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ABSTRACT

Site-specific water management can increase water use efficiency by up to 30% but determining
whether adopting the technology for site-specific irrigation will be beneficial enough to consider
the additional cost is still an open question. The objectives of this study are to determine the
effect of site-specific water management has on soil moisture at a field scale and to determine
whether site-specific water management can reduce yield variability. Additionally, the
heterogeneity of soil apparent electrical conductivity and elevation was explored as driving
factors in soil moisture differences between management zones delineated using these variables.
Russet Burbank potatoes were grown in Southern Alberta in a field divided into three
management zones. In a two-year study conducted in the growing seasons of 2018 and 2019,
plots were delineated from each of the management zones and treated with site-specific
irrigation prescriptions, while uniform irrigation was used for the rest of the study area. The
effect of site-specific irrigation was monitored using soil moisture sensors installed in each of the
plots. The effect of uniform irrigation was also monitored using soil moisture sensors installed in
the management zones in areas under uniform irrigation prescriptions. The site-specific irrigation
schedule was based on an 80% maximum allowable depletion of available soil moisture. Saoil
moisture depletion was calculated from soil moisture sensor data for each plot. Soil moisture
sensors were also used to assess soil water movement in the rootzone. Soil moisture surveys
were conducted at 15 cm and 30 cm depths and were used to spatially assess soil moisture by co-
kriging soil moisture surveys with soil apparent electrical conductivity and elevation. Yield
variability was not improved under site-specific irrigation, but in some areas, a 10-30% reduction
in total irrigation did not negatively impact yield. Hydrological differences were determined
between the management zones, but relationships between soil moisture and the management
zones could not be confirmed due to a lack of soil moisture sensor data. The reliance on soil
moisture sensors to inform the irrigation prescriptions may have led to a moisture deficit which
resulted in lower potato yields. This effect could be mitigated by installing additional soil moisture
sensors in each of the management zones to provide a method to corroborate soil moisture
observations. Assessing field properties for variability is a prudent step before determining
whether a management zone derived site-specific irrigation management strategy informed by
soil moisture sensor data as some fields may show more benefits using observational experience.
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CHAPTER 1. INTRODUCTION

For millennia, humans have recognized the benefits of irrigation practices. Jordan and
Egypt have archeological evidence of irrigation practises dating back to 6000 BCE;
meanwhile, the Incans, Mayans and Aztecs constructed irrigation systems in Meso and
South America (Sojka, Bjorneberg, & Entry, 2002). Irrigation practices enable agriculture
in areas where the evapotranspiration rate is high, and the precipitation rate is low, thus
growing the land base that can be used for food production (Taylor, 2014). When
comparing yields of corn, cotton, soybeans, and wheat grown under dryland conditions
to their irrigated counterparts, irrigated fields show less variability and significantly higher
yields (Assefa et al., 2012; Payero & Khalilian, 2017). It has been estimated that 40 % of
the world’s food and fibre are grown on irrigated lands, which consist of 17 % of the total

land cultivated for agriculture (Evans et al., 2013).

Although Canada is ranked fourth in the world for freshwater resources (Gleick, 2014),
these water resources are not evenly distributed throughout the country. The areas that
are associated with large-scale agriculture are also some of the country’s driest, with
nearly 70 % of farmland in Canada in the prairie provinces of Alberta and Saskatchewan
(Statistics Canada, 2016). Both provinces have moisture deficits when comparing the
yearly cumulative precipitation to yearly cumulative evapotranspiration which vary from
100 mm in the northern parts of both provinces to 400mm in the south (Agriculture and
Agri-Food Canada & Government of Canada, 2013). As agricultural food production is

most efficient when the difference between evapotranspiration and available water



within a field is minimal, irrigation is necessary in these areas to maintain production

values.

In Southern Alberta, irrigation and agriculture are intrinsically linked. Precipitation is low
in Southern Alberta’s prairie region, with average precipitation ranging between 350 and
500 mm per year (Downing & Pettapiece, 2006) while potential evapotranspiration which
ranges from 1050 mm to 1200 mm (Alberta Environment and Sustainable Resource
Development, 2013). This results in a 500 mm deficit in moisture. However, the high
number of growing degree days makes the area ideal for crop growth, if sufficient
additional water resources can be brought to agricultural land (Downing & Pettapiece,
2006). Because of this and good-quality surface water sources, irrigation is prevalent in
Alberta, more than in any other province, accounting for 67 % of the total irrigated land
in Canada (Statistics Canada, 2010). Irrigated agriculture accounts for 63 % of the total
freshwater usage in Alberta (Alberta Environment, 2007). Irrigation water used in
Southern Alberta is obtained from surface waters, most prevalently from the tributaries
of the South Saskatchewan River (Alberta Agricultural and Rural Development, 2010).
Climate change is expected to impact Southern Alberta by increasing temperatures and
the increasing number of growing degree days (Barrow & Yu, 2005). These climatic
changes are expected to increase the average moisture index 20-30% by 2050, indicating
drier conditions as the climate continues to warm. These drier conditions are not likely to
be offset by the expected increase in precipitation, leading to an increased reliance on
irrigation for agriculture, especially during drought periods (Barrow & Yu, 2005).

Furthermore, irrigated production is roughly seven times as valuable as dryland



production; the average production on irrigated farmland is approximately $2400/ha,
compared to dryland production, which averages $329/ha (Kulshreshtha et al., 2016).
Expanding irrigation in Southern Alberta would be economically beneficial for agricultural
production, but limits on water allocation established in 2006 make expansion difficult
(Alberta Environment and Parks, 2006). Studies have shown using site-specific irrigation
management (SSIM) can improve water use efficiency by up to 30 % (Evans et al., 2013;
Sadler et al., 2005). However, implementing SSIM is expensive and implementation may
not be practical in all areas. Determining how SSIM can change soil moisture dynamics
and crop production in a field is still an open question. Significant impacts will have to be

achieved for SSIM to benefit individual producers.

1.1 RESEARCH OBJECTIVES

The study presented in this thesis addresses the knowledge gap regarding the effects
site-specific irrigation management on potato production and soil moisture distribution, |
have designed a study to compare the yield of areas with SSIM to those with uniform

irrigation. The following questions will be answered:

1. Arethe three management zones delineated in the study area hydrologically
different?

2. Is heterogeneity of ECa and elevation the driving factor for soil moisture
differences under uniform irrigation prescriptions?

3. Can site-specific irrigation management be used to reduce potato yield

variability?



CHAPTER 2. LITERATURE REVIEW

2.1 |RRIGATION SYSTEMS OF ALBERTA

Irrigation management technology and philosophy have undergone many changes over
the past half-century. Up to the mid-1960’s, flood or gravity irrigation was the
predominate form of irrigation used in Southern Alberta (Wang et al., 2015). This
irrigation strategy used the simplest form of irrigation technology, whereby a waterway
was dammed, and water would saturate a field beyond field capacity to ensure that
water was available for crops during dry periods. Flood irrigation is an ineffective strategy
for several reasons: it can increase the salinity of the soil as the water evaporates,
increases leaching of essential nutrients, is an inefficient use of water resources because
of water evaporation, and has a low application efficiency when compared to other

irrigation methods (Cox et al., 2018; Howell, 2003).

Starting in the 1970’s, farm operators began utilizing center pivot and wheel-move
irrigation systems. Wheel-move systems were developed prior to center pivot systems
and allow sprinkler systems to be moved in a field but apply irrigation when the system is
stationary (Hill, 2000). Center pivot irrigation systems are self propelled overhead
sprinkler systems which move in a circle from a central point (Daugherty & Eaton, 1975).
They were first patented by Frank Zybach in 1952 (Hokcell, 2000; Splinter, 1976), but
were used less often than wheel-move systems until the 1990’s (Alberta Agriculture and
Rural Development, 2014). Center pivot irrigation systems have since become the most

used irrigation system in Canada (Alberta Agriculture and Forestry, 2016).; by 2015, high-



and low-pressure pivot systems accounted for 80% of all irrigation systems in the
province, with low-pressure systems being used in approximately 72% of farms with
irrigation systems (Alberta Agriculture and Forestry, 2016).The most significant benefit
for producers of a center pivot irrigation system is that it can be automated, and thus,
have less intensive labor requirements than flood and wheel-move irrigation (Splinter,
1976). Because it applies water in small increments, crops must be watered throughout
the growing season, so there is a reduction in the erosion of topsoil and leaching of
nutrients through the soil profile. It can also significantly improve yields on coarse-
textured soils, which have a limited water holding capacity and therefore need more
frequent irrigation to produce crops (Splinter, 1976). Center pivot irrigation systems treat
fields as uniform environments onto which uniform volumes of water are applied and
thus are optimal for homogeneous field conditions. As most commercial fields have
heterogeneous properties like soil texture, soil depth, and topography, which affect
optimal crop growth, the management of center pivot irrigation systems is often based

on the combination of properties that cover the largest area in the field.

2.2 PRECISION IRRIGATION

Precision irrigation systems use differences in soil properties to subdivide a field into
smaller sectors, or management zones, which share physical properties. The irrigation
rate for the management zone is customized to the shared physical properties (Alaba,
Chandra, & Aghil, 2016; Haghverdi et al., 2015; Villalobos & Fereres, 2016). This differs
from conventional irrigation systems that apply a uniform volume of water over large

sections of land, ignoring the inherent heterogeneity of soil and topography that can
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occur in a single field (Evans et al., 2013). Precision irrigation is a relatively new irrigation
system that requires large amounts of data and the use of novel technologies (Evans et

al., 2013).

Loyoza et al. (2016) identified five levels for the automation of irrigation systems (Table

1).

Table 1: Categories of automation within irrigation systems (Lozoya et al., 2016)

Level O Empirical open loop No automation, irrigation systems are
irrigation controlled manually; irrigation rate is
determined using farmers observation

and experience.

Level 1 Time-based open-loop | Simple automation of irrigation systems
irrigation using a timer with no sensor inputs and

is based on farmers observation and

experience
Level 2 Feed-forward open- Automated irrigation which replaces
loop irrigation water at the rate of evapotranspiration

and crop use; the system uses sensors
or weather station data to determine

the irrigation rate and timing.

Level 3 Closed-loop irrigation | An automated irrigation system which
applies irrigation based on in-field
sensor data which detect
predetermined low thresholds and
stops irrigation when sensors detect a
predetermined high threshold; it is

often based on soil water content.

Level 4 Model-based closed- | All irrigation systems are automated
loop irrigation with a mathematical model which

optimizes the irrigation rate based on

predictive algorithms.




Precision irrigation is currently at Level 1 to 2, with attempts being made to increase
automation to Level 3 (Lozoya et al., 2016) and Level 4 (Seidel et al., 2015). As the level of
automation within an irrigation system increases, more data collection is necessary to
create an accurate representation of conditions within a field. Soil moisture sensor data
can help with this process, but sensors must be installed using a design that captures the
spatial heterogeneity within the field. This may mean that many sensor stations are
required throughout the field. Weather station data may also be used to provide
information for evapotranspiration rates, such data should be collected as closely to the
field as practically possible. This level of data acquisition can be expensive and time-
consuming, and the interpretation of the data acquired requires more expertise than
current assessments of soil conditions and water availability for irrigation scheduling

(Sadler et al., 2005).

Precision irrigation systems, which can be adjusted to site-specific differences within a
field and are automated by prescription maps, are also known as variable rate irrigation
systems (Evans et al., 2013). VRI systems utilize in-field measurements and mathematical
modelling to create irrigation management strategies that may vary within a field
depending on environmental factors and differences in crop water requirements (Lozoya
et al., 2016; Vukobratovic et al., 2014). Currently, VRI systems are commercially available,
but have not been widely adopted by producers due to the expense of installing the
systems. Those promoting precision irrigation technology have made claims about how
the technology can benefit individual farm operators (Evans et al., 2013). The potential

benefits of precision irrigation are the positive effect that the technology may have on



crop production by improving resource use efficiency. VRI has been shown to use
approximately 30% less water compared to conventional irrigation systems (Haghverdi et
al., 2015), which is becoming a more important aspect to farming as climate change
impacts typical water cycles. Precision irrigation technology can be used to reduce over-
and under-irrigation in specific parts of fields, thereby having the potential for increased
yields in heterogeneous fields (Evans et al., 2013; Lozoya et al., 2016). Incidentally, by
using different irrigation rates throughout a single field, nitrogen leaching (Fridgen et al.,
2000) and the topsoil erosion are also reduced. Site-specific salinity problems may also
be addressed by mapping the highly saline areas and delineating them into separate
management zones that can have different irrigation rates from the rest of the field
(Alaba et al., 2016). Topographic differences can be separated into management zones
using slope and elevation as variables (Fridgen et al., 2000). There is also a promise of
improved products from VRI systems; improving the quality of products has been
suggested as another benefit of using VRI systems (Evans et al., 2013). However, there
are very few studies on how VRI can improve yields; most studies to date have focused
on either water management (Lozoya et al., 2016; Rowshon & Amin, 2010) or the
development of tools to improve the delineation process (Evans et al., 2013; Haghverdi

et al., 2015).

VRI systems are controlled in two ways. The first is through varying the travel speed of
the center pivot during its rotation; these are described as sector-controlled systems (Fig.
1a). In sector-controlled systems, the travel speed of the system is increased or

decreased to change the irrigation application rate.
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Figure 1: Examples of management zones for sector controlled (a) and zone controlled (b)
variable rate irrigation systems

A GPS tracker system mounted onto the pivot arm helps control the speed as the pivot
system moves around the field. Management zones for sector-controlled systems are
shaped like wedges (Figure 1a). The second is through control of the sprinklers: these are
described as zone-controlled systems (Figure 1b). Variable flow rate sprinklers can vary
the effective irrigation rate by opening and closing the sprinkler head (King et al., 2005;
Sadler et al., 2005). Management zones are shaped like concentric circles overlaid on top
of the wedges (Fig 1b). Because of the level of automation necessary for implementation,
zone controlled VRI requires the highest amount of data collection of all the precision
irrigation techniques. The adoption of VRI in agriculture has been slow, because of high
costs which is explained by the increased cost of VRI systems and the costs associated
with the collection of data for the field, which include, the intensive monitoring required,
and the expertise necessary for the technology to be successfully implemented (Sadler et

al., 2005).



2.3 MANAGEMENT ZONE DELINEATION

Delineation of management zones is a critical step in precision irrigation water
management. Because precision irrigation techniques incorporate the spatial variability
of plant available water, drainage conditions, infiltration rates, and soil water holding
capacity rather than the average of these variables as is done with conventional irrigation
techniques (Lozoya et al., 2016), mapping these attributes the first step in delineation.
Direct determination of these variables is time-consuming and often requires significant
disturbance, therefore indirect, proxy variables are preferred (Haghverdi et al., 2015).
Topography and soil apparent electrical conductivity (ECa) are useful and popular for two
reasons; first, they can be measured with an automated tool at a high spatial density
throughout an entire field, and second, they require less invasive sampling or laboratory
testing. ECa features well-established correlations with soil texture, bulk density, organic
matter content, and cation exchange capacity (Alaba et al., 2016; Brady, 2008; de Lara,
Khosla, & Longchamps, 2017; Haghverdi et al., 2015). Using ECa to directly predict soil
texture has been explored, but due to the confounding factors of soil moisture, salinity,
and organic matter, ECa can only be partially correlated with soil texture (McCutcheon et
al., 2006). Fridgen (2000) explored the use of topography and ECa to create management
maps in a field. The topographic details that were assessed were slope and elevation.
There are clear correlations between topography, slope, soil texture and ECa, and the
effect these characteristics have on hydraulic conductivity (Alaba et al., 2016; de Lara et
al., 2017; Fridgen et al., 2000; Haghverdi et al., 2015). Alternatively, it has been suggested

that an analysis of historical yield maps would provide a better indication of plant water
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use (Haghverdi et al., 2015). Yield measurements in single field studies show that
depressions outperform those on hills, unless ponding occurs, because of the higher
moisture content found in toe-slopes (Fridgen et al., 2000). However, this may not
provide the most appropriate information for the creation of management zones,
because temporal differences of yield are difficult to determine, and yield is affected by

other factors including pests and disease which differ from year to year.

Delineation of management zones uses decision-making computer software by necessity.
Soil properties which affect infiltration, water holding ability and drainage are never
discrete and rely on a continuum of data points for assessment. As delineation is defined
by creating clear boundaries surrounding areas with similar properties, it is necessary to
determine where a data point lies along a spectrum. Various soil properties may have
different spatial distributions; management zone delineation based on multiple
properties can be achieved using statistical clustering methods (Alaba et al., 2016; de
Lara et al., 2017; Haghverdi et al., 2015; Haghverdi et al., 2016). Principle component
analysis is used to determine an individual parameter’s importance within a dataset by
decoupling dependant variables and assessing them as independent variables (Haghverdi
et al., 2015). Haghverdi, et al (2015) explored different modelling techniques which are
used in the determination of management zones. The methods examined the use of
fuzzy k-means, Gaussian mixture, integer limiting programming (ILP), and Iterative Self-
Organizing Data Organizing Technique (ISODATA). These modelling methods are all
unsupervised clustering tools; unsupervised clustering uses algorithms to identify clusters

within a data set while supervised clustering utilizes the experience of the software user
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and requires controlled sites to train the algorithm. The benefit of using unsupervised
clustering is that a user does not have to be trained to use the software or be familiar
with the site, as unsupervised clustering use iterative processes that analyze the data into
best-fit clusters (Fridgen et al., 2004). All four methods performed similarly in the
determination of management zones; the methods were assessed using the overall
variance of available water capacity (Haghverdi et al., 2015). All methods also identified
the same number of optimal management zones (Haghverdi et al., 2015). Fuzzy k-means
analysis benefits from being widely used, simple and efficient at determining clusters
(Haghverdi et al., 2015). It is the method used by the Management Zone Analyst software
(Fridgen et al., 2004), a popular operational package to determine management zones
(Alaba et al., 2016; Al-Gaadi et al., 2015; de Lara et al., 2017). The Management Zone
Analyst software features built-in evaluating tools which can assess the optimal number
of management zones that need to be employed within a field. This is an important step
in management zone delineation as the number of management zones should limit the
variability of the measured field characteristics while not creating more management
zones than necessary. Evaluating the optimal number of management zones in the
statistical clustering process involves two measures: the fuzziness performance index
(FPI) and the modified partition entropy (MPE). The goal of management zone
delineation is to minimize the value of both FPI and MPE to assure the delineated zones
have minimal overlap (FPI) and the smallest amount of disorganization (MPE) (Boydell &

McBratney, 2002).
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2.4  CONCLUSION

The effects of VRI on decreasing water use in irrigated agriculture has been
demonstrated in some environments (Sadler et al., 2005). Delineation methods for
management zones based on proxy variables for soil properties & drainage
characteristics have been established. However, firm evidence of the effects of VRI on
yield improvement is limited. An important factor here is that methods for irrigation

scheduling in management zones based on multiple field properties is poorly understood.
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CHAPTER 3. METHODS

3.1  FIeLD DESCRIPTION

The study site for the 2018 and 2019 field seasons is located at Alberta Irrigation
Technology Centre (49.6903 N, -112.7341 W), 8 km east of Lethbridge, Alberta (Figure 2
A&B). The mean elevation for the field site is 907.2 m with a minimum elevation of 903.6
m and a maximum elevation of 911.9 m. The 30-year mean annual precipitation (1981 —
2010) at the Lethbridge airport weather station, located approximately 7 km from the
field site, is 360 mm of precipitation throughout the year, with 250 mm falling in the
growing season (Government of Canada, 2019). The average growing season begins May
14 and ends October 27, consisting of 166 days. The average number of frost-free days in
Lethbridge is 124 days; the average date for last spring frost is May 17 and the average
date for the first fall frost is September 18 (Government of Canada, 2019). The climate
for the study area is characterized as Dfb 19 (Ackerman, 1941) with warm, dry summers
and cold winters which are broken up by strong orographic winds from the west. The
mean annual temperature is 5.9°C with average minimum and maximum growing season
temperatures of 3.9°C and 26.1°C (Government of Canada, 2019). The average annual

wind speed is 18 km/h.

The field is approximately 2.3 X 10° m? and is divided into quarters which are managed
using a four-year crop rotation of spring and winter wheat, potatoes, and sugar beets.
Irrigation water is withdrawn from St. Mary River and is supplied by the St. Mary River

Irrigation District (SMRID), one of 13 irrigation districts in Southern Alberta. The field site
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is located on Orthic Dark Brown Chernozemic soil (Agriculture and Agri-Food Canada,
Research Branch & Alberta Agriculture, Food and Rural Development, Conservation and
Development Branch, 2005) with a sandy clay loam texture (Yari et al., 2017). Russet
Burbank potatoes were chosen as the experimental crop and were seeded in the

northwest quarter in 2018 and southwest quarter in 2019 (Figure 2C).

The field is equipped with a Valley model 8000 center pivot irrigation system with 5
spans, a length of 294 m and 129 sprinklers. The sprinkler system is a low elevation spray
application package where sprinklers are installed on drop tubes approximately 2 m
above ground level. Each sprinkler consists of a Nelson rotator sprinkler nozzle (R3000,
D6-Red) and 1.2 bar pressure regulator (Nelson Irrigation Inc., Walla Walla, Washington,
USA). The center pivot irrigation system was retrofitted with a Valmont VRI zone control
system in 2012, which divided the lateral span into 12 sprinkler banks. Each sprinkler

bank consists of 10-12 individual sprinklers.
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Figure 2: General site map for study areas in 2018 and 2019.
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3.2 MANAGEMENT ZONE DELINEATION

The delineation of management zones was not a topic of study and a pre-existing
management zone map was used to select the experimental plots. The management
zones were delineated in 2013 by Yari et al (2017) with the Management Zone Analyst
software (Fridgen et al., 2004) using ECa and elevation. ECa data was collected using an
EM38 instrument (Geonics Limited, Mississauga, Ontario, Canada) and Veris 3100 (Veris
Technologies, Inc., Salina, Kansas, USA), leaving out the northeast section due to on-going
farm operations. The point data was used to predict ECa for three quarter sections using
the ordinary kriging interpolation method in ArcGIS (version 10.2.2, ESRI, Redlands,
California, USA) (Figure 3A). The elevation point data was obtained using a real time
kinematic global navigation satellite system receiver (Figure 3B) which was kriged the
same way as ECa to produce an elevation map. Yari et al (2017) used the Management
Zone Analyst software to partition data into clusters. The clusters were evaluated by the
software which attempted to reduce the weighted within-group sum of squares errors by
evaluating clustering characteristics using FPl and MPE to identify the optimal number of
clusters. The minimum FPl and MPE were calculated for three clusters, indicating that
three management zones were optimal. Three management zones were delineated from
the results, producing Figure 4. After the management zones were delineated, soil

textural properties, pH and organic matter were evaluated (Table 2).
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Figure 3: Apparent soil electrical conductivity (EC,) and elevation raster maps
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Figure 4: Management zone map developed by Yari et al (2017).

Table 2: Summary of soil properties from Yari (2017). Percent of sand, silt, clay, and
organic matter (OM), and pH are summarized.

ZONE SAND (%) SILT (%) CLAY (%) PH OM (%)

1 50.2 24.4 25.4 7.74 2.57
2 52.9 23.8 23.3 7.80 2.61
3 53.3 23.3 23.4 7.76 2.59

3.3 PLOT SELECTION

Using the management map in Figure 4, management zones 1, 2 and 3 accounted for

36%, 38% and 26% of the total area in the 2018 study area, respectively, and 8%, 38%
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and 54% in the 2019 study area. The irrigation applications under the normal operating
procedure used level 0 automation (Lozoya et al., 2016) where the operator made
irrigation decisions with observations and experience rather than using sensors. The field
was irrigated using uniform irrigation management (UIM) except where ponding was
observed. Plots were delineated from three management zones to examine the effects of
site-specific irrigation management (SSIM) on soil moisture and potato yield. Yield and
soil moisture comparisons between uniform irrigation management (UIM) and SSIM
could be examined by applying SSIM treatments to the plots and using the normal
operating procedure for the rest of the field. The plots were selected using the
management zone map created by Yari et al (2017). The plots were selected under the
7% and 8™ sprinkler banks in 2018 and 6 and 7t sprinkler banks in 2019. Each
management zone had a single plot approximately 4000 m?, except the plot in MZ1-

2019, where a lack of space required the plot to be 1760 m?.
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3.4  VOLUMETRIC WATER CONTENT OBSERVATIONS

The height of the effective root zone for potatoes has been shown to be 60 cm from the
top of the ridge (Stalham & Allen, 2004). This depth was chosen as the maximum sensor
installation depth. The SSIM plots were installed with four soil moisture sensors in 2018
and five soil moisture sensors in 2019. In the SSIM 2018 plots, four HOBO 10HS soil
moisture smart sensors (model S-SMD-MO0O05) were installed horizontally in the soil at 15,
30, 45 and 60 cm from the top of the potato hill. At UIM observation stations, soil
moisture sensors were installed at the same depths as SSIM; however, Acclima TDR-315
soil moisture sensors were used instead of HOBO 10HS soil moisture smart sensors. In
2019, after laboratory experiments described in Appendix 1 were conducted, it was
determined that vertical installation was more accurate when sensors are placed 15 cm
apart. The installation was changed to accommodate these findings. In SSIM plots, four
HOBO 10HS soil moisture smart sensors were installed,