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Abstract 
 

Few ocean stations have been in place long enough to observe decadal ocean cycles, but 
Ocean Station Papa (OSP) is one of those few. With a time series that spans over 60 
years, OSP is an ideal data set for linking decadal and multi-decadal changes in the 
climate and ocean cycles. The purpose of this study is to determine if long term (decadal) 
climate variations significantly relate to and potentially impact biogeochemical variables 
in the open ocean north Pacific surface waters. One outstanding problem is that the OSP 
time series has highly variable sampling effort over time for different ocean variables. 
Such time gaps and irregular sampling make it difficult to do standard statistical time 
series analyses. Hence, the first part of this thesis is a statistical reconstruction of the 
original OSP data onto a regular monthly time grid. This is done using a state space 
model and the Kalman smoother algorithm. Its central idea is to estimate missing 
observations in seven ocean variable time series (temperature, salinity, nitrate, phosphate, 
silicate, chlorophyll, and oxygen) by using empirical relationships between the variables, 
as well as making use of the fact that some of these variables (e.g. temperature and 
salinity) are available for the entire analysis period. Specifically, a period of high-density 
sampling is first used to establish the relationship between the variables, which is then 
used to reconstruct the seven ocean variable time series with the Kalman smoother 
algorithm. The second part of this thesis aims to relate the reconstructed OSP variables to 
modes of climate variability. The reconstructed OSP time series are first smoothed to 
remove seasonal variations. They are then compared to four climate modes (Pacific 
Decadal Oscillation, North Pacific Gyre Oscillation, Southern Oscillation Index, and 
Multivariate ENSO Index) using cross-correlation and cross-spectral analyses. The cross-
correlations between the ocean state variables and climate modes show that NPGO has 
the greatest number of significant correlations as the leading variable. The cross-spectral 
analyses show that PDO has the least amount of influence on seven ocean state variables, 
and that NPGO is the climate mode with the most influence on the ocean state variables. 
Using this method, the influence of climate variability on physical, biogeochemical, and 
biological ocean variables could potentially be used on any ocean time series.  
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Chapter 1 – Introduction 
 
1.1: Introduction and Overview 

 
It is known that the climate-scale variability (referred to as climate from here on 

in) has an influence on the physical part of the ocean (as well as the ocean having an 

influence on climate), but the effects climate has on the biogeochemical variables in the 

ocean surface are less well characterized and understood. It is possible to observe this 

influence, in theory, with a data set that spans decades so the major modes of climate 

variability, such as the Pacific Decadal Oscillation (PDO) and the El Niño Southern 

Oscillation (ENSO) can be observed, but few such data sets exist in the ocean. Climate 

modes might have a direct influence on biogeochemical variables through changes in 

temperature or precipitation amount affecting species composition and/or nutrient uptake 

rates, or they might have an indirect influence by ways of shifting water currents or wind 

patterns. Using a long-term data set, this project aims to determine if there are any links 

between the regional climate modes and biogeochemical variables in the area. The data 

set that makes this possible exists at Ocean Station Papa (OSP) (50°N, 145°W) (Figure 

1.1), where there has been data collection in the surface water from 1950 to the present 

(Freeland, 2007). The OSP data set is described in more detail later in this section. 

This study plans to link and analyse changes in the surface oceanography with 

climatic modes using the OSP data. These insights could provide information on how the 

biogeochemical variables, and the base of the oceanic food web (phytoplankton), are 

affected by climate modes in the Pacific Ocean. Specifically, this thesis will develop 

approaches to make optimal use of the long term OSP time series, and to investigate links 
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between biogeochemical variables and climate variability. It is comprised of two parts; 

the first consists of the statistical reconstruction of a complete OSP biogeochemical time 

series, and the second consists of investigating any links between the reconstructed OSP 

time series and the selected climate variables. 

 

  

Figure 1.1: Map of Eastern Sub-Arctic Pacific ocean with Ocean Station Papa (OSP) indicated by the 
white dot at 50°N, 145°W. Colour scale indicates bathymetry where lighter blues indicate shallower waters 
than the darker blues (grey is land). 

 

Ocean Station Papa was originally a weather station and had a ship stationed there 

from 1943 to 1981, where it not only took atmospheric measurements for weather 

prediction, but also collected a variety of oceanic data (Freeland, 2007), with systematic 

oceanographic observations starting in 1956. Initially the weather ships at OSP were 
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provided by the United States Navy, but this did not last long. Canadian occupation of the 

station started in 1950 (Garrett, 2006). The weather ship occupation of OSP ended in 

1981 due to financial reasons. From this point on, shipboard observations at OSP by the 

Fisheries and Oceans Canada (DFO) involved sampling three to six times per year (but 

with the addition of many new variables (Freeland, 2007), marking a new era in the 

monitoring program). In 2007 another new era began when a National Oceanic and 

Atmospheric Administration (NOAA) surface mooring with the ability to make high-

frequency observations (hourly, daily, weekly, etc.) was installed at OSP, primarily to 

study the Northeast Pacific carbon cycle (Fassbender et al., 2016). In 2013, this mooring 

was supplemented by two others as OSP became one of the Ocean Observatories 

Initiative Global Sites. To this day, the DFO continues to maintain shipboard 

measurements and provide ship time for mooring maintenance and OSP is considered a 

long-term monitoring site. 

Ocean Station Papa is an important oceanic monitoring site, as it is one of the 

longest open ocean time series (Freeland, 2007). Long data records are essential for 

investigating any link between biogeochemical ocean surface variables and climate 

oscillations. Climatic events such as ENSO occur on a 2-7 year time scale (Santoso et al., 

2017), so there should be many data sets that are capable of recording the effects they 

have on the surface ocean waters, but events such as PDO, North Pacific Gyre Oscillation 

(NPGO), and ‘the blob’, which occur on longer scales (decadal to centennial), can only 

have their cycles recorded by longer data sets. OSP is one of a few data sets that has the 

potential to provide an insight into the effects of climate forcing on ocean surface waters 

that many other oceanic data sets cannot, which addresses a question that is central to this 
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thesis. Note also that it is also possible for these long time series to be recorded using 

proxies, such as alkenones in the sediment records, though this technique is typically used 

for paleo-oceanography (Gould et al., 2019). 

The overarching goal of this project is to link the changes in the selected 

biogeochemical variables in the surface waters at OSP with climate events using a 

statistical analysis of climate indices and reconstructed OSP ocean variables). There are a 

few other data sources available for this project besides the core data in the DFO archive: 

(i) the Pacific Marine Environmental Laboratory (PMEL), (ii) OSP data as compiled by 

Frank Whitney, and (iii) ocean reanalysis data products for physical variables. However, 

here are a few issues that need to be resolved before work can begin on the overarching 

goal. Firstly, the most ubiquitous feature which will be dealt with by statistical 

reconstruction (using the Kalman smoother algorithm) is that the OSP data time series is 

not continuous in the sense that it is not sampled at regular time intervals. There are times 

where hardly any samples were taken, and the measurement density varies greatly 

amongst recorded variables over 10 to 20-year time spans. When samples were taken 

consistently, they were often only taken two to three times a year, which provides the 

bare minimum data to see annual cycles. These changes in sampling protocol make it 

incredibly hard to do anything other than basic statistics (e.g. means, trends, histograms, 

characterising the average seasonal cycle) with this time series and had severely limited 

exploration of this rich data set. This has not, however, discouraged scientists from 

conducting studies on long-term trends at OSP. For example, Tabata (1989), Thomson & 

Tabata (1989), Freeland et al. (1997), and Whitney et al. (2007) have all looked at long-

term trends at OSP using 27 to 39 years worth of data. In order to look at seasonal, 
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annual, or decadal cycles and link them to climate variability a time series with samples 

at regular intervals is needed for the more complex and informative statistical time series 

analyses that cannot be done when there are large gaps in the time series. Another related 

issue that can be solved with statistical reconstruction is the infilling or imputation of 

poorly sampled the ocean variables; some of the variables only have a few measurements 

throughout the entire 60-year time series, and others have been sampled at varying depths 

multiple times a year. For example, sea surface temperature (SST) and sea surface salinity 

(SSS) have been well sampled throughout the 60-year period, while chlorophyll and 

phosphate have been more sparsely sampled throughout the same period. Figure 1.2 

shows an example of a well-sampled variable (SST). Figure 1.2a shows that while 

temperature has been measured to a depth of at least 500m from 1956 to 2017, there is a 

greater frequency of sampling in the shallower waters. Figure 1.2b depicts the number of 

times samples were taken each year and shows that the greatest temperature sampling 

frequency occurred from 1970-1981, where there were more than 500 samples taken per 

year.  Figure 1.2c depicts the number of samples that were taken at each depth and shows 

that the top 5m of ocean is the most well-sampled depth, and that the top 100m is more 

frequently sampled compared to deeper water depths. Figure 1.2d is a time series of the 

top 15m, which clearly demonstrates that there is more sampling in the surface waters 

than the deeper waters. 
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Figure 1.2:The temperature record at OSP. Panel A: The time and depth series of temperatures, with 
colour indicating temperature values. Panel B:The number of times per year temperature samples were 
taken. Panel C: The number of temperature samples taken at each depth throughout the entire time series. 
Panel D: Time series of mean temperature in the upper 15m.  
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Of the 39 variables that have been measured at OSP, the biogeochemical variables 

that were chosen for this project are: temperature (°C), salinity (PSU), nitrate (μmol/L) 

phosphate (μmol/L), silicate (μmol/L), chlorophyll (μmol/kg), and oxygen (mg/ ). 

They were chosen due to their availability, coverage during the 60-year time period, 

and/or relevance to the goals of this study (i.e. linking surface biogeochemistry to 

climate). While samples have been taken from a variety of depths, the surface waters 

have the greatest density of samples (Figure 1.2) and so the average in the top three depth 

bins or ‘sample buckets’ (top 15m) was used. These represent surface time series for each 

of the seven variables. The climate modes that were chosen (PDO, ENSO, and NPGO) 

were based on known climate modes that originate and/or affect the sub-Arctic region 

where OSP is located. Once the biogeochemical variables (ocean state variables) have 

been reconstructed to be on a monthly time interval, a series of correlations, cross-

correlations, and cross-spectral analyses will be completed to determine if and how the 

chosen climate modes impact the ocean state variables.  

As noted, it is important for the time series to be complete (i.e. on a regular time 

grid, or values at every time step), since standard time series analyses methods generally 

require regular time intervals. There are a few advanced and specialised time series 

techniques that allow for irregularly sampled data, but we do not consider these here. 

There are also a number of imputation methods that are available to infill (gap fill) 

incomplete time series, ranging from mean imputation (calculating the mean value from 

the observations and using that value to fill in the gaps) and simple linear interpolation 

(which fits a straight line over data gaps) to more complex imputation methods, such as 

regression imputation which fills in the missing data values by regressing the missing 
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variable on other variables. For this project, the issue of having incomplete time series 

will be dealt with using a form of regression imputation using the Kalman smoother 

(which is a solution to a state space model that utilizes the Kalman filter, explained 

further in Section 2.1). This novel application of the Kalman smoother will be employed 

to reconstruct a complete time series for the full multivariate ocean time series with 

appropriately estimated error bars. The Kalman smoother can also make a prediction as to 

the state of the system for a period with no data points for that variable by borrowing 

information from other variables, a feature which is needed for this study. This means 

that it provides for multivariate infilling and imputation, unlike most methods that only 

deal with a single time series. Therefore, the Kalman smoother will be used to provide 

estimated values for all the selected ocean variables at each time step (monthly intervals 

in this project, ranging from 1956 to 2017), which will result in the complete, 

reconstructed time series with error bars needed for the second part of this thesis, where 

reconstructed ocean variables are statistically related to climate modes. 

This thesis is structured as two major parts. The first part (Chapter 2) will consist 

of reconstructing the biogeochemical variables from OSP using the Kalman smoother. 

Then, the second part (Chapter 3) will examine the link between the biogeochemical 

variables at OSP and the climate modes to determine if climate variability has a 

significant influence on the surface biogeochemical variables at OSP. 

 

 

 



9 
 

1.2: Brief Overview of OSP Oceanography 

 
Located in the sub-Arctic Pacific Ocean, OSP is located in a High Nitrogen, Low 

Chlorophyll (HNLC) region, which means there is some limiting nutrient/biological need 

that is preventing the local phytoplankton from using all of the available nutrients 

(Whitney et al. 2005). In fact, there have been studies done on whether fertilising HNLC 

regions with iron (the most common known limiting nutrient) can mitigate ocean 

acidification (Maldonado & Price, 1999), and on whether iron really is the limiting factor 

in these regions or if a vitamin (B12) is the cause (Koch et al. 2011). There have also been 

many studies on whether increasing the productivity of these regions would result in an 

increase in the amount of atmospheric carbon dioxide being drawn into the ocean 

(Aumont & Bopp, 2006, Salter, et al., 2012).  

The surface waters in the sub-Arctic Pacific are highly stratified by a steep 

halocline, and are often isolated from the nutrient rich deep waters (Haug, et al., 1999), 

but there is evidence that the northern Pacific Ocean is becoming less saline (Freeland, 

2013), which may cause the halocline to weaken.  

There have been many oceanographic studies in the OSP region. These include a 

study about ‘The Blob’; a massive “blob” of warmer-than-usual water off the Pacific 

coast that has persisted since fall 2013 (Bond et al., 2015, Cavole et al., 2016, Whitney, 

2015)), as well as a study that links ocean climate and ecosystem change with the North 

Pacific Gyre Oscillation (and initially identifies the NPGO) (Di Lorenzo et al., 2008). 

Other processes of interest in the region include the permanent stratification (Haug et al., 

1999), the utilization of iron by plankton communities in the sub-Arctic Pacific Ocean 



10 
 

(Maldonado & Price, 1999), and whether iron fertilization can mitigate ocean 

acidification (Cao & Caldeira, 2010).  

There are also many studies done directly at the OSP sampling site, not just in the 

surrounding region. C.S. There have been many studies over the past decades (Wong et 

al., 1999, 2010; Wong, 1978) looking at carbon dynamics at OSP (carbon fluxes, isotopic 

composition, relationships between phytoplankton, nutrients, and carbon, etc.). Another 

study of the biology at OSP was conducted by Frost (1987), who investigated the annual 

cycle of phytoplankton and zooplankton in the ecosystem. Physical studies include the 

annual cycle and depth penetration of waves (Alford et al., 2012), eddy circulation and 

ocean metabolism (Pelland, 2016), estimating secular changes in steric sea level 

(Thomson and Tabata, 2009), quantifying how surface waves drive upper ocean 

turbulence (D’Asaro et al., 2013), how the winter mixed layer in the Northeast Pacific has 

changed (Freeland et al., 1997), and many others. These studies, however, don’t use the 

full suite of available data from OSP; the studies typically only cover a time span of about 

a month to a couple of years at most. There are some studies that do cover a greater time 

span, such as the evaluation the drivers of marine carbon cycling at OSP which used 7 

years’ worth of data (Fassbender et al., 2016), as well as some other long term studies (Di 

Lorenzo et al., 2009, Crawford & Peña, 2016 , and Freeland, 2013). These studies have 

their own methods of completing their times series, such as using a regional ocean model 

hindcast, locating all (published and unpublished) data available from previous research 

projects, or focusing on anomalies, spatial maps, and trends. Another way of dealing with 

inconsistent sampling at OSP is to exclude data from periods with sporadic sampling, like 

Peña & Varela (2007) did. When looking at decade’s worth of data from OSP, some 
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researchers take data from the high density sampling, weather ship period and compute 

the long-term average annual cycle. The resulting averages are then interpolated to 

determine the baseline monthly average (Peña & Varela, 2007, Whitney et al., 2007, 

Wong et al., 2007). At other long-term open ocean time series stations (Hawaii Ocean 

Time-Series (HOT), Bermuda Atlantic Time-Series (BATS)), which have both been in 

operation since 1988, researchers typically use linear interpolation to fill in any gaps in 

the time series (Bingham & Lukas, 1996, Malmstsrom et al., 2010, Krause et al., 2009). 

Linear interpolation is a suitable method of imputation for these time series as they take 

regular, monthly (or better) samples. This is one of the issues that this project hopes to 

address – making full use of this valuable long-term, multi-variable data set. To do so, we 

aim to reconstruct and analyse the full time series with as many relevant biogeochemical 

variables as possible and make these long-term data are available for more complex 

studies.  

1.3: Climate Modes 

 
With climate change becoming a more accepted concept (especially for non-

scientists) these days and being the cause for many protests or even being a deciding 

factor for many in federal elections around the world, there seems to still be a general 

misunderstanding of what is climate change and what is climate variability. There has 

been a semantic change to the term ‘climate change’ since data were first being collected 

at OSP. In the 1960s, the term climate change (which now often implies long term 

changes in the climate due to human activity) was used for what would be described 

today as climate variability (inconsistencies and anomalies in the climate, some natural in 

origin and some anthropogenically driven) (Rohli & Vega, 2018). Climate modes are 
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specific recurring patterns of climate variability. One of the climate modes often 

referenced in the popular media is the El Niño/Southern Oscillation (ENSO). An El Niño 

or La Nina can alter temperature and precipitation patterns enough to affect food 

production (agriculture and fishing) in many countries, particularly those bordering the 

Pacific Ocean (Santoso et al., 2017). There are other climate modes that are not typically 

as well known to the public that have a longer cycle as compared to ENSO’s 3-5 year 

cycle. These longer-term climatic patterns may be the reason why people will say that the 

local climate was quite different when they were young, or ‘back in my day’, and blame 

climate change for those differences.  

That being said, just as with ENSO events, longer term climate modes, such as the 

Pacific Decadal Oscillation (PDO), also alter weather patterns around the world. Figure 

1.3 depicts some of the biological and physical phenomenon in the ocean and their space 

and time scales, ranging from micro patches to biogeographical provinces. The dotted 

oval labelled ‘F’ (‘El Niño’ type events) most closely represents the spatial and temporal 

scales which are examined in this thesis. These changes in weather and ocean patterns can 

have effects that are harder to determine due to the longevity of the event, and the fact 

they occur together with other climate variations. For example, PDO was only officially 

recognised as a climate mode after looking at 70 years of catch history of the Pacific 

salmon (Mantua & Hare, 2001). The changes in the Pacific salmon catch history is just 

one of the reasons why understanding how these climate modes affect the biogeochemical 

variables (nutrients for the bottom of the oceanic food web) in the ocean surface is of 

interest to this study.  
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Figure 1.3: Stommel diagram from Kaiser et al., 2005 showing time, space, and biomass scales of 
biological and physical phenomneom within the ocean. The height of the vertical surface denotes the 
energy or power in the frequency bands. Shading denotes collection methods used. Area of interest for this 
study is the dotted circle “F’.  

Due to the goals of our study (a complete monthly time series from 1956 to 2017) 

and the variable and inconsistent samplings rates at OSP, ocean reanalysis products will 

also be used in this study since these are available on the monthly basis for physical 

variables. Note that the relationship between the variables will still be calculated using 

the DFO OSP data, but the ocean reanalysis products for temperature and salinity at OSP 

will be used to provide a monthly foundation from which other time series will be 

reconstructed (see Section 2.3 for details). Based on the amalgamation of the information 
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provided by ocean models, atmospheric forcing fluxes, and ocean observations, ocean 

reanalyses are data assimilation products based historical reconstructions of the ocean 

systems (Balmesda et al., 2012). The ORAS4 reanalysis obtained from Advancing 

Reanalysis (Smith, 2010) was used in this study as it provides monthly sea surface (10m) 

temperature (Figure 1.4) and salinity data based on daily surface fluxes of heat, 

momentum, and fresh water. The seasonal cycle of ORAS4 temperature in Figure 1.4 is 

the dominant feature in the time series. There also appears to be an increase in SST in the 

last few years in Figure 1.4. There are data at every, monthly, time interval, whereas in 

Figure 1.2d there are gaps in the time series.  

The reconstructed time series of seven ocean state variables (temperature, salinity, 

nitrate, phosphate, silicate, chlorophyll, and oxygen will be compared with the climate 

modes PDO, NPGO, SOI, and MEI (SOI and MEI are both ENSO indices) to determine 

how much effect these climate modes have on ocean variables mentioned above. 

Studying the interaction between climate variability and ocean variables is not a new 

concept, and there have been many studies done on it. A few findings include: the spatial 

pattern of the salinity signature of the PDO differed from the temperature signature 

(Overland et al., 1999); anomalous sperm whale sightings at OSP are correlated with 

ENSO events (Diogou et al., 2019); and studying oxygen and nutrient trends and their 

relation to PDO, NPGO, and the North Pacific Index (Stramma et al. 2020). The nitrate 

variable being used is actually a nitrate plus nitrite data set (just called nitrate for 

simplicity as nitrite is negligible compared to nitrate), but there are also separate data sets 

for nitrate and nitrite. Oxygen also has multiple, distinct, data sets in the OSP archive 

with different units (ml/L, μmol /L, μmol /kg). The oxygen data recorded in μmol/kg was 
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the one chosen for this study. Some of these other data sets will be used to verify the 

accuracy of the reconstruction made in this project.  

 
 
 
 

 
Figure 1.4: Temperature time series from ORAS4 reanalysis. Temperature is documented on a regular 
(monthly) timescale.  
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Chapter 2 – Statistical Reconstruction and Application  
 
2.1: Statistical Reconstruction Method 

In order to analyse the OSP data and connect it to any trends and variability in 

relevant climate data, the gaps or data voids in the time series need to be filled 

(imputated). The reason is that some of the statistical analyses that will be of interest (e.g. 

cross-spectral analysis) require the time series to have values at every time step for all 

variables, and that the different time series need to be the same length. Note that there are 

a number of ways to imputate time series data that have significant gaps in them, ranging 

from linear interpolation for simpler systems, to multiple imputation by chained equations 

(MICE) for more complex systems, and even reanalysis products based on numerical 

modelling (Storto & Masina, 2016), which can be seen as the gold standard. For this 

study, linear interpolation will not work as there are large gaps with durations greater than 

the important cycles in the data (seasonal and decadal), that cannot be resolved and will 

hence be mis-represented for these time periods. As for reanalysis based on numerical 

modelling and data assimilation, while it works for physical variables where the 

relationships are well known, it will not be nearly as accurate for biogeochemical 

variables where most of the relationships and influencing factors are not well understood. 

As well, there are a lot fewer biogeochemical data than physical data. From a practical 

perspective, re-analysis is a complex exercise requiring a numerical modelling and data 

assimilation system and requires more computational time and effort than is available for 

this study.  

Therefore, we focus on statistical reconstruction method using the Kalman 

smoother. The Kalman smoother is a solution algorithm for a state space model which is 
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suitable for linear and Gaussian systems which contain statistical noise and error, and it is 

particularly suitable for determining features such as inter-annual variability and seasonal 

cycles. The output of the Kalman smoother produces estimates of the unknown variables 

over time (along with their errors), and hence allows for a complete gap-free time series 

to be reconstructed, as will be demonstrated below. To the author’s knowledge, this 

feature of the state space model/Kalman smoother has not been used explicitly to carry 

out imputation. 

The Kalman smoother (state space) equations are: 

     =   +     (1) 

      =   +    (2) 

where: 

  : ocean state at time t (e.g. temperature, salinity, nitrate, etc.).  

  : dynamics matrix. 

 : model error. 

  : observations at time t (key quantity, comprises the OSP observations). 

  : measurement operator. 

  : observations error  

 

The main assumptions are that  and   are both normally, and independently 

distributed with a 0 mean and variances of the system noise covariance and observation 

error covariance, respectively, and that they are independent of each other. To check the 

assumptions, we check the one-step ahead prediction errors (the innovations). They 

should be normal, independent, and identically distributed. The goal of the state space 
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model is to estimate the ocean state ( ) monthly over the entire analysis period (1956-

2017). To do this, the OSP observations ( ) are needed, and as well as specification of 

the dynamics matrix ( ) and the measurement operator ( ), as well as error statistics for 

the model and observations. In these equations,  describes the ocean state comprising 

temperature, salinity, nitrate, phosphate, silicate, chlorophyll, and oxygen; Φ relates the 

ocean state variables from one time (month) to the next time and will be estimated 

externally using a training data set; , which has the same units as , describes the 

model error, and is an estimated input in the form of its variance (or standard deviation); 

 comes from the observed OSP data;  is an input which indicates which observations 

are to be used in the analysis at each time step; and , which has the same units at , 

describes the observation errors and is also an estimated input in terms of its variance. 

It is with the state space model described by Eqs. 1 and 2 that the gaps within the 

OSP data set can be filled. While there are approaches that use the Kalman smoother 

when there are no variable observations at an analysis time, the availability of monthly 

temperature and salinity data negate the need to use these methods. Equation 1 predicts 

what the ocean state will be, and Eq. 2 determines which observations will be used at 

each time step, through  to refine the estimate of the ocean state. Given that , , and 

 are known (or will be determined from the data), and  and  are also assumed to be 

known (or can be estimated, again from the data), the only unknown is , which 

estimates the mean ocean state (the output) and its variance (the errors) at any given time. 

Hence, the output product of the Kalman smoother is a reconstructed time series with 

error bars. The procedure for this will be illustrated below. Details of the Kalman 

smoother algorithm can be found in Appendix A.1. 



19 
 

The dynamics matrix, , is the matrix that describes the linear time evolution of 

the ocean system from one month to the next. Its size is determined by the number of 

variables that comprise the ocean state (here a 7 x 7 matrix). In this project it is derived 

by a multivariate regression (explained in Section 2.2) using a training data set with a 

time step of one month. A multivariate regression is applied to this training data to 

determine the dynamics matrix (see Section 2.2).  Specifically, a six year section of the 

time series in the late 1970s with a high density of samples was used to estimate  

(details in Section 2.2). We will assume this  is valid for the entire time period of 

interest (i.e. the relationships between the variables do not change over time). The values 

in the matrix indicate the relationship that each variable has with itself and every other 

variable for a monthly time step. 

 

2.2: Example of Statistical Reconstruction Using Kalman Smoother 

 
A simple application to some of the OSP surface data will be done in this section 

to provide a better understanding as to how the Kalman smoother is applied for time 

series reconstruction. For illustration, a simple three variable (temperature, salinity, and 

nitrate) example is used based on an OSP surface ocean data set provided by Frank 

Whitney (which is also partly included in DFO archive) from the years 1956 to 2014, as 

well as the physical reanalysis time series, ORAS4 (Balmaseda et al., 2012), which 

provides monthly SST and SSS values.  

The following proof of concept experiment is carried out where the ocean state at 

OSP, here comprised of SST, SSS, and nitrate, is reconstructed on a monthly time 

interval. This is comprised of two main steps: (i) determining  (the dynamics matrix), 
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and (ii) applying the Kalman smoother to reconstruct the ocean state (gap filling or 

imputation). The dynamics matrix is first determined by using Frank Whitney’s SST, 

SSS, and nitrate data. Second, using the estimated , a reconstruction is undertaken with 

the Kalman smoother wherein the reanalysis SST and SSS (from ORAS4, regular 

monthly intervals) are used along with the gappy nitrate record (from Frank Whitney). In 

this manner, the SST, and SSS data are used to impute the values of nitrate. Therefore, the 

observations to be used in the Kalman smoother (  are the Frank Whitney nitrate data 

and the ORAS4 SST and SSS data with;  and  are to be determined. For simplicity, 

an assumption of a constant standard deviation of 1 for the  matrix and 0.5 for the  

matrix is used (an approach for the proper estimation of the error standard deviations is 

taken up in Section 2.3). The reconstructed time series will be  over the full analysis 

period. The procedure is illustrated below. 
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Figure 2.1: Scatter plot of Frank Whitney’s raw surface temperature data collected at OSP. Black circles 
are observations. Panel 1 shows SST data at OSP. Panel 2 shows SSS data at OSP. Panel 3 shows Sea 
Surface Nitrate data at OSP. The data between the blue, vertical lines (1975 to 1981) are the training data 
used to determine  due to the density of observations for all three variables.  

 
2.2.1: Determining  
 
 

Suppose one wanted to determine a  (the lagged relationship between the chosen 

variables) (Eq. 1) with a one-month time step using only a single variable, say, 

temperature. This would be done through the use of a lagged univariate regression. By 

taking two temperature values one month apart from each other, a linear regression could 

be used to estimate the relationship between temperature values lagged by one month. 

This would yield  which is in fact the auto-covariance of temperature at lag one. To 
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obtain an analogous result for multiple variables we perform a multivariate regression. 

The same concept is used, but now using two, or more, different variables, such as 

temperature, salinity, and nitrate. The purpose of the regression is to describe how one 

variable (the response) depends on another (the predictor), lagged by one month; this 

provides a  matrix. More information on this multivariate regression can be found in 

Appendix A.2. 

To estimate the  matrix, a section of the time series that has all three variables 

sampled regularly on a monthly basis is used for training data. For this example, the data 

from the years 1975 to 1981 are being used (Figure 2.1) as they are from the period of 

highest density sampling. These data were re-scaled to have zero-mean and unit variance. 

Carrying out a lagged multivariate regression on these scaled data with a time step of one 

month yields , a dynamics matrix. The numerical values obtained are: 

 

 

 

In this case it is a 3 x3 matrix where the numbers on the diagonal (1.009, 0.9658, and 

0.7692) are the auto-regressive coefficients and are similar to the persistence of each state 

variable, but may be greater than 1 and amplify the previous value, and the off diagonal 

numbers are the coupling between the different state variables. In all, it indicates by how 

much each state variable will change according to the previous value of another variable. 

The coefficients indicate by how much the dependent variables change at the next time 

step when the independent variable increases by a unit of one. The auto-regressive 
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coefficients of the variables (diagonal elements) indicates how much influence one 

variable has on itself from one month to the next. Therefore, temperature amplifies itself 

from one month to the next, while nitrate (0.7692) does not influence itself as much as 

temperature. The couplings between the state variables indicate how much influence each 

variable has on each variable at the next time step; e.g. 

. Generally, the higher the absolute value, the greater the influence with the 

sign indicating the direction of influence. 

 

2.2.2: Determining  
 

The measurement operator, , also needs to be specified. This matrix determines 

which observations will be used in the Kalman smoother at each time. According to Eq. 2 

it relates the state  to the observations . For the simplified example here, there are two 

possible cases: 

 

Case 1: measurement for temperature, salinity, and nitrate are all available at time t. 
 

 

 

Case 2: measurement for only temperature and salinity are available at time t, with nitrate 

missing.  
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In order to avoid any times where there are no observed variables, the reanalysis product 

for sea surface temperature and sea surface salinity at OSP are used since the reanalyses 

have monthly values for the entire period covered in this project. Note that these 

temperature and salinity from reanalysis are typically highly consistent with the OSP data 

with r = 0.99 for the two temperature time series, and r = 0.95 for the salinity time series. 

 

2.2.3: The Errors 
 

The statistics of the model and observation errors need to be determined, 

specifically their variances or standard deviations. For the simple example shown above, 

the standard deviation of the model error has been set at 1.0, and the standard deviation 

observation error has been set at 0.5. Note that these values are completely arbitrary and 

apply to all the scaled ocean variables equally; further detailed explanations of how to 

obtain more reasonable error statistics will be provided in Section 2.3. Their 

interpretation is that when there is a high model error, the reconstruction does not follow 

the dynamics well and relies more heavily on the observations. Alternatively, when there 

is a low model error, the reconstruction relies more so on the model than the observations, 

so the reconstruction is largely based on . Having a high observation error has similar 

results as having a low model error in that the reconstruction mostly ignores any 

observations and relies on the model. When there is a low observation error, the 

reconstruction follows the observations (when there are observations) rather than the 

model, even when there are potential outliers.  
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2.2.4: Kalman Smoother Application 

Now that all of the input values needed to complete the model have been assigned, 

the Kalman smoother can be implemented. It is again emphasized that the analysis takes 

place using scaled, dimensionless variables, and then is converted back into the original 

units for presentation. Given the data set and the values assigned above, Figure 2.2 shows 

results of the Kalman smoother for the full analysis period from 1956 to 2017.  

 

Figure 2.2: The reconstructed time series for temperature (first panel), salinity (second panel), and nitrate 
(third panel) from 1956 to 1997. The SST and SSS time series are based on the ORSA4 reanalysis data. The 
black line represents the mean for the reconstructed values, the grey shaded area represents the error bars 
based on the mean ± 2 x standard deviation. The red dots represent the observations used to create the 
reconstruction. 
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The reconstruction results show the same patterns as the original data, but the 

nitrate time series is now complete with error bars. Note that the error bars get smaller 

during the time steps where there are data available but are larger in nitrate data voids. As 

the errors are currently being assumed, the absolute size of the error bars themselves are 

not accurate but the results likely reflect the relative patterns.  

The temperature and salinity reconstructions line up almost exactly with the 

observations but seeing as there are no gaps in the original reanalyses data, and the 

observation error is assumed relatively small, that is to be expected. Any discrepancies 

seen can be accounted by the fact there are small errors associated with both the model 

and the observations. When there are nitrate observations available, they typically lie 

within the error bars. The reconstruction, however, often relies more on the model than 

the observations for the majority of the time series, particularly at the beginning of the 

time series where there are no nitrate observations and estimates for nitrate are entirely 

based on the values of temperature and salinity and their relationship with nitrate as 

dictated by the dynamics matrix. The nitrate values show a dip around 1960, which 

corresponds with the dip in salinity values in the same time frame. It is difficult to 

determine how much influence temperature has due to the strong seasonal cycle. 

 
2.3: Full Application of Kalman Smoother to the OSP Data 

 
Now that a simple example has been presented for illustrative purposes, we now 

apply this method to reconstruct the seven time series (temperature, salinity, nitrate, 

phosphate, silicate, chlorophyll, oxygen) from OSP. These time series (Figure 2.3) were 

provided by DFO and cover a maximum time period of May 1956 to June 2017. These 
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variables were chosen because they have at least two to three samples per year for the 

majority of the 60 year time series and seemed to be relevant to the goals of this project in 

that they are known nutrients for phytoplankton (nitrate, silicate, phosphate), proxies for 

determining phytoplankton mass (chlorophyll), and/or physical variables which can help 

fill in any gaps in the other variables. As can be seen in Figure 2.3, there are inconsistent 

sampling rates and some substantial gaps in these time series.  
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Figure 2.3: Time series of the OSP data averaged over the top 15 m of ocean surface. Black cicrles indicate data points. The data within the vertical blue lines 
(Sep. 1970 to Mar. 1967) denotes the training data used to determine Φ. Panels A through G represent: temperature, salinity, nitrate, phosphate, silicate, 
chlorophyll, and oxygen, respectively 
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Temperature and salinity have similar sampling rates with the densest sampling being 

done pre-1980, and then dropping to a few times a year after that (note that we are not 

including any of the more recent mooring or Argo float data which would serve to greatly 

increase the data volume). While temperature has an obvious seasonal cycle it does not 

appear that salinity has one. Salinity does, however, have a decreasing trend which is 

well-documented for the sub-Arctic Pacific. Nitrate sampling only really started after 

1965, and there are a couple of years after that where it does not appear to have been 

sampled. Phosphate had some dense sampling pre-1960, but then there are no samples for 

about a decade. This is similar to silicate, which was sampled from the late 1950s to early 

1960 and then again after 1970. Oxygen was a fairly well sampled throughout the full 

time series. Chlorophyll was densely sampled from 1960 to the mid-1970s, and then 

started lower density sampling in the mid-1980s. Note that while the chlorophyll samples 

have units of  , all work with this chlorophyll time series will be done in log 

chlorophyll.  

For carrying out the analysis within the Kalman smoother, we will be making use 

of scaled, or dimensionless, variables with zero means and unitless variances. The 

equations used to scale and un-scale each of the variables are: 

             (3) 

  (4) 

where: 

 : the scaled state variable 

  : the original state variable 

 : the sample mean of the state variable 
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 : the standard deviation of the state variables. 

 

These time series were scaled (Eq. 3) so the Kalman smoother does not have to estimate a 

mean, and for numerical efficiency and robustness in determining the dynamics matrix 

and the error analysis (after the Kalman smoother is run, the variables are un-scaled using 

Eq.4 to maintain original units for easier interpretation).  

 

2.3.1: Determining  
 
 

To carry out the statistical reconstruction for the seven time series, the first thing 

to do, as in section 2.1, is to find a period of high frequency sampling so that a training 

data set and the dynamics matrix can be obtained. For this set of time series, the training 

period was set to be September 1970 to March 1976 (between the blue lines in Figure 

2.3).  

The time series within the training period need to be at a consistent sampling rate 

(monthly for this project) in order to use the multivariate regression used to determine . 

For the training period, the raw data is sampled at a high sampling rate, daily to weekly, 

and not at a consistent monthly rate. Hence, basic linear interpolation was used to 

downscale the data to obtain a monthly sampling frequency for all of the variables.  
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Figure 2.4: Silicate data from training period before (top panel) and after (bottom panel) an interpolation. 
Black dots denote data points. 

 

Figure 2.5: Phosphate data from training period before (top panel) and after (bottom panel) an 
interpolation. Black dot denote data points. 

 
The top panels in Figures 2.4 and 2.5 depict the dense sampling from the raw OSP 

data, where, for the most part, there are more than one sample per month. The top panel 

in Figure 2.5 also shows a period in 1971 where there were no samples collected. The 
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bottom panels for Figure 2.4 and 2.5 show the result of linear interpolation, which puts 

the time series on a consistent, monthly sampling rate, and provides the correct input data 

to implement the multivariate regression. This interpolation was successful in 

maintaining the cycles and trends within the original time series. The multivariate 

regression is then carried out using the scaled version of the original units for all the 

variables with the exception for chlorophyll, as mentioned above.  

Now that all of the variables have a consistent sampling rate for the training 

period and are scaled, the multivariate regression resulted in the following  matrix for 

:  

 
   T                 S                  N               P               Si                C              O 

 =  

 

As before, the the numbers on the diagonal are the auto-regressive coefficients  of each 

state variable from one month to the next, and the off diagonal numbers are the coupling 

between the different state variables at a monthly time lag, where the couplings indicate 

how much influence each variable has on each other variable at the next time step 

(month). For example, based on this  matrix, at each time step, t, scaled salinity is 

calculated by  

 

, 
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where the ocean state variables are represented by their first letter (and second for 

silicate), a convention used throughout the thesis 

Differences in the temperature, salinity, and nitrate persistence between this  

matrix and the simpler one in Section 2.2 are likely due to differences in the raw OSP 

data used, and the different time period of the training data sets. Here, temperature has 

the highest persistence at 1.0669 and oxygen has the lowest at 0.4874. All of the 

temperature couplings are negative, potentially indicating that this variable has negative 

correlations with all of the other ocean state variables. Chlorophyll does not strongly 

influence any other variable (no  values greater than ±0.1), while temperature has a 

stronger influence (greater than ±0.1) on four other variables.  

Note that the two values for each variable pairing (e.g. salinity/nitrate, nitrate/salinity) are 

not expected to be the same as one is the influence of  on  which would not the 

same as the influence of  on . As can be seen in the  matrix above, this feature 

results in an asymmetric matrix. 

 

2.3.2: Determining  
 
 

The set-up of the observation matrix  follows the same rationale as in the 

example of Section 2.1, but now there are seven state variables (temperature, salinity, 

nitrate, phosphate, silicate, chlorophyll, and oxygen) instead of three. The temperature 

and salinity used in the reconstruction are from monthly data from reanalysis and hence 

observed at all the monthly analysis times. However, the remaining five variables are not 

all measured at the same times, nor on a regular time grid. As a result, the observation 

matrix can be anywhere from a 2x7 (case 3) matrix to a 7x7 (case 4) matrix or anything 
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in between (case 5). That means there are 32 different possible observation matrices for 

each time step. To illustrate this, some of these possibilities are given below 

 

 Case 3: The 2x7  matrix for observed temperature and salinity, with nitrate, 

phosphate, silicate, chlorophyll, and oxygen missing. 

  

 

Case 4: The 7x7  matrix for all state variables; no observations missing. 

 

 

Case 5: The 4x7  matrix for observed temperature, salinity, phosphate, and 

chlorophyll, with nitrate, silicate, and oxygen not observed. 

 

 
 
2.3.3: Determining the Model and Observation Errors 
 
 

Realistic values for error standard deviation (STD) need to be determined so they 

can provide an accurate reconstruction, and meaningful error bars on the output. There 
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are two errors types that need to be determined; the model error ( from equation 1, 

and the observation error (  from Eq. 2. 

The model error (  indicates just how much uncertainty there is in the model 

(Eq. 1) itself, i.e. how accurately it is able to predict the ocean state from one month to 

the next. The method used to determine the model error is a cross-validation method, and 

is applied only for our data rich training period. It consists of leaving out a random 

segment of the time series for each variable, then trying to predict what that segment 

should look like, and finally comparing the prediction to the left out observations. Low 

model error would imply the prediction and data segment are close, and high model error 

the opposite. The procedure for model error prediction was the following. A randomly 

selected six-month segment was chosen to be left out of the training data as validation 

data. The period of six months was chosen so the model would have to predict part of the 

seasonal cycle and not just individual data points. Once the validation data is removed 

from the training data,  is estimated using the multivariate regression method. The 

variables within the validation period are then estimated. The prediction error is 

calculated using the standard deviation of the residuals, the residuals being the difference 

between the left-out observations and their predictions from the regression. This process 

was repeated 100 times, each with a different randomly selected six-month data segment 

to be left out. Averaging these 100 experiments yields an estimate for the mean standard 

deviation which is taken to correspond to the model error (Table 2.1). To determine if 

100 repetitions would provide a reasonable model error, the process was also conducted 

using 10 repetitions and 200 repetitions, but there appeared to be little difference between 
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the values. As such, the scaled values from the 100 repetition run were used to specify the 

model error. 

 
Table 2.1: Model error standard deviation results from running 100 repetitions of estimating validation 
data.  

Ocean State Variable Scaled Model Error 
Temperature 0.4783 
Salinity 0.4506 
Nitrate 0.5143 
Phosphate 0.5308 
Silicate 0.7202 
Chlorophyll 0.9191 
Oxygen 0.4776 

 

According to Table 2.1, salinity has the lowest scaled model error at 0.4506 and 

chlorophyll has the highest at 0.9191. Most of the scaled model errors fall within a range 

of 0.45 to 0.54 with the exceptions of silicate (0.7202) and chlorophyll. This means that 

of the seven variables, the dynamics associated with the chlorophyll part of the model is 

the least well trusted. 

The observation error ( , measures the uncertainty of the observation data. This 

error includes instrument or analytical errors, but for these ocean state variables it is 

dominated by ocean variability. Recall, the analysis is focused on monthly means, but 

point observations such as those obtained water samples contain variability from a variety 

of sources that are not present in monthly means. To quantify these observation errors, a 

single year (1975) within the training data set was chosen. It was assumed that the 

observation errors calculated during this year represent the observation errors throughout 

the entire time series. With many observations per month, the within-month variability 

was computed as a proxy for the observation error. Specifically, the monthly STD of each 

variable was determined for each of the twelve months, and the mean of these STDs was 
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used as the observation error for this project (Table 2.2). A couple of other metrics other 

than standard deviation were also considered to determine which one might provide the 

best observational error: the range and median (Table 2.3 and Table 2.4 respectively). It 

was felt that the range did not provide a good characterization of the observation error as 

it tended to include outliers (extreme highs and lows) and could not provide a consistent 

error from month to month or year to year. It was also felt that the median did not provide 

a reasonable error for the seven variables in the given year as it did not account for the 

spread of the data within each month. As such, the STD method was used for the 

magnitude of the observation error in this study  

In Table 2.2 temperature is seen to have the lowest scaled observation error 

(0.1566) while chlorophyll has the highest (2.7788) by a large margin as the second 

highest scaled error is phosphate at 0.7123. This means the chlorophyll observations are 

less trusted when completing the reconstruction. The range of the scaled observation 

errors (Table 2.2) is greater than the range of the scaled model error (Table 2.1), but most 

of the variables have a lower observation error, than model error. Oxygen has the lowest 

scaled observation error for the range and median observation errors (Tables 2.3 and 2.4) 

and chlorophyll has the highest error when dealing with the range, but phosphate has the 

highest error when dealing with the median. The STD method of determining error 

appears to provide scaled observation errors which have values between the range and 

median methods. It needs to be noted that the number of samples used in these 

calculations varied greatly among the variables. Temperature, salinity, nitrate, phosphate, 

and silicate had more than 400 samples each in 1975, while chlorophyll had 31 samples 

and oxygen had 42 samples. 
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Table 2.2: Results for observation error (  using standard deviation.   

Ocean State Variable Scaled Observation Error 
Temperature 0.1566 
Salinity 0.2313 
Nitrate 0.3920 
Phosphate 0.7123 
Silicate 0.4691 
Chlorophyll 2.7788 
Oxygen 0.2291 

 

Table 2.3: Results for observation error (  using range.  

Ocean State Variable Scaled Observation Error 
Temperature 0.6646 
Salinity 1.2756 
Nitrate 1.8288 
Phosphate 3.0166 
Silicate 1.9173 
Chlorophyll 5.7925 
Oxygen 0.5282 

 
 
Table 2.4: Results for observation error (  using the median. 

Ocean State Variable Scaled Observation Error 
Temperature 0.2878 
Salinity 0.4814 
Nitrate 0.4914 
Phosphate 0.6031 
Silicate 0.5065 
Chlorophyll 0.2915 
Oxygen 0.1460 

 

Now that all the components of the Kalman smoother equations have been 

collected and/or determined, the reconstruction can be completed.  
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2.4: Results of the Kalman Smoother 

 
Using the information provided above, the Kalman Smoother was used to 

reconstruct the time series for the period 1956 to 2017 for all seven variables 

(temperature, salinity, nitrate, phosphate, silicate, chlorophyll, and oxygen) being studied 

in this project. The results are shown in Figure 2.6. Within these reconstructed time 

series, the temperature and salinity reconstructions follow the observations almost exactly 

with very little error associated with the reconstruction. At the beginning of the nitrate 

reconstruction (from 1956 to 1965), where there is only one observation, the series looks 

similar to the corresponding period of the salinity reconstruction, after which the 

observations fall within the error bars, but the error are generally larger than the 

temperature and salinity reconstruction error bars. The period of time without any 

observations in the phosphate does not particularly resemble the temperature or salinity 

time series, though there does still appear to be a seasonal cycle. When there are 

observations, the observations mostly lie within the error bars. Silicate’s reconstruction is 

similar to phosphate’s, though the error associated with a lack of observations in the 

silicate reconstruction is larger than phosphate’s, and that is due to the fact that the 

silicate reconstruction has a lower observation error and higher model error than 

phosphate’s reconstruction. The chlorophyll reconstruction somewhat follows the 

observations, and the period with no observations does not obviously resemble any other 

reconstruction, which is understandable given the high model and observation errors 

chlorophyll has. Finally, the oxygen observations mostly fall within the error bars.  

To partially validate this method of statistical reconstruction, the temperature time 

series from OSP which was used in the  calculation (Figure 2.3) but was not included in 
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the observations used to create the reconstruction was plotted on top of the 

reconstruction. (Figure 2.8). For the most part, the observations and reconstruction line 

up, but it appears that the reconstruction undershoots the upper extremes and undershoots 

the lower extremes. This is likely due to any differences between the reanalysis time 

series and the OSP time series.  
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Figure 2.6: Reconstructed OSP temperature, salinity, nitrate, and phosphate using the results from the Kalman smoother from 1956 to 2017. The black line 
represents the mean for the reconstructed values, the grey shaded area represents the error bars based on the mean ± 2 x standard deviation. The red dots 
represent the DFO observations used to create the reconstruction. 

41 
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Figure 2.7: Reconstructed OSP silicate, chlorophyll, and oxygen using the results from the Kalman smoother from 1956 to 2017. The black line represents the 
mean for the reconstructed values, the grey shaded area represents the error bars based on the mean ± 2 x standard deviation. The red dots represent the DFO 
observations used to create the reconstruction.

42 
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Figure 2.8: An overlay of observational temperature data aquired from the DFO (red dots) and the results 
of the temperature statistical reconstruction from the Kalman Smoother using the ORSA4 reanalysis data 
(black line). Shaded grey regions denote the confidence interval for the statistical reconstrucion. 

 
The scaled seasonal cycle was examined by looking at the average monthly values 

for the seven variables (Figure 2.9). The seasonal cycle is most visible in temperature and 

oxygen. Temperature has its highest values in August/September and Oxygen has its 

lowest values in September/October, most likely resulting from negative correlation 

between temperature and oxygen (warmer water is less capable of holding dissolved 

oxygen than colder water). The weaker seasonal cycles for nitrate, phosphate, silicate, 

and chlorophyll are to be expected at OSP as it is located within an HNLC region 

(Pitchford and Brindley, 1999) and does not normally experience seasonally predictable 

phytoplankton blooms.  

To get a better understanding as to whether there are cycles longer than the annual 

seasonal cycle in the time series, the seasonal cycle (and any other cycle shorter than 

ENSO’s cycle) was removed using a low pass filter (a filter that removes frequencies 
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higher than a selected frequency, 2 years in this case and using a zero-phase Butterworth 

filter). The resulting sub-seasonal time series (Figure 2.10) displays any variability on 

time scales longer than 2 years, which is more appropriate for relating to the longer 

climate cycles that are of interest. From a visual inspection temperature and oxygen have 

a 3-5 year cycle, silicate and nitrate have a 5-10 year cycle, while salinity has a longer 

cycle that looks to be at approximately decadal. Phosphate and chlorophyll don’t appear 

to have any strong cycle based on visual inspection alone. 

Looking at the first half of the time series, there appears to be a drop in 

temperature during the late-1960s to early-1970s, which has been documented before, as 

shown by Jones et al. (2016) who note that “the northern hemisphere record shows 

gradual cooling from the mid-1940s through to the mid-1970s”. There also appears to be 

a decline in salinity during this period. Aside from the temperature and salinity time 

series, there is nothing that stands out from any of the first half of the time series apart 

from their 3-10 year cycles. During the second half of the time series there is not much 

worth noting except that the temperature and silicate scales are higher, and the salinity 

scale is lower than in the first half of the time series. Most of the variables appear to have 

a 2-3 year cycle in the time series, but a visual inspection cannot tell much more than 

that. In Chapter 3, we will use a more quantitative spectral analysis to investigate these 

cycles further. 
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Figure 2.9: Scaled, monthly averages throughout the calendar year for each of the reconstructed seven 
variables in the study (temperature, salinity, nitrate, phosphate, silicate, chlorophyll, and oxygen).  
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Figure 2.10: Reconstructed (red line) and smoothed (blue line) ocean state variables (temperature, salinity, nitrate, phosphate). These are based on application 
of a low pass filter which isolates everything with a cycle of 2 years or less within the reconstruction time series.

46 
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Figure 2.11: Reconstructed (red line) and smoothed (blue line) ocean state variables ( silicate, chlorophyll, and oxygen). These are based on application of a low 
pass filter which isolates everything with a cycle of 2 years or less within the reconstruction time series.
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Looking at how the ocean state variables relate to each other may help in the 

analysis of the ocean variable/climate mode comparisons in that they may aid in 

explaining some results that do not follow what has been recorded in literature or have 

not been well documented in literature. When the sub-seasonal time series are correlated 

against each other (Table 2.5), the variables show significant correlations (p-values < 

0.05) across the board (Figures with pairwise scatter plots are in Appendix C (Figures 

C.1-C.7)). Note that the p-values were computed by transforming the correlation to create 

a t-statistic having N-2 degrees of freedom, where N is the number of data points in each 

time series.  

Temperature has a negative correlation with all variables except chlorophyll, 

which follows the  matrix. All other variables follow this pattern; where temperature 

and chlorophyll are anti-correlated to the other variables. The strongest correlation value 

for the variables is the nitrate/phosphate correlation with a value of 0.95. 

 
 
Table 2.5: Variable vs variable correlations from the low pass filter series from Figure 2.11. The r column 
depicts the correlation between the variables, and the p-value column depicts the p-values for the 
correlations at 95% CI. 

Variable Pairing r p-value 
Temperature/Salinity -0.57 <0.01 
Temperature/Nitrate -0.54 <0.01 
Temperature/Phosphate -0.55 <0.01 
Temperature/Silicate -0.45 <0.01 
Temperature/Chlorophyll 0.36 <0.01 
Temperature/Oxygen -0.70 <0.01 
   
Salinity/Temperature -0.57 <0.01 
Salinity/Nitrate 0.83 <0.01 
Salinity/Phosphate 0.68 <0.01 
Salinity/Silicate 0.56 <0.01 
Salinity/Chlorophyll -0.77 <0.01 
Salinity/Oxygen 0.64 <0.01 
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Variable Pairing r p-value 
Nitrate/Temperature -0.54 <0.01 
Nitrate/Salinity 0.83 <0.01 
Nitrate/Phosphate 0.95 <0.01 
Nitrate/Silicate 0.82 <0.01 
Nitrate/Chlorophyll -0.71 <0.01 
Nitrate/Oxygen 0.41 <0.01 
   
Phosphate/Temperature -0.55 <0.01 
Phosphate/Salinity 0.68 <0.01 
Phosphate/Nitrate 0.95 <0.01 
Phosphate/Silicate 0.90 <0.01 
Phosphate/Chlorophyll -0.63 <0.01 
Phosphate/Oxygen 0.37 <0.01 
   
Silicate/Temperature -0.45 <0.01 
Silicate/Salinity 0.56 <0.01 
Silicate/Nitrate 0.82 <0.01 
Silicate/Phosphate 0.90 <0.01 
Silicate/Chlorophyll -0.54 <0.01 
Silicate/Oxygen 0.38 <0.01 
   
Chlorophyll/Temperature 0.36 <0.01 
Chlorophyll/Salinity -0.77 <0.01 
Chlorophyll/Nitrate -0.71 <0.01 
Chlorophyll/Phosphate -0.63 <0.01 
Chlorophyll/Silicate -0.54 <0.01 
Chlorophyll/Oxygen -0.58 <0.01 
   
Oxygen/Temperature -0.70 <0.01 
Oxygen/Salinity 0.64 <0.01 
Oxygen/Nitrate 0.41 <0.01 
Oxygen/Phosphate 0.37 <0.01 
Oxygen/Silicate 0.38 <0.01 
Oxygen/Chlorophyll -0.58 <0.01 
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Chapter 3 – Comparing Reconstructed Ocean Variables to 
Climate Indices 
 
3.1: Introducing the Climate Indices 

In this chapter, the climate indices used in this project will be introduced, 

including how they are computed and what their typical cycle lengths are. They will then 

be compared and contrasted to the reconstructed OSP ocean time series. Specifically, the 

important climate mode frequencies will be identified so the ocean state variables at OSP 

can be compared with the climate indices. The SOI, PDO, and MEI data were provided 

by the NOAA ESRL Physical Sciences Laboratory, Boulder, Colorado, USA, from their 

website at http://psl.noaa.gov/, and the NPGO data were provided by (Di Lorenzo, 2019). 

 

3.1.1: Southern Oscillation Index 
 

The Southern Oscillation Index (SOI) (NOAA, 2020) is an index that is based on 

the differences in standardized sea level pressure between Tahiti and Darwin, Australia, 

where the negative phase of SOI is representative of lower air pressure at Tahiti and 

relative to that at Darwin, and vice versa for a positive phase (Power & Kociuba, 2010). 

The SOI corresponds well with changes in sea surface temperature across the eastern 

Tropical Pacific, so prolonged periods of positive or negative phase coincide with 

abnormally cold or warm water (respectively) across the eastern Tropical Pacific. These 

prolonged periods are referred to as El Niño and La Nina, and the oscillation between 

these phases is known as the El Niño--Southern Oscillation (ENSO). El Niño and La 

Nina typically occur every 2 to 7 years, which is interannual variability rather than 

decadal variability, which is the focus on this thesis, but as McPhaden et al. (2006) state, 
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“ENSO is unique among climate phenomena in its strength, predictability, and global 

influence,” so it would be remiss to exclude it from this study. The effects of ENSO on 

ocean temperature and ecosystems have been well studied over the years, with a small 

sample of these studies being: Di Lorenzo et al. (2010), Schwing et al. (2002), Miller et 

al., (2004), and Houk et al. (2020).  

The monthly SOI data in Figure 3.1 (as well as all of the climate data) were 

smoothed using the same 2-year low pass filter to remove the high-frequency variability 

in the data. This practice helps in identifying the dominant cycle(s) in the data, which 

appears to be around 5 years in Figure 3.1, and aids in determining any overall trends in 

the data. Smoothing climate data in this manner is common practice to determine longer 

scale (decadal, centennial) variability. For example, all variability with periods less than 

or equal to 8 years was removed in a study of climate variability in Australia (Power et al 

1999), and a 10-year moving average was used to smooth the data for a global 

multidecadal climate variability (McCabe & Palecki 2005). As can be seen in Figure 3.1, 

smoothing the data eliminates the high-frequency variability in the data while 

maintaining the slower, mulit-year variability. A cut off of 2 years was chosen for the low 

pass filter, as opposed to the longer 8 and 10 years mentioned above because ENSO is 

one of the climate variations that is of interest for this study. 

Along with changes in SST, ENSO events are characterized by global shifts in 

winds, temperature, and precipitation patterns (Fasullo et al., 2018). During El Niño 

years, the impact on the marine ecosystem spans the majority of the Pacific Ocean 

(including OSP), and the resulting decline in primary productivity affects the mortality, 

fertility, and geographic distribution of marine mammals and fish species, including fish 
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species that are economically and socially important (McPhaden et al., 2006). As year to 

year variability in carbon concentrations in the atmosphere are also dominated by ENSO 

events (McPhaden et al., 2006), SOI is a medium to long scale climate index which is of 

interest in how it affects biogeochemical variables in the sea surface by itself and in 

combination with PDO and NPGO (discussed below). 

  

Figure 3.1: Time series of the monthly (blue line) and smoothed with a 2-year low-pass filter (red line) data 
for the SOI index.   

 

3.1.2: Pacific Decadal Oscillation 
 

 
The Pacific Decadal Oscillation (PDO) (Mantua, 2018) is a cyclical pattern of 

ocean-atmosphere climate variability which is centred over the northern, mid-latitude 

Pacific basin. It was first acknowledged as being a climate oscillation in 1997 with a 

paper by Mantua et al. (1997), looking at the impacts it has on salmon production.  The 

PDO is calculated by taking the spatial average of the monthly SST of the Pacific Ocean 
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north of 20°N. To account for global warming, the global average anomaly is subtracted 

from this value (Mantua & Hare, 2002). The PDO’s decadal cycle produces an El-Niño-

like spatial pattern of Pacific climate variability (though more meridionally extended, and 

with an opposite pole in the northwest Pacific), which can be recovered from sea surface 

temperature anomalies for the north Pacific (Schneider & Cornuelle, 2005). Due to this, it 

is widely used as an index for decadal variability for the Pacific climate (Schneider & 

Cornuelle, 2005). The decadal cycle can be seen in Figure 3.2, along with some shorter 

cycles. It also shows that PDO has been in a predominantly negative phase since the mid-

1990s. 

Studies have shown that there have just been two full PDO cycles in the last 

century; cool (negative) periods from 1890-1924 and 1947-1976, and warm (positive) 

periods from 1925-1946 and 1977-1995 (Mantua & Hare, 2002). In western North 

America, PDO produces similar, but weaker, climatic conditions than El Niño; decreased 

winter precipitation, snowpack, and stream flow in the north west, and higher 

precipitation in the south west during a positive phase (Macdonald & Case, 2005). The 

climatic conditions are the opposite during a negative PDO phase. It was noted that the 

regime shift in the 1970’s led to an increase in most Alaskan salmon populations and a 

decrease in the west coast salmon populations as a result of an overall warming of the 

North East Pacific (NEP) (Hare and Mantua 2000). Fluctuations in the strength in both 

the positive and negative phase occur in ENSO time bands (Macdonald & Case, 2005). It 

has also been found that for the past 200 years there has been a 50 to 70-year periodicity 

in PDO (Macdonald & Case, 2005).  
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Figure 3.2: Time series of the monthly (blue line) and smoothed with a 2-year low-pass filter (red line) data 
for the PDO index.   

 
3.1.3: North Pacific Gyre Oscillation 
 

Another large-scale climate index is the North Pacific Gyre Oscillation (NPGO) 

(Di Lorenzo, 2019). First identified in 2008 by Di Lorenzo et al., NPGO has a decadal 

variability that is characterised by sea surface temperature anomalies (SSTa), but is 

determined by its second most dominant feature, sea surface height anomalies (SSHa) (Di 

Lorenzo et al., 2008, Li Yi et al., 2015). It is defined as the time series of the second 

empirical orthogonal function (EOF) of the SSHa from 25°N to 65°N, and 180°W to 

110°W (Li Yi et al, 2015). The monthly averages for NPGO were computed from Di 

Lorenzo et al. (2008)’s spatial pattern of SSHa from 1950 to 2004, and after that they 

were computed from satellite SSHa. The discovery of NPGO provided an explanation for 
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fluctuations in salinity, nutrients, and chlorophyll which were not able to be attributed to 

other climate variability such as PDO and ENSO (Di Lorenzo et al., 2008).  

Even though NPGO was discovered so recently, there have still been studies done 

on its relationship with the ocean. The NPGO is the oceanic depiction of the North 

Pacific Oscillation (NPO) (Linkin & Nigam, 2008), and is forced by the atmosphere 

(Chhak et al., 2009), indicating the relationship between the atmosphere and the ocean. 

There has also been a study that links multi-year heat waves to the dynamics of both PDO 

and NPGO (Joh &, Di Lorenzo, 2017). Given that NPGO displays a distinct decadal 

variability with a significant spectral peak at 18 years (Figure 3.3) (Li Yi et al., 2015), 

and it can result in SSTa that resembles El Niño-like patterns (Di Lorenzo et al., 2008), 

NPGO is thus a low-frequency climate index that can significantly influence sea surface 

nutrients and chlorophyll, and therefore microorganisms like phytoplankton. There 

appear to be a couple of other minor cycles as well in Figure 3.3, but the dominant cycle 

is the 18-year cycle, and there does not appear to be much of a trend for the last 60 years. 
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Figure 3.3: Time series of the monthly (blue line) and smoothed with a 2-year low-pass filter (red line) data 
for the NPGO index.   

 

3.1.4: Multivariate El Niño Southern Oscillation Index 
 

The multivariate El Niño Southern Oscillation Index (MEI) (Wolter, 2018) is 

another method of measuring ENSO events in the Tropical Pacific. The standard SOI is a 

useful indicator of ENSO events, but fails to capture the ocean-atmosphere interactions 

(Mazzarella et al., 2013). The MEI is based on the principal component of six variables 

over the tropical Pacific. Those six variables are: sea level pressure, zonal and meridional 

components of the surface wind, sea surface temperature, surface air temperature, and the 

cloudiness of the sky (Mazzarella et al., 2013). Given the differences in the 

computational method to obtain MEI and SOI, and that the resulting indices are 
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noticeably different from each other (Figure 3.1 and Figure 3.4), we include both MEI 

and SOI in this study. While the monthly values for MEI (Figure 3.4, blue line) are less 

variable than the monthly values for SOI, the filtered values (Figure 3.4, red line) show a 

similar pattern. There is also a noticeable upward trend that is not seen in the SOI data, 

likely due to the role of absolute temperature rise. 

 

 

Figure 3.4: Time series of the monthly (blue line) and smoothed with a 2-year low-pass filter (red line) data 
for the MEI index.   

 
3.2: Determining the Frequencies of Interest 

 
The dominant frequencies for the climate modes cycle need to be determined so 

the ocean state variables can be analysed at these frequencies as well. These frequencies 

will be isolated using spectral analyses of the climate modes (Figures 3.5-3.8) and then 
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frequencies have the highest spectral power will be determined. The power spectrum was 

calculated using Welch’s method (Shumway & Stoffer, 2017), (Figures 3.5b-3.8b) and 

shows the strength of the periodic (recurring) signals at all of the frequencies resolvable 

with the climate data. It should be noted that the exact value of the power does not matter 

as much as its relative strength due to the variation in the magnitudes of the time series. 

The effects of the filtering can be also seen in Figures 3.5b-3.8b where there are no peaks 

in the power spectrum beyond a frequency of 0.5 (a two-year cycle). Note that if the 

power spectrum were done on the original monthly data, a peak would be expected at a 

frequency of 1.0 due to the seasonal cycle. To account for the relatively long-term cycles 

these climate modes operate at, only the powers of the lowest frequencies (from 0 to 0.6) 

were considered (Figures 3.5c- 3.8c), where for example, a frequency of 0.1 has a 10-

year cycle. The upper frequency limit was chosen based on the fact a low pass filter with 

a frequency cutoff of two years was used. 

Since this study is interested in how the climate modes affect the biogeochemical 

variables, the two frequencies which contain the two highest powers for each of the 

climate indices have been selected and are highlighted in Table 3.1. These are the largest 

values for the frequencies of interest within the range of 0-0.6 that are resolvable given 

the time series length. Further spectral analyses, particularly cross-spectral analyses with 

the ocean state variables being studied in this project, will also focus on these frequencies 

of interest as stronger signals at these frequencies could indicate a correlation between 

the climate modes and ocean state variables. 
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Figure 3.5: The time series and power spectrum of the PDO index. Panel A shows the filtered PDO time 
series from 1958 to 2017. Panel B shows the power spectrum as a log power per frequency for all 
frequencies. Panel C shows the power spectrum as a log power per frequency for the range of possible 
climate mode frequencies. 

 

Figure 3.6: The time series and power spectrum of the NPGO index. Panel A shows the smoothed NPGO 
time series from 1958 to 2017. Panel B shows the power spectrum as a log power per frequency for all 
frequencies. Panel C shows the power spectrum as a log power per frequency for the range of possible 
climate mode frequencies. 



60 
 

 

Figure 3.7: The time series and power spectrum of the SOI index. Panel A shows the smoothed SOI time 
series from 1958 to 2017. Panel B shows the power spectrum as a log power per frequency for all 
frequencies. Panel C shows the power spectrum as a log power per frequency for the range of possible 
climate mode frequencies. 

 

Figure 3.8: The time series and power spectrum of the MEI index. Panel A shows the smoothed MEI time 
series from 1958 to 2017. Panel B shows the power spectrum as a log power per frequency for all 
frequencies. Panel C shows the power spectrum as a log power per frequency for the range of possible 
climate mode frequencies. 
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Table 3.1: The frequencies, power spectral density, and corresponding period of associated cycles for the 
climate indices. The highlighted rows indicate the frequencies (and their associated cycles) with the two 
highest powers for each climate index. 

Climate index Frequency Period (years) Power 
PDO 0.04688 21.33 1.182 
 0.09375 10.66 0.684 
 0.1406 7.11 0.303 
 0.1875 5.33 0.214 
    
NPGO 0.04688 21.33 1.579 
 0.09375 10.66 1.659 
 0.1406 7.11 1.163 
 0.1875 5.33 0.320 
    
SOI 0.04688 21.33 1.045 
 0.09275 10.66 0.975 
 0.1406 7.11 0.942 
 0.1875 5.33 1.166 
    
MEI 0.04688 21.33 0.294 
 0.09375 10.66 -0.008 
 0.1406 7.11 0.168 
 0.1875 5.33 0.590 
 0.2344 4.27 0.742 
 0.2812 3.55 0.768 

 
 
 

According to Figure 3.5 and Table3.1, PDO has a dominant cycle of roughly 20 

years (frequency of 0.04688) and a secondary cycle of 10 years (frequency of 0.1875). 

The NPGO (Figure 3.6) has dominant cycles of 10 years (frequency of 0.09375) and 20 

years. The SOI (Figure 3.7) has a dominant cycle of 5 years and a secondary cycle of 20 

years, and MEI (Figure 3.8) has a dominant cycle of about 4 years. The secondary cycles 

in PDO and SOI are likely reflections of each others’ cycles as the two climate modes are 

known to be related but with different periods. Compared to the other indices, MEI does 

not have any relatively strong, longer cycles (10+ years), and NPGO does not have any 

strong shorter cycles. That being said, the frequency of 0.1406 (seven-year cycle) is not a 
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dominant frequency for any of the indices (Table 3.1), suggesting that climate variations 

between 5 and 10 year periods are relatively weak. 

 
 
 
3.3: Comparing Climate Modes with the Ocean Variables 

 
To compare and contrast the climate modes to the ocean state variables, 

correlations, cross-correlations, and cross-spectral analyses were completed to identify 

the strength of the relationships as well as any time lags that may occur in the signals. 

The climate modes and ocean variables were first correlated against each other (i.e. at the 

same time steps hence no time lags). Using a p-value of 0.05, Table 3.2 displays the 

results of the significant correlations between the variables (all correlation table scan be 

found in Appendix B). In terms of the climate indices, chlorophyll has the weakest 

correlations with all four climate indices compared to the other ocean variables. 

Temperature appears to have the strongest correlations for all four climate modes 

compared to the other variables. Salinity, nitrate, phosphate, silicate, and chlorophyll all 

have correlations ranging from weak to moderate with the correlations with PDO being 

the strongest across the board.  

 

Table 3.2: The correlations between the ocean state variables (temperature, salinity, nitrate, phosphate, 
silicate, chlorophyll, and oxygen). These are represented respectively in the table by their first letter (and 
second for silicate). All values are significant at a 95% CI. 

 T S N P Si C O 
PDO 0.62 -0.45 -0.43 -0.37 -0.31 0.25 -0.48 
NPGO -0.47 0.39 0.47 0.45 0.37 -0.19 0.23 
SOI -0.40 0.29 0.24 0.18 0.08 -0.09 0.26 
MEI 0.45 -0.34 -0.30 -0.25 -0.18 0.18 -0.39 
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When looking at the time series plots of the climate indices together with the 

ocean state variables (Figures 3.9-3.15), some of these correlations can be seen with just 

a visual inspection. Temperature (Figure 3.9) does appear to be correlated with PDO 

except for a brief period during the early-1960s. It does, however, appear to have a 

negative correlation with NPGO and SOI throughout the entire time series, and a positive 

correlation with MEI, though not as strong as the correlation with PDO. These 

observations concur with the values in Table 3.2 in that temperature has a weak 

correlation with PDO, a strong correlation with NPGO and SOI, and a moderate 

correlation with MEI.  

In terms of salinity (Figure 3.10), there are periods where it appears correlated 

with PDO (1956 to 1970), but most of the time it appears to be negatively correlated. 

When comparing salinity to the NPGO time series, where the two time series look to be 

correlated for most of the period. The case is the same for the salinity and SOI time 

series. For the salinity and MEI time series, however, there does appear to be a negative 

correlation between the two as seen in Figure 3.10, and that is corroborated by the 

corresponding low value in Table 3.2.  

Nitrate (Figure 3.11) appears to be negatively correlated with PDO throughout the 

entire time series. There appears to be a positive correlation between nitrate and NPGO 

for the whole time series as well. SOI, however, appears to have both positive and 

negative correlations with nitrate within the time series (e.g. positive in the early 1960s, 

and negative in the early 1980s), likely indicating that there is not a strong overall 

correlation between the two, or that the assumption that  does not change over time is 

incorrect There also seems to be a bit of a negative correlation between nitrate and MEI 
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(seen from 1990 to 2000). The values in Table 3.2 show that there is a moderately strong, 

negative correlation between nitrate and PDO; that there is a moderately strong, positive 

correlation between nitrate and NPGO; a moderately weak, positive correlation with SOI; 

and that there is a moderately weak, negative, correlation between nitrate and MEI. 

When looking at the phosphate/climate mode time series (Figure 3.12), the PDO 

time series appears to have a negative correlation. For NPGO and SOI there appears to be 

positive correlations between the variables, though NPGO appears to have a stronger 

correlation than SOI. MEI appears to have negative correlation with phosphate, but 

weaker than the correlation between phosphate and PDO. Table 3.2 corroborates these 

observations.  

Silicate (Figure 3.13) appears to have similar correlations to the 

phosphate/climate mode time series. With the silicate/PDO and silicate/MEI time series 

appearing to have negative correlations. The NPGO series appears to have a negative 

correlation between the variables. The SOI correlation is difficult to determine visually, 

which corresponds to the weaker correlation value in Table 3.2.  

When it comes to chlorophyll (Figure 3.14), there is a negative correlation with 

PDO in the mid to late-1970s, but a positive correlation for the rest of the time series. The 

time series of chlorophyll and NPGO are generally doing the opposite thing hence they 

are anti-correlated, but not strongly. The SOI also appears to be anti-correlated with 

chlorophyll, but not as strongly as NPGO. When it comes to the MEI time series, some 

parts look like they are correlated, but as other parts look like they are anti-correlated 

there is likely a weak correlation between the two variables.  
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Oxygen (Figure 3.15) does appear to have negative correlation with PDO. With a 

few exceptions (early-1970s, mid-1990s) there is a moderately weak, positive correlation 

between oxygen and NPGO. The oxygen/SOI correlation seems to be slightly stronger 

than the oxygen/NPGO correlation. MEI is similar to PDO in that there is a moderately 

strong, negative correlation with oxygen. The values in Table 3.2 match these 

observations.
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Figure 3.9: Overplots of temperature and the climate modes time series. Temperature is depicted in blue 
while the climate modes are in red. Units are as previously established.   
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Figure 3.10: Overplots of salinity and the climate modes time series. Salinity is depicted in blue while the 
climate modes are in red. Units are as previously established. 
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Figure 3.11: Overplots of nitrate and the climate modes time series. Nitrate is depicted in blue while the 
climate modes are in red. Units are as previously established. 
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Figure 3.12: Overplots of phosphate and the climate modes time series. Phosphate is depicted in blue while 
the climate modes are in red. Units are as previously established. 
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Figure 3.13: Overplots of silicate and the climate modes time series. Silicate is depicted in blue while the 
climate modes are in red. Units are as previously established. 
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Figure 3.14: Overplots of chlorophyll and the climate modes time series. Chlorophyll is depicted in blue 
while the climate modes are in red. Units are as previously established. 
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Figure 3.15: Overplots of oxygen and the climate modes time series. Oxygen is depicted in blue while the 
climate modes are in red. Units are as previously established. 
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3.4 Determining Lagged Correlations Between Ocean State Variables and 
Climate Indices 
 
3.4.1 Lagged Correlations  
 

The next step was to determine the amount of lag (or lack thereof) between the 

ocean variables and climate modes. Cross-correlations were completed to determine the 

time lag in which the correlation between the two variables was the strongest, and cross-

spectral analyses were completed to determine the strength of the signal relationships at 

the frequencies of interest, as well as the lag associated with those relationships.  

The cross-correlation analyses yield a number which indicates the time lag (in 

months) of the strongest correlation between the two variables. Since we postulate that 

the climate variables correspond to the forcing, and the ocean state corresponds to the 

response, we need to define the lag/lead convention. A negative lag number indicates that 

the first variable of the pair (always an ocean state variable) is ahead of the second 

variable (i.e. leads), while a positive number indicates that the first variable is the lagging 

variable (response). We thus anticipate positive or zero lags. Due to the 

interconnectedness of the climate system, a negative lag (ocean leads climate) may also 

be possible, but for the purposes of this study we restricted the positive outcomes to 

climate leads the ocean. A lag period of 63 months was set to be the limit of influence for 

this study as the auto-correlations of the climate modes (shown in Figure 3.16) show that 

the longest amount of time necessary for decorrelation amongst the climate modes is for 

PDO, which takes 63 months before it becomes effectively zero (using a 90% confidence 

interval calculated using the square root of the inverse error function for each value 

(Giles, 2011)). Therefore, 63 months may be thought of as the decorrelation or ‘memory’ 

timescale for the system. Using a statistical significance cut-off was attempted, but due to 
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the large sample size the lags would have to more than 600 months for there to be a 

statistical non-significance, which is unrealistic for this situation.  This cut-off point 

means that, for this study, any strong correlations (or signals for the cross-spectral 

analyses) that have a lag greater than 63 months are likely not the result of one of the 

climate modes or any direct forcing between the variables.  

 

Figure 3.16: The sample auto-correlations for the filtered climate modes. The blue dots indicate the auto-
correlation while the blue lines help visualise the corresponding lag. The shaded grey area indicates the 
95% CI in which auto-correlation values are not significant. The confidence bounds are based on an 
asymptotic normal distribution of 0.5*log(1+R)(1-R), with an approximate variance equal to 1/(N-3) where 
R is the correlation. 
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 Hence, when looking at the cross-correlation and cross-spectral relationships 

between the ocean variables and the climate indices, if the ocean variable is the leading 

variable in both cross-correlation and cross-spectral analyses, that relationship will not be 

considered important since this study is looking at how changes in the climate modes can 

influence changes in the surface ocean, and not the other way around.  

 
Table 3.3: The strongest correlations and their respective lag from the results of cross-correlations for the 
lag values that are within 18-month cut off and are positive. The ocean state variables are represented by 
their first letter (and second for silicate) 

Variable 
Pairing 

Cross-
Correlations 
(absolute) 

Lag 
(months) 

T/NPGO 0.58 0 
T/SOI 0.43 2 
S/NPGO 0.54 3 
S/SOI 0.32 2 
S/MEI 0.31 0 
N/NPGO 0.58 4 
N/MEI 0.27 0 
P/NPGO 0.58 5 
P/SOI 0.24 31 
P/MEI 0.21 0 
Si/NPGO 0.54 6 
O/NPGO 0.46 2 

 

 
Given that the relationships between the ocean state variables and the climate 

modes are the subject of this study, these are the relationships that need to be focused on. 

Temperature has a moderately strong correlation with NPGO and SOI while being in 

phase (NPGO) or lagging by 2 months (SOI) (Table 3.3). Salinity has correlations with 

similar strengths for NPGO and SOI as well, but with slightly longer lags (i.e. salinity 

takes longer to respond), and has a slightly weaker correlation with MEI, which it is in 

phase with. Nitrate has a moderately strong correlation with NPGO, with a lag of 4 
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month, and a correlation of about half that with MEI, which is in phase. Phosphate also 

has moderately high correlations with NPGO and a lag (response time) of 5 months, but 

has moderately weak correlations with SOI and MEI, with the respective lags being 31 

and 0 months. Silicate has a moderately strong correlation with NPGO with a lag of 6 

months. Chlorophyll does not have any relationships where there is a positive (or zero) 

lag not exceeding 63 months. Oxygen has a moderately strong correlation with NPGO, 

and takes 2 months to respond. 

Based on these values, no ocean state variable responds to all four of the climate 

modes, but NPGO is most likely to be the mode that drives the ocean response. The 

corresponding lag values for NPGO indicate that there can be 0 to 6 months before the 

ocean state variable responds to the climate mode. The SOI forces three of the variables 

with lags of 2 and 31 months. The MEI only forces three variables, which are in phase, 

and tends to have weakest correlations. The PDO does not appear to lead any of the 

ocean state variables.   

 

 
3.4.2 Spectral Lag 
 

Cross-spectral analyses were also conducted to determine the lagged relations 

between the variables as a function of frequency, and so, in some sense, is a 

generalization of the cross-correlation. The figures below (Figures 3.17-3.29) depict the 

cross-spectral analyses of the ocean state/climate mode variable pairs which had a 

positive cross-correlation lag that was less than 63 months, as well as the 

temperature/PDO pairing since that is a pairing with a known relationship where the 



77 
 

climate mode leads the ocean variable (all other variable pair figures are in Appendix C 

(Figures C.8-C.35)). The coherency spectrum indicates how strongly the two variables 

are related at the same frequencies, and given that the frequencies (cycles/year) of interest 

are 0.04688, 0.09375, 0.1875 for all climate modes, as well as 0.2344, and 0.2812 for the 

MEI, these will be focused on in of this study. The coherencies do not indicate much 

other than whether or not the two time series share cycles at similar frequencies, but it 

should be noted that the expectation that PDO influences temperature (mentioned in 

section 3.2.1) is not depicted in their coherency spectrum (Figure 3.29). The phase 

spectrum determines how out of phase the two time series are within the frequency range 

of interest (i.e. the time lag at a given frequency) where a negative phase indicates the 

climate mode drives the ocean state variable.  

When looking at the cross-spectral analyses for the highlighted pairings in Table 

3.3, (Figures 3.17-3.29), there are a few things to note. In Figure 3.17 there is a strong 

coherency between phosphate/MEI (panel C) in the 4- to 5-year cycle frequency, and the 

phase (panel B) jumps from one extreme to the other from one frequency to the next 

(phase wrapping). This is indicative of the two variables being anti-correlated. This is 

also the case for nitrate/MEI and salinity MEI, (Figures 3.18, 3.19). The variables which 

are in phase but anti-correlated are adjusted by 180° to obtain more realistic lags. There is 

more coherency for the phosphate/SOI pairing (Figure 3.20) at the 10 to 20-year cycle 

frequencies than at the 5-year cycle, but according to Table 3.4 phosphate also responds 

to SOI at the 5-year cycle. The same can be said for salinity/SOI (Figure 3.21). Figure 

3.22 (temperature/SOI) has phase wrapping, and stronger coherencies at the longer 

cycles. Oxygen/NPGO, nitrate/NPGO, and salinity/NPGO (Figures 3.23, 3.26, 3.27) do 
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not have any phase wrapping, and their phases are all negative, meaning that the ocean 

state variables respond to NPGO. Silicate/NPGO, phosphate/NPGO, and 

temperature/NPGO (Figures 3.24, 3.25, 3.28) do show phase wrapping, so they are anti-

correlated The temperature/PDO pairing (Figure 3.29), which did have a strong 

correlation, but did not have temperature responding to PDO in the cross-correlation 

results, also does not have a negative phase, indicating that temperature does not respond 

to PDO.  

 
 
Figure 3.17: An overplot of the scaled and smoothed silicate and MEI time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   
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Figure 3.18: An overplot of the scaled and smoothed nitrate and MEI time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   

 

 
Figure 3.19: An overplot of the scaled and smoothed salinity and MEI time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   
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Figure 3.20: An overplot of the scaled and smoothed phosphate and SOI time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   

 

 
 
Figure 3.21: An overplot of the scaled and smoothed salinity and SOI time series (panel A), the phase 
spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on 
the lower frequencies (panel C) from the cross-spectral analysis.   
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Figure 3.22: An overplot of the scaled and smoothed temperature and SOI time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   

 
Figure 3.23: An overplot of the scaled and smoothed oxygen and NPGO time series (panel A), the phase 
spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on 
the lower frequencies (panel C) from the cross-spectral analysis.   
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Figure 3.24: An overplot of the scaled and smoothed silicate and NPGO time series (panel A), the phase 
spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on 
the lower frequencies (panel C) from the cross-spectral analysis.   

 

 
 
Figure 3.25: An overplot of the scaled and smoothed phosphate and NPGO time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   



83 
 

 
Figure 3.26: An overplot of the scaled and smoothed nitrate and NPGO time series (panel A), the phase 
spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on 
the lower frequencies (panel C) from the cross-spectral analysis.   

 

 
 
Figure 3.27: An overplot of the scaled and smoothed salinity and NPGO time series (panel A), the phase 
spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on 
the lower frequencies (panel C) from the cross-spectral analysis. 
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Figure 3.28:An overplot of the scaled and smoothed temperature and NPGO time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   

 
 
 
Figure 3.29: An overplot of the scaled and smoothed temperature and PDO time series (panel A), the 
phase spectrum with a focus on the lower frequencies (panel B) and coherency spectrum with a 
focus on the lower frequencies (panel C) from the cross-spectral analysis.   
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With this spectral analysis, having a negative phase means that the climate mode 

is the leading factor in the relationship. That being said, and keeping the same 63-month 

cut off that was used in the correlation analyses, the highlighted values in Table 3.4 are 

the values that meet all of the criteria for the frequencies of interest (or are nearly in 

phase (lag<1 month)).    

To turn the phase spectrum into a lag of months, the following equation was used: 

 

  

  (5) 

 

where: 

  is the corresponding phase value at frequency  in radians 

  is the frequency of interest in cycles per year. 

The cross-spectral analyses show that fifteen of the pairings meet the criteria for at least 

three of the frequencies of interest (Table 3.4). Of these fifteen pairs, ten have the same 

result as the cross-correlation lag analyses, and the oxygen/NPGO and 

temperature/NPGO cross-correlation result is not seen in the cross-spectral analysis. The 

five pairs that have a negative lag that is no more than 63 months are: chlorophyll/NPGO, 

silicate/SOI, nitrate/SOI, silicate/MEI, and temperature/MEI. Given that the silicate/PDO 

cross-spectral analysis meets the criteria in the 10- and 20-year cycle frequencies, which 

are the two strongest frequencies for PDO, the it would be safe to say that PDO leads 

silicate. The highlighted cross-spectral analysis pairings which are not in Table 3.3 might 

differ because these (cross-spectral) lags might not occur at the highest cross-correlation, 
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which is how the lags in Table 3.3 were calculated. This could also be the case for 

chlorophyll/MEI, where only the 10-year cycle meets the criteria even though NPGO’s 

dominant cycles are 3 and 4 years. 

 Out of NPGO, SOI, and MEI, NPGO has, on average, the shortest lags, and it had 

the strongest cross-correlation, which indicates that NPGO has a more significant impact 

on the ocean state variables than the other climate modes. There is no obvious difference 

between SOI and MEI (which makes sense as they represent the same climate mode), and 

PDO has the weakest impact on the ocean state variables. The differences in the lags 

between the cross-correlation analysis and cross-spectral analysis could be accounted for 

by the fact that the cross-correlation analyses are based on the point of strongest 

correlation between the two variables, and the cross-spectral analyses are based on 

specific frequencies of the variable’s cycles. 

 The lack of negative lags within the 63-month period in the cross-spectral results 

when there were lags in the cross-correlation results could be due to extra “noise” in the 

time series that was not filtered out with the low pass filtered used. It could also be due to 

the climate modes having a range of important frequencies (e.g. ENSO has a 3 to 5-year 

cycle) and the analysis had difficulty comparing those frequencies to the ocean state 

frequencies. 
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Table 3.4: The resulting lag values in months from the cross-spectral analyses and Eq. 5. Ocean state 
variables are depicted by their first letter (and second for silicate). Negative values (first variable lags the 
second) that fall within the 18 month criteria are highlighted. ‘–‘ denotes the pairings that do not have 
dominant cycles in the  frequencies indicated. 

 
 Period  

21.33 years 
Period  
10.66 years 

Period  
 5.33 years 

Period  
 4.27 years 

Period 
 3.55 years 

T/PDO 2.30 2.67 3.19 - - 
S/PDO 8.12 8.99 9.02 - - 
N/PDO 0.09 2.66 7.41 - - 
P/PDO -6.04 61.13 5.36 - - 
Si/PDO -11.89 -8.23 3.85 - - 
C/PDO 38.23 -42.45 10.87 - - 
O/PDO 7.65 56.89 5.46 - - 
      
T/NPGO 14.09 10.43 3.50 - - 
S/NPGO -3.57 -1.90 -2.25 - - 
N/NPGO -9.50 -7.30 -4.13 - - 
P/NPGO -14.06 -9.78 -4.26 - - 
Si/NPGO -16.22 -11.08 -5.19 - - 
C/NPGO -7.99 -7.07 -6.10 - - 
O/NPGO 19.81 13.01 1.18 - - 
      
T/SOI 0.48 -0.23 -1.45 - - 
S/SOI -5.25 -3.52 -0.13 - - 
N/SOI -24.91 -17.87 -7.15 - - 
P/SOI -34.30 -23.12 -11.11 - - 
Si/SOI -40.93 -25.83 -13.48 - - 
C/SOI 16.32 11.39 -21.71 - - 
O/SOI 6.12 5.77 4.02 - - 
      
T/MEI -0.60 -0.97 -1.06 -0.22 0.72 
S/MEI -4.54 -2.16 2.39 1.35 -0.47 
N/MEI -25.27 -17.24 -4.34 -0.62 0.32 
P/MEI -33.46 -21.65 -7.79 -1.90 0.66 
Si/MEI -40.63 -24.31 -8.82 -0.04 3.77 
C/MEI 9.75 -0.95 10.41 6.73 3.95 
O/MEI 8.43 8.11 5.24 1.73 1.92 
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Chapter 4 –Discussion 
 

Long-term ocean monitoring time series can be very useful and informative, but 

also difficult to deal with. Their use in determining how climate modes and the ocean 

surface interact with each other can be helpful for increasing our knowledge of the ocean 

and how it is influenced by climate modes. The issue with these long-term time series is 

that they are often incomplete, having variable sampling rates and gaps which change 

with the variable under consideration. Therefore standard time series analyses cannot be 

used on them, and it is difficult to compare them to climate mode time series. Filling in 

the gaps with the Kalman smoother algorithm allowed the ocean state variables to be on a 

regular time grid, and relationships established with the climate modes to determine if 

climate modes influence the ocean state variables. It was found that while all the climate 

modes displayed some amount of influence on the ocean state, NPGO had the greatest 

amount of influence. 

This thesis analysed seven ocean variables in the 60-year time series from Ocean 

Station Papa (OSP) in the sub-Arctic Pacific. These data had inconsistent sampling rates 

and gaps in the data. To deal with this issue, a novel reconstruction approach was applied 

to the OSP time series. This was based on a Kalman smoother solution for a state space 

model. It allowed for the infilling or imputation of gaps in the record by making use of 

the relationships between the ocean state variables, in essence borrowing information 

from one state variable to find out about another. A key part of this procedure was 

establishing the relationships between the ocean state variables which was done using 

lagged multivariate regression. Furthermore, to obtain a monthly record, the temperature 

and salinity reanalysis product, ORAS4, was used within the statistical reconstruction. 
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This created a complete time series which could then be analysed using standard time 

series analyses such as cross-correlation and cross-spectral analyses. As the 

reconstructions account for both model and observation error, the reconstructed time 

series do not match up exactly with the observations, but provide reasonable, complete, 

estimated time series with appropriate error bars. For further analysis, the reconstructed 

time series were low-pass filtered to get rid of the seasonal cycle and other short-term 

cycles since the goal here was to compare climate modes.  

There are a few assumptions that have been made in this study, as well as some 

known issues. When looking at the Kalman Smoother, it was assumed that the dynamics 

matrix Φ, which embodies the time lagged relationships between the ocean variables, 

does not change over time. Since there were only limited time periods in which all seven 

of the ocean state variables were sampled at a high enough frequency, it could not be 

determined if a Φ calculated over a different sampling period would produce the same 

results as the Φ which was calculated for the training period of 1970 to 1976. Should 

there be a data set where multiple Φ’s could be calculated over different sampling 

periods, it could be determined if Φ does change over time, and if that would imply 

significant change to the results. Relatedly, it is therefore also assumed that the sampling 

period used to calculate Φ was not influenced by any strong climatic event, like the ones 

being studied. If Φ was calculated using a sampling period during a strong El Niño, for 

example, it would influence the results, and may explain why some results were not as 

expected. Another issue with the Kalman Smoother is that the model error was calculated 

using its ability to predict the observational data, which means that there is some 
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observational error incorporated into the model error. It is currently unknown if there is a 

way to get around this issue. 

This method of statistical reconstruction can homogenise irregular, cyclical data 

sets, and the dynamics matrix used in the reconstruction (Φ) can also provide some 

information on the mechanisms of the system. Since Φ is asymmetrical, the values within 

the matrix can be used to examine the physical and biogeochemical mechanisms within 

the system, which may be explored in future studies. As well, future studies may be able 

to incorporate the uncertainty estimates included in the Kalman smoother. The time series 

analyses used in this study do not typically have methods of incorporating uncertainty 

values, but it may be possible to do so by using weighted values based on the inverse of 

error in the analyses (i.e. values from the Kalman smoother with high uncertainty 

estimates have less weight than the values with low uncertainty estimates). That being 

said, should this method of statistical reconstruction be used for non-time series analyses, 

the uncertainty estimates from the Kalman smoother should be able to be used.  

Some of the limitations of this method of statistical reconstruction include: there 

needs to be at least one period of time where all the variables have been sampled at a 

large enough rate to establish a reliable Φ; and when there are limited observations, the 

reconstruction may be dominated by the variability and trends seen in the predictor 

variables (temperature and salinity for this study). The results of the second limitation 

may mitigated by de-seasonalising the data before it goes through the Kalman smoother, 

and may negate the need for a low-pass filter and any sources of error that may be 

associated with it. To do this, the first thing to do would be to put the raw data on a 

monthly grid so the distribution of the data would be the same as it was in Section 2.3. 
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Then would be to remove the monthly means from the raw data to obtain the anomalies. 

Next, take the training data period, interpolate it, and use multivariate regression to create 

a new Φ. The observation errors should be the same as the seasonalised observation 

errors since they are based on the standard deviation of the raw data, but the model error 

should be recalculated with the new Φ. The procedure from there on in would be the 

exact same as described in Section 2.3. De-seasonalising this process may remove the 

dominating predictor cycles from the other variable reconstructions, but it may also 

increase the model error as the Kalman smoother is ideal for reconstruction cycles and it 

may struggle to capture the lower-frequency cycles. While it is currently unknown how 

the seasonalised/de-seasonalised results compare with each other, the best method to use 

in future projects may vary depending on the project.   

Application of this method of statistical reconstruction could potentially be used 

on any ocean time series. It could aid in projects aimed at studying the seasonal and 

interannual variability of ocean variables by providing detailed information that may 

otherwise be unavailable (Henson, 2014), whether due to a lack of resources, or one (or 

more) variables being measured less frequently than others. Further study of the Kalman 

smoother on ocean time series such as HOT and BATS, where there are more frequent, 

regular sampling of ocean variables could provide information for refining this method, 

and determine the extent of its capabilities. 

Four climate modes, PDO, NPGO, SOI, and MEI, were analysed together with 

the seven low-pass filtered ocean state variables. Correlations, cross-correlations, and 

cross-spectral analyses were completed to determine if and how the climate modes 

influenced the ocean state variables. When looking at the lag of the strongest correlation 
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in the cross-correlation analyses, NPGO had the greatest number of positive lags which 

were 63 months or less (six out of seven) and the corresponding correlations ranged from 

0.46 to 0.58. SOI and MEI had three correlations each, ranging from 0.21 to 0.43, and 

PDO did not have any non-zero lagged correlations which met the criteria.  

The cross-spectral analyses resulted in each of the four climate modes leading at 

least one ocean state variable with a lag that met the criteria. According to this analysis, 

PDO leads nitrate, phosphate, silicate, and chlorophyll with lags ranging from 0.09 to 

42.45 month; NPGO leads salinity, nitrate, phosphate, silicate, and chlorophyll with lags 

ranging from 2.25 to 16.22 months; SOI leads temperature, salinity, nitrate, phosphate, 

and silicate with lags ranging from 0.13 to 40.93 months; and MEI temperature, salinity, 

nitrate, phosphate, and silicate with lags ranging from 0.22 to 40.63 months). There were 

some discrepancies between the cross-correlation and cross-spectral analyses that could 

be due to spurious relationships, that the dominant climate mode frequencies were not 

isolated in the time series, or that the ‘dominant’ cycle in the climate modes is often 

within a range of frequencies and does not provide accurate results when only looking at 

two or three of those frequencies together as is done in the cross-correlation. 

Based on these results, it appears that NPGO has the greatest influence among the 

seven ocean state variables in this study. Many of the previous studies done on NPGO 

and ocean surface biogeochemical variables have been done by Di Lorenzo and others, 

which is not surprising given that Di Lorenzo was the one who initially defined the 

NPGO, and it was initially defined with data that included data collected at OSP. In these 

studies, it was found that there is a correlation of 0.4 between the NPGO index and SSS 

anomalies at OSP (Figure 4.1) (Di Lorenzo et al., 2009). It needs to be noted, though, that 
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these observations were SSS anomalies made from using a depth of 150m while this 

study is looking at the mean SSS of the top 15m. Studies in ocean carbon often avoid the 

surface ocean because the signals are less clear in the surface due to all the physical, 

biological, and chemical processes taking place there. The correlation between NPGO 

and SSS anomalies is attributed to variations in the low frequencies, not the seasonal 

cycle (Di Lorenzo et al., 2009).   

 

 
Figure 4.1: Figure 2 from Di Lorenzo et al., 2008. Figure description: Timeseries of NPGO index (black) 
compared to PC1 of SSSa (R = 0.67, 99%), observed SSSa at ocean Station Papa (OSP) (R = 0.40, 96%) at 
the offshore end of Line P [Crawford et al., 2007], and observed SSSa from CalCOFI program (R = 0.56, 
99%). The PC1 of SSSa is normalized by its standard deviation, units are in standard deviations (std). 
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Figure 4.2: Figure 3 from Di Lorenzo et al., 2008. Figure Desciprtion: Timeseries of NPGO index (black) 
compared to PC1 of NO3 (R=0.65, 99%), observed mix layer NO3 at Line-P [Pena and Varela, 2007] 
(R=0.68, 99%), and observed NO3 from CalCOFI program (R=0.51, 95%). All time series are normalized 
by their standard deviations, units are in standard deviations (std). 

Similar to the SSS, nitrate levels at OSP were also correlated to the NPGO index 

at Line P when looking at nitrate values 150m (Figure 4.2). Given that it has been found 

that low-frequencies variations in surface nitrate levels are strongly, positively correlated 

with phosphate, silicate, salinity, and negatively correlated with oxygen (Wong et al., 

2007, Whitney et al., 2007), correlations between nitrate and NPGO were to be expected. 

That expectation can be seen in the completed analyses where NPGO had a strong 

correlation with nitrate and leads with a lag within the 63 month criteria.  

The PDO appears to have the least amount of influence among the ocean state 

variables. Previous studies suggest that PDO changes in SST are asymmetrical between 

winter and summer in the NEP (Gregg & Conkright, 2002), and PDO has an east/west 

gradient in temperature (Overland et al., 1999) (Figure 4.3) this could mean that there 

would not be a strong correlation between PDO and temperature at OSP even though 
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PDO index is based on SST anomalies. Figure 4.3 shows that OSP (C) is located in a 

region close to the null, and only experiences a small degree of SST variation during 

PDO events. Some correlation could be expected between chlorophyll and PDO as Gregg 

& Conkright (2002) found some evidence that chlorophyll decreased when the PDO 

entered a positive regime. In terms of SSS, it was found that there was a NNW/SSE 

character (Overland, et al., 1999), which is similar to the interannual variability in 

precipitation, and given that PDO’s climatic effects are most visible in the North 

American/North Pacific region (Hare & Mantua, 2000). The results show that PDO only 

leads nitrate, phosphate, silicate, and chlorophyll during the 10-20 year cycles, and has no 

leading cross-correlations. 

 
Figure 4.3:  Figure 1 from Overland et al., 1999. Figure description: Spatial pattern of SST regressed upon 
the October-March PDO index, plotted in °C per standard deviation of the PDO index. Letters denote three 
station locations: A = GAK11 (57.1°N, 148°W), B = Papa line station 7 (49.1°N, 132.4°W), and C = OWS 
P (50°N, l45°W). 
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The SOI appeared to have a slightly stronger influence on the ocean state 

variables than MEI given that the represent the same climatic event. The SOI was 

expected to be negatively correlated with SST as a strong, negative SOI is indicative of 

El Niño, which results in warm waters in the sub-Arctic Pacific (Niebauer, 1988). Since 

the MEI is calculated using a greater number of variables than SOI, it should also be 

negatively correlated to SST, but its correlation would not be as strong. Nitrate and 

Silicate levels are known to drop during El Niño events in the northern Pacific Ocean 

(Whitney & Welch, 2002), so SOI and MEI should also be negatively correlated with 

these variables. The SOI had significant correlations with temperature, salinity, and 

phosphate while MEI had significant correlations with salinity, nitrate, and phosphate. 

Both SOI and MEI have a leading lag with temperature, salinity, nitrate, phosphate, and 

silicate with respect to the cross-spectral analyses. 

Given that when the NPGO is positive the changes in the wind create favourable 

up-welling conditions in the Alaskan Gyre, it makes sense that NPGO has the greatest 

influence on most of the ocean state variables at OSP (Di Lorenzo et al., 2008). The 

positive NPGO index coincides with an increase in nutrients in the surface waters at OSP 

due to nutrients being brought up to the surface waters from the nutrient-rich waters 

below. This also provides an explanation to the lags observed between NPGO and the 

ocean state variables as the nutrient-rich water from the Alaskan Gyre up-welling needs 

time to be transported to OSP from the centre of the Gyre via the Alaska current. The 

lack of influence from the PDO may be the result of OSP being located near the PDO 

node (Figure 4.3), where the effects of the PDO are not as strongly observed.  
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The SOI and MEI should not be expected to have as strong of a influence on the 

ocean state variables at OSP as NPGO given that both indices are recorded in the tropical 

Pacific, whereas NPGO (and PDO) is recorded in the North Pacific, closer to where OSP 

is located. The lags seen in the SOI with the ocean state variables may be partly 

explained by the air temperature/ocean temperature gradient (i.e. how long it takes for 

SST to reflect changes in air temperature) (Lau & Nath, 2001). This would also help 

explain the lack of lags seen in some of the MEI/ocean state variable relationships 

because one of the parameters MEI is calculated by is SST, which would negate the air 

temperature/ocean temperature lag. 

It needs to be noted, however, that all of the climate modes are intertwined and 

feed/force each other in some capacity. As the climate modes will not be separated and 

independent from each other in this study, the results will not always allow for a direct 

relationship between the biogeochemical variables and the climate modes. Even if a 

climate mode were as isolated as it could be, there are still connections between the 

climate, atmosphere, and ocean that are unknown, so there would still be extra influences 

not accounted for in the study which could result in a mis-interpretation of the results. 

Should this work be continued in the future, there a few topics that have been 

identified and could be addressed. One of the original goals of this project under which 

this work was funded was to help determine how climatic events affect fish recruitment, 

so if there are any fish recruitment data that can be added to the reconstruction, it should 

be possible to produce a time series similar to those in this project and relate fish 

recruitment to climate modes. As well, incorporating and analysing the recent moorings 

into the data sources used may allow some of the assumptions surrounding Φ to be tested. 
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Even if all of the variables are not available from the more recent mooring data, creating 

a Φ using the variables available from the mooring data and then using those available 

variables to create a Φ during the sampling period used in this project should determine if 

Φ does change over time, or if a climatic event significantly influenced Φ. As well, the 

comparison between different data sets of the same variable could be tested with a cross-

validation exercise, similar to the one used to determine the model errors. While this 

project used monthly data for the observations used in the reconstruction and to create the 

Φ matrix (the data were there and freely available), using two to four samples per year 

should also provide enough information to obtain a reasonable statistical reconstruction, 

and may negate the need to filter out the annual cycle, though the annual anomalies could 

be used as well. It should also be noted that if there is a poor Φ value for a pair of 

variables and there is low model error for those variables, the reconstruction may provide 

results that have visibly different trends or cycles during periods with no observations 

when compared to periods with observations. Finally, this work is not limited to OSP. 

This method of reconstruction could be used on any ocean station in the open ocean, and 

maybe even on some coastal data sources if a few modifications are made. As long as 

there is a correlation among the variables selected, a statistical reconstruction, like the 

Kalman Smoother, could provide reliable time series for data sets that are incomplete.  
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Appendices 
 
Appendix A: Algorithms and Multivariate Regression 

A.1: Kalman Smoother Model and Algorithm 
 
 
Model: 

 
 

  
 
Algorithm: 
 For t = 1 to T 
(i) Prediction Step: 

 Mean of prediction probability density function 

(pdf) at time t 

 Variance of predictive pdf at time t 

 

(ii) Observation update: 

   Variance of filter pdf 

    Kalman gain matrix 

  Filter mean at time t 

             End (for t) 
 
For more details see Särkkä (2013).
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A.2: Multivariate Regression 

A more detailed representation of the multivariate regression model used in this thesis is the following. 

Let Y be the  response matrix, X be an  matrix such that all entries of the first column are 1’s, and q predictors. Let  

be an  matrix of fixed parameters. Let  be an  matrix such that ~N (0, ). 

 

Where: 

 Y:  response matrix (columns are the ocean state variables at time t) 

 X: predictor matrix (columns are the ocean state variables at time t-1) 

 : the quantity estimated by the regression, i.e. the matrix  

 : residual errors.

This regression equation is then solved using standard least squares procedure. See Johnson & Wichern (2007) for more details.
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Appendix B: Tables 

Table B.1: The complete list of ocean state variable/ climate mode correlations. The r column depicts the 
correlation between the variables, and the p-value column depicts the p-values for the correlations. 
Highlighted pairings have p-values less than 0.05, and hence are statistically significant. 

Variable Pairing r p-
value 

T/PDO 0.62 <0.001 
T/NPGO -0.47 <0.001 
T/SOI -0.40 <0.001 
TMEI 0.45 <0.001 
   
S/PDO -0.45 <0.01 
S/NPGO 0.39 <0.001 
S/SOI 0.29 <0.001 
S/MEI -0.34 <0.001 
   
N/PDO -0.43 0.09 
N/NPGO 0.47 <0.01 
N/SOI 0.24 <0.01 
N/MEI -0.30 <0.01 
   
P/PDO -0.39 <0.01 
P/NPGO 0.45 <0.01 
P/SOI 0.18 <0.01 
P/MEI -0.25 <0.01 
   
Si/PDO -0.31 <0.01 
Si/NPGO 0.37 <0.01 
Si/SOI 0.08 0.03 
Si/MEI -0.18 <0.01 
   
C/PDO 0.25 <0.01 
C/NPGO -0.19 <0.01 
C/SOI -0.09 0.02 
C/MEI 0.18 0.01 
   
O/PDO -0.48 <0.01 
O/NPGO 0.23 <0.01 
O/SOI 0.26 <0.01 
O/MEI -0.39 <0.01 
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Table B.2: The strongest correlations and their 
respective lag from the results of cross-
correlations for all the variables. Highlighted 
values are the lag values that are within 18-
month cut off and are positive. The ocean state 
variables are represented by their first letter (and 
second for silicate). 
 
Variable 
Pairing 

Absolute 
Cross-
correlation 

Lag 
(months) 

T/S 0.56 -2 
T/N 0.54 -3 
T/P 0.55 -3 
T/Si 0.47 -5 
T/C 0.43 130 
T/O 0.70 -3 
T/PDO 0.62 -2 
T/NPGO 0.58 0 
T/SOI 0.43 2 
T/MEI 0.44 -2 
   
S/T 0.52 2 
S/N 0.82 0 
S/P 0.65 0 
S/Si 0.51 -3 
S/C 0.73 0 
S/O 0.54 -1 
S/PDO 0.47 -5 
S/NPGO 0.54 3 
S/SOI 0.32 2 
S/MEI 0.31 0 
   
N/S 0.82 0 
N/T 0.54 3 
N/P 0.95 0 
N/Si 0.80 -1 
N/C 0.68 0 
N/O 0.34 -1 
N/PDO 0.43 -3 
N/NPGO 0.58 4 
N/SOI 0.26 -319 
N/MEI 0.27 0 
   
P/S 0.65 0 
P/N 0.95 0 

Variable 
Pairing 

Absolute 
Cross-
correlation 

Lag 
(months) 

P/T 0.55 3 
P/Si 0.89 0 
P/C 0.59 -1 
P/O 0.33 46 
P/PDO 0.37 -2 
P/NPGO 0.58 5 
P/SOI 0.24 31 
P/MEI 0.21 0 
   
Si/S 0.51 3 
Si/N 0.80 1 
Si/P 0.89 0 
Si/T 0.47 5 
Si/C 0.48 1 
Si/O 0.32 -22 
Si/PDO 0.34 -316 
Si/NPGO 0.54 6 
Si/SOI 0.31 -28 
Si/MEI 0.15 -3 
   
C/S 0.73 0 
C/N 0.68 0 
C/P 0.59 1 
C/Si 0.49 -1 
C/T 0.43 -130 
C/O 0.49 -1 
C/PDO 0.49 -135 
C/NPGO 0.38 -187 
C/SOI 0.34 -131 
C/MEI 0.34 -133 
   
O/S 0.54 1 
O/N 0.34 1 
O/P 0.33 -46 
O/Si 0.32 22 
O/C 0.49 1 
O/T 0.70 3 
O/PDO 0.49 -2 
O/NPGO 0.46 2 
O/SOI 0.36 68 
O/MEI 0.38 -2 
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Appendix C: Figures 

 

Figure C.1: Temperature vs. ocean state variable time series overplots. Temperature is represented in blue 
and the ocean state variables are represented in red. Units are as previously established. 
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Figure C.2: Salinity vs. ocean state variable time series overplots. Salinity is represented in blue and the 
ocean state variables are represented in red. Units are as previously established. 
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Figure C.3: Nitrate vs. ocean state variable time series overplots. Nitrate is represented in blue and the 
ocean state variables are represented in red. Units are as previously established. 
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Figure C.4: Phosphatee vs. ocean state variable time series overplots. Phosphate is represented in blue 
and the ocean state variables are represented in red. Units are as previously established. 
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Figure C.5: Silicate vs. ocean state variable time series overplots. Silicate is represented in blue and the 
ocean state variables are represented in red. Units are as previously established. 
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Figure C.6: Chlorophyll vs. ocean state variable time series overplots. Chlorophyll is represented in blue 
and the ocean state variables are represented in red. Units are as previously established. 
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Figure C.7: Oxygen vs. ocean state variable time series overplots. Oxygen is represented in blue and the 
ocean state variables are represented in red. Units are as previously established. 
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Figure C.8: An overplot of the scaled oxygen and MEI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.9: An overplot of the scaled chlorophyll and MEI time series (panel A), the phase spectrum with 
a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.10: An overplot of the scaled silicate and MEI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.11: An overplot of the scaled phosphate and MEI time series (panel A), the phase spectrum with 
a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.12: An overplot of the scaled nitrate and MEI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.13: An overplot of the scaled salinity and MEI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.14: An overplot of the scaled temperature and MEI time series (panel A), the phase spectrum 
with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower 
frequencies (panel C) from the cross-spectral analysis. 
 

 
Figure C.15: An overplot of the scaled oxygen and SOI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.16: An overplot of the scaled chlorophyll and SOI time series (panel A), the phase spectrum  with 
a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 
 

 
Figure C.17: An overplot of the scaled silicate and SOI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.18: An overplot of the scaled phosphate and SOI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.19: An overplot of the scaled nitrate and SOI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.20: An overplot of the scaled salinity and SOI time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.21: An overplot of the scaled temperature and SOI time series (panel A), the phase spectrum with 
a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.22: An overplot of the scaled oxygen and NPGO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.23: An overplot of the scaled chlorophyll and NPGO time series (panel A), the phase spectrum 
with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower 
frequencies (panel C) from the cross-spectral analysis. 
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Figure C.24: An overplot of the scaled silicate and NPGO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.25: An overplot of the scaled phosphate and NPGO time series (panel A), the phase spectrum 
with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower 
frequencies (panel C) from the cross-spectral analysis. 
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Figure C.26: An overplot of the scaled nitrate and NPGO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 

 
Figure C.27: An overplot of the scaled salinity and NPGO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.28: An overplot of the scaled temperature and NPGO time series (panel A), the phase spectrum 
with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower 
frequencies (panel C) from the cross-spectral analysis. 
 

 
Figure C.29: An overplot of the scaled oxygen and PDO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.30: An overplot of the scaled chlorophyll and PDO time series (panel A), the phase spectrum 
with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower 
frequencies (panel C) from the cross-spectral analysis. 
 

 
Figure C.31: An overplot of the scaled silicate and PDO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.32: An overplot of the scaled phosphate and PDO time series (panel A), the phase spectrum with 
a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.33: An overplot of the scaled nitrate and PDO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
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Figure C.34: An overplot of the scaled salinity and PDO time series (panel A), the phase spectrum with a 
focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower frequencies 
(panel C) from the cross-spectral analysis. 
 

 
Figure C.35: An overplot of the scaled temperature and PDO time series (panel A), the phase spectrum 
with a focus on the lower frequencies (panel B) and coherency spectrum with a focus on the lower 
frequencies (panel C) from the cross-spectral analysis. 


