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Abstract

Assume that the vertices of a graph G are always operational, but the edges of G
fail independently with probability ¢ € [0,1]. The all-terminal reliability of G is the
probability that the resulting subgraph is connected. The all-terminal reliability is
a polynomial in ¢, and it was conjectured that all the roots of (nonzero) reliability
polynomials fall inside the closed unit disk centred at 0. It has since been shown
that there exist some connected graphs which have their reliability roots outside the
closed unit disk, but these examples seem to be few and far between, and the roots
are only barely outside the disk.

In this dissertation we generalize the notion of reliability to simplicial complexes
and matroids and investigate when the roots fall inside the closed unit disk. We then
shift our attention to discuss a related problem — among all reliability polynomials of
graphs on n vertices, which has a root of smallest modulus (that is, the distance from
the root to the origin in the complex plane). We also show a mathematical statement
that distinguishes the class of simple graphs from the class of all graphs using all-
terminal reliability. Finally, we explore two-terminal reliability — in particular, the
similarities and differences between two-terminal reliability polynomials and the all-

terminal reliability, with a focus on their roots.
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Chapter 1

Introduction

A well known model of network robustness is the (all terminal) reliability of a
graph, in which the vertices and edges can take on two possible states — either they
are present (in which case we say that they are operational), or they are not present
(in which case we say that they have failed). For the all terminal reliability, we
have that the vertices are always operational, but each edge fails independently with
probability ¢ € [0, 1]. The reliability of the undirected, connected graph G, Rel(G; q),
is the probability that the operational edges form a connected spanning subgraph,
that is, that the operational edges contain a spanning tree. We will see in Section
1.2.2 that the reliability of a graph is always a polynomial in ¢ (and in p = 1 — g, the
probability that the edge is operational), and is not identically 0 if and only if G is

connected.

Other forms of well-studied reliabilities are K-terminal and two-terminal reli-
abilities (see [23] for a survey). These reliabilities relax the condition that all vertices
(which we also call terminals) need to be able to communicate, but instead either
a specific set of terminals K or only 2 specific terminals need to be in the same

connected component (for K-terminal and two-terminal, respectively).

Much of the early work on the all-terminal reliability focused on exact calcula-
tions, and then, when the problem was found to be intractable (#P-hard) [23, pg.
30] emphasis was placed on efficient methods of bounding the function. Most of these
methods centred on the coefficients of the aforementioned polynomial under expansion
with a variety of bases (for instance, the Kruskal-Katona bounds and the Ball-Provan
bounds — see Sections 5.4.2 and 5.5.5, respectively, in [23]). The location of the roots
of polynomials became of interest as they have direct implications for the relationship
between the coefficients. For example, Newton’s well known theorem (see, for exam-
ple, [25]) shows that a polynomial p(z) = > a;x’ with positive coefficients having

all real roots implies that the coefficients are log concave (a? > a;_1a;1+1) and hence

1
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unimodal (non-decreasing and then non-increasing). Furthermore, a result of Brenti
et. al [10] showed that if all of the complex roots z of a polynomial f(z) € R[z] lie in
the sector |arg(z)| < m/3, then the sequence of coefficients of f(z) is strictly concave
(and is either all positive or negative). If we are able to understand the location of
the roots of reliability polynomials, then we may be able to get new inequalities and
better methods for estimating the coefficients of the reliability polynomial which have
real-world applications (see, for example, [50] where Pino et. al used reliability to
compute the reliability of a gas distribution network in the Netherlands). Moreover,

the roots of these polynomials are of interest in and of themselves.

In this dissertation, we will begin in Chapter 2 by extending the exploration of
whether the reliability roots of a graph are bounded by generalizing reliability to
simplicial complexes and matroids. We show that the reliability roots for matroids of
rank 3 and paving matroids of rank 4 do, indeed, fall inside of the closed unit disk. We
also prove that the all-terminal reliability roots of shellable complexes are dense in the
complex plane, and that the real reliability roots of any matroid lie in [—1,0) U {1}.
Finally, we also show that the all-terminal reliability roots of thickenings of the Fano

matroid can lie outside the unit disk.

We then shift our attention in Chapter 3 to discuss a related problem — among all
reliability polynomials of graphs on n vertices, which has a root of smallest modulus?
We prove that (for n > 2), the rational roots are —1,—1/2,—-1/3,...,—1/(n — 1), 1.
Moreover, we show that for n > 3, the root of minimum modulus among all graphs of
order n is rational, and determine all roots of smallest moduli and the corresponding
graphs. To close the chapter, we provide the first nontrivial mathematical property
that distinguishes, via reliability, the class of simple graphs (that is, those without

loops and multiple edges) from that of graphs in general.

Finally, we explore two-terminal reliability in Chapter 4 — in particular, the
similarities and differences between two-terminal reliability polynomials and the all-
terminal reliability polynomial. We classify when the underlying two-terminal sim-
plicial complex is a matroid, and the effect it has on the two-terminal reliability
polynomial. We then prove that the two-terminal reliability roots are dense in the
two unit disks centred at 0 and 1, as well as determine two operations we can use

to push roots outside of these two disks. Finally, we explore the real two-terminal



reliability roots.
It is important to note that all computations and plots in this dissertation were
performed by using Maple™2015, and all illustrations were created in GeoGebra™.

Please see Appendix A for all Maple code.

1.0.1 Graph Theory Background

A graph G (see, for example, [30]) is a pair (V(G), E(G)) where V(G) is a finite set
of vertices and F(G) is a multiset of edges. Each edge e has a set of one or two
vertices associated with it which call the endpoints of e. The order of a graph is
|[V(G)| = n, and the size of a graph is |E(G)| = m. All graphs are considered to
be finite (that is, both the order and the size are finite). A simple graph is a graph
which has no multiple edges nor any loops (edges of size 1). If u and v share an edge,
then they are said to be adjacent. A pair of edges that share a common endpoint are
also called adjacent. We say that the degree of v, denoted by deg(v), is the number
of vertices adjacent to v. A vertex with degree 0 is called an isolated vertex.

For example, consider the graph G in Figure 1.1. We see that V(G) = {vy, ve, v3, vy,
vs}, vg an isolated vertex, and E(G) = {ey, s, €3, €4, €5, €6}. Since G contains a loop
(e1) and a pair of multiple edges (es, e4), this is not a simple graph. Finally, the
degree of vz is 3, and the adjacent vertices to vs are vy and v,. For simplicity, we
shall denote the vertex set of a graph G as V' and the edge set as E when the graph
is obvious. We may sometimes write an edge e with endpoints u and v by {u, v}, or
simply uv.

We say that the graph H = (V' E’) is a subgraph of G = (V, E) if V' C V and
E’ C E. Furthermore, for all u,v € V', if u and v are adjacent in H if and only if
they are adjacent in GG, then we call H an induced subgraph. The subtle difference
between a subgraph and an induced subgraph is that one can choose the vertices
and edges for a subgraph, but one needs only to choose the vertices to determine
an induced subgraph. We call a subgraph H of a connected graph G a spanning
subgraph if it contains all of the vertices of G.

Suppose S is a set of vertices. Then G \ S, called the vertex deletion of S
from G, is the induced subgraph of G with all vertices of S, as well as all of their
incident edges, removed. Analogously, if S is a set of edges, then G \ 5, called the
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Figure 1.1: An example of a graph that is not simple

edge deletion of S from G, is the subgraph of G with all edges of S removed. For
simplicity, if S = {v} or S = {e}, then we shall write G — v or G — e for the deletion
of v or e, respectively. The contraction of an edge e = {u,v} from G, denoted by
G e ¢, is the graph where e is removed, u and v are replaced by a new vertex v/, and u
and v are replaced by v’ in every remaining edge in which either appear. This results
in a graph with one less edge and one less vertex. If S is a set of edges, then G @ S is

the graph resulting from repeated contractions of edges in S.

A path from v to v is an alternating sequence of vertices and edges u = vy, €1, vy, . ..

€n, Uy, = v where e; = {v;_1,v;} for i = 1,2,...,n. A graph is connected if there is
a path between every pair of vertices, and disconnected otherwise. We say that a
maximal connected subgraph of GG is a connected component of G. A vertex v is

a cut vertex, or an edge e is a bridge, if G\ v or G'\ e is disconnected, respectively.

The complement of a simple graph G = (V, E), denoted by G = (V, E'), is a
simple graph on the same vertex set, and a pair of vertices are adjacent if and only if

they are nonadjacent in G.



Common Graphs

Here we will list a few common graphs that we will be using throughout this disser-

tation.

Example 1.0.1. Path Graphs

The most basic graph that we will consider is called a path graph. The path graph
on n vertices, denoted by P,, has n — 1 edges with vertices ordered sequentially, say

vy, Vs, . . ., U, such that v; and v; 1 fore =1,2,... . n—1 are adjacent. See Figure 1.2.

Figure 1.2: The path graph P,

Example 1.0.2. Cycle Graphs
The cycle graph on n vertices, denoted by C),,, is the next step of generalization

that we will use. This generalization is of P,, but now we add the edge connecting

the two extreme endpoints of the path. See Figure 1.3.

Figure 1.3: The cycle graph C}



Example 1.0.3. Tree Graphs

The next graph we will be considering is another generalization of a path graph,
called a tree graph. A tree graph on n vertices again has n — 1 edges, but it has no
cycle as a subgraph. See Figure 1.4 for an example of a tree on 4 vertices. We call a
tree a spanning tree of a graph G if if is a subgraph of G and every vertex of G is

included in the tree.

Figure 1.4: An example of a tree on 4 vertices

Example 1.0.4. (Generalized) Theta Graphs

Another very common graph we will be considering is called a theta graph. This
graph, denoted by ©;, ;, ., is a graph on i; + 5 + i3 edges constructed by first fixing
two vertices, u and v, and then placing three internally disjoint paths of length 1, s,
and i3 between them. An example of ©3 35 can be seen in Figure 1.5a.

We can also generalize this class to generalized theta graphs, with k£ > 3 in-
ternally disjoint paths between u and v. An example of the generalized theta graph

©5,335 can be seen in Figure 1.5b.

Example 1.0.5. Complete Graphs



(a) The Theta Graph ©335 (b) The Generalized Theta Graph Os 335

Figure 1.5: Examples of theta and generalized theta graphs

This next graph is denser than the previous graphs — we require every possible edge

to be present. The complete graph on n vertices, denoted by K,, is the simple graph

n

2) edges (so that every pair of vertices is adjacent). An example can be found in

OIl(

Figure 1.6.

Figure 1.6: The complete graph K,

Example 1.0.6. (Complete) k-Partite or Multipartite Graphs

The last graph that we will commonly use will be the k-partite or multipartite
graph. This graph has its vertices partitioned into k disjoint parts or collections such
that no two pairs of vertices in the same part are adjacent. If each vertex is adjacent
to every vertex in every other part, we call it complete, and denote it by K, ,, .-

An example of both instances can be found in Figure 1.7.

Common Operations

Throughout this dissertation, we will also be utilizing two common operations: an

edge path replacement, and an edge bundling.



(a) A 4-partite graph (b) A complete 4-partite graph Ky 113

sLydy

Figure 1.7: Examples of 4-partite and complete 4-partite graphs

Operation 1.1. FEdge Path Replacement

This operation, denoted by Rep(G, e, k) replaces the edge e in G by FP.

Operation 1.2. FEdge Bundling

This operation, denoted by e, replaces the edge e in G by a bundle of k edges,
where a bundle of edges is a collection of multiple edges all of which share common
endpoints (for example, edges e3 and e4 in Example 1.1 on page 4 is a bundle of two

edges).

Both of these operations can be seen in Figure 1.8. Dotted lines represent the
edges that have been replaced.
The reader is referred to [58], for example, for any graph theory definitions or

examples omitted from this section.

1.2.1 Simplicial Complex and Matroid Background

The other major mathematical objects we will be considering are (abstract simplicial)

complexes and matroids (see, for instance, [12] or [23]).



(a) Original graph, Ky

D

N

©

(c) Edge bundling €% on two parallel

(b) Edge path replacement of length 6 on edges of Ky

Ky

Figure 1.8: Examples of an edge path replacement and an edge bundling on K4

Complexes

An abstract simplicial complex (or, for brevity, just simply complex) C on a
finite set V' (called either the ground set or vertex set) is a collection of subsets
of V such that 0 € C, and for any tau € C, if 7/ C 7 then 7/ € C (which is called
the inheritance property). We say that the elements of V' are vertices, and the
elements of C, which we normally denote by 7, are faces (the cardinality of V is
the order of C). Faces of C that are maximal with respect to inclusion are called
facets, and are normally denoted by o. In fact, since complexes are closed under
containment, a complex is completely determined by its facets. If 7 is a face of

1

C, then the dimension' of 7, denoted by dim(7), is |7|, and the dimension of the

'For any reader who is familiar with abstract simplicial complexes from the topological lens,
our definition of dimension is the combinatorial definition which is one more than the topological
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complex is the dimension of one of the facets with respect to their cardinality. For
matroids, we shall use the term rank, denoted by 7, to mean dimension. The complex
C = (V,{0}) is called an empty complex and has dimension 0. Any complex on set
V' whose facets are all subsets of C is called a subcomplex of C. Faces of dimension
d are called d-faces, and if we restrict a complex to only its d-dimensional faces, then
we say that it is the d-skeleton of C. We will see how we can “read” a picture of a
complex — that is, how we can interpret the connection between the list of faces and
its geometric illustration — in the coming subsection.

The F-vector of the complex C is the sequence (Fy, Fi, ..., Fy), where F; is the
number of faces of cardinality ¢ in the complex. The F-polynomial is the generating
function of the F-vector, and is given by

d

fe(x) = Zx‘“' = Z Fx'

oeC =0
(the degree of the polynomial is clearly the dimension of the complex). The H-
polynomial of complex C of dimension d is given by

hete) = (1= a)'fe (125 ).

— X

and the H-vector? of the complex is the vector of coefficients (Hy, Hy, .. ., Hy) of the

H-polynomial; alternatively,

Hy - gm(—m“(Z:z). (1.1)

Given two complexes Cx and Cy on disjoint sets X and Y, respectively, define
the join, denoted by Cx * Cy, to be the complex on X UY whose faces are of the
form 7, Uy where 7y and 7 are faces of Cx and Cy, respectively (if X and Y are not
disjoint, we take isomorphic disjoint copies Cx and Cy to form Cx *Cy ). The complex
C is said to be connected if it cannot be written as the join of two other complexes
each of positive order® , and if C = C; * Cs * - - - x C, where each C; is connected, then

Cy,...,Ck are the components of C.

definition (which is the cardinality of 7 less one).

2We remark that in the topological or commutative algebra setting, it is common for the F- and
H-vectors be written in the lower case f or h instead of F and H, which is more commonly used in
combinatorics.

3We note that this is a different definition than the graph theoretic definition of being connected
in that there could be two disjoint components, but still be connected.
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v1

v3 V2

Figure 1.9: Example of a simplex on 4 vertices

For a given vertex v of the underlying set F', the deletion and link subcomplexes

are those on X\{v} of order m — 1, with faces
del,C ={r:7€C, vgT}

and

link,C = {7\{v}:v e T e€C}.

Common Complexes

Example 1.2.1. Simplices

The most basic of complexes we will consider is a simpler. For any finite set
X, the power set of X, denoted by X, is a called a simplex. It is easy to see
that a simplex is always a complex. For instance, consider the simplex C with facet
o = {v1,v9,v3,v4} (see Figure 1.9 — dotted lines in the illustration represents faces
in the background). We can calculate its F-vector by counting the number of faces
of each dimension. Its 1-faces (i.e., faces of cardinality 1) are represented as vertices;
its 2-faces are lines; its 3-faces are triangles; and its 4-faces is the entire tetrahedron.
Therefore, since every subset (or d-face) is in the complex, we see that its F-vector
is (1,4,6,4,1). The calculation of the H-vector is slightly more complicated using an

illustration, so we use 1.1 to calculate its H-vector to be (1).
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Example 1.2.2. Pure Complezes

A very common type of complex we will be considering is called a pure com-
plex. We say that a complex is pure if all facets are of the same dimension, and a
complex is pure k-dimensional if all facets are of dimension k. In Figure 1.10 we
have two examples of pure complexes. The first example, Figure 1.10a, is a connected
pure complex with two facets of dimension 3 (it cannot be written as the join of two
complexes). Its F-vector is (1,6,6,2), and its H-vector is (1,3, —3,1). In the second
example, Figure 1.10b, we have a disconnected pure complex (it is the join of the

complex in 1.10a with a single vertex) with two facets of dimension 4. Its F-vector is

(1,7,12,8,2), and its H-vector is also (1,3, —3,1).

(a) A connected pure complex with two (b) A disconnected pure complex with
facets of dimension 3 two facets of dimension 4

Figure 1.10: Examples of pure complexes

Example 1.2.3. Shellable Complexes

Another very common type of complex that we will be considering is called a
shellable complex. If the facets of a pure d-dimensional complex can be ordered
01,09,...Fywith 7 =2,3,...,d, and if the subcomplexes

m—1
j=1
are pure (d — 1)-complexes for all m = 2,...,d, then the complex is called (pure)

shellable. If, instead, we relax the requirement that C is a pure complex, but still

have the above condition except only requiring that at each step the subcomplex is
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a pure (dim(o,,) — 1)-dimensional complex, then the complex is called non-pure
shellable (this was first introduced by Bjorner and Wachs in [7, 8]). Intuitively,
pure shellable complexes can be thought of as building the complex by piecing its
shell together, and non-pure shellable complexes can be thought of as piecing its shell
together in a similar ‘nice’ way. Examples of both types of complexes are illustrated

in Figure 1.11.

Indeed, in Figure 1.11a, we have a complex with 6 facets, o1, 09, 03,04, 05, 0¢, all
of dimension 3, so it is pure. We see that if we start with oy and join it with o5, then
the intersection between o1 and o5 is an edge of dimension 2. Continuing this process,
we see that at each step the new facet intersects the previous subcomplex in the 2nd
dimension (sometimes more than once, which can be seen in the case when we join
o5 — its intersection with U;.53; occurs at two edges). Therefore, it is shellable. One

can calculate its F- and H-vectors to be (1,7,12,6) and (1,4, 1), respectively.

On the other hand, if we consider the complex in Figure 1.11b, we see that this
complex has 3 facets of dimensions 4,3, and 2. If we start with the facet o; (of
dimension 4) and join it with o9 of dimension 3, we see that its intersection occurs
at an edge of dimension 2, which is one less than the dimension of 5. Then, when
we join o3, of dimension 2, we see that its intersection occurs in dimension 1 (twice).
Therefore, this is non-pure shellable. Again, one can calculate its F- and H-vectors
to be (1,5,9,5,1) and (1,1, —2, 1), respectively.

A counter example for both types of shellability can be found in Figure 1.11c. As
we can see, this complex only has two faces of dimension 3 whose intersection is at a

vertex (or dimension 1) which is one dimension too low.

One observation we can make with regards to shellable 2-dimensional complexes is
that they are precisely the connected graphs of size at least 1 without isolated vertices
(we start at 2-dimensional shellable complexes since all 1-dimensional complexes are
shellable). Indeed, suppose we have a connected graph (which is a 2-dimensional
complex). We first choose an ordering of the edges so that it builds a spanning tree
of the graph. Then, we can add all remaining edges one by one, as long as the edge
we add is connected to the spanning tree. Since the graph is connected (i.e. has only
one component), we will never have a case where we have that the intersection with

the edge being added is in dimension 0. On the other hand, a disconnected graph
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with an edge cannot be shellable as shellability gives a connected graph that must
encompass the whole graph as there are no isolated vertices.

It is important to note that for both shellable and non-pure shellable, the order of
the facets matter. For instance, if we started with o, and o4 for the pure complex in
Figure 1.11a, then their intersection is empty (clearly not dimension 2). Furthermore,
if we started with o9 and then joined oy in the non-pure complex in Figure 1.11b, we
see that its intersection occurs in dimension 2 which is two less than the dimension
of o1. Therefore, the order of the shelling matters, and for a complex to be non-pure

shellable, we must have the facets ordered by non-increasing dimension.

NE
AN ~\

(a) (Pure) shellable complex (b) Non-pure shellable complex

(c) Example of a non-shellable complex

Figure 1.11: Examples of pure shellabe, non-pure shellable, and non-shellable com-
plexes

Example 1.2.4. Broken Circuit Complexes

The last type of complex we will consider is called a Broken Circuit Complex
of a graph G. This complex, denoted by BR(G, <), is the complex generated by first
labelling all edges of a graph eq,...,e¢,,, and then fixing an ordering on the edges, <
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(we tend to use the natural ordering e; < ey < -+ < e,,,). We then list all cycles
of G, which we call circuits, and remove their <-least edge (which we call broken
circuits). Finally, the faces of BR(G, <) are all subsets of E(G) that contain no
broken circuit (the facets are the spanning trees of G that do not contain a broken
circuit — see, for example, [20, Prop. 3.1]).

For example, consider the graph in Figure 1.12a. We see that this graph, Ky,
has 6 edges labelled ey, ..., es with circuits and broken circuits — with the natural

ordering e; < ey < --- < eg — given in the table below (written multiplicatively).

Circuit | Broken Circuit
€1€9€5 €9€5
€9€3€¢ €3€¢
€1€4€¢ €4€¢
€3€4€5 €4€5

€1€2€3€4 €9€3€4

€2€4€5€¢ €4€5€¢
€1€3€5€4 €365€¢

One can calculate that there are 42 = 16 spanning trees of Kj; four trees iso-
morphic to ejeqes, and 12 trees isomorphic to ejeqes (see Figures 1.12b and 1.12c,
respectively). After computing all of the spanning trees, and eliminating all trees
that contain a broken circuit, we are left with the broken circuit complex BR(Ky, <)

generated by the facets:

{616263, €1€2€4, €1€2€¢, €1€3€4, €1€3€5, 616566}-

Matroids

Finally, the last mathematical object we will be considering is a special type of com-
plex called a matroid. A matroid M on ground set V' is a simplicial complex together
with the property that if 7 and 7/ are both faces in M with |r| > |7/|, then there
exists some element x € 7\ 7’ such that 7 U {x} is a face in M (this property we
call the exchange property). It is easy to see that this exchange property forces

matroids to be pure (if there were a facet, say oy, which had smaller dimension than
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€1

N

e4 €2

/N

€3

(a) The complete graph K, with edges
labelled

€1 €1

e4 €2
€5

€3

(b) An isomorphic class of subgraphs of (¢) Another isomorphic class of sub-
K, graphs of K,

Figure 1.12: K, and its spanning trees

another facet, say o9, then we would be able to augment o, with an element from oy,
thus increasing its dimension. We repeat this process until all facets are of the same
dimension). Furthermore, it can also be shown that matroids are shellable (see, for

instance, Section 5.5.2 on page 61 in [23] together with Theorem 5.3).

Readers are recommended the book [44] for any matroid definitions or examples

omitted in this section.

Example 1.2.5. Matroids

For an example of a matroid, let us consider the complex in Figure 1.13. We see that
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its faces are:

faces of dimension 0: ()

faces of dimension 1: {vi}, {va}, {vs}, {vs}, {vs}, {ve}
faces of dimension 2: {vy,vo}, {v1,v3}, {v1, v}, {ve, va}, {va, v5}, {v2, U6},

{vs, va}, {v3,v5}, {vs, v6}, {va, v6}, {vs, v6}

and so it follows that its F- and H-vectors are (1,6,11) and (1,4, 6), respectively.

It is easy to see that this is a complex (as it is closed under containment). One
can also confirm that the exchange property holds. For instance, consider the faces
{v1} and {vq,v6}. The exchange property says that there is a vertex in {vy, vg} such
that its union with {v;} yields another face that is in M. Indeed, this is true as both
{v1,v2} € M, and {vy,v6} € M.

It is important to note that not all choices of vertices may be used in the exchange
property. Indeed, if we consider the faces {v1} and {vy,v4}, we see that {vy, v} € M
but {vy,v4} & M. We only require that at least one choice be present.

U1 v2

U5

V6

Figure 1.13: Example of a matroid

One can also see from this example that if M is a d-dimensional matroid, d > 2,
then its 2-skeleton forms a complete multipartite graph. To prove this, we split the
claim into two lemmas. We first show that the complex generated by the faces of
the k-skeleton of a matroid is a matroid, and then show that a 2-dimensional pure

complex is a matroid if and only if its 2-skeleton is a complete multipartite graph.

Lemma 1.2.1. Suppose M is a d-dimensional matroid, 2 < k < d, and S s the
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k-skeleton of M. Then the complex generated by S, that is,

S=Ja

a€esS

18 a matroid.

Proof. By definition, @ is a simplex and so S is a complex. Suppose 7,7 € S
with |7| < |r2]. We need to show that we can add a vertex v € 7 \ 7 such that
n U {v} € S. Indeed, as 7,75 € M (as M contains S), there is an © € 7 \ 7
such that 7 U {z} € M. We can extend 7, U {z} to a facet o of M of dimension
d, and taking any o’ C o of dimension k that contains 7, U {z}, then we see that

7 U{z} € 0/ C S. Therefore, S is a matroid. O

Lemma 1.2.2. A 2-dimensional pure complex M is a matroid if and only if its

2-skeleton 1s a complete multipartite graph.

Proof. Suppose M is a matroid. Then there cannot be distinct vertices u, v, and w
such that {u,v} is a face but {u, w} and {v,w} are not (since M is pure, {w} is a
face of M). This means that the 2-skeleton G, viewed as a graph, cannot contain
an induced K, U K;. That is, G, the complement of G, cannot contain a P; as an
induced subgraph. It follows that that every connected component of G must be a
complete subgraph. It follows that G is a complete multipartite graph.

Suppose now that the 2-skeleton GG of M is a complete multipartite graph, say with
parts X, ..., Xg, (k > 2 as otherwise there would be no edges). Suppose 71,75 € M,
with |11] < |12]. We want to show that for some vertex v € 75 \ 7,7 U {v} € M. If
71 = (), then any v € 7 will do (as 1y U {v} = {v} € M). So, |11| =1 < || = 2.
Suppose 12 = {u,v} with v and v in different parts. Without loss of generality,
u € Xy and v € Xy. Let i = {w}. Either w ¢ X; or w ¢ X5. If w € X;, then
7 U{u} = {w,u} € M as w and u are in different parts of the complete multipartite
graph G. Similarly, if w & X5, then 7y U{v} = {w,v} € M. In any event, M satisfies

the augmentation property, and so M is a matroid. ]

For simplicity, for the remainder of this dissertation we will denote a face of a
complex {v} simply by v, and for faces of higher dimension we will write them as a

product of vertices; for example, {vy,v9} will be denoted by vy vs.
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1.2.2 Network Reliability Background

As we introduced earlier, the all-terminal reliability of a graph G, denoted by Rel(G; q),
is a measure of how reliable a network is if edges of the graph G fail independently
with probability ¢ € [0,1] (but the vertices are always operational). The reliability
of a loopless, connected graph G of order n and size m can be expressed in a variety
of useful forms, by expanding the polynomial in terms of different bases (see, for

example, [23]). The two forms we will be using are the F-Form and H-Form:

m—n-+1
Rel(G;q) = Z Fiq'(1 —¢)™"  (F-Form) (1.2)
i=0
m—n-+1
= (1-¢"" ) Hgq (H-Form), (1.3)
i=0

with the definitions of F; and H; being given shortly.

The interpretation of the coefficients of the F-form are quite straightforward. Sup-
pose we have i edges that have failed (which occurs with probability ¢*), and therefore
have m — i edges operational (which occurs with probability (1 — ¢)™*). For this to
be a valid state in our reliability model, then the operational edges must form a con-
nected spanning subgraph (that is, a spanning subgraph H of G for which all vertices
of G are present in H, and H is connected). We let F; denote the number of ways
that we can have ¢ edges failing while having the operational edges form a connected
spanning subgraph. Since there needs to be at least a spanning tree operational,
F,=0fori>d=m-—-n+1.

If we consider the collection of sets whose removal leaves the graph connected,
then we see that this forms a complex whose facets are the maximal sets of edges
whose removal leaves the graph connected. This complex is a well-studied one, and
is, in fact, a matroid; it is called the cographic matroid, denoted by Cog(G) (see
Theorem 5.5.1 on page 60 in [23]). Furthermore the coefficients of the F-form and
H-form of the reliability polynomial of a graph G are precisely the F- and H-vectors
of the cographic matroid of G. We saw earlier that that all matroids are pure and
shellable, and it is also known that the H-vector of a shellable complex has all positive
entries (see Section 5.5.3 on page 63 of [23]). Therefore, for any graph G, its associated

H-polynomial will always have strictly positive coefficients, and furthermore, using
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both the F-form and the H-form, we are able to show a nice property between Fy; and

the H-vector. That is, since

m—n+1 m—n-+1
Z .qul(]. . q)m—z _ (1 _ q)n—l Z quz
i=0 1=0
then
m—n-+1 m—n-+1
Z qu(l i q)m—n—i-l—z _ Z Hz‘q2~
=0 i=0
When evaluating this at ¢ = 1, and noting that all terms of (1 —¢)™ ""1~* = 0 except
when ¢ = m —n + 1 = d, it follows that
d
F, = ) H. (1.4)
i=0

Let us consider the example in Figure 1.14 and compute its reliability. We see
that the graph G in question, given in Figure 1.14a, has n = 4 vertices and m = 5
edges. Therefore, the dimension of the cographic matroid will be d =5 -4+ 1 = 2.
Trivially if we remove no edges then G will remain connected, and so Fy = 1. We
can see that since all vertices have degree at least 2 then we can remove any single
edge and the remaining subgraph of G will still remain connected. Since there are
5 edges, we have F| = 5. However, we cannot arbitrarily remove any two edges, as,
for example, if we remove both e; and ey, then the resulting subgraph will not be
connected. One can check that the only pairs of edges that can be removed while
leaving a connected spanning subgraph are ejes, ejey, €1€5, €2€3, €2€4, €265, €365, and

eses. Therefore, F, = 8, and so the reliability of G is

Rel(G:q) = 1¢°(1 — ¢)° +5¢' (1 — )" + 8¢°(1 — q)°
= (1-9)°(4¢* + 3¢ +1).
The cographic matroid of G, Cog(G), is illustrated in Figure 1.14b. We remind the

reader that the edges of G become the vertices of Cog(G).

Let us now calculate the reliabilities for the common graphs we mentioned earlier.

Example 1.0.3 Tree Graphs
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€1 €4 €2

N

e4 €2 |
e3 el es
(a) Example graph G used to calculate (b) underlying cographic matroid of G,
its all-terminal reliability Cog(Q)

Figure 1.14: Example of a graph and its underlying cographic matroid

The reliabilities polynomials of trees are identical since the removal of any edge results
in disconnecting the graph (this is also true for paths, but every path is a tree and so
we need not include a separate example — though paths will become useful later on).

Therefore, if G is a tree of size m, then all edges need to be operational and so
Rel(Giq) = (1 —q)™.

Example 1.0.2 Cycle Graphs

Cycles are slightly more complicated as to keep the graph operational, we can re-
move any edge (or no edges), but we can never remove more than 1 edge. Therefore,

if G is a cycle C, then

Rel(G;q) = (1—¢q)" +ng(1 —¢)""
=(1=g¢)" ((n—1)g+1).

Example 1.0.4 Theta Graphs

The theta graph is where the calculation for classes of graphs gets to be much more
difficult (and interesting!). Let us first calculate the reliabilities for the two examples
in Figures 1.5a and 1.5b on page 7, and then calculate the reliability of a general
generalized theta graph.
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Let us first consider G = ©335 as shown in Figure 1.5a. It is easy to see that
we can remove either no edges or exactly one edge and not disconnect GG, and if we
remove any three edges then we will disconnect G. However, when we try to remove
exactly 2 edges we see that we can do so only if we remove exactly one edge in two
different paths (and so there are 9 + 15+ 15 ways to do so). Therefore, the reliability

polynomial of O3 3 5 is

Rel(©335:¢) = (1 — )" +11¢(1 — ¢)"" + (94 15+ 15)¢*(1 — ¢)°
= (1—-¢)°(29¢* +9q + 1).

Similarly, we can compute the reliability polynomial of ©5335 in Figure 1.5b
except now we are able to remove 3 edges (as long as no two are in the same path),
but we cannot remove any 4. Therefore, we have the reliability polynomial of O3 33 5

as

Rel(O5335;9) = (1 — q)* +16¢(1 — ¢)*° + 94¢*(1 — ¢)** + 240¢3(1 — ¢)**
= (1 —q)"(161¢" + 65¢> + 13¢ + 1).

We can generalize this formula a bit further if we consider the generalized theta
graph with k paths, each of length [, which we denote as ;). Then its reliability
polynomial would be

k
Rel(Oy; q) =(1 — )" + klg(1 — )" ' + (2

(k k 1>lk—1qk—1(1 )M,

)l2q2(1—q)kl_2+---+

However, this formula is a bit cumbersome to analyze, and so we find it more useful

to formulate the reliability of ©y) in the following way:

Rel(©y5:0) = (1~ @)' +la(1 — 9)'™)* — (lg(1 — g )"

The idea is that, considering only one branch of the theta graph, we can have
either every edge operational (with probability (1 — ¢)!), or exactly one edge failing
(with probability lg(1 — ¢)'~!). This is true for all k branches. However, we cannot

have the scenario where we have one edge down in every branch, and so we need to



23

remove that probability. We note that if £ = 2, then GG becomes a cycle graph.
Example 1.0.5 Complete Graphs

We can calculate the reliability polynomial of a particular complete graph, for exam-

ple K4 as shown in Figure 1.0.5 on page 6. Doing so, we get the reliability polynomial

Rel(G;q) = (1 — q)°® +6q(1 — q)° + 15¢*(1 — ¢)* + 16¢°(1 — ¢)°
= (1-q)*(6¢° + 6¢* + 3¢+ 1).

In general for complete graphs, calculating the reliability seems to be hard for
there is no known explicit formula for its reliability. However, even though there is no
known explicit formula, there does exist a recursive formula (see, for example, [23],
page 33) which is

n—1
—1\ .
Rel(Ky;q) =1 — ( <TZ_ 1)61’(”_1)R61(Ki;q)> -
=1

See below for a table of the reliability polynomials of K,, for n from 2 to 7.

Rel(K,; q)

I—gq

¢ —2¢+1

—2¢°% 4+ 5¢° — 2¢* — 2¢3 + 1

6q'° — 18¢" + 12¢® 4+ 7¢" — 6¢° — 2¢* + 1

—24¢" + 84q¢' — 78¢'3 — 20q¢'? + 44" + 3¢° — 8¢® — 2¢° + 1

gl ok~ |lw|lo|B

120¢2 — 480¢%° + 570¢" — 340¢'7 + 80¢'® 4 70¢™* — 20¢'? + 11¢"" — 10¢'° — 2¢5 + 1

Now that we have introduced reliability polynomials, we are in a position where

we can start to generalize them.



Chapter 2

Reliability Roots of Simplicial Complexes and Matroids

2.1 Reliability Polynomials and Their Roots

A natural question when studying certain types of polynomials is to examine their
analytic and algebraic properties. For instance, recall that the reliability of the gen-

eralized theta graph O 335 is:
Rel(O5335;q) = (1 — q)**(161¢° + 65¢* + 13q + 1).

If we plot the polynomial on the interval [0, 1], then it is easy to see that the function
is decreasing on [0, 1] (see Figure 2.1). Moreover, it was also shown in [5] that there is
at most one fixed-point (as a function of p = 1 — ¢), and there is an inverted S-shape

to the curve.

0.8
0.6
0.41

0.2

0 0.2 04 0.6 0.8 1
q

Figure 2.1: Plot of Rel(O;5335; q) with ¢ € [0, 1]

Other analytical questions can be asked about reliability polynomials, such as
where the inflection points of the curve occur, or, which has been of greater interest,
where roots of the reliability polynomial, called the reliability roots, are located (in

this chapter and the next, we assume all graphs are finite, connected, and loopless,

24
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unless otherwise stated). For instance, one can see that the only real root in [0, c0)
of Rel(O5335:q), or for any reliability polynomial of a connected graph of order at
least 2, is when ¢ = 1. Indeed, recall that the H-form of the reliability polynomial
shows that we have a factor of (1 — ¢) (up to some multiplicity) together with the
roots of the H-polynomial (which is a polynomial with strictly positive coefficients).
Therefore, the only root for ¢ > 0 can occur at g = 1.

What about for ¢ < 0?7 Or ¢ rational? Brown and Colbourn were able to show in
[14] that the real reliability roots of graphs are always in [—1,0) U {1}, and we will
further talk about the latter question in Chapter 3.

Finally, what about if we consider the complex reliability roots? Are there any
patterns that we can see from plotting these? Let us return to our examples, and see

where their complex roots lie.

Examples - Plotting Complex Reliability Roots

Recall that we have found the following formulas:

e Rel(Py;q) = (1—¢)"

Rel(Cpiq) = (1 — )" '((n—1)g +1)

Rel(©335;9) = (1 — Q)9(29q2 +9g+1)

Rel(O5335;q) = (1 — q)*3(161¢> + 65¢* + 13¢ + 1)

Rel(©30) = (1 — )" +lg(1 — ¢)"™")" = (Ig(1 — ¢)'")*

Rel(Ky;q) = (1 — q)*(6¢> + 6¢* + 3¢ + 1)

n—1
—1\
Rel(K,;q) =1 — (Z (CL_ 1>ql(n1)Rel(Ki;q)>

=1

One can clearly see that the reliability polynomials for P, and C,, have all of their
roots inside of the closed unit disk centred at 0 (which will henceforth just be referred
to as the “unit disk” unless otherwise stated). We can also calculate the complex
roots of Rel(©335;¢), Rel(O5 335, ¢) and Rel(Ky; q) to be 1, —% + =iv/35, and 1, —1,
—2—33 + 2—132'\/ 14, for Rel(©335:¢q) and Rel(O5 33 5; q), respectively, and approximately
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—0.6265382933, —0.1867308534 + 0.4807738846i for Rel(K4;q). Again, these are all
inside of the unit disk. Since we cannot solve Rel(Oy;¢) and Rel(K,;q) exactly,
by running through & and [ between 2 and 30 for Rel(©y; ¢), and running through
n between 2 and 20 for Rel(K,; q), we see that their roots are, again, inside of the
closed unit disk (see Figures 2.2a and 2.2b for plots of those roots).

Does this trend continue? By finding the complex roots for all simple graphs up
to order 7, it does, indeed, seem to be true (see Figure 2.2c). This lead Brown and

Colbourn to make the following conjecture [14]:

Conjecture 2.1.1. Brown-Colbourn (1992)
Let G be any connected graph. Then all the roots of Rel(G;q) lie in the closed unit
disk.

In support of the conjecture, it was shown in [14] that

e the real reliability roots of graphs are always in [—1,0) U {1} (and hence in the
unit disk), and

e every graph has a subdivision for which the roots lay in the unit disk.

As well, they also proved that the closure of the (complex) reliability roots contains
the unit disk.

This conjecture was thought to be true, and indeed was proven for the class of
series-parallel graphs [57]. The class of series-parallel graphs, denoted by SP, is
defined recursively. Every (possibly non-simple) graph G in the class has a pair of
unordered vertices, {s,t}, which are called terminals. If there exists an edge between
s and t, then G € SP. Let G and G’ be two graphs in SP with terminals {s, ¢} and
{s',t'}, respectively. If G and G’ have no edges in common, and only the vertex in
common is t = &', then GU G’ € SP which we call a series connection (see Figure
2.3b). If, instead, we have that G and G’ have no edges in common, with only the
vertices s = ¢’ and t = ' in common, then GUG’ is a parallel connection (see Figure
2.3¢).

However, in 2005 Royle and Sokal [46] found a counterexample:
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1.51

(a) Reliability roots of generalized theta
graphs with k paths of length [, for [ and
k between 2 and 30.

(b) Reliability roots of complete graphs
on up to 20 vertices

Im(z)

(c) The roots of reliability polynomials of
all simple graphs of order 7

Figure 2.2: Plots of reliability roots of graphs

Example 2.1.1. Royle-Sokal Graph

To get the Royle-Sokal Graph, we take G = K, and replace any pair of par-
allel edges by a bundle of 6. We saw this originally as an example of the edge bundle
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@
tIJ\

(a) Initial graphs

t/

(b) An example of a series connection (c) An example of a parallel connection

Figure 2.3: Examples of series-parallel graphs

operation (Figure 1.2 on page 8), but we will also include it here as its stand-alone
example (see Figure 2.4). The reliability polynomial for the Royle-Sokal graph can

be calculated to be
Rel(G;q) = (1 —¢q)*(6¢" + 10¢™* 4 14¢"" + 18¢"° + 22¢° + 26¢° +
26q" + 22¢° + 18¢° + 14¢* + 10¢® + 6¢*> + 3¢ + 1)
which has root with modulus (or distance from the origin in the complex plane)
approximately 1.0017.

An open problem remains whether the roots are still bounded (perhaps by a
slightly larger disk), or, indeed, if there are reliability roots that have modulus tending
to infinity. Some work has been done in finding roots of largest modulus, with Brown-

Mol [19] pushing the roots out to approximately 1.113, but much is still left as a
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Figure 2.4: The Royle - Sokal graph

mystery. Our hope is that if we can generalize the notion of reliability to more
abstract objects, then maybe we can gain an insight into whether the roots are,
indeed, bounded, or even under what abstract properties boundedness of reliability

roots might be guaranteed.

2.2 Generalizing Reliability to Complexes

In order to better explore reliability roots in relation to the unit disk, we extend
the notion of reliability to more abstract structures (we remark that [57] extends to
matroids, and [13] to general set systems). We start not with a graph but with a
general complex C.

To extend the notion of reliability to complexes, we consider a complex C on finite

set X of cardinality m, and define the reliability polynomial of C' as

Rel(C; q) ZQ\F\ gV
FeC

with the choice for the variable ¢ becoming apparent shortly. The idea is that we
choose each element of X independently with probability ¢ (in contrast to ¢ being the
probability of an edge failing in the all-terminal reliability), and ask the probability
that the chosen vertices form a face of the complex. Grouping the terms by their ex-

ponent of ¢, we can express the reliability in terms of the F-vector (and F-polynomial)

'Tt is important to note that, even though graphs can also be thought of as 2-dimensional com-
plexes, the reliability of a simplicial complex Rel(C;¢) and the reliability of a graph Rel(G;q) are
very different, even though they share very similar notation.
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of the complex:

d

Rel(C;q) = Y Fig'(1—q)" " = (1—q)"fe (L) ,

i=0 l—q

How does this notion of reliability of complexes relate to all-terminal reliability?
Recall that the set of subsets of the edge set of a connected graph G whose removal
leaves the graph connected is the cographic matroid of G. Recall further that the
sequence (Fy, Fi,..., Fy_pny1) from the F-form (1.2) of the reliability polynomial is
in fact the F-vector of the cographic matroid. Therefore, edges failing in G with
probability ¢ correspond to vertices in Cog(G) being chosen with probability g. Thus
the reliability of the cographic matroid of a graph G is precisely the (all-terminal)
reliability of G-

Rel(G: q) = Rel(Cog(G); ).

An example of this is re-visiting the example first seen in Figure 1.14 on page 21.

Recall that the reliability polynomial of G is
Rel(Giq) = 1¢°(1 = ¢)” + 5¢' (1 — ¢)* + 8¢°(1 — q)°, (2.1)

and the facets of Cog(G), written multiplicatively, are ejeg, e1ey4, €165, ese3, ese4, ese5, e3€5,
and eges. Calculating Rel(Cog(G); q), we first start with the probability of choosing
none of the vertices. This can be done in exactly one way (as Fy = 1), and this
happens with probability ¢°(1 —¢)5. Next, there are F; = 5 ways of choosing 1 vertex
that is a face in Cog(G), and that happens with probability ¢*(1 — ¢)*. Finally, there
are Fy, = 8 ways of choosing 2 vertices that form a face in Cog(G), and that happens
with probability ¢*(1 — ¢)3. Summing these states together results in the identical
polynomial as that in (2.1).

For a complex C of dimension d on a set of cardinality m,

Rel(C;q) = (1—q)"felq/(1—q))
= (1—q)" (1 —q)fe(q/(1 - q))
= (1—¢)" he(q)

Thus the roots of Rel(C;q) and he(q) coincide, except for some roots at ¢ = 1. We

will make use of the following lemma.
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Lemma 2.2.1. Let C,Cy, and Cy be complexes with the ground set of C being V. Then:
1. Rel(C;q) # 0.
2. Rel(Cy % Cy;q) = Rel(Cy;q) - Rel(Co; q), and
3. For any element v € V,

Rel(C; q) = q - Rel(link,C;q) + (1 — q) - Rel(del,C; q).

Proof. Let m be the cardinality of the ground set V' of C, and let m; and ms be the
cardinalities of the ground sets of C; and Cs, respectively. For (1), since we always
have that () € C, we have a term (1 — ¢)™ in the reliability. As all other terms will
include powers of ¢, this is the only term that will contribute to the constant term
(which is 1). Therefore, the polynomial cannot be identically 0.

The equality in (2) follows as the faces of C; *Cy are {7 Umy|1y € C1, 5 € Co}, and

so the f-polynomial is

fcl*C2(x): Z xlﬂ

TEC1*Ca

_ E x\’rlUTz\

T1€C1,T2E€T

— E 2l

71€C1,T2E€TY

= % ST gl

T1€C1 TRET2

= Je, (@) fe, ().

Then

Rel(Cy # Ca5q) = (1 = @)™ ferse, (%ﬁq)

_ mi-+meo L L
— -0 () e (1)

~ -0t (75 ) -0 (1)
= Rel(Ci;¢) - Rel(Cas )
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Finally, we show (3).

fc(I)=Z$|T|
= Y a3

TECWET TECVET
_ Z |oc|—|—1 + Z IE
a€link, (C) a€del, (C)

= 2 fiink, () (Z) + fael, ) ()

It follows that

Rel(C;q) = (1 —q)"fe (&1)

=(1—q™ |:1L_qflinku(c) (13 ) + Jaa(©) (%—Q)}

=q(1 =) fink. () (%_q) +(1=q)(1 =)™ " faet(c) (L)

l—gq
= qRel(link,(C); q) + (1 — ¢)Rel(del, (C); q).

O

From this lemma, it follows that if C has a loop x (an element of V' that belong
to no face) then the removal of z from the underlying set corresponds to division of
C by 1 — ¢, and moreover, if C has a coloop x (that is, a vertex in every facet of C),
then del,C = link,C, and hence C and link,C have the same reliability. Hence we will
often assume that the complex under question has no loops or coloops.?

Let us calculate the reliabilities of our example complexes from Chapter 1.

Example 2.2.1. Reliability Polynomials of Complezes

We first recall the simplex, pure, and shellable complexes, as well as our matroid
from Examples 1.2.1, 1.2.2, 1.2.3, and 1.2.5, respectively, together with their F- and

H-vectors.

2We remark that in the literature sometimes reliability of complexes has been studied in the guise
of coherent systems (see, for example, [42]), which are collections of subsets of a finite set X closed
under superset. For a coherent system S on set X, its reliability is

CSRel(S; p) Zp‘s‘ p)l X\
Ses

which is the same as Rel(S; q), where ¢ =1 — p and S is the complex with faces X\7 for 7 € S.
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Complex Label Figure | Page | F — vector | H — vector
Simplex Ci234 1.9 11 (1,4,6,4,1) (1)
Pure (Connected) C1234.4567 1.10a 12 | (1,7,12,8,2) | (1,3,-3,1)
Pure (Disconnected) C123.456 1.10b 12 (1,6,6,2) (1,3,-3,1)
Shellable C123,231245,346,456 | 1.1la 14 (1,7,12,6) (1,4,1)
Non-Pure Shellable C1234,125.35 1.11b 14 (1,5,9,5,1) | (1,1,-2,1)
Matroid M 113 | 17 (1,6,11) (1,4,6)

It follows that the reliabilities of these complexes are:
Rel(Cias4:q) = (1 — q)* +4q(1 — q)* + 6¢*(1 — ¢)* + 4¢°(1 — ) + ¢*
Rel(Ci234,4567; ) = T+ 7q(1 — q)° +12¢°(1 — q)° + 8¢°(1 — ¢)* + 2¢(1 — ¢)°
Rel(Cia3,456; 9) =
Rel(Ci23,234,245, 346 4565 ¢) =

Rel(Ci234125,35;9) = (1 — q)° + 5g(1 — Q> + 992<1 —q)*+5¢°(1—q)* +¢*(1 — q)

Let’s consider the reliability roots of the various complexes listed. We summarize

the roots in the table below, rounding to 10 decimal places.
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Reliability

Non-Unity Roots

Maximum Modulus

Rel(C12345; Q)

No roots

Rel(C1234,4567; q)

—0.2599210499, 1.6299605249 £ 1.0911236360:

1.9614591767

Rel(Ci23 4565 q)

—0.2599210499, 1.6299605249 £ 1.0911236360:

1.9614591767

Rel(C123,234,245,346,456; Q)

—3.7320508080, —0.2679491924

3.7320508080

Rel(Ci234,125 35 q)

—0.4655712319, 1.2327856160 £ 0.7925519925:

1.4655712319

0.4082482904

Rel(M; q) —0.3333333333 £ 0.23570226041

As we can see, we have already found roots outside of the unit disk. However, are
these bounded, or can their moduli tend off to infinity? Let us instead consider
general complexes of various dimensions and classes.

For an empty complex of dimension 0, the reliability is 1, which obviously has no
roots outside the unit disk. For dimension 1, the reliability is of the form (1—¢)+mq =
1 4 (m — 1)g, which has its root in the unit disk (and real). The situation changes
dramatically when the dimension grows larger. For example, let m > 4 and consider

the complex P, on set X = {1,2,...,m} with faces

0, {1},{2},...,{m},{1,2},{3,4},{4,5},...,{m — 1,m}.
The reliability of the 2-dimensional complex P,, can be calculated to be

Rel(Pniq) = (1— @)™ +mg(1 —q)" ' 4+ (m = 2)¢*(1 — ¢)" 2
(1—=q)" (1= q)* +mq(l —q) + (m —2)¢%)
(1= (=" + (m—2)qg+ 1),

which has a root at 1 and

m—2++/(m—2)2+4
2

~m— 2,

which grows arbitrarily large (and positive) as m tends to infinity. Thus we should
insist on some properties (even beyond pureness, as the complex above is pure), shared
by cographic matroids, of our complexes if we hope to have roots always in (or close

to) the unit disk.
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2.2.1 Restricting Reliability to Shellable Complexes

Recall that a pure d-dimensional complex is shellable if its facets can be ordered

01,09,...04 with 7 =2,3,...,d, with the subcomplexes
m—1
j=1
being all pure (d — 1)-complexes for all m = 2,... d. Shellable complexes arise in a

variety of combinatorial and topological settings, and have some very nice properties
that provide inequalities amongst the components of the H-vector (see, for example,
[23]). We are particularly interested in this class of complexes as it is a highly struc-
tured class (compared to, say, pure complexes), that properly contains the class of
matroids (and in particular, cographic matroids). For a shellable complex, we saw
earlier that the H-vector is known to consist of nonnegative integers, and indeed has

a variety of interpretations:

e An interval partition is a collection of disjoint intervals [L,U] = {S : L C
S C U} such that every face in the complex belongs to precisely one interval.
Simplicial complexes that have a partitioning {[L;, U;]|1 < ¢ < b} with U; a facet
for each i are called partitionable. It is known that all shellable complexes
are partitionable [23, pg. 63 - 64|, and moreover, H; is the number of lower sets

L; of cardinality «¢.

e As shown in [11], an order ideal of monomials N is a set of monomials
closed under divisibility. For every shellable complex, there is an order ideal of
monomials N such that H; counts the number of monomials of degree i in the

set.

It follows that the sequence Hy, Hy, ..., H, consists of nonnegative integers with no
internal zeros (and in fact, if C has no coloops, then H, is nonzero).

Many complexes that arise in combinatorial and other settings turn out to be
shellable (in particular, matroids are always shellable [23]). One might hope that,
since matroids are shellable and their reliability roots seem to be bounded, the extra
condition of shellability on a complex might force the reliability roots inside the unit

disk, but such is not the case, even in dimension 2. In fact, the following is true:
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Theorem 2.2.1. A pure 2-dimensional complex C with F-vector (1,m,Fs) has a
reliability root outside the unit disk if and only if Fy € [, m — 2] U [m,2m — 5]. If,
moreover, C 1s shellable, then it has a reliability root outside the unit disk if and only

if Fy € [m,2m — 5.

Proof. Assume to begin with that C is a pure 2-dimensional complex; its reliability

is given by

Rel(C;q) = Fo-¢?(1=q)" *+m-q(l =)™ "+ (1-¢q)"
= (1= (F,=m+1)¢*+ (m—2)g+1)

so it suffices to consider the roots of
r(q) = (Fo—m+ 1) + (m —2)q + L.

As the removal of loops cannot introduce any roots different than ¢ = 1, we can
assume that C has no loops. The complex has no isolated vertices (that is, maximal
faces of cardinality 1), as otherwise the complex would not be pure. Therefore, we
have that F» > m/2. We split the argument up into two cases, depending on whether
F; is less than m or not.

Note that if F, =m — 1 then r(q) = (m — 2)g + 1 which has all of its roots in the
unit disk centred at 0, so we can assume that F» # m — 1, and hence we can focus

on the roots of
m — 2 1

The Hurwitz Criterion (see [53]), states that a real polynomial 22 + bz + ¢ has all of

r(q) = ¢ +

its roots in the unit disk if and only if |c| < 1 and |[b| < ¢+ 1. Thus we set

m — 2 q 1
= ———and c= ———.
Fg—m—l—l Fg—m—l—l

b
Clearly the first condition, |¢| < 1, holds as F is an integer different from m — 1. So
everything hinges on whether
m— 2

b] = <
Fg—m+1 Fg—m+1

+1=c+1. (2.2)

First consider the case that F» < m — 1; as F5 # m — 1, we have that F, <m —1

and so F; —m+1 < 0. Assume that m > 2 (since C is a 2-dimensional pure complex,
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and so must have a facet of dimension 2). Now,

|b|—‘ m — 2 ’_ m — 2 1 - om—Fy—2

< +l=——.
Fg—m+1 m—F2—1 Fz—m+1 m—F2—1
This is equivalent to

m—2§m—F2—2,

and so F; < 0. This can’t happen as I, > 1 (since C is a 2-dimensional pure complex,
it must have at least one face of dimension 2). Therefore, there is always a reliability
root outside the closed unit disk when F5, < m — 1.

Now assume that F, > m.Then a simple calculation shows that (2.2) holds if and
only if F; > 2m — 4. Therefore, in this case, Rel(C; q) has a root outside the unit disk
if and only if m < Fy < 2m — 5.

Thus we conclude that C has a reliability root outside the unit disk if and only if
Fy € [%,m—2]U[m,2m —5]. As we saw earlier, a 2-dimensional complex is shellable
if and only if it is connected as a graph, so shellability implies that F5, > m — 1, and
hence if C is shellable, then it has a reliability root outside the unit disk if and only
if Fy € [m,2m — 5. O

Furthermore, when Fy, = m > 2, (corresponding to a 2-dimensional shellable
complex whose facets form a unicyclic connected graph), then the F-vector is (1, m, m)

and so the reliability is
(1—q)* +mq(l —q) +mg* = ¢*+ (m - 2)g + L.

This has a root at
m 1 m? —4
2 2 ’
and this root can grow arbitrarily large in absolute value. A plot of the reliability

roots of all shellable complexes of order 5 can be found in Figure 2.5.

A very interesting question following this theorem is asking whether there exist
any 2-dimensional cographic matroids whose F5 falls inside of the interval [m, 2m — 5]
(as then that class of cographic matroids would lie outside of the closed unit disk,
and hence contradict the Brown-Colbourn Conjecture. Let us examine this question

further, and answer it in the negative.
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4

Figure 2.5: A plot of the complex roots of all shellable complexes of order 5

Suppose we have a cographic matroid Cog(G) being of dimension two (that is,
one can remove at most two edges from (). This corresponds to only two graphs
— namely the bond of two cycles together at one vertex (we can remove exactly one
edge from one cycle and one from the other), or a theta graph (we can remove exactly

one edge from any two of the three branches).

Suppose G is the bond of two cycles together at a vertex. If we have m edges in
total, with say m; edges in the first cycle, then the number of ways we can remove
two edges would be my(m — m;). However, since we need at least 2 edges in each
cycle (as otherwise we would have loops which we don’t allow), this is equivalent to
having Fy > 2(m —2) = 2m —4 > 2m — 5, and so it is outside of the aforementioned

interval.

Suppose now that G is a theta graph with m edges with, say mi, ms, and ms
edges in each of the branches, respectively. Then, since we cannot have any two edges
being removed from the same branch, the number of ways we can remove two edges

of GG is precisely

-()-()-()-(3

m? —m — (m} —my +m3 —my +m3 —ms)
5 :
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Since m3z = m — mq — Mo,

- m®—m — (m} —my+m3 —mo+ (m—my —my)® — (m—my —my)))

= 5
~m® — (mi +m3 + m? 4+ mi +m3 — 2mmy — 2mmy + 2mymy)
B 2
= mmy + mmy —m3 — mymy — ms. (2.3)

Replacing m by m; + ms + mg3 yields

F2 = (m1 + mo + mg)ml -+ (m1 + mo + mg)m2 — m% — mMiMmo — mg

= MMy + M1Ms3 + MaoMs

It can be seen that this is smallest when two of the m;’s are precisely 1. Without loss of
generality, suppose m; = my = 1. Then, from (2.3) we see that Fy > 2m—3 > 2m—5.
Therefore, F5 is not in the aforementioned interval, and hence there are no cographic
matroids of dimension 2 which have F, € [m,2m — 5].

We consider now other shellable complexes of any dimension, and we see that the
roots can be more than unbounded. That is, it is not simply one root whose modulus

is unbounded, but in fact, they are dense in the entire complex plane.

Theorem 2.2.2. The reliability roots of shellable complezes are dense in the complex

plane.

Proof. Recall that the broken circuit complex of a graph G (see [3, 6], for example) is
formed by fixing a linear order < on the edges of G and declaring any circuit minus
its <-least edge to be a broken circuit. The broken circuit complex BR(G, <) is the
complex on the edge set of G whose faces are those subsets that do not contain a
broken circuit.

Every broken circuit complex is shellable [48], and the dimension of the complex,
for a graph with n vertices and ¢ connected components, is n — ¢. The interest in
broken circuit complexes arises from the surprising fact that if GG is a graph of order
n and (ag,ai, ..., a,_1) is the F-vector of BR(G, <), then the well-known chromatic
polynomial of G, 7(G, x), can be expressed as

n—c

n(G,x) =) (~1)aa"".

1=0
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Sokal [52] has proven that the roots of chromatic polynomials are dense in the complex

are(e5t) - oG ()

= (1 —Q)nizsai (li_q)z

= (1-¢)° Rel(BR(G,=);q).

plane. Now

As it is easy to prove that the image (and preimage) of a dense set under a lin-
ear fractional transformation is again dense, we see that the roots of the reliability

polynomials of broken circuit complexes are also dense in the complex plane. []

A plot of the roots of reliability polynomials of broken circuit complexes for all

graphs on 8 vertices is shown in Figure 2.6.

Figure 2.6: A plot of reliability roots of all broken circuit complexes for graphs of
order 8 (red) with unit circle (blue).

Turning our attention back to the Brown-Colbourn Conjecture, one may be won-
dering why it is so hard to find reliability roots of graphs outside the disk centred at

0. The answer must be that there is a more restrictive property than shellability at

play.
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2.2.2 Restricting Reliability to Matroids

We have mentioned that every matroid is shellable, but matroids are indeed a proper
subclass of shellable complexes (see Figure 2.7 for an example of a shellable complex
that is not a matroid). Indeed, we have shown in the discussion regarding shellable
complexes in Example 1.2.3 that the 2-skeleton of a matroid must be a complete k-
partite graph, which this is not). Further, we have seen that reliability of graphs is the
same as the reliability of a certain family of matroids (namely cographic matroids).
Therefore, it is reasonable to see what happens for the reliability roots of general
matroids — do they behave as they do for graphs (and cographic matroids), or does
the extension past cographic matroids allow for the kind of extreme behaviour we have
seen for other shellable complexes? It is easy to observe that the join of two matroids
is again a matroid, so as reliability is multiplicative over connected components,
the reliability roots of a sum of matroids is the union of the reliability roots of the

components. Thus we can assume that matroids under consideration are connected.

v1 V2

Ny
N\

U5 V4

v3

Figure 2.7: A 2-dimensional shellable complex that is not a matroid

All complexes of dimension at most 1 are matroids, and we have already seen that
such complexes have their reliability roots in the unit disk. In [57] it was shown that
uniform matroids U, , (those on an set X of size n whose facets are all r-subsets of X))
have their reliability roots in the unit disk. Moreover, it was also shown there that the
same is true of reliability roots of cographic matroids of series-parallel graphs (which
we recall are graphs that can be built up from a single vertex by series and parallel
operations). As well, we can prove that the real reliability roots of all matroids lie in

the unit disk.

Theorem 2.2.3. The real reliability roots of any matroid M lie in [—1,0)U{1}, and



42

hence lie in the unit disk.

Proof. Let M have order m and rank r. We can assume that M is connected and

has no loops or coloops. Note that as
Rel(M;q) = (1 —q¢)™ " Z H;q'
=0

and all the H; are positive, there are clearly no non-negative roots except 1. Moreover,
in [14] it was shown that for any connected matroid M of rank r with H-vector

(Ho,Hy,...,H.),any b>1 and any j € {0,1,...,r}, we have that

(=17 (=b)'H; > 0 (2.4)

i=0
with equality possible only if b = 1. In particular by setting b = 1 and j = r we have,

r

S(-1H > o0, (2.5)

i=0
and we shall often make use of this inequality throughout this dissertation. Taking

7 =r above, we find that
(=) "hpm(=b) > 0

for b > 1, and hence hy(q) is nonzero for g € (1,00). It follows that Rel(M;q) has
no roots less than —1, and so all of the real roots of Rel(M; ¢) lie in [-1,0)U{1}. O

Thus we see that the usual techniques from real analysis (such as the Intermediate
Value Theorem) that one might use to try to locate roots outside the unit disk are
going to fail for matroids, as then any such root must necessarily be nonreal. From
[19] and [46] we know that there are (nonreal) reliability roots of some matroids
(namely cographic matroids) that lie a little bit outside the disk centred at 0. These
matroids have dimension 13 or higher. Might there be matroids of small dimension

with reliability roots outside the unit disk?

2.3 Reliability Roots of Matroids of Small Dimension

Because of earlier remarks, we can assume all matroids (and complexes) have no

loops or coloops. From the previous section, any matroid of rank 0 or 1, being a
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complex, has its roots in the unit disk (in fact, any complex of dimension at most 1 is
trivially a matroid). The next case is rank 2. We have already seen that for general
shellable 2-dimensional complexes, the reliability roots can be unbounded. However,
what about if we insist on the complex being a matroid? Then the situation becomes

markedly different.

Theorem 2.3.1. Let M be a matroid of rank 2. Then the roots of Rel(M;q) are all

inside the closed unit disk.

Proof. Let M be of order m. We saw in the previous chapter that the graph de-
termined by the 2-skeleton G of M of rank r > 2 must be a complete multipartite
graph. We will show that the number of edges of G (i.e. Fy of M) is at least 2m — 4;
by Theorem 2.2.1, M will have all of its reliability roots in the unit disk.

Let the parts of the complete multipartite graph G be Vi, V5, ... V. Clearly k > 2
as M, being of rank 2, has a face of cardinality 2. If £ > 3, one can combine parts
and decrease the number of edges (i.e. decreases the value of F3), so we can assume
that k£ = 2. Thus for some j € {2,3,...,|m/2]}, G = Kj,,—; (j # 1 as otherwise M
has a coloop, and the proof reverts to the dimension 1 case). It is easy to see that
G has j(m — j) > 2(m — 2) = 2m — 4 as the function g(z) = x(m — z) is increasing
on [2,m/2]. Thus G has at least 2m — 4 edges, and hence F; > 2m — 4. From
Theorem 2.2.1, we conclude that all the roots of M lie in the unit disk. O]

We now turn to rank 3 matroids, where again we can prove that the reliability
roots are always in the unit disk (along the way, we prove a new nonlinear inequality

among the terms in the H-vector of matroids of rank 3).

Theorem 2.3.2. Let M be a rank 3 matroid. Then all the roots of Rel(M;q) lie

inside the unit disk.

Proof. Let M have order m. Clearly we can assume that M is connected, as otherwise
its reliability is the product of the reliabilities of matroids of smaller rank, and we
are done. It can be shown that if a matroid (without loops or coloops) of order m
and rank r is connected, then H, > m —r (see, for example, [6, pg. 244]). Therefore,
if m > r (which we can always assume, as otherwise the matroid is a simplex with

reliability 1), H, > 1. We shall make use of this here and throughout this section.
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Farebrother [28] proved that the roots of a real cubic polynomial z° +asz? +ayz +
ap = 0 lie in the open unit disk {z : |z| < 1} if and only if the following conditions all
hold:

1 + Qo + a1 + as

1—a0+a1—a2

o O O O

>

>

34+ay—ay —3ayg >

1—ag+a0a2—a1 >

For our purposes, it will be better to rewrite these conditions for the cubic azz® +
asx? 4+ a1z + ag = 0, where all @;’s are positive:

ap + a1 +ag + as

az —az+ay —aop

3az + as — a1 — 3ag

o O O O

>
>
>
2 >

2
as — Qg + apas — a1a3

It is well known that the roots of a (complex) polynomial depend continuously on the
coefficients [32, 33]. Tt follows that if ag, ai, as and asz are all positive with az > ay,

then the roots of azz® + asz? + a1x +ag = 0 are in the closed unit disk {z : [z| < 1} if

ag+a; +ay+as > 0 (2.6)
az—as+a; —ag > 0 (2.7)
3as+ay —a; —3ap > 0 (2.8)
a3 — ag + apgas — araz > 0. (2.9)

(If not, there would be a root outside the disk centred at 0. By increasing az to
a3 + ¢ and ay to as + €/2, then provided ¢ is sufficiently small but positive, we
could keep the root outside the disk centred at 0, but have strict inequality hold in
all four conditions, a contradiction to Farebrother’s result. Indeed, the first three
inequalities are straightforward to show, and the fourth follows from showing that
daz —2a; +ag > 0 is satisfied when a3 > a; (which will become apparent in a moment
— that is, Hy > Hy).
Consider the reliability polynomial of M:

Rel(M;q) = (1 — ¢)™ " (1 + Hiq + Haq” + H3q")
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Clearly this has m — r roots at 1, and so we are only interested in the roots of
hoa(q) = 1+ Hiq + Hyq* + Hsg.

We set a3 = Hs, ay = Hy, a; = H; and a9 = 1. Then rephrasing conditions (2.6),
(2.7), (2.8) and (2.9), we need to show

Hs+ Hy+H +1 > 0 (2.10)
Hs—Hy+H —1 > 0 (2.11)
3Hs+ Hy—H -3 > 0 (2.12)
H} —1+ Hy — H3H, > 0. (2.13)

Conditions (2.10), (2.11), and (2.12) are quite simple to show. Since all coefficients
of the H-vector are nonnegative, (2.10) follows immediately. For (2.11), we use (2.5),

which implies for r = 3 that
—1+H, — Hy+ H3 >0,

that is, condition (2.11).

For (2.12), we will use a result of H4 et al [31] that showed that matroids of rank
3 satisfy Stanley’s Conjecture, that is, that their H-vectors are pure O-sequences
(the H-vectors of pure order ideals of monomials). In particular, it follows that
Hy < Hy <---<Hjzjand H; < H,; for 0 <4 < [Z] (see [34]). So Hy > Hy and
H, > H;. We conclude that

3Hy + Hy — Hy — 3> 0,

so condition (2.12) is true.

The last inequality to check is (2.13). We start by observing that the 2-skeleton
of a rank-3 matroid must be a complete k-partite graph G with k > 3 (as mentioned
earlier, for k < r, the k-skeleton of a rank r matroid also generates a matroid).
Indeed, if it were just a complete bipartite graph, then the dimension of M would be
2. Furthermore, if £k = 3, then each part of the complete k-partite graph must have
cardinality at least 2, as otherwise there would be a coloop in the matroid. Therefore,

the smallest possible number of edges in G would be a complete 3-partite graph with
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independent sets having 2,2 and m — 4 elements, and from this we can determine
that Fy > 4m — 12.

Using this, the fact that H; = m —r = m — 3 and by considering the number of

faces of cardinality 2 covered in an interval partition of M, we find that
Hy=Fy,—2H, — 3Hy > 2m — 9 (2.14)
Finally, from this and (2.5) we get
Hs> Hy,— Hi +Hy>m—5.

Now if H3 > m — 3 = H; then (2.13) holds (strictly), as Hy > 3. Moreover, if
H; =m — 5 then

by (2.14). Our final case is that Hy = m — 4. Here

H? 1+ Hy— HsH, = Hy+(—(m—4))—1

> 0

provided 2m — 9 > m — 3, that is, provided that m > 6. An exhaustive check of all
matroids on less than 6 vertices (whether of rank 3 or otherwise) can confirm that no
root falls outside of the closed unit disk. Therefore, all matroids of rank 3 have all of

their roots inside of the closed unit disk. ]

Unfortunately, we were unable to prove that all matroids of rank 4 have their
roots inside the disk centred at 0 since we cannot describe their H-vector accurately
enough for our methods, and so we shall focus on paving matroids of rank 4. A
paving matroid of rank r on a set X of cardinality m has a complete (r — 1)-
skeleton, that is, all (r — 1)-subsets of X are faces, so that its H-vector has the form
(Lm—r,..., ("7, (")), Hy), with H, = F, — (™) [40, Proposition 3.1].

Every uniform matroid is obviously a paving matroid, and it has been conjectured
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(27, p. 3.17] that almost every matroid of order m is a paving matroid. We remark
that there has been some progress on this conjecture (for instance in [47] where it
was shown that the ratio of the logs of the number of matroids to paving matroids

tend to 1), but the conjecture in its entirety is still open.

Theorem 2.3.3. The roots of a paving matroid M of rank 4 all fall inside the closed

unit disk.

Proof. Again, we can assume that M is connected and has no loops or coloops, and
hence m > 5. If m = 5 then the H-polynomial of M has the form H,q*+¢*+q¢*+q+1,

while for m = 6, it has the form
Hig* +4¢° + 3¢° + 2q + 1, (2.15)

where in either case Hy > m —4. We use the well-known Enestrom-Kakeya Theorem
(see, for example, [1] or [49]), which states that if f(x) = ag+ a1z + -+ + a,a™ is a
polynomial with 0 < ag < ay < --- < a, then the roots of f(z) lie in the (closed) unit
disk. It follows that the roots of polynomials of the form (2.15) are in the unit disk,
except possibly for the polynomials 2¢* +4¢>+3¢*> +2¢+1 and 3¢* +4¢> +3¢* +2q+1.
However, direct calculations in this case show that roots lie in the unit disk, so we
can now assume that m > 7.

For this proof, we will be using Farebrother’s [28] necessary and sufficient condi-
tions for the moduli of all roots of quartic polynomials to fall inside the unit disk: for
a real quartic polynomial z* + azx® + asz? + a1 + ag = 0, the roots fall inside the

open unit disk if and only if

1 > aqg

3+3a9 > as

l+az3+ay+a+ay > 0

l—as+ay—ay+ag > 0

(1 —ap)(1 —ad) — az(1 —ap)® + (az — a1) (a1 — apaz) > 0.

We can use a similar argument that we used in Theorem 2.3.2 regarding adjusting

coefficients slightly to force roots to be inside of the disk centred at 0 in the case
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where there is an equality. It follows that the roots are in the (closed) unit disk if

1 > ag (2.16)

34+3ap > a (2.17)

l+as+ay+a;+ay > 0 (2.18)

l—as+ay—a;+ag > 0 (2.19)

(1 —ag)(1 —a?) — as(1 — ag)* + (as — a1)(a; — apaz) > 0. (2.20)

Indeed, let us assume we have equality as stated above, and assume that there is a
root outside of the closed unit disk. Then if we replace ag by ag+ €, with € sufficiently
small, (2.17), (2.18), and (2.19) will have a strict inequality. We see that for (2.20),
the difference when ag becomes ag + € is a polynomial in € with no constant term, and
so it goes to 0 as € does. Therefore, if we replace ag by ag + €, we’d be able to, for
small enough ¢, keep a root outside of the disk while having the five strict inequalities
holding — a contradiction.

The H-polynomial of M (whose roots we are interested in) is given by
ha(q) = Ho+ Hiq+ Hag® + Hzg® + Hyq
m—3 m— 2
= 1+ (m—4)q+ ( 5 )q2+ ( 5 )q3+H4q4

1 —4 m—3 m—2
:H4<_+m q+(2)q2+(3)q3—|—q4>.

H,
By (2.16)-(2.20), we need only show that

H4 > 1
3H,+3

v
=

Hy+Hs;+H,+H +1
H,— Hy+ Hy — Hy + 1
(Hy—1)(H? — 1) — Hy(Hy — 1) + (Hy — H))(H,H, — Hy)

v
o

\Y
o

AV
(e
~—~~ ~—~ —~
[\
w
~— ~— ~— ~— =

Clearly condition (2.21) holds as Hy > m — 4 > 3. Condition (2.23) holds since
all of the H; are positive. Condition (2.24) follows directly from inequality (2.5), and

implies

1 53
Hy > Hs;— Hy+ H,— Hy= 6m3 —2m* + S m 15 (2.26)
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It follows that

1 53 1 7
3H4+32§m3—6m2+§m—42>§m2—§m+6:Hg

as m > 7, so condition (2.22) holds.

All that remains is condition (2.25). We set [ = H; = m — 4 (which is at least 3).
We substitute into the left-hand side of (2.25) the values for H; = (l+i_1) for i < 3
and set z = Hs. We need to show that

[+1

(2—1)(22—1)—( ) )(z—1)2+

(9)-() -0 e

Denote the left-hand side of (2.27) by f = f(z). The derivative f’(z) is a quadratic
in z that opens up, and we can verify that its discriminant is —{* — 413 + 1% — 8] + 16,
which is negative for [ > 2. Therefore, there are no real roots and so the derivative
is positive everywhere. Thus f is increasing on [2,00), so that as [ > 3, by (2.26) we
have z > ém3—2m2+%m—15:él3+gl—1>2

fz) > f(él3+gl—1)

(1= 2) (1 — 1)(I2 =1+ 12)(I* + 3+ 512 — [ + 12)
216

> 0

(both the polynomials I? — [ 4+ 12 and {* 4 [3 + 51> — [ + 12 have only complex roots,

and hence are always positive). Therefore, (2.25) holds, and we are done. O

2.4 Reliability Roots of Matroids Outside the Disk Centred at 0

In the previous section, we showed that the roots of matroids of rank at most 3 and
paving matroids of rank 4 have their roots inside of the unit disk. There are, to be sure,
reliability roots of matroids outside the disk centred at 0 — we know from network
reliability that there are graphs whose all terminal reliability roots have modulus
greater than 1, and hence there are cographic matroids that have roots outside of
the disk centred at 0. Are there other matroids with reliability roots outside the unit

disk? There exist, of course, operations on matroids that would yield roots outside of
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Figure 2.8: Example of a k-thickening on v of a matroid with k = 2

the unit disk. As noted earlier, the reliability roots of M x My is simply the union
of the reliability roots of M; and Mjy. Therefore, if either M; or My have roots
outside of the disk centred at 0, then M; x My will have roots outside of the disk
centred at 0. It follows that we can embed any matroid in another that has a root
outside of the unit disk. However, this seems somewhat artificial.

Two other operations, though, yield other matroids with reliability roots outside
the disk centred at 0. We generalize the graph operations, path replacement and edge
bundling (Operations 1.1 and 1.2, respectively, on page 8) to matroids.

Operation 2.5. k-thickening

The first operation, which is a generalization of a path replacement, we define to
be a k-thickening of a matroid at vertex v, denoted by Th(M, v, k). This is defined
to be the matroid such that

e if v is a vertex in a face 7 € M then
(T \ {v}) U{vih (7 \ {o}) U{va}s oo (7 \ {v}) U {or} € Th(M, v, k),

e if v is not an element in a face 7 € M, then 7 € Th(M, v, k).

In essence, we place k—1 new elements in parallel to v (which corresponds to replacing
an edge by a path). For example, see Figure 2.8. If we consider the faces in the original
matroid M, we have 0, v, e1, e, veq, and vey. Then Th(M, v, 2) would be the matroid
with faces 0, vy, va, €1, €3, V161, Voey, V1€o, Uges.

A useful tool for us will be to calculate the H-polynomial for this type of opera-
tion. We can do this by using the F-polynomial, together with the deletion and link

complexes.
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It is easy to see that

JThmony (@) = fae,m(@) + k¢ frin,m(q)

since if v is a vertex in a face 7 € M, then we remove v (which gives the link of v)
and we add in k£ other vertices, and we just take the deletion of v if v is not in a face
7 € M. We then translate the F-polynomial into the H-polynomial by multiplying
by (1 — ¢)% and making the change of variable ¢ — ¢/(1 — ¢). That is,

(1- Q)dfTh(M,vyk) (%]) =(1- Q)dfdelv/\/l (%—q) + (1= Q)deflinkvM (%ﬁq)
Therefore, the H-polynomial of Th(M, v, k) is given by

Mb)@ = Pae,m(a) + k(1 = q) - Painie, 1 (q)-

As k grows large kq(1 — q) « hiink,m(q) will dominate over hge,a(q), that is, if we
consider (1/k)hTh(M,v,k)<q)’ which has the same roots as hTh(M,v,k)(q)7 it approaches
coefficient-wise to q(1 — ¢)hink, M (q) which leads to the roots of hn Mw’k)(q) being
close to those of Ajnk,a1(q) (and 0). Therefore, if hynk, v(g) has a root outside of the
disk centred at 0, then hTh( Mw,k)(q) will also have a root outside of the disk centred
at 0 provided k is large enough.

Operation 2.6. k-replacement

Another operation that we will focus on is a generalization of replacing an edge
of a graph with k edges in parallel (an operation which Royle and Sokal used on a
pair of opposite edges to construct their graph). We define the k-replacement at
vertex v, denoted by Rep(M, v, k), to be the matroid such that

e if v is an element of a face 7 € M then (7\{v})U{vy, va, ..., vt} € Rep(M, v, k);

and

e if v is not an element of a face 7 € M then for any o C {vy,v9,..., 0}, 7Ua €
Rep(M, v, k).

See Figure 2.9 for an example. This time, we will only calculate the F-polynomial,
which will become apparent in a moment. If we use a k-replacement on a single

element v, then we get the F-polynomial
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Figure 2.9: Example of a k-replacement on v of a matroid with k = 2

fRep(.M,v,k)(q> = ((1+@)* = ¢") faetpav) + ¢* frinina o) (2.28)

Indeed, we can use the deletion complex delp(v) to consider all faces which do not
have v as a face (and so by our definition, we would add in every possible proper
subset of {vi,...,vx} which has a generating polynomial (1 + ¢)* — ¢*), as well as
the link complex link s (v) to consider all faces which do have v as a face (and so by
our definition, we would add in the entire simplex {v1,...,v;} which has ¢* as its

generating polynomial).

However, it would be more beneficial to be able to use a k-replacement on mul-
tiple vertices simultaneously, with different values of k, and so we will introduce a
multivariate generating polynomial of the matroid. Given a matroid M on elements
V1, V2, ... Un, for each face ¢ € M we introduce the variable ¢; if v; € 7 and p; if

v; € 7, and define the multivariate generating polynomial by

mgenM(q1>pl>-"7Qmapm) = ZHqZHpJ

TEMUU,ET  v;ET

Let us see another, more interesting example of this operation.
Example 2.6.1. For example, consider the matroid M with facets
M= {{1,2,3},{1,2,4},{2,3,4}}. (2.29)

The faces of M are therefore

{0, {13, {25, {33, {43, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2,4},
{2,3,4},{1,2,3}}.
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The multivariate generating polynomial for M is given by

mgen v (q1,P1,---,q4,P1) = P1P2P3P4 + P1P2P3Gs + P1P2Paqs + P1P2qsqs +
P1P3P4q2 + P1P39294 + P1P4G293 + P1G29394 +
D2P3P4q1 + P2P3q19a + P2P4q1G3 + D3P4q1q2 +

P3G19294 + P4G14293-

Using mgen ,(q1,P1, - - -, ¢m, Pm), We are able to generate the F-polynomial of the
matroid (2.29) by simply setting every ¢; = ¢* and every p; = (1 + ¢)* — ¢*. Though
this is a valid method to finding the reliability roots (we would still need to translate
the F-polynomial into the H-polynomial), we can generate the reliability polynomial
directly by setting ¢; = ¢F, and every p; = 1 — ¢*. Indeed, if for each element
v; we replace it by {v;,, vi,, ... ,viki}, then a face that contained v; is present with
probability ¢F (all of the vertices need to be chosen), and a face that didn’t contain
v; is present with probability 1 — ¢ (any subset of {v;,, vi,, ... ,viki} can be chosen

except for the entire set). Putting these together, we have the probability being

[ T]1-o

ViET Vi ET

Therefore, for k = (kq, ko, ..., k), the reliability polynomial of the k-replacement
on all vertices, obtained by sequentially carrying out a k;-replacement at vertex v;,

has reliability given by
mgenn(¢F, 1 — g* g%, 1 —¢*2, ... ¢F 1 — qkm). (2.30)

Let us now revisit the Royle-Sokal Example (first stated as Example 2.1.1 on page
27), but this time through the lens of reliability of complexes.

Example 2.1.1 Revisited Royal-Sokal Cographic Matroid

To build the Royal-Sokal cographic matroid, we start with Cog(K}), and carry

out two 6-replacements of a pair of parallel edges in the K, (which are vertices in its
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cographic matroid) to get matroid RS. Then

Rel(Cog(RS), Q) = mgen/\/l(qﬁa 1— q6> q, 1— q, q67 11— q6> q, 1— q,4q, 1 - q, 4, 1 - Q)
= (1—¢)°(6¢" +10¢" + 14¢"" + 18¢" + 22¢° + 264+
26" + 22¢° + 18¢° + 14¢"* + 10¢® + 64> + 3¢ + 1)

which is indeed the reliability of the Royle-Sokal graph, and has a root outside the
disk centred at 0.

The upshot is that we can start with any matroid and carry out a k-replacement in
the hope of finding other reliability roots outside the unit disk. Using this approach we
can indeed find a connected matroid that is not a cographic matroid with a reliability

root outside the disk centred at 0, as follows.

Consider the well-known Fano Matroid, F%, which is the matroid of order 7 whose
facets are all 3-tuples of the set {1,2,3,4,5,6, 7} except for the 3-tuples whose vertices
form a line or circle in the Fano Plane (illustrated in Figure 2.10). This matroid is

connected and is known to be non-cographic (and non-graphic) [44, pg. 643-644].

5

Figure 2.10: Fano Plane of order 7

We can calculate its multivariate generating polynomial, and then carry out the
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k-replacements using k = (ky, ks, k3, k4, ks, k¢, k7) to obtain the polynomial

Rel(ThF7 ko q)

1 — ghathrhs _ ghathoths _ pkothathstho _ ko+hathr+hs (2.31)

ko+ky+ks+ks+k ko+kq+ks+kr+k k7 +ks+ke+k
+2q2+4+3+5+7+2q2+4+3+7+6_q7+5+6+3

ks+ke+k ks+ke+kot+kr+k ks+ke+kot+kr+k
_q5+6+4+2q5+6+2+7+3+2q5+6+2+7+4

ks+ke+ko+ks+k k7+ks+ke+ks+k ks+ke+ko+kr+ks+k
+2q5+6+2+3+4+2q7+5+6+3+4_6q5+6+2+7+3+4

kr+k3+ka k1+ks+ko+k7 4 2qk1+k4+k2+k3+k7 _kitkatke

q
k1+ks+kz+ka 4 2qk1+k5+k2+k3+k7 + qu1+k5+k2+k3+k4

—q —4q

_qk1+/€5+k7 —q
+2qk1+k5+k2+k7+k’4 + 2qk1+k5+k3+k’7+k4 o 6qk1+k5+k2+k3+k’7+k4
+2qk1+k6+k2+k3+k7 + 2qk1+k6+k2+k3+k’4 + 2qk1+k6+k2+k’3+k‘5
+2qk1+k6+k‘2+k‘7+k‘4 + qu1+k6+k2+k7+k5 + 2qk1+k6+k2+k4+k5

k1+ke+ks+kr+k k1+ke+ks+kr+k k1+ke+ks+ka+k
+2q1+6+3+7+4+2q1+6+3+7+5+2q1+6+3+4+5

k 5
+2qk:1+ 6+k7+katks + 13qk1+k6+k2+k3+k7+k4+k . 6qk1+k6+k2+k3+k7+k4

_6qk1+k6+k2+k3+k‘7+k5 _ 6qk1+k6+k2+k3+k‘4+k5 _ 6qk1+k6+k2+k7+k‘4+k5

_6qk1+k6+k3+k7+k4+k5 . qk1+k6+k2+k5 . qk1+k6+k7+k4 o qk1+k6+k3

There are, we have found, many choices for k-replacements that result in roots outside

of the unit disk. For example, consider k = (1,4,4,4,5,4,5). Then we obtain that

the reliability of the matroid formed is

Rel(Thp, (1444545),q9) = (1— ) (¢® + ¢ + ¢+ 1)(13¢°° + 33¢"" + 60¢"® +

94¢"" + 124¢"® + 140¢" + 1464 + 142¢" +
129¢ + 111¢" + 94¢"° + 77¢° + 61¢® + 464" +
34q¢° + 24¢° + 16¢* + 10¢° + 6¢° +3q + 1)

which has maximum modulus approximately 1.0018475452. We can iterate through

all possible combinations of the k; into (2.31) between 1 and 5, which yields a number

of polynomials with roots that are outside of the unit disk. After iterating through

all of the combinations of k;, we found that there were six reoccurring maximum

moduli greater than 1. We have included these moduli as well as the first instance

of k that produced the root in the table in Figure 2.11, plus a plot of all roots
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of those six polynomials in Figure 2.12. The root with largest modulus occurs at

k = (4,4,5,4,5,5,5), which has the reliability polynomial

Rel(Thry (a54555,0) = (=D e+ 1)@+ 1" +¢*+ ¢ +q+1)
(13¢°" +26¢* +39¢" + 52¢"° + 60¢'" + 57¢"° +

54¢" + 51¢M + 49¢™ + 42¢" + 364" + 304" +

24¢° +19¢% + 15¢" + 12¢°% + 9¢° + 6¢* + 4¢° +

3¢ +2q+1)

’ k ‘ Approximate Root of Maximum Modulus ‘ Maximum Modulus ‘
(1,4,4,4,5,4,5) 0.1440344331 £ 0.9914396533¢ 1.0018475453
(2,2,5,2,5,5,5) —0.8767135845 £ 0.48870491077 1.0037226704
(3,3,3,5,5,5,3) —0.6684629266 =+ 0.7458897760: 1.0015958477
(3,3,5,3,5,5,5) —0.7454201308 £ 0.67717603947 1.0070841871
(4,4,4,5,5,5,4) 0.1330903394 £ 0.9988306129: 1.0076584896
(4,4,5,4,5,5,5) 0.2142892928 £ 0.98570447861 1.0087285165

Figure 2.12: Plot of all roots of the six polynomials attained by the k-thickenings in
Figure 2.10, with the roots of modulus larger than 1 highlighted in green, and the

unit circle in blue.



57

It seems unclear why (4,4,5,4,5,5,5) yields a root of maximum modulus (among
the ones considered), and how the maximum moduli of the roots might depend on
the components of k (one could try substituting various values for k, for instance,
k could be of the form [l,1,{ + 1,{,1 4+ 1,1 + 1,1 + 1] which produces a root with
modulus approximately 1.0095560967 for [ = 5, but all subsequent values of [ for
this particular substitution seem to have roots of maximum modulus decreasing).
Even though the largest known modulus of a reliability root is approximately 1.13
(via Brown-Mol), this is a method to generate non-cographic matroids which have
reliability roots outside of the closed unit disk. In other words, there are matroids

that are not cographic that do not satisfy the Brown-Colbourn Conjecture.

2.7 Random Pure Complexes and the Brown-Colbourn Conjecture

One question that naturally arises from the aforementioned results is asking whether
almost all matroids have their reliability roots inside the unit disk. The difficulty
on approaching this question is that, unlike graphs (which have the Erdés—Rényi
model), there is no generative probabilistic model for matroids (it is this issue that
has hampered attempts to show that almost all matroids are paving).

However, we will show that while we do not know whether almost all matroids have
their reliability roots in the unit disk, for almost all pure d-dimensional complexes,
the reliability roots are all in the unit disk (see Figure 2.13 for a plot of all the
reliability roots for all pure d dimensional complexes for d from 1 to 6). As the pure
d-dimensional complexes on [m] = {1,2,...,m} are in a 1—1 correspondence with the
collections of d-subsets of [m], we can form a generative probabilistic model PD,y, 1,2
for pure d-dimensional complexes on [m] by randomly choosing facets, that is, each
d-subset of [m] independently with probability 1/2 (under this model, each pure d-
dimensional complex on [m| occurs with equal probability); we extend the model (as
is done for graphs) to PD,,, by fixing any p € (0,1) and choosing each d-subset of
[m] independently with probability p.

Theorem 2.7.1. For fized positive integer d and fixed real number p € (0,1), the
reliability roots of almost all pure d-dimensional complexes in PD,,, lie inside the

unit disk.
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Figure 2.13: Plot of the reliability roots for all pure d-dimensional complexes for d
from 1 to 6.

Proof. Clearly we can assume d > 2 as all complexes of dimension at most 1 have

their reliability roots in the unit disk. Let € > 0. Consider the following events:

e [/ is the event that there are no loops.
e [, is the event that every d — 1 subset of [m] is a subset of a facet.

e [ is the event that the number of facets is greater than (1 — &)p(").

m—1

Now the probability that a fixed vertex v is a loop is (1 — p)(dfl), SO as m goes to
infinity,

m—1

Prob(B)) < m(l —p)(i) = o(1)] (2.32)

Similarly, as the probability that a fixed subset S of [m] of size d — 1 is not a subset
of any facet is (1 — p)™ @~V it follows that

Prob(FE,) < (dm 1) (1 —p)m= =D = o(1). (2.33)
Moreover, the number of facets is modeled by a binomial distribution on M = (’g) tri-
als each occurring with probability p (the mean of the distribution is pM). The Cher-

noff lower tail bounds [22] implies that for independent random variables X, ..., Xy,
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with each X; always lying in [0, 1], if we set X = >~ X; and p = E(X), then
Prob(X < (1 —e)p) < e #"/2,
It immediately follows that
Prob(Es) < e PME/2 = o(1). (2.34)
From (2.32), (2.33) and (2.34) we see that
Prob(E; N Ey N E3) = Prob(E), U By U E3) = o(1),

so that
lim PI'Ob(El N E2 N Eg) = 1.

m—00
Consider any pure d-dimensional complex C that lies in £y N Ey N E3. From F; and
FE5, we see that the k-skeletons are full for all £ < d, so that F; = (T) for 7 < d, and
E; implies that Fy > (1 —e)p("}).

It is not hard to verify (see [57, Proposition 6.3]) that the H-vector of the uniform
matroid U(m,d) is <(m_g_1), (ml_d), e (m_dji_l), c (md_l)> The uniform matroid

U(m,d) and pure complex C have the same F-vector vector except for possibly Fj,

and H; of an H-vector only depends on F} for j <4, and so we conclude that for C,

H - (m—d.Jrz'—l)
i

fort=0,1,...,d — 1. Now from a binomial identity, we find that

£ (e - (1),

=0
and so for C, from (1.4) we find that
L m—d+i—1 m m—1
Hy=F,— 1- - .
=ne () () - (35)

It is trivial to check that

" — <m—d'+z—1) <H. - (m'—dﬁ—z)
7 1+ 1
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provided m > d 4+ 1 (which we can assume, as we are interested in the limit as

m — o0). Moreover,
m m—1 m— 2
H;= — > Hy 1=
= (3) - () e (50)

(1—¢)pm(m —1) >d(m+d)+ (m —1)d,

provided

which clearly holds if m is sufficiently large (as d and p are fixed). Thus the (posi-
tive) coefficients of the H-polynomial of C are nondecreasing, so we conclude by the
Enestrom-Kakeya Theorem that all of the roots of the polynomial have modulus at
most 1, and hence the same is true of the roots of the reliability polynomial of C. It
follows that for almost all complexes in PD,,,, their reliability roots lie inside the

unit disk. N

Are almost all pure d-dimensional complexes on [m] shellable? It is true for d = 2
(as almost all graphs are connected), but it seems unlikely if d > 3. But if so, then
almost all shellable complexes would have their roots in the unit disk. As well, while
every matroid is a pure complex, we do not know whether the H-vector of almost
all matroids is nondecreasing (which would be sufficient to proving that the roots of

almost all matroids are in the unit disk).

Our interest in the maximum moduli of all-terminal reliability roots led us to
explore reliability roots in a more general setting. We now turn back to all-terminal

reliability, but focus on roots of minimum modulus.



Chapter 3

All Terminal Reliability Roots of Smallest Modulus

3.1 Introduction

As we have seen, much of the work on reliability has not only been focused on efficient
ways of estimation (see, for example, the Ball-Povan Bounds on page 68 of [23]), but
also analytic properties of the functions such as the location of the roots. Most
of this work has been to analyze the location of the root with maximum modulus.
However, much regarding roots of maximum modulus is still left open. For example,
we know that the only root for any (possibly non-simple) graph on 2 vertices is 1, and
for (possibly non-simple) graphs on 3 vertices, we have that the root of maximum
modulus is also 1. Indeed, all graphs on 2 or 3 vertices are series-parallel graphs, and
so the claim follows by Wagner’s result [57]. However, on 4 vertices we do not know
the maximum modulus of a reliability root, nor the extremal graph. The Sokal-Royle
graph has a reliability root outside of the unit disk, but it is not known if a different
bundling of edges will push a reliability root out further.

If we cannot characterize the roots of maximum modulus, what about roots of
minimum modulus? If we consider other graph polynomials, the question isn’t very
interesting. In the case for chromatic polynomials, we know that 0 is always a root
and so clearly it must be the root with smallest modulus. On the other hand, if
we consider the independence polynomial, though there is no known smallest root,
Brown, Dilcher, and Nowakowski showed in [17] that the root of smallest modulus is
always real.

How about for reliability polynomials? We know that 0 can never be a root, but
how close can we get to having a modulus of 0 for a graph on n vertices?

Another natural (and seemingly unrelated) question to ask is whether we can
characterize the rational roots of reliability polynomials. Let us recall some of the
reliability polynomials listed in Chapter 1. For instance, the reliability polynomial of

tree graphs on n vertices is (1 — ¢)"~!, and the reliability polynomial of cycle graphs

61
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on n vertices is (1 —q)" '((n —1)g+ 1). Clearly, all of the roots of these polynomials
are rational, and in the case of cycle graphs, is of the form —1/(n—1). Which graphs
have rational reliability roots, and, even further, of what form can they be? Is the
set of rational reliability roots dense in, say, [—1,0), or does it form a special subset?

In this chapter we will show that the roots of smallest modulus are extremal in
the sense that for all graphs of order n > 3, a root of smallest modulus is unique
and is rational. We contrast this with the fact that it is known that there are graphs
with reliability roots outside the unit disk [19, 46], and it follows that for all n > 4, a
reliability root of largest modulus among all those for graphs of order n is necessarily
not rational. Also, we will characterize the rational reliability roots for graphs of
order n, as well as simple graphs of order n, and thereby find the first nontrivial
mathematical property that distinguishes, via reliability roots, the class of simple

graphs from that of all graphs.

3.2 Rational Reliability Roots

We recall that we can expand the reliability of a graph G of order n and size m (that
is, with m edges) in terms of different bases (see, for example, [23]). The two useful

expansions that we have used are the F- and H-forms:

m—n+1
Rel(G;q) = Z Fiq'(1—q)™"  (F-Form) (3.1)
i=0
m—n+1
= (1-¢" ) Hgq (H-Form) (3.2)
i=0

We saw that each F; counts the number of subsets of i edges whose deletion leaves G
still connected; the collection of such subsets is the cographic matroid of G, Cog(G).
Furthermore, we recall that the dimension of the complex, d, is the common cardi-
nality of any maximal set, and when the graph is loopless (as we shall assume), it is
d =m —n + 1, the corank of graph G.

We have also seen that the H; have a number of interesting and useful interpre-

tations:

e There is a partition of the faces of Cog(G) into intervals [7, 0] = {a € Cog(G) :

7 C a C o}, where 7 and o are faces of Cog(G), 7 C o and o is a facet, which
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necessarily has cardinality d. Then H; counts the number of lower sets 7 that

have cardinality 3.

e There is an order ideal of monomials, that is, a set of monomials M(G) closed
under divisibility, such that H; counts the number of monomials in the set with
degree i. (The construction of such a set of monomials M(G) can be achieved

through connections to commutative algebra — see, for example, [4].)

We are now ready to find all rational reliability roots of graphs of order n, and

draw a connection to reliability roots of smallest modulus.

Theorem 3.2.1. Let n > 2. Then the rational numbers that are reliability roots of

graphs of order n are —1,—1/2,...,—1/(n—1) and 1.

Proof. First we observe that the reliability of the cycle of order n > 2, C,, is given
by
Rel(Cpiq) = (1= )" +ng(1 = ¢)" ' = (1 = ¢)"(1 + (n — 1)q),

which has roots at ¢ = 1 and —1/(n — 1). As adjoining a new vertex to a single
vertex of a graph multiplies the reliability polynomial by p = 1 — ¢, we can take any
cycle of order at most n and extend it to a graph of order n with the same reliability
roots (only the multiplicity of 1 changes). It follows that 1, —1,—1/2,...,—1/(n—1)
are reliability roots of graphs of order n. We need to show that there are no other
rational roots of a graph of order n.

From (1.3), the rational reliability roots of a graph are 1 together with those of

its H-polynomial,
m—n+1

Z Hq'.

i=0
The connection between the H; and interval partitions of the cographic matroid im-
plies that Hy = 1, as the empty set is always a face (the unique face of cardinality 0),
and hence is the lower set in exactly one interval of an interval partition of Cog(G).
As all of the H; are positive integers and the constant term is 1, the well known
Rational Root Theorem implies that the only possible rational roots are of the form
1/k for some non-zero integer k. As clearly the positivity of the H;’s implies that

no real root of the H-polynomial is positive, we are left only with —1/k, with k£ a
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positive integer, as possible rational reliability roots of graphs. For graphs of order n,
we show that kK <n — 1.

We proceed by induction to show that if z is a reliability root of a graph G of
order n, then |z| > 1/(n — 1) (this also follows from Theorem 4.6 of [14], but we shall
include a shorter, more elegant proof). This claim is trivial for n = 2, as the only
possible graph of this order consists of a bundle of edges between the two points,
and thus its reliability has the form 1 — ¢™, which clearly has all its roots on the
disk centred at 0 of radius 1 = 1/(n — 1). We assume now that n > 3 and proceed
by induction. We can assume that the graph has no cut vertices, for the following

reason. If a graph G of order n had blocks By, ..., B; with [ > 2, then

I
Rel(G;q) = H Rel(B;; q),
=1

which implies that the reliability roots of G are the union of those for the B;. However,
if B; has order n;, then n; < n, then by induction, the reliability roots of B; has
modulus at least 1/(n;, — 1) > 1/(n — 1), and thus G has all of its roots of modulus
at least 1/(n —1).

We need some more information on the coefficients of the H-polynomial. Now as
G has no cut vertices, it has no bridges, and so F; = m, that is, each of the m edges
is a face of Cog(G). However, only d = m — n + 1 of them appear in the interval
whose lower set is () (as the upper sets always have cardinality d). It follows that
Hy =m—(m—n-+1) =n—1. Moreover, it is easy to see from the connection to

order ideals of monomials that for 0 <7 <d — 1,

H; H 1
>

Hi+1 _H1 _n—l

This inequality is equivalent to (n — 1)H; > H; 1, which holds as in any associated
order ideal of monomials M(G), multiplying each monomial in M(G) of degree i by
each variable z certainly covers all monomials of degree H;,; at least once. Alter-
natively, one can make reference to a result from Huh [35], where it was shown that
the H-vector (Hy, Hy, ..., Hy) of any representable matroid — and in particular, any

cographic matroid — is log concave, that is, for 1 <i < d —1,

H;, 1H;, < H}.
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From this it follows that for 1 <7 <d — 1,

H;_, H;
< )
H, = Hi
and so
H, H H,;_
R it ST gl (3.3)
H, — H, Hy

We now turn to the Enestrom-Kakeya theorem (see, for example, [45, pg. 255]),
which states that if a real polynomial g(z) = apt® + ap_12* 1 + - + a1z + ag has
positive coefficients, then all the roots of ¢ lie in the annulus r» < |z| < R where
r = minp<;<x—1{a;/a;j11} and R = maxo<;j<xp—1{a;/a;11}. It suffices to show that the
H-polynomial of G' has no root of modulus smaller than 1/(n — 1). However, from

(3.3), the minimum value of the ratios of successive H;’s is

Hy 1

_Hl_n—l

r

We deduce from the Enestrom-Kakeya Theorem that the reliability polynomial of G
has no root with modulus less than 1/(n — 1), and hence has no rational (nor real or
complex!) root of absolute value less than 1/(n — 1). It follows that the collection of
rational reliability roots of graphs of order n is precisely {1,—1,—1/2,...,—1/(n —
1)}. O

Now that we have characterized the rational reliability roots, we show that for
n > 3, the unique reliability root of a graph of order n of smallest modulus is rational,
while such is not the case for n = 2: for n = 2, we have seen that the reliability
polynomial has the form 1 — ¢™, and hence all the m-th roots of unity are reliability

roots of smallest modulus.

Theorem 3.2.2. For graphs of order n > 3, the minimum modulus of a reliability
root is 1/(n — 1), the only reliability root of this modulus is —1/(n — 1), and only

occurs for the cycle C,,.

Proof. As seen in the proof of the previous theorem, no reliability root of a graph of
order n has a modulus less than 1/(n — 1), and C,, has a root, —1/(n — 1), of this
modulus. Let G be a graph of order n with a reliability root of modulus 1/(n — 1);

from the previous theorem, G cannot have a cut vertex. A result of [1] states that a
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polynomial g(x) = apz® + ap_12*1 + -+ + ayx + ag has a root of modulus

r = minggjgkfl{aj/&]qu} only if

ged ({ze {1,2,...,k}: a;fl >r}> > 1.

Thus we need to consider when

that is, when

As noted in [14], the set of indices where (3.4) holds is {2,3,...,d — 1} (which was
proved by using a result by Stanley [54] on canonical forms), but we provide an
alternate proof here. From the interpretation of H;’s as counting the number of
monomials of degree 7 in an order ideal of monomials M = Mg, we see that M
contains n — 1 variables (i.e. monomials of degree 1). If for some i > 2 (3.4) fails
to hold, that is, (n — 1)H,;_y = H;, then if x is any variable and m any monomial of
degree ¢ — 1 in M, xm must be a monomial (of degree i) in M and every monomial
of degree 7 in M must arise uniquely in this way. As n > 3, M has at least n—1 > 2
variables. It follows that some monomial of degree 7 in M must have the form zym/’
for some monomial m’ of degree i — 2 (if some monomial of degree i — 1 contains two

distinct variables, add any variable to it, and if z*~!

is a monomial of degree i — 1
in M, then for any other variable y, yz*~* must be a monomial of degree i in M).
However, then the monomial xym’ arises by adding variable z to the monomial ym’
of degree i — 1 in M, while zym/' arises also by adding variable y to the monomial
xm’ of degree i — 1 in M. This contradicts the fact that every monomial of degree i
in M arises uniquely by adding a variable to a monomial of degree i — 1 in M.

It follows that

H; 4 S Hy
r=—
H; H;

ged ({i€{1,2,...,d}): }) = gcd({2,3,...,d=m—n+1}),

and so, if d = m — n 4+ 1, the corank of G, is at least 3, then the gcd of the set is
1, and we conclude that there is no root of modulus r = 1/(n —1). When d =0, G

is a tree of order at least 3, and hence has a cut vertex, a contradiction. If d = 1,
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then as GG has no cut vertices and is unicyclic, G = C,,, and its only root of modulus
1/(n—1) is indeed —1/(n — 1), as we have already seen.

The final remaining open case is when d = 2, that is, when m = n 4+ 1, and our
argument corrects a slip in [14]. As in the proof of Theorem 3.2.1, we can assume that
G has no cut vertices (and hence no bridges), as otherwise, the minimum modulus of
a reliability root must be larger than 1/(n — 1). One can characterize all bridgeless
graphs G of corank 2 as follows. As G has no bridges, every vertex has degree at least
2. If we have a vertex z of degree 2, with neighbours y and z, we remove = and add
in an edge from y to z; this operation deletes a vertex and an edge, and hence leaves
the corank the same. We repeat this procedure until we can no longer do so, to arrive
at a graph G’ (possibly with loops and/or multiple edges), of corank 2, where each
vertex has degree at least 3 (in general, we can do this with any fixed corank to derive
a finite list of graphs for which every graph of that corank is a subdivision of one of
these graphs). If G’ has order n’ and size m/, as every vertex has degree at least 3 and
the sum of the vertices is twice the number of edges, we have 2m = 2(n’ + 1) > 3n/,
which implies that n’ < 2. The only graphs G’ of order at most 2 with corank 2
and all vertices of degree at least 3 are (i) two loops bonded at a vertex, or (ii) two
vertices joined by 3 edges. This implies that G must either be (i) two cycles bonded
at a vertex, or (ii) a theta graph consisting of two vertices x and y joined by three
internally disjoint paths, say of lengths [, ls and I3, each of cardinality at least 1.
We can ignore the first case as it has a cut vertex, so we only focus on the remaining
case, (ii).

As there are no bridges, H; = n — 1. As the only subsets of two edges whose

removal leaves G disconnected are two edges in one of the three internally disjoint

S SYRORORO!

It follows (by considering an interval partition of Cog(G)) that Fy = Hy+ Hy + Hy =

paths, we see that

Hy +n, so

CE-0-0-0
SERERERO!
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As some [; > 2, we have that Hy < (Z) — 1. Now since the corank is 2, the H-

polynomial will be

WG, q) = Hag” + (n = 1)g + 1.

By the quadratic formula, the roots of this are

—(n—1)£/(n—1)2 - 4H,
2H2 '

We have two cases, depending on whether the roots are real or not.

First, if the roots are real, then (n —1)? —4H, > 0, that is, Hy < (n—1)?/4. The

—(n—1)++/(n—1)2—4H,

2H5

root of smallest modulus is

1/(n — 1) if and only if

, and this has modulus greater than

—(n—1)++/(n—1)2—4H, . !
QHQ n—l

This holds if and only if H2+(n—1)H, > 0, which is clearly true as Hy > 0. Secondly,
if the roots of (3.5) are non-real, then Hy > (n — 1)?/4. Both roots have the same

modulus, and

V(n—1)2+4Hy — (n —1)2 - 1
2H2 n—1

is true provided that
Hy; < (n — 1)2

However, from above, Hy < (g‘) — 1, and (72‘) — 1< (n—1)%2asn > 3. Thus in this
case there is no root of modulus 1/(n — 1).

Thus, in conclusion, for connected graphs of order at least 3, the minimum modu-
lus of a reliability root is 1/(n — 1), and only occurs for a cycle of order n. Moreover,

the only reliability root of this modulus is —1/(n — 1). O

3.3 Distinguishing the Class of Simple Graphs via Reliability

Loops in graphs clearly have no effect on reliability, but multiple edges do. However,
throughout the literature, whatever nontrivial mathematical properties have been
found to hold for reliability polynomials of graphs in general have also been shown to

hold for simple graphs, and vice versa. For example:
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e A graph G of order n and size m is said to be (uniformly) optimal for a family
Fn.m of graphs if for any other graph H of the same order and size, Rel(G; q) >
Rel(H; q) for all q € [0,1]. Let G, and S,,,,, denote the classes of all graphs of
order n and size m, and the simple such graphs, respectively. Then the known
values of n and m for which no optimal graphs have been discovered for G, ,,

and S, ,, coincide [16].

e Reliability roots of small simple graphs, as well as for various families of graphs,
were noted to be in the unit disk centered at the origin, leading to a well
known conjecture that reliability roots always lie in this disk [14]. Settling
the conjecture in the negative, Royle and Sokal [46] proved first that there are
reliability roots of graphs with multiple edges outside the unit disk, and then

that the same is true even for simple graphs.

So the question remains — does the allowance of multiple edges add anything
to reliability of mathematical consequence (that is, does multiple edges change the
behaviour of the roots)? Can we distinguish the class of simple graphs in an interesting
way via reliability from the class of all graphs?

Our work in the previous section can help us to do so. We have seen that the
rational reliability roots of graphs of order n > 2 is the set {—1,—1/2,...,—1/(n —
1),1}. However, the examples provided that achieve these consists of a cycle of
length [ (2 <1 < n), followed by the sequential attachment of leaves — such a cycle
has rational reliability root at —1/(I — 1) (and 1); these are simple graphs, except for
when the cycle has length 2, corresponding to a root at —1.

There are indeed many ways to introduce multiple edges to achieve —1 as a reli-
ability root. For example, take any connected graph G of order at least 2, simple or
otherwise. For any positive integer k, we can form the graph G* by replacing each

edge by a bundle of k parallel edges. Then it is easy to see that
Rel(G*; q) = Rel(G3 ¢"),
and it follows that for £ even,

Rel(G*; —1) = Rel(G; 1) = 0.
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A calculation of the rational reliability roots of small graphs (up to order 8) does
not turn up —1 as a root. So is it possible that —1, while a reliability root of many
graphs, is never a reliability root of a simple graph? So, if a graph has multiple edges,
is it the only case where —1 can be a reliability root? In fact, this is exactly what
we shall prove — the set of rational reliability roots distinguishes the class of simple

graphs.

Theorem 3.3.1. Suppose G is a connected graph. If every pair of adjacent vertices
of G are joined by an odd number of edges, then —1 is not a root of the reliability
polynomial of G.

Proof. We first determine the sign of a reliability polynomial at —1 (that is, whether
the polynomial at —1 is positive or negative). Let G be a graph, possibly with multiple
edges (but without loops). Then as noted earlier, the H-form of Rel(G; q) is given by

m—n—+1

Rel(Giq) = (=" > Hid', (3.5)

where each H; is a positive integer. As noted earlier, Brown and Colbourn [14] proved
that the real reliability roots always lie in [—1,0) U {1} , so the sign of Rel(G;q) is
constant on (—oo, —1). It follows from the H-form that the sign of Rel(G;q) to the
left of —1 is (—1)™ ™" and by continuity, the sign at —1 is either (—1)™ """ or
Rel(G;—1) = 0.

We now proceed by induction (on the size m) to show that if every edge of a
connected graph G of order n and size m is a bundle of odd size, then Rel(G; —1) # 0.
When m = 0 or 1, the only choice for G is K; or K5, with reliability polynomials
1 and 1 — ¢, respectively, and clearly —1 is not a root of either polynomial. So we
assume n > 3, and the result holds for smaller size graphs.

If G has no cycles, then GG, having only bundled edges of odd size, is a bundled
tree, with reliability polynomial of the form H;:ll(l — ¢*) where all the k; are odd,
and so Rel(G; —1) = 2"~ #£ 0. Otherwise, G has an edge e (possibly bundled of odd
size) that is in a cycle. Let € be the set of all edges parallel to e (that is, all edges
with the same endpoints and set k = |€|). Then, by the well known Factor Theorem

for reliability (see, for example [23, page 13]),

Rel(G;q) = ¢"-Rel(G -2 q)+ (1 —¢") Rel(Geg;q), (3.6)
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where we recall that G — € and G e € are the graphs formed from G by deleting (in
sequence) edges in €, and contracting edges in e. Clearly G'—@ is connected, has order
n and size m — k, while G e € is connected and has size m — k as well, but has order
n — 1. Moreover, every pair of adjacent vertices in G are joined by an odd number of

edges, and the same is true for G — €. By the Factor Theorem (3.6),
Rel(G;—1) = (—1)-Rel(G —& —1)+2-Rel(Ge€;—1), (3.7)

From earlier, either the sign of Rel(G —e; —1) is (—1)™~®="*1 or Rel(G —&; —1) = 0;
similarly, either the sign of Rel(G @ €; —1) is (—1)m=R)=(=D+1 or Rel(G @ e; —1) = 0.
In other words, the signs Rel(G —€; —1) and Rel(G e €; —1) will be opposite of each
other, and so (—1)-Rel(G—¢; —1) and 2-Rel(G o¢; —1) have the same sign. It follows
from (3.7) that

|[Rel(G; —1)] = |Rel(G —¢€;—1)|+2-|Rel(G o€, —1)],
and hence
|Rel(G;—1)] > |Rel(G —¢;—1)|.
However, by induction on m, Rel(G —€; —1) # 0. We conclude that
|[Rel(G;—-1)| > 0,
and hence Rel(G; —1) # 0, and we are done. O

This theorem has a very useful corollary which helps distinguish the class of simple

graphs from the class of all graphs.

Corollary 3.3.1. If —1 is a root of a reliability polynomial of a connected graph G,

then G is not simple.

There are still many open problems for rational reliability roots which we will
address in Chapter 5. However, let us switch our focus to another type of reliability
— the two-terminal reliability. We will see what the similarities and differences are

between this other type of reliability and the all-terminal reliability.
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On Two Terminal Reliability

We have been focussing on the all terminal reliability, but there are two other main
types of reliabilities: two-terminal reliability and K-terminal reliability. In this sec-
tion, we will focus on two-terminal reliability of a graph G, which we denote by
Rely (G, s,t; q), which has been well studied (for instance, see [23, 36, 38, 41, 43]). In
this setting, as was the case for the all terminal reliability, we have that vertices are
always operational and that edges fail with probability ¢ € [0,1]. However, we fix
two vertices, s and ¢ (which we call terminals), and only require that s and ¢ remain
connected when edges fail — not all vertices being connected.

As is the case with the all-terminal reliability, the two-terminal reliability is also

a polynomial that can be given in various forms, the F-form and the H-form:

m—p
Rely (G, s,t;q) = Z Fi¢'(1—¢)™"  (F-Form) (4.1)
=0
m—u .
= (1—¢g" Z H;,¢" (H-Form). (4.2)
i=0

where p is the length of the shortest (s,t)-path. Furthermore, we recall that we can
also use the Factor Theorem that allows us to split the reliability into two parts via

deletion and contraction of an edge e. That is,
Rely (G, s,t;q) = q - Rela(G — e, s,t;q9) + (1 — q) - Rela(G @ €, 5,15 q) (4.3)

where G — ¢ and GG e e are the graphs formed by deleting the edge e, and con-
tracting edge e, respectively. We note that if the endpoints of e are s and ¢, then
Rely(G e e, s,t;:q) = 1.

Indeed, just as we saw with the all-terminal reliability, the two-terminal reliability
has an underlying simplicial complex. However, instead of F; counting the number of

ways one can remove ¢ edges which leaves the graph connected, F; counts the number

72
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of ways the removal of i edges leaves s and ¢ in the same connected component.
For example, consider the graph in Figure 4.1a. Let us compute its two-terminal

reliability with various choices of terminals.

V1 el ()
v €5
eq v3
RN
U5 es V4

(a) Example graph for two-terminal reli-
ability

U3

es U5 €3
(b) Two-terminal reliability with termi- (c) Two-terminal reliability with termi-
nals vo, v3 nals vo, vs

Figure 4.1: Graph with two choices of terminals
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Our first choice is setting {s,t} = {ve,v3} (see Figure 4.1b, terminals illustrated

as blue squares). The facets of the two-terminal complex (which are the complements

of the (s,t)-paths) are given in the table below.

Path Facet (written multiplicatively)
€5 €1€2€3€4€6€7€8€9€10
€266 €1€3€4€5€7€8€9€10
€6ET7ES €1€2€3€4€5€9€10
€3€6€7€9 €1€2€4€5€8€10
e1e3e46q €2€5€7€8€E9€1(
€1€6€8€10 €2€3€4€5€7€9
€1€3€6€9€10 €2€4€5€7€8
€1€4€6€8€9 €2€3€5€7€10
€3€4€6€7€10 €1€2€5€5€9

From here, one can compute its F-vector and H-vector to be

(1,10,44, 112,180, 184, 113, 44, 10, 1)

and

(1,1,0,0,—2,-2,1,9,—10,3),

respectively. From the example, we make the observation that, in general, the co-

efficients of the H-vector are not always all non-negative (as was the case for the

all-terminal reliability). As a result, some methods that we’ve used before — for in-

stance the Enestrom-Kakeya Theorem — are unavailable for two-terminal reliabilities

in the same manner that we have used it before (that is, we may still use the theo-

rem with respect to the F-polynomial as the F-vector is non-negative, and then use

the linear transformation ¢ goes to ¢/(1 — ¢), but we are not able to use it directly

on the H-polynomial). Returning back to our example, its two-terminal reliability

polynomial is:

Rely(G,vp,0339) = (1— )" +10¢(1 — q)° + 44¢°(1 — q)° + 112¢°(1 — ¢)7 +
180¢*(1 — q)® 4 184¢°(1 — ¢)°® + 113¢5(1 — ¢)* +

44¢"(1 - ¢)* +10¢*(1 — ¢)* + ¢°(1 — q)

= (1—¢)(1+q—2¢"—2¢° +¢° +9¢" — 10¢° + 3¢°).
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However, the behaviour of the polynomial changes if we choose a different set of
terminals. For example, suppose we choose {s,t} = {vq, v5} instead (see Figure 4.1c).

Then the facets of the two-terminal complex are:

Path Facet (written multiplicatively)
€164 €2€3€5€6€7€8€9C10
€2€3 €1€4€5€6€7€8€9€C10
€769 €1€2€3€4€5€6€8€10

€1€9€10 €2€3€4€5€6€E7€3

€2€38€9 €1€3€4€5€6€7€10
€3€5€6 €1€2€4€7€8€E9€E70
€3€res €1€2€4€5€6C9€10
€4€7€10 €1€2€3€5€6€8€C9
€1€3€8€10 €2€4€5€6€7€9
€2€4€58€10 €1€3€5€6€7€9
€5€6€8€9 €1€2€3€4€7€710
€4€5€6€8€10 €1€2€3€7€9

Once again, one can compute its F-vector and H-vector to be
(1,10, 45,119,199, 204, 110, 29, 3)
and
(1,2,3,3,—1,—8,—5,12, —4),

respectively. Therefore, its two-terminal reliability polynomial is

Relo(G,v2,0579) = (1—¢)"" +10g(1 — q)° +45¢°(1 — ¢)® + 119¢°(1 — ¢)" +
199¢*(1 — q)® +204¢°(1 — q)° + 110¢°(1 — ¢)* +
29¢"(1 - q)* + 3¢°(1 — ¢)?
= (1—q)?(1+2¢+3¢° +3¢° — ¢" —8¢° —5¢° + 12¢" — 4¢®).
We can see some similarities between these two two-terminal reliabilities if we plot

them both on the interval [0,1] (see Figure 4.2). First, we can see that they both

have an inverted S-shape to their plots. However, Rely(G, v, v3;q) seems to be less
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reliable when ¢ is smaller than approximately 0.5493773811, and more reliable when ¢
is greater. We can also see that there are no real roots in the interval [0, 1). However,
in comparison to the all-terminal reliability, there may be irrelevant edges. We say
that an edge not on any (s,?)-path is called an irrelevant edge, and the collection
of all irrelevant edges we call the tendril of G, which we denote by T (see Figure 4.3
for an example of a graph with a tendril). Unlike the all-terminal reliability where
all vertices need to be able to communicate with each other, it is easy to see that a
tendril does not affect the two-terminal reliability (since, if an edge e € T' is not on a
path between s and ¢, then its operability does not affect the two-terminal reliability).
Therefore, we can remove the edges of the tendril, and any resulting isolated vertex.

Beyond the behaviour of the two-terminal reliability in [0, 1], we can also study
other analytic properties (such as was done in Cox’s PhD Thesis [26] for inflection
points, fixed points, and average reliability), as has been done for the all-terminal
reliability. In particular, what can we say about the roots of the two-terminal re-
liability polynomial? For the previous two examples, the roots of largest moduli
are approximately the complex numbers 1.4217024525 4 0.1830922276:¢ with moduli
1.4334436254, and (1 4 v/5)/2 ~ 1.6180339887, respectively (see Figure 4.4 for the
plots of all their reliability roots). Our task now will be on the location of the roots

of two-terminal reliabilities.

0 0.2 0.4 0.6 0.8 1
q

Figure 4.2: Plot of both Rely(G, vq,v3;¢q) (red solid line) and Rely(G, va, vs; q) (blue
dashed line) with ¢ € [0, 1]
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Figure 4.3: Example of a graph with terminals s and ¢ (blue squares) with a tendril
(red lines with two bars)

4.1 Roots of Two-Terminal Reliability

The area of studying the roots of two-terminal reliability was pioneered by Tanguy
[55, 56] who was able to calculate exact roots for certain families of graphs including
recursive families of graphs whose underlying graphs are undirected, which were then
extended to recursive graphs whose underlying graphs are directed. However, much
is still left unknown, including any potential Brown-Colbourn-like conjecture about

a disk that contains the roots.

The first area we would like to explore is whether a root of two-terminal reliability
polynomials can have modulus larger than 1. In [56], Tanguy showed that there are
roots for the double-fan of 150 vertices with modulus approximately 1.4 (a fan on n
vertices is a graph for which there is a path on n vertices, all vertices of which are
connected to an extreme vertex. A double fan on n vertices is the graph where we
take two fans on n vertices and identify the paths — see Figure 4.5 for an example of
a double fan on 4 vertices). So, we can get roots outside of the disk centred at 0, but
how far can we go?

Recall that the two-terminal reliability roots with maximum modulus for the ex-
amples in Figure 4.1, were approximately 1.4217024525 + 0.1830922276¢ with moduli
1.4334436254, and (1 + v/5)/2 ~ 1.6180339887, respectively. One observation we

can see is that by changing the choice of terminals, we obtained a root with larger
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151 151

1 1

o 0.5 © ° 0.5

-1 0 1. 2 -1 0 1, 2

° -05 0 °-0s

-1 -1

-1.5 -L5

(a) Two-terminal reliability roots of (b) Two-terminal reliability roots of

Relz(G, vz, vs; q). Relz (G, vz, vs; q).

Figure 4.4: Plot of the two-terminal reliability roots of the examples from Figure 4.1.
Blue squares indicate roots of largest moduli.

modulus. So, the choice of terminals is important.

To examine this further, let us revisit the examples we saw in Chapter 1 with the

various families of graphs, but this time we can choose the terminals.

Example 1.0.3 Tree Graphs

To calculate Rely(G, s,t;q) for G a tree on n vertices, we first need to choose our
terminals. We note that since there will only ever be one path between s and ¢ (as
there are no cycles), this will be equivalent to studying the two-terminal reliability of
a path (since every edge of that path must be up, and the collection of edges that are
not on that path is the tendril, and it has no effect on the probability). Therefore, if
there is a path on u edges between s and ¢, then its two-terminal reliability has the

form

RGIQ(G, S,t,q> - (1 - q)H’

which clearly has all of its roots at 1 (and hence in the closed unit disk).
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v1

Figure 4.5: Double-fan on four vertices with s and ¢ the blue squares

Example 1.0.2 Cycle Graphs

Our next example is the cycle graph. Here, regardless of the terminals chosen, there
will always be two paths between s and t. Suppose we have m edges, with m;
edges on one path P, between s and ¢, and my edges on the other path P, (and so

m1 + my = m). Then we have the two-terminal reliability polynomial

Rely(Cr,y s,t;q) = Prob(P; or P, operational)
= Prob(P; is operational) + Prob(P; is operational) —
Prob(P; and P, are operational)

= (1 — q)m1 + (1 _ q)mz _ (1 _ q)m1+m2‘

For m; and my running between 1 and 30 each, we find that the two-terminal relia-
bility polynomial with the root of largest modulus — 1 + v/2 ~ 2.4142135623 — occurs
for Cy with antipodal terminals (a plot of the roots for all the aforementioned choices
of m; and my can be found in Figure 4.6). This is a two-terminal reliability root
that’s quite far out from the unit disk centred at 0 (compared to the reliability roots

we have seen outside of the unit disk in the all-terminal case).

Example 1.0.4 (Generalized) Theta Graphs
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Figure 4.6: Plot of all Rely(C,,, s,t;q) with root of maximum modulus highlighted
(blue square) with m = m; + my where m; and my are between 1 and 30

With theta graphs there are even more choices for the terminals. For instance,
suppose we have the theta graph ©;, ;,;,. Then, if we choose s and ¢ to be in the
same branch, say of length [y, with a path of length m between s and t (see Figure

4.7a), then

Reb(@lhl%h, s, t; q) = (1 — q)m -+
(1—(1—q)™) [(1 _ q)lz+(lrm) +(1— q)13+(zrm) _
(1 o q)l1+l2+lgfm].

That is, either the path in the branch between s and ¢ is operational (with probability
(1 —q)™), or it has failed (with probability 1 — (1 — ¢)™), and then either the path
from s to x, x to y along the path of length 5, and then y to ¢ is operational (with
probability (1 — ¢)2T1=™)) or the path from s to z, x to y along the path of length
I3, and then y to t is operational (with probability (1 — ¢)#T1=™))  Finally, we need
to exclude the probability that both the paths from x to y are operational.

Running [y, [, and [3 between 1 and 10, and letting m be any distance between
1 and [;, we can get a two-terminal reliability root with modulus 2.5630958996 with

l1 =3,1ls =13 =2, and m = 2 (i.e., s and t are vertices of distance 2 apart in the
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I3 . I3
(a) ©y, 1,1, With terminals in the same in- (b) ©y, 1,1, with terminals the extreme
dependent branch points

Figure 4.7: Example of two choices of terminals for Rels(Oy, 1, 14, S, 5 q).

first branch of length 3, with one being an extreme point). See a plot of the roots for
all aforementioned choices of l1, 5,13, and m in Figure 4.8a.

If we restrict s and ¢ to be the extreme points, then the formula can be written as

Rel?(@lhlz,lw s, t; Q) = (1 - Q>l1 + (1 - Q)l2 + (1 - Q)lg
_ ((1 _ q)l1+l2 + (1 . q)l1+l3 + (1 . q)lz-i-ls)
+ (1 _ q)l1+l2+l3

This is calculated by inclusion/exclusion on each path being operational; that is,
either one path is up, excluding the cases where exactly two paths are up, and then
including the case where all three paths are up. Letting [y, [, and [3 run between
1 and 10 again results in a root approximately 2.2712298784 + 0.3406250193: with
maximum modulus 2.2966302629 with [; = I, = 3 = 2 (see a plot of all roots of these
choices in Figure 4.8b). Though this is a smaller maximum modulus than before, this

form is easier to study. It is also interesting to see that, in this case, the root with
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maximum modulus is not real.

(a) Plot of complex roots for terminal (b) Plot of complex roots for terminals
choices in the same branch the extreme points

Figure 4.8: Plot of roots for two choices of terminals, with the length of the branches
ranging from 1 to 10.

Since the best case in this example seems to appear when [; = [, = I3, perhaps
we should restrict our class of theta graphs to the case where [y = Iy = I3 = [. If we

do this, then the above becomes
Rely (014, 8,t;¢) = 3(1 — @) — 3(1 — ¢)* + (1 — ¢)*
which can be simplified to
Rely(©14,8,t5¢) =1—(1— (1 — q)l)3.

The idea is that (1—q)! is the probability that every edge along one path is operational,
so 1 — (1 —¢q)! is the probability that at least one edge in a particular path has failed.
This is true for all three branches. Finally, if we take this probability away from 1,
then we get the probability that there is at least one branch operational which is
equivalent to s and t being able to communicate. By once again running this for [ at
least 1, we get that the maximum modulus occurs when [ = 2. Can we get better by

considering generalized theta graphs?
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Extending our formula to Oy is straightforward; i.e.,
Rel?(@l[k]a Sat; Q> =1- (]' - (1 - Q)l)k

Letting [ and k£ run from 1 to 10, we find that the root with maximum modulus of
1+ /2 & 2.4142135624 occurs when [ = 2 and k = 6. The roots are shown in Figure
4.9.

Figure 4.9: Plot of the roots of Oy with [ and k ranging between 1 and 10.

Example 1.0.5 Complete Graphs

Just like in the all-terminal case, we do not have an explicit general formula for
the two-terminal reliability of a graph, but we do have a recursive formula (see [23],

page 33) which utilizes the all-terminal reliability:

" (n—2 L
Rel(6,i) = 3 (5 JRel(6: )0/
— \J
]_
As we can see, we do not need to specify the terminals for the two-terminal
reliability of a complete graph. That is because the choice of s and ¢ are not important
as every choice yields an isomorphic two-terminal graph; that is, there is a graph

automorphism that carries any two terminals to any other two terminals. Below is
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a table of the two-terminal reliability polynomials for the complete graphs on 2 to
6 vertices, followed by Figure 4.10 which plots the roots of the complete graphs of
orders 2 to 25 (with the largest root a blue square). We find that the root with the
largest modulus occurs at approximately 1.6180339887, for K.

Rely(K,;q)
l—yq
(1-q)(—¢"+q+1)
(1-9)(2¢° =3¢" =’ + ¢ +q+1)
(1-q)(=6¢"+12¢° - 7¢° =" —¢" + ¢’ + ¢* + ¢ + 1)
(1 — q)(24¢™ — 60¢" + 18¢'2 + 38¢'" — 6¢'0—
6° =9 ¢ —¢" "+ "+ @+ +q+1

DO |~ W N B

Figure 4.10: Root of two-terminal reliabilities of complete graphs of order 2 to 25.

As we can see, it is quite easy to find roots outside of the closed unit disk for two-
terminal reliability polynomials. This begs the question about when all two-terminal

reliability roots fall inside of the unit disk.

4.1.1 Connection to Matroids

One of the most important tactics that we have at our disposal when trying to analyze

the location of the roots of the all-terminal reliability polynomial is knowing the
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structure of the underlying simplicial complex, or more specifically, the cographic
matroid. This has allowed us to obtain information about the H-polynomial which
we could then use to help in determining where the roots lie. However, there is very
little known about the structure of the underlying simplicial complex for two-terminal
reliabilities, and, unfortunately, it seems very rare that the simplicial complex is
indeed a matroid.

We say that, for a graph G with terminals s and ¢ connected by a path (as we
shall assume henceforth), the two-terminal complex of G, which we denote by
Cs.+(G), is the complex whose faces are the sets of edges whose removal leaves s and
t connected. We note that G may contain some irrelevant edges which can always be
removed, and in the complex they form a simplex and thus C;;(G) can be written as
a join

Cs+(G) = Ar(G) % Cs4(G)',

where Arp(G) is the simplex generated by the tendril T of G, and C,(G’) is the
two-terminal complex on G' = G —T.

In general, C,;(G) is just a complex and not a matroid. For instance, consider
G = C,, with n > 3 and s and t adjacent. Then Cs,(C,,) is a connected (it cannot be
written as a join of two complexes), non-pure complex (and hence is not a matroid).
However, when is Cs;(G) a matroid? Moreover, if Cs;(G) is a matroid, is it a different
class of matroids than the cographic matroid? In order to answer this, we will first

need a very useful lemma.

Lemma 4.1.1. (Join of Matroids)

The complex C = Cy * Cy 1s a matroid if and only if both C1 and Cy are matroids.

Proof. The implication that if C; and Cy are matroids then C' = C; * Cy is a matroid
follows from a result by Oxley [44, Prop. 4.2.8, p. 124]. Therefore, we just need to
show that if C is a matroid, then both C; and Cy must be as well.

For a contradiction, let us suppose that, without loss of generality, C; is not a
matroid but instead just a complex. We want to show that C' = C; % Cy is not a
matroid (regardless if Cy is a matroid or not). As C; is not a matroid, there exist
faces 7 and 7, of C such that |r| > || but there is no x € 7 \ 7 such that

T U{x} € C;. But then a; = 7y UD and ap = 7 U ) are faces of C; * Co. It follows
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that

lon| = |71| > || = |as]

and there is no € ay \ ag = 71 \ 72 such that ap U{z} = U {z} € C; xCy (as the
vertices of 7 and 7 are in Cy, and hence 7, U {z}, for any x € oy \ g = 71 \ 71, would

have to be a face of C; to be a face of C; * C3). Therefore, C is not a matroid. O

Before we move onto the main theorem of the section, we first need to state a very
important property of matroids, which we formulate into a lemma (see, for instance,

[44, Lemma 1.2.2, p. 15]).

Lemma 4.1.2. (Basis Exchange Axiom)

Let o = {01,029, ...,01} be the collection of facets of a complex C. Then C is a matroid
if and only if whenever o; and o; are members of o and x € 0;\0;, there is an element
y € o; \ 0; such that (o; \ {z}) U{y} € o (if C is a complex, then we call each o; a

basis).
From here we can prove the main theorem of this section.

Theorem 4.1.1. The two-terminal reliability complex of a graph C,.(G) is a matroid
if and only if it is a bundled (s,t)-path, possibly with irrelevant edges.

Proof. Let PX be a path on n vertices, possibly with additional irrelevant edges, with
edges bundled by k = [k, ks, ... k,_1] edges (see an example of PX for n = 5 and
k =[1,2,3,1] in Figure 4.11).

As we saw earlier, we can split C;(G) into a direct sum of two complexes: Ap(G),
the complex generated by the tendril 7" of GG, and Cs,t(@)7 the two-terminal complex
on G =G — T. We also saw earlier that A7(G) is a simplex (and hence a matroid).
Moreover, it is easy to see that C,;(PX) =Cog(PX), as they consist of the same faces
(the removal of edges of PX leaves an (s,t)-path if and only if they leave a spanning
connected subgraph). Therefore, by Lemma 4.1.1, C,;(G) is a matroid.

Now, we will consider the case when the two-terminal complex is a matroid. We
shall rely on the notion of the dual M* of a matroid M, whose bases are the comple-
ments (with respect to the ground set) of the bases of M — see, for example, Chapter
2, page 64 in Oxley’s textbook [44]. We shall also make use of Lemma 4.1.2, the Ba-

~

sis Exchange Axiom, of matroids. Cs;(G) can be split as Cs+(G) = Ar(G) * Cs4(G),
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—C Ko

Figure 4.11: Example of the bundled path PX with k = [1,2,3,1]

where T is the tendril of GG, and G is the subgraph G — T. Ar is a simplex as it
corresponds to irrelevant edges. From Lemma 4.1.1, C&t(@) is a matroid, so without
loss of generality, we shall assume that G = G and C,,(G) = C.4(G).

Since the dual of a matroid is a matroid, C;,(G) is a matroid. Recall that the
facets of C,4(G) are edges whose removal leaves an (s,t)-path, and so the facets of
C;;(G) are precisely the edges of those paths between s and t. Let us fix a path
Py such that P is the path s = vi,vy,...,v, = t. Since C},(G) is a matroid, all
(s,t)-paths contain exactly k vertices (i.e. exactly k — 1 edges). Suppose we have a
different (s,t)-path P, such that P is the path s = uy,us, ..., up =t. We will show
that u; = v; for all .

Suppose — to reach a contradiction — that u; # v; for some 7. Then consider the
first ¢ such that u; is different from v; (clearly 2 < i < k). Consider the next u;
that is again on the path P, (there must be one as u, = vy = t), say u; = v, (so
j >1). Clearly r > i. Moreover, j = r as otherwise we can shorten one of the paths
to find an (s,t)-path that is shorter than P, and P,, a contradiction. Now, consider

the (s,t)-path P; given by
S = V1,V2,y ..., Uj—1,Ujy Ujg1y...,Uj :Uj7vj+17"'avk:t-

Then take the edge x = v;_v;, which belongs to P, but not Ps. Since C;,(G) is a
matroid, by the Basis Exchange Axiom, there must be a y € P3 with y ¢ P; such that
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(P \ {z})U{y} is an (s, t)-path. However, the only possible way for this to occur is
if both x and y share the same endpoints; i.e., is a part of a bundled edge. Therefore,
the ends of y must be v;_; = u;_; and v;, a contradiction, as the only possible edge
for y in Pj is u;_ju;, but u; is not in P, (and hence cannot be v;). Thus the vertices
of P, in order, must also be vy, vs, ..., v, and this is for any path different from P;.
It follows that the edges in the (s,t)-paths are in bundles with the edges of P;. i.e.
the relevant edges (that are in some (s,t)-path) form a bundled path between s and

t. OJ

With this theorem, we are not only able to classify all graphs whose two-terminal
reliability complex is a matroid, but we can also show that they satisfy the essence of
the Brown-Colbourn conjecture — having reliability roots falling inside of the closed

unit disk.

Corollary 4.1.1. All two-terminal reliability roots of a graph whose two-terminal

reliability complex is a matroid falls inside of the closed unit disk.

Proof. Since C;,4(G) is a matroid, then we know that G is a bundled path with s and
t being the endpoints of the path, possibly with additional irrelevant edges. Suppose
the bundled path is of length n with bundle sizes k = [ky, ko, ..., k,]. As the tendril

does not affect the reliability, the two-terminal reliability polynomial is
Relo(G,s,t:¢) = (1—¢")(1 —¢*)...(1— ¢™)
which has all of its roots inside of the closed unit disk. O

Therefore, we have been able to classify graphs whose two-terminal complexes are

a matroid, and in fact, all such matroids are cographic matroids. Indeed, recall that

~

if Cs+(G) is a matroid, then it can be written as Ar(G) * Cs+(G) where Ap(G) is the
simplex of tendrils, and Csyt(@) is the two-terminal complex of G = G — T. One can
clearly see that C,(G) =Cog(G). What about Az (G)? It is easy to see that Ap(G)
is the cographic matroid of the graph Gy, where G has only a single vertex with ||
loops (since they are loops, one can remove any subset of them and the graph is still
“connected”). Therefore, Ap(G) * Csﬂf(@) is a direct sum of two cographic matroids,

which is itself a cographic matroid (in fact, it is the cographic matroid of G with some

loops attached).
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Therefore, if the two-terminal complex of a graph G is a matroid, then its matroid
is a cographic matroid, and all of their two-terminal reliability roots are inside of the
closed unit disk. However, this is a small family of graphs (and terminals), so can we
determine a larger region of the complex plane that contain two-terminal reliability

roots?

4.1.2 Regions of Density in the Complex Plane

With regards to the all-terminal reliability, we may not have that every root is inside
of the closed unit disk, but we do have that the roots are dense in the closed unit disk.
Is there a similar region in the complex plane for density of two-terminal reliability
roots? Surprisingly, there are two disks (at least) in the closure of the two-terminal

reliability roots.

Theorem 4.1.2. The closure of two-terminal reliability roots contain the closed unit

disks centred at 0 and 1.

Proof. Let us revisit our formula for the two-terminal reliability polynomial of ©;;:
Rela(Op;9) =1 — (1= (1 — )"

Let us compute the roots.

Rely(Opg39) =1— (1 —(1—¢))" =0
= (1-(1-9")=1
<= 1-(1—¢q)" =w (for w some kth root of unity)
= (1l-¢'=1-w
<= g =1—v (for v some [th root of 1 —w)

Let » and 6 satisfy 0 < r < 1 and 0 < 8 < 27, and let ¢ > 0. such that 0 <
r—er+e<1,0<60—¢ and 0+ ¢ < 2r. We will show that there is a w, a kth
root of unity, so that some v, an [th root of 1 — w, is in the small pie-shaped piece
{Re"lr —e < R<r+eand § —e < v < 0+ e}; this will show that the closure of
g = 1 — v is the unit disk centred at 1.

First, as the [ arguments of the [-th roots of a number are equally spaced out, for
all sufficiently large [ > L, we can ensure that the argument ~+ of some [-th root of

any nonzero number is in [0 — €, 6 + €.
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Second, the k-th roots of 1, running over all k, fill up the boundary of the unit
circle. So, if we consider 1 minus these values, the resulting complex numbers take on
values whose moduli are close to every number in [0, 2] as the unit circle gets shifted
right by one unit.

We can choose a k-th root of w such that (r — €)X < |1 —w| < (r 4+ €)%. Then
there is an L-th root, say v, of 1 —w such that r — e < |v| < r + ¢, and the argument
v of v lies in [# — €,0 + €]. As noted earlier, this implies that the closure of the roots
of two-terminal reliabilities of ©y) contain the closed unit disk centred at 1.

What about for the closed unit disk centred at 07 Let us consider the graph
G = Oy and replace every edge in G by a bundle of size m. The two-terminal roots
of G are the mth roots of the two-terminal roots of ©;). Since we know that the
closure of the two-terminal reliability roots of © are dense in the unit disk centred
at 1, we can choose roots whose moduli are close to every number in [0,1]. Then,
we repeat a process like the one above to get roots whose closure contains the closed

unit disk centred at 0. ]

To see a visual of this, see Figure 4.12 which shows the roots of Oy for [ and &

between 1 and 10, and then shows the mth roots of those for m between 1 and 10.

4.1.3 Roots Outside of the Disks

We have just seen that the closure of roots of two-terminal reliability polynomials
contains the unit disks centred at 0 and 1. We have also seen that there are graphs
that have reliability roots outside the two unit disks. For example, Rely(Cy, s,t;q)
with s and ¢ antipodal (see Example 1.0.2 on page 79) which has a root at 1 +
V2 & 2.4142135624. Various theta graphs (Example 1.0.4 on page 79) have roots
2.2066392629 and 1 + /2.

There also exist trivial operations we can use to produce graphs whose roots are
just as far out of the disks. For example, adjoining two graphs by identifying a
terminal from one with the terminal of the other. If one has a root outside of the two
unit disks, then since the resulting two-terminal reliability would just be the product
of the individual two-terminal reliabilities, this new graph would also have a root
outside of the close unit disks. However, are there any non-trivial operations we can

use to produce other such roots?
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(b) Plot of the mth roots of the two-
terminal roots of O with [ and k from
1 to 10

(a) Plot of the two-terminal roots of Oy
with [ and £ from 1 to 10

Figure 4.12: Illustration of the closure of the roots inside the two unit disks centred
at 0 and 1 by taking the mth roots of Oy

Path Addition

Consider the operation of taking a graph G with terminals s and ¢ and adding a
path of length & between s and ¢ (the following process is illustrated in a sequence
of figures in Figure 4.13). We would like to study the limit of roots of G. In [2],
Beraha, Kahane, and Weiss defined a limit of roots of a family of polynomials { P, }
to be a complex number z for which there exists a subsequence of integers (ny) and
complex numbers (z,,) such that z,,, is a root of P,,, and 2z, — z as k — oo.
The well known Beraha-Kahane-Weiss (BKW) Theorem states that if the sequence

of polynomials (f,,) are of the form
fn = Oéo)\g + al)\? + -+ Oém)\ln

with the o; being polynomials and the A; being polynomials, then the limit of roots

of f are precisely the complex numbers z such that
e one of the |\;(2)] exceeds the others and «;(z) = 0, or

e at least two of |\;(z)| are equal and bigger than the rest.
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The BKW Theorem also requires two non-degeneracy conditions: no «; is identically
0, and \; # wA; for any ¢ # j and any root of unity w.

Let us begin our sequence of functions by first taking Rely(G, s, t; ¢) where G is
any graph. Now, let’s add a path between s and ¢ of length 2 (we denote this by
G + P,). Using the Factor Theorem (3.6) on the first edge in the new path, we can

calculate the two-terminal reliability as
Rely (G + P, 5,t,q) = qRela(G, 5, 85.9) + (1 = ¢)((1 — q) + qRel2(G, 5,15 q)).

Indeed, if the first edge of the path fails, then the two-terminal reliability is the
same as if there were no path (as the remaining edge becomes a tendril and so does
not contribute to the reliability). If, however, that edge is operational, then we
can contract that edge. We are now in the case where the remaining edge is either
operational (and hence there is a path between s and ¢ so it is always reliable), or the
edge fails (in which case the reliability is the same as before). Let us try to simplify

this formula so that we can use induction later.

Rely (G + Py, s,t;q) = qRela(G, s5,t;9) + (1 — ) (1 — ¢) + qRela (G, s, 85 q))
= qRel2(G, s,t;¢)(1+ (1 — q)) + (1 — ¢)°

Let us now consider what happens if we add a path of length 3. Then

Rely(G + Ps, s,t;q) = qRely(G, s,t;q) + (1 — q)Relo(G + Py, s, t;q)
= qRely(G, 5,t;q) + (1 — q) [qRelx(G, s,t;¢) (1 + (1 — q)) + (1 — ¢)?]
= qRely(G,5,t;¢)(1+ (1 —q) + (1 —q)*) + (1 —¢)?

(1-¢q?—-1
(I—q)—1

= Rel?(G7 S, t; Q)(l - (1 - q)S) + (1 - Q)S

= qRely(G, s,1; q) +(1—¢)?

Proceeding by induction, we can formulate the reliability of adding a path of length
k (k> 3) as

Rely(G + Py, 5,t;q9) = Relo(G, 5, t;¢) (1 — (1 — )*™) + (1 — )"
== RelZ(G7 S, tu Q) ' 1k+1 + (1 - R612<G, S, tu Q)) ’ (1 - q)k+1'

Now, let us set ay = Rely(G, s,t;q) and as = 1 — Rely(G, s,1;q), as well as Ay = 1
and Ay = (1 — ¢). Using the first part of the BKW Theorem, if for some ¢, fo(q) =
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Rely (G, s,t;q) = 1, and |1 — ¢g| > 1, then ¢ is a limit of roots of Rely(G, s, t; q). From

searching all simple graphs of order 7, we are able to find a graph (see Figure 4.13a)

which has a two-terminal reliability root at approximately 2.587039432. Not only

this, but we have infinitely many graphs with roots tending to this (real) number.

(a) Original graph G with a two-
terminal reliability root approximately
2.5783146807

(¢) Graph G + P; with with a two-
terminal reliability root approximately
2.5853431258

(b) Graph G + P, with with a two-
terminal reliability root approximately
2.5923756643

DO
=)

(d) Graph G + Py with with a two-
terminal reliability root approximately
2.5870402488

Figure 4.13: Example of a sequence of simple graphs with a two-terminal reliability
root outside of the closed unit disk centred at 1 using a path addition. Terminals are

in blue squares.
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Gadget Replacement

In [26, p. 56], and later expanded on in [19], Cox introduced the notion of a gadget
replacement. The gadget replacement on a graph G with gadget H, denoted by
G[H], is the graph constructed by replacing every edge of G not by a bundle or a
path, but instead by an entire new graph, H. This type of replacement requires us
to fix two vertices in H, x and y, and then considers what happens if one replaces
an edge e = {v1, v} in G with a copy of H, where we identify v; = x and vy = y
(an example is illustrated in Figure 4.14). In the all-terminal case, edge e failing
corresponds to x and y not being able to communicate, but every vertex in the copy
of H being able to be connected to x or y but not both. Edge e being operational
corresponds to all vertices in the copy of H being connected in H.

However, when we move to two-terminal reliability, things become simpler. Con-
sider what happens if we replace not only one edge in G with another two-terminal
graph H, but we replace every edge — how does the two-terminal reliability get af-
fected? Operational edges in G correspond to their endpoints being able to communi-
cate in H, and edges failing correspond to the endpoints of these edges not being able
to communicate in H. Therefore, we can translate this by (1 — ¢) — Rely(H, z,v, q)
and g — 1 — Rely(H, z,y,q). Thus,

Rely(G[H], s,t;q) = Rela(G, s, t, (1 — Rely(H, 2,9, q))).
So, if 7 is a root of Rely(G, s,t; ¢), then any solution to
1 —Rely(H,z,y,q) =7

or

Relo(H, z,y,q) =1 —r (4.4)

is a two-terminal reliability root of G[H| with terminals s and t.

Let us consider now what happens if we use repeated gadget replacements on all
edges of a graph, say G = C,, with gadget, say H = Cj (see Figure 4.15 for an
illustration of this process, with terminals in each antipodal). We can calculate the

two-terminal reliability polynomial of Cy, with s and ¢ antipodal, to be

R612(04, Svt; Q) = 2(1 - q)2 - (1 - Q>4
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Using (4.4) for any two-terminal reliability root r of G, we get two-terminal roots of
G[H] by solving
20l—¢° -(1-¢q)'=1-r

Solving for ¢ we get as one of the roots of Cy4[Cy] with terminals s and ¢

g=1+1/1++/r. (4.5)

So if r = 14 /2, then ¢ = 14 /1 4+ /7 ~ 2.5980531825 is a root of C4[Cy] with
antipodal vertices.

What happens if we iterate? We consider what happens in the limit by setting
f(r) = 14+/1 4 /r and considering only fixed points. Solving f(r) = r++/1 4+ /r =

r results in the fixed point:

r—17=1++r
(r—17-10>=r
r—1)'=2(r—1)>*-(r—-1)=0
r=1)[(r-1°-20r-=1)-1)] =0

1117

(
(
(
(

One of the roots of this is

3+
2

B

~ 2.6180339887.

T =

Now, is this an attracting fixed point? By taking the derivative of f(r) we get
1
N W

We know that x is an attractive fixed point of f if | f'(z)| < 1 and is a repelling fixed

f'(r) =

point if |f'(z)| > 1 (see [51, pages 83-84] for a general discussion on fixed points, as

well as proof of this result). Evaluating we get
17((3+v/5)/2)| ~ 0.0954915028 < 1.

Therefore, r = (3 + v/5)/2 is an attractive fixed point. We can do some calculations
to see that if we start with a root at least r ~ 0.06, then after iterating through (4.5)
we will have a root tending to (3 + v/5)/2 ~ 2.6180339887.
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As an illustration, let us carry out some of the calculations directly. We start
with Rely(Cy, 1,3;q) = —¢* + 4¢> — 4¢> + 1 which has a root at 1 + /2. If we set
r = 14++/2 and then solve Rely(Cy, 1, 3; ¢) = 1—7 (which corresponds to doing a gadget
replacement with copies of Cy on every edge), then we get a root at approximately
2.5980531824. A summary of the first 10 iterations is shown in the table in Figure
4.16 (rounded to 10 decimal places). As we can see, it only takes about four iterations
to be accurate to within 4 decimal places. After 10 iterations, we are precise to 10
decimal places. For a full illustration of the plot of many possible roots of many
choices of r (not just taking the largest root, but considering all roots, stopping at
the first 10,000), see Figure 4.17. One can see that this type of operation seems to
produce a fractal! We are uncertain as to whether the fractal is connected or not, or

what other properties of these fractals might have.

4.1.4 Real Roots of Two-Terminal Reliability Polynomials

We can also study the location of the real roots of two-terminal reliability polynomials.
We know that in the all-terminal case, we have that the real roots are dense in
[—1,0) U {1} (see [14]). However, what can be said about two-terminal roots? We
know from Theorem 4.1.2 that the closure of the complex two-terminal roots contain
[—1, 2], but what about limits of real two-terminal roots? Certainly, such limits cannot
contain any real number in (0, 1) as the two-terminal reliability (of a connected graph)
is positive in this interval.

Can 0 be a limit of real two-terminal roots? Let us consider the theta graph O
once more with terminals s and ¢ extreme points. We have seen that its two-terminal

reliability polynomial is
Rely (O, 8, 5¢) =1 — (1 — (1 — ¢)")™. (4.6)

It is easy to calculate that at ¢ = 0 we have Rely(Oyp, 5,¢,0) = 1. However, what if
we take a number slightly smaller than 0, say —e? Then

lim (1 — (—¢))" = .

l—00

Therefore,

lim 1 — (1 — (—¢))' = —oc0.

l—o00
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Let us fix k to be even. Then

lim (1 — (1 — (—€))")* = 0.

[—o00

Finally, we get that
lim 1 — (1 —(1—(—€)")* = —oc.

=0

As clearly Rely (O, 5,¢,0) = 1 > 0, by the Intermediate Value Theorem, there must
be a real root in (—¢,0). It follows that 0 is a limit of real two-terminal roots.

The number 0 being a limit of real roots is not all that surprising as it happens
for the all-terminal case as well. However, we can also show that there is a real root
to the right of 2 that is a limit of real two-terminal roots (which is very different than
the all-terminal case).

Let us once again consider Rely (O, s,t;q). It is easy to show that, if [ is even
and fixed, and £k is even, say k = 2K, we have Rely(Oy2x1, 5,t;2) = 1 > 0. Now, what
happens if we take a number slightly larger than 2, say 2 4+ €? Let us choose [ even

and large enough so that € > 21 — 1. Then
(1—2+e)=(-1-¢">2
Then, let us take the limit of (4.6) as K tends to infinity:

lim (1 — (=1 —e)")*K = 0.
K—o0

And so
lim 1—(1—(1—(2+¢))* =~

K—oo

Therefore, by the Intermediate Value Theorem, there must be a real root in (2,2 +¢).
We draw the plot of the roots for various values of [ and k in Figure 4.18, which was
first seen in Figure 4.9 on page 83, but this time we let [ and k£ run between 1 and

10, and only include the real roots.

Two Terminal Inflection Points

Another property that we can study regarding two-terminal reliability polynomials is
the location of the inflection points in [0, 1]. In [15], Brown and Cox were able to use
a family of threshold graphs to show that the inflection points of all-terminal relia-

bility polynomials are dense in this interval. What about for two-terminal reliability
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polynomials? Cox showed in her PhD thesis [26] that they are, indeed, dense in [0, 1].
However, all of the graphs used had multiple edges and were without cut vertices. We
will show that the inflection points of two-terminal reliability polynomials are dense

in [0, 1] is true when restricted to simple graphs as well.

Theorem 4.1.3. Inflection points of the two-terminal reliability of simple, connected

graphs (without cut vertices) are dense in [0, 1].

Proof. Let us once again consider a generalized theta graph O with k paths of

length [. We know that its two-terminal reliability polynomial is given by
Relo(Oyp;q) =1 — (1 — (1 —q))~.
It will be convenient for us to do this proof in terms of p = 1 — ¢, and we consider

f(p) = Rela(Oyp), 8, ;p) = 1 — (1 — ph)*.

By the chain rule, f'(p) = —Rely(Op, s,t,1 — p) and f” = Rely (O, 5,t,1 — p), so
it suffices to show that the points of inflection of f(p) are dense in [0, 1]. Therefore,

its inflection points occur when

') = k(1= p)* 2 [ =)A= p') = I(k — 1)p']

changes sign. This occurs when (I — 1)(1 — p!) — I(k — 1)p' = 0 and so when

Therefore, we need only show that for any = € (0,1) and any € > 0 with ¢ < z and
x + € < 1 there exists an [ and k£ such that

(x—agfhgji§@+d. (47)

Suppose we do have such an x and €. Then (4.7) can be re-written in terms of k.

That is,

(=D +(x+e)

k>
= (z+e)

and

(I—1)+ (z —¢)
S e
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Therefore, it suffices to show that

- +@—e (-1 4+ (z+¢)
a—o  late - (48)

for some [ and k. Indeed, the left side is equal to

=D+ —(-1(=—¢
l(z =€)l (x + e€)!
MEUNEED B
l (x —€e)l(x + €)!
_(—1)2 {(m +l @+ )z —e)+ -+ (2 — )t
l (x —e)l(x +¢€)!
(I—1)2e I(z—e)lt
-l (z+elix—e)
(I —1)2€
(x —e)(x+e)b

By taking the natural log of this, we get
In(2¢) +In(l — 1) — In(x — €) — I In(x + ¢).

Now, since x and € are fixed, In(2¢), In(z—¢) and In(z+€) are as well. As In(z+¢€) < 0,
it follows that this expression tends to infinity, so that the left hand side of (4.8) is
eventually greater than 1. In other words, for sufficiently large [, we can choose an

integer k such that (4.7) holds, and we are done. O

As we can see, there are many similarities and differences between the all-terminal
reliability and the two-terminal reliability of a connected graph G. Though both
have a very similar shape when plotted on the interval [0, 1], their roots behave very
differently. Moreover, the underlying simplicial complexes are extremely different
(and only in one class of graphs do they coincide). This leads us to many open

problems, which we discuss in the following chapter.
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(a) An initial graph G (b) A gadget graph H

(c) A gadget replacement G[H]. The dot-
ted line indicates the edge that has been
replaced

Figure 4.14: An example of a gadget replacement



(b) First iteration of the gadget replace-

ment, 04[04]

(a) Initial graph C4 with antipodal ter-

minals
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(c) Second iteration of the gadget replace-

ment, Cy[C4[Cy]]

Figure 4.15: Example of a sequence of gadget replacements G[H| with G and H both

copies of Cy.

Iteration | Choice of r

Root with Largest Modulus

0

2.4142135624

2.4142135624

2.5980531824

2.5980531824

2.6161212065

2.6161212065

2.6178512906

2.6178512906

2.6180165422

2.6180165422

2.6180323228

2.6180323228

2.6180338297

2.6180338297

2.6180339736

2.6180339736

2.6180339873

QOO0 || U x| | | —

2.6180339873

2.6180339886

—_
S

2.6180339886

2.6180339887

Figure 4.16: An iteration of the first 10 gadget replacements of G[H] with G = C4
and H = Cy, both with antipodal terminals, as well as the chosen root r at each step
together with the two-terminal reliability root with largest modulus — all two-terminal

reliability roots shown are real numbers.
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1.51

LY

-0.51 Q

-1.51

Figure 4.17: Plot of the two-terminal roots of repeated gadget replacement on Cj.

+5
2

3
The limit root, , is a blue square.

Figure 4.18: Plot of the real two-terminal roots of ©;) with [ and k ranging between
1 and 10.



Chapter 5

Conclusion

Throughout this dissertation we have explored two types of network reliabilities — the
all-terminal reliability and the two-terminal reliability — with particular interest in
the location of their roots and their underlying simplicial complexes. In this chapter,

we will discuss which salient open problems have arisen from our work.

5.1 Open Problems In Reliability of Complexes and Matroids

There are still many questions open on reliability roots for complexes in general, and
matroids in particular. We have seen that the reliability roots of all matroids of small

rank (rank at most 3) are in the unit disk.

Problem 5.1.1. What is the smallest rank (or order) of a matroid with a reliability

root outside the unit disk?

The cographic matroids corresponding to the Royle-Sokal graph has rank 13 and

order 16, and is the smallest one we know.

It would be of interest to find other constructions (other than those raised in
Section 2.4) that produce reliability roots outside the unit disk, both for matroids
and other complexes. The most salient open question is how large in moduli can a

reliability root of a matroid be?
Problem 5.1.2. Are the reliability roots of matroids bounded?

It seems likely that they are bounded, perhaps even by 2, but of course there may

be some extremal families that have roots far outside the disk centred at 0.

We have seen that the paving matroids of rank 4 (and smaller rank) have roots

103



104

inside the unit disk. Almost all of the coefficients of the H-polynomial of paving
matroids are completely described — only the leading coefficient varies from one paving

matroid of order m and rank r.
Problem 5.1.3. Are the reliability roots of paving matroids always in the unit disk?

Paving matroids are widely believed to dominate all matroids (see [9, 27| for
example) — it has been conjectured [39, Conjecture 1.6] that almost all matroids of
order m are paving matroids. We have found throughout our work that the reliability
roots of matroids are rarely outside the disk centred at 0 (see Figure 5.1 for a plot of

all all-terminal reliability roots of all paving matroids up to order 8).

Figure 5.1: Plot of the all-terminal roots of all paving matroids up to order 8.

5.2 Open Problems on Rational Roots of Reliability Polynomials

Throughout Chapter 3 we saw that the rational roots of the all-terminal reliability of
connected graphs G is the set {—1,—1/2,...,—1/(n — 1),1}, and moreover, if —1 is
a reliability root, then G is not simple. However, there are still some open problems

that one could study.

Problem 5.2.1. Can we characterize which rational numbers can be reliability roots

of 2-edge connected or 2-connected graphs?
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The construction of graphs of order n with rational reliability roots in {—1/k :
1 <k <n-—1}U{1} requires the introduction of bridges to the graph, and hence the
examples are not 2-edge-connected. What if we restrict to 2-edge-connected graphs?
If we allow multiple edges, we can still attain the same rational roots by attaching
new vertices not by a single edge but by a bundle of at least two edges. However, what
if we insist on simple 2-edge-connected graphs? In this case, there may be rational
numbers missing from the reliability root set. For example, among all such graphs of
order 8, the rational reliability roots are 1, —1/2,—-1/3,—1/4,—1/5 and —1/7.

The question is even more interesting for 2-connected graphs, that is, those with-
out cut vertices. We do not know whether all of —1,—1/2,...,—1/(n — 1) can be
roots. Among simple 2-connected graphs of order n, the rational reliability roots may
be even sparser — for order 8, the rational roots are only 1,—1/2,—1/3,—1/4 and

~1/7.

Problem 5.2.2. What are the rational reliability roots of other forms of reliability?

In particular, the rational roots of two-terminal reliability?

For other forms of reliability, it seems much more difficult to determine the rational
reliability roots. Consider, for example, the two-terminal reliability for a graph G with
terminals s and t. From calculations on small graphs, it seems that the only rational
two-terminal reliability roots are 1 and —1, but an argument seems elusive.

The example of two-terminal reliability shows that for reliabilities other than all-
terminal, it may be the case that the roots of the smallest modulus are not rational. In
particular, for n = 3, one can verify that the only two-terminal reliability polynomials
are of the form

]- _qm7
(1—=¢™)(1—q™),
and

1— qml + qml(l _ qmz)(l _ qms) — qm1+m2+m3 _ qm1+m2 _ qm1+m3 + 17

where m, my, ms and mgs are any positive integers. In all cases, the only rational
roots are 1 and —1, but for m; = my = mgs, the third polynomial has a root at

(1—+/5)/2~ —0.6180.
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Problem 5.2.3. If the set of rational number roots for the all-terminal reliability
polynomials of all connected graphs of order n is only {—1,—-1/2,...,—-1/(n—1),1},

then what would the set of Gaussian rational numbers be?

Beyond the rational numbers, it might be interesting to ask what other complex
numbers might be reliability roots (in the all-terminal case). One could focus on
Gaussian rational numbers, that is, complex numbers of the form a + ib where a
and b are rational numbers. We have found a variety of Gaussian rationals (that are
not rationals) that are reliability roots; among simple graphs of order at most 8, the

following are all reliability roots:

1. -1 1. -1 2 -2 1. -1 1. -3 1. -3 2.
B T s e e
274 475 5 5 55 10° 10 10 13 ~ 13

If we ask only about those Gaussian rationals that are purely imaginary (i.e. a = 0),

then we can say that the set of such reliability roots contains
1. . e
iEz : k is a positive integer » ,

since, by replacing each edge in a graph G by a pair of parallel edges, the effect on
the reliability polynomial is to replace ¢ by ¢, so each root of the form —1/k? (say of
cycle Cyz11) yields two reliability roots, £4i. (We remark that the purely imaginary
reliability roots, with no conditions on the imaginary part, are in fact dense in the
interval between —i and ¢, as it was shown in [14] that the real reliability roots are
dense in [—1,0].) Whether the purely imaginary Gaussian reliability roots of graphs

of order n is the set
1

remains open.

Finally, for rational roots of the all-terminal reliability, we can consider what the
“second-best” root is. That is, if we are considering the root of maximum modulus,
then we know that 1 is always a root (and so it is very likely that it is the root with
largest modulus). On the other hand, if we are considering the root of minimum
modulus, then we know that occurs for the cycle graph C,, with the root —1/(n —1).

However, if we remove these roots from consideration, what’s the next best choice?
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Problem 5.2.4. Other than 1 and —1/(n — 1), what is the all-terminal reliability
root with largest modulus and smallest modulus, respectively? For which graphs can

these occur?

The former is quite difficult to answer as we have seen that there can be roots
with modulus larger than 1, and we do not know if there is a maximum. However,
the latter question seems to be quite interesting. Consider, for example, the table in
Figure 5.2 that lists the 6 graphs of order 8 with the smallest all-terminal reliability
roots. We see that the graph with the smallest all-terminal reliability root is Csg,
which we expect. However, what is a bit surprising is that all other graphs are either
cycle graphs with a leaf (that is, a vertex of degree 1), or a theta graph. Is this always
true? That is, for fixed n, is the second-best root of smallest modulus always C,,_;
with a leaf?

We can also ask many of these questions with regards to the reliability of complexes

and matroids.

Problem 5.2.5. What are the rational reliability roots of complexes or matroids?
When can —1 be a reliability root of these? Is there any insight into the structure of

certain complexes or matroids if they have —1 as a reliability root?

As we saw in Chapter 3, we were able to determine if a graph was not simple if
it had —1 as a reliability root. Right now, we do not know what the connection to

complexes or matroids would be.

5.3 Open Questions on Two Terminal Reliability

Roots and Limiting Curves

The most salient open problem in two-terminal reliability is whether or not there is
a class of graphs which have two-terminal reliability roots with modulus tending to
infinity. Here, we will find a class of graphs whose two-terminal roots do, indeed,
tend to infinity — sort of.

To begin, we recall the Beraha-Kahane-Weiss (BKW) theorem which states that

if a polynomial f is of the form

[ =aoAy + oA\ + -+ o\
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Graph

Reliability Polynomial

Root

Modulus

(1-¢q)"(7g+1)

—0.1428571429

0.1428571429

(1—q)"(6¢+1)

—0.1666666667

0.1666666667

(1—¢q)"(5¢ +1)

—-0.2

0.2

(1—-¢)"(19¢* + 7+ 1)

—0.1842105263 — 0.13674085321

0.2294157338

(1—q)"(18¢* + 7+ 1)

—0.1944444444 — 0.13321754231

0.2357022604

—F D 0¥ <X (F (U

(1-q)"(4g+1)

—0.25

0.25

Figure 5.2: The 6 graphs of order 8 with the smallest all-terminal reliability roots
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then the limit of roots of f are precisely the complex numbers 2z such that
e one of the |\;(2)| exceeds the others and «a;(z) =0, or

e at least two of |\, (2)] = |Ni,(2)] = -+ = |\i,_,| > |\, (2)] including the case

where all \;’s are equal.

Consider now the complete graph K 1, with s and ¢ in the single bundles (see Figure

5.3). Then the two-terminal reliability (in p) is

Rely(s,t,p) =p+ (1 —p)(1 — (1 —p*)")
L1 (1) 65.1)

Indeed, either the edge between s and ¢ is operational, or it has failed and then a path
on two edges between s and t is operational. We can see that this satisfies the form
for the BKW Theorem with a3 = 1,0 = (p — 1), \; = 1, and Ay = (1 — p?). Using
the first part of the BKW Theorem does not result in any limit points. Therefore,
we only need to consider the case where both A; and Ay are equal.

Suppose [p?—1| = 1. We know that the solutions to this will be the same solutions

as the squaring of both sides. That is,
P’ -1 =1
Let us write p = a + bi. Then the modulus is

P’ =17 =1 = |(a+bi)*— 1" =1
= |(a® = b — 1) + (2abi)|* =1
= (a® —b* —1)* + (2ab)* = 1
= a' + b+ 1 —2a°0* — 2a® + 2b° + 4a’h* = 1
= a’ +b" + 2a°6* — 2a® + 20 =0
= (a® +b*)? —2a> +2* = 0
This is in the form of the Lemniscate of Booth (also known as a hippopede, see [37])

which is (22 + 4?)? — ca? + dy* = 0 where ¢ and d are positive. Plotting this limit
curve, we see that the shape of the roots tend to the infinity symbol (see Figure 5.4
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Figure 5.3: Example of the complete 3-partite graph K ;4

Pure or Shellable Two Terminal Simplicial Complexes

We saw in Chapter Four that we were able to classify when the two-terminal complex
Cs+(G) is a matroid (i.e., is a bundled path between s and ¢, possibly with irrelevant
edges called a tendril, 7). Furthermore, we know that a matroid is both pure and
shellable. However, other than this one class of graphs, we do not know the structure
of Cs+(G). It seems natural to generalize this to both pure complexes, as well as

(possibly non-pure) shellable complexes. We shall start with pure complexes.

Problem 5.3.1. When is the underlying two-terminal simplicial complex of a con-

nected graph G with terminals s and ¢ a pure complex?

This question in and of itself is interesting as, since the facets of Cs.(G) are
sets of edges whose removal leaves s and t connected, each facet is in a one-to-one
correspondence with paths between s and ¢. Therefore, C,,(G) is pure if and only if
every path between s and t is of the same length. Let us try to determine when this
is the case.

Let P,; be the collection of paths between s and ¢, and consider any two paths
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Figure 5.4: Plot of the roots of K 1, for n from 1 to 20 (red), and the Lemniscate of
Booth (a? 4 b?)? — 2a? + 2b* = 0 (blue)

p1,p2 € Py which connect s to t. We will show that there are no other edges with
one endpoint strictly in p; and one endpoint in p, (though we do allow edges that
are common to both paths, or bundling edges). We first consider the symmetric
difference of p; and ps (thus, removing all edges that p; and p, have in common).
One observation is that this results in (potentially disjoint) cycles where one path
of the cycle is strictly from p;, and the other path of the cycle is strictly from ps.
Therefore, let us consider one of these cycles, call it C, and denote the aforementioned
paths ¢; and ¢; (so ¢; C p; and ¢ C po), and let vg and vy be the vertices where ¢

and ¢y meet (see Figure 5.5).

Figure 5.5: Example cycle decomposition of p; and py

We first note that both ¢; and ¢, must be of the same length. Indeed, suppose
the contrary. Then since p; and py are of the same length, the sum of all of the paths
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c1,; (that is, the edges in all cycles C; that are strictly in p;) and the sum of all of
the paths cy; must be equal. However, if, say, ¢;; and co; are of different lengths,
(without loss of generality suppose that ¢;; is shorter), then if we first traverse along
p1 up until v,;, then instead traverse across cy; to vy;, and then continue along p;
to ¢, then this would be another path in F;; but of strictly longer length; a clear
contradiction. Therefore, ¢; and ¢, must be of the same length, call it k.

Now we would like to show that there cannot be any other edges from any other
path in P, that can strictly connect ¢; to ¢z (i.e., connects a vertex that is strictly in
¢1 to a vertex that is strictly in ¢9). First, let us label the vertices of ¢; v;,1 <@ < k—1,
and label the vertices of ¢y u;, 1 <17 < k — 1. Suppose that there does exist an edge,
call it e, between c¢; and cy;. By a similar argument as above, the edge must only
create an alternate path between v; and v; of length k. Suppose that one endpoint
of e connects to vertex v;, 1 < i <k —2 (i # k — 1 as otherwise the only vertex it
can be connected to would be v; which isn’t strictly contained in ¢). Since e clearly
counts as an edge in this new path, the other vertex must be connected at u;, where
i+ 14 (k—j) =k and it follows that i + 1 = j. This creates a path of length k
by first travelling along c; until we arrive at v;, then travel across e to u;, and then
travel to t (see Figure 5.6 with k = 6,7 = 3, and so j = 4). However, if we first
travel to u;, then along e to v;, then to v, call this path p/, then this has length
j+1+(k—(j—1)) =k+2> k. Another contradiction.

U3

Figure 5.6: Example of an edge e (red with two dashes) intersecting two paths of
length £ = 6 at v3 and v,.

Therefore, if we take any pair of paths between s and t and take their cycle-

decompositions, then there cannot be any alternate edges between these cycles.
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This also leads us to another open problem.
Problem 5.3.2. Consider the following two operations:

1. Replace an edge by a bundle (thus creating a generalized theta graph with each
branch length 1);

2. Replace an edge by a path. If the edge is in a branch of a generalized theta
graph, then one edge in all parallel branches must be replaced by a path of the

same length.

Is it true that every graph whose two terminal reliability complex is pure will appear

after repeated application of the above two operations, starting with K7

It is easy to see that both of these operations maintain purity. However, are these
the only two operations needed to generate all graphs with a pure C,;(G) complex?
For instance, let us consider the example in Figure 5.7. We start by setting Gy = K»
(Figure 5.7b). Next, let us perform operation 2 on the red edge, thus creating a path
of length 2 — call this new graph G; (Figure 5.7c). Next, we perform operation 1 on
the blue edge to create a bundle of 3 edges (thus creating a generalized theta graph)
— call this graph G (Figure 5.7d. Then, performing operation 2 on all green edges
(as, since each edge is in a generalized theta graph, we need to do the same operation
to one of the edges in each branch) — call this graph G3 (Figure 5.7e). Performing
operation 1 on the purple edges yields G4 (Figure 5.7f), and then finally performing
operation 2 on the orange edges yields the desired graph whose two-terminal complex
is pure (Figure 5.7a).

If we are able to show that all graphs whose two-terminal complex can be built up
in this way, then perhaps we can use the structure of these graphs to produce bounds
on the F- or H-vectors of C;;(G). Doing so would allow us to study the two-terminal
reliability roots of this class of graphs.

We can also apply the same reasoning to study (non-pure) shellable complexes.

Problem 5.3.3. When is the underlying two-terminal simplicial complex of a con-

nected graph GG with terminals s and ¢ a shellable complex?



(a) Graph with a pure two-terminal com-
plex

(c) Replace red edge in Gy by a path of
length 2, and call this graph G

O

(e) Replace all edges in the green theta
graph of G2 by paths of length 2. Call
this graph Gs.

114

(b) Start with a K5 and call it Gg

(d) Replace blue edge in G by a bundle
of 3 edges — creating a generalized theta
graph. Call this graph G»

/7._.

(f) Replace purple edges in G3 by a bun-
dle of 3 edges. Call it Gy4.

Figure 5.7: Example of an iteration through the two pure-complex operations
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Since the facets of Cs;(G) are sets of edges whose removal leaves s and ¢ connected,
each facet is in a one-to-one correspondence with paths between s and ¢t. Therefore,
perhaps we can find sufficient conditions on the paths of a graph to force a shellable
Cs.+(G). Unfortunately, a proof eludes us at the moment, but we do have the following

conjecture

Conjecture 5.3.1. C,.(G) is shellable if each path between s and t can be ordered
D1y, Pn Such that p; = (pi—1 \ e)Ue; fore € E(pi_1),6; C E(G),e € €;, and |&] =1
or 2 fori > 2.

In other words, every path can be ordered such that every path p; is the previous
path p; with exactly one edge removed, e, and then either a path of length one or
two, €;, replacing e. An example of this, see Figure 5.8, is taking the wheel graph Wj
(which is the cycle graph C5 with every vertex connected to a central fourth vertex),
setting s as one vertex in the cycle and ¢ as the center vertex, and then removing
one edge adjacent to s (see Figure 5.8a). Then, if we take the order as shown in the
table in Figure 5.8b, it can be seen that its two-terminal complex (see Figure 5.8¢)
is precisely the (non-pure) shellable complex we saw earlier in Example 1.2.3 (see
Figure 1.11b on page 14).

We note that this is, indeed, a proper subset of the class of graphs whose two-
terminal complex is shellable, as a cycle graph on n vertices with adjacent terminals
will always be shellable regardless of the length of the path (which is n — 1). Indeed,
since the facets, say oy and oy with dim(oy) = 1 and dim(oy) = n—1, have intersection
o1 N oy = () which is of dimension 0 =dim(oy) — 1, this would be proper shelling for

a non-pure shellable complex.

Some observations we can make with regards to shellable two-terminal complexes

are:

e Since we would require the facets of C,;(G) to be ordered oy, ..., 04 such that
m—1
(U)n=
j=1

are all pure (dimo,, — 1)-complexes for all m = 2,...,d with o; in descending



€1

€4

(a) The graph W less an edge with termi-
nals s and ¢ whose two-terminal complex
is shellable
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Path | Corresponding Facet
€1 €2€3€4€5
€9€3 €1€4€5
€2€4€5 €1€3

(b) The (s,t)-paths of the graph in (a)
listed in ascending order, and their corre-
sponding facets (listed in descending or-

der)

3

(¢) (Non-pure) shellable two-terminal
complex of the graph in (a)

Figure 5.8: Example of a graph whose two-terminal complex is (non-pure) shellable



€4

€1 €2 t

(a) Example of a graph whose two-
terminal complex is shellable with two
paths that differ by a 3-path replacement.
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(&5 €4

€2
€6

€1 t

(b) Example of a graph whose two-
terminal complex is not shellable with
two paths, ps and ps, that differ by a 3-
path replacement.

Figure 5.9: Example of two graphs with a 3-path replacement. (a) is shellable,

whereas (b) is not

order, and o; are in one-to-one correspondence with the paths p; (in fact, they

are complements of each other), then p; would need to be in ascending order.

If p; is p;_1 with one edge replaced by three edges instead of one or two, then
0;, 0;_1 may not be a valid ordering of facets for a shelling. For instance, consider
the graphs in Figure 5.9. We can see that the paths from s to ¢ in Figure 5.9a are
p1:eq,ep and py o eq, es,eq, e5. Therefore, the facets (written multiplicatively)
of Cs41(G) are o1 = egeqes and 09 = ey. Since 03 N oy = () is of dimension
0, and o9 is of dimension 1, this is a (non-pure) shellable complex. However,
considering that the paths of the graph in Figure 5.9b are p; : e1, ps : €5, €3, and
D3 @ €y, €5, €6, the facets of Cy;(G) are eseseseseq, e1esese6, and ejeges. One can
verify that Fy Moy satisfies the shelling property, but (07 Uoy) Moz does not (as
it intersects Fj in dimension 2 — one lower than its dimension — but it intersects
09 in dimension 1). Thus, (o1 U o) N o3 is not a pure 2-dimensional complex
(as any other shelling order would not be in descending order with respect to

dimension).

What is nice about this conjecture is, if it is true, then restricting the size of ¢; to

only being 1 results in a two-terminal complex that is both shellable and pure. We

know that if C is a matroid then it is both pure and shellable, but in general not all

pure and shellable complexes are matroids. However, in our case, this seems to be
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precisely the same class of complexes.
Conjecture 5.3.2. If C;+(G) is pure and shellable, then it is a matroid.

If Conjecture 5.3.1 is true, then C;(G) being shellable would imply that it would
satisfy the path conditions therein. Furthermore, if it is pure, then every path needs
to be of the same length. The only way this can happen is if |¢;] = 1 for all 7 (as
otherwise, if there is a collection of edges ¢; of size 2, then there would be two paths
where we can replace one edge of the first path by two edges of the second path; a
clear contradiction). Therefore, if every path between s and ¢ differs by exactly one
edge, then G must be a bundled path (possibly with irrelevant edges). By Theorem

4.1.1, the underlying simplicial complex would be a matroid.

We have seen that, while all-terminal and two-terminal reliabilities lead to what
may seem to be elementary mathematical functions — polynomials with integer coeffi-
cients — their roots and underlying simplicial complexes are nontrivial and intriguing.
There are many easily stated open problems that will undoubtedly be the source of

future work for those inside combinatorics and outside as well.
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Appendix A

Required Packages
with(GraphTheory) .
with (combinat)
with(plots) :

Complex Procedures

Input: a sct of faces (as sets)
Qutput: a list of faces
complx i=proc(Ist)
local S, i:
S={}:
for i from 1 to nops (Ist) do

S = S union powerset(Ist[i]) :
od:
convert(S, list);
end:

card =1 — nops(I) :

Input : a list of faces of a complex
Qutput : alist of faces organized by dimension.
siratify == proc(c)
local d, fuces, i, flist, j :
fist = NULL -
d = max (seq (card(c[i]), i=1 .nops(c)));
for i from J to d do
Juees = NULL .
for jfrom 1 to nops(c) do
if card(c[j]) =i then
Jaees = faces, ¢[j]
fi
od:
Sist = flist, [ faces]:
od:
[Aist];

end:

Input : a list of facets of a complex
Qutput : a boolean true if the complex is pure
isPure =proc(c)
local 4, i:
d = nops(c[1]):
for i from 2 to nops(c) do

if nops (¢[i]) # d then

RETURN ( false);

fi
od:
d,

end:



Input: alist of faces of a complex
Qutput : a boolean true if the H — vector is all nonnegative
testHvector '=proc(C)
local i, i:
h = hpoly(C) :
for i from 0 to degree(h, x) do
if coeff (h, x, i) < 0 then
RETURN ( false);
fi:
od:
fride,
end:

Input: alist of facets of a complex
Qutput : a boolean true if the complex is shellable
isShellable == proc(/st)
locald S, i T.F, C:
= complx(Ist) :
if testHvector (C) = false then
RETURN ( false) :
fi
d = nops (convert(Isi[1], list)) :
8 = convert(complx([Ist[1]]), set) :
for i from 2 to nops (Is1) do

T = convert(converi(complx([Ist[i]]), set) intersect S, list) :

F o= fus(T):
if isPure (F ) = false or isPure(F ) #+ d — | then
RETURN ( false);

fi:

S = S union convert(complx([Ist[i]]), set) :
od:
frie,
end:

Input: aset of vertices and a permmuitation
Qutput : a set of sets that have been permuted
permuteSet :==proc(S, prm)

local rewsS, 5 :

newsS = NULL .

for s in S do

sewsS == newS, prm|[s]:

od:

{rewS},

end:

Input: aset of vertices and a permutation
Qutput : a set of sets that have been permuted
permuteSels =proc(F, prm)
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local newF_ S:
newl = NULL :
forSin 7 do
newl’ == newl’, permuteSet (S, prm)
od:
{newl'};
end:

Input: asect of vertices
Qutput : the mumber of vertices to permute
allPermuteSets =proc(F, n)
localp, 7, i, prm :
p = permulie(n) :
=% 34

for i from 1 to nops(p) do

prm = pli]:

T == T union {permuteSeis (F,prm)}:
od:
T,

end:

Input : alist of faces
Qutput : the facets of the complex
ComplexFacets == proc( fList)
local i, j. k, I, Facefl.ist, Facel ist,
Facel .ist = flList,
Faced ist == NULL,
for i from 1 to nops (FaceList[nops (FaceList)]) do
Faced.ist = Faceil.ist, Facel.isi[nops (Facel.ist) ][],
od;
forj from 0 to nops (FaceList)-2 do
for & from | to nops (FaceList[ (nops (FaceList)-1)
for /from 1 to nops (FaceList[ ( (nops (FaceLwI -
if “subset’ (FaceList[ (nops(FaceList)-1)=j][k],
1][Z]) then
break;
fi;
if I = nops (Facelist| ( (nops (Facel.ist)-1)-7) + 1]) then
Facell.ist = Facetl ist, Facel.ist] (nops (Facel.ist)-1)-j][ k],
fi,
od;
od;
od;
return [Facetlist],
end:

7]) d
1)-j + 1]) do
Fa ceLm‘[ ((nops(FaceList)-1)=j)

Input: agraph G
Qutput : the faces of the two — terminal complex of G
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TTComplex == proc(G, u, v)
local V, n, E, S, s, H, i, faces, EdgesLabelled Edgesl.abelledSet, SLabelled EdgeSet tempS :
V = Vertices (G) :
n:=nops(V):
E = Edges(G) :
print(DrawGraph (Graph( {seq([Edges(G)[i], i) i= 1. .nops(Edees(G)))}), style = spring));
Edgesl.abelled = [seq(i, i = I.nops(£)) ]
Edgesl.abelledSet := converi(Edgesl.abelled, set);
SLabelled = powerset(EdgesLabelled);
faces = {{ }};
for s in SLabelled do

EdgeSet = [ |

forifrom 1 to nops(s) do

EdgeSet == [EdgeSet[ | E[s[i]]]:

od:

H = Graph(V, convert(EdgeSet, set)) :

if Distance (H, u, v) < infinity then

tempS = convert(s, set) :

Jaces = faces| |, EdgesLabelledSet minus temps :

fi:

od:

return [ ComplexFacets (stratify ( {faces } ), false), stratify ( { faces}) |
end:

Matroid Procedures

Input: aset of facets
Qutput : a boolean true if the facets form a matreid
checkMatroid :==proc(s)
local 5!, j k x, v, Bl, B2, B, flg;
51 = convert(s, list) :
for j from 1 to nrops(sl) do
for k from 1 to nops(si) do
if j # k then
Blw=s1[j]:
B2 = s1[k]:
for x in B/ minus B2 do
Ao = false :
for y in B2 minus B/ do
B = (Bl minus {x}) union {y}:
if member (B, s) = true then
Ag = frue:
break:
fi:
od:
if flg = false then
print(BI, B2, x);
RETURN ( faise) :
fi:
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od:
fi:
od:
od:
fride :
end:

Input : alist of facets of a matroid
Qutput : a sct of facets of a matroid
convertMatroidToSets =proc(mairoid)

local i,

[seq (comvert(matroid|i), set), i =1 ..nops (matroid)) |,
end:

Input: aset of facets of a matroid
Qutput : a boolean true if the matroid is paving
checkPaving =proc (M)
local e, N, I, i
¢ = stratify(compix(M) );
N = nops(c[2]):
k= nops(c):
forifrom3tok— 1 do
if nops (e[i]) # binomial (N, i — 1) then
RETURN ( false);
fii
od:
return #iue,
end:

Plotting Procedures
Input : alist of roots (possibly complex)
Qutput : a plot of the roots
PlotRoots =proc(rts)
local g, realMin, realMax, imMin, inMax, i, v, im, p
g == NULL :
realMin = o ;
realMax == - o0
imMin == oo :
imMax =- o :
for i to nops (ris) do
ri=R(res[i]):
im = F(res[i]):
q=q,[r,m]:
if » < realMin then reaiMin = r fi.
if r > realMax then realMax == rfi
if im < imMin then imMin == im fi
if im > imMax then imMax = im {i
od:
p = plot(|q], realMin-1 .realMax + 1, imMin-1 .imMax + 1, stvle = point, symbol = circle, scaling



= constrained, color = red) :
end:

Polynomial Procedures

Input: asect of facets

Qutput : a multivariate version of the reliability polynomial

mgen *=PpProc(s)

local ¢, r, face, I, v, V, prd, Ist

¢ = compix(s):
ri=0:

V :=union(seq(s[k], k=1 .nops(s))):
for face in ¢ do

prd=1:

for vin ¥ do

if member (v, face) then

prd = prd-q”v:

else:
prd = prd'pHv:
fi:
od:
ri=r+prd:
od:
Ist == NULL :

for vin ¥ do
Ist = Ist, p||v. q||v:

od:

ist == [Ist]:
unapply (r, Ist),
end:

Input : a (weighted ) graph with two terminals
Qutput : the two — terminal reliability polynomial (inp)
Twol erminalReliability i=proc(G1, u, v)
local V, E n_k Gdel, Geon, w, Veon, ul, e, sm, x, G -
G = CopyGraph(G1) :
V= Vertices(G) :
E = Edges(G):
ni=nops(V):
if nops (E) = 0 then
RETURN (0);
fi
sm =0
for x in " do
ifx # v and x 5 vthen
sm = sm + Degree(G,x) :
fi
od:
it sm = 0 then
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if not member ({u, v}, E) then
RETURN (0);
else
k= GetEdgeWeight (G, {1, v}):
RETURN (1 — (1 —p)");
fi
fi:
if Distance (G, u, v) = infinity then
RETURN (0):
fi:
forein Z do
if nops (e intersect {iz, v}) =0 then
k= GetEdgeWeight (G, e) :
Gdel = DeleteEdge (G, e, inplace = false)
Gceon == Contract(G, e) :
RETURN (1 — p)*-TwoTerminalReliability (Gdel,u, v) + (1 — (1 —p)")
-TwoT erminaiReliability(Geon, u, v) ),
else
if nops (e intersect {z, v}) = 1 then
w = op(l, {u, v} minus e) :
k= GetlidgeWeight(G, ¢)
Gdel »= DeleteFdge (G, e, inplace = false)
Geon = Contract(G, e) :
Veon :== Verfices (Geon) :
ul = op(1, e intersect convert(Veon, set)) :
RETURN( (1 — p)*-TwoTerminalReliability(Gdel, u, v) + (1 — (1 — p)¥)
-TwoT erminalReliability (Geon, ul, w) ),
fic
fi:
od:
end:

Input: atwo — terminal polynomial in p
Qutput : the corresponding two — terminal polynomial in g
TwoTerminalReliabilityg =proc(G1, u,v)

expand (subs (p =1 — q, TwolerminalReliability(G1,u, v)));
end,

Input : a number of vertices
Qutput : the corresponding all — terminal polynomial in q
alitermeomprel *=proc(n) options remember,
localj, s :
if =1 then
RETURN (1) :
fi
if 7= 2 then



RETURN (1 —g¢g):
fi:
si=0:

forjfrom1lton—1do

s = s + binomial (» — 1,5 — | )-aHZermcomprel(j)-qj'm —I).
od:
expand(l — s);
end,

Input: a number of vertices and the number of terminals
Qutput : the corresponding K — terminal polynomial in g
ktermeomprel '=proc(n, k) options remember,
local s, §:
si=0:
for j from & to » do

§ = 5 + binomial (n# — &, j-k) -alltermcomprel ( f) -qj'(n =),
od:
expand(s);
end,

Input : a stratified list of faces of a complex
Qutput : the corresponding F — polynomial
FVectorComplx :=proc(C)
local i, j, index.ist '= [ ], fPoly;
for i from I to nops(C) do
indexList == [indexList] ], nops (C[i]) ]
od,
fPoly 1= 0;
for j from / to nops (C) do
fPoly = fPoly + indexList[j]-(x) ~*;
od,
return jPoly;
end:

Input: an F — polynomial
Qutput : the corresponding H — polynomial
HVectorfromF =proc(FPoly)
local d = degree(FPoly, x), fooly;
X

Jpoly = sz}npl{sz{(l —x]d-subs [x e, _x,FPoZyJ};

return fpoly;
end:
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