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Abstract

We study the algebraic structure of the Weyl tensor by tracing the level-0 set of
the complex scalar polynomial invariant, D, through a numerical simulation of a
quasi-circular binary black hole merger. We approximate the level-0 sets of D with
level-¢ sets of |D| for small e. We locate the local minima of |D| and find that the
positions of these local minima correspond closely to the level-¢ sets of |D] and we
also compare with the level-0 sets of Re(D). The analysis provides strong evidence
that the level-¢ sets track a unique geometric horizon. By studying the behaviour of
the zero sets of Re(D), Im(D) and their product, we observe that the level-¢ set that

best approximates this geometric horizon is given by & = 103,
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Chapter 1

Introduction

1.1 Black Hole Horizons

Black holes are solutions of general relativity and are most naturally characterized by
the event horizon. The event horizon of a black hole (BH) is defined as the boundary
of the causal past of future null infinity. Intuitively, this means that on one side of
the event horizon, light cannot escape to null infinity. Notice that event horizons
require knowledge of the global structure of space and time (one could say that the
event horizon is a teleological object) [7, 8, 9]. However, for numerical relativity it is
more convenient to use an initial value formulation of GR (a 341 approach), where
initial data is given on a Cauchy hypersurface and is then evolved forward in time.
This approach requires a local description of BH solutions [57, 56, 2, 3, 35, 32].

Let X be a compact spacelike 2D surface without border, and consider light rays
leaving and entering X, with directions [ and n, respectively. Let g be the induced
metric on ¥ and denote the respective expansions as Oy = q®V,l, and
Owm) = q**Vany, [52]. Then, O and O, are quantities which are positive if the light
rays locally diverge, and negative if the light rays locally converge, and are zero if the
light rays are locally parallel. We say that X is a closed trapped surface if ©) < 0
and O, < 0 [46, 50, 47]. ¥ is a marginally outer trapped surface (MOTS) if it has
zero expansion for the outgoing light rays, © = 0 [50, 47, 48, 54, 26, 33]. ¥ is a
future MOTS if ©) = 0 and O,y < 0 and a past MOTS if ©) = 0 and O(,) > 0 [48].
The outermost MOTS is called the apparent horizon (AH) [50, 47, 48, 54, 26, 33]. A
dynamical horizon (DH) is a smooth spacelike 3D submanifold of spacetime which is
foliated by future MOTSs. [13, 7, 8, 9].

The above definitions serve as a quasi-local description of BHs [22, 21, 7, 8, 9]. For
example, tracking an AH only requires knowledge of the intrinsic metric ¢, restricted
to the spacetime hypersurface and the extrinsic curvature of that hypersurface at a

given time [31, 9, 26]. Gravitational fields at the AH are correlated with gravitational
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wave signals [31, 38, 37, 34, 33, 52], so AHs are useful to study gravitational waves.
AHs are also used to numerically simulate binary BH (BBH) mergers and the collapse
of a star to form a BH [12]. For example, the simulations that are used to analyze
the gravitational wave data at LIGO use AHs [12, 28, 27]. DHs are also useful,
as they could contribute to our understanding of BH formation [7, 8, 9, 12]. In
addition, MOTSs turn out to be well-behaved numerically, and can be used to trace
physical quantities of a BH as they evolve over time and through a BBH merger
[54, 26, 33, 50, 51]. (This will be discussed in more detail in Chapter 2). One possible
disadvantage of AHs is that the AHs observed depend on how the spacetime is foliated,
so AHs are observer dependent [6].

It is conjectured that one can uniquely define a smooth, locally determined and fo-
liation invariant horizon called the geometric horizon based on the algebraic (Petrov)
classification of the Weyl tensor [22, 21]. This is the statement of the Geometric Hori-
zon conjecture. The necessary conditions for the Weyl tensor to be of a certain Petrov
type can be stated in terms of polynomials in the Riemann tensor and its contrac-
tions, which are called scalar polynomial invariants (or scalar curvature invariants)
(SPIs). The Petrov classification (and more generally the alignment classification) of

the Weyl tensor and the relevant SPIs are discussed in detail in the next section.

1.2 Classification of the Weyl Tensor and Scalar Polynomial Invariants

1.2.1 Petrov Classification

We describe the Petrov classification of the Weyl tensor. We assume a 4D spacetime.

Consider the following decomposition of the Riemann tensor:
Rapea = Cabed + Favea + Gaped (1.1)
where Cypeq is the Weyl tensor, satisfying
C%aa =0 (1.2)
Eupea is related to the traceless Ricci tensor, Sy, as [55)]

1
Eabad = Rab — ZRgab = Sab (13)



and G gpeq gives the remaining contribution, satisfying [55]:

1
Ghaa = ZgbdR (1.4)

(Note: the foregoing equations (1.1), (1.2), (1.3) and (1.4) can be generalized to higher

dimensions by modifying the fraction, }1) Being completely trace-free, the Weyl
tensor has no relation to R,. Since the matter distribution in a given spacetime
(Twp) only affects the Riemann tensor via R, in the Einstein Field Equations, it
follows that the matter distribution has no direct effect on the Weyl tensor. This
means that the Weyl tensor is only affected by the spacetime geometry and not
matter. Classifying the Weyl tensor then has a direct bearing on the classification of
the ambient spacetime geometry. This tensor can be classified by its eigenvalues and

eigenbivectors, according to the equation

1
5Cabcdxcd =\ Xy (1.5)
Where X, is a bivector, which is a two-form and in 4D, the bivectors span a 6
dimensional space. It turns out that equation (1.5) can be brought to the equivalent

form
QabXb - )‘Xa (16)

where @ is presently represented as a complex, symmetric, traceless 3 x 3 matrix (so
it has 5 independent degrees of freedom). The possible combinations of eigenvalues
and normal forms for @y, in (1.6) can then be used to classify the Petrov types of
the Weyl tensor. Based on this classification, there are five different Petrov types
for the Weyl tensor in 4D: types I, II, D, ITI, N and O. See [55] for details. One
can also obtain these Petrov types in 4D by considering the original eigenbivector
problem, (1.5) and using the boost weight decomposition to simplify the form of the
Weyl tensor.

One can obtain a similar algebraic classification for any symmetric trace free oper-
ator, say My, by solving the eigenvalue problem, (1.6) for M, and then enumerating
the possible combinations of repeated eigenvalues and normal forms of M,,. One can
also use the boost weight decomposition to define whether this M,, is of algebraic
type I, II, D, ITI, N and O which we shall utilize later. We can algebraically classify

the symmetric traceless type 2 tensor, M., = S, as above, where S, is the trace
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free Ricci tensor given in equation (1.3). This is equivalent to the Segre classification
[55].

An equivalent way of obtaining the Petrov types of the Weyl tensor is to classify
the roots, F, of the equation

Uy — 4BV, + 6E*Wy — AP, + B*W, =0 (1.7)

where the scalars {\Ili'}f‘zo are given by contracting C,.q with the null tetrad,

(I, n, my, my), where n’ = ! [55]. As proven by Penrose, this physically corresponds
to principal null directions, ms, for which Wo = Cppegmii®m5l? = 0 [55]. In terms
of this characterization, Cyp.q is of Petrov type I if there are 4 simple principal null
directions (4 principal null directions of multiplicity 1), Cypeq is of Petrov type D if
there are two double principal null directions, Cyeq is of Petrov type II if there is one
double and two simple principal null directions, Cp.q is of Petrov type III if there is
a triple principal null direction and a simple principal null direction, and Petrov type
N if there is a quadruple principal null direction, and Petrov type O if Cypeq = 0 (i-e.
the spacetime is conformally flat) [55].

1.2.2 Alignment Classification

The algebraic classification can be generalized to N dimensions [23, 24, 15, 43]. In N
dimensions, we start with the frame of N-vectors, {1, n, {m;}),'}, where 1 and n are
null, 1- n = 1, and the {m;} are real, spacelike, mutually orthonormal, and span the
orthogonal complement to the plane spanned by 1 and n. The possible orthochronous
Lorentz transformations are generated by null rotations about 1, null rotations about
n, spins (which involve rotations about m;), and boosts [43]. With respect to the

given frame, boosts are given by the transformation

| Y|
n—\'n

m; — 1my

forall i € {2,..., N — 1} and for some A € R\{0}. (The remaining transformations
are given in [23, 24, 15, 43].) Let T, ,, be a tensor expressed with respect to this
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frame. For a fixed set of indices {4y, ..., A,} the resulting object, T4, .4,, is denoted

a null-frame scalar. If this scalar transforms under boosts as
Tay.a, = NTu, a,

where b =ba, +...+ba,, bo =1, by = —1, b; =0 Vi € {2,... N—1}, then we say that
b is the boost weight of Ty, a,. The boost order of the tensor T"is the highest boost
weight of each of its corresponding null frame scalars. Armed with these definitions,
we may decompose the Weyl tensor into components organized by boost weight as
follows [23, 24, 15]:

2 ~

0

c

Y

7 7
_ 0, i j 0 71,0, i 0 i g ok
Capea = 4Coiojngam' ynem’ gy 4 8Co10ig lynem’ gy + 4Coijung m' ym’ ;m”y,

0

A\
7 Y

400101’0?&[;712[5} + 4001ijn?alémicmjd}

0 i g1, 7 J k l
+ SC'gﬂjn{am blcm d} + C’Z-jklm{ GV M d}

-1 -2
o\

+ éleil%anglimid} + 4C’1ijkl%amibmjcmkd}‘—l— 4C’1i1jl%amiblimjd}

(1.8)

where a,b,¢,d € {0,...,N — 1}, i,5,k,1 € {2,....N =1}, Tpgrsy = 3(Tipgirs) +
Tirslipq)), and where we used the symmetries of the Riemann tensor, Raped = Riabed};
the algebraic Bianchi identity, and the trace free condition of the Weyl tensor.

It turns out that the leading term of the Weyl tensor (the term with the highest
boost weight) is left unchanged by null rotations about 1, but is changed by all
other orthochronous Lorentz transformations. Similarly, the trailing term of the Weyl
tensor (the term with the lowest boost weight) is left unchanged by null rotations
about n, but is changed by all other orthochronous Lorentz transformations [23, 24,
15]. Hence, the boost weight of the leading component of the Weyl tensor (the boost
order) is only determined by 1 and the boost weight of the trailing term of the Weyl
tensor is only determined by n.

We now list the possible algebraic types of the Weyl tensor for general N. The
Weyl tensor (and hence the associated spacetime) is of alignment type G if for all 1
the boost order of Cp.4 is +2 and for all n the lowest boost weight of the components

of Cupeq is —2 (i.e. in (1.8) there will always be a boost weight +2 term and a boost
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weight —2 term). The Weyl tensor is of alignment type 1 if there is a null vector 1
for which the boost order of Cyp.q is +1 and for all n the lowest boost weight of the
components of Cypeq is —2 (i.e. in (1.8) the +2 boost weight term can be made to
vanish by a suitable frame choice). The Weyl tensor is of alignment type (1, 1) if there
is a null vector 1 for which the boost order of C,p.q is +1 and there is a null vector n
satisfying 1- n = 1 and the lowest boost weight of the components of Cypeq is —1 (i.e.
in (1.8) the +2 and —2 boost weight terms can be made to vanish by a suitable frame
choice). The Weyl tensor is of alignment type 2 if there is a null vector 1 for which
the boost order of C.4 is 0 and for all n the lowest boost weight of the components
of Cupeq 18 —2 (i.e. in (1.8) the +2 and +1 boost weight terms can be made to vanish
by a suitable frame choice). The Weyl tensor is of alignment type (2,1) if there is
a null vector 1 for which the boost order of C,p.q is 0 and there is a null vector n
satisfying 1 - n = 1 for which the lowest boost weight of the components of Cyp.q is
—1 (i.e. in (1.8) the +2, +1, and —2 boost weight terms can be made to vanish by a
suitable frame choice). The Weyl tensor is of alignment type (2,2) if there is a null
vector 1 for which the boost order of C,p.q is 0 and there is a null vector n satisfying
1-n =1 for which the lowest boost weight of the components of Cy.q is also 0 (i.e.
in (1.8) the +2, +1, and —2 and —1 boost weight terms can be made to vanish by
a suitable frame choice). The Weyl tensor is of alignment type 3 if there is a null
vector 1 for which the boost order of Cy.q is —1 and for all n the lowest boost weight
of the components of Cypeq is —2 (i.e. in (1.8) the +2, +1 and 0 boost weight terms
can be made to vanish by a suitable frame choice). The Weyl tensor is of alignment
type (3,1) if there is a null vector 1 for which the boost order of Cyyy is —1 and
there is a null vector n satisfying 1 - n = 1 for which the lowest boost weight of the
components of Cypeq is also —1 (i.e. in (1.8) the +2, +1, 0 and —2 boost weight terms
can be made to vanish by a suitable frame choice). The Weyl tensor is of alignment
type 4 if there is a null vector 1 for which the boost order of Cp.q is —2 and for all
n the lowest boost weight of the components of Cypq is also —2 (i.e. in (1.8) the
+2, +1 and 0 and —1 boost weight terms can be made to vanish by a suitable frame
choice). The Weyl tensor is of alignment type O if it vanishes identically. Because
of the symmetric roles of 1 and n in (1.8), the foregoing completely characterizes all

alignment types of the Weyl tensor [23, 24, 15, 43].
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The alignment types of the Weyl tensor, G, 1, (1,1), 2, (2,1), (2,2), 3, (3,1), 4
and O are also labelled as G, I, I, IT, IT;, D III, III;, N and O, respectively [43].
It turns out in 4D, type G does not exist, so for all null rotations of the null frame
(and hence for all observers) the highest boost weight of the Weyl tensor is of type
IT and types I and I;, IT and II;, IIT and III; are pairwise equivalent. Hence, the
alignment types of the Weyl tensor reduce to the Petrov types I, II, D, I1I, N, and
O in 4D [23, 24, 15, 43].

Therefore, in a 4D spacetime, the Weyl tensor is said to be algebraically general if
it is of Petrov type I. Otherwise, it is algebraically special (or zeroth-order algebraically
special). The 4D spacetime itself is said to be algebraically general if its associated
Weyl tensor is algebraically general (i.e. type I), and algebraically special otherwise.
It is of particular interest to know whether a given 4D spacetime is of special algebraic
type II or D. We can state the necessary conditions as discriminant conditions in
terms of simple SPIs [22, 21, 17, 18]. One can also say that in 4D, any trace free
and symmetric rank 2 tensor is is algebraically general if it is of algebraic type I and
algebraically special otherwise, as described previously. Just as an SPI is a scalar
obtained from a polynomial in the Riemann tensor and its contractions [22, 21], an
SPI of order k is a scalar given as a polynomial in various contractions of the Riemann

tensor and its covariant derivatives up to order k [22, 21]. It turns out that BHs are
characterized by SPIs [16].

1.2.3 SPIs

The necessary discriminant conditions on trace-free (ans symmetric) (s; = 0) 4D

Ricci tensor, Sy, for this operator to be of type II/D are [16]:
D ="'Dy = —s5(4s) — 1445954 + 27s3) + s4(1655 — 1285485 + 25657) =0,  (1.9)
where

1 1 1
Sy = —§Sab5’ba, S3 = —gSabSchCa, Sy = 1(233 — 898 5¢.8%). (1.10)

Similar conditions hold for any trace-free symmetric tensor Ty.
Similarly, the necessary real conditions for the Weyl tensor to be of type II/D are
[16]:
Wy = —11W5 + 33WoW, — 18W = 0, (1.11)
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Wy = (Wy — 2W,) (W5 + Wy)? + 18W3(6Ws — 2W3 — OWo W, + 3W5) =0, (1.12)

where
1 abed 1 cd pqab 1 cd Pq rsab
WQ - _Cabch 5 W3 - _Cabch qu s W4 - _Cabcdc qu rsC s
8 16 32
1
Wo = S5 Cared O, 071,07, O, O™, (1.13)

We could also use the type II/D discriminant conditions for (1.5) directly, but
these conditions turn out to be very long [22, 21]. A more practical alternative to
obtain necessary type II/D discriminant conditions for the Weyl tensor is to form

the symmetric trace-free operator,

T,¢ = CopeaC? — 2Wy6 ¢ (1.14)

a

with W5 as given in (1.13), and formulate the type II/D discriminant conditions for
this operator in analogy with equation (1.9). To figure out whether the covariant
derivatives of the Ricci tensor, Ryp.cq..., are of type II or of type D, we can also form
the associated operators and study their eigenvalues and eigenvectors.
Contracting the null tetrad,
(I, n, my, my), with the Weyl tensor, Cypeq, one may form the complex scalars, Wo, Wy, Wy, Wy Wy

and in terms of these scalars, as in the Newman-Penrose formalism, one may define

[ =Wo0, — 40, W3 + 30,7 (1.15)
U, U; 0,

J=|w; ¥, ¥, (1.16)
U, ¥, ¥,

It can be shown that the two real conditions, (1.11) and (1.12), are equivalent to the

real and imaginary parts of the following complex syzygy [55]:
D=1°-27J"=0 (1.17)

Thus for Petrov types IT and D, (1.17) holds. It also turns out that for Petrov types
ITI, N, and for O, we have [ = J =0, so (1.17) is satisfied trivially.



1.3 Statement of the Geometric Horizon Conjecture

Having discussed the Petrov classification, we now turn to the Geometric Horizon
Conjecture (GHC). Given a spacetime, one could ask where in the spacetime the
Weyl tensor is algebraically special and then define the geometric horizon as the set
of such points. Since the vanishing of the SPIs, defined in (1.11) and (1.12), or (1.17)
are necessary conditions for the Weyl tensor to be of Petrov type II or D (or even
more algebraically special (i.e. type III, N, D or O), it follows that the set of points
on which the Weyl tensor is algebraically special would be a (possibly improper)
subset of the level-0 set of these invariants [22, 21]. The level-0 sets of these SPIs
might not form a horizon with nice properties, however, as these SPIs could vanish
additionally on axes of symmetry or fixed points of isometries [22, 21]. We know from
(1.9), (1.11), and (1.12) that if the spacetime is of type IT or D, then the given SPIs
vanish. The GHC is given as follows [22, 21]:

GH Conjecture: If a BH spacetime is zeroth-order algebraically general, then on
the geometric horizon the spacetime is algebraically special. We can identify this

geometric horizon using scalar curvature invariants.

Comments: Note that when studying the GH conjecture, one would need to ensure
that the geometric horizon exists and is unique. If the GH conjecture were true,
then one could say that on this horizon, the Weyl tensor is algebraically special,
which implies that the SPIs vanish, and one could also say that the level-0 sets of
these SPIs completely characterize the geometric horizon. This horizon is foliation
independent and quasi-local [22, 21]. In this thesis, we shall study the complex level-
zero set of the invariant, D = I* — 27J% as given in (1.17), in 4D during a BBH
merger. This could possibly help provide insight as to whether one can define a
proper unique horizon based on the algebraic classification of the Weyl tensor. This
conjecture might have to be modified so that instead of analyzing level-0 sets of the
real SPIs, we analyze instead level—¢ sets for small e. However, further evidence from
the anlysis of D, below perhaps suggests that this is not the case. Such an e could
be determined by locating the local minima of the SPIs. We shall study the level—«
sets for e € {3 x 1071, 5 x 107, 1 x 1073}. In analogy to the MOTS, one can define
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the geometrically outer trapped surface, the GOTS, where O = 0, and O,y < 0
for outgoing and ingoing null vectors on the geometric horizon, [ and n, respectively
22, 21].

It may also be useful to study the algebraic properties of the covariant derivative
of the Weyl tensor. There is a second part of the GHC that states that if a BH
spacetime is algebraically special (so that on the Geometric Horizon the BH spacetime
is automatically algebraically special), and if the first covariant derivative of the
Weyl tensor is algebraically general, then on the geometric horizon, the covariant
derivative of the Weyl tensor is algebraically special, and this Geometric Horizon
can be identified as the level-0 set of certain differential SPIs [22, 21]. Differential
SPIs are scalars obtained from polynomials in the Riemann tensor and its covariant
derivatives and their contractions. This second part of the GHC can be applied to
arbitrary covariant derivatives of the Weyl tensor so that the statement is one about
the n'® covariant derivative of the Weyl tensor and its covariant derivative, the (n+1)
covariant derivative [22, 21]. It follows that by repeatedly taking covariant derivatives
of the Weyl tensor, one can study the surfaces defined by the level-0 sets of many

(differential) S PIs which may present a clearer picture of the Geometric Horizon.

In addition to algebraic and differential SPIs, one can also define and use Cartan
invariants, which are constructed from the Riemann tensor and its covariant deriva-
tives [42, 20]. More specifically, for a fixed set of frame vectors a Cartan invariant
is a scalar that is obtained from the Weyl or Riemann tensor or any of its covariant
derivatives by contracting the Weyl tensor (resp., any of its covariant derivatives) with
the frame vectors. Thus, the Cartan invariants can be interpreted as the components
of the Weyl tensor and its covariant derivatives. For example, the scalars {¥;} as
used in the definitions of I and J in (1.15) and (1.16) are Cartan invariants. Cartan
invariants are easier to compute in general than SPIs, because they are linear in the
Weyl tensor and its covariant derivatives. Furthermore, it was demonstrated that in
4D and 5D, one can construct other invariants from the Cartan invariants (extended
Cartan invariants) which detect the event horizon of any stationary asymptotically

flat ((anti) de Sitter) BH solutions [42, 20].

We next discuss applications of the GHC.
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1.4 Examples and Motivation for the Geometric Horizon Conjecture

There are many examples to support the plausibility of the GHC [42, 20, 7, 8, 9]. A
non-expanding horizon (NEH), A, is defined as a null surface with topology S? x R
for which any null normal [* of A has vanishing expansion, ©; = 0. This definition
can be strengthened to define a weakly isolated horizon and further strengthened to
define an isolated horizon [7, 8, 9]. It turns out that a Killing horizon is an isolated
horizon [7, 8, 9]. For the Kerr metric, the event horizon and Killing horizon coincide,
so the event horizon is an isolated horizon, and hence a non-expanding weakly isolated
horizon. It can be proven, using the induced metric and induced covariant derivatives
on the submanifold and assuming the dominant energy condition, that the Weyl and
Ricci tensors are both of type IT/D on a non-expanding weakly isolated null horizon
[4, 40]. It can also be shown that the covariant derivatives of the Riemann tensor are
also of type II on an NEH [22, 21].

The BH formed by a collapsing star approximates the Kerr geometry near the
event horizon. Thus, there should be a horizon surrounding the event horizon for a
collapsing BH that can be identified using the algebraic conditions on the Riemann
tensor mentioned earlier. By continuity, the inside of the event horizon should also
approximate the Kerr geometry, and the Kerr geometry admits an inner horizon.
This inner horizon is shown to be a null surface, but is unstable, leading us to believe
that the geometric horizon is unique at later times [7, 8, 9, 4, 40, 22, 21]. At earlier
times, a bifurcation is possible, however [22, 21].

Recall that DHs are foliated by MOTSs, which are surfaces for which ©) = 0 and
O@) < 0 for outgoing and ingoing normal null vectors, [ and n, respectively. The GH
conjecture applies to (and was in fact intended for) DHs. For example, BH solutions
conformally related to stationary solutions and the imploding spherically symmetric
metric are spacetimes that admit a geometric horizon. For the first example, and also
for any dynamical spherically symmetric metric, the geometric horizon corresponds
to marginally trapped tubes, but this isn’t always the case, as the null vectors are not
necessarily surface forming or geodesic [22, 21]. Additionally, the Vaidya spacetime
for a given mass function provides an example of a spacetime which transitions from
a DH to an isolated horizon, and it was proven that on isolated horizons the Weyl

and Ricci tensor are of type II/D [55].
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In addition to spherically symmetric dynamical models, non-spherically symmetric
spacetimes could also admit geometric horizons [22, 21]. For example, consider the
QS Szekeres dust models. A subset of these models could describe primordial BHs
(PBHs). It turns out that these models admit an AH and, via the Cartan-Karlhede
algorithm, this AH can be detected by a Cartan invariant [19]. Thus, this AH is a

geometric horizon [22, 21].

Another example to support the GH conjecture comes from a family of exact
closed universe solutions to the Einstein-Maxwell equations with a cosmological con-
stant representing an arbitrary number of BHs, discovered by Kastor and Traschen
(KT) [39]. Note that in this context, the term “merger” denotes two initially disjoint
trapping surfaces forming one continuous boundary and the term “coalescence” de-
scribes the appearance of new marginal surfaces which enclose the original trapped
surfaces [22, 21]. If coalescence does not occur, then the BHs remain apart, or they
form a naked singularity (but this violates the cosmic censorship conjecture), so for a
merger, coalescence does occur. For information on more than two BHs, see [45]. For
the two-BH solution, see [39]. We consider a merger of two BHs. The evolving param-
eter is 7 € (—00,0). Let Wi, and W, be the scalar polynomial invariants as defined
in (1.11) and (1.12). As 7 — —oo, W; — 0, and there are two 3D disjoint geometric
horizons forming around each BH [22, 21]. It turns out that Wy = 0, but W; = 0
only at the coordinate positions of each of the BHs, r; = 0, along certain segments
of the symmetry axis, and along a 2D cylindrical surface [22, 21]. As 7 increases,
the distance between the coordinate positions of the BHs decrease and there is some
measure of “closeness” of the BHs, which approaches 0. The 2D cylinder expands
to engulf the two BHs as they coalesce. As 7 — 07, W; — 0, and the spacetime
then settles down to a type D Reissner-Nordstrom-de-Sitter BH spacetime with mass
M = my + msy. This final spacetime turns out to have a geometric horizon [42, 20].

So a geometric horizon forms at the beginning and end of the coalescence.

During the intermediate process, there are 3D surfaces located at a finite distance
from the axis of symmetry for which the traceless Ricci tensor (and hence the Ricci
tensor, R,y) is of algebraic type II/D. There is also evidence of a minimal 3D dynam-
ically evolving surface where W, assumes a constant minimum value. This suggests

that there is a geometric horizon during the dynamical regime between the spacetimes
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22, 21], but further investigation is needed.

The KT solution for multiple BHs was studied and geometric horizons around each
BH were found in [41]. The results were compared with the previously mentioned
2-BH solution. Additionally, three black-hole solutions were studied and geometric

horizons were found around these BHs also [22, 21].



Chapter 2

Simulating a Binary Black Hole Merger

We wish to study the behaviour of the complex SPI, D = I? — 27J?%, as defined
in (1.17), through a BBH merger. Since the Kerr geometry is type D everywhere,
it follows that D = 0 everywhere for a Kerr BH. It is also known that in a BBH
merger, the merged BHs at late times settle down to a solution well described by the
Kerr metric [22, 21]. Thus, for a merger of 2 initially Kerr BHs, a plot of the real
part and imaginary part of D should be roughly zero everywhere at early and late
times. However, in the intermediate “dynamical” region (during the actual merger
and coalescence at intermediate times), these same zero plots should yield important
information. This is what we wish to study in this thesis. We first highlight some
known features of a BBH merger, as shown by [50, 51, 31].

2.1 Previous Work

The evolution of MOTS during the intermediate stages of a BBH merger was studied
in [50, 51]. Event horizons have been used to study a BBH merger, and could possibly
motivate the “pair-of-pants” picture of a BBH merger (possibly only at early and late
times) [50, 51, 30]. However, event horizons are not useful to study physical properties
as they evolve through the merger. MOTSs and AHs are much more useful in studying
a BBH merger [46], and it is known that MOTSs and AHs can be used determine
and track the time evolution of physical properties of a BH, such as such as mass,
and angular momentum [50, 36, 31, 38, 37, 34, 26, 33, 9, 52].

In both [50, 51] and in [31], a head-on collision of unequal mass BHs was nu-
merically simulated. In [50, 51], it was found that there is a connected sequence of
MOTSs, which interpolate between the initial and final states of the merger (two sep-
arate BHs to one BH, respectively) [50, 51]. The MOTS were found using a horizon
finder, which is a robust method for detecting the MOTSs based on the principal
eigenvalues of the stability operator [50, 51, 2, 3, 1, 49]. This interpolating sequence

14
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of MOTSs allows physical BH quantities to be traced through the merger. In [31, 14],
the dynamics of the head-on collision was studied by modelling the two initial BHs as
spacetime punctures and the initial BH separations and mass ratios were varied. The
AHs of the initial BHs in the simulations were used to track the location and proper-
ties of the BH punctures [31]. Both [50, 51] and [31] have described the structure of
the MOTSs through the merger in detail. Initially, there are two BHs with disjoint
MOTS (which are AHs at this point [31]), S;, and Ss, one around each BH. Then,
as the two BHs evolve, a common MOTS forms around the two separate BHs and
bifurcates into an inner MOTS, S;, which surrounds the MOTS and an outer MOTS,
S.. (This demonstrates the well-known fact that a single foliation can have up to 4
MOTSs [31, 50, 51, 49, 54, 26, 33]). The outer MOTS S,, increases in area, encloses
the three inner MOTS, &, Sy, and S;, and eventually forms the AH of the common
BH after the merger has taken place [31, 50, 51]. The fate of this common AH is well
understood [31, 8, 54, 5, 33]. The inner MOTS, §;, decreases in area and approaches
the inner MOTS & and S, [31, 50, 51]. This bifurcation and the three inner MOTS,
81, Ss, and S; have also been well studied [31, 8, 54, 5, 33, 50, 51, 36, 44, 49]. In
[31], it was found that at late times, S; and Sy continued to exist and intersected in
general but remained separate horizons. The BH punctures, while acting effectively
as a single puncture, did not completely merge [31]. In [50, 51], it was found that at
the time when the inner surface touched the two individual BHs, the inner MOTS
displayed self-intersections and thus a topology change, and a slight area increase.

Modulo this area increase, it was shown [50] that
Al + A2 S Ainner S Aouter

where A, , are the areas of the original MOTS, and Aj,.e is the area of the inner
common MOTS, Aguer is the area of the outer MOTS and thus the final BH MOTS.
This merger provides a route to proving the Penrose inequality for multiple BHs via

the Penrose inequality for one BH [50]:

A< 167 M?

adm

It was also noted that if the initial separations are small enough and the lapse funtion
is properly behaved, then the two initial MOTS &; and S, are approximately null
surfaces [54, 26, 33|, and hence isolated horizons [31].
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2.1.1 Present Work

Instead of studying a head-on collision, in this thesis we shall study a quasi-circular
orbit of two merging, equal mass and non-spinning BHs, simulated by E. Schnetter.
This simulation has not been presented elsewhere and the results of this simulation
are new. In these simulations, the Einstein toolkit infrastructure was used [29] and
the simulations are run using 4" order finite differencing on an adaptive mesh grid,
with adaptive refinement level of 6 [53, 11]. E. Schnetter used Brill-Lindquist initial
data with BH positions and momenta set up to satisfy the QC-0 initial condition [25].
Instead of analyzing a sequence of MOTS throughout the merger, we seek to define
and study a geometric horizon as it evolves through the merger, in accordance with the
GHC. Since (1.17) sets necessary conditions for the Weyl tensor to be of algebraic type
IT, we seek to analyze the constant contours of the difference D = I* — 27.J2. In the
simulations, the real and imaginary parts of I and J are calculated using the Cartan
invariants, {®;}?_,, as given in equations (1.15) and (1.16), and the calculations are
carried out using the orthonormal fiducial tetrad, as given by [10]. For comparison,
we also plot the centroid and average radius of the AHs of the two initial BHs. We

have also verified that it is valid to approximate the AH as spherical surface.

2.2 Overview of Figures

Figures 1-34 provide contour plots of the real part, imaginary part, and magnitude
of D = I? — 27J% on a linear and log scale (see (1.17)) viewed as a function on
[—1.5,1.5] x [-1.5,1.5] x {0.03125}, over selected instances of the time parameter,
T € [0, 30] U {34, 38, 42}. In each figure (and in Figures 35-68), the data obtained
for x > 0 was rotated by 180 degrees about the x = y = 0 axis to obtain the data
for x < 0. In each figure, the overlaid deep pink contours on the plots for the real
part of D (D,, pictured at the bottom left of each frame) are the level-0 sets of D,.
Similarly, the overlaid deep pink contours on the plots for the imaginary part of D,
(D;, pictured at the bottom right of each frame) are the level-0 sets of D;. Since |D|
is positive definite, the level-0 sets of |D| sets are impossible to find precisely due
to discrete resolution and numerical error. Instead, we highlight the evolution of the

level-¢ sets, where € € {3 x 107, 5 x 107, 1 x 1073}. The overlaid red contours of
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the linear and log scale magnitude of D, (|D|, pictured at the top left and top right
of each frame) are the level-5 x 107" sets. The overlaid green and white contours
on the log scale plots of |D| (upper right of each frame) are the level-3 x 10™* and
1 x 1073 sets, respectively. The blue dots in Figures 1-34 give the centroids of the
MOTSs of the two initial BHs as they evolve, and serve to track the positions of these
BHs through the merging process. The blue circles in the upper right-hand plots in
Figures 1-34 give the (z,y) coordinates corresponding to z = 0.03125 of the sphere
centred at the centroids of the MOTS and whose radius is equal to the average radius
of the MOTSs of the initial BHs (“radius averaged” MOTSs). In the upper right plot
(the plot for |D|) in each of Figures 1-34, the data for D, and D; was “cut off” to lie
in the range [—1, 1] in the sense that for any point xo in the domain, if D,(xq¢) > 1
(resp. Dj(x¢) > 1), then we have set D,(xo) = 1 (resp. D;(x¢) = 1). This means
that any data for D whose real (resp. imaginary) part lies in the range [—1,1] has
an unaltered real (resp. imaginary) part, but any data whose real (resp. imaginary)
part does not lie in the range [—1,1] is recorded as 1 if the real (resp. imaginary)
part is positive, and —1 if the real (resp. imaginary) part is negative. This process
was done to suppress high values of D, and D;, and |D| in the plots to make them
clearer. Similarly, for Figures 64-67, the data for D,, D;, and the real and imaginary
part of D? was cut off to lie in the range [—1,1]. However, the level-0 and level-¢

sets are unaltered by this “cutoff” procedure, since in all cases, ¢ < 1.

In order to investigate further the level-0 sets of |D|, we examine 1D plots of |D|
as functions of y for fixed x henceforth referred to as “slice plots”. Each of Figures
35-51 highlight the slice plots of |D| for a fixed value of x at a fixed time 7', where
T € {12, 16, 20, 24}. Each of the upper plots in Figures 35-51 are contour plots of
|D| vs x and y with the level-3 x 107, 5 x 10™* and 1 x 1073 contours in green,
red and white, respectively, and the blue points mark the positions of the centroids
of the MOTSs, as before. In these upper plots, the local minima of |D| when viewed
along these slice plots are recorded as green points. In each of Figures 35-51, the
lower plots give directly the 1D slice plots of |D| vs y, whose = position and time T is
indicated. These slice plots are given at various resolutions to locate the local minima
of |D| and highlight the behaviour of |D| in this region. In at least one of these plots,

the behaviour of | D| vs y in the range [0, 1.2 x 107?] is indicated for comparison with
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the level—¢ sets for e € {3 x 107%, 5 x 1074, 1 x 1073}
Figures 52-55 record the contour plots of |D| at times 7" = 12, 16, 20, 24,

respectively in the upper left and right-hand corners, along with the green, red and
white level-3 x 1074, 5 x 107" and 1 x 1072 sets of | D], respectively and the blue
MOTS centroids. In each of Figures 52-55 in the upper left—-hand corner, we plot
with green points all local minimum points of |D| vs y taken among all slice plots of
fixed x at a fixed time, T' (i.e. the union of all green points recorded in the upper
Figures 35-51). The upper right—-hand plots of |D| in each of Figures 52-55 are the
same as the upper left—hand plots except instead of considering all slice plots D vs
y taken over constant x, we find and plot with green points the local minima of |D|
vs x for a fixed y. For comparison, the lower plots record the 3D contour plots of D,
with its associated deep pink level-0 sets and blue MOTS centroids, as in the lower

left—-hand plots of Figures 1-34.

Figures 56-59 give the contour plots of |D| at times 7" = 12, 16, 20, and 24,
respectively, with green level-3 x 107 sets of |D|, white level-1 x 1072 sets of |D|
and the blue points marking the MOTS centroids. The green points record the local
minima of |D| along all slice plots of |D| vs y for all fixed  whose corresponding
values of |D| lie in the range [1 x 107*, 1.2 x 1073]. The upper plot of each figure
is of original resolution, and the lower plot is zoomed in to highlight the relative

positions of the local minima of |D| and the green level-3 x 107 sets.

In Figures 60-63, the local minima of |D| are plotted in green points along with
the deep pink level-0 sets of D, at times T" = 12, 16, 20, and 24, respectively. The
blue MOTS centroids are plotted for reference. The upper plot of each figure is of
original resolution, while the lower plot is zoomed in to highlight the relative positions

of the local minima of |D| and the deep pink level-0 sets of D, near the origin.

In order to gain more information on the geometric horizons, we plot quantities
which change sign through zero. Figures 64-67 highlight the level contours of the real
and imaginary part of D? (given by Re(D?) = D? — D? and Im(D?) = 2 % D, x D;,
respectively), along with plots of D, and D; for selected instances of time. Figures
64-67 correspond to times T' = 12, 16, 20 and 24, respectively. The upper left figure,
upper right figure, middle left figure, and middle right figure of each of Figures 64-67
show a magnified contour plot of Re(D?), Im(D?), Dr, and Di, respectively. In each
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of these four figures, the level-1 x 1073 sets of | D| are plotted in white, and the level—
—0.01 and level-+4-0.01 sets of the quantities in question are given by the yellow and
lime green contours, respectively. The lower left and lower right figures also provide
magnified contour plots of D, and D;, respectively, with the saddle brown level-—0.1
sets, yellow level-—0.01 sets, lime green level-+0.01 sets, and cyan level-4-0.1 sets of
the quantities being plotted. In all six plots of Figures 6467, the quantities being
plotted were cut off to lie between [—1,1], so that the black regions correspond to
where the quantities attain a value of 1 and the white regions correspond to where

the quantities attain a value of —1.

In the upper right—hand plots of Figures 1-34, the MOTS was approximated as a
spherically symmetric surface. Figure 68 compares the “radius averaged” MOTS, as
plotted in Figures 1-34 with points corresponding to the “actual” MOTS. Both data
sets are provided by E. Schnetter. The upper left, upper right, lower left and lower
right plots of Figure 68 are plots of |D| at times 7' = 12, 16, 20, and 24, respectively
with the “radius averaged” and “actual” MOTS outline and centres overlaid in each
plot. The blue contours in each frame of Figure 68 are constant z slices of the “radius
averaged” MOTSs. The blue point indicates the z and y positions of the centroid
of the MOTS. The sky blue points track for better illustration the centroid of the
MOTS and points on the “actual” MOTS whose 2z coordinate values lie in the range

[0.02,0.04].

It should be noted that during the BBH merger, the MOTSs of the initial BHs start
out as AHs and then evolve into MOTS, which are no longer AHs. This is because
a third MOTS appears and bifurcates into two surfaces, each of which surrounds the
(former) AHs of the initial BHs. This has been previously noted and is described in
[50, 51, 31]. The outermost of these two surfaces then forms the AH of the merged
BH spacetime. In the simulation studied here, the bifurcation occurs between ¢t = 18
and t = 19, so it is after this time that the AHs are demoted to ordinary MOTSs.
These inner and outer “common” surfaces that form and surround the initial BH
MOTSs are plotted in Figures 69-76 from times 7' = 19 (after the bifurcation) to
T = 26. In Figures 69-76, we plot |D| on a log scale at these aforementioned times
and superimpose the white level-1 x 1072 sets of |D| with the blue radius averaged

initial BH MOTSs and light sky blue points on the initial BH MOTSs from the exact
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calculation. The purple dots in the upper (resp. lower) panel of each figure denote
the points on the inner (resp. outer) MOTSs from the exact calculation that forms

after the bifurcation whose corresponding z values lie in the range [—0.1,0.1].

2.3 Figures
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Figures 1-34: Plots of D,, D;, and |D| on a linear and log
scale for times T = 0,...,30, 34, 38, 42.

Note:

« D =1 —27J°

I and J are scalar curvature invariants of the Riemann
Tensor (see main text).

* D, = Re{D}

* D, = Im{D}

+ ID| =D, +i +D;| = [D+ D

* In the plots for Dr, Di and the linear-scale plot for |D|
in Figures 1-34, the values of Dr and Di are cut off to
lie in the range [-1,1]. The data for the log-scale plot
for |D| is not cut off, however. See main text for
details.

Legend for Figures 31-34:
» Upper Left: |D| on a log scale

Upper Right: [D| on a linear scale
* Lower Left: Dr
Lower Right: D1

e Green contours: Level 0.0003 sets



Red contours: Level 0.0005 sets
White contours: Level 0.001 sets

Blue circles: “Radius averaged” MOTSs of 1initial
BHs

Blue dots: Centroids of MOTSs of initial BHs
Deep pink contours: Level 0 sets
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Figure 2: T =1
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Figure 3: T=2
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Figure 4: T =3
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Figure 5: T=4
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Figure 6: T=5
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Figure 8: T=7
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Figure 9: T =8
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Figure 10: T=9
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Figure 11: T=10
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Figure 12: T =11
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Figure 13: T=12
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Figure 14: T=13
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Figure 15: T
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Figure 16: T =15
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Figure 17: T=16
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Figure 18: T
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Figure 19: T =18
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Figure 20: T=19
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Figure 21: T =20
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Figure 22: T =21
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Figure 23: T =22
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Figure 24: T =23
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Figure 25: T =24
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Figure 26: T =25
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Figure 27: T =26
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Figure 28: T =27
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Figure 29: T =28
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Figure 30: T =29
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Figure 31: T =30
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Figure 32: T = 34
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Figure 33: T = 38
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Figure 34: T =42
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Figures 35-51: Plots of |D| vs y for fixed x (“slice plots™)
at times T =12, 16, 20, 24, and plots of locations of local
minima of |D| along these selected constant x slice plots.

Legend for Figures 35-51:

» “Slice plots” = plots of |D| vs y for fixed x (at a fixed
time).

* Upper left plot: Plot of [D| vs y and x with points of
local minima along slice plots indicated

* Remaining plots (not upper left): Slice plots of |D| at
various resolutions indicating local minima.

* Green points (Upper left): Plots of local minima of
|D| along slice plots.

* Green points (remaining plots): Points of |D|
measured from numerical simulation [E. Schnetter,
2020]

* Blue dots: Centroids of MOTSs of initial BHs.

* Blue ellipses: “Radius-Averaged” MOTSs of initial
BHs.

* Green contours (Upper left): level 0.0003 sets of |D|.
* Red contours (Upper left): level 0.0005 sets of |D|.
* White contours (Upper left): level 0.001 sets of |D|.
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Figure 35: T=12,x=0
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Figure 36: T=12, x =0.03125
|D| = sgrt(Dr™~2 + Di*2)

59

x=0.03125 z=0.03125 t=12.0 Lo
1
1072
103
1073
| 107
| 103
. . . . . . . 1071
—L:5 —1.0 .5 (HEY] 05 140 15
X
|[D]|=sqrtiDr*24Di"2) vs y
x=003125 z=0.03125 t=12.0
0.0014 {
0.0012 A
0.0010 -
0.0008 - +
0.0006 -
00004 4
0.0002 -
0.0000 -
3 i3 0 1 2



60

Figure 37: T=12,x=0.125

ID| = sqrt(Dr~2 + Di~2)
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Figure 38: T=12, x =0.28125

|D]| = sqrt(Dr~2 + Di™2)
x=0.28125 z=0.03125 t=12.0
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Figure 39: T=12, x =0.65625

|D| = sqrt(Dr™2 + Di™2)
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Figure 40: T=16,x=0

|D] = sqrt(Dr™2 + Di™2)
x=0.0 2z=0.03125 t=16.0
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Figure 41: T=16, x = 0.0625

ID| = sqrt(Dr~2 + Di~2)
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Figure 42: T=16,x=0.25

|D| = sqrt(Dr~2 + Di™2)
x=0.25 2z=0.03125 t=16.0
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Figure 43: T=16,x=0.3125
ID| = sqrt(Dr~2 + Di"2)
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Figure 44: T=16,x=0.5
ID| = sqrt(Dr~2 + Di~2)
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Figure 45: T=16,x=0.75

ID| = sqrt(Dr~2 + Di~2)
x=0.75 z=0.03125 t=16.0
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Figure 46: T=16,x=1.0

ID| = sqrt(Dr~2 + Di~2)
x=1.0 z=0.03125 t=16.0
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Figure 47: T =20, x =0.125

ID| = sqrt(Dr~2 + Di~2)
x=0.125 z=0.03125 t=20.0
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Figure 48: T =20, x =0.375
ID| = sqrt(Dr~2 + Di~2)
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Figure 49: T=20,x=0.5
ID| = sqrt(Dr~2 + Di*2)
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Figure 50: T =20, x =0.625

ID| = sqrt(Dr~2 + Di"2)
x=0.625 2z=0.03125 t=20.0
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Figure 51: T=20,x=0.75

ID| = sqrt(Dr~2 + Di~2)
x=0.75 z=0.03125 t=20.0
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Figures 52-55: Plotting all local minima from slice plots
taken from Figures 35-51 at the respective times T = 12,

16, 20, and 24.

Legend for Figures 52-55:

Upper left plots: Plots of local minima of |D|
considering only neighbouring values of |D| as taken
along constant x sections.

Upper right plots: Plots of local minima of |D|
considering only neighbouring values of |D| as taken
along constant y sections.

Lower plots: Plots of Dr.

Green dots: Local minima of |D| taken along the x-
direction (for lower left plot) or along the y-direction
(for lower right plot).

Green curves: level 0.0003 sets of |D|.
Red curves: level 0.0005 sets of |D|.
White curves: level 0.001 sets of |D|.

Deep pink curves: level 0 sets of Dr, where Dr is cut
off to lie in the range [-1,1] (see description for
Figures 1-34).

Blue dots: centroids of MOTSs of initial BHs.
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Figure 52: T=12

D] = sqrt(Dr™~2 + Di™2) ID| = sqrt(Dr~2 + Di~2)
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Figure 53: T=16

ID| = sqrt(Dr~2 + Di~2)
z=0.03125 t=16.0
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Figure 54: T =20

ID] = sqrt(Dr~2 + Di~2)
z=0.03125 t=20.0
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ID| = sqrt(Dr~2 + Di~2)
z=0.03125 t=24.0
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Figure 55: T =24
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Figures 56-59: Comparing plots of local minima along the
x direction from Figures 52-56 with level 0.0003 sets of
D

Legend for Figures 56-59:
* Top plot: Plot of |D| vs position at the time indicated

* Bottom plot: Plot of |D| vs position at the time
indicated with magnified resolution

* Green curves: Level 3e-4 curves of |D|
* White curves: Level le-3 curves of |D|

* Green dots: Plots of local minima of |D| taken along
sections of constant x, restricted to lie between

0.0001 and 0.0012
e Blue dots: Centroids of MOTSs of initial BHs
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Figure 56: T =12

ID| = sqrt(Dr~2 + Di"2)
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Figure 57: T=16

ID| = sqrt(Dr~2 + Di~2)
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Figure 58: T =20

ID| = sqrt(Dr~2 + Di*~2)
z=0.03125 t=20
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Figure 59: T =24

|D] = sgrt(Dr™2 + Di™2)
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Figures 60-63: Comparing plots of local minima along the
x direction from Figures 52-56 with level-0 sets of D,..

Legend for Figures 60-63:

Top plot: Plot of the zeros of Dr vs position at the
times indicated

Bottom plot: Plot of the zeros of Dr vs position at the
times indicated with magnified resolution

Deep pink curves: Level 0 sets of D,.

Green dots: Plots of local minima of |D| taken along
sections of constant x (lower left plot). Plots of local
minima of |D| taken along sections of constant x

restricted to lie between 0.0001 and 0.0012.
Blue dots: Centroids of MOTSs of initial BHs.



Figure 60: T =12

Zeros of Dr
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Figure 61: T=16

Zeros of Dr
z=0.03125 t=16
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Figure 62: T =20
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Figure 63: T =24

Zeros of Dr
z=0.03125 =24

89

15 -

1.0

05 -

= 00

—0.5 -

g o

ik

R
s i

Zeros of Dr
z=0.03125 t=24




90

Figures 64-67: Magnified Plots of Re{D?}, Im{D?}, D,,
and D; for times T =12, 16, 20, and 24.

Notes:
- Re{D?} =D,* - D}’
» Im{D?} = 2*D,*D;
e The values of D,, and D;, Re{D?}, and Im{D?}, have

been cut off to lie in the range [-1,1]. See main text
for details.

Legend for Figures 64-67:
« Upper left plot: D, - D;*
» Upper right plot: 2* D, * D;
* Mid left and lower left plot: D,
e Mid right and lower right plot: D;
* Saddle brown contours: Level -0.1 sets
* Yellow contours: Level -0.01 sets
* White contours: Level 0.001 sets of |D|
* Lime green contours: Level +0.01 sets

e Cyan contours: Level +0.1 sets
* Blue dots: Centroids of MOTSs of initial BHs
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Figure 64: T =12

Re(D~2) = Dr~2 - Di*2 Im(D~2) = 2*Dr*Di
z=0.03125 t=12.0 z=0.03125 t=12.0
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Figure 65: T=16

Re(D~2) = Dr~2 - Di~2 Im(D~2) = 2*Dr*Di
z=0.03125 t=16.0 z=0.03125 t=16.0

Dr z=0.03125 t=16.0 Di z=0.03125 t=16.0
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Figure 66, T =20

Re(D~2)=Dr~2-Di~2 Im({D"2) = 2*Dr*Di
z=0.03125 t=20.0 z=0.03125 1t=20.0
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Figure 67, T =24

Re(D"2) = Dr~2 - Di~2 Im(D~2) = 2*Dr*Di
z=0.03125 t=24.0 z=0.03125 t=24.0

Dr z=0.03125 t=24.0 Di z=0.03125 t=24.0
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Figure 68: Assessing the validity of approximating the
MOTSs of the initial BHs as a spherically symmetric
surface and comparing these MOTSs with the white
level-0.001 sets of |D|.

Legend:
* Blue circles: “Radius averaged” initial BH MOTSs

* Light Sky Blue circles: points of initial BH MOTSs
calculated exactly from spherical coordinates
corresponding to z=0.03 = 0.01

* Blue dots: centroids of “radius averaged” initial BH
MOTSs

* Light Sky Blue dots: centroids of initial BH MOTSs
from exact calculation

* White Contours: Level 0.001 sets of |D|.

» Upper left, upper right, lower left and lower right
plots: plots of [D| (log scale) at times T =12, 16, 20,
24, respectively with magnified resolution
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Figure 68: Plotting the MOTSs of the initial BHs

|D| = sqrt(Dr~2 + Di~2) ID| = sqrt(Dr~2 + Di~2)
=D.03115 t=12.0 7z=0.03125 t=16.0

o
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Figures 69-76: Comparing the inner and outer MOTSs,
which formed after bifurcation, with the initial two
MOTSs of the BHs.

Legend for Figures 69-76:

* Purple dots: points on the inner MOTS (for upper
plot) or outer MOTS (for lower plot) calculated
exactly. These points correspond to z= 0.0 + 0.1.
The inner or outer MOTS are labelled in the plots.

e Regular Blue circles: “Radius averaged” initial BH

MOTSs

* Light Sky Blue circles: points of initial BH MOTSs
calculated exactly corresponding to z=0.03 + 0.01

* Blue dots: centroids of “radius averaged” initial BH

MOTSs

* Light Sky Blue dots: centroids of initial BH MOTSs

from exact calculation
* White Contours: Level 0.001 sets of |D|

» Upper panel: plot of |D| with superimposed inner
MOTS.

* Lower panel: plot of |D| with superimposed outer
MOTS.
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Figure 69: T =19
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Figure 70: T =20

|ID| = sqrt(Dr™~2 + Di™2)
z=0.03125 t=20.0
Plotting the Inner MOTS
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Figure 71: T =21

|D| = sqrt(Dr~2 + Di™2)
z=0.03125 1t=21.0
Plotting the Inner MOTS
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Figure 72: T =22

|ID] = sqrt(Dr~2 + Di™2)
z=0.03125 t=22.0
Plotting the Inner MOTS
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Figure 73: T =23

|D| = sgrt{Dr~2 + Di™2)
z=0.03125 t=23.0
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Figure 74: T =24

|ID| = sqrt{iDr~2 + Di™2)
z=0.03125 t=24.0
Plotting the Inner MOTS
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Figure 75: T =25

|D| = sgqrt(Dr~2 + Di™2)
Z=0.03125 t=25.0
Plotting the Inner MOTS
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Figure 76: T =26

|D| = sqrt(Dr~2 + Di™2)
z=0.03125 t=26.0
Plotting the Inner MOTS
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2.4 Discussion

Figures 1-34 plot the time evolution of the quantities D, = Re{D} (lower left panel),
and D; = Im{D} (lower right panel) with deep pink level-0 sets of the quantities
being plotted, and |D| = \/m in a log and linear scale (upper left and right
panel, respectively) with green, red and white level-¢ curves of |D| where ¢ = 3 X
107, 5 x 1074, 1 x 1073, respectively. The blue circles mark the radius averaged
MOTSs and the blue dots denote the centroids of the MOTSs, and serve to mark the
locations of the BHs through the numerical simulation. The radius averaged MOTSs
were computed by forming a sphere centred at the centroid of the MOTS and whose
radius was the average distance between the centroid and points on the MOTS. The
(x,y) coordinates of this radius averaged MOTS with z = 0.03125 were then plotted
as the blue circles in the figures. At early times, the level-5 x 10™* sets of |D| match
closely with the radius-averaged MOTSs, as shown in the upper right—-hand corners
of Figures 1-6. For each ¢ € {3 x107% 5x 107* 1 x 1073}, at early times (e.g.
T =0,...,12 in Figures 1,...,13, upper left panels), the level-¢ sets form pairs of
simple closed curves, each of which contains the centroid of the MOTS of each of
the two initial BHs. For T' = 13, 14, 15, 16 (Figures 14-17, upper left panels), the
level—¢ sets form a third simple closed curve between the centroids of the MOTSs of
the two initial BHs, which is centred at (z,y) = (0,0). The green level-3 x 107* sets
begin to form their third simple closed curve at times 7' = 13 (Figure 14, upper left)
and T = 14 (Figure 15, upper left), the red level-5 x 107 sets begin to form their
third simple closed curve at time 7" = 15 (Figure 16, upper left), and the white level-
1 x 1073 sets begin to form their third simple closed curve at time 7" = 16 (Figure
17, upper left). For each e € {3 x 1074, 5 x 10~*, 1 x 1073}, the three simple closed
curves of the level-¢ sets, once formed, join together to form a single simple closed
curve surrounding the centroids of the MOTSs of both BHs. The three green level-
3 x 107 sets join at time T' = 16 (Figure 17, upper left), the three red level-5 x 10~*
sets join at time T = 17 (Figure 18, upper left), and the three white level-1 x 1073
sets also join at time 7" = 17 (Figure 18, upper left). After ' = 17 (Figure 18-27,
upper left), for each e € {3 x 107*, 5 x 107, 1 x 1073}, the level-¢ curves each form
a single closed curve surrounding the 2 BHs. It follows that the level-¢ curves for each

e € {3x107* 5x107% 1 x 1073} at each T form an invariantly defined, foliation
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invariant horizon that contains each separate BH at early times, and contains the

merged BH at late times.

The evolution of the level-¢ curves through the BBH merger in Figures 1-34 is
reminiscent of the sequence of MOTS that take place during the head-on collision
simulation in [50, 51]. In particular, in [50, 51] after the two separate initial BHs
start to merge together, a third MOTS forms and bifurcates into an inner and outer
surface. This bifurcation is also summarized in [31]. In our quasi-circular BBH
merger simulations, as shown in Figures 13-21, this bifurcation can be compared to
the third simple closed curve that forms as a subset of the level—¢ sets of |D| at times
T =12,...,20, where e € {3 x 107, 5 x 107*, 1 x 1073}. However our numerical
studies are not precise enough to study the details of the bifurcation, as found in
[31, 50, 51]. At late times (Figures 18-27), it also seems that the centroids of the
MOTSs of the initial BHs do not merge, and that in Figures 28-34, the level-¢ sets of
|D| fore € {3 x 107, 5 x 107*, 1 x 107} may track the MOTS found in [31], which
overlap, but do not intersect at late times [31]. However, our simulations did not run
to late enough times to make this clear. It was also found in [31], as previously noted,
that at late times, provided the initial separation is small enough and the Lapse
function is well-enough behaved numerically, the inner MOTS (previously denoted
S; and &) approximated null surfaces, and became isolated horizons. It follows by
what we described earlier that the Riemann tensor is algebraically special on &; and
S, [4, 40], so the SPI, D = I? — 27J? vanishes on S; and S, [22, 55]. Thus, at late
times, the level-¢ sets of |D| could well approximate these inner MOTS at late times,

but more investigation is needed.

The upper left panels in Figures 1-34 provide strong evidence that for
e€ {3x107* 5x107* 1 x 1073}, the level-¢ sets of |D| track a unique geometric
horizon, which can be identified by the level-0 set of the complex SPI, D, as indicated
in (1.17). Notice that at early times (e.g., Figures 2 and 3 ("= 1 and T = 2 respec-
tively)), the deep pink level-0 contours of D, and D; extend throughout the plots,
indicating that the initial spacetime is locally Kerr at early times. Also at early times,
comparing the panels with the plots for |D| with the plots for D, and D; (in, e.g.,
T =9 (Figure 10)), we see that a subset of the deep pink level-0 sets of D, and level-0
sets of D; enclose the two initial BHs and align very roughly with the two disjoint
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simple closed curves of the level-¢ sets of |[D| for e € {3 x 1074, 5 x 1074, 1 x 1073}.
At intermediate times, say at "= 17 (Figure 18), a subset of the deep pink level-0
sets of D, and level-0 sets of D; sets align roughly with the third simple closed curve,
centered at (x,y) = (0,0) that forms in the level—¢ sets from the log scale plots of | D]
(upper left panel). At late times, e.g. T = 25 (Figure 26), a subset of the deep pink
level-0 sets for D, and D; lie in a region immediately surrounding the pair of BHs, and
matches closely with the level-¢ sets of |D| for e € {3 x 107*, 5 x 107*, 1 x 1073}
(each of which has formed a single simple closed curve surrounding the two merged
BHs at this time). From 7" = 20 (Figure 21, lower left and right panels) through
to T' = 42 (Figure 34, lower left and right panels), the deep pink level-0 sets of D,
and D; extend throughout the entire plotting region, indicating that at these late
times, the final merged BH settles down to a Kerr spacetime, which is of Type D
everywhere, so the SPI given by D = I3 — 27.J? vanishes everywhere. More detail
on the comparison between the level-¢ sets of |D| and the level-0 sets of D, and D;
will be given in Figures 52-55 and 60-63. Figures 1-34 provide evidence for the fact
that the the level-¢ sets track the geometric horizons through all stages of the BBH
merger, including the time when the level-€ sets of | D| start as disjoint simple closed
curves surrounding each of the two separate BHs at early times, when the level—¢
sets of |D| are partitioned into three simple closed curves at intermediate times, and
when the level-¢ sets of |D| form a single simple closed curve around both BHs at

late times.

Within numerical accuracy, one could also say that these level-¢ sets of |D| do
indeed approximate the level-0 sets detected by the SPI, I? — 27J2. It remains to
estimate the appropriate preferred value for €. Observe that for
ee{3x10* 5x 104 1x 103}, the level-¢ contours are very close to each other,
showing that the level—¢ sets vary continuously with €. Observe also that if £; < 9,
then the 2D area enclosed by the level-¢; curve encloses the 2D area enclosed by the
level—¢, curve, so the whitespace outside the level-¢ curves in the upper right figures

correspond to regions where locally |D| < e (=5 x 107).

The log scale plots of |D| in the upper left-hand panels of Figures 1-34 indicate
that | D| decreases on average with average distance from the centroids of the MOTSs.

Thus, the plots of |D| do have no global minima. However, Figures 35-63 indicate
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that the plots of |D| do have have local minima which approximately coincide with
the level -0 sets of D, and with the level ¢ sets for € between 3 x 10™* and 1 x 1073.
Figures 35-39 give 1D slice plots of |D| vs y for selected fixed values of = at time
T = 12, Figures 4046 give 1D slice plots of |D| vs y for selected fixed values of x
at time T' = 16 and Figures 47-51 give 1D slice plots of |D| vs y for selected fixed
values of = at time T = 20. Each of Figures 35-51 correspond to a fixed value of
x = xo along which the slice plots were taken. In the upper panel of each of Figures
35-51, we display the contour plots of |D| vs x and y, which is the same as in the
log-scale plots in the upper left-hand corners of Figures 1-34. The green, red and
white contours denote level-3 x 1074, level-5 x 1074, and level-1 x 1073 sets of | D],
respectively and the blue points mark the centroids of the MOTSs. We also plot with
green points the location of the local minima of the slice plots of |D|. The plots we
consider when we compute the local minima are pictured in the lower panels. These
plots are plots of |D| when restricted to the domain x = xy = constant. These plots
are given at various resolutions to highlight the locations of the local minima of |D].
It is the value of x( that changes with cach figure. In cach of Figures 35-51, it is noted
that many of the local minimum values of |D| lie in the range [1 x 1074, 1.2 x 107?],
which is the range of ¢ of interest here. It is also noted in Figures 41-43 that the
local minima of |D|, when considered along the constant x slice plots, happen to be

traced out by the green level-3 x 10~ curves.

In the upper left corner of Figures 52-55, we plot |D| vs x and y with the green,
red, and white level-3x 1074, level-5x 1074, and level-1x 1073 sets of | D|, respectively,
along with the blue MOTS centroids as in the log-scale upper left panels of Figures 1-
34. We indicate with green points the local minima of |D|, when taken along constant
x = xg slice plots (|D| vs y) for all possible values of xy. Figures 52-55 correspond
to times T = 12, 16, 20 and 24, respectively. The upper right plots in Figures 52-55
are also of |D|, with the same features as in the log scale plot in Figures 1-34 except,
here, the green points indicate the local minima of |D|, when taken along constant
y = yp slice plots (|D| vs x) for all possible values of yy. Comparing the upper left
and upper right plots in Figures 52-55, we see that |D| attains a local minimum value
along the constant x = z; slice plots roughly when |D| attains a local minimum value

along constant y = vy slice plots. Thus, the local minima of |D| along the constant
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x = zy slice plots give a good indication of the true local minima of |D|. In the
bottom panel of Figures 52-55, D, is plotted, as in the lower left panel of plots in

Figures 1-34, and its zeros are given by the deep pink contours.

At T = 16, in Figure 53, the local minima of |D| trace the green level-3 x 10~* sets
in the region where the red level-5 x 10~* and white level-1 x 1072 sets form a simple
closed curve around the origin. In Figures 56-59, we compare the local minima of | D|
along constant x slice plots with the green and white level-3 x 10~* and level-1 x 1073
sets of | D|, respectively. We observe that at time 7" = 12 and time 7" = 16, these local
minima appear to track the green level-3 x 107 sets, while at later times, these local
minima appear to track more closely the white level-1 x 1072 sets. The top panel of
each figure gives the plot of |D| vs x and y in the original resolution, and the bottom

panel gives a magnified resolution plot of |D| for clarity.

In Figures 60-63, we compare the locations of the local minima of |D| along with
the level-0 sets of D, at times T" = 12, 16, 20, and 24, respectively. The blue centroids
of the MOTSs are plotted for clarity. It is noted that the local minima of |D| track
very closely the level-0 sets of D, at all times T' = 12, 16, 20, 24. This indicates
that D, provides a dominant contribution to the quantity, |D| = \/m The
bottom panel provides a magnified resolution of the top panel, which plots the level-0
set of D, along with the local minima of |D|. Because the local minima of |D| track
closely the level-0 sets of D, and also the level-€ sets of |D| for e = 3 x 107* and
e =1x103, it follows by transitivity that the level-0 sets of D, closely approximate
the level-¢ sets of |D| for both e = 3 x 107, 1 x 1073.

The problem of finding level-0 sets of the complex D cannot be clearly resolved
by analyzing | D| because, as previously noted, |D| is a positive definite quantity, and
the discrete resolution imposed by the numerical simulation does not allow one to
accurately find level-0 sets of |D|. Thus, to gain further insight into the geometric
horizon through the BBH merger, it is therefore helpful to analyze quantities which
change sign through a zero (e.g. D, and D; as described above). In each of Figures
64-67, we plot magnified views of the quantities Re{D?*} = D? — Di* and Im{D?} =
2% D, x D; in the upper left panel and upper right panel, respectively, along with D,
in the middle and lower left panel and D; in the middle and lower right panel. Figures

64—67 correspond to times T = 12, 16, 20 and 24, respectively. The white contours
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in the upper and middle left and right panels are level-1 x 1072 sets of | D|, as was also
displayed in Figures 1-34. In each of the six panels, the yellow and green contours
contours give the level-—0.01 and level-+0.01 sets of the quantities in question being
plotted, respectively. In the lower left and lower right panels of each figure, we
plot for clarity the level-—0.1 and level-+0.1 sets of the relevant quantites being
plotted, respectively. By continuity, we know that a level-4-0.01 and a level-—0.01
set straddle a level-0 set. However, the level-4-0.01 sets show that the corresponding
nearby level-0 set legitimately corresponds to a level-0 set of the complex quantity,
D. In all figures (at times T' = 12, 16, 20, 24), the level-4-0.01 sets for D, or D; are
contained within the interior(s) of the white level-1 x 1072 sets. At times T' = 12 and
T = 20, the level-+0.01 sets of D, and D; form two distinct regions, each of which
surrounds each of the two initial BHs. At time T" = 20, the green level—40.01 set of
D, extends to form a simple closed curve around both BHs, which is contained within
the white yellow |D| = 1 x 1072 curve, while the yellow level-—0.01 set of D; extends
to form a simple closed curve around both BHs, inside the white level-1 x 1072 sets
of |D|. This indicates that the magnitude of |D| is considerably higher than 0.01
inside the white level-0.001 sets of |D|, which demonstrates the uniqueness of the
level-1 x 1072 curves of | D|. At T = 24 the union of the level-+0.01 curves of D, and
D; form one “connected component” which surrounds both BHs. Since the yellow
level-—0.01 sets of D, (resp. D;) are closely intertwined with the green level-+0.01
sets of D, (resp D;), there must be a surface surrounding the level-+0.01 sets of D,
(resp D;) through which D, (resp. D;) changes sign. These surfaces for D, and D;
must exist near the white level-1 x 1072 sets (or D, and/or D; could likely change
sign on the white level-1 x 1072 sets). Similarly, at times 7' = 12, 16, 20, 24, the
white level-1 x 1073 contour(s) also encloses the level-40.01 sets for the quantities
2% D, x D; and D? — D?. Thus, there must be a surface across which the quantity
2% D, * D; (or D> — D?) changes sign, which also occurs near the region where the
white level-1 x 1072 sets of |D|. Thus, Figures 64-67 verify that the level-zero set of

the complex invariant D is best approximated by the level-1 x 1072 sets of | D|.

In Figures 1-34 in the upper right-hand panel, we plot the value of |D| and
compared its level-5 x 10~* sets with the radius averaged MOTSs. In computing the
radius averaged MOTSs, we made use of the average radius of the MOTS. In Figure
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68, we compare the radius averaged initial BH MOTS (plotted in blue) with points
from the “actual” initial BH MOTS (plotted in a “thick” light sky blue line for clarity)
whose z coordinate value was in the range [0.02, 0.04]. The upper left, upper right,
lower left and lower right panels of Figure 68 are plots of the two different calculations
for the AHs for times T' = 12, 16, 20 and 24, respectively. It is clear from Figure
68 that the actual initial BH MOTS is a nearly spherical surface, so approximating
the MOTS with its average radius is a reasonable approximation, particularly for
illustration.

As previously noted in [50, 51, 31] and summarized here, the initial BH MOTSs
are AHs at early times but between the times T = 18 and T" = 19, a third surface
forms and bifurcates into an inner and outer MOTS. It is the outer MOTS that forms
the AH of the merger. In Figures 69-76, we plot, as before, the white level-1 x 1073
set of |D|, the radius averaged and exact initial BH MOTS (plotted in regular blue
and light sky blue) but here, we superimpose with purple dots the points on the exact
inner (resp. outer) MOTSs whose corresponding z value lies in the range [—0.1,0.1].
We find that shortly after the bifurcation (e.g. T' = 19,20, 21), the inner MOTS is
not unreasonably approximated by the white level-1 x 107 (although this white level
curve tracks more closely the initial BH MOTSs). The outer MOTS (which is the
new AH) has an average radius which is roughly 50 times larger than the scale of the
previous plots (i.e. the inner MOTS, the initial BH MOTS) and the various contours
of |D|, D, and D;. Thus, from Figures 68-76, the white level-1 x 10~ contours of
| D| well approximate the initial BH MOTSs at all times, but these initial BH MOTSs
are only AHs before the bifurcation (i.e. 7' = 18 and before in the figures).

Note that in the bottom panels of Figures 69-76, the outermost MOTS (the AH)
may appear to be ellipsoidal. However, this is simply an artifact of the appearance
of the x and y scales. The horizontal and vertical range of this outermost MOTS are
both roughly [—40, 40], so the horizontal and vertical scales are actually quite similar
to each other.

Therefore, Figures 1-76 provide strong evidence that one can define a unique
smooth geometric horizon, given by the level-0 set of the complex invariant D =
I3 — 27J%, which we have found is best approximated in the numerics by the level-

1 x 1073 sets of | D|.



Chapter 3

Conclusion

We have studied the algebraic properties of the Weyl tensor by plotting the real part,
imaginary part, and magnitude of the complex scalar polynomial invariant D = I3 —
27.J? as it evolves through the quasi-circular orbit of two equal mass BHs, as presented
in Figures 1-34. In the plots of the magnitude of D, |D| = \/Re{D}? + Im{D}?
in Figures 1-34, we marked the locations of the two initial BHs by tracking the
centre and average radius of the MOT'Ss of the initial BHs. In plotting the MOTSs,

we approximated the MOTS as a spherical surface. This turns out to be a valid
approximation, as shown in Figure 68. On these plots, we also superimposed the
level-3 x 107* sets in green, the level-5 x 10~ sets in red, and the level-1 x 103
sets in white. We found that at early times, each such level set is partitioned into
two disjoint simple closed curves, each of which contains one of the two centroids of
the MOTSs of the 2 separate initial BHs. Then each level set, at some intermediate
time, forms a third simple closed curve which is centred at the origin and positioned
between the centroids of the MOTSs of the two initial BHs. This third simple closed
curve expands in area as time increases, and eventually, the three simple closed curves
partitioning the given level set merge and form one simple closed curve which contains

the centroids of both initial BHs.

The plots for |D| in Figures 1-34 provide strong evidence that the level sets of
|D| identify the geometric horizon. However, it is impossible to identify the level-0
sets of | D| precisely, since |D| is a sum of positive definite terms, so numerical errors
and discrete resolution cause |D| to be strictly positive. Thus, to further study the
zeros of |D|, which would indicate the zeros of the complex quantity D, we found the
local minima of |D|. In Figures 35-51, we obtained 1D “slice plots” of |D| vs y for
a fixed x coordinate value at selected times T' = 12, 16, 20, and 24. We plotted the
positions of the local minima of |D| along these slice plots being considered in the

upper panel of each of Figures 35-51. We then found and plotted the local minima
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of |D| along all slice plots obtained from Figures 35-51 and plotted the positions of
these local minima with green points on the plots of |D| vs « and y in the upper left
panels of Figures 52-55. We repeated this procedure and located the local minima of
| D| as functions of x with fixed y coordinate. These local minimum positions from all
slice plots with fixed y are plotted with green points on the plots of |D| vs z and y in
the upper right panels of Figures 52-55. By comparing the locations of the respective
local minima of |D|, we saw that the locations of the local minima of |D| along all
constant x slice plots well approximate the locations of the overall local minima of
|D|. We also noticed that the positions of the local minima of |D| correspond closely
to zeros of D,, which are plotted in the lower panels of Figures 52-55. Figures 56-59
showed that a subset of the local minima whose corresponding |D| values lie in the
range [1 x 107, 1.2 x 1073] track closely (or are traced by) the level-3 x 107* sets of
|D| at early times the level-1 x 1072 sets of |D| at late times. Figures 60-63 indicate
that the local minima of |D| also coincide very closely with the level-0 sets of D,.
Thus, the level sets of |D| are well approximated by the local minima of |D| and

correspond closely to a subset of the level-0 sets of D,.

Since |D| is positive definite, its zeros cannot be traced by positive and negative
level sets. Therefore, we have also analyzed quantities which change sign through a
zero. We plotted D, = Re(D) and D; = Im(D) in Figures 1-34, with their respective
level-0 contours in deep pink. We found that a subset of the level-0 sets of D, and
D; approximates the level-¢ sets of |D| for each € € {3 x 107*, 5 x 107*, 1 x 1073}
especially upon examination of the simple closed curves of the level-¢ sets of |D]|
centred at the origin, which forms at times T = 13, 14, 15, 16 in Figures 14-17,
respectively. This provides more evidence that the given level-¢ contours identify the

sought after geometric horizon.

We examined the contours of D, and D;, and also of 2 * D, x D; and D? — D2,
more closely in Figures 64-67. We examined where the quantities being plotted are
positive or negative by superimposing the level-40.01 sets in green and level-—0.01
sets in yellow. We compared these level curves with the superimposed level-1 x 1073
sets of | D] in white in the upper and middle left and right panels. We found that at
all times, both the positive and negative level sets are contained in the simple closed

level-1 x 1072 curve(s) of |D| and both are clustered around the centroids of the
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MOTSs of the initial BHs. Although the resolution is not ideal, it follows that there
must exist four surfaces around the outside of the union of the level-+0.01 contours
along which the quantities D,, D;, 2% D, D;, and D? — Di?* respectively change sign.
These four surfaces could be well approximated by the level-1 x 102 contours.

In Figures 68-76, we compare the white level-1x 1073 set of |D| with the 4 MOTS,
as described previously in [50, 51, 31] but plotted for this particular BBH merger for
first time here. We find that at early times, the white level-1 x 1072 set of | D| closely
approximates the AHs of the initial BHs while at later times, the AH, formed after the
bifurcation, diverges from this level-1 x 1072 set of |D| quite substantially. However,
this level-1 x 1073 set does mimic closely the MOTSs from the initial BHs and the
innermost MOT'Ss surrounding both BHs.

Therefore, in the binary black hole merger, as displayed in Figures 1-43, the alge-
braic structure of the Weyl tensor is clearly identified by the level-¢ sets of |D|, and
it is plausible that the level set with € = 1 x 103 accurately identifies the geometric

horizon.
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