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Abstract

Ambulance offload delay (AOD) occurs when the care of incoming ambulance pa-

tients cannot be transferred immediately from paramedics to staff in a hospital emer-

gency department (ED). This is typically due to ED congestions. In such situations,

paramedics are responsible to provide patient care until an ED bed becomes avail-

able. AOD can negatively affect ambulance availability to future calls and reduce the

efficiency of the emergency medical services (EMS) system. Hence, this problem has

become a significant concern for many healthcare providers and is the focus of this

dissertation.

In this dissertation, we develop several models to analyze AOD. With 12-months

of emergency call data provided by the provincial EMS provider and local hospitals

in Nova Scotia, Canada, we conduct an empirical analysis to measure the effects of

AOD on the EMS system. The analyzed performance metrics include the number of

ambulances at EDs, ambulance turnaround time, total call time, response time, and

ambulance availability. The results indicate significant negative effects on all these

metrics within the region experiencing AOD. AOD also has a negative impact on

ambulance availability in adjacent regions for an EMS system with shared resources.

We then develop a decision-support tool using a novel hybrid decision tree model

to predict the severity of AOD within 1 to 5 hours based on the current system

status. The objective of this study is to provide a prediction model for EMS decision

makers so that proactive interventions at different system states can be initiated to

mitigate AOD. The hybrid algorithm shows improvements in the classification of this

real-world problem when tested against a basic decision tree algorithm.

Finally, we develop an optimal ambulance destination policy using a discrete time,

infinite-horizon, discounted Markov Decision Process. This model helps determine

when it is advantageous to send appropriate patients to out-of-region EDs, which have

longer transport times but shorter offload times. The optimal policy can significantly

reduce AOD, time-to-ED bed for patients, and out-of-service time for paramedics at

the expense of increased ambulances travel distances.
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Chapter 1

INTRODUCTION

Healthcare is an area of growing importance and cost around the world [1]. It is also

a challenging area for operations research (OR) due to its unique characteristics. As

our society ages, the demand and pressure on the health care system rises rapidly;

therefore, the system faces increasing challenges related to process efficiency.

One of the key components in healthcare is pre-hospital care provided by Emer-

gency Medical Services (EMS). EMS are public safety systems responsible for provid-

ing emergency assistance and for protecting public health and safety [2]. The goal of

such systems is to respond quickly to population calls, to provide first aid services,

and to transfer patients to the emergency department (ED) of an appropriate hospi-

tal when needed [2–4]. In life-threatening emergency situations, the ability of EMS

providers to quickly respond will mean less adverse effects for the patients involved

as timely care is crucial. Any delay is highly undesirable from a patient safety per-

spective [2]. Therefore, EMS providers continuously seek best practices, especially

in a world where an aging population adds pressure to the health care system [5].

Meanwhile, EMS systems also need to sustain themselves financially (i.e., capital and

operation costs). EMS providers are challenged to perform their services more ef-

fectively and efficiently to meet their own budgetary and performance targets. To

achieve both timeliness and economic objectives, limited EMS resources (e.g., emer-

gency vehicles, paramedics) must be managed efficiently in an environment with a

high level of uncertainty related to demand characteristics and resources availability

[3].

My Ph.D. research focuses on a relatively new EMS operation challenge, the am-

bulance offload delay (AOD) problem, which is a direct consequence of health care

system congestion. The definition of this problem is presented in detail in Section

1.3. This research measures and quantifies this problem with a real-world case study

of the EMS system in Nova Scotia, Canada. Furthermore, studies have been carried
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out, using several operations research (OR) methodologies, to predict the problem,

develop and evaluate interventions to mitigate AOD, and to improve the performance

of EMS as a public interest.

1.1 EMS Operations

To help readers understand how EMS operates, the typical events associated with

an ambulance response in a Canadian EMS system are summarized in this section.

The information is based on the general EMS procedures reviewed in literature [1, 6–

8] and the author’s observations over 50 hours of on-site training at Nova Scotia’s

EMS service provider. It describes typical EMS operations involved in responding to

emergency/urgent calls in Nova Scotia, Canada.

When a new call is received by the EMS dispatch call centre, the call taker assesses

the call (known as the call screening process). The main function is to determine the

severity of the incident and its degree of urgency. Each call is then classified into a call

priority and the dispatch logic applies to decide on the type and number of ambulances

to dispatch to the accident scene [6]. For all but low priority calls, typical dispatch

logic specifies that, the closest vehicle is sent to ensure that vehicles arrival on scene

as quickly as possible. For high-priority calls, a second vehicle with advanced skilled

paramedics may also be dispatched to ensure the correct level of care can be provided

at the scene [1]. After an ambulance crew is given the details of the call, the vehicle

starts driving to the scene. In some cases, there may be a short mobilization delay

before the crew departs which is normally negligible if the ambulance is posted on

the road. However, the mobilization delay can be a few minutes if, for example, the

ambulance crew is resting at a station. Based on the priority of the call, ambulances

may travel either with lights and sirens on or without. Vehicle travelling speeds can

also be different due to the call priority. High-priority calls typically require higher

speeds, while lower priority calls are responded to with standard traffic speeds. Upon

arrival at the scene, paramedics assess the patient, perform first-aid care, and decide

if the patient needs to be transported to a hospital. If no patient transport is required,

paramedics clear the scene and become free for future service or reposition. Otherwise,

the ambulance crew departs the scene and transports the patient to a hospital ED [1].

Depending on the at-scene assessment of the patient, the transport can be either at

2



higher or normal travel speeds. Once the ambulance arrives at the hospital with the

patient, the paramedics transfer the patient care to the ED staff (ambulance offload),

then clean and restock the ambulance, complete patient care reports, nourishment,

etc. [7]. However, when the ED is congested, this transfer of patient care (ambulance

offload) is often delayed, until an ED bed becomes available (see Section 1.3 for more

details). After this process is completed, the ambulance and crew become free and

available for the next call.

Spaite et al. [9] categorized these events associated with an ambulance response, or

“time-on-task”, into standard time intervals. Later, Cone et al. [10] presented a figure

adapted from that study as a summary of the time intervals of ambulance response

events (Figure 1.1). It can also be viewed as a process chart of the ambulance events

when responding to an emergency/urgent call. Readers can refer to this figure to

further understand the EMS operating procedures.

Figure 1.1: A summary of the time intervals of ambulance response events. Adapted
from Cone et al. [10].
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1.2 OR in EMS management

OR in healthcare operations management has been an active and popular research

field. There are many problems in EMS systems that can be addressed from an

OR perspective. For instance, the ambulance locations for providing maximum cov-

erage to a given population, the ambulance/paramedic schedule for maintaining an

adequate service level, etc.

Much research has been conducted into EMS systems around the world. Re-

searchers have shown great interest in analyzing a variety of EMS processes to make

suggestions for improvements in: response time, dispatch time, deployment and re-

deployment, etc. [11–14]. Various OR methods (such as mathematical programming,

queueing theory, simulation and statistical modelling) have been applied to analyze

EMS systems and contribute to the development of EMS solutions to improve resource

efficiency [1, 15]. Literature reviews have been written regarding the work conducted

for EMS systems using different OR methods [3, 6, 16]. Specifically, Brotcorne et al.

[6] conducted a review on mathematical programming applied to ambulance location

and relocation models. Fomundam and Herrmann [16] surveyed the applications and

contributions of queuing theory in the field of healthcare. Aboueljinane et al. [3]

focused on reviewing computer simulation models that have been used for the analy-

sis and improvement of EMS. Readers can refer to these reviews to find models and

applications for different approaches to EMS system performance improvements.

1.3 The ambulance offload problem

When an ambulance arrives at the hospital with patient(s), the paramedics transfer

patient care to the ED staff, then complete patient care reports, clean and restock

the ambulance before becoming available for the next call. This total time that an

ambulance spends at the hospital while on call is known as the ambulance "turnaround

interval" [7, 9]. It can be further separated into two sub-intervals: the “delivery

interval” and the “recovery interval” [10] (Figure 1.2). The “delivery interval”, which

is also known as the ambulance offload time [7], starts when the paramedics arrive at

the hospital with the patient(s), and ends when the patient care is transferred from the

ambulance service to the ED. The “recovery interval” starts when the patient transfer

4



of care is finished, and ends when the ambulance crew are ready to return to service

[7, 9]. Due to the increasing demand of the health care system, hospital EDs often

operate at their capacities [17–19]. When a hospital ED cannot accept the incoming

ambulance patient immediately (often due to congestion), paramedics wait with their

patient(s), and continue to provide patient care until an ED bed becomes available

and the ED personnel assume responsibility for the patient(s). This delay period in

transfer of care is referred to as AOD. The ambulance crews who get delayed at the

hospital are unable to return to service. The time to transfer a patient from EMS to

the ED can be significant when there is no ED bed available for an extended period

of time for the incoming ambulance patient [20]. The AOD problem has become a

growing concern in many health care systems, thus, has attracted attentions of many

health care providers and researchers [7, 20, 21].

Figure 1.2: The time-interval diagram of ambulance patient transportation process.

Many researchers have suggested that AOD is caused by ED crowding [5, 22–25]

and may cause substantial consequences to patients and to EMS systems [26–28].

Consequences to patients include delay to definitive care, poor pain control, delayed

time to antibiotics, etc., which may compromise patient safety [20, 27, 28]. Conse-

quences to EMS systems include negative impacts on the system status and resource

availability. It can negatively affect the availability of the ambulance service to re-

spond to the next call, prolong the response time and time spent on task, resulting in

decreased efficiency of the EMS system, and the need for additional staffing [26, 28].

In addition, financial burdens to EMS systems and legal concerns regarding the AOD
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problem have also been reported [5, 29, 30]. A systematic review of literature that

addresses the AOD problem is also conducted and published [31] as a contribution

of this dissertation. Part of the review is presented as Chapter 2 in this disserta-

tion. Readers can refer to this review to find more research on the following topics:

improved understanding and assessment of the AOD problem, analysis of the root

causes and impacts of the problem, and development and evaluation of interventions

from both hospital and EMS system levels.

Despite EMS decision-making being a well investigated subject area for OR, the

EMS interface with hospital EDs, more specifically, the AOD problem, has seen less

attention in this field [7, 10, 28]. Optimization models of ambulance services generally

do not address the amount of time that ambulances spend at hospitals waiting to

transfer patients. However, in recent years, the AOD problem has been raised by

health care providers and researchers [7, 10, 28]. There are retrospective studies with

the goal of understanding and analyzing this growing issue [7, 22, 28]. However, only

a few OR models have been presented on the AOD problem indicating the need for

long term plans to prevent or mitigate it [5, 32, 33]. Therefore, a formal process based

on scientific evidence is needed for EMS systems to determine the impacts of AOD

and to design mitigation interventions to reduce it.

1.4 Research objectives

The objectives of my Ph.D. research include the following:

• to understand and measure the effects of AOD on the EMS system of Nova

Scotia, Canada;

• to design and evaluate proactive EMS interventions to minimize the effects of

AOD on the performance of EMS system;

• to establish understanding of the impacts of AOD in a Canadian EMS setting

with combination of urban and rural regions.

To achieve these goals, this research was carried out in three phases. The first

phase is to understand the AOD problem in general with a review of literature (Chap-

ter 2); quantify the particular AOD problem presented in Nova Scotia, Canada, and
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measure its effects on the local EMS system (Chapter 3). The second phase is to

predict AOD status of the system in real time, to allow the problem to be addressed

proactively (Chapter 4). The third phase is to define EMS intervention ideas in collab-

oration with key personnel from the local ambulance service provider, and to develop

models to test interventions that have great potentials (Chapter 5). A primary con-

tribution of this research is to measure the efficacy of the selected intervention, and

to help the local ambulance service provider determine if it can help achieve a desired

system performance. This is desired by both ambulance service provider and the

Nova Scotia Health Authority (NSHA), to move from the current reactive practice to

a proactive, predictable response by all involved parties.

1.5 Thesis structure

The rest of the dissertation is organized as follows:

• Chapter 2 provides a systematic review on literature that addresses the AOD

problem. This chapter has been published as a review paper in the journal of

healthcare system management science [31].

• Chapter 3 reports an empirical analysis of the effect of AOD on the efficiency

of the EMS system in Nova Scotia, Canada.

• Chapter 4 proposes a hybrid decision tree model for the prediction of the EMS

system status in relation to the AOD problem.

• Chapter 5 presents an optimal ambulance destination policy developed when

facing AOD by using a Markov Decision Process (MDP) model.

• Chapter 6 includes the conclusion and discussion of this research, as well as

some suggestions for future work.

1.6 Summary of content

Chapter 2 reviews literature which addresses the ambulance offload delay problem.

The review is organized by the following topics: improved understanding and as-

sessment of the problem, analysis of the root causes and impacts of the problem,
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Chapter Title Approach
Chapter 2. A review on ambulance offload delay literature
Chapter 3. An empirical analysis of the effect of ambulance offload Statistical analysis
delay on the efficiency of the ambulance system & regression model
Chapter 4. Predicting ambulance offload delay using a hybrid Machine learning algorithms
decision tree model
Chapter 5. Determining ambulance destinations when facing offload Markov decision process model
delays using a Markov decision process model

Table 1.1: Chapter scopes and approaches.

and development and evaluation of interventions. The review found that many re-

searchers have investigated areas of emergency department crowding and ambulance

diversion; however, research focused solely on the ambulance offload delay problem

is limited. Of the 137 articles reviewed, 28 articles were identified which studied

the causes of AOD, 14 articles studied its effects, and 89 articles studied proposed

solutions (of which, 58 articles studied ambulance diversion and 31 articles studied

other interventions). A common theme found throughout the reviewed articles was

that this problem includes clinical, operational, and administrative perspectives, and

therefore must be addressed in a system-wide manner. The most common interven-

tion type was ambulance diversion. Yet, it yields controversial results. A number

of recommendations are made with respect to future research in this area. These

include conducting system-wide mitigation interventions, addressing root causes of

ED crowding and access block, and providing more OR models to evaluate AOD

mitigation interventions prior to implementation. In addition, measurements of AOD

should be improved to assess the size and magnitude of this problem more accurately.

Chapter 2 is based on the following article:

• M. Li, P. Vanberkel, & A. Carter. (2018). A Review on Ambulance Offload De-

lay Literature. Health Care Management Science. https://doi.org/10.1007/s10729-

018-9450-x.

In Chapter 3, we conduct an empirical analysis of the effects of AOD in Nova

Scotia, Canada. The efficiency of the EMS system was measured using 12-months of

emergency call data from the partnering ambulance service provider and local hospi-

tals. Performance measures associated with AOD include the number of ambulances

at EDs, ambulance turnaround time, total call time, response time, and ambulance
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availability. The results suggest that AOD occurring in the Central Region of Nova

Scotia leads to negative effects on all perspectives of these performance measures in

that region. It reduces the efficiency of the EMS system by prolonging the ambulance

turnaround time and total call time, and increasing the response time to future calls.

Furthermore, AOD has a negative impact on ambulance availability of the region

experiencing it. It also shows some impacts on ambulance availability of the other

adjacent regions in the same EMS system with shared resources. The results of this

study offer insight into a more comprehensive understanding of the impacts of AOD

on the EMS network. This approach can also be generalized to be used by other EMS

providers to assess the impact of AOD on their operations.

Chapter 3 is based on the following article:

• Mengyu Li, Xiang Zhong, Judah Goldstein, Terence Hawco, Jan Jensen, Alix

Carter, & Peter Vanberkel. An empirical analysis of the effect of ambulance

offload delay on the efficiency of the ambulance system (working paper).

In Chapter 4, we develope a decision-support tool using a hybrid decision tree

model to predict the severity of AOD occurring within 1 to 5 hours in an EMS sys-

tem. The primary objective of this study is to provide a prediction model for the

AOD states based on the current system status as well as hours of the day and day of

the week, so that the decision makers can activate proactive interventions to mitigate

AOD. Various prediction models are developed based on different prediction focuses

and periods tailored to the client’s needs. Furthermore, we demonstrate the value of

predictive analysis to improve operational efficiency. This research demonstrates a

novel hybrid decision tree method applied with administrative data. A naïve Bayes

classifier was employed first to remove the noisy training observations before the deci-

sion tree induction. This hybrid decision tree algorithm was tested against the basic

classification and regression tree (CART) algorithm, using classification accuracy,

precision, sensitivity and specificity analysis. The results indicate that the hybrid

algorithm shows improvements of performance in the classification of the real world

problem. It is anticipated that the prediction model for AOD produced from this

study will be directly transferable. It can be generalized to other EMS systems with

a similar operational setting where ambulance offload is impacted by ED congestion.

Chapter 4 is based on the following article:
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• Mengyu Li, Peter Vanberkel, & Xiang Zhong. Predicting ambulance offload

delay using a hybrid decision tree model (working paper).

In Chapter 5, one of the AOD interventions is chosen from two focus group dis-

cussions with key personnel from the local ambulance service provider. We then for-

mulate a discrete time, infinite-horizon, discounted MDP model to determine when it

is advantageous to send appropriate patients to out-of-region EDs, which have longer

transport times but shorter offload times. Based on the MDP model, an optimal

ambulance destination policy is constructed using the policy iteration algorithm. A

computational study is applied using 12-months of data from an EMS provider which

experiences AOD regularly. We find that the optimal policies can significantly reduce

AOD, time to bed for patients, and out-of-service time for paramedics at the expense

of increased ambulances travel distances. The model can be generalized and used

as a decision support tool for EMS systems to mitigate the impact of AOD on their

operations.

Chapter 5 is based on the following article:

• Mengyu Li, Alix Carter, Judah Goldstein, Terence Hawco, Jan Jensen, & Pe-

ter Vanberkel. Determining ambulance destinations when facing offload delays

using a Markov decision process model (working paper).

Since Chapter 2 through Chapter 5 are either published paper or working papers,

some repetitions of introductory information and terminology can be expected due

to the nature of the work. Some of these similar sections have been removed from

later chapters of this dissertation to avoid repetition, while some of them are kept for

structural purpose and the flow of chapters.

In Chapter 6, we conclude this research and discuss some future research direc-

tions.
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Chapter 2

A REVIEW ON AMBULANCE OFFLOAD DELAY

LITERATURE

2.1 Introduction

Emergency medical services (EMS) are public safety systems responsible for providing

emergency assistance and for protecting public health and safety [2]. The goal of such

systems is to respond quickly to population calls, to provide first aid services, and

to transfer patients to the appropriate hospital when needed [3]. In life-threatening

emergency situations, the ability of EMS providers to quickly respond will mean less

adverse effects for the patients involved. Therefore, EMS providers continuously seek

best practices, especially in a world where an aging population adds pressure to the

health care system [5]. Furthermore, EMS providers are challenged to perform their

services more effectively and efficiently to meet their own budgetary and performance

targets.

Much research has been conducted into EMS systems around the world. Re-

searchers have shown great interest in analyzing a variety of EMS processes to make

suggestions for improvements in: response time, dispatch time, deployment and re-

deployment, etc. [11–14] . Various operations research (OR) methods (such as math-

ematical programming, queueing theory, simulation and statistical modelling) have

been applied to analyze EMS systems and contribute to the development of EMS

solutions, commonly through improving resource efficiency [1, 15]. Literature reviews

have been written regarding the work conducted for EMS systems using different OR

methods [5, 6, 30]. Specifically, Brotcorne et al. [6] conducted a review on mathemat-

ical programming applied to ambulance location and relocation models. Fomundam

and Herrmann [16] surveyed the applications and contributions of queuing theory in

the field of healthcare. Aboueljinane et al. [3] focused on reviewing computer simula-

tion models that have been used for the analysis and improvement of EMS. Readers
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can refer to these reviews to find models and applications for different approaches to

EMS system performance improvements.

Despite EMS decision-making being a well investigated subject area, the EMS

interface with hospital emergency departments (EDs) has seen less attention. Opti-

mization models of ambulance services generally do not address the amount of time

that ambulances spend at hospitals waiting to transfer patients. However, in recent

years, the ambulance offload delay (AOD) problem has been raised by health care

providers and researchers [7, 10, 28].

When an ambulance arrives at the hospital with patient(s), the paramedics trans-

fer patient care to the ED staff, then complete patient care reports, clean and restock

the ambulance before becoming available for the next call. This total time that an am-

bulance spends at the hospital while on call is known as the ambulance "turnaround

interval" [7, 9]. It can be further separated into two sub-intervals: the “delivery in-

terval” and the “recovery interval” [10] (Figure 2.1). The “delivery interval”, which is

also known as the ambulance offload time [7], starts when the paramedics arrive at

the hospital with the patient(s), and ends when patient care is transferred to the ED

staff. The “recovery interval” starts from when the patient transfer of care is finished,

and ends when the ambulance and crew are ready to return to service [7, 9]. When

the ED cannot accept the incoming ambulance patient immediately (often due to

congestion), paramedics wait with their patient(s), and continue to provide patient

care until an ED bed becomes available and the ED personnel assume responsibil-

ity for the patient(s). This delay period in transfer of care is referred to as AOD.

This AOD problem is a growing concern for health care providers, as the delayed

ambulance and crew are unable to return to service, and this delay can be significant

[20]. Keeping EMS crews at hospital EDs can have a significant adverse impact on

ambulance availability and response times for future population calls [22, 34].

The AOD problem has only recently become an active research area. There are

retrospective studies with the goal of understanding and analyzing this growing issue

[7, 22, 28]. There are also various analytical models on AOD indicating the need for

long term plans to prevent or mitigate the problem [5, 32, 33]. However, we have

not found a literature review focused on the AOD problem. The goal of this review

is to analyze the literature examining the AOD problem found in journal articles,
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Figure 2.1: The time-interval diagram of ambulance patient transportation process.

conference proceedings, grey literature, and books that represents 30 years of work

in this field. Our discussion summarizes this growing issue, the development and

contributions of OR to this field, and provides a description of the novel literature

for coping with AOD.

This review is organized as follows: Section 2.2 describes the search strategy for

the literature and review criteria. Section 2.3 presents the current understanding

of this problem, and the measures to assess and/or evaluate the impacts of AOD.

Section 2.4 discusses some of the potential root causes of the AOD problem that have

been reported in literature. Section 2.5 summarizes the impacts of AOD, including

the consequences on patient outcomes and EMS system performance, its financial

impacts, and some legal concerns. Section 2.6 reviews the current interventions that

have been studied and trialed to minimize the impact of AOD and potential future

implementations to improve EMS performance.

2.2 Search Strategy

We conducted a comprehensive search of the existing literature applied to the AOD

problem found in journal articles, conference proceedings, grey literature, and books.

We defined the scope of this review to include articles that met one or both of the

following review criteria: (1) they studied the AOD problem or the interface between
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EMS and hospital EDs as a primary objective, in relation to EMS operations, includ-

ing measures, causes, effects, and solutions; (2) they studied interventions related

to AOD or the interface of EMS and hospital EDs in the context of general EMS

practices, rather than a specialty service.

The databases consulted include: PubMed MEDLINE, CINAHL Full Text, Web of

Science Core Collection, and ProQuest Dissertations & Theses. A broad set of search

terms in the title and abstract fields was identified by a preliminary search on related

topics to encompass each facet of the review criteria. Search keywords included:

ambulance offload; ambulance diversion; ambulance ramping; ambulance handover;

ambulance availability; offload delay; offload time; offload zone; turnaround interval;

hospital interval. All searches were conducted on May 29, 2017, with restriction to

English-language publications. The searches returned 470 studies with 137 duplicates,

which resulted in 333 unique articles. Articles that clearly did not meet one or

more of the review criteria were not considered further. The reviewer identified 100

articles meeting the review criteria, and 37 more articles were found through reference

searching. The method, focal areas, and main contributions of each paper are outlined

in the electronic accompaniment in Appendix A.

2.2.1 Search Results

The searches returned 470 studies with 137 duplicates, which resulted in 333 unique

articles. The author examined the results to identify potential articles of interest.

Articles that did not meet any of the review criteria according to the title and abstract

were not considered further. Full-text of the potential relevant articles were then

reviewed, and the reviewer identified 100 articles meeting one or both of the review

criteria. 37 more articles were found through reference searching of the reference lists

(Figure 2.2). The method, focal areas, and main contributions of each paper (n=137)

are provided in the electronic supplementary material. Readers can refer to this for

a summary and a quick reference guide.

2.3 Understanding and Assessing AOD Problem

This section reviews studies that have worked to describe and quantify the size of

the AOD problem in different parts of the world. We identified nine such studies
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Figure 2.2: Literature search and screening flowchart.

measuring AOD in regions of North America, Europe, and Australia.

2.3.1 Empirical Assessment of AOD

Eckstein and Chan [26] analyzed a total of 21,240 incidents when the AOD occurs

in Los Angeles, CA, USA between April 2001 and March 2002. Incidents were in-

cluded when the ambulance turnaround time was greater than the local standard of

15 minutes. These accounted for 1 out of every 8 ambulance transports in the stud-

ied area. Among these incidents, 8.4% were in excess of 1 hour. The median waiting

time per incident was reported to be 27 minutes, with an interquartile range of 20 to

40 minutes. They concluded that the decreased ambulance availability may have a

15



significant negative impact on the EMS systems’ ability to provide timely response.

Their study also suggested a direct link between ED crowding and the ability of EMS

to provide a timely response to future emergency calls.

In a study conducted by Segal et al. [35], the authors examined the ambulance

turnaround time for 152 ambulance arrivals to a local hospital ED in Montreal, QC,

Canada during a six-week period from June to August 2003. The results show that

the total time ambulances spent in hospitals represents 45% of the total call time

(45.24 minutes and 101.06 minutes, respectively). The majority of the turnaround

time occurred after the completion of triage with a mean time of 31.33 minutes. The

authors suspected that the prolonged post-triage time may be a reflection of the

difficulty ambulances are having in transferring patient care to the ED.

Silvestri et al. [23] conducted an observational study to evaluate offload delay

intervals and the association between out-of-hospital patient triage categorization and

admission. The overall mean offload time was reported to be 32.7 minutes (among the

167 patients in the study group), including 122 green-level (least severe), 36 yellow-

level (moderately severe), and 9 red-level (most severe) patients. The mean offload

times for green, yellow, and red criteria were 34, 39, and 1.6 minutes, respectively.

Over 52% of all patients were offloaded within 15 minutes of arrival, with an additional

16% within 30 minutes, 17% within 60 minutes, and 15% in excess of 60 minutes.

The author concluded that the patient triage categorization cannot determine need

for admission therefore should not be used to evaluate offload time intervals.

Cone et al. [36] reported that AOD is a relatively common problem at the interface

of the EMS systems and hospital EDs in New South Wales, Australia. They conducted

a retrospective study in 2009 to quantify the AOD experienced by the Ambulance

Service of New South Wales, and to investigate patient and system factors associated

with AOD. Of 141,381 transports, 12.5% of patients experienced an AOD of 30 –

60 minutes, and 5% a delay of ≥ 60 minutes. AOD was most pronounced at large

hospitals, in urban areas and during winter.

2.3.2 Measurements of AOD

Many hospital EDs and EMS systems have started to treat AOD as a new perfor-

mance benchmark to ensure quality patient care [5, 28, 37]. Researchers, therefore,
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have begun to explore different ways to help assess the AOD problem properly and

accurately. Hammond et al. [38] introduced a standard definition of this process

developed through in-depth interviews, focus groups and chart audits within the

Queensland Ambulance Service and 10 EDs across Southeast Queensland, Australia.

The study identifies significant inconsistencies in the practice and reporting of AOD

across all EDs. Taylor et al. [39] conducted an observational study in Bath, UK,

to determine the difference between the recorded arrival of an ambulance outside an

ED and the actual delivery of the patient to the clinical area of the ED. This study

demonstrates a small but significant delay between these two time records. The au-

thor recognized that this delay is inevitable, and it is difficult to see how it can be

significantly reduced.

A concern was expressed by Segal et al. [35] that little data is available that

directly relate AOD to specific factors (i.e., ED crowding). Cooney et al. [37, 40]

assessed the AOD problem at a hospital ED in Syracuse, NY, USA, to explore if the

National Emergency Department Overcrowding Scale (NEDOCS) score could be used

to predict increasing AOD. NEDOCS is a performance measure (ranges between 0

and 200) implemented in most of the North American’s EDs in to assess the degree

of crowding (the higher, the busier). The authors studied a sample of 483 patients

arriving via ambulance to the SUNY Upstate Medical University Hospital ED during

a 12-month period, by recording the NEDOCS score and offload time for each patient

at the time of arrival, as well as demographical information. Among these visits,

AODs were ranged from 0 (no delay) to 157 minutes with a mean of 17.07 minutes.

15.5% of them were reported ≥ 30 minutes. When examining the delay time alongside

the NEDOCS score groups, significant AOD time differences were reported between

these groups. The authors thus concluded that the NEDOCS score had a positive

correlation with AOD and could potentially be utilized by EMS personnel for de-

termining the appropriate destination for ambulance patients to avoid crowded EDs.

Later, Cooney et al. [41] conducted another study with similar data format to assess

AOD at an academic level 1 trauma center with separate adult and pediatric EDs.

A 12-month sample of 1,892 patients was evaluated with 21.8% pediatric (< 19 years

old) and 78.2% adult (> 18 years old). AOD ranged from 0 to 122 minutes, with a

mean of 14.01 minutes. Significant differences were found in delay time between the
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NEDOCS score range groups (defined in their previous study [40]): group 1 = 9.18

minutes, group 2 = 12.72 minutes, group 3 = 18.14 minutes, group 4 = 20.62 min-

utes. This indicates that NEDOCS score has a positive correlation with AOD. 769 of

these cases were also evaluated by using the Emergency Severity Index triage level (1

– 5). The authors reported that the mid-level severity (level 3) was associated with

the longest average AOD, 11.62 minutes. There were significant differences between

all five triage levels when measuring the average AOD. The authors suspected that

nursing perception of patient severity may affect AOD.

According to Carter et al. [7], most EMS systems find it challenging to accurately

measure the offload time (delivery interval). Instead, they measure the ambulance’s

total time at hospital (turnaround interval) and most AOD research and policy is

based on this proxy. Therefore, this research group tested the validity of using the

turnaround interval as a surrogate for the delivery interval. Their analysis showed a

good correlation (0.753) between turnaround time and actual offload time. Steer et al.

[41] introduced a novel method to monitor the offload time by using radio frequency

identification (RFID) tags to the ambulance cots and a reader in the ED ambulance

entrance. This way the ambulance traffic in ED can be passively recorded. 1,920

complete visits were recorded in this 16 weeks observational study starting December

2009. The offload time averaged at 13.2 minutes, with a median of 10.7 minutes. A

total of 43% of the patients were offloaded in less than 10 minutes, while 27% took

greater than 15 minutes.

The summary of these measurements of the AOD problem is shown in Table 2.1.

2.4 Causes of AOD

Emergency department crowding refers to the situation where an ED is functionally

impeded due to the physical or staffing capacity shortage of the ED [42]. It has been

reported by many authors as an important contributor to AOD [5, 21–25], thereby

a major concern to EMS providers, as the negative effects are substantial [43–45].

Due to the increasing volume of patients, ED staff can no longer prioritize the quick

turnaround of ambulances. This creates risks for delayed EMS responses to future

population calls [22].
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Paper AOD Measure Data stratifications Study Region
Eckstein
& Chan
(2004)

Median: 27 minutes N/A Los Angeles, CA, USA

Segal et al.
(2006)

Mean: 31.3 minutes N/A Montreal,QC, Canada

Silvestri et
al. (2006)

Mean: 32.7 minutes By severity Orlando, FL, USA

Cooney et
al. (2011;
2013a)

Mean: 17.07 minutes By NEDOCS score Syracuse, NY, USA

Cooney et
al. (2013b)

Mean: 14.01 minutes By severity and NE-
DOCS score

Syracuse, NY, USA

Steer et al.
(2016)

Mean: 13.2 minutes, Median:
10.7 minutes

N/A Akron, OH, USA

Cone et al.
(2012)

12.5% of patients:30 – 60 min-
utes;5% of patients:≥ 60 minutes

By lengths of AOD New South Wales,
Australia

Taylor et
al. (2006)

Measured the difference between
the recorded arrival of an ambu-
lance and the actual delivery of
the patient to the clinical area of
the ED

N/A Bath, UK

Hammond
et al.
(2009)

Held interviews to define AOD N/A Southeast Queens-
land, Australia

Carter et
al. (2014)

Calculated the correlation (0.753)
between ambulance total time at
hospital and AOD time

N/A Richmond, VA, USA

Table 2.1: The summary of articles that measure the AOD problem.

Other observational and analytical studies have supported this conclusion. An in-

vestigation conducted for the Ministry of Health and Long-Term Care in ON, Canada

[46] reported that the principal cause of AOD is the congestion in downstream stages

of patient care (i.e., hospital bed shortage). Eckstein and Chan [26] suggested that

ED crowding results in delays for paramedics waiting to transfer patients (AOD). Ma-

jedi [32] expressed concern that the delayed transfer of an admitted patient from the

ED to an inpatient bed contributes to ED crowding, and subsequently the AOD prob-

lem. Eckstein et al. [22] and Almehdawe et al. [5] both suggested that this escalating

problem of extremely high inpatient occupancies (capacity shortage) has resulted in

ED crowding, the AOD problem, and eventually a reduction in the quality of EMS

service to the community.

ED crowding is an increasingly common issue faced by many health care systems
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[17–19]. In Andrulis et al.’s survey [47] on crowding in 239 American teaching hos-

pitals, three quarters of responding hospitals reported holding times increased for

admitted patients over the preceding three years from 1991, and the use of methods

to decrease crowding was also growing. The increase in ED crowding has also be

reported in published articles since this survey [27, 48, 49].

The causes of ED crowding are complex and multifaceted [28]. Many researchers

have investigated this area to identify the contributing factors and strategies to reduce

ED crowding. Derlet et al. [48] distributed a survey to EDs in 50 American states

to determine the factors associated with ED crowding as perceived by ED directors.

Among the 575 responded EDs, 91% reported ED crowding as a problem, and 33%

reported that some patients had poor outcomes as a result of it. Their study summa-

rized some common causes of ED crowding reported by the ED directors, including

high patient acuity, hospital bed shortage, high ED patient volume, radiology and lab

delays, and insufficient ED space. Some other factors contributing to ED crowding

were outlined by Derlet and Richards [43, 50], and Olshaker & Rathlev [51]. Such

factors included shortage of support staff, consultation delays, shortage of on-call

specialists, ED space limitations, language and cultural barriers, increased medical

record documentation requirements, and difficulty in arranging follow-up care. Figure

2.3 shows a summary diagram of the common causes of ED crowding, which leads to

AOD. Readers can also refer to Hoot & Aronsky’s review [52] to find more research

regarding causes, effects, and solutions of ED crowding.

While multiple factors are likely contributors to the growing crisis of ED crowding,

recent research suggests that ED crowding is not caused by the input factors (i.e.,

nonemergency ED patient visits), but rather by the output factors (i.e., the overall

hospital throughput) [42, 53, 54]. Access block has been identified as a major cause

to ED crowding [28, 42, 48, 55]. It refers to the situation where patients in the

ED requiring inpatient care are unable to gain access to appropriate hospital beds

due to a lack of available inpatient beds. In this circumstance, admitted patients

remain in the ED until a hospital bed becomes available. This access block period

can last from hours to days [18], limiting the patient’s evaluation/treatment and

causing ED crowding [50]. Schneider et al. [49] evaluated multiple trialed strategies

to reduce ED crowding in Rochester, NY, USA in the last decade. They realized
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Figure 2.3: A summary diagram of the common causes of ED crowding, which leads
to AOD.

that those strategies based from the ED were the ones with little effect; while the

ones addressed factors external to the ED were more successful. Other researchers

[42, 56, 57] supported this conclusion with a recommendation of finding the solutions

in managing hospital bed stock and systemic patient capacity, including the use of

primary care and community resources.

2.5 AOD Consequences

As stated by Cooney et al. [28], consequences of AOD can be categorized into two

major headings: consequences to the patient and consequences to the EMS system.

Consequences to patients include delay to definitive care, poor pain control, delayed

time to treatment, etc., which may result in compromising patient care and safety.

Consequences to the EMS system are negative impacts on the system status and

resource availability. It may prolong the ambulance response time and time spent

on task, resulting in decreased efficiency of the ambulance services, and the need for

additional staffing [26, 58]. In addition, financial burdens and legal concerns regarding

the AOD problem have also been reported [5, 29, 30].
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2.5.1 AOD Impact on Patients

The time required to transfer patient care can be critical to ambulance patients upon

arrival at the hospital. Any delay in this process (e.g., AOD) is a potential risk

to patient safety [28]. Crilly et al. [20] conducted a study to describe and compare

outcomes for ambulance patients arriving to EDs who experienced delays longer than

30 minutes with those who did not. This study was undertaken in Australia using

12 months of health data (September 2007-2008) from 40,783 patient visits to three

EDs via ambulance. These visits made up about 30% of the total ED visits. Among

these ambulance visits, 15% experienced an AOD longer than 30 minutes, and 63% of

those had an ED length of stay (LOS) longer than 4 hours. This study confirmed that

transport by ambulance to hospital does not guarantee timely access to medical care

when there is AOD. The authors also reported that patients with an AOD shorter

than 30 minutes had significantly better outcomes for almost all demographic and

ED characteristics (i.e., time to triage, ED LOS) with the exception of in-hospital

mortality. Similar conclusions were reported by Hitchcock et al. [27]. Their study

was conducted to describe and compare patient outcomes between ambulance patients

arriving to one ED in Australia (1 June - 31 August 2007) with (619 cases) and without

(1,238 cases) experiencing AOD. The cases in the two groups were matched by age,

gender, and presenting problem. Outcome measures included ED LOS and in-hospital

mortality. The results indicated that patients who experienced AOD had significantly

longer wait time to be triaged (10 minutes vs. 4 minutes), and comprised significantly

higher proportions of those access blocked (43% vs. 34%). This study also reveals

that the likelihood of having an ED LOS longer than 8 hours is 34% higher among

patients who experienced an AOD. AOD is a contributing factor to prolonged ED

LOS and adds additional strain on EDs. However, there was no significant difference

identified in this study on the proportion of in-hospital mortality (2% vs. 3%) between

the two patient groups, consistent with the previously discussed findings.

Kingswell et al. [59] also investigated the AOD experience from the perspective of

patients. They carried out semi-structured interviews with seven patients who vis-

ited a regional ED in Queensland region, Australia via ambulance and experienced

an AOD longer than 30 minutes. Most participants reported not understanding the
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causes of AOD, but understood some of the consequences. Though they felt safe wait-

ing with paramedics, they expressed frustration with being kept ’in the dark’ during

AOD, due to the lack of communication regarding the availability of ED beds. This

study provided in-depth patients experiences of AOD and indicated that improve-

ments in communication with patients are required within the context of patient

rights, health care safety and quality frameworks, to ensure quality care is delivered

during AOD.

2.5.2 AOD Impact on EMS Resource Availability

AOD not only hinders the promptness of medical treatments for the patients, but also

negatively affects the ability of EMS to provide consistent and timely care, due to the

reduced ambulance availability [22, 60, 61]. It can affect response times and prolong

time on task, resulting in decreased efficiency and the need for additional resources

[26]. When ambulances are unavailable for future population calls due to AOD, there

is potential to put the community and lives at risk due to the compromised availability

of ambulance services [28].

The impact of AOD on EMS resource availability has seen less attention. Most

research has been carried out by medical doctors and frontline personnel who try

to understand the problem and highlight its importance and implications using ob-

servational studies. One of the early studies was reported by Cone et al. [10]. The

group conducted a “time-motion prospective study” of the EMS turnaround inter-

val by monitoring and recording the ambulance delivery and recovery activities (122

patients). They concluded that ambulance call report documentation required the

greatest sub-interval of turnaround time in the observed system. AOD was not re-

ported as a major concern in the study. However, in a later prospective longitudinal

study conducted by Eckstein and Chan [26], the authors concluded that the decrease

in ambulance availability may have a significant effect on an EMS systems’ ability

to provide timely response. Cooney et al. [40] conducted an observational study of a

sample of 483 patients arriving via ambulance during a 12-month period to explore

the relation between AOD and ED crowding. They reported that the median AOD

time was significant and raised concerns related to patient care and EMS system

resource availability.
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In their position statement to the Canadian National Association of EMS Physi-

cians, Cooney et al. [28] raised another concern regarding the impact of AOD on EMS

resource availability, through an EMS operation practice called “mutual aid”. Mutual

aid represents the EMS practice where free ambulances are drawn from outlying ar-

eas into another service area to assist with AOD and to maintain proper coverage in

the problematic service area. This practice may result in ambulances being relocated

away from their home service areas, possibly for the duration of their remaining shifts,

and represents a potential decrease in surge capacity of the EMS system. Majedi [32]

expressed a similar concern in his thesis that the mutual aid practice may result in

ambulance shortage in the outlying areas, which put the communities at risk.

2.5.3 AOD Impact on Finance

It has also been reported that AOD adds costs to EMS providers. Majedi [32] ar-

gued that ambulance crews are likely to work overtime when AOD occurs, which can

be costly. In 2006, the city of Toronto, ON, Canada spent $3,906,700 in EMS staff

overtime expenditures alone [32]. The statistics provided by the Region of Water-

loo Public Health (2007), ON, Canada revealed that the Waterloo region lost 13.25

ambulance days per month to AOD in 2005 and 12.36 ambulance days per month

in 2006. That translated to a financial loss of approximately $840,000 in ambulance

operations. To reduce the AOD time, the provincial government invested $96 million

in its comprehensive action plan in 2006. However, AOD still costed the Toronto

EMS approximately 180 ambulance hours per day in December 2007 [5]. Another

province of Canada, Nova Scotia, is also experiencing the worsening AOD problem

and its fiscal burden [30]. The EMS provider in Nova Scotia has estimated that the

AOD problem results in about 2,900 ambulance hours per year, which equates to

approximately $754,000 at the average paramedic salary. Smith [4] has reported that

in England, AOD costs the National Health Service millions of pounds per year in

the form of lost ambulance hours, which have risen from 37,000 hours in 2008/2009

to around 54,000 hours in 2010/2011.
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2.5.4 AOD Legal Concerns

Some legal concerns are also rising for the AOD problem. A major regulatory issue

is that paramedics cannot assume the role of ED staff [22, 29, 62]. In the USA, it is

a federal regulatory expectation that “all EDs must have policies and procedures in

place to immediately receive and assume care of the patient · · · A hospital’s refusal

to accept responsibility could be a violation of the Emergency Medical Treatment

and Labor Act (EMTALA)”. Delaying care of a patient could also be a violation

of EMTALA [24]. Although EMTALA gives some clarity as to whom is responsible

for the patient on the stretcher once arriving at the hospital, this issue has not been

addressed by legislation nor tested in case law in Canada [62].

There has been some discussions and considerations related to paramedics’ re-

sponsibility for patient care in EDs. Eckstein et al. [22] rationalized that paramedics

should assist the ED staff to monitor their patients under ongoing disaster conditions

(outstripped resources) of the ED. However, they also acknowledged that such be-

haviors may have detrimental impact on the EMS system if occurring on a regular

basis. Schwartz [62] raised his concern as paramedics may not been trained to treat

protracted conditions, considering that their primary goal is to provide initial patient

care with limited resources during the patient transportation to the hospital. Fur-

thermore, leaving patients with paramedics in EDs may offer a false sense of security

to hospital staff, as the patients are not monitored at an ED level rather than that

within the paramedic scope and skill set. This could lead to delayed detection of

life-threatening conditions, as well as a debate of legal responsibility and liability for

care within a hospital facility, in which only credentialed physicians are permitted to

practice.

2.6 Interventions for the AOD Problem

Various interventions have been proposed, trialed, and evaluated to study their effects

on reducing AOD, most target either EMS providers or hospital EDs. The following

section reviews these interventions, and is divided into two major categories: hospital-

based interventions and EMS-based interventions. OR models that are deployed in

these intervention studies are summarized in Figure 2.4 at the end of this section.
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2.6.1 Hospital Based Interventions on AOD

Various interventions have been proposed, trialed, and evaluated to study their effects

on reducing AOD, most target either EMS providers or hospital EDs. The following

section reviews these interventions, and is divided into two major categories: hospital-

based interventions and EMS-based interventions. OR models that are deployed in

these intervention studies are summarized in Table 2 at the end of this section.

Offload Programs

Two urban hospital EDs (the Queen Elizabeth II Health Science Centre and the

Dartmouth General Hospital) in Nova Scotia, Canada have attempted to reduce AOD

time by implementing an offload zone (OZ) concept, in collaboration with the local

EMS provider [63]. An OZ is a monitored holding area in the hospital ED for patients

who arrive by ambulance but cannot be admitted into the ED due to congestion. This

practice frees the ambulance to return to service; while the patient is in the care of

a dedicated nurse and paramedic waiting for an available ED bed [25]. With these

two staff, the OZ can serve multiple patients (up to 6) at the same time, eliminating

the need for one ambulance to wait with each patient. Two years after opening

the two OZs, Carter et al. [30] completed a Health Care Failure Mode and Effect

Analysis (HFMEA) study to identify risks to patient safety and process efficiency.

They created a process map to provide a framework consisting of six major processes

of the OZ, for understanding its function. They concluded that the OZ resulted in

ED staff having little incentive to admit patients who were waiting in the OZ and

instead admitted patients from the waiting room. This led to the OZ often being at

capacity and unable to relieve AOD.

Motivated by this unexpected finding, Laan et al. [64] modeled the OZ using a

continuous time Markov chain to investigate how this lack of incentive impacts AOD.

The result suggested that, when the probability of “a patient admitted from the OZ

when a patient of equal acuteness is waiting in the waiting room” is not greater

than a certain threshold (0.35 in their case), implementing an OZ will result in even

longer offload delay, as admission priority is disproportionately given to patients in

the waiting room. This threshold is sensitive to the capacity of the OZ and the clinical

load, meaning the ED’s incentive to admit patients from the OZ has a smaller impact
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on AOD when there is a large OZ and when the ED is less busy. Therefore, certain

OZ patient selection criteria need to be enforced to maintain the expected benefits of

implementing the OZ – to reduce AOD.

The Ministry of Health and Long-Term Care in Ontario, Canada has funded a

project involving hiring dedicated offload nurses to monitor low acuity ambulance

patients while they wait for an available ED bed [65]. Over 10 performance measures

related to the offload nurse program and AOD were collected and reported to the

hospitals and the EMS providers bi-annually. These measures track offload bed uti-

lization rate, as well as the LOS with the offload nurse, which allow the EMS provider

and the EDs to monitor patient flow as a predictor of AOD. The result from this trial

was unclear. Clarey et al. [66] designed a discrete event simulation model to assess

the change on AOD in a scenario, where dedicated nurses were hired to assist with

ambulance offloading patients. This study demonstrated a clear reduction in AOD

when dedicated nursing levels were increased. However, the authors also raised their

concern that using this as a sole method to reduce AOD would require unacceptably

low staff utilization, which would cost hospitals both financially and in human re-

sourcing. Job duties for these dedicated nurses need to be carefully designed so that

additional work can be incorporated into their work yet still enable them to rapidly

react to ambulance arrivals. From the perspective of patient and health services out-

comes, Greaves et al. [67] investigated patient’s waiting time to see a clinician in all

ED visits (n = 21, 454) 39 days before, during, and after an offload nurse was intro-

duced in an Australian ED during July and November 2012. They concluded that

the waiting time improved marginally during the trial period, but was not sustained

when the role was removed.

Expanding ED Capacity

Expanding ED capacity has been explored multiple times by different research groups

using different methods, yet fielded controversial results. Silvestri et al. [24] performed

a 22-month longitudinal observational study between January 2003 and October 2004.

The goal was to examine the impact of ED bed availability on AOD time in a re-

gional EMS system with four receiving hospitals in Orlando, FL, USA. Two of these

hospitals remained unchanged during the study period, while the other two hospitals
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implemented two different AOD mitigating strategies starting in 2004. One hospital

introduced an offload time limit policy, and the other one expanded the ED capacity.

The median offload time was then reported decreased in all hospitals collectively from

39.6 (in 2003) to 35.1 minutes (in 2004). The result suggests that an increase in the

ED bed availability decreased AOD.

Majedi [32] modeled the interaction of an EMS and a hospital ED using queuing

theory, and modeled the behavior of the system as a continuous time Markov chain.

The tested scenarios included adding more ED beds, adding more ambulances, and

reducing the ED LOS of patients. By evaluating various performance measures (such

as the average number of ambulances in offload delay, the average AOD, and am-

bulance and ED bed utilization), Majedi concludes that adding more beds to the

ED could have a positive impact on these performance measures. In particular, the

average number of ambulances experiencing offload delay and the average AOD were

decreased.

Almehdawe et al. [5] used a Markov chain queueing model to analyze the interface

between a regional EMS provider and multiple EDs serving both ambulances and

walk-in patients. By using matrix-analytic methods, they solved for the steady state

probability distributions of queue lengths and waiting times for both ambulance and

walk-in patients in all the studied EDs (AOD was measured using the waiting times

of ambulance patients). They computed a variety of performance measures subject to

different resource levels, particularly for assessing the AOD problem and its impact

on the system resources. This study concludes that the priority based admitting

policy has a great impact on patient waiting times. Assigning a higher priority to

ambulance patients ensure minimal AOD at the cost of long waiting times for walk-in

patients. When additional resources are considered for the system, the benefit of

adding capacity is greater for EDs with higher utilization. The authors propose that

this model can be used to assess the effect of adding more capacity to the system. It

can also show where to add resources to improve the system performance the most.

Some other studies, on the contrary, concluded that expanding ED capacity does

not show any improvement on mitigating the AOD problem. Han et al. [68] exam-

ined the effects of ED expansion (from 28 to 53 licensed beds) on a metric of EMS

performance at an urban, academic Level 1 trauma center in Nashville, TN, USA.
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Data was compared with a five-month pre-expansion period (November 1, 2004, to

March 1, 2005) and a five-month post-expansion period (June 1, 2005, to October 31,

2005). An accelerated failure time model was performed to test if ED expansion was

associated with a better EMS performance while adjusting for potential confounders.

The study concludes that an increase in ED bed capacity did not affect the specific

EMS performance. Therefore, ED expansion appears to be an insufficient solution

without addressing other bottlenecks in the hospital.

Crilly et al. [69] investigated the impact of opening a new ED on patient and

healthcare service outcomes using a 24-month deterministically linked data set from

the ambulance service and three ED and hospital admission databases in Queensland,

Australia. Total volume of ED visits was reported to increase 18%, while local popu-

lation increased 3%. Healthcare service and patient outcomes at the two pre-existing

hospitals (including ambulance offload time, ED LOS, and access block) did not im-

prove. They concluded that the increase in the total volume of ED visits was at a

far greater rate than local population growth, suggesting it either provided an unmet

need or a shifting of activity from one sector to another. There was an inherent need

to take a “whole of health service area” approach to solve crowding issues.

Later, Crilly et al. [70] conducted a retrospective comparative cohort study to

identify predictors of admission and to describe outcomes for ambulance patients

at three Australian public EDs, before and after the opening of 41 additional ED

beds (from 81 to 122). Reported data included: AOD, time to see doctor, ED LOS,

admission requirement, access block, hospital LOS, and in-hospital mortality. The

authors reported that after the increase of emergency capacity, in-hospital mortality

was the only outcome measure that improved during the study period; while all other

time-related service outcomes, including ED LOS, time to see doctor, and AOD, did

not show any improvement.

Increasing ED Patient Throughput

As previously discussed, ED crowding and access block is a widespread problem and

often results in AOD. Actions to address ED crowding and Access Block include

continuously monitoring ED patient throughput times, identifying any correctable

areas of delay, and implementing effective triage and bed utilization strategies (i.e.,
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the use of fast track, acute care clinics, observational units) [22].

Majedi [32] showed that reducing patients’ ED LOS, which increases the ED pa-

tient throughput, can have a positive impact on EMS system performance, including

the average number of ambulances in offload delay, average AOD, and ambulance

utilization. Lee et al. [71] applied a high-turnover utility bed intervention at the ED

of an urban tertiary hospital in Taipei, China to improve ED patient throughput and

alleviate ED crowding. 14 utility beds were designated exclusively for ED patients

with a strict 48-hour LOS limit for each patient. In the pre- and post- intervention

period cohort study, the authors reported improved EMS performance and a short-

ened ED LOS from 9.7 hours to 8.0 hours. Furthermore, there was no difference in

ED revisit within 72 hours and cardiac arrest management, when assessing the impact

of this intervention on the patient outcomes.

Alberta Health Services [72] in Canada implemented a province-wide ED Over-

capacity Protocol (OCP) in December 2010 to battle the growing ED crowding and

AOD problems in the province. This OCP sets triggers such as: ED bed occupancy

> 110%, ≥ 35% of ED care spaces blocked, no ED space available for high severity

patients, etc. When these triggers were reached, immediate actions were executed by

the varied ED staff (ED physicians, nurses, clerks, etc.) to reduce ED wait times and

to improve the ability to move admitted patients out of EDs. These actions are on

an urgent basis and can be escalated up to the CEO level, if impact on wait times

is not timely. The OCP frees up ED care spaces by increasing patient throughput.

Patients might be asked to share a room, to move to a different room or facility,

to receive ongoing care in the community, or to be admitted to a hospital unit and

given a stretcher or chair in a temporary location. A pre-/post- OCP comparison

study was conducted by McRae et al. [73] using administrative data from February

to October 2010 as the pre-OCP period and the data from February to October 2011

as the post-OCP period. The ED volume was increased by 7.0% while the ambu-

lance service demand increased by 11.1% between the pre- and post-OCP periods.

The authors reported that improvements in ED patient flow led to improvements

in ambulance offload time. Preliminary evaluation on the mean AOD suggested a

significant reduction before and after the implementation of OCP. Cooney et al. [28]

have also emphasized the importance of improving patient throughput. They argued
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that decreasing AOD directly, without improving throughput, does not address the

issue of ED crowding. Therefore, all components of the healthcare system must work

together to improve throughput on all levels to ultimately result in decreases in AOD.

These hospital interventions take different approaches to tackle the AOD. The

offload nurse program assigns dedicated hospital personnel to directly work on reduc-

ing AOD; while increasing ED capacity explores the possibility of reducing AOD with

additional ED facility resources. The offload zone trial takes a cooperative approach

to reduce AOD by bringing together the hospital EDs and the local EMS provider;

while increasing ED patient throughput requires collaboration between the ED and

other hospital departments. A common thread shared between these hospital-based

interventions is that they require additional ED resources, either human resources

(offload nurse program), facility resources (expand ED capacity), or even a combi-

nation of both (offload zone, increase ED patient throughput). Eckstein et al. [22]

recommended that every hospital should create a system to provide rapid access to

additional ED resources (i.e., stretchers) when needed as well as a written plan to

address ED crowding. Such contingency plans are designed to release EMS per-

sonnel rapidly from hospitals, especially in a disaster situation, when resources are

scarce. Eckstein et al. [22] also recommended that EDs should apply a mandatory

nurse–patient ratio (the minimum staffing ratios for good patient care in critical care

areas of the hospital) as an indicator of the ED status. Furthermore, hospital admin-

istrators should emphasize the importance of enabling paramedics to transfer care of

patients to ED with minimal delay.

2.6.2 EMS Interventions on AOD

EMS systems have put forth efforts to minimize the impact of AOD through several

different interventions. Some of them have been trialed and reported in literatures.

Others only appear in gray literatures and work reports from stakeholders. In general,

the effects of these innovative practices are not well studied, with the exception of

ambulance diversion.
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Ambulance Diversion

Ambulance diversion (AD), first described by Lagoe & Jastremski [74], is the practice

where an ED diverts incoming ambulance patients to other facilities due to overcrowd-

ing [75]. This gives the ED staff time to recover and decreases the risk of adverse

events occurring in overcrowded situations [43]. To reduce the growing problem of

ED crowding, many hospitals and health care systems have implemented AD poli-

cies [22, 76]. Burt et al. [77] used the 2003 National Hospital Ambulatory Medical

Care Survey (on 40,253 visits to 405 participating EDs) data to determine the fre-

quency of AD. They reported that about 45% of EDs reported diverting ambulances

at some point during the previous year. Among this 45%, approximately 3% of op-

erating time was spent in diversion status. In 2003, an estimated 501,000 diversions

occurred, equivalent to one per minute.

Research has been conducted to further study and evaluate AD. Warden et al. [78]

investigated the potential predictive factors of AD. Kuruvilla [79] developed various

causal models to determine the probability of a hospital going on diversion. Leegon et

al. [79] evaluated the accuracy of using a Gaussian Process to predict AD. Hagtvedt et

al. [80] used several tools, including a birth-death process, discrete event simulations,

agent-based simulation model, and some game theory to examine the potential for

cooperative strategies to reduce ambulance diversion. Ramirez-Nafarrate et al. [81, 82]

explored optimal AD control policies using different methods, including a simulation-

optimization approach [81] and a Markov Decision Process (MDP) formulation [82].

Lin et al. [83] developed a simulation model to quantitatively evaluate the effectiveness

of various ambulance diversion strategies on relieving ED overcrowding by assessing

the crowdedness index, the patient waiting time for service, and the percentage of

adverse patients. The same research group (Kao et al. [84]) also utilized a patient

flow queuing model for simulating AD among multiple EDs in a region to evaluate

the impact of different AD strategies on the crowdedness of the EDs.

While appealing in theory, AD has yielded conflicting results, and the growing

issue of ED crowding has brought this strategy into question. Scheulen et al. [85]

investigated the impact of AD policies in urban, suburban, and rural areas of central

Maryland, USA. They found that AD policy had a limited effect in preventing further

patient volume in urban and suburban areas, and it had no impact in rural areas.
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Therefore, the authors argued that “the impact and efficacy of AD policies should be

evaluated to ensure they are having the intended effect”. Carter and Grierson [86]

researched the impact of AD on the availability of ambulance resources, specifically

transport time, hospital turnaround, and total out-of-service time. 1,563 instances of

diversion and 1,403 controls were included in this study, showing an average 2-minute

difference in turnaround time and no difference in transport, hospital turnaround,

and total out-of-service times between diversion and control time periods. Therefore,

it was concluded that the availability of EMS resources was maintained during the

AD periods.

Numerous studies have also suggested a variety of problems that may be caused by

AD, such as: delaying prompt and appropriate medical care for diverted patients [87–

89], adversely affecting EMS system efficiency [90, 91], exacerbating crowding at other

facilities [28, 92, 93], and generating financial burdens to hospitals and EMS systems

[94–96] . Eckstein et al. [22] also argued that use of this temporizing methodology has

created false expectations of relief and often results in adversarial relations between

the two key groups - the EMS and ED staff, which may put the EMS system at risk of

liability. Weaver [97] reported that AD has become less effective and more problematic

with hospitals everywhere filling to capacity. In addition, AD may result in legal

problems [97, 98], as well as ethical and logistical ones [97, 99–101]. Hence, decisions

regarding AD should be made with careful consideration of patient preferences, local

EMS laws, and institutional surge capacity. The American College of Emergency

Physicians (ACEP) [102] has developed some guidelines for AD to ensure access to

emergency care and suggested that “each EMS system, including all of its component

agencies, must develop a cooperative diversion policy” and should only allow AD to

occur “after the hospital has exhausted all internal mechanisms to avert a diversion”.

Due to the controversial results, many health care systems have adopted policies

to limit or eliminate AD [92, 103, 104] and studies have been carried out to evaluate

these policies. One example of such implementation was detailed by Patel et al.

[105] in their study undertaken in 17 hospitals of the greater Sacramento region,

CA, USA from January 2001 to December 2003. After successful implementation of a

comprehensive reduction program, AD in the Sacramento region was reduced by 1,428

hours per month (a 74% reduction). Furthermore, such reduction occurred despite
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overall increases in ED census, hospital admissions from the ED, EMS arrivals to

the ED, inpatient hospital census, and overall population. In the follow-up program,

Patel and Vinson [106] sought to further reduce and eliminate AD by progressively

decreasing the duration of each AD event from 3 to 1 hour. This decreased AD

from 8,469 hours to 2,306 hours in approximately 3 years. The author suggested

that with a collaborative and cooperative goal, urban regions can effectively reduce

AD by “systematically and sequentially” limiting the duration of each AD event, as

demonstrated in the greater Sacramento region. Another study by Friedman et al.

[107] has drawn similar conclusions after a two-week moratorium on citywide diversion

in October 2006 in a consortium of teaching hospitals in Boston, MA, USA.

Lagoe et al. [108] conducted a retrospective review on AOD procedures at the

system and hospital levels in the metropolitan area of Syracuse, NY, USA, reporting

a 33.6% reduction on diversion hours system-wide during the study period. They

concluded that a combination of approaches at the community-wide and hospital-

specific levels produced meaningful reductions of AD. Barthell et al. [109] used a

collaborative approach to track and report AD and ED crowding in Milwaukee, WI,

USA, and reported a reduction of AD after implementing this approach. Castillo

et al. [110] described a state-wide initiative to reduce diversion in four regions of

California, USA from September 2006 through August 2008. Hospitals developed

and implemented several best practices to improve patients’ input, throughput, and

output during the study period, resulting in a significant AD decrease from an average

of 1,468 hours to 1,176 hours monthly.

Vilke et al. [92] evaluated a voluntary community-wide intervention to reduce AD

in a county of 2.8 million individuals in California, USA. This intervention consists

three core rules, as detailed in a later report [111]: AD status is limited to a max-

imum one-hour duration; an ED must accept at least one patient after coming off

and before declaring back on diversion; regardless of diversion status, hospitals must

accept patients originally discharged from their facility. A significant decrease was

reported in the number of patients who did not reach the requested facility due to

AD for the trial period (n = 322) and post-trial period (n = 449), compared to the

pre-trial period (n = 1, 320). In the follow up study three years later, Vilke et al.

[112] reported that this voluntary community-wide approach to attempt to decrease
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AD was effective and sustainable with minimal intervention. Similar conclusion was

drawn by Al Darrab et al. [113] after evaluating the impact of a city-wide voluntary

intervention to reduce AD in Hamilton, ON, Canada. Massachusetts became the

first state in the USA to successfully ban AD after implementing a statewide ban on

AD initiated by the Massachusetts Department of Public Health in USA on January

1, 2009 [114]. The results were analyzed by multiple research groups [104, 115–117].

Lindstrom [104] argued that no adverse effect was found from stopping AD; therefore,

hospitals should be forced to implement some improvements of protocols and stream-

line operations to eliminate AD. Similar results have been reported by Holley [118]

when evaluating the no-ambulance-diversion policy adopted in the city of Memphis,

TN, USA.

In addition to evaluating AD related policies, researchers have developed different

strategies and methods to help health care decision makers avoid situations where

AD is inevitable. Strear et al. [119] applied the theory of constraints to patient

care workflow and achieved a 99.6% reduction of the AD time during a 12-month

implementation period. McLeod et al. [120] reported the effects of a regional infor-

mation dashboard on ED capacity, which took real-time information from all three

tertiary EDs in the city of Calgary, AB, Canada and assigned a color code (green,

yellow, orange, or red) to reflect receiving status for each individual ED. Central

dispatch had the status of all three EDs and ambulances were advised to avoid the

most overcrowded ED. The authors concluded that the implementation of this real-

time surveillance system resulted in an increase in the proportion of total time region

hospitals reported favorable status (green/yellow) (57.5% vs. 64.1%), while the AD

fell from 198 to 27 hours. El-Masri and Saddik [121] proposed a new comprehensive

emergency system to facilitate the communication process in emergency cases from

ambulance dispatch to the transfer of patient’s care to the ED staff. Such a system

enhances communication in the clinical handover process, and contributes to reducing

ED crowding and AD. Beechner [122] constructed a fuzzy inference system that per-

forms as a decision support system to eliminate AD by diverting a certain percentage

of lower acuity patients to outpatient clinics or primary care physicians.

The reduction of AD may have a negative effect on the EMS system, resulting in

longer AOD time, when other factors causing ED crowding are not probably addressed
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or corrected [28]. Asamoah et al. [123] employed a strict limitation policy to reduce

AD (restricting each hospital to 1 hour out of every 8) and reported an 82% reduction

in AD. However, they also observed a side effect of the new policy on the system, as

the mean AOD time increased by 32%. Pham et al. [124] reported that AD may be

reduced by “adding more facility and human resources (usually at the hospital level)”,

which reduces ED crowding. Using AD as a surrogate marker for ED crowding, Schull

et al. [53] demonstrated that AD time increased by 6.2 minutes per admitted patient

boarded in the ED due to ED crowding.

Efforts to reduce AD are common (and mostly successful), but the question re-

mains of how to best reduce AD without increasing ED crowding or worsening AOD

[125]. Cooney et al. [28] emphasized that monitoring AD and AOD are important to

health care systems, as they are both essential indicators for assessing ED status and

identifying inefficiency in the system. Although AD may temporarily release pressure

on ED staff; growing AOD may put it back to hospital personal to address root causes

of ED crowding.

Patient Allocation Policy

As excess AD may cause negative impact on quality of patient care and EMS op-

eration, a few studies have suggested other alternative patient allocation policies to

alleviate ED crowding in a more controlled and centralized manner than AD.

Shah et al. [126] implemented a voluntary, physician-directed ambulance destina-

tion control program in Rochester, NY, USA (during July 2003) to directs ambulances

to the ED that is most able to provide appropriate and timely care. EMS providers

were asked to call a destination-control physician for patients requesting transport to

either of the two participating hospitals. The physician determined the optimal pa-

tient destination by using patient and system variables as well as EMS providers’ and

patients’ input. During the intervention month, 2,708 patients were transported to

the participating hospitals. EMS providers contacted the destination-control physi-

cian for 1,866 (69%) patients. The original destination was changed for 253 (14%)

patients with reasons such as system needs, patient needs, physician affiliation, recent

ED or hospital care, patient wishes, and primary care physician wishes. During the

intervention month, AD decreased 190 (41%) hours at the university hospital and 62
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(61%) hours at the community hospital, as compared with the control month. The au-

thors concluded that this type of program may be effective in reducing overcrowding

and maximizing the availability of emergency health care resources.

In the greater Edmonton metropolitan region, AB, Canada, an ambulance des-

tination determination system has been created jointly between the Capital Health

Authority (the regional hospital organization) and Edmonton EMS (the primary am-

bulance provider) [127]. The system functions with staff from the Edmonton EMS

and the Regional Patient Transport Office operating together to coordinate the dis-

tribution of ambulances to the various hospital EDs. The coordinators have access to

the real-time information on both the Edmonton EMS ambulance trips records man-

agement system and the Capital Health Authority emergency status screen on the

status of each ED in the region. Such information includes the number of ED beds

both occupied and available, the number of emergency inpatients and waiting room

patients, the number of ED patients in each category of the Canadian Emergency

Department Triage and Acuity Scale (CTAS), the number of current active ambu-

lance trips, and the ambulance activities (i.e., dispatch, response, arrival on scene,

transport to and arrival at a designated hospital). With the available information,

the coordinators make decisions about how to distribute ambulances to the various

hospital EDs and provide that information to the EMS personnel. An overall positive

response was reported after a 6-month pilot implementation. The three community

hospitals had an increase in ambulance transports, with a corresponding decrease for

the two major hospitals. The author thus suggested that this ambulance destination

determination system helped to maximize available ED resources and was a valid

alternative to AD.

An attempt to mitigate the ambulance at-hospital interval (turnaround time) in

Baltimore, MD, USA, was conducted by Halliday et al. [128], to improve communi-

cation within the local EMS system. A senior EMS paramedic was assigned as the

medical duty officer in the fire communication bureau of the Baltimore City Fire De-

partment. The primary task of this position was to provide prospective management

of city EMS resources through monitoring ambulance availability and hospital ED

traffic, and suggesting alternative transport destinations in the event of ED crowding.
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The authors compared a total of 13,921 EMS calls during in the post-intervention pe-

riod with 15,567 during the pre-intervention period and 14,699 in the seasonal match

control period one year earlier. They reported a 1.35-minute decrease of the average

at-hospital time from pre- to post-intervention periods, and a 4.53-minute decrease

from the seasonal match control to post-intervention periods, representing a statisti-

cally significant decrease. Furthermore, hospital alert time was also shown to have

a statistically significant difference between the pre- and post-intervention periods in

this study with an approximately 1,700-hour decrease. The decrease in ambulance

response time was, however, not statistically significant. This study emphasized the

importance of better coordination between EMS and hospital EDs as well as future

intervention initiatives.

To mitigate the AOD problem, Almehdawe et al. [33] introduced a stylized queue-

ing network model with blocking to investigate the effect of patient routing decisions

on EMS offload delays. They constructed and solved an optimization problem to find

the optimal allocation of ambulance patients to each ED in a region. The optimiza-

tion model was tested to be robust under normal operating conditions as supported

by the numerical analysis in the study. The authors suggested that this model can be

used as a decision support tool to guide EMS dispatchers on how to allocate patients

to hospital EDs when they make their dispatching decisions. In one of their earlier

studies, Almehdawe et al. [5] analyzed two routing probability scenarios in a three-ED

system. The imbalance scenario represented a system where heuristic routing poli-

cies were used by emergency control staff, while the balance scenario demonstrated a

system where the routing probabilities were proportional to ED capacities. System

performance measures were computed, particularly for assessing the AOD and its

impact on system resources. The results show that when the system changes from

the “imbalance” routing probability scenario to the “balance” one, the expected total

number of ambulances in offload decreases by 14% and the total expected AOD de-

creased by 9.9%. This patient allocation policy can be seen as a proactive intervention

to reduce the chance of ED crowding, thereby mitigate AOD. Similar practice has

been implemented in some EMS systems as an intervention to cope with AOD / ED

crowding in daily operations [63].
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Redirecting Patients to Alternative Care Destinations

It is recognized that a substantial proportion of ambulance service calls are neither

life threatening nor serious [129]. With constantly increasing demands, many EMS

systems have explored the options to screen and divert potentially non-emergent

patients from the system at their dispatch centers [130].

Shah et al. [131] reviewed dispatch data on 19,332 calls in Salt Lake City, UT,

USA, to identify EMS dispatch codes associated with low illness acuity. A low-acuity

dispatch code was defined as one in which at least 90% of coded patients required only

basic life support care. 28 out of 118 dispatch codes or code groups, with 7,801 pa-

tients, met the definition of low acuity. The authors concluded that certain dispatch

codes were associated with likely to be low acuity patients and further validated these

codes in a later study [132] . That study concluded that 21 of the dispatch codes

can be potentially used to identify low-acuity patients who do not require emergent

response. A similar study by Woollard [133] sought expert consensus about which am-

bulance dispatch codes could be appropriate for a nonemergency response in Cardiff,

UK. Using majority voting, the results indicated that 54 dispatch codes (22%) were

recommended for a nonemergency response/referral, which equaled to 12.44% of an-

nual emergency calls in a typical UK ambulance service system. Theoretically, the

implementation of nonemergency responses could lead to improved response times for

critically ill patients by freeing up resources. The author suggested that further re-

search is required to validate the recommendations made by the experts using clinical

outcome data. Villarreal et al. [134] investigated a new model of patient screening

implemented in West Midlands, UK, where a partnership between general practition-

ers and ambulance services was formed to reduce conveyance rates to the Hospital

EDs. Call handlers identified patients with needs that could be addressed by a general

practitioner using pre-determined criteria. General practitioners supported the assess-

ment of such patients either at scene or by telephone. Routine data were collected

from October 2012 to November 2013, from the ambulance service computer-aided

dispatch system. Logistic regression models were used to determine the likelihood

for patients being transported to ED. Of 23,395 emergency contacts during the eval-

uation period, 1,903 (8.1%) patients were triaged to general practitioner supported

assessment. 1,221 (64.2%) had face-to-face assessment with general practitioners and
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682 (35.8%) via telephone. 1,500 (78%) of those who received general practitioner

support were not transported to hospital. The authors concluded that support of the

paramedic service by general practitioners enabled patients to avoid transfer to an

ED, potentially avoiding subsequent hospital admission, reducing costs, and improv-

ing quality of care for patients that were not in need of hospital services. They also

addressed that the overall impact and safety of this model required further evaluation.

However, the risk-management challenges associated with patient screening has

made this “politically unpalatable” with occasional bad outcomes [22, 135]. Fur-

thermore, this EMS strategy of discouraging communities from requiring ambulance

services in “non-emergencies” has often backfired, with observed increases in calls

[130]. In their literature review of addressing the ability of ambulance crews for pa-

tient screening, Snooks et al. [138] argued that not enough evidence has indicated

that “there is a clinically safe approach to identify patients who call for an ambu-

lance but do not need transportations to ED”. Most of the previous work has been

hypothetical only, with rare intervention studies, yet consistently showing the need

for caution. Millin et al. [135] further addressed that “EMS systems that utilize these

policies must have additional education for the providers, a quality improvement pro-

cess, active physician oversight”, and the determination of non-transport for a specific

situation should be supported by peer-reviewed literature. Despite these challenges,

Snooks et al. [136] suggested that further research in this area is urgently required

due to the inefficiency of the current model of emergency care. Eckstein et al. [22]

also insisted that EMS systems should continue to explore such patient screening

concepts to reduce the demands and to achieve some relief for the system. They

recommended some innovative strategies such as finding citizens alternative numbers

to call (especially “after hours”) or alternative places of appropriate medical care (i.e.,

shuttle transport to nearby clinics).

A similar EMS intervention to patient screening is to accept low acuity patients

into the system and later redirecting them to alternative care destinations, other than

EDs. The Ontario Ministry of Health and Long-Term Care in Canada established the

hospital emergency department and ambulance effectiveness working group in 2005

to investigate the AOD problem and advise Ontario’s Minister of Health on it. This

group submitted a report to the Ministry of Health and Long-Term Care [46] with
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recommendations aiming to ensure the improvements of ambulance availability. One

of their primary proposals was to consider transporting selected ambulance patients to

destinations other than EDs, such as urgent care facilities. The group recommended

an evaluation of the safety and effectiveness of such initiatives through pilot projects

in urban regions in Ontario. The government of Ontario, Canada later followed

this recommendation and initiated a demonstration project in the city of Toronto

to redirect low acuity ambulance patients to Urgent Care Centres instead of EDs

[60]. The motivation behind this intervention was to take advantage of the faster

ambulance turnaround time at the Urgent Care Centres comparing to regular EDs. It

could release ambulances to be back to the road sooner, therefore, increase ambulance

availability in the city. In the evaluation of this project, Esensoy reported a total of

855 hours of reclaimed ambulance time over the two-year trial period. However, this

result failed to show that the potential volume of these Urgent Care Centres was

high enough to make a significant system-wide impact on the AOD problem with

the current setup. The vagueness of the patient clinical criteria for redirecting to

the Urgent Care Centres was suggested to be the primary driver for low paramedic

uptake. The author argued that such decision-making intervention required extensive

training up front and continuous change management activities to ensure a smooth

implementation.

A similar intervention was launched in the UK, with the goal of avoiding the ad-

mission of minor patients to acute care hospital EDs [129, 137]. By developing and

testing a protocol to identify specific low-acuity patients for transport and treatment

at urgent care clinics rather than EDs, Schaefer et al. [137] reported a 15% relative

decrease (51.8% vs. 44.6%) in the proportion of patients who received care in the ED

when compared with a historical control group with similar diagnostic, acuity, and

seasonal characteristics, by implementing this intervention of alternate care destina-

tions. The referral was appropriate in 97% of cases, and that the patients transferred

on from urgent care clinic to ED did not suffer any delay in resolution of their con-

dition. The authors concluded that despite the low usage rate of alternative care

locations, this intervention has time saving benefits to most patients and the am-

bulance service, therefore, should be continuously employed with improved training.

In Snooks et al.’ study [129], patients were then followed up and the outcomes of
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patients taken to alternative care locations were compared with those taken to EDs.

The results indicated that patients taken to alternative care locations were 7.2 times

as likely to rate their care as excellent. In addition, ambulance service also benefited

from this intervention as ambulance on task time was shorter for patients taken to

alternative care locations.

Other EMS Interventions

Newell et al. [65] reported a strategy that the ambulance services in Ottawa, ON,

Canada has instituted to cope with AOD. Paramedics are not required to hand over

their electronic paramedic care report to the receiving hospital ED of a patient who

meets certain criteria (not CTAS 1 or 2). The paramedics can depart the hospital right

after the transfer of care and complete the report while mobile. The completed report

will be uploaded to the server over a secure Wi-Fi connection for the ED staff to view

and download. During the eight-week trial period, the average ambulance turnaround

time was reported dropped by 14 minutes per patient transported following the new

protocol. Despite the success, this intervention has been met with some resistance due

to patient safety concerns and hospitals having timely access to patient information.

The author acknowledged the concerns and argued that the next potential ambulance

patient can also be at significant risk if ambulance resources are tied up in AOD,

considering that rapid turnover of patient care is critical to the EMS system. This

intervention represents a significant change in workforce culture and needs to be

recognized by both the EMS and the hospital EDs.

Eckstein et al. [22] recommended that EMS providers should have a contingency

plan in place to approach and mitigate the AOD problem. The importance of col-

laboration between the EMS provider and the receiving hospital / ED staff was also

highlighted in their recommendations to ensure that policies and procedures are in

place and the team effort keeps the ambulance turnaround period brief. Another EMS

intervention in practice is referred as “mutual aid”. A detailed description of it can

be found in Section 2.5.2. Concerns have been raised against this practice regarding

ambulance availability of outlying areas. Yet “mutual aid” is still employed by some

EMS providers to cope with the AOD problem [28].
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Figure 2.4: The summary of OR models in AOD intervention studies.

2.7 Discussion

The causes and consequences of the growing AOD problem were first described to

capture the complexity of this problem. Next, key measures that are used to as-

sess system performance were listed. Then a literature review of related studies and

models was carried out to summarize common features, including the data used for

research, the methods and approaches, and the main results. 137 articles are re-

viewed (summarized in the electronic supplementary material), including studies of

the causes, effects, and solutions of AOD. Different topics and methodologies are em-

ployed throughout these studies (as described in Figures 2.5, note that some papers do
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not fall under the described topics, while some papers utilize multiple methodologies).

Figure 2.5: Summary charts of the reviewed articles: a. topics, b. methodologies.

The analysis of the literature reveals that many researchers have investigated areas

of ED crowding and ambulance diversion; however, there is limited research focused

on AOD. Specifically, we found a lack of OR methodologies used in addressing AOD.

For instance, of the 89 articles that studied solutions to AOD, only 18 (20.2%) of

them introduced OR methodologies to test interventions in a virtual setting. One

possible reason is that AOD is a relatively new problem and has not attracted a

lot of attention from researchers in the OR field. Another reason could be that the

complexity of modelling the interface between the EMS and ED services has deterred
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OR researchers.

For the interventions to be effective and true to real-world situations, the mea-

surement of AOD needs to be improved. Presently, no method has been reported

to measure the ambulance offload time accurately and reliably. Most research uses

ambulance turnaround time as a measure of AOD. Further study is required to stan-

dardize the definition and the measurements of the ambulance offload process. It is

important that interventions to decrease AOD are based on a solid understanding of

the main components of this process.

The empirical assessments of AOD (Section 2.3.1) show that AOD has become a

problem in many EMS systems since early 2000. Some data are reported but there

appears to be no standardized reporting structure in standard increments. For ex-

ample, it is difficult to compare AOD times across EMS systems due to the vastly

different characteristics of EMS systems (e.g., location, size, etc.); it would there-

fore be helpful if studies of AOD included characteristics of the EMS system and a

data dictionary of standard definitions for these time intervals. Furthermore, his-

toric trends in AOD would be insightful to show the evolution/acceleration of AOD.

Several empirical studies report that patients with medium acuity level experience

the most prolonged AOD. Yet, to the authors’ best knowledge, no further study has

been reported that investigates if there is a correlation between AOD and patients

risk levels. To be more specific, is AOD more common or prolonged for patients with

certain clinical conditions? If so, what are the impacts on the safety and outcomes of

these patients?

There are also few studies describing the relationship between ED crowding, ambu-

lance offload time, and EMS performance (such as EMS response times and resource

availability). Some studies have suggested that AOD impacts EMS. However, most

use anecdotal evidence as opposed to empirical analysis. It would be beneficial for fu-

ture work to quantify the impact of AOD on EMS systems. Therefore, much remains

to be learned to fully understand and assess the AOD problem to improve resource

utilization, response time, and patient care.

Another aspect of AOD assessment, which is overlooked in the current literature,

is its impact on the workload of paramedics and ED staff. As the ED crowding and

AOD become a new norm, are there human resource consequences, such as burn-out,
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increase rates of human error, morale issues, etc.?

An interesting observation of the literature is that, while ED crowding is a world-

wide phenomenon, the AOD problem has only been reported in Canada, the USA,

the UK, and Australia. This raises the question of how other EMS systems with ED

crowding have avoided AOD, or do they also experience AOD but have not studied

it formally? Perhaps other EMS systems have developed and implemented efficient

interventions to avoid AOD? Or perhaps AOD is inevitable at a certain level of ED

crowding but that level of ED crowding has not yet been reached? Regardless, this

can be an important direction for future research to provide some insight into the fun-

damental cause of AOD and why it appears to be more prevalent in some countries

than in others.

Several mitigation interventions of AOD (e.g., AD, expending the ED capacity)

have been reported with debatable results. This debate suggests that initiatives and

efforts from one party (EMS or ED) alone may not be sufficient to solve this problem.

The ability of paramedics to transfer patient care to an ED is determined by the status

of the ED, namely, the number of available ED beds. This availability is directly

related to hospital throughput and the availability of inpatient beds. Therefore, the

AOD problem is a consequence of a much bigger problem, which is the lack of capacity

in the healthcare system to treat hospital inpatients, leading to ED overcrowding and

access block. The majority of hospital EDs are reported operating at or over their

capacities in a typical day, as discussed in Section 2.4. As such, it is not surprising

to see that EMS providers continually find themselves struggling with timely patient

transfer at hospital EDs. Studies have shown that changing the ED’s structure or

function cannot address the underlying causes of ED crowding and, therefore, cannot

alleviate AOD. The evidence suggests that solutions to ED crowding lie outside the

ED and will require system-wide policy changes. EMS systems do not exist in a

vacuum, isolated from the rest of the health care system. The AOD problem includes

clinical, operational, and administrative perspectives; the efficiency and effectiveness

of ambulance offload time must be addressed in a system-wide manner.

Establishing better collaboration between EMS and hospital EDs is the first step

forward towards the goal of building a system-wide solution to AOD. Timely infor-

mation sharing (e.g., ED/EMS status, patient clinical outcome data) between these
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two parties also allows proactive interventions to mitigate the AOD problem. All the

interventions trialed with a collaborative approach have been reported to yield posi-

tive results; while voluntarily-based interventions initiated by individual parties often

present mixed results. Therefore, it is recommended by many researchers that EMS

and hospital EDs initiate dialogues at high management levels and work together to

take appropriate steps to mitigate AOD.

The root causes of AOD likely lie outside the EMS system and to address it (like

addressing ED crowding), will take significant time and effort. In the meantime, AOD

has appeared as a new norm in some EMS operations and needs to be addressed more

quickly. Therefore, research should continue to develop interventions, either through

OR models or trials, to help EMS operate in this difficult environment and mitigate

the negative impacts of AOD.

Healthcare is an area of growing importance and cost around the world, thus an

important area for operations research. As an important element of the healthcare

network, EMS system requires constant performance improvements to ensure overall

capacity to adequately and efficiently respond to emergency needs of the public. To

help better assess and mitigate the AOD problem, models need to be further developed

to estimate the system performance in a more realistic and detailed environment.

While the AOD problem presents itself as a challenging problem, it also represents an

opportunity for public health, EMS, and hospitals, to come together to identify best

practices and interventions. Ultimately, all key components of the health care system

should work together to ensure the ED crowding problem is eliminated or minimized,

thereby alleviating much of the AOD problem.
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Chapter 3

AN EMPIRICAL ANALYSIS OF THE EFFECT OF

AMBULANCE OFFLOAD DELAY ON THE EFFICIENCY

OF THE AMBULANCE SYSTEM

3.1 Introduction

In a typical North American emergency medical services (EMS) system setting, when

a hospital emergency department (ED) cannot accept the incoming ambulance patient

immediately (often due to congestion), paramedics wait with their patient(s), and

continue to provide patient care until an ED bed becomes available and the ED

personnel assume responsibility for the patient(s). This delay in transfer of care is

referred to as ambulance offload delay (AOD). Due to the increasing issue of ED

crowding, AOD has become a growing concern for many health care providers [5, 23,

138].

The consequences of AOD can be significant [20]. AOD hinders the promptness of

medical treatments for patients with potential negative consequences (e.g., delay to

definitive care, poor pain control, delayed time to treatment, etc.), which may result

in compromising patient care and safety [20, 27]. AOD can also negatively affect

the ability of EMS to provide consistent and timely care, due to reduced ambulance

availability [22, 60, 61]. During this delay, the ambulance and crew are unavailable

to respond to future emergency calls. It may prolong the ambulance response time

and time spent on calls, resulting in decreased efficiency of the EMS systems, and

the need for additional staffing [26, 58, 135]. In addition, financial burdens and legal

concerns regarding the AOD problem have been reported [5, 29, 30]. In England,

AOD has been reported to cost the National Health Service “millions of pounds per

year in the form of lost ambulance hours”, which has risen from 37,000 hours in

2008/2009 to around 54,000 hours in 2010/2011 [4]. The Region of Waterloo, ON,

Canada lost approximately $840,000 in ambulance operations in 2007 due to AOD
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[5]. The city of Toronto, ON, Canada lost approximately 180 ambulance hours per

day in December 2007 [5]. The EMS provider in Nova Scotia has estimated in 2015

that the AOD problem costs about 2,900 ambulance hours per year, which equates

to approximately $754,000 at the average paramedic salary [30].

The AOD problem has only recently become an active research topic. To date,

most current research on AOD is carried out by medical doctors and front-line per-

sonnel who try to understand the problem and highlight its importance by using

observational studies [23, 26, 35–37, 40]. These studies observe the prolonged waiting

time of ambulances at hospital EDs, and measure AOD by its mean or median values.

Eckstein and Chan [26] analyzed AOD incidents in Los Angeles, CA, USA, which ac-

counted for 1 out of every 8 ambulance transports (8.4% were in excess of 1 hour,

a median of 27 minutes and an inter-quartile range of 20 to 40 minutes). Segal et

al. [35] examined the ambulance turnaround time at a hospital ED in Montreal, QC,

Canada, and found that the turnaround time represents 45% of the total call time

(45.24 minutes and 101.06 minutes, respectively). The results show that the majority

of the turnaround time occur after the completion of triage (with a mean time of

31.33 minutes), indicating that the ambulances experience difficulties in transferring

patient care to the ED (i.e., AOD). Cone et al. [36] conducted a retrospective study

to assess the common AOD problem in New South Wales, Australia. Of 141,381

transports, 12.5% of patients experience an AOD of 30 – 60 minutes, and 5% experi-

ence a delay of ≥ 60 minutes. Stewart et al. [139] used administrative data to study

all high-acuity (Canadian Triage Acuity Scale 2–3) EMS arrivals to EDs from July

2013 to June 2016 in Calgary, AB, Canada. They reported that of 162,002 arrivals,

70,711 (43.65%) had offload delays < 15 minutes and 41,032 (25.33%) had delays >

60 minutes. Silvestri et al. [24] evaluated the AOD association with patient acuity

levels. The average offload time is reported to be an overall 32.7 minutes, and 34,39,

and 1.6 minutes, respectively, corresponding to patient acuity levels of low, medium,

and high. Cooney et al. [140] conducted a similar study and observed significant

differences between all five patient acuity levels when measuring the average AOD.

The mid-level severity (level 3) is associated with the longest average AOD.

Presently, no method has been reported to measure the ambulance offload time

reliably and accurately. Hammond et al. [38] identified significant inconsistencies in
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the practice and reporting of AOD across all EDs in Southeast Queensland, Australia.

Taylor et al. [39] demonstrated a small but significant delay between the recorded

ambulance arrival to an ED and the actual delivery of the patient to the clinical area of

the ED in Bath, UK. As most EMS systems find it challenging to accurately measure

the offload time [7], the majority of research uses ambulance turnaround time, which

is the ambulance’s total time at hospital, as a measure of AOD instead. Carter et al.

[7] tested the validity of using the turnaround time as a surrogate for the offload time,

which results in a good correlation (0.753). Other studies have focused on developing

different methods to help measure AOD more accurately [7, 38, 39, 41]. Steer et al.

[41] use radio frequency identification tags to record ambulance cot traffic throughout

the ED ambulance entrance. Cooney et al. [37, 40] explore if the National Emergency

Department Overcrowding Scale (NEDOCS) score could be used to predict AOD by

assessing the problem in Syracuse, NY, USA. The authors find a positive correlation

between the NEDOCS score and AOD.

All these studies represent progress in understanding the AOD problem, offer in-

sight into the consequences of AOD and the potential solutions of it. However, there

is a lack of studies exploring the relationship between AOD and EMS performance,

such as ambulance response time, total call time, and ambulance availability. Ambu-

lance availability affects overall system performance [7], and depends on many factors

(e.g., hour of day, number of ambulances on shift, number of calls received, etc.)

[135]. Anecdotally, AOD has been reported to have a significant negative effect on

ambulance availability [22, 60, 61], when multiple ambulances are out of service due

to AOD [20, 37, 135]. Some studies have suggested that AOD has a negative impact

on EMS systems [22, 26, 58, 60, 61, 135]. However, most use anecdotal evidence

and rationalizations as opposed to empirical measurements. Therefore, an empirical

analysis based on scientific evidence can be beneficial for quantifying the effects of

AOD on the EMS systems.

The goal of this study is to quantify the AOD problem occurring in the Halifax

Regional Municipality (HRM) area in Nova Scotia, Canada, and to measure the ef-

fects of AOD on the provincial EMS system, with combination of urban and rural

regions. This study measures EMS system with performance metrics, such as ambu-

lance turnaround time, total call time, response time, and ambulance availability. It
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aims to show the effect of AOD on the EMS system province-wide, not only on the

area where AOD occurs.

The remaining sections of the paper are organized as follows. Section 3.2 provides

a description of the data sources, data structure and statistical analysis to analyze

the effects of AOD. The results are presented in Section 3.3. In Section 3.4, we

discuss the insights of this empirical analysis study. Finally, Section 3.5 includes

some conclusions.

3.2 Methods

3.2.1 Study Setting

Emergency Health Services (EHS), the provincial ambulance service provider in Nova

Scotia, Canada, serves the whole population of the province. The province is sep-

arated into four operational regions: the Western, Northern, Eastern, and Central

regions. There are pre-determined numbers of ambulances operating in each region

at a given time of a day, handled by different dispatchers at the central EHS commu-

nication centre. The ambulance service in each region operates independently most

of the time, with the ability to collaborate when required. There is a total of 37 EDs

in the province, and the Central Region is served by three of them [141]. The HRM is

located within the Central Region. Being the most populated region and containing

the only tertiary care trauma center for Nova Scotia, the Central Region often suffers

the AOD problem and requires ambulance reinforcement from adjacent regions.

3.2.2 Study Design

The study subject is the AOD problem in the Central Region of Nova Scotia, Canada.

The study period is between January 1st, 2016 and December 31st, 2016. The hypoth-

esis is that: 1) AOD has a negative impact on the EMS performance in the region

experiencing AOD, and 2) AOD also affects surrounding regions in one of two ways:

ambulances transporting patients into the region experiencing AOD may be delayed,

and ambulances from surrounding areas may be repositioned into the Central Region

to cover the shortages of ambulances. This EHS practice is referred to "mutual aid".

It results in ambulances being relocated away from their home service areas, possibly
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for the duration of their remaining shifts, and represents a potential decrease in surge

capacity of the EMS system [28]. Anecdotally, it also has a cascade effect which may

cause ambulance shortage in the outlying areas [16]. This study aims to demonstrate

the effects of AOD on the system performance, and to gain knowledge of the current

AOD problem in Nova Scotia, Canada.

3.2.3 Data Capture

The retrospective study queried data from two different primary data sources: the

EHS computer aided dispatch (CAD) system and the electronic patient care reporting

(ePCR) system.

The CAD system contains only ambulance operational data. There is no patient

or ED information. With a geographic information system (GIS) tracker available for

each ambulance, the CAD system monitors and records the location of each ambu-

lance in the province in real time, as well as ambulance activities. The activities that

are relevant to this study are included in the data query (see Table 3.1). Each data

entry includes an ambulance location (latitude and longitude) and the ambulance’s

activity underway at that time. Basic clinical call information, such as patient’s Cana-

dian Triage and Acuity Scale (CTAS) [142] was queried from the ePCR database to

understand the priority given to each call. CTAS is a tool that Canadian EMS sys-

tems and hospital EDs use to triage patients according the type and severity of their

presenting signs and symptoms, and prioritize patient care requirements. The scale

ranks from 1 to 5, where CTAS 1 patients are the ones with most severe medical

conditions, while the CTAS 5 patients are the least severe ones.

Each emergency/urgent call for EHS ground ambulance is assigned with a unique

identification number, known as the Master Incident Number (MIN), which is gen-

erated from the CAD system. Operation related data associated with each call are

documented in this system and were extracted for this study, including ambulance

locations, operational and transport disposition times (e.g. arrive scene, depart scene,

arrival at hospital time, available time, etc.). The data containing personal health

identifiers was kept separate from the main study dataset. No data were required

from the personal health identifiers dataset.

The following data element categories (Table 3.2) are included in the data query
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Ambulance Activity Source
Assign to Post CAD
At Destination CAD
Available CAD
Available Charting CAD
Called Off Meal CAD
Cancel Vehicle Assign CAD
Depart Scene CAD
Dispatched CAD
Division Change CAD
End Meal CAD
End Shift CAD
Enroute To Post CAD
In Quarters CAD
Late Start Shift CAD
Late Vehicle CAD
Local Area CAD
On Scene CAD
Out of Service CAD
Reassign Vehicle CAD
Remove Out of Service CAD
Responding CAD
Shift Add CAD
Shift Edit CAD
Staged CAD
Start Shift CAD
Start Meal Record CAD

Table 3.1: The ambulance activities collected from the CAD system.

for each emergency/urgent call:

This data query was exported into a Microsoft R© Excel file. Each row of this file

represents a call and all the information associated with it. There was a total of

113,173 records during the study period. These records include all ground ambulance

vehicles activities associated with calls, including special units such as supervisor

vehicles, patient transfer units (PTUs), etc. These special units offer supports to am-

bulance fleet and crew, but cannot respond to emergency/urgent calls solely without

an accompanying ambulance. Therefore, for the objectives of this study, the records

associated with these special units were removed from the dataset. The CAD system

prohibits deleting records at any circumstances. When a modification is made to a

call, a new record is generated with the updated information, and creates a duplicate
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Data Element Source Definition
Master Incident Number (MIN) CAD Unique master incident number assigned to each EHS ambulance call
Ambulance Radio Name CAD Ambulance radio name
Ambulance Radio Code CAD Ambulance radio code
Ambulance Location CAD The latitude and longitude of an ambulance
Incident location type ePCR / CAD Location type
Response Mode CAD Level of response to call (Level of the response priority to the scene)
Transport Mode CAD Level of the response priority to the scene
Date of Service (Request for Service) CAD Date of service identifier
Time of Day (Request for Service) CAD Time of service request
Arrive Scene Time CAD Time ambulance signals arrived on scene
Depart Scene Time CAD Time ambulance signals departed scene to go to hospital
Clear Scene CAD Time ambulance signals cleared scene
Arrival at Destination CAD Time ambulance signals arrived at hospital
Transports Location / Address CAD Hospital location that ambulance transfers the patient to
Transfer of Care CAD Time ambulance signals transferred patient to hospital
Available Time CAD Time crew indicates available for next call (patient care and charting complete)
Call Disposition ePCR / CAD Transport outcome (transported or not)
CTAS (First) ePCR First documented CTAS of an ambulance patient

Table 3.2: The data elements collected for each emergency/urgent call.

record associated with the same call. The two records share the same MIN. In this

study, all records were sorted by the MINs and only the record with the latest updates

was kept for each MIN. Any duplicate records were removed, so that each record in

the dataset represents a unique call. A total of 100,126 records are remained after

duplication removal.

In this study, non-emergency patient transfers are excluded in the analysis of the

Central Region. This patient transfer service provides transportation services for

patients who need to go from one hospital to another, or between their home and the

hospital within Nova Scotia. In the Central Region, most patient transfer calls are

handled by the PTUs. It normally does not interfere with the ambulance responses

to emergency/urgent calls. Therefore, this additional responsibility of ambulances is

neglected in this part of the analysis. However, in the other regions of the province,

we acknowledge that not all non-emergency patient transfers are handled by PTUs.

Some are fulfilled by utilizing ambulance resources (often when no PTU is available in

that region). Therefore, when analyzing the AOD impact on ambulance availability

provincially, we included these calls into the analysis with all EHS ground ambulance

activities, as patient transfers may affect the number of available ambulances in a

region.
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Figure 3.1: A summary of the time intervals of ambulance response events.

3.2.4 Outcomes

Figure 3.1 (adapted from Cone et al. [10] with modifications) summarizes all am-

bulance activities associated with calls. In this study, ambulance total call time is

defined as the time that an ambulance spends to conduct all possible activities as-

sociated with a call (from responding to being available for the next call), which

includes all the intervals shown in the figure, except the "notification interval". The

ambulance response time of a call is defined as the elapsed time from when the call is

received at the dispatch centre to when an ambulance arrives at the scene [1]. When

an ambulance needs to transport a patient to an ED, the time it spends at the hospi-

tal is known as the "turnaround time", or "turnaround interval". It starts when the

ambulance arrives at the ED, and ends when the unit is available for future calls. The

turnaround interval can further be divided into delivery interval (the actual offload
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time) and recovery interval (cleaning, restocking the ambulance, completing patient

care reports, etc.). When AOD occurs, the delivery interval will be prolonged, mean-

ing that paramedics must wait extra time at the hospital to complete the transfer of

patient care to the ED staff. The delivery interval is an accurate measure of potential

AOD. However, in our dataset, "transfer of care" is not a mandatory log activity

in the CAD system and often left blank. In its absence, this study relies on the

ambulance turnaround interval as a proxy for AOD. Literature has shown that the

correlation between the delivery and turnaround intervals is good, and the ambulance

turnaround time can be used as a surrogate measure. Furthermore, conversations with

EHS operation paramedic supervisors have confirmed that the recovery intervals are

relatively consistent among all calls. The current EHS policy allows a 20-minute

recovery interval and the ambulance will be marked as available at the end of that

period, unless a notice has been given by the paramedics to extend that time.

3.2.5 Analysis

A geo-processing application, ArcMap R© v.10.5, is used for the location analysis in this

study. The purpose of this analysis is two folds. First, it allows us to track the location

(region) of each call. These calls can then be separated into four subsets with calls

originating in each region. We then reconstructed the queue of waiting ambulances

at the EDs in each subset. This is possible since the data record when an ambulance

arrives at and leaves from an ED. From these reconstructed queues, we calculate and

aggregate the number of ambulances at the EDs in 30-minute increments. Other

information was extracted and calculated from the dataset, including call volumes,

ambulance response time, turnaround time, total call time, etc. This information

was used for the results displayed in Section 3.3.1. The location analysis clarifies the

ambulance location (region), instead of the pre-determined region of the ambulance.

It is important to add this GIS component to the data analysis, especially in a system

with "mutual aid" practice. For example, when an ambulance from the Northern

Region comes into the Central Region for one shift due to an AOD-induced ambulance

shortage, it is still identified as an ambulance from the Northern Region in the CAD

system based on its radio name. However, since it operates in the Central Region

for that shift, it is in fact an ambulance resource for the Central Region, not for the
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Northern Region. With the GIS analysis, these ambulance activities across different

regions can be accurately captured to reflect the true EMS system status in each

region. This analysis generates a dataset with the number of ambulances in each

region at any given time during the study period. This information is used for the

results presented in Section 3.3.2. Queries were run by using Microsoft R© Access, and

data were exported into and analyzed by using Microsoft R© Excel.

We then carried out a multiple regression analysis to assess the relationship be-

tween call volume, AOD (two independent variables), and the ambulance availabil-

ity in the Central Region (dependent variable). R-statistical software, version 3.5.2

(http://www.Rproject.org/), was used for this regression analysis. A multiple linear

regression model was built for each region by the following equation:

yavailability = β0 + β1xcalls + β2xAOD + β3xcalls · xAOD + ε,

where yavailability is the dependant variable, representing the hourly ambulance avail-

ability in a region, xcalls is representing the independent variable of hourly call volume

in this region, and xAOD is representing the number of ambulances at Central EDs

in an hour. We extended the model to include an interaction term for interaction

effects, xcalls · xAOD, as the calls may influence the relationship between AOD and

availability, or vice versa. β0 is the intercept term, β1, β2, and β3 are the regression

coefficients for the independent variables call volume, AOD, and the interaction term,

respectively. ε is a mean-zero random error term.

To explore the effects of AOD on ambulance availability (Section 3.3.2), the data

were integrated to summarize the system characteristics with hourly time intervals in

each region, including the hourly call volume and the number of available ambulances.

For example, calls received in the Eastern Region between 8 a.m. and 9 a.m. were

counted, the value was then assigned to 8 a.m. for the Eastern Region. The number

of ambulances at the Central EDs were aggregated the same way as an indicator of

AOD in the Central Region. If an ambulance arrives at a Central ED at 8:28 a.m.

and leaves at 9:40 a.m., this ambulance will be counted for both the 8 a.m. and 9

a.m. intervals. A total of 8784 (24 hours/day×366 days) data points were generated

from the 12-month historical data for each variable. The multiple linear regression

model was then fitted with the hourly data entries (366) by minimizing the sum of

squared residuals. The results are reported in Section 3.3.2.
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3.3 Results

There were 100,126 unique emergency/urgent calls received by EHS in 2016, of which

94,672 calls responded, and 66,169 resulted in transporting patients to an ED. Of

these emergency/urgent call records, 23,214 were in the Western Region, 19,090 were

in the Northern Region, 17,171 were in the Eastern Region, and 40,651 were in the

Central Region. Further analysis of these call records is shown in Table 3.3.

Emergency/ Responded Calls resulted in patients % of calls resulted in patients
Urgent Calls Calls transported to EDs transported to EDs

The Western Region 23,214 22,158 16,379 73.92%
The Northern Region 19,090 18,067 13,596 75.25%
The Eastern Region 17,171 16,289 12,314 75.60%
The Central Region 40,651 38,158 23,880 62.58%

Table 3.3: The summary of year 2016 emergency/urgent calls in each region (Western,
Northern, Eastern, and Central) of Nova Scotia.

3.3.1 The Effects of AOD in the Central Region

To examine the effects of AOD in the Central Region, several EMS performance

measures were analyzed, including the number of ambulances at EDs, ambulance

turnaround time, ambulance total call time, and ambulance response time. To further

demonstrate the impact of AOD in the Central Region, some of these performance

measures from the other three regions (Western, Northern, and Eastern combined)

were analyzed as the controls, because AOD has not been reported as an issue in

these regions. Through comparison, readers can better observe and understand the

differences of the EMS performances with or without AOD.

Number of Ambulances at EDs

During the 12-month study period, there were a total of 23,880 incidents in which

ambulances transfer their patients to an ED in the Central Region. The numbers of

ambulances at the Central EDs at any given time of the study period were summa-

rized in Figure 3.2. Overall, there are three or more ambulances at the Central EDs

approximately half of the time (46.52%) throughout the year of 2016. The data were

further analyzed by being separated into two categories: non-busy hours (8 p.m.-8

a.m.) and busy hours (9 a.m.-7 p.m.), based on emergency call volumes. As expected,
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there are few ambulances at the Central EDs during the non-busy hours, compared

to the busy hours, shown in Figure 3.2.

Figure 3.2: The frequency of ambulances held at EDs in the Central Region of Nova
Scotia in 2016.

Ambulance Turnaround Time

Of these 23,880 incidents in the Central Region with patients transported to an ED

by ambulance, the ambulance turnaround time averaged at 1h04’44”, with a median

of 42’20”. Of the 42,289 similar incidents happened in the other three regions, the

ambulance turnaround time averaged at 28’31”, with a median of 21’40”. These

measures of the ambulance turnaround time were then investigated by stratifying the

data by patient CTAS scores to evaluate the differences between the categories The

result is reported using the average values, standard deviation (SD), and the 90th

percentile, as shown in Table 3.4.

For patients who are categorized into CTAS 1 (most severe), it is crucial for
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CTAS Central Region Other Regions
avg. SD 90th percentile avg. SD 90th percentile

1 34’33" 26’40" 1h16’06" 34’13" 22’30" 1h05’18"
2 1h04’18" 1h03’11" 2h26’12" 33’27" 33’02" 1h02’42"
3 1h08’15" 1h09’02" 2h42’03" 29’25" 29’43" 56’04"
4 47’14" 55’12" 55’12" 25’20" 25’41" 48’30"
5 35’59" 46’43" 46’43" 21’20" 19’26" 41’18"

Table 3.4: The summary of the ambulance turnaround time in Central Region and
other three regions combined with the averages, standard deviations, and 90th per-
centile.

them to receive timely medical attentions without delay during the EMS processes.

Therefore, the NSHA policies ensure these patients receive treatments as soon as

possible. The result indicates that these policies are implemented as expected. There

is no significant difference on the average ambulance turnaround time between the

Central Region and the other three regions of Nova Scotia, when transferring CTAS

1 patients to an ED. However, in all the other CTAS categories, patients with similar

medical acuity experience significantly longer ambulance turnaround times in the

Central Region. Under the assumption that the recovery intervals are similar in

the two comparison groups, we conclude that the differences are caused by AOD in

the Central Region. The delay affects patients with the mid-level acuity (CTAS 3)

the most. One possible explanation is that there are policies implemented in Nova

Scotia to allow ambulances offload low-level acuity patients (CTAS 4 & 5) who meet

certain criteria to the waiting room of the ED, and thereby free the ambulances from

any potential AOD. This effect is demonstrated in the results where low-level acuity

patients (CTAS 4 & 5) experience shorter average ambulance turnaround time in both

comparison groups. In general, CTAS 3 patients, are too ill to be left unattended in

the waiting room, but still have a lower priority comparing to the higher-level acuity

patients (CTAS 1 & 2), therefore experience the longest AOD on average. This result

is consistent with results reported by Cooney et al. [140].

Ambulance Total Call Time

Ambulance total call time was calculated for each region of Nova Scotia and compared

in Table 3.5 to demonstrate the impact of AOD. The calls that did not result in a
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patient transportation to an ED were excluded from this analysis, as no offload process

(or AOD) occurs. The result shown in Table 3.5 indicates that there is a significant

difference between the average ambulance total call times in the Central Region and

the other regions. It suggests that the prolonged total call time in the Central Region

is likely caused by AOD.

The mean of the The median of the The 90th percentile of the
ambulance total call time ambulance total call time ambulance total call time

The Western Region 1h17’11” 1h13’06” 1h55’47"
The Northern Region 1h18’12” 1h10’45” 2h02’15"
The Eastern Region 1h17’59” 1h12’20” 1h59’23"
The Central Region 1h54’40” 1h35’21” 3h15’00"

Table 3.5: The means, the medians, and the 90th percentiles of the ambulance on-task
time of calls in the four regions of Nova Scotia in 2016.

For an emergency / urgent call that results in a patient transportation to an ED,

the ambulance total call time can be considered as two parts: "prior to ED" and

"after arrival at ED". In the Central Region, the time that an ambulance spends

"after arrival at ED" on a call takes approximately 50.0% of the ambulance total

call time on average; while in the other three regions, this component takes only

approximately 10.7% of the ambulance total call time on average, as shown in Figure

3.3. Therefore, it suggests that there is a significant difference between the Central

Region and other three regions, in terms of AOD.

Ambulance Response Time

Ambulance response time is a key indicator of the EMS system performance since

time is vital in emergency situations. Many factors are associated with ambulance

response time (e.g., dispatch logic, ambulance deployment and redeployment strategy,

ambulance availability, etc.) [1]. In this study, the relationship between the ambu-

lance response time and the AOD problem was examined to seek the effect of AOD

on this key performance indicator in the Central Region of Nova Scotia.

The result in Figure 3.4 demonstrates the relationship between the average am-

bulance response time and the number of ambulance at the Central Region EDs. As

more ambulances were delayed in the offload process, a longer response time was ex-

perienced in the Central Region. The values of the average response time are removed

from the figure due to data sensitivity, but the scale and trend remain. A scale of
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Figure 3.3: The percentages of the ambulance total call time that the ambulance
turnaround time take in (a) the Central Region; (b) in the other three regions.

two minutes is given for the reader to better interpret the effects. The number of

ambulances at EDs include all ambulances in the turnaround process, while some

ambulances are experiencing AOD in their delivery intervals, and the others may be

in their recovery intervals.

3.3.2 The Effects of AOD on the Provincial EMS System

In this section, we analyze the ambulance availability in each region of Nova Scotia

to understand the potential effect of AOD occurring in the Central Region on the

EMS network across the province. We choose the availability of ambulances as the

performance measure to assess the AOD impact. For each region, the ambulance

availability is calculated by dividing the number of available ambulances in the region

by the total number of ambulances on shift in that region at any given time of a day.

A value of ambulance availability of 100(%) means that all the ambulances on shift are

available to future calls. The value decreases as some ambulances carry out activities

associated with emergency/urgent calls, or other activities (e.g., re-positioning, meal

break, etc.).

Figure 3.5 shows the average ambulances availability in each region as a function of

hour of the day. The data variances (from the monthly averages) are also reported in

62



Figure 3.4: The average ambulance response time as a function of the number of
ambulance at the EDs in the Central Region in 2016.

the figure as standard errors to demonstrate that there is no any significant monthly

differences during the study period. The actual percentages of the availability are

removed, but the trends of the curves remain. The result indicates that the aver-

age ambulances availability decreases significantly in each region during the day and

slowly recover overnight. The steep dip between 11 a.m. and 2 p.m. are likely due

to the stacked meal breaks paramedics take between calls.

Means (± SDs) were calculated for the call volume in the Central Region to

find any statistical difference in different days of a week, weeks of the year prior

to the multiple regression analysis. No significant difference was found. Therefore,

the hourly call volumes from all the days during the study period (366 days) were

obtained and used to analyze the distribution of the call volume of different hours

of day. Figure 3.5 and further data analysis indicates that the relationships between

call volumes, AOD, and the ambulance availability vary depending upon the time of

a day. Therefore, we model them individually using the hourly aggregated data.

The relationship between the two independent variables (call volume and AOD)
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Figure 3.5: The average numbers of available ambulances in each region as a function
of the hours of the day in 2016.

suggests that there is no significant correlation between these two independent vari-

ables in the data of Central Region. Figure 3.6 demonstrates that there is a lack of

linear relationship between the call volume and AOD in any hour of the day, sug-

gesting no strong correlation between these two variables. The distribution of the

ambulance availability in the Central Region is approximately normally distributed

from the historical data and the two independent variables each follows a Poisson dis-

tribution. The same analysis was conducted for the other three regions and similar

results are found.

With these results, the multiple linear regression model introduced in Section

3.2.5 was built for the Central Region per hour of the day. Backward selection of the

original model indicates that the interaction term can be eliminated from the model.

Therefore, the regression model for the Central Region is simplified as:

yavailability = β0 + β1xcalls + β2xAOD + ε.
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Figure 3.6: The relationship between the call volume and the number of ambulance
at EDs in the Central at different hours of the day.

The model residuals, adjusted R2, F value with the degree of freedom (df), and p

value are reported in Table 3.6. There are a total of 24 regression models correspond-

ing to each hour of a day. Both independent variables Calls and AOD constantly

have significant effects on the dependent variable Availability among all models with

one exception of the 13th hour (1 p.m.).

The coefficients of the independent variables in these regression models are pre-

sented in Table 3.7. Together with information presented in Table 3.6, we can summa-

rize the regression equations found for the Central Region based on different hours of

the day. For example, between 8 a.m. and 9 a.m., the regression equation is estimated

as Availability = 59.6095 − 1.5717(Calls) − 1.929(AOD) + ε, with a R2 of 0.2757

(F (2, 363) = 70.46, p < 0.001). The p-values associated with call volume (p < 0.001),

AOD (p < 0.001) are both statistically significant. Note that Availability is scaled

from 0 to 100 (%) in the equation. The ambulances availability of the Central Region

decreases by 1.929% for each ambulance added to the AOD queue, or decreases by

1.5717% for each new call received between 8 a.m. to 9 a.m. The p-values associated

with call volume (p < 0.001), AOD (p < 0.001) are both statistically significant. The

value of the adjusted R2, however, is relatively low. In a complex and stochastic
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system like EMS, many factors are expected to influence the availability of the am-

bulances. We only consider two of these factors in our regression model, call volumes

and AOD delay, hence, a low adjusted R2 value is expected. Our goal is not to build

a model to estimate the ambulance availability, but to merely explore if AOD delay

would affect the ambulance availability.

Hour of Day Residuals R2
adjusted F df p

min median max
0 -29.576 -0.899 41.477 0.05363 11.34 363 <0.001
1 -27.402 -2.227 50.175 0.05905 12.45 363 <0.001
2 -34.891 -0.728 41.105 0.07197 15.15 363 <0.001
3 -31.202 -0.189 42.267 0.1088 23.29 363 <0.001
4 -36.792 0.449 41.544 0.0569 12.01 363 <0.001
5 -31.14 -0.152 36.29 0.09817 20.87 363 <0.001
6 -22.924 0.205 38.534 0.06738 14.18 363 <0.001
7 -27.801 -0.582 42.101 0.1313 28.58 363 <0.001
8 -24.489 -0.566 36.372 0.2757 70.46 363 <0.001
9 -22.295 -0.751 39.756 0.2386 58.18 363 <0.001
10 -20.957 -0.829 32.637 0.1251 27.09 363 <0.001
11 -15.9972 -0.2787 22.6831 0.06886 14.50 363 <0.001
12 -15.4992 -0.0189 25.0648 0.01821 4.386 363 0.01312
13 -14.6618 -0.7953 23.9343 0.00768 2.412 363 0.09104
14 -18.4533 -0.8495 25.9172 0.03214 7.061 363 <0.001
15 -17.369 -0.362 33.942 0.08851 18.72 363 <0.001
16 -24.9528 -0.2892 29.6604 0.1588 35.44 363 <0.001
17 -26.4553 -0.0702 25.9409 0.2449 60.20 363 <0.001
18 -25.854 -0.302 39.059 0.213 50.40 363 <0.001
19 -24.63 -0.892 35.482 0.1285 27.91 363 <0.001
20 -21.628 -1.577 44.582 0.08243 17.39 363 <0.001
21 -23.081 -1.739 42.584 0.09875 21.00 363 <0.001
22 -24.328 -0.977 33.813 0.08488 17.93 363 <0.001
23 -23.774 -0.914 41.163 0.07787 16.41 363 <0.001

Table 3.6: The summary of the regression models for the Central Region with resid-
uals (min, median and max), the adjusted R2, F value, df , and p value.

Hour of Day Variables Coefficients

Est. Standard Error t value Pr(> |t|)
0 AOD -0.6505 0.2207 -2.947 0.00342

66



Calls -1.1824 0.3004 -3.936 <0.001

1 AOD -0.5068 0.2396 -2.115 0.0351

Calls -1.6380 0.3694 -4.434 <0.001

2 AOD -0.7026 0.2511 -2.798 0.00542

Calls -1.6862 0.3536 -4.769 <0.001

3 AOD -0.5773 0.2719 -2.123 0.0344

Calls -2.3876 0.382 -6.25 <0.001

4 AOD -0.8417 0.2635 -3.194 0.001527

Calls -1.5528 0.438 -3.545 <0.001

5 AOD -1.0787 0.2595 -4.157 <0.001

Calls -1.7159 0.352 -4.875 <0.001

6 AOD -0.8525 0.2546 -3.348 <0.001

Calls -1.3542 0.3256 -4.16 <0.001

7 AOD -1.4031 0.2343 -5.989 <0.001

Calls -1.1941 0.2627 -4.546 <0.001

8 AOD -1.929 0.2114 -9.125 <0.001

Calls -1.5717 0.2278 -6.898 <0.001

9 AOD -1.5568 0.1725 -9.026 <0.001

Calls -1.1945 0.2266 -5.271 <0.001

10 AOD -1.072 0.1534 -6.99 <0.001

Calls -0.6457 0.2031 -3.18 0.0016

11 AOD -0.5477 0.1158 -4.728 <0.001

Calls -0.3594 0.1481 -2.426 0.0157

12 AOD -0.2592 0.114 -2.273 0.0236

Calls -0.3144 0.159 -1.978 0.0487

13 AOD -0.1717 0.1073 -1.6 0.111

Calls -0.2595 0.1606 -1.616 0.107

14 AOD -0.3782 0.1202 -3.148 0.00178

Calls -0.4115 0.1893 -2.173 0.03041

15 AOD -0.48 0.1164 -4.123 <0.001

Calls -0.8508 0.1866 -4.56 <0.001

16 AOD -0.7994 0.1258 -6.356 <0.001
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Calls -1.2033 0.1979 -6.08 <0.001

17 AOD -1.1637 0.1336 -8.713 <0.001

Calls -1.2015 0.1884 -6.378 <0.001

18 AOD -1.1565 0.1217 -9.506 <0.001

Calls -0.7218 0.1933 -3.734 <0.001

19 AOD -0.839 0.1495 -5.613 <0.001

Calls -1.0079 0.1967 -5.124 <0.001

20 AOD -0.6512 0.1631 -3.993 <0.001

Calls -1.1451 0.2478 -4.62 <0.001

21 AOD -0.587 0.164 -3.579 <0.001

Calls -1.4467 0.2557 -5.657 <0.001

22 AOD -0.5733 0.1666 -3.442 <0.001

Calls -1.2257 0.239 -5.129 <0.001

23 AOD -0.5736 0.1874 -3.061 0.00237

Calls -1.5314 0.297 -5.156 <0.001

Table 3.7: The coefficients of the independent variables in the regression models for

the Central Region.

Generally speaking, all the estimated values in Table 3.7 suggest negative relation-

ships between Calls, AOD, and Availability. Hence, the availability of ambulances

in the Central Region can be expected to decrease when a new call originates, or

when a new ambulance enters the AOD queue at the EDs. Analysis indicates that

the independent variables, the call volume and the number of ambulances at EDs

have a significant impact on the ambulance availability during most of the hours with

the exception of 1 p.m., where it is likely some other factor not included in our model

plays a dominant role to affect the ambulance availability, such as meal breaks, shift

changes, etc.

Furthermore, it is recognized from anecdotal evidences that AOD may have some

indirect impacts on the ambulance availability of other regions in an EMS system

with shared resources. To proof this hypothesis, we used the proposed regression

model to analyze the potential impacts of AOD on the ambulance availability in the

other three regions (Western, Northern, and Eastern) of Nova Scotia. We assess
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the relationship between the ambulance availability of other regions and the call

volume in each region, as well as the AOD in the Central Region. The procedure of

conducting the regression model is similar. Before fitting the regression model, the

relationship between the variable hourly call volume in each region and the number

of ambulances at Central Region EDs within an hour was investigated and no strong

correlation was found. The regression models for each region were then built with the

equation described in Section 3.2 for each hour of the day. As the backward selection

procedure suggests that the interaction term calls · AOD is a significant variable in

some models, the term is kept for the analysis of the other regions.

The results show less consistency throughout the day compared to the results of

the Central Region. The inconsistent pattern of the results is likely due to the data

separated by hours of the day, causing a scattering effect. There are also differences

between regions. While AOD in the Central Region shows some impact on the ambu-

lance availability in the Northern and Western regions, there is no such impact on the

Eastern Region. Geographically, the Eastern Region is the furthest region away from

the Central Region and not adjacent to the Central Region. Therefore, the influence

of AOD in the Central Region is understandably less prominent (if any) to the East-

ern Region than to the other two regions. For the Northern and Western regions, we

summarize the variables that show the significance in each model in Table 3.8, as a

mark of ∗. The overall trend is that AOD in the Central Region has an impact on

the ambulance availability of the other two regions primarily in the afternoons and

evenings, not in the morning. This results aligns with the fact that AOD normally

builds up during the day and reaches the peak later in the afternoon. As such, the

result confirms our hypothesis that AOD in the Central Region has a negative impact

on the ambulance availability not only in its own region, but also in adjacent regions

province-wide.

3.4 Discussion

The results of this study paints a clearer picture of the effects of AOD on the am-

bulance performance in the region that experiencing it. The most commonly used

performance metrics from literature are the number of ambulances waiting at the ED,

and the ambulance turnaround time. In this study, we proposed a method to include
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other performance metrics such as ambulance total call time, ambulance response

time, and ambulance availability. We use ambulance performance measures from re-

gions with the same EMS setting but not experiencing AOD as a baseline scenario for

the analysis. Through comparison, we demonstrate the significant differences in all

these performance metrics between the region experiencing AOD and regions without

it. These results clearly demonstrate the impact of AOD on ambulance operations.

They can provide an sight to EMS decision makers for quantifying the impact of AOD

from a more comprehensive perspective. Another approach of analyzing the AOD im-

pact on ambulance availability in other regions is mixed effects model, where the hour

of the day is considered as a random effect variable to be included in the model. The

results from the mixed effects models suggest a similar but more general conclusion.

It shows that AOD in the Central Region is a significant independent variable to the

ambulance availability in the Northern and Western regions. Yet, there is no such

significance to the Eastern Region. Alternatively, future work on the same analysis

may investigate the potential to group different hours of the day into a few subset

of data, based on the distributions of the variables. This grouping mechanism may

benefit the regression model and show more definitive pattern of the AOD impact on

ambulance availability.

In a complex and stochastic system like EMS, many factors can influence the

ambulance availability. Our intention in this study is not to build a model to estimate

the ambulance availability, but merely to test the hypothesis that if AOD would affect

the ambulance availability. Intuitively, call volume is expected to have an effect on

ambulance availability. Therefore, We consider AOD and call volume in our regression

model to explore the relationship between these two independent variables and the

dependent variable. The values of the adjusted R2 of these found regression models

are relatively low as expected. Future research aiming to develop an estimation model

of ambulance availability will require to include other influential factors, such as meal

breaks, shift schedules, etc.

3.5 Conclusion

This study provides a comprehensive depiction of the effect of AOD on the Nova

Scotia’s EMS system, with combination of urban and rural regions. In the Central
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Region, AOD was frequent and took a sizable proportion of ambulances out of service

in the year of 2016. This led to prolonged ambulance turnaround times, total call

times, response times and negatively affects ambulance availability. The ambulance

availability in two of other three regions of Nova Scotia is also affected by AOD in

the Central Region as AOD causes a cascade effect on other regions. However, the

effect is less pronounced and consistent. Any analysis or evaluation of the effects

of AOD on EMS systems should take approaches to try to understand its impacts

from a system level beyond the region where AOD is measured. The results of this

study offer an insight into a more comprehensive understanding of the impacts of

AOD on the EMS system. This approach can also be generalized to other EMS

systems and regions to quantify AOD and measure its impacts on the EMS system.

The AOD problem occurs at the interface of the EMS and the hospital EDs, and

includes clinical, operational, and administrative perspectives. Therefore, it must

be addressed in a system-wide manner. EMS providers and hospitals need to work

collaboratively to implement interventions that can mitigate this problem to improve

resource utilization and patient care.
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Hour of Day Northern Region Western Region
AOD calls calls · AOD AOD calls calls · AOD

0 ∗ ∗
1 ∗
2 ∗ ∗
3 ∗ ∗ ∗
4 ∗
5 ∗ ∗
6
7 ∗ ∗
8
9
10
11
12
13
14 ∗
15 ∗ ∗ ∗
16
17
18
19 ∗
20 ∗ ∗
21 ∗
22 ∗ ∗
23 ∗

Table 3.8: The summary of the significant variables in the regression models for the
Northern Region and Western Region.
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Chapter 4

PREDICTING AMBULANCE OFFLOAD DELAY USING A

HYBRID DECISION TREE ANALYSIS

In the last chapter, the negative effects of AOD in Nova Scotia, Canada have been

measured and assessed via analysis of the historical EMS data of year 2016. The

results indicate that AOD creates negative impacts in the urban Halifax region and

also on the provincial EMS system as a whole. We conclude that AOD is a significant

factor impacting ambulance availability together with call volume. As a result, it is

critical for EMS providers to obtain information on AOD to plan their operations

proactively. Therefore, in this chapter, we further investigate the properties of AOD

and design a model to predict the AOD stats at the ED to provide a decision support

tool for EMS.

4.1 Introduction

Emergency Medical Service (EMS) system, as a key component of the health care

system, faces the challenge to organize its processes more effectively and efficiently to

keep up with the increasing demands in aging societies. Researchers have shown great

interest in analyzing a variety of EMS processes to make suggestions for improvements

in: response time, dispatch time, deployment and redeployment, etc. [11–14]. How-

ever, the EMS interface with hospital emergency departments (EDs) has seen less

attention.

In recent years, the ambulance offload delay (AOD) problem has been raised

as a growing concern for health care providers in many countries [5, 7, 10, 22, 32,

33, 143]. Ambulance offload time is the time it takes to transfer a patient from an

ambulance to an ED of a hospital [7]. If the ED cannot accept the incoming ambulance

patient immediately due to congestion, a common course of action is to let paramedics

continue to provide patient care until an ED bed becomes available. This delay period

in transfer of care is referred to as AOD. It is typically caused by overcrowding in the
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ED [5, 21–25]. AOD has been associated with negative patient outcomes and poor

performances of EMS systems, affecting care quality, patient safety and the system’s

ability to respond to future calls [20, 27, 28, 58, 138]. As a direct consequence of ED

crowding, AOD indicates a deterioration of the EMS system status in the affected

area. There are indicators that may suggest that an EMS system is prone to AOD

(e.g., high level of ED congestions, high numbers of calls, etc.). Theoretically, these

indicators can be used to predict the severity of AOD.

In this study, we introduce a decision-support tool to predict the AOD problem

occurring in the Halifax Regional Municipality (HRM) in Nova Scotia, Canada. This

area is served by one EMS provider, Emergency Health Services (EHS), and three

EDs. Being the most populated area and containing the only tertiary care trauma

centre for Nova Scotia, the HRM often suffers from AOD. EHS has estimated in year

2015 that the AOD problem results in about 2,900 ambulance hours per year, which

equates to approximately $754,000 at the average paramedic salary [30]. The primary

objective of this study is to provide the EHS personnel with a decision-support model

that can predict the AOD problem based on the current system status. This way, the

decision makers can activate various proactive interventions at different states of the

system to mitigate AOD.

Decision trees are popular prediction tools as they produce a model that is easy

to interpret. Each leaf node can be presented as an if/then rule. The logical rules

followed by a decision tree closely resemble human reasoning and are intuitively ap-

pealing to decision makers, who tend to feel more comfortable with models that they

can understand [144]. Decision trees are also non-parametric, which can model a

wide range of data distributions with no assumption that the data is drawn from

one (or a mixture of) probability distributions of known form [145]. This feature is

suitable in many cases as the nature of the relationship is unknown. Furthermore,

decision trees can handle data of different types without requiring any transformation

of the data. Most importantly, decision trees have the capability to break down a

complex decision-making process into a collection of simpler decisions, thus providing

a solution that is often easier to interpret [146].

In this study, we use the hybrid decision tree algorithm proposed by Farid et al.

[147] with some modifications. This algorithm employs a naïve Bayes classifier to
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remove noisy instances from the training set before the decision tree induction. It is

selected because of its comprehensibility and its prediction accuracy as reported in

[147]. The data of this study include indicators of the EMS system status (e.g., hour

of day, day of week, number of calls, etc.) and indicators of the hospital EDs status

(e.g., NEDOCS score, numbers of ambulance at an ED, etc.).

This chapter is organized as follows: a brief literature review on related work is

presented in Section 4.2. In Section 4.3 we introduce the data collection and analysis

in greater detail, and formulate the hybrid decision tree model for our case. We

then present the results in Section 4.4, with a case study example to demonstrate

the application of the prediction model. Section 4.5 discuss the potential benefits of

such model in an EMS setting, as well as some suggestions for further improvements.

Finally, Section 4.6 provides some general conclusions.

4.2 Related Works

There are two streams of literature related to our work. The first stream is the

development of models for the AOD problem. It occurs at the EMS interface with

hospital EDs and has seen less attention in the Operations Research (OR) field [7,

10, 135]. Furthermore, the consequences caused by AOD on the EMS system have

not been well studied [135]. Only several OR models have been found which analyze

this growing issue.

Majedi [32] constructs a system representing the interaction of EMS and ED using

queuing theory, and models the behavior of the system as a continuous time Markov

chain to evaluate various system performance measures (e.g., the average number

of ambulances in offload delay, the average AOD, ambulance and bed utilization).

Clarey et al. [66] design a discrete event simulation model to assess the change on AOD

in a scenario, where dedicated nurses are hired to assist with ambulance offloading

patients. This study demonstrates a clear reduction in AOD when dedicated nursing

levels are increased. However, the authors also raise concerns that using this as a sole

method to reduce AOD would require unacceptably low staff utilization, which would

cost hospitals both financially and in human resourcing. Almehdawe et al. [5] uses

a Markov chain queuing model to analyze the interface between an EMS provider

and multiple EDs that serve both ambulances and walk-in patients. Matrix-analytic
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methods are used to solve the steady state probability distributions of queue lengths

and waiting times. The study concludes that the priority based admitting policy had

a great impact on patient waiting times. When additional resources are considered for

the system, the benefit of adding capacity is greater for EDs with higher utilization.

Almehdawe et al. later [33] introduce a stylized queuing network model with blocking

to investigate the effect of patient routing decisions on EMS offload delays and to

determine the optimal allocation of ambulance patients to each ED in a region.

The second stream of the literature relates to decision tree models in health care

and popular research trends. A decision tree is a machine learning (ML) method for

constructing prediction models from data, which can be used for both classification

and regression [148]. Models where the target variable can take a discrete set of

values are called classification trees; while models where the target variable can take

continuous values (typically real numbers) are called regression trees [149]. A decision

tree model logically combines a sequence of simple tests to partition the data and fit a

prediction model within each partition. The results of the models can be represented

graphically as a decision tree [145].

Numerous decision tree algorithms have been developed, for example, Classifica-

tion and Regression Tree (CART) [150], Iterative Dichotomiser 3 (ID3) [151], and

C4.5 [152]. A recent study by Tjen-Sien et al. [153] compares decision trees and other

learning algorithms. The study has shown that these algorithms each have their own

advantages and characteristics. Their accuracies are sufficiently similar. The differ-

ences are statistically insignificant and probably also insignificant in practical terms

[153]. Therefore, all these decision tree algorithms can be found widely and almost

evenly used in multiple fields [154, 155], tailored to specific research.

Decision trees have also been used extensively in the health care settings, including

clinical diagnostics, drug development [156], medical predictions, and data analysis

[157]. Handley et al. [158] used CART modeling to determine specific risk profiles

and predictors of suicidal ideation in a community-based sample of older adults.

Chen et al. [159] utilized a decision tree model (C4.5) empowered by the particle

swarm optimization algorithm to achieve efficient gene selection from thousands of

candidate genes that may contribute to the occurrence of cancers. Snousy et al.

[160] used various decision tree methods (C4.5, CART, etc.) to determine genes
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that are highly expressed in cancer cells, and compared the classification accuracy

among them. Patel et al. [161] developed a decision tree using the CART method

to create risk strata (age, country, per capita government health expenditure, and

delay from symptom onset to hospitalization) for mortality of human HPAI H5N1

reported in World Health Organization Global Alert and Response. Luk et al. [162]

employed artificial neural network and decision tree (CART) data-mining methods to

analyze the patient profiling data and to delineate significant patterns and trends for

discriminating hepatocellular carcinoma from non-malignant liver tissues. Chang and

Chen [157] used decision tree (C5.0, similar to C4.5 with improvements) combining

with neural network classification methods to construct the best predictive model to

increase the quality of dermatologic diagnosis.

Many fields benefit from using various ML methodologies to discover hidden pat-

terns and properties of systems over the past decades. However, data sets with unique

characteristics and properties may require different ML methods to generate robust

and accurate predictive models. To better guide the selection of the ML methods,

research has been carried out to apply various ML methods to a multitude of data

sets to compare their performances and determine which outperforms the others un-

der certain circumstances. Decision tree, as a widely accepted ML method, is still

a popular classification approach for its ease of construction and its ability of inter-

pretation. Demšar [163] theoretically and empirically examines several suitable tests

(e.g., the Wilcoxon signed ranks test and the Friedman test) to compare classifica-

tion algorithms on multiple data sets. Others propose and review different statistical

tests to compare different ML algorithms. Alpaydin [164] proposed a 5x2 cv (five

replications with two-fold cross validation) F test that combines multiple statistics to

get a more robust test when comparing supervised classification learning algorithms.

Brazdil and Soares [165] present three ranking methods to investigate the problem of

using past performance information to select an algorithm for a given classification

problem, including: average ranks, success rate ratios and significant wins. A com-

bination of Friedman’s test and Dunn’s multiple comparison procedure is adopted to

compare ranking methods.

The development of a decision tree model includes two phases: tree growing and

tree pruning. Tree pruning is a crucial step to avoid over-fitting the model and ensure
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the accuracy of the model. Therefore, researchers and statisticians have expressed

their interests in analyzing different pruning methods and reviewing them through

performance comparisons of the decision tree models. Elomaa [166] analyzes the

reduced error pruning method to clarify the different variants and to bring new insight

to its algorithm properties. Esposito et al. [167] conduct a comparative study of

six well-known pruning methods (reduced error pruning, pessimistic error pruning,

minimum error pruning, critical value pruning, cost-complexity pruning, and error-

based pruning) with the aim of understanding their theoretical foundations, their

computational complexity, and the strengths and weaknesses of their formulation.

Quinlan [168] discusses and compares four pruning techniques for simplifying decision

trees while retaining their accuracy, including cost-complexity pruning, reduced error

pruning, pessimistic pruning, and simplifying to production rules. Bradford et al.

[169] describe an experimental study of pruning methods for decision tree models

to minimize loss rather than error and conclude that no single pruning algorithm

dominated over all data sets. The study revealed that using the Laplace correction

at the leaves is beneficial and aids all pruning methods used.

A sufficient number of hybrid algorithms have been proposed to improve the de-

cision tree algorithms by combining them with other algorithms. Balamurugan and

Rajaram [170] proposes a method to resolve the tie that appears during the rule

generation procedure in basic decision tree induction algorithms. The tie occurs in

decision tree induction algorithms when the class prediction at a leaf node cannot be

determined by majority voting. The improvement is demonstrated by experimental

results on various data sets. Garofalakis et al. [171] construct "simple" decision trees

with few nodes by specifying constraints on tree size or accuracy, so that they are easy

for humans to interpret. Polat and Güneş [172] propose a novel hybrid classification

system based on C4.5 decision tree classifier and one-against-all approach to classify

the multi-class problems. Chandra and Varghese [173] present a fuzzy decision tree

algorithm to fuzzify the decision boundary to avoid the problem that the traditional

decision tree algorithms face: having sharp decision boundaries which may not be

found in all classification problems. Aviad and Roy [174] introduce a decision tree

construction method based on adjusted cluster analysis classification called classifi-

cation by clustering (CbC). Li et al. [175] present a cluster-based logistic regression
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model with a regression and classification tree approach employed to split the source

date to clusters at first. The clusters are further considered as the dummy variables

for the logistic regression analysis. De Caigny et al. [176] propose a new hybrid al-

gorithm, the logit leaf model (LLM), that enhances logistic regression and decision

tree in two stages: a segmentation phase and a prediction phase. In the first stage

customer segments are identified using decision rules and in the second stage a model

is created for every leaf of this tree. Aitkenhead [177] addresses the problem that

the decision tree structure can be vulnerable to changes in the training data set and

presents an evolutionary method which allows decision tree flexibility through the use

of co-evolving competition between the decision tree and the training data set. Llorà

and Garrell [178] propose a fine-grained parallel evolutionary algorithm to induce a

decision trees with an unified algorithm based on artificial evolution. Farid et al. [147]

introduce two independent hybrid algorithms to improve the classification accuracy

rates of decision tree and naïve Bayes classifiers for the classification of multi-class

problems. In the first proposed hybrid decision tree algorithm, a naïve Bayes classifier

is employed to remove the noisy instances from the training set before the decision

tree induction; while in the second proposed hybrid naïve Bayes classifier, a deci-

sion tree induction is employed to select a comparatively more important subset of

attributes for the production of naïve assumption of class conditional independence.

4.3 Methods

In this study, we aim to develop a robust and accurate model to predict the AOD

states at a major ED in the HRM region of Nova Scotia, Canada. AOD is complex

and stochastic, and can be affected by many factors. Data for this study originates

from ambulance operation logs and basic measures of ED crowding. Such operational

data are commonly available in health system but are prone to be noisy and incon-

sistent. Therefore, we searched for a sophisticated decision tree algorithm that can

provide prediction accuracy while maintaining a simple structure of a tree, as the

interpretability of the model is critical to convey the results to decision makers. Farid

et al. [147] introduce a hybrid decision tree algorithm using a naïve Bayes classifier to

remove the noisy instances from the training set before the decision tree induction.

The naïve Bayes classifier removes misclassified observations by selecting the class
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that has the highest posterior probability as the final classification for the instance.

After removing these instances, we subsequently built a decision tree model using

the updated training data set with noise-free data. The model aims to predict the

number of ambulances at the ED in X hours (where X ∈ 1, 2, . . .). Three prediction

models with various sets of AOD state classifications are defined later in this section,

to fit the specific requests of the ambulance service provider.

4.3.1 Data Collection

The study population includes all emergency and urgent calls for EHS ground ambu-

lance services between January 1st, 2016 and December 31st, 2016 in the HRM region.

The data were collected from two different primary data sources: the EHS computer

aided dispatch (CAD) system, and the Emergency Department Information System

(EDIS) database reporting ED congestion in HRM.

Each emergency/urgent call for EHS ground ambulance is assigned with a unique

identification number, known as the Master Incident Number (MIN), which is gen-

erated from the CAD system. All EMS responses for completing that call are docu-

mented in the CAD system, including operational and transport dispositions. With a

geographic information system (GIS) tracker available for each ambulance, the CAD

system also monitors and records the location of each ambulance in real time. The Na-

tional Emergency Department Overcrowding Scale (NEDOCS) [179] from the EDIS

database is shared with EHS regarding the status of the EDs in the HRM. NEDOCS

is a performance measure (ranges between 0 and 200) implemented in most of the

North American’s EDs to assess the degree of crowding. These scores can be cate-

gorized into groups: “not busy” (0 – 20), “busy” (20 – 60), “very busy” (61 – 100),

“overcrowding” (101 – 140), “dangerous” (141 – 180), and “disaster” (> 180) . Figure

4.1 shows these NEDOCS categories.

Figure 4.1: The NEDOCS categories.

Operational data associated with each call during the study period (e.g., arrive
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scene time, depart scene time, arrival at hospital time, available time, locations,

etc.) were abstracted from the CAD system. The NEDOCS records from EDIS were

collected for the study period and used to evaluate the level of ED congestion when

a call originated.

The following data element categories are included in the query:

• MIN number (from CAD): this is provided as a call ID to link all ambulance

activities associate with a specific call in the CAD system.

• Operational call data (from CAD): ambulance radio name, ambulance loca-

tion (latitude and longitude), transport mode (response priority to hospital),

date of service, time of day, ambulance activities (including arrive scene time,

depart scene time, clear scene time, arrival at destination time, transports lo-

cation/address, available time), call disposition.

• ED status (from EDIS Interval Report, HRM region): NEDOCS records (5

minutes interval) at the Queen Elizabeth II Health Science Centre ED.

The EMS system in this study can be viewed as a system that is only responsible

for emergency/urgent calls, as the data includes information on emergency/urgent

calls but not on other non-urgent functions of ambulances such as patient transfers.

4.3.2 Data Analysis

The ED at the Queen Elizabeth II Health Science Centre in Halifax, Nova Scotia is

the major ED serving the HRM. Thus, in this study, the decision tree model was built

by analyzing the data set associated with this ED. Among the available data that

related to AOD, the following were identified and included as the predictor variables

of the decision tree model: the day of week, the hour of day, the call volume, the

clear rate of ambulances at the ED, the NEDOCS score of the ED, and the current

number of ambulances at the ED. Table 4.1 summarizes these predictor variables and

the rationale to include them in the model.

The call records resulting in patient transporting to the Queen Elizabeth II Health

Science Centre ED (13,486) were sorted by arrival at ED time and the available time

(ready to leave the ED) to restructure the queue at the ED. This queue was then

used to:
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Predictor Variable Motivation to Include
Day of Week To capture the variances of the system for different days of week
Hour of Day To capture the variances of the system for different hours of day
Number of Calls per Hour To incorporate the effect of call volumes
Ambulance Clear Rate at the ED per Hour To incorporate the effect of ambulance clear rates at EDs
NEDOCS Score (in categories) To incorporate the impact of the ED congestions
Number of Ambulances Currently at the ED To incorporate the current status of AOD

Table 4.1: The summary of the predictor variables of the model and the rationale to
include them in the model.

• determine the maximum number of ambulances at the ED each hour;

• determine the number of ambulances cleared from the ED each hour.

The average hourly NEDOCS scores were calculated and matched with the hourly

call volume and clear rate at the ED by date and hour. The NEDOCS scores are

categorized using “not busy”, “busy”, “overcrowding”, etc. (see Figure 4.1). At this

point, all data points of the predictor variables were obtained. Some data points were

missing because no event was associated with certain date and hour combinations.

For example, if no call was received between 2 a.m. and 3 a.m. on January 10th,

2016, then that field of "Number of Calls" would be empty. In this case, the value

of that variable was set to zero. Similarly, when no ambulance arrived at or cleared

from the ED in an hour, the corresponding fields were set to zero. The final data set

of the predictor variables was thus a matrix of 8784 rows (24 hours/day × 366 days)

and 6 columns (each predictor variable per column). We choose to aggregate the data

hourly as it is sufficiently detailed for the decision makers and helps to reduce noise.

The response variable of the prediction model is the AOD status of the system

at some future moment in time (e.g., in X hours). It varies based on the specific

purposes of the prediction. These data points were obtained from the aggregated

data set and generated a matrix of (8784 – X) rows and 1 column. For example,

when the focus is to predict the categorical AOD states, say, ≥ 9 ambulances in AOD

in X hours, the classification groups can be defined as: class 1 is that there are 0 to

8 ambulances in AOD in X hours, while class 2 is the rest (≥ 9).

We developed three prediction models with various sets of AOD states of the sys-

tem as the classifications to fit the specific requests of the ambulance service provider.

A summary categories of these prediction models with the historical distributions of

the instances can be found in Table 4.2.
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Model A: this prediction model aims to predict the AOD states with a high level

of precision. Each class includes approximately three different numbers of ambulances

at the ED. The AOD states are defined as: good (0,1,2), bad (3,4,5), problematic

(6,7,8), and excessive(≥ 9).

Model B: this prediction model considers historical probabilities (frequency) of

different numbers of ambulances at EDs and defines three AOD states to evenly

distribute these probabilities. The AOD states are defined as good (0-3), bad (4-6),

and problematic (≥ 7).

Model C: this prediction model focuses on identifying the excessive AOD states.

An excessive AOD problem may be the most problematic and requires a long recovery

period for the system to be back to its normal status. Therefore, this model only

consider two classes: normal (0-8) and excessive (≥ 9).

Model Number of Class Number of Ambulances Historical
Classes Name at the ED in X hours Probability, %

A 4 Good 0,1,2 22.82
Bad 3,4,5 35.33

Problematic 6,7,8 31.77
Excessive ≥ 9 10.08

B 3 Good 0,1,2,3 37.21
Bad 4,5,6 33.54

Problematic ≥ 7 29.25
C 2 Normal 0-8 89.92

Excessive ≥ 9 10.08

Table 4.2: The three prediction models A, B, and C, with different classification
categories.

4.3.3 Model Development

For each model defined in Table 4.2, we first randomly separate the data set into two

sub-sets: the training set and the test set, with approximately 90% and 10% of the

data, respectively. The training set, D = {x1, x2, · · · , xn}, consists of n observations.

Each observation in the set is represented as xi. The set of predictor variables of xi

is represented as Ai, contains the following attribute values{Ai1, Ai2, · · · , Aij}, where

i is the number of training observations, and j is the number of different predictor
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variables. The response variable of xi is represented as Cm, (m = 1, 2, · · · , k), where k

is the number of different classes for xi in D. We then apply a naïve Bayes classifier to

each observation, xi ∈ D. We calculate the prior probability P (Cm) for each class in

D, and the conditional probabilities P (Aij | Cm) for each predictor variable value in

D. After classifying each observation, xi ∈ D, using these probabilities, the class, Cm,

with the highest posterior probability P (Cm | xi) is selected as the final classification

of that observation. All observations with lower posterior probabilities are removed.

The remaining data in the training set, which includes sufficient training observations,

was used for the decision tree induction. This was carried out by using the standard

CART algorithm [150] built in MatlabR© R2018b. The tree was fully grown first, and

then the post-pruning procedure was conducted by using a 10-fold cross validation to

obtain the smallest tree whose cost is within one standard error of the minimum cost.

The pruning procedure was not included in the work of Farid et al. [147]. We feel,

however, the goal of this model is to encapsulate the training data in the smallest

possible tree, as the simplest possible explanation for a set of phenomena is preferred

over other explanations. A simpler tree often avoids over-fitting. Also, small trees

produce decisions faster than large trees, and they are much easier to understand.

Therefore, we introduced this modification to the hybrid decision tree model in this

study. Algorithm 1 outlines the hybrid decision tree algorithm.

Hybrid Decision Tree Algorithm

Input

D = {x1, x2, · · · , xn} - Training set that containing a set of observations and their

associated classes

Output

T - Decision tree

Method

1: Naïve Bayes Algorithm

for each class, Cm ∈ D, do

Find the prior probabilities, P (Cm).

end for
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for each predictor variable value, Aij ∈ D, do

Find the class conditional probabilities, P (Aij | Cm)

end for

2: Remove noisy observations

for each training observation, xi ∈ D, do

Find the posterior probabilities, P (Cm | xi).

if xi is misclassified, do

Remove xi from D

end if

end for

3: Build a decision tree using the purified training data

T = 0

for each predictor variable, Ai ∈ D, do

Determine best splitting attribute using Gini Diversity Index:

1−
∑
i

[p(i)]2,

where the p(i) is the observed fraction of classes with class i that reach the node.

T = Create a node and label it with the splitting attribute

T = Add arc to the node for each split predicate and label

D = Dataset created by applying splitting predicate to D

if stopping point reached for this path, do

T ′ = Create a leaf node and label it with an appropriate class

else

Repeat the for loop

end if

T = Add T ′ to T

end for

4: Prune the full grown decision tree using using a 10-fold cross validation to obtain

the smallest tree whose cost is within one standard error of the minimum cost

This model was then evaluated by comparing the predicted class with the target

class (true class) of each observation in the test set of the data. The results are

85



reported in Section 4.4.

4.4 Results

The case study was conducted using a Toshiba Portege R30-C computer with an Intel

Core i5 processor and 16 GB RAM. Algorithms were coded and executed in MatlabR©

R2018b. We programmed the hybrid decision tree algorithm as well as a basic CART

decision tree for comparison. In this section, we denote these two algorithms as DT

for the basic CART decision tree algorithm and NBTree for the hybrid decision tree

algorithm, respectively. The prediction period X is selected to be X = {1, 2, 3, 4, 5}
hours for each Model A, B, and C, respectively. These models aim to predict AOD

states one to five hours into the future. Therefore, a total of 30 (2× 3× 5) prediction

models are built in this study: two algorithms (DT and NBTree), three classification

settings (Model A, B, and C), and five prediction periods (1-5 hours). The results

cover both immediate and short-term time scales for EHS.

4.4.1 Model Comparison

Historical Data

To compare the two proposed methods DT and NBTree for our case study, we have

used the classification accuracy, precision, and sensitivity-specificity analysis. The

classification accuracy is evaluated by the data in the test set. The accuracy of the

prediction model is the total number of correctly classified points divided by the total

number of data points in the test data set:

accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP and FN denote true positives, true negatives, false positives, and

false negatives, respectively.

Table 4.3 summarizes the classification accuracy rates of DT and NBTree for each

of the 30 data sets. Generally speaking, the accuracy increases as the model becomes

less precise. The ranges of accuracy (1-5 hours of prediction period) are approximately

60%-75%, 69%-83%, and 91%-95%, for Model A, B, and C, respectively.

The results in Table 4.3 and Figure 4.2 indicate that NBTree outperforms DT in

most of the cases with only one exception (Model A, X = 5 hours). The improvements
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range from -0.18% to 6.32% with an average of 2.44%. This result is consistent

with those reported in [147]. The NBTree algorithm is capable of identifying the

noisy instances from each dataset before the decision tree induction. This prediction

model generated from the updated training set is less likely to become overfitting and

thus able to carry more generalization capabilities comparing to the DT algorithm

generated directly from the original training set.

From Model A to C, the focus of the model shifts from predicting more detailed

AOD states to merely predicting the troublesome AOD states in the near future

(1-5 hours). As a result, one can expect the accuracy of the classification model

increases from Model A to C. Also as expected, the accuracy tends to decrease

gradually while the prediction period increases from 1 to 5 hours, shown in both

algorithms (Figure 4.2). NBTree performs less consistently comparing to DT, with

more aggressive changes in accuracy associated with the prediction period. When the

prediction period is longer, the difference in classification accuracy between the two

algorithms is smaller. It suggests that the accuracy of the prediction model may be

affected by other factors than data noise or overfitting (e.g., limitation of the training

set).

Model Prediction Period (hours) DT (%) NBTree (%) Difference (%)

A 1 70.97 75.35 4.37
2 61.94 68.26 6.32
3 59.66 64.95 5.29
4 58.97 62.33 3.36
5 60.57 60.39 -0.18

B 1 82.63 82.65 0.02
2 72.57 76.60 4.03
3 71.20 73.86 2.66
4 69.94 70.78 0.84
5 69.37 69.52 0.15

C 1 93.03 95.21 2.18
2 90.97 94.06 3.09
3 89.83 91.12 2.29
4 90.74 92.12 1.38
5 90.86 91.55 0.69

Table 4.3: The classification accuracy rates of DT and NBTree.
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Figure 4.2: The comparison of the classification accuracy rates of DT and NBTree.

Furthermore, we have calculated the classification precision, sensitivity, and speci-

ficity for each model to compare the performances of DT and NBTree. We reported

these values as the weighted average values, which are calculated by using the follow-

ing equations:

precision =

k∑
m=1

(TP )m
(TP )m+(FP )m

·Nm

k∑
m=1

Nm

sensitivity =

k∑
m=1

(TP )m
(TP )m+(FN)m

·Nm

k∑
m=1

Nm

specificity =

k∑
m=1

(TN)m
(TN)m+(FP )m

·Nm

k∑
m=1

Nm
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where k is the number of classes and Nm is the number of observations in the mth

classes, m = 1, 2, · · · , k. Instead of each data point contributes equally to the final

average, the weighted average is calculated using the number of instances belonging

to one class divided by the total number of instances in one dataset. The values

of the weighted average precision, sensitivity and specificity are presented in Tables

4.4, 4.5, and 4.6, respectively. The comparison of the prediction accuracy, precision,

sensitivity, and specificity confirms that, for this case study, NBTree outperforms

DT in most cases. Furthermore, the results from NBTree can still be presented in

an easily interpretable form for the decision makers as it maintains a decision tree

structure.

Model Prediction Period DT Precision NBTree Precision Diff.
(hours) (weighted avg.,%) (weighted avg., %) (%)

A 1 71.04 76.19 5.15
2 62.84 70.76 7.92
3 62.54 66.64 4.11
4 61.13 64.80 3.67
5 63.73 65.38 1.64

B 1 83.37 82.75 -0.62
2 75.28 77.33 2.06
3 73.76 75.32 1.56
4 73.91 74.08 0.17
5 74.15 72.43 -1.73

C 1 93.29 95.34 2.05
2 92.67 95.46 2.80
3 96.79 94.45 -2.34
4 93.97 93.64 -0.33
5 98.36 95.63 -2.73

Table 4.4: The classification precision values of DT and NBTree.

Synthetic Data

In this section the prediction accuracy of the proposed method is further examined and

compared with the CART decision tree algorithms using synthetic data. Distributions

of call volume and clear rate of ambulances at EDs are determined from real-world

historic data. Synthetic data are then generated following the same distributions.
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Model Prediction Period DT Sensitivity NBTree Sensitivity Diff.
(hours) (weighted avg.,%) (weighted avg., %) (%)

A 1 70.97 75.43 4.46
2 61.94 68.26 6.32
3 59.66 64.95 5.30
4 58.97 62.33 3.36
5 60.57 60.39 -0.18

B 1 82.63 82.65 0.02
2 72.57 76.60 4.03
3 71.20 73.86 2.66
4 69.94 70.78 0.83
5 69.37 69.52 0.15

C 1 93.03 95.21 2.18
2 90.97 94.06 3.09
3 89.83 92.12 2.29
4 90.74 92.12 1.38
5 90.86 91.55 0.70

Table 4.5: The classification sensitivity values of DT and NBTree.

The data of numbers of ambulances were obtained through queue reconstruction and

simple calculation. Furthermore, other predictor variables, such as day of week, hour

of day, and NEDOCS score, were kept consistent with the historical data. A total of

additional 20 years of data were generated and used to train the decision tree models.

For each year’s data, 30 decision tree models were constructed in the same way as

detailed in Section 4.3. The result is reported in the Figure 4.3. The standard errors of

the prediction accuracy are also shown in the figure as error bars. According to these

values, the hybrid decision tree algorithm (NBTree) shows consistent improvement

on prediction accuracy in these synthetic data sets, comparing to the CART decision

tree algorithm (DT). Therefore, this method is confirmed to be suitable to analyze

the data in this application as a preferred algorithm.

4.4.2 Case Study

The motivation for this study is to provide EHS personnel with a decision-support

model that can predict AOD problems in advance allowing management to activate

90



Model Prediction Period DT Specificity NBTree Specificity Diff.
(hours) (weighted avg.,%) (weighted avg., %) (%)

A 1 88.11 90.04 1.93
2 84.36 87.95 3.59
3 83.95 86.07 2.12
4 83.29 85.08 1.80
5 84.31 84.76 0.45

B 1 91.65 91.22 -0.62
2 87.79 88.63 0.84
3 87.22 88.22 1.00
4 87.16 87.73 0.57
5 87.31 86.57 -0.73

C 1 71.27 74.41 3.14
2 61.87 72.18 10.31
3 57.95 68.24 10.29
4 50.84 58.89 8.05
5 85.80 66.79 -19.01

Table 4.6: The classification specificity values of DT and NBTree.

proactive interventions. For this study, different models with various prediction fo-

cuses are developed (Model A, B, and C), as well as for different prediction periods.

Given the nature of the EMS system under study, it represents a good trade-off be-

tween the accuracy of the prediction model and its practical purpose. In this section,

we demonstrate an example of the results of a prediction model summarized in a table

format. We selected a prediction model built by the hybrid decision tree algorithm,

as this method generally generates models with improved performances, while still

maintains the easy-to-interpret tree structures.

The Model B with a prediction period of X = 4 hours is chosen for the case

study. This model should be able to provide a relatively accurate (approx. 70%)

prediction of AOD in four hours, while reserving enough time for the EMS personnel

to put interventions in action to be proactive. The results of the prediction model

are summarized in Table 4.7, with only the predictor variables present in the final

decision tree structure and its predictions. Each row of the table represents a scenario

of the system. For example, row 1 in the table suggests that the model predicts the

AOD states will continue to be Good (0-3 ambulances at the ED) in 4 hours if the

current number of ambulances at the ED is between 0 and 3 and the emergency calls
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Figure 4.3: The comparison of the classification accuracy rates of DT and NBTree
using 20-years of synthetic data.

received in the last hour are less than 7. However, if the call volume was greater than

7, the AOD state will deteriorate to be Bad (4-6 ambulances at the ED) (according

to row 4 in the table).

This model suggests that the number of ambulance at EDs changes modestly dur-

ing a four-hour period. The predictor variable, the number of ambulances currently

at the ED, has a dominate impact on the prediction of AOD in the system in four

hours. Number of calls (EHS received), the NEDOCS of the ED, and the hour of day

are also important variables for the prediction. The rest of the predictor variables,

ambulance clear rate at the ED and the day of week, show minor or no impact on

the prediction of AOD in this prediction model.

The model can predict the AOD states of the system relatively well across different

classes, as shown in the model’s confusion matrix (Figure 4.4). In most cases, the AOD

states (class) stays the same over a 4-hour period; while occasionally, the classification

changes by one class but never by two. This observation is consistent throughout all

the prediction models in this study.
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Number of Ambulances Number of Calls NEDOCS Hour of Day Clear Rate Prediction Class
at the ED in last hour

0-3 0-6 - - - Good (0-3)
4 0-3 Busy, Very Busy, Overcrowded, Dangerous - 0-3 Good (0-3)
4 0-3 Busy, Very Busy, Overcrowded, Dangerous 0a.m. - 7a.m. ≥ 4 Good (0-3)

0-3 ≥ 7 - - - Bad (4-6)
4 0-3 Disaster 7a.m.-11p.m. - Bad (4-6)
4 0-3 Busy, Very Busy, Overcrowded, Dangerous 8a.m.-11p.m. ≥ 4 Bad (4-6)
4 ≥ 4 - - - Bad (4-6)

5-6 0-2 - - - Bad (4-6)
5 ≥ 4 - - - Bad (4-6)
6 3-4 Busy, Very Busy, Overcrowded - - Bad (4-6)
7 - Busy, Very Busy 0a.m.-6a.m. - Bad (4-6)
7 0 Overcrowded 0a.m.-4a.m. - Bad (4-6)
6 ≥ 3 Dangerous, Disaster - - Problematic (≥ 7)
6 ≥ 5 Busy, Very Busy, Overcrowded - - Problematic (≥ 7)
7 0 Dangerous, Disaster 0a.m.-4a.m. - Problematic (≥ 7)
7 0 Not Busy, Overcrowded, Dangerous, Disaster 5a.m.-6a.m. - Problematic (≥ 7)
7 ≥ 1 Not Busy, Overcrowded, Dangerous, Disaster 0a.m.-6a.m. - Problematic (≥ 7)
7 - - 7a.m.-11p.m. - Problematic (≥ 7)

≥ 8 - - - - Problematic (≥ 7)

Table 4.7: The results of the hybrid decision tree model for predicting three different
AOD states (good, bad, and problematic) in four hours.

4.5 Discussion

The worsening of AOD states does not happen suddenly allows EMS personnel to

act proactively to avoid worst cases. With the prediction model presented in this

study, they will have knowledge on the expected AOD state ahead of time. If the

situation is predicted to be worse, certain operations can be activated. For example,

establishing communications with paramedics and ED staffs to expedite the offload

process, redirecting ambulances to less busy EDs, reallocating ambulances, etc.

AOD can be costly to an EMS system. Take EHS (in Nova Scotia, Canada) as an

example, our preliminary analysis of AOD in year 2016 indicates that the time that

ambulances spend offloading patients increases 7 minutes per vehicle on average with

every additional ambulance added to the AOD queue. This can lead to significant

loss of ambulance hours when considering multiple vehicles in AOD at multiple sites,

let alone concerns regarding patient safety and quality of care. The prediction model

does not directly mitigate AOD, but it provides a forecast on AOD which offers the

potential to initiate practices that may help prevent AOD from worsening.

The demonstration of a table-format prediction rules (such as shown in Table 4.7)

can be extended to all 30 prediction models generated in this study. Each tables offers

a set of easy-to-understand rules for AOD predictions based on different prediction

focuses and periods. EMS providers have the flexibility to choose the most suitable
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Figure 4.4: The confusion matrix of the prediction model in the example (Model B
with a prediction period of X = 4 hours.

models for their daily operations. For example, when predicting 1-2 hours into the

future, it may be more beneficial to have more detailed information to plan the

immediate ambulance operation. In which case, they may follow the results from

Model A, where the most refined classifications are provided with relatively accurate

predictions (approx. 70%). However, if the goal is to only predict the worst AOD

states in advance so that there is enough time to initiate proactive actions to mitigate

(e.g., schedule additional ambulances, communicate with hospital EDs, etc.), it may

make more sense to refer to Model C, where the focus is to predict such AOD states

with accuracy (above 90%) for a long prediction period (up to 5 hours in this study).

The NBTree algorithm provides an easy-to-interpret tree structured model with

improved prediction accuracy comparing to traditional DT algorithm. However, the

improvement of the model performances such as accuracy and other characteristics is

not as remarkable as expected in this study. It may be due to the fact that the EMS

system is a complex and stochastic system and the available data for the prediction

model are limited. Some potential contributors are not included in the model (such
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as weather, traffic, holidays/events, schedules, staffing, other ambulance activities,

etc.). These data are either not available to us or they are not collected, which makes

it difficult to develop a model with greater prediction power. Some of these missing

predictor variables may have great impacts on the model performance. Without

them, some characteristics of the training observations are overlooked, leading to a

reduction of prediction accuracy. These missing factors can not be compensated by

reducing noises in the available data, which is what the NBTree algorithm essentially

does. Therefore, if an AOD prediction model with higher accuracy is desired, more

predictor variables would need to be added to future models.

4.6 Conclusion

In this study, we developed a framework to predict the ambulance offload delay states

at an ED based on the current state of the EMS system. We have adapted a hybrid

decision tree algorithm that uses a Naïve Bayes classifier to remove the noisy training

observations before the decision tree induction. In this study, the performances of

the model generated by this algorithm showed improvements on the classification

accuracy rates in most cases. Improvements were also found in the classification

precision, sensitivity and specificity analysis.

No significant change of the AOD states of the system appears in any prediction

models in this study. This implies that the AOD states of the system may be robust

and any variables that can cause a significant change of the state may take more than

several hours to be reflected to the system. From the other perspective, it may also be

difficult for any mitigation intervention to improve the AOD state in a short period

of time.

Both the EMS and the hospital EDs are complex health care systems with random

demands. As a problem occurring at the interface of these two systems, AOD involves

different aspects of these systems, and can be affected by many factors. Therefore,

significant variances can be expected from the real-world historical data. These vari-

ances can significantly impact the accuracy of a model that predicts the AOD states

of the system. We selected six to be the predictor variables of the model in this study,

based on our knowledge to the AOD problem and the availability of the data. By uti-

lizing data of ED congestion and EMS operation from both the EMS provider and the
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hospital EDs, this study defines the thresholds of the EMS system in terms of AOD

for the future development of mitigation interventions. It also provides insights for

all involved parties to move from the current reactive practice to proactive response

when coping with AOD. This may encourage improved communications and share of

information between the two parties and inspire future collaboration on AOD related

research projects.
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Chapter 5

DETERMINING AMBULANCE DESTINATIONS WHEN

FACING OFFLOAD DELAYS USING A MARKOV

DECISION PROCESS MODEL

In Chapter 4, we demonstrate a hybrid decision tree approach to develop a prediction

model for AOD states at the ED based on the current status of the EMS system. This

information has the potential to benefit the operation of EMS if proactive actions are

set in place to prevent problematic AOD states. To evaluate this potential benefit for

EMS, we identify several mitigation interventions of AOD and investigate a selected

intervention in this chapter.

5.1 Introduction

In this chapter, we aim to develop an EMS intervention to cope with AOD, and to

measure the success and impact of its potential benefits to the EMS system when

implemented. Anecdotally, there have been different interventions implemented by

the hospitals and the EMS providers to mitigate the AOD problem, as previously

discussed in Chapter 2. EMS and hospital staff may possess innovative intervention

ideas and recommendations from their own experiences. Therefore, to mitigate the

AOD problem, it is important to consult with the frontline personnel for potential

interventions and their feasibilities.

Therefore, two focus group discussions were held on September 28th, 2017 and

October 2nd, 2017 with key EHS personnel. In the focus groups, the attendees were

asked to brainstorm and list EMS interventions that have (or may) mitigate the

AOD problem. The goal of these focus group discussions is to gather intervention

ideas regarding the mitigation of AOD, and determine which to further investigate

with OR models.

Six paramedic supervisors from the Central Region and one paramedic supervisor
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from each of the other three regions (Western, Northern, and Eastern) participated

in this exercise. As frontline personnel, paramedic supervisors possess a great deal

of knowledge and experiences on how to cope with the AOD problem in EHS daily

operations, thus, have valuable insights on feasible and creative interventions which

may have the potential to mitigate the AOD problem.

Both focus group discussions were well received, and many intervention ideas were

discussed. Some interventions had been tried before and some were new ideas. A total

of 50 interventions were identifies during the discussions. These ideas are summarized

and categorized into seven different themes, as presented in Table 5.1. Readers can

find more detailed descriptions on each intervention in Appendix B. The majority of

these interventions are EMS focused (three out of the seven themes), including: EMS

processes based on patients’ conditions, EMS processes based on system status, and

general EMS processes. Since the AOD problem occurs at the interface of the EMS

systems and hospital EDs, there are two themes focusing on collaborative practices

including: offload programs, and communication. Another theme describes hospital

interventions and the last one includes interventions that were indirect to mitigate

the AOD problem but noteworthy.

Theme Intervention Idea Comment

EMS Processes

Extended Care Paramedic (ECP) Program Expand (provincial)

(based on Palliative Care Program Expand

patients’ conditions) Bypass ED for patients with certain conditions Expand for more

(trauma, stroke, stemi, etc.) patient types

Bypass ED for low acuity patients New idea

(define the medical necessity for an ambulance)

Bypass ED for EMS super users and New idea

create special response protocols

Direct to Chairs Policy Continue & formalize

with NSHA

EMS Processes

Utilize the emergency department Continue

(based on information system (EDIS)

system status) Ambulance smoothing Expand in/out of

district; provincial

Grant EHS supervisors’ ability to New idea

redirect ambulances when see fit

EHS communication centre escalation plans New idea
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Double up Continue

Bed Swap Continue & expand

EMS Processes

Triage EMS response times New idea

(general) Separate call and transfer service New idea

More PTUs hours during peak demand time New idea

Refuse ED-to-ED transfers when patient New idea

cannot be placed into a bed within

a certain amount of time

Allow PTUs to perform ED transfers New idea

Reduce EHS charting requirements New idea

and address work flow issues

Offload Programs

ED “hallway medicine” for New idea

non-complex cases when needed

Re-implement offload zones (OZs) at EDs New idea

Holding areas for ambulance patients at EDs New idea

Discharge lounges for patients at EDs New idea

Double EHS team to operate OZs at EDs New idea

Independent personnel in charge of New idea

placing patients into ED beds

Bed swap between ED and OZ beds when the New idea

patient in ED bed waiting to be processed

Have hospital supervise patients who New idea

do not need to be overseen by paramedic

Communications

Check for ED bed availability to initiate Continue

conversation with charge nurse

Communication between paramedics Continue

and ED staff

Direct EHS supervisors and Continue

ED charge nurse interaction

Direct EHS manager & Continue

NSHA director interaction

Bring EHS representative New idea

to the ED executive table

Create visual real-time measures New idea

Better define and measure TOC time New idea

NSHA access to EHS system status New idea

Define areas of responsibility New idea

and link that to performance
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Share patient care plans New idea

between EHS/NSHA

Communicate best practices New idea

to all EHS staff

Joint policy development New idea

between EHS and NSHA

Hospital Processes

Add more hours/resources at EDs Explore

Redefine concept of New idea

"bed count = patient care"

Push patients through the New idea

system rather than pulling

Enhanced ED outflow (early New idea

discharge with facilitated follow up)

Define hospital escalation plans Expand

Separate charge nurse for New idea

internal and external processes

Make charge nurse easily New idea

identifiable to paramedics

Have specialized services at New idea

different hospital facilities

Improve patient triage and New idea

registration processes

Indirect but Noteworthy

Better address AOD in EHS reports New idea

Bring food/supplies for paramedics Continue

in offload delay (morale)

Public awareness of AOD problem New idea

Table 5.1: The summary of interventions obtained from the two focus group discus-

sions with key EHS personnel.

The intervention chosen for this study is to find the optimal ambulance destination

policy to mitigate AOD, which is derived from the EHS current practice "ambulance

smoothing". We develop this policy to provide guidelines to EMS on where to trans-

port patients with consideration of AOD, patient acuity level, and travel distance. To

generate the policy, we formulate a discrete time, infinite-horizon, discounted Markov

Decision Process (MDP) model that determines how to optimally direct ambulances.
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We propose two independent objectives: one is to minimize the time that ambu-

lance crews spend transporting patients. The other is to minimize time-to-ED bed

for patients. A computational study is conducted with real-world data from an EMS

provider which currently experiences AOD regularly.

This study has two main contributions to the AOD and OR literature. First, our

paper discusses an MDP approach to find optimal ambulance destination policy for

an EMS system which considers AOD. Many systems have used ambulance diversion

as a method to counter AOD. Ambulance diversion occurs when an ED restricts

incoming ambulance traffic due to crowding, and ambulances are therefore routed

elsewhere. The system under study does not use ambulance diversion but instead

EMS dispatchers have a tool to route ambulances to less busy EDs to mitigate AOD.

Second, it demonstrates a method to incorporate a large amount of real-world data

into the MDP model design, and to solve the numerical case for a relatively large

EMS region. Although the literature related to EMS systems includes various studies

that use MDP models, their designs often use theoretical distributions rather than

actual administrative data.

The remaining sections of the paper are organized as follows. Section 5.2 provides a

literature review on various OR models applied to the AOD problem and applications

of the MDP models to EMS. The proposed MDP model is formulated in Section 5.3.

The real-world data used in the computational study are described in Section 5.4.

The results for the model applied to this study are presented in Section 5.5. Finally,

we include conclusions and discussions in Section 5.6.

5.2 Literature Review

There are two streams of literature that are related to our work. The first stream is

the literature on MDPs. MDPs have been widely used to model and solve dynamic

decision-making problems with multi-states under stochastic circumstances [180]. It

has been applied to many areas including finance, agriculture, logistics, maintenance,

manufacturing, and recently in health care [181, 182]. However, to our best knowledge,

there is currently no application of MDP models in the AOD literature.

There are numerous MDP applications related to the EMS system, mainly focusing

on optimizing the dispatch policy. Bandara et al. [183] examine the optimal dispatch
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policy within the EMS system while focusing on the urgency level of an emergency

call. They develop an MDP model to identify how to optimally dispatch ambulances

to maximize patient survivability. Building on this study, there are several papers that

considers the ambulance dispatch problem with priority levels of patients [184, 185].

McLay and Mayorga [185] formulate an MDP model to determine the optimal dispatch

policy while considering that dispatchers make classification errors in assessing the

true customer priorities. To shorten response time for the urgent patients, their

model allows increased response times for the non-urgent patients. They later extend

the modeling framework [184] and examine the optimal EMS dispatch policy while

considering the issue of balancing equity and efficiency. Four vehicles and four demand

locations are included in their numerical work [184, 185].

Jarvis [186] addresses the problem of determining the dispatch policy by minimiz-

ing the average cost of assignment in an MDP model, while considering that individual

vehicle may be unavailable due to previous assignments. Keneally et al. [187] develop

an MDP model based on simulation data to examine aerial military medical evacu-

ation dispatch policies in a combat environment. Some papers use MDPs to model

the ambulance redeployment problem. Alanis et al. [188] propose and analyze a two-

dimensional Markov chain model to identify a near-optimal compliance table policy.

Berman [189, 190] uses this approach to examine optimal repositioning of emergency

units for small systems. The same method was revisited by Zhang et al. [191] to solve

a single-ambulance repositioning problem optimally. These models provide important

insights for simplified models involving a few ambulances. Maxwell et al. [192, 193]

construct an approximate dynamic programming model to find solutions for larger

systems with fewer assumptions, generating optimal or near-optimal repositioning

policies.

The second stream of literature related to our work is the literature on the AOD

problem. It has only become an active research topic recently and there is limited

research from the OR field that specifically focused on this problem [31]. Majedi

[32] constructs a system representing the interaction of EMS and ED using queuing

theory and models the behavior of the system as a continuous time Markov chain

to evaluate various system performance measures (e.g., the average number of am-

bulances in offload delay, average AOD, and ambulance and bed utilization). Clarey
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et al. [66] design a discrete event simulation model to assess the change on AOD

in a scenario, where dedicated nurses are hired to assist with ambulance offloading

patients. This study demonstrates a clear reduction in AOD when dedicated nursing

levels are increased. However, the authors also raise concerns that using this as a sole

method to reduce AOD would require unacceptably low staff utilization, which would

cost hospitals both financially and in human resourcing. Almehdawe et al. [5] uses

a Markov chain queuing model to analyze the interface between an EMS provider

and multiple EDs that serve both ambulances and walk-in patients. Matrix-analytic

methods are used to solve the steady state probability distributions of queue lengths

and waiting times. The study concludes that the priority based admitting policy had

a great impact on patient waiting times. When additional resources are considered for

the system, the benefit of adding capacity is greater for EDs with higher utilization.

Almehdawe et al. later [33] introduce a stylized queuing network model with blocking

to investigate the effect of patient routing decisions on EMS offload delays and to

determine the optimal allocation of patients to each ED in a region.

Two urban hospital EDs in Nova Scotia, Canada have attempted to reduce AOD

by implementing an offload zone (OZ), in collaboration with the local EMS provider

[63]. This OZ is a holding area in the ED monitored by a dedicated nurse and

paramedic team for patients who arrive by ambulance but cannot be admitted into

the ED due to congestion. This practice eliminates the need for one ambulance crew

(two paramedics) to wait with each patient, and thus frees the ambulance to return

to service more quickly [30]. Two years after opening the two OZs, Carter et al. [30]

completed a Health Care Failure Mode and Effect Analysis study to identify risks

to patient safety and process efficiency. They conclude that the OZ results in ED

staff having little incentive to admit patients who are waiting in the OZ and instead

admit patients from the waiting room. This leads to the OZ often being at capacity

and unable to relieve AOD. Motivated by this unexpected finding, Laan et al. [64]

model the OZ using a continuous time Markov chain to investigate how this lack of

incentive impacts AOD. The result suggests that, when the probability of “a patient

admitted from the OZ when a patient of equal acuteness is waiting in the waiting

room” is not greater than a certain threshold (0.35 in their case), implementing an

OZ will result in even longer offload delay, as admission priority is disproportionately
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given to patients in the waiting room.

5.3 Methods

This section presents the MDP model for determining the optimal ambulance desti-

nation policy in an EMS system suffering from AOD. When there is no AOD, the

destination ED for an ambulance patient is typically the closest ED appropriate for

the patient’s condition. However, when the number of queued ambulances is high

at the urban EDs, it may become more time-efficient for ambulances to travel fur-

ther distances to a community ED where there are typically no queued ambulances.

Currently, ambulance destination decisions within the urban region in our case study

system consider ED crowding, the number of queued ambulances, and other mea-

sures, but this practice does not extend to surrounding areas. The model described

in this section is used to determine when it is advantageous to send patients to the fur-

ther community EDs, given the number of queueing ambulances, patient acuity, and

travel distance. We begin with a short introduction to discrete time, infinite-horizon,

discounted MDP models, before presenting our model.

5.3.1 General Overview of MDP Modeling Framework

A discrete time, infinite-horizon, discounted MDP model is characterized by a set of

five quantities, expressed as 〈S,A, T (s, a, s′), R(s, a, s′), γ〉 [194], where S is the finite

set of all states of the model, A is the finite set of all available actions, T (s, a, s′)

is the transition probability for reaching state s′ when taking action a from state s,

R(s, a, s′) is the reward function to receive a reward (or penalty) when getting from

state s to state s′ by taking action a, and γ is the discount factor (0 < γ < 1) to

discount future rewards to the present time. A reward n steps away from the current

state s is discounted by γn. The discount factor is necessary for the reward function

to converge in an infinite horizon MDP model.

A decision rule prescribes a procedure for assigning an action a to each possible

state s in S. A policy π(s) is a sequence of decision rules to be used at all decision

epochs. A state-value function Vπ(s) represents the expected objective value obtained

following policy π(s) from state s in S. It is defined as the expected value of all future
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rewards, which is the immediate reward of reaching state s as well as the rewards of

subsequent states under the policy π(s).

Vπ(s) = R(s, π(s), s′) + γ
∑
s′∈S

T (s, π(s), s′)Vπ(s
′)

The action-value function Qπ(s, a) is the expected objective value starting from

state s, taking action a, while following policy π. It specifies how valuable state s is

under the policy π(s) for different actions a.

Qπ(s, a) = R(s, a, s′) + γ
∑
s′∈S

T (s, a, s′)Vπ(s
′)

The MDP algorithms are aimed at calculating or estimating value functions to

determine useful actions and find the optimal policy. Solving an MDP over an infinite

horizon results in deriving an optimal policy π∗(s). It is defined as the policy which

maximizes the expected reward (value) for each state with the discount factor, γ (0

< γ < 1). Thus, if we denote the maximal value of the action-value function as

Q∗(s, a) = max
π

Qπ(s, a),

the optimal policy is the policy that maximizes the expected reward,

π∗(s) = argmax
π

Qπ(s, a).

When the state and action spaces have finite cardinalities, the optimal policy takes

on a stationary form as there is no reason to behave differently in the same state at

different times, no matter how long the agent has run or will run in the future.

Several standard algorithms are available to compute the optimal policy π∗(s)

with total expected discounted rewards. These methods are linear programming,

the policy iteration algorithm, and the value iteration algorithm [182, 194, 195]. We

choose the policy iteration algorithm to solve our MDP model in this study. The

algorithm and our motivation for this choice are detailed in Section 5.3.3.

5.3.2 Our Model

Each decision epoch represents a new ambulance call requiring a patient transporta-

tion and an ambulance destination decision: with probability P(B = b) the call is for
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a patient type b (b = {R,H,M,L} for resuscitation, high, medium, and low acuity

levels), with probability P(Du = du, Dc = dc) the call is du kilometers away from the

closest urban ED, and dc kilometers away from the closest community ED, and with

P(N = n) there are n ambulances queued at the urban EDs when the destination

decision is to be made. When taking the action of transporting a patient to an urban

ED, n will increase by 1 if no ambulances are released between decision epochs. When

taking the action of transporting a patient to a community ED, n does not increase.

For both actions, n decreases by d with P(D = d) where D is the number of ambu-

lances released from the urban EDs between decision epochs. We therefore define the

state space as S = SN , SDu,Dc , SB where SN is the state representing the number

of ambulances queuing at the urban EDs, SDu,Dc is the call location state defined

by a pair of travel distances to the closest urban ED and the closest community ED

respectively, and SB is the patient acuity state.

Actions

The decision at hand is to determine to which ED to send the patient. Rather than

considering each ED individually, we aggregate the EDs within and outside the urban

region into two groups as urban EDs and community EDs, respectively. This way,

the decision is whether to send the patient to an urban ED or a community ED. The

model is formulated such that only the closest of each type are considered as possible

destinations. This is further appropriate because the urban EDs, although not located

at the same place, share a virtual queue when busy. In other words, dispatchers

consider the number of queued ambulances and ED crowding when determining the

destination ED in the urban region. There is only one of two actions that may be

taken when making the decision.

A =

⎧⎨
⎩

transport patient to an urban ED, k = 1

transport patient to a community ED, k = 2

Penalty functions

Action ak ∈ A is chosen when the process is in state s, and the process then makes

a transition to state s′, and an immediate penalty is assigned. The penalty reflects

the change of value to the objective function of the action selected. In this study,

we consider two different penalty functions independently. The first is the time that

an ambulance crew spends transporting a patient, including the time to return to

106



the urban region (if necessary), rakAm, and the second is the time to an ED bed for a

patient rakPt.

The penalty function contains three time components: the inbound travel time

(the time that an ambulance travels to transport a patient from the call location

to an ED), the turnaround time (the time that the ambulance crews spends at an

ED waiting to transfer the care of the patient to the ED staff, time for clean up

or paperwork, and recovery time), and the outbound travel time (the time that an

ambulance travels to their next posting location). In practice, the ambulance is

actually "in service" during the outbound travel time and can be called upon to

respond to a call in an EMS system with dynamic deployment. Despite this, we

penalize by the outbound travel time because the ambulance is not in the urban

region during this time. This ensures the consequence of sending an ambulance out

of the urban region is completely accounted for in the model. In fact, in systems with

dynamic redeployment it is possible that an ambulance crew sent to a community

ED would remain in that community after delivering the patient. We choose to

ignore this in the model and instead focusing on the urban system, which means

we may be slightly over penalizing ambulances sent to community EDs. Let T in
u

and T out
u respectively be the inbound and outbound travel time for patient being

transported to an urban ED. Similarly, T in
c and T out

c are respectively the inbound and

outbound travel time for patients being transported to a community ED. Let T n
u be

the turnaround time experienced by an ambulance at an urban ED when there are n

ambulances in the queue.

To compute the time to ED bed for a patient, the turnaround time interval requires

more explanation. “The turnaround time starts when the paramedics report to the

dispatcher that they have arrived at the ED, and ends when the dispatcher is notified

that the paramedics are available for another call” [7]. This is made up of multiple

sub-intervals including the delivery or offload interval, defined as arrival at ED time

to transfer of care time, and the recovery interval, defined as transfer of care time to

clear at ED time (i.e. time for paramedics to recover after delivering the patient). We

define our turnaround time variable in the urban ED such that T n
u is the complete

interval, T 0
u is the sum of all time sub-intervals except the queueing time sub-interval,

and T r
u is the length of time in the recovery sub-interval. At the community EDs,
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ambulance queueing is negligible. Therefore, the complete turnaround time interval is

modeled with T 0
c and the recovery time interval is T r

c . The time to ED bed for patients

is the sum of the inbound travel time and part of the turnaround time excluding the

paramedic’s recovery interval. At the urban ED, this is T in
u + T n

u − T r
u ; while at

the community ED, this is T in
c + T 0

c − T r
c . Figure 5.1 demonstrates the different time

intervals (not necessarily to scale) included in our penalty functions and the difference

between rakAm and rakPt.

Figure 5.1: The ambulance operation processes included in the penalty functions rakAm

and rakPt.

For each patient acuity level, different ED destinations are appropriate, and this is

reflected in the penalty functions. Major trauma patients (resuscitation acuity) will

always be treated immediately regardless of the status of the ED. Therefore they do

not queue and the turnaround time for the ambulance is T 0
u . Low acuity patients, in

this study, are defined as ambulance patients who can be safely offloaded directly to

the ED waiting room (based on clinical impressions according to local EMS policy).

Therefore, they also do not queue upon arrival. As such, the turnaround time for

an ambulance with a low acuity patient is also T 0
u . High acuity patients will also be

transported to the closest appropriate ED due to their severe conditions, however,

they may be delayed at the ED due to AOD. Therefore, the turnaround time for an

ambulance with a high acuity patient is T n
u . Medium acuity patients are candidates

for transporting to a community ED because their acuity allows it and they may

experience delays at an urban ED waiting to be offloaded.

Minimize the ambulance transportation time
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The penalty function of the ambulance transportation time, rakAm can be deter-

mined as follows:

rakAm =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T in
u + T 0

u + T out
u , if k = 1, b = R or L (1)

T in
u + T n

u + T out
u , if k = 1, b = H or M (2)

Z, if k = 2, b = R or H or L(3)

T in
c + T 0

c + T out
c , if k = 2, b = M (4)

where Eq.(1) and (2) describe the situation of sending an ambulance patient to an

urban ED, while Eq.(3) and (4) describe the situation of sending an ambulance patient

to a community ED. We denote Z as a large enough number to penalize the model

from sending resuscitation, high or low acuity patients to a community ED, as shown

in Eq.(3).

Minimize the time to ED bed for ambulance patients

The penalty function for the time to ED bed for ambulance patients, rakPt, is

constructed very similarly, except that it includes only part of the turnaround time

and does not include the ambulance outbound travel time.

rakPt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T in
u + T 0

u − T r
u , if k = 1, b = R or L

T in
u + T n

u − T r
u , if k = 1, b = H or M

Z, if k = 2, b = R or H or L

T in
c + T 0

c − T r
c , if k = 2, b = M

Both objectives are minimization problems. By converting time to negative values,

the penalty functions are converted to a maximization function.

Transition probabilities

Denote the probability of moving from state s to s′ given that action ak is chosen,

as P(s, ak, s
′). Then, P(s, ak, s′) can be defined as:

P(s, ak, s
′) = P(N ′ = n|N = n, ak, D = d)× P(B = b)× P(Du = du, Dc = dc)

where P(N ′ = n|N = n, ak, D = d) is the probability N ′ = n in state s′, given N = n

in state s. Note that P(B = b) and P(Du = du, Dc = dc) are independent of the

system state and action and are determined from historical data.
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When the action ak is to send a patient to an urban ED (k = 1):

P(N ′ = n|a1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(D = 0)/
n∑

d=0

P(D = d), when N = n− 1, n > 0

P(D = 1)/
n+1∑
d=0

P(D = d), when N = n

P(D = 2)/
n+2∑
d=0

P(D = d), when N = n+ 1

· · ·
P(D = c− n+ 1)/

c+1∑
d=0

P(D = d), when N = c.

0, otherwise

where c is the total number of ambulances operating in the city area. For instance,

when three ambulances are queueing at an ED (N = 3), the future SN states can

only be 4, 3, 2, and 1 with the first corresponding to no discharges (D = 0) and the

latter corresponding to 1, 2, and 3 discharges respectively. The probability of each

corresponding future SN state depends on random variable D. Continuing with this

example, N ′ = N +1 when none of the 4 ambulances (the 3 existing plus the 1 newly

arriving) are discharged between calls. Therefore, this occurs with P(D = 0|N ′ =

4, N = 3) and is computed by dividing P(D = 0) by the sum of all possible departure

probabilities, in this case
∑4

d=0 P(D = d).

Similarly, when the action ak is to send a patient to a community ED (k = 2):

P(N ′ = n|a2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(D = 0)/
n∑

d=0

P(D = d), when N = n

P(D = 1)/
n+1∑
d=0

P(D = d), when N = n+ 1

· · ·
P(D = c− n+ 1)/

c∑
d=0

P(D = d), when N = c.

0, otherwise

Assumptions

The model reflects the typical EMS practice when responding to calls and deliv-

ering patients to the most appropriate ED. However, a number of assumptions are

implicit in the model. First, EDs in this EMS network are categorized into two groups

(urban and community) instead of individual EDs to avoid the "curse of dimension-

ality". This is a reasonable assumption in this study because of the following two
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reasons. 1) All three urban EDs share a virtual queue. EMS dispatchers know the

level of congestion at these EDs and distribute ambulances accordingly. It is therefore

unlikely for one of the EDs to be overwhelmingly busy while the other two are not

busy. 2) For the three potential community EDs, the distances from the urban area

to them are relatively similar, resulting in no significant difference in transportation

time to any community ED. Furthermore, since community EDs experience low pa-

tient volumes and rarely experience AOD, it is reasonable to assume no ambulance

queueing (AOD) at community hospitals in our model. Therefore, we can treat these

community EDs as a group due to these similarities. The potential impact and ap-

propriateness of the assumption of no AOD at community EDs are discussed with

more details later in Section 5.5.

Second, the historical call volume data (detailed in Section 5.4) shows very little

effect on day of week or seasonality, therefore, they are ignored in our model. Al-

ternatively, call volumes is not stationary with respect to time of day. Two levels

can be observed: 1). high level (busy hours from 9 a.m. to 7 p.m.) and 2). low

level (non-busy hours from 8 p.m. to 8 a.m.). This feature is ignored in the basic

model. In Section 5.5.2, two MDP models are solved to evaluate the optimal policies

with the high/low levels of calls found at different times of the day. The analysis

of the historical data shows that there is no significant differences of the probability

distributions of patient acuity or call locations through out a day. Therefore, the

probability distributions of patient acuity and call locations are considered time in-

variant. Other minor assumptions include, one ambulance is assigned to each patient

call and calls occur sequentially. This of course ignores multiple patient calls which

are uncommon.

5.3.3 Policy Iteration Algorithm

Policy Iteration is a fundamental algorithm in the study of MDPs. It manipulates

the policy directly to find the optimal policy. It starts by evaluating an initial policy,

and then uses the value function of that policy to find better policies. This is done by

considering taking an action a in state s that is different from the one according to

π(s). If this change results in a better new policy (that selecting a in s and thereafter

following the existing policy), we have successfully improved the policy. Once a policy
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π(s) has been improved using Vπ(s) to yield a better policy π′(s), we can compute

its value function Vπ′(s) and improve it again to yield an even better policy π′′(s).

This procedure is repeated to consider all actions in all states, evaluate each action

in each state and select the actions that yield the highest rewards.

This algorithm alternates between two steps, which are outlined:

Initialization: choose an initial policy

Repeat until policy is stable {

1.Policy evaluation

Repeat until values converge {

For each state {

Calculate the value function when taking action according to the current

policy;

Update estimate of the optimal value function.

} each state

} value convergence

2.Policy improvement

Find a new policy according to equation

πi+1(s) = argmax
a

∑
s′

T (s, a, s′) [R(s, a, s′) + γVπi
(s′)] .

}policy stable.

The state of the MDP is finite and therefore the number of possible stationary

deterministic policies is also finite. The policy iteration algorithm is able to compute

an optimal stationary policy in this situation. It is chosen to be used in this study as

it is generally faster and less computationally heavy compared to the Value Iteration

algorithm [195].

5.4 Data

This section demonstrates how to apply this MDP model to a relatively large EMS

region. It describes the key procedures and methods to abstract required model

parameters from the data. It also clarifies some situations and considerations that

may be unique to the specific EMS provider in this study.
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This EMS provider handles all emergency/urgent calls in Nova Scotia, Canada.

This study includes emergency/urgent calls in the Halifax Regional Municipality

(HRM) (i.e. the urban region) and its adjacent regions (i.e. the surrounding com-

munities). AOD is commonly reported as a problem in HRM [30]. We analyze 12

months of computer-aided dispatch (CAD) data from January 1st, 2016 to December

31st, 2016. The dataset contains 22,243 EMS emergency calls originating in the ur-

ban area that are associated with a patient transportation to an ED. Each call record

includes information about the patient acuity level and all the time stamps of the

ambulance responses for completing that call, such as call time, arrival at scene time,

departure from scene time, arrival at hospital time, leaving from hospital time, etc.

With a geographic information system (GIS) tracker available for each ambulance,

the locations of each ambulance in real time is also recorded and available for this

study.

We first restructure the ambulance patient transportation events (new call / arrival

at ED / departure from ED) in chronological order. From this we can compute

P(D = d) and the turnaround times (and subintervals) as a function of the number

of ambulances at urban EDs n. In other words, when an ambulance arrives at an

ED, we can estimate how long the turnaround time will be given the number of

ambulances queueing from the historical data. Since we observe that the number

of queued ambulances rarely exceeded 9 in our data (763 out of 22,243 incidents,

approximately 3.43%), the SN state space is truncated to be SN = {0, 1, · · · , 9} in

the computational study, where at least 100 calls are recorded in the historical data

for each state of SN . The truncated historical distribution of P(D = d) is shown in

Figure 5.2.

Each patient who requires transportation has a Canadian Triage and Acuity Scale

(CTAS) score assigned. The CTAS score ranks the patients by severity from 1 to 5

(1 being highest acuity). It is known by the time that the paramedics evaluate the

patient and make the decision to transport the patient to an ED. The probability

distribution of CTAS scores is determined from historical data. In this study, we

categorize patients who require a transportation into four acuity levels: resuscitation,

high, medium, and low. These categories are based on the CTAS scores and discus-

sions with content experts. Resuscitation acuity level patients include all CTAS score
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Figure 5.2: The historical distribution of the probability of d numbers of ambulances
being released from the urban EDs between decision epochs.

1 patients plus 20% of CTAS score 2 patients. High acuity level patients include

the rest of the 80% CTAS score 2 patients. Low acuity level patients include 50%

CTAS score 4-5 patients, who can be direct offloaded to an ED waiting room based

on local EMS policy. The rest of the patients are categorized as the medium acuity

level patients, including all CTAS 3 patients plus the rest of the 50% CTAS score

4-5 patients. According to the 12-month historical data, the probabilities of patient

acuity levels is 0.0975, 0.3233, 0.5131, and 0.0661 for resuscitation, high, medium, and

low, respectively. This is an appropriate distribution based on our conversations with

paramedics and supervisors. In other words, 51.31% of ambulance patients (medium

acuity) are candidates to be sent to a community ED in our model.

To compute the penalty function, we need the turnaround time and the in-

bound/outbound travel time of the ambulances. Based on the local government

benchmark with minimal offload time [196], we define the standard turnaround time

without AOD T 0
u and T 0

c as 30 minutes, and the recovery intervals T r
u and T r

c as 20

minutes. We obtain the T n
u values from the historical data as shown in Table 5.2.

We use ArcMap R© v10.5 to find the travel distance to the closest urban ED and
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Number of ambulances at urban EDs, N Average ambulance turnaround time, T n
u (minutes)

0 30
1 49
2 56
3 63
4 70
5 78
6 82
7 83
8 92

≥ 9 93

Table 5.2: The summary of the average ambulance turnaround time at the urban
EDs from the historical data of 2016.

the closest community ED, respectively, from each call in the data set. There are

three urban EDs and three community EDs included in the computational study. We

separate the distance to the closest urban ED into 22 bins and the distance to the

closest community ED into 16 bins by analyzing the histogram of the data. Based

on the data frequency, the range in each of the bins varies from 1 to 10 kilometers.

A heat map (22 × 16) is generated to show the call frequencies of each location

pair (Figure 5.3). To reduce the problem size, only the call locations (Du, Dc) with

a positive probability (greater than 0) from the historical data are included in the

distance-state space matrix (SDu,Dc). After excluding the cells with probability equal

to 0 (shown as the lightest cells in Figure 5.3), the number of categories is reduced to

230. When the model is generalized for other EMS systems, this value is subjected

to change. This approach balances the amount of detail in the system representation

(which typically results in a better outcome) with the computational difficulties.

The travel time varies based on the travel distance between the call location and

the destination ED, and the speed at which the ambulance travels. To calculate

the corresponding travel time, we need to estimate the ambulance travel speed. A

common modeling practice employs a constant speed for simplicity purpose, which

may result in overestimation of EMS system performance [197]. Therefore, in this

study, we utilize the KWH model proposed by Kolesar et al. [198] to estimate the

ambulance travel time instead. This model has been further validated by Budge et

al. [197] and reported to be a reasonable approximation of the median travel time of

ambulances. Furthermore, it distinguishes between short and long travel distances

which is particularly useful in our study.
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Figure 5.3: The heat map showing the call frequencies of each category of call loca-
tions.

The KWH model [198] is defined as follows:

T (L) =

⎧⎨
⎩
2
√

(L/a), L ≤ 2da

vc/a+ L/vc, D > 2da

where T is the estimated travel time, a is the acceleration rate, L is the travel distance,

vc is the cruising velocity, and da is the distance required to achieve the cruising

velocity (da = v2c/2a).

We analyze the historical data to obtain the proper values of the parameters a and

vc. The actual travel time is calculated by using the time stamps for events of "depart

scene" and "arrive destination" of each call. With the travel distances, we can then

calculate the ambulance average travel speed during each patient transportation. To

eliminate the outliers, only call records with an ambulance travel speed within two

standard deviations from the mean travel speeds are kept. This resulted in 1.27%

of data points being eliminated. The estimated travel time can be calculated using

the KWH model with pre-determined values of a and vc for each remaining call. By

minimizing the sum of squared errors between the actual travel time and the estimated

travel time for the 21,527 calls, we determined the value of a in this EMS system is
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0.03 m/s2 and the value of vc is 85.86 km/h. With the best-fitting parameter values,

we then use the KWH model to estimate the travel time (inbound and outbound) in

the penalty functions.

T out
c is the travel time from the community ED back to the urban region where the

ambulance originated. To computer this we first compute the travel distance from

each of the three community EDs to the urban boundary using the road network

analyst package in ArcMapR© v10.5. We then determine the frequency which each

community ED is the closest to a call and use this to compute the weighted average

distance as our outbound travel distance (25.02 km) in the KWH model to determine

the outbound travel time T out
c . Ambulances leaving the urban EDs are already in the

urban region, therefore T out
u = 0.

Figure 5.4: The locations of the three community EDs (stars) and the urban region
boundaries (highlighted polygons) shown in ArcMap R© v10.5.
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5.5 Results

The transition matrices are generated using Microsoft R© Excel with a program coded

in Visual Basic for Applications. This procedure takes approximate 60 hours to

complete, using a Toshiba Portege R30-C computer with an Intel Core i5 processor

and 16 GB RAM. The policy iteration algorithm is utilized to solve the optimal

policy of the computational study in MATLAB R© R2018b. Convergence is reached

after approximately 140-170 seconds using the same computer. The output of the

MDP is a list of 9200 (10 x 4 x 230) states, and the optimal action associated with

each state, for each penalty function, rakAm and rakPt. Various value of the discount

factor γ (from 0.90 to 0.99 with an interval of 0.01) were used to test the robustness

of the resulting policies. The results were found to be relatively insensitive to γ. For

the remaining sections of the paper, we chose γ = 0.95 to report the results from the

computational study.

5.5.1 Optimal Policies

As expected, both optimal policies suggest sending patients with an acuity level of

resuscitation, high, or low to an urban ED. Only patients with a medium acuity level

are the candidates for a potential transportation to a community ED. The result

indicates that it is not always best to send a medium acuity level patient to the

urban ED, especially when many ambulances are already queued there.

We show part of the summary table of each optimal policy in Figure 5.5 as an

example to demonstrate the decisions made in some states for the medium acuity level

patients. Each table includes 14×10 system states where the travel distance from the

call location to the closest urban ED are the same (5 kms), while the travel distance

to the closest community ED varies. The decisions from the two optimal policies

under different call locations and SN states are presented in the tables. Number 1

(marked in light colour) represents the decision of sending the patient to an urban ED,

while number 2 (marked in dark colour) represents the decision of sending the patient

to a community ED. For both penalty functions, the policy sends more patients to

a community ED when SN becomes larger. The decision is also impacted by call

locations. When the closest community ED is further away compared to the urban
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ED, the policy suggests sending fewer patients to a community ED. As expected, the

policy sends more medium acuity level patients to a community ED when the objective

is to minimize the time to ED bed for patients (rakPt), compared to minimizing the

ambulance transportation time (rakAm).

(a) rakAm (b) rakPt

Figure 5.5: A sample of the optimal policy with penalty functions rakAm and rakPt.

There is a minimum number of queued ambulances to trigger the policy to start

sending patient to community EDs for each state. In other words, the policy suggests

sending medium acuity level patients to a community ED instead of an urban ED

once the number of queued ambulances reaches a certain threshold level. Therefore,

we use a matrix of the SN state thresholds with distance variables to present the

detailed policy for medium acuity level patients for each penalty function (Figure

5.6). Each policy is presented using the minimum number of ambulances in AOD

to trigger the policy to start sending patient to community EDs for each state. For

example, when a call is 4 km and 50 km respectively from the urban and community

EDs, send patients to the community ED when Sn ≥ 4 (with penalty function rakAm).

When the penalty function is rakAm, the optimal policy suggests to send 16.3% of

all patients to a community ED (or 28.9% of medium acuity patients). When the

penalty function is rakPt, this percentage increases to 31.6% of all patients (or 61.6%
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of medium acuity patients). In both policies, this occurs more often when the urban

EDs experience severe AOD, which is intuitive and matches our expectation of the

result (Table 5.3).

penalty function % of patients sent to community EDs

Resuscitation High Medium Low Overall

rakAm 0.0 0.0 28.9 0.0 16.3
rakPt 0.0 0.0 61.6 0.0 31.6

Table 5.3: The percentages of patients allocated to various community EDs.

To demonstrate the advantages of the optimal policies, we calculate the stationary

probability of the optimal policies, as well as the current practice (which is always

sending patients to an urban ED). The first performance measure is to determine the

improvement in AOD at the urban EDs when following the optimal policies. Figure

5.7 illustrates the probabilities of the system in each SN state for penalty functions

of rakAm, rakPt, and the current practice of sending all patients to the urban EDs. The

result shows a decrease in the number of queued ambulances when following either of

the optimal policies compared to the current practice.

With the trends shown in Figure 5.7, a significant reduction of frequency of high

AOD system state occurrence can be observed. Fox instance, the probability of be-

ing in a state with no less than five ambulances queueing at the ED decrease from

61.80% in the current policy to 17.94% and 7.52% in rakAm and rakPt optimal policies,

respectively. Furthermore, one can expect that the average ambulance turnaround

time at the urban EDs should also be reduced with the optimal policies, due to the

reduction of the number of queued ambulances. We estimate the average ambulance

turnaround time at the urban EDs under each policy by using the historical data and

the calculated stationary AOD probabilities. We found a reduction from 75.81 min-

utes (current) to 61.48 minutes and 54.68 minutes, respectively, for penalty functions

rakAm and rakPt. Based on the historical data from 2016, with a total number of 22,243

patient transportation requests originated in the urban region, these two optimal po-

lices rakAm and rakPt would save 5,312.68 and 7,832.70 ambulance hours annually due to

the reduction of AOD.

It is noteworthy that the system gains these performance improvements at the
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sacrifice of ambulance travel distance. Instead of travelling to the urban EDs which are

closer to most call locations in the urban region, the new policy requires ambulances to

occasionally travel further distances to transport patients. We compute and compare

the expected average ambulance travel distance for patient transportation under each

policy. The current policy has an average travel distance to an ED as 5.28 km. The

optimal polices would increase that value to 13.29 km and 21.79 km with penalty

functions of rakAm and rakPt, respectively.

In the MDP model we do not have a state for queued ambulances at the community

EDs. In our study, AOD at community EDs is negligible and therefore data on

waiting times and ambulance turnaround times are not available. Should this be

required in other applications, the method used to account for queued ambulances

at the urban hospitals can be applied. To test if AOD at community EDs will be

problematic when following the policies of the MDP, we compute the expected number

of additional ambulance transportations that will be sent to the community EDs. We

found a mean of 9.9 and 19.0 additional transportations per day would be sent to

the community EDs. In discussions with content experts, it was determined that this

increased volume would not cause congestion in any community ED. However, the

ambulance patient volume is likely to occur in peaks during periods of time when the

urban EDs are overcrowded due to the nature of the decision rules. Further analysis

are required to ensure sufficient resources are available at the community EDs during

the busy time of days when considering implementing the optimal policies.

5.5.2 Sensitivity Analysis

Sensitivity analysis is an approach that can help understand the relationships of

model attributes and outcomes by analyzing how the outcomes changes with different

variable values. There are two major objectives in the sensitivity analysis of this study.

We aim to consider and understand the influences of time of day and increasing AOD

times.

Time of day

As previously discussed, the call volume in the studied region is not stationary

throughout the day. Data analysis of the historical data suggests that the busy

hours of the day is from 9 a.m. to 7 p.m. (11 hours), where the hourly average call
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volume reaches a relatively constant high level, while the rest of the day (8 p.m. to

8 a.m.) are non-busy hours (13 hours), where the hourly average call volume drops

to a lower level. Between the two different levels, the actual time span between calls

(decision epochs) may vary considerably, which affects the empirical distribution of

D, denoting the number of ambulances released from urban EDs between decision

epochs. Therefore, we separate the historical data into a high (busy hours) and low

(non-busy hours) call level periods and solve the MDP model for each scenario. The

results of these two scenarios are included in the sensitivity analysis.

Figure 5.8 shows the empirical distributions of D in the high and low call level

of periods, as well as the overall distribution. The distributions are surprisingly

similar with only a slightly lower discharge rate during the busy hours. One possible

explanation is that despite the shorter time between calls during the busy hours, the

ED capacities are also likely higher at these hours. Further data analysis reveals that

the empirical distributions of patient acuity level and call location are time invariant.

To model these two time periods, new transition probabilities are calculated with

separate datasets of busy and non-busy hours. The results are presented in Table 5.4

as a form of percentages of patients being sent to community EDs during different

periods. The optimal policies send more patients to the community EDs during the

busy hours and less patients to these EDs during non-busy hours, comparing to the

overall scenarios. Based on the call volumes, we also compute the expected number of

additional ambulance transportations that will be sent to the community EDs during

these two periods. During the busy hours, the community EDs can be expected to

receive additional 7.6 and 12.2 ambulance transportations when following optimal

policies with the penalty function rakAm and rakPt, respectively. Similarly, the increases

are 3.8 and 8.0 for non-busy hours. In the base scenario, a mean of 9.9 and 19.0

additional transportations would be sent to the community EDs per day, with the

penalty function rakAm and rakPt, respectively.

Generally speaking, the optimal policies developed with separated datasets (busy

and non-busy hours) do not indicate significantly different outcomes within the EMS

system under study. Yet, an EMS system may have different distributions of ambu-

lance discharge rates during busy/non-busy hours, such that larger differences can

be expected in the optimal policies at different periods. In this case, policies can be
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developed based on the time of the day to provide EMS personals with more precised

ambulance destination instructions to follow.

penalty function % of patients sent to community EDs

Overall Scenario Busy Hours Non-busy Hours

rakAm 16.3 21.7 14.8
rakPt 31.6 35.0 30.8

Table 5.4: The percentages of patients allocated to various community EDs in the
non-busy hours and busy hours scenarios.

Increasing AOD time

To further explore model sensitivity, we increase the AOD time to observe its effect

on the optimal ambulance destination policies and the total percentage of patients

being sent to community EDs. We use the results of Section 5.5.1 as the base scenario,

and consider the scenarios when the AOD time increases by 5%, 10%, and 20%. The

results are reported in Table 5.5.

penalty function Overall % of patients sent to community EDs

Base
Scenario

AOD 5% AOD 10% AOD 20%

rakAm 16.3 20.7 22.0 24.8
rakPt 31.6 35.2 37.1 41.5

Table 5.5: The percentages of patients allocated to community EDs when the AOD
time increases by 5%, 10%, and 20%, respectively.

As expected, we observe that the optimal policies change gradually and send more

patients to community EDs as the AOD in the city gets worse. This is an important

observation as the model assumption of no AOD in any community ED may becomes

inappropriate as a large amount of patients are sent to it. This can be overcome as

discussed in Section 5.5.1.

5.6 Conclusion and Discussion

To find long-term solutions that minimize the effects of AOD and improve perfor-

mance, we develop an MDP model to assist EMS dispatchers in determining the best
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ambulance destinations for their patients. The computational study indicates that we

can make ambulance destination decisions using a robust policy based on the current

number of queued ambulances, call location, and patient acuity level. According to

the results, both the EMS systems and patients benefit from the improved policy. In

addition to the metrics considered by the model, patient risks, outcomes, and prefer-

ences are factors which are important for future study and which should be part of

an implementation plan.

Instead of using theoretical distributions, our model demonstrates a method to

incorporate large amounts of administrative data. Such data is typically available in

modern EMS systems and allows us to represent the real system with fewer limiting

assumptions. Furthermore, we compute ambulance travel time using the KWH model

instead of with an assumed constant speed. This is particularly important in this

study since ambulances are being routed long distances in some cases. Our model

also provides considerations of patient acuity levels that can influence the optimal

destination decision.

The model is suitable for use in decision support systems that allow EMS dis-

patchers to quickly evaluate the situation and make decisions on which destination

ED to send the incoming ambulances. The model also provides accurate estimates of

the number of queued ambulances, the average ambulance turnaround time at EDs,

and the average travel distance of the ambulances. It is sufficiently general to be used

by EMS systems to mitigate the impact of AOD on their operations.
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(a) rakAm

(b) rakPt

Figure 5.6: The detailed policy of the medium acuity level patients for each penalty
function, (a) rakAm and (b) rakPt.
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Figure 5.7: The probabilities of SN states at the urban EDs when following policies:
rakAm, rakPt, and the current policy Current.

Figure 5.8: The empirical distribution of the probability of the numbers of ambu-
lances being released from the urban EDs between decision epochs in non-busy hours
and busy hours, in comparison to the overall distribution.
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Chapter 6

CONCLUSION

Healthcare is an area of growing importance and cost around the world, thus a pop-

ular area for operations research. As a key element of the healthcare network, EMS

systems require constant improvements to ensure capacity to adequately and effi-

ciently respond to the emergency care needs of the public. Ambulance offload delay

(AOD), as an EMS operational problem, has become common in many health care

systems. However, research examining system performances associated with EMS is

still limited.

In this thesis, we model different perspectives of the AOD problem using various

operation research approaches to establish a better understanding of its impact within

an EMS system. This includes designing models to help a provincial EMS provider

mitigate AOD. To achieve these objectives, we develop three distinct research stages

each with a different modeling approach.

In the first stage, we conduct a systematic literature review on AOD. To our

best knowledge, this is the first published review of AOD related studies and models

(Chapter 2 ). This chapter describes the causes and consequences of this growing

problem, key measures that are used to assess system performance, and potential so-

lutions investigated using various methods. Furthermore, we provide a comprehensive

depiction of the AOD problem experienced by the provincial EMS provider in Nova

Scotia, Canada (Chapter 3 ). We show how this problem has a substantial impact on

ambulance performance, leading to prolonged ambulance turnaround times, total call

times, and response times, as well as reduced ambulance availability. The descriptive

analytics and statistical models are presented in a way that can be generalized to

other EMS systems for measuring ambulance performance with respect to AOD.

The next stage of this research (Chapter 4 ) provides the EMS provider with a

decision-support model that can predict AOD status based on the current system
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status. As information technology advances, such prediction models can be devel-

oped using the shared information between the EMS providers and the hospital EDs.

We design various practical prediction settings for this application and utilize a hy-

brid decision tree algorithm to improve the performance of these models. This way,

proactive interventions can be initiated by the decision makers based on different

states of the system to mitigate the problem. Our predictive analytics suggest that

the AOD status of the EMS system is robust and resistant to any sudden changes

in a short period of time. The prediction models perform relatively well with accu-

racy rates of 60%-75%, 69%-83%, and 91%-95%, with respect to different prediction

settings discussed in the chapter. As expected, the presence of high degrees of vari-

ability negatively impacts the performance of the prediction model. The variability

is likely due to the complexity of EMS systems while modeling with realistic details

incorporated to reflect the real-world situation. We also compare the hybrid decision

tree algorithm with a basic decision tree algorithm (classification and regression tree).

The prediction models generated using the hybrid decision tree algorithm outperform

the ones generated by the traditional algorithm by an average accuracy improvement

of 2.44%.

Our final stage of research began by gathering feasible intervention ideas from the

key frontline personnel of the local EMS providers. Among these interventions, we

model optimal ambulance destination policies for an EMS system when considering

AOD, and evaluate their effects on the system performance (Chapter 5 ). These

policies determine when it is advantageous for ambulance patient to be transported

to an out-of-region ED (that is not affected by AOD) to achieve a shorter ambulance

turnaround time. In specific cases, ambulances can return to service quicker, and

thus reduce the effects of AOD on the system performance. It is anticipated that

best practices produced from this study will be directly transferable.

The AOD problem is a consequence of a much bigger problem, which is the lack

of capacity in the healthcare system to treat hospital inpatients, leading to ED over-

crowding and access block. AOD includes clinical, operational, and administrative

perspectives and must be addressed in a system-wide manner. Research has shown

that initiatives and efforts from one party (EMS or ED) alone may not be sufficient

to solve this problem, a more collaborative approach is required. Establishing better
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collaboration between EMS and hospital EDs should be the first step towards the

goal of building a system-wide solution to this problem. EMS providers and hospital

EDs should initiate dialogues at high management levels and work together to take

appropriate steps to mitigate AOD. Timely information sharing between these two

parties could allow interventions built to achieve benefits to both.

Evidence suggests that the root causes of AOD lie outside the EMS system and to

address it will likely take significant time and effort and require system-wide policy

changes. Meanwhile, EMS operation is impaired by this problem. Therefore, research

should continue to develop interventions, either through operation research models or

operation trials, to help EMS operate in this difficult environment and mitigate the

negative impacts of AOD. While the AOD problem presents itself as a challenging

problem, it also represents an opportunity for public health, EMS, and hospitals, to

come together to identify best practices and implement positive changes. Ultimately,

all key components of the health care system should work together to ensure the ED

crowding problem is eliminated or minimized, thereby alleviating much of the AOD

problem.

While this thesis provides a number of insights on the different perspectives of the

AOD problem, there are several directions that can be considered for further research:

• There is limited research focused on the AOD problem specifically in the op-

eration research field. However, operation research methodologies should be

recognized as powerful tools for this problem. Several models are developed

in this research to measure the effects of AOD, predict the system status, and

develop optimal ambulance destination policies. Yet, there is much more to

explore with either improvements of the existing models, or new developments

with other approaches. For example, our models can be extended to include

more factors to better capture the complexity of the EMS system but at the ex-

pense of higher dimensionality and tractability. The interface of EMS and EDs

can be modeled using queueing theory. A simulation model may reveal more

insights of this problem when modeling a broader perspective of the healthcare

system that includes patients from arrival to the ED to being discharged from

the hospital. To help better assess and mitigate this problem, models need to

be further developed to estimate the system performance in a more realistic and
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detailed environment.

• For the interventions to be effective and true to real-world situations, the mea-

surement of related metrics needs to be improved. Further study is required

to standardize the definition and the measurements of the ambulance offload

process. It is important that future research on this topic are based on solid

measurements of the main components of this process.

• Another aspect of AOD assessment, which operation research may help investi-

gate, is its impact on the workload of paramedics and ED staff. As it becomes

a new norm, are there human resource consequences in terms of increased rates

of human error, scheduling conflicts, etc.?

• There is a lack of clinical study that investigates if there is a relationship between

the offload delay and patients risk levels. For example, is AOD more common

or prolonged for patients with certain clinical conditions? If so, what are the

impacts on the safety and outcomes of these patients? What policy should we

consider to alleviate the consequences?

• There are few studies describing the relationship between AOD and EMS per-

formance. Most studies use anecdote evidence and rationalizations as supposed

to empirical studies. It would be beneficial for future work to further quantify

this relationship.
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