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Summary

This study presents an approach to optimally find a fuzzy input set A that can be used with the fuzzy
relation R to producing a fuzzy output B ~ B. In this study, the fuzzy relation is translated into a
mathematical optimization model. Although this model can be optimally solved in any meta-heuristic
optimization algorithm, the biogeography-based optimization (BBO) algorithm is implemented just as
a practical example and evidence of our success. In this study, it has been observed that the quality of
the results depends on two criteria; the resolution of A-cuts and the constraint (whether the estimated
fuzzy output B is a subset of the actual fuzzy output B or not). If this constraint is enabled in the design
function, then obtaining the optimal value becomes a hard task, especially if the A-cuts are provided with
limited discrete elements of the membership function of A. Also, it has been found that the optimal value
obtained by Sanchez’s operator can be met by many alternatives of A vectors obtained by BBO.

Contents
Cover-Page 1
1 Introduction 2
1.1 Inverse Fuzzy Relation Equations . . . . . . ... ... ... ......... 3
1.2 Inverse Fuzzy Relation Equations Using Optimization Approach . . . . . . .. 4
2 Modeling Fuzzy Relation Equation as a Combinational Optimization Problem 8
3 Experimental Results 12
4 Conclusion and Scope of Future Work 13
Acknowledgement 14
Appendices 15
Appendix I: List of Software . . . . . .. ... .. .. ... ... .. .. .. ..., 15
Appendix II: Source Code of the Primitive Brute-Force Search Method . . . . . . . . 15
Appendix III: Source Code of the Combinational BBO Algorithm . . . . ... ... 17
References 27
List of Figures
1 Summary of the Most Popular Constraint-Handling Techniques . . . . . . . . . 11
2 Fitness Extracted from the BBO Algorithm. . . . . .. ... ... ... .. .. 14

List of Tables

1 BBO Simulation Results for solving AoR=8B Fuzzy Relation Equation . . . 13



1 Introduction

1 Introduction

In fuzzy systems, the term “fuzzy relation” is commonly seen in many references, such as the
books and technical reports given in (Dubois & Prade, 1980; Zimmermann, 1996; Babuska,
1999; Dubois & Prade, 2000; Lee, 2005; Ross, 2010), and much more in journals and con-
ferences. It is a logical reflection of its importance in many applied fields of fuzzy systems,
such as: fuzzy system analysis, design of fuzzy controllers, decision-making process, and fuzzy
pattern recognition (El-Hawary, 2016).

Suppose A is a fuzzy set in X, and R is a binary fuzzy relation in X x Y — i.e., A(X) and
R(X,Y):

AX) = {“Agl)+“"‘:£;”2)+---+%?} (1)
pr(z,y1)  pr(@y2) o pr(21 Ym)

RIX,Y) = ,UR(SU'%yl) NR($.273/2) /LR(ff?'z’ym) @)
st inl@nsg) o pn(on )

where 114 (z;) and pg(z;, y;) are respectively the membership functions of the ith z of the fuzzy
set A(X) and the ith 2/jth y of the fuzzy relation R(X,Y).
Then, the fuzzy relation equation of A and R is represented as follows:

AxR=B 3)

where B is called the fuzzy output set in Y and its jth membership function is denoted as
p5(y;). Thus, the vector of B can be expressed as follows:

S us(y) | ps(y2) 18 (Ym)
Bly) = { o) o) ol ) @)

As can be obviously observed in Eq.(3), B depends on the composition operator x!. One of
the most popular composition operators is known as the max-min composition operator:

AoR=B &)

If this composition operator is applied here, then the membership function pp of the jth y
element is defined as follows:

1Y) = taor(y;) = max min {pa(z), pr(e,y;)} (6)

Instead of using the min-operator, someone could use the product-operator (or any other
t-norm):
AeR=1HB @)

So that, Eq.(6) becomes:

p5(Y;) = Haer(y;) = max {pa(w) - pr(r. y;)} ()

I'The star symbol x is a general or universal symbol; it could be o for the max-min composition, e for the
max-product composition, etc.



1 Introduction

Moreover, the max-operator itself can be replaced by any other s-norm operator. Further-
more, both operators can be swapped between each other to have what is called the min-max
composition operator where its fuzzy relation and membership function for B are respectively
defined as follows:

AoR=1HB )

1 (Ys) = pacr(y;) = min max {ua(z), pr(z,y;)} (10)

1.1 Inverse Fuzzy Relation Equations

For all these composition operators, sometimes the inverse of fuzzy relation equations is re-
quired. For example, imagine that A and B are given and R needs to be determined, or R and
B are given and A needs to be determined. Because of the nonlinearity of the fuzzy relation
equation, so many solutions could be obtained from that inversion process (El-Hawary, 2016).

This study focuses on the second situation where both R and B are given and A is unknown.
To find A, there are many operators presented in the literature as helping tools. One of the most
popular operators is called the a-operator®. This operator states that the solution to the fuzzy
relation equation A o R = B exists if the following inequality constraint holds for all the
elements of the vector Y':

max {pp(,y)} > psly) Vy € Y (11)

Thus, the largest fuzzy set A(X) that satisfies the fuzzy relation equation A o R = B is
(El-Hawary, 2016):

A=R<*s B (12)

where its membership function for the :th element of x is:

o (23) = pp, o, p(w5) = min {pr(zs, y1) o pp(yr), - wr(Ti Ym) @ p5(Ym)} (13)

A
The calculated fuzzy set B becomes a subset of the actual fuzzy set B:
(RéB%R:EoR:BgB (14)

Because the a-operator is applied to the relation between R(X,Y') and B(Y'), so it is defined
as follows: ‘

Based on that, Eq.(13) becomes:

_ o 1, if pp(ei,y1) < ps(y)
,u;‘(xz) = fpee, (i) = min {{ ps(y1), otherwise T

1, if wa(Tiym) < p(ym) |6
1(Ym), otherwise

Besides the a-operator, there are many other operators presented in the literature, such
as (Ahmed & Saqib, 2010):

2t is sometimes called Sanchez-operator because it was introduced by Elie Sanchez who was one of the
pioneers in this filed (Sanchez, 1976).
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e ~-operator (also known as the equality operator):

1, if iy Yj) = Yj
wr(@iy;) v s ly;) = { , Otﬁgivisey) 115(Y;) (17)
e U -operator:
o N if pr(sy;) < ps(y;)
1r(wi y;) o pp(y;) = { pp(y;), otherwise (18)

e c-operator (it is dual to o-operator):

i)y if i Yi) < ]
UR($iayj)€,uB(yj):{ 53@3) Otﬁgi,ise%) p(43) (19)

1.2 Inverse Fuzzy Relation Equations Using Optimization Approach

We have said that there are many solutions that could be obtained from the inverse fuzzy relation
equations due to its nonlinearity nature. Thus, the optimization techniques can be involved here

to accomplish this purpose.

But, because A, B, and R are supposed to be in discrete values®, so someone might ask
the following question: Can we obtain all the best solutions (that the calculated fuzzy set

B — B), without using any optimization method, by checking all the possible sets of A?

Initially, we can say: YES, we can! However, it is totally unpractical because its memory

usage steeply increases with any slight increase in the problem dimension and/or resolution!

To clarify this point, let’s take the following problem:

{0.5 0.3 0.6 0.5}
B = —_—t— 4+ — + —
(751 Y2 Y3 Ya

04 07 0 0.2

0O 06 0 0.7

0.2 08 05 06

09 07 1 0

Using MATLAB code, given in Appendix II, with step-size of 0.1 for A, we get 40 optimal

solutions out of 14641 sets of A within 0.304406 seconds:

Solution No.1l:

Fitness = 0.7
Fuzzy Set A = 0 0 0 0
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.2:
Fitness = 0.7
Fuzzy Set A = 0 0.1 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3

Solution No.3:

3i.e., their membership functions are sliced based on the resolutions or step-sizes of their A-cuts.

4



1 Introduction

Fitness = 0.7

Fuzzy Set A = 0 0.2 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.4:

Fitness = 0.7

Fuzzy Set A = 0 0.3 0 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.5:

Fitness = 0.7

Fuzzy Set A = 0 0.3 0.1 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.6:

Fitness = 0.7

Fuzzy Set A = 0 0.3 0.2 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.7:

Fitness = 0.7

Fuzzy Set A = 0 0.3 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.8:

Fitness = 0.7

Fuzzy Set A = 0.1 0 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.9:

Fitness = 0.7

Fuzzy Set A = 0.1 0.1 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.10:

Fitness = 0.7

Fuzzy Set A = 0.1 0.2 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.1l1l:

Fitness = 0.7

Fuzzy Set A = 0.1 0.3 0 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.1l2:

Fitness = 0.7

Fuzzy Set A = 0.1 0.3 0.1 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.13:

Fitness = 0.7

Fuzzy Set A = 0.1 0.3 0.2 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.1l4:

Fitness = 0.7

Fuzzy Set A = 0.1 0.3 0.3 0.3
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Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.15:

Fitness = 0.7

Fuzzy Set A = 0.2 0 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.16:

Fitness = 0.7

Fuzzy Set A = 0.2 0.1 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.17:

Fitness = 0.7

Fuzzy Set A = 0.2 0.2 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.18:

Fitness = 0.7

Fuzzy Set A = 0.2 0.3 0 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.19:

Fitness = 0.7

Fuzzy Set A = 0.2 0.3 0.1 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.20:

Fitness = 0.7

Fuzzy Set A = 0.2 0.3 0.2 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.21:

Fitness = 0.7

Fuzzy Set A = 0.2 0.3 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.22:

Fitness = 0.7

Fuzzy Set A = 0.3 0 0.3 0
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.23:

Fitness = 0.7

Fuzzy Set A = 0.3 0 0.3 0.1
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.24:

Fitness = 0.7

Fuzzy Set A = 0.3 0 0.3 0.2
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.25:

Fitness = 0.7

Fuzzy Set A = 0.3 0 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
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Solution No.26:

Fitness = 0.7

Fuzzy Set A = 0.3 0.1 0.3 0
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.27:

Fitness = 0.7

Fuzzy Set A = 0.3 0.1 0.3 0.1
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.28:

Fitness = 0.7

Fuzzy Set A = 0.3 0.1 0.3 0.2
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.29:

Fitness = 0.7

Fuzzy Set A = 0.3 0.1 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.30:

Fitness = 0.7

Fuzzy Set A = 0.3 0.2 0.3 0
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.31:

Fitness = 0.7

Fuzzy Set A = 0.3 0.2 0.3 0.1
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.32:

Fitness = 0.7

Fuzzy Set A = 0.3 0.2 0.3 0.2
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.33:

Fitness = 0.7

Fuzzy Set A = 0.3 0.2 0.3 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.34:

Fitness = 0.7

Fuzzy Set A = 0.3 0.3 0 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.35:

Fitness = 0.7

Fuzzy Set A = 0.3 0.3 0.1 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.36:

Fitness = 0.7

Fuzzy Set A = 0.3 0.3 0.2 0.3
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.37:

Fitness = 0.7
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Fuzzy Set A = 0.3 0.3 0.3 0
Fuzzy Set B = 0.3 0.3 0.3 0.3
Solution No.3
Fitness 0.7
Fuzzy Set A = . . .
Fuzzy Set B = 0.3 0.3 0.3 0.3

(@)
w
o
w
o
w
(@}
—

Solution No.39:
7

Fitness = 0.
Fuzzy Set A 0.3 0.3 0.3 0.2
Fuzzy Set B = 0.3 0.3 0.3 0.3

Solution No.40:
Fitness = 0.7

Fuzzy Set A 0.3 3 3
Fuzzy Set B = 0.3 0.3 0.3 0.3

Elapsed time is 0.304406 seconds.

If the resolution of A is increased from 0.1 to 0.05, then we get 133 optimal solutions out of
194481 possible sets, but within 37.730767 seconds. Now, imagine a high resolution of \-cuts
with large n and m — i.e., a high-dimensional problem!

Based on this fact, the optimization techniques are preferable for this kind of problem.
However, because we are dealing with discrete variables, so only some special fully discretized
optimization techniques can be used. They are called combinational optimization algorithms.
By these algorithms, we will not worry anymore about the machine’s CPU time as the problem
dimension and/or resolution increase.

In the next lines, we are going to use our designed combinational biogeography-based
optimization (CBBO) algorithm. The MATLAB source code is given in Appendix III. The
mechanism behind this algorithm is fully described in (Simon, 2013; Al-Roomi & El-Hawary,
20164, 2016b), so it will not be covered here in order to save space.

2 Modeling Fuzzy Relation Equation as a Combinational
Optimization Problem

In this section, the solution to the previous problem is modeled as an optimization problem. The
following mathematical expression covers both the objective function and design constraints.

Recalling the previous problem:
- AoR=B (20)

where
size{A} = [1 x 4], size{R} = [4 x 4], and size{B} = [1 X 4]

Suppose:
A= {MA(%) +MA($2) 4 pa(s) +MA(934)} _ {a1 az 1 as a4} 1)

g X2 €3 Xy
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0.4 0.7 0.0 0.2
0.0 0.6 0.0 0.7
S R= 02 08 05 06 | - and B=[05 03 06 0.5 ] (22)

0.9 0.7 1.0 0.0

Thus, applying Eq.(20) yields:

[ 0.4 0.7 00 0.2
0.0 0.6 0.0 0.7
0.2 0.8 0.5 0.6

| 0.9 0.7 1.0 0.0

[ 0.4 0.7 00 0.2 ]
A 0.0 0.6 0.0 0.7 .
wAoR=[da Gy ag as | o 02 08 05 06 =[b by by by] (24)

| 0.9 0.7 1.0 0.0

=[05 03 0.6 0.5 ] (23)

.'.AOR:[CH as as CL4} o

[(61 A 0.4) V (42 A0.0) V (a3 A 0.2) V (a4 A0.9)] 7
o (@ A0V (@ ADB)V (a5 AOS)V (as AOT)] | ra o o
B = G A00)V (A 0.0)V (a5 A0.5) Y (g AL0Y] | = Lb b2 b b ] @29)
[(a1 A 0.2) V (a2 A 0.7) V (a3 A 0.6) V (ag A 0.0)]

where A and B are respectively the optimal and backward calculated fuzzy sets obtained for
the fuzzy sets A and B.
Therefore, the objective function can be modeled as follows:

4
OBJ:rmmmﬁeE:

a1,02,03,04 <
Jj=1

bj —bj| ® P; (26)

where @ is an arithmetic operator, which could be “+” or “x” based on the type of P; used.
Also, the term b; denotes the jth element of the fuzzy set B and the term F; is called the penalty
function®*, and both can be defined as follows:

bj = ps(y;) C (27
B — YMMdeM 15 (ys) Mﬂ%}:{i+£+£+i}

+ +
Y1 Y2 Y3 Ya

05 03 06 05
:{—+—+—+—} (28)
N Y2 Y3 Ya

{Q if b; < b

P, (29)

zj, otherwise

where z; is a user defined penalty factor.

Besides the penalty functions, there are many other constraint-handling techniques available
in the literature. We have summarized the most popular types in Fig. 1 (Deb, 2010; Venkatara-
man, 2009; Simon, 2013; Rao, 2009; Eiben & Smith, 2003; Yeniay, 2005; Kajee-Bagdadi,
2007; Yu & Gen, 2010). For simplicity, the exterior penalty function (EPF) is selected here.

“To satisfy the condition Ao R C B, which is equivalent to (R TR B) oRCB.

9
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It has to be said that EPF comes in two common forms known as additive and multiplicative
forms, which can be respectively expressed as follows (Yeniay, 2005):

. re, it X e F

min d(X), where ¢(X) = {f(X) P, ifX¢F (30)
. re, ifXeF

min d(X), where ¢(X) = {f(X) CP(X). X EF 31

where F means having a feasible set. The penalty function P(X) is also called the penalty
term, which is equal to zero for feasible individuals, and becomes a positive value in case any
one of the constraints is violated. Thus, the penalized cost function ¢(X) becomes higher
than its actual value f(X). This P(X) can be provided in different forms based on the type of
penalty functions. The most common form is:

P(X) = D75 95(X) (32)
where: g;(X) = [maX{O,gj(X)}}B (33)

where 7; is called the penalty multiplier, and [ is a user-defined positive constant which is
commonly set equal to either 1 or 2 (Simon, 2013; Rao, 2009; Eiben & Smith, 2003). g; (X) is
the constraint of the problem, which is defined as follows:

g;(X) =b; = b; (34)

If I;j > b;, then it means that the jth constraint of Eq.(14) is violated. Thus, g;(.X') becomes
a positive value, which in turn activates the term §;(X) given in Eq.(33).
Therefore, the operator ® given in Eq.( 26) means the following:

+, if ¢ is an additive EPF
O = (35)
x, if ¢ is a multiplicative EPF
For the sake of simplicity, the additive form is used, so Eq.( 26) becomes:
OBJ = + P (36)
a1,a2,a3,a44 %

This objective function can be expressed in many other ways. For example, the following
alternative expression can be used to have a sensitive objective function:

OBJ = minimize Z (b — b, ) + P; (37)

1,G2,03,04 =1
From Fig. 1, if EPF is selected to be a death penalty type, such as the infinite barrier
penalty, then z becomes a scalar for all j € m (here m = 4) with a constant value of 10
(Deb, 2010). Although this type of penalties is very simple, it is also very bad type because it
kills all the infeasible solutions even if some have very small or ignorable violations, which in

10
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3 Experimental Results

turn reduces the exploration level of the optimization algorithm. Thus, the non-death penalty
type is preferred.

Again, for simplicity, the static non-death EPF is selected. The extinctive and binary sub-
types do not help us in solving this problem; please refer to their properties in (Simon, 2013;
Rao, 2009; Eiben & Smith, 2003). Thus, we will use the distance-based static non-death
exterior penalty function (with § = 1) as a constraint-handling technique to solve our fuzzy
relation equation presented in Eq.(36) as an optimization problem. Add to that the following

penalty factor’ is used:
2;=05V) € m=4 (38)

3 Experimental Results

In this experiment, we have two cases:
1. Deactivating the penalty function —+i.e., ¢ =0V j e m =4
2. Activating the penalty function —ie., ¢ #0Vj € m =4
For each case, the following resolutions are considered for the A-cuts of A and B:
e A\ — 0,0.1,0.2,---,1
e A — 0,0.01,0.02,---,1
The CBBO algorithm is initiated using the following settings:
e Population Size: 20
o Elitism: 1
e No. of Generations: 100
e Maximum Mutation Probability: 0.1

This simulation is coded in MATLAB 2016a using a computing machine with the following
specifications: ALIENWARE M14x laptop, 64-bit Windows 10 OS, Intel Core 17-4700MQ
CPU 2.4 GHz, and 16 GB RAM. Executing the BBO program gives the results tabulated in
Table 1.

As can be clearly observed from the preceding table, the optimal value that matches between
the estimated fuzzy output set B (obtained by a backward substitution — see Eqs.(24)-(25)) and
the actual fuzzy output set B cannot be satisfied in this problem (i.e., B — B # 0). We have
tried to solve it by using a population size of 60, and 1,000,000 generations without getting
any improvement in the convergence! If the constraint Ao R C B is embedded in the design

function, then the best possible value that could be obtained® is equal to A = (R < B) o R,
which is the solution of Elie Sanchez; i.e., the solution of a-operator (Sanchez, 1976). However,
we have found that the BBO algorithm can find many optimal fuzzy input sets A that give the

SPlease note that these factors could give better results if they are well-tuned.
©This assumption is based on our quick observation with different initialization settings of BBO.

12



4 Conclusion and Scope of Future Work

Table 1: BBO Simulation Results for solving AoR=2RB Fuzzy Relation Equation

Unconstrained OBJ (o =0V j € 4) Constrained OBJ (¢p #0V j € 4)

Ain 0.1 steps Ain 0.01 steps Ain 0.1 steps Ain 0.01 steps

021" 042 7" 031" 03 1"
[A}T 0.2 0.5 0.2 0.3
0.5 0.28 0.3 0.3
| 0.5 0.5 | 0.0 0.29

051" 057" 031" 037"
[ér 0.5 0.5 0.3 0.3
0.5 0.5 0.3 0.3
| 0.5 0.5 | 0.3 0.3

CPU (s) 0.202261 0.209260 0.198302 0.164619
OBJ“ 0.3 0.3 0.7 0.7

*

“The results obtained by «-operator (also known as Elie Sanchez’s operator) provides A =
[03 03 03 03 ]andAoR=[03 03 03 03] — OBJ=0.7

same solution of a-operator (i.e., AoR = AoR). Thisisa logical phenomenon because we have
seen in Sub-Sec. 1.2 that there are 40 optimal solutions if the resolution is 0.1, and 133 optimal
solutions if the resolution is 0.01. The benefit of using combinational optimization algorithms
rather than the primitive brute-force search approach, given in Sub-Sec. 1.2, can be seen in the
total CPU time required to search within the fully discretized domain. In the brute-force search,
the algorithm takes 37.730767 to complete its search if the resolution is set to 0.05. In CBBO,
changing the resolution from 0.1 to even 0.01 will have an ignorable effect on its total CPU
time. Of course, as the resolution and/or dimension increase the algorithm initialization settings
should be updated with a higher number of generations and bigger population size. However,
the additional increment in CPU time is incomparable with that of the brute-force search. Thus,
the combinational optimization approach is superior compared with other approaches. The
optimal results tabulated in Table 1 are graphically presented in Fig. 2.

4 Conclusion and Scope of Future Work

This study presents an alternative approach to determine the fuzzy input set A used with the
fuzzy relation R to produce the fuzzy output set 5B through the max-min composition. The
modeled objective function proved its ability to solve such kind of fuzzy relation equations.
Through the experimental results, it has been found that the solution quality depends on two
main factors: the slice resolution of A-cuts and whether the results extracted from the max-min
composition B is considered as a subset of the actual fuzzy output set 5 or not.

The beauty of this numerical approach is that it can be applied for any type of t-norms/s-
norms compositions. With a little care on the constraint-handling technique used in the opti-
mization algorithm, any user-defined problem can be easily entered as a plug-in problem; it will
act as a universal optimizer. Thus, it is interesting to test this optimization-based approach with

13
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Figure 2. Fitness Extracted from the BBO Algorithm.

different compositions of s-norms/t-norms. Moreover, it is also interesting to repeat this com-
parative work with other operators rather than using just a-operator. For instance, y-operator,
o-operator, and e-operator. Further, the other optimization techniques, including the classical
mathematical programming and hybrid algorithms, can be used to enhance the overall perfor-
mance of the algorithm.
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Appendices

Appendices

Appendix I: List of Software

Different programs have been used to write this technical report. They are listed as follows:
e Mathworks: MATLAB R2016a
o IATEX: MikTex 2.9, WinEdt 8, JabRef 2.9.2, and LaTable 0.7.2

e Adobe: Photoshop CS6 (v.13.0), and Acrobat Pro XI

Appendix II: Source Code of the Primitive Brute-Force Search Method
This appendix provides our MATLAB source code used to find all the possible solutions of the
best fuzzy set A by the primitive brute-force method:

% It is written in the 23rd of July 2016 @ 08:22AM by Ali Ridha Al-Roomi

clear
clc

tic; % start counting the processing speed
Vel dlededledledledlededledledledlededlededledledededlededlededlededledlededledlededlediedldlededledledledlededlededledlededledledldlededldedledledledledledledledledledleddledledledlededld

9E55ETTTTTETTIITEITIITEIT IS0 INITIALIZATION  STAGE IS5 ETTITTETSTITIEIIETSIEITIEITIETIN o
L Leledleledledledleledleledledledledledbedledbedledledledledterledteedterledtedledk e edk el edbedledledlerledleredbedledbedledbedledbedl bl edbedtedledledleddeledbedl ettt edb e edh el b el edbedledledlededterLe

B=[0.5 0.3 0.6 0.5]; % Fuzzy set B
R=[0.4 0.7 0 0.2;0 0.6 0 0.7;0.2 0.8 0.5 0.6;0.9 0.7 1 0]; % Fuzzy Relation
P=1000xones (1,4); % Penalty vector

% Setting the discrete variable bounds (search space) of each element of A
cut=0.05; % possible alpha—cuts of membership function

MSF=0:cut:1; % membership function vector

j=1; % initial value of the jth counter

for il=1:1ength (MSF)
for i2=1:1ength (MSF)
for i3=1:1length (MSF)
for i4=1:1length (MSF)
% Finding all the possibilities of the fuzzy input set A
A(j ,:)=[MSF(il) ,MSF(i2) ,MSF(i3) ,MSF(i4)];
j=j+1; % update the jth counter
end
end
end
end

% Evaluate the backward fuzzy relation for all the possibilities of A
for i=1:length (A)
bl (i)=max ([ min(A(i,1),R(1,1)),min(A(i,2),R(2,1)),min(A(i,3).,R(3,1)),min
(A(i,4) .R(4,1))1]):
b2 (i)=max ([ min(A(i,1) ,R(1,2)),min(A(i,2),R(2,2)),min(A(i,3),R(3,2)),min
(A(i,4) .R(4,2))]1):
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b3 (i)=max ([min(A(i,1),R(1,3)),min(A(i,2).R(2,3)),min(A(i,3),R(3,3)),min
(A(i,4) ,R(4,3))1]);

b4 (i )=max ([min(A(i,1),R(1,4)),min(A(i,2),R(2,4)),min(A(i,3),R(3,4)),min
(A(i,4),R(4,4))1]);

% Penalty Factors

if B(1)==bl(i) || bl(i)-B(l)<cut/10
P1(i)=0;

else
P1(i1)=P(1);

end

if B(2)==b2(i) || b2(i)-B(2)<cut/10
P2(i)=0;

else
P2(i)=P(2);

end

if B(3)==b3(i) || b3(i)-B(3)<cut/10
P3(i)=0;

else
P3(i)=P(3);

end

if B(4)==b4(i) || b4(i)-B(4)<cut/10
P4(i)=0;

else
P4(i)=P(4);

end

% Objective Function (OBJ)
F(i)=abs(B(1)—bl(i))+abs(B(2)—b2(i))+abs(B(3)—b3(i))+abs(B(4)—b4(i))+Pl
(1)+P2(i1)+P3(i)+P4(i);
end

% Sort and map the fitness
[S,index]=sort(F);

Best(1)=S(1);
B1(1)=bl(index(1));
B2(1)=b2(index (1));
B3(1)=b3(index(1));
B4(1)=b4(index(1));
for i=2:length(S)
% Accept the other solutions only if they show same fitness
if S(i)==S(i—-1)
Best(1)=S(1i);
Al(i)=A(index (i) ,1);
A2(i)=A(index (i) ,2);
A3(i)=A(index (i) ,3);
A4(i)=A(index (i) ,4);
B1(i)=bl(index(i));
B2(i)=b2(index(i));
B3(i)=b3(index(i));
B4(i)=b4(index(i));
else
break ;
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end
end

% Display Results
for i=1:length(Best)

disp ([ *Solution No.’ , num2str(i), ':’1])
disp ([ "Fitness = ', num2str(Best(i))])
disp ([ "Fuzzy Set A = 7, num2str ([Al(i) A2(i) A3(i) Ad(i)D 1)
disp ([ "Fuzzy Set B = 7, num2str ([B1(i) B2(i) B3(i) B4(i)]) 1)
disp (° )
end
toc;

Appendix III: Source Code of the Combinational BBO Algorithm

This appendix provides our MATLAB source code of the CBBO algorithm used in this study.
The below code is adjusted to optimally find the fuzzy input set A with (¢ # 0 and A —
0,0.01,0.02--- ,1) case:

% 1t is my designed BBO Program to get fmin by using Random Function Method
WITEITEITEITITIITITITISI S P artial Migration —Based BBO G555 TTEISTEIIEIIEITIISTEIS o
TSI ISTISTEITEIIEITIITIIEISTEII S Constrained Problem Y5575/ TITTISIEIIEIIEITTIS o

% It is written in the 17th of July 2016 @ 01:15PM by Ali Ridha Al-Roomi

clear
clc

tic; % start counting the processing speed

Rl Lelledledledledledledledledledledledledledledledledledledledledledledledledldledl el edb el bl edledledledleledledledledledbdledb kel kel edbedledledledledledledldedl e edb el edh el edhedledbedlededledledtedle
GE5TETTTTTTTTITEISTIITETST IS0 INITIALIZATION  STAGE 5975 TITTTTITIEITIETSTEITIITIETTN o
RLLeldlledledlededledledledlededledlededlededdedleddlededdleddledededlediedledledledlededledledledlededledledledlededdedledledledededledldledledldledidledldledledldledledledlededledledledleddd

o © O
wn B N

0.5]; % Fuzzy set B
.2;0 0.6 0 0.7;0.2 0.8 0.5 0.6;0.9 0.7 1 0]; % Fuzzy Relation
0.5]; % Penalty vector

o O O
T
wn oD

0.
0
0.

"Uidw

[
[
[

) s ) .

% Setting the discrete variable bounds (search space) of each element of A
cut=0.01; % possible alpha—cuts of membership function
MSF=0:cut:1; % membership function vector

Habitat=20; % Total number of islands (solutions)

Elitism=1; % Total number of saved solutions

Species=4; % Total number of species (independent variables for each
habitat)

Loop=100; % Total number of required generations before getting the final
solutions

I=1; % Maximum Immigration

E=1; % Maximum Emigration

m-max=0.1; % User—defined probability mutation

Mut_Opt=1; % Mutation Option: if equal to 1, then mutation stage is enabled

MR=round (Habitat/3); % Mutation Range respecting to total number of islands
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CDR=MR; % Clear Duplication Range, it can be set |1
defaul
% it equal to 1 (Dan Simon), but with this feature , we have more control

, elitism or MR, by

WITEITEITEIIIIIITITITISI S Calculating Ps(t) & m(t) WIGITTITITEIIEITITTISTIEIIEIIEITTIS o

for i=1:Habitat % Calculating Lambda, Mu & Species count
Species_count (i)=Habitat—i;
Lambda(i)=1—(Species_count(i)/( Habitat —1));
Mu(i)=Species_count(i)/( Habitat —1);

end

for j=1:Habitat
Prob2_initial (j)=1/Habitat; % Setting the initial probability values
end

% We want to calculate Lambda(S—1) & Mu(S+1), so from the Probaibility
% equation that is described by Dan Simon in his paper can be used here

Lambda_Minus=ones (1, Habitat);
Lambda_Minus (1: Habitat —1)=Lambda (2: Habitat) ;
Lambda_Minus ( Habitat ) =0;

Mu_Plus=ones (1, Habitat);
Mu_Plus (2: Habitat)=Mu(1: Habitat —1);
Mu_Plus (1) =0;
dt=1; % Delta t for calculating Ps(t+dt)
for k=1:Habitat
if k==
Prob2=Prob2_initial;
end
Prob2_Minus=ones (1, Habitat);
Prob2_Minus (1: Habitat —1)=Prob2 (2: Habitat);
Prob2_Minus ( Habitat ) =0;
Prob2_Plus=ones (1, Habitat);

Prob2_Plus (2: Habitat )=Prob2 (1: Habitat —1);
Prob2_Plus (1) =0;

Prob2 _Derivative=—(Mu+Lambda) .x Prob2+Lambda_Minus.* Prob2_Minus+Mu_Plus
.x Prob2_Plus;

Prob2=Prob2+Prob2_Derivative xdt ;
end
Prob2 (Prob2 <0)=0; % replacing any negative value to zero
Prob2=Prob2/sum(Prob2); % sum of the new Ps must be equal I

Probability=Prob2; % Probability=Ps(t)

% Calculating the Mutation Rate m(t)
Pmax=max( Probability);
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Mutation_Rate=m_max*(1—Probability /Pmax) ;

SIVindex=randi(length (MSF) ,Species , Habitat);

for i=1:Habitat
SIV1(i)=MSF(SIVindex (1,i));
SIV2(1)=MSF(SIVindex (2,1));
SIV3(i)=MSF(SIVindex (3,i));
SIV4(i)=MSF(SIVindex (4,1));

end

WIEIEISTISTIITITITIITITIITEITII IS Preparing Function: HSI=f(SIV1,SIV2, SIV3,SIV4
)

for i=1:Habitat

bl=max ([ min (SIV1(i),R(1,1)),min(SIV2(i),R(2,1)),min(SIV3(i),R(3,1)),min
(SIV4(i),R(4,1))1);

b2=max ([ min (SIV1(i),R(1,2)),min(SIV2(i),R(2,2)),min(SIV3(i),R(3,2)),min
(SIV4(i),R(4.,2))1);

b3=max ([ min (SIV1 (i) ,R(1,3)),min(SIV2(i),R(2,3)),min(SIV3(i),R(3,3)),min
(SIV4(i),R(4,3))1);

b4=max ([ min (SIV1(i),R(1,4)),min(SIV2(i),R(2,4)),min(SIV3(i),R(3,4)),min
(SIV4(i),R(4,4))1);

% Penalty Factors

if B(1)==bl || bl-B(l)<cut/10
P1=0;

else
P1=P(1);

end

if B(2)==b2 || b2-B(2)<cut/10
P2=0;

else
P2=P(2);

end

if B(3)==b3 || b3-B(3)<cut/10
P3=0;

else
P3=P(3);

end

if B(4)==b4 || b4—-B(4)<cut/10
P4=0;

else
P4=P(4);

end

% Objective Function (OBJ)
HSI(i)=abs(B(1)—bl)+abs(B(2)—b2)+abs(B(3)—b3)+abs(B(4)—b4)+P1+P2+P3+P4;

end
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Rl Leledleedledlededledledledlededledlededlededdedededlededdleddledededledledledledledlededledledledlededledledledlededdedledledlededledledidledledldledledledldledledledledledledlededledledledleded
%5715 1T TITITEITEISIE TSI SORTING THE FUNCTION STAGE %8777/ 98T TEISIETSIETSTIEI TS IS IS o
Rl Leldlededledledledledlededledededlededledededlededledededlededledededledledledledledlededledledledlededledledledlededledledledledededledldedledledl el el el ek

[HSI,index]=sort (HSI);
HSImin=HSI(1) ;

for i=1:Habitat
SIV1_sorted (i)=SIV1(index(i));
SIV2_sorted (i)=SIV2(index(i));
SIV3_sorted (i)=SIV3(index(i));
SIV4 _sorted (i)=SIV4(index(i));
end

R Ledledledledleledlelededledledledledledledledledledledledledledledledledledledl el edb el edh el edledledledledledledledledledbedledbedl el el edbedledledledleddeeddedledl e edb el edh el edhedledbedledledlededledle
GTEITTTTEITEIIEIISTTTEIIEIIEIIEITTEISI o ENitis m STAGE YII7ITIIEITIIIITEIIEIIITIEIIEIIEI TSI o
RLleldlledledlededledledledlededledlededlededdedlededlededdlededledededledldledledledlededledledledlededledledledledededledledledededledldledledldledidledledledledldledledledlededledledledledd

for elitz=1:Elitism
SIV1_elitism(elitz)=SIV1_sorted(elitz);
SIV2_elitism(elitz)=SIV2_sorted(elitz);
SIV3_elitism(elitz)=SIV3_sorted(elitz);
SIV4 _elitism(elitz)=SIV4_sorted(elitz);
HSI_elitism(elitz )=HSI(elitz);

end

Rl Leldlededledlededledededledededlededledededlededledededledledledededledledledledledledledledldledlededledledledledededledledl et el el el el ek
915777 TEIIIITEISI TS0 OPTIMIZATION STARTING STAGE 98759757 TIEITEISITTTETIET o
L Leledledledledledleledledledledledledledledledledledledledledledledledledledledl el edb el edbedledledledledledledledledledledbdledb kel el edbedledledledledleedlededl el edb el edh el edhedledbedledledledledledle

for G=1:Loop % Starting # of Generation Loops
IS STIISITIEISTTI TSI Te Doing Migration between poor & rich Islands
for i=1:Habitat % Taken as it is written in Dan Simon’s Program

for r2=1:Species % for selecting either SIVI, SIV2, SIV3 or SIV4 of a
recipient island as an immigrant

if rand<Lambda(i)

RandomNum=rand xsum (Mu) ;
Select=Mu(1) ;
SelectIndex=1;

while (RandomNum>Select) && (SelectIndex <Habitat)
SelectIndex=Selectlndex +1;
Select=Select+Mu( SelectIndex ) ;

end

rl=round (1+(Species —1)xrand); % for selecting either SIVI, SIV2
, SIV3 or SIV4 of a source island as an emigrant
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if (rl==r2)
if(r2==1)
SIV1_sorted(i)=SIVI1_sorted(Selectlndex);
elseif (r2==2)
SIV2_sorted(i)=SIV2_sorted(Selectlndex);
elseif (r2==3)
SIV3_sorted(i)=SIV3_sorted(SelectIndex);

else
SIV4_sorted (i)=SIV4_sorted(Selectlndex);
end
else
if(r2==1)

SIV1_sorted (i)=MSF(randi(length (MSF) ,1,1));
elseif (r2==2)

SIV2_sorted (i)=MSF(randi(length (MSF) ,1,1));
elseif (r2==3)

SIV3_sorted (i)=MSF(randi(length (MSF) ,1,1));
else

SIV4 _sorted (i)=MSF(randi(length (MSF) ,1,1));
end

end

else

if(r2==1)

SIV1_sorted(i)=SIVI1_sorted(i);
elseif (r2==2)

SIV2_sorted (i)=SIV2_sorted(i);
elseif (r2==3)

SIV3_sorted (i)=SIV3_sorted(i);
else

SIV4 _sorted (i)=SIV4_sorted(i);
end

end

end

end

if (Mut_Opt==1) % if (Mut_opt==1), then mutation stage is enabled

for i=1:Habitat

bl=max ([ min(SIV1_sorted (i) ,R(1,1)) ,min(SIV2_sorted (i) ,R(2,1)) ,min(
SIV3_sorted(i),R(3,1)),min(SIV4_sorted (i) ,R(4,1))]);

b2=max ([ min(SIV1_sorted (i) ,R(1,2)),min(SIV2_sorted (i) ,R(2,2)) ,min(
SIV3_sorted (i) ,R(3,2)),min(SIV4_sorted(i),R(4,2))1]);
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b3=max ([ min(SIV1_sorted (i) ,R(1,3)) ,min(SIV2_sorted (i) ,R(2,3)) ,min(
SIV3_sorted (i) ,R(3,3)),min(SIV4_sorted(i),R(4,3))]);

b4=max ([ min(SIV1_sorted (i) ,R(1,4)),min(SIV2_sorted (i) ,R(2,4)) ,min(
SIV3_sorted(i),R(3,4)),min(SIV4_sorted(i),R(4,4))]);

% Penalty Factors

if B(1)==bl || bl-B(l)<cut/10
P1=0;

else
P1=P(1);

end

if B(2)==b2 || b2-B(2)<cut/10
P2=0;

else
P2=P(2);

end

if B(3)==b3 || b3-B(3)<cut/10
P3=0;

else
P3=P(3);

end

if B(4)==b4 || b4-B(4)<cut/10
P4=0;

else
P4=P(4);

end

% Objective Function (OBJ)
HSI(i)=abs(B(1)—bl)+abs(B(2)—b2)+abs(B(3)—b3)+abs(B(4)—b4)+P1+P2+P3+P4;

end
GIEIETTIEISTSTIISTTISISIIISISTIEISTIIIST T Re—S orting the previous sorted values

[HSI,index]=sort (HSI);
HSImin=HSI(1);

for i=1:Habitat
SIV1 _updating (i)=SIV1_sorted (index (i));
SIV2_updating (i)=SIV2_sorted (index (i));
SIV3_updating (i)=SIV3_sorted (index (i));
SIV4 _updating (i)=SIV4_sorted (index(i));
end

SIV1_sorted=SIV1_updating;
SIV2_sorted=SIV2_updating;

SIV3_sorted=SIV3_updating;
SIV4 _sorted=SIV4_updating;

TIETTEISTEISTTITETTITTTTITIEIIEIITII o Doing Mutation Process

for k=MR: Habitat % Usually, 2 instead of 3; so we keep half islands 7
solutions™
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if rand<Mutation_Rate (k)

SIV1_sorted (k)=MSF(randi(length (MSF) ,1,1));
SIV2_sorted (k)=MSF(randi(length (MSF) ,1,1));
SIV3_sorted (k)=MSF(randi(length (MSF) ,1,1));
SIV4_sorted (k)=MSF(randi (length (MSF) ,1,1));

end
end

end

IEIETSTTEISTSTITSTTIISTIIISTIISTTIE TSI Re—S orting the previous sorted values

[HSI,index]=sort (HSI);
HSImin=HSI (1) ;

for i=1:Habitat
SIV1_updating (i)=SIV1_sorted (index (i));
SIV2_updating (i)=SIV2_sorted (index (i));
SIV3_updating (i)=SIV3_sorted (index(i));
SIV4 _updating (i)=SIV4_sorted (index(i));
end

SIV1_sorted=SIV1_updating;
SIV2_sorted=SIV2_updating;
SIV3_sorted=SIV3_updating;
SIV4 _sorted=SIV4_updating;

for e=1:Elitism % to replace last solutions by the best solutions of the
previous generation
SIV1_sorted (Habitat—e+1)=SIV1_elitism(e);
SIV2_sorted (Habitat—e+1)=SIV2_elitism (e);
SIV3_sorted (Habitat—e+1)=SIV3_elitism(e);
SIV4 _sorted (Habitat—e+1)=SIV4_elitism (e);
end

for i=1:Habitat

bl=max ([ min(SIV1_sorted (i) ,R(1,1)),min(SIV2_sorted(i),R(2,1)) ,min(
SIV3_sorted (i) ,R(3,1)),min(SIV4_sorted(i),R(4,1))]);

b2=max ([ min(SIV1_sorted (i) ,R(1,2)),min(SIV2_sorted (i) ,R(2,2)) ,min(
SIV3_sorted (i) ,R(3,2)),min(SIV4_sorted(i),R(4,2))]);

b3=max ([ min(SIV1_sorted (i) ,R(1,3)) ,min(SIV2_sorted (i) ,R(2,3)) ,min(
SIV3_sorted (i) ,R(3,3)),min(SIV4_sorted(i),R(4,3))]);

b4=max ([ min(SIV1_sorted (i) ,R(1,4)),min(SIV2_sorted (i) ,R(2,4)) ,min(
SIV3_sorted(i),R(3,4)),min(SIV4_sorted(i),R(4,4))]);

% Penalty Factors

if B(1)==bl || bl-B(l)<cut/10
P1=0;

else
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P1=P(1);
end

if B(2)==b2 || b2-B(2)<cut/10
P2=0;

else
P2=P(2);

end

if B(3)==b3 || b3-B(3)<cut/10
P3=0;

else
P3=P(3);

end

if B(4)==b4 || b4-B(4)<cut/10
P4=0;

else
P4=P(4);

end

% Objective Function (OBJ)
HSI(i)=abs(B(1)—bl)+abs(B(2)—b2)+abs(B(3)—b3)+abs(B(4)—b4)+P1+P2+P3+P4;

end

WIISTSTIISTSTIISTTISISTTISITIITTIISTT o Re—Sorting the previous sorted values

[HSI,index]=sort (HSI);
HSImin=HSI(1) ;

for i=1:Habitat
SIV1_updating (i)=SIV1_sorted (index(i));
SIV2_ updating (i)=SIV2_sorted (index(i));
SIV3_updating (i)=SIV3_sorted (index(i));
SIV4 _updating (i )=SIV4_sorted (index (i));
end

SIV1_sorted=SIV1_updating;
SIV2_sorted=SIV2_updating;
SIV3_sorted=SIV3_updating;
SIV4 _sorted=SIV4_updating;

9%

for elitz=1:Elitism
SIV1_elitism(elitz)=SIV1_sorted(elitz);
SIV2_elitism(elitz )=SIV2_sorted(elitz);
SIV3_elitism(elitz)=SIV3_sorted(elitz);
SIV4 _elitism(elitz )=SIV4_sorted(elitz);
HSI _elitism(elitz )=HSI(elitz);

end

HSI_saved (G)=HSImin;

SIV1_saved (G)=SIV1_sorted(1);
SIV2_saved (G)=SIV2_sorted (1) ;
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SIV3_saved (G)=SIV3_sorted (1) ;
SIV4_saved (G)=SIV4_sorted (1) ;

disp ([ "The best Generation # °, num2str(G), °~ is °, num2str(HSI_saved(end))
D)

end % THE END OF THE GENERATION LOOPS

time=1:Loop;
plot(time ,HSI_saved, 'r’, LineWidth’ ,2);grid;set(gca, FontSize  ,24);xlabel (’

No. of Generations’);ylabel ("$$f_{\min}$$°, interpreter’, latex ') ;xlim
([t G

[Minimum, index |]=min( HSI_saved) ;

disp ([ "The optimal fmin = * num2str (Minimum) ])

disp ([ "The yield wvalue (al) = ', num2str(SIV1_saved(index))])

disp ([ 'The yield value (a2) = ', num2str(SIV2_saved(index))])

disp ([ "The yield value (a3) = *, num2str(SIV3_saved(index))])

disp ([ "The yield value (a4) = *, num2str(SIV4_saved(index))])

bl=max ([ min(SIV1_saved(index) ,R(1,1)),min(SIV2_saved(index) ,R(2,1)) ,min(
SIV3_saved(index) ,R(3,1)),min(SIV4_saved(index) ,R(4,1))]);

b2=max ([ min(SIV1_saved(index) ,R(1,2)),min(SIV2_saved(index) ,R(2,2)) ,min(
SIV3_saved(index) ,R(3,2)),min(SIV4_saved(index) ,R(4,2))]);

b3=max ([ min(SIV1_saved(index) ,R(1,3)) ,min(SIV2_saved(index) ,R(2,3)) ,min(
SIV3_saved(index) ,R(3,3)),min(SIV4_saved (index) ,R(4.,3))1]);

b4=max ([ min(SIV1_saved(index) ,R(1,4)) ,min(SIV2_saved(index) ,R(2,4)) ,min(
SIV3_saved(index) ,R(3,4)) ,min(SIV4_saved(index) ,R(4.,4))1]);

disp ([ "The estimated bl = ’, num2str(bl)])
disp ([ "The estimated b2 = ’, num2str(b2)])
disp ([ "The estimated b3 = ', num2str(b3)])
disp ([ 'The estimated b4 = ', num2str(b4)])
toc;

The fitness of the above BBO program converges in the following manner:

The best Generation 1 is 0.9

The best Generation 2 is 0.9

The best Generation 3 is 0.9

The best Generation 4 is 0.81
The best Generation 5 is 0.81
The best Generation 6 is 0.81
The best Generation 7 is 0.81
The best Generation 8 is 0.81
The best Generation is 0.81
The best Generation 10 is 0.81

11 is
12 is
13 is
14 is
15 is
16 is
17 is
18 is

The best Generation
The best Generation
The best Generation
The best Generation
The best Generation
The best Generation
The best Generation
The best Generation

S o S e S R S e S S S H S S e 3 o= e
)
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o)
=
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The best Generation # 76 is 0.71
The best Generation # 77 is 0.71
The best Generation # 78 is 0.71
The best Generation # 79 is 0.71
The best Generation # 80 is 0.71
The best Generation # 81 is 0.71
The best Generation # 82 is 0.71
The best Generation # 83 is 0.71
The best Generation # 84 is 0.7
The best Generation # 85 is 0.7
The best Generation # 86 is 0.7
The best Generation # 87 is 0.7
The best Generation # 88 is 0.7
The best Generation # 89 is 0.7
The best Generation # 90 is 0.7
The best Generation # 91 is 0.7
The best Generation # 92 is 0.7
The best Generation # 93 is 0.7
The best Generation # 94 is 0.7
The best Generation # 95 is 0.7
The best Generation # 96 is 0.7
The best Generation # 97 is 0.7
The best Generation # 98 is 0.7
The best Generation # 99 is 0.7
The best Generation # 100 is 0.7
The optimal fmin = 0.7

The yield value (al) = 0.3

The yield value (a2) = 0.3

The yield value (a3) = 0.3

The yield value (a4) = 0.29

The estimated bl = 0.3

The estimated b2 = 0.3

The estimated b3 = 0.3

The estimated b4 = 0.3

Elapsed time is 0.164619 seconds.
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