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Abstract

Ambulance offload delay (AOD) occurs when the care of incoming ambulance pa-
tients cannot be transferred immediately from paramedics to staff in a hospital emer-
gency department (ED). This is typically due to ED congestions. In such situations,
paramedics are responsible to provide patient care until an ED bed becomes avail-
able. AOD can negatively affect ambulance availability to future calls and reduce the
efficiency of the emergency medical services (EMS) system. Hence, this problem has
become a significant concern for many healthcare providers and is the focus of this
dissertation.

In this dissertation, we develop several models to analyze AOD. With 12-months
of emergency call data provided by the provincial EMS provider and local hospitals
in Nova Scotia, Canada, we conduct an empirical analysis to measure the effects of
AOD on the EMS system. The analyzed performance metrics include the number of
ambulances at EDs, ambulance turnaround time, total call time, response time, and
ambulance availability. The results indicate significant negative effects on all these
metrics within the region experiencing AOD. AOD also has a negative impact on
ambulance availability in adjacent regions for an EMS system with shared resources.

We then develop a decision-support tool using a novel hybrid decision tree model
to predict the severity of AOD within 1 to 5 hours based on the current system
status. The objective of this study is to provide a prediction model for EMS decision
makers so that proactive interventions at different system states can be initiated to
mitigate AOD. The hybrid algorithm shows improvements in the classification of this
real-world problem when tested against a basic decision tree algorithm.

Finally, we develop an optimal ambulance destination policy using a discrete time,
infinite-horizon, discounted Markov Decision Process. This model helps determine
when it is advantageous to send appropriate patients to out-of-region EDs, which have
longer transport times but shorter offload times. The optimal policy can significantly
reduce AOD, time-to-ED bed for patients, and out-of-service time for paramedics at

the expense of increased ambulances travel distances.
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Chapter 1

INTRODUCTION

Healthcare is an area of growing importance and cost around the world [1]. It is also
a challenging area for operations research (OR) due to its unique characteristics. As
our society ages, the demand and pressure on the health care system rises rapidly;

therefore, the system faces increasing challenges related to process efficiency.

One of the key components in healthcare is pre-hospital care provided by Emer-
gency Medical Services (EMS). EMS are public safety systems responsible for provid-
ing emergency assistance and for protecting public health and safety [2]. The goal of
such systems is to respond quickly to population calls, to provide first aid services,
and to transfer patients to the emergency department (ED) of an appropriate hospi-
tal when needed [2-4]. In life-threatening emergency situations, the ability of EMS
providers to quickly respond will mean less adverse effects for the patients involved
as timely care is crucial. Any delay is highly undesirable from a patient safety per-
spective [2]. Therefore, EMS providers continuously seek best practices, especially
in a world where an aging population adds pressure to the health care system [5].
Meanwhile, EMS systems also need to sustain themselves financially (i.e., capital and
operation costs). EMS providers are challenged to perform their services more ef-
fectively and efficiently to meet their own budgetary and performance targets. To
achieve both timeliness and economic objectives, limited EMS resources (e.g., emer-
gency vehicles, paramedics) must be managed efficiently in an environment with a
high level of uncertainty related to demand characteristics and resources availability
3]

My Ph.D. research focuses on a relatively new EMS operation challenge, the am-
bulance offload delay (AOD) problem, which is a direct consequence of health care
system congestion. The definition of this problem is presented in detail in Section
1.3. This research measures and quantifies this problem with a real-world case study

of the EMS system in Nova Scotia, Canada. Furthermore, studies have been carried
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out, using several operations research (OR) methodologies, to predict the problem,
develop and evaluate interventions to mitigate AOD, and to improve the performance

of EMS as a public interest.

1.1 EMS OPERATIONS

To help readers understand how EMS operates, the typical events associated with
an ambulance response in a Canadian EMS system are summarized in this section.
The information is based on the general EMS procedures reviewed in literature |1, 6—
8] and the author’s observations over 50 hours of on-site training at Nova Scotia’s
EMS service provider. It describes typical EMS operations involved in responding to
emergency /urgent calls in Nova Scotia, Canada.

When a new call is received by the EMS dispatch call centre, the call taker assesses
the call (known as the call screening process). The main function is to determine the
severity of the incident and its degree of urgency. Each call is then classified into a call
priority and the dispatch logic applies to decide on the type and number of ambulances
to dispatch to the accident scene [6]. For all but low priority calls, typical dispatch
logic specifies that, the closest vehicle is sent to ensure that vehicles arrival on scene
as quickly as possible. For high-priority calls, a second vehicle with advanced skilled
paramedics may also be dispatched to ensure the correct level of care can be provided
at the scene [1]. After an ambulance crew is given the details of the call, the vehicle
starts driving to the scene. In some cases, there may be a short mobilization delay
before the crew departs which is normally negligible if the ambulance is posted on
the road. However, the mobilization delay can be a few minutes if, for example, the
ambulance crew is resting at a station. Based on the priority of the call, ambulances
may travel either with lights and sirens on or without. Vehicle travelling speeds can
also be different due to the call priority. High-priority calls typically require higher
speeds, while lower priority calls are responded to with standard traffic speeds. Upon
arrival at the scene, paramedics assess the patient, perform first-aid care, and decide
if the patient needs to be transported to a hospital. If no patient transport is required,
paramedics clear the scene and become free for future service or reposition. Otherwise,
the ambulance crew departs the scene and transports the patient to a hospital ED [1].

Depending on the at-scene assessment of the patient, the transport can be either at
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higher or normal travel speeds. Once the ambulance arrives at the hospital with the
patient, the paramedics transfer the patient care to the ED staff (ambulance offload),
then clean and restock the ambulance, complete patient care reports, nourishment,
etc. |7]. However, when the ED is congested, this transfer of patient care (ambulance
offload) is often delayed, until an ED bed becomes available (see Section 1.3 for more
details). After this process is completed, the ambulance and crew become free and

available for the next call.

Spaite et al. [9] categorized these events associated with an ambulance response, or
“time-on-task”, into standard time intervals. Later, Cone et al. [10] presented a figure
adapted from that study as a summary of the time intervals of ambulance response
events (Figure 1.1). It can also be viewed as a process chart of the ambulance events
when responding to an emergency/urgent call. Readers can refer to this figure to

further understand the EMS operating procedures.

Arrival Arrival Begin Begin Back
Call At At First Moving Leave Arrive Care In
Event Received Alarm Scene Patient Intervention Patient Scene Hospital  Transferred  Service
- - - -~ - -~ - ~ ~
Patient Initial Scene Patient
Notification | Activation | Response Access A t|Tr R I Transport Delivery Recovery
Interval Interval Interval Interval Interval Interval Interval Interval Interval Interval
-
—— -~
Pl //
-
— //
P 7
i 4
Out - Ve
Arrive of Enter _Ulr’ Leave Leave //
Hospital Ambulance ED ,d’Bed ED Hospital 7
- 4
-1 //
- 7
- 7’
= b
- 7’
- - -+ - ~ -+
- Turnaround —

Interval

Figure 1.1: A summary of the time intervals of ambulance response events. Adapted
from Cone et al. [10].



1.2 OR IN EMS MANAGEMENT

OR in healthcare operations management has been an active and popular research
field. There are many problems in EMS systems that can be addressed from an
OR perspective. For instance, the ambulance locations for providing maximum cov-
erage to a given population, the ambulance/paramedic schedule for maintaining an
adequate service level, etc.

Much research has been conducted into EMS systems around the world. Re-
searchers have shown great interest in analyzing a variety of EMS processes to make
suggestions for improvements in: response time, dispatch time, deployment and re-
deployment, etc. [11-14]. Various OR methods (such as mathematical programming,
queueing theory, simulation and statistical modelling) have been applied to analyze
EMS systems and contribute to the development of EMS solutions to improve resource
efficiency |1, 15]. Literature reviews have been written regarding the work conducted
for EMS systems using different OR methods [3, 6, 16]. Specifically, Brotcorne et al.
[6] conducted a review on mathematical programming applied to ambulance location
and relocation models. Fomundam and Herrmann [16] surveyed the applications and
contributions of queuing theory in the field of healthcare. Aboueljinane et al. [3]
focused on reviewing computer simulation models that have been used for the analy-
sis and improvement of EMS. Readers can refer to these reviews to find models and

applications for different approaches to EMS system performance improvements.

1.3 THE AMBULANCE OFFLOAD PROBLEM

When an ambulance arrives at the hospital with patient(s), the paramedics transfer
patient care to the ED staff, then complete patient care reports, clean and restock
the ambulance before becoming available for the next call. This total time that an
ambulance spends at the hospital while on call is known as the ambulance "turnaround
interval" (7, 9]. It can be further separated into two sub-intervals: the “delivery
interval” and the “recovery interval” [10] (Figure 1.2). The “delivery interval”, which
is also known as the ambulance offload time [7], starts when the paramedics arrive at
the hospital with the patient(s), and ends when the patient care is transferred from the

ambulance service to the ED. The “recovery interval” starts when the patient transfer
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of care is finished, and ends when the ambulance crew are ready to return to service
[7, 9]. Due to the increasing demand of the health care system, hospital EDs often
operate at their capacities [17-19]. When a hospital ED cannot accept the incoming
ambulance patient immediately (often due to congestion), paramedics wait with their
patient(s), and continue to provide patient care until an ED bed becomes available
and the ED personnel assume responsibility for the patient(s). This delay period in
transfer of care is referred to as AOD. The ambulance crews who get delayed at the
hospital are unable to return to service. The time to transfer a patient from EMS to
the ED can be significant when there is no ED bed available for an extended period
of time for the incoming ambulance patient [20]. The AOD problem has become a
growing concern in many health care systems, thus, has attracted attentions of many

health care providers and researchers |7, 20, 21].

Arrival at hospital Care transferred Back in service
i Prolonged = AOD i i
Delivery Interval Recovery Interval
< »
< »

Turnaround Interval

Figure 1.2: The time-interval diagram of ambulance patient transportation process.

Many researchers have suggested that AOD is caused by ED crowding [5, 22-25]
and may cause substantial consequences to patients and to EMS systems [26-28].
Consequences to patients include delay to definitive care, poor pain control, delayed
time to antibiotics, etc., which may compromise patient safety [20, 27, 28]. Conse-
quences to EMS systems include negative impacts on the system status and resource
availability. It can negatively affect the availability of the ambulance service to re-
spond to the next call, prolong the response time and time spent on task, resulting in
decreased efficiency of the EMS system, and the need for additional staffing [26, 28].
In addition, financial burdens to EMS systems and legal concerns regarding the AOD



problem have also been reported [5, 29, 30]. A systematic review of literature that
addresses the AOD problem is also conducted and published [31] as a contribution
of this dissertation. Part of the review is presented as Chapter 2 in this disserta-
tion. Readers can refer to this review to find more research on the following topics:
improved understanding and assessment of the AOD problem, analysis of the root
causes and impacts of the problem, and development and evaluation of interventions
from both hospital and EMS system levels.

Despite EMS decision-making being a well investigated subject area for OR, the
EMS interface with hospital EDs, more specifically, the AOD problem, has seen less
attention in this field |7, 10, 28|. Optimization models of ambulance services generally
do not address the amount of time that ambulances spend at hospitals waiting to
transfer patients. However, in recent years, the AOD problem has been raised by
health care providers and researchers |7, 10, 28|. There are retrospective studies with
the goal of understanding and analyzing this growing issue |7, 22, 28]|. However, only
a few OR models have been presented on the AOD problem indicating the need for
long term plans to prevent or mitigate it [5, 32, 33]. Therefore, a formal process based
on scientific evidence is needed for EMS systems to determine the impacts of AOD

and to design mitigation interventions to reduce it.

1.4 RESEARCH OBJECTIVES
The objectives of my Ph.D. research include the following:

e to understand and measure the effects of AOD on the EMS system of Nova

Scotia, Canada;

e to design and evaluate proactive EMS interventions to minimize the effects of

AOD on the performance of EMS system,;

e to establish understanding of the impacts of AOD in a Canadian EMS setting

with combination of urban and rural regions.

To achieve these goals, this research was carried out in three phases. The first
phase is to understand the AOD problem in general with a review of literature (Chap-

ter 2); quantify the particular AOD problem presented in Nova Scotia, Canada, and
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measure its effects on the local EMS system (Chapter 3). The second phase is to
predict AOD status of the system in real time, to allow the problem to be addressed
proactively (Chapter 4). The third phase is to define EMS intervention ideas in collab-
oration with key personnel from the local ambulance service provider, and to develop
models to test interventions that have great potentials (Chapter 5). A primary con-
tribution of this research is to measure the efficacy of the selected intervention, and
to help the local ambulance service provider determine if it can help achieve a desired
system performance. This is desired by both ambulance service provider and the
Nova Scotia Health Authority (NSHA), to move from the current reactive practice to

a proactive, predictable response by all involved parties.

1.5 THESIS STRUCTURE

The rest of the dissertation is organized as follows:

e Chapter 2 provides a systematic review on literature that addresses the AOD
problem. This chapter has been published as a review paper in the journal of

healthcare system management science [31].

e Chapter 3 reports an empirical analysis of the effect of AOD on the efficiency
of the EMS system in Nova Scotia, Canada.

e Chapter 4 proposes a hybrid decision tree model for the prediction of the EMS

system status in relation to the AOD problem.

e Chapter 5 presents an optimal ambulance destination policy developed when
facing AOD by using a Markov Decision Process (MDP) model.

e Chapter 6 includes the conclusion and discussion of this research, as well as

some suggestions for future work.

1.6 SUMMARY OF CONTENT

Chapter 2 reviews literature which addresses the ambulance offload delay problem.
The review is organized by the following topics: improved understanding and as-

sessment of the problem, analysis of the root causes and impacts of the problem,
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Chapter Title Approach

Chapter 2. A review on ambulance offload delay literature

Chapter 3. An empirical analysis of the effect of ambulance offload  Statistical analysis

delay on the efficiency of the ambulance system & regression model

Chapter 4. Predicting ambulance offload delay using a hybrid Machine learning algorithms
decision tree model

Chapter 5. Determining ambulance destinations when facing offload Markov decision process model
delays using a Markov decision process model

Table 1.1: Chapter scopes and approaches.

and development and evaluation of interventions. The review found that many re-
searchers have investigated areas of emergency department crowding and ambulance
diversion; however, research focused solely on the ambulance offload delay problem
is limited. Of the 137 articles reviewed, 28 articles were identified which studied
the causes of AOD, 14 articles studied its effects, and 89 articles studied proposed
solutions (of which, 58 articles studied ambulance diversion and 31 articles studied
other interventions). A common theme found throughout the reviewed articles was
that this problem includes clinical, operational, and administrative perspectives, and
therefore must be addressed in a system-wide manner. The most common interven-
tion type was ambulance diversion. Yet, it yields controversial results. A number
of recommendations are made with respect to future research in this area. These
include conducting system-wide mitigation interventions, addressing root causes of
ED crowding and access block, and providing more OR models to evaluate AOD
mitigation interventions prior to implementation. In addition, measurements of AOD
should be improved to assess the size and magnitude of this problem more accurately.

Chapter 2 is based on the following article:

e M. Li, P. Vanberkel, & A. Carter. (2018). A Review on Ambulance Offload De-
lay Literature. Health Care Management Science. https://doi.org/10.1007/s10729-
018-9450-x.

In Chapter 3, we conduct an empirical analysis of the effects of AOD in Nova
Scotia, Canada. The efficiency of the EMS system was measured using 12-months of
emergency call data from the partnering ambulance service provider and local hospi-
tals. Performance measures associated with AOD include the number of ambulances

at EDs, ambulance turnaround time, total call time, response time, and ambulance
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availability. The results suggest that AOD occurring in the Central Region of Nova
Scotia leads to negative effects on all perspectives of these performance measures in
that region. It reduces the efficiency of the EMS system by prolonging the ambulance
turnaround time and total call time, and increasing the response time to future calls.
Furthermore, AOD has a negative impact on ambulance availability of the region
experiencing it. It also shows some impacts on ambulance availability of the other
adjacent regions in the same EMS system with shared resources. The results of this
study offer insight into a more comprehensive understanding of the impacts of AOD
on the EMS network. This approach can also be generalized to be used by other EMS
providers to assess the impact of AOD on their operations.

Chapter 3 is based on the following article:

e Mengyu Li, Xiang Zhong, Judah Goldstein, Terence Hawco, Jan Jensen, Alix
Carter, & Peter Vanberkel. An empirical analysis of the effect of ambulance

offload delay on the efficiency of the ambulance system (working paper).

In Chapter 4, we develope a decision-support tool using a hybrid decision tree
model to predict the severity of AOD occurring within 1 to 5 hours in an EMS sys-
tem. The primary objective of this study is to provide a prediction model for the
AOD states based on the current system status as well as hours of the day and day of
the week, so that the decision makers can activate proactive interventions to mitigate
AOD. Various prediction models are developed based on different prediction focuses
and periods tailored to the client’s needs. Furthermore, we demonstrate the value of
predictive analysis to improve operational efficiency. This research demonstrates a
novel hybrid decision tree method applied with administrative data. A naive Bayes
classifier was employed first to remove the noisy training observations before the deci-
sion tree induction. This hybrid decision tree algorithm was tested against the basic
classification and regression tree (CART) algorithm, using classification accuracy,
precision, sensitivity and specificity analysis. The results indicate that the hybrid
algorithm shows improvements of performance in the classification of the real world
problem. It is anticipated that the prediction model for AOD produced from this
study will be directly transferable. It can be generalized to other EMS systems with
a similar operational setting where ambulance offload is impacted by ED congestion.

Chapter 4 is based on the following article:
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e Mengyu Li, Peter Vanberkel, & Xiang Zhong. Predicting ambulance offload

delay using a hybrid decision tree model (working paper).

In Chapter 5, one of the AOD interventions is chosen from two focus group dis-
cussions with key personnel from the local ambulance service provider. We then for-
mulate a discrete time, infinite-horizon, discounted MDP model to determine when it
is advantageous to send appropriate patients to out-of-region EDs, which have longer
transport times but shorter offload times. Based on the MDP model, an optimal
ambulance destination policy is constructed using the policy iteration algorithm. A
computational study is applied using 12-months of data from an EMS provider which
experiences AOD regularly. We find that the optimal policies can significantly reduce
AOD, time to bed for patients, and out-of-service time for paramedics at the expense
of increased ambulances travel distances. The model can be generalized and used
as a decision support tool for EMS systems to mitigate the impact of AOD on their
operations.

Chapter 5 is based on the following article:

e Mengyu Li, Alix Carter, Judah Goldstein, Terence Hawco, Jan Jensen, & Pe-
ter Vanberkel. Determining ambulance destinations when facing offload delays

using a Markov decision process model (working paper).

Since Chapter 2 through Chapter 5 are either published paper or working papers,
some repetitions of introductory information and terminology can be expected due
to the nature of the work. Some of these similar sections have been removed from
later chapters of this dissertation to avoid repetition, while some of them are kept for
structural purpose and the flow of chapters.

In Chapter 6, we conclude this research and discuss some future research direc-

tions.
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Chapter 2

A REVIEW ON AMBULANCE OFFLOAD DELAY
LITERATURE

2.1 INTRODUCTION

Emergency medical services (EMS) are public safety systems responsible for providing
emergency assistance and for protecting public health and safety [2|. The goal of such
systems is to respond quickly to population calls, to provide first aid services, and
to transfer patients to the appropriate hospital when needed [3|. In life-threatening
emergency situations, the ability of EMS providers to quickly respond will mean less
adverse effects for the patients involved. Therefore, EMS providers continuously seek
best practices, especially in a world where an aging population adds pressure to the
health care system [5]. Furthermore, EMS providers are challenged to perform their
services more effectively and efficiently to meet their own budgetary and performance

targets.

Much research has been conducted into EMS systems around the world. Re-
searchers have shown great interest in analyzing a variety of EMS processes to make
suggestions for improvements in: response time, dispatch time, deployment and re-
deployment, etc. [11-14] . Various operations research (OR) methods (such as math-
ematical programming, queueing theory, simulation and statistical modelling) have
been applied to analyze EMS systems and contribute to the development of EMS
solutions, commonly through improving resource efficiency [1, 15]. Literature reviews
have been written regarding the work conducted for EMS systems using different OR
methods |5, 6, 30|. Specifically, Brotcorne et al. [6] conducted a review on mathemat-
ical programming applied to ambulance location and relocation models. Fomundam
and Herrmann [16] surveyed the applications and contributions of queuing theory in
the field of healthcare. Aboueljinane et al. [3] focused on reviewing computer simula-

tion models that have been used for the analysis and improvement of EMS. Readers
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can refer to these reviews to find models and applications for different approaches to

EMS system performance improvements.

Despite EMS decision-making being a well investigated subject area, the EMS
interface with hospital emergency departments (EDs) has seen less attention. Opti-
mization models of ambulance services generally do not address the amount of time
that ambulances spend at hospitals waiting to transfer patients. However, in recent
years, the ambulance offload delay (AOD) problem has been raised by health care

providers and researchers |7, 10, 28|.

When an ambulance arrives at the hospital with patient(s), the paramedics trans-
fer patient care to the ED staff, then complete patient care reports, clean and restock
the ambulance before becoming available for the next call. This total time that an am-
bulance spends at the hospital while on call is known as the ambulance "turnaround
interval" [7, 9]. It can be further separated into two sub-intervals: the “delivery in-
terval” and the “recovery interval” [10] (Figure 2.1). The “delivery interval”, which is
also known as the ambulance offload time [7], starts when the paramedics arrive at
the hospital with the patient(s), and ends when patient care is transferred to the ED
staff. The “recovery interval” starts from when the patient transfer of care is finished,
and ends when the ambulance and crew are ready to return to service |7, 9]. When
the ED cannot accept the incoming ambulance patient immediately (often due to
congestion), paramedics wait with their patient(s), and continue to provide patient
care until an ED bed becomes available and the ED personnel assume responsibil-
ity for the patient(s). This delay period in transfer of care is referred to as AOD.
This AOD problem is a growing concern for health care providers, as the delayed
ambulance and crew are unable to return to service, and this delay can be significant
[20]. Keeping EMS crews at hospital EDs can have a significant adverse impact on

ambulance availability and response times for future population calls [22, 34].

The AOD problem has only recently become an active research area. There are
retrospective studies with the goal of understanding and analyzing this growing issue
[7, 22, 28|. There are also various analytical models on AOD indicating the need for
long term plans to prevent or mitigate the problem [5, 32, 33]. However, we have
not found a literature review focused on the AOD problem. The goal of this review

is to analyze the literature examining the AOD problem found in journal articles,
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Figure 2.1: The time-interval diagram of ambulance patient transportation process.

conference proceedings, grey literature, and books that represents 30 years of work
in this field. Our discussion summarizes this growing issue, the development and
contributions of OR to this field, and provides a description of the novel literature

for coping with AOD.

This review is organized as follows: Section 2.2 describes the search strategy for
the literature and review criteria. Section 2.3 presents the current understanding
of this problem, and the measures to assess and/or evaluate the impacts of AOD.
Section 2.4 discusses some of the potential root causes of the AOD problem that have
been reported in literature. Section 2.5 summarizes the impacts of AOD, including
the consequences on patient outcomes and EMS system performance, its financial
impacts, and some legal concerns. Section 2.6 reviews the current interventions that
have been studied and trialed to minimize the impact of AOD and potential future

implementations to improve EMS performance.

2.2 SEARCH STRATEGY

We conducted a comprehensive search of the existing literature applied to the AOD
problem found in journal articles, conference proceedings, grey literature, and books.
We defined the scope of this review to include articles that met one or both of the

following review criteria: (1) they studied the AOD problem or the interface between
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EMS and hospital EDs as a primary objective, in relation to EMS operations, includ-
ing measures, causes, effects, and solutions; (2) they studied interventions related
to AOD or the interface of EMS and hospital EDs in the context of general EMS
practices, rather than a specialty service.

The databases consulted include: PubMed MEDLINE, CINAHL Full Text, Web of
Science Core Collection, and ProQuest Dissertations & Theses. A broad set of search
terms in the title and abstract fields was identified by a preliminary search on related
topics to encompass each facet of the review criteria. Search keywords included:
ambulance offload; ambulance diversion; ambulance ramping; ambulance handover;
ambulance availability; offload delay; offload time; offload zone; turnaround interval;
hospital interval. All searches were conducted on May 29, 2017, with restriction to
English-language publications. The searches returned 470 studies with 137 duplicates,
which resulted in 333 unique articles. Articles that clearly did not meet one or
more of the review criteria were not considered further. The reviewer identified 100
articles meeting the review criteria, and 37 more articles were found through reference
searching. The method, focal areas, and main contributions of each paper are outlined

in the electronic accompaniment in Appendix A.

2.2.1 Search Results

The searches returned 470 studies with 137 duplicates, which resulted in 333 unique
articles. The author examined the results to identify potential articles of interest.
Articles that did not meet any of the review criteria according to the title and abstract
were not considered further. Full-text of the potential relevant articles were then
reviewed, and the reviewer identified 100 articles meeting one or both of the review
criteria. 37 more articles were found through reference searching of the reference lists
(Figure 2.2). The method, focal areas, and main contributions of each paper (n=137)
are provided in the electronic supplementary material. Readers can refer to this for

a summary and a quick reference guide.

2.3 UNDERSTANDING AND ASSESSING AOD PROBLEM

This section reviews studies that have worked to describe and quantify the size of

the AOD problem in different parts of the world. We identified nine such studies
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Figure 2.2: Literature search and screening flowchart.

measuring AOD in regions of North America, Europe, and Australia.

2.3.1 Empirical Assessment of AOD

Eckstein and Chan [26] analyzed a total of 21,240 incidents when the AOD occurs
in Los Angeles, CA, USA between April 2001 and March 2002. Incidents were in-
cluded when the ambulance turnaround time was greater than the local standard of
15 minutes. These accounted for 1 out of every 8 ambulance transports in the stud-
ied area. Among these incidents, 8.4% were in excess of 1 hour. The median waiting
time per incident was reported to be 27 minutes, with an interquartile range of 20 to

40 minutes. They concluded that the decreased ambulance availability may have a



significant negative impact on the EMS systems’ ability to provide timely response.
Their study also suggested a direct link between ED crowding and the ability of EMS
to provide a timely response to future emergency calls.

In a study conducted by Segal et al. [35], the authors examined the ambulance
turnaround time for 152 ambulance arrivals to a local hospital ED in Montreal, QC,
Canada during a six-week period from June to August 2003. The results show that
the total time ambulances spent in hospitals represents 45% of the total call time
(45.24 minutes and 101.06 minutes, respectively). The majority of the turnaround
time occurred after the completion of triage with a mean time of 31.33 minutes. The
authors suspected that the prolonged post-triage time may be a reflection of the
difficulty ambulances are having in transferring patient care to the ED.

Silvestri et al. [23] conducted an observational study to evaluate offload delay
intervals and the association between out-of-hospital patient triage categorization and
admission. The overall mean offload time was reported to be 32.7 minutes (among the
167 patients in the study group), including 122 green-level (least severe), 36 yellow-
level (moderately severe), and 9 red-level (most severe) patients. The mean offload
times for green, yellow, and red criteria were 34, 39, and 1.6 minutes, respectively.
Over 52% of all patients were offloaded within 15 minutes of arrival, with an additional
16% within 30 minutes, 17% within 60 minutes, and 15% in excess of 60 minutes.
The author concluded that the patient triage categorization cannot determine need
for admission therefore should not be used to evaluate offload time intervals.

Cone et al. [36] reported that AOD is a relatively common problem at the interface
of the EMS systems and hospital EDs in New South Wales, Australia. They conducted
a retrospective study in 2009 to quantify the AOD experienced by the Ambulance
Service of New South Wales, and to investigate patient and system factors associated
with AOD. Of 141,381 transports, 12.5% of patients experienced an AOD of 30 —
60 minutes, and 5% a delay of > 60 minutes. AOD was most pronounced at large

hospitals, in urban areas and during winter.

2.3.2 Measurements of AOD

Many hospital EDs and EMS systems have started to treat AOD as a new perfor-

mance benchmark to ensure quality patient care [5, 28, 37]. Researchers, therefore,
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have begun to explore different ways to help assess the AOD problem properly and
accurately. Hammond et al. [38] introduced a standard definition of this process
developed through in-depth interviews, focus groups and chart audits within the
Queensland Ambulance Service and 10 EDs across Southeast Queensland, Australia.
The study identifies significant inconsistencies in the practice and reporting of AOD
across all EDs. Taylor et al. [39] conducted an observational study in Bath, UK,
to determine the difference between the recorded arrival of an ambulance outside an
ED and the actual delivery of the patient to the clinical area of the ED. This study
demonstrates a small but significant delay between these two time records. The au-
thor recognized that this delay is inevitable, and it is difficult to see how it can be

significantly reduced.

A concern was expressed by Segal et al. [35] that little data is available that
directly relate AOD to specific factors (i.e., ED crowding). Cooney et al. [37, 40]
assessed the AOD problem at a hospital ED in Syracuse, NY, USA, to explore if the
National Emergency Department Overcrowding Scale (NEDOCS) score could be used
to predict increasing AOD. NEDOCS is a performance measure (ranges between 0
and 200) implemented in most of the North American’s EDs in to assess the degree
of crowding (the higher, the busier). The authors studied a sample of 483 patients
arriving via ambulance to the SUNY Upstate Medical University Hospital ED during
a 12-month period, by recording the NEDOCS score and offload time for each patient
at the time of arrival, as well as demographical information. Among these visits,
AODs were ranged from 0 (no delay) to 157 minutes with a mean of 17.07 minutes.
15.5% of them were reported > 30 minutes. When examining the delay time alongside
the NEDOCS score groups, significant AOD time differences were reported between
these groups. The authors thus concluded that the NEDOCS score had a positive
correlation with AOD and could potentially be utilized by EMS personnel for de-
termining the appropriate destination for ambulance patients to avoid crowded EDs.
Later, Cooney et al. [41] conducted another study with similar data format to assess
AOD at an academic level 1 trauma center with separate adult and pediatric EDs.
A 12-month sample of 1,892 patients was evaluated with 21.8% pediatric (< 19 years
old) and 78.2% adult (> 18 years old). AOD ranged from 0 to 122 minutes, with a

mean of 14.01 minutes. Significant differences were found in delay time between the
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NEDOCS score range groups (defined in their previous study [40]): group 1 = 9.18
minutes, group 2 = 12.72 minutes, group 3 = 18.14 minutes, group 4 = 20.62 min-
utes. This indicates that NEDOCS score has a positive correlation with AOD. 769 of
these cases were also evaluated by using the Emergency Severity Index triage level (1
—5). The authors reported that the mid-level severity (level 3) was associated with
the longest average AOD, 11.62 minutes. There were significant differences between
all five triage levels when measuring the average AOD. The authors suspected that

nursing perception of patient severity may affect AOD.

According to Carter et al. [7], most EMS systems find it challenging to accurately
measure the offload time (delivery interval). Instead, they measure the ambulance’s
total time at hospital (turnaround interval) and most AOD research and policy is
based on this proxy. Therefore, this research group tested the validity of using the
turnaround interval as a surrogate for the delivery interval. Their analysis showed a
good correlation (0.753) between turnaround time and actual offload time. Steer et al.
[41] introduced a novel method to monitor the offload time by using radio frequency
identification (RFID) tags to the ambulance cots and a reader in the ED ambulance
entrance. This way the ambulance traffic in ED can be passively recorded. 1,920
complete visits were recorded in this 16 weeks observational study starting December
2009. The offload time averaged at 13.2 minutes, with a median of 10.7 minutes. A
total of 43% of the patients were offloaded in less than 10 minutes, while 27% took

greater than 15 minutes.

The summary of these measurements of the AOD problem is shown in Table 2.1.

2.4 CAUSES OF AOD

Emergency department crowding refers to the situation where an ED is functionally
impeded due to the physical or staffing capacity shortage of the ED [42]. It has been
reported by many authors as an important contributor to AOD [5, 21-25|, thereby
a major concern to EMS providers, as the negative effects are substantial [43-45].
Due to the increasing volume of patients, ED staff can no longer prioritize the quick
turnaround of ambulances. This creates risks for delayed EMS responses to future

population calls [22].
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Paper AOD Measure Data stratifications Study Region
Eckstein Median: 27 minutes N/A Los Angeles, CA, USA
&  Chan
(2004)
Segal et al. Mean: 31.3 minutes N/A Montreal, QC, Canada
(2006)
Silvestri et Mean: 32.7 minutes By severity Orlando, FL, USA
al. (2006)
Cooney et Mean: 17.07 minutes By NEDOCS score Syracuse, NY, USA
al.  (2011;
2013a)
Cooney et Mean: 14.01 minutes By severity and NE- Syracuse, NY, USA
al. (2013b) DOCS score
Steer et al. Mean: 13.2 minutes, Median: N/A Akron, OH, USA
(2016) 10.7 minutes
Cone et al. 12.5% of patients:30 — 60 min- By lengths of AOD New South Wales,
(2012) utes;5% of patients:> 60 minutes Australia
Taylor et Measured the difference between N/A Bath, UK
al. (2006)  the recorded arrival of an ambu-

lance and the actual delivery of

the patient to the clinical area of

the ED
Hammond Held interviews to define AOD N/A Southeast Queens-
et al. land, Australia
(2009)
Carter et Calculated the correlation (0.753) N/A Richmond, VA, USA
al. (2014)  between ambulance total time at

hospital and AOD time

Table 2.1: The summary of articles that measure the AOD problem.

Other observational and analytical studies have supported this conclusion. An in-

vestigation conducted for the Ministry of Health and Long-Term Care in ON, Canada

[46] reported that the principal cause of AOD is the congestion in downstream stages

of patient care (i.e., hospital bed shortage). Eckstein and Chan [26] suggested that

ED crowding results in delays for paramedics waiting to transfer patients (AOD). Ma-

jedi |32] expressed concern that the delayed transfer of an admitted patient from the

ED to an inpatient bed contributes to ED crowding, and subsequently the AOD prob-
lem. Eckstein et al. [22] and Almehdawe et al. [5] both suggested that this escalating

problem of extremely high inpatient occupancies (capacity shortage) has resulted in

ED crowding, the AOD problem, and eventually a reduction in the quality of EMS

service to the community.

ED crowding is an increasingly common issue faced by many health care systems
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[17-19]. In Andrulis et al.’s survey [47] on crowding in 239 American teaching hos-
pitals, three quarters of responding hospitals reported holding times increased for
admitted patients over the preceding three years from 1991, and the use of methods
to decrease crowding was also growing. The increase in ED crowding has also be

reported in published articles since this survey [27, 48, 49].

The causes of ED crowding are complex and multifaceted [28]. Many researchers
have investigated this area to identify the contributing factors and strategies to reduce
ED crowding. Derlet et al. [48] distributed a survey to EDs in 50 American states
to determine the factors associated with ED crowding as perceived by ED directors.
Among the 575 responded EDs, 91% reported ED crowding as a problem, and 33%
reported that some patients had poor outcomes as a result of it. Their study summa-
rized some common causes of ED crowding reported by the ED directors, including
high patient acuity, hospital bed shortage, high ED patient volume, radiology and lab
delays, and insufficient ED space. Some other factors contributing to ED crowding
were outlined by Derlet and Richards [43, 50|, and Olshaker & Rathlev [51]. Such
factors included shortage of support staff, consultation delays, shortage of on-call
specialists, ED space limitations, language and cultural barriers, increased medical
record documentation requirements, and difficulty in arranging follow-up care. Figure
2.3 shows a summary diagram of the common causes of ED crowding, which leads to
AOD. Readers can also refer to Hoot & Aronsky’s review [52] to find more research

regarding causes, effects, and solutions of ED crowding.

While multiple factors are likely contributors to the growing crisis of ED crowding,
recent research suggests that ED crowding is not caused by the input factors (i.e.,
nonemergency ED patient visits), but rather by the output factors (i.e., the overall
hospital throughput) [42, 53, 54]. Access block has been identified as a major cause
to ED crowding (28, 42, 48, 55|. It refers to the situation where patients in the
ED requiring inpatient care are unable to gain access to appropriate hospital beds
due to a lack of available inpatient beds. In this circumstance, admitted patients
remain in the ED until a hospital bed becomes available. This access block period
can last from hours to days [18], limiting the patient’s evaluation/treatment and
causing ED crowding [50]. Schneider et al. [49] evaluated multiple trialed strategies
to reduce ED crowding in Rochester, NY, USA in the last decade. They realized
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Figure 2.3: A summary diagram of the common causes of ED crowding, which leads
to AOD.

that those strategies based from the ED were the ones with little effect; while the
ones addressed factors external to the ED were more successful. Other researchers
[42, 56, 57| supported this conclusion with a recommendation of finding the solutions
in managing hospital bed stock and systemic patient capacity, including the use of

primary care and community resources.

2.5 AOD CONSEQUENCES

As stated by Cooney et al. [28], consequences of AOD can be categorized into two
major headings: consequences to the patient and consequences to the EMS system.
Consequences to patients include delay to definitive care, poor pain control, delayed
time to treatment, etc., which may result in compromising patient care and safety.
Consequences to the EMS system are negative impacts on the system status and
resource availability. It may prolong the ambulance response time and time spent
on task, resulting in decreased efficiency of the ambulance services, and the need for
additional staffing 26, 58|. In addition, financial burdens and legal concerns regarding

the AOD problem have also been reported [5, 29, 30].
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2.5.1 AOD Impact on Patients

The time required to transfer patient care can be critical to ambulance patients upon
arrival at the hospital. Any delay in this process (e.g., AOD) is a potential risk
to patient safety |28]. Crilly et al. [20] conducted a study to describe and compare
outcomes for ambulance patients arriving to EDs who experienced delays longer than
30 minutes with those who did not. This study was undertaken in Australia using
12 months of health data (September 2007-2008) from 40,783 patient visits to three
EDs via ambulance. These visits made up about 30% of the total ED visits. Among
these ambulance visits, 15% experienced an AOD longer than 30 minutes, and 63% of
those had an ED length of stay (LOS) longer than 4 hours. This study confirmed that
transport by ambulance to hospital does not guarantee timely access to medical care
when there is AOD. The authors also reported that patients with an AOD shorter
than 30 minutes had significantly better outcomes for almost all demographic and
ED characteristics (i.e., time to triage, ED LOS) with the exception of in-hospital
mortality. Similar conclusions were reported by Hitchcock et al. [27]. Their study
was conducted to describe and compare patient outcomes between ambulance patients
arriving to one ED in Australia (1 June - 31 August 2007) with (619 cases) and without
(1,238 cases) experiencing AOD. The cases in the two groups were matched by age,
gender, and presenting problem. Outcome measures included ED LOS and in-hospital
mortality. The results indicated that patients who experienced AOD had significantly
longer wait time to be triaged (10 minutes vs. 4 minutes), and comprised significantly
higher proportions of those access blocked (43% vs. 34%). This study also reveals
that the likelihood of having an ED LOS longer than 8 hours is 34% higher among
patients who experienced an AOD. AOD is a contributing factor to prolonged ED
LOS and adds additional strain on EDs. However, there was no significant difference
identified in this study on the proportion of in-hospital mortality (2% vs. 3%) between

the two patient groups, consistent with the previously discussed findings.

Kingswell et al. [59] also investigated the AOD experience from the perspective of
patients. They carried out semi-structured interviews with seven patients who vis-
ited a regional ED in Queensland region, Australia via ambulance and experienced

an AOD longer than 30 minutes. Most participants reported not understanding the
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causes of AOD, but understood some of the consequences. Though they felt safe wait-
ing with paramedics, they expressed frustration with being kept ’in the dark’ during
AOD, due to the lack of communication regarding the availability of ED beds. This
study provided in-depth patients experiences of AOD and indicated that improve-
ments in communication with patients are required within the context of patient
rights, health care safety and quality frameworks, to ensure quality care is delivered
during AOD.

2.5.2 AOD Impact on EMS Resource Availability

AOD not only hinders the promptness of medical treatments for the patients, but also
negatively affects the ability of EMS to provide consistent and timely care, due to the
reduced ambulance availability [22, 60, 61]. It can affect response times and prolong
time on task, resulting in decreased efficiency and the need for additional resources
[26]. When ambulances are unavailable for future population calls due to AOD, there
is potential to put the community and lives at risk due to the compromised availability
of ambulance services [28].

The impact of AOD on EMS resource availability has seen less attention. Most
research has been carried out by medical doctors and frontline personnel who try
to understand the problem and highlight its importance and implications using ob-
servational studies. One of the early studies was reported by Cone et al. [10]|. The
group conducted a “time-motion prospective study” of the EMS turnaround inter-
val by monitoring and recording the ambulance delivery and recovery activities (122
patients). They concluded that ambulance call report documentation required the
greatest sub-interval of turnaround time in the observed system. AOD was not re-
ported as a major concern in the study. However, in a later prospective longitudinal
study conducted by Eckstein and Chan [26], the authors concluded that the decrease
in ambulance availability may have a significant effect on an EMS systems’ ability
to provide timely response. Cooney et al. [40] conducted an observational study of a
sample of 483 patients arriving via ambulance during a 12-month period to explore
the relation between AOD and ED crowding. They reported that the median AOD
time was significant and raised concerns related to patient care and EMS system

resource availability.
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In their position statement to the Canadian National Association of EMS Physi-
cians, Cooney et al. [28] raised another concern regarding the impact of AOD on EMS
resource availability, through an EMS operation practice called “mutual aid”. Mutual
aid represents the EMS practice where free ambulances are drawn from outlying ar-
eas into another service area to assist with AOD and to maintain proper coverage in
the problematic service area. This practice may result in ambulances being relocated
away from their home service areas, possibly for the duration of their remaining shifts,
and represents a potential decrease in surge capacity of the EMS system. Majedi |32]
expressed a similar concern in his thesis that the mutual aid practice may result in

ambulance shortage in the outlying areas, which put the communities at risk.

2.5.3 AOD Impact on Finance

It has also been reported that AOD adds costs to EMS providers. Majedi [32] ar-
gued that ambulance crews are likely to work overtime when AOD occurs, which can
be costly. In 2006, the city of Toronto, ON, Canada spent $3,906,700 in EMS staff
overtime expenditures alone [32|. The statistics provided by the Region of Water-
loo Public Health (2007), ON, Canada revealed that the Waterloo region lost 13.25
ambulance days per month to AOD in 2005 and 12.36 ambulance days per month
in 2006. That translated to a financial loss of approximately $840,000 in ambulance
operations. To reduce the AOD time, the provincial government invested $96 million
in its comprehensive action plan in 2006. However, AOD still costed the Toronto
EMS approximately 180 ambulance hours per day in December 2007 [5]. Another
province of Canada, Nova Scotia, is also experiencing the worsening AOD problem
and its fiscal burden [30]. The EMS provider in Nova Scotia has estimated that the
AOD problem results in about 2,900 ambulance hours per year, which equates to
approximately $754,000 at the average paramedic salary. Smith [4] has reported that
in England, AOD costs the National Health Service millions of pounds per year in
the form of lost ambulance hours, which have risen from 37,000 hours in 2008/2009
to around 54,000 hours in 2010/2011.
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2.5.4 AOD Legal Concerns

Some legal concerns are also rising for the AOD problem. A major regulatory issue
is that paramedics cannot assume the role of ED staff [22, 29, 62]. In the USA, it is
a federal regulatory expectation that “all EDs must have policies and procedures in
place to immediately receive and assume care of the patient --- A hospital’s refusal
to accept responsibility could be a violation of the Emergency Medical Treatment
and Labor Act (EMTALA)”. Delaying care of a patient could also be a violation
of EMTALA [24]. Although EMTALA gives some clarity as to whom is responsible
for the patient on the stretcher once arriving at the hospital, this issue has not been
addressed by legislation nor tested in case law in Canada [62].

There has been some discussions and considerations related to paramedics’ re-
sponsibility for patient care in EDs. Eckstein et al. [22] rationalized that paramedics
should assist the ED staff to monitor their patients under ongoing disaster conditions
(outstripped resources) of the ED. However, they also acknowledged that such be-
haviors may have detrimental impact on the EMS system if occurring on a regular
basis. Schwartz [62] raised his concern as paramedics may not been trained to treat
protracted conditions, considering that their primary goal is to provide initial patient
care with limited resources during the patient transportation to the hospital. Fur-
thermore, leaving patients with paramedics in EDs may offer a false sense of security
to hospital staff, as the patients are not monitored at an ED level rather than that
within the paramedic scope and skill set. This could lead to delayed detection of
life-threatening conditions, as well as a debate of legal responsibility and liability for
care within a hospital facility, in which only credentialed physicians are permitted to

practice.

2.6 INTERVENTIONS FOR THE AOD PROBLEM

Various interventions have been proposed, trialed, and evaluated to study their effects
on reducing AOD, most target either EMS providers or hospital EDs. The following
section reviews these interventions, and is divided into two major categories: hospital-
based interventions and EMS-based interventions. OR models that are deployed in

these intervention studies are summarized in Figure 2.4 at the end of this section.
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2.6.1 Hospital Based Interventions on AOD

Various interventions have been proposed, trialed, and evaluated to study their effects
on reducing AOD, most target either EMS providers or hospital EDs. The following
section reviews these interventions, and is divided into two major categories: hospital-
based interventions and EMS-based interventions. OR models that are deployed in

these intervention studies are summarized in Table 2 at the end of this section.

Offload Programs

Two urban hospital EDs (the Queen Elizabeth II Health Science Centre and the
Dartmouth General Hospital) in Nova Scotia, Canada have attempted to reduce AOD
time by implementing an offload zone (OZ) concept, in collaboration with the local
EMS provider [63]. An OZ is a monitored holding area in the hospital ED for patients
who arrive by ambulance but cannot be admitted into the ED due to congestion. This
practice frees the ambulance to return to service; while the patient is in the care of
a dedicated nurse and paramedic waiting for an available ED bed [25]. With these
two staff, the OZ can serve multiple patients (up to 6) at the same time, eliminating
the need for one ambulance to wait with each patient. Two years after opening
the two OZs, Carter et al. [30] completed a Health Care Failure Mode and Effect
Analysis (HFMEA) study to identify risks to patient safety and process efficiency.
They created a process map to provide a framework consisting of six major processes
of the OZ, for understanding its function. They concluded that the OZ resulted in
ED staff having little incentive to admit patients who were waiting in the OZ and
instead admitted patients from the waiting room. This led to the OZ often being at
capacity and unable to relieve AOD.

Motivated by this unexpected finding, Laan et al. [64] modeled the OZ using a
continuous time Markov chain to investigate how this lack of incentive impacts AOD.
The result suggested that, when the probability of “a patient admitted from the OZ
when a patient of equal acuteness is waiting in the waiting room” is not greater
than a certain threshold (0.35 in their case), implementing an OZ will result in even
longer offload delay, as admission priority is disproportionately given to patients in
the waiting room. This threshold is sensitive to the capacity of the OZ and the clinical

load, meaning the ED’s incentive to admit patients from the OZ has a smaller impact
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on AOD when there is a large OZ and when the ED is less busy. Therefore, certain
OZ patient selection criteria need to be enforced to maintain the expected benefits of
implementing the OZ — to reduce AOD.

The Ministry of Health and Long-Term Care in Ontario, Canada has funded a
project involving hiring dedicated offload nurses to monitor low acuity ambulance
patients while they wait for an available ED bed [65]. Over 10 performance measures
related to the offload nurse program and AOD were collected and reported to the
hospitals and the EMS providers bi-annually. These measures track offload bed uti-
lization rate, as well as the LOS with the offload nurse, which allow the EMS provider
and the EDs to monitor patient flow as a predictor of AOD. The result from this trial
was unclear. Clarey et al. [66] designed a discrete event simulation model to assess
the change on AOD in a scenario, where dedicated nurses were hired to assist with
ambulance offloading patients. This study demonstrated a clear reduction in AOD
when dedicated nursing levels were increased. However, the authors also raised their
concern that using this as a sole method to reduce AOD would require unacceptably
low staff utilization, which would cost hospitals both financially and in human re-
sourcing. Job duties for these dedicated nurses need to be carefully designed so that
additional work can be incorporated into their work yet still enable them to rapidly
react to ambulance arrivals. From the perspective of patient and health services out-
comes, Greaves et al. [67] investigated patient’s waiting time to see a clinician in all
ED visits (n = 21,454) 39 days before, during, and after an offload nurse was intro-
duced in an Australian ED during July and November 2012. They concluded that
the waiting time improved marginally during the trial period, but was not sustained

when the role was removed.

Expanding ED Capacity

Expanding ED capacity has been explored multiple times by different research groups
using different methods, yet fielded controversial results. Silvestri et al. [24] performed
a 22-month longitudinal observational study between January 2003 and October 2004.
The goal was to examine the impact of ED bed availability on AOD time in a re-
gional EMS system with four receiving hospitals in Orlando, FL, USA. Two of these

hospitals remained unchanged during the study period, while the other two hospitals

27



implemented two different AOD mitigating strategies starting in 2004. One hospital
introduced an offload time limit policy, and the other one expanded the ED capacity.
The median offload time was then reported decreased in all hospitals collectively from
39.6 (in 2003) to 35.1 minutes (in 2004). The result suggests that an increase in the
ED bed availability decreased AOD.

Majedi [32] modeled the interaction of an EMS and a hospital ED using queuing
theory, and modeled the behavior of the system as a continuous time Markov chain.
The tested scenarios included adding more ED beds, adding more ambulances, and
reducing the ED LOS of patients. By evaluating various performance measures (such
as the average number of ambulances in offload delay, the average AOD, and am-
bulance and ED bed utilization), Majedi concludes that adding more beds to the
ED could have a positive impact on these performance measures. In particular, the
average number of ambulances experiencing offload delay and the average AOD were

decreased.

Almehdawe et al. [5] used a Markov chain queueing model to analyze the interface
between a regional EMS provider and multiple EDs serving both ambulances and
walk-in patients. By using matrix-analytic methods, they solved for the steady state
probability distributions of queue lengths and waiting times for both ambulance and
walk-in patients in all the studied EDs (AOD was measured using the waiting times
of ambulance patients). They computed a variety of performance measures subject to
different resource levels, particularly for assessing the AOD problem and its impact
on the system resources. This study concludes that the priority based admitting
policy has a great impact on patient waiting times. Assigning a higher priority to
ambulance patients ensure minimal AOD at the cost of long waiting times for walk-in
patients. When additional resources are considered for the system, the benefit of
adding capacity is greater for EDs with higher utilization. The authors propose that
this model can be used to assess the effect of adding more capacity to the system. It

can also show where to add resources to improve the system performance the most.

Some other studies, on the contrary, concluded that expanding ED capacity does
not show any improvement on mitigating the AOD problem. Han et al. [68] exam-
ined the effects of ED expansion (from 28 to 53 licensed beds) on a metric of EMS

performance at an urban, academic Level 1 trauma center in Nashville, TN, USA.

28



Data was compared with a five-month pre-expansion period (November 1, 2004, to
March 1, 2005) and a five-month post-expansion period (June 1, 2005, to October 31,
2005). An accelerated failure time model was performed to test if ED expansion was
associated with a better EMS performance while adjusting for potential confounders.
The study concludes that an increase in ED bed capacity did not affect the specific
EMS performance. Therefore, ED expansion appears to be an insufficient solution
without addressing other bottlenecks in the hospital.

Crilly et al. [69] investigated the impact of opening a new ED on patient and
healthcare service outcomes using a 24-month deterministically linked data set from
the ambulance service and three ED and hospital admission databases in Queensland,
Australia. Total volume of ED visits was reported to increase 18%, while local popu-
lation increased 3%. Healthcare service and patient outcomes at the two pre-existing
hospitals (including ambulance offload time, ED LOS, and access block) did not im-
prove. They concluded that the increase in the total volume of ED visits was at a
far greater rate than local population growth, suggesting it either provided an unmet
need or a shifting of activity from one sector to another. There was an inherent need
to take a “whole of health service area” approach to solve crowding issues.

Later, Crilly et al. [70] conducted a retrospective comparative cohort study to
identify predictors of admission and to describe outcomes for ambulance patients
at three Australian public EDs, before and after the opening of 41 additional ED
beds (from 81 to 122). Reported data included: AOD, time to see doctor, ED LOS,
admission requirement, access block, hospital LOS, and in-hospital mortality. The
authors reported that after the increase of emergency capacity, in-hospital mortality
was the only outcome measure that improved during the study period; while all other
time-related service outcomes, including ED LOS, time to see doctor, and AOD, did

not show any improvement.

Increasing ED Patient Throughput

As previously discussed, ED crowding and access block is a widespread problem and
often results in AOD. Actions to address ED crowding and Access Block include
continuously monitoring ED patient throughput times, identifying any correctable

areas of delay, and implementing effective triage and bed utilization strategies (i.e.,
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the use of fast track, acute care clinics, observational units) [22].

Majedi [32] showed that reducing patients’” ED LOS, which increases the ED pa-
tient throughput, can have a positive impact on EMS system performance, including
the average number of ambulances in offload delay, average AOD, and ambulance
utilization. Lee et al. [71] applied a high-turnover utility bed intervention at the ED
of an urban tertiary hospital in Taipei, China to improve ED patient throughput and
alleviate ED crowding. 14 utility beds were designated exclusively for ED patients
with a strict 48-hour LOS limit for each patient. In the pre- and post- intervention
period cohort study, the authors reported improved EMS performance and a short-
ened ED LOS from 9.7 hours to 8.0 hours. Furthermore, there was no difference in
ED revisit within 72 hours and cardiac arrest management, when assessing the impact

of this intervention on the patient outcomes.

Alberta Health Services [72] in Canada implemented a province-wide ED Over-
capacity Protocol (OCP) in December 2010 to battle the growing ED crowding and
AOD problems in the province. This OCP sets triggers such as: ED bed occupancy
> 110%, > 35% of ED care spaces blocked, no ED space available for high severity
patients, etc. When these triggers were reached, immediate actions were executed by
the varied ED staff (ED physicians, nurses, clerks, etc.) to reduce ED wait times and
to improve the ability to move admitted patients out of EDs. These actions are on
an urgent basis and can be escalated up to the CEO level, if impact on wait times
is not timely. The OCP frees up ED care spaces by increasing patient throughput.
Patients might be asked to share a room, to move to a different room or facility,
to receive ongoing care in the community, or to be admitted to a hospital unit and
given a stretcher or chair in a temporary location. A pre-/post- OCP comparison
study was conducted by McRae et al. [73| using administrative data from February
to October 2010 as the pre-OCP period and the data from February to October 2011
as the post-OCP period. The ED volume was increased by 7.0% while the ambu-
lance service demand increased by 11.1% between the pre- and post-OCP periods.
The authors reported that improvements in ED patient flow led to improvements
in ambulance offload time. Preliminary evaluation on the mean AOD suggested a
significant reduction before and after the implementation of OCP. Cooney et al. [28]

have also emphasized the importance of improving patient throughput. They argued
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that decreasing AOD directly, without improving throughput, does not address the
issue of ED crowding. Therefore, all components of the healthcare system must work

together to improve throughput on all levels to ultimately result in decreases in AOD.

These hospital interventions take different approaches to tackle the AOD. The
offload nurse program assigns dedicated hospital personnel to directly work on reduc-
ing AOD; while increasing ED capacity explores the possibility of reducing AOD with
additional ED facility resources. The offload zone trial takes a cooperative approach
to reduce AOD by bringing together the hospital EDs and the local EMS provider;
while increasing ED patient throughput requires collaboration between the ED and
other hospital departments. A common thread shared between these hospital-based
interventions is that they require additional ED resources, either human resources
(offload nurse program), facility resources (expand ED capacity), or even a combi-
nation of both (offload zone, increase ED patient throughput). Eckstein et al. [22]
recommended that every hospital should create a system to provide rapid access to
additional ED resources (i.e., stretchers) when needed as well as a written plan to
address ED crowding. Such contingency plans are designed to release EMS per-
sonnel rapidly from hospitals, especially in a disaster situation, when resources are
scarce. Eckstein et al. [22] also recommended that EDs should apply a mandatory
nurse—patient ratio (the minimum staffing ratios for good patient care in critical care
areas of the hospital) as an indicator of the ED status. Furthermore, hospital admin-
istrators should emphasize the importance of enabling paramedics to transfer care of

patients to ED with minimal delay.

2.6.2 EMS Interventions on AOD

EMS systems have put forth efforts to minimize the impact of AOD through several
different interventions. Some of them have been trialed and reported in literatures.
Others only appear in gray literatures and work reports from stakeholders. In general,
the effects of these innovative practices are not well studied, with the exception of

ambulance diversion.
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Ambulance Diversion

Ambulance diversion (AD), first described by Lagoe & Jastremski [74], is the practice
where an ED diverts incoming ambulance patients to other facilities due to overcrowd-
ing [75]. This gives the ED staff time to recover and decreases the risk of adverse
events occurring in overcrowded situations [43]. To reduce the growing problem of
ED crowding, many hospitals and health care systems have implemented AD poli-
cies [22, 76]. Burt et al. [77] used the 2003 National Hospital Ambulatory Medical
Care Survey (on 40,253 visits to 405 participating EDs) data to determine the fre-
quency of AD. They reported that about 45% of EDs reported diverting ambulances
at some point during the previous year. Among this 45%, approximately 3% of op-
erating time was spent in diversion status. In 2003, an estimated 501,000 diversions
occurred, equivalent to one per minute.

Research has been conducted to further study and evaluate AD. Warden et al. [7§]
investigated the potential predictive factors of AD. Kuruvilla [79] developed various
causal models to determine the probability of a hospital going on diversion. Leegon et
al. |79] evaluated the accuracy of using a Gaussian Process to predict AD. Hagtvedt et
al. [80] used several tools, including a birth-death process, discrete event simulations,
agent-based simulation model, and some game theory to examine the potential for
cooperative strategies to reduce ambulance diversion. Ramirez-Nafarrate et al. [81, 82]
explored optimal AD control policies using different methods, including a simulation-
optimization approach [81] and a Markov Decision Process (MDP) formulation [82].
Lin et al. [83] developed a simulation model to quantitatively evaluate the effectiveness
of various ambulance diversion strategies on relieving ED overcrowding by assessing
the crowdedness index, the patient waiting time for service, and the percentage of
adverse patients. The same research group (Kao et al. [84]) also utilized a patient
flow queuing model for simulating AD among multiple EDs in a region to evaluate
the impact of different AD strategies on the crowdedness of the EDs.

While appealing in theory, AD has yielded conflicting results, and the growing
issue of ED crowding has brought this strategy into question. Scheulen et al. [85]
investigated the impact of AD policies in urban, suburban, and rural areas of central
Maryland, USA. They found that AD policy had a limited effect in preventing further

patient volume in urban and suburban areas, and it had no impact in rural areas.
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Therefore, the authors argued that “the impact and efficacy of AD policies should be
evaluated to ensure they are having the intended effect”. Carter and Grierson [86]
researched the impact of AD on the availability of ambulance resources, specifically
transport time, hospital turnaround, and total out-of-service time. 1,563 instances of
diversion and 1,403 controls were included in this study, showing an average 2-minute
difference in turnaround time and no difference in transport, hospital turnaround,
and total out-of-service times between diversion and control time periods. Therefore,
it was concluded that the availability of EMS resources was maintained during the
AD periods.

Numerous studies have also suggested a variety of problems that may be caused by
AD, such as: delaying prompt and appropriate medical care for diverted patients [87—
89|, adversely affecting EMS system efficiency [90, 91|, exacerbating crowding at other
facilities [28, 92, 93], and generating financial burdens to hospitals and EMS systems
[94-96] . Eckstein et al. [22] also argued that use of this temporizing methodology has
created false expectations of relief and often results in adversarial relations between
the two key groups - the EMS and ED staff, which may put the EMS system at risk of
liability. Weaver [97] reported that AD has become less effective and more problematic
with hospitals everywhere filling to capacity. In addition, AD may result in legal
problems [97, 98], as well as ethical and logistical ones [97, 99-101]. Hence, decisions
regarding AD should be made with careful consideration of patient preferences, local
EMS laws, and institutional surge capacity. The American College of Emergency
Physicians (ACEP) [102] has developed some guidelines for AD to ensure access to
emergency care and suggested that “each EMS system, including all of its component
agencies, must develop a cooperative diversion policy” and should only allow AD to

occur “after the hospital has exhausted all internal mechanisms to avert a diversion”.

Due to the controversial results, many health care systems have adopted policies
to limit or eliminate AD [92, 103, 104] and studies have been carried out to evaluate
these policies. One example of such implementation was detailed by Patel et al.
[105] in their study undertaken in 17 hospitals of the greater Sacramento region,
CA, USA from January 2001 to December 2003. After successful implementation of a
comprehensive reduction program, AD in the Sacramento region was reduced by 1,428

hours per month (a 74% reduction). Furthermore, such reduction occurred despite
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overall increases in ED census, hospital admissions from the ED, EMS arrivals to
the ED, inpatient hospital census, and overall population. In the follow-up program,
Patel and Vinson [106] sought to further reduce and eliminate AD by progressively
decreasing the duration of each AD event from 3 to 1 hour. This decreased AD
from 8,469 hours to 2,306 hours in approximately 3 years. The author suggested
that with a collaborative and cooperative goal, urban regions can effectively reduce
AD by “systematically and sequentially” limiting the duration of each AD event, as
demonstrated in the greater Sacramento region. Another study by Friedman et al.
[107] has drawn similar conclusions after a two-week moratorium on citywide diversion

in October 2006 in a consortium of teaching hospitals in Boston, MA, USA.

Lagoe et al. [108] conducted a retrospective review on AOD procedures at the
system and hospital levels in the metropolitan area of Syracuse, NY, USA, reporting
a 33.6% reduction on diversion hours system-wide during the study period. They
concluded that a combination of approaches at the community-wide and hospital-
specific levels produced meaningful reductions of AD. Barthell et al. [109] used a
collaborative approach to track and report AD and ED crowding in Milwaukee, WI,
USA, and reported a reduction of AD after implementing this approach. Castillo
et al. [110] described a state-wide initiative to reduce diversion in four regions of
California, USA from September 2006 through August 2008. Hospitals developed
and implemented several best practices to improve patients’ input, throughput, and
output during the study period, resulting in a significant AD decrease from an average

of 1,468 hours to 1,176 hours monthly.

Vilke et al. [92] evaluated a voluntary community-wide intervention to reduce AD
in a county of 2.8 million individuals in California, USA. This intervention consists
three core rules, as detailed in a later report [111]: AD status is limited to a max-
imum one-hour duration; an ED must accept at least one patient after coming off
and before declaring back on diversion; regardless of diversion status, hospitals must
accept patients originally discharged from their facility. A significant decrease was
reported in the number of patients who did not reach the requested facility due to
AD for the trial period (n = 322) and post-trial period (n = 449), compared to the
pre-trial period (n = 1,320). In the follow up study three years later, Vilke et al.

[112] reported that this voluntary community-wide approach to attempt to decrease

34



AD was effective and sustainable with minimal intervention. Similar conclusion was
drawn by Al Darrab et al. [113] after evaluating the impact of a city-wide voluntary
intervention to reduce AD in Hamilton, ON, Canada. Massachusetts became the
first state in the USA to successfully ban AD after implementing a statewide ban on
AD initiated by the Massachusetts Department of Public Health in USA on January
1, 2009 [114]. The results were analyzed by multiple research groups [104, 115-117|.
Lindstrom [104] argued that no adverse effect was found from stopping AD; therefore,
hospitals should be forced to implement some improvements of protocols and stream-
line operations to eliminate AD. Similar results have been reported by Holley [118]

when evaluating the no-ambulance-diversion policy adopted in the city of Memphis,

TN, USA.

In addition to evaluating AD related policies, researchers have developed different
strategies and methods to help health care decision makers avoid situations where
AD is inevitable. Strear et al. [119] applied the theory of constraints to patient
care workflow and achieved a 99.6% reduction of the AD time during a 12-month
implementation period. McLeod et al. [120] reported the effects of a regional infor-
mation dashboard on ED capacity, which took real-time information from all three
tertiary EDs in the city of Calgary, AB, Canada and assigned a color code (green,
yellow, orange, or red) to reflect receiving status for each individual ED. Central
dispatch had the status of all three EDs and ambulances were advised to avoid the
most overcrowded ED. The authors concluded that the implementation of this real-
time surveillance system resulted in an increase in the proportion of total time region
hospitals reported favorable status (green/yellow) (57.5% vs. 64.1%), while the AD
fell from 198 to 27 hours. El-Masri and Saddik [121] proposed a new comprehensive
emergency system to facilitate the communication process in emergency cases from
ambulance dispatch to the transfer of patient’s care to the ED staff. Such a system
enhances communication in the clinical handover process, and contributes to reducing
ED crowding and AD. Beechner [122] constructed a fuzzy inference system that per-
forms as a decision support system to eliminate AD by diverting a certain percentage

of lower acuity patients to outpatient clinics or primary care physicians.

The reduction of AD may have a negative effect on the EMS system, resulting in

longer AOD time, when other factors causing ED crowding are not probably addressed
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or corrected [28]. Asamoah et al. [123] employed a strict limitation policy to reduce
AD (restricting each hospital to 1 hour out of every 8) and reported an 82% reduction
in AD. However, they also observed a side effect of the new policy on the system, as
the mean AOD time increased by 32%. Pham et al. [124] reported that AD may be
reduced by “adding more facility and human resources (usually at the hospital level)”,
which reduces ED crowding. Using AD as a surrogate marker for ED crowding, Schull
et al. [53] demonstrated that AD time increased by 6.2 minutes per admitted patient
boarded in the ED due to ED crowding.

Efforts to reduce AD are common (and mostly successful), but the question re-
mains of how to best reduce AD without increasing ED crowding or worsening AOD
[125]. Cooney et al. [28] emphasized that monitoring AD and AOD are important to
health care systems, as they are both essential indicators for assessing ED status and
identifying inefficiency in the system. Although AD may temporarily release pressure
on ED staff; growing AOD may put it back to hospital personal to address root causes
of ED crowding.

Patient Allocation Policy

As excess AD may cause negative impact on quality of patient care and EMS op-
eration, a few studies have suggested other alternative patient allocation policies to
alleviate ED crowding in a more controlled and centralized manner than AD.

Shah et al. [126] implemented a voluntary, physician-directed ambulance destina-
tion control program in Rochester, NY, USA (during July 2003) to directs ambulances
to the ED that is most able to provide appropriate and timely care. EMS providers
were asked to call a destination-control physician for patients requesting transport to
either of the two participating hospitals. The physician determined the optimal pa-
tient destination by using patient and system variables as well as EMS providers’ and
patients’ input. During the intervention month, 2,708 patients were transported to
the participating hospitals. EMS providers contacted the destination-control physi-
cian for 1,866 (69%) patients. The original destination was changed for 253 (14%)
patients with reasons such as system needs, patient needs, physician affiliation, recent
ED or hospital care, patient wishes, and primary care physician wishes. During the

intervention month, AD decreased 190 (41%) hours at the university hospital and 62
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(61%) hours at the community hospital, as compared with the control month. The au-
thors concluded that this type of program may be effective in reducing overcrowding

and maximizing the availability of emergency health care resources.

In the greater Edmonton metropolitan region, AB, Canada, an ambulance des-
tination determination system has been created jointly between the Capital Health
Authority (the regional hospital organization) and Edmonton EMS (the primary am-
bulance provider) [127|. The system functions with staff from the Edmonton EMS
and the Regional Patient Transport Office operating together to coordinate the dis-
tribution of ambulances to the various hospital EDs. The coordinators have access to
the real-time information on both the Edmonton EMS ambulance trips records man-
agement system and the Capital Health Authority emergency status screen on the
status of each ED in the region. Such information includes the number of ED beds
both occupied and available, the number of emergency inpatients and waiting room
patients, the number of ED patients in each category of the Canadian Emergency
Department Triage and Acuity Scale (CTAS), the number of current active ambu-
lance trips, and the ambulance activities (i.e., dispatch, response, arrival on scene,
transport to and arrival at a designated hospital). With the available information,
the coordinators make decisions about how to distribute ambulances to the various
hospital EDs and provide that information to the EMS personnel. An overall positive
response was reported after a 6-month pilot implementation. The three community
hospitals had an increase in ambulance transports, with a corresponding decrease for
the two major hospitals. The author thus suggested that this ambulance destination
determination system helped to maximize available ED resources and was a valid

alternative to AD.

An attempt to mitigate the ambulance at-hospital interval (turnaround time) in
Baltimore, MD, USA, was conducted by Halliday et al. [128], to improve communi-
cation within the local EMS system. A senior EMS paramedic was assigned as the
medical duty officer in the fire communication bureau of the Baltimore City Fire De-
partment. The primary task of this position was to provide prospective management
of city EMS resources through monitoring ambulance availability and hospital ED

traffic, and suggesting alternative transport destinations in the event of ED crowding.
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The authors compared a total of 13,921 EMS calls during in the post-intervention pe-
riod with 15,567 during the pre-intervention period and 14,699 in the seasonal match
control period one year earlier. They reported a 1.35-minute decrease of the average
at-hospital time from pre- to post-intervention periods, and a 4.53-minute decrease
from the seasonal match control to post-intervention periods, representing a statisti-
cally significant decrease. Furthermore, hospital alert time was also shown to have
a statistically significant difference between the pre- and post-intervention periods in
this study with an approximately 1,700-hour decrease. The decrease in ambulance
response time was, however, not statistically significant. This study emphasized the
importance of better coordination between EMS and hospital EDs as well as future

intervention initiatives.

To mitigate the AOD problem, Almehdawe et al. [33] introduced a stylized queue-
ing network model with blocking to investigate the effect of patient routing decisions
on EMS offload delays. They constructed and solved an optimization problem to find
the optimal allocation of ambulance patients to each ED in a region. The optimiza-
tion model was tested to be robust under normal operating conditions as supported
by the numerical analysis in the study. The authors suggested that this model can be
used as a decision support tool to guide EMS dispatchers on how to allocate patients
to hospital EDs when they make their dispatching decisions. In one of their earlier
studies, Almehdawe et al. [5] analyzed two routing probability scenarios in a three-ED
system. The imbalance scenario represented a system where heuristic routing poli-
cies were used by emergency control staff, while the balance scenario demonstrated a
system where the routing probabilities were proportional to ED capacities. System
performance measures were computed, particularly for assessing the AOD and its
impact on system resources. The results show that when the system changes from
the “imbalance” routing probability scenario to the “balance” one, the expected total
number of ambulances in offload decreases by 14% and the total expected AOD de-
creased by 9.9%. This patient allocation policy can be seen as a proactive intervention
to reduce the chance of ED crowding, thereby mitigate AOD. Similar practice has
been implemented in some EMS systems as an intervention to cope with AOD / ED

crowding in daily operations [63].
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Redirecting Patients to Alternative Care Destinations

It is recognized that a substantial proportion of ambulance service calls are neither
life threatening nor serious [129]. With constantly increasing demands, many EMS
systems have explored the options to screen and divert potentially non-emergent

patients from the system at their dispatch centers [130].

Shah et al. [131] reviewed dispatch data on 19,332 calls in Salt Lake City, UT,
USA, to identify EMS dispatch codes associated with low illness acuity. A low-acuity
dispatch code was defined as one in which at least 90% of coded patients required only
basic life support care. 28 out of 118 dispatch codes or code groups, with 7,801 pa-
tients, met the definition of low acuity. The authors concluded that certain dispatch
codes were associated with likely to be low acuity patients and further validated these
codes in a later study [132] . That study concluded that 21 of the dispatch codes
can be potentially used to identify low-acuity patients who do not require emergent
response. A similar study by Woollard [133] sought expert consensus about which am-
bulance dispatch codes could be appropriate for a nonemergency response in Cardiff,
UK. Using majority voting, the results indicated that 54 dispatch codes (22%) were
recommended for a nonemergency response/referral, which equaled to 12.44% of an-
nual emergency calls in a typical UK ambulance service system. Theoretically, the
implementation of nonemergency responses could lead to improved response times for
critically ill patients by freeing up resources. The author suggested that further re-
search is required to validate the recommendations made by the experts using clinical
outcome data. Villarreal et al. [134] investigated a new model of patient screening
implemented in West Midlands, UK, where a partnership between general practition-
ers and ambulance services was formed to reduce conveyance rates to the Hospital
EDs. Call handlers identified patients with needs that could be addressed by a general
practitioner using pre-determined criteria. General practitioners supported the assess-
ment of such patients either at scene or by telephone. Routine data were collected
from October 2012 to November 2013, from the ambulance service computer-aided
dispatch system. Logistic regression models were used to determine the likelihood
for patients being transported to ED. Of 23,395 emergency contacts during the eval-
uation period, 1,903 (8.1%) patients were triaged to general practitioner supported

assessment. 1,221 (64.2%) had face-to-face assessment with general practitioners and
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682 (35.8%) via telephone. 1,500 (78%) of those who received general practitioner
support were not transported to hospital. The authors concluded that support of the
paramedic service by general practitioners enabled patients to avoid transfer to an
ED, potentially avoiding subsequent hospital admission, reducing costs, and improv-
ing quality of care for patients that were not in need of hospital services. They also

addressed that the overall impact and safety of this model required further evaluation.

However, the risk-management challenges associated with patient screening has
made this “politically unpalatable” with occasional bad outcomes [22, 135]. Fur-
thermore, this EMS strategy of discouraging communities from requiring ambulance
services in “non-emergencies” has often backfired, with observed increases in calls
[130]. In their literature review of addressing the ability of ambulance crews for pa-
tient screening, Snooks et al. [138] argued that not enough evidence has indicated
that “there is a clinically safe approach to identify patients who call for an ambu-
lance but do not need transportations to ED”. Most of the previous work has been
hypothetical only, with rare intervention studies, yet consistently showing the need
for caution. Millin et al. [135] further addressed that “EMS systems that utilize these
policies must have additional education for the providers, a quality improvement pro-
cess, active physician oversight”, and the determination of non-transport for a specific
situation should be supported by peer-reviewed literature. Despite these challenges,
Snooks et al. [136] suggested that further research in this area is urgently required
due to the inefficiency of the current model of emergency care. Eckstein et al. [22]
also insisted that EMS systems should continue to explore such patient screening
concepts to reduce the demands and to achieve some relief for the system. They
recommended some innovative strategies such as finding citizens alternative numbers
to call (especially “after hours”) or alternative places of appropriate medical care (i.e.,

shuttle transport to nearby clinics).

A similar EMS intervention to patient screening is to accept low acuity patients
into the system and later redirecting them to alternative care destinations, other than
EDs. The Ontario Ministry of Health and Long-Term Care in Canada established the
hospital emergency department and ambulance effectiveness working group in 2005
to investigate the AOD problem and advise Ontario’s Minister of Health on it. This
group submitted a report to the Ministry of Health and Long-Term Care [46] with
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recommendations aiming to ensure the improvements of ambulance availability. One
of their primary proposals was to consider transporting selected ambulance patients to
destinations other than EDs, such as urgent care facilities. The group recommended
an evaluation of the safety and effectiveness of such initiatives through pilot projects
in urban regions in Ontario. The government of Ontario, Canada later followed
this recommendation and initiated a demonstration project in the city of Toronto
to redirect low acuity ambulance patients to Urgent Care Centres instead of EDs
[60]. The motivation behind this intervention was to take advantage of the faster
ambulance turnaround time at the Urgent Care Centres comparing to regular EDs. It
could release ambulances to be back to the road sooner, therefore, increase ambulance
availability in the city. In the evaluation of this project, Esensoy reported a total of
855 hours of reclaimed ambulance time over the two-year trial period. However, this
result failed to show that the potential volume of these Urgent Care Centres was
high enough to make a significant system-wide impact on the AOD problem with
the current setup. The vagueness of the patient clinical criteria for redirecting to
the Urgent Care Centres was suggested to be the primary driver for low paramedic
uptake. The author argued that such decision-making intervention required extensive
training up front and continuous change management activities to ensure a smooth

implementation.

A similar intervention was launched in the UK, with the goal of avoiding the ad-
mission of minor patients to acute care hospital EDs [129, 137|. By developing and
testing a protocol to identify specific low-acuity patients for transport and treatment
at urgent care clinics rather than EDs, Schaefer et al. [137] reported a 15% relative
decrease (51.8% vs. 44.6%) in the proportion of patients who received care in the ED
when compared with a historical control group with similar diagnostic, acuity, and
seasonal characteristics, by implementing this intervention of alternate care destina-
tions. The referral was appropriate in 97% of cases, and that the patients transferred
on from urgent care clinic to ED did not suffer any delay in resolution of their con-
dition. The authors concluded that despite the low usage rate of alternative care
locations, this intervention has time saving benefits to most patients and the am-
bulance service, therefore, should be continuously employed with improved training.

In Snooks et al.” study [129], patients were then followed up and the outcomes of
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patients taken to alternative care locations were compared with those taken to EDs.
The results indicated that patients taken to alternative care locations were 7.2 times
as likely to rate their care as excellent. In addition, ambulance service also benefited
from this intervention as ambulance on task time was shorter for patients taken to

alternative care locations.

Other EMS Interventions

Newell et al. [65] reported a strategy that the ambulance services in Ottawa, ON,
Canada has instituted to cope with AOD. Paramedics are not required to hand over
their electronic paramedic care report to the receiving hospital ED of a patient who
meets certain criteria (not CTAS 1 or 2). The paramedics can depart the hospital right
after the transfer of care and complete the report while mobile. The completed report
will be uploaded to the server over a secure Wi-Fi connection for the ED staff to view
and download. During the eight-week trial period, the average ambulance turnaround
time was reported dropped by 14 minutes per patient transported following the new
protocol. Despite the success, this intervention has been met with some resistance due
to patient safety concerns and hospitals having timely access to patient information.
The author acknowledged the concerns and argued that the next potential ambulance
patient can also be at significant risk if ambulance resources are tied up in AOD,
considering that rapid turnover of patient care is critical to the EMS system. This
intervention represents a significant change in workforce culture and needs to be
recognized by both the EMS and the hospital EDs.

Eckstein et al. [22] recommended that EMS providers should have a contingency
plan in place to approach and mitigate the AOD problem. The importance of col-
laboration between the EMS provider and the receiving hospital / ED staff was also
highlighted in their recommendations to ensure that policies and procedures are in
place and the team effort keeps the ambulance turnaround period brief. Another EMS
intervention in practice is referred as “mutual aid”. A detailed description of it can
be found in Section 2.5.2. Concerns have been raised against this practice regarding
ambulance availability of outlying areas. Yet “mutual aid” is still employed by some

EMS providers to cope with the AOD problem [28].
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Figure 2.4: The summary of OR models in AOD intervention studies.

2.7 DISCUSSION

The causes and consequences of the growing AOD problem were first described to

capture the complexity of this problem. Next, key measures that are used to as-

sess system performance were listed. Then a literature review of related studies and

models was carried out to summarize common features, including the data used for

research, the methods and approaches, and the main results.

137 articles are re-

viewed (summarized in the electronic supplementary material), including studies of

the causes, effects, and solutions of AOD. Different topics and methodologies are em-

ployed throughout these studies (as described in Figures 2.5, note that some papers do
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not fall under the described topics, while some papers utilize multiple methodologies).
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Figure 2.5: Summary charts of the reviewed articles: a. topics, b. methodologies.

The analysis of the literature reveals that many researchers have investigated areas
of ED crowding and ambulance diversion; however, there is limited research focused
on AOD. Specifically, we found a lack of OR methodologies used in addressing AOD.
For instance, of the 89 articles that studied solutions to AOD, only 18 (20.2%) of
them introduced OR methodologies to test interventions in a virtual setting. One
possible reason is that AOD is a relatively new problem and has not attracted a
lot of attention from researchers in the OR field. Another reason could be that the

complexity of modelling the interface between the EMS and ED services has deterred
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OR researchers.

For the interventions to be effective and true to real-world situations, the mea-
surement of AOD needs to be improved. Presently, no method has been reported
to measure the ambulance offload time accurately and reliably. Most research uses
ambulance turnaround time as a measure of AOD. Further study is required to stan-
dardize the definition and the measurements of the ambulance offload process. It is
important that interventions to decrease AOD are based on a solid understanding of

the main components of this process.

The empirical assessments of AOD (Section 2.3.1) show that AOD has become a
problem in many EMS systems since early 2000. Some data are reported but there
appears to be no standardized reporting structure in standard increments. For ex-
ample, it is difficult to compare AOD times across EMS systems due to the vastly
different characteristics of EMS systems (e.g., location, size, etc.); it would there-
fore be helpful if studies of AOD included characteristics of the EMS system and a
data dictionary of standard definitions for these time intervals. Furthermore, his-
toric trends in AOD would be insightful to show the evolution/acceleration of AOD.
Several empirical studies report that patients with medium acuity level experience
the most prolonged AOD. Yet, to the authors’ best knowledge, no further study has
been reported that investigates if there is a correlation between AOD and patients
risk levels. To be more specific, is AOD more common or prolonged for patients with
certain clinical conditions? If so, what are the impacts on the safety and outcomes of

these patients?

There are also few studies describing the relationship between ED crowding, ambu-
lance offload time, and EMS performance (such as EMS response times and resource
availability). Some studies have suggested that AOD impacts EMS. However, most
use anecdotal evidence as opposed to empirical analysis. It would be beneficial for fu-
ture work to quantify the impact of AOD on EMS systems. Therefore, much remains
to be learned to fully understand and assess the AOD problem to improve resource

utilization, response time, and patient care.

Another aspect of AOD assessment, which is overlooked in the current literature,
is its impact on the workload of paramedics and ED staff. As the ED crowding and

AOD become a new norm, are there human resource consequences, such as burn-out,
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increase rates of human error, morale issues, etc.?

An interesting observation of the literature is that, while ED crowding is a world-
wide phenomenon, the AOD problem has only been reported in Canada, the USA,
the UK, and Australia. This raises the question of how other EMS systems with ED
crowding have avoided AOD, or do they also experience AOD but have not studied
it formally? Perhaps other EMS systems have developed and implemented efficient
interventions to avoid AOD? Or perhaps AOD is inevitable at a certain level of ED
crowding but that level of ED crowding has not yet been reached? Regardless, this
can be an important direction for future research to provide some insight into the fun-
damental cause of AOD and why it appears to be more prevalent in some countries

than in others.

Several mitigation interventions of AOD (e.g., AD, expending the ED capacity)
have been reported with debatable results. This debate suggests that initiatives and
efforts from one party (EMS or ED) alone may not be sufficient to solve this problem.
The ability of paramedics to transfer patient care to an ED is determined by the status
of the ED, namely, the number of available ED beds. This availability is directly
related to hospital throughput and the availability of inpatient beds. Therefore, the
AOD problem is a consequence of a much bigger problem, which is the lack of capacity
in the healthcare system to treat hospital inpatients, leading to ED overcrowding and
access block. The majority of hospital EDs are reported operating at or over their
capacities in a typical day, as discussed in Section 2.4. As such, it is not surprising
to see that EMS providers continually find themselves struggling with timely patient
transfer at hospital EDs. Studies have shown that changing the ED’s structure or
function cannot address the underlying causes of ED crowding and, therefore, cannot
alleviate AOD. The evidence suggests that solutions to ED crowding lie outside the
ED and will require system-wide policy changes. EMS systems do not exist in a
vacuum, isolated from the rest of the health care system. The AOD problem includes
clinical, operational, and administrative perspectives; the efficiency and effectiveness

of ambulance offload time must be addressed in a system-wide manner.

Establishing better collaboration between EMS and hospital EDs is the first step
forward towards the goal of building a system-wide solution to AOD. Timely infor-

mation sharing (e.g., ED/EMS status, patient clinical outcome data) between these

46



two parties also allows proactive interventions to mitigate the AOD problem. All the
interventions trialed with a collaborative approach have been reported to yield posi-
tive results; while voluntarily-based interventions initiated by individual parties often
present mixed results. Therefore, it is recommended by many researchers that EMS
and hospital EDs initiate dialogues at high management levels and work together to
take appropriate steps to mitigate AOD.

The root causes of AOD likely lie outside the EMS system and to address it (like
addressing ED crowding), will take significant time and effort. In the meantime, AOD
has appeared as a new norm in some EMS operations and needs to be addressed more
quickly. Therefore, research should continue to develop interventions, either through
OR models or trials, to help EMS operate in this difficult environment and mitigate
the negative impacts of AOD.

Healthcare is an area of growing importance and cost around the world, thus an
important area for operations research. As an important element of the healthcare
network, EMS system requires constant performance improvements to ensure overall
capacity to adequately and efficiently respond to emergency needs of the public. To
help better assess and mitigate the AOD problem, models need to be further developed
to estimate the system performance in a more realistic and detailed environment.
While the AOD problem presents itself as a challenging problem, it also represents an
opportunity for public health, EMS, and hospitals, to come together to identify best
practices and interventions. Ultimately, all key components of the health care system
should work together to ensure the ED crowding problem is eliminated or minimized,

thereby alleviating much of the AOD problem.
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Chapter 3

AN EMPIRICAL ANALYSIS OF THE EFFECT OF
AMBULANCE OFFLOAD DELAY ON THE EFFICIENCY
OF THE AMBULANCE SYSTEM

3.1 INTRODUCTION

In a typical North American emergency medical services (EMS) system setting, when
a hospital emergency department (ED) cannot accept the incoming ambulance patient
immediately (often due to congestion), paramedics wait with their patient(s), and
continue to provide patient care until an ED bed becomes available and the ED
personnel assume responsibility for the patient(s). This delay in transfer of care is
referred to as ambulance offload delay (AOD). Due to the increasing issue of ED
crowding, AOD has become a growing concern for many health care providers |5, 23,
138].

The consequences of AOD can be significant [20]. AOD hinders the promptness of
medical treatments for patients with potential negative consequences (e.g., delay to
definitive care, poor pain control, delayed time to treatment, etc.), which may result
in compromising patient care and safety [20, 27]. AOD can also negatively affect
the ability of EMS to provide consistent and timely care, due to reduced ambulance
availability [22, 60, 61|. During this delay, the ambulance and crew are unavailable
to respond to future emergency calls. It may prolong the ambulance response time
and time spent on calls, resulting in decreased efficiency of the EMS systems, and
the need for additional staffing |26, 58, 135]. In addition, financial burdens and legal
concerns regarding the AOD problem have been reported |5, 29, 30|. In England,
AOD has been reported to cost the National Health Service “millions of pounds per
year in the form of lost ambulance hours”, which has risen from 37,000 hours in
2008/2009 to around 54,000 hours in 2010/2011 [4]. The Region of Waterloo, ON,
Canada lost approximately $840,000 in ambulance operations in 2007 due to AOD
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[5]. The city of Toronto, ON, Canada lost approximately 180 ambulance hours per
day in December 2007 [5]. The EMS provider in Nova Scotia has estimated in 2015
that the AOD problem costs about 2,900 ambulance hours per year, which equates
to approximately $754,000 at the average paramedic salary [30].

The AOD problem has only recently become an active research topic. To date,
most current research on AOD is carried out by medical doctors and front-line per-
sonnel who try to understand the problem and highlight its importance by using
observational studies [23, 26, 35-37, 40]. These studies observe the prolonged waiting
time of ambulances at hospital EDs, and measure AOD by its mean or median values.
Eckstein and Chan [26] analyzed AOD incidents in Los Angeles, CA, USA, which ac-
counted for 1 out of every 8 ambulance transports (8.4% were in excess of 1 hour,
a median of 27 minutes and an inter-quartile range of 20 to 40 minutes). Segal et
al. [35] examined the ambulance turnaround time at a hospital ED in Montreal, QC,
Canada, and found that the turnaround time represents 45% of the total call time
(45.24 minutes and 101.06 minutes, respectively). The results show that the majority
of the turnaround time occur after the completion of triage (with a mean time of
31.33 minutes), indicating that the ambulances experience difficulties in transferring
patient care to the ED (i.e., AOD). Cone et al. [36] conducted a retrospective study
to assess the common AOD problem in New South Wales, Australia. Of 141,381
transports, 12.5% of patients experience an AOD of 30 — 60 minutes, and 5% experi-
ence a delay of > 60 minutes. Stewart et al. [139] used administrative data to study
all high-acuity (Canadian Triage Acuity Scale 2-3) EMS arrivals to EDs from July
2013 to June 2016 in Calgary, AB, Canada. They reported that of 162,002 arrivals,
70,711 (43.65%) had offload delays < 15 minutes and 41,032 (25.33%) had delays >
60 minutes. Silvestri et al. |24] evaluated the AOD association with patient acuity
levels. The average offload time is reported to be an overall 32.7 minutes, and 34,39,
and 1.6 minutes, respectively, corresponding to patient acuity levels of low, medium,
and high. Cooney et al. [140] conducted a similar study and observed significant
differences between all five patient acuity levels when measuring the average AOD.

The mid-level severity (level 3) is associated with the longest average AOD.

Presently, no method has been reported to measure the ambulance offload time

reliably and accurately. Hammond et al. [38] identified significant inconsistencies in
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the practice and reporting of AOD across all EDs in Southeast Queensland, Australia.
Taylor et al. [39] demonstrated a small but significant delay between the recorded
ambulance arrival to an ED and the actual delivery of the patient to the clinical area of
the ED in Bath, UK. As most EMS systems find it challenging to accurately measure
the offload time [7], the majority of research uses ambulance turnaround time, which
is the ambulance’s total time at hospital, as a measure of AOD instead. Carter et al.
[7] tested the validity of using the turnaround time as a surrogate for the offload time,
which results in a good correlation (0.753). Other studies have focused on developing
different methods to help measure AOD more accurately |7, 38, 39, 41|. Steer et al.
[41] use radio frequency identification tags to record ambulance cot traffic throughout
the ED ambulance entrance. Cooney et al. [37, 40| explore if the National Emergency
Department Overcrowding Scale (NEDOCS) score could be used to predict AOD by
assessing the problem in Syracuse, NY, USA. The authors find a positive correlation
between the NEDOCS score and AOD.

All these studies represent progress in understanding the AOD problem, offer in-
sight into the consequences of AOD and the potential solutions of it. However, there
is a lack of studies exploring the relationship between AOD and EMS performance,
such as ambulance response time, total call time, and ambulance availability. Ambu-
lance availability affects overall system performance |7], and depends on many factors
(e.g., hour of day, number of ambulances on shift, number of calls received, etc.)
[135]. Anecdotally, AOD has been reported to have a significant negative effect on
ambulance availability [22, 60, 61|, when multiple ambulances are out of service due
to AOD |20, 37, 135]. Some studies have suggested that AOD has a negative impact
on EMS systems [22, 26, 58, 60, 61, 135]. However, most use anecdotal evidence
and rationalizations as opposed to empirical measurements. Therefore, an empirical
analysis based on scientific evidence can be beneficial for quantifying the effects of
AOD on the EMS systems.

The goal of this study is to quantify the AOD problem occurring in the Halifax
Regional Municipality (HRM) area in Nova Scotia, Canada, and to measure the ef-
fects of AOD on the provincial EMS system, with combination of urban and rural
regions. This study measures EMS system with performance metrics, such as ambu-

lance turnaround time, total call time, response time, and ambulance availability. It
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aims to show the effect of AOD on the EMS system province-wide, not only on the
area where AOD occurs.

The remaining sections of the paper are organized as follows. Section 3.2 provides
a description of the data sources, data structure and statistical analysis to analyze
the effects of AOD. The results are presented in Section 3.3. In Section 3.4, we
discuss the insights of this empirical analysis study. Finally, Section 3.5 includes

some conclusions.

3.2 METHODS

3.2.1 Study Setting

Emergency Health Services (EHS), the provincial ambulance service provider in Nova
Scotia, Canada, serves the whole population of the province. The province is sep-
arated into four operational regions: the Western, Northern, Eastern, and Central
regions. There are pre-determined numbers of ambulances operating in each region
at a given time of a day, handled by different dispatchers at the central EHS commu-
nication centre. The ambulance service in each region operates independently most
of the time, with the ability to collaborate when required. There is a total of 37 EDs
in the province, and the Central Region is served by three of them [141]. The HRM is
located within the Central Region. Being the most populated region and containing
the only tertiary care trauma center for Nova Scotia, the Central Region often suffers

the AOD problem and requires ambulance reinforcement from adjacent regions.

3.2.2 Study Design

The study subject is the AOD problem in the Central Region of Nova Scotia, Canada.
The study period is between January 1%, 2016 and December 315, 2016. The hypoth-
esis is that: 1) AOD has a negative impact on the EMS performance in the region
experiencing AOD, and 2) AOD also affects surrounding regions in one of two ways:
ambulances transporting patients into the region experiencing AOD may be delayed,
and ambulances from surrounding areas may be repositioned into the Central Region
to cover the shortages of ambulances. This EHS practice is referred to "mutual aid".

It results in ambulances being relocated away from their home service areas, possibly
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for the duration of their remaining shifts, and represents a potential decrease in surge
capacity of the EMS system [28]. Anecdotally, it also has a cascade effect which may
cause ambulance shortage in the outlying areas [16]. This study aims to demonstrate
the effects of AOD on the system performance, and to gain knowledge of the current

AOD problem in Nova Scotia, Canada.

3.2.3 Data Capture

The retrospective study queried data from two different primary data sources: the
EHS computer aided dispatch (CAD) system and the electronic patient care reporting
(ePCR) system.

The CAD system contains only ambulance operational data. There is no patient
or ED information. With a geographic information system (GIS) tracker available for
each ambulance, the CAD system monitors and records the location of each ambu-
lance in the province in real time, as well as ambulance activities. The activities that
are relevant to this study are included in the data query (see Table 3.1). Each data
entry includes an ambulance location (latitude and longitude) and the ambulance’s
activity underway at that time. Basic clinical call information, such as patient’s Cana-
dian Triage and Acuity Scale (CTAS) [142] was queried from the ePCR database to
understand the priority given to each call. CTAS is a tool that Canadian EMS sys-
tems and hospital EDs use to triage patients according the type and severity of their
presenting signs and symptoms, and prioritize patient care requirements. The scale
ranks from 1 to 5, where CTAS 1 patients are the ones with most severe medical
conditions, while the CTAS 5 patients are the least severe ones.

Each emergency /urgent call for EHS ground ambulance is assigned with a unique
identification number, known as the Master Incident Number (MIN), which is gen-
erated from the CAD system. Operation related data associated with each call are
documented in this system and were extracted for this study, including ambulance
locations, operational and transport disposition times (e.g. arrive scene, depart scene,
arrival at hospital time, available time, etc.). The data containing personal health
identifiers was kept separate from the main study dataset. No data were required
from the personal health identifiers dataset.

The following data element categories (Table 3.2) are included in the data query

52



Ambulance Activity Source
Assign to Post CAD
At Destination CAD
Available CAD
Available Charting CAD
Called Off Meal CAD
Cancel Vehicle Assign  CAD
Depart Scene CAD
Dispatched CAD
Division Change CAD
End Meal CAD
End Shift CAD
Enroute To Post CAD
In Quarters CAD
Late Start Shift CAD
Late Vehicle CAD
Local Area CAD
On Scene CAD
Out of Service CAD
Reassign Vehicle CAD
Remove Out of Service CAD
Responding CAD
Shift Add CAD
Shift Edit CAD
Staged CAD
Start Shift CAD
Start Meal Record CAD

for each emergency /urgent call:

23

Table 3.1: The ambulance activities collected from the CAD system.

This data query was exported into a Microsoft® Excel file. Each row of this file
represents a call and all the information associated with it. There was a total of
113,173 records during the study period. These records include all ground ambulance
vehicles activities associated with calls, including special units such as supervisor
vehicles, patient transfer units (PTUs), etc. These special units offer supports to am-
bulance fleet and crew, but cannot respond to emergency /urgent calls solely without
an accompanying ambulance. Therefore, for the objectives of this study, the records
associated with these special units were removed from the dataset. The CAD system
prohibits deleting records at any circumstances. When a modification is made to a

call, a new record is generated with the updated information, and creates a duplicate



Data Element Source Definition

Master Incident Number (MIN) CAD Unique master incident number assigned to each EHS ambulance call
Ambulance Radio Name CAD Ambulance radio name

Ambulance Radio Code CAD Ambulance radio code

Ambulance Location CAD The latitude and longitude of an ambulance

Incident location type ePCR / CAD Location type

Response Mode CAD Level of response to call (Level of the response priority to the scene)
Transport Mode CAD Level of the response priority to the scene

Date of Service (Request for Service) CAD Date of service identifier

Time of Day (Request for Service) CAD Time of service request

Arrive Scene Time CAD Time ambulance signals arrived on scene

Depart Scene Time CAD Time ambulance signals departed scene to go to hospital

Clear Scene CAD Time ambulance signals cleared scene

Arrival at Destination CAD Time ambulance signals arrived at hospital

Transports Location / Address CAD Hospital location that ambulance transfers the patient to

Transfer of Care CAD Time ambulance signals transferred patient to hospital

Available Time CAD Time crew indicates available for next call (patient care and charting complete)
Call Disposition ePCR / CAD Transport outcome (transported or not)

CTAS (First) ePCR First documented CTAS of an ambulance patient

Table 3.2: The data elements collected for each emergency /urgent call.

record associated with the same call. The two records share the same MIN. In this
study, all records were sorted by the MINs and only the record with the latest updates
was kept for each MIN. Any duplicate records were removed, so that each record in
the dataset represents a unique call. A total of 100,126 records are remained after

duplication removal.

In this study, non-emergency patient transfers are excluded in the analysis of the
Central Region. This patient transfer service provides transportation services for
patients who need to go from one hospital to another, or between their home and the
hospital within Nova Scotia. In the Central Region, most patient transfer calls are
handled by the PTUs. It normally does not interfere with the ambulance responses
to emergency/urgent calls. Therefore, this additional responsibility of ambulances is
neglected in this part of the analysis. However, in the other regions of the province,
we acknowledge that not all non-emergency patient transfers are handled by PTUs.
Some are fulfilled by utilizing ambulance resources (often when no PTU is available in
that region). Therefore, when analyzing the AOD impact on ambulance availability
provincially, we included these calls into the analysis with all EHS ground ambulance
activities, as patient transfers may affect the number of available ambulances in a

region.
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Figure 3.1: A summary of the time intervals of ambulance response events.

3.2.4 Outcomes

Figure 3.1 (adapted from Cone et al. [10] with modifications) summarizes all am-
bulance activities associated with calls. In this study, ambulance total call time is
defined as the time that an ambulance spends to conduct all possible activities as-
sociated with a call (from responding to being available for the next call), which
includes all the intervals shown in the figure, except the "notification interval". The
ambulance response time of a call is defined as the elapsed time from when the call is
received at the dispatch centre to when an ambulance arrives at the scene [1]. When
an ambulance needs to transport a patient to an ED, the time it spends at the hospi-
tal is known as the "turnaround time", or "turnaround interval". It starts when the
ambulance arrives at the ED, and ends when the unit is available for future calls. The

turnaround interval can further be divided into delivery interval (the actual offload
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time) and recovery interval (cleaning, restocking the ambulance, completing patient
care reports, etc.). When AOD occurs, the delivery interval will be prolonged, mean-
ing that paramedics must wait extra time at the hospital to complete the transfer of
patient care to the ED staff. The delivery interval is an accurate measure of potential
AOD. However, in our dataset, "transfer of care" is not a mandatory log activity
in the CAD system and often left blank. In its absence, this study relies on the
ambulance turnaround interval as a proxy for AOD. Literature has shown that the
correlation between the delivery and turnaround intervals is good, and the ambulance
turnaround time can be used as a surrogate measure. Furthermore, conversations with
EHS operation paramedic supervisors have confirmed that the recovery intervals are
relatively consistent among all calls. The current EHS policy allows a 20-minute
recovery interval and the ambulance will be marked as available at the end of that

period, unless a notice has been given by the paramedics to extend that time.

3.2.5 Analysis

A geo-processing application, ArcMap® v.10.5, is used for the location analysis in this
study. The purpose of this analysis is two folds. First, it allows us to track the location
(region) of each call. These calls can then be separated into four subsets with calls
originating in each region. We then reconstructed the queue of waiting ambulances
at the EDs in each subset. This is possible since the data record when an ambulance
arrives at and leaves from an ED. From these reconstructed queues, we calculate and
aggregate the number of ambulances at the EDs in 30-minute increments. Other
information was extracted and calculated from the dataset, including call volumes,
ambulance response time, turnaround time, total call time, etc. This information
was used for the results displayed in Section 3.3.1. The location analysis clarifies the
ambulance location (region), instead of the pre-determined region of the ambulance.
It is important to add this GIS component to the data analysis, especially in a system
with "mutual aid" practice. For example, when an ambulance from the Northern
Region comes into the Central Region for one shift due to an AOD-induced ambulance
shortage, it is still identified as an ambulance from the Northern Region in the CAD
system based on its radio name. However, since it operates in the Central Region

for that shift, it is in fact an ambulance resource for the Central Region, not for the
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Northern Region. With the GIS analysis, these ambulance activities across different
regions can be accurately captured to reflect the true EMS system status in each
region. This analysis generates a dataset with the number of ambulances in each
region at any given time during the study period. This information is used for the
results presented in Section 3.3.2. Queries were run by using Microsoft® Access, and
data were exported into and analyzed by using Microsoft® Excel.

We then carried out a multiple regression analysis to assess the relationship be-
tween call volume, AOD (two independent variables), and the ambulance availabil-
ity in the Central Region (dependent variable). R-statistical software, version 3.5.2
(http://www.Rproject.org/), was used for this regression analysis. A multiple linear

regression model was built for each region by the following equation:

Yavailability = B0 + B1%calis + B2Z 40D + B3Teatis - Taop + €,

where Ygpaiabitity 15 the dependant variable, representing the hourly ambulance avail-
ability in a region, x.qys is representing the independent variable of hourly call volume
in this region, and z0p is representing the number of ambulances at Central EDs
in an hour. We extended the model to include an interaction term for interaction
effects, Tcqus - Taop, as the calls may influence the relationship between AOD and
availability, or vice versa. (g is the intercept term, (31, B2, and (3 are the regression
coefficients for the independent variables call volume, AOD, and the interaction term,
respectively. € is a mean-zero random error term.

To explore the effects of AOD on ambulance availability (Section 3.3.2), the data
were integrated to summarize the system characteristics with hourly time intervals in
each region, including the hourly call volume and the number of available ambulances.
For example, calls received in the Eastern Region between 8 a.m. and 9 a.m. were
counted, the value was then assigned to 8 a.m. for the Eastern Region. The number
of ambulances at the Central EDs were aggregated the same way as an indicator of
AOD in the Central Region. If an ambulance arrives at a Central ED at 8:28 a.m.
and leaves at 9:40 a.m., this ambulance will be counted for both the 8 a.m. and 9
a.m. intervals. A total of 8784 (24 hours/day x 366 days) data points were generated
from the 12-month historical data for each variable. The multiple linear regression
model was then fitted with the hourly data entries (366) by minimizing the sum of

squared residuals. The results are reported in Section 3.3.2.
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3.3 RESULTS

There were 100,126 unique emergency /urgent calls received by EHS in 2016, of which
94,672 calls responded, and 66,169 resulted in transporting patients to an ED. Of
these emergency /urgent call records, 23,214 were in the Western Region, 19,090 were
in the Northern Region, 17,171 were in the FEastern Region, and 40,651 were in the

Central Region. Further analysis of these call records is shown in Table 3.3.

Emergency/ Responded Calls resulted in patients % of calls resulted in patients

Urgent Calls Calls transported to EDs transported to EDs
The Western Region 23,214 22,158 16,379 73.92%
The Northern Region 19,090 18,067 13,596 75.25%
The Eastern Region 17,171 16,289 12,314 75.60%
The Central Region 40,651 38,158 23,880 62.58%

Table 3.3: The summary of year 2016 emergency /urgent calls in each region (Western,
Northern, Eastern, and Central) of Nova Scotia.

3.3.1 The Effects of AOD in the Central Region

To examine the effects of AOD in the Central Region, several EMS performance
measures were analyzed, including the number of ambulances at EDs, ambulance
turnaround time, ambulance total call time, and ambulance response time. To further
demonstrate the impact of AOD in the Central Region, some of these performance
measures from the other three regions (Western, Northern, and Eastern combined)
were analyzed as the controls, because AOD has not been reported as an issue in
these regions. Through comparison, readers can better observe and understand the

differences of the EMS performances with or without AOD.

Number of Ambulances at EDs

During the 12-month study period, there were a total of 23,880 incidents in which
ambulances transfer their patients to an ED in the Central Region. The numbers of
ambulances at the Central EDs at any given time of the study period were summa-
rized in Figure 3.2. Overall, there are three or more ambulances at the Central EDs
approximately half of the time (46.52%) throughout the year of 2016. The data were
further analyzed by being separated into two categories: non-busy hours (8 p.m.-8

a.m.) and busy hours (9 a.m.-7 p.m.), based on emergency call volumes. As expected,
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there are few ambulances at the Central EDs during the non-busy hours, compared

to the busy hours, shown in Figure 3.2.
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Figure 3.2: The frequency of ambulances held at EDs in the Central Region of Nova
Scotia in 2016.

Ambulance Turnaround Time

Of these 23,880 incidents in the Central Region with patients transported to an ED
by ambulance, the ambulance turnaround time averaged at 1h04’44”, with a median
of 4220”. Of the 42,289 similar incidents happened in the other three regions, the
ambulance turnaround time averaged at 28’31”, with a median of 21°40”. These
measures of the ambulance turnaround time were then investigated by stratifying the
data by patient CTAS scores to evaluate the differences between the categories The
result is reported using the average values, standard deviation (SD), and the 90!
percentile, as shown in Table 3.4.

For patients who are categorized into CTAS 1 (most severe), it is crucial for
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CTAS Central Region Other Regions

avg. SD 90'™ percentile  avg. SD 90*™" percentile
1 34’33" 26’40" 1h16°06" 34’13"  22°30" 1h0518"
2 1h04’18" 1h03’11" 2h26’12" 33727"  33°02" 1h0242"
3 1h08’15"  1h09°02" 2h42’03" 2925"  29°43" 56°04"
4 47°14" 55'12" 55'12" 2520"  2541" 48’30"
5 35’59" 46'43" 46°43" 21°20"  19726" 41°18"

Table 3.4: The summary of the ambulance turnaround time in Central Region and
other three regions combined with the averages, standard deviations, and 90" per-
centile.

them to receive timely medical attentions without delay during the EMS processes.
Therefore, the NSHA policies ensure these patients receive treatments as soon as
possible. The result indicates that these policies are implemented as expected. There
is no significant difference on the average ambulance turnaround time between the
Central Region and the other three regions of Nova Scotia, when transferring CTAS
1 patients to an ED. However, in all the other CTAS categories, patients with similar
medical acuity experience significantly longer ambulance turnaround times in the
Central Region. Under the assumption that the recovery intervals are similar in
the two comparison groups, we conclude that the differences are caused by AOD in
the Central Region. The delay affects patients with the mid-level acuity (CTAS 3)
the most. One possible explanation is that there are policies implemented in Nova
Scotia to allow ambulances offload low-level acuity patients (CTAS 4 & 5) who meet
certain criteria to the waiting room of the ED, and thereby free the ambulances from
any potential AOD. This effect is demonstrated in the results where low-level acuity
patients (CTAS 4 & 5) experience shorter average ambulance turnaround time in both
comparison groups. In general, CTAS 3 patients, are too ill to be left unattended in
the waiting room, but still have a lower priority comparing to the higher-level acuity
patients (CTAS 1 & 2), therefore experience the longest AOD on average. This result

is consistent with results reported by Cooney et al. [140].

Ambulance Total Call Time

Ambulance total call time was calculated for each region of Nova Scotia and compared

in Table 3.5 to demonstrate the impact of AOD. The calls that did not result in a

60



patient transportation to an ED were excluded from this analysis, as no offload process
(or AOD) occurs. The result shown in Table 3.5 indicates that there is a significant
difference between the average ambulance total call times in the Central Region and
the other regions. It suggests that the prolonged total call time in the Central Region
is likely caused by AOD.

The mean of the The median of the The 90" percentile of the

ambulance total call time ambulance total call time ambulance total call time
The Western Region 1h17°117 1h13’06” 1h5547"
The Northern Region 1h18°12” 1h10’45” 2h02’15"
The Eastern Region 1h17°59” 1h12°20” 1h59’23"
The Central Region 1h54°40” 1h35°21” 3h15°00"

Table 3.5: The means, the medians, and the 90" percentiles of the ambulance on-task
time of calls in the four regions of Nova Scotia in 2016.

For an emergency / urgent call that results in a patient transportation to an ED,
the ambulance total call time can be considered as two parts: "prior to ED" and
"after arrival at ED". In the Central Region, the time that an ambulance spends
"after arrival at ED" on a call takes approximately 50.0% of the ambulance total
call time on average; while in the other three regions, this component takes only
approximately 10.7% of the ambulance total call time on average, as shown in Figure
3.3. Therefore, it suggests that there is a significant difference between the Central

Region and other three regions, in terms of AOD.

Ambulance Response Time

Ambulance response time is a key indicator of the EMS system performance since
time is vital in emergency situations. Many factors are associated with ambulance
response time (e.g., dispatch logic, ambulance deployment and redeployment strategy,
ambulance availability, etc.) [1]. In this study, the relationship between the ambu-
lance response time and the AOD problem was examined to seek the effect of AOD
on this key performance indicator in the Central Region of Nova Scotia.

The result in Figure 3.4 demonstrates the relationship between the average am-
bulance response time and the number of ambulance at the Central Region EDs. As
more ambulances were delayed in the offload process, a longer response time was ex-
perienced in the Central Region. The values of the average response time are removed

from the figure due to data sensitivity, but the scale and trend remain. A scale of
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Figure 3.3: The percentages of the ambulance total call time that the ambulance
turnaround time take in (a) the Central Region; (b) in the other three regions.

two minutes is given for the reader to better interpret the effects. The number of
ambulances at EDs include all ambulances in the turnaround process, while some
ambulances are experiencing AOD in their delivery intervals, and the others may be

in their recovery intervals.

3.3.2 The Effects of AOD on the Provincial EMS System

In this section, we analyze the ambulance availability in each region of Nova Scotia
to understand the potential effect of AOD occurring in the Central Region on the
EMS network across the province. We choose the availability of ambulances as the
performance measure to assess the AOD impact. For each region, the ambulance
availability is calculated by dividing the number of available ambulances in the region
by the total number of ambulances on shift in that region at any given time of a day.
A value of ambulance availability of 100(%) means that all the ambulances on shift are
available to future calls. The value decreases as some ambulances carry out activities
associated with emergency/urgent calls, or other activities (e.g., re-positioning, meal
break, etc.).

Figure 3.5 shows the average ambulances availability in each region as a function of

hour of the day. The data variances (from the monthly averages) are also reported in
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Ambulance Response Time in the Central Region
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Figure 3.4: The average ambulance response time as a function of the number of
ambulance at the EDs in the Central Region in 2016.

the figure as standard errors to demonstrate that there is no any significant monthly
differences during the study period. The actual percentages of the availability are
removed, but the trends of the curves remain. The result indicates that the aver-
age ambulances availability decreases significantly in each region during the day and
slowly recover overnight. The steep dip between 11 a.m. and 2 p.m. are likely due
to the stacked meal breaks paramedics take between calls.

Means (£ SDs) were calculated for the call volume in the Central Region to
find any statistical difference in different days of a week, weeks of the year prior
to the multiple regression analysis. No significant difference was found. Therefore,
the hourly call volumes from all the days during the study period (366 days) were
obtained and used to analyze the distribution of the call volume of different hours
of day. Figure 3.5 and further data analysis indicates that the relationships between
call volumes, AOD, and the ambulance availability vary depending upon the time of
a day. Therefore, we model them individually using the hourly aggregated data.

The relationship between the two independent variables (call volume and AOD)
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Figure 3.5: The average numbers of available ambulances in each region as a function
of the hours of the day in 2016.

suggests that there is no significant correlation between these two independent vari-
ables in the data of Central Region. Figure 3.6 demonstrates that there is a lack of
linear relationship between the call volume and AOD in any hour of the day, sug-
gesting no strong correlation between these two variables. The distribution of the
ambulance availability in the Central Region is approximately normally distributed
from the historical data and the two independent variables each follows a Poisson dis-
tribution. The same analysis was conducted for the other three regions and similar
results are found.

With these results, the multiple linear regression model introduced in Section
3.2.5 was built for the Central Region per hour of the day. Backward selection of the
original model indicates that the interaction term can be eliminated from the model.

Therefore, the regression model for the Central Region is simplified as:

Yavailability = BO + lecalls + ﬁQxAOD + €.
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Figure 3.6: The relationship between the call volume and the number of ambulance
at EDs in the Central at different hours of the day.

The model residuals, adjusted R?, F' value with the degree of freedom (df), and p
value are reported in Table 3.6. There are a total of 24 regression models correspond-
ing to each hour of a day. Both independent variables Calls and AOD constantly
have significant effects on the dependent variable Availability among all models with

one exception of the 13™ hour (1 p.m.).

The coefficients of the independent variables in these regression models are pre-
sented in Table 3.7. Together with information presented in Table 3.6, we can summa-
rize the regression equations found for the Central Region based on different hours of
the day. For example, between 8 a.m. and 9 a.m., the regression equation is estimated
as Availability = 59.6095 — 1.5717(Clalls) — 1.929(AOD) + ¢, with a R? of 0.2757
(F(2,363) = 70.46,p < 0.001). The p-values associated with call volume (p < 0.001),
AOD (p < 0.001) are both statistically significant. Note that Availability is scaled
from 0 to 100 (%) in the equation. The ambulances availability of the Central Region
decreases by 1.929% for each ambulance added to the AOD queue, or decreases by
1.5717% for each new call received between 8 a.m. to 9 a.m. The p-values associated
with call volume (p < 0.001), AOD (p < 0.001) are both statistically significant. The

value of the adjusted R?, however, is relatively low. In a complex and stochastic
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system like EMS, many factors are expected to influence the availability of the am-
bulances. We only consider two of these factors in our regression model, call volumes
and AOD delay, hence, a low adjusted R? value is expected. Our goal is not to build
a model to estimate the ambulance availability, but to merely explore if AOD delay

would affect the ambulance availability.

Hour of Day Residuals Rlyusea Fdf p
min median ~ max
0 -29.576  -0.899  41.477 0.05363 11.34 363 <0.001
1 -27.402  -2.227  50.175  0.05905 12.45 363 <0.001
2 -34.891  -0.728  41.105 0.07197 15.15 363 <0.001
3 -31.202  -0.189  42.267  0.1088 23.29 363 <0.001
4 -36.792  0.449  41.544  0.0569 12.01 363 <0.001
5 -31.14  -0.152 36.29  0.09817 20.87 363 <0.001
6 -22.924  0.205  38.534 0.06738 14.18 363 <0.001
7 -27.801  -0.582  42.101  0.1313 28.58 363 <0.001
8 -24.489  -0.566  36.372  0.2757 70.46 363 <0.001
9 -22.295  -0.751  39.756  0.2386 58.18 363 <0.001
10 -20.957  -0.829  32.637  0.1251 27.09 363 <0.001
11 -15.9972  -0.2787 22.6831 0.06886 14.50 363 <0.001
12 -15.4992  -0.0189 25.0648 0.01821 4.386 363 0.01312
13 -14.6618 -0.7953 23.9343 0.00768 2.412 363 0.09104
14 -18.4533 -0.8495 25.9172 0.03214 7.061 363 <0.001
15 -17.369  -0.362  33.942 0.08851 18.72 363 <0.001
16 -24.9528 -0.2892 29.6604 0.1588 35.44 363 <0.001
17 -26.4553 -0.0702 25.9409 0.2449 60.20 363 <0.001
18 -25.854  -0.302  39.059 0.213  50.40 363 <0.001
19 -24.63 -0.892  35.482  0.1285 2791 363 <0.001
20 -21.628  -1.577  44.582  0.08243 17.39 363 <0.001
21 -23.081  -1.739 42584 0.09875 21.00 363 <0.001
22 -24.328  -0.977  33.813 0.08488 17.93 363 <0.001
23 -23.774  -0914  41.163 0.07787 16.41 363 <0.001

Table 3.6: The summary of the regression models for the Central Region with resid-
uals (min, median and max), the adjusted R?, F value, df, and p value.

Hour of Day Variables Coefficients
Est.  Standard Error ¢ value Pr(> [t])
0 AOD -0.6505 0.2207 -2.947  0.00342
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Calls -1.1824 0.3004 -3.936  <0.001
1 AOD -0.5068 0.2396 -2.115 0.0351
Calls -1.6380 0.3694 -4.434  <0.001
2 AOD -0.7026 0.2511 -2.798  0.00542
Calls -1.6862 0.3536 -4.769  <0.001
3 AOD -0.5773 0.2719 -2.123 0.0344
Calls -2.3876 0.382 -6.25 <0.001
4 AOD -0.8417 0.2635 -3.194  0.001527
Calls -1.5528 0.438 -3.545  <0.001
5 AOD -1.0787 0.2595 -4.157  <0.001
Calls -1.7159 0.352 -4.875  <0.001
6 AOD -0.8525 0.2546 -3.348  <0.001
Calls -1.3542 0.3256 -4.16 <0.001
7 AOD -1.4031 0.2343 -5.989  <0.001
Calls -1.1941 0.2627 -4.546  <0.001
8 AOD -1.929 0.2114 -9.125  <0.001
Calls -1.5717 0.2278 -6.898  <0.001
9 AOD -1.5568 0.1725 -9.026  <0.001
Calls -1.1945 0.2266 -5.271  <0.001
10 AOD -1.072 0.1534 -6.99 <0.001
Calls -0.6457 0.2031 -3.18 0.0016
11 AOD -0.5477 0.1158 -4.728  <0.001
Calls -0.3594 0.1481 -2.426 0.0157
12 AOD -0.2592 0.114 -2.273 0.0236
Calls -0.3144 0.159 -1.978 0.0487
13 AOD -0.1717 0.1073 -1.6 0.111
Calls -0.2595 0.1606 -1.616 0.107
14 AOD -0.3782 0.1202 -3.148  0.00178
Calls -0.4115 0.1893 -2.173  0.03041
15 AOD -0.48 0.1164 -4.123  <0.001
Calls -0.8508 0.1866 -4.56 <0.001
16 AOD -0.7994 0.1258 -6.356  <0.001
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Calls -1.2033 0.1979 -6.08 <0.001

17 AOD -1.1637 0.1336 -8.713  <0.001
Calls -1.2015 0.1884 -6.378  <0.001
18 AOD -1.1565 0.1217 -9.506  <0.001
Calls -0.7218 0.1933 -3.734  <0.001
19 AOD -0.839 0.1495 -50.613  <0.001
Calls -1.0079 0.1967 -5.124  <0.001
20 AOD -0.6512 0.1631 -3.993 <0.001
Calls -1.1451 0.2478 -4.62 <0.001
21 AOD -0.587 0.164 -3.579  <0.001
Calls -1.4467 0.2557 -5.657  <0.001
22 AOD -0.5733 0.1666 -3.442  <0.001
Calls -1.2257 0.239 -5.129  <0.001
23 AOD -0.5736 0.1874 -3.061  0.00237
Calls -1.5314 0.297 -5.156  <0.001

Table 3.7: The coefficients of the independent variables in the regression models for

the Central Region.

Generally speaking, all the estimated values in Table 3.7 suggest negative relation-
ships between Calls, AOD, and Awvailability. Hence, the availability of ambulances
in the Central Region can be expected to decrease when a new call originates, or
when a new ambulance enters the AOD queue at the EDs. Analysis indicates that
the independent variables, the call volume and the number of ambulances at EDs
have a significant impact on the ambulance availability during most of the hours with
the exception of 1 p.m., where it is likely some other factor not included in our model
plays a dominant role to affect the ambulance availability, such as meal breaks, shift
changes, etc.

Furthermore, it is recognized from anecdotal evidences that AOD may have some
indirect impacts on the ambulance availability of other regions in an EMS system
with shared resources. To proof this hypothesis, we used the proposed regression
model to analyze the potential impacts of AOD on the ambulance availability in the

other three regions (Western, Northern, and Eastern) of Nova Scotia. We assess
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the relationship between the ambulance availability of other regions and the call
volume in each region, as well as the AOD in the Central Region. The procedure of
conducting the regression model is similar. Before fitting the regression model, the
relationship between the variable hourly call volume in each region and the number
of ambulances at Central Region EDs within an hour was investigated and no strong
correlation was found. The regression models for each region were then built with the
equation described in Section 3.2 for each hour of the day. As the backward selection
procedure suggests that the interaction term calls - AOD is a significant variable in
some models, the term is kept for the analysis of the other regions.

The results show less consistency throughout the day compared to the results of
the Central Region. The inconsistent pattern of the results is likely due to the data
separated by hours of the day, causing a scattering effect. There are also differences
between regions. While AOD in the Central Region shows some impact on the ambu-
lance availability in the Northern and Western regions, there is no such impact on the
Eastern Region. Geographically, the Eastern Region is the furthest region away from
the Central Region and not adjacent to the Central Region. Therefore, the influence
of AOD in the Central Region is understandably less prominent (if any) to the East-
ern Region than to the other two regions. For the Northern and Western regions, we
summarize the variables that show the significance in each model in Table 3.8, as a
mark of . The overall trend is that AOD in the Central Region has an impact on
the ambulance availability of the other two regions primarily in the afternoons and
evenings, not in the morning. This results aligns with the fact that AOD normally
builds up during the day and reaches the peak later in the afternoon. As such, the
result confirms our hypothesis that AOD in the Central Region has a negative impact
on the ambulance availability not only in its own region, but also in adjacent regions

province-wide.

3.4 DISCUSSION

The results of this study paints a clearer picture of the effects of AOD on the am-
bulance performance in the region that experiencing it. The most commonly used
performance metrics from literature are the number of ambulances waiting at the ED,

and the ambulance turnaround time. In this study, we proposed a method to include
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other performance metrics such as ambulance total call time, ambulance response
time, and ambulance availability. We use ambulance performance measures from re-
gions with the same EMS setting but not experiencing AOD as a baseline scenario for
the analysis. Through comparison, we demonstrate the significant differences in all
these performance metrics between the region experiencing AOD and regions without
it. These results clearly demonstrate the impact of AOD on ambulance operations.
They can provide an sight to EMS decision makers for quantifying the impact of AOD
from a more comprehensive perspective. Another approach of analyzing the AOD im-
pact on ambulance availability in other regions is mixed effects model, where the hour
of the day is considered as a random effect variable to be included in the model. The
results from the mixed effects models suggest a similar but more general conclusion.
It shows that AOD in the Central Region is a significant independent variable to the
ambulance availability in the Northern and Western regions. Yet, there is no such
significance to the Eastern Region. Alternatively, future work on the same analysis
may investigate the potential to group different hours of the day into a few subset
of data, based on the distributions of the variables. This grouping mechanism may
benefit the regression model and show more definitive pattern of the AOD impact on
ambulance availability.

In a complex and stochastic system like EMS, many factors can influence the
ambulance availability. Our intention in this study is not to build a model to estimate
the ambulance availability, but merely to test the hypothesis that if AOD would affect
the ambulance availability. Intuitively, call volume is expected to have an effect on
ambulance availability. Therefore, We consider AOD and call volume in our regression
model to explore the relationship between these two independent variables and the
dependent variable. The values of the adjusted R? of these found regression models
are relatively low as expected. Future research aiming to develop an estimation model
of ambulance availability will require to include other influential factors, such as meal

breaks, shift schedules, etc.

3.5 CONCLUSION

This study provides a comprehensive depiction of the effect of AOD on the Nova

Scotia’s EMS system, with combination of urban and rural regions. In the Central
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Region, AOD was frequent and took a sizable proportion of ambulances out of service
in the year of 2016. This led to prolonged ambulance turnaround times, total call
times, response times and negatively affects ambulance availability. The ambulance
availability in two of other three regions of Nova Scotia is also affected by AOD in
the Central Region as AOD causes a cascade effect on other regions. However, the
effect is less pronounced and consistent. Any analysis or evaluation of the effects
of AOD on EMS systems should take approaches to try to understand its impacts
from a system level beyond the region where AOD is measured. The results of this
study offer an insight into a more comprehensive understanding of the impacts of
AOD on the EMS system. This approach can also be generalized to other EMS
systems and regions to quantify AOD and measure its impacts on the EMS system.
The AOD problem occurs at the interface of the EMS and the hospital EDs, and
includes clinical, operational, and administrative perspectives. Therefore, it must
be addressed in a system-wide manner. EMS providers and hospitals need to work
collaboratively to implement interventions that can mitigate this problem to improve

resource utilization and patient care.
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Table 3.8: The summary of the significant variables in the regression models for the
Northern Region and Western Region.
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Chapter 4

PREDICTING AMBULANCE OFFLOAD DELAY USING A
HYBRID DECISION TREE ANALYSIS

In the last chapter, the negative effects of AOD in Nova Scotia, Canada have been
measured and assessed via analysis of the historical EMS data of year 2016. The
results indicate that AOD creates negative impacts in the urban Halifax region and
also on the provincial EMS system as a whole. We conclude that AOD is a significant
factor impacting ambulance availability together with call volume. As a result, it is
critical for EMS providers to obtain information on AOD to plan their operations
proactively. Therefore, in this chapter, we further investigate the properties of AOD
and design a model to predict the AOD stats at the ED to provide a decision support
tool for EMS.

4.1 INTRODUCTION

Emergency Medical Service (EMS) system, as a key component of the health care
system, faces the challenge to organize its processes more effectively and efficiently to
keep up with the increasing demands in aging societies. Researchers have shown great
interest in analyzing a variety of EMS processes to make suggestions for improvements
in: response time, dispatch time, deployment and redeployment, etc. [11-14]. How-
ever, the EMS interface with hospital emergency departments (EDs) has seen less
attention.

In recent years, the ambulance offload delay (AOD) problem has been raised
as a growing concern for health care providers in many countries [5, 7, 10, 22, 32,
33, 143]. Ambulance offload time is the time it takes to transfer a patient from an
ambulance to an ED of a hospital [7]. If the ED cannot accept the incoming ambulance
patient immediately due to congestion, a common course of action is to let paramedics
continue to provide patient care until an ED bed becomes available. This delay period

in transfer of care is referred to as AOD. It is typically caused by overcrowding in the
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ED [5, 21-25]. AOD has been associated with negative patient outcomes and poor
performances of EMS systems, affecting care quality, patient safety and the system’s
ability to respond to future calls [20, 27, 28, 58, 138|. As a direct consequence of ED
crowding, AOD indicates a deterioration of the EMS system status in the affected
area. There are indicators that may suggest that an EMS system is prone to AOD
(e.g., high level of ED congestions, high numbers of calls, etc.). Theoretically, these
indicators can be used to predict the severity of AOD.

In this study, we introduce a decision-support tool to predict the AOD problem
occurring in the Halifax Regional Municipality (HRM) in Nova Scotia, Canada. This
area is served by one EMS provider, Emergency Health Services (EHS), and three
EDs. Being the most populated area and containing the only tertiary care trauma
centre for Nova Scotia, the HRM often suffers from AOD. EHS has estimated in year
2015 that the AOD problem results in about 2,900 ambulance hours per year, which
equates to approximately $754,000 at the average paramedic salary [30]. The primary
objective of this study is to provide the EHS personnel with a decision-support model
that can predict the AOD problem based on the current system status. This way, the
decision makers can activate various proactive interventions at different states of the

system to mitigate AOD.

Decision trees are popular prediction tools as they produce a model that is easy
to interpret. Each leaf node can be presented as an if/then rule. The logical rules
followed by a decision tree closely resemble human reasoning and are intuitively ap-
pealing to decision makers, who tend to feel more comfortable with models that they
can understand [144]. Decision trees are also non-parametric, which can model a
wide range of data distributions with no assumption that the data is drawn from
one (or a mixture of) probability distributions of known form [145]. This feature is
suitable in many cases as the nature of the relationship is unknown. Furthermore,
decision trees can handle data of different types without requiring any transformation
of the data. Most importantly, decision trees have the capability to break down a
complex decision-making process into a collection of simpler decisions, thus providing

a solution that is often easier to interpret [146].

In this study, we use the hybrid decision tree algorithm proposed by Farid et al.

[147] with some modifications. This algorithm employs a naive Bayes classifier to
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remove noisy instances from the training set before the decision tree induction. It is
selected because of its comprehensibility and its prediction accuracy as reported in
[147]. The data of this study include indicators of the EMS system status (e.g., hour
of day, day of week, number of calls, etc.) and indicators of the hospital EDs status
(e.g., NEDOCS score, numbers of ambulance at an ED, etc.).

This chapter is organized as follows: a brief literature review on related work is
presented in Section 4.2. In Section 4.3 we introduce the data collection and analysis
in greater detail, and formulate the hybrid decision tree model for our case. We
then present the results in Section 4.4, with a case study example to demonstrate
the application of the prediction model. Section 4.5 discuss the potential benefits of
such model in an EMS setting, as well as some suggestions for further improvements.

Finally, Section 4.6 provides some general conclusions.

4.2 RELATED WORKS

There are two streams of literature related to our work. The first stream is the
development of models for the AOD problem. It occurs at the EMS interface with
hospital EDs and has seen less attention in the Operations Research (OR) field [7,
10, 135]. Furthermore, the consequences caused by AOD on the EMS system have
not been well studied [135]. Ounly several OR models have been found which analyze
this growing issue.

Majedi [32] constructs a system representing the interaction of EMS and ED using
queuing theory, and models the behavior of the system as a continuous time Markov
chain to evaluate various system performance measures (e.g., the average number
of ambulances in offload delay, the average AOD, ambulance and bed utilization).
Clarey et al. [66] design a discrete event simulation model to assess the change on AOD
in a scenario, where dedicated nurses are hired to assist with ambulance offloading
patients. This study demonstrates a clear reduction in AOD when dedicated nursing
levels are increased. However, the authors also raise concerns that using this as a sole
method to reduce AOD would require unacceptably low staff utilization, which would
cost hospitals both financially and in human resourcing. Almehdawe et al. [5] uses
a Markov chain queuing model to analyze the interface between an EMS provider

and multiple EDs that serve both ambulances and walk-in patients. Matrix-analytic
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methods are used to solve the steady state probability distributions of queue lengths
and waiting times. The study concludes that the priority based admitting policy had
a great impact on patient waiting times. When additional resources are considered for
the system, the benefit of adding capacity is greater for EDs with higher utilization.
Almehdawe et al. later [33] introduce a stylized queuing network model with blocking
to investigate the effect of patient routing decisions on EMS offload delays and to

determine the optimal allocation of ambulance patients to each ED in a region.

The second stream of the literature relates to decision tree models in health care
and popular research trends. A decision tree is a machine learning (ML) method for
constructing prediction models from data, which can be used for both classification
and regression [148]. Models where the target variable can take a discrete set of
values are called classification trees; while models where the target variable can take
continuous values (typically real numbers) are called regression trees [149]. A decision
tree model logically combines a sequence of simple tests to partition the data and fit a
prediction model within each partition. The results of the models can be represented

graphically as a decision tree [145].

Numerous decision tree algorithms have been developed, for example, Classifica-
tion and Regression Tree (CART) [150], Iterative Dichotomiser 3 (ID3) [151], and
C4.5 [152]. A recent study by Tjen-Sien et al. [153] compares decision trees and other
learning algorithms. The study has shown that these algorithms each have their own
advantages and characteristics. Their accuracies are sufficiently similar. The differ-
ences are statistically insignificant and probably also insignificant in practical terms
[153]. Therefore, all these decision tree algorithms can be found widely and almost

evenly used in multiple fields [154, 155|, tailored to specific research.

Decision trees have also been used extensively in the health care settings, including
clinical diagnostics, drug development [156], medical predictions, and data analysis
[157]. Handley et al. [158] used CART modeling to determine specific risk profiles
and predictors of suicidal ideation in a community-based sample of older adults.
Chen et al. [159] utilized a decision tree model (C4.5) empowered by the particle
swarm optimization algorithm to achieve efficient gene selection from thousands of
candidate genes that may contribute to the occurrence of cancers. Snousy et al.

[160] used various decision tree methods (C4.5, CART, etc.) to determine genes
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that are highly expressed in cancer cells, and compared the classification accuracy
among them. Patel et al. [161] developed a decision tree using the CART method
to create risk strata (age, country, per capita government health expenditure, and
delay from symptom onset to hospitalization) for mortality of human HPAT H5N1
reported in World Health Organization Global Alert and Response. Luk et al. [162]
employed artificial neural network and decision tree (CART) data-mining methods to
analyze the patient profiling data and to delineate significant patterns and trends for
discriminating hepatocellular carcinoma from non-malignant liver tissues. Chang and
Chen [157| used decision tree (C5.0, similar to C4.5 with improvements) combining
with neural network classification methods to construct the best predictive model to

increase the quality of dermatologic diagnosis.

Many fields benefit from using various ML methodologies to discover hidden pat-
terns and properties of systems over the past decades. However, data sets with unique
characteristics and properties may require different ML methods to generate robust
and accurate predictive models. To better guide the selection of the ML methods,
research has been carried out to apply various ML methods to a multitude of data
sets to compare their performances and determine which outperforms the others un-
der certain circumstances. Decision tree, as a widely accepted ML method, is still
a popular classification approach for its ease of construction and its ability of inter-
pretation. Dems3ar [163] theoretically and empirically examines several suitable tests
(e.g., the Wilcoxon signed ranks test and the Friedman test) to compare classifica-
tion algorithms on multiple data sets. Others propose and review different statistical
tests to compare different ML algorithms. Alpaydin [164] proposed a 5x2 cv (five
replications with two-fold cross validation) F test that combines multiple statistics to
get a more robust test when comparing supervised classification learning algorithms.
Brazdil and Soares [165] present three ranking methods to investigate the problem of
using past performance information to select an algorithm for a given classification
problem, including: average ranks, success rate ratios and significant wins. A com-
bination of Friedman’s test and Dunn’s multiple comparison procedure is adopted to

compare ranking methods.

The development of a decision tree model includes two phases: tree growing and

tree pruning. Tree pruning is a crucial step to avoid over-fitting the model and ensure
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the accuracy of the model. Therefore, researchers and statisticians have expressed
their interests in analyzing different pruning methods and reviewing them through
performance comparisons of the decision tree models. Elomaa [166] analyzes the
reduced error pruning method to clarify the different variants and to bring new insight
to its algorithm properties. Esposito et al. [167] conduct a comparative study of
six well-known pruning methods (reduced error pruning, pessimistic error pruning,
minimum error pruning, critical value pruning, cost-complexity pruning, and error-
based pruning) with the aim of understanding their theoretical foundations, their
computational complexity, and the strengths and weaknesses of their formulation.
Quinlan [168] discusses and compares four pruning techniques for simplifying decision
trees while retaining their accuracy, including cost-complexity pruning, reduced error
pruning, pessimistic pruning, and simplifying to production rules. Bradford et al.
[169] describe an experimental study of pruning methods for decision tree models
to minimize loss rather than error and conclude that no single pruning algorithm
dominated over all data sets. The study revealed that using the Laplace correction

at the leaves is beneficial and aids all pruning methods used.

A sufficient number of hybrid algorithms have been proposed to improve the de-
cision tree algorithms by combining them with other algorithms. Balamurugan and
Rajaram [170] proposes a method to resolve the tie that appears during the rule
generation procedure in basic decision tree induction algorithms. The tie occurs in
decision tree induction algorithms when the class prediction at a leaf node cannot be
determined by majority voting. The improvement is demonstrated by experimental
results on various data sets. Garofalakis et al. [171] construct "simple" decision trees
with few nodes by specifying constraints on tree size or accuracy, so that they are easy
for humans to interpret. Polat and Giineg [172] propose a novel hybrid classification
system based on C4.5 decision tree classifier and one-against-all approach to classify
the multi-class problems. Chandra and Varghese [173] present a fuzzy decision tree
algorithm to fuzzify the decision boundary to avoid the problem that the traditional
decision tree algorithms face: having sharp decision boundaries which may not be
found in all classification problems. Aviad and Roy [174] introduce a decision tree
construction method based on adjusted cluster analysis classification called classifi-

cation by clustering (CbC). Li et al. [175] present a cluster-based logistic regression
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model with a regression and classification tree approach employed to split the source
date to clusters at first. The clusters are further considered as the dummy variables
for the logistic regression analysis. De Caigny et al. [176] propose a new hybrid al-
gorithm, the logit leaf model (LLM), that enhances logistic regression and decision
tree in two stages: a segmentation phase and a prediction phase. In the first stage
customer segments are identified using decision rules and in the second stage a model
is created for every leaf of this tree. Aitkenhead [177] addresses the problem that
the decision tree structure can be vulnerable to changes in the training data set and
presents an evolutionary method which allows decision tree flexibility through the use
of co-evolving competition between the decision tree and the training data set. Llora
and Garrell [178] propose a fine-grained parallel evolutionary algorithm to induce a
decision trees with an unified algorithm based on artificial evolution. Farid et al. [147]
introduce two independent hybrid algorithms to improve the classification accuracy
rates of decision tree and naive Bayes classifiers for the classification of multi-class
problems. In the first proposed hybrid decision tree algorithm, a naive Bayes classifier
is employed to remove the noisy instances from the training set before the decision
tree induction; while in the second proposed hybrid nalve Bayes classifier, a deci-
sion tree induction is employed to select a comparatively more important subset of

attributes for the production of naive assumption of class conditional independence.

4.3 METHODS

In this study, we aim to develop a robust and accurate model to predict the AOD
states at a major ED in the HRM region of Nova Scotia, Canada. AOD is complex
and stochastic, and can be affected by many factors. Data for this study originates
from ambulance operation logs and basic measures of ED crowding. Such operational
data are commonly available in health system but are prone to be noisy and incon-
sistent. Therefore, we searched for a sophisticated decision tree algorithm that can
provide prediction accuracy while maintaining a simple structure of a tree, as the
interpretability of the model is critical to convey the results to decision makers. Farid
et al. [147] introduce a hybrid decision tree algorithm using a naive Bayes classifier to
remove the noisy instances from the training set before the decision tree induction.

The naive Bayes classifier removes misclassified observations by selecting the class
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that has the highest posterior probability as the final classification for the instance.
After removing these instances, we subsequently built a decision tree model using
the updated training data set with noise-free data. The model aims to predict the
number of ambulances at the ED in X hours (where X € 1,2,...). Three prediction
models with various sets of AOD state classifications are defined later in this section,

to fit the specific requests of the ambulance service provider.

4.3.1 Data Collection

The study population includes all emergency and urgent calls for EHS ground ambu-
lance services between January 1%, 2016 and December 315, 2016 in the HRM region.
The data were collected from two different primary data sources: the EHS computer
aided dispatch (CAD) system, and the Emergency Department Information System
(EDIS) database reporting ED congestion in HRM.

Each emergency/urgent call for EHS ground ambulance is assigned with a unique
identification number, known as the Master Incident Number (MIN), which is gen-
erated from the CAD system. All EMS responses for completing that call are docu-
mented in the CAD system, including operational and transport dispositions. With a
geographic information system (GIS) tracker available for each ambulance, the CAD
system also monitors and records the location of each ambulance in real time. The Na-
tional Emergency Department Overcrowding Scale (NEDOCS) [179] from the EDIS
database is shared with EHS regarding the status of the EDs in the HRM. NEDOCS
is a performance measure (ranges between 0 and 200) implemented in most of the
North American’s EDs to assess the degree of crowding. These scores can be cate-
gorized into groups: “not busy” (0 — 20), “busy” (20 — 60), “very busy” (61 — 100),
“overcrowding” (101 — 140), “dangerous” (141 — 180), and “disaster” (> 180) . Figure
4.1 shows these NEDOCS categories.

0-20 21-60 61-100 = 101-140 EEFEEGEELIGNNEY
Not Busy Busy Very Busy Overcrowded »-1i1- 0105 MMEER =TS
Figure 4.1: The NEDOCS categories.

Operational data associated with each call during the study period (e.g., arrive
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scene time, depart scene time, arrival at hospital time, available time, locations,
etc.) were abstracted from the CAD system. The NEDOCS records from EDIS were
collected for the study period and used to evaluate the level of ED congestion when
a call originated.

The following data element categories are included in the query:

e MIN number (from CAD): this is provided as a call ID to link all ambulance

activities associate with a specific call in the CAD system.

e Operational call data (from CAD): ambulance radio name, ambulance loca-
tion (latitude and longitude), transport mode (response priority to hospital),
date of service, time of day, ambulance activities (including arrive scene time,
depart scene time, clear scene time, arrival at destination time, transports lo-

cation/address, available time), call disposition.

e ED status (from EDIS Interval Report, HRM region): NEDOCS records (5
minutes interval) at the Queen Elizabeth IT Health Science Centre ED.

The EMS system in this study can be viewed as a system that is only responsible
for emergency/urgent calls, as the data includes information on emergency/urgent

calls but not on other non-urgent functions of ambulances such as patient transfers.

4.3.2 Data Analysis

The ED at the Queen Elizabeth II Health Science Centre in Halifax, Nova Scotia is
the major ED serving the HRM. Thus, in this study, the decision tree model was built
by analyzing the data set associated with this ED. Among the available data that
related to AOD, the following were identified and included as the predictor variables
of the decision tree model: the day of week, the hour of day, the call volume, the
clear rate of ambulances at the ED, the NEDOCS score of the ED, and the current
number of ambulances at the ED. Table 4.1 summarizes these predictor variables and
the rationale to include them in the model.

The call records resulting in patient transporting to the Queen Elizabeth II Health
Science Centre ED (13,486) were sorted by arrival at ED time and the available time
(ready to leave the ED) to restructure the queue at the ED. This queue was then

used to:
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Predictor Variable Motivation to Include

Day of Week To capture the variances of the system for different days of week
Hour of Day To capture the variances of the system for different hours of day
Number of Calls per Hour To incorporate the effect of call volumes

Ambulance Clear Rate at the ED per Hour  To incorporate the effect of ambulance clear rates at EDs
NEDOCS Score (in categories) To incorporate the impact of the ED congestions

Number of Ambulances Currently at the ED  To incorporate the current status of AOD

Table 4.1: The summary of the predictor variables of the model and the rationale to
include them in the model.

e determine the maximum number of ambulances at the ED each hour;

e determine the number of ambulances cleared from the ED each hour.

The average hourly NEDOCS scores were calculated and matched with the hourly
call volume and clear rate at the ED by date and hour. The NEDOCS scores are
categorized using “not busy”, “busy”, “overcrowding”, etc. (see Figure 4.1). At this
point, all data points of the predictor variables were obtained. Some data points were
missing because no event was associated with certain date and hour combinations.
For example, if no call was received between 2 a.m. and 3 a.m. on January 10,
2016, then that field of "Number of Calls" would be empty. In this case, the value
of that variable was set to zero. Similarly, when no ambulance arrived at or cleared
from the ED in an hour, the corresponding fields were set to zero. The final data set
of the predictor variables was thus a matrix of 8784 rows (24 hours/day x 366 days)
and 6 columns (each predictor variable per column). We choose to aggregate the data
hourly as it is sufficiently detailed for the decision makers and helps to reduce noise.

The response variable of the prediction model is the AOD status of the system
at some future moment in time (e.g., in X hours). It varies based on the specific
purposes of the prediction. These data points were obtained from the aggregated
data set and generated a matrix of (8784 — X) rows and 1 column. For example,
when the focus is to predict the categorical AOD states, say, > 9 ambulances in AOD
in X hours, the classification groups can be defined as: class 1 is that there are 0 to
8 ambulances in AOD in X hours, while class 2 is the rest (> 9).

We developed three prediction models with various sets of AOD states of the sys-
tem as the classifications to fit the specific requests of the ambulance service provider.
A summary categories of these prediction models with the historical distributions of

the instances can be found in Table 4.2.
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Model A: this prediction model aims to predict the AOD states with a high level
of precision. Each class includes approximately three different numbers of ambulances
at the ED. The AOD states are defined as: good (0,1,2), bad (3,4,5), problematic
(6,7,8), and excessive(>9).

Model B: this prediction model considers historical probabilities (frequency) of
different numbers of ambulances at EDs and defines three AOD states to evenly
distribute these probabilities. The AOD states are defined as good (0-3), bad (4-6),
and problematic (> 7).

Model C: this prediction model focuses on identifying the excessive AOD states.
An excessive AOD problem may be the most problematic and requires a long recovery
period for the system to be back to its normal status. Therefore, this model only

consider two classes: normal (0-8) and excessive (> 9).

Model Number of Class Number of Ambulances Historical

Classes Name at the ED in X hours Probability, %
A 4 Good 0,1,2 22.82
Bad 3,4,5 35.33
Problematic 6,7,8 31.77
Excessive >9 10.08
B 3 Good 0,1,2,3 37.21
Bad 4,5,6 33.54
Problematic >7 29.25
C 2 Normal 0-8 89.92
Excessive >9 10.08

Table 4.2: The three prediction models A, B, and C, with different classification
categories.

4.3.3 Model Development

For each model defined in Table 4.2, we first randomly separate the data set into two
sub-sets: the training set and the test set, with approximately 90% and 10% of the
data, respectively. The training set, D = {x1, 22, -+ ,x,}, consists of n observations.
Each observation in the set is represented as x;. The set of predictor variables of x;
is represented as A;, contains the following attribute values{A4;1, Ajs, - - - , A;;}, where

1 is the number of training observations, and j is the number of different predictor
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variables. The response variable of z; is represented as C,,, (m = 1,2, --- , k), where k
is the number of different classes for x; in D. We then apply a naive Bayes classifier to
each observation, z; € D. We calculate the prior probability P(C,,) for each class in
D, and the conditional probabilities P(A;; | C,) for each predictor variable value in
D. After classifying each observation, z; € D, using these probabilities, the class, C,,,
with the highest posterior probability P(C,, | x;) is selected as the final classification
of that observation. All observations with lower posterior probabilities are removed.
The remaining data in the training set, which includes sufficient training observations,
was used for the decision tree induction. This was carried out by using the standard
CART algorithm [150] built in Matlab® R2018b. The tree was fully grown first, and
then the post-pruning procedure was conducted by using a 10-fold cross validation to
obtain the smallest tree whose cost is within one standard error of the minimum cost.
The pruning procedure was not included in the work of Farid et al. [147]. We feel,
however, the goal of this model is to encapsulate the training data in the smallest
possible tree, as the simplest possible explanation for a set of phenomena is preferred
over other explanations. A simpler tree often avoids over-fitting. Also, small trees
produce decisions faster than large trees, and they are much easier to understand.
Therefore, we introduced this modification to the hybrid decision tree model in this

study. Algorithm 1 outlines the hybrid decision tree algorithm.

Hybrid Decision Tree Algorithm

Input

D = {xy,29, - ,2,} - Training set that containing a set of observations and their
associated classes

Output

T - Decision tree

Method
1: Naive Bayes Algorithm

for each class, C,,, € D, do
Find the prior probabilities, P(C,,).

end for
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for each predictor variable value, A;; € D, do
Find the class conditional probabilities, P(A4;; | Cy,)
end for
2: Remowe noisy observations
for each training observation, z; € D, do
Find the posterior probabilities, P(C,, | x;).
if x; is misclassified, do
Remove z; from D
end if
end for
3: Build a decision tree using the purified training data
T=0
for each predictor variable, A; € D, do

Determine best splitting attribute using Gini Diversity Index:

where the p(7) is the observed fraction of classes with class ¢ that reach the node.
T = Create a node and label it with the splitting attribute
T = Add arc to the node for each split predicate and label
D = Dataset created by applying splitting predicate to D
if stopping point reached for this path, do
T" = Create a leaf node and label it with an appropriate class
else
Repeat the for loop
end if
T=Add T toT
end for
4: Prune the full grown decision tree using using a 10-fold cross validation to obtain

the smallest tree whose cost is within one standard error of the minimum cost

This model was then evaluated by comparing the predicted class with the target

class (true class) of each observation in the test set of the data. The results are
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reported in Section 4.4.

4.4 RESULTS

The case study was conducted using a Toshiba Portege R30-C computer with an Intel
Core i5 processor and 16 GB RAM. Algorithms were coded and executed in Matlab®
R2018b. We programmed the hybrid decision tree algorithm as well as a basic CART
decision tree for comparison. In this section, we denote these two algorithms as DT
for the basic CART decision tree algorithm and NBTree for the hybrid decision tree
algorithm, respectively. The prediction period X is selected to be X = {1,2,3,4,5}
hours for each Model A, B, and C, respectively. These models aim to predict AOD
states one to five hours into the future. Therefore, a total of 30 (2 x 3 x 5) prediction
models are built in this study: two algorithms (DT and NBTree), three classification
settings (Model A, B, and C), and five prediction periods (1-5 hours). The results

cover both immediate and short-term time scales for EHS.

4.4.1 Model Comparison
Historical Data

To compare the two proposed methods DT and NBTree for our case study, we have
used the classification accuracy, precision, and sensitivity-specificity analysis. The
classification accuracy is evaluated by the data in the test set. The accuracy of the
prediction model is the total number of correctly classified points divided by the total

number of data points in the test data set:

TP+TN
TP+TN+FP+ FN

where TP, TN, FP and FN denote true positives, true negatives, false positives, and

accuracy =

false negatives, respectively.

Table 4.3 summarizes the classification accuracy rates of DT and NBTree for each
of the 30 data sets. Generally speaking, the accuracy increases as the model becomes
less precise. The ranges of accuracy (1-5 hours of prediction period) are approximately
60%-75%, 69%-83%, and 91%-95%, for Model A, B, and C, respectively.

The results in Table 4.3 and Figure 4.2 indicate that NBTree outperforms DT in

most of the cases with only one exception (Model A, X = 5 hours). The improvements
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range from -0.18% to 6.32% with an average of 2.44%. This result is consistent
with those reported in [147]. The NBTree algorithm is capable of identifying the
noisy instances from each dataset before the decision tree induction. This prediction
model generated from the updated training set is less likely to become overfitting and
thus able to carry more generalization capabilities comparing to the DT algorithm
generated directly from the original training set.

From Model A to C, the focus of the model shifts from predicting more detailed
AOD states to merely predicting the troublesome AOD states in the near future
(1-5 hours). As a result, one can expect the accuracy of the classification model
increases from Model A to C. Also as expected, the accuracy tends to decrease
gradually while the prediction period increases from 1 to 5 hours, shown in both
algorithms (Figure 4.2). NBTree performs less consistently comparing to DT, with
more aggressive changes in accuracy associated with the prediction period. When the
prediction period is longer, the difference in classification accuracy between the two
algorithms is smaller. It suggests that the accuracy of the prediction model may be
affected by other factors than data noise or overfitting (e.g., limitation of the training

set).

Model Prediction Period (hours) DT (%) NBTree (%) Difference (%)

A 1 70.97 75.35 4.37
2 61.94 68.26 6.32
3 59.66 64.95 5.29
4 58.97 62.33 3.36
) 60.57 60.39 -0.18
B 1 82.63 82.65 0.02
2 72.57 76.60 4.03
3 71.20 73.86 2.66
4 69.94 70.78 0.84
) 69.37 69.52 0.15
C 1 93.03 95.21 2.18
2 90.97 94.06 3.09
3 89.83 91.12 2.29
4 90.74 92.12 1.38
) 90.86 91.55 0.69

Table 4.3: The classification accuracy rates of DT and NBTree.
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Figure 4.2: The comparison of the classification accuracy rates of DT and NBTree.

Furthermore, we have calculated the classification precision, sensitivity, and speci-

ficity for each model to compare the performances of DT and NBTree. We reported

these values as the weighted average values, which are calculated by using the follow-

ing equations:

k
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where k is the number of classes and N,, is the number of observations in the m™

classes, m = 1,2,--- , k. Instead of each data point contributes equally to the final
average, the weighted average is calculated using the number of instances belonging
to one class divided by the total number of instances in one dataset. The values
of the weighted average precision, sensitivity and specificity are presented in Tables
4.4, 4.5, and 4.6, respectively. The comparison of the prediction accuracy, precision,
sensitivity, and specificity confirms that, for this case study, NBTree outperforms
DT in most cases. Furthermore, the results from NBTree can still be presented in
an eagsily interpretable form for the decision makers as it maintains a decision tree

structure.

Model Prediction Period DT Precision NBTree Precision Diff.

(hours) (weighted avg., %)  (weighted avg., %) (%)

A 1 71.04 76.19 5.15
2 62.84 70.76 7.92

3 62.54 66.64 4.11

4 61.13 64.80 3.67

) 63.73 65.38 1.64

B 1 83.37 82.75 -0.62
2 75.28 77.33 2.06

3 73.76 75.32 1.56

4 73.91 74.08 0.17

5 74.15 72.43 -1.73

C 1 93.29 95.34 2.05
2 92.67 95.46 2.80

3 96.79 94.45 -2.34

4 93.97 93.64 -0.33

5 98.36 95.63 -2.73

Table 4.4: The classification precision values of DT and NBTree.

Synthetic Data

In this section the prediction accuracy of the proposed method is further examined and
compared with the CART decision tree algorithms using synthetic data. Distributions
of call volume and clear rate of ambulances at EDs are determined from real-world

historic data. Synthetic data are then generated following the same distributions.
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Model Prediction Period DT Sensitivity NBTree Sensitivity Diff.

(hours) (weighted avg.,%)  (weighted avg., %) (%)

A 1 70.97 75.43 4.46
2 61.94 68.26 6.32

3 59.66 64.95 5.30

4 08.97 62.33 3.36

5 60.57 60.39 -0.18

B 1 82.63 82.65 0.02
2 72.57 76.60 4.03

3 71.20 73.86 2.66

4 69.94 70.78 0.83

5 69.37 69.52 0.15

C 1 93.03 95.21 2.18
2 90.97 94.06 3.09

3 89.83 92.12 2.29

4 90.74 92.12 1.38

5 90.86 91.55 0.70

Table 4.5: The classification sensitivity values of DT and NBTree.

The data of numbers of ambulances were obtained through queue reconstruction and
simple calculation. Furthermore, other predictor variables, such as day of week, hour
of day, and NEDOCS score, were kept consistent with the historical data. A total of
additional 20 years of data were generated and used to train the decision tree models.
For each year’s data, 30 decision tree models were constructed in the same way as
detailed in Section 4.3. The result is reported in the Figure 4.3. The standard errors of
the prediction accuracy are also shown in the figure as error bars. According to these
values, the hybrid decision tree algorithm (NBTree) shows consistent improvement
on prediction accuracy in these synthetic data sets, comparing to the CART decision
tree algorithm (DT). Therefore, this method is confirmed to be suitable to analyze

the data in this application as a preferred algorithm.

4.4.2 Case Study

The motivation for this study is to provide EHS personnel with a decision-support

model that can predict AOD problems in advance allowing management to activate
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Model Prediction Period DT Specificity NBTree Specificity Diff.

(hours) (weighted avg.,%)  (weighted avg., %) (%)
A 1 88.11 90.04 1.93
2 84.36 87.95 3.59
3 83.95 86.07 2.12
4 83.29 85.08 1.80
5 84.31 84.76 0.45
B 1 91.65 91.22 -0.62
2 87.79 88.63 0.84
3 87.22 88.22 1.00
4 87.16 87.73 0.57
5 87.31 86.57 -0.73
C 1 71.27 74.41 3.14
2 61.87 72.18 10.31
3 07.95 68.24 10.29
4 50.84 58.89 8.05
5 85.80 66.79 -19.01

Table 4.6: The classification specificity values of DT and NBTree.

proactive interventions. For this study, different models with various prediction fo-
cuses are developed (Model A, B, and C), as well as for different prediction periods.
Given the nature of the EMS system under study, it represents a good trade-off be-
tween the accuracy of the prediction model and its practical purpose. In this section,
we demonstrate an example of the results of a prediction model summarized in a table
format. We selected a prediction model built by the hybrid decision tree algorithm,
as this method generally generates models with improved performances, while still
maintains the easy-to-interpret tree structures.

The Model B with a prediction period of X = 4 hours is chosen for the case
study. This model should be able to provide a relatively accurate (approx. 70%)
prediction of AOD in four hours, while reserving enough time for the EMS personnel
to put interventions in action to be proactive. The results of the prediction model
are summarized in Table 4.7, with only the predictor variables present in the final
decision tree structure and its predictions. Each row of the table represents a scenario
of the system. For example, row 1 in the table suggests that the model predicts the
AOD states will continue to be Good (0-3 ambulances at the ED) in 4 hours if the

current number of ambulances at the ED is between 0 and 3 and the emergency calls
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Figure 4.3: The comparison of the classification accuracy rates of DT and NBTree
using 20-years of synthetic data.

received in the last hour are less than 7. However, if the call volume was greater than
7, the AOD state will deteriorate to be Bad (4-6 ambulances at the ED) (according
to row 4 in the table).

This model suggests that the number of ambulance at EDs changes modestly dur-
ing a four-hour period. The predictor variable, the number of ambulances currently
at the ED, has a dominate impact on the prediction of AOD in the system in four
hours. Number of calls (EHS received), the NEDOCS of the ED, and the hour of day
are also important variables for the prediction. The rest of the predictor variables,
ambulance clear rate at the ED and the day of week, show minor or no impact on

the prediction of AOD in this prediction model.

The model can predict the AOD states of the system relatively well across different
classes, as shown in the model’s confusion matrix (Figure 4.4). In most cases, the AOD
states (class) stays the same over a 4-hour period; while occasionally, the classification
changes by one class but never by two. This observation is consistent throughout all

the prediction models in this study.
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Number of Ambulances Number of Calls NEDOCS Hour of Day  Clear Rate  Prediction Class

at the ED in last hour

0-3 0-6 - - - Good (0-3)

4 0-3 Busy, Very Busy, Overcrowded, Dangerous - 0-3 Good (0-3)

4 0-3 Busy, Very Busy, Overcrowded, Dangerous ~ Oa.m. - 7a.m. >4 Good (0-3)
0-3 >7 - - - Bad (4-6)

4 0-3 Disaster Ta.m.-11p.m. - Bad (4-6)

4 0-3 Busy, Very Busy, Overcrowded, Dangerous ~ 8a.m.-11p.m. >4 Bad (4-6)

4 >4 - - - Bad (4-6)

5-6 0-2 - - - Bad (4-6)

5 >4 - - - Bad (4-6)

6 3-4 Busy, Very Busy, Overcrowded - - Bad (4-6)

7 - Busy, Very Busy Oa.m.-6a.m. - Bad (4-6)

7 Overcrowded Oa.m.-4a.m. - Bad (4-6)

6 >3 Dangerous, Disaster - - Problematic (> 7)
6 >5 Busy, Very Busy, Overcrowded - - Problematic (> 7)
7 0 Dangerous, Disaster Oa.m.-4a.m. - Problematic (> 7)
7 0 Not Busy, Overcrowded, Dangerous, Disaster  5a.m.-6a.m. - Problematic (> 7)
7 >1 Not Busy, Overcrowded, Dangerous, Disaster  Oa.m.-6a.m. - Problematic (> 7)
7 - - Ta.m.-11p.m. - Problematic (> 7)
> 8 - - - - Problematic (> 7)

Table 4.7: The results of the hybrid decision tree model for predicting three different
AOD states (good, bad, and problematic) in four hours.

4.5 DISCUSSION

The worsening of AOD states does not happen suddenly allows EMS personnel to
act proactively to avoid worst cases. With the prediction model presented in this
study, they will have knowledge on the expected AOD state ahead of time. If the
situation is predicted to be worse, certain operations can be activated. For example,
establishing communications with paramedics and ED staffs to expedite the offload

process, redirecting ambulances to less busy EDs, reallocating ambulances, etc.

AOD can be costly to an EMS system. Take EHS (in Nova Scotia, Canada) as an
example, our preliminary analysis of AOD in year 2016 indicates that the time that
ambulances spend offloading patients increases 7 minutes per vehicle on average with
every additional ambulance added to the AOD queue. This can lead to significant
loss of ambulance hours when considering multiple vehicles in AOD at multiple sites,
let alone concerns regarding patient safety and quality of care. The prediction model
does not directly mitigate AOD, but it provides a forecast on AOD which offers the
potential to initiate practices that may help prevent AOD from worsening.

The demonstration of a table-format prediction rules (such as shown in Table 4.7)
can be extended to all 30 prediction models generated in this study. Each tables offers
a set of easy-to-understand rules for AOD predictions based on different prediction

focuses and periods. EMS providers have the flexibility to choose the most suitable
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Accuracy: 70.78%
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Figure 4.4: The confusion matrix of the prediction model in the example (Model B
with a prediction period of X = 4 hours.

models for their daily operations. For example, when predicting 1-2 hours into the
future, it may be more beneficial to have more detailed information to plan the
immediate ambulance operation. In which case, they may follow the results from
Model A, where the most refined classifications are provided with relatively accurate
predictions (approx. 70%). However, if the goal is to only predict the worst AOD
states in advance so that there is enough time to initiate proactive actions to mitigate
(e.g., schedule additional ambulances, communicate with hospital EDs, etc.), it may
make more sense to refer to Model C, where the focus is to predict such AOD states
with accuracy (above 90%) for a long prediction period (up to 5 hours in this study).

The NBTree algorithm provides an easy-to-interpret tree structured model with
improved prediction accuracy comparing to traditional DT algorithm. However, the
improvement of the model performances such as accuracy and other characteristics is
not as remarkable as expected in this study. It may be due to the fact that the EMS
system is a complex and stochastic system and the available data for the prediction

model are limited. Some potential contributors are not included in the model (such
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as weather, traffic, holidays/events, schedules, staffing, other ambulance activities,
etc.). These data are either not available to us or they are not collected, which makes
it difficult to develop a model with greater prediction power. Some of these missing
predictor variables may have great impacts on the model performance. Without
them, some characteristics of the training observations are overlooked, leading to a
reduction of prediction accuracy. These missing factors can not be compensated by
reducing noises in the available data, which is what the NBTree algorithm essentially
does. Therefore, if an AOD prediction model with higher accuracy is desired, more

predictor variables would need to be added to future models.

4.6 CONCLUSION

In this study, we developed a framework to predict the ambulance offload delay states
at an ED based on the current state of the EMS system. We have adapted a hybrid
decision tree algorithm that uses a Naive Bayes classifier to remove the noisy training
observations before the decision tree induction. In this study, the performances of
the model generated by this algorithm showed improvements on the classification
accuracy rates in most cases. Improvements were also found in the classification
precision, sensitivity and specificity analysis.

No significant change of the AOD states of the system appears in any prediction
models in this study. This implies that the AOD states of the system may be robust
and any variables that can cause a significant change of the state may take more than
several hours to be reflected to the system. From the other perspective, it may also be
difficult for any mitigation intervention to improve the AOD state in a short period
of time.

Both the EMS and the hospital EDs are complex health care systems with random
demands. As a problem occurring at the interface of these two systems, AOD involves
different aspects of these systems, and can be affected by many factors. Therefore,
significant variances can be expected from the real-world historical data. These vari-
ances can significantly impact the accuracy of a model that predicts the AOD states
of the system. We selected six to be the predictor variables of the model in this study,
based on our knowledge to the AOD problem and the availability of the data. By uti-
lizing data of ED congestion and EMS operation from both the EMS provider and the
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hospital EDs, this study defines the thresholds of the EMS system in terms of AOD
for the future development of mitigation interventions. It also provides insights for
all involved parties to move from the current reactive practice to proactive response
when coping with AOD. This may encourage improved communications and share of
information between the two parties and inspire future collaboration on AOD related

research projects.
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Chapter 5

DETERMINING AMBULANCE DESTINATIONS WHEN
FACING OFFLOAD DELAYS USING A MARKOV
DECISION PROCESS MODEL

In Chapter 4, we demonstrate a hybrid decision tree approach to develop a prediction
model for AOD states at the ED based on the current status of the EMS system. This
information has the potential to benefit the operation of EMS if proactive actions are
set in place to prevent problematic AOD states. To evaluate this potential benefit for
EMS, we identify several mitigation interventions of AOD and investigate a selected

intervention in this chapter.

5.1 INTRODUCTION

In this chapter, we aim to develop an EMS intervention to cope with AOD, and to
measure the success and impact of its potential benefits to the EMS system when
implemented. Anecdotally, there have been different interventions implemented by
the hospitals and the EMS providers to mitigate the AOD problem, as previously
discussed in Chapter 2. EMS and hospital staff may possess innovative intervention
ideas and recommendations from their own experiences. Therefore, to mitigate the
AOD problem, it is important to consult with the frontline personnel for potential
interventions and their feasibilities.

Therefore, two focus group discussions were held on September 28", 2017 and
October 2", 2017 with key EHS personnel. In the focus groups, the attendees were
asked to brainstorm and list EMS interventions that have (or may) mitigate the
AOD problem. The goal of these focus group discussions is to gather intervention
ideas regarding the mitigation of AOD, and determine which to further investigate

with OR models.

Six paramedic supervisors from the Central Region and one paramedic supervisor
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from each of the other three regions (Western, Northern, and Eastern) participated
in this exercise. As frontline personnel, paramedic supervisors possess a great deal
of knowledge and experiences on how to cope with the AOD problem in EHS daily
operations, thus, have valuable insights on feasible and creative interventions which
may have the potential to mitigate the AOD problem.

Both focus group discussions were well received, and many intervention ideas were
discussed. Some interventions had been tried before and some were new ideas. A total
of 50 interventions were identifies during the discussions. These ideas are summarized
and categorized into seven different themes, as presented in Table 5.1. Readers can
find more detailed descriptions on each intervention in Appendix B. The majority of
these interventions are EMS focused (three out of the seven themes), including: EMS
processes based on patients’ conditions, EMS processes based on system status, and
general EMS processes. Since the AOD problem occurs at the interface of the EMS
systems and hospital EDs, there are two themes focusing on collaborative practices
including: offload programs, and communication. Another theme describes hospital
interventions and the last one includes interventions that were indirect to mitigate

the AOD problem but noteworthy.

Theme Intervention Idea Comment
Extended Care Paramedic (ECP) Program Expand (provincial)
(based on Palliative Care Program Expand
patients’ conditions) Bypass ED for patients with certain conditions | Expand for more
(trauma, stroke, stemi, etc.) patient types
Bypass ED for low acuity patients New idea

EMS Processes
(define the medical necessity for an ambulance)

Bypass ED for EMS super users and New idea
create special response protocols
Direct to Chairs Policy Continue & formalize
with NSHA
Utilize the emergency department Continue
(based on information system (EDIS)
system status) Ambulance smoothing Expand in/out of

district; provincial

EMS Processes Grant EHS supervisors’ ability to New idea

redirect ambulances when see fit

EHS communication centre escalation plans New idea
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Double up Continue
Bed Swap Continue & expand
Triage EMS response times New idea
(general) Separate call and transfer service New idea
More PTUs hours during peak demand time New idea
Refuse ED-to-ED transfers when patient New idea
EMS Processes cannot be placed into a bed within
a certain amount of time
Allow PTUs to perform ED transfers New idea
Reduce EHS charting requirements New idea
and address work flow issues
ED “hallway medicine” for New idea
non-complex cases when needed
Re-implement offload zones (OZs) at EDs New idea
Holding areas for ambulance patients at EDs New idea
Discharge lounges for patients at EDs New idea
Offload Programs Double EHS team to operate OZs at EDs New idea
Independent personnel in charge of New idea
placing patients into ED beds
Bed swap between ED and OZ beds when the New idea
patient in ED bed waiting to be processed
Have hospital supervise patients who New idea
do not need to be overseen by paramedic
Check for ED bed availability to initiate Continue
conversation with charge nurse
Communication between paramedics Continue
and ED staff
Direct EHS supervisors and Continue
ED charge nurse interaction
Direct EHS manager & Continue
NSHA director interaction
Bring EHS representative New idea
to the ED executive table
Communications Create visual real-time measures New idea
Better define and measure TOC time New idea
NSHA access to EHS system status New idea
Define areas of responsibility New idea

and link that to performance

99



Share patient care plans New idea
between EHS/NSHA

Communicate best practices New idea
to all EHS staff
Joint policy development New idea

between EHS and NSHA

Add more hours/resources at EDs Explore

Redefine concept of New idea

"bed count = patient care"

Push patients through the New idea
system rather than pulling
Enhanced ED outflow (early New idea
discharge with facilitated follow up)
. Define hospital escalation plans Expand
Hospital Processes
Separate charge nurse for New idea

internal and external processes

Make charge nurse easily New idea

identifiable to paramedics

Have specialized services at New idea

different hospital facilities

Improve patient triage and New idea

registration processes

Better address AOD in EHS reports New idea

Bring food/supplies for paramedics Continue
Indirect but Noteworthy
in offload delay (morale)

Public awareness of AOD problem New idea

Table 5.1: The summary of interventions obtained from the two focus group discus-

sions with key EHS personnel.

The intervention chosen for this study is to find the optimal ambulance destination
policy to mitigate AOD, which is derived from the EHS current practice "ambulance
smoothing". We develop this policy to provide guidelines to EMS on where to trans-
port patients with consideration of AOD, patient acuity level, and travel distance. To
generate the policy, we formulate a discrete time, infinite-horizon, discounted Markov

Decision Process (MDP) model that determines how to optimally direct ambulances.
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We propose two independent objectives: one is to minimize the time that ambu-
lance crews spend transporting patients. The other is to minimize time-to-ED bed
for patients. A computational study is conducted with real-world data from an EMS
provider which currently experiences AOD regularly.

This study has two main contributions to the AOD and OR literature. First, our
paper discusses an MDP approach to find optimal ambulance destination policy for
an EMS system which considers AOD. Many systems have used ambulance diversion
as a method to counter AOD. Ambulance diversion occurs when an ED restricts
incoming ambulance traffic due to crowding, and ambulances are therefore routed
elsewhere. The system under study does not use ambulance diversion but instead
EMS dispatchers have a tool to route ambulances to less busy EDs to mitigate AOD.
Second, it demonstrates a method to incorporate a large amount of real-world data
into the MDP model design, and to solve the numerical case for a relatively large
EMS region. Although the literature related to EMS systems includes various studies
that use MDP models, their designs often use theoretical distributions rather than
actual administrative data.

The remaining sections of the paper are organized as follows. Section 5.2 provides a
literature review on various OR models applied to the AOD problem and applications
of the MDP models to EMS. The proposed MDP model is formulated in Section 5.3.
The real-world data used in the computational study are described in Section 5.4.
The results for the model applied to this study are presented in Section 5.5. Finally,

we include conclusions and discussions in Section 5.6.

5.2 LITERATURE REVIEW

There are two streams of literature that are related to our work. The first stream is
the literature on MDPs. MDPs have been widely used to model and solve dynamic
decision-making problems with multi-states under stochastic circumstances [180]. It
has been applied to many areas including finance, agriculture, logistics, maintenance,
manufacturing, and recently in health care [181, 182]. However, to our best knowledge,
there is currently no application of MDP models in the AOD literature.

There are numerous MDP applications related to the EMS system, mainly focusing

on optimizing the dispatch policy. Bandara et al. [183| examine the optimal dispatch
p g p p Yy p p
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policy within the EMS system while focusing on the urgency level of an emergency
call. They develop an MDP model to identify how to optimally dispatch ambulances
to maximize patient survivability. Building on this study, there are several papers that
considers the ambulance dispatch problem with priority levels of patients [184, 185].
McLay and Mayorga [185] formulate an MDP model to determine the optimal dispatch
policy while considering that dispatchers make classification errors in assessing the
true customer priorities. To shorten response time for the urgent patients, their
model allows increased response times for the non-urgent patients. They later extend
the modeling framework [184| and examine the optimal EMS dispatch policy while
considering the issue of balancing equity and efficiency. Four vehicles and four demand

locations are included in their numerical work [184, 185].

Jarvis [186] addresses the problem of determining the dispatch policy by minimiz-
ing the average cost of assignment in an MDP model, while considering that individual
vehicle may be unavailable due to previous assignments. Keneally et al. [187] develop
an MDP model based on simulation data to examine aerial military medical evacu-
ation dispatch policies in a combat environment. Some papers use MDPs to model
the ambulance redeployment problem. Alanis et al. [188] propose and analyze a two-
dimensional Markov chain model to identify a near-optimal compliance table policy.
Berman [189, 190] uses this approach to examine optimal repositioning of emergency
units for small systems. The same method was revisited by Zhang et al. [191] to solve
a single-ambulance repositioning problem optimally. These models provide important
insights for simplified models involving a few ambulances. Maxwell et al. [192, 193]
construct an approximate dynamic programming model to find solutions for larger
systems with fewer assumptions, generating optimal or near-optimal repositioning

policies.

The second stream of literature related to our work is the literature on the AOD
problem. It has only become an active research topic recently and there is limited
research from the OR field that specifically focused on this problem [31]. Majedi
[32] constructs a system representing the interaction of EMS and ED using queuing
theory and models the behavior of the system as a continuous time Markov chain
to evaluate various system performance measures (e.g., the average number of am-

bulances in offload delay, average AOD, and ambulance and bed utilization). Clarey

102



et al. [66] design a discrete event simulation model to assess the change on AOD
in a scenario, where dedicated nurses are hired to assist with ambulance offloading
patients. This study demonstrates a clear reduction in AOD when dedicated nursing
levels are increased. However, the authors also raise concerns that using this as a sole
method to reduce AOD would require unacceptably low staff utilization, which would
cost hospitals both financially and in human resourcing. Almehdawe et al. [5] uses
a Markov chain queuing model to analyze the interface between an EMS provider
and multiple EDs that serve both ambulances and walk-in patients. Matrix-analytic
methods are used to solve the steady state probability distributions of queue lengths
and waiting times. The study concludes that the priority based admitting policy had
a great impact on patient waiting times. When additional resources are considered for
the system, the benefit of adding capacity is greater for EDs with higher utilization.
Almehdawe et al. later [33] introduce a stylized queuing network model with blocking
to investigate the effect of patient routing decisions on EMS offload delays and to

determine the optimal allocation of patients to each ED in a region.

Two urban hospital EDs in Nova Scotia, Canada have attempted to reduce AOD
by implementing an offload zone (OZ), in collaboration with the local EMS provider
[63]. This OZ is a holding area in the ED monitored by a dedicated nurse and
paramedic team for patients who arrive by ambulance but cannot be admitted into
the ED due to congestion. This practice eliminates the need for one ambulance crew
(two paramedics) to wait with each patient, and thus frees the ambulance to return
to service more quickly [30]. Two years after opening the two OZs, Carter et al. [30]
completed a Health Care Failure Mode and Effect Analysis study to identify risks
to patient safety and process efficiency. They conclude that the OZ results in ED
staff having little incentive to admit patients who are waiting in the OZ and instead
admit patients from the waiting room. This leads to the OZ often being at capacity
and unable to relieve AOD. Motivated by this unexpected finding, Laan et al. [64]
model the OZ using a continuous time Markov chain to investigate how this lack of
incentive impacts AOD. The result suggests that, when the probability of “a patient
admitted from the OZ when a patient of equal acuteness is waiting in the waiting
room” is not greater than a certain threshold (0.35 in their case), implementing an

OZ will result in even longer offload delay, as admission priority is disproportionately
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given to patients in the waiting room.

5.3 METHODS

This section presents the MDP model for determining the optimal ambulance desti-
nation policy in an EMS system suffering from AOD. When there is no AOD, the
destination ED for an ambulance patient is typically the closest ED appropriate for
the patient’s condition. However, when the number of queued ambulances is high
at the urban EDs, it may become more time-efficient for ambulances to travel fur-
ther distances to a community ED where there are typically no queued ambulances.
Currently, ambulance destination decisions within the urban region in our case study
system consider ED crowding, the number of queued ambulances, and other mea-
sures, but this practice does not extend to surrounding areas. The model described
in this section is used to determine when it is advantageous to send patients to the fur-
ther community EDs, given the number of queueing ambulances, patient acuity, and
travel distance. We begin with a short introduction to discrete time, infinite-horizon,

discounted MDP models, before presenting our model.

5.3.1 General Overview of MDP Modeling Framework

A discrete time, infinite-horizon, discounted MDP model is characterized by a set of
five quantities, expressed as (S, A,T(s,a, s"), R(s,a, s"),~) [194], where S is the finite
set of all states of the model, A is the finite set of all available actions, T'(s,a, s’)
is the transition probability for reaching state s’ when taking action a from state s,
R(s,a,s’) is the reward function to receive a reward (or penalty) when getting from
state s to state s’ by taking action a, and v is the discount factor (0 < vy < 1) to
discount future rewards to the present time. A reward n steps away from the current
state s is discounted by ~™. The discount factor is necessary for the reward function
to converge in an infinite horizon MDP model.

A decision rule prescribes a procedure for assigning an action a to each possible
state s in S. A policy 7(s) is a sequence of decision rules to be used at all decision
epochs. A state-value function V;(s) represents the expected objective value obtained

following policy 7(s) from state s in S. It is defined as the expected value of all future
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rewards, which is the immediate reward of reaching state s as well as the rewards of

subsequent states under the policy 7(s).

Vi(s) = R(s,n(s),s") + Z T(s,m(s),s)\Vy(s)

s'es
The action-value function Q(s,a) is the expected objective value starting from
state s, taking action a, while following policy 7. It specifies how valuable state s is

under the policy 7(s) for different actions a.

Qr(s,a) = R(s,a,s") +~ Z T(s,a,s) V(s

s'eS
The MDP algorithms are aimed at calculating or estimating value functions to
determine useful actions and find the optimal policy. Solving an MDP over an infinite
horizon results in deriving an optimal policy 7*(s). It is defined as the policy which
maximizes the expected reward (value) for each state with the discount factor, v (0

< v < 1). Thus, if we denote the maximal value of the action-value function as
Q*(5,a) = max Qs (s, ),

the optimal policy is the policy that maximizes the expected reward,
7 (s) = arg max Qx(s,a).

When the state and action spaces have finite cardinalities, the optimal policy takes
on a stationary form as there is no reason to behave differently in the same state at
different times, no matter how long the agent has run or will run in the future.
Several standard algorithms are available to compute the optimal policy 7*(s)
with total expected discounted rewards. These methods are linear programming,
the policy iteration algorithm, and the value iteration algorithm [182, 194, 195|. We
choose the policy iteration algorithm to solve our MDP model in this study. The

algorithm and our motivation for this choice are detailed in Section 5.3.3.

5.3.2 Our Model

Each decision epoch represents a new ambulance call requiring a patient transporta-

tion and an ambulance destination decision: with probability P(B = b) the call is for
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a patient type b (b = {R, H, M, L} for resuscitation, high, medium, and low acuity
levels), with probability P(D,, = d,, D. = d..) the call is d,, kilometers away from the
closest urban ED, and d. kilometers away from the closest community ED, and with
P(N = n) there are n ambulances queued at the urban EDs when the destination
decision is to be made. When taking the action of transporting a patient to an urban
ED, n will increase by 1 if no ambulances are released between decision epochs. When
taking the action of transporting a patient to a community ED, n does not increase.
For both actions, n decreases by d with P(D = d) where D is the number of ambu-
lances released from the urban EDs between decision epochs. We therefore define the
state space as S = Sy, Sp,.p., Sp where Sy is the state representing the number
of ambulances queuing at the urban EDs, Sp, p. is the call location state defined
by a pair of travel distances to the closest urban ED and the closest community ED
respectively, and Sp is the patient acuity state.
Actions

The decision at hand is to determine to which ED to send the patient. Rather than
considering each ED individually, we aggregate the EDs within and outside the urban
region into two groups as urban EDs and community EDs, respectively. This way,
the decision is whether to send the patient to an urban ED or a community ED. The
model is formulated such that only the closest of each type are considered as possible
destinations. This is further appropriate because the urban EDs, although not located
at the same place, share a virtual queue when busy. In other words, dispatchers
consider the number of queued ambulances and ED crowding when determining the
destination ED in the urban region. There is only one of two actions that may be

taken when making the decision.

transport patient to an urban ED, k =1
transport patient to a community ED, k = 2

Penalty functions

Action aj, € A is chosen when the process is in state s, and the process then makes
a transition to state s’, and an immediate penalty is assigned. The penalty reflects
the change of value to the objective function of the action selected. In this study,
we consider two different penalty functions independently. The first is the time that

an ambulance crew spends transporting a patient, including the time to return to
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the urban region (if necessary), 7% , and the second is the time to an ED bed for a

. an
patient 7p;.

The penalty function contains three time components: the inbound travel time
(the time that an ambulance travels to transport a patient from the call location
to an ED), the turnaround time (the time that the ambulance crews spends at an
ED waiting to transfer the care of the patient to the ED staff, time for clean up
or paperwork, and recovery time), and the outbound travel time (the time that an
ambulance travels to their next posting location). In practice, the ambulance is
actually "in service" during the outbound travel time and can be called upon to
respond to a call in an EMS system with dynamic deployment. Despite this, we
penalize by the outbound travel time because the ambulance is not in the urban
region during this time. This ensures the consequence of sending an ambulance out
of the urban region is completely accounted for in the model. In fact, in systems with
dynamic redeployment it is possible that an ambulance crew sent to a community
ED would remain in that community after delivering the patient. We choose to
ignore this in the model and instead focusing on the urban system, which means
we may be slightly over penalizing ambulances sent to community EDs. Let 7"
and T°" respectively be the inbound and outbound travel time for patient being
transported to an urban ED. Similarly, T/ and T * are respectively the inbound and
outbound travel time for patients being transported to a community ED. Let T)" be
the turnaround time experienced by an ambulance at an urban ED when there are n

ambulances in the queue.

To compute the time to ED bed for a patient, the turnaround time interval requires
more explanation. “The turnaround time starts when the paramedics report to the
dispatcher that they have arrived at the ED, and ends when the dispatcher is notified
that the paramedics are available for another call” [7]. This is made up of multiple
sub-intervals including the delivery or offload interval, defined as arrival at ED time
to transfer of care time, and the recovery interval, defined as transfer of care time to
clear at ED time (i.e. time for paramedics to recover after delivering the patient). We
define our turnaround time variable in the urban ED such that 7" is the complete
interval, T is the sum of all time sub-intervals except the queueing time sub-interval,

and 77 is the length of time in the recovery sub-interval. At the community EDs,
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ambulance queueing is negligible. Therefore, the complete turnaround time interval is
modeled with 7? and the recovery time interval is 7". The time to ED bed for patients
is the sum of the inbound travel time and part of the turnaround time excluding the
paramedic’s recovery interval. At the urban ED, this is T + T" — T7; while at
the community ED, this is 7" 4+ T2 — T". Figure 5.1 demonstrates the different time
intervals (not necessarily to scale) included in our penalty functions and the difference

ak ak
between %% and rg.
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Figure 5.1: The ambulance operation processes included in the penalty functions %,
and 7.

For each patient acuity level, different ED destinations are appropriate, and this is
reflected in the penalty functions. Major trauma patients (resuscitation acuity) will
always be treated immediately regardless of the status of the ED. Therefore they do
not queue and the turnaround time for the ambulance is 7. Low acuity patients, in
this study, are defined as ambulance patients who can be safely offloaded directly to
the ED waiting room (based on clinical impressions according to local EMS policy).
Therefore, they also do not queue upon arrival. As such, the turnaround time for
an ambulance with a low acuity patient is also 7. High acuity patients will also be
transported to the closest appropriate ED due to their severe conditions, however,
they may be delayed at the ED due to AOD. Therefore, the turnaround time for an
ambulance with a high acuity patient is 7'. Medium acuity patients are candidates
for transporting to a community ED because their acuity allows it and they may
experience delays at an urban ED waiting to be offloaded.

Minimize the ambulance transportation time
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The penalty function of the ambulance transportation time, 7% can be deter-

mined as follows:

T+ T0+ T,  if k=1b=Ror L (1)
o JTHTIHT, ifk=1b=Hor M (2)
Ham Z, if k=2b=Ror H or L(3)
T+ T2+ T, if k=2b=M (4)

where Eq.(1) and (2) describe the situation of sending an ambulance patient to an
urban ED, while Eq.(3) and (4) describe the situation of sending an ambulance patient
to a community ED. We denote Z as a large enough number to penalize the model
from sending resuscitation, high or low acuity patients to a community ED, as shown
in Eq.(3).
Minimize the time to ED bed for ambulance patients

The penalty function for the time to ED bed for ambulance patients, r, is
constructed very similarly, except that it includes only part of the turnaround time

and does not include the ambulance outbound travel time.

T+ T0—Tr, if k=1,b=Ror L
Tin+Tr—Tr, ifk=1,b=Hor M

ap __
Tpt =

Z, if k=2b=Ror Hor L

T4+ TP =T, ifk=2b=M

Both objectives are minimization problems. By converting time to negative values,
the penalty functions are converted to a maximization function.
Transition probabilities

Denote the probability of moving from state s to s’ given that action a; is chosen,

as P(s, ay, s'). Then, P(s, ax, s') can be defined as:
P(s,ay,s') =P(N' =n|N =n,a;, D =d) x P(B=10) x P(D, = d,, D, = d.)

where P(N" = n|N = n, ai, D = d) is the probability N’ = n in state s, given N =n
in state s. Note that P(B = b) and P(D, = d,, D. = d.) are independent of the

system state and action and are determined from historical data.
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When the action ay is to send a patient to an urban ED (k = 1):

(

IP’(D:())/dzn:OP(D:d), when N=n—1,n>0
P(Dzl)/;ijP(D:d), when N =n
n+2
PN’ = nlay) = IP’(DzQ)/GlZ::OIP’(D:d), when N =n+1
ol
IP’(D:C—TH—l)/dX::O (D =d), when N = c.
0, otherwise

where c¢ is the total number of ambulances operating in the city area. For instance,
when three ambulances are queueing at an ED (N = 3), the future Sy states can
only be 4, 3, 2, and 1 with the first corresponding to no discharges (D = 0) and the
latter corresponding to 1, 2, and 3 discharges respectively. The probability of each
corresponding future Sy state depends on random variable D. Continuing with this
example, N/ = N + 1 when none of the 4 ambulances (the 3 existing plus the 1 newly
arriving) are discharged between calls. Therefore, this occurs with P(D = 0|N' =
4, N = 3) and is computed by dividing P(D = 0) by the sum of all possible departure
probabilities, in this case $";_,P(D = d).

Similarly, when the action aj is to send a patient to a community ED (k = 2):

'P(Dzo)/ép(z):d), when N = n
P(D=1)/ S P(D = d), when N = n + 1
P(N' = nlag) = o
]P’(D:c—n+1)/di:OIP’(D:d), when N = c.
0, _ otherwise
Assumptions

The model reflects the typical EMS practice when responding to calls and deliv-
ering patients to the most appropriate ED. However, a number of assumptions are
implicit in the model. First, EDs in this EMS network are categorized into two groups
(urban and community) instead of individual EDs to avoid the "curse of dimension-

ality". This is a reasonable assumption in this study because of the following two
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reasons. 1) All three urban EDs share a virtual queue. EMS dispatchers know the
level of congestion at these EDs and distribute ambulances accordingly. It is therefore
unlikely for one of the EDs to be overwhelmingly busy while the other two are not
busy. 2) For the three potential community EDs, the distances from the urban area
to them are relatively similar, resulting in no significant difference in transportation
time to any community ED. Furthermore, since community EDs experience low pa-
tient volumes and rarely experience AOD, it is reasonable to assume no ambulance
queueing (AOD) at community hospitals in our model. Therefore, we can treat these
community EDs as a group due to these similarities. The potential impact and ap-
propriateness of the assumption of no AOD at community EDs are discussed with
more details later in Section 5.5.

Second, the historical call volume data (detailed in Section 5.4) shows very little
effect on day of week or seasonality, therefore, they are ignored in our model. Al-
ternatively, call volumes is not stationary with respect to time of day. Two levels
can be observed: 1). high level (busy hours from 9 am. to 7 p.m.) and 2). low
level (non-busy hours from 8 p.m. to 8 a.m.). This feature is ignored in the basic
model. In Section 5.5.2, two MDP models are solved to evaluate the optimal policies
with the high/low levels of calls found at different times of the day. The analysis
of the historical data shows that there is no significant differences of the probability
distributions of patient acuity or call locations through out a day. Therefore, the
probability distributions of patient acuity and call locations are considered time in-
variant. Other minor assumptions include, one ambulance is assigned to each patient
call and calls occur sequentially. This of course ignores multiple patient calls which

are uncominon.

5.3.3 Policy Iteration Algorithm

Policy Iteration is a fundamental algorithm in the study of MDPs. It manipulates
the policy directly to find the optimal policy. It starts by evaluating an initial policy,
and then uses the value function of that policy to find better policies. This is done by
considering taking an action a in state s that is different from the one according to
7(s). If this change results in a better new policy (that selecting a in s and thereafter

following the existing policy), we have successfully improved the policy. Once a policy
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7(s) has been improved using V(s) to yield a better policy 7'(s), we can compute
its value function V. (s) and improve it again to yield an even better policy 7”(s).
This procedure is repeated to consider all actions in all states, evaluate each action
in each state and select the actions that yield the highest rewards.
This algorithm alternates between two steps, which are outlined:
Initialization: choose an initial policy
Repeat until policy is stable {
1. Policy evaluation
Repeat until values converge {
For each state {
Calculate the value function when taking action according to the current
policy;
Update estimate of the optimal value function.
} each state
} value convergence
2.Policy improvement

Find a new policy according to equation
mir1(8) = arg maxZT(s, a,s') [R(s,a,s") + 4V, (s)].

}policy stable.

The state of the MDP is finite and therefore the number of possible stationary
deterministic policies is also finite. The policy iteration algorithm is able to compute
an optimal stationary policy in this situation. It is chosen to be used in this study as
it is generally faster and less computationally heavy compared to the Value Iteration

algorithm [195].

5.4 DAtA

This section demonstrates how to apply this MDP model to a relatively large EMS
region. It describes the key procedures and methods to abstract required model
parameters from the data. It also clarifies some situations and considerations that

may be unique to the specific EMS provider in this study.
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This EMS provider handles all emergency/urgent calls in Nova Scotia, Canada.
This study includes emergency/urgent calls in the Halifax Regional Municipality
(HRM) (i.e. the urban region) and its adjacent regions (i.e. the surrounding com-
munities). AOD is commonly reported as a problem in HRM [30]. We analyze 12
months of computer-aided dispatch (CAD) data from January 15, 2016 to December
31%¢, 2016. The dataset contains 22,243 EMS emergency calls originating in the ur-
ban area that are associated with a patient transportation to an ED. Each call record
includes information about the patient acuity level and all the time stamps of the
ambulance responses for completing that call, such as call time, arrival at scene time,
departure from scene time, arrival at hospital time, leaving from hospital time, etc.
With a geographic information system (GIS) tracker available for each ambulance,
the locations of each ambulance in real time is also recorded and available for this

study.

We first restructure the ambulance patient transportation events (new call / arrival
at ED / departure from ED) in chronological order. From this we can compute
P(D = d) and the turnaround times (and subintervals) as a function of the number
of ambulances at urban EDs n. In other words, when an ambulance arrives at an
ED, we can estimate how long the turnaround time will be given the number of
ambulances queueing from the historical data. Since we observe that the number
of queued ambulances rarely exceeded 9 in our data (763 out of 22,243 incidents,
approximately 3.43%), the Sy state space is truncated to be Sy = {0,1,---,9} in
the computational study, where at least 100 calls are recorded in the historical data
for each state of Sy. The truncated historical distribution of P(D = d) is shown in

Figure 5.2.

Each patient who requires transportation has a Canadian Triage and Acuity Scale
(CTAS) score assigned. The CTAS score ranks the patients by severity from 1 to 5
(1 being highest acuity). It is known by the time that the paramedics evaluate the
patient and make the decision to transport the patient to an ED. The probability
distribution of CTAS scores is determined from historical data. In this study, we
categorize patients who require a transportation into four acuity levels: resuscitation,
high, medium, and low. These categories are based on the CTAS scores and discus-

sions with content experts. Resuscitation acuity level patients include all CTAS score
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Figure 5.2: The historical distribution of the probability of d numbers of ambulances
being released from the urban EDs between decision epochs.

1 patients plus 20% of CTAS score 2 patients. High acuity level patients include
the rest of the 80% CTAS score 2 patients. Low acuity level patients include 50%
CTAS score 4-5 patients, who can be direct offloaded to an ED waiting room based
on local EMS policy. The rest of the patients are categorized as the medium acuity
level patients, including all CTAS 3 patients plus the rest of the 50% CTAS score
4-5 patients. According to the 12-month historical data, the probabilities of patient
acuity levels is 0.0975, 0.3233, 0.5131, and 0.0661 for resuscitation, high, medium, and
low, respectively. This is an appropriate distribution based on our conversations with
paramedics and supervisors. In other words, 51.31% of ambulance patients (medium
acuity) are candidates to be sent to a community ED in our model.

To compute the penalty function, we need the turnaround time and the in-
bound/outbound travel time of the ambulances. Based on the local government
benchmark with minimal offload time [196], we define the standard turnaround time
without AOD T? and T as 30 minutes, and the recovery intervals 7" and T as 20
minutes. We obtain the 77} values from the historical data as shown in Table 5.2.

We use ArcMap® v10.5 to find the travel distance to the closest urban ED and
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Number of ambulances at urban EDs, N Average ambulance turnaround time, 7 (minutes)
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Table 5.2: The summary of the average ambulance turnaround time at the urban
EDs from the historical data of 2016.

the closest community ED, respectively, from each call in the data set. There are
three urban EDs and three community EDs included in the computational study. We
separate the distance to the closest urban ED into 22 bins and the distance to the
closest community ED into 16 bins by analyzing the histogram of the data. Based
on the data frequency, the range in each of the bins varies from 1 to 10 kilometers.
A heat map (22 x 16) is generated to show the call frequencies of each location
pair (Figure 5.3). To reduce the problem size, only the call locations (D,, D.) with
a positive probability (greater than 0) from the historical data are included in the
distance-state space matrix (Sp, p.). After excluding the cells with probability equal
to 0 (shown as the lightest cells in Figure 5.3), the number of categories is reduced to
230. When the model is generalized for other EMS systems, this value is subjected
to change. This approach balances the amount of detail in the system representation

(which typically results in a better outcome) with the computational difficulties.

The travel time varies based on the travel distance between the call location and
the destination ED, and the speed at which the ambulance travels. To calculate
the corresponding travel time, we need to estimate the ambulance travel speed. A
common modeling practice employs a constant speed for simplicity purpose, which
may result in overestimation of EMS system performance [197]. Therefore, in this
study, we utilize the KWH model proposed by Kolesar et al. [198] to estimate the
ambulance travel time instead. This model has been further validated by Budge et
al. [197] and reported to be a reasonable approximation of the median travel time of
ambulances. Furthermore, it distinguishes between short and long travel distances

which is particularly useful in our study.
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distance to community ED (km)

10 20 30 40 45 a0 54 62 66 68 70 80 90 100
0] 0.000% 0.004% 0.036% 0.135% 0.562% 0.270% 0.301% o 0.301% 0.103% 0.183% 0.081% 0.000% 0.000%
1| 0.000% 0.000% 0.040% 0.202% 0.724% 0.373% 0.548% RS 0 0.423% 0.148% 0.382% 0.121% 0.004% 0.000%
2| 0.000% 0.000% 0.036% 0.117% 0.548% 0.283% 0.342% o 0.211% 0.112% 0.183% 0.045% 0.004% 0.000%
3| 0.000% 0.009% 0.036% 0.198% 1.092% 0.378% 0.324% a8 g 0. 0.355% 0.135% 0.256% 0.076% 0.000% 0.000%
4| 0.004% 0.004% 0.031% 0.539% 0.486% 0.580% 0.751% 0.468% 0.135% 0.261% 0.081% 0.004% 0.004%
5| 0.000% 0.004% 0.040% 0.436% 0.297% 0.688% 0.922% 0.391% 0.157% 0.256% 0.049% 0.004% 0.000%
6| 0.000% 0.004% 0.049% 0.238% 0.472% 0.701% 0.454% 1.218% 1.043% 0.814% 0.193% 0.243% 0.045% 0.009% 0.000%
7| 0.000% 0.000% 0.031% 0.126% 0.180% 0.508% 0.495% 0.890% O0.436% 1.388% 0.144% 0.198% 0.031% 0.000% 0.000%
8| 0.000% 0.000% 0.018% 0.117% 0.229% 0.306%  1.425% 1.048% 0.441% 0.922% 0.220% 0.539% 0.045% 0.000% 0.000%
9| 0.000% 0.000% 0.004% 0.117% 0.130% 0117 0.670% 0.463% 0.378% 0.180% 0.238% 0.184% 0.121% 0.018% 0.000% 0.000%

10( 0.000% 0.000% 0.076% 0.117% 0.279% 0.333% 0.445% 0.863% 0.625% 0.391% 0.261% 0.333% 0.670% 0.009% 0.000% 0.000%
15| 0.000% 0.000% 0.036% 0.040% 0.076% 0.144% 0.252% 0.580% 0.324% 0.166% 0.121% 0.054% 0.526% 0.004% 0.004% 0.000%
20| 0.000% 0.009% 0.090% 0.027% 0.054% 0.054% 0.139% 0.670% 0.477% 0.112% 0.184% 0.018% 0.,139% 0.094% 0.000% 0.000%
25(0.000% 0.004% 0.013% 0.018% 0.043% 0.031% 0.031% 0.184% 0.220% 0.121% 0.027% 0.013% 0.009% 0.085% 0.000% 0.000%
30| 0.000% 0.004% 0.000% 0.004% 0,022% 0.022% 0.027% 0.094% 0.108% 0.040% 0.027% 0.031% 0.009% 0.000% 0.000% 0,000%
35(0.000% 0.000% 0.000% 0.009% 0.022% 0.013% 0.063% 0.081% 0.058% 0.018% 0.009% 0.004% 0.054% 0.000% 0.009% 0.000%
40| 0.000% 0.000% 0.000% 0.004% 0.022% 0.022% 0.009% 0.076% 0.031% 0.009% 0.018% 0.004% 0.004% 0.000% 0.000% 0.000%
45| 0,000% 0.000% 0.000% 0,000% 0,000% 0.003% 0.000% 0.031% 0.027% 0.004% 0.009% 0.000% 0.004% 0.000% 0.000% 0.000%
50(0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.004% 0.004% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
55| 0.000% 0.000% 0.000% 0,000% 0,000% 0.000% 0.000% 0.000% 0.000% 0.004% 0.004% 0.000% 0.000% 0.000% 0.000% 0.000%
60| 0.000% 0.000% 0.000% 0.000% 0,000% 0.000% 0.000% 0.000% 0.018% 0.000% 0.004% 0.000% 0.000% 0.000% 0.000% 0.000%
65| 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.009% 0.004% 0.004% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

distance to urban ED (km)

Figure 5.3: The heat map showing the call frequencies of each category of call loca-
tions.

The KWH model [198] is defined as follows:

o/(Lja), L <2d,

vefa+ L/ve, D > 2d,

T(L) =

where T is the estimated travel time, a is the acceleration rate, L is the travel distance,
v, is the cruising velocity, and d, is the distance required to achieve the cruising
velocity (d, = v?/2a).

We analyze the historical data to obtain the proper values of the parameters a and
ve. The actual travel time is calculated by using the time stamps for events of "depart
scene" and "arrive destination" of each call. With the travel distances, we can then
calculate the ambulance average travel speed during each patient transportation. To
eliminate the outliers, only call records with an ambulance travel speed within two
standard deviations from the mean travel speeds are kept. This resulted in 1.27%
of data points being eliminated. The estimated travel time can be calculated using
the KWH model with pre-determined values of a and v, for each remaining call. By
minimizing the sum of squared errors between the actual travel time and the estimated

travel time for the 21,527 calls, we determined the value of a in this EMS system is
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0.03 m/s* and the value of v, is 85.86 km/h. With the best-fitting parameter values,
we then use the KWH model to estimate the travel time (inbound and outbound) in

the penalty functions.

T2 is the travel time from the community ED back to the urban region where the
ambulance originated. To computer this we first compute the travel distance from
each of the three community EDs to the urban boundary using the road network
analyst package in ArcMap® v10.5. We then determine the frequency which each
community ED is the closest to a call and use this to compute the weighted average
distance as our outbound travel distance (25.02 km) in the KWH model to determine
the outbound travel time 7°%. Ambulances leaving the urban EDs are already in the

urban region, therefore 72 = 0.

Figure 5.4: The locations of the three community EDs (stars) and the urban region
boundaries (highlighted polygons) shown in ArcMap® v10.5.
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5.5 RESULTS

The transition matrices are generated using Microsoft® Excel with a program coded
in Visual Basic for Applications. This procedure takes approximate 60 hours to
complete, using a Toshiba Portege R30-C computer with an Intel Core i5 processor
and 16 GB RAM. The policy iteration algorithm is utilized to solve the optimal
policy of the computational study in MATLAB® R2018b. Convergence is reached
after approximately 140-170 seconds using the same computer. The output of the
MDP is a list of 9200 (10 x 4 x 230) states, and the optimal action associated with
cach state, for each penalty function, r%: and r3;. Various value of the discount
factor y (from 0.90 to 0.99 with an interval of 0.01) were used to test the robustness
of the resulting policies. The results were found to be relatively insensitive to . For
the remaining sections of the paper, we chose v = 0.95 to report the results from the

computational study.

5.5.1 Optimal Policies

As expected, both optimal policies suggest sending patients with an acuity level of
resuscitation, high, or low to an urban ED. Only patients with a medium acuity level
are the candidates for a potential transportation to a community ED. The result
indicates that it is not always best to send a medium acuity level patient to the
urban ED, especially when many ambulances are already queued there.

We show part of the summary table of each optimal policy in Figure 5.5 as an
example to demonstrate the decisions made in some states for the medium acuity level
patients. Each table includes 14 x 10 system states where the travel distance from the
call location to the closest urban ED are the same (5 kms), while the travel distance
to the closest community ED varies. The decisions from the two optimal policies
under different call locations and Sy states are presented in the tables. Number 1
(marked in light colour) represents the decision of sending the patient to an urban ED,
while number 2 (marked in dark colour) represents the decision of sending the patient
to a community ED. For both penalty functions, the policy sends more patients to
a community ED when Sy becomes larger. The decision is also impacted by call

locations. When the closest community ED is further away compared to the urban
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ED, the policy suggests sending fewer patients to a community ED. As expected, the
policy sends more medium acuity level patients to a community ED when the objective
is to minimize the time to ED bed for patients (rp;), compared to minimizing the

. . 3 3 Q.
ambulance transportation time (7%¢ ).

g 1=toan urban ED g 1 =toanurban ED
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Figure 5.5: A sample of the optimal policy with penalty functions 7% and r;.

There is a minimum number of queued ambulances to trigger the policy to start
sending patient to community EDs for each state. In other words, the policy suggests
sending medium acuity level patients to a community ED instead of an urban ED
once the number of queued ambulances reaches a certain threshold level. Therefore,
we use a matrix of the Sy state thresholds with distance variables to present the
detailed policy for medium acuity level patients for each penalty function (Figure
5.6). Each policy is presented using the minimum number of ambulances in AOD
to trigger the policy to start sending patient to community EDs for each state. For
example, when a call is 4 km and 50 km respectively from the urban and community
EDs, send patients to the community ED when S,, > 4 (with penalty function % ).

When the penalty function is 7% . the optimal policy suggests to send 16.3% of
all patients to a community ED (or 28.9% of medium acuity patients). When the

penalty function is rp;, this percentage increases to 31.6% of all patients (or 61.6%
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of medium acuity patients). In both policies, this occurs more often when the urban
EDs experience severe AOD, which is intuitive and matches our expectation of the

result (Table 5.3).

penalty function % of patients sent to community EDs
Resuscitation High Medium Low Overall
o 0.0 0.0 28.9 0.0 16.3
e 0.0 0.0 61.6 0.0 31.6

Table 5.3: The percentages of patients allocated to various community EDs.

To demonstrate the advantages of the optimal policies, we calculate the stationary
probability of the optimal policies, as well as the current practice (which is always
sending patients to an urban ED). The first performance measure is to determine the
improvement in AOD at the urban EDs when following the optimal policies. Figure
5.7 illustrates the probabilities of the system in each Sy state for penalty functions
of ri . ri%, and the current practice of sending all patients to the urban EDs. The
result shows a decrease in the number of queued ambulances when following either of
the optimal policies compared to the current practice.

With the trends shown in Figure 5.7, a significant reduction of frequency of high
AOD system state occurrence can be observed. Fox instance, the probability of be-
ing in a state with no less than five ambulances queueing at the ED decrease from
61.80% in the current policy to 17.94% and 7.52% in 7% and r§; optimal policies,
respectively. Furthermore, one can expect that the average ambulance turnaround
time at the urban EDs should also be reduced with the optimal policies, due to the
reduction of the number of queued ambulances. We estimate the average ambulance
turnaround time at the urban EDs under each policy by using the historical data and
the calculated stationary AOD probabilities. We found a reduction from 75.81 min-
utes (current) to 61.48 minutes and 54.68 minutes, respectively, for penalty functions
r% and rp;. Based on the historical data from 2016, with a total number of 22,243
patient transportation requests originated in the urban region, these two optimal po-
lices 7 and r3 would save 5,312.68 and 7,832.70 ambulance hours annually due to
the reduction of AOD.

It is noteworthy that the system gains these performance improvements at the
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sacrifice of ambulance travel distance. Instead of travelling to the urban EDs which are
closer to most call locations in the urban region, the new policy requires ambulances to
occasionally travel further distances to transport patients. We compute and compare
the expected average ambulance travel distance for patient transportation under each
policy. The current policy has an average travel distance to an ED as 5.28 km. The
optimal polices would increase that value to 13.29 km and 21.79 km with penalty
functions of % and r%, respectively.

In the MDP model we do not have a state for queued ambulances at the community
EDs. In our study, AOD at community EDs is negligible and therefore data on
waiting times and ambulance turnaround times are not available. Should this be
required in other applications, the method used to account for queued ambulances
at the urban hospitals can be applied. To test if AOD at community EDs will be
problematic when following the policies of the MDP, we compute the expected number
of additional ambulance transportations that will be sent to the community EDs. We
found a mean of 9.9 and 19.0 additional transportations per day would be sent to
the community EDs. In discussions with content experts, it was determined that this
increased volume would not cause congestion in any community ED. However, the
ambulance patient volume is likely to occur in peaks during periods of time when the
urban EDs are overcrowded due to the nature of the decision rules. Further analysis
are required to ensure sufficient resources are available at the community EDs during

the busy time of days when considering implementing the optimal policies.

5.5.2 Sensitivity Analysis

Sensitivity analysis is an approach that can help understand the relationships of
model attributes and outcomes by analyzing how the outcomes changes with different
variable values. There are two major objectives in the sensitivity analysis of this study.
We aim to consider and understand the influences of time of day and increasing AOD
times.
Time of day

As previously discussed, the call volume in the studied region is not stationary
throughout the day. Data analysis of the historical data suggests that the busy

hours of the day is from 9 a.m. to 7 p.m. (11 hours), where the hourly average call
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volume reaches a relatively constant high level, while the rest of the day (8 p.m. to
8 a.m.) are non-busy hours (13 hours), where the hourly average call volume drops
to a lower level. Between the two different levels, the actual time span between calls
(decision epochs) may vary considerably, which affects the empirical distribution of
D, denoting the number of ambulances released from urban EDs between decision
epochs. Therefore, we separate the historical data into a high (busy hours) and low
(non-busy hours) call level periods and solve the MDP model for each scenario. The

results of these two scenarios are included in the sensitivity analysis.

Figure 5.8 shows the empirical distributions of D in the high and low call level
of periods, as well as the overall distribution. The distributions are surprisingly
similar with only a slightly lower discharge rate during the busy hours. One possible
explanation is that despite the shorter time between calls during the busy hours, the
ED capacities are also likely higher at these hours. Further data analysis reveals that
the empirical distributions of patient acuity level and call location are time invariant.
To model these two time periods, new transition probabilities are calculated with
separate datasets of busy and non-busy hours. The results are presented in Table 5.4
as a form of percentages of patients being sent to community EDs during different
periods. The optimal policies send more patients to the community EDs during the
busy hours and less patients to these EDs during non-busy hours, comparing to the
overall scenarios. Based on the call volumes, we also compute the expected number of
additional ambulance transportations that will be sent to the community EDs during
these two periods. During the busy hours, the community EDs can be expected to
receive additional 7.6 and 12.2 ambulance transportations when following optimal
policies with the penalty function r%* and 7%, respectively. Similarly, the increases
are 3.8 and 8.0 for non-busy hours. In the base scenario, a mean of 9.9 and 19.0
additional transportations would be sent to the community EDs per day, with the

penalty function 7% and r%, respectively.

Generally speaking, the optimal policies developed with separated datasets (busy
and non-busy hours) do not indicate significantly different outcomes within the EMS
system under study. Yet, an EMS system may have different distributions of ambu-
lance discharge rates during busy/non-busy hours, such that larger differences can

be expected in the optimal policies at different periods. In this case, policies can be
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developed based on the time of the day to provide EMS personals with more precised

ambulance destination instructions to follow.

penalty function % of patients sent to community EDs
Overall Scenario Busy Hours Non-busy Hours
o 16.3 21.7 14.8
e 31.6 35.0 30.8

Table 5.4: The percentages of patients allocated to various community EDs in the
non-busy hours and busy hours scenarios.

Increasing AOD time

To further explore model sensitivity, we increase the AOD time to observe its effect
on the optimal ambulance destination policies and the total percentage of patients
being sent to community EDs. We use the results of Section 5.5.1 as the base scenario,
and consider the scenarios when the AOD time increases by 5%, 10%, and 20%. The

results are reported in Table 5.5.

penalty function Overall % of patients sent to community EDs
Base AOD 5% AOD 10% AOD 20%
Scenario
o 16.3 20.7 22.0 24.8
e 31.6 35.2 37.1 41.5

Table 5.5: The percentages of patients allocated to community EDs when the AOD
time increases by 5%, 10%, and 20%, respectively.

As expected, we observe that the optimal policies change gradually and send more
patients to community EDs as the AOD in the city gets worse. This is an important
observation as the model assumption of no AOD in any community ED may becomes
inappropriate as a large amount of patients are sent to it. This can be overcome as

discussed in Section 5.5.1.

5.6 Conclusion and Discussion

To find long-term solutions that minimize the effects of AOD and improve perfor-

mance, we develop an MDP model to assist EMS dispatchers in determining the best
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ambulance destinations for their patients. The computational study indicates that we
can make ambulance destination decisions using a robust policy based on the current
number of queued ambulances, call location, and patient acuity level. According to
the results, both the EMS systems and patients benefit from the improved policy. In
addition to the metrics considered by the model, patient risks, outcomes, and prefer-
ences are factors which are important for future study and which should be part of
an implementation plan.

Instead of using theoretical distributions, our model demonstrates a method to
incorporate large amounts of administrative data. Such data is typically available in
modern EMS systems and allows us to represent the real system with fewer limiting
assumptions. Furthermore, we compute ambulance travel time using the KWH model
instead of with an assumed constant speed. This is particularly important in this
study since ambulances are being routed long distances in some cases. Our model
also provides considerations of patient acuity levels that can influence the optimal
destination decision.

The model is suitable for use in decision support systems that allow EMS dis-
patchers to quickly evaluate the situation and make decisions on which destination
ED to send the incoming ambulances. The model also provides accurate estimates of
the number of queued ambulances, the average ambulance turnaround time at EDs,
and the average travel distance of the ambulances. It is sufficiently general to be used

by EMS systems to mitigate the impact of AOD on their operations.
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Chapter 6

CONCLUSION

Healthcare is an area of growing importance and cost around the world, thus a pop-
ular area for operations research. As a key element of the healthcare network, EMS
systems require constant improvements to ensure capacity to adequately and effi-
ciently respond to the emergency care needs of the public. Ambulance offload delay
(AOD), as an EMS operational problem, has become common in many health care
systems. However, research examining system performances associated with EMS is

still limited.

In this thesis, we model different perspectives of the AOD problem using various
operation research approaches to establish a better understanding of its impact within
an EMS system. This includes designing models to help a provincial EMS provider
mitigate AOD. To achieve these objectives, we develop three distinct research stages

each with a different modeling approach.

In the first stage, we conduct a systematic literature review on AOD. To our
best knowledge, this is the first published review of AOD related studies and models
(Chapter 2). This chapter describes the causes and consequences of this growing
problem, key measures that are used to assess system performance, and potential so-
lutions investigated using various methods. Furthermore, we provide a comprehensive
depiction of the AOD problem experienced by the provincial EMS provider in Nova
Scotia, Canada (Chapter 8). We show how this problem has a substantial impact on
ambulance performance, leading to prolonged ambulance turnaround times, total call
times, and response times, as well as reduced ambulance availability. The descriptive
analytics and statistical models are presented in a way that can be generalized to

other EMS systems for measuring ambulance performance with respect to AOD.

The next stage of this research (Chapter 4) provides the EMS provider with a

decision-support model that can predict AOD status based on the current system
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status. As information technology advances, such prediction models can be devel-
oped using the shared information between the EMS providers and the hospital EDs.
We design various practical prediction settings for this application and utilize a hy-
brid decision tree algorithm to improve the performance of these models. This way,
proactive interventions can be initiated by the decision makers based on different
states of the system to mitigate the problem. Our predictive analytics suggest that
the AOD status of the EMS system is robust and resistant to any sudden changes
in a short period of time. The prediction models perform relatively well with accu-
racy rates of 60%-75%, 69%-83%, and 91%-95%, with respect to different prediction
settings discussed in the chapter. As expected, the presence of high degrees of vari-
ability negatively impacts the performance of the prediction model. The variability
is likely due to the complexity of EMS systems while modeling with realistic details
incorporated to reflect the real-world situation. We also compare the hybrid decision
tree algorithm with a basic decision tree algorithm (classification and regression tree).
The prediction models generated using the hybrid decision tree algorithm outperform
the ones generated by the traditional algorithm by an average accuracy improvement

of 2.44%.

Our final stage of research began by gathering feasible intervention ideas from the
key frontline personnel of the local EMS providers. Among these interventions, we
model optimal ambulance destination policies for an EMS system when considering
AOD, and evaluate their effects on the system performance (Chapter 5). These
policies determine when it is advantageous for ambulance patient to be transported
to an out-of-region ED (that is not affected by AOD) to achieve a shorter ambulance
turnaround time. In specific cases, ambulances can return to service quicker, and
thus reduce the effects of AOD on the system performance. It is anticipated that

best practices produced from this study will be directly transferable.

The AOD problem is a consequence of a much bigger problem, which is the lack
of capacity in the healthcare system to treat hospital inpatients, leading to ED over-
crowding and access block. AOD includes clinical, operational, and administrative
perspectives and must be addressed in a system-wide manner. Research has shown
that initiatives and efforts from one party (EMS or ED) alone may not be sufficient

to solve this problem, a more collaborative approach is required. Establishing better
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collaboration between EMS and hospital EDs should be the first step towards the
goal of building a system-wide solution to this problem. EMS providers and hospital
EDs should initiate dialogues at high management levels and work together to take
appropriate steps to mitigate AOD. Timely information sharing between these two
parties could allow interventions built to achieve benefits to both.

Evidence suggests that the root causes of AOD lie outside the EMS system and to
address it will likely take significant time and effort and require system-wide policy
changes. Meanwhile, EMS operation is impaired by this problem. Therefore, research
should continue to develop interventions, either through operation research models or
operation trials, to help EMS operate in this difficult environment and mitigate the
negative impacts of AOD. While the AOD problem presents itself as a challenging
problem, it also represents an opportunity for public health, EMS, and hospitals, to
come together to identify best practices and implement positive changes. Ultimately,
all key components of the health care system should work together to ensure the ED
crowding problem is eliminated or minimized, thereby alleviating much of the AOD
problem.

While this thesis provides a number of insights on the different perspectives of the

AOD problem, there are several directions that can be considered for further research:

e There is limited research focused on the AOD problem specifically in the op-
eration research field. However, operation research methodologies should be
recognized as powerful tools for this problem. Several models are developed
in this research to measure the effects of AOD, predict the system status, and
develop optimal ambulance destination policies. Yet, there is much more to
explore with either improvements of the existing models, or new developments
with other approaches. For example, our models can be extended to include
more factors to better capture the complexity of the EMS system but at the ex-
pense of higher dimensionality and tractability. The interface of EMS and EDs
can be modeled using queueing theory. A simulation model may reveal more
insights of this problem when modeling a broader perspective of the healthcare
system that includes patients from arrival to the ED to being discharged from
the hospital. To help better assess and mitigate this problem, models need to

be further developed to estimate the system performance in a more realistic and
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detailed environment.

For the interventions to be effective and true to real-world situations, the mea-
surement of related metrics needs to be improved. Further study is required
to standardize the definition and the measurements of the ambulance offload
process. It is important that future research on this topic are based on solid

measurements of the main components of this process.

Another aspect of AOD assessment, which operation research may help investi-
gate, is its impact on the workload of paramedics and ED staff. As it becomes
a new norm, are there human resource consequences in terms of increased rates

of human error, scheduling conflicts, etc.?

There is a lack of clinical study that investigates if there is a relationship between
the offload delay and patients risk levels. For example, is AOD more common
or prolonged for patients with certain clinical conditions? If so, what are the
impacts on the safety and outcomes of these patients? What policy should we

consider to alleviate the consequences?

There are few studies describing the relationship between AOD and EMS per-
formance. Most studies use anecdote evidence and rationalizations as supposed
to empirical studies. It would be beneficial for future work to further quantify

this relationship.
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