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ABSTRACT

Oceanic primary production is an important quantity that has both oceanographic and

societal impacts. It forms the basis of the marine food web, and provides a pathway for

carbon to be sequestered in the oceans interior. Despite its importance, the spatial and

temporal variation of primary production in the ocean is poorly observed. This is in part

because techniques for measuring production are often difficult and laborious. However,

the emergence of miniaturized biogeochemical sensors and their integration into piloted

and autonomous platforms such as gliders and profiling floats has opened new avenues

for measuring primary production. In this thesis, I attempt to estimate primary production

from measured diurnal changes in dissolved oxygen concentration in the upper ocean

that were obtained by autonomous floats deployed in the northern Gulf of Mexico. I first

examine whether profiling floats are a capable platform to measure diurnal changes in

oxygen, and develop a novel method for correcting oxygen sensor response time in-situ.

Then I characterize the various drivers, both physical and biological, that influence oxygen

in this region, and evaluate if the diurnal biological signal can be observed. Analysis of the

measurements is combined with a simple, one-dimensional numerical model to examine

the relationship between sampling rate, sensor accuracy, and resulting estimates of primary

production.
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CHAPTER 1

INTRODUCTION

Oceanic primary production is a fundamentally important process with implications for

a wide array of research topics and relevance to society. Primary production, the growth

of organic material through photosynthesis, forms the basis of the oceanic food web and

supports higher trophic levels. It is also a major component of the global carbon cycle,

providing a pathway for carbon to be sequestered in the deep ocean, and thus is vital to our

understanding of climate change.

Although primary production is intrinsic to understanding biogeochemical dynamics

in the ocean, its temporal and spatial variability is not well observed. This is in part

because production is not easily measured. Historically, production has been estimated by

performing bottle incubations using isotopically marked carbon-14 (14C) (Steeman-Nielsen,

1952). In this method, the initial concentration of Dissolved Inorganic Carbon (DIC) in

a water sample is measured (or the value is assumed), then a known amount of heavier
14C-DIC is added. After an incubation period (typically 24 h, but can vary), the amount

of labelled carbon that has been assimilated into organic matter is measured. With these

known quantities, a calculation of the total carbon uptake can be performed, thus deriving

production. These incubations require substantial effort and expensive ship time, while

only providing point estimates of production.

Satellites offer a path to estimating production on an expansive spatial scale, but under

the burden of large assumptions, including local light intensity, the parameters of the

photosynthesis-irradiance relationship, and the vertical structure of biomass. Satellites

measure surface ocean reflectances across several spectral bands, i.e. ocean color, from

which surface-ocean concentrations of chlorophyll and Particulate Organic Carbon (POC)
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can be estimated. Algorithms for converting surface chlorophyll concentrations or POC (in

mg m−3) to vertically integrated production estimates (in mg C m−2 d−1), e.g. the Vertically

Generalized Production Model (VGPM, Behrenfeld and Falkowski, 1997) or Carbon-

based Production Model (CbPm, Westberry et al., 2008), rely heavily on assumptions

about the subsurface and use global regressions of observed productivity with sea surface

temperature.

Both of the above methods quantify Net Primary Production (NPP). NPP is defined as

the total rate of carbon fixed by photosynthesizing organisms, minus autotropic respiration.

The total carbon fixed is referred to as Gross Primary Production (GPP). Other methods

for estimation of production consider the whole planktonic community and consider losses

due to both autotrophic and heterotrophic respiration. Community Respiration (R) is the

total rate of fixed carbon respired by autotrophs and heterotrophs to meet their energy

needs. The balance between Gross Primary Production and Community Respiration in

the upper ocean is referred to as the Net Community Production (NCP) and represents the

net rate of biomass production (NCP = GPP − R) by the biological community which is

either expressed as increased biomass or in exported carbon.

NCP in the mixed layer can be estimated by measuring the ratio of dissolved oxygen

to dissolved argon ([O2]/[Ar]) (Kaiser et al., 2005; Cassar et al., 2009; Hamme et al.,

2012; Tortell et al., 2014). The two gases have similar physical properties with regard to

their solubility, but Ar is biologically inactive while oxygen is produced and consumed by

production and respiration. In other words, the two gases are affected very similarly by any

physical processes, but only O2 is subject to biological processes. The ratio of [O2]/[Ar]

thus can be used to partition changes in oxygen into physical and biological components,

where the biological component represents NCP. The change ratio of oxygen to argon

concentrations relative to their saturation ratio (Δ[O2]/[Ar]) is calculated by measuring the

in-situ concentrations of O2 and Ar using mass-spectroscopy, dividing by their saturation

concentrations and subtracting 1 (Δ[O2]/[Ar] = ([O2]/ [Ar])/([O2]sat /[Ar]sat) - 1). This

quantity reflects biological processes and can be stoichiometrically converted to NCP

representative for the timescale of mixed layer gas exchange, usually about 10 to 30 days.

A positive Δ[O2]/[Ar] is indicative of net production (positive NCP), and a negative of net

respiration (negative NCP). This technique offers a better time-space resolution than 14C

incubations as mass-spectrometry can be applied in high-precision and continuously to
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a seawater flow-through on a steaming ship. This makes the technique a good candidate

for deployment on ships of opportunity, but the capability has not yet been extended to

autonomous platforms.

The emergence of miniaturized biogeochemical sensors and their integration into piloted

and autonomous platforms such as gliders and profiling floats have opened new avenues for

measuring production. Numerous studies have used particulate beam attenuation (Cullen

et al., 1992; Claustre et al., 1999; Kinkade et al., 1999; Gernez et al., 2010; Dall’Olmo

et al., 2011; Omand et al., 2017; White et al., 2017) or dissolved oxygen (Caffrey, 2003;

Riser and Johnson, 2008; Nicholson et al., 2015; Briggs et al., 2018) to estimate production

from sensors mounted on such platforms.

Riser and Johnson (2008) used profiling floats to measure oxygen profiles every 10

days in the subtropical Pacific Ocean. Oxygen below the mixed layer showed a steady

increase throughout the stratified period indicating positive NCP. The slope of the buildup

of oxygen allowed for an estimation of seasonally averaged NCP below the mixed layer.

Furthermore, GPP and R have been estimated from diurnal cycles of oxygen within the

mixed layer observed by gliders (Nicholson et al., 2015) and mixed layer floats (Briggs

et al., 2018). Diurnal analysis has also been performed using beam-c measurements from

underway ship flow-through (White et al., 2017). In Nicholson et al. (2015), approximately

14 glider profiles per day over a study period of 110 days were used to observe the diurnal

cycle of dissolved oxygen within the mixed layer. These measurements were combined

into an average diel cycle to determine GPP and NCP. The technique applied in White et al.

(2017) and Briggs et al. (2018) also makes use of the diel cycle of biological production, but

instead of averaging over many days to obtain an average diurnal cycle, uses the continuous

measurements of a mixed layer float to observe daily diel cycles. In Briggs et al. (2018),

by measuring the decline of dissolved oxygen through the night, the respiration rate R

is determined. Then, by observing the subsequent increase of dissolved oxygen during

daylight hours and subtracting R, Gross Oxygen Production (GOP) can be calculated.

GOP is analogous to GPP, but in units of oxygen rather than carbon and can be converted

to GPP.

While these initial results for deriving production from autonomous/piloted oxygen

measurement platforms are encouraging, they either required large averaging periods

or neglected at least some portion of the water column where production is likely to
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occur. In this thesis, I seek to test whether diurnal cycles of vertically integrated dissolved

oxygen can be observed with profiling floats to estimate productivity. I am using oxygen

measurements from ten floats that were deployed in the Gulf of Mexico in 2017 and were

directed to profile continuously for several days at a time. This work most directly extends

previous research with autonomous floats by Briggs et al. (2018) by using profiling rather

than mixed-layer floats and explicitly considering the entire euphotic zone. If feasible, this

could provide estimates of production rates at much better spatial and temporal coverage

than presently available.

With this objective in mind, my overarching research question is:

Can GPP, R, and NCP be estimated from the diurnal oxygen cycle measured by

continuously profiling autonomous floats?

To answer this overarching question, two sets of more specific questions, one technical

and one oceanographic, are addressed first:

1. Are autonomous profiling floats capable of sampling at the rate and accuracy required

to resolve diurnal scale changes in oxygen? What is the relationship between

sampling rate, accuracy, and magnitude of NCP and R?

2. What are the primary physical or biological drivers of change in dissolved oxygen

in the upper water column near the shelf break in the northern Gulf of Mexico? Are

there physical processes that can confound the diurnal biological oxygen signal? If

yes, can physical and biological processes be separated?

The first set of questions addresses technical aspects of the measurement. As profiling

floats have not yet been used to measure diel variations of oxygen, it is necessary to

determine if they are able to properly resolve the signal. While oxygen optodes have been

shown to be reliable and stable when deployed on autonomous floats (Tengberg et al.,

2006; Gruber et al., 2010), with only a weak drift of less than 1% per year (Bushinsky

et al., 2016; Bittig and Körtzinger, 2016), they are known to require pressure (Bittig et al.,

2015), in-air gain (Johnson et al., 2015; Nicholson and Feen, 2017) and response time

(Bittig et al., 2014, 2018) corrections. The ability to reliably perform these corrections

in order to extract highly accurate measurements from the optode will be paramount to

measuring the diel oxygen signal.
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The second set of research questions addresses the environmental side of measuring

production autonomously in-situ. The shelf break region in the northern Gulf of Mexico

is dynamic, with a large freshwater input from the Mississippi watershed leading to

eutrophic conditions on the shelf, while the shelf break and open Gulf are oligotrophic

with low rates of primary production. Given this, can the weak biological signal be

separated from potential physical processes affecting water column oxygen? The first

demonstration of diel oxygen cycle measurement by Briggs et al. (2018) was performed

in the North Atlantic Ocean during the spring bloom where rates of production were up

to 16 mmol O2 m−3 d−1, much higher than rates typically found in oligotrophic systems

(e.g. an average productivity of 1.8 mmol O2 m−3 d−1 measured by Nicholson et al. (2015)

near the Hawaii Ocean Timeseries). To provide further context, annual average NPP in the

open Gulf of Mexico is about 1/3 of that in the North Atlantic (Gulf of Mexico average

of 28 mmol C m−2 d−1, North Atlantic average of 78 mmol C m−2 d−1 from 2012-2015, per

VGPM Behrenfeld and Falkowski, 1997). Smaller biological signals are likely more

difficult to observe.

Analysis of measurements from ten autonomous floats deployed near the shelf break

in the northern Gulf of Mexico, and of complementary one-dimensional (1D) model

simulations will serve to answer the research questions. Quality control and correction

of oxygen optode measurements is described and discussed in depth, and their accuracy

is evaluated before attempting to isolate the biological diurnal cycle of dissolved oxygen.

The possible drivers of oxygen variability in the upper ocean are explored, especially how

physical processes can influence dissolved oxygen. The ways in which these processes

manifest themselves in the oxygen measurements are discussed, and suggestions for

recognizing and removing confounding signals to isolate the biological signal are given.

Analyses of the observations and numerical model results will be presented in parallel

in this thesis to present a complete view of each research question. The viability of oxygen

optodes for measuring vertically integrated diurnal changes is assessed by employing a sim-

ple model for optode response time to simulate how measurement and post-measurement

correction may induce errors in the observations. A 1D biological model is used to simulate

the diel oxygen cycle in order to examine how sampling frequency and sensor error may

influence its manifestation in the measurements. The model will also be compared with the

float observations to explicitly examine the interaction of physical processes and biological
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production.

Overall, the research presented in this thesis will contribute to improved quality control

of oxygen measurements by optodes, may stimulate the use of autonomous floats to

observe diurnal cycles of dissolved oxygen for calculation of NCP and R, and enhance our

understanding of the processes driving changes in oxygen in the shelf break region in the

northern Gulf of Mexico. The methods and findings of this work are applicable to other

regions.
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CHAPTER 2

STUDY AREA

The Gulf of Mexico is a semi-enclosed basin south of the contiguous United States of

America. To the east, the Gulf is connected to the Atlantic Ocean via the Florida Straits

and through the Yucatan Channel. Originating from the Atlantic, the Loop Current carries

warm, saline water into the Gulf, and sheds eddies that propagate westward across the

Gulf carrying their distinct oceanographic properties with them. The open Gulf is an

oligotrophic environment where primary production is nutrient-limited, while the shelf

in the northern Gulf, where the Mississippi and Atchafalaya rivers drain large amounts

of nutrients and freshwater, is a eutrophic environment, leading to widespread hypoxic

conditions in the summer (Bianchi et al., 2010; Fennel et al., 2013b; Yu et al., 2015) on the

shelf.

The Gulf experiences episodic perturbations by hurricanes and tropical storms, particu-

larly during September and October. These events have the potential to influence primary

productivity as deep mixing disrupts the density stratification of the water column and may

temporarily alleviate surface nutrient limitation.

The Gulf of Mexico is also a site of significant oil and gas exploration and extraction

activities that can harm the surrounding ecosystem. A striking example of this was seen

during the 2010 Deepwater Horizon oil spill. In addition to such rapid, catastrophic

anthropogenic influences, the Gulf is under increasing pressure from ocean warming,

acidification, and deoxygenation (Bopp et al., 2013; Boyd et al., 2015). On the whole,

the Gulf of Mexico is a highly dynamic region under the influence of both natural and

anthropogenic pressures.

Production rates in the open Gulf estimated by surface satellite measurements show a
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seasonality with higher production of 450-800 mg C m−2 d−1 (38-66 mmol C m−2 d−1) in

the winter, and lower production of 200-400 mg C m−2 d−1 (17-34 mmol C m−2 d−1) in the

summer (Muller-Karger et al., 2015). Production varies geographically across the Gulf;

rates tend to be higher in the northwest and lower in the southeast. It should be noted that

the seasonal trends in productivity replicate those of surface chlorophyll in the Gulf as

chlorophyll is the primary input for the production calculation, thus these estimates do not

account for possible seasonal changes in the subsurface.

Figure 2.1: Bathymetric map of the Gulf of Mexico, showing the loop current enter through
the Yucatan Channel and exit via the Florida Straits after intruding into the central Gulf. In
the north the location of the Misssissippi River delta is shown, which supplies nutrients to
the eutrophic northern shelf region.

Oxygen concentrations in the open Gulf never approach hypoxic levels; those are

confined to near-bottom waters on the northern shelf. Typical oxygen profiles exhibit

nearly constant oxygen concentrations throughout the mixed layer in near-equilibrium

concentrations of about 200-220 mmol m−3. Below the mixed layer, oxygen declines with

depth to about 100 m and remains almost constant below that at about 140-160 mmol m−3,

but can increase slightly again at greater depths.
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CHAPTER 3

METHODS

3.1 Float Functionality and Deployment

Figure 3.1: Photo of float f7939, one
of the 10 autonomous EM-APEX floats
with the various sensors labelled.

In May 2017, 10 autonomous EM-APEX floats

(ElectroMagnetic-Autonomous Profiling EX-

plorer; Figure 3.1) were deployed in the north-

ern Gulf of Mexico near the Mississippi delta

(figure 3.2). The floats were equipped with a

unique suite of sensors, including a Seabird

Scientific Conductivity Temperature Depth sen-

sor (CTD), 2 electromagnetic current velocity

sensors (developed by Applied Physics Labora-

tory of the University of Washington), a WET-

Labs EcoPuck bio-optical triplet which mea-

sures chlorophyll fluorescence, optical backscat-

tering and Coloured Dissolved Organic Matter

(CDOM), and an Aanderaa 4330 oxygen optode.

This study mostly uses data from the oxygen op-

tode and CTD, and some data from the optical

triplet. Current velocity measurements are not used here.

The floats operated in two different sampling modes: (1) the traditional “park-and-

profile” mode where floats surfaced once every 5 or 10 days and drifted at 1000 m depth in

between profiles, and (2) the “continuous” mode where floats were continuously profiling

the top 1000 m, pausing only to transmit data at the surface following an upcast (this

9



resulted in one profile about every 3 hours). The sampling mode of the float was changed

via two-way iridium satellite communication.

The floats were deployed in a grid (Figure 3.2 inset), and a set of discrete shipboard

measurements was taken in conjunction with each deployment. The floats were initially

set to continuous mode for about one week. After that, the floats were switched to park-

and-profile mode until hurricanes Irma and Nate passed through the Gulf during which the

floats were operated in continuous mode again. The complete dataset contains 3 periods of

high frequency sampling for each float, i.e. after deployment and during the passage of

each hurricane (see figure 3.3). The floats were usually not co-located with the hurricane

path, but continuous mode profiling captured shorter time scale processes during elevated

winds.

Figure 3.2: Map of deployment stations and float trajectories. The inset shows the 10
stations (black crosses) where shipboard measurements were made and floats deployed.

Three floats failed less than one month into the deployment. Although it is difficult

to diagnose these failures without recovering the floats, the location data suggests that

during the continuous mode sampling these floats had drifted near or onto shelf areas

with low-density surface waters for which they were not properly ballasted. Without the

required buoyancy to surface in these areas, the floats would have been trapped below

the surface. One float showed evidence of a low-salinity plume during which it was not

surfacing or transmitting data, but resumed functioning normally again later. Two more

floats transmitted data until the end of 2017, and the remaining five floats operated until
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summer of 2018, with the last transmission occurring on June 2, 2018. Three of the floats

were entrained into the Loop Current and left the Gulf, eventually ending up in the North

Atlantic (Figure 3.2).

Figure 3.3: Timeseries of wind velocity (blue) and direction vectors (black arrows). Shaded
areas show the times that the autonomous floats operated in continuous mode. Coloured
lines below the timeseries show the duration of operation of each float. Three floats (f7940,
f7944, f7945) failed early in the deployment.

An overview of float profiles and periods of operation can be found in table 3.1 (data

accessible at https://data.gulfresearchinitiative.org). In total, the 10-float fleet measured

over 2500 profiles over the course of the entire deployment. Of those profiles, over 1600

were recorded during continuous-mode sampling.

3.2 Sensor Calibration and Processing

3.2.1 Temperature and Salinity

At each deployment station, a CTD cast was performed using a SeaBird SBE 9 CTD. The

shipboard CTD allowed for comparison between the ship measurements and the first profile

recorded by the floats. At each station, a cast to 2000 m or as deep as the bathymetry at that

station would allow was performed. For two float deployments, the shipboard CTD could

not be deployed due to rough sea conditions. In general, the CTD and float profiles agreed

very well, with an average Root Mean Square Difference (RMSD) of 0.16 ◦C and 0.02 psu

(N = 8) for temperature and salinity respectively. The floats slightly underestimated
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temperature and salinity with biases of −0.12 ◦C and −0.01 psu, respectively (Table 3.1).

Information on calibration of the shipboard CTD is not known and so no adjustment of the

float temperature or salinity data was performed.

Table 3.1: Float number, total number of profiles measured by each float (and subset
of profiles measured in continuous mode), data of first and last transmitted profile, and
RMSD and bias of temperature (◦C) and salinity (psu) measurements relative to ship CTD.

Float Nprof (Ncont) Start Date End Date TRMSD Tbias SRMSD Sbias

f7939 302 (194) 02-05-2017 29-05-2018 0.17 -0.13 0.020 -0.005
f7940 83 (64) 02-05-2017 24-05-2017 0.14 -0.10 0.016 -0.009
f7941 415 (189) 03-05-2017 29-05-2018 - - - -
f7942 481 (384) 03-05-2017 02-06-2018 0.15 -0.11 0.018 -0.008
f7943 384 (269) 03-05-2017 05-03-2018 0.16 -0.10 0.016 -0.002
f7944 70 (55) 03-05-2017 19-05-2017 0.17 -0.13 0.026 -0.013
f7945 186 (55) 04-05-2017 30-05-2017 - - - -
f8081 322 (206) 06-05-2017 30-05-2018 0.11 -0.10 0.015 -0.011
f8082 101 (28) 06-05-2017 18-08-2017 0.15 -0.12 0.023 -0.017
f8083 312 (213) 07-05-2017 31-10-2017 0.21 -0.16 0.031 -0.023

3.2.2 Chlorophyll

Following standard Argo procedure (Schmechtig et al., 2015), raw fluorescence counts

(unitless) recorded by the sensor were converted to chlorophyll concentration (mg m−3) by

multiplication by the gain after the subtraction of the dark count of the sensor:

chla = m(fluo− dark) (3.1)

The gain and dark count were provided by the manufacturer, however the dark count

was updated to be the median of the minimum fluorescence measurements taken below

900 dbar by the float on its first 5 profiles. Although the gain (m in eq. 3.1) is known to

change based on community species composition, nutrient status, light levels, depth, or

season (Roesler and Barnard, 2013; Roesler et al., 2017), the factory conversion was not

altered as no independent measurements were available to make these kind of changes.

Non-photochemical Quenching (NPQ) was not corrected for, as the correction used

by the Argo program described in Xing et al. (2012) can overestimate chlorophyll con-

centration at the surface in waters where the depth of the Deep Chlorophyll Maximum
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(DCM) maximum and the Mixed Layer Depth (MLD) are comparable. The Gulf of

Mexico displays a consistent DCM through all seasons that sometimes lies near the base

of the mixed layer. When the correction would be appropriate, i.e. when the MLD and

DCM are not co-incident, the NPQ correction would be very small or not change surface

chlorophyll at all, as concentrations above the DCM are uniform and quite low. At other

times the correction would overestimate the true surface concentration (see Figure 3.4).

Profiles taken during the day and night were compared and surface concentrations were

not appreciably different between the two, also indicating that there was not significant

NPQ.

Figure 3.4: The MLD (black dashed line) often encroaches on the DCM. The correction
for NPQ (orange dashed line) following the method in Xing et al. (2012) would create
an overestimate of surface chlorophyll. Since surface concentrations are generally low in
this region and the effect of quenching on the profiles is small, no correction for NPQ is
performed.
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3.2.3 Particulate Backscattering

Backscattering was derived from the sensor measurement following Biogeochemical

(BGC)-Argo procedures for processing backscatter (Schmechtig et al., 2018). Counts from

the sensor (unitless) are converted to the Volume Scattering Function (VSF) at the sensor

measurement angle using a factory-provided gain (in m−1 sr−1) and a dark count:

β = m(counts− dark) (3.2)

Seawater will also scatter light, so the VSF for pure seawater is calculated using temperature

and salinity (Zhang et al., 2009), and subtracted from the sensor output:

Δβ = β(λ)− βsw(λ) (3.3)

where each of the above quantities also depends on the wavelength (λ) of light used by the

sensor to make the measurement, 700 nm in this case. The resulting difference (attributed

only to particles and not seawater) is multiplied by a scale factor χ (eq. 3.4) determined by

the wavelength and solid angle of the sensor (Ω = 2.3 sr), giving bbp in m−1:

bbp = 2πχ(λ,Ω)Δβ (3.4)

Spikes in backscatter are representative of sinking aggregates of organic matter. Profiles

can be separated into a baseline and spike components (Briggs et al., 2011, Figure 3.5).

When using backscatter as a proxy for suspended biomass, the baseline component of the

profile was used with aggregate spikes removed.

3.2.4 Dissolved Oxygen

Oxygen was derived from the optode sensor (Aanderaa 4330, see Figure 3.6) which

functions by emitting blue light on an oxygen-sensitive foil and measuring the phase

difference between incident and returned light (Kautsky, 1939). Sensors also include a

red LED which will not be shifted by the sensing foil and is used as a blank to evaluate

sensor drift over time. The sensing foil is subject to boundary layer effects that lead to a
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Figure 3.5: Example profile of particulate backscatter (bbp) showing the separation of the
profile into (A) baseline (orange dashed line) and (B) spike components following Briggs
et al. (2011).

slow sensor response time, for which the correction will be discussed in depth. Sensor

phase measurements were converted to dissolved oxygen concentration following the

procedure outlined in the Argo manual for processing oxygen (Thierry et al., 2016), using

seven manufacturer-provided constants derived from a multi-point calibration. Salinity

compensation and pressure effects are corrected for in the conversion process as well

following Bittig et al. (2015).

Oxygen data is corrected based on an in-air measurement as well. The oxygen optode

is located on a 10 cm stalk on the top of the float so that it may record a measurement

of atmospheric oxygen each time the float surfaces to transmit data. The correction is

made following the method outlined in Johnson et al. (2015). In brief, the float in-air

measurement is compared to known atmospheric oxygen calculated using National Centers

for Environmental Protection (NCEP) reanalysis air pressure at 10 m above sea-level

and the molar fraction of oxygen in air (XO2 , unitless), and a multiplicative factor (gain,
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Figure 3.6: Schematic view of oxygen sensor adapted from Tengberg et al. (2006). Light
from the blue LED is phase-shifted by the oxygen sensitive sensing foil, and the resulting
shifted light is measured by the photodiode. The measured phase shift of the light is
proportional to the ambient oxygen concentration. The read LED does not experience the
same phase shift and can be used as a blank measurement to quantify sensor drift.

unitless) is applied to the sensor oxygen to match it to the true atmospheric value:

gi =
pO2

pO2 optode

(3.5)

pO2 = (PNCEP − pH2O)×XO2 (3.6)

Where gi is the gain for a single in-air measurement, pO2 is the partial pressure of

oxygen calculated using NCEP reanalysis pressure, and pH2O, the vapor pressure of water

measured by the sensor, and pO2 optode is the partial pressure measured by the optode

(all pressures measured in kPa). Oxygen optodes are generally stable after deployment,

although it has been shown that oxygen sensors may experience some drift over time

(Bittig and Körtzinger, 2016; Johnson et al., 2017). During the deployment, negligible

drift was present as calculated gains were consistent throughout. Therefore, the mean gain

G for each float was applied to all oxygen data recorded by that float:
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G =
1

N

N∑
i

gi (3.7)

O2 = G× O2 raw (3.8)

A summary of gain values for each float can be found in Table 4.1.

Oxygen sensors suffer from a slow response time because ambient oxygen must diffuse

first through a boundary layer that establishes at the sensor interface with ambient seawater

and then through a silicone sensor foil to the impermeable interface at the optical window

(see Figure 3.6), which takes some time. This problem is not unique to oxygen sensors,

however they do have significantly longer response times than other sensors (such as

CTDs, Bennett and Huaide, 1986), creating more significant errors. The sensors effective

response time is a combination of a response time inherent to the sensor itself (related to

the thickness of the sensor foil) and a response time due to the boundary layer which varies

with boundary layer thickness. A thinner boundary layer will result in faster response

times. The response time inherent to the Aanderaa optodes used on these floats is reported

to be 25 s for 63% of the signal (equivalent e-folding time of 51 s). The thickness of the

velocity boundary layer depends primarily on the flow speed of seawater over the sensing

foil (and hence the vertical velocity of the float and ambient currents), and the molecular

kinematic viscosity of water.

Methods for correcting the hysteresis in oxygen measurements that results from the

response time have been established, but require knowledge of the sensors time constant

(Bittig et al., 2014; Bittig and Körtzinger, 2016; Bittig et al., 2018), which is difficult to

characterize in the field without a true oxygen profile to reference. To correct for sensor

hysteresis, a novel method for determining the time constant in-situ is presented here.

Details of the method are discussed in chapter 4.

Overall, all oxygen measurements or derived quantities have been corrected for salin-

ity and pressure effects, calibrated to in-air measurements performed by the float, and

accommodate for slow sensor response time.
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3.3 Numerical Model Description

A one-dimensional (1D) numerical model, simulating the ocean only in the vertical

direction (thus ignoring horizontal advection) is used in addition to the float data. The

physical component of the model governs vertical turbulent diffusion of the biogeochemical

and physical state variables with no-flux boundary conditions at the surface and bottom

(Lagman et al., 2014). The biological component of the model is an adaptation of the

nitrogen-based biological model of Fennel et al. (2006). The model simulates the top

200 m of the water column with a vertical resolution of 0.5 m and evolves forward in time

using a timestep of 15 min. Simulations were run for periods of continuous mode float

operation.

Chlorophyll

Phytoplankton

NO3

NH4

Zooplankton

Sm. Detritus
Lg. Detritus

Nitrification

Grazing

Mortality
Egestion

Remineralization

Uptake

Sinking

Photosynthetic
production

Respiration,
Nitrification

Air-Sea Gas
Exchange

Vertical
Mixing

Vertical
Oscillations

Oxygen

Excretion

Figure 3.7: Schematic of the 1D numerical model.

The physical component of the model distinguishes two layers, the turbulent surface

mixed layer (its depth is provided as model input from the float observations and is

calculated by finding the first 0.5 ◦C temperature anomaly relative to the surface), and

a quiescent layer below. In practice, this means that all grid cells in the upper layer

are assigned a diffusion coefficient that ensures complete mixing on a timescale of 1 d
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(kD1 = z2MLD, units of d−1). The diffusivity for grid cells in the lower layer was chosen

to be 3 orders of magnitude smaller than the upper layer diffusivity (kD2 = kD1 × 10−3)

following Kuhn et al. (2015). The Crank-Nicolson scheme was used to integrate the

diffusion equation at each timestep. The mixed layer depth for the model is determined

using float measurements, and then interpolated to match the models temporal resolution.

The biogeochemical component of the model consists of eight state variables: phy-

toplankton, Phy, zooplankton, Zoo, nitrate, NO3, ammonium, NH4, small and large

detritus, SDet and LDet, phytoplankton chlorophyll Chl, and dissolved oxygen O2. The

biological variables are in units of nitrogen (mmol N m−3) with the exception of chlorophyll

(mg Chl m−3) and oxygen (mmol O2 m−3). Temperature T (◦C) and salinity S (unitless,

practical salinity scale psu) are also included in the model, totalling ten state variables. All

variables are subject to vertical diffusion. The general processes affecting the biological

state variables are described below, and the full model equations can be found in appendix

A.

All common variables between the model and floats (temperature, salinity, chlorophyll,

phytoplankton via backscatter, and oxygen) were initialized in the model using float

observations. Nitrate was initialized using a polynomial fit to temperature and salinity

observations, established using World Ocean Atlas (WOA) data. Remaining variables

(zooplankton, small and large detritus, ammonium) were initialized using data from a

3D Regional Ocean Modeling System (ROMS) simulation of the Gulf of Mexico that

employs the same biogeochemical model. Model parameters were based on Bagniewski

et al. (2011), with the exception of KNH4 , τ , Θmax, wphy, wSDet, and wLDet which were

re-calibrated. A list of model parameters and values can be found in table 3.2.

Phytoplankton is subject to changes due to growth through nutrient uptake, grazing by

zooplankton, general mortality, aggregation with detrital material, and sinking. Growth

rates are temperature dependent and may be limited by light or nutrient availability.

Chlorophyll concentration is subject to all the same processes, multiplied by the ratio of

chlorophyll pigment to phytoplankton biomass.

Zooplankton increases through assimilation of phytoplankton at a defined efficiency.

Zooplankton loss terms include mortality proportional to the square of the zooplankton

concentration that goes into the detrital pool, and excretion that goes to the ammonium

pool. Small detritus receives the mortality flux of phytoplankton and zooplankton, as well
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as any non-assimilated phytoplankton matter during zooplankton grazing. Aggregation

of small detritus and phytoplankton feed into the large detritus pool. The organic matter

concentrations in both detrital groups decrease as they are remineralized at their respective

constant remineralization rates. Remineralized detritus and excretion from zooplankton

feeds into the ammonium pool. The cycle is completed by nitrification of ammonium

feeding into the nitrate pool.

Relevant oxygen fluxes are converted using stoichiometric ratios. Oxygen is produced

during the growth of phytoplankton through photosynthesis and consumed in nitrification

and remineralization processes. Oxygen also decreases with zooplankton excretion. Ex-

change of oxygen between seawater and the atmosphere occurs in the surface layer of the

model.

An option to simulate the effect of vertical oscillations of isopycnals on the biological

tracers was implemented in order to study how such a physical process may affect the

diurnal dynamics of oxygen production and the capacity of profiling floats to measure this

signal.

z0
σ

T =
2π

ω

t0

A

σ
√
2π

Figure 3.8: Spatial-temporal behaviour of the vertical velocity with annotated parameters
showing what properties they control in (A) vertical and (B) temporal contexts.
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Table 3.2: Model parameters.
Symbol Parameter Value Unit

μmax maximum phytoplankton growth
rate

1.0 d−1

kNO3 half-saturation concentrationfor
uptake of NO3

2.0 mmol N m−3

kNH4 half-saturation concentrationfor
uptake of NH4

88 mmol N m−3

α initial slope of the P-I curve 0.125 mol C (g Chl)−1 (W m−2)−1 d−1

gmax maximum grazing rate 0.75 (mmol N m−3)−1 d−1

kP half-saturation concentration of
phytoplankton ingestion

0.5 (mmol N m−3)2

mP phytoplankton mortality 0.01 d−1

τ aggregation parameter 0.41 (mmol N m−3)−1 d−1

Θmax maximum chlorophyll to carbon
ratio

0.0208 mg Chl (mg C)−1

β assimilation efficiency 0.75 dimensionless
lBM excretion rate due to basal

metabolism
0.01 d−1

lE maximum rate of assimilation re-
lated excretion

0.1 d−1

mz zooplankton mortality 0.2 (mmol N m−3)−1 d−1

rSD remineralization rate of small de-
tritus

0.3 d−1

rLD remineralization rate of large de-
tritus

0.25 d−1

nmax maximum nitrification rate 0.2 d−1

kI light intensity at which the in-
hibition ofnitrification is half-
saturated

0.1 W m−2

I0 threshold for light-inhibition of
nitrification

0.0095 W m−2

wphy sinking velocity of phytoplank-
ton

0.009 m d−1

wSDet sinking velocity of small detritus 0.341 m d−1

wLDet sinking velocity of large detritus 3.41 m d−1

RO2:NO3 ratio of O2 to NO3 8.625 mol O2 (mol N)−1

RO2:NH4 ratio of O2 to NH4 6.625 mol O2 (mol N)−1
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Vertical oscillations are simulated by a space (z) and time (t) dependent vertical velocity,

w (m d−1), which is included in all tracer equations in the following form:

∂C

∂t
= . . .− w(z, t)

∂C

∂z
(3.9)

where C is the concentration of any tracer in the model.

This vertical velocity (equations 3.10a-3.10c) is defined by a Gaussian function in the

vertical direction and a sinusoidal wave in time (Figure 3.8) dependent on 5 parameters.

The parameters are Gaussian amplitude coefficient (A, m2 d−1), width (σ, m), and central

depth (z0, m) of the vertical Gaussian distribution, and the frequency (ω, d−1) and initial

state of the sinewave determined by t0 (d). Defined in this way, vertical oscillations that are

simulated at a depth of z0 = 100m do not influence the upper and lower boundaries of the

vertical grid. In Figure 3.8, water near the peak of the vertical Gaussian distribution will

be displaced about 10 m, while water near 120 m will only move about half that distance.

This creates highly localized vertical displacements around the oxygen gradient.

The vertical velocity is expressed as the product of a Gaussian profile in space and a

sinewave in time:

w(z, t) = g(z)h(t) (3.10a)

g(z) = A
1

σ
√
2π

exp
(
− 1

2
((z − z0)/σ)

2
)

(3.10b)

h(t) = sin(ω(t− t0)) (3.10c)

Introducing vertical velocities into the model implies, by the continuity eqiation, that

there must be non-zero horizontal velocities u(x, z, t) and v(y, z, t). These velocities are

clearly not possible to include in the 1D vertical-only model, however as we work under

the assumtion that all tracers are uniform in the horizontal, they can be ignored without

introducing error into the results. That is, we assume that for the concentration of a given

tracer C:
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∂C

∂x
=

∂C

∂y
= 0 (3.11)

Using the 1D model, three different model experiments (Model Experiments (ME)s)

are conducted. The first, ME1, is to examine how the slow response time of the oxygen

optode and subsequent corrections may introduce error into the data. The second, ME2,

is to assess the feasibility of measuring the biologically driven diurnal oxygen cycle for

various sampling schemes and magnitudes of measurement error. In the third and final

experiment, ME3, assesses the impact of vertical oscillations of the water column.

Table 3.3: Summary of model experiments (ME).
Experiment Objective

ME1 – No biolog-
ical activity

Examine how the oxygen optode observes an
oxygen profile, and how the correction of sensor
hysteresis induces or affects existing error in the
measurement.

ME2 – Biological
model, no vertical
oscillations

Evaluate how well the diel cycle would be ob-
served for different sampling schemes and/or
measurement errors

ME3 – Biological
model and verti-
cal oscillations

Characterize the interaction of the biologically
driven diel oxygen cycle and vertical oscilla-
tions.

Each experiment required a different model setup or treatment of model output as

summarized in Table 3.3, and discussed in greater detail throughout chapters 4 and 5.
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CHAPTER 4

RESPONSE TIME CORRECTION

METHOD

4.1 Sensor Hysteresis Correction

A typical set of oxygen profiles from consecutive up- and down-casts shown in Figure 4.1

illustrates a discrepancy in the oxycline that is generally found between two consecutive

casts. This is due to the slow response time of the oxygen sensor causing hysteresis,

which is especially pronounced when measuring steep oxygen gradients. During the

up-cast, the oxygen gradient appears shallower than in reality, and vice-versa during the

down-cast. The true oxygen gradient must lie in between the two profiles. Working under

the assumption that oxygen does not significantly change between consecutive profiles

during continuous sampling (the top 200 m of adjacent profiles were separated on average

by about 70 min), the availability of up- and down-casts offers an opportunity to estimate

the effective response time in-situ.

In order to estimate response time and perform correction on the oxygen profiles, one

must first understand the mechanism causing the error. The observation of an oxygen

profile by an optode can be described by the following differential equation:

h(t) = f(t)− τ
∂h

∂t
(4.1)

where h(t) is the oxygen concentration at time t measured by the optode (mmol O2 m−3),

f(t) is the true ambient oxygen concentration (mmol O2 m−3), and τ is the effective

response time (s) determined by the sensor and environment.
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Figure 4.1: Example of method for determination of sensor time constant. (A) Darker,
thicker lines show raw measurement of up- (blue) and down- (green) casts. The up-cast has
a memory of the low concentration in deep water and measures the gradient to be shallower
than its true position, and the reverse is true for the down-cast. Lighter, thinner lines show
the corrected profiles. (B) Scatter of raw (blue points) and corrected (orange points) up-
and down-casts between 50-150 m. (C) The RMSD between the up- and down-casts for
each time constant, showing the optimal τ value in this case of 74 s.

This differential equation can be solved using a Laplace transform, and a full derivation

is provided in appendix B. The resulting solution is written as:

h(t) = f(0)e−t/τ +
1

τ

∫ t

0

f(t− u)e−u/τdu (4.2)

The first term of equation 4.2 represents the decaying initial condition of the sensor, where

we have assumed that at time t = 0, the sensor reads the correct, true oxygen concentration

(i.e. h(0) = f(0)). The second term is the convolution (definition from Boas, 2006, pg.

444) of the true oxygen concentration and a decaying exponential which represents the
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transfer function of the sensor.

Thererfore, the observations h could be more generally expressed as:

h = f ∗ g (4.3)

where h represents the measurement, f is the true concentration, and g is the function

representing the response of the sensor (unitless). To recover the correct oxygen profile,

we must perform the deconvolution of the profile and the sensor. This is a difficult but

possible task if the observations h are known (and have timestamps), and the equation

describing the sensor transfer function g is known. From equation 4.2 sensors transfer

function can be defined as:

g(t) =
1

τ
e−t/τ (4.4)

This provides the mathematical basis for correcting the sensor hysteresis.

Equation 4.4 is the impulse response of the sensor’s output when measuring step change

in oxygen (subsequently referred to as step-response, see Figure 4.2A). A step response is

typically written as:

y(t) = 1− e−t/τ (4.5)

Meaning that for a given change in oxygen concentration during the profile, the sensor will

approach the new oxygen concentration at a rate proportional to the response time τ .

Taking the Laplace transform of the impulse response in equation 4.4 and assigning the

proper Laplace variable s, one can recognize that this is a single-pole low-pass filter. To

this point, the sensor theory has been discussed in continuous time. In order to apply a

correction to the data, it must be in the discrete time domain. By discretizing the Laplace

transform using a bilinear transformation and then performing the inverse discrete Laplace

transform (or Z-transform, see Proakis and Monolakis, 1996; Antoniou, 2018) on the result,

we derive the following relationship:
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hn = ahn−1 + b(fn + fn−1), n = 1, . . . , N (4.6)

where:

b =
(
1 + 2

τ

tn − tn−1

)−1

, a = 1− 2b (4.7)

with a and b both being unitless coefficients.

The above equations can be re-written in the same form as provided by Bittig and

Körtzinger (2016), eq. A3:

fn + fn−1

2
=

1

2b
(hn − ahn−1) (4.8)

Deconvolution is a difficult task in that it is known to amplify errors in systems such as

this one where the truth f(t) is convolved with the transfer function of an instrument g(t).

Equation 4.3 is more appropriately written as:

h = f ∗ g + ε (4.9)

where ε is random noise.

Depending on the signal-to-noise ratio, inverse filtering techniques like the one described

above may provide inaccurate estimations of the truth f(t). With knowledge of the nature

of the error ε, smoothing or filtering techniques may improve the final estimate (Wiener,

1964).

Although timestamps are often not transmitted from profiling floats, all data recorded

by our floats had timestamps with each measurement. Next, a method for determining the

sensors effective time constant in-situ is described.
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Figure 4.2: Examples of idealized profiles (black lines), up-cast measurements of these
profiles with a time constant τ of 75 s (dashed blue lines) and corrected profiles (orange
dashed lines) (A) a step function and (B) an idealized profile similar in magnitude to those
observed in the Gulf of Mexico.

4.2 Determination of Sensor Time Constant

Determination of the effective time constant for each sensor is possible because the up-

and down-casts are recorded consecutively on a short timescale. Assuming the oxygen

profile has not substantially changed in the one hour between up- and down-cast, the two

casts should agree after correction. Timestamps were transmitted with the data, and so are

available for the correction.

The low-pass inversion, while correcting the hysteresis resulting from the slow response

time, may have the undesired effect of amplifying high- frequency noise. To mitigate

this, I have chosen to smooth profiles using a 7-pt moving mean prior to performing the

correction (figure 4.3).
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Figure 4.3: Scatter of up- vs. down-casts for (A) unsmoothed and (B) smoothed profiles,
both after correction and (C) a Tukey boxplot of the RMSD in each case – showing that
the smoothed profiles have a lower median (middle line of box) RMSD. The outer edges of
the boxes represent the first and third quartiles of the data, the extent of the whiskers shows
the lowest and highest data within the 1.5 interquartile range, and points show outliers.

Smoothing the profiles was important to a successful correction of sensor hysteresis due

to the response time, as the inverse filter amplifies random errors. This was particularly

true for the down-cast measurements. Profiling floats typically only measure on the up-cast

because most of the sensors are located near or at the top of the float, and so recording on

the up-casts allows the sensors to measure quiescent, undisturbed water. When measuring

on the down-cast, water has been churned up by the body of the float, and so the down-casts

for oxygen (and other variables) may have increased random errors. Smoothed profiles

agreed much more closely in the oxygen gradient, and the RMSD was generally lower

in smoothed profiles after correction (Figure 4.3). Some anomalous pairs of profiles

still disagreed in a significant way; this disagreement however was not attributed to the

correction process.

An illustration of the process for determining the time constant is shown in Figure 4.1;

also shown is the effect of the hysteresis correction on the profiles (panel A, thin lines).

Determination of the effective response time is done by systematically sweeping over the

range of possible response times from 0 to 150 seconds on 0.5 s increments and applying

the response time correction following Bittig and Körtzinger (2016) and eq. (4.8) for each.

RMSD between the up- and down-casts for each response time value is calculated (Figure

4.1C) and the time constant with the minimum RMSD is taken to be the effective time

constant for that pair of profiles.

This calculation is done for each pair of consecutive up- and down-casts and down- and
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up-casts, resulting in a population of N − 1 effective time constants for each set of N float

profiles. The median time constants for each float are listen in Table 4.1. Median optimal

time constants ranged from 64.5-76.5 s across the 10 floats, and the standard deviation of

those values was as low as 8.5 s and as high as 20.4 s.

Table 4.1: Gain values applied to each float with standard deviation, and time constants
applied to each float with standard deviation.

Float G (unitless) σG (unitless) μτ (s) στ (s)
f7939 1.17 0.18 76.5 8.5
f7940 1.03 0.12 69 15.5
f7941 1.14 0.17 67 16.9
f7942 1.17 0.24 64.5 14.9
f7943 1.15 0.19 75 16.5
f7944 1.15 0.12 76 13.9
f7945 1.16 0.14 73.5 13.3
f8081 1.18 0.20 68 16.0
f8082 1.15 0.09 73 18.8
f8083 1.12 0.18 66.5 20.4

Similar to the gain correction where the mean gain calculated by in-air measurements is

applied to all data for that float (see Methods Section 3.2.4), I chose to apply the median

optimal response time of each float to all profiles from that float.

The variation of effective response time from profile to profile for the same float is

due to its dependence on various factors that affect the effective response time, chiefly

among them is the flow speed of ambient water over the sensor. Next, I analyze how

deviations from the average profiling speed and random errors manifest themselves in the

final corrected oxygen product.

4.3 Propagation of Response-time Error and Sensor

Noise

Oxygen measurements made by autonomous floats are subject to systematic and random

sources of error. First, the effective response time may change with variations in tem-

perature, salinity, pressure, and most importantly flow speed of ambient sea water at the

sensing interface; the latter is highly dependent on profiling velocity. Profiling velocity

ideally should be constant but varies in practice (1.4-26.5 cm s−1 with a mean value of
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12.2 cm s−1 for our floats). It is important to characterize how errors resulting from these

variations propagate through the response-time correction. Second, random error present

in the observation made by the sensor will propagate through the correction process. This

random error may be amplified by the response time correction.

The goal of the first model experiment, ME1, is to simulate how these two different

errors affect the measured profile and to what degree they may compromise our ability

to derive the true profile from the measurements. For this purpose, the model output

is sampled similar to a float profiling in continuous mode, with a profiling velocity of

15 cm s−1 and a measurement every 5 m. The response time effect is simulated by applying

a discretized version of equation (eq. 4.1):

hn = αfn + (1− α)hn−1

where: α =
Δt

τ +Δt
, h(0) = f(0)

(4.10)

where hn and fn are the the filter output (measurement) and input (true ambient oxygen

concentration) at timestep n respectively. The term on the right hand side of equation

4.10 including fn represents the real-time contribution to the measurement, and the term

including hn−1 represents the sensors inertia or memory of previous measurements. A

full derivation of this discretized form is given in appendix B. The recursive structure of

the filter results in an exponentially weighted moving average, with an infinite averaging

window in time.

In ME1, the generation of optode measurements is simulated by prescribing a float

profiling velocity, sampling the models oxygen profile according to that velocity, assigning

a timestamp to each oxygen datum, and then running the model output through the

filter using a prescribed effective response time. In this model experiment, sampling is

simulated for upcasts only. The results are equally applicable to downcasts, so long as the

directionality of the response-time error is considered.

Known errors are inserted into this measurement process as random perturbations of

the response time and as random noise added to the filtered oxygen values. The two error

sources are examined individually, i.e. the analysis of the response time error will have

zero sensor noise, and vice-versa. In each case, the added errors are random values drawn

from a normal distribution with increasing standard deviations to systematically analyze

the effect of each error type. For the response time error, response times (τ , s) are chosen
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from a normal distribution with a mean value μτ of 75 s and standard deviations ranging

from 0 to 15 s (Figure 4.4A):

τ ∼ N(μτ = 75, σ2
τ ) στ ∈ (0, 15) (4.11)

Sensor noise errors (ε, mmol m−3) are chosen from a normal distribution with mean of

zero and standard deviations ranging from 0 to 1.5 mmol m−3 (Figure 4.4B):

ε ∼ N(0, σ2
ε ), σε ∈ (0, 1.5) (4.12)

Therefore, the profile observation can be written as:

hobs(t) = h(t) + ε(t) (4.13)

where hobs(t) is the noisy observation, h(t) is the filtered true profile simulating sensor

response time, and ε(t) is the error at each time/depth level.

Figure 4.4: Example distributions for (A) response times with a mean of 75 s with standard
deviations 5 s (blue curve) and 15 s (orange curve) (B) signal noise with standard deviations
0.2 mmol m−3 (blue curve) and 1.0 mmol m−3 (orange curve).
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Following the simulated measurement, the measured profiles undergo the same correc-

tion process as the float data first using 7-pt smoothing and then running the response

time correction. Different magnitudes of errors are tested and for each trial, the measure-

ment and correction process is repeated 50 times to establish a population of simulated

observations.

Figure 4.5: Response time error measurements, corrections, and deviations. (A) Simulated
profile measurements (blue) of the true oxygen profile (black) for 50 different response
times drawn randomly from a normal distribution with standard deviation of 15 s and mean
of 75 s. (B) Correction of the measurements in panel (A) using a response time of 75 s. (C)
Deviations of the corrected profiles from the truth.

The response time error is analyzed by randomly choosing the response time for the

simulated observation from the distribution, and performing the correction using the

expected value (E(τ) = μτ = 75 s). Figure 4.5 shows the measurement (A) and correction

(B) for the widest distribution of response times tested (στ = 15 s), in the absence of any

sensor error. Despite the large error magnitude, the correction method still works relatively

well. In uniform segments of the oxygen profile, the mismatch between measured and

corrected response time has little to no effect in recovering the correct oxygen concentration,

while larger deviations from the true profile are observed in the high gradient segments of
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the profile, with a maximum deviation of almost 10 mmol m−3. The deviations in Figure

4.5C are ordered by the effect of smaller or larger response times. The largest positive

deviations correspond to smaller response time values chosen from the distribution (τ <

μτ ). The negative deviations that are largest in magnitude belong to chosen response times

that are largest (τ > μτ ). Small deviations correspond to values chosen close to the mean

values (τ ≈ μτ ).

Figure 4.6: Random sensor error measurements, corrections, and deviations. (A) Mea-
surements with Gaussian noise with a standard deviation of 1.0 mmol m−3 added (blue)
made with a sensor response time of 75 s of the true oxygen profile (black). (B) Corrected
measurements. (C) Deviations of the corrected profiles from the truth.

Next, I analyze the effect of random errors in the oxygen measurement. Simulated

measurement, correction, and deviation from the true profile are shown in Figure 4.6 for

an error distribution with a standard deviation of 1.0 mmol m−3. In contrast to the response

time error, random sensor error does not have a localized effect on the profile. Examining

the measurement (blue lines in Figure 4.6A) and corrected profiles (blue lines in 4.6B),

the error appears to be amplified through the correction process. This is confirmed by

examining the distribution of the deviations (figures 4.5C and 4.6C).
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Figure 4.7: Standard deviation of the error profiles for increasingly wide distributions of
(A) response time and (B) random error. For random error, σdev increases linearly with σε,
with a slope of 3.09 (unitless).

Summaries of each error analysis are shown in Figure 4.7, where the mean of the standard

deviations of each deviation profile (σdev) is shown for increasingly wide distributions

of response time error and random error. For response time errors, the distribution of

deviations has a maximum value exceeding 1.0 mmol m−3. Although large deviations up to

10 mmol m−3 were observed, they were highly localized to the oxygen gradient. This result

demonstrates that for the correction method applied in this research, despite large ranges

of response times calculated from the floats, the corrected profile is still close to the true

oxygen profile. For the random noise, we see an amplification of the errors through the

correction process by a factor of about 3. The standard deviation of the resulting deviation

profiles, σdev increases linearly with σε, but with a slope greater than 1. This slope is

consistent with theoretical consideration (see appendix B.3).

4.4 Discussion

Oxygen optode response time is often referred to as a prominent source of error (see Plant

et al., 2016; Johnson et al., 2017), but is not often rigorously corrected on autonomous

float platforms. One reason is that the time stamps of the oxygen measurements are not

typically transmitted by the float (Johnson et al., 2017). Another reason is that the effective

sensor response time is difficult to characterize without knowledge of the true profile

against which to compare. To minimize response time errors, some optodes are pumped

to significantly increase the flow speed at the interface between sensing foil and ambient
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seawater and thus decrease boundary layer thickness and the effective response time.

However, even pumped optodes still have a characteristic response time, albeit reduced,

and have the disadvantage that they cannot record in-air measurements for calibration

purposes.

Plant et al. (2016) cited response time errors as the cause of unrealistically large values

of positive NCP just above the mixed layer and negative NCP below. They chose to correct

mixed layer oxygen by extending surface oxygen values on the assumption that oxygen

is completely uniform in the mixed layer. However, a full correction using the filtering

solution provided by Bittig et al. (2014) could have improved NCP estimates not only at

the mixed layer interface but also for the entire profile. While oxygen values near the base

of the mixed layer were the most blatant evidence of error induced by the response time,

any oxygen gradient would have been subject to the effects of sensor response time as well

and thus would have been improved by the inverse filtering correction.

(Johnson et al., 2017) compared oxygen measurements made by floats in the Southern

Ocean Carbon and Climate Observations and Modelling (SOCCOM) program and Winkler

titrations (Winkler, 1888; Carpenter, 1965) from bottle samples at deployment stations.

While optode-measured oxygen agreed very well with the Winkler measurements, the

majority of error was concentrated around high-gradient areas. Response time corrections

could not be performed in this case because SOCCOM floats did not transmit time stamps

for each oxygen measurements.

As previously stated, time stamps and knowledge of the sensors effective time constant

are the two key pieces of information required to make a sensor hysteresis correction. In

the case of the SOCCOM floats, had timing information been available, the time constant

would have remained to be determined. Using the Winkler data, an analysis similar to the

one done here could have been performed. However, recording consecutive up- and down-

casts, at least occasionally, seems to be a much more efficient method for determining the

effective response time, as demonstrated here.

The discrepancy between the effective response times derived here and sensor- inherent

response times reported on the Aanderaa optode datasheet should not be surprising. While

the datasheet provides an estimate of the inherent sensor response time (25 s for 67% of the

signal), which is calculated by subjecting the sensor to a sudden step change by plunging

from air into water, what has been determined here is the effective response time in-situ.
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The effective response time also accounts for oxygen diffusing through the boundary layer

at the sensing interface which is significant for typical float velocities. The ∼ 70 s response

times found here are well aligned with previous reports of response times based on flow-

dependent boundary layer thickness of 15-45 s for shipboard CTD applications (Bittig

et al., 2014), and 70-140 s for profiling floats (Bittig and Körtzinger, 2016; Bittig et al.,

2018). The large standard deviations of float response times (Table 4.1) are not attributable

to the sensors themselves (all sensing foils for the 10 sensors came from the same batch)

but more likely represent changes due to ambient physical characteristics and flow at the

sensor interface. While this could represent a still significant source of error in the oxygen

measurements even after applying the method described here, the improved agreement

between up- and down-casts using median response times (Figure 4.3B) is encouraging.

Subjecting simulated measurements to varying effective response times and sensor error

demonstrated how small deviations can have meaningful implications for the final mea-

surement. The combined effects of these two potential sources of error caused significant

deviations between the corrected measurements and true profile (Figures 4.5 and 4.6).

The 50 repeated measurements of the oxygen profile with a response time error (standard

deviation) of 10 s and sensor error on the order of 1.0 mmol m−3, resulted in deviations

of approximately 1.0 mmol m−3 and 3 mmol m−3 respectively (Figure 4.7). These two

relatively conservative error estimates result in a total deviation of 3-4 mmol m−3. This is a

very significant error for the precision with which we aspire to measure cycling oxygen,

and the magnitude of this deviation would be even higher in the oxygen gradient.

Bittig et al. (2018) stated that the relation between the boundary layer thickness and float

profiling velocity must be established on a case-by-case basis depending on the platform

characteristics and optode attachment with respect to flow direction. For this analysis,

effective time response of the optode on the up- and down-casts are treated to be equal.

In reality, flow around the optode may not be identical for the two cast directions (on the

downcast where the optode would be measuring water disturbed by the passage of the

float). However, the impact of this difference on the corrections is likely small.

My technique for determining the effective time constant is a simple and practical method

for in-situ application and more straightforward than characterizing flow surrounding an

optode mounted on a float. It could easily be performed by any end-user deploying a

biogiochemically equipped float, as long as time stamps and occasional up- and down-casts
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are transmitted.

The difference between the measured and corrected profiles is substantial. For the

Gulf of Mexico, where the maximum oxygen gradient averaged 2.55 mmol m−3 dbar−1

for all floats, median differences between observed and correction profiles ranged from

36-39 mmol m−3 at the maximum gradient. Overall, we recommend transmitting timing

data with oxygen measurements is a simple yet powerful change to make towards obtaining

more accurate oxygen observations. In addition, we recommend a calibration period upon

float deployment that records both up- and down-casts which would provide sufficient data

to characterize the effective response time of the sensor, thus providing all the information

required to correct for sensor hysteresis.
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CHAPTER 5

BIOLOGICAL & PHYSICAL DRIVERS

OF DISSOLVED OXYGEN VARIATION

5.1 Measurement of Diurnal Oxygen Cycles

Next, I attempt to estimate GOP, R, and NCP from hysteresis-corrected oxygen measure-

ments during continuous mode profiling. This analysis can only be performed during

continuous sampling because multiple measurements per day are required to resolve the

diurnal signal.

In Figure 5.1, the first 8 months of data from a float f8081 are shown, including the

continuous mode periods from May 2-8, September 9-20, and October 4-11. Temperature

shows the expected seasonal cycle, with surface water temperatures peaking in late sum-

mer. Surface chlorophyll peaks at the beginning of September during a high-wind event

(according the NCEP wind data) that precedes the passage of hurricane Irma. Elevated

winds could encourage mixing and distribution of the deep chlorophyll maximum over the

entire surface layer. Mean oxygen is decreasing over the observation period with some

more complicated dynamics overlaid in the scatter.

5.1.1 Autonomous Measurement of Gross Oxygen Production

For biological production to occur there must be nutrients available and sufficient Photo-

synthetically Active Radiation (PAR). Respiration has no such constraints and will act to

decrease oxygen no matter the nutrient or light conditions in the water column, so long

as organic matter and respiring organisms are present. Biologically driven changes in

dissolved oxygen therefore are different between day and night. During the day, oxygen
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Figure 5.1: Float f8081 temperature, chlorophyll, and oxygen data. (A) Sea Surface
Temperature, (B) Surface chlorophyll, and (C) Mean oxygen from 25-150 dbar observed
by float f8081 from May 2017 to Jan 2018. Black lines show the 7-pt running mean. (D-F)
Temperature, chlorophyll, and dissolved oxygen during the observation period. The profile
density shows the periods of continuous mode measurement with more densely populated
temporal data and the sparser periods of park-and-profile mode.

will change at a rate proportional to the difference between the GOP and R, and during the

night, production does not occur (GOP= 0), but respiration continues:

∂O2

∂t

∣∣∣
bio

=

⎧⎨
⎩GOP −R daytime

−R nighttime
(5.1)

The framework presented here assumes respiration is constant throughout the day and

night, and that during daylight hours gross production is constant (GOP = const.). This

results in periodic signal in oxygen.
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GOP can be estimated from diurnal oxygen cycles of this idealized structure, i.e. mini-

mum oxygen near dawn, maximum near dusk. This is essentially what Briggs et al. (2018)

assumed when they applied a linear fit to the nighttime data, where the slope represents

the respiration rate, and extrapolated forward to noon the next day to project the dissolved

oxygen concentration in the absence of any production (Figure 5.2, dashed lines). To obtain

an estimate for morning GOP, a second linear fit was applied to the daytime data and the

difference between the extrapolated nighttime fit and the value of the daytime fit at noon is

the oxygen produced that morning (Figure 5.2, light green bars). The oxygen produced

in the second half of the day is calculated in a similar fashion, but by extrapolating the

fit of the data from the following night backward to find the oxygen concentration in the

absence of respiration. The difference between noon and the extrapolated value gives the

afternoon oxygen production (Figure 5.2, dark green bars). By adding the morning and

afternoon quantities together and dividing by 1 d, the daily GOP in units of mmol m−3 d−1

is obtained. The respiration rate is known from the slope of the nighttime fits, and so the

difference between GOP and R yields the NCP.

Figure 5.2: Schematic showing method for calculating GOP and R using oxygen data
(points). Respiration rates are determined by the nighttime slopes (solid black lines), which
are projected forward and backward (dashed black lines) in time to noon the subsequent
and previous days. The difference between these projections and the observed noontime
oxygen gives the morning and afternoon GOP (light and dark green bars respectively).

Typically, GOP and R have similar magnitudes and thus NCP will be small, often

an order of magnitude smaller than the other two (Westberry et al., 2012; Ducklow and

Doney, 2013; Nicholson et al., 2015). The initial application of this method was in the

North Atlantic during the spring bloom where productivity was very high (satellite derived

average NPP of 78 mmol C m−2 d−1 from 2012- 2015, Behrenfeld and Falkowski, 1997)
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relative to the Gulf of Mexico (average NPP of 28 mmol C m−2 d−1 over the same period,

Behrenfeld and Falkowski, 1997). Applying the method to the less productive Gulf of

Mexico introduces new challenges.

A timeseries of mean euphotic zone oxygen from a continuous mode sampling period

is shown as example in Figure 5.3. While oxygen is often changing periodically with

increases during the day and decreases during the night, there also are several instances

when oxygen changes cannot be reconciled with the expected day-night pattern of a

biologically driven cycle. Light and dark red bars represent unrealistic negative gross

production values (GOP, by definition, must be positive). This timeseries illustrates

that in the study region, measuring diurnal cycles is not a simple procedure as other

processes than biological production and consumption are affecting oxygen, confounding

the production signal. Similar results were observed during other time periods and by other

floats. Alternative physical drivers are explored further in Section 5.2.

Figure 5.3: Mean oxygen values for the upper water column for continuous mode mea-
surements in September made by float f8081, with attempts to estimate GOP. Light and
dark red bars indicate where negative GOP is calculated, or when the method fails because
other processes are driving changes in oxygen. Lighter colors are for morning production
and darker for afternoon. Grey shaded sections show local nighttime. Similar results were
shown by other floats and during other continuous mode sampling periods.

5.1.2 Model Analysis of Diurnal Oxygen Cycle

Next, the numerical model is used to show how this method would work in an ideal case

and for different sampling frequencies and sampling errors. In ME2, the model is run

using a basic setup to simulate the diurnal cycle of oxygen without vertical oscillations.

The model simulation was run from May 2 to May 6, 2017, to match a continuous mode
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analysis period for float f7940. The model was run through a spin-up period of one month

leading up to the start date to reach steady state. At the start date, nitrate is re-initialized

based on float observations of temperature and salinity, as is model temperature, salinity,

and chlorophyll. The model state is saved every 30 min. From this model output, GOP, R,

and NCP are derived following the method described in the previous section. Then the

model is systematically subsampled at lower frequencies and with the addition of random

observation errors to more accurately simulate realistic measurements.

Figure 5.4: Simulated diurnal biological and oxygen cycle. (A) Simulated phytoplankton
and nutrient concentrations in the mixed layer and (B) simulated mean oxygen in the
top 150 m showing clear diurnal cycles. Also shown are nighttime linear fits extended to
noon the previous and following days and daytime linear fits to oxygen for estimation of
respiration and GOP. Respiration (R, lower labels) estimates are derived from the nighttime
slope, and gross oxygen production (GOP, upper labels) estimates from the difference
between extrapolated nighttime slopes and true noontime oxygen. (C) Contribution of
individual processes to net oxygen flux in the model.

In the simulation, phytoplankton show a clear diurnal cycle in the mixed layer during the
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continuous mode observation period (Figure 5.4A), which is mirrored by corresponding

diurnal cycles in nutrient concentrations where NH4 is depleted during the day and rem-

ineralized at night while NO3 is drawn down during the day but remains steady at night.

The NO3-based growth rate decreases as NO3 is drawn down. The simulated respiration

is dominated by remineralization of small and large detritus. Regenerated growth (i.e.

growth where NH4 is the primary nutrient source) dominates photosynthesis.

Oxygen (Figure 5.4B) shows a clear day-night oxygen cycle, and GOP, R, and NCP can

be extracted from the diurnal signal. GOP averages 0.983 mmol O2 m−3 d−1. Respiration

averages 0.978 mmol O2 m−3 d−1. This results in a very small positive NCP value of

0.005 mmol O2 m−3 d−1.

Figure 5.5: Comparison of slope-estimated and model flux production and respiration
calculations. (A) GOP and R derived through the method described in Briggs et al. (2018)
(“Slope Est.”), and by directly analyzing the model flux output (“Model Flux”). (B) NCP
derived through each method.

The values of GOP, R and NCP derived from the diurnal oxygen cycle can be compared

directly to the simulated production and respiration fluxes, which are explicitly defined. In
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figure 5.5, GOP, R, and NCP from the oxygen timeseries data (“Slope Est.”, blue bars)

are compared with those directly simulated by the model fluxes (“Model Flux”, orange

bars). The two methods show relatively good agreement for both GOP and R, however the

slope estimation tends to be higher in magnitude for both fluxes. This small mismatch is

likely due to two simplifying assumptions: (1) that oxygen will change linearly during the

day and night (i.e. that GOP and R are constant), and (2) that air-sea flux can be neglected.

The slope estimation technique tends to overestimate R by 25% and GOP by 1-3%. For

both calculation methods, GOP and R are closely balanced and therefore NCP is small.

For day 2 and 3 of the model simulation, the estimated NCP has the opposite sign from the

true simulated flux. This demonstrates quite clearly the challenge in measuring a quantity

like NCP that is a small difference between two significantly larger quantities. Given

reasonable error on the contituent quantities, it will very difficult to accurately report a

value for NCP.

Table 5.1: Total GOP, R, and NCP for different lower integration limits, and the percent of
the total GOP on that interval.

zmax GOP (mmol m−2 d−1) R (mmol m−2 d−1) NCP (mmol m−2 d−1) % Total GOP
25 41.45 26.82 14.63 29.3
50 94.73 63.62 31.11 66.9
75 132.21 110.46 21.75 93.4
150 141.61 131.91 9.70 100

The model also allows an assessment of how estimates of GOP, R, and NCP would

change if only the mixed layer is considered. In Table 5.1 and Figure 5.6, the effects

of integrating to different depths are shown. Figure 5.6 shows that gross production

is significantly higher than respiration in the mixed layer, and that both quantities are

approximately constant in that layer (Figure 5.6A-B). As a result the total accumulated

production and respiration increase linearly in the mixed layer as one integrates to greater

depths (Figure 5.6C), and because R is less than GOP, the derived accumulated NCP

increases (Figure 5.6D). When including values below the mixed layer, total GOP and

R are tightly tied, with significantly reduced GOP and still relatively consistent R down

to 100 m. When integrating to the average mixed layer depth (about 50 m), only 2/3 of

the total GOP is captured, and only about 1/2 of the total respiration. This leads to an

overestimation of NCP compared to the vertically integrated value. The correct estimate
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of NCP is in fact about 3 times smaller than it would be if only the mixed layer were

considered. When integrating to a depth of 100 m, the values for GOP, NCP and R

converge in the model (Figure 5.6).

Figure 5.6: GOP, R, and NCP profiles and integration analysis. (A) Profiles of local GOP,
R. (B) Profile of local NCP. (C) Cumulative GOP and R for increasing integration depths,
with the resulting NCP shown in the shaded region. (D) Cumulative NCP for increasing
integration depths.

Next, I address the question of how many profiles are needed over a 24-hour day/night

cycle to reliably estimate GOP, R, and NCP given measurements errors and other poten-

tially contaminating signals. Measurement errors are investigated in the following section,

and the imprint of physical processes is analyzed and discussed in more detail in Section

5.2.

5.1.3 Sampling Frequency and Error Analysis

An important question is how well the diurnal cycle can be observed for different sampling

frequencies and measurement errors. To address this question, random error of various

magnitudes is introduced to the output of ME2 and the model sub-sampled at different

frequencies. Errors are randomly generated on a normal distribution surrounding zero for

increasing standard deviations (error magnitudes):
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ε ∼ N(0, σ), σ ∈ (0.01, 0.3) (5.2)

These model experiments seek to characterize what combination of sampling frequency

and signal-to-noise ratio allows the GOP, R, and NCP to be reliably estimated.

Figure 5.7: Example mean oxygen timeseries for two different sampling frequencies and
errors. Error bars show the assumed standard deviation of the random measurement error
centred on the true value. Blue dots show the simulated measurements.

Model output is sampled at frequencies fi varying from once per hour (24 d−1) to once

every 3 hours (8 d−1). At frequencies lower than 8 d−1, linear fits would have to be applied

to fewer than 4 data points which does not seem reasonable. Standard deviations for

random errors range in magnitude from 0.01 mmol m−3 to 0.3 mmol m−3. As metric to

evaluate each combination of error and sampling frequency the absolute percent deviation

(eq. 5.3) from the ideal case (high sampling frequency of 96 d−1 and no error) is used:

%GOP (fi, ei) = 100×
∣∣∣GOP (fi, ej)−GOP (96, 0)

GOP (96, 0)

∣∣∣ (5.3)
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The calculation for each combination of frequency and noise is replicated 50 times.

The greatest deviations are seen, unsurprisingly, for large errors and low sampling

frequencies. Higher sampling frequency mitigates the effects of measurement error to

some degree. This is most easily seen by examining the 50% contour line in Figure 5.8B,

as slightly lower error magnitudes result in 50% absolute deviation when sampling 8 times

per day compared to 24 times per day.

Figure 5.8: Mean absolute deviation in percent for different sampling frequencies and
random errors.

5.1.4 Discussion

The data and analysis presented in this section have shown that diurnal changes in oxygen

can be measured with a profiling float; however, the changes observed here could not

unequivocally be linked to biological production and respiration. This made estimates of

daily GOP, R, and NCP based on these observations unreliable or impossible. Compared

to previous work by Briggs et al. (2018), which focused on diurnal oxygen cycles in

the North Atlantic spring bloom, the Gulf of Mexico has relatively low production (by

about one third). Nicholson et al. (2015) studied diurnal oxygen cycles in a similarly

low-productivity region in the subtropical North Pacific, but accumulated and averaged

many days in order to derive an estimate of production.

The timing and location of the continuous mode observations also may have caused

difficulty in estimating production. Continuous mode was turned on for the floats when

storms were passing through the Gulf. Higher wind forcing likely caused physical drivers

(explored further in Section 5.2 to dominate the oxygen signal. Additionally, the floats

were deployed close to the Deepwater Horizon oil spill site, near the shelf break of the

Gulf. Topography is a significant factor contributing to the formation of internal motions
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(Alford et al., 2016), and the topography near the float locations may have encouraged

dominance of physical drivers.

Despite continuous profiling by the floats, the temporal resolution was on the low end

for making diurnal measurements. In continuous mode, the floats still recorded full profiles

to at least 1000 m because of other research objectives. In a study more directly focussed

on diurnal oxygen cycles, profiling to only 200 m would significantly increase the temporal

resolution of the oxygen timeseries, while still capturing the entire euphotic zone.

Model analysis shows that using diurnal oxygen timeseries to estimate GOP, R, and NCP

is not perfect, likely due to the assumption that production and respiration are constant

rates, when in reality they change over the course of a day, and because air-sea flux of

oxygen is neglected. NCP is especially difficult to estimate in a system where gross

production and respiration are closely balanced. NCP is often an order of magnitude

smaller than GOP and R, and so any error in those two larger quantities will lead to large

relative error in the difference between the two. This is demonstrated when calculating

the NCP in the model, where the calculation method yielded the wrong sign of NCP on

some days (figure 5.5). In cases where NCP is large, such as during phytoplankton blooms,

the relative error in NCP should be smaller. In systems where GOP and R are closely

balanced, other approaches such as measuring oxygen changes below the mixed layer

(Riser and Johnson, 2008), calculating mass-balances in the upper ocean (Plant et al.,

2016), or averaging over many days (Nicholson et al., 2015) may be preferable.

Model results also showed that estimating integrated NCP using only mixed layer

measurements lead to significant overestimates of net production. Depending on the

integration limit, NCP was overestimated by up to a factor of 2.5. Clearly, this demonstrates

that consideration of processes at greater depths than the mixed layer is important when

trying to estimate the total water column NCP. For measurements confined to the surface

such as with mixed layer floats, [O2]/[Ar] measurements, or beam-c measured by ship

underway flow-through, estimations of production must be discussed in the context of the

mixed layer only. Extending or integrating these quantities may prove to be unreliable.

Analysis of sampling frequency and random measurement error suggests that at least 8

profiles per day are required; however, increases in sampling frequency do not strongly

mitigate the negative effects of random error. Results show that when measuring 16

profiles per day, a 50% absolute deviation between true and estimated GOP occurs at a
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random error with 0.15 mmol O2 m−3 standard deviation. This small error represents 15%

of the magnitude of the diurnal oxygen cycle of 1 mmol O2 m−3. In a more productive

system, like the North Atlantic where Briggs et al. (2018) observed GOP up to almost

18 mmol O2 d−1, the 50%-error threshold would be much larger at about 2.5 mmol O2 m−3.

Analysis of profiles recorded by the autonomous floats has clearly shown that estimating

productivity from diurnal changes in oxygen can be difficult because of the influence of

other confounding processes.

5.2 Physical Drivers of Dissolved Oxygen Variation

In the following subsections, three major physical drivers that influence oxygen are

described. Each driver expresses itself in the float data in a different way and presents a

major influence on dissolved oxygen dynamics. These drivers are discussed in the context

of the overarching goal of observing biological changes in oxygen.

5.2.1 Vertical Oscillations

Vertical oscillations of isopycnals may occur in ocean environments due to several

processes including internal or near-inertial waves, barotropic or baroclinic tides, and

mesoscale eddies. These processes are ubiquitous in the ocean and can have a significant

effect on the vertical structure of biogeochemical properties. For oxygen, isopycnal dis-

placement pushing the gradient up and down will create a periodic signal in integrated

oxygen over time, at the same frequency as the oscillations. The oscillatory period will be

near 24 h due the Coriolis frequency at this latitude (Alford et al., 2016), and so caution

must be exercised as to not misconstrue the physical oscillatory signal with a biological

one.

Vertical oscillations were present in the float data in many cases. As an example, a

3-day period immediately following the deployment of float f7940 on May 2, 2017 is

examined here. This float was deployed shortly before passage of an atmospheric front

with elevated wind speeds up to about 35 km h−1. The float remained in deep (greater than

1000 m) waters off-shelf for the period discussed here. Vertical oscillations are apparent

by coincident up and down movements of the oxygen gradient moving in concert with

isopycnals. A tight correlation of oxygen and isopycnal (or isotherm) depths can be used

to identify when a physical process inducing vertical motion is driving changes in oxygen.
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Figure 5.9: Co- variation of isotherm and iso-concentration depths. (A-B) Profiles of
temperature and dissolved oxygen, where the profiles with the minimum and maximum
depths of the 20.6 ◦C isotherm and 136.2 mmol m−3 iso-concentration are shown in green
and orange respectively, and all other profiles are shown on a grey color scale indicative
of time with lighter shades indicating older and darker shades more recent measurements.
(C-D) Depths of the isotherm and iso-concentration plotted against each other in (C) and
as a timeseries in (D), showing their co-variation.

The tight correlation from vertical oscillation is shown in Figure 5.9. The profiles show

that the changes in integrated oxygen are being driven by oscillatory changes in depth

of the oxygen gradient. These changes are reflected in the physical variables as well, as

temperature and salinity profiles display similar periodic oscillations up and down. The

depths of the 20.6 ◦C isotherm and 136.2 mmol m−3 iso-concentration are highly correlated

over this time period (Figure 5.9C, r = 0.96, p < 0.01). The timeseries of these depths

are also highly correlated with the timeseries of integrated oxygen (Figure 5.10, r = 0.83,

p < 0.01). The extrema are aligned as well, as the maximum depths of the isotherm

correspond with the maximum values of integrated oxygen, and similarly minimal depths

correspond to integrated oxygen minima, occurring near noon and at midnight, respectively.
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Since the vertical movement of isopycnals and oxygen isolines creates a tight correlation

between the two, it should be possible to remove the variability due to vertical motions

by analyzing changes in oxygen in density space rather than pressure space. Figure 5.11

shows the anomalies calculated in pressure and density space compared to each other,

and density anomalies are significantly smaller, indicating that most of the variability in

oxygen can be accounted for by corresponding changes in density. This technique offers

a path to removing the oscillatory signal, and therefore isolating underlying signals such

as biological production. In this case, however, the remaining anomaly is on the order of

expected errors based on the analysis performed in Section 4.3, and so a biological signal

cannot be discerned in light of the accumulated error.

Figure 5.10: Isotherm depth and mean oxygen comparison. (A) Timeseries of mean
oxygen between 25-150 dbar. A period of about 24 h is observed, however it is not in
phase with the day/night cycle (nighttime indicated by shaded areas) as would be expected
for a biological signal. (B) Scatter of mean oxygen concentration against isotherm depth
(see figure 5.9D).

Not only can isopycnal displacement confound the biological signal, it may also alter the

behaviour of production in the water column. Using the numerical model, ME3 explores

the interaction of the biologically driven diurnal oxygen cycle and vertical oscillations.

The model is run with the vertical oscillations set to be “in-phase” with the diurnal oxygen

cycle (isopycnals nearest to the surface at noon, deepest at midnight), and “out-of-phase”

with the cycle (isopycnals nearest to the surface at midnight, deepest at noon). For each

run, the influence of the vertical oscillations on the biological cycle is evaluated.
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Figure 5.11: Anomalies calculated in pressure (blue) and density (orange) space.

The results in figure 5.12 show a mean oxygen signal dominated by vertical oscillations,

and relatively small differences in biological fluxes between the two runs. The greatest

differences appear at the extrema when the isopycnals are at opposite extremes, and almost

no difference when they cross each other.

5.2.2 Horizonal Advection

Circulation within the Gulf may result in dramatic changes in oxygen water column

structure given differences in physical or biochemical signature. This is especially true in

the eastern part of the Gulf where the Loop Current intrudes and may shed eddies, and near

the northern shelf where river runoff makes the environment more eutrophic than the open

Gulf. In the profiling float data, the collision of different water masses should be evident

in both the physical and biochemical properties. Changes in the temperature-salinity

signature should be indicative of water masses of different origin noting that water in the

open Gulf of Mexico, especially at depth, has a very tight T-S relationship that can be

identified. Deviations away from this should be a good indicator of shelf water.
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Figure 5.12: Model comparison for vertical oscillations in- and out-of-phase with biology.
(A) Mean oxygen for “In-phase” and “Out-of- phase” vertical oscillations. (B) Difference
between fluxes for in-phase and out-of-phase.

An example of water masses with unique physical and biochemical signatures colliding

is provided by float f7942 during October 6-9, 2017. This particular float had drifted

northeast close to the shelf since the time of its deployment and was travelling along the

200 m isobath. The profiles recorded by the float show significant changes in vertical

structure, specifically deformation at a depth of 100 m (Figure 5.13A- 5.13C). As this

deformation occurs, oxygen increases during two distinct periods: the afternoon/evening of

October 6 and climbing consistently after noontime on October 7 through to the afternoon

of October 8 (Figure 5.13D).

The initial oxygen profile shows a relatively shallow and steep oxycline near 50-75 dbar,

around the bottom of the mixed layer. The gradient becomes much broader over time,

spreading down to about 150 dbar. This change occurs below the MLD , which remains

at about 50 dbar throughout. The broadening of the oxygen gradient is likely influenced

by elevated winds during this time period as 6 h average winds reached up to 50 km h−1.

The deformation is not simply a redistribution of oxygen by vertical mixing, as the mean

oxygen is rising during the same period.
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Figure 5.13: (A) Temperature, (B) Salinity, (C), and Oxygen profiles during October 6-9,
where deeper blues represent later dates, showing the progression of the profiles. (D) Mean
oxygen from 25-150 dbar.

Figure 5.14 shows a T-S diagram for all the profile data, where points are coloured for

their oxygen anomaly and elapsed time in the analysis period. Oxygen anomalies are

calculated using interpolated profiles every 5 dbar. Over time, the middle of the water

column shifts to fresher, warmer water with a higher oxygen content. The surface remains

relatively consistent, with some variations in salinity but steady temperature and oxygen

values, and the MLD does not change.

Two water masses with unique physical and biochemical footprints caused deformation

of profiles, and a significant increase in mean oxygen of 10 mmol m−3 over the top 150 dbar

of the water column. Based on the synchronous shift of temperature, salinity, and oxygen

below the mixed layer, this change could not be the result of a biological process. With

the increase in mean oxygen, this could also not simply be a vertical mixing of the water

column.

55



Figure 5.14: T-S diagram for profile data recorded during this observation period (Oct.
6-9, 2017), where the colorscale represents the (A) oxygen anomaly or (B) elapsed time in
analysis period.

5.2.3 Deepening Mixed Layer Depth

Mixed layer dynamics can strongly influence biological production, as a deepening of the

mixed layer can induce an injection of nutrients from below, triggering potentially massive

growth in the euphotic zone. In the open Gulf of Mexico, this mechanism is less prevalent

as waters are nutrient- poor. Changes in the mixed layer depth may still influence oxygen

dynamics, but through physical rather than biological changes.

A deepening mixed layer was observed by float f7943 over an 8-day period during the

passage of Hurricane Nate, from October 4-12, 2017. During this period, the float was

relatively stationary, and like some other floats, had drifted toward the shelf between the

200 and 500 m isobaths. Mean oxygen increased steadily and then leveled off around

October 8. Mixed layer depth followed a similar trend deepening steadily from about

20 m to 70 m until October 8, then oscillating around about 65 m (Figure 5.15A). Mean

oxygen and mixed layer depth are highly correlated (r = 0.88, p < 0.01, Figure 5.15B),

with the deepest of MLDs corresponding to the highest mean oxygen concentrations and

vice-versa.

In addition to the mean increase in oxygen, there is an underlying periodic signal.

This oscillatory signal has a period of 18.5 h per spectral analysis. A similar analysis of

isotherm and iso-concentration depths to that in Section 5.2.1 (Figure 5.9) showed very

high correlation between the two, including both the deepening of both isolines and the
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oscillations on the shorter timescale (Figure 5.16).

Figure 5.15: Mean oxygen, mixed layer, and surface oxygen concentration and saturation.
(A) Mean oxygen (left axis) and mixed layer depth (right axis). (B) Scatter of MLD
and mean oxygen shows maximum oxygen values for deepest mixed layers. (C) Surface
oxygen (left axis) and surface layer saturation percent (shaded area, right axis) where the
horizontal black line shows ocean and atmosphere in equilibrium, positive values indicate
an oversaturated ocean, and negative values an undersaturated ocean.

Biological and atmospheric sources of oxygen were considered to explain this large

mean increase of more than 20 mmol m−3 in oxygen, but neither was found to support

such a significant change. Biologically, mean oxygen and chlorophyll in the mixed layer

showed no correlation, while oxygen and baseline backscatter were inversely correlated.

While pigment concentration does not necessarily have to change with biomass, depending

on the conditions (Cullen, 2015), baseline backscatter representing suspended biomass

would be expected to increase if algal growth was indeed the source of net oxygen changes

in this case.

Air-sea gas exchange is driven by the gradient in partial pressure of oxygen between

the surface ocean relative to the partial pressure of the atmosphere, and proportional to

wind stress. Calculations of air-sea gas exchange are included in the model following the
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parameterization of Wanninkhof (1992). The surface layer is under- saturated throughout

the observation period (Figure 5.15C) and air-to-sea flux of oxygen does occur, however

it is small relative to the total increase in mean oxygen. Surface oxygen is decreasing

up to October 8 (Figure 5.15C), where maximum air-sea flux occurs. In contrast, the

mean oxygen is increasing up to October 8, and most levels off afterwards (Figure 5.15A).

Air-sea flux may contribute to maintaining the plateau of mean oxygen concentration but

is not the primary driver of change in this case.

Figure 5.16: Timeseries (A) and scatter (B) of the 21.6 ◦C isotherm and 144.7 mmol m−3

iso- concentration depths during the deepening mixed layer. Scatter of the two depths
show highly correlated changes in each isoline depth (r = 0.98, p < 0.01).

Physically driven changes in oxygen via the mixed layer should not prevent the measure-

ment of the diurnal biologically driven changes occurring at the same time. The change

in the mixed layer will induce a change in the mean oxygen at a rate proportional to the

rate of change of the mixed layer. If this timescale is sufficiently long, the physically

driven change will not interfere with the detection of a biological diurnal scale change.

The diurnal scale change was not able to be resolved in the data presented here not because

of the mixed layer change, but due to the underlying vertical oscillation signal.

5.2.4 Discussion

Vertical oscillations, horizontal advection, and a varying MLD all influence euphotic-

zone oxygen in different ways and have different implications for the measurement of

biologically driven changes. In attempting to measure biological productivity using oxygen,

it is important to understand, and take into consideration, the effects of physical drivers.

In general, all available data recorded by the float should be visualized during analysis to
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obtain the most complete view available of physical and biogeochemical changes in the

water column. Here, I propose specific ways in which to visualize float data to recognize

and accommodate for physical influences on the biochemical data.

Vertical oscillations can be identified in float data by observing the synchronous move-

ment of physical and biochemical variables in the water column. When it is identified, the

characteristically tight correlation of density and oxygen may still allow for the isolation

of the underlying biological signal. Although the vertical oscillation signal can mostly

be captured by variations in density (Figure 5.11), the remaining signal cannot always be

attributed to biological changes in the water column. For our data, this analysis showed

anomalies on the same scale as expected error from the oxygen optode. The error sources

associated with oxygen measurements on autonomous floats discussed in Section 5.1.4 can

create deviations on the scale seen in observations, meaning that those observed anomalies

may not be representative of real oceanographic processes, but rather are an artefact of the

measurement process. In Plant et al. (2016), evidence of internal waves was also present in

the data, and a similar method was used to remove this signal. In their case, using density

to map the observations to a physical model that did not include vertical oscillations, it

was possible to isolate the biological signal.

Near 30◦ latitude where the autonomous floats in this study were deployed, an external

physical force acting on a resonant system will generate oscillations with a period of

about 24 h. In this case, the most likely driver is elevated winds acting on this region with

variable topography (Alford et al., 2016), however other sources could create a very similar

response. Without consideration of the physical data, and only of the oxygen oscillations,

if this oscillation was aligned with the expected day-night cycle could falsely appear to be

driven by biological productivity.

The diurnal-scale period of the internal oscillations could be problematic if production

had been estimated by accumulating and averaging data on a one-day scale, as in Nicholson

et al. (2015). This study quantifies average NCP over a 110 day period by accumulating

glider measurements of oxygen and plotting them all on the same 24 h timescale. Only

oxygen data that fit the theoretical biological curve defined a priori to a satisfactory degree

(p < 0.05) are accumulated (73 of 110 days satisfied this condition). This is a good way to

eliminate data where biology is not the primary driver, but could also eliminate days of

smaller magnitude production, or allow physically driven oscillations that are aligned with

59



the day-night cycle to be attributed to biology.

In cases where there is evidence of horizontal advection dominating the water column

dynamics, a reliable measurement of production cannot be performed. In calculating

production from profile data, one of the key assumptions is that change is that horizontal

influences are minimal. As soon as this assumption does not hold, any calculation using

the method described here will be unreliable. Horizontal advection can be recognized

in the profiling data by a deformation of profiles in time, and by a shift in temperature-

salinity space with a corresponding shift in the biochemical tracer of interest, oxygen

in this case. Horizontal advection is most important in cases like the one presented in

Section 5.2.2 where water masses with unique physical and biochemical properties come

together. Horizontal advection of homogenous water masses will not manifest itself in the

measurements in the same way and may no be detectable.

Changes in MLD may change the mean oxygen in the upper water column (depths

shallower than 150 dbar), however should not impede the calculation of GPP, R, and thus

NCP. The changes observed here highlight how an integrated measurement of oxygen is

important to obtain a full view of oxygen dynamics in the upper ocean. The data presented

in Section 5.2.3 and Figure 5.15 show the increase of mean oxygen with the deepening

mixed layer. If a local measurement only was presented, oxygen would appear relatively

constant.

When working with biogeochemical observations, the coincident physical measurements

should be taken into account to gain a full view of the ocean state and how it is changing.

In some cases, it may be possible to correct for or remove the physical signal, while in

others physical processes may be dominating oxygen changes in the water column to a

degree that prohibits biological inferences.
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CHAPTER 6

CONCLUSION

In the Introduction, the question “Can GPP, R, and NCP be estimated from the diurnal

oxygen cycle measured by continuously autonomous profiling floats?” was posed. This

research question contains two main components: (1) the technical question whether the

sensor and platform can take sufficiently frequent and accurate measurements, and (2) the

oceanographic question of what primary physical or biological processes drive changes in

dissolved oxygen, and how they manifest themselves in the data. Addressing (1) led to the

development of a novel method for determining the effective in-situ time constant of an

oxygen optode deployed on a profiling float, without needing to characterize the physical

flow around that sensor. Component (2) was addressed through a comprehensive analysis

of the physical and biochemical measurements in a case study in the Gulf of Mexico that

will lend context and techniques to future studies seeking to quantify production using

profiling floats.

Oxygen optodes are challenged to make accurate measurements in gradients because of

their slow response time. However, the resulting errors can be corrected if timestamps of

the measurements and the effective response time are known. I developed an optimization

procedure to determine the effective time constant in-situ by using both the up- and down-

casts measured by the floats. The effective time constant determined in the field represents

the combination of the inherent sensor response time, the response time that results from

boundary layer effects in the flow field around the sensor, and any temperature, salinity,

or pressure effects on response time. The time constants derived by this method are

similar to estimates provided in previous literature for boundary layer response times on

floats (Section 4.4). While the oxygen measurements were improved significantly by the
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correction procedure, remaining errors, especially near gradients, may prohibit reliable

production estimates in low productivity environments or where physical processes have

large effects on the oxygen signal.

Given the small productivity of the Gulf of Mexico, oxygen optodes on autonomous

floats were not able to provide sufficient precision to estimate production on a diurnal

scale, resulting from a combination of sensor error and the surrounding dynamics driving

non-biological change in oxygen. For processes like the vertical oscillation of isopycnals,

analysis in density space can reveal underlying signals, and the anomaly technique em-

ployed in this research may be useful in calculating diurnal scale biological changes in

oxygen in environments where the magnitude is much larger than the cumulative sensor

error. In the absence of these confounding processes, measurements of GOP and R may be

reliably made, however in steady-state systems where the magnitudes of each constituent

quantity are comparable, NCP will likely still prove difficult to calculate.

The need for highly accurate, corrected oxygen measurements when estimating pro-

duction from autonomous platforms leads to the following recommendations for future

deployments of autonomous floats with oxygen optodes:

• Include timestamps for every oxygen measurement on float data transmission. The

corrections discussed and applied here must be performed on oxygen as a timeseries,

not as a profile. Correction for sensor response time is impossible without this

information.

• Program the float mission to include a calibration period upon float deployment

where both up- and down-casts are recorded. This will provide a very practical and

robust method to calculate the effective in-situ response times.

This research shows that although taking an integrated measurement of oxygen below

the mixed layer depth may include processes that introduce abiotic contributions on the

diurnal scale, neglecting the full vertical structure can lead to poor estimates of NCP. Local

measurements may resolve diurnal scale variations more readily, but an estimate of the

entire water column production cannot be made. Production measurements can be difficult,

laborious, and expensive to obtain, and making such measurements without including the

entire water column results in an inaccurate measurement for such intensive work. As
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sensor technology and our understanding of processes driving changes in oxygen improve,

an integrated measurement should be the goal moving forward.
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APPENDIX A

NUMERICAL MODEL EQUATIONS

The temporal evolution of phytoplankton due to biological sources or sinks is given by:

∂Phy

∂t
= μPhy − gZoo−mPPhy − τ(SDet+ Phy)Phy

− ∂

∂z

(
kz

∂Phy

∂z

)
− wP

∂Phy

∂z

(A.1)

The growth rate μ depends on the maximum growth rate as defined by temperature

(Eppley, 1972), the photosynthetically available radiation, I , and concentrations of nutrients

NO3 and NH4:

μ = μmax · f(I) · (LNO3 + LNH4) (A.2)

where:

LNO3 =
NO3

kNO3 +NO3

· 1

1 +NH4/kNH4

(A.3a)

LNH4 =
NH4

kNH4 +NH4

(A.3b)

Surface light levels I0 are calculated using the astronomical formula. Below the sea

surface, light decays exponentially with depth according to:

I = I(z) = I0 · rPAR · exp
(
− z

[
Kw +KChl

∫ 0

z

Chl(ζ)dζ
])

(A.4)
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where rPAR is the fraction of photosynthetically available radiation, 0.43, and Kw and

KChl are the light attenuation coefficients of water and chlorophyll respectively. The

function f(I) in equation A.2 is the photosynthesis-light curve (Evans and Parslow, 1985):

f(I) =
αI√

μ2
max + α2I2

(A.5)

where α is the initial slope. Nutrient limitations are formulated by Michaelis-Menten

functions for nitrate and ammonium (eqs. A.3a- A.3b), and nitrate uptake is taken to be

inhibited by the presence of ammonium Parker:1993dr. The parameters kNO3 and kNH4

are half- saturation concentrations for nitrate and ammonium respectively.

The grazing of phytoplankton by zooplankton is given by:

g = gmax
Phy2

kP + Phy2
(A.6)

where gmax is the maximum grazing rate and kP is the half-saturation of phytoplankton

ingestion by zooplankton. Phytoplankton concentration is also lost via mortality defined

by the mortality rate mP , the aggregation of phytoplankton and detritus controlled by

parameter τ , and vertical sinking at velocity wP .

Chlorophyll concentration varies non-linearly with phytoplankton concentration, as

pigment concentration per biomass will vary under different light and nutrient conditions

in the water column. This non-linearity is introduced through the ratio of achieved

photosynthesis (μ · Phy) to the maximum potential photosynthesis (α · I · Chl, Geider

et al., 1997):

ρchl =
θmaxμPhy

αIChl
(A.7)

The governing equation for the temporal evolution of chlorophyll is derived from that of

phytoplankton, multiplied by the ratio of chlorophyll to phytoplankton biomass:

65



∂Chl

∂t
= ρchlμChl − gZoo

Chl

Phy
−mPChl − τ(SDet+ Phy)Chl

− ∂

∂z

(
kz

∂Chl

∂z

)
− wPChl

(A.8)

Zooplankton assimilates ingested phytoplankton with an efficiency β, while the remain-

der goes to the small detritus pool. Zooplankton loss terms are mortality (at rate mZ) and

excretion. Mortality is proportional to the square of zooplankton biomass. Metabolic and

assimilation-dependent excretions are separated in parameters lM and lE and both feed

into the ammonium pool. The temporal rate of change for zooplankton is given as:

∂Zoo

∂t
= gβZoo− lMZoo− lE

Phy2

kP + Phy2
βZoo−mZZoo

2 − ∂

∂z

(
kz

∂Zoo

∂z

)
(A.9)

Small detritus increases in concentration with inefficient zooplankton feeding, and

the mortality of zooplankton and phytoplankton. Aggregation of small detritus and

phytoplankton feed into the large detritus. Both small and large detritus are remineralized

to ammonium at rates rSD and rLD respectively, and both sink at sinking velocities wS and

wL respectively. The temporal rates of change for small and large detritus are given by:

∂SDet

∂t
= g(1− β)Zoo+mZZoo

2 +mPPhy − τ(SDet+ Phy)SDet (A.10)

− rSDSDet− ∂

∂z

(
kz

∂SDet

∂z

)
− ws

∂SDet

∂z
∂LDet

∂t
= τ(SDet+ Phy)2 − rLDLDet− ∂

∂z

(
kz

∂LDet

∂z

)
− wL

∂LDet

∂z
(A.11)

Remineralized detritus go into the ammonium pool, and are then nitrified to feed into

the nitrate pool. The nitrification rate n is given by:

n = nmax

(
1− max

[
0,

I − I0
kI + I − I0

])
(A.12)

Nitrification is inhibited by light, and so in high intensities drops off to zero per the

above equation, where kI is the half-saturation light level. The time rates of change for

model nutrients are given by:
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∂NO3

∂t
= μmax · f(I) · LNO3 · Phy + nNH4 − ∂

∂z

(
kz

∂NO3

∂z

)
(A.13)

∂NH4

∂t
= μmax · f(I) · LNH4 · Phy − nNH4 + lMZoo (A.14)

+ lE
Phy2

kP + Phy2
β · Zoo− rSDSDet+ rLDLDet− ∂

∂z

(
kz

∂NH4

∂z

)

Finally, oxygen is produced by the growth of phytoplankton, and consumed in the

nitrification and remineralization processes, and zooplankton excretion. Air-sea flux is

parameterized following Fennel et al. (2013a):

Fair−sea =
vkO2

Δz
(Osat

2 −O2) (A.15)

where Osat
2 is the saturation concentration, Δz is the thickness of a model depth layer

(0.5 m in this case). The gas exchange coefficient vkO2 (Wanninkhof , 1992) is given by:

vkO2 = 0.31u2
10

√
660

ScO2

(A.16)

where u10 is the wind speed at 10 m above sea level and ScO2 is the Schmidt number. The

temporal evolution of oxygen is governed by the following equation:

∂O2

∂t
=μmax · f(I) · (LNO3RO2:NO3 + LNH4RO2:NH4)Phy

− 2nNH4

−RO2:NH4

(
lMZoo+ lE

Phy2

kP + Phy2
β · Zoo+ rSDSDet+ rLDLDet

)
− ∂

∂z

(
kz

∂O2

∂z

)
(A.17)
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APPENDIX B

OPTODE FILTER DERIVATION

B.1 Continuous-time DE Solution

Recall filter differential equation:

h(t) = f(t)− τ
∂h

∂t
(B.1)

This can be re-written as the following initial value problem, where the initial condition

assumes that the initial measurement y(0) is the correct, true value h(0) = f(0):

h′ +
1

τ
h =

1

τ
f h(0) = f(0) (B.2)

Taking the LaPlace transform of the above equation, we get:

L{h′ +
1

τ
h} = L{1

τ
f} (B.3)

sH(s)− h(0) +
1

τ
H(s) =

1

τ
F (s) (B.4)

Re-arranging to solve for H(s) and substituting h(0) = f(0):
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(s+
1

τ
)H(s) = f(0) +

1

τ
F (s) (B.5)

H(s) =
( 1

s+ 1
τ

)
f(0) +

1

τ

( 1

s+ 1
τ

)
F (s) (B.6)

For the first term, we can take the inverse LaPlace transform directly, as we reconize the

following form:

L{eαt} =
1

s− α
(B.7)

For the second term, because x(t) is an unknown function, we must write the solution

as a convolution. This leaves us with the solution:

h(t) = f(0)e−t/τ +
1

τ

∫ t

0

f(t− u)e−u/τdu (B.8)

B.2 Discretized Filter

Recall filter differential equation:

h(t) = f(t)− τ
∂h

∂t
(B.9)

Disretize the differential equation using finite difference:

hn = fn − τ
hn − hn−1

Δt
(B.10)

Re-arrange and factor hn:

hn(1 + τΔτ) = fn +
τ

Δt
hn−1 (B.11)
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Re-write to solve for hn:

hn

(τ +Δt

Δt

)
= fn +

τ

Δt
hn−1 (B.12)

hn =
( Δt

τ +Δt

)
fn +

( Δt

τ +Δt

) τ

Δt
hn−1 (B.13)

hn =
( Δt

τ +Δt

)
fn +

( τ

τ +Δt

)
hn−1 (B.14)

and let α = Δt
τ+Δt

:

hn =
( Δt

τ +Δt

)
fn +

(τ +Δt

τ +Δt
− Δt

τ +Δt

)
hn−1 (B.15)

hn = αfn + (1− α)hn−1 (B.16)

B.3 Propagation of Error in Deconvolution

Add error into the inverse filtering solution as an addition to the observations h:

fn + fn−1

2
=

1

2b
(hn − ahn−1) +

1

2b
(εn − aεn−1) (B.17)

where εn is the error at timestep n. We want to know the coefficient in front of the error

term. Assuming that the error ε is i.i.d., the variance of this additional term is:

σ2
f =

1 + a2

4b2
σ2
ε (B.18)
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Replace a = 1− 2b:

1− a2

4b2
=

1 + (1− 2b2)2

4b2
(B.19)

=
1 + 1− 4b+ 4b2

4b2
(B.20)

=
2− 4b+ 4b2

4b2
(B.21)

=
1

2
b−2 − b−1 + 1 (B.22)

Replace b−1 = 1 + 2 τ
Δt

:

=
1

2

(
1 + 2

τ

Δt

)2

−
(
1 + 2

τ

Δt

)
+ 1 (B.23)

=
1

2

(
1 + 4

τ

Δt
+ 2

τ 2

Δt2

)
− 1− 2

τ

Δt
+ 1 (B.24)

=
1

2

(
1 + 4

τ 2

Δt2

)
(B.25)

Equation B.25 gives the general result, and the variance of the error will by multiplied

by that factor. The standard deviation therefore is amplified by the following factor:

σf

σε

=

√
1

2

(
1 + 4

τ 2

Δt2

)
(B.26)

For our model experiment, τ = 75 s and Δt = 33 s. The amplification of the standard

deviation will be the square root of the above which shows the amplification of the variance:

√
1

2

(
1 + 4

τ 2

Δt2

)
=

√
1

2

(
1 + 4

(75 s)2

(33 s)2

)
(B.27)

≈ 3.3 (B.28)

The above does not account for any smoothing.
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Adding Oxygen to Argo: Developing a Global In Situ Observatory for Ocean Deoxygena-
tion and Biogeochemistry., Proceedings of OceanObs Sustained Ocean Observations
and Information for Society, 2010. 4

Hamme, R. C., N. Cassar, V. P. Lance, R. D. Vaillancourt, M. L. Bender, P. G. Strutton, T. S.
Moore, M. D. DeGrandpre, C. L. Sabine, D. T. Ho, and B. R. Hargreaves, Dissolved
O2/Ar and other methods reveal rapid changes in productivity during a Lagrangian
experiment in the Southern Ocean, Journal of Geophysical Research: Oceans, 117,
2012. 2

Johnson, K. S., J. N. Plant, S. C. Riser, and D. Gilbert, Air Oxygen Calibration of Oxygen
Optodes on a Profiling Float Array, Journal of Atmospheric and Oceanic Technology,
32, 2160–2172, 2015. 4, 15

Johnson, K. S., J. N. Plant, L. J. Coletti, H. W. Jannasch, C. M. Sakamoto, S. C. Riser,
D. D. Swift, N. L. Williams, E. Boss, N. Haëntjens, L. D. Talley, and J. L. Sarmiento,
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