
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3.2 MANAGEMENT ZONE DELINEATION 

The delineation of management zones was not a topic of study and a pre-existing 

management zone map was used to select the experimental plots. The management 

zones were delineated in 2013 by Yari et al (2017) with the Management Zone Analyst 

software (Fridgen et al., 2004) using ECa and elevation. ECa data was collected using an 

EM38 instrument (Geonics Limited, Mississauga, Ontario, Canada) and Veris 3100 (Veris 

Technologies, Inc., Salina, Kansas, USA), leaving out the northeast section due to on-going 

farm operations. The point data was used to predict ECa for three quarter sections using 

the ordinary kriging interpolation method in ArcGIS (version 10.2.2, ESRI, Redlands, 

California, USA) (Figure 3A). The elevation point data was obtained using a real time 

kinematic global navigation satellite system receiver (Figure 3B) which was kriged the 

same way as ECa to produce an elevation map. Yari et al (2017) used the Management 

Zone Analyst software to partition data into clusters. The clusters were evaluated by the 

software which attempted to reduce the weighted within-group sum of squares errors by 

evaluating clustering characteristics using FPI and MPE to identify the optimal number of 

clusters. The minimum FPI and MPE were calculated for three clusters, indicating that 

three management zones were optimal. Three management zones were delineated from 

the results, producing Figure 4. After the management zones were delineated, soil 

textural properties, pH and organic matter were evaluated (Table 2).  
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Figure 3: Apparent soil electrical conductivity (ECa) and elevation raster maps 
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Figure 4: Management zone map developed by Yari et al (2017). 

Table 2: Summary of soil properties from Yari (2017). Percent of sand, silt, clay, and 
organic matter (OM), and pH are summarized. 

ZONE SAND (%) SILT (%) CLAY (%) PH OM (%) 

1 50.2 24.4 25.4 7.74 2.57 
2 52.9 23.8 23.3 7.80 2.61 
3 53.3 23.3 23.4 7.76 2.59 

3.3 PLOT SELECTION  

Using the management map in Figure 4, management zones 1, 2 and 3 accounted for 

36%, 38% and 26% of the total area in the 2018 study area, respectively, and 8%, 38% 
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and 54% in the 2019 study area. The irrigation applications under the normal operating 

procedure used level 0 automation (Lozoya et al., 2016) where the operator made 

irrigation decisions with observations and experience rather than using sensors. The field 

was irrigated using uniform irrigation management (UIM) except where ponding was 

observed. Plots were delineated from three management zones to examine the effects of 

site-specific irrigation management (SSIM) on soil moisture and potato yield. Yield and 

soil moisture comparisons between uniform irrigation management (UIM) and SSIM 

could be examined by applying SSIM treatments to the plots and using the normal 

operating procedure for the rest of the field. The plots were selected using the 

management zone map created by Yari et al (2017). The plots were selected under the 

7th and 8th sprinkler banks in 2018 and 6th and 7th sprinkler banks in 2019. Each 

management zone had a single plot approximately 4000 m2, except the plot in MZ1-

2019, where a lack of space required the plot to be 1760 m2.  
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Figure 5: Detailed site map for AITC study site in 2018 and 2019 



22 
 

3.4 VOLUMETRIC WATER CONTENT OBSERVATIONS 

The height of the effective root zone for potatoes has been shown to be 60 cm from the 

top of the ridge (Stalham & Allen, 2004). This depth was chosen as the maximum sensor 

installation depth. The SSIM plots were installed with four soil moisture sensors in 2018 

and five soil moisture sensors in 2019. In the SSIM 2018 plots, four HOBO 10HS soil 

moisture smart sensors (model S-SMD-M005) were installed horizontally in the soil at 15, 

30, 45 and 60 cm from the top of the potato hill. At UIM observation stations, soil 

moisture sensors were installed at the same depths as SSIM; however, Acclima TDR-315 

soil moisture sensors were used instead of HOBO 10HS soil moisture smart sensors. In 

2019, after laboratory experiments described in Appendix 1 were conducted, it was 

determined that vertical installation was more accurate when sensors are placed 15 cm 

apart. The installation was changed to accommodate these findings. In SSIM plots, four 

HOBO 10HS soil moisture smart sensors were installed, whereby two were installed 

horizontally at 15 cm and 25 cm and two were installed vertically in boreholes at 30 cm 

and 50 cm, extending 10 cm into the soil profile. Additionally, a HOBO EC5 soil moisture 

smart sensor (model S-SMC-M005) was installed horizontally at 5 cm. In the UIM 

monitoring stations, the sensors were installed vertically in boreholes at 5, 20, 35 and 50, 

extending 15 cm into the soil profile. Soil moisture data was downloaded no later than 24 

hours before a scheduled irrigation event. Once the soils moisture data was downloaded, 

the observations were corrected using the soil specific calibration.  
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Figure 6: Sensor installation in 2018 & 2019 

3.5 SOIL CALIBRATION PROCEDURE 

A 2334 mL container was used for calculating a calibration line for HOBO 10HS soil 

moisture smart sensors, Acclima TDR-315 soil moisture sensors and the Stevens HydroGo 

portable moisture probe. Soil was collected from three sites randomly selected in the 

study area. The soil was oven-dried and mechanically ground to remove aggregates and 

homogenize samples. Gravimetric water content was used to adjust the water content of 

six-1kg soil samples in 0.05 kg/kg increments. The rewetted soil was packed into the 

container and weighed. One sensor was placed vertically through the center of the 

sample. Soil moisture observations were taken every 10 secs for 5 mins and averaged at 

the end of the run. The soil was oven dried to determine bulk density and volumetric 

water content of the sample. This was repeated with 4 different HOBO 10HS soil 

moisture smart sensor for a total of 4 runs per GWC increment. The procedure was 
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repeated with Acclima TDR-315 soil moisture sensors. To calibrate the Stevens HydroGo 

portable moisture probe, it was inserted into each of the samples at the end of each run 

and read out three times and averaged. The average of each of the runs was compared 

to the calculated VWC to create a calibration line for each sensor type. The 10HS 

calibration line was also used for the EC5 sensor.  

3.6 SOIL MOISTURE SURVEY 

Soil moisture surveys were conducted using a Stevens HydroGo portable moisture probe 

on various dates throughout the 2018 and 2019 growing season (Figure 7). Soil moisture 

survey data was collected on July 19, Aug 2, Aug 16, and Aug 23 in 2018 and on July 10, 

July 22, Aug 9, Aug 28, Sept 2, and Sept 17 in 2019. The data was used to produce soil 

moisture maps for the study area. In 2019, points were added to the soil moisture survey 

to improve prediction accuracy.  
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Figure 7: Soil moisture survey points in study areas for 2018 and 2019.  

3.7 WEATHER OBSERVATION 

Weather observations were used to calculate the reference evapotranspiration. Daily 

observations were downloaded from the weather station located at AITC (49.6867 N, -

112.7449 W, elev. 906.87m ASL) with the current and historical Alberta weather station 

viewer (Alberta Agriculture and Forestry, 2019). The daily reference evapotranspiration 

was calculated using the Penman-Monteith procedure in the FAO-56 guideline (Allen et 

al., 1998, Eq. 1): 

𝐸𝑇0 =  
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

Δ + 𝛾(1 + 0.34𝑢2)
 

Eq. 1 
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Where ET0 is the reference evapotranspiration (mm/day), Rn is the net radiation at the 

crop surface (MJ/m2/day), G is the soil heat flux density (MJ/m2/day), T is the air 

temperature at 2 m height (°C), u2 is the wind speed at 2 m height (m/s), es is the 

saturation vapour pressure (kPa), ea is the actual vapour pressure (kPa), Δ is the slope 

vapour pressure curve (kPa/°C), and 𝛾 is the psychrometric constant (kPa/°C). The 

weather station also recorded a reference evapotranspiration which was averaged with 

the reference evapotranspiration calculated using Eq 1.  

𝐸𝑇 = 𝑘𝑐𝐸𝑇0 Eq. 2 

A linear interpolation of the FAO potato crop coefficients from a semi-arid environment 

at four growth stages (kc) was applied to the daily reference evapotranspiration rate (ET0) 

using Eq 2. The weather data was also used to calculate growing degree days (McMaster 

& Wilhelm, 1997, Eq. 3): 

𝐺𝐷𝐷 = max (
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒 , 0) 

Eq. 3 

Where GDD is the growing degree days, 𝑇𝑚𝑎𝑥 is the daily maximum temperature (°C), 

𝑇𝑚𝑖𝑛 is the daily minimum temperature (°C), and 𝑇𝑏𝑎𝑠𝑒 is the base temperature (°C), 

which was set at 5°C.  

3.8 IRRIGATION PROCEDURE 

The AITC irrigation schedule was set by the operator with irrigation applications occurring 

on Tuesdays and Thursdays, which limited the study to varying the irrigation rate on pre-

defined dates. The soil moisture observation equipment did not directly activate the 
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irrigation system or automatically create an irrigation application via a feedback loop. 

Instead, the observation data was downloaded 24 hrs prior to a scheduled irrigation 

event and used to determine the amount of irrigation necessary for each plot. The 

management strategy for the site-specific irrigation plots used a maximum allowable 

depletion trigger where the total soil water content was not allowed to fall below MAD. 

MAD was defined as when soil water falls below 80% of the total available water which 

corresponded with a VWC of 22.5% or 169 mm/60 cm. Total available water was 

determined using recommendations from Alberta Agriculture and Forestry using the 

sandy clay loam parameters for field capacity and permanent wilting point. The MAD and 

total available water was assumed to be the same throughout all three management 

zones. Soil moisture data was downloaded the day before a scheduled irrigation event, 

and it was used to calculate the total water content for the effective root zone. The 

average daily water loss was calculated using the change in effective root zone water 

content in the preceding 48-72 hrs without precipitation or irrigation events. The average 

daily water loss was used to forecast the daily water loss until the next irrigation event. If 

the water content in the effective root is forecasted to drop below MAD before the next 

irrigation event (Point B on Figure 8), an irrigation event would be scheduled for the 

preceding irrigation event (Point A on Figure 8). If the water content in the effective root 

zone was above the maximum allowable depletion level and not forecast to fall below 

MAD before the next irrigation event , no irrigation was scheduled for the current event 

(Point D on Figure 8). The procedure for downloading and forecasting the data would be 

repeated before the next scheduled irrigation event to account for changing conditions 
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during the interim period (Point E on Figure 8). The water quantity for an individual 

irrigation application was calculated by subtracting the VWC calculated in the soil profile 

from the field capacity VWC (Point C on Figure 8), unless the water requirement 

exceeded 25 mm, which was the estimated maximum infiltration rate of the soil. When 

this occurred, the total requirement was divided into two successive applications. 
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Figure 8: Two example of volumetric water content data used to determine irrigation 
applications. 
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3.9 CROP CHARACTERISTICS 

Russet Burbank potatoes were used as the crop for this study in 2018 and 2019. Potato 

planting occurred on May 17 in 2018 and May 9 in 2019. During the growing period, 

observations of the potato plants were made to help determine growth stages which 

were used to determine crop coefficient for ETc calculation. Harvesting occurred on 

September 17 in 2018 and September 16 in 2019. Potatoes were harvested from the 

three SSIM plots and from three management zones under uniform irrigation. Samples 

consisted of potatoes harvested from a single 3 m row and were replicated three times in 

each SSIM plot and UIM zone for a total of 18 samples. Harvested potatoes were counted 

and graded by weight. Five graded categories were used: less than 113 g, 113-170 g, 170-

284 g, 284-396 g and greater than 396 g, with marketable potatoes consisting of 

potatoes between 113 g and 396 g without deformities. The number of potatoes in each 

category was recorded and each category was weighed to calculate total weight, 

marketable weight, total numbers, and marketable numbers. A weighted average for the 

field using the area of each management zone will be used to estimate the average yield 

for each study area  

Statistical analysis of total weight, marketable weight, total numbers, and marketable 

numbers was conducted using ANOVA multiple means comparison (p=0.05). Differences 

were evaluated within the set of SSIM samples, within the set of UIM samples and 

between the SSIM and the UIM samples in each management zone. If significant 

differences in the means were found, the Fisher pairwise comparison was used to 

identify groupings.  
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3.10 GEOSTATISTICAL ANALYSIS 

The soil moisture survey data was used to interpolate a continuous surface map using 

three kriging methods with RStudio (2016) and the following R packages: plyr (Wickham, 

2011), dplyr (Wickham et al., 2019), raster (Hijmans, 2019), rgdal (Bivand, Keitt, & 

Rowlingson, 2019), sp (Bivand, Pebesma, & Gomez-Rubio, 2013), gstat (Gräler, Pebesma, 

& Heuvelink, 2016), EnvStats (Millard, 2013), rgeos (Bivand. & Rundel, 2019), ithir 

(Malone, 2016) and MASS (Venables & Ripley, 2002). The Shapiro-Wilk test determined 

whether the VWC, digital elevation data and ECa were normally distributed. The data 

collected on July 22, 2019 was interpolated using three kriging methods: ordinary kriging, 

universal kriging, and co-kriging with elevation and ECa to determine which method 

resulted in a continuous map with the highest accuracy. Ordinary kriging dissects the 

variation of a georeferenced dataset into two sources: variation which is random and 

spatially uncorrelated, and variation that is spatially correlated or autocorrelated. 

Ordinary kriging uses the model: 

𝑍(𝑠) =  𝜇 + 𝜀′(𝑠) Eq. 4 

Where 𝑍(𝑠) is the targeted variable, μ is an unknown constant, and 𝜀′(𝑠) is a spatially 

correlated stochastic part of the variation.  

Universal kriging adds a deterministic trend component to the spatial correlation and 

uses the model: 

𝑍(𝑠) =  𝜇(𝑠) + 𝜀′(𝑠) Eq. 5 
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Where 𝑍(𝑠) is the estimation of the targeted variable, 𝜇(𝑠) is a deterministic function, 

and 𝜀′(𝑠) is the spatially correlated stochastic part of the variation. Co-kriging uses other 

georeferenced variables to predict the targeted variable and uses the model: 

𝑧0
∗ = ∑ 𝜆𝑖𝑧𝑖

𝑛

𝑖=1

+ ∑ 𝛽𝑗𝑡𝑗

𝑚

𝑗=1

+ ∑ 𝛾𝑘

𝑝

𝑘=1

𝑢𝑘 
Eq. 6 

Where 𝑧0
∗ is the estimation of the targeted variable, 𝜆1, 𝜆2, … 𝜆𝑖 are the primary variable 

at 𝑛 locations, 𝛽1, 𝛽2, … 𝛽𝑗, and 𝛾𝑘, 𝛾𝑘 … 𝛾𝑘 are the secondary variables at 𝑚 and 𝑝 

locations, 𝑧1, 𝑧2 … 𝑧𝑖, 𝑡1, 𝑡2 … 𝑡𝑗, and 𝑢1, 𝑢2 … 𝑢𝑘 are the weights given to each variable.  

Semivariograms were calculated for each method using: 

𝛾(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧(𝑥𝑖 + ℎ) − 𝑧(𝑥𝑖)]2

𝑁(ℎ)

𝑖=𝑖

 

Eq. 7 

where 𝛾(ℎ) is the experimental semivariogram value at distance ℎ, 𝑁(ℎ) is the number 

of sample pairs at distance ℎ, and 𝑧(𝑥𝑖 + ℎ) and 𝑧(𝑥𝑖) are two sample points separated 

by distance ℎ. The semivariograms were used to determine if VWC was spatially 

correlated and to summarize the spatial variability if spatial correlation were found. If 

there was evidence of spatial correlation, the data was modelled using each of the kriging 

methods. The strength of the spatial correlation was determined using the nugget-to-sill 

ratio (Eq 8). 

𝑁𝑇𝑆 =
𝐶0

𝐶 + 𝐶0
 

Eq. 8 
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The nugget variance (C0) and the total sill (C+C0) were used to determine the nugget-to-

sill ratio (NTS). A ratio of <0.25 was considered strongly spatially dependent, 0.25-0.75 

was considered moderately spatially dependent, and >0.75 was considered weakly 

spatially dependent (Cambardella et al., 1994). Several theoretical semivariogram models 

were tested for each kriging method: Gaussian, circular, spherical, and exponential. The 

theoretical models were assessed with model validation using leave-one-out cross 

validation (LOOCV) procedure. LOOCV is used when an additional independently sampled 

data set is unavailable and the data which was collected is sparse. LOOCV uses leaves a 

data point out of a sample n, fits the model to the data subset n-1 and uses this model to 

predict the left-out data point. The process is repeated for all of n to calculate n 

predicted values. The predicted and observed values from n repetitions were used to 

calculate goodness-of-fit statistics using the R package ithir (Malone, 2016) which 

computed the coefficient of determination, concordance, MSE, RMSE and bias. The 

coefficient of determination was calculated using: 

𝑟2 = (
𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)

√(𝑛∑𝑥2 − (∑𝑥)2)(𝑛∑𝑦2 − (∑𝑦)2)
)

2

 Eq. 9 

Where 𝑟2 is the coefficient of determination, 𝑛 is the number of observations, and 𝑥 and 

𝑦 is a set of paired observations to be correlated. The concordance was calculated using: 

𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2 + 𝜎𝑦

2 + (𝜇𝑥 − 𝜇𝑦)2
 Eq. 10 

Where 𝜌𝑐  is the concordance correlation coefficient, 𝜌 is the correlation coefficient 

between two variables , 𝜎𝑥  and 𝜎𝑦 is the standard deviation of two variables, 𝜎𝑥
2 and 𝜎𝑦

2 
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are the variances of two variables, and 𝜇𝑥 and 𝜇𝑦 are the means of the two variables. The 

MSE was calculated using:  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

 Eq. 11 

Where the MSE is the mean square error, 𝑛 is the number of observations, 𝑌𝑖 is the 

observations of a variable, and the 𝑌̂𝑖 are the paired predictions of the variable. The RSME 

was calculated using: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 Eq. 12 

Where the root mean square error (RMSE) is the square root of the calculated value of 

Eq. 11. The bias was calculated using: 

𝐵𝑖𝑎𝑠 =
𝑦 − 𝑦̂

𝑛
 

Eq. 13 

Where 𝐵𝑖𝑎𝑠 is the bias of the predicted values relative to the observed values, 𝑦 is the 

observed value, 𝑦̂ is the predicted value, and 𝑛 is the number of paired values.  

Once these calculations were completed, the most accurate semivariogram model from 

each kriging method was then compared to each other using LOOCV results to determine 

which kriging method showed the most accurate predictions. 

After the kriging method was determined, the remainder of the soil moisture survey data 

sets were also processed to create continuous soil moisture prediction maps for 15 cm 

and 30 cm depths at each date, adjusting the semivariograms to determine if spatial 

correlations exist in the rest of the data sets. The mean VWC was calculated for each map 
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and subtracted from the raster values to create a normalized VWC map for each date. 

The normalized VWC maps were grouped by year and stacked using the R package raster 

(Hijmans, 2019). A seasonal average and standard deviation were calculated from the 

stacked normalized VWC maps to visualize seasonal trends. The normalized seasonal 

average VWC value was calculated for each management zone in both years using 

ArcMap to determine if there were generalized differences between the management 

zones soil water content. These comparisons cannot be confirmed with statistical 

methods due to the lack of independence when using the co-kriging method to create 

prediction maps. 
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CHAPTER 4. RESULTS 

4.1 WEATHER 

4.1.1 2018 

Daily average temperature from the planting date to the harvest date in 2018 was 16.5˚C 

during the growing period, with a cumulative 1448 growing degree days. 

Evapotranspiration ranged from 0 to 8.8 mm/day with 98 out of 123 days after planting 

exceeding 0 (Figure 9). There was 115 mm of rainfall during this period. Uniform 

prescriptions were 12 or 15 mm per irrigation event in 29 events, totaling 440 mm of 

irrigation throughout the growing season (Figure 10A). Each SSIM plot received different 

irrigation amounts: SSIM1-2018 received 217 mm in 15 irrigation events, SSIM2-2018 

received 250 mm in 17 irrigation events, and SSIM3-2018 received 393 mm in 25 

irrigation events (Figure 10B). 

 

Figure 9: Temperature and evapotranspiration data from May 17, 2018 to Sept 17, 2018. 
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Figure 10: Rainfall and irrigation data collected from May 15, 2018 to Sept 17, 2018 

 

4.1.2 2019 

Daily average temperature from the planting date to the harvest date in 2019 was 15.4˚C 

with a cumulative 1434 growing degree days in 2019. Evapotranspiration ranged from 0 

to 7.2 mm/day with 98 out of 131 days after seeding exceeding 0 (Figure 11). There was 

154 mm of rainfall. Uniform prescriptions ranged from 6 mm to 18 mm per irrigation 

event in 24 events, totaling 354 mm of irrigation throughout the growing season (Figure 

12A). SSIM1-2019 received 278 mm in 19 irrigation events, SSIM2-2019 received 207 mm 

in 14 irrigation events, and SSIM3-2019 received 213 mm in 14 irrigation events (Figure 

12B). 
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Figure 11: Temperature and evapotranspiration data from May 1, 2019 to Sept 17, 2019 

 

Figure 12: Rainfall and irrigation data collected from May 1, 2019 to Sept 17, 2019 
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4.2 SOIL MOISTURE 

4.2.1 Calibration of Soil Moisture Sensors 

Calibration lines were calculated for to calibrate soil moisture sensor data to the soil in 

the study area. The Stevens calibration was used on Stevens HydroGo portable moisture 

probe survey data, the Acclima calibration line was used on Acclima TDR-315 soil 

moisture sensors, and HOBO calibration line was used on HOBO EC5 and 10HS soil 

moisture sensors (Figure 13). The best Acclima and HOBOware soil calibration functions 

were a polynomial trendline with coefficient of determination (R2) of 0.9901 and 0.9894 

respectively (Table 3). The best Hydra Probe soil moisture calibration was a linear 

trendline with a coefficient of determination (R2) of 0.9857 (Table 3). 

 

Figure 13: Calibration data used for correcting moisture sensor data and the 
corresponding trend lines 
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Table 3: Calibration equations used to correct moisture sensor data 

SENSOR EQUATION R2 

HOBOWARE 𝑦 = 1.0106𝑥2 + 0.634𝑥 0.9894 

STEVENS 𝑦 = 1.0095𝑥 0.9857 

ACCLIMA 𝑦 = −8 × 10−5𝑥2 + 0.0125𝑥 0.9901 

 

4.2.2 2018 

Uniform irrigation 

VWC data obtained from UIM monitoring stations is presented in Figure 14. Soil moisture 

sensors for management zone 1 and 2 were connected to the same data logger and 

stopped reading from August 7 to September 7. The data logger used for management 

zone 3 was broken before installation and was not replaced until August 23.  

The soil profile in UIM1 and UIM2 displayed a high VWC in the 60 cm sensor and a 

noticeably lower VWC in each subsequent sensor. The soil profile in UIM3 differed where 

the daily differences between sensors was small and varied throughout the dataset. Data 

collected from UIM3 falls between 0.204 and 0.271 for all sensors while management 

zone 1 and 2 show distinct differences between each of the sensors with no overlap 

between sensors at different depths. The precipitation events observed in UIM 1 and 2 

did not generate an observable response in individual sensors at all depths (Figure 14), 

but precipitation did generate a well-defined response in UIM3. 
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Figure 15: Total volumetric water content (mm/60 cm soil) in three 
management zones (UIM1, UIM2, UIM3) receiving uniform irrigation 
applications, 2018 

 

Soil moisture sensor readings were analyzed for precipitation responses occurring within 

the 48 hours after a precipitation event (Table 4). In UIM1, between 48% and 65% of the 

total average VWC response to precipitation events occurred in the first 24 hours, and in 

UIM2, between 51% and 53% of the response was occurred in the first 24 hrs. Although 

the response was higher in the lower depths (Table 4), the response was not observable 

in most precipitation events and occurred when the response was high in all sensors. In 

the shorter monitoring period for UIM3, the first 24 hours contained between 64% and 
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95% of the precipitation responses in the 48 hours following an event. Some of these 

responses fall below the margin of error of the Acclima sensors. The peak of the VWC 

response to precipitation lagged by between 1 and 24 hours after the recorded event, 

with the quickest response occurring in the shallow sensors and longer lags observed in 

each depth. This was a result of the attenuation of the infiltration front in the soil profile 

and the revolution time of the irrigation pivot. Despite the low signal response in the 

sensors after precipitation, a response was observable when the data was integrated, 

and soil moisture calculated for the 60 cm profile (Figure 15).  

The VWC levels in the 30 cm profile began a gradual decrease after July 12 in UIM2, while 

in UIM1, a decrease was observed in the period immediately before the sensor 

malfunction. A decrease in UIM3 could not be confirmed. The VWC levels in the 45 and 

60 cm depths exhibited a gradual, constant decrease over the monitoring period in both 

UIM1 and UIM2. Over the monitoring period, the 60 cm soil moisture profile became 

drier in UIM1, with losses of 8%, 4%, 2%, and 4% in the 15, 30, 45, and, 60 cm sensors 

respectively, for a total of -22mm/60cm in the entire profile. The soil moisture profile in 

UIM2 also became drier over the monitoring period, with losses of 4%, 3%, 1%, and 1% in 

the 15, 30, 45 and 60 cm sensors respectively, for a total of -15mm/60cm in the entire 

profile. The soil moisture profile in UIM3 displayed an increase in soil moisture over the 

monitoring period, with a gain of 4%, 4%, 7%, and 5% in the 15, 30, 45, and 60 cm 

sensors respectively, for a total of +28 mm/60cm in the entire profile.  



44 
 

Table 4: Average precipitation response with standard deviation (st dev) to uniform 
irrigation in the UIM1, UIM2, and UIM3 monitoring stations. 

 UIM1 UIM2 UIM3 

SENSOR Average St dev Average St dev Average St dev 

15 CM 0.026 0.037 0.006 0.003 0.034 0.018 

30 CM 0.010 0.002 0.007 0.003 0.029 0.026 

45 CM 0.000 0.002 0.005 0.001 0.036 0.030 

60 CM 0.005 0.009 0.012 0.004 0.020 0.012 

 

Site-specific irrigation 

The soil profiles in SSIM 1 and 2 featured a high VWC in the 45 cm and 60 cm sensor 

which frequently were undiscernible from one another. The sensors installed in 15 cm 

and 30 cm in SSIM 1 diverged from each other with the 15 cm sensor showing much 

lower VWC readings for the entire time series, while the 30 cm sensor readings were 

consistently between those from the 15 cm and the 45/60 cm sensors. The soil moisture 

levels in the top 30 cm of the soil profile in SSIM 2 overlapped, with the 15 cm sensor 

readings diverging from the 30 cm readings after a precipitation event and converging 

back to the 30 cm VWC in the subsequent days. The SSIM3 soil moisture levels in the top 

30 cm of the soil profile also exhibited this divergence/convergence trend, and the 45 cm 

and 60 cm sensors displayed a small difference between the VWC readings throughout 

the time series. 
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Figure 17: Total volumetric water content (mm/60 cm soil) in three 
management zones receiving variable rate irrigation applications, 2018 

The precipitation events observed in SSIM 1 generated an observable response in the 15 

and 30 cm sensors early in the season (Figure 16). However, a malfunction was 

discovered when a response was not observed after several rainfall events and a new 

sensor was installed on Aug 8, leading to a decline in VWC readings. A good response to 

the Aug 27 precipitation event was observed, which was also the last precipitation event 

greater than 2mm. Precipitation events in SSIM 2 and 3 did generate good responses in 

the individual sensors except in SSIM 3 after Aug 1, where precipitation events became 

unobservable and after Aug 17 in SSIM 2, where responses unassociated with 
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precipitation are observed. Soil moisture sensor readings were analyzed for precipitation 

responses occurring within the 48 hours after a precipitation event (Table 5). In SSIM1, 

between 73% and 98% of the total average VWC response to precipitation events 

occurred in the first 24 hours, and in SSIM2, between 71% and 100% of the response was 

occurred in the first 24 hrs. In SSIM 3, between 61% and 99% of the total average VWC 

response was observed in the first 24 hours. Some of these responses fall below the 

margin of error of the HOBO sensors. The 60 cm sensor in all plots, there was often no 

direct link to an increase in VWC and precipitation. The peak of the VWC response to 

precipitation lagged by between 1 and 24 hours after the recorded event, with the 

quickest response occurring in the shallow sensors and longer lags observed in each 

depth. This was a result of the attenuation of the infiltration front in the soil profile and 

the revolution time of the irrigation pivot. The responses to precipitation were also 

observable when the data was integrated, and soil moisture calculated for the 60 cm 

profile (Figure 17).  

In SSIM1, the VWC levels in all sensors displayed a gradual decrease beginning shortly 

after installation. This continued for the entire monitoring period for the 30, 45 and 60 

cm sensors. The 15 cm sensor displayed a distinct drop when a malfunctioning sensor 

was replaced and a steep incline after the Aug 27 precipitation event. The VWC levels in 

SSIM2 were generally maintained in the 15 and 30 cm sensors with increases after 

precipitation, while the 45 and 60 cm sensors displayed a small gradual decrease during 

the monitoring period. In SSIM3, a small gradual decrease was observed in all sensors 

over the monitoring period with increases observed after precipitation in the 15 and 30 
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cm sensors. Over the monitoring period, the 60 cm soil moisture profile became drier in 

SSIM1, with losses of 10%, 6%, 4%, and 3% in the 15, 30, 45, and, 60 cm sensors 

respectively, for a total of -39mm/60cm in the entire profile. A small increase in soil 

moisture within the 60 cm profile in UIM2 over the monitoring period was observed, with 

a change of +1%, 0%, -1%, and -1% in the 15, 30, 45 and 60 cm sensors respectively, for a 

total of +2mm/60cm in the entire profile. The soil moisture profile in SSIM3 displayed a 

decrease in soil moisture over the monitoring period, with losses of 3%, 2%, 4%, and 4% 

in the 15, 30, 45, and 60 cm sensors respectively, for a total of -19 mm/60cm in the 

entire profile. 

Table 5: Average precipitation response with standard deviation (st dev) to uniform 
irrigation in the SSIM1, SSIM2, and SSIM3 monitoring stations. 

 SSIM1 SSIM2 SSIM3 

SENSOR Average St dev Average St dev Average St dev 

15 CM 0.029 0.022 0.028 0.016 0.045 0.023 

30 CM 0.003 0.002 0.016 0.011 0.023 0.015 

45 CM 0.001 0.000 0.004 0.005 0.003 0.003 

60 CM 0.002 0.001 0.000 0.000 0.000 0.000 

 

4.2.3 2019 

Uniform irrigation 

The soil profile in UIM1 displayed a high, frequently overlapping VWC in the 30, 45, and 

60 cm sensor and a noticeably lower VWC in the 15 cm sensor. The soil profile in UIM2 

displayed high VWC levels in the 30 cm sensor throughout the monitoring period, an 

intermediate VWC level which frequently overlaps in the 45 and 60 cm sensors, and a 

drier VWC level in the 15 cm sensor. In the beginning of the season, the soil profile in 
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UIM3 showed distinct differences in the daily data between the 15 and 30, and 45 and 60 

cm sensors, followed by a period where sensor data at the different depths converge and 

diverge rapidly, with a stabilization of VWC and less difference between any of the 

monitored soil layers than what was observed at the beginning of the monitoring period. 



50 
 

Fig
u

re 18
: V

o
lu

m
etric w

a
ter co

n
ten

t (m
3/m

3) fro
m

 so
il m

o
istu

re senso
rs insta

lled
 a

t 5
-1

5
 cm

 (1
5

 cm
), 2

0
-30

 cm
 

(3
0

 cm
), 35

-45
 cm

 (45
 cm

) a
n

d
 5

0
-6

0
 cm

 (6
0

 cm
) d

ep
ths fo

r U
IM

1
 (A

), U
IM

2
 (B

), a
n

d
 U

IM
3

 (C
) u

n
d

er un
ifo

rm
 

irrig
a

tion
 ap

p
lica

tio
n

s, 20
1

9 

 

 

 



51 
 

 

Figure 19: Total volumetric water content (mm/60 cm soil) in three management 
zones receiving uniform irrigation applications, 2019 

The precipitation events observed in UIM 1, 2, and 3 did not always generate an 

observable response in individual sensors at all depths at the beginning of the monitoring 

period but responses improved as the season progressed (Figure 18). Soil moisture 

sensor readings were analyzed for precipitation responses occurring within the 48 hours 

after a precipitation event (Table 6). Between 76% and 85% of the total average VWC 

response to precipitation events occurred in the first 24 hours in UIM1, between 61% 

and 77% in UIM2, and between 53% and 75% in UIM3. The peak of the VWC response to 

precipitation lagged by between 1 and 24 hours after the recorded event, with the 
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quickest response occurring in the shallow sensors and longer lags observed in each 

depth. This was a result of the attenuation of the infiltration front in the soil profile and 

the revolution time of the irrigation pivot. Responses to precipitation were more easily 

observable when the data was amalgamated and the total soil moisture for the 60 cm 

profile was calculated (Figure 19).  

Over the monitoring period, the 60 cm soil moisture profile showed a slight increase in 

VWC throughout the monitoring period in UIM1, with losses of 1% in both the 15 cm and 

45 cm sensor, and gains of 6% and 2% in the 30 and 60 cm sensors respectively, for a 

total of +7mm/60cm. The soil moisture profile in UIM2 also showed an increase of VWC 

over the monitoring period, with gains of 2%, 5%, 6%, and 7% in the 15, 30, 45 and 60 cm 

sensors respectively, for a total of +30mm/60cm. The soil moisture profile in UIM3 

displayed an increase in soil moisture over the growing period contained to the top 30 

cm, with gains of 4% and, 12% in the 15 and 30 cm sensors respectively and no change in 

the 45 and 60 cm sensor, for a total of +23 mm/60cm. 

Table 6: Average precipitation response with standard deviation (st dev) to uniform 
irrigation in the UIM1, UIM2, and UIM3 monitoring stations in 2019. 

 UIM1 UIM2 UIM3 

SENSOR Average St dev Average St dev Average St dev 

15 CM 0.042 0.048 0.082 0.034 0.040 0.042 

30 CM 0.078 0.056 0.076 0.054 0.061 0.059 

45 CM 0.028 0.028 0.064 0.100 0.061 0.075 

60 CM 0.012 0.015 0.061 0.134 0.026 0.033 
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Site-specific irrigation 

Irrigation scheduled before July 20 was undifferentiated between SSIM and the UIM due 

to a technical problem with uploading the prescriptions. This resulted in the SSIM plots 

receiving the uniform irrigation prescription rather than the site-specific prescription 

until July 20.  

The soil profile in SSIM1 and 3 displayed four distinct VWC layers during the uniform 

irrigation period (May 15 – July 20), where the 5 cm, 15 cm, and the 60 cm sensors 

remain within a consistently separated VWC range which is drier in the 5 cm sensor and 

wettest in the 60 cm sensor. The 15 cm, 25 cm, and 40 cm sensors showed intermediary 

VWC levels, where the VWC observations in 25 cm and 40 cm sensors were often 

overlapping and consistently higher than the 15 cm sensor. 
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Figure 21: Total volumetric water content (mm/60 cm soil) in three management 
zones receiving variable rate irrigation applications, 2019. 

After site-specific irrigation prescriptions were applied on July 20, the VWC readings in 

the 15 cm sensor joined the range of VWC in the 25 and 40 cm sensors and began 

overlapping, with the 5 cm VWC remaining consistently drier and the 60 cm VWC 

consistently wetter. In SSIM2, VWC in the 15, 25, and 40 cm sensor frequently 

overlapped with a noticeably lower VWC in the 5 cm sensor and higher VWC in the 60 cm 

sensor. This trend persisted throughout the monitoring period, with a slight divergence 

occurring in the middle of the series from the 15 cm sensor where VWC was drier than 

the VWC in the 25 cm and 40 cm sensor. The precipitation events observed in SSIM 1, 2, 
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and 3 generated an observable response in individual sensors at depths greater than 40 

cm during most of the events and an occasional response in 60 cm sensor (Figure 20). 

Soil moisture sensor readings were analyzed for precipitation responses occurring within 

the 48 hours after a precipitation event (Table 7). In SSIM1, between 88% and 97% of the 

total average VWC response to precipitation events occurred in the first 24 hours. In 

SSIM2, between 84% and 98% of the total average VWC response to precipitation events 

occurred in the first 24 hours. In SSIM3, between 85% and 95% of the total average VWC 

response to precipitation events occurred in the first 24 hours. The peak of the VWC 

response to precipitation lagged by between 1 and 24 hours after the recorded event, 

with the quickest response occurring in the shallow sensors and longer lags observed in 

each depth. This was a result of the attenuation of the infiltration front in the soil profile 

and the revolution time of the irrigation pivot. Responses to precipitation were more 

easily observable when the data was amalgamated and the total soil moisture for the 60 

cm profile was calculated (Figure 21).  

Over the monitoring period, the 60 cm soil moisture profile showed a slight increase in 

VWC throughout the monitoring period in SSIM1, with increases of 2% in both the 25 cm 

and 50-60 cm sensor, and 7% and 1% in the 15 and, 30-40 cm sensors respectively, with 

no change in VWC observed in the 5 cm sensor, for a total of +14mm/60cm in the entire 

profile. The soil moisture profile in SSIM2 also showed an increase of VWC over the 

monitoring period, with gains of 2% in both the 5 cm and 30-40 cm sensors, 3% in the 50-

60 cm sensor and no change in the 15 cm and 25 cm sensors, for a total of +9mm/60cm 

in the entire profile. The soil moisture profile in SSIM3 displayed an increase in soil 
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moisture over the growing period contained to the top 30 cm, with gains of 1%, 8% and, 

2% in the 5, 15 and, 25 cm sensors respectively, no change in the 30-40 and a 1% 

decrease in the 50-60 cm sensor, for a total of +9mm/60cm in the entire profile. 

Table 7: Average precipitation response with standard deviation (st dev) to uniform 
irrigation in the SSIM1, SSIM2, and SSIM3 monitoring stations in 2019. 

 UIM1 UIM2 UIM3 

SENSOR Average St dev Average St dev Average St dev 

5 CM 0.067 0.027 0.070 0.039 0.071 0.026 

15 CM 0.055 0.031 0.039 0.031 0.061 0.031 

30 CM 0.037 0.033 0.018 0.021 0.039 0.024 

45 CM 0.027 0.023 0.042 0.033 0.031 0.031 

60 CM 0.013 0.036 0.040 0.059 0.007 0.007 

 

4.3 POTATO YIELD 

4.3.1 2018 

The average total weight and marketable weight of potato samples collected in SSIM 3 

was significantly higher than those collected from SSIM 1 and 2 (Table 8, Table 9). The 

total number of potatoes collected from SSIM 1, 2 and 3 were all significantly different 

from each other and the highest number of potatoes per m2 was found in SSIM 2, 

followed by SSIM 1 and SSIM 3. The number of marketable potatoes per m2 were not 

significantly different in any SSIM plot. UIM 1 samples were significantly higher than UIM 

2 and 3 in total weight, marketable weight, total number, and marketable number. 

Samples collected from SSIM 1 had statistically fewer marketable potatoes and had 

significantly lower total and marketable weights when compared to UIM 1. SSIM 2 
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samples had significantly lower marketable weight and marketable numbers, and 

significantly higher total number of potatoes per m2 when compared to UIM 2. Samples 

collected from SSIM 3 had significantly higher total weight and marketable weight, with 

significantly higher total numbers and marketable numbers when compared with UIM 3. 

The average yield for the study area using SSIM yields was determined to be 6.2 kg/m2 

using weighted total yield and 3.9 kg/m2 using weighted marketable yield, while UIM 

yields calculated 6.9 kg/m2 using weighted UIM total yields and 5.0 kg/m2 using weighted 

marketable yield. 

Table 8: Statistical analysis of the total weight and total numbers of potato yields in 2018 
using ANOVA (p = 0.05). Within treatment indicates comparisons between UIM1, UIM2 
and UIM3 potato yields or between SSIM1, SSIM2, and SSIM3 potato yields. Between 
treatment indicates comparisons between the paired SSIM and UIM treatment within 
each management zone. Means with different letters are significantly different. 

 TOTAL WEIGHT (KG/M2) TOTAL NUMBER (#/M2) 

 Mean 
Within 

treatment 
Between 

treatment 
Mean 

Within 
treatment 

Between 
treatment 

SSIM1 5.4 a a 61.1 a A 

SSIM2 6.2ae a b 67.6b b B 

SSIM3 7.2b b c 55.2c c C 

UIM1 8.0c c d 60.3a d A 

UIM2 6.1de d b 49.4d e D 

UIM3 6.4d d e 47.0d e E 
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Table 9: Statistical analysis of the marketable weight and marketable numbers of potato 
yields in 2018 using ANOVA (p = 0.05). Within treatment indicates comparisons between 
UIM1, UIM2 and UIM3 potato yields or between SSIM1, SSIM2, and SSIM3 potato yields. 
Between treatment indicates comparisons between the paired SSIM and UIM treatment 
within each management zone. Means with different letters are significantly different. 

 MARKETABLE WEIGHT (KG/M2) MARKETABLE NUMBER (#/M2) 

 Mean 
Within 

treatment 
Between 

treatment 
Mean 

Within 
treatment 

Between 
treatment 

SSIM1 3.0a a a 17.7a a A 

SSIM2 3.4a a b 21.5a a B 

SSIM3 5.7b b c 30.8a a C 

UIM1 6.0c c d 31.7b b D 

UIM2 4.4d d e 25.0c c E 

UIM3 4.3d d f 22.1c c F 

 

4.3.2 2019 

Samples collected from SSIM 1 and 2 were statistically similar in total yield, marketable 

yield, total number, and marketable number (Table 10, Table 11). Total weight of samples 

collected from SSIM 3 were significantly lower from SSIM 1 and 2. SSIM 1 samples were 

significantly lower from samples from UIM 1 in all variables used to assess potato 

samples, SSIM 2 samples were significantly higher than samples collected from UIM 2 in 

all variables, and SSIM 3 samples were significantly lower than samples collected from 

UIM3 in all variables.  
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Table 10: Statistical analysis of the total weight and total numbers of potato yields in 
2019 using ANOVA (p = 0.05). Within treatment indicates comparisons between UIM1, 
UIM2 and UIM3 potato yields or between SSIM1, SSIM2, and SSIM3 potato yields. 
Between treatment indicates comparisons between the paired SSIM and UIM treatment 
within each management zone. Means with different letters are significantly different. 

 TOTAL WEIGHT (KG/M2) TOTAL NUMBER (#/M2) 

 Mean 
Within 

treatment 
Between 

treatment 
Mean 

Within 
treatment 

Between 
treatment 

SSIM1 7.5a a a 74.3a a a 

SSIM2 7.3a a b 72.0a a b 

SSIM3 5.3b b c 50.1b b c 

UIM1 9.2c c d 75.6c c d 

UIM2 6.0d d e 69.8c c e 

UIM3 7.0e e f 69.6c c f 

 

Table 11: Statistical analysis of the marketable weight and marketable numbers of potato 
yields in 2019 using ANOVA (p = 0.05). Within treatment indicates comparisons between 
UIM1, UIM2 and UIM3 potato yields or between SSIM1, SSIM2, and SSIM3 potato yields. 
Between treatment indicates comparisons between the paired SSIM and UIM treatment 
within each management zone. Means with different letters are significantly different. 

 MARKETABLE WEIGHT (KG/M2) MARKETABLE NUMBER (#/M2) 

 Mean 
Between 

treatment 
Within 

treatment 
Mean 

Between 
treatment 

Within 
treatment 

SSIM1 4.9a a a 28.3a a a 

SSIM2 4.6a a b 27.5a a b 

SSIM3 3.3b b c 18.8b b c 

UIM1 6.5c c d 35.9c c d 

UIM2 3.2d d e 19.0d d e 

UIM3 4.2d d f 25.5cd cd f 

 

Samples collected from UIM 1, 2 and 3 had significantly different total weights. UIM 1 

samples had significantly different marketable weights when compared to UIM 2 and 3. 
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UIM 1 marketable numbers were significantly different from UIM 2. Total numbers 

between UIM 1, 2 and 3 showed no significant difference. The average yield for the study 

area using SSIM yields was determined to be 6.2 kg/m2 using weighted total yield and 3.9 

kg/m2 using weighted marketable yield, while UIM yields calculated 6.8 kg/m2 using 

weighted UIM total yields and 4.0 kg/m2 using weighted marketable yield. 

4.4 GEOSTATISTICS 

4.4.1 Field statistics 

Elevation and ECa is summarized in Table 12. ECa and elevation 2018 uses data confined 

by the boundary of the 2018 quarter section and ECa and elevation 2019 uses the 

boundary of the 2019 quarter section (Figure 4). 

Table 12: Statistical summary for soil apparent electrical conductivity (ECa) and elevation 
for data within the 2018 and 2019 quarter sections. Minimum, mean, and maximum 
values, standard deviation, count, skewness (skew), kurtosis (kurt), and the Anderson-
Darling (A-D) normality p-value are summarized.  

 

Elevation and ECa data in 2018 and 2019 fit normal distribution with p-values of >0.001. 

The correlation between ECa and elevation at shared points was calculated for each 

quarter section and was determined to be 0.14 in 2018 and -0.49 in 2019.   

 MIN MEAN MAX ST.DEV COUNT SKEW KURT A-D 

ECA 2018 

(DS/M) 
0.618 1.983 4.689 0.850 6900 0.675 0.218 >0.001 

ECA 2019 

(DS/M) 
0.314 1.676 6.011 0.738 53628 0.977 1.370 >0.001 

ELEVATION 

2018 (M) 
903.6 905.2 907.3 0.6 6900 0.181 0.173 >0.001 

ELEVATION 

2019 (M) 
904.3 908.8 911.9 1.9 51012 -0.526 -0.727 >0.001 
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4.4.2 Comparison of kriging methods 

The volumetric water content, ECa, and elevation point data used for a comparison of 

ordinary and universal kriging and co-kriging methods were determined to be normal 

(Table 13).  

Table 13: Statistical summary of volumetric water content obtained on July 22, 2019 
(VWC), apparent electrical conductivity (ECa), and elevation. Minimum, mean, and 
maximum values with standard deviation, skewness (SKEW), kurtosis (KURT) and the p-
value of the Shapiro-Wilk normality test (SHAPIRO) are summarized.  

 MIN MEAN MAX ST.DEV SKEW KURT SHAPIRO 

VWC 28.3 37.4 46.4 4.6 -0.1324 -0.9068 0.2213 

ECa 0.922 1.873 3.327 0.658 0.3901 -0.8537 0.0588 

Elevation 904.6 907.9 911.2 1.8 -0.1874 -1.1794 0.0513 

 

Volumetric water content shows a moderate negative correlation to elevation and a very 

weak positive correlation with ECa. ECa shows a moderate negative correlation to 

elevation (Table 14) 

Table 14: Correlation between volumetric water content (VWC) obtained from the soil 
moisture survey conducted on July 22, 2019, apparent electrical conductivity (ECa) and 
elevation, n = 40. 

 VWC ECA ELEVATION 

VWC 1 0.086 -0.408 

ECA 0.086 1 -0.288 

ELEVATION -0.40 -0.288 1 
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Two co-kriging methods were compared due to the low correlation of ECa. One method 

would use both elevation and ECa, and the other would use elevation alone. 

Ordinary and universal kriging and co-kriging methods were used to create a prediction 

map from the soil water content observations obtained during the soil moisture survey 

on July 22, 2019. Four semivariogram models were used to fit the data for each method: 

spherical, exponential, Gaussian, and circular (Appendix 2, page 113). It was determined 

that the exponential model provided the best fit for the data in all four methods.  

Comparing the leave-on-out cross-validation results for all kriging methods, the co-kriging 

method had the highest combined precision and accuracy when predicting soil water 

content, but the differences between the kriging methods were small (Table 15). 

Table 15: Leave-one-out cross-validation results for ordinary (ORD) and universal kriging 
(UNI) and co-kriging methods using elevation and ECa (CO 2var) and elevation alone (CO 
1var) as secondary variables. Semivariogram models were constructed using soil moisture 
as the primary variable and the exponential model as the theoretical semivariogram. The 
co-efficient of determination (R2), concordance, mean square error (MSE), root mean 
square error (RMSE) and bias were used as assessment parameters 

 R2 CONCORDANCE MSE RMSE BIAS 

ORD 0.38 0.58 12.76 3.57 0.10 

UNI 0.32 0.54 14.63 3.82 -0.10 

CO 2VAR 0.38 0.59 12.77 3.57 0.01 

CO 1VAR 0.38 0.58 12.93 3.60 0.03 

 

The co-kriging method shared a coefficient of determination of 0.38 with the ordinary 

kriging method, but the ordinary kriging method had a higher bias, 0.10 compared to 

0.01 indicating a higher tendency to overestimate predictions compared to co-kriging. 
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The universal kriging method was the least accurate, with a coefficient of determination 

of 0.32 and underestimated soil water predictions with a bias of -0.10. This method had 

the highest RMSE, displaying the lowest precision of the three models. All three kriging 

methods had a weak correlation between the predicted and observed soil water content, 

indicating that approximately 60% of the soil moisture variation is unexplained. 

Additional data points in the soil moisture survey may have helped capture more of the 

spatial variation, but it may also be explained by additional factors which were 

unmeasured in this study. Heil and Schmidhalter (2012) found that bulk density is a key 

factor in predicting soil water content at a larger scale, with organic matter also 

improving predictions. All predicted values of soil water content fell within the range of 

the original observations in all three methods. 

4.4.3 Geostatistical evaluation of soil moisture surveys 

Volumetric water content data was surveyed at 15 and 30 cm depths on four dates in 

2018 and six dates in 2019 (Table 16). Sampling was increased in the 2019 surveys which 

is reflected in the higher sampling numbers in 2019. The soil moisture survey on Sept 2, 

2019 was interrupted due to equipment failure, resulting in a partial survey covering 

approximately half of the extent of previous surveys. 

The data obtained from 15 cm displayed lower minimum, mean and maximum values 

than the data obtained from 30 cm from the same location in both years. The VWC data 

generated from the July 19, 2018 soil moisture survey at 15 cm depth could not be 

determined to be sampled from a normal population, as were the soil moisture surveys 

conducted on July 22 and Aug 9, 2019 at the 15 cm depth, and on September 2 and 17, 
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2019 at 30 cm depth. All other soil moisture surveys collected data that was determined 

to be sampled from a normal population (Table 16).  

Table 16: Statistical summary for soil volumetric water content surveys collected during 
the 2018 and 2019 growing seasons. Minimum (MIN), mean, and maximum (MAX) 
values, standard deviation, count, skewness (SKEW), kurtosis (KURT), and the Shapiro-
Wilk normality p-value are summarized. * indicates data that is not from a normally 
distributed population 

DATE DEPTH MIN MEAN MAX ST.DEV COUNT SKEW KURT SHAPIRO 

19-JUL-18 15 cm 16.5 28.7 34.3 4.3 27 -1.09 1.09 0.027*  
30 cm 30.4 38.6 45.1 4.0 27 -0.62 -0.62 0.062 

02-AUG-18 15 cm 15.3 23.3 31.6 4.1 32 -0.24 -0.23 0.397  
30 cm 21.8 31.4 39.3 4.6 32 -0.35 -0.76 0.271 

16-AUG-18 15 cm 11.2 20.3 30 5.0 29 0.14 -0.58 0.608  
30 cm 16.7 27.6 39.7 5.7 29 0.24 -0.02 0.842 

23-AUG-18 15 cm 13.5 21.9 27.8 3.1 30 -0.48 0.62 0.757  
30 cm 22.1 28.8 35.3 3.4 30 0.26 -0.52 0.611 

10-JUL-19 15 cm 16.0 23.5 32.1 3.2 44 0.47 0.68 0.487  
30 cm 26.8 37.9 46.6 4.6 44 -0.13 -0.78 0.210 

22-JUL-19 15 cm 21.9 26.6 42.5 4.3 40 1.94 4.48 <0.001*  
30 cm 28.3 37.4 46.4 4.6 40 -0.13 -0.91 0.221 

09-AUG-19 15 cm 11.2 19.0 41.7 5.7 68 1.49 3.53 <0.001*  
30 cm 22.8 32.4 43.3 5.0 68 0.24 -0.56 0.367 

28-AUG-19 15 cm 16.2 24.7 36.4 4.4 47 0.63 0.55 0.225  
30 cm 22.2 36.8 45.7 5.4 47 -0.75 0.40 0.083 

02-SEP-19 15 cm 19.0 26.3 34.6 4.2 30 0.17 -0.91 0.578  
30 cm 20.0 37.9 45.9 5.7 30 -1.08 1.94 0.044* 

17-SEP-19 15 cm 6.0 14.5 21.1 3.8 49 -0.06 -0.82 0.386  
30 cm 12.3 21.6 33.2 5.0 49 0.63 0.15 0.047* 
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Figure 22: Correlation between volumetric water content, and elevation and soil apparent 
electrical conductivity (ECa) using survey data collected on various dates in 2018 and 
2019. Elevation and ECa was correlated to VWC data collected at 15 cm depth (ECa 15, 
Ele 15) and 30 cm depth (ECa 30, Ele 30). Background colours indicate four levels used to 
assess correlations: high (green), moderate (yellow), low (orange), and negligible (red). 

In 2018, correlations between VWC and ECa, and VWC and elevation show no consistent 

pattern at either the 15 or 30 cm depth (Figure 22). ECa had a generally negative 

correlation with VWC which ranged from a negligible to moderate relationship and 

elevation had a positive relationship which ranged between negligible and moderate. In 

2019, the change in correlational relationships between ECa and VWC and elevation and 

VWC showed an observable trend (Figure 22). A trend was observed in the relationship 

between VWC and elevation in 2019 at 15 cm which began as a moderate, negative 

correlation and ended with a moderate, positive correlation with a generally linear 

relationship. The 30 cm VWC and elevation also displays this trend, but Aug 28 and Sept 2 



67 
 

had correlations which fall outside the trend. A similar, albeit reversed, trend in the 

relationship between VWC and ECa was observed. The trend between the 30 cm VWC 

and ECa was less pronounced and less linear than the 15 cm trend.  

Table 17: Model parameters for semivariograms fitted to volumetric water content (VWC) 
(%) and used in co-kriging. VWC data collected in 2018 and 2019 and is the primary 
variable. The theoretical model used, partial sill (C), nugget (C0), total sill (C+C0), nugget-
to-sill ratio and range are summarized. * indicates semivariograms created from data 
that could not be confirmed as normal.  

VWC SEMIVARIOGRAM MODELS      

DATE DEPTH MODEL C C0 C + C0 
NUGGET-TO-

SILL RATIO 
RANGE 

(M) 

7/19/18 15 cm* Exp 16.1 5.5 21.6 0.256 81.3 

 30 cm Exp 11.0 6.9 17.9 0.387 74.5 

8/02/18 15 cm Sph 16.5 1.9 18.4 0.103 81.3 

 30 cm Exp 12.7 12.9 25.6 0.505 82.5 

8/16/18 15 cm Exp 31.4 8.7 40.1 0.216 81.7 

 30 cm Exp 14.1 14.6 28.8 0.509 81.7 

8/23/18 15 cm Sph 7.9 2.6 10.5 0.247 81.5 

 30 cm Cir 6.3 6.9 13.2 0.524 72.5 

7/10/19 15 cm Exp 12.8 1.7 14.5 0.115 82.2 

 30 cm Sph 13.7 8.7 22.4 0.390 82.2 

7/22/19 15 cm* Sph 17.4 1.3 18.7 0.071 78.1 

 30 cm Exp 30.5 1.4 31.9 0.043 81.9 

8/09/19 15 cm* Exp 31.4 8.7 40.1 0.216 81.7 

 30 cm Exp 14.1 14.6 28.8 0.509 81.7 

8/28/19 15 cm Exp 19.6 6.0 25.6 0.234 78.4 

 30 cm Exp 29.0 10.6 39.6 0.267 81.4 

9/02/19 15 cm Sph 18.4 1.0 19.5 0.054 73.9 

 30 cm* Sph 31.8 6.4 38.3 0.168 73.9 

9/17/19 15 cm Exp 17.3 1.3 18.6 0.070 62.9 

 30 cm* Exp 18.6 7.9 26.4 0.298 81.2 

 

Several theoretical semivariogram models were used for the spatial interpretation of the 

empirical semivariograms and cross-variograms created using collocated VWC, ECa and 

elevation: exponential, spherical, and circular (Table 17). The semivariogram models 
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were applied to each dataset and the model displaying the highest spatial 

autocorrelation was chosen to predict VWC. Thirteen datasets used the exponential 

model to describe the semivariogram, six which used the spherical model, and one which 

used the circular model. The fitted semivariograms had ranges between 62.9 m and 82.5 

m, which were shared with the ECa and elevation semivariograms and the related cross-

variograms. 

 

Figure 23: Nugget-to-sill ratios for theoretical semivariograms modelled using co-kriging 
methods. VWC was used as the primary variable and ECa and elevation as secondary 
variables. Background colours indicate three levels used to assess nugget-to-sill ratios: 
good (green), moderate (orange), and poor (red). 
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Spatial autocorrelation of VWC data was variable in both years but exhibited good to 

moderate spatial autocorrelation. In 2018, the 15 cm VWC observations had an average 

nugget-to-sill ratio of 0.206 while 30 cm VWC observations had an average of 0.481. In 

2019, VWC data collected at 15 cm had an average nugget-to-sill ratio of 0.109, while 

VWC at 30 cm had an average of 0.239. These values indicate that VWC data collected in 

2018 exhibited less spatial autocorrelation than the data collected in 2019 and also that 

higher spatial autocorrelation was obtained from VWC collected at 15 cm. Data obtained 

from 15 cm displayed high spatial dependence except on July 19, 2018, while VWC data 

from 30 cm ranged from high to moderate. The collocated ECa and elevation display 

similar spatial dependence trends where good to moderate spatial autocorrelation was 

found in both secondary variables. In 2018, ECa collocated with VWC data had an average 

nugget-to-sill ratio of 0.177 using 15 cm VWC and 0.093 using 30 cm VWC, while in 2019, 

the average nugget-to-sill ratio was 0.252 using the 15 cm VWC and 0.198 using the 30 

cm VWC.  Elevation data collocated with the 2018 VWC surveys had an average nugget-

to-sill ratio of 0.232 using the 15 cm VWC and 0.173 using the 30 cm VWC. In 2019, 

elevation collocated with VWC data had an average nugget-to-sill ratio of 0.138 using 15 

cm VWC and 0.209 when using 30 cm VWC.  
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Figure 24: Nugget-to-sill ratios for theoretical cross-variograms modelled using co-kriging 
methods. VWC was used as the primary variable and ECa and elevation as secondary 
variables. Background colours indicate three levels used to assess nugget-to-sill ratios: 
good (green), moderate (orange), and poor (red). 

The cross-variograms constructed from the covariance of VWC survey data and 

collocated elevation and ECa have good-to-moderate spatial autocorrelation with two 

exceptions, which were poor. The elevation data collocated with 15 cm VWC data from 

2018 and 2019 had an average nugget-to-sill ratios of 0.282 and 0.164, respectively. The 

elevation collocated with the 30 cm VWC had an average nugget-to-sill ratio of 0.569 in 
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2018 and 0.0.186 in 2019. Elevation data collocated with 2019 VWC surveys had a better 

spatial autocorrelation than the elevation data collocated with 2018 VWC, with nugget-

to-sill ratios indicating that eight out of twelve datasets have good spatial autocorrelation 

ranging from 0.129 to 0.198 and a total range of 0.129 and 0.307. In 2018, the ECa data 

collocated with 15 cm and 30 cm VWC surveys have average nugget-to-sill ratios of 0.257 

and 0.191, respectively, indicating good to moderate spatial autocorrelation at both 

depths. In 2019, the ECa collocated with 15 cm and 30 cm VWC in 2018 had average 

nugget-to-sill ratios of 0.204 and 0.147, respectively. This indicated that better spatial 

autocorrelations were found in ECa data collocated to the 30 cm VWC in both years and 

that 2019 displayed a higher spatial autocorrelation than 2018. The cross-variograms 

constructed from ECa and elevation semivariograms in 2018 had an average nugget-to-

sill ratios of 0.148 using data collocated to 15 cm VWC and 0.298 using data collocated to 

30 cm VWC. In 2019, collocated elevation and ECa had average nugget-to-sill ratios of 

0.131 using 15 cm VWC collocated data and 0.098 using 30 cm VWC collocated data, with 

similar spatial autocorrelations found at both depths.  
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Table 18: Leave-one-out cross-validation results for VWC predictions calculated using 
semivariogram models constructed using co-kriging methods. Semivariogram models 
were constructed using soil moisture as the primary variable and soil electrical 
conductivity and elevation as secondary variables. The co-efficient of determination (R2), 
concordance, mean square error (MSE), root mean square error (RMSE), normalized root 
mean square error (NORM RMSE), and bias were used as assessment parameters. 

GOODNESS-OF-FIT SUMMARY     

DATE DEPTH R2 CONCORDANCE MSE RMSE 
NORM 
RMSE 

BIAS 

7/19/18 15 cm 0.282 0.498 12.36 3.52 0.198 -0.048 
 30 cm 0.419 0.597 8.81 2.97 0.202 -0.005 

8/02/18 15 cm -0.024 0.081 19.80 4.45 0.273 -0.055 
 30 cm 0.060 0.239 19.33 4.40 0.251 0.044 

8/16/18 15 cm 0.444 0.635 12.87 3.59 0.191 0.024 
 30 cm 0.177 0.347 24.64 4.96 0.216 0.052 

8/23/18 15 cm 0.321 0.506 6.27 2.50 0.175 -0.019 
 30 cm 0.107 0.291 9.83 3.14 0.238 -0.114 

7/10/19 15 cm 0.406 0.572 5.98 2.45 0.152 0.002 
 30 cm 0.335 0.532 13.54 3.68 0.186 -0.068 

7/22/19 15 cm 0.377 0.573 11.04 3.32 0.161 -0.005 
 30 cm 0.384 0.587 12.77 3.57 0.197 0.011 

8/09/19 15 cm 0.231 0.459 25.99 5.10 0.167 -0.110 
 30 cm 0.222 0.383 18.58 4.31 0.210 -0.031 

8/28/19 15 cm 0.223 0.389 14.26 3.78 0.187 0.031 
 30 cm 0.301 0.488 19.27 4.39 0.187 0.004 

9/02/19 15 cm 0.278 0.466 11.92 3.45 0.221 -0.042 
 30 cm 0.354 0.540 19.88 4.46 0.172 -0.120 

9/17/19 15 cm 0.423 0.610 7.88 2.81 0.186 0.051 
 30 cm 0.423 0.597 13.86 3.72 0.178 -0.010 

 

Goodness-of-fit tests conducted on predicted VWC compared to the VWC survey 

observations are summarized in. In 2018, goodness-of-fit tests conducted on predicted 

VWC compared to the VWC survey observations calculated an average R2 value of 0.205 

using the 15 cm VWC and 0.153 using the 30 cm VWC, while in 2019, the average R2 was 

0.323 for 15 cm VWC and 0.336 for 30 cm VWC. The average concordance in 2018 was 

0.344 for 15 cm VWC and 0.295 in 30 cm VWC, and in 2019, was 0.512 and 0.521, 
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respectively. These values indicated that predicted VWC using 2019 survey data was 

more accurate than VWC predicted using 2018 survey data. However, normalized RMSE 

values calculated from the ratio of residual variances to the total range of VWC survey 

data indicated a higher variance in 2019 predictions. The normalized RSME in 2019 

averaged 0.163 in the 15 cm VWC and 0.122 in the 30 cm VWC, while in 2018, the 

average RMSE for the 15 cm was 0.121 and 30 cm VWC was 0.101. Bias was determined 

and displayed a range of -0.120 and 0.051 with seven out of twelve models displaying a 

negative bias, indicating an underestimation of predicted values.  

4.4.4 Seasonal patterns of shallow soil moisture 

2018 

The normalized average and standard deviation VWC maps in 2018 using 15 cm soil 

moisture survey data display normalized VWC which ranged from 4.4% above average to 

2.9% below average, a total difference of 7.3% or 16 mm in the calculated top layer (0 – 

22.5 cm) (Figure 25). 



74 
 

 

Figure 25: The normalized average and normalized standard deviation of co-kriged VWC 
maps with an overlay of three management zones. VWC data was collected at 15 cm 
depth during July - September 2018. Data collected from Aug 2, 2018 was excluded. 

The standard deviation ranged from 0 to 5.8% and the highest standard deviation 

occurred in some areas with the highest and lowest average soil water content, but also 

do not adhere to the management zone map. No patterns that adhered to the 

management zone map were observable, and all management zones display wet and dry 

conditions (Figure 25). Areas with high standard deviation are found in some of the drier 

areas. The observable straight lines in each of the maps occur due to small changes in 

surveys and how the limits of each raster image were calculated.  
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Figure 26: The normalized average and normalized standard deviation of co-kriged VWC 
maps with an overlay of three management zones. VWC data was collected was collected 
at 30 cm depth during July - September 2018. 

The normalized average and standard deviation VWC maps in 2018 using 30 cm soil 

moisture survey data display normalized VWC (Figure 26) which ranged from 2.2% above 

average to 3.5% below average, a total difference of 5.7% or 9 mm in the calculated top 

layer (22.5 – 37.5 cm) A large area of above average VWC occurred in the middle of the 

field with decreasing values along the field margins. The normalized average soil moisture 

did not display patterns that adhere to the management zone map, although wet areas 

of the field were contained within MZ1 and MZ2. All the management zones displayed 

areas which had both low and high standard deviations from normal soil moisture. The 
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standard deviation ranged from 0 to 4.8% and is distributed similarly to the standard 

deviation of the 15 cm stack. 

Table 19: Normalized average soil water content from three management zones in 2018. 
Normalized soil water content derived from predicted VWC. The mean, standard 
deviation, skewness, kurtosis, and number of prediction points used is summarized. 

 
MZ1 MZ2 MZ3 MZ1 MZ2 MZ3 MZ1 MZ2 MZ3 

DEPTH 15 cm 15 cm no Aug 2 30 cm 

MEAN -0.11 -0.07 0.28 -0.29 -0.05 0.71 -0.73 0.07 0.60 
ST.DEV 1.29 1.18 1.06 1.28 1.32 1.19 1.05 1.31 0.92 

KURT -0.07 0.19 0.58 -0.75 -0.65 -0.04 -0.86 -0.76 3.06 
SKEW 0.57 0.14 -0.01 0.21 -0.29 -0.76 -0.11 -0.51 -1.52 

N 2213 2328 1594 2213 2328 1594 2213 2328 1594 

 

Table 20: Standard deviation of normalized soil water content from three management 
zones in 2018. Normalized soil water content derived from predicted VWC. The mean, 
standard deviation, skewness, kurtosis, and number of prediction points used is 
summarized. 

 

The VWC survey from 15 cm taken on Aug 2, 2018 displayed a low concordance and 

correlation and was removed from the stack to compare to the stack which included all 

datasets. The exclusion resulted in a wider spread of normalized values between the 

management zones and the standard distribution and skewness increased in 

management zones 2 and 3. However, the average normalized VWC trend in the zones 

remained the same, with management zone 3 displaying higher total average VWC and 

 
MZ1 MZ2 MZ3 MZ1 MZ2 MZ3 MZ1 MZ2 MZ3 

DEPTH 15 cm 15 cm no Aug 2 30 cm 

MEAN 2.76 2.07 2.09 2.80 2.00 1.97 1.47 1.72 1.61 
ST.DEV 1.18 1.03 1.05 1.53 1.14 1.13 0.68 0.73 0.63 
SKEW -0.58 0.35 0.88 -0.59 0.99 1.18 0.44 1.63 0.55 
KURT 0.28 0.95 0.93 0.50 1.25 1.29 0.59 0.91 -0.14 

N 2208 2275 1594 2208 2308 1594 2208 2308 1594 
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management zone 1 displaying lower total average VWC. The normalized average VWC 

calculated with all 2018 datasets from each management zone determined that 

management zone 3 had the highest overall average VWC from the three zones at both 

depths in 2018 and management zone 1 had the lowest (Table 19, Table 20) with a 

difference of 1% in the 15 cm VWC maps when excluding the Aug 2 and 1.3% in the 30 

cm VWC map. Given that the average seasonal soil moisture had a total difference of 

7.3% and 5.7% in the 15 and 30 cm depths, respectively, the differences between 

management zones was small in comparison. Management zone 2 had an intermediary 

VWC average which was close to the mean at both depths. The overall averages in the 

normalized 30 cm VWC had a larger distribution of predicted values than the overall 

averages found in the 15 cm normalized VWC. The standard deviation for the normalized 

average at 15 cm was highest in management zone 1, followed by management zone 2 

and 3, respectively (Table 20). In the 30 cm depth, management zone 2 displayed the 

highest standard deviation, followed by management zone 1 and2.  

2019 

The normalized average and standard deviation VWC maps in 2019 using 15 cm soil 

moisture survey data display normalized VWC (Figure 27) which ranged from 7.6% above 

average to 3.1% below average, a total difference of 10.7% or 24 mm in the calculated 

top layer (0 – 22.5 cm). 
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Figure 27: The normalized average and normalized standard deviation of co-kriged VWC 
maps with an overlay of three management zones. VWC data was collected at 15 cm 
depth during July - September 2019. 

The highest normalized VWC were confined mostly to the north section of the study area 

with a dry band extending from the northeast to the field midpoint and the southern 

parts of the field typically drier than average. The standard deviation ranged from 0.2 to 

6.7% with low values occurring in the drier southern parts of the study area and the 

highest values where the normalized VWC was consistently high.  
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Figure 28: The normalized average and normalized standard deviation of co-kriged VWC 
maps with an overlay of three management zones. VWC data was collected at 30 cm 
depth during July - September 2019. 

The normalized average and standard deviation VWC maps in 2019 using 30 cm soil 

moisture survey data display normalized VWC (Figure 28) which ranges from 5.6% above 

average to 4.6% below average, a total difference of 10.2% or 15 mm in the calculated 

top layer (22.5 – 37.5 cm). The highest normalized VWC were confined mostly to the 

north and south sections of the study area with a dry area in the middle. The standard 

deviation ranged from 0.1 to 7.7% and were similarly distributed as the normalized 15 cm 

values, with low values occurring in the drier areas of the study area and the high values 

occurring in the wetter areas. 
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Table 21: Normalized average soil water content from three management zones in 2019. 
Normalized soil water content derived from predicted. The mean, standard deviation, 
skewness, kurtosis, and number of prediction points in each zone used is summarized. 

 
MZ1 MZ2 MZ3 MZ1 MZ2 MZ3 

DEPTH 15 cm 30 cm 

MEAN 1.14 0.28 -0.73 1.95 0.28 -1.08 
ST.DEV 1.74 2.21 1.09 2.17 2.22 1.33 
KURT 0.76 1.68 -0.02 -0.94 -0.89 -0.19 
SKEW 0.68 1.43 0.74 -0.45 0.39 0.19 

N 548 2750 3859 548 2750 3859 

 

Table 22: Standard deviation of normalized soil water content from three management 
zones in 2019. Normalized soil water content derived from predicted. The mean, standard 
deviation, skewness, kurtosis, and number of prediction points used is summarized. 

 

 

 

 

 

The normalized average VWC (Table 21, Table 22) calculated with all 2019 datasets from 

each management zone determined that management zone 1 had the highest overall 

average VWC from the three zones at both depths in 2019 and management zone 3 had 

the lowest, This was a reversal of the findings from 2018. The overall averages in the 

normalized 30 cm VWC had a larger distribution of predicted values than the overall 

averages found in the 15 cm normalized VWC. The VWC differences between 

management zone 1 and 3 were small in comparison to the total differences in both 15 

cm and 30 cm normalized average VWC maps. The standard deviation for the normalized 

 
MZ1 MZ2 MZ3 MZ1 MZ2 MZ3 

DEPTH 15 cm 30 cm 

MEAN 3.05 2.59 1.92 2.89 2.78 2.30 
ST.DEV 1.29 1.12 0.78 1.05 0.87 0.93 
KURT -0.24 0.66 0.72 -0.88 -0.20 0.42 
SKEW -0.35 0.94 -0.10 -0.48 -1.11 -0.85 

N 548 2750 3859 548 2750 3859 
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average at 15 and 30 cm depths (Table 22) was highest in management zone 1, followed 

by management zone 2 and 3, respectively.  
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CHAPTER 5. DISCUSSION 

5.1 ARE THE THREE MANAGEMENT ZONES DELINEATED IN THE STUDY AREA 

HYDROLOGICALLY DIFFERENT? 

Due to a lack of overlapping soil moisture datasets, the hydrology of the management 

zones under uniform irrigation conditions in 2018 could not be evaluated. The data 

collected during the 2019 field season may confirm that the management zones have 

different hydrology. Consistent differences in total soil moisture in the profile, individual 

sensor data and precipitation responses were observed under UIM conditions. Total soil 

moisture calculations showed three different soil moisture profiles in the management 

zones, particularly in the beginning and the end of the monitoring period (Figure 19). This 

indicates that there is a variable response to uniform irrigation within the study area in 

2019 in each of the delineated zones. Individual soil profiles further elucidate consistent 

differences in the management zones. The soil profile in UIM1 indicated an accumulation 

of soil moisture in the 20-35 cm which can be observed in the sensor data and in the 48-

hr response to precipitation (Figure 18A). This accumulation was more pronounced in the 

sensor data in UIM2, but the corresponding response to precipitation was not observed 

(Figure 18B). UIM2 35-60 cm layer is drier than the soil moisture of this layer in either 

UIM1 or UIM3 throughout the monitoring period.  This may indicate an increase in 

drainage to deeper soil layers over the other monitored areas or a change in bulk density 

which confines moisture above this depth. However, a change in bulk density is not 

supported by the precipitation responses, which were relatively consistent throughout 

the profile. UIM3 displays a soil moisture profile which reflects a soil moisture profile 
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without confining layers (Richards, Gardner, & Ogata, 1956) (Figure 18C). Soil moisture in 

35-60 cm layer in all management zones remained stable or showed an increased 

throughout the monitoring period despite plant development which suggests that the 

water was inaccessible to the effective rootzone or that the soil moisture was 

replenished with irrigation at the same rate as plant uptake. Pachepsky, Guber and 

Jacques (2005) found consistent similarities in temporal trends of VWC at different 

depths taken in the same 6 m study area. Therefore, consistent differences found 

between the monitoring stations supports the conclusion that the three management 

zones have different hydrology. However, all conclusions on soil moisture under UIM 

conditions are drawn from a single VWC monitoring station in each management zone. 

Additional monitoring stations would provide the ability to confirm that each 

management zone has a more homogenous response to precipitation when compared to 

responses in other management zones. Using a single monitoring station makes it 

difficult to determine whether the VWC observations in the management zones are 

indicative of the hydrology for the entire management zone. 

There is also evidence which supports hydrological differences within the field can be 

managed using SSIM. This was provided inadvertently in 2019 due to difficulty in 

uploading site-specific irrigation schedules. Until July 20, the SSIM plots received the 

same irrigation schedule as the UIM study areas, resulting in a split monitoring season 

where both UIM and SSIM soil water responses were observed in the same plot. This 

provides a more direct comparison of the difference between SSIM and UIM 

precipitation responses in all three management zones. After SSIM treatments were 
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applied to the plots on July 20, there was a noticeable decline in total soil water 

variability which was not observed in the UIM observation data. This indicates that soil 

water variability can be managed by SSIM and suggests that the hydrological response to 

uniform irrigation applications is different between the management zones.  

Alternatively, irrigation may play an outsized role in the distribution of soil moisture 

rather than landscape or local dynamics. Hydrology of fields under irrigated conditions 

are driven by relationships between landscape and local controls. Landscape controls are 

defined as the lateral movement of water along surface and subsurface pathways while 

local controls are defined as the influence of soil properties and areas of high 

convergence (Grayson et al., 1997). These relationships are assumed to be relatively 

stable at the field scale (Wallender & Grismer, 2002), but this has been studied under 

uniform irrigation. The study area used a site-specific irrigation system which is employed 

to reduce water applications in areas under saturated conditions. These areas were 

specifically targeted, and observations rather than management zones are used to 

determine where and when irrigation reductions should occur. From July 24 to Aug 10, 

2018, less water was applied to the some of northern and eastern parts of the study area 

which were saturated. This irrigation strategy may have influenced these areas in 

management zone 1 and subsequently decreased the average normalized soil water 

content, leading to management zone 1 appearing drier than management zones 2 or 3. 

This strategy was not employed in 2019 in the study area. Additionally, soil moisture 

surveys were conducted in the shallow layer of disturbed soil which is more influenced by 

evaporation and would dry out quicker than the lower depths. A study conducted in 
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Saskatchewan, Canada determined that VWC does follow topographic controls if the 

total soil profile is used, but if only the top 30 cm of the soil profile are included in the 

analysis, the relationship between topography and VWC would not have been evident 

(Peterson, Helgason, & Ireson, 2019).  

5.2 IS THE HETEROGENEITY OF ECA AND ELEVATION THE DRIVING FACTOR FOR SOIL 

MOISTURE UNDER UNIFORM IRRIGATION? 

The normalized soil moisture maps can provide insight into the spatial dependence of soil 

moisture in both study areas. The study areas in 2018 and 2019 exhibited a reversal in 

correlational relationships between soil water content and elevation within the 

monitoring period (Figure 22) which demonstrates that the relationship between ECa and 

elevation is not static temporally. A reversal of correlational relationships between soil 

water content and other measured field properties had been observed by Grayson 

(1997). Grayson (1997) found that elevation was strongly associated with soil water 

content at the beginning of the season when moisture is being stored and becomes 

weaker throughout the season. This is reflected in this study, where a moderate, negative 

correlation between soil water and elevation was calculated for the soil moisture surveys 

in 2019. Irrigation was used to recharge the soil water in the study area with low pressure 

sprinklers that applied water with an intensity focused for maximum infiltration into the 

soil, which would allow for continued water storage throughout the season, indicated by 

the relatively unchanging correlations between elevation and soil water until the Sept 17 

survey. This survey was conducted during harvest preparation where irrigation was 

stopped on Sept 5 to allow the soil to dry and had not experienced a precipitation event 
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after Sept 10. It has been previously established that soil water may have different 

controls under wet and dry conditions (Peterson et al., 2019) and this survey also had the 

highest positive correlation between ECa and soil water content at 15 and 30 cm depths. 

This may indicate that soil water content is more spatially dependent on a local control 

which is detected by the ECa survey. This provides evidence that the relationships 

between topographic and local controls and how they influence soil water content is not 

sufficiently uniform throughout the field to delineate management zones using elevation 

and ECa observations from the entire field. 

Alternatively, delineating the management zones for three quarters of the field as a 

continuous surface assumes that the relationship between elevation and ECa remains 

relatively stable in the field. However, ECa may have a higher correlation to soil water 

content than to soil texture or salinity, as was found by Kachanoski, Gregorich and Van 

Wesenbeeck (1988). The correlational relationship between ECa and elevation changed 

between study areas in magnitude and direction when only values pertaining to each 

study area were correlated. This reversal was also observed in predicted soil moisture 

maps between the study areas in 2018 and 2019. Management zone 3 in 2018 was 

determined to be the wettest area when comparing the average normalized predicted 

soil moisture from each zone, while management zone 1 was the driest, while the inverse 

was observed in 2019. Management zone 2, which represents the intermediary elevation 

and ECa areas in both study areas, remained close to the overall average in both years. 

This was the only consistent relationship found between the two study periods. This may 

be a result of the delineation of management zones using an ECa map which spatially 
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characterizes soil water content at one point in time rather than a relationship which 

remains static throughout the growing season. However, another possible conclusion 

may be that the spatial relationship between ECa and elevation between the study areas 

is not stable at the field scale. Yari (2017) noted that the relationship was stronger in the 

western sections in the study area. The correlations computed between study areas did 

change between 2018 and 2019. In 2019, a moderately negative correlation was found 

between elevation and ECa which corresponds to previous findings (Yari, 2017), while in 

2018, a low positive correlation was found. This may indicate that delineating 

management zones using the entire field characteristics hides important inter-field 

variability. Additionally, other soil properties may be more important factors in 

determining management zones. Previous studies have shown that bulk density has more 

influence on predicting soil water content than ECa or elevation (Contreras & Bonilla, 

2018). 

5.3 CAN SENSOR-BASED SITE-SPECIFIC WATER MANAGEMENT BE USED TO REDUCE POTATO 

YIELD VARIABILITY? 

Potatoes harvested from SSIM3-2018 and SSIM2-2019 did show an increase in 

productivity with a decreased amount of irrigation when compared to the UIM 

counterpart, which indicates that SSIM can improve productivity while also increasing 

water use efficiency. However, improved yield or decreased yield variability were not 

attained using SSIM. In Southern Alberta, the average yield for potatoes grown under 

irrigated conditions in 2018 and 2019 was 5.6 kg/m2, lower than the yield obtained from 

SSIM2 and SSIM3 in 2018 and SSIM1 and SSIM2 in 2019 and the weighted average SSIM 
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and UIM yields for both study areas. This also highlights how well-managed the study 

areas were under UIM, as all yields obtained from UIM areas were above the Southern 

Alberta average. This indicates that SSIM using delineations in topography and ECa is 

unnecessary at this site and that using the adaptable approach which can address local 

concerns is more suitable. Site-specific water management in this study utilized a 

management zone map which was created using topographic and soil electrical 

conductivity differences. Topographic differences within a field have been shown to 

significantly affect yield variability in corn in Michigan, USA (Muñoz et al., 2014), while 

topography, ECa, and soil brightness accounted for 70% of cotton yield variability in 

Texas, USA (Guo, Maas, & Bronson, 2012). A study by Al-Gaadi et al (2018) found a 

positive spatial correlation between elevation and yield in potatoes. This suggests that 

yield variation from other water-intensive crops may be managed using management 

zones derived from these factors. However, a study conducted in Tasmania defined the 

variation of potato yields, elevation and soil EC and determined that a three-fold intra-

field variation in total yield will significantly affect the gross margin variation under 

uniform irrigation (Whelan & Mulcahy, 2017). In this study, the ratio of intra-field 

averages between the highest and lowest total yields under uniform conditions were 1.3 

and 1.5, respectively. The yield variability in this study area may be insufficient to show 

significant improvement under SSIM.  

Previous studies have addressed how available soil moisture can positively influence both 

the yield and the quality of Russet Burbank potatoes (Redulla et al., 2002). In this study, a 

noticeable decline in soil moisture variability was observed in 2019 when SSIM was 
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enabled (Figure 21), but this decline was not associated with a decline in potato yield 

variability or an increase in total yield. However, moisture deficits can reduce the grade 

and total yield when total precipitation is reduced by 30% (Onder et al., 2005; Shock, C. 

C., Feibert, & Saunders, 1998), while a study conducted in Southern Alberta concluded 

that moisture stress in the early or mid-season can have significant negative effects on 

total tuber and marketable tuber numbers (Lynch et al., 1995). The yield results in SSIM1-

2018 and SSIM3-2019 confirmed both conclusions, which displayed significantly lower 

yields as a result from a ~40% and ~30% reduction in total water, respectively, from the 

UIM scheduling. However, results from SSIM2 in 2018 and 2019 both have ~30% 

reduction in total water but had the same yield in 2018 and an improved yield in 2019. 

SSIM3-2019 also displayed a reduction in yield but received more water than SSIM2 and, 

although the total soil profile shows sufficient moisture throughout the monitoring 

period, a moisture deficit in the top 30 cm may have occurred. The soil moisture of top 

30 cm was drier in the beginning of the observation period until mid-July (Figure 18). 

Using the 60 cm total soil profile to calculate irrigation requirements early in the season 

may have allowed deficits in the top 30 cm to go unaddressed. This may have reduced 

the total productivity of the potatoes as the rootzone of potatoes barely extends into the 

bottom 30 cm until 21-35 days after emergence (Lesczynski & Tanner, 1976). A significant 

deficit contained to the top 30 cm and a near-saturated lower 30 cm may leave the 

effective root zone under water stress while still appearing to contain enough water in 

the total profile.  Shock et al (1992) concluded that irrigation deficits which extend 

through row closure could result in lower yields. 
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The reduced yield in SSIM1-2018 was anticipated due to the sensor malfunction. The 

effects of a single sensor malfunction on yield highlight the need to use additional, 

independent observation stations or additional methods to confirm soil moisture. Soil 

moisture variability may also be captured within delineated zones if soil moisture is 

monitored using two or more observation stations.  
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CHAPTER 6. CONCLUSIONS 

Although the primary goal of this study was to improve potato yields using SSIM, it was 

concluded that the water use efficiency improvements were the primary benefit of SSIM. 

Improving yields or yield variability may be a result of SSIM but this should not be the 

primary goal of SSIM. A 10-30% reduction in total water requirements did not affect yield 

in some areas, which suggests that using SSIM could expand irrigated land in Southern 

Alberta. This study also suggests that soil moisture variability may be reduced when using 

soil moisture sensors to inform SSIM decisions. However, this conclusion was determined 

from a single monitoring location in each of the management zones and the direct 

comparison occurred in 2019 due to a malfunction in the irrigation schedule upload. 

Using additional monitoring stations within each management zone would address this 

and other concerns. A loss of potato production was experienced in SSIM1 in 2018 due to 

a malfunctioning sensor and additional monitoring stations in the same management 

zone may have helped detect the malfunction earlier. Additional stations would also 

provide a method to examine several soil moisture profiles within a management zone to 

determine whether different areas within a management zone are responding to SSIM 

similarly. The spatial distribution of VWC did not appear to adhere to the management 

zones in the study area. Although differences were calculated from the average VWC in 

each management zone, the differences were small when compared to the differences 

between the maximum and minimum values in each normalized average VWC map. It 

may be prudent to assess yield variability and soil moisture variability to determine 

whether SSIM may be effective before delineating management zones. If there is 
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insufficient variability for SSIM informed by management zones, using SSIM based on 

experience may still provide yield benefits by being able to respond to ponding and other 

adverse conditions which affect yield. Additionally, the effectiveness of MZ-based SSIM 

may be increased if irrigation prescriptions were targeted to the effective rootzone 

rather than the total rootzone, which was how MAD was calculated in this study. This 

method of calculation may overestimate VWC that is accessible to the plants and result in 

a loss of production, which may have been experienced by SSIM3-2019. 
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APPENDIX 1: COMPARISON OF VERTICAL AND HORIZONTAL SOIL MOISTURE 

SENSOR INSTALLATION  

Procedure 

Soil was collected from AITC from the top 50 cm in study areas used in 2018 and 2019. 

The soil was air-dried and used emulate two soil profiles in 20 L containers using a bulk 

density (BD) of approximately 1.35 g/cm3 and a soil profile height of 35 cm. Two 10HS 

sensors were installed vertically or horizontally in one container (Figure 1) to record 

observations of VWC in 15-minute increments. Water was added to each container in 

four events over 12 days in 10% ΔGWC increments which simulated irrigation. A 24-hr 

break between water events to allow the sensors to reach equilibrium. The calibrated 

moisture content at each depth was used to calculate total moisture content in mm. The 

total moisture content in mm was then used to calculate the change in total water 

content detected and compared to the total amount of water added to the soil profile. 

The change in total water was calculated in three ways to determine if sensor placement 

improved accuracy. The first calculation used the peaks of each individual event to 

determine the change in water content in mm and summed the change at the end of the 

experiment. The second calculation used the minimum and the maximum values 

throughout the data series to calculate the change in water content in mm. The third 

used the first observation and subtracted it from the last observation. After VWC data 

collection was concluded, soil samples were collected from each container in 5 cm 

intervals to determine gravimetric water content (GWC) at the end point of the 
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experiment. The GWC was converted to VWC and used to confirm the VWC sensor 

observations at the end of the study.  

 

Figure 29: Sensor placement for vertical (left) and horizontal (right) installations.  

Results and Discussion 

Table 23: Summary of bulk density (BD) and water added in containers using vertical and 
horizontal installation containers. 

INSTALLATION BD (G/CM3) WATER ADDED (ML) WATER ADDED (MM) 

VERTICAL 1.30 5200 89.6 
HORIZONTAL 1.37 5350 92.2 

 

The vertical installation container (VIC) had a calculated bulk density of 1.30 g/cm3, and 

the horizontal installation container (HIC) had a calculated BD of 1.37 g/cm3, which was 

96% and 101% of the targeted bulk density of 1.35 g/cm3, respectively. Water was added 

on May 21, 22, 23, and 27, 2019 with the VIC receiving a total of 5200 mL or 89.6 mm 

and HIC receiving a total 5350 mL or 92.2 mm.  
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Table 24: Comparison of the change in water content (mm) using vertical and horizontal 
soil water sensors to water added to the soil profile. Sensor-detected total change in 
water content used three calculations: summing the ΔVWC during and after simulated 
irrigation (SUM), subtracting the minimum from the maximum (MAX – MIN), and 
subtracting the first observation from the last observation (1st OBS – LAST OBS). 

INSTALLATION 
WATER 

ADDED 
SUM MAX – MIN 1ST OBS – LAST OBS 

 mm mm % mm % mm % 

VERTICAL 89.6 99.6 111 96.1 107 80.5 90 
HORIZONTAL 92.2 89.1 97 77.4 84 74.0 80 

 

Both the min/max calculation and first/last observation do not account for water lost in 

the soil profile from evaporation and there are few ways to determine evaporation 

without specialized equipment, these equations rely on the assumption that water is not 

lost throughout the experiment. The sum calculation used peaks to indicate separate 

events and summed each interval which minimized evaporation losses in the calculation. 

However, using min/max values calculated a similar change in water content. When 

comparing the actual amount of water added to VIC, the change in soil water was 

overestimated when using the sum calculation and min-max calculation and 

underestimated when using the first/last observation calculation. The average change in 

water content in VIC was 87.0±8.9 mm and in HIC was 80.2±7.9 mm. The average 

percentage of water change observed to water added in VIC was 103±11% and was 

92±10%. HIC consistently underestimated the change in soil water in all calculations and 

in two calculations, failed to capture more than 15% of the soil moisture change.  
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Figure 30: Observations of soil moisture in the horizontal and vertical installation 
containers. Individual sensor data and the calculated total soil moisture in mm from the 
horizontal installation (A, B) and the vertical installation (C, D) are displayed.  
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Figure 31: Comparison of the VIC and HIC final volumetric water content observations 
from the 15 and 30 cm sensors to soil samples obtained at 5 cm intervals at the end of the 
experiment.  

The top VIC sensor responded to each simulated irrigation event but displayed a lower-

than-expected response to the first two events. The bottom sensor did not respond 

during the first two simulated events and had a well-defined response during the last two 

events. By the third event, the moisture content peaks and drains in the top sensor at the 

beginning quickly and tapering off at 35% VWC, with the bottom sensor having a slight 

lag and a steady increase (Figure 30A). The responses to each event are also discernible 

in the calculated total soil moisture (Figure 30B). The top sensor installed horizontally 
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displayed a well-defined response in the last two simulated events with no discernible 

response in the first two events. The bottom sensor had no response that corresponded 

to any of the four events but did display an increase in VWC 24 hrs after the final event 

(Figure 30C). This increase is also observed in the calculated total soil moisture (Figure 

30D). The vertical installation strategy allows for the change in moisture content to be 

observed when the soil is dry (~10% VWC) and is relatively accurate when comparing the 

actual moisture content to the calculated moisture content. The vertical sensor 

placement has a more consistent margin of error between the top and bottom sensors, 

which was approximately 8%, while the horizontal sensor placement overestimates the 

moisture content by less than 2% in the bottom sensor and more than 10% in the top 

sensor (Figure 31).  

Conclusion 

The vertical installation plan is an improvement when compared to the horizontal 

installation plan. It reflects the water added to the container and the moisture conditions 

at the end of the experiment. It also shows a response to a change in water content 

under dry conditions.  

Soil Moisture Sensor Specifications 

Soil moisture sensor specifications were used to determine sensor spacing and accuracy. 

• 10HS sensor: range 0 – 0.57 m3/m3, accuracy ±0.033 without soil specific 

calibration ±0.020 with soil specific calibration, probe dimensions 160 x 32 x 2 

mm 
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• EC5 sensor: range 0 – 0.550 m3/m3, accuracy ±0.031 without soil specific 

calibration ±0.020 with soil specific calibration, probe dimensions 89 x 15 x 1.5 

mm 

• TDR-315: range 0-1 m3/m3 accuracy ±0.001, permittivity 1 – 80 accuracy ±0.1, 

Bulk EC 0-5000 μs/cm, soil temp -40 - +60˚C accuracy ±0.1˚C, pore water EC 0 - 

55000 μs/cm, probe dimensions 150 x 3.5 mm 
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APPENDIX 2: VARIOGRAM MODEL PARAMETERS USED FOR COMPARING 

UNIVERSAL AND ORDINARY KRIGING AND CO-KRIGING METHODS 

A comparison of ordinary and universal kriging and co-kriging methods was done to 

determine which kriging method would predict soil moisture most accurately in the 2018 

and 2019 study areas. Ordinary and universal kriging and co-kriging methods were used 

to create a prediction map from the soil water content observations obtained during the 

soil moisture survey on July 22, 2019. Four semivariogram models were used to fit the 

data for each method: spherical, exponential, Gaussian, and circular 

Table 25: Model parameters for semivariograms used for the ordinary kriging method. 
Spherical (Sph), exponential (Exp), Gaussian (Gau) and circular (Cir) were used as models. 
Soil water content point data was obtained using a Stevens HydroGo portable moisture 
probe on July 22, 2019. 

 

 

 

The spherical, Gaussian, and circular models had similar sills of 24.1% VWC, 23.6% VWC 

and 23.7% VWC, respectively. The ranges were more variable with values of 120.3 m, 

49.6 m, and 101.5 m for the spherical, Gaussian, and circular models. The exponential 

model had a higher sill than the other models at 30.9, and a range of 83.8 m. 

Table 26: Model parameters for semivariograms used for the universal kriging method. 
Spherical (Sph), exponential (Exp), Gaussian (Gau) and circular (Cir) were used as models. 

ORDINARY KRIGING SEMIVARIOGRAM MODELS 

Model Sill Nugget Nugget-to-
sill ratio 

Range 

Sph 24.1 0.0 24.1 120.3 

Exp 30.9 0.0 30.9 83.8 

Gau 23.6 0.0 23.6 49.6 

Cir 23.7 0.0 23.7 101.5 
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Soil water content point data was obtained using a Stevens HydroGo portable moisture 
probe on July 22, 2019. 

 

 

 

The spherical and circular models had nearly the same sill with values of 17.3% VWC and 

17.2% VWC and the two highest ranges at 81.6 m and 71.0 m. The exponential model 

had a higher sill than the other models at 19.4% VWC, and a range of 44.2 m. The 

Gaussian model had the lowest sill and the highest nugget, at 14.1% VWC and 2.7% VWC 

with a range equivalent to the exponential model, at 44.2 m. 

Co-kriging methods uses variogram and cross-variogram models which share a range to 

fit to georeferenced data to determine spatial autocorrelation between a primary 

variable that is to be predicted and secondary collocated variables that have a 

correlational relationship with the primary variable. The co-kriging method requires the 

construction of three variograms and three cross-variograms to predict soil water 

content using ECa and elevation as collocated variables (Table 27, Table 29) and two 

variograms and one cross-variogram when using elevation alone  

 

 

 

UNIVERSAL KRIGING SEMIVARIOGRAM MODELS 

Model Sill Nugget Nugget-to-
sill ratio 

Range 

Sph 17.3 0.0 17.3 81.6 

Exp 19.4 0.0 19.4 44.2 

Gau 14.1 2.7 5.2 44.2 

Cir 17.2 0.0 17.2 71.0 
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Table 27: Model parameters for semivariograms used in co-kriging. Soil water content 
(VWC) is the primary variable to be predicted and soil apparent electrical conductivity 
(ECa) and elevation are used as secondary variables. Soil water content point data was 
obtained using a Stevens HydroGo portable moisture probe on July 22, 2019. 

 

The variograms and cross-variograms constructed using both elevation and ECa shared a 

range of 81.9 m and showed good to moderate spatial autocorrelation in soil water 

content variograms given the consistently low nugget-to-sill ratios (Table 27, Table 29). 

The Gaussian model showed the least autocorrelation in the soil moisture content 

variogram with a nugget-to-sill ratio of 0.35 and both exponential and circular models 

showed the most with a nugget-to-sill ratio of 0.05 (Table 27). 

 

 

 

 CO-KRIGING SEMIVARIOGRAM MODELS – TWO SECONDARY VARIABLES 

Model Variable Sill Nugget Nugget-to-sill 
ratio 

Range 

Sph VWC 21.9 1.1 0.05 81.9 

ECa 0.37 0.21 0.57 81.9 

Elevation 2.33 1.02 0.44 81.9 

Exp VWC 30.5 1.4 0.05 81.9 

ECa 0.51 0.35 0.67 81.9 

Elevation 3.47 0.90 0.26 81.9 

Gau VWC 20.3 7.1 0.35 81.9 

ECa 0.33 0.23 0.70 81.9 

Elevation 3.79 0.10 0.03 81.9 

Cir VWC 20.8 1.3 0.06 81.9 

ECa 0.40 0.17 0.43 81.9 

Elevation 2.18 1.18 0.54 81.9 
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Table 28: Model parameters for semivariograms used in co-kriging. Soil water content 
(VWC) was the primary variable to be predicted and elevation was used as the secondary 
variable. Soil water content point data obtained using a Stevens HydroGo portable 
moisture probe on July 22, 2019. 

 

The variograms and cross-variogram constructed using only elevation also shared a range 

of 81.9 m (Table 28, Table 30). The soil water content variogram constructed using the 

spherical, exponential, and circular models have similarly low nugget-to-sill ratios, 

indicating a good spatial autocorrelation using these models with the exponential model 

showing the lowest nugget-to-sill ratio of 0.03 (Table 28). Both Gaussian models 

constructed from soil water content had the highest nugget-to-sill ratio, indicating that 

this model displayed the least spatial correlation, but does show the best spatial 

autocorrelation in the elevation variogram. 

 

 

 

 

 CO-KRIGING SEMIVARIOGRAM MODELS – ELEVATION ONLY 

Model Variable Sill Nugget Nugget-to-sill 
ratio 

Range 

Sph VWC 21.7 1.1 0.05 81.9 

Elevation 2.32 1.08 0.47 81.9 

Exp VWC 31.1 1.0 0.03 81.9 

Elevation 3.45 1.00 0.29 81.9 

Gau VWC 23.1 5.34 0.23 81.9 

Elevation 3.79 0.06 0.02 81.9 

Cir VWC 20.6 1.2 0.06 81.9 

Elevation 2.16 1.22 0.56 81.9 
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Table 29: Model parameters for cross-variograms used in co-kriging. Soil water content 
(VWC) was the primary variable to be predicted and soil apparent electrical conductivity 
(ECa) and elevation were used as secondary variables. Soil water content point data was 
obtained using a Stevens HydroGo portable moisture probe on July 22, 2019. 

 

Table 30: Model parameters for cross-variograms used in co-kriging. Soil water content 
(VWC) was the primary variable to be predicted and elevation was used as the secondary 
variable. Soil water content point data obtained using a Stevens HydroGo portable 
moisture probe on July 22, 2019. 

 

 

 

 

 CO-KRIGING CROSS VARIOGRAM MODELS WITH TWO SECONDARY VARIABLES 

Model Variable Sill Nugget Nugget-to-sill 
ratio 

Range 

Sph VWC*Elevation 5.19 1.04 0.20 81.9 

VWC*ECa 0.61 0.27 0.44 81.9 

Elevation*ECa 0.40 0.20 0.50 81.9 

Exp VWC*Elevation 7.18 1.06 0.15 81.9 

VWC*ECa 1.39 0.44 0.32 81.9 

Elevation*ECa 0.73 0.23 0.32 81.9 

Gau VWC*Elevation 5.00 0.46 0.09 81.9 

VWC*ECa 1.00 0.64 0.64 81.9 

ECa*Elevation 0.53 0.06 0.11 81.9 

Cir VWC*Elevation 5.30 1.20 0.56 81.9 

VWC*ECa 0.58 0.26 0.38 81.9 

ECa*Elevation 0.38 0.21 0.16 81.9 

CO-KRIGING CROSS-VARIOGRAM MODELS WITH ELEVATION ONLY 

Model Sill Nugget Nugget-to-sill ratio Range 

Sph 5.26 1.07 0.20 81.9 

Exp 7.29 0.99 0.14 81.9 

Gau 5.16 0.54 0.10 81.9 

Cir 5.33 1.21 0.23 81.9 
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Table 31: Leave-one-out cross-validation results of circular (CIR), exponential (EXP), 
Gaussian (GAU) and spherical (SPH) semivariogram models using ordinary kriging. The co-
efficient of determination (R2), concordance, mean square error (MSE), root mean square 
error (RMSE) and bias were used as assessment parameters. 

 

The exponential theoretical semivariogram model was chosen as the best predictor of 

soil water content using the ordinary kriging method. The LOOCV results for the ordinary 

kriging method using four theoretical semivariogram models (Table 31) showed that the 

exponential theoretical semivariogram model had the highest co-efficient of 

determination with a moderate correlation between predicted and observed values with 

predictions being estimated at an average of 3.57% VWC from the true value. The 

concordance was slightly lower than the results obtained from the Gaussian model and 

both showed the same amount of overestimation as evidenced by the bias in the models 

( 

 

 

 

Table 31). However, the Gaussian semivariogram model had the highest RMSE indicating 

a higher prediction error than with the other semivariogram models. The exponential 

 
R2 CONCORDANCE MSE RMSE BIAS 

CIR 0.29 0.52 15.42 3.93 0.14 

EXP 0.38 0.58 12.76 3.57 0.10 

GAU 0.37 0.60 16.31 4.04 0.10 

SPH 0.29 0.49 14.79 3.85 0.39 
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model was used predict the soil moisture content for the quarter section to compare 

with other kriging methods. 

 

 

 

Table 32: Leave-one-out cross-validation results of circular (CIR), exponential (EXP), 
Gaussian (GAU) and spherical (SPH) theoretical semivariogram models using universal 
kriging. The co-efficient of determination (R2), concordance, mean square error (MSE), 
root mean square error (RMSE) and bias were used as assessment parameters. 

 

The exponential theoretical semivariogram model was chosen as the best predictor of 

soil water content using the universal kriging method. The LOOCV results for the 

universal kriging method using four theoretical semivariogram models (Table 32) showed 

that the exponential theoretical semivariogram model had the highest R2 and 

concordance between predicted and observed values and predictions being estimated at 

an average of 3.82% VWC from the true value. The exponential model underestimated 

the predicted value when compared to the observations but showed the least amount of 

bias from other models (Table 32). The exponential model was used predict the soil 

moisture content for the quarter section to compare with other kriging methods. 

 R2 CONCORDANCE MSE RMSE BIAS 

CIR 0.27 0.51 16.57 4.07 0.35 

EXP 0.32 0.54 14.63 3.82 -0.10 

GAU 0.22 0.44 16.90 4.11 -0.23 

SPH 0.26 0.49 16.27 4.03 -0.23 
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Table 33: Leave-one-out cross-validation results for co-kriging methods using circular 
(CIR), exponential (EXP), Gaussian (GAU) and spherical (SPH) theoretical semivariogram 
models. Semivariogram models were constructed using soil moisture as the primary 
variable and soil electrical conductivity and elevation as secondary variables. The co-
efficient of determination (R2), concordance, mean square error (MSE), root mean square 
error (RMSE) and bias were used as assessment parameters. 

 

The exponential theoretical semivariogram model was chosen as the best predictor of 

soil water content using the co-kriging method and elevation as the secondary variable. 

The LOOCV results for the co-kriging method using four theoretical semivariogram 

models (Table 33) showed that the exponential theoretical semivariogram model had the 

highest R2 and concordance between predicted and observed values and predictions 

being estimated at an average of 3.57% VWC from the true value. The exponential and 

circular model showed a minimal amount of bias and the least amount of bias when 

compared to models (Table 33). 

Table 34: Leave-one-out cross-validation results for co-kriging methods using circular 
(CIR), exponential (EXP), Gaussian (GAU) and spherical (SPH) theoretical semivariogram 
models. Semivariogram models were constructed using soil moisture as the primary 
variable and elevation as the secondary variable. The co-efficient of determination (R2), 
concordance, mean square error (MSE), root mean square error (RMSE) and bias were 
used as assessment parameters. 

 

 R2 CONCORDANCE MSE RMSE BIAS 

CIR 0.27 0.51 15.78 3.97 0.01 

EXP 0.38 0.59 12.77 3.57 0.01 

GAU 0.04 0.24 48.27 6.95 -0.32 

SPH 0.36 0.56 13.13 3.62 0.05 

 R2 CONCORDANCE MSE RMSE BIAS 

CIR 0.26 0.49 16.29 4.04 0.02 

EXP 0.38 0.58 12.93 3.60 0.03 

GAU 0.02 0.17 78.86 8.88 0.02 

SPH 0.35 0.55 13.42 366 0.06 
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The exponential theoretical semivariogram model was chosen as the best predictor of 

soil water content using the co-kriging method and elevation and ECa as the secondary 

variables. The leave-one-out cross-validation results for the co-kriging method using four 

theoretical semivariogram models (Table 34) showed that the exponential theoretical 

semivariogram model had the highest R2 and concordance between predicted and 

observed values and predictions being estimated at an average of 3.60% VWC from the 

true value. The circular and Gaussian models have the least amount of bias which was 

calculated at 0.02 for both models (Table 34). The exponential model had a slightly higher 

bias of 0.03 and the spherical model had the highest bias of 0.06. 

The co-kriging method using elevation as the secondary variable was compared to the co-

kriging method using ECa and elevation. The circular, exponential, and spherical models 

with both secondary variables showed a slight improvement in the coefficient of 

determination, concordance, mean square error, and root mean square error (Table 33, 

Table 34). The Gaussian model using elevation alone had higher MSE and RMSE, and a 

lower R2, concordance, and bias. The exponential model constructed with both 

secondary variables was used predict the soil moisture content for the quarter section to 

compare with other kriging methods. 
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APPENDIX 3: ADDITIONAL SEMIVARIOGRAM MODEL PARAMETERS 

Table 35: Model parameters for semivariograms fitted to ECa (ds/m) data and used in co-
kriging to predict volumetric water content. ECa was used as a secondary variable. The 
theoretical model used, partial sill (C), nugget (C0), total sill (C+C0), nugget-to-sill ratio and 
range are summarized. 

 

  

ECA SEMIVARIOGRAM MODELS      

Date Depth Model C C0 C + C0 
Nugget-to-

sill ratio 
Range 

(m) 

7/19/18 15 cm Exp 1.09 0.08 1.17 0.068 81.3 
 30 cm Exp 1.05 0.07 1.12 0.060 74.5 

8/02/18 15 cm Sph 0.82 0.10 0.92 0.113 81.3 
 30 cm Exp 1.26 0.06 1.31 0.045 82.5 

8/16/18 15 cm Exp 0.53 0.23 0.75 0.302 81.7 
 30 cm Exp 0.42 0.11 0.53 0.208 81.7 

8/23/18 15 cm Sph 0.87 0.26 1.13 0.227 81.5 
 30 cm Cir 0.81 0.05 0.86 0.059 72.5 

7/10/19 15 cm Exp 0.42 0.09 0.50 0.171 82.2 
 30 cm Sph 0.27 0.06 0.33 0.176 82.2 

7/22/19 15 cm Sph 0.42 0.24 0.66 0.360 78.1 
 30 cm Exp 0.51 0.35 0.86 0.409 81.9 

8/09/19 15 cm Exp 0.53 0.23 0.75 0.302 81.7 
 30 cm Exp 0.42 0.11 0.53 0.208 81.7 

8/28/19 15 cm Exp 0.32 0.23 0.55 0.413 78.4 
 30 cm Exp 0.38 0.17 0.56 0.313 81.4 

9/02/19 15 cm Sph 0.21 0.09 0.30 0.297 73.9 
 30 cm Sph 0.21 0.01 0.22 0.048 73.9 

9/17/19 15 cm Exp 0.41 0.12 0.52 0.221 62.9 
 30cm Exp 0.47 0.14 0.61 0.233 81.2 
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Table 36: Model parameters for semivariograms fitted to elevation (m) data and used in 
co-kriging to predict volumetric water content. Elevation was used as a secondary 
variable. The theoretical model used, partial sill (C), nugget (C0), total sill (C+C0), nugget-
to-sill ratio and range are summarized. 

 

  

ELEVATION SEMIVARIOGRAM MODELS      

Date Depth Model C C0 C + C0 
Nugget-to-

sill ratio 
Range 

(m) 

7/19/18 15 cm Exp 0.63 0.13 0.76 0.204 81.3 
 30 cm Exp 0.64 0.14 0.78 0.213 74.5 

8/02/18 15 cm Sph 0.65 0.09 0.74 0.133 81.3 
 30 cm Exp 0.93 0.08 1.01 0.084 82.5 

8/16/18 15 cm Exp 3.30 0.43 3.73 0.130 81.7 
 30 cm Exp 3.23 0.17 3.40 0.054 81.7 

8/23/18 15 cm Sph 0.49 0.23 0.72 0.460 81.5 
 30 cm Cir 0.50 0.17 0.68 0.343 72.5 

7/10/19 15 cm Exp 3.50 0.51 4.01 0.145 82.2 
 30 cm Sph 2.41 0.74 3.16 0.308 82.2 

7/22/19 15 cm Sph 2.14 0.43 2.57 0.203 78.1 
 30 cm Exp 3.47 0.90 4.37 0.260 81.9 

8/09/19 15 cm Exp 3.30 0.43 3.73 0.130 81.7 
 30 cm Exp 3.23 0.17 3.40 0.054 81.7 

8/28/19 15 cm Exp 3.69 0.19 3.88 0.052 78.4 
 30 cm Exp 3.77 0.25 4.01 0.066 81.4 

9/02/19 15 cm Sph 2.03 0.29 2.32 0.141 73.9 
 30 cm Sph 2.17 1.30 3.48 0.601 73.9 

9/17/19 15 cm Exp 2.67 0.80 3.46 0.299 62.9 
 30 cm Exp 3.44 0.59 4.04 0.172 81.2 
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Table 37: Model parameters for cross-variograms fitted to VWC data collected in 2018 
and 2019 and ECa (ds/m) data. The theoretical model used, partial sill (C), nugget (C0), 
total sill (C+C0), nugget-to-sill ratio and range are summarized.  

 

  

MOISTURE AND ECA SEMIVARIOGRAM MODELS     

Date Depth Model C C0 C + C0 
Nugget-to-

sill ratio 
Range 

(m) 

7/19/18 15 cm Exp -3.31 0.52 3.84 0.136 81.3 
 30 cm Exp -3.17 0.46 3.63 0.128 74.5 

8/02/18 15 cm Sph 0.71 -0.24 0.95 0.250 81.3 
 30 cm Exp -0.95 -0.39 1.34 0.292 82.5 

8/16/18 15 cm Exp 0.46 -0.34 0.80 0.424 81.7 
 30 cm Exp 0.59 0.02 0.60 0.026 81.7 

8/23/18 15 cm Sph -2.60 0.72 3.32 0.218 81.5 
 30 cm Cir -1.25 0.58 1.83 0.318 72.5 

7/10/19 15 cm Exp 0.71 0.02 0.73 0.023 82.2 
 30 cm Sph 0.86 -0.13 0.99 0.135 82.2 

7/22/19 15 cm Sph 0.87 -0.40 1.27 0.317 78.1 
 30 cm Exp 1.38 -0.44 1.82 0.240 81.9 

8/09/19 15 cm Exp 0.46 -0.34 0.80 0.424 81.7 
 30 cm Exp 0.59 0.02 0.60 0.026 81.7 

8/28/19 15 cm Exp -0.51 0.34 0.84 0.398 78.4 
 30 cm Exp 0.76 -0.31 1.07 0.287 81.4 

9/02/19 15 cm Sph -0.76 0.21 0.97 0.217 73.9 
 30 cm Sph -0.70 0.09 0.79 0.109 73.9 

9/17/19 15 cm Exp -1.16 0.06 1.23 0.052 62.9 
 30 cm Exp -0.90 0.27 1.17 0.230 81.2 
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Table 38: Model parameters for cross-variograms fitted to VWC (%) data collected in 
2018 and 2019 and elevation (m) data. The theoretical model used, partial sill (C), nugget 
(C0), total sill (C+C0), nugget-to-sill ratio and range are summarized. 

 

  

MOISTURE AND ELEVATION VARIOGRAM MODELS    

Date Depth Model C C0 C + C0 
Nugget-to-

sill ratio 
Range 

(m) 

7/19/18 15 cm Exp -0.96 0.63 1.59 0.395 81.3 
 30 cm Exp -0.36 0.83 1.20 0.697 74.5 

8/02/18 15 cm Sph 1.07 0.10 1.17 0.084 81.3 
 30 cm Exp -0.08 0.35 0.44 0.807 82.5 

8/16/18 15 cm Exp -7.04 1.63 8.67 0.188 81.7 
 30 cm Exp -5.10 1.26 6.36 0.198 81.7 

8/23/18 15 cm Sph -0.56 0.48 1.04 0.460 81.5 
 30 cm Cir -0.81 1.08 1.89 0.572 72.5 

7/10/19 15 cm Exp -4.80 0.90 5.69 0.158 82.2 
 30 cm Sph -5.68 2.52 8.20 0.307 82.2 

7/22/19 15 cm Sph -3.69 0.70 4.38 0.159 78.1 
 30 cm Exp -7.18 1.06 8.24 0.129 81.9 

8/09/19 15 cm Exp -7.04 1.63 8.67 0.188 81.7 
 30 cm Exp -5.10 1.26 6.36 0.198 81.7 

8/28/19 15 cm Exp -1.46 0.35 1.82 0.195 78.4 
 30 cm Exp -6.94 1.27 8.21 0.154 81.4 

9/02/19 15 cm Sph -1.33 0.53 1.85 0.285 73.9 
 30 cm Sph -8.23 2.87 11.10 0.258 73.9 

9/17/19 15 cm Exp 5.15 -1.00 6.15 0.162 62.9 
 30 cm Exp 6.09 -2.08 8.17 0.254 81.2 
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Table 39: Model parameters for cross-variograms fitted to elevation (m) and ECa (ds/m) 
data. The theoretical model used, partial sill (C), nugget (C0), total sill (C+C0), nugget-to-sill 
ratio and range are summarized. 

 

ELEVATION AND ECA VARIOGRAM MODELS     

Date Depth Model C C0 C + C0 
Nugget-to-

sill ratio 
Range 

(m) 

7/19/18 15 cm Exp 0.39 0.02 0.41 0.046 81.3 
 30 cm Exp 0.38 0.02 0.40 0.053 74.5 

8/02/18 15 cm Sph 0.29 -0.09 0.38 0.236 81.3 
 30 cm Exp 0.33 -0.07 0.40 0.166 82.5 

8/16/18 15 cm Exp -1.03 0.09 1.12 0.080 81.7 
 30 cm Exp -0.77 0.08 0.85 0.099 81.7 

8/23/18 15 cm Sph 0.18 0.05 0.24 0.231 81.5 
 30 cm Cir 0.01 0.09 0.11 0.875 72.5 

7/10/19 15 cm Exp -0.76 0.04 0.80 0.055 82.2 
 30 cm Sph -0.38 -0.02 0.40 0.058 82.2 

7/22/19 15 cm Sph -0.35 -0.13 0.48 0.266 78.1 
 30 cm Exp -0.73 -0.23 0.96 0.239 81.9 

8/09/19 15 cm Exp -1.03 0.09 1.12 0.080 81.7 
 30 cm Exp -0.77 0.08 0.85 0.099 81.7 

8/28/19 15 cm Exp -0.93 0.21 1.14 0.181 78.4 
 30 cm Exp -0.77 0.09 0.85 0.100 81.4 

9/02/19 15 cm Sph 0.17 0.08 0.25 0.321 73.9 
 30 cm Sph 0.18 0.04 0.21 0.177 73.9 

9/17/19 15 cm Exp -0.65 -0.01 0.66 0.011 62.9 
 30 cm Exp -0.76 -0.01 0.76 0.009 81.2 


