
AN EMPIRICAL ANALYSIS OF CROSS-ENTROPY BASED AND
METRIC-BASED METHODS ON NORTH ATLANTIC RIGHT

WHALE ACOUSTIC DATA

by

Xuhui Liu

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

May 2020

c⃝ Copyright by Xuhui Liu, 2020



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations Used . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Background and Related Work . . . . . . . . . . . . . . . 5

2.1 Passive Acoustic Monitoring . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Performance of Automated Detection or Classification Algorithms 6

2.2 North Atlantic Right Whale . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Train and Test Datasets . . . . . . . . . . . . . . . . . . . . . 8

2.3 Deep Learning for Supervised Image Classification . . . . . . . . . . . 9
2.3.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Representation, Optimization and Evaluation . . . . . . . . . 12

2.4 Learning with Class imbalance . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 3 Cross-entropy and Metric-based Image Classification . 17

3.1 Cross-Entropy Based Learning . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 Cross-Entropy with Random-Sampling . . . . . . . . . . . . . 18
3.1.2 Cross-Entropy with Over-Sampling . . . . . . . . . . . . . . . 18
3.1.3 Cross-Entropy with Class-Balanced-Sampling . . . . . . . . . 18

3.2 Metric-based Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Contrastive Loss Function with Different Sampling Strategy . 19
3.2.2 Triplet loss and Its Hybrids with Positive Pair Loss . . . . . . 22

ii



3.3 Comparisons of Cross-Entropy Based Learning and Metric-based Learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 4 Experiments and Analysis . . . . . . . . . . . . . . . . . . 28

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Software and Hardware . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Evaluation and Baseline . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Balanced Data when Trained from Scratch . . . . . . . . . . . 33
4.4.2 Balanced Data with Transfer Learning . . . . . . . . . . . . . 34
4.4.3 Imbalanced Data when Trained from Scratch . . . . . . . . . . 36
4.4.4 Imbalanced Data with Transfer Learning . . . . . . . . . . . . 38

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5.1 The Impact of Transfer Learning . . . . . . . . . . . . . . . . 41
4.5.2 The Impact of Dataset Imbalance . . . . . . . . . . . . . . . . 43
4.5.3 The Impact of The Amount of Training Data . . . . . . . . . 45

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 5 Conclusion and Future Work . . . . . . . . . . . . . . . . 48

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Appendix A Additional Empirical Results . . . . . . . . . . . . . . . . 59

A.1 Empirical Results with Balanced Data when Trained from Scratch . . 59

A.2 Empirical Results with Balanced Data when Trained with Pretrained
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.3 Empirical Results with Imbalanced Data when Trained from Scratch 68

A.4 Empirical Results with Imbalanced Data when Trained with Pretrained
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

iii



List of Tables

2.1 Data Sources of original dataset, training dataset and evaluation
dataset. Number of upcalls is the number of upcalls identified
by the trained analyst. . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Comparisons of cross-entropy based learning and metric-based
learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 The breakdown of scenarios, with the options to use pretrained
models displayed horizontally and the options to train models
on a balanced dataset presented vertically. . . . . . . . . . . . . 31

4.2 The composition of balanced and imbalanced datasets. The first
column displays various sizes of balanced datasets, with 16 pos-
itive samples and 16 negatives samples as the smallest and 1204
per class as the largest. The second column shows the compo-
sition of imbalanced datasets, which starts with 1024 negative
samples and 16 positive samples and ends with 1024 per class. . 33

4.3 Comparison of F1-score for methods trained with and without
transfer learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Comparison of Average Precision (AP) for methods trained with
and without transfer learning. . . . . . . . . . . . . . . . . . . . 42

iv



List of Figures

2.1 (a) Spectrogram containing upcall signal (a short curve start-
ing from 1.0s to 2.0s). (b) Spectrogram containing background
noise. (These two figures are generated by Ketos package [36].) 9

2.2 (a) Illustration of a shallow NN architecture. (b) Illustration of
a Deep NN architecture. . . . . . . . . . . . . . . . . . . . . . 11

3.1 Batch sampling strategies. . . . . . . . . . . . . . . . . . . . . 19

3.2 (a) Illustration of “Contrastive loss” function learning. (b) Il-
lustration of “Triplet loss” function learning. . . . . . . . . . . 20

4.1 Residual Learning Block . . . . . . . . . . . . . . . . . . . . . 29

4.2 Performance under Balanced Data when Trained from Scratch. 34

4.3 Performance under Balanced Data with Pretrained Parameters. 35

4.4 The impact of transfer learning on balanced datasets . . . . . 36

4.5 Performance of cross-entropy based classifiers in Imbalanced-
Scratch Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Performance of Triplet loss based classifiers in Balanced-Pretrained
Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Performance under Imbalanced Data when Trained from Scratch. 38

4.8 Performance of cross-entropy based classifiers in Imbalanced-
Pretrained Scenario. . . . . . . . . . . . . . . . . . . . . . . . 38

4.9 Comparison of performance of Triplet loss based classifier in
Imbalanced-Pretrained Scenario. . . . . . . . . . . . . . . . . . 39

4.10 Performance under Imbalanced Data with Transfer Learning. . 40

4.11 The impact of transfer learning on imbalanced datasets. . . . . 40

4.12 Precision-Recall curve for methods (trained with and without
transfer learning) on the 1024-128 dataset . . . . . . . . . . . 43

4.13 Precision-Recall curve for methods (trained with and without
transfer learning) on the 1024-256 dataset . . . . . . . . . . . 44

v



4.14 Precision-Recall curve for methods (trained with and without
transfer learning) on the 1024-512 dataset . . . . . . . . . . . 44

4.15 Precision-Recall curve for methods (trained with and without
transfer learning) on the 1024-1024 dataset. . . . . . . . . . . 45

A.1 Comparison of performance of Triplet loss based classifiers in
Balanced-Scratch Scenario. . . . . . . . . . . . . . . . . . . . . 59

A.2 Comparison of performance of “Triplet loss + Positive Pair loss”
based classifiers in Balanced-Scratch Scenario. . . . . . . . . . 60

A.3 Comparison of performance of classifiers trained with “Triplet
loss + Positive Pair loss” with different positive anchor consid-
erations in Balanced-Scratch Scenario. . . . . . . . . . . . . . 60

A.4 Comparison of performance of Triplet loss based classifiers in
Balanced-Scratch Scenario. . . . . . . . . . . . . . . . . . . . . 61

A.5 Comparison of performance of classifiers implementing Con-
trastive loss and its variants in Balanced-Scratch Scenario. . . 62

A.6 Comparison of performance of cross-entropy loss based classifier
in Balanced-Scratch Scenario. . . . . . . . . . . . . . . . . . . 62

A.7 Comparison of performance of Triplet loss based classifiers in
Balanced-Pretrained Scenario. . . . . . . . . . . . . . . . . . . 63

A.8 Comparison of performance of “Triplet loss + Positive Pair loss”
based classifiers in Balanced-Pretrained Scenario . . . . . . . . 64

A.9 Comparison of performance of classifiers trained with “Triplet
loss + Positive Pair loss” with different positive anchor consid-
erations in Balanced-Pretrained Scenario. . . . . . . . . . . . . 65

A.10 Comparison of performance of Triplet loss based classifiers in
Balanced-Pretrained Scenario. . . . . . . . . . . . . . . . . . . 65

A.11 Comparison of performance of classifiers implementing contrastive
loss and its variants in Balanced-Scratch Scenario. . . . . . . . 66

A.12 Comparison of performance of cross-entropy based classifiers in
Balanced-Pretrained Scenario. . . . . . . . . . . . . . . . . . . 67

A.13 Comparison of performance of the best classifier from each cat-
egory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.14 Comparison of performance of Triplet loss based classifier in
Imbalanced-Scratch Scenario. . . . . . . . . . . . . . . . . . . 69

vi



A.15 Comparison of performance of “Triplet loss + Positive Pair loss”
based classifiers in Imbalanced-Scratch Scenario . . . . . . . . 69

A.16 Comparison of performance of classifiers trained with “Triplet
loss + Positive Pair loss” with different positive anchor consid-
erations in Imbalanced-Scratch Scenario. . . . . . . . . . . . . 70

A.17 Comparison of performance of selected Triplet loss based clas-
sifiers in Imbalanced-Scratch Scenario. . . . . . . . . . . . . . 70

A.18 Comparison of performance of classifiers implementing contrastive
loss and its variants in the Imbalanced-Scratch Scenario. . . . 71

A.19 Comparison of performance of cross-entropy based classifiers in
Imbalanced-Scratch Scenario. . . . . . . . . . . . . . . . . . . 72

A.20 Comparison of performance of the best classifier from each cat-
egory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.21 Comparison of performance of Triplet loss based classifier in
Imbalanced-Pretrained Scenario. . . . . . . . . . . . . . . . . . 73

A.22 Comparison of performance of “Triplet loss + Positive Pair loss”
based classifiers in Imbalanced-Pretrained Scenario . . . . . . 73

A.23 Comparison of performance of classifiers trained with “Triplet
loss + Positive Pair loss” with different positive anchor consid-
erations in Imbalanced-Pretrained Scenario. . . . . . . . . . . 74

A.24 Comparison of performance of selected Triplet loss based clas-
sifiers in Imbalanced-Pretrained Scenario. . . . . . . . . . . . . 75

A.25 Comparison of performance of classifiers implementing contrastive
loss and its variants the Imbalanced-Pretrained Scenario. . . . 76

A.26 Comparison of performance of cross-entropy based classifiers in
the Imbalanced-Pretrained Scenario. . . . . . . . . . . . . . . 77

A.27 Comparison of performance of the best classifier from each cat-
egory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



Abstract

With increasing concern for marine species extinction, a massive effort has been made

to conserve, prevent, and search for a sustainable solution. However, data labeling

is a labor-heavy and time-consuming work, resulting in limited annotated acoustic

data. What’s more, a majority of labeled acoustic data are background noise. Both

issues together raise interests in searching for solutions on how to effectively train

a reliable classification model. We simulate different degrees of data compositions

to study the impact of data scarcity and class imbalance on North Atlantic Right

Whale (NARW) acoustic data. In the meantime, we explore two types of supervised

deep learning approaches: metric-based classifiers and cross-entropy based classifiers.

The empirical results show that our classifiers trained with fewer NARW acoustic

data have comparable performance to the-state-of-art classifiers trained with a larger

amount of acoustic data [1].
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Chapter 1

Introduction

In this chapter, we briefly present the current research problem, our motivations,

approaches, contributions and the whole thesis outline. In Section 1.1, we introduce

the motivation of conducting this research. We briefly describe the research objectives

in Section 1.2 . Section 1.3 outlines the structure of this thesis.

1.1 Problem Setup

Increasing human activities, together with rising global warming issues, negatively

affect the habitats of many species, reducing their quantity and diversity. Motivated

by concerns of species extinction, considerable efforts are being devoted to conserva-

tion. For example, an extensive amount of labor is being put to monitor and conserve

habitats [2], [3]. Marine animals are a subset of these endangered species; however,

their different ecologies increase the difficulties of monitoring and surveying. More

than 80% of marine species undertake a long migratory journey every year [4], for

example, in search of food or to reach safe breeding grounds. Our focus, the North

Atlantic Right Whale (Eubalaena glacialis), a cetacean type creature, is one of them.

Because of their changeable migration pattern, low-cost monitoring and automated

systems are preferred.

With the technology advances in recent decades, the Passive Acoustic Monitoring

(PAM) system has been developed and applied in marine ecosystems [5], [6]. It

has become a primary method for detecting and localizing marine animals owing

to its cost-effective nature. A collection of hydrophone units constitutes the PAM

system. It is deployed (in various ways) in the ocean to record sounds for days, weeks,

even months. Such a process combines an automated or semi-automated computer

program with human efforts in verification to detect the vocalization of marine animals

in real-time or in the archived dataset. With expertise from experienced analysts,

PAM can identify creature presence, vocal activity, and so on. [7]. Owing to the rapid

1
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development of the software and hardware, collecting and storing acoustic data has

become more feasible than a few decades before. Sometimes, researchers can obtain

more than a terabyte of data in a single project [8], [9]. With the growing volume

of acoustic data, identifying and extracting vital ecological information becomes a

bottleneck for human experts. In a conventional analytical process, human experts

have to validate data visually and corroborate them aurally. Yet, this process is

time-consuming and labor-heavy; but labelling the data is paramount for supervised

machine learning (ML) tasks as the quality of labelled data strongly influences the

performance of classification models.

Fortunately, these types of tasks can be handled effectively and consistently with

the use of machine learning techniques [10]. With a fully trained ML model, human

experts can execute the validation procedure automatically and in parallel, which

substantially reduces the human effort. Despite some information is lost when trans-

forming the audio signal to spectrogram, it is commonly used as the visual repre-

sentation of the acoustic data and used by ML models in the automation of human

expertise [5], [11], [12]. Popular ML methods that are applied in the acoustic domain

include support vector machine [13], classifications and regressions trees [14], and

recently deep learning [12], [15]–[17].

Deep learning (DL) is a subclass of machine learning algorithms and receives wide

acclaim over classical machine learning approaches because of its superior performance

in many complex tasks, for example, computer vision [18]. The convolutional neural

network, which is an essential building block of most DL architectures, is evolved

from traditional neural networks. These neural networks are partially inspired by

the human brain and primarily consist of interconnected “neurons”. Each of these

neurons corresponds to unique input data and is conditioned by specific weight. A

simple linear function summarizes these inputs and bias as the new input for the

non-linear activation function. This complete process happens in each layer of the

neural network. With the use of an optimization algorithm in tuning weights and

bias, it encourages the model to generate results closer to desired outputs. Shallow

neural networks consist of a small number of layers, targeted at simple problems.

However, recent neural networks are based on deep architectures [19]. Such design

enables the model to leverage stacked complex non-linear functions to search for the
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substantial information hidden in the dataset, hence unleashing the model’s poten-

tial to better adapt to the given task. Thereby, models with deep architecture are

commonly referred to as the Deep Neural Networks (DNN).

The success of DNN is attributed to the complex non-linear functions, carefully

modeling the tasks, and the availability of a more substantial volume of datasets

(ImageNet [20]). While lots of research publications focus on model performance on

datasets with adequate examples, many recent research works on DL focus on how

to train DNNs effectively on small datasets.

Though massive volumes of acoustic data have been collected systematically, the

costly annotation process leads to minimal data being labelled. The strategy adopted

by experts in this field is Transfer Learning [21], in which we first train our model

in datasets from the same or different domains with abundant examples (millions of

examples). After initial supervised training, models are capable of extracting key

features from images and can adapt quickly to the task. Even though the model

is trained on different datasets, enough training has enabled the model to achieve a

compelling outcome.

1.2 Research Objectives

The research goal is to understand differences between cross-entropy based learn-

ing [22] and metric-based learning [23] in the context of the underwater acoustic

classification task, and in the meantime, to provide insightful conclusions for effective

training. To deal with this task, we follow the procedures below:

1. Survey existing methods that are applied to underwater acoustic classification

task as well as relevant tasks.

2. Investigate differences between cross-entropy based learning and metric-based

learning.

3. Evaluate the performance of cross-entropy based classifiers and metric-based

classifiers trained with adjusted loss functions on NARW datasets.

4. List future improvements, and possible research directions of metric-based meth-

ods for the marine acoustic domain.
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1.3 Thesis Outline

Chapter 2 explains the background of the acoustic data classification problem, the

dataset used for this thesis, and the relationship between them. Additionally, the his-

tory of Deep Learning (DL) and different methods used in DL paradigms are briefly

introduced. Chapter 3 introduces variants of cross-entropy and metric-based classi-

fiers. Chapter 4 is the section for experiments, and we explain the model architecture

and the alterations to the model. It also describes the experiment design, and the

results and discussion section follows the experiment design. The last part of the

thesis is Chapter 5, where the conclusions and future work are given.



Chapter 2

Background and Related Work

This chapter is organized as follows. Section 2.1 introduces the history of Passive

Acoustic Monitoring (PAM) and the current research achievements using PAM. Sec-

tion 2.2 describes the source of the dataset and how the data are processed. Sec-

tion 2.3 introduces Deep Learning and compares two types of loss functions—i.e.,

cross entropy and metric-based losses—from the literature.

2.1 Passive Acoustic Monitoring

Passive Acoustic Monitoring (PAM) systems use underwater microphones (hydrophones)

to detect, monitor, and, in certain cases, undertake the tasks of localizing, vocalizing

marine mammals. Three types of passive acoustic equipment are used for capturing

sounds: cabled hydrophones, autonomous recorders, and radio-linked hydrophones.

The cabled hydrophone is typically deployed permanently or semi-permanently, and

they are not in widespread use by academics, small organizations, and individuals due

to expensive costs. There are a few organizations in Canada deploying these cabled

hydrophone for data collection, for example, Ocean Networks Canada (ONC). ONC

runs several world-leading observatories with the use of cabled hydrophones, and

collects data on physical, chemical, biological and geological aspects of the ocean ex-

tensively [24]. On the other hand, autonomous recorders that consist of a hydrophone

and battery-powered data-recording is comparatively affordable for research purpose.

It is usually deployed in an array of three to ten instruments to offer regional cov-

erage and sound source localization. The last type of recorder is the radio-linked

hydrophone, which includes a hydrophone and radio link that connects with the ship

or store station. Most recorders support internal data storage, which means they

store collected data in the equipped disk [25]. A PAM system merely captures sounds

incurred in the underwater environment and does not generate noise itself. Several

characteristics [25] distinguish PAM from other monitoring methods, which are listed

5
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below,

1. long-term deployment,

2. immune to poor weather,

3. flexible deployment conditions (fixed or mobile).

Despite its applicability mentioned above, PAM still faces many challenges. The

first issue is the level of ambient noise, which happens throughout data collection.

Several factors contribute to this issue, including high-level shipping noise and fishing

activities, which are part of anthropogenic sources, and also environmental factors

like wind and precipitation events. This natural and anthropogenic noise complicates

data analysis due to the low signal to noise ratio (SNR). The second problem results

from variations in upcall (a stereotype contact call produced by NARW) patterns with

respect to locations, seasons, time of the day, and genders of the species. The last

issue is the similar sound produced by humpback whales (Megaptera novaeangliae),

and this species has a much higher population than that of NARW. Moreover, these

whales vocalize louder and more frequently, and also these two species are found

co-occurred in the spring, sharing overlapping habitat and migratory routes.

2.1.1 Performance of Automated Detection or Classification Algorithms

An automatic detection or classification algorithm is necessary when analyzing a large

volume of data because the benefits are fourfold [26]:

1. a computer never feels fatigue,

2. a computer is unbiased, or has a constant bias overall,

3. a computer algorithm can be executed distributively, ensuring the comparability

of the results,

4. a computer works faster and can run in parallel, largely reducing process-

ing time. For example, it runs the detection on right whale calls over five

hydrophone-years of data within a week [27].
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Thus, despite the fact that it has many challenges to be addressed, the detec-

tion and classification of NARW upcall using the PAM system has prevailed in the

underwater bioacoustic domain. Spectrogram correlations with its parameters cho-

sen manually and systematically are compared with the neural network, which is

trained using backpropagation on 9/10 of the test dataset (consisting of 1857 upcalls

or NARW and 6359 non-calls sounds), and the comparison result demonstrates the

neural network is the best performing model, achieving less than 6% error rate [26].

Also, an automated detection system for right whale calls is developed with the syn-

thetic kernel, targeted at exploiting the spectrogram cross-correlation. Though the

detector has produced many false detections and missed individual calls, it indeed

facilitates human analysts in their search of sections of data with a higher likelihood

of having upcalls [28]. Another usage is found in Baumgartner et al. (2011), where

they develop a detection and classification system to identify the low-frequency baleen

whale calls [29]. Their system uses attribute extraction on pitch-tracking and com-

bines a quadratic discriminant function analysis to detect and classify sei whale and

NARW calls. Yu et al. compare traditional machine learning techniques with deep

neural networks, and found deep neural networks on average achieve higher precision

and recall. For instance, while the best detector of DCLDE 2013 got 65% retrieval

rate of upcalls, deep neural network achieves 85% to over 90% retrieval rate on the

DCLDE 2013 NARW validation datesets [1]. Also in the same paper, the best results

that have been obtained on the DCLDE 2013 dataset using large training datasets are

achieved by LeNet [30] and BirdNet [31] with average precisions of 0.903 and 0.891,

respectively. Other usages [32], [33] can be found in the literature. We use the LeNet

and BirdNet as described above as baselines in our work.

2.2 North Atlantic Right Whale

North Atlantic right whales (Eubalaena glacialis) are cross-listed as an endangered

animal in Canada and the U.S. [34]. They are a species of cetacean and have up to 400

individuals estimated alive. They used to occupy an area along the U.S. continental

shelf, reaching the Bay of Fundy and the Western Scotian shelf in Canada. However,

they have changed their habitat in the last decade and have recently been observed

active in the western Atlantic Ocean from southern Greenland and the Gulf of St.
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Lawrence south to Florida. Although most trajectories are identified, the occurrence

and movement within some areas remain unknown to researchers; for example, the

waters off the U.S. coast between Georgia and Cape Cod. So far, with regulations

and policies from the management authorities, their population has slightly recovered

but has suffered a decline in recent years. In 2017, an unusual mortality event caused

the loss of 12 individuals, again depressing the population of this species.

The North Atlantic Right whale can produce various vocalizations, but the upcalls

are a typical proxy measure of the species’ presence, which is characterized by an

upsweep frequency from 50 to 350 Hz [35]. This stereotyped contact call, about

a second in duration, is frequently used as a target for detection and classification

systems.

2.2.1 Train and Test Datasets

In this thesis, we use the dataset provided in the workshop on Detection, Classifi-

cation, Localization, and Density Estimation of Marine Mammals (DCLDE 2013).

The PAM data are collected in 2000, 2008, and 2009 off the coast of Massachusetts

with Cornell Marine Autonomous Recording Units (MARS). These collected data

have been manually analyzed by marine experts, who have identified and labelled all

occurring upcalls in the dataset. The raw recordings from these units are processed

and cleaned for the detection and classification tasks. This published dataset (see

Table 2.1) contains upsweeps calls from the right whale over seven days. As many

publications prefer spectrograms [1], [32], [33] due to direct representational corre-

lation between time and frequency, we thus convert a subset of DCLDE data to

spectrograms for our experiments. We use the recommended parameter settings [5]

to generate a spectrogram with a resolution of 94 × 129, representing time in the

horizontal axis and frequency in the vertical axis, respectively. Each spectrogram

representation is of a 3-second segment with frequency ranging from 0 to 500 Hz

computed using a window size of 0.256s, a step size of 0.032s, and a Hamming win-

dow. We process these data using the Ketos package [36]. The examples of resulting

spectrograms (in 94×129 resolution) are visualized in Figure 2.1, where Figure 2.1.(a)

has an upcall displayed between 40 and 60, while Figure 2.1.(b) does not.
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Figure 2.1: (a) Spectrogram containing upcall signal (a short curve starting from 1.0s to
2.0s). (b) Spectrogram containing background noise. (These two figures are generated by
Ketos package [36].)

2.3 Deep Learning for Supervised Image Classification

This section provides the background of deep learning in the context of supervised

image classification, and three major components constitute typical machine learning

problems. Section 2.3.1 introduces the basic concepts of deep learning, followed by

cross-entropy and metric-based loss functions in Section 2.3.2.

2.3.1 Deep Learning

The idea of Neural Network is first introduced by Warren McCulloch and Walter

Pitts in 1943 when they developed a technique known as the “threshold logic unit” to

mimic the way the neuron was thought to work. This Threshold Logic Unit (TLU)

was later given different terminologies, for example, Linear threshold unit, percep-

tron, and artificial neuron. Though perception (linear model) demonstrates reliable

performance in tasks like linear regression and logistic regression, it has apparent lim-

itations, for example, linear separability [22]. A neural network is called a network

because it consists of many different functions to express complex functionalities. It

is typically associated with a directed acyclic graph illustrating how functions are

stacked and worked together. It has three fundamental components, an input layer,
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Recording
date

Region
Total Recording
Hours

Number of
Upcalls

DCLDE 2013
workshop

28-Mar-09 Massachusetts 24 767
29-Mar-09 Massachusetts 24 2,280
30-Mar-09 Massachusetts 24 1,663
31-Mar-09 Massachusetts 24 2,206
1-Apr-09 Massachusetts 24 1,328
2-Apr-09 Massachusetts 24 545
3-Apr-09 Massachusetts 24 894

Train dataset

Sampled from
2-Apr-09
to
3-Apr-09

Massachusetts - 1024

Evaluation
dataset

Sampled from
28-Mar-09

Massachusetts - 512

Table 2.1: Data Sources of original dataset, training dataset and evaluation dataset.
Number of upcalls is the number of upcalls identified by the trained analyst.

an output layer, and some hidden layers residing between the input layer and the out-

put layer (see Figure 2.2). These chained layers assemble the model from end to end.

The overall length of this chain refers to the depth of the model. It is the reason why

the model is named Deep Neural Network (DNN), and such a model learning process

is known as “deep learning” (DL). The model accepts the input x, outputs a result y,

and information flows forward in between. The information from x is propagated to

each hidden layer and finally reaches the output layer to produces y. We note such a

feed-forward process as forward-propagation, and it updates the results of each layer.

The second milestone occurs when backpropagation [37] is proposed, which allows for

the reversed propagation of weight adjustment information. Early success is observed

in training a convolution neural network (CNN) to recognize handwritten digits. The

model is known as LeNet, which was developed by Yan Lecun [30].

CNN is a specialized neural network designed for handing data with grid-like topol-

ogy, especially time-series data and image data. Unlike the standard neural networks

that employ the matrix multiplication in layers, CNN uses a “convolution” operation

to downsample the data, resulting in a noticeable decrease of parameters. It fur-

ther promotes computation efficiency and memory efficacy. Convolution operations
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Figure 2.2: (a) Illustration of a shallow NN architecture. (b) Illustration of a Deep NN
architecture.

leverage three critical ideas that are important in improving model performance, in-

cluding sparse connectivity, parameter sharing, and equivariant [22]. Traditional NN

computes the result of a subsequent layer by performing a matrix multiplication of

current input units, and preceding output units. It thus requires one-to-one inter-

action between units in these two consecutive layers. This operation is costly and

sometimes not necessary. CNN, therefore, uses a small-size kernel to downsample

the data. It is inspired by how the visual mechanism works in the brain, where each
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cell in the visual cortex is responsible for corresponding receptive fields. By doing

downsampling, it means to extract small, meaningful features, such as edges, from

thousands of pixels. This operation significantly reduces the number of parameters,

leading to less memory cost and a noticeable improvement in statistical efficiency.

Parameter sharing also plays a vital role in boosting training efficiency and reducing

model size. It refers to using the same kernel parameters repeatedly in the same layer.

With parameter sharing, each layer, therefore, has a property called equivariance to

translation, meaning the output changes in the same way as the input changes. The

pooling layer comes as the last component in CNN architecture and typically follows

the convolution layer and activation function. Max pooling is the most popular pool-

ing function employed in the pooling layer, which picks the maximum value within a

specific range as the resulting output. The pooling function summarizes the output

of the net with values of the highest statistical significance. Since then, the DNN has

been capable of resolving complex tasks. A notable achievement was witnessed in

2012 when DNN surpassed traditional machine learning methods and won the Large

Scale Visual Recognition Challenge (LSVRC) [38].

2.3.2 Representation, Optimization and Evaluation

A machine learning problem can be decomposed into three components: representa-

tion, optimization and evaluation [39]. In the context of deep learning, representa-

tion is defined by the compositions of various differentiable functions, and learning

is achieved by gradient-based optimization of model parameters. We evaluate the

model’s performance through a held-out set from the same distribution of the train-

ing examples.

For supervised deep learning methods, there are at least two approaches to for-

mulating the representation of a model: non-parametric metric-based and parametric

classifiers. The non-parametric method is similar to K-nearest neighbor learning

where class labels are assigned according to distance-based inference, without the

need to optimize a parameterized classifier. The goal of metric-based learning is to

learn a mapping function from the input space to a metric space where distances be-

tween examples are semantically meaningful (the same-class instances are clustered

and different-class instances are separable). The learning procedure can be interpreted
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as an optimization step that promotes margin maximization and class compactness.

A parametric classifier, on the contrary, typically learns a deterministic function from

the input space to the label space through direct optimization of model parameters

using the cross-entropy between the ground-truth labels and the model’s probabilistic

prediction for each class.

In terms of evaluation, there are a number of assessment metrics: precision, recall,

f1-score and accuracy, to name a few. In binary classification task, there are four basic

combinations of actual data category and assigned category: True Positive (TP), True

Negative (TN), False Positive (FP) and False Negative (FN). Precision measures the

classifier’s ability in not labeling negative examples as positive examples (see Eq. 2.1)

while the recall assesses the classifier’s ability in retrieving all positive samples (see

Eq. 2.2). The F1-score can be interpreted as the weighted average of precision and

recall, therefore the relative contribution of precision and recall to F1-score are equiv-

alent. Accuracy (see Eq.2.4), to be specific, the classification accuracy is the rate of

correct classifications.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1 =
2× Precision×Recall

Precision+Recall
(2.3)

Accuracy =
TP + TN

TP + FP + FN + TN
(2.4)

In addition to the general concept of two approaches, a nontrivial factor in the

implementation phase that controls the stability and speed of the model training

process can not be ignored, which is batch size. Batch size defines the number of

training examples sampled from the training dataset and used in the estimate of

error gradient (in parametric classifiers) or distance (in non-parametric classifiers).

The batch gradient descent method uses the entire set of training samples to compute

the gradient each time, whereas the stochastic gradient descent approach exploits one

example at a time [22]. However these two approaches have their limitations, for

instance, batch gradient descent suffers from slower and harder optimization because
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of its deterministic nature, and stochastic gradient descent faces oscillation issues

with noisy data. Thus, mini-batch gradient descent is proposed to mitigate the above

mentioned issues. Its size is smaller than the entire dataset but larger than one [22].

2.4 Learning with Class imbalance

As described in Section 2.1, the class-imbalance problem is often present in the PAM

dataset, and it is a critical issue that has been widely studied in the literature [40]–

[50]. Imbalance tends to severely impair the performance of classifiers by ignor-

ing the minority classes during the training phase [40], [49]. There are three main

types of approach, including re-sampling strategies, changing samples’ importance,

and tree-based ensemble learning. Under-sampling (sometimes referred to as down-

sampling) and over-sampling (up-sampling) [41] are two exemplary implementations

of re-sampling algorithms [49], [50] (other examples include NearMiss [47], One-sided

selection [45] , SMOTE[51] and etc.). They involve a bias to select more samples from

one class than another to compensate for the imbalance presented in the data. For

example, Oquab et al. [48] re-sample the foreground and background image patches

in their work. However, the cost of misclassifying majority class samples is nontriv-

ial, and it often results from an under-sampled majority class. When under-sampling

the dataset, one intrinsically hypothesizes that the cost of misclassification of these

classes is similar, but that might be wrong. Therefore, Elkan et al. [42] propose cost-

sensitive learning to heavily penalize the wrong classification of a minority class. The

final approach is through ensemble-learning based methods, which typically incorpo-

rate tree-based algorithms. For instance, Liu et al. [46] propose EasyEnsemble and

BalanceCascade. The EasyEnsemble algorithm ensembles the Adaboost classifiers

trained with data consisting of non-overlapping subsets of majority class instances

and repeated minority data. BalanceCascade iteratively removes the correctly classi-

fied examples to reduce the redundant information in the majority class.

In this thesis, we use a type of over-sampling approach, which we call “class-

balanced-sampling” that makes use of the stochastic nature of gradient-based opti-

mization where the model is required to sample a large number of stochastic batches
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for each optimization step. With the class-balanced-sampling strategy, we draw uni-

form samples from different classes to construct each batch such that the model per-

ceives a balanced empirical distribution. In essence, each batch uses under-sampling

to simulate balanced examples while all batches together achieve over-sampling of the

minority class.

2.5 Transfer Learning

The costly annotation work results in limited labeled data available for training mod-

els; however, the amount of labeled data largely influences the model’s capability. One

way to address the data scarcity issue is to use Transfer Learning. Transfer learn-

ing (TL) is a popular research problem that focuses on applying learned knowledge

from the one domain to the same or different domain [21]. Some applications [52],

[53] take advantage of learned knowledge and apply them to acoustic data.

Another interesting strategy is by using few-shot learning to address the data

scarcity. Unlike some DNN models have access to abundant labeled data, the bot-

tlenecks for many real-world applications are the shortage of annotated data. Thus,

it raises interests in searching for solutions to generalize the model to classify unseen

classes with limited samples per novel class. The few-shot learning [54]–[60] considers

using fewer data samples per class along with gradient-based or metric-based fine-

tuning to adapt classifiers to unseen classes. The typical few-shot learning problem

has the form of C-way K-shot, where a fixed number C stands for unique classes used

to train the classifier andK is the number of samples per class. While the mainstream

focus of few-shot learning is on Computer Vision (CV), several few-shot learning based

methods have been applied to acoustic data. Chou et al. introduced an attentional

similarity module to several metric-based learning methods, and they demonstrated

consistent improvement for all the tasks of few-shot sound recognition[55]. Wang et

al. used the Prototypical Network, a metric-based few-shot learning method, to de-

tect the similar-sounding events [60]. Shimada et al. trained metric-based few-shot

learning methods to clearly separate the background noise from other event sounds

and also to detect the rare sound events [57]. Xiang et al. extended the few-shot

learning to few-to-medium-shot learning and adopted a new learning procedure [56],

where all training data are used as the embedding to help with the classification in



16

the evaluation phase. Our NARW dataset contains two classes (C = 2), which is dif-

ferent from the aforementioned few-shot learning scenarios that have sufficient unique

classes to be sampled each time during the training. Therefore, the few-shot learning

is not applicable in our case.



Chapter 3

Cross-entropy and Metric-based Image Classification

Section 3.1 introduces three variants of Cross-entropy methods. It is followed by an

introduction of metric-based methods (Section 3.2), including variants of the Con-

trastive loss and variants of the Triplet loss. Section 3.3 compares the differences

between these two types of methods.

3.1 Cross-Entropy Based Learning

Cross-entropy loss is widely used in machine learning classification and optimization

tasks [38], [61]. Our task is a binary classification with class labels 0 and 1, denoting

the negative and positive labels. The formula of a binary cross-entropy loss is defined

below (see Eq. 3.1), where y0 and y1 are the ground-truth labels, and y0̂ and y1̂

are predicted labels. In the training stage, the Softmax function assigns training

examples with the labels having the highest probability. Consequently, when the

instance is assigned a wrong label, the cross-entropy loss function tries to minimize

the probability of the wrong label but, in the meantime, increases the probability of

the correct label. It iteratively ensures the predicted labels of training data match

their ground-truth labels.

Lcross−entropy = y0 × log(p(y0̂)) + y1 × log(p(y1̂)) (3.1)

Cross-entropy can be decomposed into the entropy of the ground-truth labels (H(p))

and the Kullback–Leibler divergence DKL(p ∥ q) of the predicted model distribution q

from the ground-truth distribution p. It is worthwhile to mention that cross-entropy

is calculated at the example-level where the predicted model distribution can be

understood as probabilities for assigning an example x into different classes y1, . . . , yN ,

17
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rather than the empirical distribution of all training examples; therefore, instance-

level sampling does not interfere with cross-entropy minimization (see Eq. 3.2).

J(w) =
1

N

N∑︂
n=1

H(p, q) = − 1

N

N∑︂
n=1

[yn × log(yn) + (1− yn)× log(1− yn)] (3.2)

3.1.1 Cross-Entropy with Random-Sampling

With random-sampling, the class percentage in each batch follows the empirical class

distribution of the data. We visualize it in Figure 3.1(b)

3.1.2 Cross-Entropy with Over-Sampling

We introduce the over-sampling strategy into the cross-entropy loss function to com-

pensate for the data scarcity of the minority class in imbalanced datasets. This

over-sampling samples one negative instance when every N positive is presented in

the batch (1:N ratio). In Figure 3.1(c), we use the 1:9 ratio to sample negative and

positive samples.

3.1.3 Cross-Entropy with Class-Balanced-Sampling

The class-balanced-sampling is a variant of the over-sampling strategy with equal

sample rates of both classes. In the class-balanced-sampling strategy, we sample the

same number of examples from each class so as to have equal contributions from

both the majority and the minority class while optimizing model parameters (see

Figure 3.1(a)).

3.2 Metric-based Learning

Section 3.2.1 introduces the variants of standard “contrastive loss”, which implements

a different sampling strategy and the subsequent section 3.2.2 discusses variants of

“Triplet loss”.

In metric-based classifiers, the input x is typically fed into the model, and the

output is mapped into a large manifold space, sometimes referred to as embedding

space. The embedding space varies in dimensionalities, from lower dimension 2 to
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(a) class-balanced-sampling

(d)   positive anchors 
sampling

(c)   over-sampling

(b)   random-sampling

Negative class Positive class

Figure 3.1: Batch sampling strategies.

higher dimension 512 (might be higher). Metric-based classifiers (we use K-Nearest

Neighbors with K = 5) classify the test instance based on its similarity to other

representative training data in the embedding space. The similarity is commonly

measured via the distance between data points, and the Euclidean distance is the

widely employed distance function (see Eq. 3.3), where p and q are two different

points in the metric space. A semantically meaningful embedding space is the key to

the success of metric-based classifiers. It is obtainable through metric-based learning

to maximize the distance of the inter-class examples and, in parallel, to minimize the

distance of the intra-class examples. Two classic metric-based loss functions in the

literature are Contrastive loss [62] and Triplet loss [63].

d(p, q) = ||p− q|| (3.3)

3.2.1 Contrastive Loss Function with Different Sampling Strategy

The design of “Contrastive loss” considers two conceptual classes, the same class,

and a different class. It pulls the same-class instances into the same cluster and, in

the meantime, pushes different-class examples apart. Its formula is shown below (see

Eq. 3.4 [62]), where xi and xj are projected data instances in the metric space, y



20

Class A Class B

Before learning After learning

pull same class 
instances

push different 
class instances

same class 
instances are 
closer

model 
learning

different 
class are 
further 
apart

(a) Learning process of “Contrastive loss”
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(b) Learning process of “Triplet loss”

Figure 3.2: (a) Illustration of “Contrastive loss” function learning. (b) Illustration of
“Triplet loss” function learning.

denotes whether xi and xj are from the same class, and m > 0 stands for a margin.

m is used to maintain a certain distance between different classes. Figure 3.2.(a)

illustrates the complete learning process.

L(y, xi, xj) =
1

2
(1− y)d(xi, xj) +

1

2
ymax(0,m− d(xi, xj)) (3.4)

We think that there is a drawback of such a design, especially when being used in

the imbalanced dataset. For example, the pull loss remains the same; in contrast, the
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push loss treats those minority data as outliers (or noise) and ignores their contri-

butions to the weight’s tuning. Therefore, this process turns the model’s prediction

inclining to the classes with the majority data. Consequently, it leads to outstanding

predictability for these classes and bad predictions for classes with fewer data. To

mitigate these issues, and also motivated by the resampling [48], [64], we introduce

class-balanced-sampling, over-sampling, and also positive-only sampling strategies

into the standard “Contrastive loss”, forming two groups of variants,

1. Contrastive loss based

2. Positive Pair based

The variants of “Contrastive loss” function still use the original formula while the

“Positive Pair loss” function reformulates as Eq. 3.5, where xi and xj are two different

projected data instances in the metric space.

L(y, xi, xj) =
1

2
yd(xi, xj) (3.5)

Contrastive loss with random-sampling. The base case uses random-sampling, as

illustrated in Figure 3.2b. The ratio of positive samples contained in the batch is

random from batch to batch.

Contrastive loss with over-sampling. The acoustic dataset might contain sizeable

negative examples (background noise) and less considerable positive examples. It

requires a method either to balance examples from two classes or to over-sample

the minority class. We thus put a high sampling ratio to the minority class, for

instance, 90% (visualized in Figure 3.1(c)). This over-sampling approach is taken to

compensate for the insufficient samples from the minority class.

Contrastive loss with class-balanced-sampling. We adopt the class-balanced-sampling

strategy (see Figure 3.1(a)) in the “Contrastive loss” to balance the examples from

each class when forming the batch. This process has the model to pay equal attention

to both classes. Ideally, these classes contribute equally to the weights’ update.

Positive Pair Loss. As aforementioned, “Contrastive loss” considers two losses,

the pull loss, and the push loss. The pull loss enforces the class compactness in the

embedding space while the push loss expands the class-to-class distance. We assume

the push loss might harm the prediction of the minority class. Hence, we attempt to
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remove the contribution of the push loss during model training and take only the pull

loss into account. It forms the “Positive Pair loss”, which considers the interaction

between instances from the same class. We sample the same amount of samples from

both classes (Figure 3.1(a)) and apply the above loss function to compute the pull

loss.

Positive Pair Positive Anchor Loss. In addition to the previous modification

to the standard “Contrastive loss”, we again attempt to adjust the “Positive Pair

loss” to become “Positive Pair Positive Anchor loss.” As the name suggests, this loss

function completely ignores the effect of the negative instances. It only uses positive

samples to adjust the model parameters in training. Figure 3.1(d) depicts the batch

composition as described above.

3.2.2 Triplet loss and Its Hybrids with Positive Pair Loss

“Triplet loss” function extends “Large Margin Neighbour Loss” [65], which comprises

of two terms, a pull-term and a push-term. The pull-term pulls data points i toward

their corresponding target neighbors T (i) of the same class. At the same time, the

push-term enlarges the distance between points of different classes in the embedding

space. The loss function defines as Eq. 3.6,

LLMNN = (1− µ)Lpull + µLpush (3.6)

Lpull(xi, xj) =
∑︂

i,j∈T (i)

d(xi, xj) (3.7)

Lpush(xi, xj) =
∑︂

i,j& yi ̸= yj

{m+ d(i, T (i))− d(i, j)}+ (3.8)

where the pull-loss (Eq. 3.7 [65]) calculates the distance between points and their

expected target neighbors, and the push-loss (Eq. 3.8 [65]) accounts for the anchor-

negative pairs that violate the constraints. However, the algorithm chooses the fixed

target neighbors at the onset of training, making it less applicable in the scenario

where target neighbors are changing dynamically in the training process. The “Triplet

loss” addresses this issue by omitting the fixed target and choosing anchor (can be

thought as the target neighbor) sample in run-time. Such design ensures that the
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anchor point a is closer to the positive point p than the negative point n in the pro-

jected embedding space. The formula below describes the above constraint (Eq. 3.9),

d(a, p) +m < d(a, n) (3.9)

with a, n, p forming a triplet.

LTriplet =
∑︂

a,p,n ya=yp ̸=yn

{m+ d(a, p)− d(a, n)}+ (3.10)

Consequently, it formulates a loss function (see Eq. 3.10 [63]), where D(a, p) and

D(a, n) represent the distance between the anchor and the positive point and the

distance between the negative and the anchor point in the embedding space, re-

spectively. We make one intuitive illustration explaining the learning process (see

Figure 3.2.(b)). Additionally, this loss only accounts for the triplets violating the

constraint above when the anchor-negative distance is less than the sum of margin

and anchor-positive distance. Similarly, in the paper [63], the authors define the hard-

positive pair, hard-negative pair, as well as a more effective semi-hard negative pair. A

hard-positive (Eq. 3.11 [63]) pair is formed by choosing a positive point from the batch

with the maximum distance to anchor. In contrast, hard-negative (Eq. 3.12 [63]) pairs

consist of anchors and negative samples with minimal distance. Likewise, semi-hard

negative (Eq. 3.13 [63]) pairs have distance larger than that of anchor-positive pairs

but smaller than the sum of the margin m and the distance of anchor-positive pair.

argmax
xp
i

d(xa
i , x

p
i ) (3.11)

argmin
xn
i

d(xa
i , x

n
i ) (3.12)

d(xa
i , x

p
i ) < d(xa

i , x
n
i ) < d(xa

i , x
p
i ) +m (3.13)

In a mini-batch, P classes are randomly sampled, and each class comes with a sample

size of K, eventually giving a batch size of P ×K. The authors claim that using all

anchor-positive pairs in the batch promotes a stable model and faster convergence.

Another finding is the use of the hardest negative (having minimal distance to the

positive anchor in a batch) examples in practice traps the model in the local minima,
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resulting in a collapsed model. Therefore, the use of the semi-hard negative pair is

proposed. So, for each anchor-positive pair, a semi-hard negative pair is chosen to

form a triplet. The overall batch formation process ultimately yields P ×K× (K−1)

triplets. We apply the same triplet formation process in our implementation.

We notice that triplet loss, similarly, considers the pull loss (obtained from the

anchor-positive pair) and a push loss (calculated from the anchor-negative pair) dur-

ing the training step. Therefore, we assume the standard “Triplet loss” would suffer

the same problem as “Contrastive loss” does. To accommodate the issue, we propose

several adjustments to the design of “Triplet loss”, which include using various sam-

pling strategies and ignoring the contribution of the negative class during training.

Triplet loss

Unlike “Contrastive loss” and “cross-entropy loss” that use a random-sampling strat-

egy, the design of “Triplet loss” is incompatible with random-sampling. Each triplet

requires data from two classes, but the random-sampling strategy arbitrarily samples

the data from classes, potentially resulting in zero number of positive instances and

breaking the construction of triplets.

Triplet loss with over-sampling. Another straightforward approach for highlighting

the minority class’s importance is to over-sample the minority class. With more

attention to the minority class, two classes can, hence, pay equal attention to model

building. The sampling ratio we adopted here is 1:N, which means we sample out one

negative instance whenever N positive examples are sampled (see Figure 3.1(c)).

Triplet loss with class-balanced-sampling. We add the class-balanced-sampling

strategy (see Figure 3.1(a)) into the standard triplet loss to balance the unequal

contributions of classes in the training phase.

Triplet loss + Positive Pair Loss with Different Sampling Strategy

Triplet loss + Positive Pair loss [66]. The original paper on which the method is

proposed aims at solving the person re-identification challenge. This challenge has

two major problems; one is to identify the same person, and the other one is to

identify a similar pose for the same person. This loss function proposed has two-fold

considerations,
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1. promotes the compactness of clusters representing pictures of the same person

(each person represents a class),

2. clusters pictures with similar poses of the same identities.

Besides, they mention the positive pair loss can deal with the illumination effect in the

picture background. Therefore, we attempt to use this loss function in the prevention

of subtle variance that would result in a bigger dissimilarity of the instance from the

signal class. Besides, we incorporate this approach with a class-balanced-sampling

strategy.

“Triplet loss + Positive Pair loss with over-sampling”. We introduce the over-

sampling strategy to this method in the hope of alleviating unequal contributions.

We sample the equal-sized examples to form an initial batch and then change the

number of samples in the batch to meet the 1:N ratio. The model then uses it as

the input batch (see Figure 3.1(c)). Additionally, the formula of this loss function

remains unchanged.

Triplet loss + Positive Pair loss with Different Positive Anchor

Consideration.

Apart from using different sampling strategies, we adopt the same principle used in

“Positive Pair Positive Anchor loss”, which excludes the impact of the negative class.

Here we add this technique into our “Triplet loss + Positive Pair loss” and end up

having three variants, which are

1. “Triplet Positive Anchor loss + Positive Pair loss” (Triplet PA loss + Positive

Pair loss),

2. “Triplet loss + Positive Pair Positive Anchor loss” (Triplet loss + Positive Pair

PA loss),

3. “Triplet Positive Anchor loss + Positive Pair Positive Anchor loss” (Triplet PA

loss + Positive Pair PA loss).

Please note that we abbreviate “Positive Anchor” to ”PA”.

“Triplet PA loss + Positive Pair loss”. In this loss function, we consider the

triplets formed by using positive examples as anchors only. Nevertheless, the “Positive
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pair loss” considers the gradient from both classes. We assume that because there

are more triplets formed by using negative examples as anchors, the negative class

will have more dominant effects in parameters’ update. Thus, the model treats the

negative and positive classes differently and margins out the effect brought from

positive instances. To reflect the objective, this loss function is then modified to

Eq. 3.14, where i and j form pairs (P ) sampled from the same class.

L =
∑︂

a,p∈Dpositive and n∈Dnegative

max(d(a, p)− d(a, n) +m, 0) +
∑︂
i,j∈P

d(i, j) (3.14)

“Triplet loss + Positive Pair PA loss”. We have disabled the contribution of triplet

loss from negative instances in the previous approach. In this method, we maintain

the contribution of negative triplets. Instead, we ignore the loss from negative-pairs

counted in the “Positive pair loss”. It is designed to compare with our previous

method to see how much effect the loss of negative-pairs count. Thus, we change the

formula to Eq. 3.15, where i and j form pairs sampled from the positive class.

L =
∑︂

a,p,n∈D

max(d(a, p)− d(a, n) +m, 0) +
∑︂

i,j∈Ppositive

d(i, j) (3.15)

“Triplet PA loss + Positive Pair PA loss”. Our last attempt is to completely block

the contribution of negative instances in the “Triplet loss + Positive Pair loss”. It can

be achieved by not selecting all the negative samples as anchors when constructing

triplets and omitting the loss from negative instances. Such a process ensures the

final loss to be the results coming from the positive instances only. It is consequently

changed to Eq. 3.16, where i and j form pairs sampled from the positive class.

L =
∑︂

a,p∈Dpositive and n∈Dnegative

max(d(a, p)− d(a, n) +m, 0) +
∑︂

i,j∈Ppositive

d(i, j) (3.16)

3.3 Comparisons of Cross-Entropy Based Learning and Metric-based

Learning

We summarize the differences of cross-entropy based learning and metric-based learn-

ing in the Table 3.1
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Methods Cross-entropy based classifiers Metric-based classifiers

Sampling and
outliers

Less sensitive to sampling method
and noisy data

Rely heavily on sampling method
and prone to outliers [61]

Embedding
space

Separated classes but no class
compactness and inter-class mar-
gin maximization [67]

Intra-class compactness and inter-
class margin maximization

Batch size
Larger batch size leads to deter-
ministic optimization and small
batch size results in oscillations

Larger batch size reduces out-
lier interference and smaller batch
sizes decrease model’s robustness

Table 3.1: Comparisons of cross-entropy based learning and metric-based learning



Chapter 4

Experiments and Analysis

In this chapter, we perform experiments to answer proposed questions, like the impact

of few important aspects, which include the training size, the pretrained parameters

and the data imbalance. Section 4.1 describes the setup of the experiments such as

model architecture and optimization. Section 4.2 describes how we design experiments

and the dataset we used to simulate different degrees of class imbalance as well as the

amount of training examples. Section 4.4 provides empirical results and discussions.

4.1 Setup

In this section, we introduce Residual Network Architecture (ResNet) [19] and changes

we made in the model structure for the experiments. Also, we describe the hardware

and software used for this project.

4.1.1 Model Architecture

Convolution Neural Network, as discussed before, increases computation efficiency

and memory efficacy while showing compelling performance. However, from observa-

tions in H. Kaiming and S.Jian’s work [68] and the original paper [19], the deeper

networks consisting of stacked convolution blocks experience performance degrada-

tion. To address it, they incorporate Residual blocks into their models, and extensive

experiments justify that the use of Residual blocks boosts the model performance

by a large margin. Figure 4.1 shows the design of the Residual block with the skip-

connection. Skip-connection implements the idea of identity mapping, which ensures

that the output of stacked layers F (x) + x has minimal difference to the input x.

This idea comes from an assumption that instead of using a few stacked layers to

asymptotically approximate the desired mapping H(x) from input x to output M ,

these nonlinear stacked layers can be used to approximate the residual function,

represented by H(x) − x. This reformulation assumes output M , and input x are

28
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interchangeable, given the residue value to be 0. Thus, the new formula of mapping

function becomes F (x) + x, where F (x) = H(x)− x.

Residual Network Architecture (ResNet) [19] won first place in many tasks in

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) and Microsoft

Common Object in Context (MS COCO) competitions in 2015.

    x 
Identity

F(x)

F(x) + x

x

skip-connection

Figure 4.1: Residual Learning Block

Also, the authors propose several variants of Residual Network Architectures,

such as ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. We choose

ResNet-18 as our model architecture because it has fewer parameters and is thus

compatible with the size of our dataset.

The standard ResNet-18 model consists of one convolutional layer, one max pool-

ing layer, four consecutive residual blocks, and a final fully connected layer. We

replace the last fully connected layer of the ResNet-18 model with a linear layer with

two output units because our goal is to learn a binary classification model. For the

metric-based classifiers, the last layer is replaced with a linear layer with 512 out-

put units, so that the model projects an input example to a hyperplane with 512

dimensions.



30

4.1.2 Software and Hardware

We conduct our experiments in Ubuntu 19.04 Desktop Version. It has 32 GB RAM

and NVIDIA TITAN V GPU with 12 GB RAM. All the code is developed in PyCharm

Community Version and managed by Git. The code is written in Python 3.6 and

PyTorch 1.2.0.

4.2 Experiment Design

We design the experiments to answer the following questions:

I Q1: What is the impact of the transfer learning?

II Q2: What is the impact of the amount of training data?

III Q3: What is the impact of the imbalanced dataset? How much impact does it

have?

IV Q4: How to choose between cross-entropy and metric-based methods?

To design experiments with respect to the above questions, we should consider two

essential aspects:

• Pretrained and Non-pretrained. Transfer learning offers models with pretrained

parameters (trained on ImageNet or other large data sources). In pretrained

mode, we initialize the model with pretrained parameters from ImageNet. While

in the non-pretrained setup, the model is randomly initialized from a normal

distribution.

• Balanced and Imbalanced. We simulate the different number of training ex-

amples by taking a subset of the original dataset (see Section 2.2.1), with 16

examples per class as the smallest training set, to 1,204 per class as the largest

dataset. And, we create different degrees of class imbalance, from extreme im-

balance with 1,024 negative examples and 16 positive samples, to balanced data

where both classes have 1,024 samples.

We group these conditions into four scenarios (see Table 4.1):
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Pretrained
NO YES

Balanced
Yes Balanced-Scratch Balanced-Pretrained
No Imbalanced-Scratch Imbalanced-Pretrained

Table 4.1: The breakdown of scenarios, with the options to use pretrained models
displayed horizontally and the options to train models on a balanced dataset presented
vertically.

1 Balanced training data with randomly initialized model parameters (Balanced-

Scratch).

2 Balanced training data with pretrained model parameters from ImageNet (Balanced-

Pretrained).

3 Imbalanced training data with randomly initialized model parameters (Imbalanced-

Scratch).

4 Imbalanced training data with pretrained model parameters from ImageNet

(Imbalanced-Pretrained).

We simulate different dataset compositions (in Table 4.2) so as to:

1 analyze model performance concerning the usage of pretrained parameters in

different sizes of datasets (to answer Q1). We thereby compare model perfor-

mance from Balanced-Pretrained to Balanced-Scratch and from Imbalanced-

Pretrained to Imbalanced-Scratch, respectively ;

2 analyze the performance as we increase the amount of training data (to answer

Q2). We measure the change of model performance with regard to the increase

of data size in each scenario. ;

3 analyze model performance from a balanced dataset to an imbalanced version

(to answer Q3). It is obtained by comparing model performance from Balanced-

Scratch to Imbalanced-Scratch and Balanced-Pretrained to Imbalanced-Pretrained,

separately.

Variances in initializing model parameters and also in sampling data are impor-

tant factors that would lead to diverse model performance when other experimental
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factors remain the same. One way to measure these variances is to repeat the ex-

periments; however the downside of this approach is the quadratic growth of training

time. We use the same random seed 42 for model initialization and data sampling.

Moreover, we set the optimization in the backend to be deterministic (features in

Pytorch framework) to give reproducible results. In this way, we can ensure 1) mod-

els are initialized with the same weights and bias all the time; 2) the same training

datasets are partitioned from the initial training; 3) The same sequence of data is

sampled from the dataset in each iteration. In terms of the model optimization, we

use Adam [69] optimizer and ReduceLROnPlateau for the optimization scheduler.

4.3 Evaluation and Baseline

A class-balanced hold-out test set is constructed for evaluation so as to ensure that

the evaluation measure equally reflects the performances on both the minority class

and the majority class. The test set is composed of 512 examples for each class. We

use classification accuracy on the test set as the main evaluation measure. And, the

precision and recall of the best methods are analyzed to compare with the baseline.

The main baseline for this thesis is the deep neural network proposed by Shiu

et al. [1] for detecting the vocalizations of North Atlantic right whales. It is shown

in their work that deep learning methods can achieve “false-positive rates that are

orders of magnitude lower than alternative algorithms while substantially increasing

the ability to detect calls” [1]. Their work also shows that deep neural networks can

generalize a model trained in one geographical region to other regions and years.

Despite the success of deep learning in detecting the vocalizations, it is unclear

what is the sample complexity and the sensitivity to class imbalance. We show in

our experiments that, while achieving similar levels of precision and recall, the cross-

entopy and triplet loss based methods reduce the number of positive examples, i.e.,

upcalls, from around 6000 to 512, which indicates that the cross-entropy and triplet

loss combined with specialized sampling can compensate for 90% less training data.
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Experiments
Balanced Dataset
(No.Neg, No.Pos)

Imbalanced Dataset
(No.Neg, No.Pos)

Exp 1 (16,16) (1024, 16)
Exp 2 (32,32) (1024, 32)
Exp 3 (64,64) (1024, 64)
Exp 4 (128,128) (1024, 128)
Exp 5 (256,256) (1024, 256)
Exp 6 (512,512) (1024, 512)
Exp 7 (1024,1024) (1024, 1024)

Table 4.2: The composition of balanced and imbalanced datasets. The first column
displays various sizes of balanced datasets, with 16 positive samples and 16 negatives
samples as the smallest and 1204 per class as the largest. The second column shows
the composition of imbalanced datasets, which starts with 1024 negative samples and
16 positive samples and ends with 1024 per class.

4.4 Empirical Results

We first present the empirical results, which will be analyzed in Section 4.5. In

this section, we analyze the empirical results of each scenario using the following

procedure. We first evaluate different variants of the same model family and pick the

best performing one as the most representative model for each family, i.e., triplet,

contrastive, and cross-entropy loss. We then compare different families of methods to

understand their performance differences under each scenario.

4.4.1 Balanced Data when Trained from Scratch

This scenario refers to the setup where the model parameters are randomly initialized—

as opposed to initialization from another pretrained model in a transfer learning

setup—and different classes have the same number of training examples, i.e., bal-

anced data.

Main results. The performance of each model family—cross-entropy, triplet and

contrastive loss—is visualized in Figure 4.2. “Triplet loss” works better than “cross-

entropy loss” when the number of examples for each class is less than 256, and they

have similar performances with access to more training data. This suggests the ef-

fectiveness of metric-based methods in the low data regime. However, “contrastive
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Figure 4.2: Performance under Balanced Data when Trained from Scratch.

loss” is inferior to other methods in most dataset compositions. This is because “con-

trastive loss” only considers the pair-wise relationship between data while ignoring

more complex structures in the dataset. It is especially problematic in the PAM

data because the distribution of the negative class, i.e., background, could have many

different modes where different types of background noises interfere with pairwise

contrastive training. However, this problem can be resolved by triplet loss because

of the use of anchors; the triplet method aims to make the margin between posi-

tive examples smaller than the distances between positive-negative pairs with some

margin.

More detailed empirical results and comparisons within each model family can be

found in Appendix A.1.

4.4.2 Balanced Data with Transfer Learning

Section 4.4.1 discussed the results when models are trained from random initialization.

However, transfer learning has become a prevalent approach in training deep learning

models where we initialize a model’s parameter from parameters from another model

trained on large-scale datasets. In this section, we aim to investigate whether transfer

parameters trained from ImageNet could benefit learning from ocean acoustic data.
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It is worthwhile to note that the nature of tasks between ImageNet and ocean acoustic

data are highly different, which raises the question of transferability between those

datasets.
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Figure 4.3: Performance under Balanced Data with Pretrained Parameters.

Main results. We show the test accuracy of representative classifiers from each

model family in Figure 4.3. It is clear that “Triplet loss” is the best performing method

among three classifiers due to its consist superior performance. It achieves 80%

classification accuracy even with 16 examples per class—a 20% improvement from

other methods. Meanwhile, “cross-entropy” is also quite stable and the generalization

performance improves monotonically with the access of more labeled training data,

and the gap between “triplet” and “cross entropy” diminishes with more training

data. Similar to findings in Section 4.4.1, “contrastive loss” does not work well.

The impact of transfer learning. Figure 4.4 compares the performance with and

without transfer learning when the datasets are balanced. Surprisingly, we find that,

although ImageNet and spectrogram obtained from ocean acoustic data are from

different domains, the use of pretrained parameters from ImageNet is highly beneficial

to the generalization performance. The improvements are more profound when the

amount of labeled training data is small, which can better leverage the inductive bias

learned from the large-scale ImageNet dataset.
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Figure 4.4: The impact of transfer learning on balanced datasets

More detailed empirical results and comparisons within each model family can be

found in Appendix A.2.

4.4.3 Imbalanced Data when Trained from Scratch

We conduct this set of experiments on simulated imbalanced datasets when the models

are trained from random initialization.

The impact of over-sampling. We show in Figure 4.5 that “cross-entropy” is sen-

sitive to the sampling strategy and works the best when the classes of each batch are

balanced. Moreover, the random sampling approach works the worst which suggests

the need for sampling under class imbalance. Similar findings are found in Figure 4.6

for “triplet loss”. We conclude that balanced sampling is necessary given dataset

imbalance.

Comparison of different model families. Figure 4.7 shows that “triplet loss”

tends to work better than “cross-entropy” and “contrastive loss”. And, we observe

that “cross-entropy with class-balance-sampling” classifier outperforms Triplet loss

classifiers only in one experiment and remains a slight disadvantage throughout most

experiments. “Contrastive loss with random-sampling” classifier performs the worst

in all experiments.
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Figure 4.5: Performance of cross-entropy based classifiers in Imbalanced-Scratch Scenario.
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Figure 4.6: Performance of Triplet loss based classifiers in Balanced-Pretrained Scenario.

More detailed empirical results and comparisons within each model family can be

found in Appendix A.3.
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Figure 4.7: Performance under Imbalanced Data when Trained from Scratch.

4.4.4 Imbalanced Data with Transfer Learning

Section 4.4.3 discussed the results when models are trained from random initializa-

tion. In this section, we aim to investigate whether transfer parameters trained from

ImageNet could benefit learning from imbalanced ocean acoustic data.
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Figure 4.8: Performance of cross-entropy based classifiers in Imbalanced-Pretrained Sce-
nario.
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The impact of over-sampling. We have similar findings with Section 4.4.3 that

“cross-entropy” is sensitive to the sampling strategy and works the best when the

classes of each batch are balanced, as shown in Figure 4.8. Moreover, the random

sampling approach works the worst which suggests the need for sampling under class

imbalance. Similar findings are found for “triplet loss” in Figure 4.9. We argue that

the oscillation of “Triplet loss with 90% Positive Sampling“ in smaller datasets results

from small sample complexity of negative instances. The over-sampling strategy

might introduce noisy data from limited sampled negative instances, and then these

noisy data would influence model’s stability.

1024 -16 1024 - 32 1024 - 64 1024 - 128 1024 - 256 1024 -512 1024- 1024
(No. negative , No. positive)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

Triplet loss with class-balanced-sampling
Triplet loss with 90% Positive Sampling

Figure 4.9: Comparison of performance of Triplet loss based classifier in Imbalanced-
Pretrained Scenario.

Comparison between different model families. The performance of different model

families are shown in Figure 4.10. It is clear that “cross-entropy with balance-

sampling” outperforms other approaches. Both “cross-entropy with balance-sampling”

and “Triplet loss” remarkably outperform “contrastive loss”. One reason that “cross-

entropy” outperforms the “triplet loss” under the transfer learning setup is that the

model is trained using “cross-entropy” on ImageNet, which is more consistent with

“cross-entropy” based fine-tuning on the ocean acoustic data. Therefore, the current

comparison is biased towards the pretraining strategy. We consider using metric loss

to pretrain the ImageNet in future work to further evaluate the impact of transfer
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Figure 4.10: Performance under Imbalanced Data with Transfer Learning.

learning.
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Figure 4.11: The impact of transfer learning on imbalanced datasets.

The impact of transfer learning. Figure 4.11 compares the performance with and

without transfer learning when the datasets are imbalanced. Similar to Section 4.4.2,

we find that, although ImageNet and spectrogram obtained from ocean acoustic data
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Scratch Transfer

dataset
cross-entropy

with
class-balanced-sampling

Triplet loss
with

class-balanced-sampling

cross-entropy
with

class-balanced-sampling

Triplet loss
with

class-balanced-sampling
1024-16 0.4978 0.1812 0.8176 0.7972
1024-32 0.6539 0.4874 0.8309 0.7766
1024-64 0.6909 0.7659 0.875 0.9007
1024-128 0.8691 0.8991 0.9003 0.8216
1024-256 0.8798 0.9036 0.9627 0.8948
1024-512 0.9336 0.9136 0.9566 0.9262
1024-1024 0.9802 0.9618 0.9722 0.975

Table 4.3: Comparison of F1-score for methods trained with and without transfer
learning.

are from different domains, the use of pretrained parameters from ImageNet is highly

beneficial to the generalization performance. The improvements are more profound

when the amount of labeled training data is small, which can better leverage the

inductive bias learned from the large-scale ImageNet dataset.

More detailed empirical results and comparisons within each model family can be

found in Appendix A.4.

4.5 Analysis

In this sections, we aim to answer the research questions proposed in Section 4.2.

4.5.1 The Impact of Transfer Learning

Table 4.3 compares the F1-scores between models trained with and without transfer

learning. We find that transfer learning from ImageNet provides substantial improve-

ments in the F1-score of both cross-entropy and triplet based methods. The use of

transfer learning is especially important in the low-shot end of the spectrum where

only 16 positive examples are available: transfer learning improves the f1-score from

49% to 81% for cross-entropy based methods and from 18% to 79% for metric based

methods.

Table 4.4 shows the comparison of Average Precision (AP) between models trained

with and without transfer learning. The formula of AP is defined below (see Eq: 4.1).“AP

summarizes a precision-recall curve as the weighted mean of precisions achieved at

each threshold, with the increase in recall from the previous threshold used as the
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Average Precision
Scratch Transfer

Dataset
Cross-entropy

with
class-balanced-sampling

Triplet loss
with

class-balanced-sampling

Cross-entropy
with

class-balanced-sampling

Triplet loss
with

class-balanced-sampling
1024-128 0.9342 0.9292 0.9815 0.8866
1024-256 0.9697 0.9017 0.9966 0.9266
1024-512 0.9933 0.9725 0.9952 0.9482
1024-1024 0.9964 0.9403 0.9978 0.9775

Table 4.4: Comparison of Average Precision (AP) for methods trained with and
without transfer learning.

weights

AP =
∑︂
n

(Rn −Rn−1)Pn (4.1)

, where Pn and Rn are the precision and recall at the nth threshold.” [70]. From

Table 4.4, we observe that transfer learning indeed helps improve the average preci-

sion for “cross-entropy with class-balanced-sampling” but this is less obvious for the

“Triplet loss with class-balanced-sampling.” Moreover, the increase of average preci-

sion becomes minimal between two relatively larger datasets (1024-256 and 1024-512)

for “cross-entropy with class-balanced-sampling” after using transfer learning. More-

over, the advantage of using transfer learning decreases with increased data. For

example, there is a 4.7% improvement in the 1024-128 dataset for “cross-entropy

with class-balanced-sampling” after using the transfer learning, but the improvement

reduces to 0.2% in the 1024-512 dataset. What’s more, transfer learning does not

show consistent improvement for “Triplet loss with class-balanced-sampling”. For

example, the average precision in the 1024-128 dataset drops from 92.92% to 88.66%

after using transfer learning. Similarly, another decrease is found in the 1024-512

dataset. We visualize the precision-recall curves for different datasets in Figure 4.12,

Figure 4.13, Figure 4.14 and Figure 4.15. By looking at these precision-recall curves,

we find that “cross-entropy with class-balanced-sampling” with transfer learning (in

green) performs better (having larger area under curve) than all other methods in the

1024-128 and 1024-256 datasets, and shows comparable performance to “Triplet loss

with class-balanced-sampling” in other settings.

In conclusion, we find that transfer learning helps improve model performance

in terms of accuracy, F1-score and average precision, especially for “cross-entropy”
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based classifiers, but provides a less observable boost for “Triplet loss” based classi-

fiers. Also, the benefit of using transfer learning decreases as more data are available.

Moreover, our classifiers, which are trained with less and imbalanced data, demon-

strate comparable performance to baseline classifiers with average precisions of 0.903

and 0.891, respectively [1].
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Figure 4.12: Precision-Recall curve for methods (trained with and without transfer learn-
ing) on the 1024-128 dataset

4.5.2 The Impact of Dataset Imbalance

The empirical results suggest that class imbalance indeed impairs the performance of

classification methods.

Both “cross-entropy with class-balanced-sampling” with pretrained parameters

and Triplet loss based classifiers tend to perform well in the presence of class imbal-

ance. Empirical results from section 4.4.1 to section 4.4.2 suggest that Triplet loss

based classifiers can better handle class imbalance than most methods, except the

“cross-entropy with class-balanced-sampling” using pretrained parameters.
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Figure 4.13: Precision-Recall curve for methods (trained with and without transfer learn-
ing) on the 1024-256 dataset
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Figure 4.14: Precision-Recall curve for methods (trained with and without transfer learn-
ing) on the 1024-512 dataset
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Figure 4.15: Precision-Recall curve for methods (trained with and without transfer learn-
ing) on the 1024-1024 dataset.

4.5.3 The Impact of The Amount of Training Data

In most experiments, we have observed that when increasing the training data, models

tend to have higher accuracy, which further indicates that performance growth and

increasing training data size are positively correlated. It is a general phenomenon in

machine learning due to the Probably Approximately Correct (PAC) framework [71],

which says that with the same model, the more samples used for training, the smaller

generalization error the model will get.

The quantity of training data profoundly impacts the model’s performance, as

more training data promotes better model performance. It is observed that the model

behaves differently to the increased data. Through observation, we notice that two

factors are contributing to the slower model growth, which are higher initial model

performance and inherent design failures. The higher initial model performance leaves

the model less room for vast improvement. The other problem exists in the design

of the loss function, for instance, “Positive Pair Anchor loss”. It focuses on the

positive sample only, and this design results in low predictability for the negative

class. Therefore, even when data size increases, the model’s capability is constrained

by the negative predictability so that it saturates at 50% (maximum predictability
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for the positive class). This problem also appears in some variants of contrastive loss

based classifiers when the number of negative instances in the batch is smaller than

that of positive examples.

4.6 Summary

Through experiments and analysis, we have the following findings:

1 From Section 4.5.1, we observe that the transfer learning helps cross-entropy

based classifier combined with class-balanced-sampling outperform all studied

methods by a clear margin in the heavily imbalanced dataset. The Triplet loss

with transfer learning displays comparable performance to “cross-entropy with

class-balanced-sampling” in most cases. Moreover, the non-pretrained classi-

fiers trained with Triplet loss and its hybrids surpass the classifiers trained with

cross-entropy loss in many scenarios. Contrastive loss is generally ineffective,

regardless of whether pretrained parameters are used. The pretrained parame-

ters are better suited for the classifiers with cross-entropy losses than the models

using metric-based losses because the pretraining is based on cross-entropy.

2 From Section 4.5.2, we find that the imbalance datasets degrade classifiers’ per-

formance in most cases. But from a series of analysis, Triplet based classifiers

are shown to be able to better handle the shift from balanced datasets to im-

balanced datasets and to maintain reasonable performance, with or without the

use of pretrained parameters. Cross-entropy based classifiers, in general, are

less capable of handling the imbalance. Contrastive based classifiers, except

variants of Positive Pair loss, display positive increases in datasets shifts.

3 From Section 4.5.3, we find that the training data size influences the cross-

entropy based classifiers and metric-based classifiers differently. In the balanced

scenarios, cross-entropy based classifiers in general have unsatisfactory results

with insufficient data while the metric-based classifiers (Triplet based classifiers)

still perform well in small datasets. Even in small-sized imbalanced scenarios,

Triplet based classifiers demonstrate comparable or better performance com-

pared to cross-entropy based classifiers. And, a slight increase in the dataset

size tends to strongly influence the performance of cross-entropy loss and Triplet
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loss based classifiers (improving their performance hugely), but not Contrastive

loss based classifiers. Moreover, most classifiers tend to work better with larger

datasets.

4 From Section 4.4.1 to Section 4.4.4, we find the degree of oversampling matters.

Extreme oversampling with the positive classes leads to degraded performances

because the model fails to learn adequate information from the negative exam-

ples.

We conclude the experiment section with the following summaries:

1 The pretrained settings and class-balanced-sampling offer the model the ability

to handle a heavily imbalanced dataset.

2 The pretrained parameters, on the one hand, help the cross-entropy based clas-

sifiers achieve impressive results but, on the other hand, result in a relatively

less compelling improvement for metric-based models.

3 The advantage of using pretrained parameters decreases as the training data in-

creases. As long as a larger volume of the training dataset is available, models

can obtain comparable performance to the models that use pretrained parame-

ters and train on small datasets.

4 For effective training on the small imbalanced datasets, we recommend training

a pretrained cross-entropy based classifier and using a class-balanced-sampling

strategy. If a pretrained model is unavailable, the safest alternative is to train

a Triplet loss based classifier. As for balanced datasets, Triplet loss based

classifiers tend to be better options.



Chapter 5

Conclusion and Future Work

In this thesis, we describe our motivation for applying deep learning on the underwa-

ter acoustic data classification task and briefly discuss existing works that have used

machine learning techniques to alleviate human effort. We then introduce the data

collection process via Passive Acoustic Monitoring (PAM) and emphasize the impor-

tance of converting the raw audio data into a spectrogram, which is a two-dimensional

representation reflecting the correlation between time and frequency. Our research of

interest is to compare two mainstream types of classifiers, cross-entropy based and

metric-based, on acoustic data. We train these classifiers with various training loss

functions to reflect particular focuses on different aspects of the classification task.

We then evaluate those classifiers on four different scenarios based on whether the

data is imbalanced and whether pretrained model parameters are available: Balanced-

Scratch, Balanced-Pretrained, Imbalanced-Scratch, and Imbalanced-Pretrained. Ex-

perimental results are analyzed to shed light on the strengths and weaknesses of each

method and the importance of the pretrained parameters, data imbalance, as well as

the size of training data. We conclude that

1 Pretrained parameters enable the model to achieve higher performance when

minimal data are available, but they add a less impressive boost to the classes

when more data are presented.

2 Imbalanced data impairs the model performance by decreasing predictability for

the minority class, but some classifiers with special adjustments (re-sampling

and pretrained settings) are immune to the imbalance.

3 The size of the training dataset strongly influences the model performance;

larger size promotes higher performance while a smaller amount of examples

leads to inferior model performance.

4 Metric-based classifiers, typically Triplet loss based classifiers, work well in most

48
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situations while cross-entropy based classifiers perform the best only in the

imbalanced dataset with pretrained parameters and class-balanced-sampling.

However, our work has the following limitations,

1 the task we deal with in this thesis is a binary classification, and the implemen-

tation does not work with the multi-label classifications,

2 we only explored a small subset of the DCLDE 2013 dataset, and datasets are

obtained over a single week in Massachusetts Bay. Therefore, these data reflect

only a small sample of marine animals and environmental conditions, which lack

generalizability to the entire population of NARWs [1],

3 the experiments are conducted with constant random seed (42) to give repro-

ducible results in author’s machine; however, the same results are difficult to

obtain in different machines. Variance in initialized model parameters and data

sampling would give diverse model performance. On the one hand, the repeated

experiments with different random seeds could help us measure the model vari-

ance and estimate the averaged model performance; on the other hand, it would

multiply the computational time and increase the research cost.

As for future work, we first plan to extend our method to work with multi-label clas-

sification because when working with many classes, the class-separable metric space

is the key to the better model performance. Moreover, with more classes presented in

the dataset, the few-shot learning is another interesting direction to investigate. The

second direction is to pretrain a Triplet model on richer acoustic datasets and to use

it to initialize our triplet model to classify underwater acoustic data. It is because our

current Triplet model with pretrained parameters is biased towards the pretraining

strategy, i.e., cross-entropy on ImageNet, it hence does not perform well on current

pretrained experiments. In the experiments, we found that the upcall has a unique

pattern (a diagonally upward curve); therefore, the third direction is to design a spe-

cific kernel (filter for CNN) to detect this pattern and to see whether the customized

kernel could improve the model performance. The fourth direction is to augment

the NARW dataset. The naive approach is to shift the signal along time-axis to

produce more positive samples. Others include SampleRNN [72], SpecAugment [73],

Wavenet [74] and others [75], [76].
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Further, we will investigate image retrieval tasks in the underwater acoustic do-

main so as to retrieve spectrogram of interest from large volumes of unlabeled data.
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Appendix A

Additional Empirical Results

A.1 Empirical Results with Balanced Data when Trained from Scratch
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Figure A.1: Comparison of performance of Triplet loss based classifiers in Balanced-
Scratch Scenario.

The impact of over-sampling. In Figure A.1 we observe that standard “Tripet

loss” displays better performance than its over-sampling version in all experiments.

In Figure A.2, we can see “Triplet loss + Positive Pair loss” also outperforms its over-

sampling version in the smaller datasets, and they both give a similar performance in

the larger datasets. We argue that over-sampling techniques are unnecessary when

the dataset is already balanced.

The impact of different positive anchors Figure A.3 shows three variants of “Triplet

loss + Positive Pair loss”. “Triplet PA loss + Positive Pair PA loss” displays the worst

test results in most of the experiments. “Triplet loss + Positive pair PA loss” has

inferior results to “Triplet PA loss + Positive Pair loss” in smaller datasets; however,
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Figure A.2: Comparison of performance of “Triplet loss + Positive Pair loss” based
classifiers in Balanced-Scratch Scenario.
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Figure A.3: Comparison of performance of classifiers trained with “Triplet loss + Positive
Pair loss” with different positive anchor considerations in Balanced-Scratch Scenario.

they both demonstrate comparable performance in larger datasets. We argue that in

the smaller balanced datasets, the class compactness is of greater importance than
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the margin between classes and, conversely, in the larger datasets, the maximized

margin separating different classes dominates the classification results.
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Figure A.4: Comparison of performance of Triplet loss based classifiers in Balanced-
Scratch Scenario.

Summary of Triplet Methods. In Figure A.4, we compare the best models between

“Triplet loss”, “Triplet loss + Positive Pair loss” and “Triplet loss + Positive Pair

PA loss”. We notice that the performance of “Triplet loss + Positive Pair loss” tends

to work better than the other two classifiers in smaller datasets, and they display

close results in larger datasets. We thus choose “Triplet loss + Positive Pair loss” to

represent the Triplet loss family when comparing with cross-entropy based methods.

Comparison of contrastive loss based classifiers. Figure A.5 depicts the test

accuracy of contrastive losses. Most of them do not present a performance boost

with additional data and remain under 70% accuracy in small-to-medium datasets.

This pattern appears in all variants of contrastive loss, suggesting that these methods

are not able to extract discriminate features from a small amount of data. When

the dataset size increases, we find that contrastive loss based classifiers experience

significant performance growth, except the “Positive Pair Anchor loss”. We assume

due to the exclusive focus on positive instances, “Positive Pair Anchor loss” loses the

ability to recognize the negative examples, therefore leading to lower predictability

for negative class. In summary, we choose the standard “contrastive loss” to represent
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the contrastive loss family.
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Figure A.5: Comparison of performance of classifiers implementing Contrastive loss and
its variants in Balanced-Scratch Scenario.
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Figure A.6: Comparison of performance of cross-entropy loss based classifier in Balanced-
Scratch Scenario.

Comparison of cross-entropy based classifiers. We can observe from Figure A.6

that three cross-entropy based classifiers have similar performance in the small datasets,
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but a noticeable difference can be viewed in larger datasets. “Cross-entropy with

class-balanced-sampling” and “cross-entropy with random-sampling” have close per-

formance in most experiments, meaning that sampling strategy has minimal impact

on the balanced datasets. Additionally, both “cross-entropy with random-sampling”

and “cross-entropy with class-balanced-sampling” outperform “cross-entropy with

90% positive sampling”. We argue that the use of over-sampling becomes trivial in

larger balanced datasets because it disallows the classifier to extract useful features

from the negative class. We choose “cross-entropy with class-balanced-sampling” to

represent cross-entropy based classifiers.

A.2 Empirical Results with Balanced Data when Trained with

Pretrained Parameters

We initialize our models with pretrained parameters from ImageNet to evaluate the

impact of pre-training on balanced datasets. We evaluate different variants of each

family and then compare across different methods to find out which method is more

suitable for this scenario.
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Figure A.7: Comparison of performance of Triplet loss based classifiers in Balanced-
Pretrained Scenario.
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The impact of over-sampling. From Figure A.7, we see that “Triplet loss” out-

performs Triplet loss with over-sampling by a large margin. Similarly in Figure A.8,

“Triplet loss + Positive Pair loss” maintains a clear margin with its over-sampling

version in smaller datasets. We find that the over-sampling strategy impairs the

model performance in balanced datasets because it excessively focuses on the positive

data and consequently reduces the models’ predictability of negative class.
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Figure A.8: Comparison of performance of “Triplet loss + Positive Pair loss” based
classifiers in Balanced-Pretrained Scenario

The impact of different positive anchors. In Figure A.9, while the three classifiers

demonstrate similar performance in larger datasets, their performances are very dif-

ferent in smaller datasets, especially the performance of “Triplet PA loss + Positive

Pair PA loss”. “Triplet PA loss + Positive Pair PA loss” performs the worst, i.e., with

accuracy lower than 50%. It means that excessive attention on the positive examples

reduces the model’s learning on negative data. Such a classifier could retain its perfor-

mance on larger datasets thanks to the unique design of the Triplet loss, which learns

the distance information from positive-anchor triplets. In larger balanced datasets,

though the excessive focus is given to the positive-anchor triplets, the model still can

extract discriminative features from the negative-pair of the positive-anchor triplets

because the larger dataset promotes the diversity of the negative instances. How-

ever, in smaller balanced datasets, the diversity of the negative examples is limited.
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Figure A.9: Comparison of performance of classifiers trained with “Triplet loss + Positive
Pair loss” with different positive anchor considerations in Balanced-Pretrained Scenario.

“Triplet PA loss + Positive Pair PA loss” is influenced by the information from the

positive data only, mostly losing the ability to recognize the negative examples.
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Figure A.10: Comparison of performance of Triplet loss based classifiers in Balanced-
Pretrained Scenario.

Summary of Triplet Methods. From the previous analysis, we find the “Triplet

loss”, “Triplet loss + Positive Pair loss,” and “Triplet PA loss + Positive Pair loss”
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are the best from each category. We thus plot them in Figure A.10, “Triplet loss” (in

blue) has superior results than other methods. In the smallest dataset, it achieves

more than 80% accuracy, outperforming the rest by a considerable margin. It sustains

the outstanding performance in all experiments. In conclusion, the standard “Triplet

loss” is the leading loss of the Triplet loss family in this scenario.

Comparison of contrastive losses based classifiers. We find in Figure A.11, “Posi-

tive Pair Anchor loss” is the best performing classifier, as it outperforms other meth-

ods considerably in small datasets. The second leading method is the “Contrastive

loss”, depicted in blue, which yields a better result in the largest dataset with 1,024

examples per class. It is closely followed by “Positive Pair loss” (red curve). The

remaining variants are less sensitive to the change of data size. Therefore, by com-

paring the performance of these methods, the “Positive Pair Anchor loss” is chosen

as the representative of the contrastive loss family.
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Figure A.11: Comparison of performance of classifiers implementing contrastive loss and
its variants in Balanced-Scratch Scenario.

Comparison of cross-entropy based classifiers. We can see in Figure A.12 that

“cross-entropy with class-balanced-sampling” and “cross-entropy with random-sampling”

work much better than “cross-entropy with 90% positive sampling”. Considering

that “cross-entropy with class-balanced-sampling” and “cross-entropy with random-

sampling” demonstrate comparable performance, we choose the “cross-entropy with
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random-sampling” to represent cross-entropy loss based classifiers.

Comparison of the best classifier from each category. We plot the test accuracy

of three leading classifiers chosen from each family in the above Figure A.13. It is

clear that “Triplet loss” is the best performing method among the three classifiers

as it displays superior results compared to the other two methods all the time. The

second best method is the “cross-entropy with random-sampling”, which has higher

accuracy than the worst method by a substantial margin. We see that most Triplet

loss based classifiers have close performance (see Figure A.10), and the worst classi-

fier gives an accuracy of 65% in the smallest dataset, which is still higher than the

performance of “cross-entropy with class-balanced-sampling” (see Figure A.13). As

a result, we conclude Triplet losses based classifiers have better performance than

cross-entropy based classifiers. Therefore, the metric-based method is the best choice

in this scenario.
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Figure A.12: Comparison of performance of cross-entropy based classifiers in Balanced-
Pretrained Scenario.
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Figure A.13: Comparison of performance of the best classifier from each category.

A.3 Empirical Results with Imbalanced Data when Trained from

Scratch

We conduct this set of experiments on imbalanced datasets with models trained from

random initialization. We perform the evaluation firstly within different variants of

each method and secondly across methods to analyze which method is the best.

The impact of over-sampling. We notice from Figure A.14 that “Triplet loss” tends

to perform better than its over-sampling version, especially in the smallest dataset

with 1,024 negative examples and 16 positive examples. In Figure A.15, we find that

the over-sampling strategy does help with positive pair loss.

The impact of different positive anchors. In Figure A.16, the blue curve (“Triplet

loss + Positive Pair PA loss”) has less appealing results in the smallest dataset, but

it later displays comparatively stable growth. The other two classifiers are superior

in smaller datasets, but experience strong oscillations in larger datasets. We conclude

that ignoring all the negative-anchor triplets decreases the model’s robustness, par-

ticularly in larger imbalanced datasets. We use “Triplet loss + Positive Pair PA loss”

to represent these three classifiers due to its stability.

Summary of Triplet Methods. We visualize the best Triplet losses based classifiers
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Figure A.14: Comparison of performance of Triplet loss based classifier in Imbalanced-
Scratch Scenario.
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Figure A.15: Comparison of performance of “Triplet loss + Positive Pair loss” based
classifiers in Imbalanced-Scratch Scenario

from preceding analyses in Figure A.17, the three classifiers exhibiting similar per-

formances in small to medium datasets, but the “Triplet loss” showing better results

in larger datasets. We argue that the oscillation of “Triplet loss + Positive Pair loss”

with over-sampling results from substantially ignoring the negative examples in larger
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Figure A.16: Comparison of performance of classifiers trained with “Triplet loss + Posi-
tive Pair loss” with different positive anchor considerations in Imbalanced-Scratch Scenario.

datasets. We hence choose the “Triplet loss” to represent the Triplet loss family.
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Figure A.17: Comparison of performance of selected Triplet loss based classifiers in
Imbalanced-Scratch Scenario.

Comparison of contrastive losses based classifiers. In A.18, we see that all variants

of contrastive losses in this scenario display ineffective performance increases with

extra data in small datasets. We also observe that three of contrastive losses show
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sharp performance increases in larger datasets while the rest still display mild changes.

We select the standard “Contrastive loss” to represent the contrastive loss family.

Comparison of cross-entropy based classifiers. We can observe from Figure A.19

that “cross-entropy with class-balanced-sampling” shows a better result than the

other methods. Furthermore, a considerable difference is noticed between the curve

of “cross-entropy with class-balanced-sampling” and the two other curves throughout

experiments. Additionally, all three methods have significant increases with increas-

ing positive samples. We hence conclude that “cross-entropy with class-balanced-

sampling” works better in this scenario and we choose it to represent the cross-entropy

based classifiers. Besides, we argue that balanced sampling is necessary given dataset

imbalance.
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Figure A.18: Comparison of performance of classifiers implementing contrastive loss and
its variants in the Imbalanced-Scratch Scenario.

Comparison of the best classifier from each category. It can be viewed in Figure

A.20 that the “Triplet loss” classifier tends to work better than the cross-entropy

and the contrastive loss based methods. Besides, we observe the “cross-entropy with

class-balanced-sampling” classifier outperforms Triplet loss classifiers only in one ex-

periment and remains inferior to it in the majority of experiments. “Contrastive loss

with random-sampling” classifier displays the worst results in all experiments. There-

fore, we conclude that the metric-based classifiers work better in this scenario where
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Figure A.19: Comparison of performance of cross-entropy based classifiers in Imbalanced-
Scratch Scenario.

models are trained from scratch on imbalanced datasets.
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Figure A.20: Comparison of performance of the best classifier from each category.
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Figure A.21: Comparison of performance of Triplet loss based classifier in Imbalanced-
Pretrained Scenario.
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Figure A.22: Comparison of performance of “Triplet loss + Positive Pair loss” based
classifiers in Imbalanced-Pretrained Scenario
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Figure A.23: Comparison of performance of classifiers trained with “Triplet loss + Pos-
itive Pair loss” with different positive anchor considerations in Imbalanced-Pretrained Sce-
nario.

A.4 Empirical Results with Imbalanced Data when Trained with

Pretrained Parameters

This set of experiments is performed with pretrained models on imbalanced datasets.

The initial evaluation is done within each method to find the best-performing variant,

and we then compare those best variants to conclude which method is the best in

this scenario.

The impact of over-sampling. We can see from Figure A.21 that the standard

“Triplet loss” performs the best. Its over-sampling version displays strong oscillations

in small datasets. In Figure A.22 the “Triplet loss + Positive Pair loss” with over-

sampling strategy outperforms the standard one in most experiments, and exhibits a

strong and stable growth. The over-sampling strategy impacts classifiers differently,

so it is difficult to conclude applicability to both cases.

The impact of different positive anchors. We also find that in Figure A.23 the

three classifiers show comparable results in larger datasets. Additionally, “Triplet

loss + Positive Pair PA loss” (in blue) is more stable than two other classifiers.

Summary of Triplet Methods. We again plot the best classifiers in Figure A.24.
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Figure A.24: Comparison of performance of selected Triplet loss based classifiers in
Imbalanced-Pretrained Scenario.

We observe the “Triplet loss” (yellow curve) demonstrates excelling performance com-

pared to the others in smaller datasets and maintains moderate competency overall.

“Triplet loss + Positive Pair loss with 90% Positive Sampling” is the least performing

one, with down to 50% accuracy in the smallest dataset. However, it exhibits strong

growth and displays comparable results in larger datasets. We conclude that the

standard Triplet loss works best because of its stability.

Comparison within contrastive loss based classifiers. It can be observed in Figure

A.25 that “Contrastive loss with random-sampling” and “Contrastive loss with class-

balanced-sampling” are more stable than other variants. Their performances are close,

and they improve as the dataset size increases. Meanwhile, “Contrastive loss with 90%

positive sampling” and two variants of “Positive Pair loss” exhibit oscillations in all

experiments, suggesting the models’ instabilities in this scenario. Since “Contrastive

loss with random-sampling” and “Contrastive loss with class-balanced-sampling” have

comparable performance, we choose “Contrastive loss with random-sampling” as the

representative of the contrastive loss family.

Comparison of cross-entropy based classifiers. In Figure A.26, we can observe

“cross-entropy with class-balanced-sampling” outperforms the “cross-entropy with
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Figure A.25: Comparison of performance of classifiers implementing contrastive loss and
its variants the Imbalanced-Pretrained Scenario.

random-sampling” by a large margin. Furthermore, the “cross-entropy with random-

sampling” performs better than the “cross-entropy with 90% positive sampling”.

“Cross-entropy with class-balanced-sampling” and “cross-entropy with random-sampling”

display a positive increase in most cases, and, in the meantime, “cross-entropy with

random-sampling” has witnessed a more rapid increase. In contrast, “”cross-entropy

with 90% positive sampling suffers several oscillations. Therefore, we conclude that

“cross-entropy with class-balanced-sampling” is the most robust method in this situ-

ation.

Comparison of the best classifier from each category. We choose the best classifier

from each family and visualize classifiers’ performance in Figure A.27. It is clear that

“cross-entropy with class-balanced-sampling” is the leading classifier, outperforming

other classifiers in the group. Both “cross-entropy with class-balanced-sampling”

and “Triplet loss” outperform the “Contrastive loss” remarkably. Thus, we claim

that “cross-entropy with class-balanced-sampling” with the pretrained parameters

can handle the imbalance more effectively than metric-based classifiers.
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Figure A.26: Comparison of performance of cross-entropy based classifiers in the
Imbalanced-Pretrained Scenario.
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Figure A.27: Comparison of performance of the best classifier from each category.
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