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Abstract

Natural gas offers a clean and efficient fuel-burning method of power generation and

heating. North America, specifically, features a sprawling network of natural gas

pipelines and storage facilities that bring natural gas (NG) from source to customer.

Like many commodities (oil, electricity, etc.), the price of NG is subject to uncertainty.

Natural gas storage assets can allow marketing companies to profit by injecting or

withdrawing gas at opportune moments. Even simple contracts; however, involve

large numbers of decisions and constraints that must be considered. Furthermore,

because of the financial nature of storage decisions, it is desirable to measure or

include risk in the decision-making process. This thesis presents optimization frame-

work (created for an industry partner) to serve as a decision support tool for natural

gas storage assets. Mixed-integer-programming models are presented for two types

of storage decisions: futures and cash. Model framework includes novel constraints

that consider the impact of asset inventory on injection and withdrawal rates. In-

cluding the ratcheting constraints is found to be essential in determining feasible

injection and withdrawal decisions when assets are subject to inventory ratcheting.

For both cash and forward decisions, Stochastic, Robust and Distributionally Robust

Optimization alternatives are presented to account for risk. Parameterization of the

risk-management alternatives allows for a user to obtain tactical plans for storage

assets while considering varying levels of risk tolerance and averseness.
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Chapter 1

Introduction

Natural gas (NG) plays an important role in global power generation and offers a

cleaner alternative to coal and other fossil fuels. NG, considered a fossil fuel, is

created by decaying plant and animal matter that is exposed to intense pressure over

millions of years. NG is extracted from naturally occurring reservoirs, which are found

all over the world. In 2017, global demand and consumption of NG saw extraordinary

growth. NG global production nearly doubled the average production growth rate

of the previous ten years, reaching 4% in 2017. The global NG consumption growth

rate increased to 3%, the highest level since 2010 [1].

Many companies are finding opportunity in this growing industry, especially in

North America. North America’s open NG market creates opportunities for market-

ing companies and other third-party participants to profit from the stochastic nature

of NG supply and demand. One particular area of interest for NG marketing compa-

nies is NG storage facilities. NG storage facilities present opportunities for companies

to take advantage of fluctuating NG demand and prices by storing excess gas (when

the price is low) or withdrawing stored gas to meet increased demands (high price).

NG storage, trading and business decisions are often made using approximate ap-

proaches that rely on the trader’s intuition and experience. Additionally, operational

constraints and characteristics of NG storage facilities can be overlooked when making

trading decisions.

Market uncertainty and different operational and practical constraints present an

opportunity to examine NG storage trading decisions from an operations research

perspective. This thesis outlines an optimization framework created for a utility

company, to be used as a decision support tool for natural gas storage decisions. The

next three sections of this chapter will serve as a primer for the natural gas industry

in North America. These sections cover relevant concepts and terms used throughout

this thesis. The last section will present the thesis motivation and outline.

1
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1.1 NG Industry Overview

We begin by examining the work of Sturm [2], who provides a detailed history of the

NG industry in the United States (and inherently all of North America), specifically,

how the market developed into its current state. The Natural Gas Act was passed by

Congress in 1938 to protect public interest and regulate the interstate industry created

by a vast pipeline network. The Federal Power Commission was the government

agency created to enforce the Natural Gas Act. As a response to wildly fluctuating

prices, the United States Supreme Court ruled to pass the Phillips decision in 1954.

In passing the Phillips decision, the Supreme Court ruled that the sale of natural gas

at the source (wellhead) was subject to government regulation. This decision allowed

the Federal Power Commission to gain control over NG prices.

The hope was that by regulating NG procurement costs they could control the

price being paid by customers (the public). Government regulation essentially limited

the price that procurement companies could charge pipeline companies. Regulation

caused many NG producers to shift their focus from interstate pipelines to intrastate

pipelines. Intrastate pipelines were governed locally and not as heavily regulated as

interstate pipelines. Because intrastate pipelines offered higher profit margins, most

interstate pipelines were struck with supply shortages in the 1970s. To combat this,

the Natural Gas Policy Act was passed in 1978, reversing the regulation put in place

by the Phillips decision. Regulation was thought to have protected consumers from

NG producers driving prices up, but it instead caused a supply crisis.

Further deregulation continued and was overseen by the Federal Energy Regula-

tory Commission. The once heavily-regulated and stagnant NG market saw historic

increases in business activity due to deregulation. Deregulation created the open mar-

ket that exists today where companies (not just the pipeline companies) may purchase

capacity in pipelines, storage facilities and enter into many different types of contracts

involving NG production and transportation on a non-discriminatory basis. Storage

facilities, specifically, saw a large paradigm shift due to deregulation. Originally the

facilities were primarily used to balance supply and demand. After deregulation NG

storage facilities began to see use from third-party (marketing) companies as both

opportunities for profit and as risk-management tools.
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1.2 North American NG Supply Chain

North America plays a vital role in current-day NG production. The United States

and Canada are, respectively, the first and fourth largest producers of NG globally.

The United States accounts for 21% of global NG production [3]. NG productivity

in North America has increased over the last 15 years. Canadian NG production

has remained relatively stable, NG production in the United States increased from

around 50 billion cubic feet per day in 2006 to over 72 billion cubic feet per day by

the end of 2016 [3]. While North America produces the largest amount of NG of

any region, most of the production remains inside of North America. For example,

all of Canada's NG exports are to the United States. This is most likely due to the

close trading relationship between the United States and Canada. Another possible

explanation for this is transatlantic transport of NG is costly compared to the other

supply alternatives for the European market.

Increased production of NG has put more pressure on the North American NG

supply chain. The North American NG supply chain can be separated into the up-

stream, midstream and downstream industries [4]. North America has a dense net-

work of pipelines that connects the different echelons of the NG industry. Figures 1.1

and 1.2 display the pipeline network in the United States and Canada

Figure 1.1: US NG Pipeline Network. Source: Energy Information Administration
[4]
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Figure 1.2: Canadian NG Pipeline Network. Source: Energy Information Adminis-
tration [4]

Companies operating in the upstream industry are involved in exploration, drilling

and production of NG. In the United States, most upstream companies are located

in the Gulf of Mexico, where the largest reserves of NG are located. The downstream

industry is made up of the local distribution companies that distribute gas to cus-

tomers using local distribution pipelines [4]. Most of the demand in North America

comes from the North Eastern United States. The cold winters, along with large

population areas like New York City and Boston, create the high NG demand. The

midstream industry contains NG processing plants and the subject of this study: NG

storage facilities [4].

NG travels downstream from the exploration and procurement companies, through

the vast pipeline network and finally gets distributed to end-users. NG is used in

many capacities in North America such as: residential heating, commercial/industrial

purposes (e.g. waste treatment) and power generation. Demand for NG is dynamic

and unforeseen changes in demand put stress on the NG supply chain. NG storage

facilities, located along the pipeline network, can be used to supplement unusually

high demand and accommodate surplus during usually low demand. Storage facilities

also create business opportunities for marketing companies, as they allow NG to be

purchased during points of low demand (low price) and sold later during periods of

high demand (high price).

NG storage facilities are (often) naturally occurring entities wherein NG can be
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extracted or deposited according to an array of operational characteristics. NG stor-

age facilities are used to account for fluctuating demand seen throughout the NG

market in North America. For example, if a stretch of cold weather created a NG

demand that could not be met by normal NG production, NG could be extracted

from a storage facility to meet the demand. Similarly, if demand was lower than

expected, the surplus NG could be injected for later use.

There are five different types of NG storage facilities utilized in North America:

salt caverns, mines, aquifers, depleted reservoirs and hard-rock caverns [5]. Hard-rock

caverns and mines are less commonly used than their counterparts, so their opera-

tional characteristics are not discussed in detail. Figure 1.3 provides an illustration

of the different types of NG storage facilities.

Figure 1.3: Different Types of NG Storage Facilities. Source: Energy Information
Administration [4]

The different types of NG storage facilities and their distinguishing operating

characteristics are discussed by Thompson et al. [5]. They classify four operating

characteristics that differentiate NG storage facilities: base and working gas capac-

ities, deliverability, injection capacity and cycling. Base capacity is the amount of

gas required in a storage facility to keep sufficient pressure. This gas is almost never
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removed from the facility. Working gas capacity is the amount of gas that is available

to be bought and sold.

Deliverability is defined, by Thompson et al. [5], as the rate at which gas can

be withdrawn from a NG storage facility, usually measured in million cubic feet

per day (MMcf/d). Deliverability is often expressed in terms of its heat content

(dekatherms/day or Btu). Injection capacity refers to the rate at which NG can

be injected into a storage facility and is measured in the same way as deliverability.

Finally, cycling is the number of times per year working gas volumes can be withdrawn

from a storage facility.

Depleted reservoirs have the lowest deliverability and injection rates of the afore-

mentioned NG storage facilities. Depleted reservoirs also contain very high amounts

of base gas. Depleted reservoirs are common in the Northeastern United States,

where 56% of the total US NG storage is located. Because of this, depleted reservoirs

account for the majority of NG storage in the United States.

Salt caverns have much lower base gas requirements than depleted reservoirs. Salt

caverns also provide the highest deliverability and injection rates of any NG storage

facility. Additionally, salt caverns are capable of daily and monthly injections and

withdrawals; making them very dynamic facilities. Most salt cavern storage facilities

are located in the Gulf area of the United States, but there are some located in Michi-

gan and Ontario. While salt cavern storage seems to have the most robust operating

characteristics, because they are not naturally occurring close to the largest NG mar-

ket (NE United States), they do not see as much use as depleted reservoirs. Aquifers

possess operational characteristics that are generally between those of depleted reser-

voirs and salt caverns. Aquifers also tend to have very high base gas requirements

(upwards of 80% of their total storage capacity).

Another important characteristic of NG storage facilities is the impact of inventory

levels on deliverability. The deliverability rate of a facility decreases with inventory

levels. It is easier to withdraw gas the higher the inventory levels of the facility are.

The different operational characteristics of NG storage facilities are important to

note, as they can impact future trading decisions. Natural gas storage contracts can

be subject to “Ratcheting Agreements” wherein the company operating the storage

field provides injection/withdrawal rates for varying inventory levels. This concept is
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explored in the modeling section of this thesis.

With a basic understanding of the origins of the NG industry, the current state

of the industry in North America and the concept of NG storage, the business model

of NG in North America can be introduced.

1.3 NG Business Model

The current-day business model is a result of the aforementioned deregulation that

occurred in the United States, and inherently Canada (as the large US market drove

the entire North American NG industry). Opportunities for trading companies were

created by the separation of business activities along the NG supply chain. Sturm

[2] provides an overview of the NG market in North America. They divide the NG

market into two segments: the physical (cash) market and the financial natural gas

market.

The cash market involves daily transactions of NG between suppliers and buyers.

The cash market involves here-and-now decisions, meaning gas can only be purchased

today. Today’s NG price is referred to as the spot price. While companies may plan

to make cash purchases into the future, the only known price is the spot price; every

other day’s price is subject to change. The cash market, while inherently risky, can

be used in tandem with NG storage facilities to make profits off large swings in the

daily prices. For example: a marketing company (such as our client) may buy gas

in the summer months when the price is normally lower and hold it until the winter.

Then, if a cold-snap hits the Eastern United States, they can sell their stored gas on

the cash market to hopefully make a large gain. The difference between purchase and

selling price of NG is commonly referred to as the spread.

Because transactions can only be made on the spot price of NG in the cash mar-

ket, there is a large degree of uncertainty regarding the future behavior of prices.

Transacting in the forward NG market however, allows companies more flexibility

and hedging opportunities than operating in the cash market. In the forward mar-

ket, futures contracts are used as the financial instrument for purchases and sales of

commodities. The United States Futures Trading Commission (USFTC) [6] provides

an overview of futures contracts in the context of the commodities market in North

America. They define a futures contract as an agreement to buy or sell a certain
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amount of a commodity at an agreed upon price at specific points in the future.

While most contracts enforce the delivery of the actual commodity, some futures

agreements allow cash to be delivered in lieu of the commodity.

The agreed upon delivery date(s) are referred to as futures maturities. The US-

FTC indicates that trading companies often utilize futures as hedging tools to offset

the risk imposed by the stochastic nature of commodities prices. Hedging refers to

protecting oneself from loss by making other compensating transactions. It is indi-

cated that “hedgers” make up a majority of futures traders [6].

The USFTC also defines another group of traders, referred to as “speculators”.

“Speculators” attempt to profit from the volatile nature of NG prices. For example:

expecting a period of low demand, the futures price for a certain price may be low.

A “speculator” may buy a forward contract to purchase gas for that period in the

hopes that they can sell it at a later point for a large spread. NG storage facilities

can again be utilized to store gas upon contract maturity, to be sold on either the

cash or forward market, hopefully for a profit. While there are many other aspects

to futures contracts and trading, they are outside the scope of this thesis.

Because the spot price of NG does not translate to a tradeable instrument [6],

futures contracts are an essential aspect of NG trading and storage agreements. Stor-

age agreements are often several months or years long. Because futures contracts can

be bought for future delivery, they interface well with NG storage facilities, as the

company can plan to inject/withdraw the specified amount of gas at a fixed price.

Operating on the forward market provides marketing companies with additional

flexibility when purchasing and selling NG. While a futures contract outlines the

purchase of NG at a fixed price, this price is subject to the current futures market.

Like any commodity, the futures price of NG is constantly changing. Futures contracts

provide companies with the opportunity to take advantage of the changes in the

forward market.

Until delivery of the underlying commodity, a forward contract is simply a financial

position a company takes. This position, as futures represent tradeable instruments,

can be dropped at any point in time before maturity. For example: a company

purchases gas in May for delivery in August, but three weeks later, as the futures

market changes, they see a more profitable opportunity by selling the forward contract
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for delivery in August. Therefore, the trader may sell their existing delivery position

on the futures market.

Another important concept in futures markets is the forward curve. Platts [7]

defines a forward curve as a “series of sequential prices either for future delivery of an

asset or expected future settlements of an index.”. It is important to understand that

forward curves do not display projections for the evolution of NG spot prices, but

rather the current price for future delivery of NG. Figure 1.4 , obtained from Platts

[7], provides a graphical example of a forward price curve. Prices of the commodity

of interest are plotted on the Y -axis against distinct points in time along the X-axis.

Forward curve data can be obtained from exchanges, energy market data publishers

Figure 1.4: Sample Forward Price Curve. Source: Platts [7]

(who charge a fee for usage of their forward curve information), brokers, data distrib-

utors, system vendors, consensus curve publishers and internally developed curves.

Forward curves utilize available data (historical data, weather data, market data) to

estimate current futures prices. Forward price curves can be viewed as a “snapshot”

of the current futures market, as the forward curve is subject to change throughout

time.

Sturm [2] provides an example of a simple NG storage contract trading decision.

Assume gas was purchased on the forward market for $1.90/MMBtu. If the trader

notices that NG futures prices next month are quoted at $2.00/MMBtu, they must
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decide if that spread is enough to cover the variable costs of the storage contract.

Sturm provides a carrying and variable cost of $.085/MMBtu/d, which results in a

profit of $.015/MMBtu. In most cases, contracts are made for quantities exceeding

10000 MMBtu, so this storage contract would be deemed very profitable. The follow-

ing visual was adapted from Sturm to display the aforementioned storage transaction.

While Sturm includes a holding cost in his example transaction, marketing compa-

Figure 1.5: Simple NG Storage Agreement. Source: Sturm [2]

nies (including our client) often disregard holding costs, as they do not significantly

impact the value of the storage decisions.

1.3.1 Behavior of NG Prices

The motivation behind NG storage contracts can be better understood by examining

the historic behavior of NG. In general, the price of NG is lower in warmer months and

higher in the winter when large cities’ NG consumption increases due to heating. This

behavior is confirmed by examining historical NG futures price data obtained from the

New York Mercantile Exchange (NYMEX), which is one of the largest commodities

futures exchanges in the world. Figure 1.6 displays the average futures price by month

for the last 30 years. It should be noted that years 2000-2008 were excluded from this

analysis as they were considered outliers due to the economic bubble and subsequent

crash.

NG prices are generally historically higher during the winter months in North

America and lower during warmer months. The peak in June is most-likely a result

of increased power consumption caused by high temperatures in the summer months.
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This behavior provides opportunity for gas to be purchased for lower prices in the

summer and sold for a profit during the winter months.

Figure 1.6: Historical NG futures prices by month from 1988-1999 and 2009-2017.
Source: Index Mundi [8].

The impact of weather on NG prices can be further displayed by examining histor-

ical futures prices for 2005, as displayed by Figure 1.7. Here we see relatively stable

monthly prices until August, where there is a distinct spike. In late August 2005,

Hurricane Katrina devastated the Gulf of Mexico causing over $80 billion in damage.

As previously discussed, the majority of United States’ NG production is located in

the Gulf of Mexico [2]. Much of the NG infrastructure was damaged or hindered by

the 2005 hurricane season, which resulted in a supply shortage and record high NG

prices. Again, companies can take advantage of extreme weather events by selling

stored gas for extremely high prices.

While NG prices do exhibit seasonal tendencies, they are also extremely volatile.

To emphasize this, a one-way Anova test was performed on average futures prices for

each month. The hypothesis test is outlined by Figure 1.8. The results obtained from

the Anova test are displayed in Figure 1.9. The resulting p-value is far greater than

the significance level of the test, indicating there is no statistical difference between

each month’s mean historical price.
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Figure 1.7: Historical NG futures prices by month for 2005. Source: Index Mundi [8].

Figure 1.8: Anova hypothesis test, performed on monthly averaged futures prices.
Source: Index Mundi [8].

Figure 1.9: Anova results for historical futures prices. Source: Index Mundi [8].
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1.4 Thesis Motivation

This thesis was motivated by a collaboration between Dalhousie University and an

industry partner, henceforth referred to as The Utility Company. The Utility Com-

pany utilizes NG storage assets to profit from changing NG prices. As prices in the

forward and cash markets change, The Utility Company utilizes NG storage facilities

to store gas purchased at lower prices until the gas can be sold at a higher price.

Additionally, The Utility Company often enters into operational agreements where

they are given possession of a NG storage asset and must fill the asset by the end of

term for the least amount of money.

The problem is further complicated as The Utility Company may have access

to a storage facility for multiple years, which results in a large number of possible

injection and withdrawal decisions especially in the cash market. In addition to

the sheer number of possible decisions, the storage contract is constrained by the

operating characteristics of the facility (e.g. capacity and deliverability).

Because of the large number of possible decisions and various operational con-

straints surrounding the facility, the process of analytically optimizing a storage asset

requires much time and effort from the traders. The goal of the project was to create

an optimization framework to aid in the decision-making process for natural gas stor-

age assets. The hope was that, by using optimization techniques, the traders could

obtain optimal tactical plans without hours of analysis. The models presented in this

thesis were motivated by the project with The Utility Company, and several variants

were implemented for future use.

1.5 Problem Statement

The thesis addresses two specific optimization models for NG storage assets subject to

price uncertainty. Models are developed to provide traders at The Utility Company

with optimal injection and withdrawal instructions such that the expected profit

from the various transactions is maximized, subject to internally developed price

simulations. Models were developed for two specific problems: Forward-to-Forward

Transactions and The Summer Fill Problem.
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In the Forward-to-Forward (F2F) problem, we consider optimizing a NG storage

asset where the trader only makes transactions the futures market. The goal of this

problem is to buy/sell forward contracts such that the cashflow of these transac-

tions is maximized, subject to the internal price simulations. These transactions are

constrained by the various operational constraints of the storage facility (e.g. deliv-

erability and capacity). The trader must consider the operating characteristics as

they determine the feasibility of their trades. This problem also includes situations

where the NG storage facility is subject to inventory ratcheting. Inventory ratcheting

can be imposed on NG storage facilities by their operating companies and reflects

the physical characteristics of the facility along with the impacts of market liquidity.

As a well becomes more full, the pressure increases and it becomes harder to inject

gas. Additionally, when a NG well is full, a storage company will expect many with-

drawals (as the well would be filled for periods of high demand). Because of this, the

company operating the well will limit their deliverability based on the well inventory

via a ratcheting agreement. The agreement complicates the feasible injections and

withdrawals and must be considered when applicable.

The Summer Fill Problem considers the optimization of a NG storage asset where

the trader only makes transactions on the cash market. Unlike for transactions on

the forward market, NG cannot be purchased for future delivery on the cash market.

In this problem the trader has access to a NG storage facility for the summer (April-

October). In those 214 days, the trader must also fill the storage well to its capacity

to prepare for increased winter demand. Because it does not take the entire summer

to fill the well, the trader will also be making cash purchases and sales of NG to

try to offset the cost of filling the well. The goal of this problem is to obtain the

purchases/sales of NG on the cash market, such that the overall cashflow is maximized

(subject to the internal price simulations), all while ensuring the well is full at the

end of the month.

1.6 Thesis Contributions

This section of the thesis covers its scientific contributions. Contributions are as-

signed to the following categories: practical, academic, and data. Practical contribu-

tions refer to the contributions this thesis made to our industry partner. Academic
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contributions refer to contributions towards academia. Finally, data contributions

refer to contributions made through analysis of the provided data.

The inventory ratcheting constraints are a large practical contribution, as they

allow a user to easily identify feasible injection and withdrawal amounts, when an

asset is subject to inventory ratcheting. This analysis can be complex and requires

much time for analysis. The thesis work also serves as an effective decision support

tool for the industry partner, as they can use it to aid in NG storage decisions. Chance

Constrained, Robust, Distributionally Robust and Utility modelling alternatives aid

in risk management by taking the uncertainty of the price simulations into account.

This framework can also assist in baseline valuation of a storage asset. Finally, the

framework can be used to validate tactical plans (by ensuring feasibility).

Next, in terms of academic contributions, this thesis presents novel linear con-

straints to account for inventory ratcheting. This thesis shows the impact a ratchet-

ing agreement can have on feasible injection/withdrawal amounts. This thesis also

presents novel applications of Chance Constrained, Robust and Distributionally Ro-

bust Optimization. This thesis presents how each model framework can be used

to account for uncertainty within the context of our problem. Finally, the concept

of utility functions was applied to a NG storage well’s inventory to serve as a risk

management tool.

Data contributions can be divided into two sections: forward price simulations

and cash price simulations. For forward price simulations, this thesis identified that

volatility decreased with time (reversing-funnel). Additionally, the mean-centered

nature of the price simulations was revealed. It was also determined that a mixture

distribution can be fit to monthly prices. Data analysis also revealed data seasonality

(higher prices in the winter months) and the natural spread of the price simulations.

For the cash simulations, this thesis revealed increasing volatility with time (funnel

effect). The daily prices were also found to be approximately normally distributed.

Additionally, a dip in prices in October was identified and analysed. Analysis revealed

both financial and customer causes for this dip.
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1.7 Thesis Outline

The remainder of this thesis is organized as follows: first in Chapter 2, a literature

review of existing and relevant operations research approaches pertaining to NG stor-

age assets is performed. Next, the forward and cash market modeling frameworks are

presented in Chapters 3 and 4, respectively. Both forward and cash chapters contain

data analysis on provided price data in addition to model approaches presented. The

results from each approach are discussed and analyzed. Finally, conclusions are drawn

from the aforementioned analysis and recommendations for future work are provided.



Chapter 2

Literature Review

Before the modeling process began, a literature review was conducted to investigate

existing approaches to the NG storage problem. The following chapter presents rele-

vant approaches and discusses their applicability in the context of this project. The

presented approaches were considered and used as references throughout the mod-

eling process. While many approaches are covered, only approaches relevant to the

case under study are presented in detail.

2.1 Linear Programming Approaches: Modeling NG Price Progression

Contesse et al. [9] present a mixed-integer approach for modeling NG purchases

and transportation. Their model framework includes three parties: NG producers,

transporters and local distribution companies. Their decision-support model allows

the various complexities of purchasing and transporting NG to be considered and

reflected in the optimal solution. They present an array of constraints that model

elements related to the purchase and sale of gas, taking into account items such as:

injection capacities, sales to different entities and transportation capacities. Their

results showed that, while the resulting MIP formulation was quite large, it solved

easily. They indicate that their model can be used to effectively support operational

decision, as well as various contract negotiations.

Next, let us consider the linear programming model presented by Lai et al. [10]

that pertains specifically to NG storage, which includes futures contracts as a trading

operation. As previously discussed, futures contracts are frequently used throughout

commodities trading as they help mitigate risk and are used as hedging tools. They

consider a futures contract that contains N maturities, contained within a set F :=

{0, ..., N − 1}. Their standard notation F (Ti, Tj) denotes the futures contract price

at time Ti and maturity at time Tj where j ≥ i, ∀i, j ∈ F . Additionally, they define

the spot price as F (Ti, Ti). Note the spot price refers to the price of gas at the

17
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current moment. By including this, they are able to consider both forward and cash

transactions in their framework.

Next, they define Fi := (Fij, j ∈ F , j ≥ i), ∀i ∈ F as the forward curve at time

Ti. Their linear program utilizes the following parameters:

x Maximum NG inventory level, where x ∈ R+

CI Constant injection capacity
CW Constant withdrawal capacity
cW Marginal withdrawal costs
cI Marginal injection costs
δ One review period constant risk free discount factor
αI Commodity adjustment factor for injection
αW Commodity adjustment factor for withdrawal
si Spot price of NG at Ti

Si,j
0 (F0,i, F0,j) Spread option on futures prices Fi,j and Fi,i at T0.

The spread option, which is also presented by Carmona and Durrelman [11], is

defined as:

Si,j
0 (F0,i, F0,j) := δi E

[{
δj−iαW F̃i,j − (αIF̃i,i + δj−icW + cI)

}∣∣∣F0,i, F0,j

]
. (2.1)

Here F̃i,j is a random entity that is dependent on F0,i, F0,j. Colloquially, the spread

option is equal to the value of injecting one unit of NG at time Ti and withdrawing it

at time Tj. The commodity adjustment factors are used to model in-kind fuel losses

during injection and withdrawal, where αW ∈ (0, 1] and αI ≥ 1. The spread option

additionally accounts for the discount rate from period to period and the injection and

withdrawal costs of the storage facility. Their model utilizes the following decision

variables:

qi,j Amount of NG associated with spread option i, j
xi Inventory level at time i
y0 Amount of NG sold at time T0 (spot sale).

With that, their linear program is formulated as follows:

max s0y0 +
∑
i∈F

∑
j∈F ,i<j

Si,j
0 (F0,i, F0,j)qi,j, (2.2)
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s.t.

xi+1 = xi

∑
j∈F , j>i

qi,j − y01{i = 0} −
∑

j∈F , j<i

qj,i, ∀i ∈ F (2.3)

xi ≤ x, ∀i ∈ F{0} ∪ {N}, (2.4)∑
j∈F , j>i

qi,j ≤ −CI , ∀i ∈ F \ {N − 1} (2.5)

y0 ≤ CW (2.6)∑
i∈F , i<j

qi,j ≤ CW , ∀j ∈ F \ {0} (2.7)

y0 ≥ 0 (2.8)

qi,j ≥ 0, i, j ∈ F , i < j, (2.9)

xi ≥ 0, ∀i ∈ F \ {0} ∪ {N}. (2.10)

The objective function seeks to maximize profit through both the spread option and

the spot sale option. Their formulation allows for some (or all) of the inventory to be

sold at T0. Constraints (2.3) and (2.4) balance inventory levels and limit the inventory

to the maximum capacity. Lai et al. use 1{.} to represent that if event {.} is true, the
function equals 1, otherwise 0. Constraints (2.5)-(2.7) are capacity constraints and the

remaining constraints are non-negativity constraints for the decision variables. While

it is indicated that there are no closed-form formula for the spread option coefficient

in the objective function, both Lai et al. [10] and Carmona and Durrleman [11]

state that Kirks method (among others) can be used to numerically estimate said

parameter. It should be noted that this formulation does not include any holding

cost on the inventory. Lai et al. argue that holding costs could be added easily, if

necessary.

Lai et al. [10] and Gray and Khandelwal [12] both indicate the results obtained

by the LP policy can be improved through re-optimization. Re-optimization takes

advantage of information that becomes available over time, re-optimizing at each ma-

turity. One method for doing this is through Monte Carlo simulation. The LP policy

can also be applied to solve the exact stochastic dynamic program presnted in Sec-

tion 2.2, which is normally computationally intractable. Lai et al. also indicate that

their linear programming approach can provide lower bounds on the value of storage,
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which can be useful when benchmarking other heuristics and modeling methods. The

linear programming approaches presented offer good estimates for the value of NG

storage contracts, while considering the operational characteristics and constraints of

the storage facilities. Their study utilizes constant injection and withdrawal param-

eters that do not account for the possibility of inventory ratcheting. As displayed

in Section 3.2, ratcheting agreements can significantly impact the feasible amount of

NG that can be injected/withdrawn in a certain period.

Nadarajah et al. [13] present relaxations of approximate linear programs to solve

the real option management of commodity storage problem. They specifically ref-

erence management of a NG asset in their study. They emphasize the modeling

difficulty caused by the exogenous nature of the forward price curve for NG, as de-

scribed by Eydeland and Wolyniec [14]. This modeling difficulty causes exact models

to be computationally intractable. They present an approximate linear programming

approach, which uses lower-dimensional representations of the variables contained

within the Markov decision processes that defines managing NG storage as a real op-

tion (discussed in detail in the following section). They achieve this by discretization

of the forward curve defined by a Markov decision process. Solving the approximate

linear programming equations allows for upper and lower bound estimates of the op-

timal trading policy. The authors also provide relaxations of their approximate linear

programs, which were shown to outperform their associated approximate linear pro-

grams through numerical analysis. Their approaches offer a robust alternative for

modeling the forward price progression of NG, remain computationally tractable and

can provide acceptable upper and lower bounds on the value of NG storage. While

their study does investigate the impact of different injection and withdrawal capac-

ities (referred to as pairs), their study does not specifically mention the impacts of

inventory ratcheting on the presented framework.

Byers [15] presents a linear optimization approach combined with Monte Carlo

simulation to value commodity storage. Their study also applies the approach to a

NG storage example. Their approach models both the intrinsic and extrinsic value of

storage. They define the intrinsic value of storage as the buy low sell high opportuni-

ties created by the NG price spread. They refer to the extrinsic value as the uncertain

or risk-laden component of a storage facilities value caused by the stochastic nature
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of NG prices. The value of commodity storage is presented as a portfolio of forwards

and options with different strikes and maturities where the strike price in terms of

futures contracts refers to the agreed upon price of the underlying commodity. They

present a two-stage optimization process. The first stage is a linear optimization

that determines the purchase and sale of the commodity. The linear model insures

flow balance constraints at the storage facility, ensures that commodities are bought

and sold correctly (in the proper sequence), among other practical constraints. The

second stage of their optimization examines the results of the first stage to determine

if the position of the portfolio has changed from the previous day, thus changing

the extrinsic value of the portfolio. Their approach allows for the risk involved with

NG storage decisions to be modeled. Finally, they indicate that path dependencies

arise in commodities storage because the inventory available today impacts the set of

decisions on a given day. Like other approaches, this model treats the injection and

withdrawal capacities as static quantities. Byers [15] applies their approach to two

different examples of NG storage. The two-tiered model approach increased tractabil-

ity and allowed for the extrinsic value of NG to be modeled. Their model provides

a simple approach of valuing commodity storage. They also provide insight into the

typical actions of a trader. They indicate that a rational trader will always sell the

maximum allowable volume and purchase the maximum allowable volume.

In practice, the computational tractability of linear models is attractive. Lin-

ear models can also be used as heuristic approaches for solving dynamic modeling

approaches. While the above approaches do provide insight into the NG storage

problem, they differ from the work of this thesis due to their modeling of NG price

progression. As discussed later, for this project the traders utilize a discrete set of

price forecasts to aid in their decision-making.

2.2 Dynamic Programming Approaches: Modeling NG Price

Progression

While linear programming approaches can provide insight into potential NG storage

decisions, industry practitioners often prefer high-dimensional models that model the

full dynamics of NG price progression [10]. The model presented by Black [16], which

is a high-dimensional forward model for the evolution of futures prices, is used as an
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example of the type of price progression models preferred in practice by Eydeland and

Wolyniec [14] and Lai et al [10]. In the Black model, the evolution of futures prices

are defined by driftless geometric Brownian motion (with maturity-specific constant

volatility σi > 0 and standard Brownian motion increment dZi(t) [10,16].

Geometric Brownian motion is continuous-time stochastic process that is used to

model randomly varying quantities (e.g. the price of a NG futures contract in this

case). While the details of Brownian motion are not discussed in this study, Eyedland

and Wolyniec [14] and Sigman [17] provide overviews of geometric Brownian motion

and discuss its use in option pricing.

The Black model, as presented by Lai et al. [10], is as follows:

dF (t, Ti)

F (t, Ti)
= σidZi(t), ∀i ∈ F (2.11)

dZi(t)dZj(t) = ρi,jdt, ∀i, j ∈ F (2.12)

Here ρi,j ∈ (−1, 1) and refers to a constant correlation coefficient that relates maturity

times Ti and Tj. The above is an N-factor model and is an acclaimed example of the

high-dimensional forward models preferred in practice [10].

Consider again the work of Lai et al. [10], which was adapted from a periodic

review model from Secomendi [18]. In this approach, inventory review periods cor-

respond to futures price maturities. Here the previously mentioned notation and

conventions for Fi and Ti is utilized (as shown in (2.2)-(2.13)). This model utilizes

mostly the same parameters to the one presented on page 16, with the exception of

the spread option parameter, which is no longer present.

x Maximum NG inventory level, where x ∈ R
+

CI Constant injection capacity
CW Constant withdrawal capacity
cW Marginal withdrawal costs
cI Marginal injection costs
δ One review period constant risk free discount factor
αI Commodity adjustment factor for injection
αW Commodity adjustment factor for withdrawal
si Spot price of NG at Ti

Using the above parameters, the following action sets are defined for injection,



23

withdrawal and any review time as

AI(x) := [max{CI , (x− x)}, 0], (2.13)

AW (x) := [0,min{x, CW}], (2.14)

A(x) := AI(x) ∪ AW (x). (2.15)

The action sets ensure that only feasible amounts of NG can be injected or withdrawn

from a storage facility. For example, if the amount of available inventory is less than

the withdrawal capacity, then only that available amount can be extracted. Next,

the reward associated with action a at time Ti is refined as r(a, si). With that, the

reward function is defined as

r(a, s) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(αIs+ cI)a if a ∈ R−,

0 if a = 0, ∀s ∈ R+,

(αW s+ cW )a if a ∈ R+.

(2.16)

In this formulation the convention is established such that injections are negative

actions and withdrawals are positive. This corresponds to the purchase of NG that

occurs before injection, meaning the company takes on negative cash flows and vice

versa for withdrawals. Examining the reward function in more detail it can be seen

that the spot price of NG wholly determines the reward from the storage decision.

Finally, they define the following exact stochastic dynamic program (for reference L
refers to the feasible set of inventory levels defined by [0,x]):

VN(xN ,FN) := 0, ∀xN ∈ L, (2.17)

Vi(xi,FN) := max
a∈A(xi)

r(a, si) + δE
[
Vi+1(xi − ai, F̃i+1)|F′i

]
(2.18)

It is revealed that due to the high-dimensional state space of the model when applied

in practice, the above formulation is computationally intractable. Lai et al. [10]

state that stochastic dynamic programming is the natural approach to solve the NG

storage valuation problem, but the high-dimensional price evolution models preferred

by traders makes application of the exact model impossible.
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Additionally, Lai et al. [10] state that the linear program defined by (2.2)-(2.13)

can be used to create a feasible policy for the exact dynamic programming model.

They detail how this might be done, but it is outside the scope of this thesis. Two

different approaches are presented to confront the intractability of the exact dynamic

program. The first approach is based entirely on the information available at T0, which

makes the approach based on the intrinsic value of storage. This model assumes that

a transaction is made in the forward market at T0, which differs from the previous

approach. The intrinsic model is described as follows:

U I
N(xN ;F0) := 0, ∀xN ∈ L, (2.19)

U I
i (xi, F0) := max

a∈A(xi)
r(a,F0,i) + δU I

i+1(xi − a,F0), ∀i ∈ F , xi ∈ L (2.20)

The second approach for improving the tractability of the dynamic programming

model provided by Lai et al. [10] is by utilizing approximate dynamic programming

(ADP) on a reformulated version of the exact model described by (2.13)-(2.18). The

value of the approximate dynamic program is computed using Monte Carlo simula-

tion. It is revealed that the approximate approach produced tight upper and lower

bounds on the value of storage, when applied in their study. Similar to the linear

programming approach (2.1)-(2.10), Lai et al. state that the approximate dynamic

programming approach can take advantage of re-optimization.

Parsons [19] presents a two-factor tree model for valuation of NG storage as-

sets. Unlike many approaches, their approach includes inventory ratcheting in their

model framework. Their results indicate that including inventory ratcheting produces

“pockets of high-optionality”. They state that the behavior is caused by different ad-

vantages arises when on either side of a ratchet. Their model framework includes a

mean reverting process to represent the price of NG. Their work confirms the im-

portance of including ratcheting agreements in model framework for valuation of NG

storage assets.

Chen and Forsyth [20] present a semi-Lagrangian approach that models the NG

storage as a stochastic control problem. They identify the NG storage problem as a

stochastic control problem that results in a Hamilton-Jacobi-Bellman equation. They

present a semi-Lagrangian approach for solving the aforementioned equation. Their
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approach allows for the model to consider different aspects of spot-price models for

NG including: mean reversion, seasonality and price jumps. Esteve et al. [21] also

utilize a stochastic control approach for pricing swing options which can be useful for

modeling the option of NG storage.

Bjerksund et al. [22] provide an approach that seeks to maximize the intrinsic

value of NG storage. The state that a common approach in literature for valuation of

NG storage is to utilize simple models for the price process in tandem with complex

optimization techniques. In their study they take an alternative approach by utilizing

a complex price model with a simplified decision rule (maximization of the intrinsic

value). The optimal storage decisions are found by solving a dynamic program repre-

senting the intrinsic value of the asset. Their results propose that their combination

of a complex pricing model with a simplified decision rule is the appropriate approach

for valuing NG storage.

Yi [23] presents three methodologies for valuation of NG storage assets, including

an approach that utilizes Monte Carlo simulation in tandem with stochastic dual

programming. This approach only considers the spot price of NG in storage valuation.

Their approach also incorporates bid and ask prices into the optimization framework.

The “bid” is the offer the NG buyer makes on the gas, whereas the “ask” is the price

set by the seller. Their results indicate that, when considering only the spot price of

NG, a higher-than-market value is placed on storage. They also state the importance

of accurate pricing models on storage valuation.

Lai et al. [24] present methods for the valuation of NG storage at a liquefied nat-

ural gas (LNG) terminal. They state that the exact valuation of the option of storing

LNG is computationally intractable. In their study, they develop a tractable heuristic

model for valuation of NG storage as LNG. Model framework includes the shipping

of LNG, evolution of NG prices and inventory control. Their model specifically uti-

lizes Markov Decision processes in tandem with Monte Carlo simulation among other

approaches outside the scope of this thesis. Their results indicate that their approach

provides an accurate valuation of NG storage and is tractable enough for industry

use. While not referring specifically to the NG storage problem, this study involve

similar operational characteristics underground storage facilities such as fuel loss.
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Clearly, modeling the price progression of NG complicates accurately valuing stor-

age assets. Carmona and Durrleman [10] specifically discuss the modeling difficulty

of price progression in energy markets. They state that, while a simple relationship

exists between spot price and forward prices for futures and forward contracts in

regular markets, this relationship does not exist in commodities markets. For this

reason, modeling approaches for the progression of price is more difficult for commodi-

ties, inherently making the NG storage problem more difficult. Modeling difficulty

is specifically attributed to the seasonality of commodities markets and their mean-

reverting nature.

2.3 Robust and Stochastic Optimization: Frameworks for Optimization

Under Uncertainty

Robust and Stochastic optimization are utilized to account for uncertainty in opti-

mization problems. As previously stated, NG prices are subject to a high degree of

uncertainty throughout time. To investigate their applicability in the context of the

NG storage problem, a brief review of related approaches was conducted.

Barbry et al. [25] develop a robust optimization framework to model the risk-

averse nature of electricity storage decisions. Methods for characterizing price un-

certainty in the day-ahead New York electricity market are presented. Factors such

as total demand, market prices and wind power contributions were considered when

characterizing price uncertainty. Next, they present a decision model that uses a

“budget” to model the traders’ loss-aversion when making a storage decision. Results

from their study indicate that, by implementing a robust bidding strategy, the risk of

financial loss on energy storage decisions can be reduced when compared to a nom-

inal strategy. Additionally, this was obtained with acceptable decreases in expected

profit when compared to the nominal strategy. This approach displays the impact of

risk-averse optimization frameworks on commodities purchase and storage decisions.

Another relevant RO approach from literature is the work of Lorca et al. [26] In

their study, they present a multi-stage RO model to account for uncertainty in solar

and wind power in the context of the unit commitment problem. In their study, they

construct dynamic uncertainty sets to account for the stochasticity that renewable
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resources can posses. While not referring specifically to NG, their study does in-

clude energy storage in the model framework. Results from their study revealed that

their methods allow multi-stage robust unit commitment problems to be efficiently

solved, while considering uncertainty created by solar and wind power generation.

They indicate that their model approach offers advantages in cost and reliability over

traditional uncertainty set and deterministic approaches.

Mokrian and Stephen [27] present a stochastic framework for optimizing energy

storage, specifically electricity. Electricity, like NG, is capable of being stored and

is subject to varying supply and demand. Their paper summarizes different storage

technologies and presents model framework that includes linear programming, multi-

stage stochastic and dynamic programming approaches. They indicate that, while the

dynamic programming approach outperformed the others, it suffers from tractability

issues due to the state space of the problem. They state that the stochastic approach

is flexible in choice of differing pricing models and is capable of dealing with many

uncertainties. This problem is similar to NG storage as their electricity storage is

subject to operational constraints that govern the potential storage actions.

Next, consider the work of Bajram and Can [28], who present a stochastic pro-

gramming approach for multi-period portfolio optimization. They construct a piece-

wise linear utility function to model risk and possible recourse of financial decisions,

which allows stochastic programming to be applied. Their work involves generating

scenario trees to model the underlying uncertainty around most portfolio transactions.

Each node in the decision tree corresponds to a set of asset returns during a specific

time-period. They indicate that their model, while a simplification in several ways,

is an effective tool for multi-stage asset liability management decisions. This allows

the investor the chance to evaluate different trading options, and possible recourse.

While not referring specifically to NG storage or trading, their work still provides an

outline of how stochastic optimization can be used in financial and risk applications.

Aouam et al. [29] present stochastic and quadratic programming approaches for

natural gas procurement. Their work considers local distribution companies who can

choose from different contract types to purchase NG to satisfy customer demand.

They present two strategies to model NG procurement, which they refer to as naive

and dynamic strategies. Stochastic programming is utilized in the proposed dynamic
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strategies. They present several stochastic models in their framework including a

risk-neutral and variance-based model. Naive strategies utilize simple procurement

rules. Using simulation, it is shown that dynamic strategies, wherein the probability

distribution for future NG prices is estimated, possess more risk when considering

modeling error. Additionally, they show that in the presence of accurate price mod-

eling, the dynamic strategies are more effective. Convex combinations for dynamic

and naive strategies are then used to create robust bidding strategies formulated as

a quadratic program. Their results indicate that the robust framework benefits from

the cost effectiveness of dynamic strategies and from the low risk associated with

naive strategies. While not referring specifically to optimizing a NG storage asset,

this work does provide valuable insights into modeling NG transactions.

Kannan et al. [30] present a stochastic optimization model for planning natural

gas purchases, storage, transportation and deliverability. Unlike other approaches

from literature, this approach models the deliverability as a dynamic quantity, as

it can be impacted by changes in supply and demand. Their framework considers

that decisions can be made on yearly, monthly, daily and inter-day bases. They

utilize discrete scenarios to represent changes in supply and demand patterns during

different seasons, which is similar to the methods used by Knowles [31]. The goal of

their model is to minimize all associated costs across all supply and demand scenarios.

Results indicate that effective gas procurement strategies are obtained through use

of their model. They also indicate that, because deliverability is sensitive to change,

they suggest the model be used to negotiate deliverability in contracts or to justify use

of a storage facility. This work provides insight into modeling the various operational

characteristics and transactions involved with NG sales and purchases.

2.4 Conclusion

While the presented approaches do provide insights into modeling the NG storage

problem, there are some differences between the approaches from literature and our

thesis problem. Some presented approaches deal with optimizing energy storage or

financial instruments unrelated to NG. While seemingly unrelated, these approaches

provide insights into optimization techniques for commodities subject to price uncer-

tainty. Many of the NG storage-specific approaches presented model the injection
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and withdrawal capacities as constant and do not consider dynamic inventory ratch-

eting. As will be revealed in Section 4, the injection and withdrawal capacities can

be subject to change based on different inventory levels in the facility.

Additionally, most of the approaches presented in Sections 2.1 and 2.2 include

modeling the evolution of NG prices in their framework. This is the complicating

aspect of many of the presented approaches, as the high-dimensionality of modeling

NG price progression often limits the tractability of the framework. This thesis does

not seek to model the price progression of NG in the optimization framework, but

rather utilizes all information available to the trader to make the most informed

decision. The models presented in Section 2.3 did not refer specifically to the NG

storage problem, but do provide valuable insights into modeling uncertainty and risk

in the context of the NG storage problem.



Chapter 3

Model Framework for Futures-to-Futures Transactions

This chapter of the thesis presents the various modeling approaches created to opti-

mize NG storage asset (profit maximization), while considering only futures transac-

tions. This means that only the option to buy and sell futures contracts is considered.

In this section, it is assumed that a trader has access to a NG storage well and must

decide on the appropriate quantities to inject/withdraw such that profit is maximized.

The storage facility is also subject to pre-defined operating characteristics, which limit

the feasible injection and withdrawal quantities. We also assume that the trader has

access to a discrete set of price simulations which contain simulated futures price

paths for a finite time-horizon. Sample price simulations for a 24-month period were

provided by The Utility Company and used to test model approaches. This is the

same information used by traders at The Utility Company in their decision-making

process. The models presented in this section were developed to be used as a decision

support tool for use at The Utility Company. It is reasonable to assume that The

Utility Company is a relatively small player in the NG market, therefore their actions

do not impact the underlying price of NG.

The remainder of this chapter is organized as follows: first sample price simulation

data provided by The Utility Company is presented and analyzed. Next, a base model

for futures-to-futures transactions with constant deliverability is presented. To ac-

count for dynamic deliverability, a model is presented that contains novel constraints

to account for the change in deliverability as the well inventory levels change. As the

price data possess uncertainty and variation, several model variants are presented to

help mitigate risk. Chance-constrained, Robust and Distributionally Robust model

variants are presented and their results are discussed. Because futures contracts are

financial instruments, recourse can be taken on past decisions if more profitable op-

portunities arise. Because of this, a model that considers past decisions is developed

30
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and presented. The impact of the various model variants on this model are also pre-

sented and discussed. Solver and computer specifications can be found in Appendix

A. Python codes for model approaches are found in Appendices B-E.

3.1 Price Simulations

Before the modeling process began, it was important to understand the price sim-

ulations utilized by traders at The Utility Company. The price simulations are de-

veloped internally using proprietary methods. The price simulations are provided to

the traders and are used to assess the potential value a storage asset presents. In

the case of futures transactions, the price simulations model different instances of the

futures curve at the current moment in time as presented in Figure 1.4. As previ-

ously stated, the futures curve presents the current market price of a commodity on

a futures exchange.

The sample price simulations provided by The Utility Company spanned a 24-

month period and presented predictions for monthly futures prices from January 2019

to December 2020. 962 distinct price predictions were provided for each month in the

24-month horizon. To begin the analysis, the mean price and standard deviation of

predicted prices were calculated for each month. The average monthly price follows

the general trend outlined in Section 1.3 with the colder months exhibiting higher

prices. The period January 2019 through March 2019, specifically sees very high

prices when compared to the other months in the time-horizon. The price simulations

reflect the seasonal tendencies of NG prices discussed in the literature.

Figure 3.2 also reveals that the standard deviation of the price predictions gen-

erally decreases over time. January 2019 through March 2019, specifically, possess

much higher standard deviations than any other month in the data set. This in-

creased volatility is caused by the increased expected liquidity seen in those months.

This trend is reflected (although to a smaller magnitude) in the standard deviation

of the other winter months in the time horizon. In general, the data shows more

volatility in months with higher expected prices. To further explore the price data

the distribution of price on a monthly basis can be examined. Specifically, the price

distribution for January 2019, July 2019 and September 2020 is examined such that

the analysis is not biased to one month’s particular price distribution.



32

Figure 3.1: Average monthly futures price of NG, according to price simulations.

Figure 3.2: Standard deviation of monthly futures prices, from the price simulations.

Figures 3.3 through 3.5 show that the monthly price is highly mean centered

according to the price simulations. January, specifically possess a very high central
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tendency with a large spread. July’s prices see variation of a lower magnitude with a

lower central tendency and September’s price distribution seems to fall between that

of January and July.

Figure 3.3: Distribution of prices for January 2019, according to price simulations

To investigate if any distributional assumptions could be made, the price distri-

butions of each month in the time horizon were tested for significant fits amongst

known probability distributions. Because the prices in each month are so highly

mean-centered, no known probability distribution produces a significant fit. The his-

tograms do indicate that most price simulations produce prices close to the overall

mean in each month. Additionally, it is a reasonable assumption that monthly prices

follow general symmetric distributions.

Overall, the price simulations appear to be highly mean-centered, which could be

a reflection of the prediction methods utilized at The Utility Company. The data

reflects the typical seasonal trends of natural gas prices. The price simulations, while

mean centered, do posses variation. This variation must be accounted for in the

decision making process, as without its consideration, the trader could be vulnerable

to unfavorable price realizations that result in financial losses.
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Figure 3.4: Distribution of prices for July 2019, according to price simulations

Figure 3.5: Distribution of prices for September 2020, according to price simulations
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3.2 Equally-Likely Mixed Integer Approach: Constant Deliverability

As no probability distribution can be fit to the data and the data is symmetric and

highly mean-centered, each of the price simulations can be safely considered equally-

likely. This is due to the highly mean-centered nature of the data. This means that,

for each month, there is a set s ∈ S of 962 price predictions. Consider also a set

of time periods, t ∈ T , that represents the planning horizon. Here the time periods

represent the discrete decision-making intervals, in our case months. We also assume

that all storage actions (injection, withdrawal or do-nothing) occur between time

periods (ex. if an injection decision is made at time t− 1, the specified amount of gas

is injected and available for sale/withdrawal by time t).

To account for the various costs and operational constraints of NG storage facili-

ties, the following parameters must be included:

pst futures price of NG at time t according to prediction s
Cap maximum capacity available for storage
f maximum injection quantity during a single time period t
g maximum withdrawal quantity during a single time period t

Because the transactions refer to financial instruments, which have the option of

being sold/bought before maturity (physical delivery of the gas into the storage asset),

fuel loss is not included in the present framework. This assumption was validated

with the trading team at The Utility Company, as they indicated that fuel loss is

not a significant factor in valuation of a storage asset, when considering futures-to-

futures transactions. Additionally, they indicated that variable costs for injection and

withdrawal can be similarly ignored.

The following decision variables are used to formulate the mixed-integer program:

vt quantity of NG purchased to be injected during time period t
wt quantity of NG withdrawn to be sold during time period t
It inventory of NG at the beginning of time period t

zt =

{
0, if no withdrawal occurs during time period t,

1, if no injection occurs during time period t.

There is no need to specify a case for zt for the do-nothing option, as this option
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is achieved by setting either the injection of withdrawal variable to zero. With that,

the mixed-integer program’s objective function is defined as follows:

max
1

|S|
∑
s∈S

∑
t∈T

pst · [−vt + wt] (3.1)

Clearly, the above objective function is equivalent to simply using the expected

value of the price in month t, according tto the price predictions in S. Thus the

deterministic objective function is written as:

max
∑
t∈T

pt · [−vt + wt ] (3.2)

where pt is simply the average price in time t, according to the price projections.

The objective function seeks to maximize the expected spread from injection and

withdrawal (purchases and sales) of NG, according to the price simulations. It should

be noted that there is no need to include the time value of money in this approach. As

these transactions are occurring on the futures market, the transactions all happen

at the current moment and therefore represent the present value of the transaction.

Next, the following constraints are introduced to enforce the physical constraints on

the storage asset:

vt ≤ f · (1− zt), ∀t ∈ T (3.3)

wt ≤ g · zt, ∀t ∈ T (3.4)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)

I0 = I|T |, (3.7)

vt, wt, It ≥ 0, zt,∈ {0, 1}, ∀t ∈ T (3.8)

Constraints (3.3) and (3.4) ensure that the physical deliverability constraints of the

storage facility are obeyed, i.r. not withdrawing more gas in a time period than

possible. Additionally, these constraints reinforce the assumption that an injection

and withdrawal do not occur during the same time interval. Constraint (3.5) ensures

flow balance and constraint (3.6) ensures the available capacity of the storage field
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is obeyed. Lastly, aside from non-negativity constraints, (3.7) ensures the well is

returned to its initial inventory level at the end of the contract. This model is similar

to the linear programming approach presented by Lai et. al [10], but does not include

the evolution of NG prices in the optimization process. Rather our approach uses the

provided price simulations to evaluate the value of the storage asset. With that, the

complete formulation is as follows:

max
∑
t∈T

pt · [−vt + wt ] (3.2)

s.t.

vt ≤ f · (1− zt), ∀t ∈ T (3.3)

wt ≤ g · zt, ∀t ∈ T (3.4)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)

I0 = I|T |, (3.7)

vt, wt, It ≥ 0, zt,∈ {0, 1}, ∀t ∈ T (3.8)

Note the similarities between this model and the one presented by [10]. In addition

to the price simulations, sample operating characteristics in Table 3.1 are used to test

run the model.

Table 3.1: Operating characteristics provided by The Utility Company.
f 10,000 MMBtu/day
g 15,000 MMBtu/day
I0 0
Cap 1,000,000 MMBtu

In the initial approach, maximum injection and withdrawal rates are assumed con-

stant. As will be discussed in later sections, this assumption can lead to over-valuation

of a storage asset when the storage agreement is subject to inventory ratcheting. Ad-

ditionally, it was assumed that the client has an initial operational inventory of 0. As

the clients fiscal year begins on January 1, it was safe to assume an empty inventory.

It should be noted the initial inventory level can significantly change tactical plans.



38

Using the provided data, the following results and inventory profile were obtained

(note the system and solver characteristics are described within Appendix A):

Table 3.2: EL model results-constant deliverability.
Expected Profit $ 518,518.06
Average Inventory Level 468854.17 MMBtu
Number of Storage Actions 17
Computation Time 2.363 Seconds
Model Size 74 Continuous Variables, 24 Inte-

ger Variables & 145 Constraints

Figure 3.6: Inventory profile for futures-to-futures model, excluding ratcheting.

The results in Table 3.2 show no tractability issues and the model made various

injection/storage decisions to optimize the expected profit. The model performs no

actions in several months as depicted in Figure 3.6, which is an encouraging result, as

the “do nothing” option can sometimes be the one that results in the highest by the

behavior exhibited in Figure 3.1. Figure 3.1 shows that the model filled the storage

asset in months with lower-than-expected prices such that gas could be withdrawn

and sold in months with high expected prices.

While this simple approach seems effective, it does not account for instances where

the deliverability is impacted by changes in inventory level. Because of this, this

approach places a high upper bound on the expected value of the storage asset.
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3.3 Equally-Likely Mixed Integer Approach With Inventory Ratcheting

In some cases, the storage asset may be subject to a ratcheting agreement, which

is a set of parameters, outlined by the company operating the NG well, indicating

the impact of different inventory levels on deliverability. The ratcheting constraints

provided by The Utility Company are shown in Table 3.3.

Table 3.3: Sample ratcheting agreement, provided by The Utility Company.
Inv. Lower Bound Inv. Upper Bound Max Daily Inj. Qty. Max Daily With. Qty

0 150,000 10,000 4,000
150,000 300,000 8,000 8,000
300,000 1,000,000 6,000 15,000

The ratcheting agreement indicates that, when the inventory level falls between

certain upper and lower bound, it results in corresponding injection and withdrawal

capacities. This sample ratcheting agreement shows that as the well inventory in-

creases it gets harder to inject, but easier to withdraw gas. Conversely, as the in-

ventory levels drop it gets easier to inject, but harder to withdraw. The ratchets

represent not only pressure physics but are also contractual obligations for firm op-

erations. The storage well is typically shared between several players through asset

management agreements (AMAs) where each firm has rights to a certain volume.

The ratchets used in this thesis are representative and ensure that one party cannot

significantly impact another firm’s ability to inject or withdraw. Subject to this ratch-

eting agreement, assuming constant injection and withdrawal capacities is incorrect.

To illustrate this, consider the injection the previous model made in May. Assum-

ing constant injection and withdrawal capacities, one can inject 305,000 MMBTu of

gas in a given month (assuming 30.5 days in a month), and this amount is injected

by the model. Using the above table the May injection limit is calculated to be

274,000 MMBtu. Because of this inventory ratcheting must be included in the model

framework.

To implement ratcheting, consider a set � ∈ L of pieces (or brackets) of the

ratcheting function. For the table above: � ∈ {0, 1, 2}, for example. Additionally, �0

refers to the first ratcheting bracket and �|L| refers to the last ratcheting bracket. Next,

the following parameters are defined with respect to the ratcheting characteristics of

the facility:
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UB� Upper bound on the inventory for bracket, �, of the ratcheting function
LB� Lower bound on the inventory for bracket, �, of the ratcheting function
f� Monthly injection capacity, when in ratcheting bracket �
g� Monthly withdrawal capacity, when in ratcheting bracket �

Here the parameters used to represent constant delverability in the previous ap-

proach are indexed by � to reflect inventory ratcheting. For the purposes of this

study, the monthly injection and withdrawal capacities for each ratcheting level were

computed assuming 30.5 days in each month. Monthly specific injection/withdrawal

capacities can easily be included by indexing f and g by t, but when included in the

framework it was shown to have no impact on the optimal solution.

Next, the following variables must be introduced:

rt� =

{
1, if LB� ≤ It ≤ UB�,

0, otherwise.

λt�k Maximum proportion of bracket k used for injection in time t
when starting in bracket �

μt�k Maximum proportion of bracket k used for withdrawal in time t
when starting in bracket �

xt�k =

⎧⎪⎨
⎪⎩
1, if bracket k is selected for withdrawal when starting in

bracket � at time period t,

0, otherwise.

ct�k =

⎧⎪⎨
⎪⎩
1, if bracket k is selected for injection when starting in

bracket � at time period t,

0, otherwise.

Next, a series of constraints are introduced to enforce ratcheting. These con-

straints replace (3.3) and (3.4) in the initial formulation.‘ First, the ratchet for the

start of the month must be identified:

It ≤ Cap+ (UBl − Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)

It ≥ LB�rt�, ∀t ∈ T, � ∈ L (3.10)

These constraints will set a binary variable, rt� to 1 iif the inventory levels are

within a certain bracket’s inventory bounds. The next constraint simply ensures we
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can only begin the month in one ratcheting bracket.

∑
�∈L

rt� = 1, ∀t ∈ T (3.11)

The following constraints ensure the amount injected or withdrawn cannot exceed

the limit, as defined by the ratcheting function. This is done by making the injection

and withdrawal amounts the sum-product of the proportion of time spent in each

bracket and the corresponding injection or withdrawal rate.

vt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T (3.12)

wt ≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T (3.13)

Because, when injecting, the inventory level will never decrease, brackets below the

initial level do not need to be considered. Additionally, when withdrawing, it is

impossible to see an increase in inventory, therefore it is not necessary to consider

ratcheting levels above the one the month started in. This logic is reflected in the

above constraints.

The last constraints ensure that, based on where the inventory started in a month,

the ratcheting agreement is obeyed. The binary variables ctlk and xtlk are used to

force the model to pick the right bracket first, in cases where the bracket choice

is inconsequential. These constraints must be built for each possible case, that is,

constraints must be built for every possible combination of feasible ratchets in a

given month.

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �|L| (3.14)

λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀t ∈ T, �, k ∈ L, k > � (3.15)∑
k≥�

λt�k = rt�, ∀t ∈ T, � ∈ L (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀t ∈ T, �, k ∈ L, k < � (3.18)
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k≤�

μt�k = rt�, ∀t ∈ T, � ∈ L (3.19)

λt�k ≤ ct�k, ∀t ∈ T, �, k ∈ L, k ≥ � (3.20)

ct�k ≥ ct�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≥ �, k′ > k (3.21)

μt�k ≤ xt�k, ∀t ∈ T, �, k ∈ L, k ≤ � (3.22)

xt�k ≥ xt�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≤ �, k′ < k (3.23)

zt, rt, xtlk, ctlk ∈ {0, 1}, ∀t ∈ T (3.24)

Again, when injecting, the deliverability can only decrease during a month, and

vice versa when withdrawing, which is the logic used for the k subscript. (3.14)

calculates the maximum proportion of the month that gas can be injected at using

the rate of the initial ratcheting bracket (the ratchet the well started the month

in). Colloquially, how much time can we inject at the initial ratcheting rate for a

given month. (3.15) calculates the maximum proportion of the month gas can be

injected at, across all remaining ratcheting levels. Again, here we do not need to

consider ratcheting levels below initial, as when injecting, the inventory level will

always increase. (3.16) ensures that the proportions of the month spent injecting

at each ratcheting level are equal to 1, if the well began in bracket �. (3.17)-(3.19)

are similar to (3.14)-(3.16), but refer to the withdrawal of gas. Finally, aside from

non-negativity constraints, (3.20)-(3.23) ensure the ratchets are utilized in the proper

order (e.g. sequentially).

Certain levels of the ratcheting function require different constraints than others.

(3.14) is an example of such a case. If the inventory level at the start of the month is in

the last bracket, injections will be made at this rate for the whole month (if choosing

to inject). Similarly, (3.17) enforces that, if a withdrawal is made (when starting

in the lowest bracket) then you will never withdraw at another rate. This model

is general and can be applied to any number of ratchets. With that, the complete

formulation is as follows:

max
∑
t∈T

pt · [−vt + wt ] (3.2)
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s.t.

It ≤ Cap+ (UBl + Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)

It ≥ LB�rt�, ∀t ∈ T, � ∈ L (3.10)∑
�∈L

rt� = 1, ∀t ∈ T (3.11)

vt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T (3.12)

wt ≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T (3.13)

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �|L| (3.14)

λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀t ∈ T, �, k ∈ L, k > � (3.15)∑
k≥�

λt�k = rt�, ∀t ∈ T, � ∈ L (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀t ∈ T, �, k ∈ L, k < � (3.18)∑
k≤�

μt�k = rt�, ∀t ∈ T, � ∈ L (3.19)

λt�k ≤ ct�k, ∀t ∈ T, �, k ∈ L, k ≥ � (3.20)

ct�k ≥ ct�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≥ �, k′ > k (3.21)

μt�k ≤ xt�k, ∀t ∈ T, �, k ∈ L, k ≤ � (3.22)

xt�k ≥ xt�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≤ �, k′ < k (3.23)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)

I0 = I|T | (3.7)

zt, rt, xtlk, ctlk ∈ {0, 1}, ∀t ∈ T (3.24)

vt, wt, It, λtlk, μtlk ≥ 0, ∀t ∈ T (3.25)

The model was run using the provided data and the obtained results and inventory

profile are displayed in Table 3.4 and Figure 3.7 respectively.
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Table 3.4: EL model including ratchets results.
Expected Profit $ 376,299.70
Reduction In Expected Profit From
No-Ratchets Model

38 %

Average Inventory Level 376,103.625 MMBtu
Number of Storage Actions 18
Computation Time 5.46 Seconds
Model Size 270 Continuous Variables, 112 In-

teger Variables, 1489 Constraints

Figure 3.7: Comparison between inventory profiles when including/excluding ratch-
eting.



45

These results indicate that including the ratcheting constraints (if ratcheting is

imposed on storage agreement) is essential in properly evaluating the potential value

of a storage asset. The above results mean that ratcheting parameters severely impact

the quantities that can be injected or withdrawn, and inherently lowers the expected

profit from a storage contract.

To ensure the ratcheting parameters worked as intended, the injection/withdrawal

limits for a given month were calculated analytically and compared to the optimal

solution (for the calculations 30.5 days per month was utilized). The results displayed

in Table 3.5 confirm that the ratcheting constraints function as intended.

Table 3.5: Analytical injection limit calculations and comparison to model results.
June 2019

Max Proportion of Month in Ratchet 1 0.893 Quantity 163,500 MMBtu
Max Proportion of Month in Ratchet 2 0.107 Quantity 26,000 MMBtu

Total Injection Limit (per ratcheting agreement) 189,500 MMBtu
Amount Injected By Model: 189,500 MMBtu

In this section novel constraints for representing a NG storage asset ratcheting

agreement have been presented. The presented model is general, and can be applied

to ratcheting agreement with any number of levels. Results indicate that ignoring

the impacts of inventory ratcheting results in overestimating feasible injection and

withdrawal amounts. Additionally, a more accurate value can be placed on the NG

storage asset by including inventory ratcheting in the formulation.

3.3.1 Accounting for Past Decisions

Here we expand on the Equally-Likely MILP model with ratcheting by considering

previous positions held on a storage asset. As the simulated price curves are subject

to change, it is indeed possible that the injection/storage positions taken previously,

may not be the best choice, given the new information. Because this model assumes

transactions are made on the futures market, the positions taken can be sold/bought

on today’s futures market with a brokerage fee incurred. For robustness, our model

should consider the positions held and the new information and, if necessary, augment

the injection/withdrawal decisions if the changes increase the expected profit. Because

held positions represent sunk costs, only the quantity of gas purchased or sold needs to
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be accounted for. To account for previous financial positions, the following parameters

must be introduced:

Kt Existing injection position for period t
Ht Existing withdrawal position for period t
ε Brokerage fee for augmenting position

The introduced parameters will allow the model to consider past decisions in the

optimization process. Next, the following variables must be introduced:

Qt Amount of injection position dropped at time t
Rt Amount of withdrawal position dropped at time t

Ωt =

{
1, if injection position exists at time period t,

0, otherwise.

βt =

{
1, if withdrawal position exists at time period t,

0, otherwise.

To account for positions the objective function must be updated so the cost/benefit

of augmenting the previous decisions can be accounted for. The revised objective

function becomes:

max
∑
t∈T

pt [−vt + wt + (1− ε)Qt − (1 + ε)Rt] . (3.26)

Constraints must be introduced that ensure that the amount of injection/with-

drawal position that is dropped does not exceed amounts held by previous positions

(e.g. a company cannot sell a contract they do not own).

Qt ≤ Ht, ∀t ∈ T (3.27)

Rt ≤ Kt, ∀t ∈ T (3.28)

A set of constraints must be introduced to ensure that, if a position for injection

exists in a month, no withdrawals can be made during that month (and vice-versa).

Mβt ≥ Kt −Rt, ∀t ∈ T (3.29)

MΩt ≥ Ht −Qt, ∀t ∈ T (3.30)
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vt ≤ (1− βt)M, ∀t ∈ T (3.31)

wt ≤ (1− Ωt)M ∀t ∈ T (3.32)

As previously held injection/withdrawal positions impact projected inventory of

the well, some of the constraints from the base formulation must be modified to en-

sure proper inventory balance and feasible injection/withdrawal quantities. Modified

versions of constraints (3.5), (3.12) and (3.13) are as follows:

vt +Ht −Qt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T, (3.33)

wt +Kt −Rt,≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T, (3.34)

It = It−1 + vt−1 − wt−1 +Ht−1 −Qt−1 −Kt−1 +Rt−1, ∀t ∈ T. (3.35)

These constraints will allow modifications made to previous positions to be ac-

counted for in the working inventory. This ensures that if an injection position is

dropped, the gas is no longer available for sale and withdrawal, and vice-versa for

withdrawal positions. The complete formulation is then written as (note the set

notation used was shortened to comfortably align all equations):

max
∑
t∈T

pt [−vt + wt + (1− ε)Qt − (1 + ε)Rt] (3.26)

s.t.

It ≤ Cap+ (UBl + Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)

It ≥ LB�rt�, ∀t, � (3.10)∑
�∈L

rt� = 1, ∀t (3.11)

vt +Ht −Qt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t (3.35)

wt +Kt −Rt,≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t (3.36)

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t, �, k = �, � �= �|L| (3.14)
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λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀k ∈ L, k > �, t, � (3.15)∑
k≥�

λt�k = rt�, ∀t, � (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t, �, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀k < �, t, � (3.18)∑
k≤�

μt�k = rt�, ∀t, � (3.19)

λt�k ≤ ct�k, ∀k ≥ �, t, � (3.20)

ct�k ≥ ct�k′ , ∀k ≥ �, k′ > k, t, � (3.21)

μt�k ≤ xt�k, ∀k ≤ �, t, � (3.22)

xt�k ≥ xt�k′ , ∀k ≤ �, k′ < k, t, � (3.23)

Qt ≤ Ht, ∀t (3.27)

Rt ≤ Kt, ∀t (3.28)

βt ≤ Kt −Rt, ∀t (3.29)

Ωt ≤ Ht −Qt, ∀t (3.30)

Mβt ≥ Kt −Rt, ∀t (3.31)

MΩt ≥ Ht −Qt, ∀t (3.32)

vt ≤ (1− βt)M, ∀t (3.33)

wt ≤ (1− Ωt)M, ∀t (3.34)

It = It−1 + vt−1 − wt−1 +Ht−1 −Qt−1 −Kt−1 +Rt−1, ∀t (3.37)

vt, wt, It, Qt, Rtλtlk, μtlk ≥ 0, ∀t (3.36)

zt, rt, xtlk, ctlk,t ,Ωt ∈ {0, 1}, ∀t (3.37)

To ensure the model functioned as intended, two different samples of price data

were selected to simulate the change in information over time. The first data sample

was randomly selected from the price data, and produced the results and inventory

profile described by Table 3.6 and Figure 3.8.

To test the model, the price in May 2019 was set to an extremely high value.

If working properly, the model should drop the injection position for May 2019 and
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Table 3.6: Results for futures model with positions, first run.
Expected Profit $337,894.18

Number of Storage Actions 17

Figure 3.8: Inventory profile for futures model with positions, first run.

attempt to fill the well such that a withdrawal in May can be made.

Table 3.7: Results after May price set extremely high.
Expected Profit $13,178,655.93

Number of Storage Actions 22

The results show that the model augmented the previous decisions to increase

the overall profit. Instead of injecting in May 2019, the model dropped that position

(at a cost) and changed its decisions such that a withdrawal in May 2019 could be

accommodated. In the remaining sections of this chapter, it is assumed that no

positions for injection or withdrawal exist on the storage asset.

3.4 Chance Constrained Model

The previous approaches take the price simulations into account by simply using their

expected value. While the base model is a useful decision support tool for a trader,

it does not provide the user with much information. Because of the financial nature
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Figure 3.9: Change in inventory profile when May price set to high value.

of our problem, including risk in the model framework becomes especially important.

Consider the following chance constraint, with risk level α and desired profit level b:

P

{∑
t∈T

pt · [−vt + wt ] ≥ b

}
≥ 1− α. (3.38)

This constraint requires that the probability of meeting some desired profit level, b

is at least 1 − α. As stated by Uryasev and Rockafellar [32], the chance constraint

represents the value at risk. In this case, the chance constraint is used to require

the optimal solution to have some probabilistic guarantee of meeting some desired

profit level, given the provided price data. This section presents two approaches for

including a chance constraint in our model framework: the first method approximates

the chance constraint using conditional value at risk (CVaR), and the second uses

sample average approximation (SAA).

3.4.1 Chance Constraint: CVaR Approximation

To apply the CVaR approximation of the chance constraint outlined by (3.41), the

procedure described by Uryasev and Rockafellar [32] is utilized. First the chance
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constraint is written in the following (equivalent) form:

P

{
b−

∑
t∈T

pt · [−vt + wt ] ≤ 0

}
≥ 1− α. (3.39)

Next, the constraint can be expressed linearly by introducing auxiliary variables θ and

us and the parameter qs which represents the probability of price simulation s. Using

the equally-likely assumption, each scenario probability for the provided data is equal

to 1
962

. The price at time t according to simulation s is denoted by pst. To include

the chance constraint, the following constraints are added to the model presented in

Section 3.2:

θ + α−1
∑
s∈S

qsus ≤ 0, (3.40)

us ≥ b−
∑
t∈T

pst · [−vt + wt ]− θ, ∀s ∈ S, (3.41)

us ≥ 0, ∀s ∈ S. (3.42)

Adding these constraints to the model presented in Section 3.3 leads to the fol-

lowing complete formulation (obtained by modifying model in Section 3.2):

max
∑
t∈T

pt · [−vt + wt ] (3.2)

s.t.

It ≤ Cap+ (UBl + Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)

It ≥ LB�rt�, ∀t ∈ T, � ∈ L (3.10)∑
�∈L

rt� = 1, ∀t ∈ T (3.11)

vt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T (3.12)

wt ≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T (3.13)

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �|L| (3.14)

λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀t ∈ T, �, k ∈ L, k > � (3.15)
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k≥�

λt�k = rt�, ∀t ∈ T, � ∈ L (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀t ∈ T, �, k ∈ L, k < � (3.18)∑
k≤�

μt�k = rt�, ∀t ∈ T, � ∈ L (3.19)

λt�k ≤ ct�k, ∀t ∈ T, �, k ∈ L, k ≥ � (3.20)

ct�k ≥ ct�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≥ �, k′ > k (3.21)

μt�k ≤ xt�k, ∀t ∈ T, �, k ∈ L, k ≤ � (3.22)

xt�k ≥ xt�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≤ �, k′ < k (3.23)

θ + α−1
∑
s∈S

qsus ≤ 0 (3.41)

us ≥ b−
∑
t∈T

pst · [−vt + wt ]− θ, ∀s ∈ S (3.42)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)

I0 = I|T | (3.7)

us ≥ 0, ∀s ∈ S (3.43)

θ u.r. (3.43)

zt, rt, xtlk, ctlk ∈ {0, 1}, ∀t ∈ T (3.24)

vt, wt, It, λtlk, μtlk ≥ 0, ∀t ∈ T (3.25)

To ensure the constraints worked as intended, the model was run with a desired profit

level of $0 with a risk level of α = 0.5. Such low profit levels and confidence levels

should produce the same result as the deterministic model.

Table 3.8: Chance Constrained-CVaR Model Results
Expected Profit $ 376,299.70
Number of Storage Actions 18
Computation Time 6.84 Seconds
Model Size 1233 Continuous Variables, 112

Integer Variables, 3414 Con-
straints
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The same result as the deterministic model was obtained as depicted in Table 3.8,

the chance-constrained model functioned as intended. The number of constraints in

the model significantly increased from the previous two approaches. This is because

we treat each simulated price path as a scenario. This approach could become restric-

tive if the number of price simulations was increased to an extremely large number,

but this is unlikely. To further investigate the impact of adding (3.41) & (3.42) to the

formulation, the desired profit level (b) was varied and the corresponding maximum

achievable confidence level (1-α) was determined.
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Figure 3.10: Maximum confidence level for varying values of b

As the desired profit level is increased, the maximum achievable confidence level

decreases. Figure 3.10 shows some interesting behavior, as there is no decrease in

the confidence level until approximately b = $300,000, where the graph sees a very

steep decline. It should be noted that for all profit levels � $ 390,000 there can be

no probabilistic guarantee made on that profit level.

The behavior of Figure 3.10 is due to the highly mean-centered nature of the price

data. Because the data is so centered around the mean, there are not many scenarios

that exist wherein the expected profit greatly differs from the mean expected profit.

This means that, when the desired profit level is low, the maximum confidence level

(1-α) is not greatly impacted by increases in b. However, once the profit level increases

past the optimal solution, the mean expected profit, and because the data is mean
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centered, the probability of surpassing the mean expected profit sharply decreases to

0. Figure 3.10 also indicates that, given the price simulations, it is very easy to make

less than $300,000, as the steep decline does no begin until after this profit level.

From the traders’ perspective, this indicates a easily-achievable baseline profit for the

NG storage facility.

3.4.2 Chance Constraint-Sample Average Approximation

Another method for linearly approximating the chance constraint outlined by (3.40)

is provided by Ahmed and Shapiro [33]. They utilize Sample Average Approximation

to tractably reformulate a chance constraint. First the chance constraint must be

written as:

P{b−
∑
t∈T

pt · [−vt + wt ] ≥ 0} ≤ α (3.44)

The above constraint is then approximated using a Sample Average Approximation

constraint taking the form of:

1

S

∑
s∈S

1(b−
∑
t∈T

pst · [−vt + wt ]) ≤ α, (3.45)

which can be included in the formulation by again considering the set s ∈ S of sample

price simulations and by introducing a binary variable os. Implementing SAA adds

the following constraints to the formulation presented in Section 3.2:

b−
∑
t∈T

pst · [−vt + wt ] ≤Mos, ∀s ∈ S, (3.46)

∑
s∈S

os ≤ α|S|, (3.47)

os ∈ {0, 1}, ∀s ∈ S. (3.48)

In this formulation α represents the level of risk involved with storage decisions

(probability the profit threshold is not met, according to the simulated data). Collo-

quially, this model provides a storage plan while ensuring, according to the simulated

prices, the risk α and profit threshold b are respected. The complete SAA formulation
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is as follows:

max
∑
t∈T

pt · [−vt + wt ] (3.2)

s.t.

It ≤ Cap+ (UBl + Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)

It ≥ LB�rt�, ∀t ∈ T, � ∈ L (3.10)∑
�∈L

rt� = 1, ∀t ∈ T (3.11)

vt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T (3.12)

wt ≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T (3.13)

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �|L| (3.14)

λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀t ∈ T, �, k ∈ L, k > � (3.15)∑
k≥�

λt�k = rt�, ∀t ∈ T, � ∈ L (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀t ∈ T, �, k ∈ L, k < � (3.18)∑
k≤�

μt�k = rt�, ∀t ∈ T, � ∈ L (3.19)

λt�k ≤ ct�k, ∀t ∈ T, �, k ∈ L, k ≥ � (3.20)

ct�k ≥ ct�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≥ �, k′ > k (3.21)

μt�k ≤ xt�k, ∀t ∈ T, �, k ∈ L, k ≤ � (3.22)

xt�k ≥ xt�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≤ �, k′ < k (3.23)

b−
∑
t∈T

pst · [−vt + wt ] ≤Mos, ∀s ∈ S (3.47)

∑
s∈S

os ≤ α|S| (3.48)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)
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I0 = I|T | (3.7)

zt, rt, xtlk, ctlk ∈ {0, 1}, ∀t ∈ T (3.24)

vt, wt, It, λtlk, μtlk ≥ 0, ∀t ∈ T (3.25)

os ∈ {0, 1}, ∀s ∈ S (3.49)

Like the CVaR approach, SAA was validated with the deterministic model by

selecting a profit level of $0 and α =0.5, as this should produce the same results. The

results in Table 3.9 confirm the formulation functions as intended.

Table 3.9: Chance Constrained-SAA Model Results
Expected Profit $ 376,299.70
Number of Storage Actions 18
Computation Time 7.21 Seconds
Model Size 270 Continuous Variables, 1076

Integer Variables, 2452 Con-
straints

The desired profit level b was varied and the corresponding maximum confidence

level was determined (1-α). Figure 3.11 displays the results from both SAA and the

CVaR approximations. As expected, the two methods differ slightly, but share similar

behavior.
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Figure 3.11: Maximum confidence level for varying profit levels
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Again, the steep decline in (1-α) can be attributed to the mean-centered nature of

the data. While the SAA approach contains less constraints than the CVaR model,

the number of integer variables increased significantly. For this reason the SAA

model suffered from poor model run times as the chance constraint became more

restrictive (e.g., as the desired profit level was increased past the optimal solution,

making any probabilistic guarantee difficult to obtain). For this reason, the CVaR

approximation would be preferred in practice when the number of scenarios is large.

The presented approaches allow for a chance constraint to be included in the MIP

framework. Including the chance constraint allows a trader to have a probabilistic

guarantee on their expected performance, subject to the price simulations. While a

chance constraint allows for the uncertainty of the price data to be considered, some

situations may call for a more risk-averse decision-making approach.

3.5 Robust Optimization: Budgeted Uncertainty

While stochastic optimization allowed us to model a chance constraint on profitability,

it does not account for decisions where the decision-maker is risk-averse. In general,

the variation seen in the simulated prices increases when the market is expected to

be more liquid. For example, the average standard deviation of price predictions for

January-March is $0.0655, whereas the remaining months possess an average standard

deviation of $0.0177. The January-March trimester normally sees high liquidity, as

cold weather increases the demand for NG. If a trader had access to a well during these

months, they might be more risk averse and desire a more conservative solution such

that they are protected if the price varies. To create a risk-averse model framework,

Robust Optimization can be applied [34]. Robust optimization models specifically

aim to minimize the worst-case scenario loss by generating more conservative optimal

solutions [34].

Similar to [25], we will implement a RO model with budgeted uncertainty. Using

budgeted uncertainty allows the trader to adjust their level of conservativeness when

making a storage decision. This is an attractive quality, as can allow the tacit knowl-

edge of the trader to be included into the model by adjusting the uncertainty budget.

Because, on the futures market, there is no value in postponing the decision until the

uncertainty is revealed, the problem can be formulated as a single-stage RO model
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[34].

To formulate the RO model with budgeted uncertainty, the procedure outlined

by Bertsimas and Sim [35] is followed. Consider again the deterministic objective

function utilized in the base model from Section 3.2 (where pt is the average price,

according to price simulations):

max
vt,wt≥0

∑
t∈T

pt · [−vt + wt ]. (3.49)

Because the uncertain parameter, pt, only impacts the objective function, the

constraints from the nominal problem remain unchanged in the robust formulation.

To reformulate the nominal problem as a RO problem with budgeted uncertainty, we

first define the following uncertainty set:

Ξ : [ p ∈ IR|T | : pt = pmin
t + (pmax

t − pmin
t )zt , 0 ≤ zt ≤ 1,

∑
t∈T

zt ≤ Γ ]. (3.50)

Next, letting p̂ = pmax
t − pmin

t , the RO problem becomes (leaving out the other

constraints from the nominal problem, as they are not impacted by uncertainty):

max
vt,wt

min
zt

[pmin
t + p̂tzt](−vt + wt) (3.51)

0 ≤ zt ≤ 1, ∀t ∈ T (nt) (3.52)∑
t∈T

zt ≤ Γ (y) (3.53)

Taking the dual of the inner problem results in the following complete formulation

with a modified objective function and the addition of constraint (3.57).

max
∑
t∈T

pmin
t (−vt + wt) +

∑
t∈T

nt + Γy (3.54)

s.t.

nt + y ≤ [−vt + wt]p̂, ∀t ∈ T (3.55)

It ≤ Cap+ (UBl + Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)
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It ≥ LB�rt�, ∀t ∈ T, � ∈ L (3.10)∑
�∈L

rt� = 1, ∀t ∈ T (3.11)

vt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T (3.12)

wt ≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T (3.13)

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �|L| (3.14)

λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀t ∈ T, �, k ∈ L, k > � (3.15)∑
k≥�

λt�k = rt�, ∀t ∈ T, � ∈ L (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀t ∈ T, �, k ∈ L, k < � (3.18)∑
k≤�

μt�k = rt�, ∀t ∈ T, � ∈ L (3.19)

λt�k ≤ ct�k, ∀t ∈ T, �, k ∈ L, k ≥ � (3.20)

ct�k ≥ ct�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≥ �, k′ > k (3.21)

μt�k ≤ xt�k, ∀t ∈ T, �, k ∈ L, k ≤ � (3.22)

xt�k ≥ xt�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≤ �, k′ < k (3.23)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)

I0 = I|T | (3.7)

zt, rt, nt, xtlk, ctlk ∈ {0, 1}, ∀t ∈ T (3.56)

vt, wt, It, λtlk, μtlk ≥ 0, ∀t ∈ T (3.25)

y ≤ 0 (3.57)

The model was evaluated with Γ = 0, which produced the following results:

Because of how the uncertainty set Ξ was defined, using a budget of Γ = 0, the

problem simply reduces to the nominal problem where pt = pmin
t . This explains the

larger expected profit than the deterministic results, as using the minimum increases



60

Table 3.10: Budgeted Uncertainty Model Results
Expected Profit $430,452.53
Number of Storage Actions 18
Computation Time 7.45 Seconds
Model Size 295 Continuous Variables, 112 In-

teger Variables, 1514 Constraints

the profitability of certain injection/storage decisions. Like all the other approaches,

the model run time is low and reasonable for the problem size. Γ was varied to

investigate its impact on the optimal solution (expected profit), with the results are

displayed in Figure 3.12.
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Figure 3.12: Impact of Γ on Optimal Objective Function

As the uncertainty budget is increased, the expected profit decreases. In the con-

text of the storage problem this means, in general, injecting/withdrawing in smaller

quantities and less frequently. Comparing Γ = 0 and Γ = 24, one can observe a large

difference in the expected profit. With no uncertainty budget (and the nominal prob-

lem for that matter) there are 19 storage actions taken over the 24 month time-span.

This means there are only five months where no action is performed. Conversely, with

the maximum uncertainty budget only ten actions are taken. This means the storage

facility is idle for over half the contract length. This is a reflection of the model

considering the risk-adversity (as selected) and changing its solution accordingly.
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While Robust Optimization is useful for protecting oneself from poor realization of

prices, like other robust approaches, the solutions tend to perform poorly in average

[34]. To investigate this, the uncertainty budget was set to Γ = 6 & Γ = 20 and the

model was run. The optimal solutions for the different uncertainty budgets were then

evaluated on each of the 962 different price scenarios (Figure 3.13).

Figure 3.13 shows that as the uncertainty budget is increased, and more conser-

vative solutions are generated, the optimal solution performs worse when evaluated

across all price simulations. Some interesting behavior is the difference between ex-

pected profit of the most conservative model (Γ = 20) and the less conservative

model (Γ = 6) is not very significant. The less conservative model does outperform

the highly conservative model when applied to the price scenarios, however.

Figure 3.13: Boxplot displaying the impact of increasing the uncertainty budget on
expected performance

Figure 3.13 can also be used to support the use of the robust framework. Consider

the worst performing price curve for the base model. This results in an expected profit

of around $275,000. This is less than a 7% difference in worst-case scenario perfor-

mance, according to the price simulations and when compared to Γ = 6. The robust

solution does not perform well against the price simulations because the simulations
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do not represent the situation the solution has guarded itself against. The robust

framework is utilized to provide injection and storage decisions such that the user is

protected from changes in the expected prices (according to the simulations). While

the robust solutions perform poorly in average, in times of high market volatility,

they can be employed to develop risk-averse tactical plans that are not as vulnerable

to poor realizations of futures prices, like the base model is. Additionally, by utilizing

a budgeted uncertainty budget, this framework allows the trader to vary the uncer-

tainty budget (which is simply a scalar) to investigate its impact on tactical storage

decisions.

3.6 Distributionally Robust Optimization

As previously stated, robust formulations aim to minimize the expected loss according

to the worst scenario. In the previous section, a budgeted uncertainty set was utilized

to vary the conservativeness of solutions. As displayed, these solutions tend to perform

poorly in average. Distributionally Robust Optimization (DRO) can be used to offer a

risk-averse framework that is not as over-conservative as robust solutions [36]. This is

done by assuming the probability distribution of the uncertain parameter is partially

known. In this case, it is assumed that each of the price scenarios is equally likely.

Using DRO, the equally-likely assumption can be treated as an estimate, and solutions

can be generated such that the trader is protected if these probabilities change. To

implement a DRO framework, a model utilizing a phi-divergence ambiguity set is

utilized, as outlined by [36].

To begin, we assume the probability distribution of price, P , belongs to a set of

distributions D, referred to as the distributional ambiguity set. Let q̂s represent the

estimate of the probability of scenario s (in our case q̂s = 1
962

, ∀s ∈ S), and let qs

represent the scenario probability (as determined by the model), we can define the

following phi-divergence ambiguity set where M represents the set of all probability

measures on the measurable space:

D(Q̂, ρ) :=

{
P ∈M

∣∣∣∣∣Iφ(q, q̂) =
∑
s∈S

q̂sφ(
qs
q̂s
) ≤ ρ

}
(3.58)
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For simplicity, variation distance phi-divergence is used, such that:

I(q, q̂) =
∑
s∈S
|qs − q̂s|. (3.59)

With that, the DRO problem can be formulated as follows (without the nominal

problem constraints, as they are unaffected by uncertainty):

max
vt,wt≥0

min
qs,ds≥0

∑
s∈S

∑
t∈T

qs[pts(−vt + wt)] (3.60)

s.t. ∑
s∈S

qs = 1 (θ) (3.61)

−
∑
s∈S

ds ≥ −ρ (π) (3.62)

ds ≥ q̂s − qs, ∀s ∈ S (ψ+
s ) (3.63)

ds ≥ qs − q̂s, ∀s ∈ S (ψ−s ). (3.64)

Note the variable ds was introduced to account for the absolute value in the

variation distance calculation, and the inner problem dual variables are contained in

parentheses. Taking the dual modifies the objective and adds constraints (3.67) and

(3.68) to formulation from Section 3.2, as follows:

max θ − ρπ +
∑
s∈S

ψ+
s q̂s −

∑
s∈S

ψ−s q̂s (3.65)

s.t.

θ ≤
∑
t∈T

pts(−vt + wt)− ψ+
s + ψ−s , ∀s ∈ S (3.66)

ψ+
s + ψ−s ≤ π, ∀s ∈ S (3.67)

It ≤ Cap+ (UBl + Cap) · rtl, ∀t ∈ T, � ∈ L (3.9)

It ≥ LB�rt�, ∀t ∈ T, � ∈ L (3.10)∑
�∈L

rt� = 1, ∀t ∈ T (3.11)
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vt ≤
∑
�∈L

∑
k≥�

λt�kfk, ∀t ∈ T (3.12)

wt ≤
∑
�∈L

∑
k≤�

μt�kgk, ∀t ∈ T (3.13)

λt�k ≤ UB� − It
f�

+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �|L| (3.14)

λt�k ≤ UBk − UBk−1
fk

+M(1− rt�), ∀t ∈ T, �, k ∈ L, k > � (3.15)∑
k≥�

λt�k = rt�, ∀t ∈ T, � ∈ L (3.16)

μt�k ≤ It − LB�

g�
+M(1− rt�), ∀t ∈ T, � ∈ L, k = �, � �= �0 (3.17)

μt�k ≤ LBk+1 − LBk

gk
+M(1− rt�), ∀t ∈ T, �, k ∈ L, k < � (3.18)∑
k≤�

μt�k = rt�, ∀t ∈ T, � ∈ L (3.19)

λt�k ≤ ct�k, ∀t ∈ T, �, k ∈ L, k ≥ � (3.20)

ct�k ≥ ct�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≥ �, k′ > k (3.21)

μt�k ≤ xt�k, ∀t ∈ T, �, k ∈ L, k ≤ � (3.22)

xt�k ≥ xt�k′ , ∀t ∈ T, �, k, k′ ∈ L, k ≤ �, k′ < k (3.23)

It = It−1 + vt−1 − wt−1, ∀t ∈ T (3.5)

It ≤ Cap, ∀t ∈ T (3.6)

I0 = I|T | (3.7)

zt, rt, xtlk, ctlk ∈ {0, 1}, ∀t ∈ T (3.24)

vt, wt, It, λtlk, μtlk ≥ 0, ∀t ∈ T (3.25)

ψ−s , ψ
+
s ≥ 0, ∀s ∈ S (3.68)

θ u.r., π ≥ 0 (3.69)

To test the model’s size and tractability ρ = 1 is considered. The results from

implementation are displayed in Table 3.11. Here a more conservative solution than

the nominal problem is obtained, which is as expected. The results also show that

there are no tractability issues with the model, although the model size has increased

with the additional continuous variables and constraints.

Next, ρ was varied to investigate its impact on the optimal solution, as displayed
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Table 3.11: DRO Model Using Phi-Divergence Results
Expected Profit $ 301,160.70
Number of Storage Actions 16
Computation Time 11.23 Seconds
Model Size 2196 Continuous Variables, 112

Integer Variables, 3413 Con-
straints
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Figure 3.14: Impact of ρ on Optimal Objective

by Figure 3.14. As ρ (level of conservativeness) is increased, the expected profit

decreases. We can also see that, even at its most conservative, DRO produces a less

conservative solution than highly-conservative robust solutions. This approach lessens

the reliance on the equally-likely price scenario assumption and can help protect the

user if those probabilities change. Like before, two arbitrary values of ρ were selected

and the corresponding optimal solutions were evaluated on each of the provided price

simulations, producing Figure 3.15.

The results displayed in Figure 3.15 demonstrate the possible advantages of us-

ing a DRO framework. For both levels of conservativeness selected, the DRO model

improves the worst-case scenario performance, while impacting the average expected

profit by less than 5%. Additionally, the DRO solutions significantly outperform the

robust approach when applied to the price simulations. Another interesting result is



66

Figure 3.15: Boxplot comparing RO, DRO and Base Model Results

that the DRO model only slightly decreases the expected profit of the highest per-

forming scenarios. The DRO results had much better expected performance than the

other robust solutions. Additionally, the DRO solutions only slightly decreased profit

of the best performing scenarios, especially when compared to the robust solutions.

These results are encouraging, as they support the application of the DRO models

in practice. The DRO framework presented similarly features an adjustable param-

eter to measure risk-averseness. Like the robust approach, this quality is attractive

in practice, as it allows the trader to adjust ρ to different levels and investigate the

impact on the provided tactical plan. The DRO framework allows for a risk-averse

attitude towards injection and withdrawals to be made, without the sacrifices in ex-

pected performance made by the budgeted robust framework.

3.7 Summary

In this chapter several model variants have been presented for optimizing a NG storage

asset subject to price uncertainty. The approaches utilize novel constraints that reflect

an inventory ratcheting agreement. These constraints prove essential for accurately



67

assessing the amount of gas that can be injected or withdrawn in a month. As the

provided price simulations possess uncertainty, several model variants were presented

to allow varying levels of risk-averseness considered in decision-making. The chance

constrained model allows a trader to ensure a probabilistic guarantee on some desired

performance level. This is an attractive feature and is useful in decision-making. The

robust approach creates a worst-case oriented framework that can be applied in times

of high perceived risk. While the robust solutions were shown to perform poorly

against the price simulations, the robust model can is still useful in some situations.

Finally, to allow for a less-conservative solution than robust, DRO approach was

utilized. The DRO results allowed for a risk-averse decision-making attitude, without

sacrificing potential profits.

It should be noted that the presented approach does not account for the forward

evolution of prices, as done by many in the literature. As this framework was devel-

oped as a decision-support tool, the approaches were created to utilize the provided

price simulations to model NG prices. An extension of the presented work is to

build the evolution of futures prices into the framework. As mentioned by [10], due

to the high-dimensionality of modeling futures price progression, the resulting opti-

mization model containing futures price modeling is often intractable. With that, the

presented approach is a useful optimization tool that allows a trader to investigate dif-

ferent tactical plans for a storage field. The ratcheting constraints, specifically, allow

a trader to validate proposed strategies to ensure the desired injection and withdrawal

amounts are possible given any inventory ratcheting. The presented approaches can

be modified for the daily cash market, which is the subject of the following chapter.



Chapter 4

Model Framework for Cash-to-Cash Transactions

This chapter of the thesis deals with the optimization of a natural gas storage asset

considering cash transactions. As previously mentioned, the NG market is divided

into the financial sector (futures contracts) and cash. Cash transactions (referred to

as spot sale) can only be made for the current time-period. Unlike the futures model,

there is no recourse that can be taken on held positions. Once gas is purchased or

sold, the commodity is delivered the next day. Our model framework is specifically

developed for and applied to the summer fill of a NG storage asset. In this case, it is

assumed that the trader has access to the storage asset over the course of the summer

and is required to have the well full by the end of the term (214 days). Like before,

the storage asset is subject to operational characteristics that impact the feasible

injection and withdrawal decisions. It is also assumed that each day the trader has

access to price simulations that are used to aid in decision-making, as is the case at

The Utility Company. Additionally, for the summer fill, the trader must ensure the

storage asset is full by the end of the term, while attempting to profit from good

price spreads in the interim. Again, a general assumption was made that The Utility

Company is a relatively small player in the NG market, therefore their transactions

do not impact the underlying price of NG.

The remainder of this chapter is formulated as follows: first data analysis is per-

formed on the provided price simulations. Next, a baseline MIP model for daily stor-

age decisions is presented and applied to the provided data. Next, various models with

inventory-level constraints are presented as a possible approach for risk-management.

Finally, DRO is applied to the cash model and the results are discussed. Again,

Solver and computer specifications can be found in Appendix A. Python codes for

cash model approaches are found in Appendices F & G.

68
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4.1 Price Simulations

As in the futures-to-futures case, the trader has access to a discrete set of price

simulations for natural gas prices. In this case the simulations model the evolution

of the spot-price of NG over time. Unlike the futures curve, only the current time-

period is transactable in the cash market. This means that decisions can only be

made one day at a time, and positions for future injections and withdrawals can only

be planned, but not acted upon.

The provided price simulations span from April 1 to October 31 2019. For each

day in the time-horizon, 24 different simulated price paths are generated. Note this

number is significantly lower than the amount generated for futures decisions, which

is a refection of the difficulty in modeling cash prices. Figures 4.1 and 4.2 display

the average price and standard deviation of prices, according to the provided simula-

tions. Here slightly different behavior than the futures-to-futures price data can be

Figure 4.1: Average daily prices, according to price simulations.

observed. The standard deviation increases over time, which is most-likely a result

of the increased volatility seen in the market as winter approaches. The daily prices

see much fluctuation throughout the summer months, and begin to rise as the winter

approaches. Histograms were generated to investigate the distribution of daily prices,
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Figure 4.2: Standard deviation of daily prices, according to price simulations

an example of which is displayed in Figure 4.3. The daily prices appear to follow

a general symmetric, mean-centered distribution. The distribution of cash prices is

much less mean-centered than the futures data and approximately 75% of the daily

prices are normally distributed.

4.2 Daily Model-Equally-Likely MIP

To model cash decisions, the futures-to-futures framework presented in the previous

chapter can be modified. Each of the simulated price paths is assumed to be equally-

likely. This means that now, for each day, there is a set of price predictions, s ∈ S

of size 24. The summer fill occurs over a planning horizon of 214 days therefore

|T | = 214. Unlike the futures market, the transactions can only be taken for the

current day. In this case, it can be assumed that the trader knows today’s price for

certain. Current decisions are denoted by t0. Because of this we now define the set

T as follows: T =: {0, 1, ..., |T |}.
For this specific storage asset, it was assumed that there is no inventory ratcheting

agreement in place, and the facility is subject to constant injection and withdrawal

capacities. Additionally, because the cash market involves the physical purchase and

sale of NG, it is important to model fuel loss, as in cash transactions it is considered
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Figure 4.3: Sample Distribution of Price Simulations

to have a large impact on injection and withdrawal amounts. In this case each cash

transaction incurs a transaction fee. The following parameters are utilized in the cash

model:

p0 Current spot price of NG, in $ per MMBtu
pst cash price of NG at time t according to prediction s
Cap maximum capacity available for storage
f maximum injection quantity during a single time period t
g maximum withdrawal quantity during a single time period t
ε Transaction fee for purchases/sales of NG, in %
δ Fuel loss rate for injections/withdrawals, in %
I0 Initial inventory level

To formulate the model, the following variables are used:

vt quantity of NG purchased to be injected during time t
wt quantity of NG withdrawn to be sold during time t

It inventory of NG at the beginning of time period t

zt =

{
0, if no injection occurs during time period t,

1, if no withdrawal occurs during time period t.
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With that, the daily (cash) model is formulated as follows:

max p0[−(1 + ε)v0 + (1− ε)w0] +
∑
t∈T

pt[−(1 + ε)vt + (1− δ)(1− ε)wt] (4.1)

s.t.

vt ≤ f · (1− zt), ∀t ∈ T (4.2)

wt ≤ g · zt, ∀t ∈ T (4.3)

It = It−1 + (1− δ)vt−1 − wt−1, ∀t ∈ T \ {0} (4.4)

It ≤ Cap, ∀t ∈ T \ {0} (4.5)

I|T | = Cap (4.6)

vt, wt, It ≥ 0, ∀t ∈ T (4.7)

zt ∈ {0, 1}, ∀t ∈ T (4.8)

This is model is an adapted version of the model presented in Section 3.2 with

spot sales and a fill requirement for the well (4.6). This framework must also include

the spot price of NG as an additional parameter, as this would be known and not a

function of the simulations. The fuel loss rate and brokerage fees are also included in

this model. Fuel loss in imposed on the actual quantity being injected, but not on the

withdrawn quantity in constraint (4.4). This is to reflect the gas being completely

removed from the available inventory. The fuel loss is imposed on withdrawals in the

objective function, as fuel loss impacts the quantity available to sell. The brokerage

fees were accounted for by increasing the injection price by ε % and reducing the

withdrawal price by the same amount. As seen in (4.1) and (4.4), the withdrawal at

period t − 1 results in a revenue of (1 − δ)(1 − ε)wt−1 after accounting for fuel loss

and brokerage fees.

It should be noted that while the model will output decisions for each day in the

project horizon, only today’s action can be taken. Decisions into the future are used

to create a projected inventory profile that (given all current information) that will

result in the optimal cash flow and ensure today’s decision is feasible (given the fill

requirement). Each day, as the model is re-optimized using updated price simulations

(and spot prices) the optimal decisions may change. Because future actions cannot be
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taken, there is no recourse (as seen in the futures model). For the cash model, once a

decision has been made and gas has been injected or withdrawn, upon re-optimization,

only the starting inventory is required to be updated

Unlike in the futures model case, the future transactions in the cash market are

impacted by the time value of money. In general, this would mean that any of the

projected future transactions should be discounted by (1 + η)t, where η represents a

discount rate per period. For this specific application a value of η = 0 is utilized be-

cause The Utility Company discourages its traders from conservative decision-making.

This particular company is extremely profitable and they have a strong asset position

to offset any possible losses. So this space is created separately from their investments,

in bonds for example.

Along with the price simulations, the following parameters were provided to test

the model:

Table 4.1: Operational characteristics for daily model, provided by The Utility Com-
pany.

f 20,000 MMBtu/day
g 40,000 MMBtu/day

Cap 1,000,000 MMBtu/day
I0 0 MMBtu
ε 1%
δ 1%

The model was implemented using the provided data, with the results and inven-

tory profile displayed by Figure 4.4 and Table 4.2. Using the expected price from the

simulations, the model attempts to inject and withdraw gas throughout the summer

before finally filling the asset by the end of term. The model does not begin the actual

fill until later in the term, and this behavior is confirmed when re-examining Figure

4.1. There is a large dip in average price between days 175 and 200, which would make

this the most advantageous time to inject. This delay in the summer fill presents a

risk-management issue for trader. While, according to the price simulations the price

will be low at these times, the predicted prices are uncertain and subject to change.

If the fill is delayed until the end of the summer and then a weather event causes

massive price increases, the trader will be extremely vulnerable. To manage this risk,

several approaches can be taken.
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Figure 4.4: Inventory profile obtained by equally-likely base model.

Table 4.2: EL Daily Model Results.
Expected Cash Flow -$ 2,110,632.62
Number of Actions 152
Number of Idle Days 62
Computation Time 4.26 Seconds

4.3 Daily Model-Baseline Fill Constraint

One approach to manage the aforementioned risk is for the trader to utilize tacit

knowledge to decide on inventory waypoints they want the summer fill to meet. In

this case, the trader could select inventory levels that must be maintained from a

certain time-period and onwards, such that they are not delaying the fill too long and

leaving themselves open to changes in price. Letting F represent the desired fill level

and t′ represent the day at which the fill constraint must be enforced after, the daily

formulation can be updated as (where (4.9) is added to the formulation):

max p0[−(1 + ε)v0 + (1− ε)w0] +
∑
t∈T

pt[−(1 + ε)vt + (1− δ)(1− ε)wt] (4.1)
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s.t.

It ≥ F, ∀t ≥ t′ (4.9)

vt ≤ f · (1− zt), ∀t ∈ T (4.2)

wt ≤ g · zt, ∀t ∈ T (4.3)

It = It−1 + (1− δ)vt−1 − wt−1, ∀t ∈ T \ {0} (4.4)

It ≤ Cap, ∀t ∈ T \ {0} (4.5)

I|T | = Cap (4.6)

vt, wt, It ≥ 0, ∀t ∈ T (4.7)

zt ∈ {0, 1}, ∀t ∈ T (4.8)

In practice, a trader could include as many of these constraints as they desire.

Additionally, by indexing F by t a trader could specify inventory requirements for each

time-period in the summer fill. This constraint allows the trader additional flexibility

and the opportunity to inject their tacit knowledge into the modeling process. In

discussions with the traders, it was determined that for the trader to feel comfortable

with the proposed fill strategy, the well should remain at least half full from day

148 and onward. The cash model was implemented using the provided data, with

the results and inventory profile displayed by Table 4.3 and Figure 4.5, respectively.

The quantities in parentheses indicate the difference between the present and baseline

model.

Table 4.3: Daily model results with baseline fill constraint.
Expected Cash Flow -$ 2,144,729.24 (-1.59%)
Number of Actions 136 (-16)
Number of Idle Days 78 (+16)
Computation Time 5.23 Seconds

The inventory profile has been “lifted” compared to the base model results. In-

terestingly, the large change in the inventory profile did not significantly impact the

expected performance when compared to the base model. From a trader’s perspec-

tive, this tactical plan is more realistic, as it does not push the fill of the asset until

very late in the term. Additionally, this approach increased the number of projected
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Figure 4.5: Inventory profile obtained using specified fill constraint.

idle days, which provides the trader with additional flexibility to respond to changes

in prices.

4.3.1 Daily Model-Complex Fill Constraints Using Utility Functions

The previous section presented a very simple approach to managing risk, with respect

to the well inventory level. The provided approach can provide time-specific inventory

constraints, but this would require manual calculations from the trader. This section

expands on the baseline fill constraints by generating different constraints for the

inventory profile based on the risk-adversity of the trader. To create risk-management

constraints on the physical inventory level, the concept of exponential utility can

be utilized. Utilizing exponential utility functions can allow for different inventory

profiles to be generated, based on the trader’s risk adversity. As stated by Norstad

[37], utility functions are utilized frequently in financial applications, as they allow

traders to vary their risk tolerance to investigate the impact on expected returns. In

this case, the utility function is generated on the inventory level, as it is the measure

requiring different risk tolerances. Consider the following utility functions, where t is
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used to represent the current moment in time and K is used as a scaling parameter for

each of the three functions. Additionally the shape of the functions are determined

by a parameter a, where 0 ≤ a < 1.

I(t) = K1t (4.10)

I(t) = K2(1− eat) (4.11)

I(t) = K3e
at (4.12)

These functions can be used to generate three tiers of desired inventory profiles.

The first function, which is linear, represents a risk-neutral attitude towards the

inventory level, where (4.11) represents a risk averse attitude and (4.12) represents a

risk-seeking attitude. These functions can be used by the trader to generate different

desired inventory profiles for the summer fill, based on their risk-tolerance. These

functions can be explicitly included in the base formulation as follows:

max p0[−(1 + ε)v0 + (1− ε)w0] +
∑
t∈T

pt[−(1 + ε)vt + (1− δ)(1− ε)wt] (4.1)

s.t.

It ≥ I(t), ∀t ≥ t′ (4.13)

vt ≤ f · (1− zt), ∀t ∈ T (4.2)

wt ≤ g · zt, ∀t ∈ T (4.3)

It = It−1 + (1− δ)vt−1 − wt−1, ∀t ∈ T \ {0} (4.4)

It ≤ Cap, ∀t ∈ T \ {0} (4.5)

I|T | = Cap (4.6)

vt, wt, It ≥ 0, ∀t ∈ T (4.7)

zt ∈ {0, 1}, ∀t ∈ T (4.8)

To investigate the impact of adding these constraints, the following cases were

considered:

The approaches listed in Table 4.4 were created with the trading team to reflect
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Table 4.4: Different inventory profile, risk-management approaches
Profile # Risk Level

1 Risk-neutral with no half-full constraint
2 Risk-neutral, where well is required to be half-full by day 148
3 Risk-seeking with no half-full constraint
4 Risk-seeking, where well is required to be half-full by day 148
5 Risk-averse with no half-full constraint
6 Risk-averse, where well is required to be half-full by day 148

real-world decision-making. The approaches each require different minimum inventory

thresholds from day 148 and onwards. Figure 4.6 displays the profiles that the fill

constraints will enforce. The risk-seeking inventory profiles would not require the well

to be full until much later in the time-horizon. Conversely, the risk-averse functions

require the well be full much earlier in the time horizon. The parameter K was

numerically calculated for each of the approaches, and their values are reported in

Appendix H.

Figure 4.6: Graph displaying different inventory profile constraints based on utility
functions

The different utility functions were applied to the model. Figure 4.7 displays a

boxplot of expected performance subject to the price simulations of each of the utility
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approaches, in addition to the base model and simple fill constraint as implemented

in the previous section. The results show that profiles 1 and 3 result in the same

optimal solution as the base model. This indicates that the enforced inventory profile

did not impact the optimal solution. For the remaining approaches, the expected

performance decreased when compared to the base model. As expected, profiles 2

and 5 performed the worse, as these were conservative. In all cases the variance in

the optimal solution across the scenarios remained relatively constant. These results

reveal the limitations of managing risk from an inventory perspective. In this case,

the price is the only parameter subject to uncertainty. Attempting to mitigate risk

from an inventory perspective and not a price perspective seems to result in lower

expected performance.

Figure 4.7: Graph displaying different inventory profile constraints based on utility
functions

The inventory fill constraints are useful from a practical perspective. While en-

forcing constraints on the inventory level using utility decreased the expected per-

formance, different risk attitudes can provide the trader with additional flexibility

when filling the well. By requiring the well meet certain inventory levels at certain

times, the trader obtains more flexibility due to possible idle days. In general, the

risk-seeking profiles seem to have little value, as they normally result in the same
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solution as the risk-neutral utility functions. In the base model case, the delayed fill

did not allow much flexibility, as the trader must constantly inject for a long period

to fill the well by the end of term. Inventory constraints can alleviate this concern

by allowing the trader to require certain inventory level requirements subject to their

risk tolerance.

4.4 Daily Model-Distributionally Robust Optimization

Similarly as for the futures models, DRO can be applied to allow a risk-averse attitude

to be taken towards decision-making. The same DRO approach, utilizing a phi-

divergence ambiguity set as per [36], was applied to the base cash model, which

results in the following formulation:

max
v,w,I,π,ψ,θ

p0[−(1 + ε)v0 + (1− ε)w0] + θ − ρπ +
∑
s∈S

ψ+
s q̂s −

∑
s∈S

ψ−s q̂s (4.14)

s.t.

θ ≤ p0[−(1 + ε)v0 + (1− ε)w0]

+
∑
t∈T

pts[−(1 + ε)vt + (1− δ)(1− ε)wt]− ψ+
s + ψ−s , ∀s ∈ S (4.15)

ψ+
s + ψ−s ≤ π, ∀s ∈ S (4.16)

vt ≤ f · (1− zt), ∀t ∈ T (4.2)

wt ≤ g · zt, ∀t ∈ T (4.3)

It = It−1 + (1− δ)vt−1 − wt−1, ∀t ∈ T \ {0} (4.4)

It ≤ Cap, ∀t ∈ T \ {0} (4.5)

I|T | = Cap (4.6)

vt, wt, It ≥ 0, ∀t ∈ T (4.7)

zt ∈ {0, 1}, ∀t ∈ T (4.8)

ψ−s , ψ
+
s ≥ 0, ∀s ∈ S (4.17)

θ u.r., π ≥ 0 (4.18)
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Note that, as the spot price is not subject to uncertainty from the price simula-

tions, its term is unaffected by the reformulation. A parameter ρ is utilized to allow

the user to vary their level of risk-adversity. Using the provided data, ρ was varied to

investigate its impact on the expected cash flow, with the results displayed by Figure

4.8.
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Figure 4.8: Impact of ρ on expected cash flow

Like the other models presented, this formulation possesses no tractability issues.

The results are consistent with those of Chapter 3, as ρ is increased, the expected

profit decreases. Clearly there is a trade-off between risk-adversity and expected

performance. To further explore the impact of the DRO cash formulation, the model

was run at two different ρ values, and a box-plot was generated from the optimal

solution based on the price simulations.

The results displayed in Figure 4.9 support the use of the DRO framework. While

both levels of ρ resulted in a tactical plan with decreased expected performance, the

variance of the DRO solutions is far less than the other approaches. This indicates

that the DRO approaches are mitigating the risk generated by price uncertainty more

effectively than constraints placed on the inventory profile. The DRO framework

significantly improves the worst-case performance when compared to the fill constraint

approaches. As cash prices can be subject to change, the DRO framework allows for

decisions to be made, such that the trader is protected from changes in the price

simulations. This framework allows for risk to be more effectively managed and
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Figure 4.9: Comparison of DRO results with base model, simple fill constraint and
utility fill constraints

still provides the flexibility generated by idle days, as done by the fill constraint

approaches. Because this approach utilizes ρ as an adjustable parameter, it provides

the trader with the opportunity to investigate different tactical plans based on their

risk-adversity.

4.5 Daily Model-Robust Optimization

While the budgeted robust approach was not applied to the cash model, there are

certain scenarios where the trader will be extremely risk averse. An example of this is

near the end of the summer fill period. As the end of the term approaches, the trader

will possess a hyper risk-averse attitude towards storage decisions. If there are only a

few days left until the well is required to be full and a withdrawal is made, the trader

becomes very exposed to changes in prices for the remaining days. If the price in-

creases significantly, the trader will still have to purchase gas to replenish the amount

withdrawn for sale. For this case, a model alternative that offers highly conservative
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solutions should be explored. While budgeted uncertainty provides conservative solu-

tions, to generate highly conservative solutions, a box-uncertainty set can be utilized

in a robust framework (as per [34]). Here the trader is less interested in the flexibility

afforded by the Budgeted Uncertainty set, and more interested in obtaining a highly

conservative solution. To formulate the problem we must first define our uncertainty

set, Ξ, as per [34].

Ξ := [ p ∈ IR|T | : pt ≥ pmin
t , pt ≤ pmax

t , ∀t ∈ T ] (4.19)

With that, the robust formulation is as follows (leaving out the nominal problem

constraints as they are not impacted by uncertainty) with the dual variables contained

in parantheses.

max
v,w,I,z

p0[−(1+ ε)v0+(1− ε)w0]+ min
p∈Ξ

∑
t∈T

pt[−(1+ ε)vt+(1− δ)(1− ε)wt] (4.20)

s.t.

pt ≥ pmin
t , ∀t ∈ T (π−t ) (4.21)

pt ≤ pmax
t , ∀t ∈ T (π+

t ) (4.22)

By taking the dual of the inner problem, the final tractable formulation (adapted

from the base model) is as follows:

max
v,w,I,z,π−,π+

p0[−(1 + ε)v0 + (1− ε)w0] +
∑
t∈T

[pminπ−t + pmaxπ+
t ] (4.23)

s.t.

π−t + π+
t = −(1 + ε)vt + (1− δ)(1− ε)wt, ∀t ∈ T (4.24)

vt ≤ f · (1− zt), ∀t ∈ T (4.2)

wt ≤ g · zt, ∀t ∈ T (4.3)

It = It−1 + (1− δ)vt−1 − wt−1, ∀t ∈ T \ {0} (4.4)

It ≤ Cap, ∀t ∈ T \ {0} (4.5)

I|T | = Cap (4.6)
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vt, wt, It ≥ 0, ∀t ∈ T (4.7)

zt ∈ {0, 1}, ∀t ∈ T (4.8)

π−t ≥ 0, π+
t ≤ 0, ∀t ∈ T (4.25)

Where (4.23) replaces (4.1) and (4.24) and (4.25) are added to the nominal for-

mulation. This approach allows the daily price to vary between the minimum and

maximum simulated value such that a solution is generated that is protected from

poor price realizations. The model was implemented using the provided data, and

the following results and inventory profile were obtained were the quantities in paren-

theses denote the difference between this approach and the base model:

Figure 4.10: Inventory profile obtained from the box-uncertainty set model.

Table 4.5: Box-uncertainty cash model results.
Expected Cash Flow -$ 2,771,542,79 (-31.73%)
Number of Actions 51 (-101)
Number of Idle Days 78 (+101)
Computation Time 6.45 Seconds

As expected, the box approach produces a highly conservative solution, when
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compared to the nominal problem. This results in a much lower expected profit than

the nominal solution. The inventory profile also reveals interesting results. Due to the

highly risk-averse attitude the RO approach takes, the model chooses only to inject

gas throughout the summer fill. Colloquially, the model chose the days to inject in

the absolute worst case scenario. Generally, this means the model considered the

highest price when injecting and lowest price when withdrawing. Because of this, no

withdrawals were made. This solution provides the best days to inject, in the worst

case scenario subject to the simulated prices. This approach has applications in the

later stages of the summer fill, where more conservative plans for the remaining days

should be made, as the approaching winter will increase the price volatility. The

results also show the model injecting in smaller quantities. Instead of injecting as

much as possible on fewer days, the box solution spread the injections out to protect

itself from price uncertainty.

To further explore the robust results, a box-plot was generated from the robust

solution by evaluating it for each of the price simulations, as displayed by Figure

4.11. While the box solution suffers from the worst expected performance, the results

do have some interesting implications. While the robust solution did not involve

selling any gas throughout the summer, its performance overlaps with every model

approach. This indicates that one could obtain a better cashflow by simply injecting

gas all summer when compared to approaches where 60+ withdrawals are made.

These results display the risk involved with the cash transactions. The box solution

offers an advantage over the fill constraints as the variance is significantly lower.

While the robust solution is not practical when implemented across the entire

summer, the highly-risk averse solutions generated by the box model can be utilized

in times of extremely high volatility (e.g. winter months or during an extreme weather

event). This framework would allow the user to be very protected from unfavorable

price realizations.

4.6 Summary

In this chapter, several formulations for the optimization of cash-to-cash storage trans-

actions has been presented. While the case considered did not include inventory

ratcheting, the ratcheting constraints applied to the futures model could easily be
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Figure 4.11: Comparison of Box results with base model, simple fill constraint, utility
fill constraints and DRO

applied to the cash case. Several variants of the cash model were presented. The first

set of variants involved placing constraints on the inventory levels of the well. These

constraints were shown to have little value and do not seem effective in managing the

uncertainty seen in the price simulations. The fill constraints do provide the trader

with additional flexability, as certain approaches result in more idle days where the

trader is free to make any decision.

Like in the futures model case, DRO was applied to the cash framework such

that risk-averse solutions could be generated. The DRO models slightly lowered the

expected performance, while significantly improving the worst-case performance of

the model, when compared to the other approaches. The DRO models are practical,

as they feature an adjustable parameter than can allow for a trader to test the impact

of different risk-tolerances on the optimal solution. The DRO solutions additionally

significantly reduce the variance of the optimal solution’s expected performance.

Finally, a robust framework was presented utilizing a box uncertainty set. This

approach generates highly conservative solutions, which can be used to help guard

the trader from the uncertainty present in the price simulations. While the expected
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performance of the RO solutions is poor, the variance of the expected performance

is reduced when compared to the base model and fill constraint approaches. Addi-

tionally, the expected performance of the box approach overlapped with every other

approach. This is an interesting result as the box solution did not involve selling any

gas. These results indicate that, even if many sales of gas are made, there is a chance

the net cash flow will be worse than if gas had only been injected.



Chapter 5

Conclusions and Recommendations for Future Work

This work presents an optimization framework developed as a decision-support tool

for natural gas storage decisions. The futures framework presented allows for price

simulations and operational characteristics of a NG storage facility to be considered

in the modeling process. The ratcheting scheme presented is novel, and was devel-

oped specifically for this thesis. Not only can the presented models be used to provide

optimal injection and withdrawal decisions, but it can be used by the trader to as-

sess the feasibility of their injection and storage decisions. Including the ratcheting

constraints, when applicable, was shown to have a significant impact on the amount

of gas available for injection/withdrawal.

To allow additional flexibility, the ability to alter past decisions was added to

the model framework. This allows the model to consider existing injection/storage

decisions and the option to alter those decisions, if deemed more profitable. It should

be noted that this approach was developed to best utilize the discrete price simulations

utilized in practice. To obtain a more accurate value of storage, the evolution of the

futures price curve must be considered. As mentioned by [10]-[21], accurately and

tractability modeling the progression of the futures curve is difficult and requires

high-factor models. While this approach does not contain the forward dynamics of

NG prices, it serves as an effective decision support tool and takes advantage of the

futures instruments to offer the trader recourse.

To account for the uncertainty in the price simulation data, several model variants

were presented. The first variant utilized a chance-constraint to allow the user some

probabilistic guarantee on performance. This model approach allows for the uncer-

tainty in the data to be better visualized, indicating that due to the data’s mean

centered nature, the probabilistic guarantee on performance sharply decreases once

the desired profit level is increased past the deterministic solution.

88
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To provide a risk-averse framework, a robust alternative was presented that uti-

lized a budgeted uncertainty set. As expected, as the uncertainty budget was in-

creased, the solution becomes more conservative. The robust solutions were shown to

perform poorly when evaluated on their expected performance. To improve the ex-

pected performance, DRO was applied to offer less conservative, risk-averse solutions.

The DRO solutions improve the worst-case performance while only slightly impacting

expected performance. To further explore the impacts of DRO on the futures model,

other divergence measures can be considered. As the framework was developed for

practical application, a simple divergence measure was utilized, other measures may

provide interesting results.

The second part of this thesis presented the framework for the cash market. The

cash framework functioned similarly to the futures framework, with some small dif-

ferences. As cash decisions can only be made one day at a time, there is no reason

to include recourse, as done in the futures model. Like the futures model, the cash

models considered the provided price simulations and the physical constraints on the

storage facility to provide optimal injection and storage decisions. For cash decisions,

model framework was developed to manage risk in two ways: from an inventory

perspective and from a price perspective.

Model variants that placed constraints on the physical inventory level were pre-

sented. As the trader was required to fill the well by the end of the summer, different

alternatives were explored to offer more flexible inventory profiles for the trader. The

first approach simply required a minimum inventory level be maintained from some

time-period on. This constraint was shown to have little impact on the optimal solu-

tion while creating more idle days (which provides the trader with more flexibility.

Next, the concept of utility functions was utilized to investigate the impact of

different risk-tolerances on fill constraints. These constraints were shown to change

the injection and withdrawal decisions based on the risk level. The risk-neutral and

seeking profiles allowed the well to be filled much later in the summer, which resulted

in a higher profit. The risk-averse profiles did not allow a late fill, and resulted in

lower profits. Most importantly, all of the approaches that placed constraints on the

inventory level, while often impacting the optimal solution, had very little impact on

the variance of the expected profit.
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Similar to in the futures case, DRO was applied to the cash model. DRO cash

solutions were shown to perform slightly worse than the deterministic solution (when

compared to the price simulations), while reducing solution variance and improving

worst-case performance. The DRO solutions result in more idle days, which is an

attractive quality to a trader. Finally, to present a highly risk-averse framework, a

robust formulation utilizing a box uncertainty set was utilized. This model’s solutions

were shown to perform very poorly in average (across an entire summer), but this

approach has value when applied in times of very high uncertainty and volatility.

Additional expansions on the presented framework include amalgamating the fu-

tures and cash models into one unifyed framework. This would allow both cash and

futures decisions to be considered simultaneously. Other types of agreements could

be considered in this framework as well (e.g. bal-month agreements). To create a

unifying framework, the futures progression of futures prices must be included in the

modeling process. As stated in the literature review, dynamic programming seems

to be the natural approach for this problem. Another possible extension is to con-

sider a portfolio of storage facilities instead of the singular case, as examined in this

thesis. Additionally, viewing the NG storage well as a part of the NG supply chain

with various financial and physical commitments is a useful extension of this work.

The Summer Fill Problem can also be formulated as a multi-stage stochastic, RO

and DRO problem due to the nature of the cash transactions (can delay decisions).

Finally, ratcheting can be explored as a function of pipeline capacity, not just con-

tractual obligations.
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Appendix A

Computer and Solver Specifications

Computer and Solver Specifications
Solver Gurobi

Processor Intel Core i7-8550U CPU @ 1.80 GHZ
GPU NVIDIA TITAN RTX

Memory/RAM 16 GB
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Appendix B

Futures Model Code: No Ratchets

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

from pulp import solvers

wb=load_workbook(filename= ’Price Curves 12-5-18.xlsx’)

sheet_ranges=wb[’n=30’]

ws=wb[’n=30’]

Horizon=12

N=30

M=10000000

pieces=3

T=list(range(Horizon))

S=list(range(N))

L=list(range(pieces))

p=[[0 for j in range(Horizon)] for i in range(N)]

r=[[0 for j in range(Horizon)] for i in range(N)]

b=[0 for l in range(pieces)]

f=[0 for l in range(pieces)]

g=[0 for l in range(pieces)]
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b[0]=150000

b[1]=300000

b[2]=1000000

f[0]=10000*30.5

f[1]=8000*30.5

f[2]=6000*30.5

g[0]=4000*30.5

g[1]=8000*30.5

g[2]=15000*30.5

Cap=1000000

d=.97

for i in range(N):

for j in range(Horizon):

p[i][j]=ws.cell(row=i+2, column=j+2).value

prob= LpProblem("EL-NR", LpMaximize)

v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

I = LpVariable.matrix("I", (T),0, None, LpContinuous)

y = LpVariable.matrix("y", (T) ,0, 1, LpBinary)
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z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

a = LpVariable.matrix("a", (T,L), 0, 1, LpBinary)

prob+= ((d/N)*(lpSum([lpSum([-v[t]*p[s][t]+w[t]*p[s][t] for t in T])

for s in S])))

for t in T:

prob+= w[t]<=I[t]

prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap

prob+= lpSum([a[t][l] for l in L])==1

prob+= v[t]<=lpSum([a[t][l]*f[l] for l in L])

prob+= w[t]<=lpSum([a[t][l]*g[l] for l in L])

prob+= lpSum([a[t][l]*b[l] for l in L])>=I[t]

#for t in T:

#for l in L:

#prob+= a[t][l]*b[l]>=I[t]

for t in T:

if t>0:

b=t-1

prob+= I[t]==I[b]+v[b]-w[b]
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prob+= I[Horizon-1]>=I[0]

prob+= I[0]==0

prob.solve()

print("Max profit:", prob.objective.value())

for v in prob.variables():

if v.varValue>0:

print(v.name, "=", v.varValue)

print("--- %s seconds ---" % (time.time() - start_time))



Appendix C

Futures Model Code: With Ratchets

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

from pulp import solvers

import xlsxwriter

wb=load_workbook(filename= ’Price Curves 12-5-18.xlsx’)

sheet_ranges=wb[’Sheet1’]

ws=wb[’Sheet1’]

Horizon=24

pieces=3

T=list(range(Horizon))

TN=list(range(25))

L=list(range(pieces))
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p=[0 for j in range(Horizon)]

UB=[0 for l in range(pieces)]

LB=[0 for l in range(pieces)]

f=[0 for l in range(pieces)]

g=[0 for l in range(pieces)]

for j in range(Horizon):

p[j]=ws.cell(row=965, column=j+2).value

print (p[j])

UB[0]=150001

UB[1]=300001

UB[2]=1000000

LB[0]=0

LB[1]=150000

LB[2]=300000

f[0]=10000*30.5

f[1]=8000*30.5

f[2]=6000*30.5

g[0]=4000*30.5

g[1]=8000*30.5

g[2]=15000*30.5

Cap=1000000

M=Cap
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d=.97

prob= LpProblem("EL-NR", LpMaximize)

v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

I = LpVariable.matrix("I", (T),0, None, LpInteger)

z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

lb= LpVariable.matrix("lambda", (T,L,L), 0, 1, LpContinuous)

mu= LpVariable.matrix("mu", (T,L,L), 0, 1, LpContinuous)

r= LpVariable.matrix("r", (T,L), 0 ,1, LpBinary)

zz= LpVariable.matrix("zz", (T,L,L),0, 1,LpBinary)

xx= LpVariable.matrix("xx", (T,L,L),0,1,LpBinary)

prob+= (lpSum([p[t]*(-v[t]+w[t]) for t in T]))

for t in T:

prob+= w[t]<=I[t]

prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap
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prob+= lpSum([r[t][l] for l in L])==1

for t in T:

prob+= I[t]<=lpSum([r[t][l]*UB[l] for l in L])

prob+= I[t]>=lpSum([r[t][l]*LB[l] for l in L])

###restricting INJ and WITH quantities

for t in T:

## #IF starting in R1

prob+=v[t]<=lb[t][0][0]*f[0] +

lb[t][0][1]*f[1]+lb[t][0][2]*f[2]+lb[t][1][1]*f[1]

+lb[t][1][2]*f[2] + lb[t][2][2]*f[2]

prob+=w[t]<=mu[t][0][0]*g[0] + mu[t][1][1]*g[1] +

mu[t][1][0]*g[0]+mu[t][2][2]*g[2]

+ mu[t][2][1]*g[1] + mu[t][2][0]*g[0]

#limiting the proportions on lambda

for t in T:

#IF Starting in R1

prob+=lb[t][0][0]<= ((UB[0]-I[t])/f[0])+M*(1-r[t][0])

prob+=lb[t][0][1]<= ((UB[1]-UB[0])/f[1])+M*(1-r[t][0])

prob+=lb[t][0][2]<= ((UB[2]-UB[1])/f[2])+M*(1-r[t][0])

prob+=lb[t][0][0]+lb[t][0][1]+lb[t][0][2]==r[t][0]

#rules for lambda selection

prob+=lb[t][0][0]<=zz[t][0][0]

prob+=lb[t][0][1]<=zz[t][0][1]

prob+=lb[t][0][2]<=zz[t][0][2]

prob+=zz[t][0][0]>=zz[t][0][1]

prob+=zz[t][0][0]>=zz[t][0][2]

prob+=zz[t][0][1]>=zz[t][0][2]

#IF starting in R2

prob+= lb[t][1][1]<=((UB[1]-I[t])/f[1])+M*(1-r[t][1])

prob+= lb[t][1][2]<=((UB[2]-UB[1])/f[2])+M*(1-r[t][1])
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prob+= lb[t][1][1]+lb[t][1][2]==r[t][1]

#rules for lambda selection

prob+=lb[t][1][1]<=zz[t][1][1]

prob+=lb[t][1][2]<=zz[t][1][2]

prob+=zz[t][1][1]>=zz[t][1][2]

#IF starting in R3

#prob+= lb[t][2][2]<=((UB[2]-I[t])/f[2])+M*(1-r[t][2])

prob+= lb[t][2][2]==r[t][2]

for t in T:

## #IF Starting in R1

prob+=mu[t][0][0]==r[t][0]

## #IF Starting in R2

prob+=mu[t][1][1]<=((I[t]-LB[1])/g[1])+M*(1-r[t][1])

prob+=mu[t][1][0]<=((LB[1]-LB[0])/g[0])+M*(1-r[t][1])

prob+=mu[t][1][1]+mu[t][1][0]==r[t][1]

#### #rules for lambda selection

prob+=mu[t][1][1]<=xx[t][1][1]

prob+=mu[t][1][0]<=xx[t][1][0]

prob+=xx[t][1][1]>=xx[t][1][0]

#IF Starting R3

prob+=mu[t][2][2]<=((I[t]-LB[2])/g[2])+M*(1-r[t][2])

prob+=mu[t][2][1]<=((LB[2]-LB[1])/g[1])+M*(1-r[t][2])

prob+=mu[t][2][0]<=((LB[1]-LB[0])/g[0])+M*(1-r[t][2])

prob+=mu[t][2][2]+mu[t][2][1]+mu[t][2][0]==r[t][2]

#rules for lambda selection

prob+=mu[t][2][2]<=xx[t][2][2]

prob+=mu[t][2][1]<=xx[t][2][1]

prob+=mu[t][2][0]<=xx[t][2][0]

prob+=xx[t][2][2]>=xx[t][2][1]

#prob+=xx[t][2][2]>=xx[t][2][0]

prob+=xx[t][2][1]>=xx[t][2][0]
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for t in T:

for l in L:

for k in L:

prob+=lb[t][l][k]>=0

prob+=mu[t][l][k]>=0

#for t in T:

#for l in L:

#prob+= a[t][l]*b[l]>=I[t]

for t in T:

if t>0:

b=t-1

prob+= I[t]==I[b]+v[b]-w[b]

prob+= I[Horizon-1]>=I[0]

prob+= I[0]==0

prob.solve(GUROBI())

print("Max profit:", prob.objective.value())

#for v in prob.variables():

#if v.varValue>0:

#print(v.name, "=", v.varValue)

#ff=0

#for name, c in list(prob.constraints.items()):

#ff=ff+1

#print (ff)
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resultsbook=xlsxwriter.Workbook(’Results.xlsx’)

worksheet=resultsbook.add_worksheet()

for t in T:

worksheet.write(0,t,value(v[t]))

worksheet.write(1,t,value(w[t]))

worksheet.write(2,t,value(I[t]))

resultsbook.close()

sys.exit()

print("--- %s seconds ---" % (time.time() - start_time))



Appendix D

Futures Model Code: Budgeted Robust

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

from pulp import solvers

import xlsxwriter

wb=load_workbook(filename= ’Price Curves 12-5-18.xlsx’)

sheet_ranges=wb[’Sheet1’]

ws=wb[’Sheet1’]

Horizon=24

pieces=3

T=list(range(Horizon))

TN=list(range(25))

L=list(range(pieces))

pmin=[0 for j in range(Horizon)]
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phat=[0 for j in range(Horizon)]

UB=[0 for l in range(pieces)]

LB=[0 for l in range(pieces)]

f=[0 for l in range(pieces)]

g=[0 for l in range(pieces)]

for j in range(Horizon):

pmin[j]=ws.cell(row=969, column=j+2).value

phat[j]=ws.cell(row=970, column=j+2).value

print (pmin)

print ("break")

print (phat)

UB[0]=150001

UB[1]=300001

UB[2]=1000000

LB[0]=0

LB[1]=150000

LB[2]=300000

f[0]=10000*30.5

f[1]=8000*30.5

f[2]=6000*30.5

g[0]=4000*30.5

g[1]=8000*30.5
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g[2]=15000*30.5

Cap=1000000

M=Cap

d=.97

budget=24

prob= LpProblem("EL-NR", LpMaximize)

v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

I = LpVariable.matrix("I", (T),0, None, LpInteger)

z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

lb= LpVariable.matrix("lambda", (T,L,L), 0, 1, LpContinuous)

mu= LpVariable.matrix("mu", (T,L,L), 0, 1, LpContinuous)

r = LpVariable.matrix("r", (T,L), 0 ,1, LpBinary)

q = LpVariable.matrix("q", (T), None, 0, LpContinuous)

n = LpVariable("n", None, 0, LpContinuous)

zz= LpVariable.matrix("zz", (T,L,L),0, 1,LpBinary)

xx= LpVariable.matrix("xx", (T,L,L),0,1,LpBinary)

prob+= lpSum([pmin[t]*(-v[t]+w[t]) for t in T])

+lpSum([q[t] for t in T])+budget*n

for t in T:

prob+= w[t]<=I[t]
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prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap

prob+= lpSum([r[t][l] for l in L])==1

prob+= q[t] + n <= phat[t]*(-v[t]+w[t])

for t in T:

prob+= I[t]<=lpSum([r[t][l]*UB[l] for l in L])

prob+= I[t]>=lpSum([r[t][l]*LB[l] for l in L])

###restricting INJ and WITH quantities

for t in T:

## #IF starting in R1

prob+=v[t]<=lb[t][0][0]*f[0] + lb[t][0][1]*f[1]

+ lb[t][0][2]*f[2]

+lb[t][1][1]*f[1] +lb[t][1][2]*f[2] + lb[t][2][2]*f[2]

prob+=w[t]<=mu[t][0][0]*g[0] + mu[t][1][1]*g[1]

+ mu[t][1][0]*g[0]

+mu[t][2][2]*g[2] + mu[t][2][1]*g[1] + mu[t][2][0]*g[0]

#limiting the proportions on lambda

for t in T:

#IF Starting in R1

prob+=lb[t][0][0]<= ((UB[0]-I[t])/f[0])+M*(1-r[t][0])

prob+=lb[t][0][1]<= ((UB[1]-UB[0])/f[1])+M*(1-r[t][0])

prob+=lb[t][0][2]<= ((UB[2]-UB[1])/f[2])+M*(1-r[t][0])

prob+=lb[t][0][0]+lb[t][0][1]+lb[t][0][2]==r[t][0]

#rules for lambda selection

prob+=lb[t][0][0]<=zz[t][0][0]
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prob+=lb[t][0][1]<=zz[t][0][1]

prob+=lb[t][0][2]<=zz[t][0][2]

prob+=zz[t][0][0]>=zz[t][0][1]

prob+=zz[t][0][0]>=zz[t][0][2]

prob+=zz[t][0][1]>=zz[t][0][2]

#IF starting in R2

prob+= lb[t][1][1]<=((UB[1]-I[t])/f[1])+M*(1-r[t][1])

prob+= lb[t][1][2]<=((UB[2]-UB[1])/f[2])+M*(1-r[t][1])

prob+= lb[t][1][1]+lb[t][1][2]==r[t][1]

#rules for lambda selection

prob+=lb[t][1][1]<=zz[t][1][1]

prob+=lb[t][1][2]<=zz[t][1][2]

prob+=zz[t][1][1]>=zz[t][1][2]

#IF starting in R3

#prob+= lb[t][2][2]<=((UB[2]-I[t])/f[2])+M*(1-r[t][2])

prob+= lb[t][2][2]==r[t][2]

for t in T:

## #IF Starting in R1

prob+=mu[t][0][0]==r[t][0]

## #IF Starting in R2

prob+=mu[t][1][1]<=((I[t]-LB[1])/g[1])+M*(1-r[t][1])

prob+=mu[t][1][0]<=((LB[1]-LB[0])/g[0])+M*(1-r[t][1])

prob+=mu[t][1][1]+mu[t][1][0]==r[t][1]

#### #rules for lambda selection

prob+=mu[t][1][1]<=xx[t][1][1]

prob+=mu[t][1][0]<=xx[t][1][0]

prob+=xx[t][1][1]>=xx[t][1][0]

#IF Starting R3

prob+=mu[t][2][2]<=((I[t]-LB[2])/g[2])+M*(1-r[t][2])

prob+=mu[t][2][1]<=((LB[2]-LB[1])/g[1])+M*(1-r[t][2])

prob+=mu[t][2][0]<=((LB[1]-LB[0])/g[0])+M*(1-r[t][2])

prob+=mu[t][2][2]+mu[t][2][1]+mu[t][2][0]==r[t][2]
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#rules for lambda selection

prob+=mu[t][2][2]<=xx[t][2][2]

prob+=mu[t][2][1]<=xx[t][2][1]

prob+=mu[t][2][0]<=xx[t][2][0]

prob+=xx[t][2][2]>=xx[t][2][1]

#prob+=xx[t][2][2]>=xx[t][2][0]

prob+=xx[t][2][1]>=xx[t][2][0]

for t in T:

for l in L:

for k in L:

prob+=lb[t][l][k]>=0

prob+=mu[t][l][k]>=0

#for t in T:

#for l in L:

#prob+= a[t][l]*b[l]>=I[t]

for t in T:

if t>0:

b=t-1

prob+= I[t]==I[b]+v[b]-w[b]

prob+= I[Horizon-1]>=I[0]

prob+= I[0]==0

prob.solve(GUROBI())

print("Max profit:", prob.objective.value())
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resultsbook=xlsxwriter.Workbook(’Results.xlsx’)

worksheet=resultsbook.add_worksheet()

for t in T:

worksheet.write(0,t,value(v[t]))

worksheet.write(1,t,value(w[t]))

worksheet.write(2,t,value(I[t]))

resultsbook.close()

sys.exit()

print("--- %s seconds ---" % (time.time() - start_time))



Appendix E

Futures Model Code: DRO

}

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

from pulp import solvers

import xlsxwriter

wb=load_workbook(filename= ’Price Curves 12-5-18.xlsx’)

sheet_ranges=wb[’Sheet1’]

ws=wb[’Sheet1’]

Horizon=24

pieces=3

T=list(range(Horizon))

TN=list(range(25))

L=list(range(pieces))
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S=list(range(962))

qhat=[(1/962) for i in S]

p=[[0 for s in S] for i in T]

UB=[0 for l in range(pieces)]

LB=[0 for l in range(pieces)]

f=[0 for l in range(pieces)]

g=[0 for l in range(pieces)]

for j in range(Horizon):

for i in S:

p[j][i]=ws.cell(row=i+2, column=j+2).value

UB[0]=150001

UB[1]=300001

UB[2]=1000000

LB[0]=0

LB[1]=150000

LB[2]=300000

f[0]=10000*30.5

f[1]=8000*30.5

f[2]=6000*30.5

g[0]=4000*30.5
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g[1]=8000*30.5

g[2]=15000*30.5

Cap=1000000

M=Cap

d=.97

budget=1

rho=2

prob= LpProblem("EL-NR", LpMaximize)

v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

I = LpVariable.matrix("I", (T),0, None, LpInteger)

z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

lb= LpVariable.matrix("lambda", (T,L,L), 0, 1, LpContinuous)

mu= LpVariable.matrix("mu", (T,L,L), 0, 1, LpContinuous)

r = LpVariable.matrix("r", (T,L), 0 ,1, LpBinary)

q = LpVariable.matrix("q", (T), None, None, LpContinuous)

pi = LpVariable("pi", 0, None, LpContinuous)

wp= LpVariable.matrix("wp", (S), 0, None, LpContinuous)

wm= LpVariable.matrix("wm", (S), 0, None, LpContinuous)

theta=LpVariable("theta", None, None, LpContinuous)

zz= LpVariable.matrix("zz", (T,L,L),0, 1,LpBinary)
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xx= LpVariable.matrix("xx", (T,L,L),0,1,LpBinary)

prob+= theta - rho*pi+lpSum([wp[s]*qhat[s] for s in S])

-lpSum([wm[s]*qhat[s] for s in S])

for s in S:

prob+= theta <= lpSum([p[t][s]*(-v[t]+w[t]) for t in T])

- wp[s] + wm[s]

prob+= wp[s]+wm[s] <= pi

for t in T:

prob+= w[t]<=I[t]

prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap

prob+= lpSum([r[t][l] for l in L])==1

for t in T:

prob+= I[t]<=lpSum([r[t][l]*UB[l] for l in L])

prob+= I[t]>=lpSum([r[t][l]*LB[l] for l in L])

###restricting INJ and WITH quantities

for t in T:

## #IF starting in R1

prob+=v[t]<=lb[t][0][0]*f[0] + lb[t][0][1]*f[1]

+ lb[t][0][2]*f[2]

+lb[t][1][1]*f[1] +lb[t][1][2]*f[2] + lb[t][2][2]*f[2]

prob+=w[t]<=mu[t][0][0]*g[0] + mu[t][1][1]*g[1]
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+ mu[t][1][0]*g[0]

+mu[t][2][2]*g[2] + mu[t][2][1]*g[1] + mu[t][2][0]*g[0]

#limiting the proportions on lambda

for t in T:

#IF Starting in R1

prob+=lb[t][0][0]<= ((UB[0]-I[t])/f[0])+M*(1-r[t][0])

prob+=lb[t][0][1]<= ((UB[1]-UB[0])/f[1])+M*(1-r[t][0])

prob+=lb[t][0][2]<= ((UB[2]-UB[1])/f[2])+M*(1-r[t][0])

prob+=lb[t][0][0]+lb[t][0][1]+lb[t][0][2]==r[t][0]

#rules for lambda selection

prob+=lb[t][0][0]<=zz[t][0][0]

prob+=lb[t][0][1]<=zz[t][0][1]

prob+=lb[t][0][2]<=zz[t][0][2]

prob+=zz[t][0][0]>=zz[t][0][1]

prob+=zz[t][0][0]>=zz[t][0][2]

prob+=zz[t][0][1]>=zz[t][0][2]

#IF starting in R2

prob+= lb[t][1][1]<=((UB[1]-I[t])/f[1])+M*(1-r[t][1])

prob+= lb[t][1][2]<=((UB[2]-UB[1])/f[2])+M*(1-r[t][1])

prob+= lb[t][1][1]+lb[t][1][2]==r[t][1]

#rules for lambda selection

prob+=lb[t][1][1]<=zz[t][1][1]

prob+=lb[t][1][2]<=zz[t][1][2]

prob+=zz[t][1][1]>=zz[t][1][2]

#IF starting in R3

#prob+= lb[t][2][2]<=((UB[2]-I[t])/f[2])+M*(1-r[t][2])

prob+= lb[t][2][2]==r[t][2]

for t in T:

## #IF Starting in R1

prob+=mu[t][0][0]==r[t][0]

## #IF Starting in R2

prob+=mu[t][1][1]<=((I[t]-LB[1])/g[1])+M*(1-r[t][1])
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prob+=mu[t][1][0]<=((LB[1]-LB[0])/g[0])+M*(1-r[t][1])

prob+=mu[t][1][1]+mu[t][1][0]==r[t][1]

#### #rules for lambda selection

prob+=mu[t][1][1]<=xx[t][1][1]

prob+=mu[t][1][0]<=xx[t][1][0]

prob+=xx[t][1][1]>=xx[t][1][0]

#IF Starting R3

prob+=mu[t][2][2]<=((I[t]-LB[2])/g[2])+M*(1-r[t][2])

prob+=mu[t][2][1]<=((LB[2]-LB[1])/g[1])+M*(1-r[t][2])

prob+=mu[t][2][0]<=((LB[1]-LB[0])/g[0])+M*(1-r[t][2])

prob+=mu[t][2][2]+mu[t][2][1]+mu[t][2][0]==r[t][2]

#rules for lambda selection

prob+=mu[t][2][2]<=xx[t][2][2]

prob+=mu[t][2][1]<=xx[t][2][1]

prob+=mu[t][2][0]<=xx[t][2][0]

prob+=xx[t][2][2]>=xx[t][2][1]

#prob+=xx[t][2][2]>=xx[t][2][0]

prob+=xx[t][2][1]>=xx[t][2][0]

for t in T:

for l in L:

for k in L:

prob+=lb[t][l][k]>=0

prob+=mu[t][l][k]>=0

#for t in T:

#for l in L:

#prob+= a[t][l]*b[l]>=I[t]

for t in T:

if t>0:
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b=t-1

prob+= I[t]==I[b]+v[b]-w[b]

prob+= I[Horizon-1]>=I[0]

prob+= I[0]==0

prob.solve(GUROBI())

print(rho, prob.objective.value())

resultsbook=xlsxwriter.Workbook(’Results.xlsx’)

worksheet=resultsbook.add_worksheet()

for t in T:

worksheet.write(0,t,value(v[t]))

worksheet.write(1,t,value(w[t]))

worksheet.write(2,t,value(I[t]))

resultsbook.close()

sys.exit()

#for v in prob.variables():

#if v.varValue>0:

#print(v.name, "=", v.varValue)

#ff=0

#for name, c in list(prob.constraints.items()):

#ff=ff+1

#print (ff)

print("--- %s seconds ---" % (time.time() - start_time))



Appendix F

Base Cash Model Code

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

import xlsxwriter

wb=load_workbook(filename= ’Book1.xlsx’)

sheet_ranges=wb[’Sheet1’]

ws=wb[’Sheet1’]

Horizon=214

scenario=24

T= list(range(Horizon))

S= list(range(scenario))

#If using scenarios#

#p=[[0 for s in S] for t in T]

#for t in T:

120



121

#for s in S:

#p[t][s]=ws.cell(row=s+2, column=t+2).value

#IF using average#

p=[0 for t in T]

for t in T:

p[t]=ws.cell(row=26, column=t+2).value

print (p)

Cap=1000000

M=Cap

cin=20000

cout=40000

a=.01

delta=.01

prob= LpProblem("EL-NR", LpMaximize)

v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

wp = LpVariable.matrix("wp", (T),0, None, LpContinuous)
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I = LpVariable.matrix("I", (T),0, None, LpContinuous)

y = LpVariable.matrix("y", (T) ,0, 1, LpBinary)

z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

prob+= lpSum([p[t]*(-((1+a)*v[t])+((1-a)*wp[t])) for t in T])

for t in T:

prob+= v[t]<=cin

prob+= w[t]<=cout

prob+= wp[t]==(1-delta)*w[t]

prob+= w[t]<=I[t]

prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap

for t in T:

if t>0:

b=t-1

prob+= I[t]==I[b]+((1-delta)*v[b])-w[b]

prob+= I[213]==1000000

prob+= w[213]==0

prob+= v[213]==0
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for t in T:

if t>145:

prob+= I[t]>=500000

prob+= I[0]==0

prob.solve()

print("Max profit:", prob.objective.value())

#for vv in prob.variables():

#if vv.varValue>0:

#print(vv.name, "=", vv.varValue)

resultsbook=xlsxwriter.Workbook(’Results.xlsx’)

worksheet=resultsbook.add_worksheet()

for t in T:

worksheet.write(0,t,value(v[t]))

worksheet.write(1,t,value(w[t]))

worksheet.write(2,t,value(I[t]))

resultsbook.close()

sys.exit()

print("--- %s seconds ---" % (time.time() - start_time))



Appendix G

DRO Cash Model Code

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

import xlsxwriter

wb=load_workbook(filename=’Book1.xlsx’)

sheet_ranges=wb[’Sheet1’]

ws=wb[’Sheet1’]

Horizon=214

scenario=24

T= list(range(Horizon))

S= list(range(scenario))

#If using scenarios#

p=[[0 for s in S] for t in T]

var=[0 for t in T]
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for t in T:

var[t]=ws.cell(row=30,column=t+2).value

for s in S:

p[t][s]=ws.cell(row=s+2, column=t+2).value

#IF using average#

#p=[0 for t in T]

#for t in T:

#p[t]=ws.cell(row=26, column=t+2).value

print (p)

q=[(1/24) for s in S]

Cap=1000000

M=Cap

cin=20000

cout=40000

a=.01

delta=.01

rho=1

prob= LpProblem("EL-NR", LpMaximize)
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v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

wp = LpVariable.matrix("wp", (T),0, None, LpContinuous)

pi=LpVariable("pi", 0, None, LpContinuous)

theta=LpVariable("theta", None, None, LpContinuous)

psip=LpVariable.matrix("psip", (S), 0, None, LpContinuous)

psim=LpVariable.matrix("psim", (S), 0, None, LpContinuous)

I = LpVariable.matrix("I", (T),0, None, LpContinuous)

y = LpVariable.matrix("y", (T) ,0, 1, LpBinary)

z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

prob+= theta - rho*pi + lpSum([psip[s]*q[s] for s in S])

- lpSum([psim[s]*q[s] for s in S])

for s in S:

prob+= theta <= lpSum([p[t][s]*(-((1+a)*v[t])+

((1-a)*wp[t])) for t in T])-psip[s]+psim[s]

prob+= psip[s]+psim[s] <= pi

for t in T:

prob+= v[t]<=cin

prob+= w[t]<=cout

prob+= wp[t]==(1-delta)*w[t]

prob+= w[t]<=I[t]
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prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap

for t in T:

if t>0:

b=t-1

prob+= I[t]==I[b]+((1-delta)*v[b])-w[b]

prob+= I[213]==1000000

prob+= w[213]==0

prob+= v[213]==0

#for t in T:

#if t>145:

#prob+= I[t]>=500000

prob+= I[0]==0

prob.solve()

totalvar=0

for t in T:

totalvar=totalvar+(((value(v[t])+value(w[t]))**2)*var[t])

print("Max profit:", prob.objective.value(),totalvar)
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#for vv in prob.variables():

#if vv.varValue>0:

#print(vv.name, "=", vv.varValue)

resultsbook=xlsxwriter.Workbook(’Results.xlsx’)

worksheet=resultsbook.add_worksheet()

for t in T:

worksheet.write(0,t,value(v[t]))

worksheet.write(1,t,value(w[t]))

worksheet.write(2,t,value(I[t]))

resultsbook.close()

sys.exit()

print("--- %s seconds ---" % (time.time() - start_time))



Appendix H

Robust Cash Model Code

import time

start_time = time.time()

from pulp import *

from openpyxl import load_workbook

import xlsxwriter

wb=load_workbook(filename= ’DailyData.xlsx’)

sheet_ranges=wb[’Sheet2’]

ws=wb[’Sheet2’]

Horizon=214

scenario=24

T= list(range(Horizon))

S= list(range(scenario))

#If using scenarios#

#p=[[0 for s in S] for t in T]

#for t in T:
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#for s in S:

#p[t][s]=ws.cell(row=s+2, column=t+2).value

#IF using average#

p=[0 for t in T]

pmin=[0 for t in T]

pmax=[0 for t in T]

for t in T:

p[t]=ws.cell(row=26, column=t+2).value

pmin[t]=ws.cell(row=27, column=t+2).value

pmax[t]=ws.cell(row=28, column=t+2).value

print (p)

Cap=1000000

M=Cap

cin=20000

cout=40000

a=.01

delta=.01
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prob= LpProblem("EL-NR", LpMaximize)

v = LpVariable.matrix("v", (T),0, None, LpContinuous)

w = LpVariable.matrix("w", (T),0, None, LpContinuous)

wp = LpVariable.matrix("wp", (T),0, None, LpContinuous)

pi= LpVariable.matrix("pi", (T), 0, None, LpContinuous)

lb= LpVariable.matrix("lb", (T), None, 0, LpContinuous)

I = LpVariable.matrix("I", (T),0, None, LpContinuous)

y = LpVariable.matrix("y", (T) ,0, 1, LpBinary)

z = LpVariable.matrix("z", (T), 0, 1, LpBinary)

prob+= lpSum([pmin[t]*pi[t]+ pmax[t]*lb[t] for t in T])

for t in T:

prob+= v[t]<=cin

prob+= w[t]<=cout

prob+= pi[t]+lb[t]==(-((1+a)*v[t])+((1-a)*wp[t]))

prob+= wp[t]==(1-delta)*w[t]

prob+= w[t]<=I[t]

prob+= w[t]<=M*z[t]

prob+= v[t]<=M*(1-z[t])

prob+= I[t]<=Cap
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for t in T:

if t>0:

b=t-1

prob+= I[t]==I[b]+((1-delta)*v[b])-w[b]

prob+= I[213]==1000000

prob+= w[213]==0

prob+= v[213]==0

#for t in T:

#if t>145:

#prob+= I[t]>=500000

prob+= I[0]==0

prob.solve()

print("Max profit:", prob.objective.value())

#for vv in prob.variables():

#if vv.varValue>0:

#print(vv.name, "=", vv.varValue)

resultsbook=xlsxwriter.Workbook(’Results.xlsx’)

worksheet=resultsbook.add_worksheet()

for t in T:

worksheet.write(0,t,value(v[t]))
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worksheet.write(1,t,value(w[t]))

worksheet.write(2,t,value(I[t]))

resultsbook.close()

sys.exit()

print("--- %s seconds ---" % (time.time() - start_time))



Appendix I

Parameters Used in Utility Functions

Utility Fill Parameter Values
Approach 1 K=15152.52
Approach 2 K=7575.758
Approach 3 K=1362.221
Approach 4 K=681.1106
Approach 5 K=1000000
Approach 6 K=50681.1
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