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Abstract

We contribute to the development of the growth theory in economics, using mathe-

matical and statistical tools. In particular, we employ various techniques rooted in

the theory of Hamiltonian systems on Poisson manifolds, jet bundles theory, calculus

of variation, and statistical data analysis to study the properties of the Cobb-Douglas

production function as an invariant of the one-parameter Lie group action determined

by exponential growth in factors (capital and labor) and production. This approach

is extended to more general models determined by logistic growth and the Lotka-

Volterra type interactions between factors. The resulting new production functions

are shown with the aid of statistical methods to provide a good fit to the current

economic data.
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Chapter 1

Introduction

As is well known, production functions are commonly used in both macroeconomics

and microeconomics models because they have a number of convenient and, as is

widely believed, realistic properties. By definition, they relate the quantities rep-

resenting physical inputs (e.g., land, capital, labor) to the quantities representing

output of goods. In fact, many models are largely determined by the mathematical

properties and parameters of the production functions involved. For example, the

elasticity of substitution between capital and labor is one such a parameter that is

derived from the form of a particular production function.

Recall that in 1928 Charles Cobb and Paul Douglas published their seminal paper

[27] dedicated to the study of the data for the US manufacturing sector for 1899-1922.

Their ultimate goal was to determine how the variations of the elastisities of labor

and capital affected the distribution of income (see Douglas [31] and Samuelson [103]

for more details and references). The authors plotted the statistical series for the

labor force (L), the stock capital (K) and the resulting product (Y ) on a logarithmic

scale and concluded that a function of the form

Y = f(L,K) = ALkK1−k (1.0.1)

could be fitted to this data. Using statistical methods, Cobb and Douglas found the

coefficients k and A in (1.0.1) to determine the following production function

Y = f(L,K) = 1.01L.75K .25 (1.0.2)

that fitted to the data very well. See Samuelson [103] to learn about the use and

derivation of the function (1.0.1) by Wicksell, Wicksteed, and Wilcox prior to 1928.

1
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Roughly speaking, the Cobb-Douglas function (1.0.1) can be easily derived under

the assumptions that there is no production if either capital or labor vanishes, the

marginal productivity of capital is proportional to the amount of production per unit

of capital (i.e., ∂Y
∂K

= α Y
K

), and the marginal productivity of labor is proportional to

the amount of production per unit of labor (i.e., ∂Y
∂L

= β Y
L

).

Later, Ruzyo Sato [107] developed the theory of technical change and economic invari-

ance, in which a production function was an output obtained within the framework

of a model. In particular, the author and his collaborators have derived the Cobb-

Douglas production function as a consequence of the exponential growth in factors

(capital and labor) and production.

In this thesis we continue the development of Sato’s theory by changing the assump-

tions about the Lie group theoretical properties of the technical progress representing

the growth in factors.

The first goal is to use the existing model to develop a new mathematical paradigm

that can be used to study the current state of economy. Accordingly, in what follows

we will modify the economic growth models described by Sato within the framework of

the Lie group theory according to the present economic realities [8]. More specifically,

we will replace in a neoclassical growth model in the sense of Sato (G,R2
+), where

R2
+ = {(K,L)|K,L ∈ R+}, a group G representing an exponential growth with

another one-parameter Lie group that describes a logistic growth:

G : exponential growth → logistic growth.

This idea is currently being exploited and developed from different perspectives and

in different directions quite extensively in the literature by economists and mathe-

maticians alike (see, for example, [1, 2, 18, 19, 21, 23]), which is quite natural, given

that the resources on our planet are limited. We will show that this approach can

be used to derive other production functions whose properties are determined, for

example, by logistic growth in factors, the presense of additional contributing factors

(say, debt), nonlinear interraction, etc.
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Our second goal is to extend the applicability of the method used to derive the pro-

duction functions in Chapter 3. More specifically, we will enlarge the set of available

tools that can be employed to derive production functions, ranging from data analy-

sis [27, 31] to symmetry and Lie group theory methods [107, 110], by incorporating

a Hamiltonian formalism into the theory. In this view, the use of the Hamiltonian

methods appears to be a natural next step and it is our contention that the theory

can be further developed at this point by recasting its setting within a Hamilto-

nian framework. More specifically, we will redefine the existing models presented in

Chapter 3 and introduce a new one by presenting them as a special case of the gen-

eral n-dimensional Lotka-Volterra model in population dynamics (see, for example,

Kerner [65] and the relevant references therein). This model is given by the following

formula:

ẋi = xi

 
bi +

nX
j=1

aijxj

!
, i = 1, . . . , n, (1.0.3)

where the linear terms describe the Malthusian growth (or decay) of the species in

question x1, . . . , xn in the absence of interaction (i.e., when the parameters aij all

vanish), while the quadratic terms tell us about the binary interaction between the

species, assuming spatial homogeneity. More specifically, aij = 1
βi
αij, where βi is

Volterra’s “equivalent number” parameter that has the meaning of mean effective

biomass of the individuals in the ith species, while αij is normally assumed to be a

skew-symmetric matrix representing the interaction strength of species i with species

j [65]. We recall that the Lotka-Volterra systems with vanishing linear terms (i.e.,

when bi = 0, i = 1, . . . , n in (1.0.3)), as well as their integrable perturbations are an

important and well-studied topic in the field of mathematical physics, in particular,

they appear as discretizations of the KdV equation (see, for example, Bogoyavlenskij

et al. [13] and Damianou et al. [122] for more details and references). Furthermore,

Plank [95, 94] (see also Kerner [66]) studied general n-dimensional Lotra-Volterra

systems from the Hamiltonian viewpoint and found bi-Hamiltonian formulations for

the 3-dimensional model (1.0.3).

Our next goal in this thesis is to revisit the Cobb-Douglas production function con-

troversy described in Chapter 5 and discuss its legidimacy from a mathematical view-

point that extends the approach to the growth theory established by Sato [107] (see
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also Sato and Ramachadran [110]). Specifically, we will review the data studied by

Cobb and Douglas in [27] from the viewpoint of a mathematical model based on the

assumption of exponential growth in factors and the corresponding output that orig-

inated in Sato [107] to explain its relevance and the properties of the corresponding

Cobb-Douglas production function (1.0.2). Our main conclusion in this respect is

that Cobb and Douglas in [27] did derive “a production function”, but not “the pro-

duction function”. In fact, one can determine a whole class of production functions

of the Cobb-Douglas class (3.0.1) that can be fitted to the 1928 data investigated

by the authors. Based on our findings, we certainly agree with Samuelson [103] who

expressed serious doubts that the choice of the form of the production function (1.0.1)

was uniquely determined by the specific data studied by Cobb and Douglas in [27].

At the same time we are convinced that the function (1.0.1) with the coefficients

specified in (1.0.2) is a legitimate production function (i.e., a function that relates

the quantity of factor inputs of labor and capital to the amount of output in manufac-

turing) that can be fitted with good accuracy to the data for the US manufacturing

sector for 1899-1922 used by Cobb and Douglas in [27].

A production function also plays an important role in various economic growth mod-

els. An example of the application of a production function is the celebrated Ramsey-

Cass-Koopmans model [109, 99, 25, 70, 93] initially introduced by the British mathe-

matician Frank P. Ramsey [99] in 1928 to investigate the optimal savings of a country.

He aimed to determine the consumption level at which the country can attain the

maximal social welfare. His contribution did not receive much attention until the

1950s. In 1956 Samuelson and Solow [104] extended the Ramsey model and con-

sidered it from viewpoints of a different mathematical formalism. The model was

further modified and completed by Cass [25] and Koopmans [70], at which point it

was named the Ramsey-Cass-Koopmans model.

At the core of the Ramsey-Cass-Koopmans model and its generalizations is a pro-

duction function Y = f(K,L), normally of the Cobb-Douglas type (3.0.1), where the

factors K and L represent capital and labor respectively. The function Y is required

to satisfy the so-called Inada conditions [60]. From a mathematical standpoint, the

Ramsey-Cass-Koopmans model and its generalizations, for example, the Solow-Swan
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economic growth model [120, 126], are governed by a single nonlinear differential

equation or a system of such equations that describe the evolution of per capita

capital stock, consumption, etc. We formulate a new variational problem based on

the Ramsey-Cass-Koopmans model by considering the production function derived

in Section 3.3 and incorporating a new factor, debt D.

The thesis is organized as follows. In Chapter 2 we review the requisite theoreti-

cal background. In Chapter 3 we lay the groundwork for the introduction of a new

growth model and derivation of new production functions. Specifically, we review the

Lie group approach introduced in [107] and employ it to rederive the Cobb-Douglas

function (1.0.1). We depart from the growth model described by Sato based on ex-

ponential growth and introduce instead a new one — based on the assumption that

factors grow logistically and derive a new production function (3.3.14) within the

framework of the growth model (3.2.7). We also explain, using mathematical reason-

ings and the results obtained in preceeding sections, why Bowley’s law [15, 16] no

longer holds true in post-1960 data. In the process we also derive another production

function (3.6.23) and a new modified wage share (3.6.22). We use statistical analy-

sis to investigate how estimations of the new production function (3.3.14) compare

to economic data. Some of the results presented in Chapter 3 have already been

published in [118].

Chapter 4 is devoted to the Hamiltonian formalism of the economic growth model. We

consider special cases of the Lotka-Volterra model that characterize the evolution of

capital, labor, production as well as debt, the Hamiltonian formulations of which via

corresponding Poisson structures are given. The Hamiltonian function in each model

can be used as a production function. We employ the bi-Hamiltonian formalism to

relax Sato’s condition of simultaneous holotheticity, based on which we derive the

production functions satisfying the condition α + β = 1.

In Chapter 5 we demonstrate the validity of the concept of a production function

from both mathematical and statistical perspectives . We attempt to resolve some of

the controversies surrounding the Cobb-Douglas function. The Cobb-Douglas func-

tion and the new production function (3.3.14) are reviewed within the framework of

invariants of corresponding one-parameter Lie group. The invariant conditions are
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given, with which a production function is a time invariant along the flow defined

by its corresponding growth model. We show that the condition α + β = 1 is not

necessary for a production function by comparing each production function to the US

economic data in different periods using the R programming language. An algorithm

of fitting a production function to data is presented. Some of the results presented

in Chapters 4 and 5 have been published in [116, 117].

Chapter 6 deals with the qualitative analysis of the four-dimensional economic growth

model involving debt. We continue the discussion concerning the four-dimensional

model shown in Chapter 4. We investigate the divergence as well as the Hamiltonian

formalism of the corresponding dynamical system. The stability of the equilibrium

of the model is analyzed. We also discuss the production function given by the cor-

responding Hamiltonian function of the model. Chapter 6 is necessarily incomplete.

A more detailed numerical analysis of the model will be completed in forthcoming

research.

In Chapter 7 we consider new variational problems. Firstly, we derive the Ramsey

golden rule of accumulation employing the Euler-Lagrange method. We consider a

new variational problem based on the Ramsey-Cass-Koopmans model, in which the

integral of the social welfare is subject to logistic growth of capital and labor as well

as a different growth path of consumption related to the new production function

(3.3.14). We also extend the model of the maximum of profits of a company proposed

by Nerlove [84] by incorporating the new production function (3.3.14).

Concluding remarks are the subject of Chapter 8.



Chapter 2

Requisite theoretical background

In this chapter we will briefly review the necessary theoretical background for the

thesis. The requisite material comes from Perko [91], Olver [88], Saunders [111],

Gelfand and Fomin [47] as well as Fernandes [39]. We follow and adopt their notations.

The chapter is also based on the material presented in [9, 14, 74, 83, 80, 115]. We use

statistical tools when fitting our models to data. The required statistical techniques

and methods based on [82, 123] are reviewed in Section 2.6.

2.1 Dynamical systems

The evolution of an economic, physical or biological model can be described by a

dynamical system. Throughout the section we deal only with autonomous dynamical

systems. A common example of a dynamical system can be given by a system of

first-order ordinary differential equations (ODEs):

ẋ = f(x), x ∈ U ⊂ Rn, (2.1.1)

where U is an open subset on Rn.

Let us consider an initial value problem given by

ẋ = f(x),

x(0) = x0,
(2.1.2)

where x0 ∈ U is an initial value.

Remark 2.1.1. x denotes a vector (x1, . . . , xn) ∈ U ⊂ Rn and f(x) = (f1(x, . . . , fn(x))

denotes a smooth vector function.

7
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Suppose (2.1.1) admits a family of solutions x(t) where t is defined in some finite

interval I, where 0 ∈ I. Given an initial value x(0) = x0, we can obtain a unique

solution x(t,x0) through determining the value of the constant C in a solution. This is

guaranteed by the existence and uniqueness theorem (See pp. 70-76 in [91]). Suppose

x(t) defines a family of smooth curves on U . Then we can view x(t) as parameterized

curves on U . More significantly, x(t,x0) uniquely defines the curve passing through

the point x(0) = x0. In this framework, ẋ describes the tangent vector at each

point to a curve. A vector field assigns each point to a tangent vector on U . Hence,

the assignment f in (2.1.1) naturally defines a vector field on U and we denote the

vector field by X = (f1, f2, . . . , fn). Then the solution x(t) is also called an integral

curve of the vector field X. Among all integral curves, we want to find the unique

maximal integral curve, which is determined by the unique solution x(t,x0) defined

on the maximal interval. The maximal interval for the unique solution is called the

maximal interval of existence, denoted by I(x0) = (α, β) since α and β generally

depend on x0. We denote the unique solution defined on I(x0) (the unique maximal

integral curve) by φ(t,x0). Then for t ∈ I(x0), the set of mappings φt(x0) defined by

φt(x0) = φ(t,x0) is called the flow of the differential equation (2.1.1) or the flow of

the vector field X. The mapping satisfies the following properties

(1) φ0(x0) = x0 for all x0 ∈ U ,

(2) φt ◦ φs(x0) = φt+s(x0) for all t, s ∈ R and x0 ∈ U .

Suppose x0 is a fixed point, then the flow φ(t,x0) : I(x0) −→ U defines a trajectory

of (2.1.1) through the point x0. The corresponding set Γ = {φ(t, x0) : t ∈ I(x0)} is

called an orbit through x0. If we move the initial point on U and choose different

values of x0, namely, treat x0 as a variable x, then the mapping φ(t,x) gives rise to

a subset Ω = {(t,x) ∈ R× U : t ∈ I(x0)}, in which the system (2.1.1) evolves.

Following Perko [91], one can in turn employ the idea of a flow to define a dynamical

system. To complete this, we need to extend the maximal interval of existence I(x0)

to R, i.e., for all x0 ∈ U , the flow is defined on R . First, let us review the following

general
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Definition 2.1.2. A dynamical system is a triple (S, T , φ), where S is the state

space, T is the parameter space and φ : T × S −→ S is the evolution.

More specifically, we restrict the evolution to Euclidean space. Suppose the maximal

interval of existence I(x0) can be extended to an infinite interval R, namely, for all

x0 ∈ U , the flow φ(t,x0) admits the maximal interval of existence I(x0) = R, then

we can define the flow φ(t,x) for all t ∈ R and identify Ω = R× U . In what follows,

we write x rather than x0 since we vary the value of x0. Thus, it follows

Definition 2.1.3. A dynamical system is given by a smooth flow

φ : R× U −→ U (2.1.3)

where U is an open subset of Rn and φ(t,x) = φt(x) satisfies

1) φ0(x) = x for all x ∈ U ,

2) φt ◦ φs(x) = φt+s(x) for all t, s ∈ R and x ∈ U .

Suppose (2.1.1) has a maximal interval of existence R, we can say that its flow φ(t,x)

is a dynamical system on U defined by (2.1.1), namely, it is associated with the vector

field X

X =
d

dt
φ(t,x)

∣∣∣∣
t=0

, t ∈ R, x ∈ U, (2.1.4)

where X = (f1, . . . , fn) or X = f1
∂

∂x1

+ f2
∂

∂x2

+ · · · + fn
∂

∂xn
.

2.2 Lie group theory

Throughout the thesis we base our model on smooth manifolds. Let us consider the

following

Definition 2.2.1. A smooth manifold or, simply, manifold M is a topological space

with a family of pairs {(Ui, φi)}, where

(1) {Ui} is a family of open subsets covering M , namely,
S
i

Ui = M ,
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(2) φ is a homeomorphism from Ui onto an open subset Vi ⊂ Rm, which is called

the coordinate function, or the coordinate,

(3) given Ui and Uj such that Ui
T
Ui 6= ∅, the map ψij = φi ◦φ−1

j from φj(Ui
T
Uj)

to φi(Ui
T
Uj) is infinitely differentiable.

The pair {(Ui, φi)} is called a coordinate chart and the family of the pair is called

an atlas. Roughly speaking, a manifold is a topological space which locally looks like

Euclidean space, for example, M = Rn is a trivial manifold. Correspondingly, we

define a submanifold N ⊂M as follows:

Definition 2.2.2. Let M be a smooth manifold. Then a submanifold is a subset

N ⊂ M with an embedding f : Ñ −→ N ⊂ M , where Ñ is a different manifold and

N is the image of f . The dimension of N is same as Ñ , and does not exceed the

dimension of M .

Remark 2.2.3. An embedding f : Ñ −→ N is an injection and an immersion. An

injection is a one-to-one function. The map f is called an immersion if the induced

map f∗ : TpM −→ Tf(p)N is an injection, that is, rank f∗ = rank Ñ , where TpM

and Tf(p)M denote tangent spaces of M and N , respectively. Roughly speaking, the

immersion means that the first derivative of f never vanishes considering Ñ is a

parameter space.

An important example of a manifold is a Lie group, which is a group with a manifold

structure.

Definition 2.2.4. An r-dimensional Lie group G is a group admitting a structure of

an r-dimensional manifold, that is, the group operation

m : G×G −→ G, m(g, h) = g · h, g, h ∈ G, (2.2.1)

and the inversion

i : G×G, i(g) = g−1, g ∈ G, (2.2.2)

define smooth maps between manifolds.
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An r-dimensional Lie group is often referred to as an r-parameter group. In practice,

a Lie group is associated with a specific group of transformations. In some cases, one

may only consider a local group.

Definition 2.2.5. Let M be a smooth manifold. A local group of transformations

acting on M is given by a (local) Lie group G and a smooth map

Ψ : U −→M, (2.2.3)

where U is an open subset of G ×M , which must include the Lie group identity e,

satisfying the group properties:

(1) Associativity. Ψ(g,Ψ(h, x)) = Ψ(g ·h, x), where (h, x), (g,Ψ(h, x)), (g ·h, x) ∈ U .

(2) Identity. Ψ(e, x) = x for all x ∈M .

(3) Inverse. Ψ(g−1,Ψ(g, x)) = x, where (g, x), (g−1,Ψ(g, x)) ∈ U .

Note when U = G ×M , then Ψ is called a global group of transformations. For our

convenience, we can denote Ψ(g, x) by g · x. Hence, we denote a group of trans-

formations by either Ψ or G. We can also check that for each x ∈ M , g forms a

local Lie group Gx = {g ∈ G : (g, x) ∈ U}. We only investigate a connected group of

transformations in this thesis. It is connected in the sense that G, M , U and Gx are

all connected, namely, they cannot be represented by a union of two or more disjoint

non-empty subsets.

Consider a smooth manifold M . The tangent space of M is the collection of all

tangent vectors to all possible curves passing through a given point p ∈ M . The

tangent bundle TM of M is the collection of all tangent spaces corresponding to all

points p in M , that is,

TM =
[
p∈M

TpM. (2.2.4)

Then it gives rise to a bundle (TM, τM ,M), where τM : TM −→ M is a projection

map. A vector field is a section of the bundle (TM, τM ,M), namely, a vector field

on M is given by a smooth map X : M −→ TM . We can see that for each p ∈ M ,
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X(p) ∈ TpM . Hence, a vector field is a smooth assignment of each point in M to

the tangent vector X(p) or, commonly denoted, Xp in TpM . In local coordinates

(x1, . . . , xn), where n = dimM , a vector field X, which we have seen in Section 2.1,

can be represented by

X = f1(x)
∂

∂x1

+ f2(x)
∂

∂x2

+ · · · + fn(x)
∂

∂xn
, (2.2.5)

where fi(x), i = 1, . . . , n are smooth functions of x = (x1, x2, . . . , xn). The dual

space of TpM at the point p on M is called a cotangent space, denoted by T ∗
pM . A

cotangent bundle is a collection of all cotangent spaces at each point on M , that is,

T ∗M =
[
p∈M

T ∗
pM. (2.2.6)

The element ω : TpM −→ R on T ∗
pM , which is a linear functional on TpM , is called

a one-form. In local coordinates, a one-form can be presented in the following form:

ω = f1(x)dx1 + f2(x)dx2 + · · · + fn(x)dxn, (2.2.7)

where fi(x), i = 1, . . . , n are smooth functions defined on M . We can define an inner

product between a one-form and a vector field in local coordinates as follows

< dxi,
∂

∂xj
>= δij =

(
0, if i 6= j,

1, if i = j,
i, j = 1, . . . , n, (2.2.8)

where δij is the Kronecker delta.

The flow of a vector field has been discussed in Section 2.1. We often call a flow φ(t,x)

a one-parameter group of transformations. Then the vector field X is called the in-

finitesimal generator of the action defined by the equation (2.1.4). The flow generated

by X is identical to the given local action of R on M guaranteed by the uniqueness

of solutions to (2.1.2). Hence, the local one-parameter group of transformations and

its infinitesimal generator are uniquely related.

Let us briefly review the operations defined on vector fields. Suppose X, Y are vector

fields on M , a Lie bracket is an operator assigning the two vector fields to a vector
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field [X, Y ] on M given by

[X, Y ](f) = X(Y (f)) − Y (X(f)), (2.2.9)

where f is a smooth function on M .

The Lie bracket has the following properties:

(1) Bilinearity

[λX + µY, Z] = λ[X,Z] + µ[Y, Z],

[X,λY + µZ] = λ[X, Y ] + µ[X,Z],
(2.2.10)

where λ, µ are constants and X, Y, Z are vector fields on M .

(2) Skew-symmetry

[X, Y ] = −[Y,X], (2.2.11)

(3) Jacobi Identity

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0. (2.2.12)

Lastly, let us briefly discuss the concept of a Lie algebra. Algebraically, let us consider

the right multiplication map of a Lie group G. For any group element g ∈ G, the right

multiplication map Rg : G −→ G defined by Rg(h) = h·g, h ∈ G, is a diffeomorphism,

a bijective differential map on G whose inverse is also differentiable, with inverse

Rg−1 = (Rg)
−1. Then consider all right-invariant vector fields X on G. They are

right-invariant in the sense that

dRg(X|h) = X|Rg(h) = X|hg, (2.2.13)

where dRg : TgG −→ TR(g)G is an induced map, TgG and TR(g) are tangent spaces

of G at the point g and R(g), respectively. To have a better understanding, let us

consider the following

Example 2.2.6. Consider a simple Lie groupG = R. Let us define a right-multiplication

map, i.e., a translation Ra(x) = x + a, where a is a constant. Obviously, X = ∂
∂x

is
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right-invariant since

dRa(X) = X(Ra(x))
∂

∂x
=

(
∂(x+ a)

∂x

)
∂

∂x
=

∂

∂x
= X. (2.2.14)

Remark 2.2.7. Although Rg is commonly called a right-multiplication map, it de-

notes a general right group operation.

Hence, the set of all right-invariant vectors form a vector space since it satisfies

(1) Identity. A zero vector field 0 must be right-invariant since dRg(0|h) = 0|hg.

(2) Closure under Addition and Scalar Multiplication.

dRg((aX + bY )|h) = aX|hg + bY |hg, (2.2.15)

where a, b are constants and X and Y are vector fields on G.

Thus, it follows

Definition 2.2.8. The Lie algebra of a Lie group G is the vector space of all right

invariant vector fields on G, conventionally denoted by g.

An algebra is a vector space with a bilinear operation. Hence, we can also describe a

Lie algebra by considering only finite-dimensional vector spaces as follows

Definition 2.2.9. A Lie algebra is a vector space g with a Lie bracket

[·, ·] : g× g −→ g, (2.2.16)

which satisfies the above three properties (2.2.10), (2.2.11) and (2.2.12).

Geometrically, a Lie algebra is tangent to its Lie group at the identity and char-

acterizes a Lie group locally, e.g., the infinitesimal generator of the one-parameter

group is an element in the corresponding Lie algebra. Nevertheless, the Lie algebra

is a powerful tool, which, for example, enables us to consider a linear infinitesimal

condition rather than complicated conditions of invariance under the corresponding

group actions.
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2.3 Jet bundles

We start by reviewing the basic terminology of the theory of jet bundles.

Let us consider a bundle (E, π,M) where E and M are smooth manifolds with dim

E = m + n, dim M = m and π is a surjective submersion. A submersion is a

map between two manifolds whose differential map is a surjective linear map. As a

shorthand notation, we denote (E, π,M) by π. Then a map φ : M −→ E is a section

of π if φ ◦ π = idM where idM denotes an identity map. One can also define a local

section of a open submanifold of M. If p ∈ M then the set of all local sections of π

whose domains contain p is denoted by Γp(π). φ(p) or π−1(p) is called a fibre of π

over p.

Let u : U −→ Rn+m be a coordinate system on the open set U ⊂ E. The coordinate

system u is called an adapted coordinate system, if a, b ∈ U and π(a) = π(b) = p, then

pr1(u(a)) = pr1(u(b)), where pr1 : Rm+n −→ Rm. Thus (U, u), where one can choose

u = (xi, uj), is called an adapted coordinate chart on E. Presenting this in terms of

a commutative diagram, we have

U Rm+n

π(U) Rm

u

π|U pr1

x

,

where U ⊂ E and π(U) ⊂M .

Let (H, ρ,N) be another bundle, then a bundle morphism from π to ρ is a pair (f, f̄)

where f : E −→ H, f̄ : M −→ N and ρ◦f = f̄ ◦π. The map f̄ is called the projection

of f . If a vector field X on E is also the bundle morphism, then the vector field is

called a projectable vector field to π.

Let (V, v) be an adapted coordinate system on ρ where v = (yα, vβ). Then the coor-

dinate representation of the morphism f is given by the pair (fα, fβ) where

fα = yα ◦ f, fβ = yβ ◦ f. (2.3.1)
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Now consider a tangent bundle (TM, τM ,M) and the corresponding pullback bundle

by π is (π∗(TM), π∗(τM), E). Thus, the pair (π∗, π−1) is a natural bundle morphism,

which can be presented in the following commutative diagram

TM π∗(TM)

M E

π∗

τM π∗(τM )

π−1

X̂

where τM = π ◦π∗(τM)◦π∗. One can see that a section of the bundle π∗(τM) is a map

X : E −→ π∗(TM). However, we note that we will consider the map X̂ : E −→ TM

defined by X̂ = τ ∗M(π) ◦X as a section of π∗(τM) instead of X. We will call the map

X̂ a vector field along π, and denote the set of all such vector fields along π by X (π).

Consider a tangent bundle (TE, τE, E). The triple (V π, τE|Vπ , E) is a subbundle of

τE and is called the vertical bundle to π, where

V π =
{
ξ ∈ TE : π∗(ξ) = 0 ∈ TτM (π∗(ξ))M

}
(2.3.2)

is a submanifold of TE.

A distribution ∆ on anm-dimensional smooth manifoldM is a vector subbundle of the

the tangent bundle satisfying certain conditions, that is, ∆ : p −→ ∆p where p ∈ M

and ∆p ⊂ TpM is a subspace of the tangent space. An ‘-dimensional distribution ∆

can be spanned by a set of independent vector fields X1, X2, . . . , X‘; equivalently, it

can also be determined by a set of independent differential 1-forms ω1, ω2, . . . , ωn−‘

such that any Xi ∈ ∆ satisfies ωj(Xi) = 0, where i = 1, . . . , ‘ and j = 1, . . . , n − ‘.

A distribution is involutive if [Xi, Xj] ∈ {X1, X2, . . . , X‘} , for all i, j = 1, 2, . . . , ‘,

where [·, ·] denotes the Lie bracket.

First-order jet bundles

Let (E, π,M) be a bundle and let p ∈M. Two sections φ, ψ ∈ Γp(π) are said to be one-

equivalent at p if their graphs are tangent to each other at the point φ(p) = ψ(p) ∈ E,
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that is, in some adapted coordinate system (xi, uj),

φ(p) = ψ(p),

∂φj

∂xi
(p) =

∂ψj

∂xi
(p).

(2.3.3)

The equivalence class containing φ is called the one-jet of φ at p and is denoted by

j1
pφ.

The set of the one-jets has a natural structure of a smooth manifold. Let us review

the following

Definition 2.3.1. [111] The first jet manifold of π is the set

{
j1
pφ : p ∈M,φ ∈ Γp(π)

}
(2.3.4)

and is denoted by J1π.

Moreover, the maps

π1 : J1π −→M,

j1
pφ −→ p,

(2.3.5)

and
π1,0 : J1π −→ E,

j1
p −→ φ(p),

(2.3.6)

are called source and target projections respectively. The triples (J1π, π1,M) and

(J1π, π1,0, E) are bundles, where π1 is called the first jet bundle of π. For any section

φ ∈ Γp(π) the map

j1(φ) : M −→ J1π,

p −→ j1
p(φ),

(2.3.7)

is a section of π1 and is called the one-jet of φ. The fibre π−1
1 (p) = j1

p(φ) (locally) is

denoted by J1
pπ, which is a submanifold of J1π. One needs to note that the one-jet is

also the first prolongation of φ.
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As a conclusion, we present the following commutative diagram

J1π E

M M

π1,0

π1 π

id

j1(φ) φ

where j1(φ) ◦ π1 = idM and φ ◦ π = idM .

Let p ∈ M and let (U, u) be an adapted coordinate chart on E where u = (xi, uj).

Then the induced coordinate chart is given by

U1 =
{
j1
p : φ(p) ∈ U

}
,

u1 = (xi, uj, uji ),
(2.3.8)

where xi(j1
pφ) = xi(p), uj(j1

pφ) = uj(φ(p)) and the new function

uji : U1 −→ R (2.3.9)

denotes the partial differentiation that is

uji (j
1
pφ) =

∂φj

∂xi
(p) (2.3.10)

known as the derivative coordinates. Thus the 1-jet j1
p in local coordinates is given by

(
φj,

∂φj

∂xi

)
. (2.3.11)

Total derivatives

More generally, let (J1ρ, ρ1, H) be another first jet bundle and the bundle morphism

from π1 to ρ1 be given by the first prolongation of the pair (f, f̄), namely, the map

j1(f, f̄) : J1π −→ J1ρ defined by

j1(f, f̄)(j1
pφ) = j1

f̄(p)(f̃(φ)), (2.3.12)
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where f̃(φ) = f ◦ φ ◦ f̄−1|U for U ⊂ M is an open subset, and is abbreviated as j1f

if causing no confusion.

Both maps

(j1f, f) : π1,0 −→ ρ1,0 (2.3.13)

and

(j1f, f̄) : π1 −→ ρ1 (2.3.14)

are bundle morphisms.

It follows that the commutative diagram

J1π J1ρ

E H

M N

j1f

π1,0 ρ1,0

f

π ρ

f̄

where f ◦ π1,0 = ρ1,0 ◦ j1f and f̄ ◦ π = ρ ◦ f.

Let (V, v) be an adapted coordinate chart on J1ρ where v = (yα, vβ, vβα). The coordi-

nate representation of j1f is given by

yα ◦ j1f = fα, (2.3.15)

vβ ◦ j1f = fβ, (2.3.16)

and

vβα ◦ j1f =

(
fβ

∂xi
+ uji

∂fβ

∂uj

)(
∂(f̄−1)i

∂yα
◦ f̄
)
, (2.3.17)

where xi, uj, uji are adapted coordinate functions on J1π.

The expression in the first pair of parentheses in (2.3.17) is called a total derivative

and is denoted by

Dif
β =

∂fβ

∂xi
+ uji

∂fβ

∂uj
. (2.3.18)
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The operator

Di =
∂

∂xi
+ uji

∂

∂uj
(2.3.19)

is related to the concept of the Cartan structure [74] and can also be viewed as a

vector field, details of which will be given in what follows.

Cartan distributions

The Cartan distribution C on J1π is a n-dimensional vector subbundle of the tangent

bundle TJ1π and C : θ1 −→ Cθ1 , where θ1 ∈ J1π and Cθ1 is a subspace of TpJ
1π.

Let us consider a pullback bundle (π∗
1,0(TE), π∗

1,0(τE), J1π) and denote the vector

fields along π1,0 by X (π1,0). The bundle π∗
1,0(τE) admits a unique decomposition of

two subbundles

(π∗
1,0(V π) ⊕ C, π∗

1,0(τE), J1π), (2.3.20)

where π∗
1,0(V π) denotes the vertical subbundle and C is the Cartan distribution on

J1π.

It follows that any vector field Z ∈ X (π1,0) has a canonical decomposition into its

vertical and horizontal components

Z = Zv + Zh, (2.3.21)

where Zv ∈ π∗
1,0(V π) and Zh lies in the Cartan distribution.

Therefore, the module X (π1,0) can be written into two submodules

X (π1,0) = X v(π1,0) ⊕X h(π1,0), (2.3.22)

where X v(π1,0) consists of vertical vectors to π1,o and X h(π1,0) consists of vectors of

the Cartan distribution.

The module of differential forms ∧1
0π1,0 dual to (2.3.22) can be correspondingly written

as

∧1
0π1,0 = ∧1

0π1 ⊕ ∧1
Cπ1,0, (2.3.23)
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where ∧1
0π1 is comprised of one-forms dual to the vertical vector and ∧1

C consists of

one-forms annihilating Cartan distribution called Cartan form or contact form.

Let (xi, uj, uji ) be adapted coordinate functions on J1π. Any vector field on M can be

mapped to J1π in a way analogous to what we have seen in Section 2.3. The Cartan

distribution C on J1π is thus spanned by

Di =
∂

∂xi
+ uji

∂

∂uj
. (2.3.24)

where i = 1, . . . , n and j = 1, . . . , n.

The contact form dual to (2.3.24) in local coordinates enjoys the following form:

ωji = duj − ujidx
i. (2.3.25)

Prolongations of vector fields

The Cartan distribution C on J1π is the main structure for us to study the first

prolongation of a vector field on E, a symmetry of which is a diffeomorphism f of

J1π preserving C, that is, if D ∈ C, then f∗(D) ∈ C, or by duality, preserving the

space of Cartan forms, namely, if ω is a Cartan form, then f ∗ω is also a contact form

so that f is called a contact transformation.

The infinitesimal symmetry or infinitesimal contact transformation of C is a vector

field X1 on J1π with property that if the vector field D belongs to C, then so does

the vector field [X1, D], or, according to the duality, if the one-form ω is in ∧1
Cπ1,0,

so is the one-form LX1ω.

The following theorem [111] gives conditions for a vector field X1 on J1π to be the

first prolongation of a vector field X on E.

Theorem 2.3.2. If X1 ∈ X (J1π) is projectable onto E, then X is an infinitesimal

symmetry of the Cartan distribution if and only if X1 is the prolongation of a vector

field on E. If n > 1(n=dim E-dim M), then every infinitesimal symmetry of the

Cartan distribution is necessarily projectable onto E.
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Proof. See pp. 144-145 in [111].

Remark 2.3.3. If n = 1 but X is projectable, then the result also holds.

Therefore, the first prolongation of a vector field X on E is a vector field X1 on J1π

where the components of X1 can be determined by the contact form since X1 is an

infinitesimal symmetry, i.e., LX1(ω) ∈ ∧1
Cπ1,0 where ω ∈ ∧1

Cπ1,0.

2.4 Calculus of variations

We investigate the optimized welfare in Chapter 7. A classical example of a variational

problem can be presented as follows. Suppose F (x, y, y0) is a smooth function, we

want to find the necessary condition for the extremum of the following functional

J [y] =

Z b

a

F (x, y, y0)dx, (2.4.1)

where y(x), x ∈ E ⊂ R is a smooth function satisfying

y(a) = A, y(b) = B. (2.4.2)

The necessary condition is given by the Euler-Lagrange equation, namely,

Fy −
d

dx
Fy0 = 0. (2.4.3)

Throughout the thesis, we focus on the necessary condition for an extremum of a

functional. Before we review the general condition, let us consider the following

Lemma 2.4.1. [47] If α(x) and β(x) are continuous in a finite interval [a, b], and if

Z b

a

[α(x)h(x) + β(x)h0(x)]dx = 0 (2.4.4)

for every smooth function h(x) defined on [a, b] such that h(a) = h(b) = 0, then β(x)

is differentiable and β0(x) = α(x) for all x in [a, b].
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Proof. Using the fundamental theorem of calculus, we can write

A(x) =

Z x

a

α(t)dt. (2.4.5)

Integrating (2.4.4) by parts, we get

Z b

a

α(x)h(x)dx =

Z b

a

h(x)dA(x) = A(x)h(x)|ba −
Z b

a

A(x)h0(x)dx. (2.4.6)

Taking into account the boundary conditions h(a) = h(b) = 0, we obtain

Z b

a

α(x)h(x)dx = −
Z b

a

A(x)h0(x)dx. (2.4.7)

Then (2.4.4) becomes Z b

a

[−A(x) + β(x)]h0(x)dx = 0. (2.4.8)

We want to show −A(x) + β(x) = c, where c is constant.

Let us construct

h(x) =

Z x

a

[−A(t) + β(t) − c]dt, (2.4.9)

then we can showZ b

a

[−A(x) + β(x) − c]h0(x)dx =

Z b

a

[−A(x) + β(x)]h0(x)dx

−c(h(b) − h(a)) = 0.

(2.4.10)

On the other hand, we haveZ b

a

[−A(x) + β(x) − c]h0(x)dx =

Z b

a

[−A(x) + β(x) − c]2dx. (2.4.11)

Hence, we must obtain

β(x) − A(x) = c, (2.4.12)

differentiating gives

β0(x) = α(x). (2.4.13)
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The differentiability follows from the fundamental theorem of calculus, namely, the

structure of A(x).

Let us consider the following functional

J [y1, . . . , yn] =

Z b

a

F (x, y1, . . . , yn, y
0
1, . . . , y

0
n)dx, (2.4.14)

where yi(x), i = 1, . . . , n are smooth functions, satisfying the boundary conditions

yi(a) = Ai, yi(b) = Bi, i = 1, 2, . . . , n. (2.4.15)

We want to find the necessary conditions of the extremum of J [y1, . . . , yn]. For brevity,

let us denote y = (y1, . . . , yn) and y0 = (y01, . . . , y
0
n). Consider two points J [y+h] and

J [y] on the functional that differ by h(x) = (h1(x), h2(x), . . . , hn(x)), where h(x) is

a smooth function. Thus, the increment is given by

∆J = J [y + h] − J [y]

=

Z b

a

[F (x,y + h,y0 + h0) − F (x,y,y0)] dx,

(2.4.16)

The Taylor expansion of F (x,y + h,y0 + h0) at the point (x, y1, . . . , yn, y
0
1, . . . , y

0
n)

yields

∆J =

Z b

a

[
F (x,y,y0) +

nP
i=1

((yi + hi − yi)Fyi) +
nP
i=1

((y0i + h0i − y0i)Fy0i)

−F (x,y,y0) + . . .] dx

=

Z b

a

[
nP
i=1

(
Fyihi + Fy0ih

0
i

)
+ . . .

]
dx,

(2.4.17)

where . . . denotes terms with higher degrees in h. The necessary condition for the

extremum is

δJ =

Z b

a

nX
i=1

(
Fyihi + Fy0ih

0
i

)
dx = 0, (2.4.18)

where δJ is called the variation of J .

Remark 2.4.2. The variation δJ = 0 is called the principle of least action.
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Since h is an independent function, we can choose, for example, h1 6= 0 and h2, . . . , hn =

0, then choose h2 6= 0 and h1, h3, . . . , hn = 0, etc., until we choose hn 6= 0 and

h1, h2, . . . , hn−1 = 0. Under each of the assumptions, we reduce the problem to the

classical example at the beginning of the section and derive the corresponding Euler-

Lagrange equation. Therefore, (2.4.18) implies that

Z b

a

(
Fyihi + Fy0ih

0
i

)
dx = 0, i = 1, . . . , n, (2.4.19)

Using Lemma 2.4.1, we obtain the following system of Euler-Lagrange equations

Fyi −
d

dx
Fy0i = 0, i = 1, . . . , n, (2.4.20)

which are the necessary condition for the extremum of (2.4.14).

Next, we review the variations with subsidiary conditions, which is given in the fol-

lowing

Theorem 2.4.3. [47] Given the functional

J [y, z] =

Z b

a

F (x, y, z, y0, z0)dx. (2.4.21)

Suppose the admissible curves y(x), z(x), where x is in the open subset E ⊂ R, lie on

the surface

g(x, y, z) = 0 (2.4.22)

and satisfy the boundary conditions

y(a) = A1, y(b) = B1, (2.4.23)

z(a) = A2, z(b) = B2. (2.4.24)

Suppose we allow J [y] to attain the extremum along the curves

y = y(x), z = z(x). (2.4.25)
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If gy and gz do not vanish simultaneously on the surface defined by g(x, y, z) = 0,

then there exists a function λ(x) such that (2.4.25) is an extremal of the functional

Z b

a

[F + λg]dx (2.4.26)

satisfying the differential equations

Fy + λgy −
d

dx
Fy0 = 0,

Fz + λgz −
d

dx
Fz0 = 0.

(2.4.27)

The proof is similar to the derivation of the necessary condition for extremum of

(2.4.14). Details can be found on pp. 46-47 in [47]. Note that the function F (x, y, z, y0, z0)

may only depend on y or z. It can be further extended by considering a surface

g(x, y, z, y0, z0) = 0, which is shown in the following

Remark 2.4.4. Let us consider the admissible curves in Theorem 2.4.3 defined on a

smooth space given by

g(x, y, z, y0, z0) = 0. (2.4.28)

If the functional has an extremum along a curve γ, subject to the surface (2.4.28),

assuming gz and gy do not vanish simultaneously along γ, then there exists a function

λ(x) such that (2.4.26) attains the extremum along the curve γ determined by the

following system

Φy −
d

dx
Φy0 = 0, Φz −

d

dx
Φz0 = 0, (2.4.29)

where Φ = F + λG.

2.5 Hamiltonian formalism via Poisson geometry

All models that we discuss in Chapter 4 will be studied within the framework of the

Hamiltonian systems defined on Poisson manifolds. We denote the space of smooth

functions on a manifold M by C∞(M). Recall the following
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Definition 2.5.1. A Poisson structure on a manifold M is a bilinear bracket

{·, ·} : C∞(M) × C∞(M) → C∞(M), (2.5.1)

satisfying the following properties

(1) Skew-Symmetry

{f, g} = −{g, f}, (2.5.2)

(2) Leibniz Rule

{f, gh} = {f, g}h+ g{f, h}, (2.5.3)

(3) Jacobi Identity

{f, {g, h}} + {h, {f, g}} + {g, {h, f}} = 0, (2.5.4)

where f, g, h ∈ C∞(M).

In canonical coordinates (qi, pi), i = 1, . . . , n, we define the Poisson bracket as follows:

{f, g} =
nX
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (2.5.5)

where f, g are smooth functions.

The pair of a manifold M and a Poisson structure {·, ·} defined on M , is called a

Poisson manifold. Next, let (M, {·, ·}) be a Poisson manifold, then the vector field

XH given by

XH = {·, H}

is called the Hamiltonian vector field determined by the Hamiltonian function H.

Note that the value of {f, g} at any point p ∈M depends linearly on the differentials

df, dg at p ∈ M . We denote the space of all bivectors on M by X2(M). Let us

consider Λ2TM , which is the second order exterior derivative of the tangent bundle

TM . By analogy with the definition of a vector field, a bivector field is a section of a

bundle (Λ2TM, τTM , TM). The set of all sections in the bundle denoted by Γ(Λ2TM)
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is equivalent to X2M . In this view, the bracket {·, ·} gives rise to a Poisson bivector

field π ∈ X2(M) = Γ(Λ2TM) such that

π(df, dg) = {f, g},

for all f, g ∈ C∞(M). Conversely, given a Poisson bivector π ∈ Γ(Λ2TM), then π

defines the corresponding Poisson bracket satisfying the properties specified above.

In local coordinates (x1, . . . , xn), where n = dimM , a bivector π can be presented in

the following form

π =
nX

i,j=1

πij(x)
∂

∂xi
∧ ∂

∂xj
, (2.5.6)

where πij(x) = {xi, xj} is a smooth function depending on x = (x1, . . . , xn).

In what follows we will refer to a Poisson manifold as a pair (M,π), which gives rise

to the following definition of a Hamiltonian vector field:

XH = πdH, (2.5.7)

or, in terms of local coordinates (x1, . . . , xn) in a neighbourhood of p ∈ M using

Einstein summation convention,

XH = πi‘
∂H

∂x‘

∂

∂xi
, (2.5.8)

where πi‘ are components of π. See, for example, Fernandes and Mărcut [39] for more

details. Note that in [39] the authors defined the canonical coordinates as (pi, qi),

i = 1, . . . , n. Hence, all the structures in [39] have pi and qi switched. We note,

however, that most of the above formulas can be represented in a uniform way via

the Schouten bracket [·, ·] [72, 39] that can be defined as follows

Definition 2.5.2. Let v ∈ Xk(M) and y ∈ Xl(M) be multi-vector fields. The

Schouten bracket of v and y is the multi-vector field [v, y] ∈ Xk+l−1(M) defined by

[v, y] = v ◦ y− (−1)(k−1)(l−1)y ◦ v, (2.5.9)

where v = v1 ∧ . . .∧ vk, vi ∈ X(M), i = 1, . . . , k and y = y1 ∧ . . .∧ yl, yi ∈ X(M), i =



29

1, . . . , l.

We can see that the Schouten bracket is a natural generalization of the Lie bracket

defined on multi-vector fields. Thus, for instance, the Jacobi identity condition for

a Poisson bracket {·, ·} defined by a Poisson bivector π is simply equivalent to the

condition [π, π] = 0. A Hamiltonian vector field Xf defined on a Poisson manifold

(M,π) can be now determined as

Xf = [π,H].

Similarly, the Poisson bracket of any functions f, g ∈ C∞(M) defined on a Poisson

manifold (M,π) may be defined via the Schouten bracket as

{f, g} = [[π, f ], g]

and so on (see, for example, [115] for more details).

2.6 Statistical tools

We employ the curve fitting techniques in what follows. All regressions in the thesis

are conducted using the R programming language. Let us briefly review the definition

of “a best-fitting curve”. Suppose we have a dataset (xi, yi), i = 1, . . . , n, and we want

to fit a curve C to the given dataset. Let us denote the estimated values by (xi, ŷi),

i = 1, . . . , n. Note data arranged according to time are called time series. The

difference ŷi − yi is referred to as a residual, error or deviation. A measure of the

goodness of fit of a curve C to the given data is determined by the residual sum of

squares
nP
i=1

(ŷi − yi)
2, which is commonly abbreviated by RSS. Hence, we have the

following

Definition 2.6.1. Of all curves approximating a given set of data points, the curve

having the minimum RSS is called a best-fitting curve.

The method of fitting a curve to a given set of data having the minimum value of RSS

is called the method of least squares. A derived curve using the method is called a
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least-squares curve or a regression curve. The method can be applied to a multilinear

regression model as follows

y = β0 + β1x1 + β2x2 + . . .+ βnxn + ε = β0 +
nX
i=1

βixi + ε, (2.6.1)

where parameters βi, i = 0, 1, . . . , n, are called regression coefficients and ε denotes

the residual.

Suppose we have a given dataset (xi, yi), i = 1, . . . , n. Furthermore, the fitting of the

model (2.6.1) to the data can be expressed as

yi = β0 +
nX
j=1

βjxij + εi, i = 1, . . . , n, (2.6.2)

where xij denotes the value of the corresponding variable xj.

Then, the RSS is given by

RSS(β0, β1, . . . , βn) =
nX
i=1

ε2i =
nX
i=1

 
yi − β0 −

nX
j=1

βjxij

!2

. (2.6.3)

The values of regression coefficients β̂0, β̂1, . . . , β̂n of the best-fitting curve are deter-

mined by the following system of linear equations

∂RSS

∂β0

= −2
nX
i=1

 
yi − β0 −

nX
j=1

βjxij

!
(2.6.4)

and
∂RSS

∂βj
= −2xij

nX
i=1

 
yi − β0 −

nX
j=1

βjxij

!
, j = 1, . . . , n. (2.6.5)

A more general regression approach can be stated in terms of the Gauss-Markov

theorem, which gives the values of regression coefficients of a best-fitting linear model

based on the unbiased requirement. More details about the theorem can be found in

[78].

Let us briefly discuss the unbiased requirement. We illustrate it with the following
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linear model

y = β0 + β1x. (2.6.6)

Suppose the observed values of regression coefficients are β̂0 and β̂1. Then, the results

are unbiased provided that E(β̂0) = β0 and E(β̂1) = β1, where E(·) denotes the

expected value. It can be shown by using (2.6.4) and (2.6.5).

Note that the method of least squares can be also applied to a non-linear model. Some

non-linear models can be turned into linear models using proper transformations.

For example, an exponential model y = Aax can be transformed into a linear model

ln y = lnA+x ln a by taking the logarithm. We need to mention that the parameters

minimizing the RSS of transformed model may not necessarily minimize the residuals

of the original model. One can employ the Gauss-Newton method to compare a non-

linear model to a given set of data using the method of least squares.

Suppose we have a non-linear model

y = f(x; β) + ε, (2.6.7)

where x = (x1, x2, . . . , xn) is the vector of variables and β = (β1, β2, . . . , βn) denotes

the vector of parameters.

The Taylor expansion of (2.6.7) around the value β0 = (β01, β02, . . . , β0n) is given by

p(x; β) = f(x; β0) +
nX
i=1

fβi(x; β0)(βi − β0i) + ε, (2.6.8)

where fβi(x; β0) =
∂f(x; β0)

∂βi
.

Then the sum of squared residuals of a given dataset is given by

RSS(β1, . . . , βn) =
nX
i=1

ε2i =
nX
i=1

 
yi − f(xij; β0) −

nX
j=1

fβj(xij; β0)(βj − β0j)

!2

,

(2.6.9)

where xij = (x1j, x2j, . . . , xnj), j = 1, . . . , n, denotes the data points.
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Then the regression coefficients of the best-fitting curve are attained at

∂RSS

∂βj
= −2fβj(xij; β0)

nX
i=1

 
yi − f(xij; β0) −

nX
j=1

fβj(xij; β0)(βj − β0j)

!
, (2.6.10)

where j = 1, . . . , n.

There are many different non-linear regression methods, more discussions of which

can be found in [78, 61, 100] and the relevant references therein.



Chapter 3

In search of a new economic growth model determined by

logistic growth

Empirical estimates of an aggregate production function play a pivotal role in any

economic growth model. Normally, such a function relates the output and inputs and

can be used either to estimate the output of a model by studying the input factors

or to study the dynamics of other quantities.

A two-dimensional economic growth model can be described by a generic production

function Y = f(K,L), where K = K(t) is a time-dependent capital function, L =

L(t) is a time-dependent labor function and Y is the production function. Recall the

Cobb-Douglas production function is given by

Y = f(K,L) = AKαLβ, (3.0.1)

where A is the total factor productivity while α and β ≥ 0 are the output elasticity

of capital and labor, respectively. It is said to have constant returns to scale when

α + β = 1. (3.0.2)

The production function was derived by Charles Cobb and Paul Douglas [27] by

studying the American economic data during the period of 1899-1922. Solow [120]

and Stigler [125] studied production of an economic growth model to observe that the

increase of output is not proportional to the growth of capital and labor and thus real-

ized that the technical progress also contributed to the production. This phenomenon

is called the “Solow-Stigler controversy”. More recently, Sato [107, 108] (see also Sato

and Ramachandran [110]), while resolving the “Solow-Stigler controversy”, developed

33
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a Lie group theoretical framework to study technical progress and production func-

tions. Sato [108] showed that we can treat technical progress as economies of scale

and identify the corresponding exogeneous technical progress with the action of a

one-parameter Lie group that acts in C2(R2
+), where R2

+ = {(K,L)|K,L ∈ R+}.

Then, a production function can be derived as an invariant under the action of a

one-parameter group. For instance, within this framework the Cobb-Douglas pro-

duction function (3.0.1) can be recovered as an invariant of the one-parameter Lie

group action [28] that afford exponential growth in both K and L in the first quad-

rant of the two-dimensional Euclidean space R2
+. The principle of invariance, which

can be traced back to Emma Noether, who in 1918 demonstrated the fundamental

invariance principle known as Neother’s theorem, allows one to study the more gen-

eral invariance of a dynamical system [1]. This principle has been employed also by

other mathematical economists. As an illustration, Samuelson [102] introduced the

conservation law of the aggregate capital-output ratio in a neoclassical von Neumann

economic model in 1970. Then a new conservation law of ratio between the national

wealth and income was established in 1981 by Sato [108]. Sato and his collaborator’s

work that utilizes Lie group theoretical methods is very fruitful, but it mainly focuses

on the case where both labor and capital grow exponentially. We extend their work

by presenting a new economics growth model under the assumption that labor and

capital follow a logistical growth in [118]. The new economics model is character-

ized by a new production function and we have shown that it compares reasonably

well against US economic data for the period 1947-2016. We believe the new growth

model can be used to describe some aspects of the current economy. We have also

observed within the framework of the new model that the Bowley’s law, a stylized fact

of economics stating the constant of wage share among different countries, no longer

holds true in the post-1960 data. In addition, we have a fairly rigorous mathematical

explanation of the phenomenon by using a projective logistic transformation group.

This transformation group leads to a new economic invariant, which we believe can

be viewed as a new notion of wage share.
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3.1 A Lie group approach to the study of holothetic production

functions

In this section we will briefly review the Lie group theoretical approach developed

by Sato to study holothetic production functions and employ it to derive the Cobb-

Douglas production function (3.0.1).

In order to show that the increases in efficiency of inputs due to technical progress can

be explained by economies of scale, Sato interpreted technical progress as the action

of a one-parameter Lie group of transformations. Accordingly, one can introduce the

following

Definition 3.1.1. A Lie type of technical progress in an economics growth model

acting on R2
+ is a one-parameter group of transformations given by a Lie group G

T : G× R2
+ −→ R2

+ (3.1.1)

where T is a smooth map satisfying all group properties.

Remark 3.1.2. It is important to clarify that Sato defined the technical progress in

[108] in a more general way, that is, T may not have a group structure and be a

one-parameter group transformation. But we are, from the mathematical viewpoint,

particularly interested in the group-structured technical progress, that is, we mainly

consider the technical progress that can be identified as a continuous one-parameter

group. Hence, the technical progress in the following context mostly refers to the Lie

type of technical progress defined in Definition 3.1.1.

Remark 3.1.3. For our convenience, we denote T (G,R2
+) by (G,R2

+). Note that

G = R in most cases. We will also use (G,R2
+) to denote an economic growth model.

Suppose that a technical progress T is defined by the functions φ and ψ such that

Tt : K̄ = φ(K,L, t), L̄ = ψ(K,L, t), (3.1.2)

where t is the technical progress parameter and the functions φ, ψ are analytic and

functionally independent.
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Sato [110] defined the holothetical functions as follows:

Definition 3.1.4. When the technical progress T acting on a production function f

can be represented by some strictly monotone transformation F , then the production

is said to be holothetic to the technical progress T , i.e.,

f(Tt(K,L)) = f(K̄, L̄) = Ft(f). (3.1.3)

If the technical progress Tt is in Definition 3.1.1, we can have the following

Lemma 3.1.5 (Fundamental Lemma on Holotheticity). A production function f is

holothetic to a technical progress Tt iff the production function f is invariant under a

group action.

Proof. According to Definition 3.1.4, if Tt is a group of transformations, then f is

invariant under the Tt, and vice versa.

More specifically, Tt preserves the isoquant map of Y (or, in mathematical terms,

level curves of Y ), that is, we can interpret the action as the mapping of one level

curve (representing a production level) to another defined by Tt. Hence, the technical

progress has the same effect as an economy of scale. As a result, a production function

is an invaraint under Tt.

More specifically, let capital and labor affected by technical progress and measured

in the efficiency units, K̄ and L̄, be given by

K̄ = λ1K, L̄ = λ2L, (3.1.4)

where λ1 and λ2 represent the effect of the exogenous technical progress. Following

Sato and Ramachardan [110], let us remark that if λ1 = λ2 the change generated

by technical progress is Hicks-neutral. If technical progress is factor augmenting and

biased, then λ1 6= λ2. The functions λi, i = 1, 2 may depend on t only, or they

may be functions of K/L, which would imply that the rate of technical progress on

different rays are different, but the rate is constant on each of them. More generally,
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the functions λi, i = 1, 2 can be functions of the form λi(K,L, t), which would entail

that the rate of technical progress will also vary along a ray. In what follows, we will

also require that the technical progress functions λi, i = 1, 2 represent the action of

a one-parameter Lie group.

Consider now the case when both λi = λi(t), i = 1, 2. Moreover, let λ1(t) = eαt,

λ2(t) = eβt, α, β ≥ 0. Note, if α = β the change generated by such technical progress

is Hicks-neutral. Clearly, the corresponding transformations

K̄ = eαtK, L̄ = eβtL (3.1.5)

form a continuous one-parameter Lie group, which follows from the fact, for example,

that transformation (3.1.5) determines the flow

σ(t, (K,L)) =

"
eαt 0

0 eβt

#"
K

L

#
(3.1.6)

generated by the following vector field

U = αK
∂

∂K
+ βL

∂

∂L
, (3.1.7)

which generates the Lie algebra of the one-parameter Lie group G = {g | g = σt, t ∈
R}, where σt : R2 → R2 is determined by (3.1.6) for each fixed t ∈ R.

Let us also suppose the family of transformations Tt (3.1.2) forms a one-parameter

Lie group (as per Definition 3.1.1). Then the infinitesimal generator of Tt is given by

U = ξ(K,L)
∂

∂K
+ η(K,L)

∂

∂L
, (3.1.8)

where ξ(K,L) =
(
∂φ
∂t

)
t=0

, η(K,L) =
(
∂ψ
∂t

)
t=0

.

Recall that Sato formulated the following theorem [108]:
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Theorem 3.1.6. A production function f is holothetic under a continuous one-

parameter Lie group of transformatoins (3.1.2) iff

Uf = ξ(K,L)
∂f

∂K
+ η(K,L)

∂f

∂L
= H(f), (3.1.9)

where ξ(K,L) =
(
∂φ
∂t

)
t=0

, η(K,L) =
(
∂ψ
∂t

)
t=0

.

Proof. The proof is done by equating principal parts of functions on both sides. We

elaborate on Sato’s proof and introduce modern terminology.

Using Lemma 3.1.5, we obtain

f(Tt(K,L)) = f(K̄, L̄) = Ft(f), (3.1.10)

where Tt is given by the transformation group (3.1.2) and Ft is a strictly monotone

function.

Applying Taylor’s theorem to the transformation Tt, we obtain

f(Tt(K,L)) = f(K̄, L̄)

= f(φ(K,L, t), ψ(K,L, t))

= f

(
φ(K,L, 0) +

(
∂φ

∂t

∣∣∣∣
t=0

)
t+O(t2), ψ(K,L, 0) +

(
∂ψ

∂t

∣∣∣∣
t=0

)
t+O(t2)

)
(3.1.11)

Let ξ(K,L) =
(
∂φ
∂t

)
t=0

, η(K,L) =
(
∂ψ
∂t

)
t=0

, φ(K,L, 0) = φ(K,L) and ψ(K,L, 0) =

ψ(K,L). Then, it follows from Talyor’s theorem applied to f that

f(Tt(K,L)) = f(φ(K,L), ψ(K,L)) +

(
∂f

∂t

∣∣∣∣
t=0

)
t+O(t2), (3.1.12)

where

(
∂f

∂t

∣∣∣∣
t=0

)
= ξ(K,L)

∂f

∂K
+ η(K,L)

∂f

∂L
.

Working on the Ft(f), we obtain

Ft(f) = f +H(f)t+O(t2), (3.1.13)
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where H(f) =

(
∂F

∂t

∣∣∣∣
t=0

)
is a function of f .

Equating (3.1.12) and (3.1.13) yields

Uf = ξ(K,L)
∂f

∂K
+ η(K,L)

∂f

∂L
= H(f). (3.1.14)

The condition of holotheticity is crucial from the economic standpoint, because it

assures that the isoquant map (i.e., the family of level curves of f) is invariant under

the transformation (3.1.2) representing the technical change, which in turn means

that under T isoquants are mapped onto isoquants and the techinical change in this

case is transformed into a scale effect.

Using Theorem 3.1.6, we can derive a family of production functions.

Example 3.1.7. If ξ = αK and η = βL in (3.1.9), α 6= β, α, β > 0, which means

λ1 = eαt, λ2 = eβt in (3.1.4), H(f) 6= 0. It is a straigforward calculation, using the

method of characteristics, that the general solution to the partial differential equation

(3.1.9) is given by [110] (see also [106])

Y = f

[
K1/αQ

(
Lα

Kβ

)]
, (3.1.15)

where Q(·) is an arbitrary function.

The converse problem was also considered by Sato. Specifically, he established nec-

essary and sufficient conditions for the existence of a technical progress that affords

holotheticity of a given production function (see Lemma 4 in [108] on p. 34).

Now let us derive the Cobb-Douglas function (3.0.1) within the framework of the

model (G,R2
+), where the one-parameter Lie group of transformations G determines

the exponential growth (3.1.5). Consider the partial differential equation (3.1.9) with

the coefficients ξ and η determined by (3.1.5) for K̄ = eatK, L̄ = ebtL, a, b > 0.

Clearly, we can determine a particular production function (3.1.15) by specifying the

function H(f) 6= 0 in (3.1.5). Since G in this case defines an exponential growth, it is

natural to impose the corresponding condition on H(f) — so that it is also subject
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to an exponential growth. Indeed, let H(f) = cf , c > 0. Therefore we have

Uf = aK
∂f

∂K
+ bL

∂f

∂L
= cf, (3.1.16)

or, alternatively, we can solve instead the following partial differential equation as a

lift of the equation (3.1.16)

Xϕ = aK
∂ϕ

∂K
+ bL

∂ϕ

∂L
+ cf

∂ϕ

∂f
= 0, (3.1.17)

where ϕ(K,L, f) = 0, ∂ϕ/∂f 6≡ 0 is a solution to (3.1.17), while f is a solution

to (3.1.16) and an invariant as such. Solving the corresponding system of ordinary

differential equations
dK

aK
=
dL

bL
=
df

cf
, (3.1.18)

using the method of characteristics, yields the function (3.0.1), where α = α(a, b, c), β =

β(a, b, c).

Unfortunately, the elasticity elements in this case do not attain economically mean-

ingful values like (3.0.2). To overcome this problem Sato in [108] adjusted the model

accordingly. Specifically, he introduced the notion of the simultaneous holothenticity,

which implies that a production function is holothetic under more than one type of

technical change simultaneously. Mathematically, it means that a production function

is an invariant of an integrable distribution of vector fields ∆ [4], each representing a

technical change as per the formula (3.1.2).

Let us introduce the definition of compatible types of technical progress as follows

Definition 3.1.8. Two technical progress T1 and T2 are called compatible if their

corresponding vector fields X1 and X2 are in involution.

Therefore, a production function f is simultaneously holothetic under two compatible

technical progress, using Theorem 3.1.6, the following conditions hold true

X1f = ξ1(K,L)
∂f

∂K
+ η1(K,L)

∂f

∂L
= H1(f),

X2f = ξ2(K,L)
∂f

∂K
+ η2(K,L)

∂f

∂L
= H2(f)

(3.1.19)
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It is more convenient to employ the lift of the two vector fields, namely, use the

following equations instead

X1ϕ = ξ1(K,L)
∂ϕ

∂K
+ η1(K,L)

∂ϕ

∂L
+H1(f)

∂ϕ

∂f
= 0,

X2ϕ = ξ2(K,L)
∂ϕ

∂K
+ η2(K,L)

∂ϕ

∂L
+H2(f)

∂ϕ

∂f
= 0,

(3.1.20)

for which a function ϕ = ϕ(K,L, f) is an invariant.

Solving the system (3.1.20), Sato derived

∂ϕ

∂K

/
∂ϕ

∂f
=
H2η1 −H1η2

ξ1η2 − ξ2η1

(3.1.21)

and
∂ϕ

∂L

/
∂ϕ

∂f
=
H1ξ2 −H2ξ1

ξ1η2 − ξ2η1

, (3.1.22)

where ξ1η2 − ξ2η1 6= 0.

The total differential equation corresponding to φ(K,L, f) = const is

dϕ =
∂ϕ

∂K
dK +

∂ϕ

∂L
dL+

∂ϕ

∂f
df = 0, (3.1.23)

substituting (3.1.21) and (3.1.22) into which, Sato, by assuming
∂ϕ

∂f
6= 0, arrived at

(H2η1 −H1η2)dK + (H1ξ2 −H2ξ1)dL+ (ξ1η2 − ξ2η1)df = 0. (3.1.24)

The total differential equation (3.1.24), if solvable, leads to the function f = f(K,L).

Sato commented that the total differential equation (3.1.24), noting P = H2η1 −
H1η2, Q = H1η2 −H2η1, R = ξ1η2 − ξ2η1 6= 0, followed the condition of integrability

P

(
∂Q

∂f
− ∂R

∂L

)
+Q

(
∂R

∂K
− ∂P

∂f

)
+R

(
∂P

∂L
− ∂Q

∂K

)
= 0, (3.1.25)

which is also a necessary and sufficient condition for this problem of finding a function

f simultaneously holothetic under two technical progress.

In modern terminology, the integrability condition (3.1.25) is reasonably obvious as
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we have seen it in Definition 3.1.8, namely, the two vector fields X1 and X2 are in

involution, and {X1, X2} form an integrable distribution.

Agricola and Forrest, as a special case of the Frobenius’ theorem [4], considered the

case of an (m − 1)-dimensional Em−1 on an m-dimensional manifold. They showed

that if Em−1 is defined by one nowhere vanishing one-form ω, the integrability of the

distribution reduces to the condition that the three-form dω ∧ ω vanishes, namely,

dω ∧ ω = 0. Alternatively, we can reform the above problem, finding a function

φ = const holothetic under two compatible technical progress, in terms of differential

forms. Consider a 2-dimensional submanifold of R3
+

M =
{

(K,L, f) ∈ R3
+ : ϕ(K,L, f) = const

}
, (3.1.26)

linearizing which by passing to the tangent bundle, we obtain

ω(X1) = 0 and ω(X2) = 0, (3.1.27)

where ω is a one-form associated with the function φ, i.e., ω = dφ.

Therefore, the problem can be expressed in the following equivalent form

X1(ϕ) = 0, X2(ϕ) = 0, [X1, X2] ∈ {X1, X2} . (3.1.28)

m

ω(X1) = 0, ω(X2) = 0, dω ∧ ω = 0. (3.1.29)

The equivalence of Xi(ϕ) = 0 and ω(Xi) = 0, i = 1, 2, can be verified by using the

formula LX(ϕ) = iX(dϕ), where the interior derivative iX maps an m-form to an

m− 1-form, while dω ∧ω = 0 states the integrability, which is same as the involution

of the distribution {X1, X2}. Specifically, the one-form ω can be expressed as

ω = P (K,L, f)dK +Q(K,L, f)dL+R(K,L, f)df, (3.1.30)
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the contraction of which with X1 and X2 leads to

Pξ1 +Qη1 +RH1 = 0, P ξ2 +Qη2 +RH2 = 0. (3.1.31)

Expressing P and Q in terms of R (assuming R 6= 0), we obtain

P = R
H2η1 −H1η2

ξ1η2 − ξ2η1

(3.1.32)

and

Q = R
H1ξ2 −H2ξ1

ξ1η2 − ξ2η1

(3.1.33)

substituting both of which into (3.1.30), we have the one-form ω in the following form

ω = R
H2η1 −H1η2

ξ1η2 − ξ2η1

dK +R
H1ξ2 −H2ξ1

ξ1η2 − ξ2η1

dL+Rdf. (3.1.34)

The one-form ω is indeed nowhere vanishing since three components are not equal to

zero simultaneously.

We have the Pfaffian equation ω = 0 along the submanifold M since ω is associated

with φ(K,L, f) = const, that is,

R
H2η1 −H1η2

ξ1η2 − ξ2η1

dK +R
H1ξ2 −H2ξ1

ξ1η2 − ξ2η1

dL+Rdf = 0, (3.1.35)

or

(H2η1 −H1η2)dK + (H1ξ2 −H2ξ1)dL+ (ξ1η2 − ξ2η1)df = 0, (3.1.36)

which shows that we have recovered (3.1.24) in terms of a one-form.

Moreover, it follows from ω = dϕ that the integrability condition dω ∧ ω = 0 holds

because ω is an exact form. To have a detailed view of the specific problem and

recover (3.1.25), let us work on the condition of integrability. Upon substituting

(3.1.21) and (3.1.22) a non-trivial calculation shows that

dω ∧ ω =

[
P

(
∂Q

∂f
− ∂R

∂L

)
+Q

(
∂R

∂K
− ∂P

∂f

)
+R

(
∂P

∂L
− ∂Q

∂K

)]
dK ∧ dL ∧ df = 0.

(3.1.37)
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Thus, we recover the condition of integrability (3.1.25):

P

(
∂Q

∂f
− ∂R

∂L

)
+Q

(
∂R

∂K
− ∂P

∂f

)
+R

(
∂P

∂L
− ∂Q

∂K

)
= 0. (3.1.38)

To derive the exact form of the Cobb-Douglas function, let us consider the following

two vector fields, for which a function ϕ(K,L, f) is an invariant:

X1ϕ = K
∂ϕ

∂K
+ L

∂ϕ

∂L
+ f

∂ϕ

∂f
= 0,

X2ϕ = aK
∂ϕ

∂K
+ bL

∂ϕ

∂L
+ f

∂ϕ

∂f
= 0. (3.1.39)

Clearly, the vector fields X1, X2 form a two-dimensional integrable distribution:

[X1, X2] = ρ1X1 + ρ2X2, where ρ1 = ρ2 = 0. The corresponding total differential

equation is given by (see Chapter VII, Sato [108] for more details)

(fL− bfL)dK + (afK − fK)dL+ (bKL− aKL)df = 0, (3.1.40)

or,

(1 − b)
dK

K
+ (a− 1)

dL

L
+ (b− a)

df

f
= 0. (3.1.41)

Remark 3.1.9. Alternatively, the problem can be formulated in terms of differential

forms. Indeed, let us consider a submanifold

M1 =
{

(K,L, f) ∈ R3
+ : ϕ(K,L, f) = const

}
. (3.1.42)

Next, consider a differential form

ω1 = P1dK +Q1dL+R1df, (3.1.43)

where P1 = P1(K,L, f), Q1 = Q1(K,L, f) and R1 = R1(K,L, f) 6= 0 are smooth

functions and ω1 = dϕ. To derive the Cobb-Douglas function, we employ the condition

(3.1.39), which is dual to the simultaneous holotheticity, that is

ω1(X1) = 0 and ω1(X2) = 0, (3.1.44)
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where X1 and X2 are vector fields in (3.1.39).

Hence, we obtain

KP1 + LQ1 + fR1 = 0, (3.1.45)

aKP1 + bLQ1 + fR1 = 0, (3.1.46)

which yields

P1 =
(1 − b)f

(b− a)K
R1, (3.1.47)

Q1 =
(a− 1)f

(b− a)L
R1. (3.1.48)

The equation (3.1.47) leads to

ω1 =
(1 − b)f

(b− a)K
R1dK +

(a− 1)f

(b− a)L
R1dL+R1df. (3.1.49)

ω1 gives rise to a Pfaffian equation on the submanifold M , namely, ω1 = 0 along M .

Therefore, we have recovered (3.1.41) as follows

(1 − b)f

(b− a)K
R1dK +

(a− 1)f

(b− a)L
R1dL+R1df = 0, (3.1.50)

or

(1 − b)LfdK + (a− 1)KfdL+ (b− a)KLdf = 0. (3.1.51)

Integrating (3.1.41), we arrive at a Cobb-Douglas function of the form (3.0.1), where

the elasticity coefficients

α =
1 − b

a− b
, β =

a− 1

a− b
(3.1.52)

satisfy the condition of constant return to scale (3.0.2).

Remark 3.1.10. Note that, in principle, we could have used only one vector field

generating a partial differential equation of the type (3.1.16). However, the result-

ing Cobb-Douglas function would have had the elasticity of holotheticity satisfying
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the condition αβ < 0 (see (3.0.1)). The latter constraint on the parameters α and

β in (3.0.1) is incompatible with the economic growth theory main postulates. We

suppose that exactly for this reason Sato [108] introduced the concept of simultaneous

holotheticity. This arrangement, in particular, allows us to generate two-input Cobb-

Douglas functions of the type (3.0.1) depending on a wide range of parameters α and

β, which we can, for instance, make to satify the condition α + β = 1, so that the

function (3.0.1) displays constant returns to scale as in the example above.

These considerations lead to a very important conclusion. Namely, the Cobb-Douglas

function, derived within the framework of the growth model (G,R2
+), where the Lie

group G is determined by the exponential growth (3.1.5), is precisely a manifestation

of this exponential growth, or, more succinctly, we have

exponential growth ⇒ the Cobb-Douglas function,

which means that the Cobb-Douglas function (3.0.1) is a consequence of exponential

growth representing technical change.

3.2 From exponential to logistic growth models

In this section we depart from the assumption that the input factors K and L follow

an exponential growth in order to extend Sato’s growth model (G,R2
+). In the fol-

lowing context we will assume capital and labor grow logistically. There is already

a substantial literature on logistic growth on population and labor in mathematics,

statistics and economics.

Recall that Verhulst [128] introduced the idea of logistic growth in population dynam-

ics. He obtained the logistic equation by adjusting the exponential equation while

studying population growth, that is,

ẋ = rx −→ ẋ = rx
(

1 − x

N

)
,

(exponential growth) −→ (logistic growth),
(3.2.1)

where x is population size, r is the growth rate and N is the carrying capacity.
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By solving the logistic equation (3.2.1) Verhulst [128] derived the logistic function of

the following form

x(t) =
x(0)ert

1 + x(0)(ert − 1)/N
, (3.2.2)

where x(0) > 0 is the initial population.

Verhulst compared his logistic function against available demographic data (more

details can be found in [10]).

The 1920s were an important period for the development of the logistic growth model.

The logistic model has become accepted by mathematicians, statisticians, economists

and biologists thanks to the promotion efforts by Pearl and Leed [90, 89], who ex-

tended the logistic model and proved the population data of US from 1790 to 1910

fits well to the logistic function. More importantly, Pearl [68] concluded the law of

logistical growth of population based on the accumulated empirical evidence.

Meanwhile, Lotka [79] and Volterra [129] independently introduced the predator-prey

equations given by (also known as the Lotka-Volterra equations)

ẋ = αx− βxy,

ẏ = δxy − γy,
(3.2.3)

where x and y are population size or population density of different species and

α, β, δ, γ represent different growth or decay rates. The model can be used in

(but not limited within) describing the population dynamics of ecological species

or interactions of chemicals. The application of Lotka-Volterra model in distinct

branches of mathematics and other disciplines is quite fruitful. The model can, by

considering logistic growth, be generalized to

ẋ = α

(
x− x

N1

)
− βxy,

ẏ = δxy − γ

(
y − y

N2

)
,

(3.2.4)

where N1 and N2 are carrying capacities. The system (3.2.4) describes an interaction

between logistic growth and decay of two different species. From this point of view,

we can comment that the Lotka-Volterra model is an extension of Verhulst’s logistic



48

model. The early history of the development of the logistic model can be found in [68].

We make use of the model (3.2.4), as well as its generalization in different dimensions,

in the study of economic dynamics of inputs and output and derivation of production

functions, the details of which will be discussed in Chapters 4 and 5.

Subsequently, in 1959 Holling [58] introduced the Holling-type interaction based on

the predator-prey model of Gause (see in [56]), who also made distinct contributions to

the development of the logistic growth model, by considering the ecological saturation

effect, i.e., the high density of the predator decreases the possibility of catching the

prey. The mathematical model is as follows

ẋ = αx
(

1 − x

N

)
− yp(x),

ẏ = y (δp(x) − γ) ,

(3.2.5)

where p(x) is called the response function or functional response.

There are three types of functional responses, Type I, Type II and Type III. In par-

ticular, we noted that the Type III functional response is characterized by a sigmoid

function as follows

p(x) =
cxn

a+ xn
, (3.2.6)

where a is a parameter controlling the growth rate and c is the carrying capacity.

As we have mentioned, the response function corresponds to the ecological saturation

effect. As we can see, p(x) → c as x→ ∞. Then the interaction of the predator and

prey in (3.2.5) is determined by the density of the prey. This is the mathematical

interpretation of the effect. We are interested in the Type III functional response

because the same “S-shaped” function is also employed in the study of econometric

dynamics, in which some mathematicians and economists suggest that we should

consider a production function characterized by a sigmoid function. We will discuss

this in Section 3.3.

More recently, the law of logistic growth of population was confirmed by more ev-

idence. See, for example, Brass [17], Leach [76], Oliver [86], in which the authors

validated the law via studying population of the US, Scotland and Great Britain

using modern statistical tools. The idea of logistic growth has also been accepted
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and adopted by economists since labor force is naturally subject to population, for

example, Accinelli and Brida [2, 1, 19]. extended the Solow’s model by considering

labor force is affected by the logistic growth.

The same assumption can be made about the growth in capital, if, using natural

resources such as crude oil and gold as proxies for energy and money, respectively,

we can see, for example, in Figure 3.1 that the accumulation of gold reserves and oil

production are almost subject to logistic growth rather than exponential growth.

We note that from the mathematical viewpoint it is also evident that there cannot be

unbounded, continuous exponential growth, whether in terms of production, capital,

or population, on a planet with limited resources as per the following well-known

theorem [101]:

Theorem 3.2.1 (Extreme value theorem). If S is a compact set and f : S → R is

a continuous function, then f is bounded and there exist p, q ∈ S such that f(p) =

supx∈S f(x) and f(q) = infx∈S f(x).

(a) World Gold Reserves from 1845 to 2013, in
metric tonnes (Wikipedia [132]).

(b) World crude oil production 1930 to 2012
(Wikipedia [133]).

Figure 3.1: Logistic growth in basic factors of production (gold and oil).

In view of the above, we propose the following growth model based on the assumption

that both capital K and labor L are affected by logistic growth, namely

(G1,R2
+), G1 : K̄ =

NKK

K + (NK −K) e−αt
, L̄ =

NLL

L+ (NL − L) e−βt
, (3.2.7)
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where α, β > 0 and NK , NL are the respective carrying capacities.

We verify that G1 satisfies the group properties presented in Section 2.2. Let us

illustrate using the transformation K̄ = φ1(K, t) in G1, that is,

(a) Associativity

φ1(φ1(K, t), s)

= φ1

(
NKK

K + (NK −K)e−αt
, s

)
=

NKK

K + [K + (NK −K)e−αt −K]e−αs

=
NKK

K + (NK −K)e−α(t+s)

= φ1(K, t+ s),

(3.2.8)

(b) The identity for φ1(K, t) is φ(K, 0) =
NKK

K +NK −K
= K,

(c) The inverse of φ1(K, t) is

φ1(K,−t) =
NKK

K + (NK −K) eαt
(3.2.9)

such that

φ1(φ1(K,−t), t)

= φ1

(
NKK

K + (NK −K)e−αt
, t

)
=

NKK

K + [K + (NK −K)eαt −K]e−αt
= K.

(3.2.10)

Hence, φ1(K,−t) is indeed the inverse.

Therefore, G1 is a one-parameter Lie group, acting in R2
+, whose flow is generated by

the vector field

U1 = αK

(
1 − K

NK

)
∂

∂K
+ βL

(
1 − L

NL

)
∂

∂L
. (3.2.11)

Remark 3.2.2. It is also natural to consider the growth models (G2,R2
+) and (G3,R2

+)

determined by the assumption that only one of the two variables grow logistically, while
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the other is affected by exponential growth, that is

(G2,R2
+), G2 : K̄ =

NKK

K + (NK −K) e−αt
, L̄ = eβtL, (3.2.12)

or,

(G3,R2
+), G3 : K̄ = eαtK, L̄ =

NLL

L+ (NL − L) e−βt
. (3.2.13)

Following the approach developed by Sato in [108], we can now determine the corre-

sponding family of production functions by solving the partial differential equation

determined by the vector field U1 (3.2.11):

U1f = αK

(
1 − K

NK

)
∂f

∂K
+ βL

(
1 − L

NL

)
∂f

∂L
= H(f), (3.2.14)

where H(f) is an arbitrary function of f . Employing the method of characteristics,

we arrive at the following family of functions:

Y = f1

((
K

|NK −K|

)1/α

Q

"(
L

|NL − L|

)α( |NK −K|
K

)β#)
, (3.2.15)

where Q(·) is an arbitrary function. We note that for NK = NL = 1 and K,L� 1 the

family of functions given by (3.2.15) f1 ∼ f , where f is given by (3.1.15). Therefore,

we arrive at the following

Proposition 3.2.3. The most general family of production functions holothetic within

the growth model (3.2.7) is given by (3.2.15).

Remark 3.2.4. The same argument applied to the “partially” logistic neoclassical

growth models (3.2.12) and (3.2.13) yields the families of functions

Y = f2

((
K

|NK −K|

)1/α

Q

"
Lα
(
|NK −K|

K

)β#)
(3.2.16)

and

Y = f3

{
K1/αQ

[(
L

|NL − L|

)α
K−β

]}
, (3.2.17)

respectively.
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Our next goal is to derive a new production function under the assumption of logistic

growth in both capital K and labor L. Since the Cobb-Douglas function (3.0.1) has

been shown above to be a member of the family of production functions (3.1.15)

determined within the neoclassical growth model (G,R2
+), where the Lie group G

is given by (3.1.5), it is natural to seek a new production function compatible with

the logistic growth determined by the action of the Lie group G1 (3.2.7) within the

growth model (G1,R2
+). This is the subject of the considerations that follow.

3.3 From logistic growth to a new production function

In Section 3.1 we saw how the Cobb-Douglas production function could be derived

as an element of the family of production functions (3.1.15) within the framework of

the growth model (G,R2
+), where the Lie group G was defined by (3.1.5). Now let

us consider the new growth model (G1,R2
+), where the Lie group G1 was given by

(3.2.7). By analogy, we are supposed to derive a new type of production function

based on the model (G1,R2
+) by using the holotheticity, that is, we formulate the

following

Conjecture 3.3.1. The growth model (G1,R2
+) leads to a production function of a

new type holothetic to G1

logistic growth ⇒ production function of a new type. (3.3.1)

Before we formally derive the corresponding production function as an element of the

family of production functions (3.2.15), following the procedure outlined above, let

us first give a reasonable justification for the calculations that we will present below.

Harrod [53] and Domar [30], when studying the long-run production and accumulation
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of wealth, independently introduced the following Harrod-Domar model

Y = f(K; t),
dY

dK
=

Y

K
= c,

f(0) = 0, s > 0 (3.3.2)

sY = S = I,

∆K = I − δK,

where C and I represent consumption and investment (savings) respectively, while

c, s and δ denotes marginal rate of production, rate of saving and depreciation of

capital. The core of the dynamic model (3.3.2) is the behaviour of Y , that is,

Ẏ

Y
= sc− δ, (3.3.3)

which shows that rate of production is affected by the marginal rate of production,

rate of saving as well as depreciation of capital and production follows growth of an

exponential type. But the model has been criticized by Solow and some neoclassical

economists that the authors employ a short-run model to analyze the long-run growth,

i.e., the production is assumed only to be affected by capital, and the model has an

unstable equilibrium provided that the economy grows.

Solow [120] and Swan [126] extended the Harrod-Domar model by considering that

production is affected by capital and labor, in which labor force follows an exponential

growth

Y = f(K,L; t),

Y = C + I,

I = sY, s > 0 (3.3.4)

K̇ = I − δK, K0, δ ≥ 0,

L = L0e
αt, L > 0, α ≥ 0,

where L is labor and α is the growth rate of labor. It is noted economists prefer the
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model presented in projective coordinates, namely, y = Y
L

and k = K
L

, when doing

mathematical analysis, Solow commented that his model (3.3.5) (known as the Solow-

Swan model or simply Solow model) in comparison to the Harrod-Domar model was

“less sensitive”, that is, the model (3.3.5) described dynamics of capital rather than of

production. The model is well accepted by neoclassical economists (see, for example,

Jones and Scrimgeour [62], a model with decay in produced capital was studied in

Cheviakov and Hartwick [26]).

Another neoclassical model of economic growth is the Ramsey model [99], in which

Ramsey considered the problem of optimal social welfare, namely, utility of con-

sumers, subject to dynamics of accumulation of capital. We extend the Ramsey

model in Chapter 5 by considering our new production function, which is derived in

what follows, and logistic growth of capital and labor.

It is assumed in all above models that production function f satisfies the Inada

conditions [60]:

1. fK , fL > 0, this condition accounts for growth in both K and L,

2. fKK , fLL < 0, that implies diminishing marginal returns also in both K and L,

3. f has constant returns to scale, that is f(λK, λL) = λf(K,L) for all λ > 0,

4. f satisfies the following properties:

lim
K→0

fK = ∞, lim
K→∞

fK = 0,

lim
L→0

fL = ∞, lim
L→∞

fL = 0.

For example, the Cobb-Douglas function (3.0.1) satisfies the above assumptions, pro-

vided the condition (3.0.2) holds. Many important examples of endogenous growth

support this assumption (see, for example, Cobb and Douglas [27]). Nevertheless,

there are situations when growth cannot be described by a strictly concave produc-

tion function. Skiba [114] indicated that it is very realistic to apply a narrow class

of production functions to different economic models, for example, in both developed
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and developing countries. He considered a model of the Ramsey type based on the

non-concave production function. Economically, for instance, the business cycle of

a company is a notable counterexample. Indeed, at a microeconomic level a com-

pany may develop a product based on an original idea, such a product initially can

be sold unrestricted in the absence of competition, generating increasing marginal

returns. After a while, a competition may become a factor (e.g., other companies

may introduce similar products) affecting the sales of the original product, whose

market share may shrink. In turn, this situation in a long-run will manifest itself in

decreasing marginal returns. Mathematically, the corresponding production function

will no longer be strictly concave. Capasso et al. [24] gave a different motivation for

the introduction of a (globally) nonconcave production function based on the idea of

“poverty traps”.

To address the issue Capasso et al. [24] (see also Engbers et al. [34], La Torre et

al. [75], Anita et al. [5, 6, 7]) employed a sigmoid function (3.2.6) of the Type III

functional response in the following form

Y = f4(K,L) =
α1K

pL1−p

1 + α2KpL1−p (3.3.5)

reducible to the Cobb-Douglas function (3.0.1) and enjoying an “S-shaped” (concave-

convex) behavior for p ≥ 2. Clearly, the functions of the class (3.3.5) have a horizontal

asymptote as (K,L) → (∞,∞) when α2 6= 0 and are compatible with logistic growth.

As mentioned in Section 3.2, mathematical biologists introduced the functional re-

sponse in the study of the saturation phenomenon. We can base the application of the

new production (3.3.5) on the same reason, a saturation of economic growth, which

we have discussed in Section 3.2. These functions were used by the authors as a cor-

nerstone for building a new, highly non-trivial generalization of the Solow model with

spacial component in which they did not make assumptions about logistic growth

for L. It is worth mentioning at this point that La Torre et al. [1, 2, 19, 23], while

generalizing the Ramsey models of economic growth, assumed logistic growth in L,

but kept the Cobb-Douglas function (3.0.1) intact.

The introduction of the family of production functions (3.3.5) is in agreement with
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a big step in the right direction, nevertheless these functions cannot account for

all possible examples of growth (and decay). For example, a production function can

exhibit growth, followed by a period of stabilization and then decay (see, for example,

[22]). Another option is growth followed by a period of stabilization, which is followed

by growth again. In this view our next goal is to derive a more general production

function that can be used to describe a wider range of economic growth models,

including the situations outlined above. We shall employ the Lie group theoretical

method developed by Sato [108] and briefly described in Section 3.1.

Indeed, consider the growth model (G1,R2
+) given by (3.2.7). Next, we are going

to identify a member of the family (3.2.15) compatible with logistic growth given

by (3.2.7) by imposing the corresponding constraints on the RHS of the equation

(3.2.14). By analogy with the case of the Cobb-Douglas function derived by Sato

[108] within the framework of the growth model (G,R2
+), where the action of the

Lie group G is determined by (3.1.5), let us consider the following partial differential

equation determined by the vector field U1 given by (3.2.11):

U1f = aK

(
1 − K

NK

)
∂f

∂K
+ bL

(
1 − L

NL

)
∂f

∂L
= cf

(
1 − f

Nf

)
, (3.3.6)

or, in other words, let us specify the function H(f) in (3.2.14) to be cf
(

1 − f
Nf

)
that

implies logistic growth in the production function as well. Compare (3.3.6) with the

equation (3.1.16).

Remark 3.3.2. We note that the choice for the RHS of (3.3.6) is not arbitrary. It

turns out that in order to obtain a meaningful solution one needs to assure that the

properties of the function H(f) in (3.2.11) are compatible with the logistic growth de-

termined by (3.2.7). For example, if we set H(f) = f in (3.2.11), which would imply

that the growth in both K and L is logistic, while f grows exponentially, the resulting

production function would have singularities (see the equation (3.8.1)). Therefore the

above equation reflects the fact that the growth determined by (3.3.6) is consistent for

all quantities involved, that is for K, L and f .

Next, we employ the same reasoning that Sato in [108] based his derivation of the
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Cobb-Douglas function (3.0.1) upon (see also Section 3.1). Let us consider two com-

patible technical progress, under which the production function is holothetic, and

solve (again) the corresponding simultaneous holotheticity problem. Let us consider

the following two vector fields acting on a function ϕ(K,L, f):

X3ϕ = K

(
1 − K

NK

)
∂ϕ

∂K
+ L

(
1 − L

NL

)
∂ϕ

∂L
+ f

(
1 − f

Nf

)
∂ϕ

∂f
= 0,

X4ϕ = aK

(
1 − K

NK

)
∂ϕ

∂K
+ bL

(
1 − L

NL

)
∂ϕ

∂L
+ cf

(
1 − f

Nf

)
∂ϕ

∂f
= 0.

(3.3.7)

Clearly, the vector fields X3 and X4 form an integrable distribution ∆, because

[X3, X4] = ρ3X3 + ρ4X4, where ρ3 = ρ4 = 0. Then the corresponding total dif-

ferential equation which has ϕ(K,L, f) = const for a solution assumes the following

form: [
(c− b)f

(
1 − f

Nf

)
L

(
1 − L

NL

)]
dK +[

(a− c)f

(
1 − f

Nf

)
K

(
1 − K

NK

)]
dL +[

(b− a)f

(
1 − K

NK

)
L

(
1 − L

NL

)]
df = 0,

(3.3.8)

or,

(c− b)
dK

K
(

1 − K
NK

) + (a− c)
dL

L
(

1 − L
NL

) + (b− a)
df

f
(

1 − f
Nf

) = 0. (3.3.9)

Remark 3.3.3. By analogy with Remark 3.1.9, we can also derive (3.3.9) using a

differential form. Consider a differential form

ω2 = P2dK +Q2dL+R2df, R2 6= 0, (3.3.10)

where ω2 = dϕ.

Employing the condition (3.1.27), we have

ω2(X2) = 0 and ω2(X3) = 0, (3.3.11)

where X3 and X4 are vector fields in (3.3.7).
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It follows that

K

(
1 − K

NK

)
P2 + L

(
1 − L

NL

)
Q2 + f

(
1 − f

Nf

)
R2 = 0,

aK

(
1 − K

NK

)
P2 + bL

(
1 − L

NL

)
Q2 + cf

(
1 − f

Nf

)
R2 = 0. (3.3.12)

Expressing P2 and Q2 in terms of R2, we obtain, by substituting into (3.3.10), the

following expression

ω2 =
(c− b)f

(
1 − f

Nf

)
(b− a)K

(
1 − K

NK

)R2dK +
(a− c)f

(
1 − f

Nf

)
(b− a)L

(
1 − L

NL

)R2dL+R2df. (3.3.13)

We note that we see ω2 ∧ dω2 = 0 by identifying ω2 = dφ, where φ(K,L, f) = const.

ω2 = 0 along the submanifold for φ(K,L, f) = const (see (3.1.35)). Therefore, we

have recovered (3.3.9).

Integrating the differential equation (3.3.9) (compare it with (3.1.41)), we arrive at a

solution of the form ϕ(K,L, f) = 0 defined in the open domain

D =]0, NK [×]0, NL[×]0, Nf [⊂ R3

and satisfying the condition ∂ϕ
∂f

6≡ 0. Solving for f by the implicit function theorem,

we arrive at the following hypersurface in R3:

Y = f5(K,L) =
Nf5K

αLβ

C |NK −K|α |NL − L|β +KαLβ
, (K,L) ∈ R2

+, (3.3.14)

where C ∈ R is the constant of integration, α = c−b
a−b , β = a−c

a−b . Note α+ β = 1. Note

that in view of the symmetry of the differential equation (3.3.9), we could have solved

the equation ϕ(K,L, f) = 0 for K and L as well. The function Y = f5(K,L) given

by (3.3.14) whose range is ]0, Nf [ coinsides with the function ϕ(K,L, f) = 0 on D.

Furthermore, we note that in the subset D0 =]0, NK [×]0, NL[⊂ R2
+ of the domain

of the function Y = f5(K,L) its growth is governed by the logistic growth in the
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factors K and L. Note that in this region the growth of the production function

f5 is “S-shaped”, which agrees with the assumptions that led to the introduction of

the production function (3.3.5). However, the production function (3.3.14) is also

defined outside of the region D0, which impies in turn that its shape in the subset

R2
+ \ D0 = [NK ,∞[×[NL,∞[ is determined by the growth in K and L that goes

beyond the respective carrying capacities NK and NL. We will elaborate on this

matter without loss of generality while dealing with the corresponding one-input

analog of the new two-input production function (3.3.14) below.

We conclude, therefore, that by analogy with the algorithm based on the Lie group

theory methods devised by Sato and applied in [108] to generate the Cobb-Douglas

function (3.0.1), we have used it, after some modifications, to generate a new produc-

tion function (3.3.14). More succinctly, we have shown that

logistic growth ⇒ the new production function (3.3.14).

Remark 3.3.4. Taking the limit as K,L → ∞ (even though K and L cannot grow

beyond a certain “horizon” - see below), we obtain

lim
K→∞
L→∞

f5(K,L) = lim
K→∞
L→∞

Nf5K
αLβ

C |NK −K|α |NL − L|β +KαLβ
(3.3.15)

= lim
K→∞
L→∞

Nf5

C
∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

(3.3.16)

=
Nf5

C + 1
. (3.3.17)

The quantity

Sf5 =
Nf5

C + 1
(3.3.18)

is the steady state of the new production function f5 given by (3.3.14). Note that by

changing the constant C in (3.3.18) we can regulate the steady state Sf5.

Remark 3.3.5. See Remark 3.1.10.

Remark 3.3.6. We observe that the new production function f5 (3.3.14) is reducible

to the production function (3.3.5) proposed by Capasso et al. [24] when K and L �
NK and NL respectively, NL, NK ≈ 1, C = 1 in (3.3.14) and α1 = Nf5, α2 = 1 in
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(3.3.5) .

Remark 3.3.7. Figure 3.2 presents the surface of a two-input production function of

the type (3.3.14) for Nf = 120, α = β = 3, NK = 113, NL = 115, C = 1.18 without

singularities (see Remark 3.3.8).

Remark 3.3.8. Employing the same procedure, we can determine now in a fairly

straightforward manner the corresponding one-input analogue of the new two-input

production function (3.3.14). Thus, let us derive a new production function Y = f(x)

whose growth is governed by the growth in x which we assume to be logistic. Hence,

we can formulate the following problem within the framework of the growth model

(G2,R+):

(G2,R+), G2 : x̄ =
Nxx

x+ (Nx − x) e−at
, a > 0, x ∈ R+, (3.3.19)

U2f = ax

(
1 − x

Nx

)
df

dx
= bf

(
1 − f

Nf

)
, (3.3.20)

where the vector field U2 = ax
(

1 − x
Nx

)
∂
∂x

represents the infinitesimal action defined

by the Lie group G2 (3.3.19). Separating the variables and integrating the differential

equation (3.3.20) yields the following solution (production function):

Y = f6(x) =
Nf6x

α

C|Nx − x|α + xα
, (3.3.21)

where C ∈ R is the constant of integration and α = b/a with the corresponding steady

state given by

Sf6 =
Nf6

C + 1
. (3.3.22)

Note that in this case as well the new production function (3.3.21) exhibits first an

“S-shaped” growth in the region ]0, Nx[, followed by a decline for x > Nx. Let us

investigate this case from the economics point of view in more detail.

Let us recover the corresponding group action that affects the input x(t), so that this

action could be viewed as growth which entails the condition ẋ(t) > 0. Indeed, consider

the infinitesimal action Ũ given by Ũ = Ũ1
∂
∂x

+ Ũ2
∂
∂y

so that Ũf6 = 0. Solving the last
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Figure 3.2: A two-input production function of the type (3.3.14) with isoquants.
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equation, we arrive at the following solutions:

U1 = a
x(Nx − x)

Nx

,

U2 = b
y(Ny − y)

Ny

(3.3.23)

and

U1 = a
x(x−Nx)

Nx

,

U2 = b
y(y −Ny)

Ny

.

(3.3.24)

In view of the fact that x(t), y(t) > 0, it follows from (3.3.23) and (3.3.24) that

ẋ = a
x(Nx − x)

Nx

, 0 < x < Nx,

ẏ = b
y(Ny − y)

Ny

, 0 < y < Ny

(3.3.25)

and

ẋ = a
x(x−Nx)

Nx

, x > Nx,

ẏ = b
y(y −Ny)

Ny

, y > Ny,

(3.3.26)

so that both x(t) and y(t) represent growth. Solving the above equations, we obtain

x(t) =


Nx

1 + C1e−at
, 0 < x(t) < Nx,

Nx

1 + C2eat
, x(t) > Nx,

(3.3.27)

where C1 > 0 and C2 > 0 are constants of integration. Next, we determine the

time interval corresponding to growth in x(t). It follows from (3.3.27) that t > 0 for

0 < Nx

1+C1e−at < Nx and 0 < t < 1
a

ln 1
C2

for Nx

1+C2eat
> Nx. Substituting the equation

(3.3.27) into (3.3.21), we arrive at the following function:

y(t) =


Nf6

C(C1e−at)α + 1
, 0 < t < t1,

Nf6

C(C2eat)α + 1
, t1 < t < 1

a
ln 1

C2
,

(3.3.28)
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where t1 is the time at which the function shifts from the logistic to a different growth

type. Let us assume α to be a positive integer. Furthermore, we note that y(t)

increases or decreases depending on whether α is odd or even respectively. To assure

that (3.3.28) is compatible with (3.3.21) we assume that α is an even integer (see

below). Next, rewrite the production function given by (3.3.28) as follows:

y = (H0(t) −Ht1(t))y1(t) +Ht1y2(t), (3.3.29)

where Hc(t) is the Heaviside (unit) step function,

y1(t) =
Nf6

C(C1e−at)α + 1
, y2(t) =

Nf6

C(C2eat)α + 1
.

In this view the function (3.3.29) may interpreted as an impulse response function.

Indeed, a sudden change in the input at t = t1 causes a jump in the output from y1(t)

to y2(t). From the economic viewpoint we can identify this phenomenon as a “shock”

[113], which means that a sudden change in exogenous factors yields the corresponding

sudden change in production (see [69, 92, 54] for more details and references). The

gap between y1(t) and y2(t) caused by a sudden change in x(t) at t = t1 is given by

d(y1,y2)(t1) =
CNf6(C

a
2e

bt1 − Ca
1e

−bt1)

(C(C1e−at1)a + 1)(C(C2eat1)a + 1)
, (3.3.30)

where d(y1,y2)(t1) denotes the distance between the two curves at t = t1. Next, we note

that

y(t) → Nf6

C + 1
, as t→ 1

a
ln

1

C2

. (3.3.31)

Note that if α is an even number, the RHS of (3.3.31) is precisely the steady state

(3.3.22).

Figure 3.3 presents the graph of a one-input production function of the type (3.3.21)

generated for Nf6 = 100, α = 2 and C = 2. Note the function given by (3.3.21)

defines an invariant I(K,L) of the infinitesimal action determined by vector field U1

(3.2.11) for f6 = K (or, L) and x = L (or, K), namely U1I = 0, where

I(K,L) =
Lα

|NL − L|α
· NK −K

K
.
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Figure 3.3: A one-input production function of the type (3.3.21).

Remark 3.3.9. Repeating the above calculation within the frameworks of the growth

models (3.2.12) and (3.2.13), we arrive at the production functions

Y = f7(K,L) =
Nf7K

αLβ

C |NK −K|α +KαLβ
(3.3.32)

and

Y = f8(K,L) =
Nf8K

αLβ

C |NL − L|β +KαLβ
, (3.3.33)

respectively, where the parameters α and β are the same as in (3.3.14).

We also note that the functions (3.3.32) and (3.3.33) are elements of the families

(3.2.16) and (3.2.17) respectively, as expected.
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3.4 Modeling economic bubbles using the new production function

defined by logistic growth

Economic bubbles have occurred repeatedly throughout history. Recent examples are

the IT bubble of the late 1990s, the US housing bubble of the early 2000s and the

global financial crisis of 2007-2008. The review of history of economic bubbles can

be found in [42, 45]. Economic bubbles have some common characteristics. In [85]

the authors described an economic bubble occurs when an asset has a market price

exceeding the price that a rational person would compensate. Another feature of an

economic bubble is, as mentioned in [55, 45, 97], that speculation occurs with new,

or perceived to be new technological enhancements.

The study of causes of economic bubbles is of intrinsic interest in economics while the

mathematical study emphasizes on the dynamics of asset prices. Roughly speaking,

the development of an economic bubble can be characterized by an escalation of

an asset price followed by a sudden contraction. Mathematicians are interested in

identifying if a crisis is happening or not through behaviour of prices. Based on

the martingale theory (a martingale is a sequence of random variables for which

the next expectation conditional on all previous variables is equal to the present

expectation), in [59, 85, 97, 121] authors modeled the asset price as a solution of

stochastic differential equations and tested the model against real economic data, by

doing which, they were able to describe the bubble mathematically. For example,

Sornette et al. [121, 122] concluded that the asset price in a bubble phase follows a

faster-than-exponential growth with oscillations following the log-periodic power law.

The log-periodic power law is characterized by a time-dependent function

y(t) = A+B(tc − t)z + C(tc − t)z cos(ω log(tc − t) + Φ), (3.4.1)

where y denotes an asset price, t is the time variable, tc represents the most probable

time of crash, z is the growth parameter and A, B, C, Φ are constant. Protter et al.

[85] showed that stock prices in a financial crisis followed a gamma distribution and

estimated parameters in the distribution using real data.
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Alternatively, mathematicians and statisticians have also attempted to model the pro-

cess of the crash in economy using a non-stochastic approach. For example, Watanabe

et al. [130] fitted the trend of NASDAQ data in the Internet bubble to a discrete

exponential growth and decay model. Herzog [55] modeled financial crisis using the

shocking wave models, namely, the following equation

∂ρ

∂t
+
dq

dρ

∂ρ

∂p
= 0, (3.4.2)

where ρ = ρ(p, t) denotes the number of trades within a certain price range, q = q(p, t)

represents the total trading price of an asset, that is, a product of the number of trades

ρ and the buy or sell price u = u(p, t) while the asset price p = p(f, t) depends on the

fundamental price f (a reasonable market price for an asset) and time t. Korobeinikov

[71] employed a disease infection model to describe the global financial crisis of 2007-

2008. By considering the healthy agents x(t), who follow financial regulations strictly,

and the activated agents y(t), who are unable to fulfill their financial obligations, in

an economy, he viewed the economy as the population of agents and described the

economic bubble as the process of infection of healthy agents by activated agents,

that is,

ẋ = −βxyα,

ẏ = βxyα − 1

σ
y,

(3.4.3)

where x(t) and y(t) are the size of agents.

In this section, we want to present a model of an economic bubble involving the new

production function f6(x) (3.3.21). More specifically, we want to exploit the shape

of f6(x) to roughly characterize dynamics of a bubble. According to the greater fool

theory, bubbles are driven by the behaviour of irrational market participants who are

willing to buy an overvalued asset in order to sell the asset to the next speculator at

a higher price. We propose that overvalued asset price is determined by the number

of market participants. Let us consider the excessive price of an asset as a function of

the number of market participants. We assume that the number of speculators buying

or investing in an asset grows logistically. Obviously, the volume of the number of

all buyers in an economy is fixed at a time, that is, there cannot be infinitely many
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market participants. Based on this, we introduce the following DE

ẋ = βx

(
1 − x

Nx

)
, (3.4.4)

where x represents the number of market participants.

Next, we consider the behaviour of an asset price. Recall that the function f6(x) (in

(3.3.21)) derived in Section 3.2

Y = f6(x) =
Nf6x

α

C|Nx − x|α + xα
. (3.4.5)

The function (3.3.21) describes the relation of inputs (for example, labor, capital

and etc.) and output (production), the graph of which exhibits first an “S-shaped”

growth and follows a decline with the input beyond the carrying capacity. We derive

the function using the holotheticity given by the differential equation (3.3.19).

Let us define the following non-autonomous first-order differential equation based on

the form of the equation (3.3.20)

dp

dt
= α

p

(
1 − p

Np

)
t

(
1 − t

Nt

) , (3.4.6)

where p denotes the asset price, t is the time variable, Nt represents the most probable

time of crash, Np is the carrying capacity and α is a constant parameter.

Remark 3.4.1. Nt does not represent the carrying capacity of time since it is not

reasonable to discuss the carrying capacity of time t. By analogy with tc in (3.4.1),

we assume Nt represents the most probable time of crash.

Remark 3.4.2. The equation (3.4.6) is not derived from the holotheticity or from a

variational principle. We modify the equation (3.3.19) to obtain a new equation. By

imposing the condition that the asset price following this dynamics, we can qualita-

tively recover an asset price in a crisis phase in some sense, namely, a rapid expansion

followed by a sudden contraction.
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Hence, the dynamics of an economic bubble can be characterized by the following

system 

dp

dt
= α

p

(
1 − p

Np

)
t

(
1 − t

Nt

) ,
dx

dt
= βx

(
1 − x

Nx

)
.

(3.4.7)

Solving equations (3.4.7) yields

p(t) =
Npt

α

C1|Nt − t|α + tα
, C1 ∈ R (3.4.8)

and

x(t) =
Nx

1 + C2e−βt
, C2 ∈ R. (3.4.9)

The equation (3.4.9) gives

t =
1

β
ln

(
x

C2(Nx − x)

)
. (3.4.10)

In view of the asset price as a function of market participants, we substitute (3.4.10)

into (3.4.7) and derive

p(x) =
Np

C1

∣∣∣∣∣∣∣∣
Nt

1

β
ln

(
x

C2(Nx − x)

) − 1

∣∣∣∣∣∣∣∣
α

+ 1

. (3.4.11)

In fact, when less speculators participate in the market, it becomes difficult for the

asset holders in the market to sell their assets. Namely, it can be argued, roughly,

when the growth rate of speculators slows down, the asset price declines. We hypoth-

esize that the downfall of the asset price happens at the stationary point of (3.4.9),

that is,

Nt =
lnC2

β
. (3.4.12)
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By assuming Nt = lnC2

β
, our model of an economic bubble is characterized by the

following function

p(x) =

Np

∣∣∣∣ln( x

C2(Nx − x)

)∣∣∣∣α
C1

∣∣∣∣lnC2 − ln

(
x

C2(Nx − x)

)∣∣∣∣α +

∣∣∣∣ln( x

C2(Nx − x)

)∣∣∣∣α , C2 > 0. (3.4.13)

We generate Figure 3.4 using the symbolic algebra programming Maple for C1 = 100,

C2 = 2, Np = 1000, Nx = 100 and α = 2.

Figure 3.4: An asset price versus the number of market participants.

Figure 3.4 illustrates the dynamics of an economic model. At the beginning, the price

of an asset stays at a level. After a while, the speculation involves more participants

and the price grows rapidly. When the market is nearly saturated, it is difficult for

asset holders to sell their assets and the asset price starts to plummet. It is notable

that the most probable time of crash is given by Nt = lnC2

β
, which is determined by

the logistic growth of market participants. This allows us to monitor a bubble and

somehow predict the crash time of a bubble through monitoring the population model

describing the number of speculators at a given time.
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We attempted to model economic crisis based on the greater fool theory by relating

the asset price to the size of market participants, in which we assume the asset price

p is affected by the growth type of the function f6(x) and the number of speculators

x follows a logistic growth. We admit that using the model we have some difficulties

in explaining the asset price prior to the escalation since it shows that the price may

decline with increasing participants. One may argue that it may be normal since the

supply is greater than the demand, or, the asset has not become an investment good.

We admit that it is not enough to model an economic bubble accurately by focusing

only on the number of participants. However, the model is robust in some sense. For

example, it reflects certain features of an economic bubble, that is, the asset price

increases rapidly followed by a crash. What is even more important is that the crash

time of a bubble is predictable in this model, namely, the crash time is related in

the model to the number of participants. It must also be kept in consideration that,

as mentioned in [55, 71, 97], the economic bubble is a chaotic and complex process

depending on a large amount of parameters and affected by a variety of factors,

thus a simple model is not able to fully explain or describe all details of the process.

Considering this complexity, a precise quantitative description of the economic bubble

is not to be expected or even not possible at all.

3.5 The problem of maximization of profit under conditions of perfect

competition

In 1947 Paul Duglas gave his presidential address to the American Economics Associ-

ation in which he referred to a coherent assembly of the statistical evidence accumu-

lated in the course of the previous 20 years while he and other people were studying

various economic data that confirmed the validity of the Cobb-Douglas production

function. It is safe to assume that this event marked the beginning of its universal

acceptance by the mainstream economic science. He wrote in [31]: “... the Cobb-

Douglas function was being widely used, and that a host of younger scholars led by

my former student, Paul Samuelson, his colleague Solow and Marc Nerlove, the son

of my friend and former colleague, Samuel Nerlove, were all pushing forward into new

and more sophisticated fields.” In fact, Marc Nerlove gave a series of lectures at the
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Econometric Workshop held at the University of Minnesota in 1957, which were sub-

sequently published a few years later in a book [84]. One of the problem considered

by the author was the problem of maximization of profit of a firm under conditions of

perfect competition in both factors and product markets under the assumption that

the revenue of the firm from sales was determined by the Cobb-Douglas production

function. In what follows we shall solve the problem using the same arguments mu-

tatis mutandis as in [84] by assuming that the revenue of the firm from sales is now

determined by the new production function (3.3.14).

Consider an individual firm functioning under conditions of perfect competition in

both factors and product markets. It attempts to maximize its profits by employing

optimal quantities of inputs and producing an optimal quantity of output. At the

same time its purchases of factors and supply of output do not affect the prices of

the factors involved and the final product. Therefore the said prices are assumed to

be given, while the profits are to be maximized. Let Π, p0, p1, p2 be the profit, the

price of the final product, the cost of using one unit of capital, and the wage of labor

respectively. Hence, we have

Π = p0Y − p1K − p2L. (3.5.1)

Traditionally, in problems like this the output Y is assumed to be related to the

inputs K (capital) and L (labor) by the Cobb-Douglas production function (3.0.1).

Instead, suppose now Y is related to K and L via the new production function f5

(3.3.14). Next, let us solve the problem of maximization of the profit Π given by

(3.5.1) subject to the constraint implied by (3.3.14). The corresponding Lagrangian

function L is readily found to be

L(Y,K,L, λ) = Π − λ

 
Y − Nf5K

αLβ

C |NK −K|α |NL − L|β +KαLβ

!
, (3.5.2)

where λ is a Lagrange multiplier. For the profit to be a maximal, we must have

dL(Y,K,L, λ) = d(Π − λg) = 0, (3.5.3)
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where

g = Y − Nf5K
αLβ

C |NK −K|α |NL − L|β +KαLβ
. (3.5.4)

The condition (3.5.3) yields

∂L
∂λ

= −Y +
Nf5K

αLβ

C |NK −K|α |NL − L|β +KαLβ
= 0,

∂L
∂K

= −p1 + p0
βNf5C(NK −K)αKα(Lβ−1(NL − L)β + (NL − L)β−1Lβ)

(C(NK −K)α(NL − L)β +KαLβ)2
= 0,

∂L
∂L

= −p2 + p0
αNf5C(NL − L)βLβ(Kα−1(NK −K)α + (NK −K)α−1Kα)

(C(NK −K)α(NL − L)β +KαLβ)2
= 0,

∂L
∂Y

= p0 − λ = 0.

(3.5.5)

The equations (3.5.5) give us necessary conditions for maximum profit. Solving (3.5.5)

with the aid of the computer algebra system Maple, we get

Y =
Nf5K

αLβ

C |NK −K|α |NL − L|β +KαLβ
,

α =
p2Nf5K(NK −K)

p0NKY (Nf5 − Y )
,

β =
p0NKY (Nf5 − Y ) ln

|Nf5 − Y |
CY

− p2Nf5K(NK −K) ln
|NK −K|

K

p0NKY (Nf − Y ) ln
|NL − L|

L

.

(3.5.6)

The resulting equations (3.5.6) are sufficient to determine the variables Y , K and

L. The corresponding sufficient conditions for maximum profit are provided by the

necessary conditions established above supplemented by the following second-order

condition:

d2L < 0,

or, given the fact that Π in (3.5.2) is linear in Y , K and L (see (3.5.1)) and λ = p0

by (3.5.5), we have

d2g̃ > 0, (3.5.7)
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where

g̃(K,L) =
p0Nf5K

αLβ

C |NK −K|α |NL − L|β +KαLβ
.

Solving (3.5.7), using Maple, we arrive at the following set of inequalities:

α(α− 1) < 0,

β(β − 1) < 0,

(2K −NK)(2L−NL) +NL(2K −NK)β +NK(2L−NL)α > 0,

(2K −NK)(2L−NL) −NL(2K −NK)β −NK(2L−NL)α > 0.

(3.5.8)

The first two inequalities entail that 0 < α, β < 1. The second two inequalities imply

that K > NK/2 and L > NL/2. Hence, we arrive at the following conditions that

assure maximum profit:

0 < α, β < 1, K > NK/2, L > NL/2,

(2K −NK)(2L−NL) +NL(2K −NK)β +NK(2L−NL)α > 0,

(2K −NK)(2L−NL) −NL(2K −NK)β −NK(2L−NL)α > 0.

(3.5.9)

Next, we observe that since limt→∞K(t) = NK and limt→∞ L(t) = NL, the last

inequality in (3.5.9) implies that

0 < α + β < 1, (3.5.10)

which in turn implies that the assumption of perfect competition and maximization

of profit are inconsistent in the case when

α + β ≥ 1.

Finally, we conclude that the equations and inequalities (3.5.6), (3.5.9) and (3.5.10)

constitute sufficient conditions for maximum profit of a firm in the environment of

perfect competition. The equations (3.5.6) determine the output a firm will deliver

and the inputs of factors it will employ once the prices of the product and factors

are established. Therefore the conclusions are pretty much the same as in the case

when the revenue is determined by the Cobb-Douglas production function (3.0.1)
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considered in Nerlove [84]. The case of imperfect competition in both factor and

production markets will be considered in future research.

Note that all of the calculations above have been carried out under the assumption

that C > 0. If C < 0 the condition (3.5.10) changes to α + β > 1.

3.6 The wage share and logistic growth

The labor share is the fraction of national income, or the income of a particular eco-

nomic sector, defined as the share which is paid out to employees. Therefore it is often

also called the wage share. As is well-known, the wage share in the economic growth

models governed by the Cobb-Douglas production function (3.0.1) is a constant. More

specifically, its constant value can be derived directly from the Cobb-Douglas func-

tion and expressed in terms of the output elasticity of capital in a simple and elegant

way when the Cobb-Douglas function, say, enjoys constant return to scale (see, for

example, Rabbani [98]). The invariance of the wage share is subject to Bowley’s law

[15, 16] or the law of the constant wage share, which states that the share of national

income that is paid out to the employees as compensation for their work (normally, in

the form of wages), remains unchanged (invariant) over time [67, 73, 112]. Economic

data collected in different countries till about 1980 gave rise to and most strongly

supported this law, which was widely accepted by the economics community at the

time. However, this is no longer the case on both counts (see, for example, Schneider

[112] for more details and references).

In view of the mathematical models presented above, it should not be viewed as a

surprise. Indeed, the ivariance of wage share is linked to the Cobb-Douglas production

function, which in turn is a consequence of exponential growth, as shown by Sato [107].

Next, since one of the the main points of this research project is the idea that we

must depart from the exponential growth model and accept the logistic one, let us

investigate how this transition affects the wage share.

In what follows we shall propose a new formula for the wage share compatible with

logistic growth and support our claim by a rigorous mathematical analysis.
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First, let us recover the formula for the wage share as an invariant of a prolonged

infinitesimal group action given in terms of the corresponding projective coordinates

defined as the output-capital ration Y/K = y and the labor-capital output L/K = x.

The terminology and notations that we will use are compatible with those adopted

by Olver [88, 87] and Saunders [111]. Consider a general production function

Y = f(K,L; t) (3.6.1)

under the assumption that the dependent and independent variables K, L and Y

grow exponentially:

K̄ = Keαt, L̄ = Leβt, Ȳ = Y eεt, α, β, ε > 0. (3.6.2)

In view of the material presented in Section 3.1 we know that the production function

(3.6.1) is bound to be of the Cobb-Douglas type (3.0.1). In terms of the projective

coordinates it assumes the following form:

y = f(x; t), (3.6.3)

where x and y are projective variables.

Clearly, the one-parameter Lie group of transformations (3.6.2) induces the corre-

sponding action on the projective coordinates, which is also exponential:

ȳ = yeγt, x̄ = xeλt, γ, λ > 0 (3.6.4)

with the corresponding infinitesimal action given by the vector field u (compare it

with (3.1.7)) given by

u = λx
∂

∂x
+ γy

∂

∂y
. (3.6.5)

Following terminologies introduced in Section 2.3, let us suppose that (R2, π,R) is

a trivial bundle so that π = pr1 and (x, y) are adapted coordinates. Then the cor-

responding jet bundles are (J1π, π1,R) and (J1π, π1,0,R2), as per the commutative
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diagram (3.6.7), where the first-jet manifold of π is given by

J1π =
{
j1
pφ : p ∈ R, φ ∈ Γp(π)

}
(3.6.6)

in terms of adapted coordinates (x, y, yx).

J1π R2

R R

π1,0

π1 π

id

(3.6.7)

Here π1 = π ◦ π1,0.

Next, the first prolongation of u on R2 is the following vector field pr(1)u = u(1),

which, using Theorem 2.3.2, has to be a symmetry of the Cartan distribution on J1π,

that is the vector field

pr(1)u = u(1) = λx
∂

∂x
+ γy

∂

∂y
+ ξ(x, y, yx)

∂

∂yx
(3.6.8)

is required to be a symmetry of the Cartan distribution on J1π. Indeed, consider a

basic contact form ω = dy−yxdx. Next, in view of the above, we require the one-form

Lu(1)(ω) to be a contact form, where L denotes the Lie derivative. Thus, we compute

Lu(1)(ω) = Lu(1)(dy − yxdx)

= Lu(1)(dy) − (Lu(1)yx)dx− yx(Lu(1)(dx))

= d(u(1))(y)) − (u(1)(yx))dx− yxd(u(1)(x))

= γdy − ξ(x, y, yx)dx− λyxdx

= γ(ω + yxdx) − ξ(x, y, yx) − λyxdx

= γω + (γyx − ξ(x, y, yx) − λyx)dx.

(3.6.9)

The last line of (3.6.9) implies that the expression in the parentheses above vanishes,

which entails that ξ(x, y, yx) = (γ − λ)yx. Therefore the first prolongation u(1) of u

is found to be

u(1) = λx
∂

∂x
+ γy

∂

∂y
+ (γ − λ)yx

∂

∂yx
. (3.6.10)
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The vector field (3.6.10) represents an infinitesimal action of a one-parameter Lie

group of transformations in a three-dimensional (prolonged) space. Hence, we expect

to obtain 3 − 1 = 2 fundamental differential invariants. Indeed, solving the corre-

sponding partial differential equation by the method of characteristics, we arrive at

the following set of two fundamenal differential invariants:

I1 = yx−
γ
λ , I2 = yxx

λ−γ
λ , (3.6.11)

as expected, which means that any other differential invariant of the prolonged in-

finitesimal group action defined by (3.6.10) if a function of I1 and I2. Now, combining

the fundamental differential invariants (3.6.11) in such a way that the parameters λ

and γ disappear, we arrive at the following differential invariant:

I(I1, I2) =
xyx
y
, (3.6.12)

which we immediately recognize to be precisely the wage share sL (see, for example,

Rabbani [98] and Schneider [112] for more details).

Therefore we conclude that not only the Cobb-Douglas production function (3.0.1),

but also the wage share sL = I given by (3.6.12) is a consequence of the exponential

growth in K and L as a differential invariant obtained within the framework of the

growth model (G,R2
+), where the action of the Lie group G is given by (3.1.5), that

is

exponential growth ⇒ the wage share function (3.6.12).

Now let us redo the above calculations for the growth model (G1,R2
+), where the

action of G1 is given by (3.2.7) and thus give a solution to the seemingly unresolved

problem of the determination of why Bowley’s law [15, 16] does not hold true anymore

in post-1960s data [12, 33, 52, 64].

First, we observe in the example considered above the exponential growth in K and L

induced the corresponding exponential growth in the projective coordinates x = L/K
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and y = Y/K. However, the logistic growth in K and L given by (3.2.7) does not

translate into the same type of transformations for the projective coordinates x and

y. Therefore, let us assume that the growth in K is suppressed by, say, excessive

debt and so it does not affect logistic growth in L and Y . Hence, both projective

coordinates x and y grow logistically, that is we have

x̄ =
1

1 + ( 1
x
− 1)e−λt

, ȳ =
1

1 + ( 1
y
− 1)e−γt

, λ, γ > 0, (3.6.13)

where we assumed without loss of generality that both carrying capacities were equal

to one. The corresponding infinitesimal action of the Lie group G1 is given by the

vector field

u1 = λx(1 − x)
∂

∂x
+ γy(1 − y)

∂

∂y
. (3.6.14)

To determine its first prolongation u
(1)
1 = pr(1)u1 we proceed as above within the

same framework as in the previous case (see the commutative diagram (3.6.7)). We

note first that the vector field u
(1)
1 on J1π is projectable, since the bundle (TR2, τ,R2)

is endowed with a vector structure (see Saunders [111], Chapter 2 for more details).

Next, define

u
(1)
1 = λx(1 − x)

∂

∂x
+ γy(1 − y)

∂

∂y
+ ξ(x, y, yx)

∂

∂yx
(3.6.15)

and require the vector field (3.6.15) to be a symmetry of the Cartan distribution,

which will assure that (3.6.15) is the first prolongation of (3.6.14). Indeed, consider

again a basic contact form ω = dy − yxdx. Then again, L
u
(1)
1

(ω) is a contact form

iff u
(1)
1 is a symmetry of the Cartan distribution on J1π, which in turn assures that

(3.6.15) is indeed the first prolongation of (3.6.14), where L as before denotes the Lie

derivative. Thus, we compute
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L
u
(1)
1

(ω) = L
u
(1)
1

(dy − yxdx)

= L
u
(1)
1

(dy) − (L
u
(1)
1

(yx)dx− yx(Lu
(1)
1

(dx))

= d(u
(1)
1 (y)) − (u

(1)
1 (yx))dx− yxd(u

(1)
1 (x))

= γ(1 − 2y)dy − ξ(x, y, yx)dx− λ(yxdx− 2xyxdx)

= γ(1 − 2y)(ω + yxdx) − (ξ(x, y, yx) + λyx − 2λxyx)dx

= γ(1 − 2y)ω + (γyx − 2γyyx − ξ(x, y, yx) − λyx + 2λxyx)dx.

(3.6.16)

In view of the above, L
u
(1)
1

(ω) is again a contact form, provided the expression in the

parenthesis that appears in the last line of (3.6.16) vanishes. Hence, we have

γyx − 2γyyx − ξ(x, y, yx) − λyx + 2λxyx = 0, (3.6.17)

or,

ξ(x, y, yx) = (γ − λ+ 2λx− 2γy)yx. (3.6.18)

We conclude therefore that the first prolongation of the vector field u1 given by

(3.6.14) is the following fector field:

u
(1)
1 = λx(1 − x)

∂

∂x
+ γy(1 − y)

∂

∂y
+ (γ − λ+ 2λx− 2γy)yx

∂

∂yx
, (3.6.19)

whose infinitesimal action brings about the following two fundamental differential

invariants:

I1 = −
(
y − 1

y

)(
x

x− 1

) γ
λ

, I2 = (2γx)2

(
yx

(y − 1)2

)(
1 − x

x

) γ+λ
λ

. (3.6.20)

In order to eliminate the parameters λ and γ let us consider the following combination:

I(I1, I2) = I1 ·
I2

(2γ)2
= x|x− 1|

(
yx

y|y − 1|

)
. (3.6.21)

Definition 3.6.1. The differential invariant I given by (3.6.21) is called a modified
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wage share s0L = I, so that

s0L =
|x− 1|
|y − 1|

sL = const, (3.6.22)

where sL is the classical wage share given by (3.6.12).

Remark 3.6.2. The modified wage share s0L given by (3.6.22) is a differential invari-

ant of the growth model (G1,R2
+), where the action of the Lie group G1 is given by

(3.2.7), while the classical wage share sL given by (3.6.12) is not. That is a reason

why sL has been in decline: it may be attributed to the fact that post-1960 economic

data has been generated within the framework of the growth model (G1,R2
+), rather

than (G,R2
+). More specifically, it follows that the decline in sL is due to the relation

γ > λ (see (3.6.22)). Indeed, if the output-to-capital ratio y grows logistically faster

than the labor-to-capital ratio x under the condition of supressed capital ( e.g., by ex-

cessive debt), that is if γ > λ the ratio |x−1|
|y−1| in (3.6.22) clearly contributes to decline

in sL, since s0L is a constant. Simply put, more wealth (real or perceived) distributed

among fewer people implies a marked decrease in the classical wage share sL and so

Bowley’s law [15, 16] no longer holds in the economic environment of the logistic

growth model (G1,R2
+).

Remark 3.6.3. The corresponding production function compatible with the infinites-

imal action generated by the vector field u1 (3.6.14) is readily found to be

Y = f9(K,L; t) =
KLC3

LC3 + C4|L−K|C3
, C3 ∈ (0, 1), C4 ∈ R, (3.6.23)

which we derived by integrating the equation I = const, where I is given by (3.6.21)

and rewriting the solution in terms of K and L.

Now, let us analyse the second new production function (3.6.23). The partial deriva-

tives of the production function f9 (3.6.23), called in economic literature marginal

productivities, are found to be

MPK =
1

1 + C4|1 − K
L
|C3

+ C3C4
K

L−K

|1 − K
L
|C3

(1 + C4|1 − K
L
|C3)2

, (3.6.24)
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MPL = C3C4
K2

L(L−K)

|1 − K
L
|C3

(1 + C4|1 − K
L
|C3)2

. (3.6.25)

Next, the slope of an isoquant is the marginal rate of technical substitution (MRTS),

or technical rate of substitution (TRS). Thus, MRTS = MPK

MPL
so that in our case

MRTS(K,L) =
1

C3C4

L(L−K)

K2

1 + C4|1 − K
L
|C3

(1 − K
L

)C3
+
L

K
, (3.6.26)

which decreases when L grows and K declines. We conclude, therefore, that (3.6.26)

has concave up isoquants when L increases and K decreases, that is if the labor-capital

ratio is less than approximately 1+C3

2
, in which case MRTS increases, while otherwise

the isoquants are concave down, since MRTS decreases.

Recall that the new productoin function (3.3.14) does not enjoy constant return to

scale. Now let us examine the function (3.6.23) from this viewpoint. Indeed, for a

factor r > 1, the substitution (K,L) → (rK, rL) in (3.6.23) yields

f9(rK, rL) =
rK(rL)C3

(rL)C3 + C4|(rL) − (rK)|C3

=
rKLC3

LC3 + C4|L−K|C3
.

(3.6.27)

which means that the new production function (3.6.23) has constant returns to scale,

since it is a homogeneous function of degree one. Therefore we conclude that it satis-

fies the law of diminishing marginal returns and has constant return to scale, which

means it has a great potential for playing a pivotal role in various economic growth

models.

Finally, let us investigate the behavior of the new production function (3.6.23) as

t → 0 and t → ∞ under the assumption that both K(t) and L(t) grow logistically

according to the one-parameter Lie group transformations defined by (3.2.7). To

understand its behaviour when K and L are small, we employ economic reasoning.

Thus, at the beginning of a production cycle a company, say, invests much of its

resources into fixed assets ( e.g., infrastructure, materials, land, etc) and so when t is
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small it is safe to assume that K � L, which implies that

f9(t) ∼ 1

C4

(K(t))1−C3(L(t))C3 , (3.6.28)

that is the production function Y enjoys a similar behaviour to that of the Cobb-

Douglas production function (3.0.1) that has constant returns to scale. When t→ ∞
both K and L grow logistically and so we have by (3.6.23)

lim
t→∞

f9(K,L; t) = const.

3.7 The new production function f5 vis-à-vis economic data

In this section we present a similar analysis to the one conducted by Cobb and

Doublas [27], namely we compare the new production function with some available US

economic data from 1947-2016. We make use of the data from the period 1947-2016

that is provided by the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org),

employing the FRED tool. The variables are as follows: K — capital services of

nonfarm business sector [36], L — compensations of employees of nonfarm business

sector [35], Y — real output of nonfarm business sector [37]. The values of all variables

are dimensionless, they are index values with the values at 2009 taken as 100. To

estimate the new production function (3.3.14), we have used the R Programming

language [63], employing the method of least squares, and assuming the corresponding

carrying capacities to be of the following values: Nf5 = 120, NL = 150. We have also

assumed that α + β = 1.

The resulting production function of the type (3.3.14) is found to be

Y =
120K(0.4063544)L(0.5936456)

(0.3118901)|150 −K|(0.4063544)|150 − L|(0.5936456) +K(0.4063544)L(0.5936456)
,

(3.7.1)

where C = 0.3118901, α = 0.4063544 and β = 0.5936456 (see Figure 3.5).

The elasticity of substitution σ1 (see Sato [105]) of the new production function
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Figure 3.5: Observed output vs estimated output using the new production function
(3.3.14).

(3.3.14) in this case assumes the following form:

σ1 =

L̇

L
− K̇

K
L̇

L
− K̇

K
− K̇

K − 1
− L̇

L− 1

, (3.7.2)

where K = NKC1

C1+(NK−C1)e−at , L = NLC2

C2+(NL−C2)e−bt , while C1 and C2 are constants. The

variable σ1, giving the best estimate when C1 = 0.203, a = 0.129, C2 = 0.432 and

b = 0.118, ranges approximately from −0.0151724079 to 0.4982041724.

Whether the function f5, derived using the Lie group theoretical methods, can accu-

rately predict the future still remains to be seen, but it looks like the function f5 can

“predict” the past. More specifically, while running our simulations, we have noticed

that the negative value of σ1 = −0.0151724079 occurs in the year of 1958 - exactly

the year of a sharp economic downturn [44], see Figure 3.6.

We conclude from the above that the time series from the period 1947-2016 that

compares the observed and estimated outputs (see Figure 3.7) reveals that our model

fits quite well the data with the adjusted R-squared value of 97.65%. On the other

hand, the Cobb-Douglas function (3.0.1) with a constant elasticity of substitutions,

i.e., σ = 1, does not provide satisfactory results in terms of the values of parameters
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Figure 3.6: The elasticity of substitution of the new production function from 1947
to 2016.

Figure 3.7: The linear regression of the observed and estimated outputs of the period
from 1947 to 2016.

α and β. The best estimation of the Cobb-Douglas function that we managed to have

obtained, using the same method, is as follows:

Y = (0.2464455)K(1.6612365)L(−0.6612365), (3.7.3)

where C = 0.2464455, α = 1.6612365 and β = −0.6612365. We see that this (neg-

ative!) value of the parameter β is not compatible with the definition of the Cobb-

Douglas production function given by the formula (3.0.1).



85

3.8 Concluding remarks

Our research has also demonstrated that there can not be exponential growth of pro-

duction while factors grow logistically. We are inclined to believe that this is the most

important consequence of our studies. Indeed, if one “forces” the production function

to grow exponentially (i.e., by setting H(f) = cf in (3.3.6)), while the factors K and

L grow logistically as in (3.2.7), the resulting production function will be of the form

Y = f10(K,L; t) = C1

(
K

|1 −K|

)C2
(

L

|1 − L|

)C3

, (3.8.1)

where we assumed without loss of generality that NK = NL = 1. The production

function f10 (3.8.1) blows up very quickly near the singularities at K = 1 and L = 1.

Similarly unsatisfactory result can by obtained by enforcing logistic growth in the

production function, while the factors K and L grow exponentially, that is by setting

H(f) = cf(1 − f) in (3.1.16): the resulting production function will not even grow.

When we were starting this project, our original goal was to only extend the theoret-

ical framework based on the Lie group theory developed by Sato, we did not expect

that the resulting production functions would perform so well. Therefore the results

obtained in this chapter have exceeded our expectations.

We see many applications in both economic theory of growth and applied mathematics

where the new production functions (3.3.14) and (3.6.23), as well as the new modified

wage share (3.6.22) can be used essentially mutatis mutandis by simply replacing the

Cobb-Douglas function or its generalizations (like the CES function, for example) and

wage share with them as appropriate.

We have argued in Section 3.2 that the system of Lotka-Volterra equations can be

viewed as an extension of the exponential or logistic growth of two species. Indeed, if

certain coefficients equal to zero, then systems (3.2.3) and (3.2.5) become exponential

and logistic growth or decay, for instance, the system (3.2.3), by choosing β = δ = 0,
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represents exponential growth or decay, namely,

ẋ = αx,

ẏ = −γy.
(3.8.2)

From this viewpoint, we employ the Lotka-Volterra model in the study of econometric

dynamics, that is, modeling behaviour of capital, labor and production using the

Lotka-Volterra model. We will discuss in what follows.



Chapter 4

The Hamiltonian approach to the problem of derivation of

production functions in economic growth theory

In Chapter 3 we have reviewed the Lie theoretical approach to the study of holothetic

productions and the simultaneous holotheticity to recover the exact form of the Cobb-

Douglas function, i.e., Y = f(K,L) = AKαLβ with α+ β = 1. We are able to derive

the new production function f5(x) (3.3.14) employing the simultaneous holotheticity

based upon assuming that capital and labor are affected by logistic growth. Following

this approach, we investigate a four-dimensional model involving capital K, labor L,

production Y and debt D, namely,

dK

dt
= K(b1 + a11K + a12D),

dD

dt
= D(b2 + a21K + a22D),

dL

dt
= b3L(1 − L

NL

),

dY

dt
= b4Y (1 − Y

Nf

),

(4.0.1)

where parameters aij and bi (i = 1, . . . , 4, j = 1, 2) satisfy certain conditions, and NL,

Nf are carrying capacities. More details about the economic growth model involving

debt are given in Chapter 5. We want to derive a function holothetic to (4.0.1).

The holotheticity condition is given by a vector field representing an infinitesimal

action of a Lie transformation group in a four-dimensional space. Thus, we expect

to obtain 4 − 1 = 3 fundamental invariants. However, it is difficult to determine an

economically meaningful combination of the three fundamental invariants. Since the

Lie theoretical approach does not perform well in this special case, we will employ a

different method.

87
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Recall that Plank [95] showed the first two equations in (4.0.1), namely,

ẋ1 = x1(b1 + a11x1 + a12x2),

ẋ2 = x2(b2 + a21x1 + a22x2),

(4.0.2)

can be interpreted as a Hamiltonian system determined by the following Poisson

structure

π = x1−‘1
1 x1−‘2

2

∂

∂x1

∧ ∂

∂x2

, (4.0.3)

where ‘1, ‘2 are constant under certain conditions. From the perspective of the Lya-

pounov stability theory, Plank introduced an integrating factor x1−‘1
1 x1−‘2

2 to the

system so that the system becomes Lyapounov stable. The phase flow is a closed

orbit. It is proved (see more details in [56]) that a two-dimensional Lotka-Volterra

system does not admit an isolated orbit. Hence, the phase flow of the system (4.0.2)

is given by periodic orbits. Then it must be a Hamiltonian system. We will continue

this discussion in Chapter 5.

Considering different algebraic conditions, for example, varying the values of ‘1 and

‘2, Plank discussed all possible Poisson structures and corresponding Hamiltonian

functions. His approach is quite general. Kerner [66] commented that some special

Lotka-Volterra systems can be written as a Hamiltonian system using a change of

variables and proved the new system indeed admits a Hamiltonian structure by em-

ploying the Lie-Koenigs theorem (we will discuss the theorem in Section 7.3). For

example, he considered the following system

Ṅ1 = ε1N1 +
a12

β1

N1N2,

Ṅ2 = ε2N2 +
a21

β2

N1N2,

(4.0.4)

where Ni, i = 1, 2 represent population of species and εi, aij, βi, i, j = 1, 2 are

coefficients.

The stationary points of the system (4.0.4), considering Ni > 0, are given by

N∗
1 = −ε2β2

a21

, N∗
2 = −ε1β1

a12

. (4.0.5)
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Introducing the following change of variables

q = ln

(
N1

N∗
1

)
, p = ln

(
N2

N∗
2

)
, (4.0.6)

we rewrite as follows

q̇ = ε1 − ε1e
p =

∂H

∂p
,

ṗ = ε2 − ε2e
q = −∂H

∂q
.

(4.0.7)

Hence, (4.0.7) is a Hamiltonian system admitting the Hamiltonian function

H = ε1p− ε1e
p − ε2q + ε2e

q (4.0.8)

determined by the canonical symplectic structure dp ∧ dq.

Following their approaches, we identify the whole system (4.0.4) as a Hamiltonian

system with a Poisson structure. For instance, we, assuming a11 = a22 = 0, have

the Hamiltonian function (4.3.14). Then, we propose the Hamiltonian function can

be used as a production function. Thus, we see that the economic dynamics can be

described by a special case of a Lotka-Volterra system and the Hamiltonian function

of the model, provided that the system has a Hamiltonian structure, represents a

corresponding production function.

Let us review an n-dimensional Lotka-Volterra model

ẋi = bixi +
nX
j=1

aijxixj, (i = 1, . . . , n), (4.0.9)

where xi represents the population of a species and parameters bi, aij satisfy certain

conditions.

Fernandes and Oliva [40] discussed the Hamiltonian structure of the Lotka-Volterra

model based on the symplectic realization from R2n → Rn by introducing new canon-

ical coordinates. Tsuchida et al. [127] considered the tri-Hamiltonian structure of the

Lotka-Volterra system through linking it to the Toda lattice model via introducing

a change of variables. More recent treatment of the Arnold-Liouville integrability
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of the system can be found in [122]. We remark the study of Arnold-Liouville inte-

grability of the Lotka-Volterra model is normally based on the assumption that the

coefficients bi = 0 (in (4.0.9)) and the skew-symmetry of matrix of the coefficients

in quadratic parts, namely, aij in (4.0.9). The assumption is not essential in Plank’s

and Kerner’s approach, but plays a vital role in [40, 122, 127] for investigating the

complete integrability in the sense of Arnold-Liouville.

In what follows we consider special cases of the Lotka-Volterra model, in which we

assume bi 6= 0 and do not necessarily require the skew symmetry of matrix of aij,

and show that they are Hamiltonian systems determined by the corresponding Pois-

son structures and Hamiltonian functions that can be considered to be production

functions.

The Lie theoretical method has been proved to be a powerful technique in the pro-

duction theory. It is our contention that the theory can be further developed at this

point by recasting its setting within a Hamiltonian framework. In this chapter we

want to demonstrate the following

Conjecture 4.0.1.

a holothetic production function

m
an invariant of a transformation group

m
a Hamiltonian function of the corresponding dynamical system.

(4.0.10)

Note the above equivalences hold in a sense that a dynamical system has a Hamilto-

nian structure, namely, the vector field giving rise to the dynamical system preserves

a Poisson structure.

In Sections 4.1, 4.2 and 4.3, we will discuss low-dimensional models and their Hamil-

tonian formalism, in which we will present the Hamiltonian functions and Poisson

bivectors. A bivector, which is intrinsically not a matrix, can be represented by a

skew-symmetric matrix at each point and the matrix presentation is more intuitive
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and convenient in some applications, particularly in low-dimensional models. We re-

mark that we employ the matrix representation in the proof associated with linear

algebra when necessary. The n-dimensional generalization is considered in Section

4.4. Hamiltonian functions (4.2.4) and (4.2.23) induce the Cobb-Douglas function

and the new production function, respectively, but elasticity elements do not attain

economically meaningful values. By analogy with Sato’s simultaneous holotheticity

(see Section 3.3), we introduce a bi-Hamiltonian approach to recovering the exact

form of the Cobb-Douglas function (3.0.1) and the new production function (3.3.14).

The bi-Hamiltonian approach can be used to describe the topological features of

real statistical data in some sense and we derive the values of coefficients in (3.0.1)

through the bi-Hamiltonian approach using the economic data from 1899-1922, which

is employed by Cobb and Douglas in [27] to derive the Cobb-Douglas function (3.0.1).

4.1 Two-dimensional Hamiltonian systems

We realize that the dynamical system

ẋ1 = b1x1,

ẋ2 = b2x2,
(4.1.1)

which gives rise to the exponential transformation group, is a special case of the

system (4.0.9), where n = 2 and aij = 0. We want to show (4.1.1) is a Hamiltonian

system and the Hamiltonian is a production function.

Following Kerner [66], let us introduce the transformation

vi = lnxi, (4.1.2)

the system (4.1.1) becomes

v̇i = bi, i = 1, 2. (4.1.3)

Considering the following



92

Lemma 4.1.1. A two dimensional system of separable ordinary differential equations

ẋ = f(x)

ẏ = g(y)
(4.1.4)

defined on an open subset E ⊂ R2 can be written as a Hamiltonian system with a two

dimensional Poisson structure, i.e.,"
ẋ

ẏ

#
=

"
0 −f(x)g(y)

f(x)g(y) 0

#∂H∂x
∂H
∂y

 (4.1.5)

with a Hamiltonian function

H =

Z
1

f(x)
dx−

Z
1

g(y)
dy (4.1.6)

if 1
f(x)

and 1
g(y)

are well-defined.

Proof. The Hamiltonian function H =
R

1
f(x)

dx−
R

1
g(y)

dy is clearly smooth on E.

The matrix J(x, y) is skew-symmetric since Jij = −Jji, i, j = 1, 2 and we only need

to check it satisfies the Jacobi identity

2X
l=1

(
Jil
∂Jmk
∂xl

+ Jkl
∂Jim
∂xl

+ Jml
∂Jki
∂xl

)
= 0, i,m, k = 1, 2, (4.1.7)

where x1 = x and x2 = y.

Note the equation (4.1.7) involving trivial entries J11 = J22 = 0 naturally yields zeros.

Let us consider the non-trivial equations given by

J11
∂J22

∂x
+ J21

∂J12

∂x
+ J21

J21

∂x
= J21

(
∂J12

∂x
− ∂J12

∂x

)
= 0 (4.1.8)

and

J22
∂J11

∂y
+ J12

∂J21

∂y
+ J12

J12

∂y
= J12

(
∂J21

∂y
− ∂J21

∂y

)
= 0. (4.1.9)

Hence, the matrix J(x) representing the bivector −f(x)g(y) ∂
∂x

∧ ∂
∂y

determines a

Poisson structure. Note −f(x)g(y) ∂
∂x

∧ ∂
∂y

is a tensor since it is the wedge product of

two vector fields given by differential equations in (4.1.4), respectively.
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Using Lemma 4.1.1, the system (4.1.3) is a Hamiltonian system with a Hamiltonian

function

H1 =
1

b1

v1 −
1

b2

v2 (4.1.10)

and the following Poisson bivector

π1 = b1b2
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2, (4.1.11)

where
∂

∂vj
∧ ∂

∂vi
= − ∂

∂vi
∧ ∂

∂vj
.

In original coordinates, the system (4.1.1) is a Hamiltonian system with a Hamiltonian

function

H∗
1 =

1

b1

lnx1 −
1

b2

lnx2 (4.1.12)

and the Poisson bivector given by

π∗
1 = b1b2x1x2

∂

∂xj
∧ ∂

∂xi
, i, j = 1, 2. (4.1.13)

Let us consider the other special case of the system (4.0.9), where aij = − bi
Ni

when

i = j and aij = 0 when i 6= j, namely,

ẋ1 = b1x1

(
1 − x1

N1

)
,

ẋ2 = b2x2

(
1 − x2

N2

)
,

(4.1.14)

where Ni, i = 1, 2 are carrying capacities.

Applying the following transformation to the system (4.1.14)

vi = ln
xi
Ni

, (4.1.15)

we obtain

v̇i = b1(1 − evi), i = 1, 2, (4.1.16)

which is a Hamiltonian system with a Hamiltonian function

H2 =
1

b1

v1 −
1

b1

ln(1 − ev1) − 1

b2

v2 +
1

b2

ln(1 − ev2) (4.1.17)
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and a Poisson bivecor

π2 = b1b2(1 − ev1)(1 − ev2)
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2. (4.1.18)

4.2 Three-dimensional Hamiltonian systems

The following dynamical system

ẋ1 = b1x1,

ẋ2 = b2x2,

ẋ3 = b3x3,

(4.2.1)

is a special case of the system (4.0.9), where n = 3 and aij = 0. Let us discuss the

system from the point of view of the Hamiltonian formalism.

Plank [94] has shown the existence of the Hamiltonian structure of a three-dimensional

Lotka-Volterra model under certain conditions. He viewed a three-dimensional system

of differential equations ẋi = f(xi), i = 1, 2, 3, as the cross product of the gradients

of two constants of motion, K(x1, x2, x3) and H(x1, x2, x3). He further introduced a

bi-Hamiltonian structure and proved the system to be integrable. A similar approach

to constructing a Poisson structure associated with a three-dimensional dynamical

system by employing the cross product can be also found in [51]. We realize that the

Hamiltonian structure of a econometric dynamical system naturally gives rise to a

production function. Let us present the Hamiltonian structure of the system (4.2.1).

Following Plank’s convention, we assume that

K(x1, x2, x3) = γx1x2x3, γ 6= 0 ∈ R, (4.2.2)

then the system (4.2.1) becomes
0 −γx1x2 −γx1x3

γx1x2 0 −γx2x3

γx1x3 γx2x3 0



∂H
∂x1

∂H
∂x2

∂H
∂x3

 =


b1x1

b2x2

b3x3

. (4.2.3)
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We know that the Hamiltonian of (4.2.1) (that is the Cobb-Douglas function!) must

be of the following form

H3 = α1 lnx1 + α2 lnx2 + α3 lnx3, (4.2.4)

where parameters αi, i = 1, 2, 3, will be determined later.

Substituting H3 into (4.2.3) yields a system of algebraic equations, i.e.,

−γα2x1 − γα3x1 = b1x1,

γα1x2 − γα3x2 = b2x2,

γα1x3 + γα2x3 = b3x3,

(4.2.5)

which determines parameters αi, i = 1, 2, 3.

The equations (4.2.5) (assuming xi 6= 0) gives
0 −1 −1

1 0 −1

1 1 0



α1

α2

α3

 =


b1
γ

b2
γ

b3
γ

 . (4.2.6)

We see that the rank of the 3 × 3 coefficient matrix in (4.2.6) is 2 and the system of

equations has solutions iff
b1 + b3

γ
=
b2

γ
, (4.2.7)

or, simply,

b1 + b3 = b2. (4.2.8)

Indeed, (4.2.4) is a first integral of the system (4.2.1), namely, a constant along the

flow generated by (4.2.1) . Consider the vector field corresponding to (4.2.1)

X = b1x1
∂

∂x1

+ b2x2
∂

∂x2

+ b3x3
∂

∂x3

. (4.2.9)

Then, the Hamiltonian function H3 is preserved along the flow generated by (4.2.1),

i.e., LX(H3) = 0. In more details, we have

LX(H3) = X(H3) = b1α1 + b2α2 + b3α3, (4.2.10)
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it follows from (4.2.5) that we arrive at

LX(H3) = −γα1(α2 + α3) + γα2(α1 − α3) + γα3(α1 + α2) = 0. (4.2.11)

Therefore, we state that the system (4.2.1) has a Hamiltonian structure iff (4.2.8)

holds true. The Hamiltonian function is not unique. Consider the following

Example 4.2.1. Let us assume α3 = −1 and, according to the equation (4.2.6), we

obtain α1 =
−γ + b2

γ
and α2 =

γ − b1

γ
.

Then (4.2.1) is a Hamiltonian system with the following Hamiltonian function

H =
−γ + b2

γ
lnx1 +

γ − b1

γ
lnx2 − lnx3, (4.2.12)

where we require
−γ + b2

γ
> 0 and

γ − b1

γ
> 0,

and the following Poisson bivector

π = γxixj
∂

∂xj
∧ ∂

∂xi
, i, j = 1, 2, 3. (4.2.13)

In the new coordinates vi = lnxi, i = 1, 2, 3, the system (4.2.1) becomes

v̇i = bi, i = 1, 2, 3, (4.2.14)

which is a Hamiltonian system under the same condition that (4.2.8) holds true.

Remark 4.2.2. We introduce the parameter γ in the Poisson bivector (4.2.13) to

obtain the economically meaningful coefficients, i.e., the elasticity condition α+β = 1

in (3.0.1). However, this attempt does not work out. We address the issue in Section

4.5. Nevertheless, we employ the Poisson bivector (4.2.16) in what follows.

We have a freedom to choose the values of αi and the corresponding Poisson structure.

For our convenience, we present the simplest possible form of the Poisson structure
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(4.2.16). The system (4.2.1) admits a Hamiltonian function given by

H3 = α1v1 + α2v2 + α3v3 (4.2.15)

corresponding to the following Poisson bivector

π3 =
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2, 3. (4.2.16)

Remark 4.2.3. Identifying x1 = L, x2 = K, x3 = f , A = exp
(
H3

α3

)
, α = −α2

α3
,

β = −α1

α3
we arrive at the Cobb-Douglas function (3.0.1).

Remark 4.2.4. We have also considered the Poisson bivector of the following form

π∗
3 =


0 −C1 −C2

C1 0 −C3

C2 C3 0

 , (4.2.17)

where Ci, i = 1, 2, 3 are constant.

Note if π∗ is applied, then the system (4.2.14) has a Hamiltonian structure under the

condition b1C3 + b3C1 = b2C2. For this reason, let us call the Poisson bivector of the

form of (4.2.16) a standard form.

Let us consider the following dynamical system giving rise to the transformation

group of logistic growth

ẋ1 = b1x1(1 − x1
N1

),

ẋ2 = b2x2(1 − x2
N2

),

ẋ3 = b3x3(1 − x3
N3

),

(4.2.18)

where Ni, i = 1, 2, 3 are carrying capacities.

We present the new production function (3.3.14) in the new coordinates as follows

x3 = f(x1, x2) =
N3x

α
1x

β
2

C|N1 − x1|α|N2 − x2|β + xα1x
β
2

, (4.2.19)

where α, β and C are constant.
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We can also identify the above system (4.2.18) as a special case of a three-dimensional

Lotka-Volterra equation determined by the conditions aij = − bi
Ni

when i = j, and

aij = 0, when i 6= j.

According to the production function (4.2.19), we can, using the hypothesis that the

production function is equivalent to a Hamiltonian function of a dynamical system,

make the following ansatz of the Hamiltonian of the system (4.2.18)

H4 = α1 ln
x1

|N1 − x1|
+ α2 ln

x2

|N2 − x2|
+ α3 ln

x3

|N3 − x3|
, (4.2.20)

where αi, i = 1, 2, 3, are constant.

By analogy with (4.2.1), the system (4.2.18) becomes

v̇i = bi(1 − evi), i = 1, 2, 3, (4.2.21)

via employing the following transformation

xi = Nie
vi , (4.2.22)

and the Hamiltonian (4.2.20) becomes

H4 = α1v1 + α2v2 + α3v3 − α1 ln(1 − ev1) − α2 ln(1 − ev2) − α3 ln(1 − ev3). (4.2.23)

We are looking for a Poisson bivector π4 given by the matrix in the coordinates

(v1, v2, v3), 
0 −K1 −K2

K1 0 −K3

K2 K3 0

 (4.2.24)

such that

π4


A

1−ev1

B
1−ev2

C
1−ev3

 =


b1(1 − ev1)

b2(1 − ev2)

b3(1 − ev3)

, (4.2.25)
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solving which, we obtain

π4 =


0 −(1 − ev1)(1 − ev2) −(1 − ev1)(1 − ev3)

(1 − ev1)(1 − ev2) 0 −(1 − ev2)(1 − ev3)

(1 − ev1)(1 − ev3) (1 − ev2)(1 − ev3) 0

 , (4.2.26)

or in terms of the local coordinates (v1, v2, v3):

π4 = (1 − evi)(1 − evj)
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2, 3. (4.2.27)

It can be proved that π4 is skew-symmetric and satisfies the Jacobian identity.

Next, we need to equate all coefficients. By analogy with (4.2.6), the system (4.2.25)

yields 
0 −1 −1

1 0 −1

1 1 0



α1

α2

α3

 =


b1

b2

b3

 , (4.2.28)

which means (4.2.21) is a Hamiltonian system if b1 + b3 = b3.

Then, (4.2.18) in original coordinates is a Hamiltonian system defined by the Poisson

bivector

π4 = xixj

(
1 − xi

Ni

)(
1 − xj

Nj

)
∂

∂xj
∧ ∂

∂xi
, i, j = 1, 2, 3, (4.2.29)

and the Hamiltonian function

H4 = α1 ln
x1

|N1 − x1|
+ α2 ln

x2

|N2 − x2|
+ α3 ln

x3

|N3 − x3|
(4.2.30)

under the condition

b1 + b3 = b2. (4.2.31)

Remark 4.2.5. Identifying x1 = L, x2 = K, x3 = f , N1 = NL, N2 = NK, N3 = Nf ,

−α2

α3
= α, −α1

α3
= β, e−H2/α3 = C, we obtain the production function (3.3.14).

Remark 4.2.6. In Section 3.3, we assume that bi > 0, i = 1, 2, 3. We consider
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the Poisson vector of the aforementioned form, and, notably find a new condition

b1 + b3 = b2, which is consistent with the corresponding assumption made in Section

3.3.

4.3 Four-dimensional Hamiltonian systems

We have shown in previous sections that the examples of evolution of input factors

and the output, which can be viewed as a special case of a Lotka-Volterra model, are

Hamiltonian systems and the Hamiltonian functions Hi, i = 1, 2, 3, 4, can be used as

production functions.

Note that treating debt as an independent variable has recently become an acceptable

practice in economic modeling (see [3, 11, 50, 49], for example). The model involving

debt is discussed in greater detail in Chapter 6. Let us introduce the new economic

factor debt D in this section, which we will denote by x2.

Consider the following four-dimensional Lotka-Volterra model,

ẋi = bixi +
4X
j=1

aijxixj, (i = 1, 2, 3, 4), (4.3.1)

assuming x1, x2 grow exponentially (aij = 0, i = 1, 2) and x3, x4 grow logistically

(aij = − bi
Ni

when i = j and aij = 0 when i 6= j, i = 3, 4), the equation (4.3.1) becomes

ẋ1 = b1x1,

ẋ2 = b2x2,

ẋ3 = b3x3

(
1 − x3

N3

)
,

ẋ4 = b4x4

(
1 − x4

N4

)
,

(4.3.2)

where Ni, i = 3, 4 are carrying capacities.

Applying the following transformations

vi = lnxi, i = 1, 2

vi = ln
xi
Ni

, i = 3, 4,
(4.3.3)
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the system becomes

v̇1 = b1,

v̇2 = b2,

v̇3 = b3(1 − ev3),

v̇4 = b4(1 − ev4).

(4.3.4)

It follows from the results presented in Section 4.1 that the system (4.3.4) is a Hamil-

tonian system admitting the following Hamiltonian function

H5 =
1

b1

v1 −
1

b2

v2 +
1

b3

v3 −
1

b4

v4 −
1

b3

ln(1 − ev3) +
1

b4

ln(1 − ev4) (4.3.5)

and the following Poisson bivector

π5 = πij
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2, 3, 4, (4.3.6)

where

πij =

(
b1b2, i, j = 1, 2,

b3b4(1 − ev3)(1 − ev4), i, j = 3, 4,
(4.3.7)

which is skew-symmetric and satisfies the Jacobian identity.

Identifying x1 = K, x2 = D, x3 = L and x4 = Y , we obtain a new production

function given by

Y = f(K,D,L) =
CNYG(K,D,L)

1 + CG(K,D,L)
, (4.3.8)

where C = exp (−H5b4) and G(K,D,L) = K
b4
b1D

− b4
b2

(
L

|NL − L|

)− b4
b3

.

The production function (4.3.8) characterizing the dynamics (4.3.4) is a sigmoid func-

tion of the type III functional response (3.2.6). We tend to consider a more realistic

model in what follows.

We have stated in Section 3.2 that we live in “a compact world” and any continuous

growth in this world must be bounded. Hence, we consider a more realistic model, in
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which K and D interact in the following manner, i.e.,

ẋ1 = x1(b1 + a21x2),

ẋ2 = x2(b2 + a12x1),

ẋ3 = b3x3

(
1 − x3

N3

)
,

ẋ4 = b4x4

(
1 − x4

N4

)
.

(4.3.9)

The Hamiltonian structures of the first two equations in (4.3.9) has been given in

(4.0.7). Employing the transformation

vi = ln

(
−aji
bi
xi

)
, j = 1 or 2, i = 1, 2, (4.3.10)

we obtain
v̇1 = b1(1 − ev2),

v̇2 = b2(1 − ev1),
(4.3.11)

which gives rise to the canonical Hamiltonian structure given by the Hamiltonian

function

H = b1(v2 − ev2) − b2(v1 − ev1) (4.3.12)

and the canonical Poisson bivector

π =
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2. (4.3.13)

Employing π4 (4.2.27) for the last two equations in (4.3.9), we derive a Hamiltonian

structure for the system (4.3.9) with the Hamiltonian function given by

H6 = b1v2 − b2v1 +
1

b3

v3 −
1

b4

v4 + b2e
v1 − b1e

v2 − 1

b3

ln(1−ev3)+
1

b4

ln(1−ev4) (4.3.14)

and the Poisson bivector

π6 = pij
∂

∂vj
∧ ∂

∂vi
, i, j = 1, 2, 3, 4, (4.3.15)

where

pij =

(
1, i, j = 1, 2,

b3b4(1 − ev3)(1 − ev4), i, j = 3, 4,
. (4.3.16)
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Let us assume x1 = K, x2 = D, x3 = f , x4 = L, N3 = Nf , N4 = NL. Solving for f ,

we arrive at a new production function of the following form

Y = f(L,K,D) =
Nfe

b3G(L,K,D)

1 + eb3G(L,K,D)
, (4.3.17)

where the fuction G is given by

G = C − b1

[
ln

(
−a21

b2

D

)
+
a21

b2

D

]
+ b2

[
ln

(
−a12

b1

K

)
+
a12

b1

K

]
+

1

b4

ln
L

NL − L
, C ∈ R.

(4.3.18)

4.4 N-dimensional Hamiltonian systems

In previous sections we have seen how a production function can be derived as a

Hamiltonian function of a special case of Lotka-Volterra model characterizing the

economic growth.

In this section, we will consider dynamical systems evolving in the Rn
+ space, the

Hamiltonian formalism of which will be summarized in the following theorems. The

proofs of the theorems essentially are based on the existence of the Poisson struc-

tures, i.e, it amounts to checking the skew-symmetry and Jacobian identity of the

corresponding Poisson structure as follows from the proof of Lemma 4.1.1.

4.4.1 The generalized exponential growth model

Let us consider the special case of the model where aij = 0, namely,

ẋi = bixi, bi 6= 0, i = 1, . . . , n, (4.4.1)

employing the transformation

vi = lnxi, (4.4.2)
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the system (4.4.1) becomes

v̇i = bi, i = 1, . . . , n. (4.4.3)

Definition 4.4.1. The n-dimensional dynamical system

v̇i = bi, i = 1, . . . , n, (4.4.4)

is called a transformed exponential growth (TEG) model.

Using the results in Sections 4.1 and 4.2, we can formulate the following

Theorem 4.4.2. The n-dimensional (n = 2k, k ∈ N+) TEG model is a Hamiltonian

system admitting the following Poisson bivector

π2k = b2i−1b2i
∂

∂v2i

∧ ∂

∂v2i−1

, 1 ≤ i ≤ k (4.4.5)

and the corresponding Hamiltonian function

H =
kX
i=1

(
1

b2i−1

v2i−1 −
1

b2i

v2i

)
. (4.4.6)

In order to present a Hamiltonian structure for odd dimensional models, we use the

result of the following

Proposition 4.4.3. The n-dimensional (n = 2k + 1, k ∈ N+) system of linear

equations 

0 −1 −1 · · · −1

1 0 −1 · · · −1

1 1 0 · · · −1
...

...
...

. . .
...

1 1 1 · · · 0





α1

α2

α3

...

αn


=



b1

b2

b3

...

bn


(4.4.7)

has solutions iff
kX
i=1

b2i+1 =
kX
i=1

b2i, bi 6= 0. (4.4.8)
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Proof. Note the rank of the n×n skew-symmetric matrix is n−1, which suggests the

system has no solutions or infinitely many solutions. Using the rank-nullity theorem,

the system has solutions iff
kP
i=1

b2i+1 =
kP
i=1

b2i.

Proposition 4.4.3 can be used to prove the following

Theorem 4.4.4. The n-dimensional (n = 2k + 1, k ∈ N+) TEG model is a Hamil-

tonian system if
kP
i=1

b2i+1 =
kP
i=1

b2i. The Poisson bivector is as follows

π2k+1 =
∂

∂vj
∧ ∂

∂vi
, 1 ≤ i, j ≤ 2k + 1 (4.4.9)

and the Hamiltonian function is

H =
nX
i=1

αivi, (4.4.10)

where αi = αi(b1, . . . , bn) are constants related to values of bi, where i = 1, . . . , n.

Suppose we treat the last variable vn as the production and introduce the original

coordinates, the Hamiltonian functions (4.4.6) and (4.4.10) are the Cobb-Douglas

production function as follows

xn = C1x
β1
1 x

β2
2 · · · xβn−1

n−1 , (4.4.11)

where C1 and βi, i = 1, . . . , n, are positive constants.

4.4.2 The generalized logistic growth model

Let aij = − bi
Ni

when i = j and aij = 0 when i 6= j, the model (4.0.9) becomes an

n-dimensional logistic growth model, namely,

ẋi = bixi

(
1 − xi

Ni

)
, bi 6= 0, i = 1, . . . , n, (4.4.12)
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which, under the transformation

vi = ln

(
xi
Ni

)
, (4.4.13)

becomes

v̇i = bi(1 − evi), i = 1, . . . , n. (4.4.14)

Definition 4.4.5. The n-dimensional dynamical system

v̇i = bi(1 − evi), i = 1, . . . , n, (4.4.15)

is called a transformed logistic growth (TLG) model.

It follows from conclusions in Sections 4.1 and 4.2, the Hamiltonian structure of the

TLG model is presented in the following

Theorem 4.4.6. The n-dimensional (n = 2k, k ∈ N+) TLG model is a Hamiltonian

system with the following Poisson bivector

π2k = b2i−1b2i(1 − ev2i−1)(1 − ev2i)
∂

∂v2i

∧ ∂

∂v2i−1

, 1 ≤ i ≤ k (4.4.16)

and the corresponding Hamiltonian function

H =
kX
i=1

(
1

b2i−1

v2i−1 −
1

b2i

v2i +
1

b2i−1

ln(1 − ev2i−1) − 1

b2i

ln(1 − ev2i)

)
. (4.4.17)

Theorem 4.4.7. The n-dimensional (n = 2k + 1, k ∈ N+) TLG model is a Hamil-

tonian system provided
kP
i=1

b2i+1 =
kP
i=1

b2i. The Poisson bivector is given by

π2k+1 = (1 − evi)(1 − evj)
∂

∂vj
∧ ∂

∂vi
, 1 ≤ i, j ≤ 2k + 1 (4.4.18)

and the Hamiltonian function is

H =
nX
i=1

αivi −
nX
i=1

αi ln(1 − evi), (4.4.19)
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where αi = αi(b1, . . . , bn) are constants related to values of bi, where i = 1, . . . , n.

The Hamiltonian functions (4.4.17) and (4.4.19) correspond to an n-dimensional pro-

duction function of the type f5 in Section 3.3.

4.4.3 The generalized model of combined exponential and logistic

growth

We have studied in Section 4.3 models of combined exponential and logistic growth.

We will investigate the generalized n-dimensional model in this section. Let us con-

sider the combination of the form k + ‘ = n, where k and ‘ represent dimensions of

each growth model. We see k and ‘ are not necessarily identical.

Let us consider special values of coefficients of the Lotka-Volterra model (4.0.9) as

follows

• if 1 ≤ i, j ≤ k, aij = 0,

• if k + 1 ≤ i, j ≤ k + ‘, aij = − bi
Ni

when i = j and aij = 0 when i 6= j.

Thus, we arrive at the following system

ẋi =

 bixi, 1 ≤ i ≤ k,

bixi

(
1 − xi

Ni

)
, k + 1 ≤ i ≤ k + ‘,

bi 6= 0. (4.4.20)

Applying the transformations

vi = lnxi,

vi = ln xi
Ni
,

(4.4.21)

the equation (4.4.20) reduces to

v̇i =

(
bi, 1 ≤ i ≤ k,

bi (1 − evi) , k + 1 ≤ i ≤ k + ‘.
(4.4.22)
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Definition 4.4.8. The n-dimensional dynamical system

v̇i =

(
bi, 1 ≤ i ≤ k,

bi (1 − evi) , k + 1 ≤ i ≤ k + ‘.
(4.4.23)

is called a transformed combined exponential and logistic growth (TCELG) model.

In Subsection 4.4.1 and 4.4.2, we have seen the form of the Poisson bivector depends

on the parity of the dimension of the growth model, which follows four cases

• Case 1: k even and ‘ even,

• Case 2: k even and ‘ odd,

• Case 3: k odd and ‘ even,

• Case 4: k odd and ‘ odd.

Applying Theorems 4.4.2, 4.4.4, 4.4.6 and 4.4.7, we summarize the Hamiltonian for-

malism for the TCELG model of each case in the following

Theorem 4.4.9. The n-dimensional (n = k + ‘) TCELG model is a Hamiltonian

system with the following Poisson bivector and Hamiltonian function.

• If k and ‘ are even, then the Poisson bivector is

πk+‘ = pi
∂

∂v2i

∧ ∂

∂v2i−1

, (4.4.24)

where

pi =

(
b2i−1b2i, 1 ≤ i ≤ k

2
,

b2i−1b2i(1 − ev2i−1)(1 − ev2i), k
2

+ 1 ≤ i ≤ k+‘
2
,

(4.4.25)

and the Hamiltonian is

Hk+‘ =

k/2X
i=1

(
1

b2i−1

v2i−1 −
1

b2i

v2i

)
+

(k+‘)/2X
i= k

2
+1

(
1

b2i−1

v2i−1 −
1

b2i

v2i

+
1

b2i−1

ln(1 − ev2i−1) − 1

b2i

ln(1 − ev2i)

)
.

(4.4.26)
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• If k is even and ‘ is odd, assuming the condition that

k+‘−1
2X

i= k
2

+1

b2i+1 =

k+‘−1
2X

i= k
2

+1

b2i,

then the Poisson bivector is

πk+‘ = b2i−1b2i
∂

∂v2i

∧ ∂

∂v2i−1

+ bj1bj2(1 − evj1 )(1 − evj2 )
∂

∂vj2
∧ ∂

∂vj1
, (4.4.27)

where 1 ≤ i ≤ k
2

and k + 1 ≤ j1, j2 ≤ k + ‘,

and the Hamiltonian is

Hk+‘ =

k/2X
i=1

(
1

b2i−1

v2i−1 −
1

b2i

v2i

)
+

k+‘X
i=k+1

αi(vi − ln(1 − evi)), (4.4.28)

where αi = αi(bk+1, . . . , bk+‘) are constants related to values of bi, where i =

k + 1, . . . , k + ‘.

• If k is odd and ‘ is even, assuming the condition that

(k−1)/2X
i=1

b2i+1 =

(k−1)/2X
i=1

b2i,

then the Poisson bivector is

πk+‘ =
∂

∂vj2
∧ ∂

∂vj1
+ b2i−1b2i(1 − ev2i)(1 − ev2i+1)

∂

∂v2i+1

∧ ∂

∂v2i

, (4.4.29)

where 1 ≤ j1, j2 ≤ k and k+1
2

≤ i ≤ k+‘−1
2

,

and the Hamiltonian is

Hk+‘ =
nX
i=1

αivi +

k+‘−1
2X

i= k+1
2

(
1

b2i

v2i −
1

b2i+1

v2i+1 +
1

b2i

ln(1 − ev2i)

− 1

b2i+1

ln(1 − ev2i+1)

)
,

(4.4.30)

where αi = αi(b1, . . . , bk) are constants related to the values of bi, where i =

k + 1, . . . , k + ‘.

• If k and ‘ are odd, assuming the condition that

(k+‘)/2X
i=1

b2i+1 =

(k+‘)/2X
i=1

b2i, then the

Poisson bivector is

πk+‘ = pij
∂

∂vj
∧ ∂

∂vi
, (4.4.31)
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where

pij =

(
1, 1 ≤ i, j ≤ k,

bibj(1 − evi)(1 − evj), k + 1 ≤ i, j ≤ k + ‘,
(4.4.32)

and the Hamiltonian is

Hk+‘ =
kX
i=1

αivi +
k+lX

i=k+1

α(vi − ln(1 − evi)), (4.4.33)

where αi = αi(b1, . . . , bk+‘) are the constants related to values of bi, where i =

1, . . . , k + ‘.

We note that each Hamiltonian function Hk+‘ corresponds to a production function

of a certain type.

4.4.4 The generalized model of the combined non-linear dynamics and

logistic growth

In this subsection, we present an n-dimensional model of a combination of an m-

dimensional (for m even) Lotka-Volterra dynamics and an ‘-dimensional logistic

growth model, which can also be viewed as a special case of the equation (4.0.9)

by taking the following coefficients:

• if 1 ≤ i ≤ m
2

, a(2i−1)(2i), a(2i)(2i−1) 6= 0 and values of the rest of coefficients aij

equal 0,

• if m+ 1 ≤ i, j ≤ m+ ‘, aij = − bi
Ni

when i = j and aij = 0 when i 6= j.

Note that we are interested in a Lotka-Volterra model of even dimensions and each

pair of variables x2i−1 and x2i interacts in the manner of a Lotka-Volterra model,

namely, the matrix of the coefficients aij when 1 ≤ i, j ≤ k is as follows:

"
0 a12

a21 0

#
⊕

"
0 a34

a43 0

#
⊕ · · · ⊕

"
0 a(m−1)(m)

a(m)(m−1) 0

#
. (4.4.34)
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The logistic growth model can be viewed as a degenerate Lotka-Volterra model when

there are no nonlinear terms.

The equation (4.0.9) becomesẋ2i−1

ẋ2i

 =

 b2i−1 a(2i)(2i−1)x2i−1

a(2i−1)(2i)x2i b2i

x2i−1

x2i

 , b2i−1, b2i 6= 0, 1 ≤ i ≤ m
2
,

(4.4.35)

and

ẋi = bixi

(
1 − xi

Ni

)
, bi 6= 0, m+ 1 ≤ i ≤ m+ ‘, (4.4.36)

which, under the transformations

vi = ln

(
−aji
bi
xi

)
, j = 1 or . . . or m, i = 1, . . . ,m (4.4.37)

and

vi = ln

(
xi
Ni

)
, i = m+ 1, . . . ,m+ ‘, (4.4.38)

becomes v̇2i−1

v̇2i

 =

b2i−1(1 − ev2i)

b2i(1 − ev2i−1)

 , 1 ≤ i ≤ m
2

(4.4.39)

and

v̇i = bi(1 − evi), m+ 1 ≤ i ≤ m+ ‘, (4.4.40)

which is defined in the following

Definition 4.4.10. The n-dimensional (m+ ‘ = n) dynamical systemv̇2i−1

v̇2i

 =

b2i−1(1 − ev2i)

b2i(1 − ev2i−1)

 , 1 ≤ i ≤ m
2

(4.4.41)

and

v̇i = bi(1 − evi), m+ 1 ≤ i ≤ m+ ‘, (4.4.42)

is called a transformed combined Lotka-Volterra (TCLV) model.

Using results in Sections 4.3 and Subseciton 4.4.3, we introduce the Hamiltonian

structure of the TCLV model in the following
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Theorem 4.4.11. The n-dimensional (n = m + ‘) TCLV model is a Hamiltonian

system defined by the following Poisson bivectors and Hamiltonian functions.

• If ‘ is even, then the Poisson bivector is

πm+‘ = pi
∂

∂v2i

∧ ∂

∂v2i−1

, 1 ≤ i ≤ m+ ‘

2
, (4.4.43)

where

pi =

(
1, 1 ≤ i ≤ m

2
,

b2i−1b2i(1 − ev2i−1)(1 − ev2i), m
2

+ 1 ≤ i ≤ m+‘
2
,

(4.4.44)

and the Hamiltonian is

Hm+‘ =

m
2X
i=1

(b2i−1(1 − ev2i) − b2i(1 − ev2i−1)) +

(m+‘)/2X
i=m

2
+1

(
1

b2i−1

v2i−1

− 1

b2i

v2i +
1

b2i−1

ln(1 − ev2i−1) − 1

b2i

ln(1 − ev2i)

)
.

(4.4.45)

• If ‘ is odd, under the condition that

m+‘−1
2X

i=m
2

+1

b2i+1 =

m+‘−1
2X

i=m
2

+1

b2i, then the Poisson

bivector is

πm+‘ =
∂

∂v2i

∧ ∂

∂v2i−1

+ bj1bj2(1 − evj1 )(1 − evj2 )
∂

∂vj2
∧ ∂

∂vj1
, (4.4.46)

where 1 ≤ i ≤ m
2

and m+ 1 ≤ j1, j2 ≤ m+ ‘,

and the Hamiltonian is

Hm+l =
m/2P
i=1

(b2i−1(1 − ev2i) − b2i(1 − ev2i−1))

+
m+‘P
i=m+1

αi(vi − ln(1 − evi)),

(4.4.47)

where αi = αi(bm+1, . . . , bm+‘) are constant related to values of bi, i = m +

1, . . . ,m+ ‘.

The Hamiltonian function Hm+‘ is of the type of the production function (3.3.14).
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4.5 Bi-Hamiltonian structures for three-dimensional systems

We have recovered the Cobb-Douglas function (3.0.1) and the production function

f5(x) (3.3.14) via the Hamiltonian formalism. As mentioned in Remark 4.2.2, we did

not obtain the desired economically meaningful results, namely, α+β = 1. This issue

happened in Sato’s Lie theoretical approach. To address this issue, as discussed in

Section 3.3, Sato introduced the simultaneous holotheticity, i.e., the condition that

a function is holothetic under more than one technical progress. Mathematically, he

considered a production function as an invaraint of an involutive distribution of two

vector fields. He succeeded in recovering the Cobb-Douglas function with constant

returns to scale.

We attempted to solve this issue via the bi-Hamiltonian approach. Introduce the

following bi-Hamiltonian structure for the dynamical system (4.2.1):

ẋi = XH1,H2 = π1dH1 = π1dH2, i = 1, 2, 3, (4.5.1)

where the Hamiltonian functions H1 and H2 are given by

H1 = b lnx1 + lnx2 + a lnx3, H2 = lnx1 + a lnx2 + b lnx3, (4.5.2)

corresponding to the Poisson bivectors π1 and π2 given by

π1 = aijxixj
∂

∂xj
∧ ∂

∂xi
, π2 = bijxixj

∂

∂xj
∧ ∂

∂xi
, i, j = 1, 2, 3 (4.5.3)

respectively under the conditions(
bb1 + b2 + ab3 = 0,

b1 + ab2 + b3b = 0.
(4.5.4)

Remark 4.5.1. Note notations π1, π2, H1 and H2 used in the bi-Hamiltonian ap-

proach do not refer to the Poisson bivectors and Hamiltonian functions presented in

previous sections.
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Remark 4.5.2. Let us briefly discuss the algebraic conditions (4.5.4). It slightly dif-

fers from (4.2.6), in which we want to determine the value of coefficients αi in the

Hamiltonian H3. The conditions (4.5.4) are derived from determining coefficients

of the Poisson bivectors aij and bij, (which are not identical) the conditions (4.5.4)

(compare them to (4.2.8)) assuring that π1 and π2 are indeed Poisson bivectors com-

patible with the dynamics of (4.2.1) and corresponding to the Hamiltonians H1 and

H2 given by (4.5.2). Let us take aij for illustration. The Hamiltonian structure leads

to a system of equations given by the following matrix
−1 −a 0 b1

b 0 −a b2

0 b 1 b3

 . (4.5.5)

The system has solutions iff bb1 + b2 + ab3 = 0.

Analogously, it follows b1 + ab2 + b3b = 0 for bij.

Remark 4.5.3. Let H = H(H1, H2) denotes the function depending on H1 and H2.

The Jacobian of H is given by


b

x1

1

x2

a

x3

1

x1

a

x2

b

x3

,

 (4.5.6)

which is a matrix of rank 2.

Thus, H1 and H2 are indeed functionally independent (dH1 ∧ dH2 6= 0).

Solving the linear system (4.5.4) for a and b under the additional condition b1b2−b2
3 6=

0, we arrive at

α =
1 − b

a− b
=
b3 − b1

b2 − b1

, β =
a− 1

a− b
=
b3 − b2

b1 − b2

. (4.5.7)

Consider now the first integral H3 given by

H3 = H1 −H2 = (b− 1) lnx1 + (1 − a) lnx2 + (a− b) lnx3. (4.5.8)
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Solving the equation H3 = const determined by (4.5.8) for x3, we arrive at the Cobb-

Douglas function (3.0.1) with the elastisities of substitution α and β given by

α =
1 − b

a− b
, β =

a− 1

a− b
, (4.5.9)

where a and b are given by (4.5.7). Note α+β = 1, as expected. Also, α, β > 0 under

the additonal condition

b2 > b3 > b1, (4.5.10)

which implies by (4.2.1) that capital (x2 = K) grows faster than production (x3 = f),

which, in turn, grows faster than labor (x1 = L).

Remark 4.5.4. Note, α = b3−b1
b2−b1 > 0 and β = b3−b2

b1−b2 > 0 imply b2 > b3 > b1 or

b1 > b3 > b2. We choose (4.5.10) in view of the linear condition b1 + b3 = b2.

We have also determined the corresponding formula for total factor productivity A,

that is,

A = exp

(
H3

a− b

)
, (4.5.11)

where H3 is a constant along the flow (4.2.1) as linear combination of the two Hamil-

tonians H1 and H2 given by (4.5.2).

In addition, we introduce the following bi-Hamiltonian structure to the dynamical

system (4.2.18)

ẋi = XH4,H5 = π4dH4 = π5dH5, i = 1, 2, 3, (4.5.12)

where the Hamiltonian functions H4 and H5 are

H4 = b ln
x1

|N1 − x1|
+ ln

x2

|N2 − x2|
+ a ln

x3

|N3 − x3|
,

H5 = ln
x1

|N1 − x1|
+ a ln

x2

|N2 − x2|
+ b ln

x3

|N3 − x3|
,

(4.5.13)

with the corresponding Poisson bivectors π4 and π5

π4 = aijxixj(1 − xi
Ni

)(1 − xj
Nj

)
∂

∂xj
∧ ∂

∂xi
, i, j = 1, 2, 3,

π5 = bijxixj(1 − xi
Ni

)(1 − xj
Nj

)
∂

∂xj
∧ ∂

∂xi
, i, j = 1, 2, 3.

(4.5.14)
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under the same conditions (4.5.4).

Note H4 and H5 are functionally independent, a and b, assuming b1b2 − b2
3 6= 0, are

given by (4.5.7).

A new first integral H6 is in the following form

H6 = H4 −H5 = (b− 1) ln
x1

|N1 − x1|
+(1 − a) ln

x2

|N2 − x2|

+(a− b) ln
x3

|N3 − x3|
,

(4.5.15)

solving which for x3, we recover the production function (3.3.14) satisfying the con-

dition α + β = 1, provided b2 > b3 > b1 and the constant C = ± exp
(
H6

b−a

)
.

4.6 The Cobb-Douglas function revisited via the bi-Hamiltonian

approach

We have shown that the production function can be recovered from a Hamiltonian

structure, that is, the production function can be represented by the Hamiltonian

function of the dynamical system of the output and inputs, including capital, labor,

etc. In this section, we consider the Cobb-Douglas function to show that the formulas

obtained via the bi-Hamiltonian approach are compatible with data employed by

Cobb and Douglas in [27].

It is important to note that Cobb and Douglas [27], employing the US economic data

from 1899 to 1922, numerically determined the relation between production, labor

and capital based on a pure statistical analysis, i.e., their function was of the form

Y = 1.01K
1
4L

3
4 , (4.6.1)

where Y , L, K represented production, labor and capital, respectively, and general-

ized the relation (4.6.1) to the well-known Cobb-Douglas function by introducing the

parameters A = 1.01, α = 1
4

and β = 3
4
.

Remark 4.6.1. Cobb and Douglas used the notation P 0 and C in lieu of Y and

K respectively in [27], which denote the estimated values for production and capital,
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respectively. We use Y and K for our convenience.

The Hamiltonian formalism has proven to be a powerful tool in deriving a production

function. We have recovered the exact form of the Cobb-Douglas function via the

bi-Hamiltonian approach in Section 4.5. We believe the Hamiltonian approach is

compatible with the statistical analysis conducted by Cobb and Douglas, that is,

intuitively, we can show α = 1
4

and β = 3
4

by employing (4.5.7).

Solving the equation (4.2.1) yields

xi = ci exp(bit), i = 1, 2, 3, (4.6.2)

where ci ∈ R+ and bi are to be determined by the following statistical analysis.

The model after the logarithmic transformation assumes the form:

lnxi = Ci + bit, i = 1, 2, 3, (4.6.3)

where Ci = ln ci.

Note Table 4.1 shows US economic dimensionless data 1899-1922 from [27] after the

logarithmic transformation.

To estimate the model (4.6.3), we have used the R Programming language, employing

the method of least squares, and obtained the following estimates (see Figure 4.1, 4.2

and 4.3 for references)

• Estimations for labor

b1 = 0.02549605, C1 = 4.66953290; (4.6.4)

• Estimations for capital

b2 = 0.06472564, C2 = 4.61213588; (4.6.5)
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Year Output Capital Labor

1899 4.605170 4.605170 4.605170
1900 4.615121 4.672829 4.653960
1901 4.718499 4.736198 4.700480
1902 4.804021 4.804021 4.770685
1903 4.820282 4.875197 4.812184
1904 4.804021 4.927254 4.753590
1905 4.962845 5.003946 4.828314
1906 5.023881 5.093750 4.890349
1907 5.017280 5.170484 4.927254
1908 4.836282 5.220356 4.795791
1909 5.043425 5.288267 4.941642
1910 5.068904 5.337538 4.969813
1911 5.030438 5.375278 4.976734
1912 5.176150 5.420535 5.023881
1913 5.214936 5.463832 5.036953
1914 5.129899 5.497168 5.003946
1915 5.241747 5.583469 5.036953
1916 5.416100 5.697093 5.204007
1917 5.424950 5.814131 5.278115
1918 5.407172 5.902633 5.298317
1919 5.384495 5.958425 5.262690
1920 5.442418 6.008813 5.262690
1921 5.187386 6.033086 4.990433
1922 5.480639 6.066108 5.081404

Table 4.1: The time series data used by Cobb and Douglas in [27]

• Estimations for production

b3 = 0.03592651, C3 = 4.66415363. (4.6.6)

The model (4.6.3) has become a straight line after the logarithmic transformation.

We can see that the errors (represented by $value in Figure 4.1, 4.2 and 4.3) are less

than 1, which suggests that the linear regression performed quite well. Let us take

the estimation of capital for example. The observed capital and estimated capital

are illustrated by Figure 4.4. The linear regression (see Figure 4.5) test using the R

Programming language shows the adjusted R-squared value of the model is 0.9934,

which is very close to 1 (representing perfection). Note that we have 0.02549605 +
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Figure 4.1: Labor fitting.

Figure 4.2: Capital fitting.
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Figure 4.3: Production fitting.

Figure 4.4: Observed capital versus estimated capital during the period 1899-1922.
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Figure 4.5: The linear regression of the observed and estimated capital from 1899 to
1922.

0.03592651 ≈ 0.06472564 from the dataset in Table 4.1, which implies that the model

describing the US economy has a Poisson structure of the standard form.

We also note the values of coefficients are constrained by the inequality b2 > b3 > b1,

which satisfies our requirement. The numerical values help us to identify x1 = L and

x2 = K. Substituting values of parameters bi into the equation (4.5.4), we obtain

a = 4.659691804, b = −9.104630098, (4.6.7)

which, in turn, determine the values of α and β as follows

α = 0.2658824627, β = 0.7341175376. (4.6.8)

Next, using the data from Table 4.1 and the formula (4.5.11) we employ the R pro-

gramming language to evaluate the value of H3, arriving at the following result: the

variance of the resulting distribution of values of H3 is 0.5923171 and the mean of the

distribution is 0.1365228. By letting H3 = 0.1365228 and using (4.5.11), the value of

A is found to be A = 1.00996795211 ≈ 1.01 (compare with (4.6.1)).
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Considering admissible errors, we have exactly recovered the values of elasticity of

substitution for capital and labor as well as total productivity factor, which Cobb

and Douglas obtained from a statistical analysis. Mathematically, we believe this

work demonstrates that Sato’s assumption about exponential growth in production

and its factors (3.1.5) is compatible with the results by Cobb and Douglas based on

the statistical analysis of the data from the US manufacturing studied in [27].

4.7 Concluding remarks

We have reduced several problems of derivation of a production function to the corre-

sponding algebraic problems by employing the Hamiltonian approach to and describ-

ing the dynamics in econometrics in each case as a special case of the Lotka-Volterra

model (4.0.9). We have extended Sato’s Lie theoretical approach to the problem of

the determination of a production function by employing the Hamiltonian formalism,

that is, we showed the Hamiltonian structures of considered models are preserved

along the flow given by each corresponding technical progress. We believe that the

Hamiltonian function in each case represents the state of an economy. The Hamilto-

nian approach to the function production of considered special cases is classified and

summarized in previous theorems.

To derive the Cobb-Douglas function and the production function (3.3.14) with de-

sired algebraic condition, we introduce the bi-Hamiltonian structure to the system

(4.2.1) and (4.2.18). The advantage of the bi-Hamiltonian approach is that one does

not have to consider two sectors of an economy, that is, we can derive the produc-

tion function with constant returns to scale based on one vector field. The statistical

analysis shows the formulas (4.5.4) derived via the bi-Hamiltonian approach match

the US manufacturing data (4.1) utilized by Cobb and Douglas. Mathematically, it

shows that the Cobb-Douglas function can be in some appropriate sense viewed as

a conservation law of the economy in early 20th century since it is a Hamiltonian of

the dynamical system relatively adequately characterizing the economic growth.

We have considered a four-dimensional economic model involving debt in Section 4.3.

The model leads to a new production of capital, debt and labor. We want to gain
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an insight of relations between debt and output, which is considered as a complex

dynamics in mathematical economics, with the help of the model (4.3.9). More details

of analysis of (4.3.9) are given in Chapter 5.



Chapter 5

On the validity of the concept of a production function in

economics: A mathematical perspective

In this chapter we revisit some of the controversies around the derivation of the Cobb-

Douglas production function in [27] and discuss its legitimacy from a mathematical

viewpoint that extends the approach to the growth theory established by Sato which

we have reviewed in Section 3.3. Let us start with the function (4.6.1) in Section 4.6

Y = 1.01K
1
4L

3
4 . (5.0.1)

The results came from the statistical analysis of time series of capital, labor and pro-

duction conducted by Cobb and Douglas [27] using the following production function

Y = ALkK1−k, (5.0.2)

where k is parameter. The function (5.0.1) turned out to be a good fit for the US

economic data from 1899-1922 used in [27]. This calculation led the authors and other

scientists to belive that the coefficients α and A in (5.0.2) were determined empirically

from the given dataset and the relation given by (5.0.2) was a general time-invariant

property relating the output product to the corresponding inputs (capital and la-

bor). In fact, the function (5.0.2) was successfully fitted to many other datasets with

invariably good results. For example, Douglas [31] showed that the Cobb-Douglas

function with constant return to scale (α + β = 1) fit well to the economic data

of Canada, Australia, New Zealand and South Africa during around the 1950s and

1960s, and Leser [77] concluded that the British economic data 40 years preceding

the First World War can be described by a Cobb-Douglas function with homogeneity

of degree one while the data after the war do not support this. We need to note

that Leser actually described the time series of capital, labor and production using

124
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the exponential growth model. Those efforts further promoted the widespread accep-

tance of the Cobb-Douglas function in the scientific community as a viable example

of a production function that could be used in various growth models. As we have

discussed in previous sections, in the decades since 1928 the Cobb-Douglas function

and its generalizations have become a common feature of many works dedicated to

the development of the growth theory in economics. It must be noted that the impor-

tance of the Cobb-Douglas production function goes beyond merely the growth theory

in economics. For example, it manifests itself most prominently also in the theory

of aggregate demand (see Giraud & Quah [48] for more details). It is very telling

that by now the function (3.0.1), due to its interesting properties (e.g., diminishing

marginal returns in both factors), numerous applications and simplicity has become

a standard feature not only of textbooks in economics (see Felipe & McCombie [38]

and the relevant references therein), but in mathematics [124] as well. At the same

time, some conclusions drawn by Cobb and Douglas from their results obtained in

[27] have been met with strong and justifiable criticisms [20, 38, 103], or even out-

right rejected [81]. Thus, Mendershausen [81] indicated that no empirical evidence

supports the constant return to scale for the Cobb-Douglas function and one can fit

the Cobb-Douglas function to the data used in [27] without assuming α + β = 1. A

similar critical argument can be also found in Brown [20], Samuelson [103], Felipe

& McCombie [38]–among others. In recent years some authors have stated that the

Cobb-Douglas function no longer can be fitted to the relevant ecnomic data coming

from today’s economy (see Antràs [8], Gechet et al [46]). In fact, the question of

whether the function (3.0.1) is a viable production function has been the subject of

debate practically from the time of its inception, while there is no doubt it can be

fitted to various datasets, which has been demonstrated by Cobb and Douglas from

the get-go in 1928, as well as many others in the years to come. In particular, as

early as 1938 Mendershausen [81] (see also Brown [20]) had used some statistical

tools based on the notion of multicollinearity to argue that (5.0.1) was not the only

function that could be fitted to the dataset studied by Cobb and Douglas in [27], at

the same time confirming that the function (5.0.1) could be fitted to the data for the

US manufacturing sector for 1899-1922 with good accuracy.
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In what follows we demonstrate that α+β = 1 is not a necessary condition for a pro-

duction function relatively rigorously from the viewpoint of mathematics by treating

a production function as an invariant of the corresponding group of transformations

under a certain condition that affords the possibility to fit a production function to

the corresponding dataset.

5.1 The invariant condition for the Cobb-Douglas function

According to Lemma 3.1.5, we know that a production function is an invariant of a

certain group of transformations. Following notations in Chapter 4, we present the

group of transformations (3.6.2) in the following form

(G4,R3
+), G4 : x̄i = xie

bit, bi > 0, i = 1, 2, 3. (5.1.1)

We know that the Cobb-Douglas function (3.0.1) is holothetic to the above group

of transformations based on the discussion in Section 3.2. We want to show that a

holothetic production function is the Cobb-Douglas function iff G4 holds. We have

shown that G4 leads to the Cobb-Douglas function in Chapter 3. Let us show the

following converse problem: suppose capital x2 and labor x1 grow exponentially, given

a Cobb-Douglas production function holothetic to G4, production x3 must follow an

exponential growth. Assume the following transformation on f

x̄3 = ξ(x3, t), (5.1.2)

applying Taylor’s theorem, we get

x̄3 = x3 +H(x3)t+O(t2), (5.1.3)

where x3 = ξ(x3, 0) and H(x3) =

(
∂ξ

∂t

)
t=0

.

Now the holothetic condition upon assuming x1 and x2 are affected by exponential

growth in G4 becomes

b1x1
∂f

∂x1

+ b2x2
∂f

∂x2

= H(x3), (5.1.4)
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where x3 = f is given by a Cobb-Douglas function.

Substituting f = Axβ1x
α
2 into (5.1.4) gives

(b1β + b2α)f = H(x3), (5.1.5)

Since f can not always be zero, we obtain

H(x3) = (b1β + b2α)f = b3x3, (5.1.6)

where b3 is a constant. Then the corresponding vector field of (5.1.2) is

U = H(x3)
∂

∂x3

= b3x3
∂

∂x3

. (5.1.7)

Solving the associated ODE

ẋ3 = b3x3, (5.1.8)

we arrive at

x3 = x0
3e
b3t, x0

3 ∈ R+, (5.1.9)

or

x̄3 = x3e
b3t, (5.1.10)

which proves that x3 is affected by an exponential growth.

Next, let us prove that the family of Cobb-Douglas function is indeed an invariant

under G4. We present the function as follows

ϕ(x1, x2, x3) = xβ1x
α
2x

γ
3 = A, (5.1.11)

where α, β ≥ 0 and γ ∈ R.

The function ϕ(x1, x2, x3) is an invariant under G4 iff

b1x1
∂ϕ

∂x1

+ b2x2
∂ϕ

∂x2

+ b3x3
∂ϕ

∂x3

= 0, (5.1.12)
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substituting ϕ(x1, x2, x3) = xβ1x
α
2x

γ
3 , we get

(b1β + b2α + b3γ)x3 = 0. (5.1.13)

Since x3 is not always zero, we arrive at

b1β + b2α + b3γ = 0, (5.1.14)

under which the function ϕ is invariant of the group transformation G4.

Now we are clear that the function ϕ is an invariant of G4 under (5.1.14). G4 is a

one-parameter group defined by the parameter t, hence, the above proof equivalently

shows that
dϕ

dt
= 0 iff b1β + b2α + b3γ = 0. (5.1.15)

Note (5.1.1) can be presented as follows

xi = cie
bit, i = 1, 2, 3, (5.1.16)

Let us give more details about (5.1.15). Expressing ϕ as the following combination,

in view of (5.1.16), we arrive at

ϕ = (c1)α(c2)β(c3)γe(αb1+βb2+γb3)t. (5.1.17)

Therefore, we conclude that in view of (5.1.16), the function is constant along the

flow generated by (5.1.16) iff the condition (5.1.14) holds. Since t denotes time, we

can see that the function ϕ is a time invariant under the condition (5.1.14).

More specifically, we arrive at the Cobb-Douglas production function (3.0.1), provided

(and that is the key!)

b1β + b2α− b3 = 0, (5.1.18)

where bi, i = 1, 2, 3 are determined by the exponential growth in input factors and

production given by (5.1.16). We conclude, therefore, that the one-parameter Lie

group action (5.1.1) admits a family of the Cobb-Douglas functions given by (3.0.1) iff
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the elasticities of substitution α and β are constrained by the linear relation (5.1.14).

Moreover, if additionally the parameters bi, i = 1, 2, 3 satisfy the inequality (4.5.10),

we can always use the formulas (4.5.7) to pick among the functions given by (3.0.1),

the Cobb-Douglas function (5.0.2) enjoying constant returns to scale. Note (5.1.14)

is compatible with (4.2.8).

Based upon the statistical analysis in Section 4.6, we can see the values of α, β, b1,

b2 and b3 satisfy (5.1.14) as follows:

0.02549605 · 0.7341175376 + 0.06472564 · 0.2658824627 − 0.03592651

= 7.5601053 × 10−12 ≈ 0.
(5.1.19)

We comment that (5.1.19) is the condition assuring that the Cobb-Douglas function

(5.0.1) is a time invariant for the dataset used in [27]. In fact, it explains some

of the controversy surrounding the Cobb-Douglas function. For instance, Felipe [38]

commented that the use of the Cobb-Douglas function appeals to the authority and it

is not enough for the existence of the production function simply because the function

compares well against the real data. Now, according to our analysis, the existence of

the Cobb-Douglas function (5.0.1) is due to the exponential growth of factors as well

as production and the satisfied linear condition (5.1.19). However, we also confirm

the criticism of Mandershaunsen [81], Samuelson [103], etc., that Cobb and Douglas

[27] did not derive “the production function” but “a production function”, namely,

α+β = 1 is not a necessary condition for the existence of the Cobb-Douglas function.

There are other values of α and β satisfying the linear condition (5.1.14) for the values

of b1, b2 and b3 given by (4.6.4), (4.6.5) and (4.6.6). For example, setting α = 1, we

find, via (5.1.14) and using the values given by (4.1), the corresponding value for β:

β =
b3 − b1

b2

= 0.16114881212. (5.1.20)

Note that the values α = 1 and β = 0.16114881212 in this case no longer add up to

one, while the function

Y = ALK0.16114881212 (5.1.21)
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Figure 5.1: The function (5.1.21) vs the index values for the production studied by
Cobb and Douglas in [27].

is a legitimate Cobb-Douglas function compatible with the data studied in [27]. Using

the R programming language, we demonstrate that the new production function Y =

0.4710156LK0.16114881212 fits to the data very well (see Figure 5.1). Indeed, we obtain

a set of values of the parameters α and β, Pα,β = {α, β ∈ (0,∞) : 0.02549605β +

0.06472564α = 0.03592651} (see Figure 5.2), for which the Cobb-Douglas function is

valid for the data during the period 1899-1922.

Note that in Figure 5.2 we find α > β where the parameter line 0.02549605β +

0.06472564α = 0.03592651 is below the identity line β = α while α < β where the

parameter line lies above the identity line. The intersection of the parameter line and

the line α + β = 1 determines the value of coefficients in (5.0.1).

5.2 The invariant condition for the new production function f5

We know from Section 3.2 that the new production function f5 (3.3.14) is derived

from the following one-parameter Lie group action given by

(G5,R3
+), G5 : x̄i =

Nixi
xi + (Ni − xi)e−bit

, bi ≥ 0, i = 1, 2, 3, (5.2.1)
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Figure 5.2: The line of parameters of the Cobb-Douglas function that fits well to the
data used in [27].
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which is generated by the model (4.2.18).

We have shown in Chapter 3 that there can not be exponential growth for production

if all factors grow logistically. By analogy with the proof in Section 5.1, we can also

show that the new production function f5 also implies the logistic growth in x3 given

that xi, i = 1, 2 are affected by logistic growth.

It follows from (5.2.1) that

xi(Ni − x0
i )

x0
i (Ni − xi)

= ebit, i = 1, 2, 3. (5.2.2)

Next, we obtain
3Y
i=1

[
xi(Ni − x0

i )

x0
i (Ni − xi)

]αi

= e(
P3

i=1 αibi)t, (5.2.3)

where αi, i = 1, 2, 3 are some paremters. We see that the LHS of the equation

(3.3.21) is an invariant of the one-parameter group action generated by (4.2.18) iff

the parameters αi, i = 1, 2, 3 satisfy the linear relation

α1b1 + α2b2 + α3b3 = 0, (5.2.4)

for the fixed values of bi, i = 1, 2, 3 determined by (4.2.18).

In terms of the notations in the new production function f5 (3.3.14), the linear con-

dition (5.1.14) becomes

b1β + b2α− b3 = 0. (5.2.5)

Note that our new production function is an invariant along the flow generated by

(4.2.18) under the linear condition (5.2.5). It implies that the condition α + β = 1

is not necessary for the new production. We confirm the condition (5.2.5) using the

values in Chapter 3. Recall that we compared the new production function to the US

economic data from 1947 to 2016, assuming α+β = 1, which gave the following values

of parameters C = 0.3118901, α = 0.4063544 and β = 0.5936456. Next we fit the

logistic model to the time series of capital, labor and production used in Chapter 3.

The results of the regression are as follows: Assuming Nf5 = 120 and NK = NL = 150,
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we fit, to the time series of capital, labor and production, the following logistic curve

xi =
Nix

0
i

x0
i + (Ni − x0

i )e
−bit

, i = 1, 2, 3, (5.2.6)

where x0
i denotes the initial condition, Ni represents the carrying capacity and bi is

the growth rate.

The curve fitting, using the R programming language, shows the following results:

• Estimations for labor (NL = 150)

b1 = 0.09244029, x0
1 = 1.21720215, RSS1 = 2310.192; (5.2.7)

• Estimations for capital (NK = 150)

b2 = 0.1037214, x0
2 = 0.5875279, RSS2 = 398.5569; (5.2.8)

• Estimations for production (NY = 120)

b3 = 0.0701327, x0
3 = 6.8962901, RSS3 = 1028.567, (5.2.9)

where RSSi, i = 1, 2, 3 is the residual sum of squares used to indicate the goodness-

of-fit of a model. A small RSS indicates a good fit of the model to the data.

Note the values of bi, i = 1, 2, 3, are not precisely consistent with the inequality

(4.5.10). This implies that the condition α+β = 1 is not suitable for the fitting of the

new production function to the dataset used in Chapter 3, or the fitting restricted by

α + β = 1 does not generate the best estimation. Indeed, we have RSS = 4336.974

when we assume α + β = 1 while RSS = 1447.294 without the condition. If we

drop the condition, then the best fitting given by the R programming language is

C = 0.3549321, α = 1.1882808, β = −0.4668962, which matches our argument

in some sense. Hence, we conclude that α + β = 1 is not necessary for the new

production function with the dataset used in Chapter 3 although we can still obtain

a relatively good fit assuming α + β = 1 using the R programming language.
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Remark 5.2.1. We also determine the goodness-of-fit using the adjusted R-values.

The RSS =
P

(y − ŷ)2, where y is the observed value while ŷ is the estimated value,

is a good indicator, but the disadvantage is that it also depends on the measure of the

data. For example, the RSS of a dataset consisting of values between (0, 10) can be

much smaller than the value of a dataset consisting of values between (1000, 10000).

Within the same dataset, a small RSS definitely means a good fit.

Remark 5.2.2. One can check that b1 + b3 6= b2 in this case, which implies that the

corresponding Poisson structure is not in the standard form.

Then the linear condition for this model becomes αb3 +βb2−b1 = 0. Using the results

α = 1.1882808, β = −0.4668962, we can see that the linear condition holds since

−0.4668962 · 0.09244029 + 1.1882808 · 0.1037214 − 0.0701327 = 0.00995742804

≈ 0.

(5.2.10)

However, the results C = 0.3549321, α = 1.1882808, β = −0.4668962 are not sat-

isfactory since we require positive parameters. We promote the approach in what

follows.

5.3 A new algorithm for the fitting of a production function to

empirical data

Next, we modify our approach by treating all Ni, x
0
i and bi as predictors in the logistic

model. Using R, we obtain the following values of regression coefficients using the

method of least squares

• Estimations for labor

b1 = 0.07842367, x0
1 = 2.092004, N1 = 175.97, RSS4 = 508.0948. (5.3.1)
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• Estimations for capital

b2 = 0.07793777, x0
2 = 1.575667, N2 = 230.26, RSS5 = 299.7033; (5.3.2)

• Estimations for production

b3 = 0.04619786, x0
3 = 11.312991, N3 = 211.30, RSS6 = 419.7767. (5.3.3)

In contrast to RSSi, i = 1, 2, 3 the new fitting yields much better results (see plot of

the three time series in Figures 5.3, 5.4 and 5.5).

Figure 5.3: Time series of observed and estimated production from 1947 to 2016.

Choosing the new carrying capacities, we compare the new production function

against the data used in Chapter 3 without assuming α + β = 1 to obtain

α = 0.46780229, β = 0.05955408, C = 1.59899336, RSS = 428.27. (5.3.4)

In contrast to RSS = 4336.975 in the model fitting in Chapter 3, the new approach

yields a better result. More importantly, we no longer need to assume the value of the

carrying capacities in the new production function. The values of carrying capacities

are obtained through the statistical analysis of the time series of capital, labor and
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Figure 5.4: Time series of observed and estimated capital from 1947 to 2016.

production using the new approach.

Note this supports the linear condition (5.1.14), since

0.46780229 · 0.07842367 + 0.05955408· 0.07793777 − 0.04619786

= −0.00486957539 ≈ 0,
(5.3.5)

which is closer to 0.

On the other hand, we also compare the Cobb-Douglas function against the data

without α + β = 1. We start by fitting the exponential growth model in logarithmic

form

ln yi = bi lnxi + ci (5.3.6)

to the data and arrive at the following values

• Labor

b1 = 0.06983731, c1 = 0.45741448, (5.3.7)

• Capital

b2 = 0.065705809, c2 = 0.75835155, (5.3.8)
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Figure 5.5: Time series of observed and estimated labor from 1947 to 2016.

• Production

b3 = 0.03421333, c3 = 2.58402362. (5.3.9)

Remark 5.3.1. Note we no longer require the inequality (4.5.10).

We also compute the values of RSS for each fitting in the form of xi = x0
i e
bit,

i = 1, 2, 3, which are

• Labor RSS7 = 18421.53;

• Capital RSS8 = 13566.78;

• Production RSS9 = 1991.283.

The above results demonstrate that the value of RSS is not preserved by the trans-

formation as stated in Section 2.6. The RSS for (5.3.6) is significantly small, which

shows it is a good fitting. However, the value of RSS in the original form without the

logarithmic transformation are very large. Considering the magnitude of number in

the dataset and the insignificant fitting of the exponential model to the data during

the last period, the values are expected to be reasonably large.
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The new fitting for Cobb-Douglas function to the data of the period 1947-2016 without

α + β = 1 gives

α = 0.05018686, β = 0.45529695, A = 9.89921606, RSS = 584.4616, (5.3.10)

which also supports the linear condition.

We note that the RSS for the Cobb-Douglas function is 584.4616 while the RSS

for the new production function is 428.27, which shows that the production function

is a better estimation for the data from 1947-2016. We believe that this is due to

the fact that the logistic model better describes the time series of capital, labor and

production.

Remark 5.3.2. We do not use the adjusted R-values as indicators in the contrast

since the values for two cases do not differ significantly, namely, the value for the new

production function is 0.9945 while the one for the Cobb-Douglas function is 0.9926.

Therefore, we have formally formulated an algorithm of fitting the Cobb-Douglas or

the new production function to given empirical economic data. First, we compare

a growth model to the given time series of factors and production. Next, given an

exponential growth in factors and production, we fit the Cobb-Douglas function to

the data. For the logistic growth, we can obtain the values of carrying capacity in

the first step. Then, we use the new production function. In the last step, we check

that all obtained values bi, i = 1, 2, 3, α and β satisfy the linear condition (5.1.14) or

(5.2.5). One can see that the best fitting is obtained along the approach.

5.4 Concluding remarks

In this section we have extended Sato’s Lie theoretical approach to the derivation of

a production function. In particular, we have shown that a production function is

an invariant of a Lie one-parameter group characterizing an economic model under

the condition (5.1.14). We reasonably rigorously showed the validity of a production

function from a mathematical perspective. More specifically, we have shown that

production, capital and labor in economy are related via the production function iff
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growth rates in each quantity and elasticity of substitution satisfy a certain condition.

However, conditions (5.1.14) and (5.2.5) also prove that the imposed condition α+β =

1 is not essential for a production function. We have composed an algorithm of fitting

a production function to empirical data. In fact, the fitting can be expressed by an

optimization problem of the values of the elasticity of substitution α and β for the

minimized RSS restricted by the corresponding linear condition. Taking the Cobb-

Douglas production function y = Axβ1x
α
2 , α, β > 0 for example, we want to

minimize RSS(α, β, Ã) =
nX
i=1

(yi − (Ã+ β lnx1
i + α lnx2

i ))
2, (5.4.1)

where Ã = lnA and xi denote xi, i = 1, 2,

subject to

b1β + b2α− b3 = 0. (5.4.2)

Using techniques of the Lagrange multipliers, we want to minimize the following

function

L = RSS(α, β, Ã) − λ(b1β + b2α− b3), (5.4.3)

where λ is a constant.

For brevity, let us use the following notations:

X1 =
nX
i=1

lnx1
i , X2 =

nX
i=1

lnx2
i , X3 =

nX
i=1

(lnx1
i )

2, X4 =
nX
i=1

(lnx2
i )

2, (5.4.4)

Y1 =
nX
i=1

yi, Y2 =
nX
i=1

y2
i , (5.4.5)

S1 =
nX
i=1

yi lnx
1
i , S2 =

nX
i=1

yi lnx
2
i , S3 =

nX
i=1

(lnx1
i )(lnx

2
i ). (5.4.6)
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Hence, given a specific dataset, the best fitting is given by

∂L
∂α

= 2X3α + S3β + 2X1Ã− 2S1 − λb2 = 0,

∂L
∂β

= S3α + 2X4β + 2X2Ã− 2S2 − λb1 = 0,

∂L
∂Ã

= 2X1α + 2X2β + 2nÃ− 2Y1 = 0,

∂L
∂λ

= b1β + b2α− b3 = 0.

(5.4.7)

But we need to note that the parameters derived with the aid of the above approach

may not minimize the value of RSS of the original form.

Analogously, we can formulate the optimal fitting problem for the new production

function f5 using the Gauss-Newton method. Note that we conduct all regression in

the section using the R programming language, which, as discussed above, yields the

best fitting in each case.



Chapter 6

Dynamics of the four-dimensional economics growth model

involving debt

6.1 A four-dimensional Lotka-Volterra model

Continuing the discussions of Section 4.3, let us consider a four-dimensional Lotka-

Volterra model given by

ẋ1 = x1(b1 + a11x1 + a12x2 + a13x3 + a14x4),

ẋ2 = x2(b2 + a21x1 + a22x2 + a23x3 + a24x4),

ẋ3 = x3(b3 + a31x1 + a32x2 + a33x3 + a34x4),

ẋ4 = x4(b3 + a41x1 + a42x2 + a43x3 + a44x4),

(6.1.1)

where bi, aij (i, j = 1, 2, 3, 4) are arbitrary parameters.

We have investigated special cases of the four dimensional model (4.3.2) and (4.3.9)

in Section 4.3. In this thesis, we will consider a new model based on (4.3.9) and

impose the additional conditions of a11 = − b1
N1

and a22 = − b2
N2

, that is,

ẋ1 = x1(b1 − b1
N1
x1 − a12x2),

ẋ2 = x2(b2 − b2
N2
x2 − a21x1),

ẋ3 = x3(b3 − b3
N3
x3),

ẋ4 = x4(b3 − b4
N4
x4),

(6.1.2)

where bi > 0, Ni > 0, a12 > 0 and a21 > 0 (i = 1, 2, 3, 4).

The variables xi (i = 1, 2) represent capital, debt, production, and labor, respectively.

It is natural to restrict the analysis of the equation to the space R4
+. By analogy with

the analysis to a two-dimensional model in [57], we observe the following five solutions

to the system (6.1.2):

141
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(1) x1(t) = x2(t) = x3(t) = x4(t) = 0,

(2) x1(t) = N1C1

C1+(N1−C1)e−b1t
(C1 > 0), x2(t) = 0, x3(t) = 0 and x4(t) = 0,

(3) x1(t) = 0, x2(t) = N2C2

C2+(N2−C2)e−b2t
(C2 > 0), x3(t) = 0 and x4(t) = 0,

(4) x1(t) = 0, x2(t) = 0, x3(t) = N3C3

C3+(N3−C3)e−b3t
(C3 > 0) and x4(t) = 0,

(5) x1(t) = 0, x2(t) = 0, x3(t) = 0 and x4(t) = N4C4

C4+(N4−C4)e−b4t
(C4 > 0),

which correspond to five orbits: (1) the origin, which is an equilibrium,(2) the positive

x1−axis, (3) the positive x2−axis, (4) the positive x3−axis, (5) the positive x4−axis.

Together the five orbits form the boundary of the space R4
+.

The set is invariant in the sense that any solution which starts in it remains there for

all time for which it is defined. Indeed, we can see the boundary of R4
+ is invariant.

Since orbits can not cross, the interior

intR4
+ =

{
(x1, x2, x3, x4) ∈ R4 : x1 > 0, x2 > 0, x3 > 0, x4 > 0

}
. (6.1.3)

is also invariant.

We can thus restrict our analysis to the interior of the space denoted by intR4
+.

6.2 A Hamiltonian system for the four-dimensional Lotka-Volterra

model

The dynamics of a two-dimensional Lotka-Volterra model has been completely studied

in [57]. In conclusion, the two-dimensional model admits no isolated periodic orbit.

The algebraic property of a two-dimensional Lotka-Volterra model will be preserved

in a higher dimensional model.

Note that the system (6.1.2) is a separable system, i.e., the vector field V = V1(x1, x2)+

V2(x3, x4), which makes the system (6.1.2) separable. Note V1 is determined by the

first two equations while V2 corresponds to the last two equations.
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The Hamiltonian system of a two-dimensional Lotka-Volterra model has been exten-

sively investigated by Plank [95] and Kerner [66], where Plank introduced a Poisson

bivector showing that any two-dimensional Lotka-Volterra system can be viewed as

a Hamiltonian system and Kerner introduced a transformation for a special case of

Lotka-Volterra system and reviewed the Lie-Koenig’s theorem that states any dy-

namical system can be locally redefined as a Hamiltonian system.

We can employ Plank’s approach to study the Hamiltonian structure of the first two

equations of the system (6.1.2). Let us introduce the Poisson bivector π1 given by

π1 = −x1−‘1
1 x1−‘2

2

∂

∂xi
∧ ∂

∂xj
, i, j = 1, 2. (6.2.1)

Then, the first two equations form the Hamiltonian system given by

ẋi = πi‘1
∂H1

∂x‘
, i = 1, 2 (6.2.2)

associated with the following Hamiltonian function

H1(x1, x2) =
R
−x‘11 x‘2−1

2

(
b1 −

b1

N1

x1 − a12x2

)
dx2

=
R
x‘1−1

1 x‘22

(
b2 −

b2

N2

x2 − a21x1

)
dx1

. (6.2.3)

As stated, all coefficients in the system (6.1.2) are positive. Let us assume ‘1, ‘2 6=
0,−1. Integrating, we get

H1(x1, x2) = x‘1x‘2
(
−b1

l2
+

b1

‘2N1

x1 +
a12

‘2 + 1
x2

)
, (6.2.4)

or

H1(x1, x2) = x‘1x‘2
(
b2

‘1

− b2

‘1N2

x2 −
a21

‘1 + 1
x1

)
. (6.2.5)

Note the above two forms are equivalent under the following conditions

b1‘1 + b2‘2 = 0, b1(‘1 + 1) + a21N1‘2 = 0, b2(‘2 + 1) + a12N2‘1 = 0. (6.2.6)
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The last two equations define the following Hamiltonian system given by

ẋi = πi‘2
∂H2

∂x‘
, i = 3, 4, (6.2.7)

defined by the following Poisson bivector

π2 = −b3b4x3x4

(
1 − x3

N3

)(
1 − x4

N4

)
(6.2.8)

and the Hamiltonian function H2 given by

H2(x3, x4) =
1

b3

ln
x3

|N3 − x3|
− 1

b4

ln
x4

|N4 − x4|
. (6.2.9)

Therefore, the system (6.1.2) is a Hamiltonian system

ẋi = πil
∂H

∂xl
, i = 1, 2, 3, 4, (6.2.10)

where π is the Poisson bivector determined by the components

πij =


−x1−‘1

1 x1−‘2
2 , i, j = 1, 2,

−b3b4x3x4

(
1 − x3

N3

)(
1 − x4

N4

)
, i, j = 3, 4,

(6.2.11)

and the Hamiltonian function H is given by

H(x1, x2, x3, x4) = x‘1x‘2
(
b2

‘1

− b2

‘1N2

x2 −
a21

‘1 + 1
x1

)
+

1

b3

ln
x3

|N3 − x3|
− 1

b4

ln
x4

|N4 − x4|

(6.2.12)

under the conditions

‘1, ‘2 6= 0,−1, b1‘1 + b2‘2 = 0,

b1(‘1 + 1) + a21N1‘2 = 0, b2(‘2 + 1) + a12N2‘1 = 0.
(6.2.13)

The Hamiltonian function (6.2.12) yields, when we identify production x3 = f , capital

x1 = K, debt x2 = D and labor x4 = L, a new production function of the following

form

Y = f(K,L,D) =
Nfe

b3G(K,D,L)

1 + eb3G(K,D,L)
, (6.2.14)
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where the function G is given by

G = C +K‘1D‘2

(
−b2

‘1

+
b2

‘1ND

D +
a21

‘1 + 1
K

)
+

1

b4

ln
L

|NL − L|
. (6.2.15)

We will analyze the system (6.1.2) in what follows.

6.3 Divergence and a volume form

Let us introduce the notion of divergence into the growth model, in which we want to

use the idea of the divergence and volume to describe the expansion and contraction

of an economy. Mathematically speaking, we want to characterize the status of an

economy with the volume of the corresponding economics model.

The following vector field gives rise to the system (6.1.2):

V = x1

(
b1 − b1

N1
x1 − a12x2

)
∂
∂x1

+ x2

(
b2 − b2

N2
x2 − a21x1

)
∂
∂x2
,

+x3

(
b3 − b3

N3
x3

)
∂
∂x3

+ x4

(
b4 − b4

N4
x4

)
∂
∂x4
.

(6.3.1)

Then, the divergence of the vector field V is given by

div(V ) = ∇ · V

=
(

∂
∂x1
, ∂
∂x2
, ∂
∂x3
, ∂
∂x4

)
·
(
x1

(
b1 − b1

N1
x1 − a12x2

)
, x2

(
b2 − b2

N2
x2 − a21x1

)
,

x3

(
b3 − b3

N3
x3

)
, x4

(
b4 − b4

N4
x4

))
= b1 − 2 b1

N1
x1 − a12x2 + b2 − 2 b2

N2
x2 − a21x1 + b3 − 2 b3

N3
x3 + b4 − 2 b4

N4
x4

= (b1 + b2 + b3 + b4) −
(

2 b1
N1

+ a21

)
x1 −

(
2 b2
N2

+ a12

)
x2 − 2 b3

N3
x3 − 2 b4

N4
x4.

(6.3.2)

Note div(V ) does not equal to 0 everywhere for x ∈ intR4. For example, when

xi = Ni

3
, i = 1 . . . 4, respectively, the divergence becomes

div(V ) =
1

3
(b1 + b2 + b3 + b4) − 1

3
(N1a21 +N2a12) . (6.3.3)
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More importantly, we want to explore the dynamics of an economy using the notion of

the divergence, i.e., the economy characterized by the equation (6.1.2) shrinks when

div(V ) < 0 and expands when div(V ) > 0.

The equation (6.1.2) is associated with the following differential four-form

Ω = (dx1 −X1dt) ∧ (dx2 −X2dt) ∧ (dx3 −X3dt) ∧ (dx4 −X4dt) , (6.3.4)

where Xi, i = 1, 2, 3, 4 denotes the RHS of equations in the system (6.1.2).

Rewriting the four-form (6.3.4), we obtain

Ω = dx1 ∧ dx2 ∧ dx3 ∧ dx4 −X1dt ∧ dx2 ∧ dx3 ∧ dx4 +X2dt ∧ dx1 ∧ dx3 ∧ dx4

−X3dt ∧ dx1 ∧ dx2 ∧ dx4 +X4dt ∧ dx1 ∧ dx2 ∧ dx3,

(6.3.5)

the exterior derivative of which yields

dΩ = −∂X1

∂x1

dx1 ∧ dt ∧ dx2 ∧ dx3 ∧ dx4 +
∂X2

∂x2

dx2 ∧ dt ∧ dx1 ∧ dx3 ∧ dx4

−∂X3

∂x3

dx3 ∧ dt ∧ dx1 ∧ dx2 ∧ dx4 +
∂X4

∂x4

dx4 ∧ dt ∧ dx1 ∧ dx2 ∧ dx3

=

 
4X
i=1

∂Xi

∂xi

!
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4

= div(V )dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4.

(6.3.6)

If follows from above that dΩ is not always zero. Hence, Ω is not a closed form

on intR4, which corresponds to the non-canonical Poisson bivector derived in Section

6.2.



147

6.4 Analysis of a four-dimensional Lotka-Volterra model

We have restricted our attention to the set intR4
+. Next, we, following similar proce-

dures in [56], reduce the equations (6.1.2) to the following system

ẋ1

x1

= b1 − b1
N1
x1 − a12x2,

ẋ2

x2

= b2 − b2
N2
x2 − a21x1,

ẋ3

x3

= b3 − b3
N3
x3,

ẋ4

x4

= b3 − b4
N4
x4,

(6.4.1)

The four null-lines defined by Eq. (6.1.2) are then given by

b1 − b1
N1
x1 − a12x2 = 0,

b2 − b2
N2
x2 − a21x1 = 0,

b3 − b3
N3
x3 = 0,

b3 − b4
N4
x4 = 0.

(6.4.2)

Suppose that the first two null-lines are nonparallel

b1b2

N1N2

− a12a21 6= 0, (6.4.3)

then the interior equilibrium p = (p1, p2, p3, p4) is determined by the intersection of

the first two null lines and the zeros of the last two null lines, that is,

p1 =
−N1b1b2 −N1N2b2a12

b1b2 −N1N2a12a21

, p2 =
−N2b1b2 −N1N2b1a21

b1b2 −N1N2a12a21

, p3 = N3, p4 = N4. (6.4.4)

Note that we require the equilibrium lives in the region intR4
+, which entails that

pi > 0, i = 1, 2, 3, 4. Hence, we obtain the following condition from p1, p2 > 0

b1b2

N1N2

− a12a21 < 0. (6.4.5)
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The Jacobian matrix of the system (6.1.2) is given by

DJ =


b1 − 2b1

N1
x1 − a12x2 −a12x1 0 0

−a21x2 b2 − 2b2
N2
x2 − a21x1 0 0

0 0 b3 − 2b3
N3
x3 0

0 0 0 b4 − 2b4
N4
x4

 . (6.4.6)

Linearising the equation (6.1.2) around p, we obtain the matrix

M = DJ |p =


− b1
N1
p1 −a12p1 0 0

−a21p2 − b2
N2
p2 0 0

0 0 −b3 0

0 0 0 −b4

 , (6.4.7)

which is a direct sum of the following matricesM = M1⊕M2, whereM1 =

"
− b1
N1
p1 −a12p1

−a21p2 − b2
N2
p2

#

and M2 =

"
−b3 0

0 −b4

#
.

Hence, the eigenvalues of M are given by the eigenvalues of M1 and M2, that is,

λ1,2 =
Tr(M1) ±

p
(Tr(M1))2 − 4Det(M1)

2
, λ3 = −b3, λ4 = −b4. (6.4.8)

where Det(M1) = p1p2

(
b1b2
N1N2

− a12a21

)
, Tr(M1) = − b1

N1
p1 − b2

N2
p2.

Note Det(M1) < 0 and Tr(M1) < 0, then λ1λ2 < 0. Therefore, the equilibrium p is

unstable.

6.5 Concluding remarks

Let us express the equation (6.2.14) in the following form

Y = f(K,D,L) =
NfL

1
b4

L
1
4 + C(NL − L)

1
b4G1(K,D)

, (6.5.1)
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where C ∈ R+ and G1(K,D) = exp
(
b2
l1
K l1Dl2

(
D
ND

+ K
NK

− 1
))

.

Let us check that the function Y is well-defined from the economic point of view,

namely, we first need to check that the function satisfies the following three conditions

and then analyze the properties of the function.

1. The function is not monotone decreasing.

It is sufficient to state that the function is not monotone decreasing. Let us

choose the direction where K and D are constant. It can be shown that Y

becomes the type of the function f6 in Section 3.3. It follows from the shape of

f6, which has been analyzed in Section 3.3, that the production function Y is

not monotone decreasing.

2. The boundedness.

Let us assume the domain of L is SL = [0, NL]. Including NL can be viewed

as an analytic continuation since the function Y is well-defined at the point

NL. We can see that [0, NL] is a bounded interval. The domain of K and L

is also a bounded set. Let us denote the domains of K and L by SK and SL,

respectively. It follows that SK × SL × SD is a bounded set. We can conclude

from the continuity of Y on the given domain, using the bounded value theorem,

that Y is bounded, where the continuation preserves the boundedness from the

domain to the image.

3. The function has an absolute maximum.

It follows from the boundedness that Y attains an absolute maximum NL at

the surface L = NL.

The function Y is of the type of the function f6 in Section 3.3. Let us focus on the

following function

G1(K,D) = exp

(
b2

‘1

K‘1D‘2

(
D

ND

+
K

NK

− 1

))
. (6.5.2)
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We know that

−1 <
D

ND

+
K

NK

− 1 < 1. (6.5.3)

Assuming ‘1, ‘2 > 0, we know that p is an unstable equilibrium, which implies that

either capital or debt dies out in the competition. In the end behaviour (K →
NK , D → 0 or K → 0, D → ND), D

ND
+ K

NK
− 1 approaches zero. The function

G1(K,D) is close to 1 and the production function (6.5.1), roughly speaking, be-

comes the function f6. Economically speaking, capital and debt do not contribute to

production. For example, in the aftermath of the European debt crisis of 2010, new

fiscal policies, including increasing the government spending, issuing new treasure

bills and bonds, etc., did not stimulate the economy in the countries already with a

large amount of debt. From the perspective of our model, it is clear that more debt

can not stimulate production since D → ND.

In Chapter 6 we have briefly investigated the stability of the four-dimensional eco-

nomic growth model. The chapter is necessarily incomplete. We have realized that,

since the dimension of the model is greater than 2, the model potentially has inter-

esting properties, e.g., chaotic behaviour, the Hamiltonian may lie around a potential

attractor, etc. In future research we plan to employ a more detailed numerical analysis

of the model.



Chapter 7

Optimization problems

We investigate variational problems involving the new production function f5 (3.3.14)

in this chapter, which is a natural next step in the study of the function (3.3.14). Let

us start by reviewing the Ramsey model. Recall the income identity in macroeco-

nomics is given by

Y = C + I +G+X −M, (7.0.1)

where Y is the gross production, C is consumption, I represents investment, G is

government spending, X and M are export and import, respectively.

The Ramsey-Cass-Koopmans model [109, 99, 25, 70, 93] studies the optimal savings

in one country, in which they aim to find the maximum of social welfare under a

certain consumption level, i.e., an optimum problem of the following functional

J(k) =

Z ∞

0

e−ρtu(c(t))dt, (7.0.2)

where we denote F (c, k, t) = e−ρtu(c(t)) and ρ > 0 represents the discount rate

reflecting time preference. The time preference [43] refers to the current relative

valuation placed on receiving a good at an earlier date and receiving it at a later date.

Agents in an economy with high time preference emphasize substantially on their

welfare at present and in the immediate future while those with low time preference

place their focus in the distant future.

The authors restrict the problem of the social welfare in a closed economy, namely,

such a problem does not involve import and export, hence, the income identity (7.0.1),

ignoring the government spending, becomes

Y = C + I, (7.0.3)
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and they assume that there is no capital depreciation such that

K̇ = I. (7.0.4)

Therefore, we arrive at the following dynamical system involving capital,

Y = C + K̇. (7.0.5)

They postulate that the general production Y is a homogeneous function Y =

f(K,L). By introducing the projective coordinates, y = Y
L

, k = K
L

and c = C
L

,

the equation (7.0.5) becomes

y = f(k) = c+ k̇ + nk, (7.0.6)

where k̇ = K̇
L
− k L̇

L
represents the accumulation of capital per labor and n = L̇

L
is the

growth rate of population and assumed constant.

Note, it follows from the equation (7.0.6) that the consumption c is also a function of

k, that is, c(k(t)) = f(k) − k̇ − nk. We still write c(k(t)) as c(t) for our convenience

in the following context.

Then the variational problem of the optimal social welfare (7.0.2) can be presented

as follows

J(k) =

Z ∞

0

e−ρtu(c(t))dt, (7.0.7)

subject to

g(c, k, k̇) = f(k) − c(t) − k̇ − nk = 0. (7.0.8)

An optimal problem of a functional with finite subsidiary conditions as (7.0.7) can

be either solved using Pontryagin’s maximum principle, which was developed by Lev

Pontryagin [96], i.e., by deriving the Hamiltonian function of optimal control theory

from the above functional, details of which can be found in [93], or applying the

Euler-Lagrange method. We will illustrate the latter approach in what follows.
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According to Theorem 2.4.3 and Remark 2.4.4, since gk̇ does not vanish, there exists

a function λ(t) such that the maximal social welfare is attained along the integral

curve of the system

Φc −
d

dt
Φċ = 0 (7.0.9)

and

Φk −
d

dt
Φk̇ = 0, (7.0.10)

where Φ = F + λg.

The Ramsey problem can be described in terms of the following functionalZ ∞

0

e−ρtu(c(t)) + λ(t)g(c, k, k̇)dt. (7.0.11)

Then the corresponding Euler-Lagrange equations are

e−ρt(f 0(k) − n)uc + (f 0(k) − n)λ− d

dt
(−e−ρtuc − λ) = 0,

e−ρtuc − λ = 0,
(7.0.12)

or, simply,

e−ρt(f 0(k) − n)uc + (f 0(k) − n)λ− (ρe−ρtuc − e−ρt
duc
dt

− λ̇) = 0,

e−ρtuc − λ = 0.
(7.0.13)

It follows, λ = e−ρtuc, differentiating this equation with respect to t yields

λ̇ = ρe−ρtuc − e−ρt
duc
dt
. (7.0.14)

Eliminating λ and λ̇ in the first equation of the equation (7.0.13), we obtain

2e−ρt(f 0(k) − n)uc − 2ρe−ρtuc + 2e−ρt
duc
dt

= 0, (7.0.15)

rearranging which gives us the Ramsey golden rule of accumulation, that is,

duc
dt

= (ρ+ n− f 0(k))uc. (7.0.16)
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7.1 A new macroeconomical model

Let us consider the government spending in a closed economy, i.e., we only ignore

import and export. Thus, the income identity (7.0.1) becomes

Y = C + I +G, (7.1.1)

The accumulation of capital K̇ is the difference between the total investment and the

capital depreciation δK, that is,

K̇ = I − δK. (7.1.2)

We can view government spending as debt and taxation in a country (see [1, 41]

for more details) and the government budget constraint is given by the following

difference equation

Dt = (1 + r)Dt−1 +Gt − Tt, (7.1.3)

where r is the interest rate, Dt is the debt at the current time, Dt−1 is the debt at the

previous time, Gt is the government spending at the current time, Tt is the taxation

at the current time.

Remark 7.1.1. Some applied mathematicians and economists write Bt, the budget

in the current time, in the government budget constraint. We assume the government

is in debt and consider the debt repayment in our model. Thus, we use Dt in the

constraint.

Moving Dt−1 to the LHS, the equation (7.1.3) assumes the following form

∆Dt = rDt−1 +Gt − Tt, (7.1.4)

and expressing Dt−1 in terms of Dt, we obtain

∆Dt =
1

1 + r
Dt +

r

1 + r
Gt −

r

1 + r
Tt. (7.1.5)
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Then, it follows from considering a continuous model of the equation (7.1.5) that the

continuous dynamical model of the government budget constraint is as follows:

G =
1 + r

r
Ḋ − 1

r
D − T (t). (7.1.6)

Let us assume the taxation is a linear and homogeneous function of capital K, that

is,

T (t) = F (rK(t)), (7.1.7)

where r is the interest rate.

It follows from equations (7.1.2) and (7.1.6) that the income identity becomes a

dynamical system of K and D, that is

Y (t) = C(t) + K̇(t) + δK(t) +
1 + r

r
Ḋ(t) − 1

r
D(t) − F (rK(t)). (7.1.8)

The model (7.1.1) is mainly used by neoclassical economists to describe the capital

accumulation. The production function Y = f(K,L) is most commonly assumed to

be of the Cobb-Douglas type in previous studies by economists and applied mathe-

maticians [109, 1, 41].

Let us recall the new production function

Y = f5(K,L) =
Nf5K

αLβ

C5|NK −K|α|NL − L|β +KαLβ
, (7.1.9)

where α > 0, β > 0, f5(K,L) represents production, K is capital, L is labor, Nf5 =

NY is the maximum value of production, NK and NL are the steady states of the

function K and L respectively, and C5 is the integrating factor.

We consider an optimization problem of the social welfare with the production func-

tion (7.1.9). Let us assume K and L grow logistically. Hence, we aim to find a

consumption function C(t) and a debt function D(t) along which the social welfare
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is maximized, that is, the optimization of the functional

J(K,L) =
R∞

0
e−ρtU(C(t))dt, (7.1.10)

subject to the constraints

C + aK(1 − K

NK

) + δK +
1 + r

r
Ḋ − 1

r
D − F (rK) − f5(K,L) = 0, (7.1.11)

K̇ − aK(1 − K

NK

) = 0 (7.1.12)

and

L̇− bL(1 − L

NL

) = 0, (7.1.13)

where a and b are positive constants and NK and NL are carrying capacities of K

and L, respectively,

with the boundary conditions

C(0) = C0, lim
t→∞

λ1(t)C(t) = 0, (7.1.14)

D(0) = D0, lim
t→∞

λ1(t)D(t) = 0, (7.1.15)

where C0 and D0 are constant and the end point condition is called the transversality

condition.

Remark 7.1.2. The utility function U(C(t)) in our functional represents the total

utility of the society.

This is also an optimization problem with finite subsidiary conditions. Let us denote

Φ = e−ρtU(C) + λ1

(
C + K̇ + δK +

1 + r

r
Ḋ − 1

r
D − F (rK) − f5(K,L)

)
+λ2

(
K̇ − aK

(
1 − K

NK

))
+ λ3

(
L̇− bL

(
1 − L

NL

))
,

(7.1.16)

where λi = λi(t), i = 1, 2, 3, is a function of t.
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The Euler-Lagrange equations associated with the functional (7.1.10) are given by

ΦC = 0, ΦK − d

dt
ΦK̇ = 0, ΦL − d

dt
ΦL̇ = 0, ΦD − d

dt
ΦḊ = 0, (7.1.17)

or,

e−ρtUC + λ1 = 0, (7.1.18)

λ1

(
δ − r

∂F

∂K
− ∂f5

∂L

)
+ λ2

(
−a+ a

2K

NK

)
− d

dt
(λ1 + λ2) = 0, (7.1.19)

λ1

(
−∂f5

∂L

)
+ λ3

(
−b+ b

2L

NL

)
− d

dt
λ3 = 0, (7.1.20)

λ1(−1

r
) − d

dt

(
1 + r

r
λ1

)
= 0. (7.1.21)

The equation (7.1.18) yields

λ1 = −e−ρtUC , (7.1.22)

substituting which into the equation (7.1.21), we obtain

e−ρtUC +
d

dt
((1 + r)e−ρtUC) = 0, (7.1.23)

or,

(1 + r)

(
dUC
dt

− ρUC

)
+ UC = 0. (7.1.24)

Remark 7.1.3. The equations (7.1.19) and (7.1.20) are first-order ODEs of λ2 and

λ3 and solving the equations yields the corresponding form of Lagrange multipliers.

The existence of solutions in (7.1.19) and (7.1.20) proves the validity of the optimal

problem.

Remark 7.1.4. Due to the complicated form of the partial differentiation of f5,

we present the calculation in what follows and denote them by corresponding partial

derivative notations,

∂f5(K,L)

∂K
=

αNYNKC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

K(NK −K)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 , (7.1.25)
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∂f5(K,L)

∂L
=

βNYNLC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

L(NL − L)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 . (7.1.26)

We notice that
dUC
dt

=
dUC
dC

dC

dt
= UCC

dC

dt
, (7.1.27)

and the equation (7.1.24) becomes

(1 + r)UCC
dC

dt
+ (1 − ρ(1 + r))UC = 0, (7.1.28)

which is a first-order ODE of the consumption C. By identifying the utility function

U(C) with a specific function, we can determine the exact form of the consumption

function C = C(t) and solve for D(t) explicitly.

Therefore, the optimal social welfare is determined by the following system of differ-

ential equations

(1 + r)UCCĊ(t) + (1 − ρ(1 + r))UC = 0, (7.1.29)

1 + r

r
Ḋ =

1

r
D + F (rK) + f5(K,L) − C − aK(1 − K

NK

) − δK, (7.1.30)

K̇ = aK(1 − K

NK

), (7.1.31)

L̇ = bL(1 − L

NL

). (7.1.32)

Several classes of utility functions can be used in our model. Let us illustrate with

the constant intertemporal elasticity of substitution utility function, i.e.,

U(C(t)) =
C(t)1−θ − 1

1 − θ
, (7.1.33)

where θ > 0 and
1

θ
represents the elasticity. The utility function means that each

household is more willing to change the consumption style for a smaller value of θ,

and vice versa. We notice that

UCCC

UC
=

−θC−θ−1C

C−θ = −θ. (7.1.34)
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Then the equation (7.1.29) becomes

UCCC

UC
Ċ(t) =

ρ(1 + r) − 1

1 + r
C, (7.1.35)

or

−θĊ(t) =
ρ(1 + r) − 1

1 + r
C. (7.1.36)

Hence, the consumption function is

C(t) = C0e

 1

θ(1 + r)
−
ρ

θ

t
, (7.1.37)

where C0 ∈ R+ is an integration constant. Considering the transversality condition

in (7.1.14), we also have ρ >
θ − 1

1 + r
. Note, θ is normally assumed to be [0, 1]. Hence,

the transversality condition yields ρ > 0.

It is clear that
1

θ
> 0, hence, the consumption function is affected by the interest rate

r and the discount rate ρ, that is,

• if
1

1 + r
> ρ, the consumption function C(t) increases,

• if
1

1 + r
< ρ, the consumption function C(t) decreases.

Note we relate the consumption in our model with r and ρ. The economic meaning of
1

r + 1
can be related to the discount rate of a saving model (which is not the effective

discount rate d). Suppose one deposits s dollars into a saving account, then after one

period there are s(1+r) dollars in the account. Conversely, suppose one has s dollars

at the end of the period, then he must save
s

1 + r
at the beginning. Hence, v =

1

1 + r
is the discount rate reflecting the value of money at the initial time. We can measure

the time preference using the discount rate. Let us assume the time preference of the

average is represented by v. When the interest rate r is high, consumers tend to save

money in the bank rather than spend money. Otherwise, when r is low, people tend

to consume more.
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The equation (7.1.30) can be reduced to a linear non-homogeneous ODE as follows

Ḋ − 1

1 + r
D =

r

1 + r

(
(r − δ − a)K(t) +

a

NK

K2(t) + Y (t) − C(t)

)
. (7.1.38)

solving (7.1.38) yields,

D(t) =
r

1 + r
e

t
1+r

Z
e−

t
1+r

(
(r − δ − a)

NKK0

K0 + (NK −K0)e−at

+
a

NK

(
NKK0

K0 + (NK −K0)e−at

)2

+
NY Y0

Y0 + (NY − Y0)e−ct
− C0e

( 1
θ(1+r)

− ρ
θ )t
!
dt

+D0e
t

1+r ,

(7.1.39)

where a, b and c are constant and K0, C0 and D0 are initial conditions.

Therefore, assuming a constant intertemporal elasticity of substitution utility func-

tion, the optimal social welfare (7.1.10) is achieved along the curves determined by

(7.1.38) and (7.1.39).

7.2 A new microeconomical model

Let us consider a firm in an industry of a certain type. The optimal profit of a firm

is of our interest. Nerlove [84] assumed the output of the firm following the form of

the Cobb-Douglas function, and then investigated the discounted profit maximization

from now to the economic horizon (the time when the firm no longer exists).

We suppose the output of the firm follows the form of the production function

f5(K,L), where capital K = K(t), labor L = L(t). The profit of the firm at a

time can be presented as

Π∗(t) = Π(t) − p0Y − p1K − p2L−Q1(K̇) −Q2(L̇), (7.2.1)

where Π(t) is revenue, pi, i = 0, 1, 2, are prices of each factor, Qi, i = 1, 2, are costs

of changing the level of each input and assumed to be positive for all values of K̇ and

L̇.
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The total of discounted profits from the present time to the economic horizon can be

expressed as Z T

p

e−ρtΠ∗(t)dt, (7.2.2)

where e−ρt is the discount factor, ρ is the discount rate, p and T represent the current

time and the economic horizon, respectively.

Remark 7.2.1. The reason for introducing the discount factor is that the values of

money vary at different times due to the interest rate and we use the discount factor

to calculate the present value of profit. The discount rate can be also viewed as the

interest rate.

We want to maximize the following functional

J(K,L) =

Z T

p

e−ρtΠ∗(t)dt, (7.2.3)

subject to

g3(Y,K,L) = Y − Nf5K
αLβ

C5|NK −K|α|NL − L|β +KαLβ
= 0. (7.2.4)

Let us denote

Φ = e−ρtΠ∗(t) + λg3(Y,K,L). (7.2.5)

The following Euler-Lagrange equations lead to the necessary conditions of the above

optimization problem

−p0e
−ρt + λ = 0, (7.2.6)

−p1e
−ρt − λ(f5)K +

d

dt

(
e−ρt

dQ1

dK̇

)
= 0, (7.2.7)

−p2e
−ρt − λ(f5)L +

d

dt

(
e−ρt

dQ2

dL̇

)
= 0. (7.2.8)

The equation (7.2.6) yields

λ = p0e
−ρt, (7.2.9)
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substituting (7.2.9) into the equation (7.2.7), we obtain

−p1e
−ρt − p0e

−ρt(f5)K +
d

dt

(
e−ρt

dQ1

dK̇

)
= 0. (7.2.10)

It follows from

d

dt

(
e−ρt

dQ1

dK̇

)
= −ρe−ρtdQ1

dK̇
+ e−ρt

d

dt

(
dQ1

dK̇

)
(7.2.11)

that the equation (7.2.10) becomes

−ρe−ρtdQ1

dK̇
+ e−ρt

d

dt

(
dQ1

dK̇

)
= p1e

−ρt + p0e
−ρt(f5)K , (7.2.12)

or

−ρdQ1

dK̇
+
d2Q1

dK̇2
K̈ = p1 + p0(f5)K . (7.2.13)

Similarly, we can obtain a differential equation in terms of L by substituting the

equation (7.2.6) into the equation (7.2.8), that is,

−ρdQ2

dL̇
+
d2Q2

dL̇2
K̈ = p2 + p0(f5)L. (7.2.14)

Therefore, the maximal profit of the functional (7.2.3) subject to (7.2.4) is determined

by the following system of differential equations

−ρdQ1

dK̇
+
d2Q1

dK̇2
K̈ = p1 + p0(f5)K (7.2.15)

and

−ρdQ2

dL̇
+
d2Q2

dL̇2
L̈ = p2 + p0(f5)L. (7.2.16)

We assume the functions Qi, i = 1, 2, are positive for any values of K̇ or L̇. The

simplest possible form of Qi is of the following quadratic form [84]:

Q1(K̇) =
m1

2
(K̇)2 and Q2(L̇) =

m2

2
(L̇)2, (7.2.17)

where m1 and m2 are positive constants.
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This entails that the equations (7.2.15) and (7.2.16) become the following system of

second order ordinary differential equations

m1K̈ − ρm1K̇ − p0

αNYNKC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

K(NK −K)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 = p1 (7.2.18)

and

m2L̈− ρm2L̇− p0

βNYNLC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

L(NL − L)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 = p2, (7.2.19)

the solution of which represents the optimal path of K and L.

We can see that solving the system of equations (7.2.18) and (7.2.19) analytically is

a highly non-trivial matter due to the complicated forms of the partial derivatives of

the production function Y .

7.2.1 A Hamiltonian approach

We attempt to identify the above system of differential equations as a Hamiltonian

system in what follows.

1. A Hamiltonian system in canonical coordinates

If we assume ρ = 0, then the system becomes

m1K̈ − p0
∂Y

∂K
= p1 (7.2.20)

and

m2L̈− p0
∂Y

∂L
= p2. (7.2.21)

Let us introduce the momentum coordinates x1 and x2 so that

x1 = m1K̇ (7.2.22)
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and

x2 = m2L̇. (7.2.23)

The system can be written as a Hamiltonian system defined by the Hamiltonian

function H given by

H =
1

2

(
x2

1

m1

+
x2

2

m2

)
− (p0Y + p1K + p2L) (7.2.24)

on the phase space with the canonical coordinates (K, x1, L, x2), so that

∂H

∂K
= −ẋ1 = −p0

∂Y

∂K
− p1,

∂H

∂x1

= K̇ =
x1

m1

,

(7.2.25)

and

∂H

∂L
= −ẋ2 = −p0

∂Y

∂L
− p2,

∂H

∂x2

= L̇ =
x2

m2

.

(7.2.26)

We have obtained a Hamiltonian structure of the system. Our next goal is to prove

this is a completely integrable system, that is, the system of ODEs has solutions. The

system can be viewed as a four-dimensional canonical Hamiltonian system, namely,

it has two degrees of freedom. The Arnold-Liouville integrability requires n first

integrals for a 2n- dimensional canonical Hamiltonian system, namely, we need one

additional first integral to show the system is completely integrable.

In search of an additional first integral

As is known, if f is a first integral of the system, then {f,H} = 0, or in terms of a

Hamiltonian vector field XH(f) = 0. We want f to be an additional first integral,

namely, XH(f) = 0 and df ∧ dH 6= 0, i.e., f and H are functionally independent.
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The Hamiltonian vector field of the system is given by

XH =
∂H

∂x1

∂

∂K
− ∂H

∂K

∂

∂x1

+
∂H

∂x2

∂

∂L
− ∂H

∂L

∂

∂x2

=
x1

m1

∂

∂K
+ (p0YK + p1)

∂

∂x1

+
x2

m2

∂

∂L
+ (p0YL + p2)

∂

∂x2

,

(7.2.27)

hence, we arrive at the following partial differential equation

x1

m1

∂f

∂K
+ (p0YK + p1)

∂f

∂x1

+
x2

m2

∂f

∂L
+ (p0YL + p2)

∂f

∂x2

= 0. (7.2.28)

1. Applying the method of characteristics

Initially, we attempted to solve the PDE via the method of characteristics, that is,

by solving the DE
dK
x1
m1

=
dx1

p0YK + p1

=
dL
x2
m2

=
dx2

p0YL + p2

, (7.2.29)

it seems that the only reasonable combination of the above ordinary equation is

p0YK + p1dK =
x1

m1

dx1, p0YL + p2dL =
x2

m2

dx2, (7.2.30)

which yields
x2

1

2m1

− (p0Y + p1K) = C1 (7.2.31)

and
x2

2

2m2

− (p0Y + p2L) = C2. (7.2.32)

A proper arrangement of the two invariants C1 and C2 leads to

f =
1

2

(
x2

1

m1

+
x2

2

m2

)
− (p0Y + p1K + p2L), (7.2.33)

which is identical to the Hamiltonian function.

We have also tried other combinations, for example,

dK
x1
m1

=
dx2

p0YL + p2

,
dL
x2
m2

=
dx1

p0YK + p1

, (7.2.34)
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but none of which gives us a proper first integral. We can see that the method of

characteristics does not yield an ideal result.

2. A new first integral whose momentum is a polynomial

Let us review the Liouville-Arnold integratbility. The 2n dynamical system is com-

pletely integrable if it has n independent first integrals P1,. . ., Pn such that {Pk, Pl} =

0, where {·, ·} denotes the Poisson bracket.

Note the system has a canonical Hamiltonian structure, namely, we are considering

canonical one-forms and polynomials in the momentum, that is, the case of two

Schouten bracket commuting Killing tensors [32].

Let us confine our considerations to the case of first integrals with polynomials in the

momentum. We will use the following ansatz for the additional first integral

f = g(x1, x2) − (p0Y + p1K + p2L), (7.2.35)

where g = g(x1, x2) is a polynomial of momentum variables x1 and x2.

Substituting the equation (7.2.28) into the PDE (7.2.35), we obtain

x1

m1

(−p0YK − p1) + (p0YK + p1)
∂g

∂x1

+
x2

m2

(−p0YL − p2) + (p0YL + p2)
∂g

∂x2

= 0,

(7.2.36)

We note that the solution to the equation (7.2.36) is a quadratic polynomial. A

polynomial with a different degree simply does not satisfy the equation (7.2.36), e.g.,

suppose g is a cubic polynomial, then the terms

(p0YK + p1)
∂g

∂x1

and (p0YL + p2)
∂g

∂x2

(7.2.37)

are of degree 2 in variables x1 and x2, but the terms

x1

m1

(−p0YK − p1) and
x2

m2

(−p0YL − p2) (7.2.38)

are linear in variables x1 and x2, which is obviously inconsistent.
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Thus, we obtain

g =
1

2

(
x2

1

m1

+
x2

2

m2

)
, (7.2.39)

and

f =
1

2

(
x2

1

m1

+
x2

2

m2

)
− (p0Y + p1K + p2L), (7.2.40)

which is again identical to the Hamiltonian.

We can conclude the system does not have an independent first integral whose mo-

mentum is a polynomial.

7.2.2 An economic approach

The solution to the system determines curves of K and L, along which the profit

of the firm is maximized. We will tend to analyze the problem from the viewpoint

of economics. Π∗(t) in the equation (7.2.1) represents the economic profit in the

economic sense. A firm can not obtain the optimal profit in perfect competition and

enjoy equilibrium in the long run. We are discussing a firm of any type. A firm is

able to achieve an optimal profit in non-perfect competition, namely, the system of

the equations (7.2.18) and (7.2.19) with the given boundary conditions has analytic

solutions, which determine the optimal path of K(t) and L(t). Along the optimal

path the profit attains its maximum.

7.3 The Lie-Koenigs theorem

We have established the Hamiltonian formalism of a special case of the system of

equations (7.2.18) and (7.2.19), in which we assume ρ = 0, in the previous section.

This implies a potential Hamiltonian structure for the general case (ρ 6= 0) of the

system. We want to further study the system and discuss the possibility of the

Hamiltonian formalism of the system in this section.

Whittaker [131] followed Lie and Koenigs in the study of the inverse problem of Hamil-

tonian formalization, namely, identifying a system of first-order differential equations

as a Hamiltonian system using the variational principle (see pp. 275-276 in [131])
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and introduced the Lie-Koenigs theorem, which shows that any system of first order

differential equations may be viewed as a Hamiltonian system [66]. Whittaker proved

the theorem, but the details of the theorem (especially in the sense of applications)

was extended by Kerner [66]. Let us briefly illustrate the Lie-Koenigs theorem based

on Kerner’s version, which is written in a more modern manner and includes more

details.

Suppose we have the following system of first order differential equations

ẋi = Xi(x), i = 1, . . . ,m (7.3.1)

which Kerner coupled with the following variational principle (Whittaker called it an

integral invariant of the system)

δ

Z
[Uα(x)ẋα − U0] dt = 0. (7.3.2)

and wrote the Euler-Lagrange equation in the following manner(
∂Uk
∂xα

− ∂Uα
∂xk

)
ẋα = −∂U0

∂xk
, k = 1, . . . ,m, (7.3.3)

or,

Γkαẋα = −∂U0

∂xk
, k = 1, . . . ,m, (7.3.4)

by letting

Γkα =

(
∂Uk
∂xα

− ∂Uα
∂xk

)
. (7.3.5)

Kerner showed Γkα was a component of a Poisson bivector. We can see that the

equation can have a Hamiltonian structure if U0 is a Hamiltonian function.

Let us introduce the following ansatz

U0 = UαXα +W0, (7.3.6)

where W0 is an arbitrary function.

Remark 7.3.1. The freedom provided by W0 plays an important role in finding the
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Hamiltonian function U0 in applications.

Substituting the equation (7.3.1) into the equation (7.3.3) yields(
∂Uk
∂xα

− ∂Uα
∂xk

)
Xα = −∂U0

∂xk
, k = 1, . . . ,m, (7.3.7)

using the ansatz, we obtain

Xα
∂Uk
∂xα

= −Uα
∂Xα

∂xk
− ∂W0

∂xk
, k = 1, . . . ,m, (7.3.8)

in which solving Uk and W0 yields the Hamiltonian function U0.

Kerner commented that the equation (7.3.8) is a system of Cauchy-Kowalevskaya

type. We realize, according to the Cauchy-Kowalevskaya theorem, the system whose

coefficients are analytic functions has a unique and analytic solution around the proper

initial condition, namely, the equation (7.3.8) can always have a local analytic solu-

tion. Kerner proved that any system of first-order differential equations could be

viewed, at least locally, as a Hamiltonian system.

He completed the proof by introducing a canonical transformation to the Hamiltonian

structure (7.3.5) to show that

H(Q,P ) = U0(x(Q,P )), (7.3.9)

where (Q,P ) are the generalized canonical coordinates.

7.3.1 The case of a harmonic oscillator

The Lie-Koenigs theorem presents a systematic way of finding a Hamiltonian struc-

ture for a system, namely, it reduces the problem of finding a Hamiltonian to the

corresponding problem of solving a system of PDEs. We will first consider a two-

dimensional harmonic oscillator as an example.



170

Let us consider the following harmonic oscillator

ṗ = −q,

q̇ = p,
(7.3.10)

where (q, p) is the generalized coordinates.

The system (7.3.10) is a Hamiltonian system with a canonical symplectic structure

ω = dq ∧ dp (7.3.11)

and a Hamiltonian function

H =
1

2
p2 +

1

2
q2. (7.3.12)

Indeed, let us apply the Lie-Koenigs theorem. As we stated, the core of the Lie-

Koenigs theorem in applications is to solve the system (7.3.8). Assume the Hamilto-

nian U0 = −qU1 + pU2 +W0 and the equation (7.3.8) in this case becomes

−q∂U1

∂p
+ p

∂U1

∂q
= −U2 −

∂W0

∂p
,

−q∂U2

∂p
+ p

∂U2

∂q
= U1 −

∂W0

∂q
.

(7.3.13)

We can see that U1 = −1
2
q, U2 = 1

2
p and W0 = C, C ∈ R, is a solution to the above

system. This leads to the Hamiltonian of the form:

U0 =
1

2
q2 +

1

2
p2 + C. (7.3.14)

7.3.2 The special case revisited

The Lie-Koenigs approach can also be applied to our special case in Section 7.2, which

gives rise to the following system of PDEs

(p0YK + p1)
∂U1

∂x1

+
x1

m1

∂U1

∂K
+ (p0YL + p2)

∂U1

∂x2

+
x2

m2

∂U1

∂L
= − 1

m1

U2 −
∂W0

∂x1

, (7.3.15)
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(p0YK + p1)
∂U2

∂x1

+
x1

m1

∂U2

∂K
+ (p0YL + p2)

∂U2

∂x2

+
x2

m2

∂U2

∂L
= −(p0YKK)U1

−(p0YKL)U3 −
∂W0

∂K
,

(7.3.16)

(p0YK + p1)
∂U3

∂x1

+
x1

m1

∂U3

∂K
+ (p0YL + p2)

∂U3

∂x2

+
x2

m2

∂U3

∂L
= − 1

m2

U4 −
∂W0

∂x2

, (7.3.17)

(p0YK + p1)
∂U4

∂x1

+
x1

m1

∂U4

∂K
+ (p0YL + p2)

∂U4

∂x2

+
x2

m2

∂U4

∂L
= −(p0YKL)U1

−(p0YLL)U3 −
∂W0

∂L
,

(7.3.18)

with the Hamiltonian function of the form

U0 = (p0YK + p1)U1 +
x1

m1

U2 + (p0YL + p2)U3 +
x2

m2

U4 +W0. (7.3.19)

According to the form of the Hamiltonian, we can assume that

U2 = x1, U4 = x2. (7.3.20)

Substituting U2 and U4 into equations (7.3.16) and (7.3.18) yields

−(p0YKK)U1 − (p0YKL)U3 −
∂W0

∂K
= p0YK + p1, (7.3.21)

−(p0YKL)U1 − (p0YLL)U3 −
∂W0

∂L
= p0YL + p2. (7.3.22)

The different order of derivatives of the production function Y leads us to the con-

sideration that

U1 = U3 = 0. (7.3.23)
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Then the system reduces to

∂W0

∂x1

= − x1

m1

,

∂W0

∂K
= −p0YK − p1,

∂W0

∂x2

= − x2

m2

,

∂W0

∂L
= −p0YL − p2,

(7.3.24)

which gives rise to

W0 = −1

2

(
x2

1

m1

+
x2

2

m2

)
− (p0Y + p1K + p2L). (7.3.25)

Eventually, we arrive at the following Hamiltonian

U0 =
x2

1

m1

+
x2

2

m2

+W0

=
1

2

(
x2

1

m1

+
x2

2

m2

)
− (p0Y + p1K + p2L).

(7.3.26)

7.4 The microeconomics model revisited

We proposed an optimal problem of profit of a firm in Section 7.2. We followed Nerlove

and considered the profit (7.2.1), in which we assumed all prices were constant. It is

true that the prices are stable in the equilibrium, but the model we considered may

not be the equilibrium. Thus, we think we can also view prices as functions of time.

Then Lagrangian (7.2.3) in Section 7.2 becomes

J(K,L) =

Z T

p

eρ(t̃)Π∗(t̃)dt̃, (7.4.1)

subject to

g3(Y,K,L) = Y − Nf5K
αLβ

C5|NK −K|α|NL − L|β +KαLβ
= 0, (7.4.2)
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where

Π∗(t̃) = Π(t̃) − p̃0(t̃)Y − p̃1(t̃)K − p̃2(t̃)L−Q1(K 0) −Q2(L0), (7.4.3)

K = K(t̃), L = L(t̃) and Y = Y (t̃), (7.4.4)

K 0 =
dK

dt̃
and L0 =

dL

dt̃
. (7.4.5)

We also generalize the discount factor

e−ρt̃ −→ eρ(t̃). (7.4.6)

The Euler-Lagrange equations of the above Lagrangian give rise to

−ρ(t̃)
dQ1

dK 0 +
d2Q1

dK 02K
00 = p̃1 + p̃0(f5)K (7.4.7)

and

−ρ(t̃)
dQ2

dL0 +
d2Q2

dL02 L
00 = p̃2 + p̃0(f5)L, (7.4.8)

which determine the optimal path of K and L.

Similarly, let us apply the equation (7.2.17) and the system becomes

m1K
00 − ρ(t̃)m1K

0 − p̃0

αNYNKC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

K(NK −K)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 = p̃1 (7.4.9)

and

m2L
00 − ρ(t̃)m2L

0 − p̃0

βNYNLC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

L(NL − L)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 = p̃2. (7.4.10)

The new system gives us more freedom, since we can assume different functions for

discount and price factors.
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Let us introduce the following functions

ρ(t̃) = −1

t̃
, p̃0 =

p0

t̃2
, p̃1 =

p1

t̃2
and p̃2 =

p2

t̃2
. (7.4.11)

The value of e−
1
t̃ is in (0, 1) and is a proper discount factor.

We propose that price is inversely proportional to time, which makes sense that the

firm may take much money in hiring employees and spend much money in production

materials in the pioneering stage, since it may lack bargaining power.

Then the equations (7.4.9) and (7.4.10) become

m1K
00 +

1

t̃
m1K

0 − p0

t̃2
αNYNKC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

K(NK −K)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 =
p1

t̃2
(7.4.12)

and

m2L
00 +

1

t̃
m2L

0 − p0

t̃2
βNYNLC5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β

L(NL − L)
(
C5

∣∣NK

K
− 1
∣∣α ∣∣NL

L
− 1
∣∣β + 1

)2 =
p2

t̃2
, (7.4.13)

or

m1t̃
2K 00 +m1t̃K

0 − p0YK = p1 (7.4.14)

and

m2t̃
2L00 +m2t̃L

0 − p0YL = p2. (7.4.15)

Recall that Yatsun [134] investigated an integrable model of the Yang-Mill theory

and quasi-instantons. Under the O(4)-symmetry, the model becomes a system of

second-order ODEs, which Yatsun showed, under a certain transformation, was a

Hamiltonian system. We noticed that the transformation can be also applied to our

model.

Let us introduce

t = ln t̃, (7.4.16)
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then

t̃K 0 =
dK

dt
= K̇ (7.4.17)

and

t̃2K 00 = −K̇ + K̈. (7.4.18)

It follows from the above transformation that the equations (7.4.14) and (7.4.15)

become

m1K̈ = p0YK + p1 (7.4.19)

and

m2L̈ = p0YL + p2, (7.4.20)

Referring to the result in Section 7.2, we can introduce

x1 = m1K̇ (7.4.21)

and

x2 = m2L̇. (7.4.22)

Then we obtain a four-dimensional Hamiltonian system with a canonical Poisson

bivector and a Hamiltonian function

H =
1

2

(
x2

1

m1

+
x2

2

m2

)
− (p0Y + p1K + p2L). (7.4.23)

7.5 Concluding remarks

In this chapter, we have briefly reviewed and rederived, using the Euler-Lagrange

method, the Ramsey golden rule of accumulation. A new macroeconomics model of

social welfare has been considered, in which we find the optimal path of consumption

and debt. We have extended the model of the optimal profit of a firm given by Nerlove

through employing a new production Y of the bounded growth type. A system of

ODEs determines the optimal path of capital and labor. We have identified a special
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case of the system as a Hamiltonian system, in which a Hamiltonian function is

derived. We have discussed the existence of a potential solution from the viewpoint

of economics.



Chapter 8

Conclusions

In the following we summarize the results obtained in Chapters 3-7. See also [119].

1. The validity of the Cobb-Douglas function. We have demonstrated that the

functions of the Cobb-Douglas type (3.0.1) arise naturally as invariants of the

one-parameter Lie group action (5.1.1). That is the Cobb-Douglas function

(3.0.1) is a consequence of the exponential growth in factors and production

determined by the corresponding parameters b1, b2, and b3 in (4.2.1), provided

the elastisities of substitution α and β in (3.0.1) satisfy the linearity condition

(5.1.18). The latter explains why various authors (see, for example, Mender-

shausen [81] and Doll [29]) have observed the property of multicollinearity while

studying data compatible with the Cobb-Douglas production function, using

statistical methods. In view of this observation, we modify the definition of the

Cobb-Douglas function as follows.

Definition 8.0.1 (Cobb-Douglas function). Given the one-parameter group

action

xi = x0
i e
bit, x0

i , bi > 0, i = 1, . . . , n (8.0.1)

in Rn
+. Then the Cobb-Douglas function is defined as an element of the following

family of invariants of the action (8.0.1):

nY
i=1

x0
ix

αi
i = C, αi > 0, i = 1, . . . , n, (8.0.2)

where C ∈ R is an arbitrary constant and x0
i , i = 1, . . . , n are the corresponding
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initial conditions, if the linearity condition

nX
i=1

αibi = 0 (8.0.3)

holds true.

We note that the parameters αi, i = 1, . . . , n may satisfy an additional linearity

condition
nX
i=1

αiai = a, ai, a ∈ R, i = 1, . . . , n, (8.0.4)

provided the lines (8.0.3) and (8.0.4) intersect in R+.

Importantly, the results presented above put in evidence that Cobb and Dou-

glas in [27] did derive a production function, as a function that related physical

output of a production process to physical inputs or factors of production, com-

patible with the data studied by the authors. However, it was not the only

production function of the type (3.0.1) compatible with it. We hope that our

analysis will help to clarify the many controversies surrounding the question of

derivation, applicability and properties of the Cobb-Douglas production func-

tion (3.0.1).

2. The logistic production function. The assumption about exponential growth

in production and factors of production that led to the introduction of the

Cobb-Douglas function given by (8.0.2) can naturally be modified under the as-

sumption that any factors of production, as well as production grow logistically,

rather than exponentially. Thus, we give the following

Definition 8.0.2 (Logistic production function). Given the following one-parameter

group action

xi =
Nix

0
i

x0
i + (Ni − x0

i )e
−bit

, x0
i , bi, Ni > 0, i = 1, . . . , n (8.0.5)

in Rn
+. Then the logistic production function is defined as an element of the
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following family of invariants of the action (5.2.1) :

nY
i=1

[
xi(Ni − x0

i )

x0
i (Ni − xi)

]αi

= C, αi, Ni > 0 i = 1, . . . , n, (8.0.6)

where C ∈ R is an arbitrary constant and x0
i , i = 1, . . . , n are the corresponding

initial conditions, if the linearity condition

nX
i=1

αibi = 0 (8.0.7)

holds true.

We note that the parameters αi, i = 1, . . . , n in (8.0.6) may satisfy an additional

linearity condition (8.0.4), provided the lines (8.0.7) and (8.0.4) intersect in R+.

3. The Hamiltonian approach. Mathematicians often say that “a mathematical

problem is essentially solved when it is reduced to an algebraic problem.” In

this thesis we have reduced several problems of the derivation of a production

function to the corresponding algebraic problems by employing the Hamiltonian

approach and describing the dynamics in question in each case as a special case

of the Lotka-Volterra model (1.0.3). In particular, we have rederived the cele-

brated Cobb-Douglas production function (3.0.1) with economically acceptable

elasticities of substitution as a linear combination of two Hamiltonians of the

bi-Hamiltonian structure (4.5.1) defined by two quadratic (degenerate) Poisson

bivectors. In Chapter 3 we derived a new production function (3.3.14) by as-

suming logistic rather than exponential growth in factors. In this case too, we

identified the corresponding dynamical system as a special case of the Lotka-

Volterra model (1.0.3) and a Hamiltonian system as such, which enabled us to

derive the corresponding production function (3.3.14) as a Hamiltonian. The

last model presented Chapter 6 is new — we have introduced an additional vari-

able (debt) and described the dynamics built around the “predator-prey” type

interaction between capital and debt also as a special case of the Lotka-Volterra

model (1.0.3), which ultimately led to the derivation of a new production func-

tion (3.3.21).
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4. The algorithm. Based on Definitions 8.0.1 and 8.0.2, the data analysis presented

by Cobb and Douglas in [27] and in this paper, we derive the following algorithm

that can be used to fit the production functions (3.0.1) and (3.3.14) (which are

special cases of the functions (8.0.2) and (8.0.6) respectively) to real data.

Given data representing production, labor, and capital.

• First, employ R to fit the functions (5.1.16), or (5.2.6) to the given data,

recovering in the process the values of parameters x0
i and bi, or x0

i , bi, and

Ni respectively for i = 1, 2, 3. More specifically, we choose either (5.1.16)

or (5.2.6) to fit to the data, depending on the corresponding values of

RSS’s (i.e., whichever more accurate).

• Second, use the values of the parameters b1, b2, and b3 determined in the

preceding step to form the linearity condition (5.1.18) for the parameters

α and β.

• Next, if the parameters b1, b2, and b3 satisfy either the inequality (4.5.10),

we can choose the values of the parameters α and β in (3.0.1) or (8.0.6) so

that α + β = 1, using the formulas (4.5.9).

• Finally, use the values of the parameters of α and β, satisfying the linear-

ity condition (5.1.18), that afford the best fit for the data that represents

production by the function (3.0.1) (if the data was approximated by ex-

ponential formulas (5.1.16) in the first step), or the production function

(3.3.14) (if the data is compatible with logistic growth given by (5.2.6)) to

define by these parameters either the production (3.0.1), or (3.3.14).

5. The four-dimensional dynamical model and the new variational problems We

have shown in Chapter 6 that the four-dimensional dynamical system has an

unstable equilibrium. The Hamiltonian function of the model can be used as a

production function. We have formulated a new variational problem involving

debt based on the Ramsey-Cass-Koopmans model with our new production

function (3.3.14) in Chapter 7. The maximal social welfare is attained along

the path of consumption and debt given by (7.1.38) and (7.1.39), respectively.
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