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Abstract

Lecture-format Massive Open Online Courses (MOOCs) were once thought to have  

the potential to permanently change higher education, though they did not live up to 

their original hype. Among the many posited reasons for this failure is MOOCs’ 

inability to effectively leverage multimedia to meet users’ cognitive demands, such as 

the need to prevent mind wandering. One of the challenges with establishing the 

impact of mind wandering in the online classroom is the difficulty of measuring it, 

due to the complexity of the mind wandering phenomenon. In this dissertation, two 

research questions are explored. The first question concerns the neurophysiology of 

mind wandering and how it can be measured in the first place. Two studies are 

described which employ electroencephalography (EEG) to measure attention-related 

brain responses to auditory stimuli as participants sat through an e-learning video. 

The studies employed different measures of self-report, which yielded different neu-

rophysiological responses. However, the responses were demonstrated to distinguish 

on-task and mind wandering states, suggesting an effective neurophysiological mea-

sure of mind wandering and other attention-related constructs. The second research 

question concerns the impact of mind wandering on the efficacy of online lectures. We 

employ multiple measures of mind wandering to investigate this impact and success-

fully identified the negative impact that mind wandering has on rote learning. Though 

we do not explore which teaching strategies are most effective, the results suggest that 

teaching strategies which limit mind wandering may be able to improve rote learn-

ing outcomes. This leaves open possibilities for future research which explore such 

strategies for improving MOOC technology, but also for measuring attention-related 

information systems constructs.
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Glossary

active learning Teaching techniques that find ways of engaging students’ interest

or attention by making them active in the learning practice.

alerting The brain network originally identified by observing sustained vigilance and

sensitivity to attention stimuli.

attention The phenomenon of focusing on a single stimulus out of several simulta-

neously possible objects or trains of thought. The phenomenon is the result of

at least three neuralogical processes: alerting, orienting and executive control.

Attention Network Test (ANT) A test battery developed by Fan et al. (2002)

that uses a combination of flanker tests, which are designed to measure response

inhibition, as well as cuing tasks demonstrated to measure attentional orienting.

brain-computer intferface (BCI) A computer program that takes direction from

a direct communication pathway to the brain. In this dissertation, we describe

BCIs which are powered by EEG signals.

cognitive absorption An influential construct proposed by Agarwal and Karahana

(2000) which measures a state of deep engagement with an information tech-

nology.

cognitive load A construct used to describe effort being used in working memory.

Cognitive Theory of Multimedia Learning (CTML) Cognitive Theory of Mul-

timedia Learning. Advanced by Mayer over the course of a long career, this the-

ory states that “people learn more deeply from words and pictures than from

words alone”.

covert orienting General attentional orienting unrelated to a particular space.

decoding The process of identifying a relationship between a particular neural signal

and a mental state.

x



eeg waves Patterns of central nervous oscillatory activity at particular band fre-

quencies.

e-learning Learning technology that incorporates multimedia and information tech-

nology to deliver a learning experience.

electrodermal acivity (EDA) Electrophysiological measurement of the skin to mea-

sure activity of the central nervous system.

electroencephalography (EEG) Electrophysiological mesurement of the scalp to

measure activity of the brain.

event-related potential (ERP) An electrical pattern evoked by a stimulus result-

ing from neural activity.

executive control The attention network originally conceptualized by Posner and

Petersen (1990) to describe target detection and the limited capacity of atten-

tion.

eye-fixation related potential (EFRP) A pattern of eye movement fixations that

are correlated with the P3 event-related potential.

flow A state under which individuals are intrinsically motivated to engage in an

activity and in a state of deep attention to it.

functional magnetic resonance imaging (fMRI) A machine that measures brain

activity by detecting changes in neuron blood flow. Usually leveraging the

blood-oxygen-level dependent (BOLD), fMRI can be considered a secondary

physiological measure of brain activity.

independent component analysis (ICA) An unsupervised machine learning method

for separating a multibariate signal into statistically distinct components. In

this dissertation, the technique is used to separate electrical noise (eg. blinks)

from electrical activity generated by the brain.

xi



Information Systems (IS) Refers to “socio-technical systems comprising of indi-

viduals or organizations and their interaction with business information technol-

ogy.” (Recker, 2012) We usually refer to Information Systems as it is practiced

in business schools.

linear discriminant analysis (LDA) A method used in statistics and machine

learning to find a linear combination of features that separates two or more

objects. LDA is commonly used to reduce the dimensionality of data.

machine learning Statistical and computational techniques that give computers the

ability to progressively improve performance on tasks without being explicitly

programmed.

magnetoencephalography (MEG) A neuroimaging technique that maps neural

activity by observing magnetic fields produced in the brain.

mind wandering Self-directed thoughts about a subject other than the primary

task the participant is supposed to be engaged in.

MOOC Massive Open Online Course. Usually, though not always, delivered in a

lecture format.

NASA Task Load Index (TLX) A widely-used questionnaire scale created by Hart

et al. (1988) to measure perceived workload in a given task.

NeuroIS Neuro-Information Systems. The sub-discipline of Information Systems

that use methods from cognitive and affective neuroscience to answer questions

related to information technology and its use.

oddball paradigm An experimental design involving the presentation of repeated

stimuli where an infrequent number of stimuli are different from the majority.

orienting The brain network that governs the mechanism of feature selection.

xii



oscillatory activity Repetitive patterns of neural oscillations that can be observed

using EEG. Neural oscillations are often measured in frequency bands (eg. alpha

(8-13 Hz), beta (13-30 Hz), etc.).

overt orienting Attentional orienting toward a fixed point in space.

P1-N1-P2 complex A series of even-related potentials triggered by early atten-

tional control mechanisms. This complex is detected using EEG or MEG and

is sensitive to both visual and auditory stimuli.

P3 component An attention-related positive event-related potential observed at the

300 ms mark.

positron emission tomography (PET) A machine that observes metabolic pro-

cesses in the body, in our case the brain, by tracing a radioactive tracer in the

blood stream.

rote learning The ability to memorize and recall something taught.

STEM Science, Technology, Engineering and Mathematics university programs.

support vector machine (SVM) A supervised machine learning algorithm that

classifies data according to a non-probabilistic kernal classifier that best sepa-

rates points on a hyperplane. This technique is primarily used in highly dimen-

sional datasets.
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Chapter 1

Introduction

In 2011, then Stanford professors Sebastian Thurn and David Evans launched a free

online course called Introduction to Artificial Intelligence. The course consisted of

recordings of their usual online robotics lectures, but was given away publicly, for

free. The initiative was wildly successful, attracting over 160 000 students from across

the globe (Hsu, 2012). The apparent success inspired Thurn to found Udacity, one of

the market leaders in the Massive Open Online Course (MOOC) movement. In their

early days, MOOCs were thought to have the potential to permanently transform the

institution of higher education by making top education content available to everyone

in the world for free.

As time passed however, it quickly became clear that MOOCs would not succeed at

transforming higher education as Thurn had originally envisioned. The wild success

turned to cautious skepticism as it became clear to educators that MOOCs were

lacking something. A 2013 study of a million users of University of Pennsylvania

courses offered online through Coursera, one of Udacity’s nonprofit competitors, found

that only five percent of participants actually finished their classes (Perna et al., 2013).

Other studies soon found similar results (Konnikova, 2014). More worringly, studies

found that the students who were most likely to complete MOOCs were students

who already had advanced degrees (Kolowich, 2013). Today, it is largely agreed that

MOOCs have not lived up to the original expectations of Thurn and the hype of

2012. Writing in 2019, it is easy to form an opinion that MOOCs succeeded being an

excellent supplementary learning tool but largely failed to instill the ability to learn

characteristic of a university culture.

Though there are probably many reasons, one possible reason why MOOCs did not

succeed is that they did not incorporate the right techniques in their design. Robert

Ubell, for instance, argued in IEEE Spectrum that the downfall of MOOCs was driven

by the fact that they did not incorporate active learning techniques (Ubell, 2017).
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Ubell cites a meta analysis of 225 studies which found undergraduate Science Tech-

nology Engineering and Mathematics (STEM) classrooms employing active learning

saw about 6% higher test scores and were considerably less likely to have students

fail the course (Freeman et al., 2014). Active learning is often identified as the theory

behind pedagogical techniques that engage students’ interest or attention by making

them active in the learning practice (Young, Robinson, & Alberts, 2009). As Ubell’s

reasoning goes, the ability to use active learning is one of the underlying reasons why

high quality in-person lectures at universities work better than pre-recorded MOOCs.

The result is an in-person experience that can adapt to students’ changing attention

states; something that MOOCs cannot easily replicate.

Similarly, other scholars have argued that the inability for online lectures to

capture and maintain attention is also to blame, particularly for their inability to

prevent mind wandering (Szpunar, Moulton, & Schacter, 2013). Mind wandering

describes a shift in attention away from the primary task and towards unrelated

self-generated thoughts (Smallwood & Schooler, 2006). Mind wandering has been

demonstrated to impact performance during monotonous tasks such as driving long

distances (Y. Zhang & Kumada, 2017). It follows that students who experience mind

wandering during long lectures would similarly learn less, as they are engaged with

their own self-directed thoughts rather than the lecture content. This led some ed-

ucation scholars to conclude that techniques designed to minimize mind wandering

during lectures would have a positive impact on student retention (Smallwood &

Schooler, 2015). Their reasoning likewise holds that one of the failures of MOOCs

is their inability to incorporate such techniques; many MOOC users seem to simply

lose attention.

Can we really be sure that MOOCs’ inability to actively involve students or cap-

ture their attention is to blame? It seems intuitive to professors that this is the case

because we had first-hand experience of mind wandering during lectures, and likely

had personal experience of missing out on relevant lesson content at some point. Yet,

many of us can also recall having positive learning experiences from mind wandering.

For many, including the author of this dissertation, the mind wandering experience

has yielded moments of creativity or deep analytical insight into the lecture content

being delivered. There is an argument to be made that mind wandering or attention
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diversion may not be detrimental to education at all, and that mind wandering may

indeed play a crucial role in the attainment of a deep, critical education. It would fol-

low, then, that the inability to capture attention is not one of the causes of MOOCs’

failure, but something else entirely.

This dissertation takes steps towards answering the question of whether user atten-

tion and mind wandering has an impact on MOOC learning outcomes. The argument

being advanced is that the loss of student attention has a largely negative relationship

with rote learning and also that a person’s ability to pay attention plays a crucial

role in the efficacy of e-learning technology. The relationship between attention and

e-learning efficacy has only recently come to focus, possibly because we did not have

a good way to measure attention in the past. Much of the work on attention and

e-learning research (or in Information Systems broadly) has focused on behaviour or

self report, which is intrinsically problematic for this research problem. We instead

take a neurophysiological approach to explain the relationship.

1.1 Why Observe Neurophysiology in Information Systems Research?

The subject of Information Systems (IS) refers to the “socio-technical systems com-

prising of individuals or organizations and their interaction with business information

technology,” of which online learning technology clearly plays a part (Recker, 2012).

Though this dissertation explores specific observations about humans’ interaction

with MOOCs, a specific type of learning information system, it is also part of a

broader movement in the Information Systems field to incorporate the findings and

techniques of Neuroscience. This community of Neuro-Information-Systems (often

stylized “NeuroIS”) researchers seek to extend the enterprise of Information Systems

by incorporating Neuroscience as a reference discipline. The research in this disserta-

tion shares a number of motivations with the wider NeuroIS endeavour which should

be explained.

Many of the techniques employed in the discipline of Information Systems has its

roots in Psychology. Psychology research has been reliably conducted for nearly a

century, and has created theories about the relationships between mental states and

behaviours. Many of the greatest contributions in the Information Systems litera-

ture has likewise utilized these techniques to create theories that have explanatory
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power. However, though they are reliable, behavioural theories tell us little about

the antecedents of behaviours, particularly the antecedents that participants are not

consciously aware of. Riedl and Léger make this argument well, arguing that Neuro-

science tools can help overcome these limitations by accurately measuring the factors

that are the antecedents to behaviours, often with higher rates of accuracy than psy-

chometric or behavioural methods (Riedl & Léger, 2016). As we will see later in the

dissertation, the brain correlates are particularly relevant to attention-related con-

structs. Findings in neuroscience have discovered that attention consists of at least

three distinct processes, rather than one single intuitive process. This can offer great

insight into theories about the role of attention in information technology use.

A second motivation for our use of neurophysiological measures is practical. The

indicators that we employ give us a series of objective observations in real time.

Changes in attention processes are often gradual, and not easily consciously under-

stood by participants. The constructs that draw from attention processes (such as

mind wandering) are likewise best observed in real time. The ability to measure in real

time also has implications for the design of better information systems (Brocke, Riedl,

& Léger, 2013; Dimoka et al., 2012). Real time measures further open the possibility

of a passive brain-computer intferface (BCI), where user experiences change depend-

ing on the users’ brain signals. By employing machine learning with the neurophys-

iological data, we can create reliable adaptive systems that change user experience

without disrupting the user (Randolph et al., 2015). This factor is critical for certain

applications where distraction from the task is likely to disrupt the phenomenon that

we are measuring.

There is also a third motivation which has so far been largely ignored by the

academic information systems community, but is commonly discussed by a number

of prominent business leaders. There is a growing awareness about the transformative

impact of the recent generation of technologies and their impact on human society.

Many of these technologies promise to result in entirely new information systems.

Neurotechnologies have been specifically identified as one of the technologies with

the potential to drive fundamental social change in the near future. For instance,

Klaus Schwab, the founder and Executive Chairman of the World Economic Forum

wrote (Schwab, 2017, p. 98):
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The mind-boggling innovations triggered by the fourth industrial revolu-

tion, from biotechnology to AI, are redefining what it means to be human.

They are pushing the current thresholds of life span, health, cognition and

capabilities in ways that were previously the preserve of science function.

As knowledge and discoveries in these fields progress, our focus and com-

mitment to having ongoing moral and ethical decisions is critical.

Schwab calls this nexus of advances in biotechnology and AI the foundation of a

“Foruth Industrial Revolution” which is currently transforming how businesses and

institutions operate. Concerning neurotechologies specifically, he cites the poten-

tial for neurotechnologies to extend or improve human cognitive abilities as one of

the potential transformative impacts (Schwab, 2017, p. 171). Clearly, the potential

emergence of new information systems based on neurotechnologies is a motivation for

studying the potential ways such systems may emerge.

In short, the primary motivations for embarking on a neurophysiological approach

to this research subject of MOOC efficacy is that it offers new research methods to

tackle difficult questions, and may form the technical foundation new information

systems in the future. To the author of this dissertation, neuroimaging is fundamen-

tally a tool which is instrumental to pursuing information systems research. Though

much of this dissertation will focus on constructing new measures that draw heavily

on material from cognitive neuroscience and computer science, it is important to keep

in mind that the construction of these measures is not the ultimate goal of the disser-

tation. By leveraging insights from cognitive neuroscience, as well as from machine

learning, we can expand the horizons of the Information Systems discipline.

1.2 Thesis Statement and Research Contributions

This all said, the task before us is to conduct interdisciplinary research that draws

from the fields of Education, Neuroscience, Information Systems, Machine Learning

and to a lesser extent, Philosophy. Rather than solving the broad question of how

MOOCs should be optimized to meet users’ attentional needs, we focus on one par-

ticular attention-related construct, mind wandering, and whether neurophysiological

measures contribute to its measurement. The first fundamental question that this

thesis addresses can be summarized as:
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RQ1 Can neurophysiological measures be used to detect differences in mind wander-

ing during online lectures?

Fortunately, we are not the first to explore this question, as Braboszcz and De-

lorme discovered such correlates in a meditation study (Braboszcz & Delorme, 2011)

and Smallwood et al. observed correlates during a sustained attention response

task (Smallwood, Beach, Schooler, & Handy, 2008). However, it is unclear whether

these measures can translate into the MOOC context, as users are presented with

audio and visual stimuli which could confound the results. In Chapter 4, we describe

an experiment that validates these electroencephalography measures in a MOOC set-

ting. In the experiment, participants were asked to participate in a MOOC lesson

as auditory signals were administered by the computer. Participants were also asked

to report when they experienced mind wandering. Differences participant brain re-

sponses to auditory signals before and after the mind wandering response resulted

in a measure that can reliably distinguish between the two reported states. The

experiment then explores how machine learning can be used to create a real-time

neurophysiological measure that can classify these brain responses in real-time. Rec-

ognizing that measurement is only the first step in our motivation, we can articulate

the second questions as follows:

RQ2 Does mind wandering affect how well we learn from online lectures?

To the best of our knowledge, we are the first to explore this in the context of learn-

ing with a focus on mind wandering and the neurophysiology of attention using ERP.

In order to answer this question, we must also dive into the relationship between the

neurophysiological measures and those from more conventional Information Systems

research. Chapter 5 describes an experiment where participants again participated in

a MOOC lesson as auditory signals were delivered, but were instead probed for expe-

rienced mind wandering at various intervals throughout the lesson. Participants were

asked to complete tests on the MOOC topic before the lesson began, and were asked

to complete the same quiz afterwards. They were also asked to complete question-

naires on their perceived mind wandering and the related task load. In this study, we

use psychological questionnaires that have been used to measure mind wandering and

task load in the information systems context (Sullivan, Davis, & Koh, 2015; Hart &
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Staveland, 1988). We cross validate these with both learning outcome acquisition and

neurophysiological measures in order to explore both the research value of attention

neurophysiology in IS and the role of mind wandering on MOOC efficacy.

This rest of this dissertation is structured as follows. In Chapter 2 we discuss back-

ground literature from the four subject domains in the context of online lectures. We

begin that chapter by exploring dominant theories of learning, before exploring the

neurophysiology of attention, its relevance to information systems, and the technical

methods employed in this work. In Chapter 3, the detailed hypotheses and research

methodology used in this dissertation are discussed. Chapter 4 discusses the first

experiment, which establishes a real-time attention measure for MOOCs and other e-

learning applications. Chapter 5 describes the second experiment, which explores the

relationship between the neurophysiological measures, different psychometric mea-

sures and the attainment of learning outcomes. We then discuss the implications of

this research and conclude in Chapter 6, ultimately ending with a focus on future

research questions and the potential applications of this work to other IS domain

problems.



Chapter 2

Background and Related Work

Given that the task of this dissertation is to discover how neurophysiological indica-

tors of attention can lend new insight into e-learning efficacy, the research described

in this dissertation is fundamentally interdisciplinary. It draws on material from four

disciplines: Education, Neuroscience, Information Systems and Machine Learning.

Before proceeding, it will be helpful for readers to review the relevant material from

the various disciplines which this work draws from. Rather than reviewing the disci-

plines at length, this chapter discusses the relevant material with a particular focus

on how they inform the research in question. We will subsequently describe many

of the subjects mentioned in more detail, but we provide a broad discussion of the

subjects here. We take a narrative approach to this review, which not only makes

the material more readable, but helps drive the research motivation and methods

described in Chapter 3.

2.1 What Does Learning Theory Say About Online Lectures?

There has been considerable recent academic interest focused on the factors that affect

MOOC completion. In fact, in the journal Computers & Education alone, 36 papers

were published with the keyword “MOOC” or “MOOCs” in the first half of 2018.

When contrasted with 17 papers in in the entire year of 2017, we can confidently say

that there is a growing interest in the issue. Much of this research has revealed a

consistent story. The greatest factors behind student completion of MOOCs appears

to be the degree of interaction with instructors and other learners (Hone & El Said,

2016; Gregori, Zhang, Galván-Fernández, & de Aśıs Fernández-Navarro, 2018; Jung

& Lee, 2018), as well as the students’ motivation for learning from the MOOC in

the first place (Zhou, 2016; J. Zhang, 2016; Phan, McNeil, & Robin, 2016; Haslam

et al., 2019). The findings have overwhelmingly demonstrated that MOOCs with

high completion and success rates 1) have a higher degree of instructor to student

8
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interaction and 2) are taken by students with the expectation of some tangible credit

outcome. These have significant implications for the design of effective MOOCs and

their most effective uses.

These studies have focused largely on the nature of the study participants rather

than the design of the MOOC content. We will instead focus on the interaction

between individual participants and the content of MOOCs. Much of the work on

this subject predates the MOOC boom. As mentioned in the introduction, e-learning

is by no means a new subject, and has been a topic of interest to researchers since

at least the 1980s. In fact, famous MOOCs such as Udacity incorporate many of the

best practices developed during the early days of e-learning, in addition to findings

from recent research. In this section, we will explore four theories that have been

particularly influential on the advancement of e-learning and content design. We

shall see that the subject of attention and its measure is an important factor in all of

them.

2.1.1 The Cognitive Theory of Multimedia Learning

Perhaps the most cited theory of successful e-learning is the Cognitive Theory of

Multimedia Learning (CTML), which lays the foundation for many of the widely

cited best practices in online learning (Clark, Mayer, & Thalheimer, 2003). Advanced

by Mayer over the course of a long career, this theory broadly states that “people

learn more deeply from words and pictures than from words alone” (Mayer, 2009).

The reasoning makes intuitive sense and may seem unremarkable at first glance to an

uncritical reader. However, this theory goes a long way to explaining the potential

of rich multimedia for improving the learning experience, and for how a good MOOC

could be designed. The CTML is built on three assumptions which will be explained

in turn.

The first assumption is what Mayer calls the dual channel assumption. This as-

sumption is that “humans possess separate information-processing channels for visu-

ally represented material and auditorially represented material” (Mayer, 2009, p. 64).

This assumption explains how multiple media (i.e. words plus pictures) can affect

people differently than a single medium (i.e. just words). If we have different men-

tal or physical processes for different types of media, we can see how the interplay
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between the processes matter. Though, as Mayer rightly points out, the channels

can interact in the processing of abstract concepts, the channels investigate stimuli

different types of experiences separately.

The Dual Channel assumption is rooted in the work of Paivio, and his dual-coding

approach (Paivio, 2014). The dual-coding approach is a theory about how our brains

handle mental representations. It finds a distinction between how representations

are handled by verbal and non-verbal systems and argues that they are ultimately

coordinated by different brain networks. When related to Mayer’s thesis, this helps

explain not just the difference between auditory and visual stimuli, but also between

written words and pictures. According to Mayer, the result is that words and pictures

are processed by distinct systems, regardless of whether the words are written or said.

It likewise follows that there could be other distinct systems that are relevant the

dual-channel assumption, but they will not be discussed in this scope of multimedia.

The second assumption made by Mayer is the limited capacity assumption. This

assumption stats that “humans are limited in the amount of information that can be

processed in each channel at one time” (Mayer, 2009, p. 66). It explains how humans

can’t simply absorb information at an infinite capacity. Together with the dual-

channel assumption, it follows that it would be productive to break down learning

content into material for different channels, so that any one channel does not become

overloaded.

This assumption is rooted in Baddley’s conception of working memory and Sweller’s

theory of cognitive load (A. D. Baddeley & Hitch, 1974; A. Baddeley, 1992; Sweller,

1988, 1994). Working memory is an intuitive concept, and was perhaps most best

demonstrated though a digit span test. Miller famously demonstrated that healthy

people cannot retain more than five to seven digits at a time (Miller, 1956). Though

you can train yourself to develop some sort of strategy to remember chunks of infor-

mation (i.e. remember “56” instead of “5” and “6”), Miller showed that there are

limits to working memory. Baddeley’s concept of working memory roots it in the

brains’ central executive system, which controls the allocation of cognitive resources.

Sweller’s theory of cognitive load takes this further. Where working memory is

responsible for processing and retrieving task-relevant information, Sweller’s model

asserts that the use of working memory also plays a role in the acquisition of new
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knowledge (Sweller, 1994). According to Sweller, when working memory is engaged

in effort to understand a concept, the concept is eventually abstracted into a schema.

More complex ideas can in turn be assessed using memory and further abstracted,

which explains how education works. Too much strain on working memory will like-

wise prevent abstraction from taking place.

Sweller later distinguishes intrinsic, extraneous and germane cognitive load; three

types of cognitive load that each play different roles in learning (Sweller, Van Mer-

rienboer, & Paas, 1998). Intrinsic cognitive load describes the absolute difficulty of an

activity, while extraneous cognitive load describes the mental effort dedicated to the

instruction presentation, and germane load describes the effort required to abstract

a concept into a schema. This later distinction helps further inform the Cognitive

Theory of Multimedia Learning (CTML) by lending support for the careful design of

the multimedia. By keeping the stimuli simple and not unnecessarily rich, it follows

that extraneous load is limited, devoting more resources for the process of schema

formation.

The third assumption described by Mayer is the active processing assumption.

This assumption states that “humans actively engage in cognitive processing in order

to construct a coherent mental representation of their experiences” (Mayer, 2009,

p. 67). Like Sweller’s concept of a schema, the active processing assumption holds

that humans are naturally in the business of creating abstractions. Unlike Sweller’s

theory, the Active Processing assumption holds that abstraction is a series of processes

rather than one process limited by the central executive system.

Mayer also holds that there are three processes essential for active learning: select-

ing relevant material, organizing selected material, and integrating selected material

with existing knowledge. The first of these is fundamentally an attention process. Se-

lecting relevant material “occurs when a learner pays attention to appropriate words

and images” in the material currently being digested into the central executive sys-

tem (Mayer, 2009, p. 70). When the learner switches to organizing the material, she

or he then arranges the presented material conceptually before making connections

and integrating it with past experience. The result is new knowledge.

Though all three of the CTML’s assumptions are rooted in well studied phenom-

ena in the learning literature, the final active processing assumption is particularly
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interesting because the relationship between active learning assumption and learner

attention is not explicitly stated by Mayer (2009). Though it makes sense that learn-

ers should be actively engaged in order to learn, it is clear that not all learners are

in fact attending to a given lesson. The CTML merely assumes that they are. If the

CTML alone was sufficient to predict learning success, MOOCs would not suffer from

the problems of low retention and completion.

In later work, Mayer raises limitations to the CTML and builds on this cri-

tique (Mayer, 2014). Though there is evidence that effective learning requires the

limitation of extraneous cognitive load, he mentions that the CTML can be extended

by investigating principles that foster motivation and generative processing. One such

way the CTML could be complemented is with teaching techniques designed to en-

gage, capture or sustain attention, or attention-related phenomena. As pedagogues,

it is an age old problem. Engaging all students in a given lesson is very difficult

and perhaps is a problem that is increasingly prevalent in a world where multimedia

is ubiquitous. Attention therefore offers a potential area of enquiry for extending

e-learning best practices established by the CTML.

2.1.2 Active Learning and Student Engagement

Another prominent theory that can be extended by a robust study of attention is

active learning. A great deal of proverbial ink has been split on developing teaching

techniques that involve students in novel ways, and not all of it has been written in

the shadow of Mayer’s seminal work. The concept of active learning, has been par-

ticularly influential in the movement to innovate in the classroom. Active learning

theories build on similar reasoning as Mayer’s active processing assumption, and de-

scribe techniques to find ways of engaging students’ interest or attention by making

them active in the learning process (Young et al., 2009). For instance, Young et al.

describe vigilance decrement, a gradual decrease in student vigilance during lectures

that exceed 10 to 30 minutes. They find that the loss of vigilance negatively impacts

learning outcomes. They also make recommendations about how to combat the vig-

ilance decrement using multimedia, as well as interactive feedback or in-class group

work.

This is what motivates criticism about the design of MOOCs from the perspective
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of active learning. As discussed in the introduction, Ubell’s criticism of lecture-style

MOOCs is that they not only failed to incorporate best practices in their design, but

that they failed to use the full potential of multimedia to engage students (Ubell,

2017). Freeman et al. conducted a meta analysis of the active learning literature and

found that classrooms which employed active learning saw on average 6% higher test

scores and had 50% higher completion rates (Freeman et al., 2014). In that study,

they defined active learning activities to include cooperative group activities, clickers,

problem-based learning, in-class worksheets and studio classrooms. For the purposes

of their study, papers which included at least one of these techniques for during 10%

and 100% of the class time were considered to be using active learning techniques.

They were contrasted with traditional lectures and participants in courses which

incorporated active learning lectures were found to perform better on examinations.

These findings will not be surprising to experienced university teachers, who have

likely experienced student disengagement during lectures firsthand.

In business and technology classrooms, active learning is particularly important

and is employed to teach concepts that are either intrinsically uninteresting to their

students, or technically complex. For instance, big data infrastructure has been

recognized to be crucially important for Management Information Systems students,

but is quite detached from the regular business school curriculum (Phillips-Wren, Iyer,

Kulkarni, & Ariyachandra, 2015). An alternative approach to traditional lecture

could be to use hands-on analogy, which employs a number of the aforementioned

techniques to overcome technical barriers while helping maintain student attention.

Analogy has been implemented in the teaching of science to facilitate inferential

learning of complex concepts (Niebert, Marsch, & Treagust, 2012; Treagust & Duit,

2015). For instance, when teaching the concept of cell division to high school students,

a teacher can use the analogy of breaking a piece of chocolate to represent how cells

can be divided. The analogy of chocolate is an interactive, if imperfect analogy. Like

cells, the chocolate bar can be divided multiple times into many pieces. Unlike cells,

the pieces of chocolate become smaller. Such an activity interactively illustrates a

concept similar to the one being discussed, but the nominal flaws with the analogy

foster meaningful discussion on the concept.

In a forthcoming paper, we explore the application of hands-on analogy to the
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Management Information Systems classroom (Conrad, Bliemel, & Ali-Hassan, 2019).

The paper describes Hadoop Hands On, a technique for teaching students about the

MapReduce algorithm using playing cards. MapReduce is an algorithm for perform-

ing distributed computer processing tasks through a computer cluster, and has played

a key role in the expansion of big data. Understanding the technical details of Hadoop

requires knowledge of computer science, which most management students lack. By

using analogy, students were able to form abstractions about the key concepts without

having technical knowledge. By having an interactive component, the classroom was

able to facilitate learning by drawing students into the exercise. Drawing students

in this way theoretically better captures their attention and fosters reflection on the

teaching material. The study also revealed that a key contribution to students’ learn-

ing success was the study’s ability to trigger flow, another attention-related construct.

We shall explore flow in detail, as it has played a role in a number of innovations in

interactive multimedia learning and is related to the central argument of this disser-

tation.

2.1.3 Flow and the Facilitation of Active Processing

The concept of flow was originally proposed by Csikszentmihalyi in the early 1990’s,

and has since been influential in various disciplines ranging from online learning to

information systems to youth sport psychology. Flow, in its original conception, de-

scribed a state under which individuals are intrinsically motivated to engage in an

activity and in a state of deep attention to it (Csikszentmihalyi, 2014). Csikszent-

mihalyi suggests that the flow state is fundamentally enjoyable, but also constitutes

a deep absorption in an activity. Flow can be triggered by activities such as “play,

art, pageantry, ritual and sports” but also by the play of ideas, philosophy and the

acquisition of new knowledge. In this final respect, flow could be experienced in the

conditions that make learning possible. For those of us who have taken up higher

learning as a vocation, we may deeply relate to this notion, as many of us find the act

of learning to be intrinsically motivating. In this way, it is easy to see the potential

interplay between flow and the active processing assumption; students are more likely

to actively process information if they are intrinsically motivated to stay on task.

Past work on measuring flow in learning situations is varied. Conventional work
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on the subject involves creating psychometric scales to measure participant percep-

tions of flow following an experience, and studying its relationship to the attainment

of learning outcomes (Jackson & Eklund, 2004; Ullén et al., 2012). Perhaps most

notable, Jackson et al. (2004) published the The Flow Scales Manual which is a

collection of psychometric scales used to capture flow. In the Information Systems

literature, the cognitive absorption scale developed by Agarwal and Karahana has

been extensively utilized to observe the role of the cognitive absorption construct and

technology use (Agarwal & Karahanna, 2000). The Cognitive Absorption construct

is closely related to flow, and is rooted in Csikszentmihalyi’s theory.

Flow and cognitive absorption have been used to study the effectiveness of e-

learning technologies, and especially the category of technologies referred to as “seri-

ous games”. Serious games are games used to teach a concept, and usually take the

form of interactive video games that leverage simulation. These technologies have

been observed to have a positive impact on the classroom learning environment (Lu,

Hallinger, & Showanasai, 2014), and their ability to trigger flow or cognitive ab-

sorption is often claimed to be one of the reasons for this (Léger, Davis, Perret, &

Dunaway, 2010). The reasoning behind this is that they draw users into an engaging

experience that triggers flow, and in doing so reflect a higher degree of engagement

and active processing.

However, there is a major limitation with measuring flow using conventional

scales administered following an extended experience. Flow is an state that hap-

pens throughout a given period of time, and a person can expect to enter and leave

the flow state multiple times throughout that observed period. Hoffman and Novak

attempted to measure flow for the purposes of e-commerce and online marketing, but

it proved to be too elusive to be useful (Hoffman & Novak, 2009). Research which

utilizes the post-hoc flow scales are severely limited in what they measure, as they

measure people’s post-hoc perceptions of experienced flow rather than the actual flow

experience.

A potential solution to this is to employ a real-time questionnaire measure. Pearce

has suggested one such measure, specifically in the context of online learning (Pearce,

Ainley, & Howard, 2005). The Pearce measure consists of a simple ratio of per-

ceived challenge and skill, inspired by Csikszentmihalyi’s original conception of flow.
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However, this measure remains subjective, relying on participant’s perceived balance

between challenge and skill. Perhaps more worrying is that the measure is disruptive

and requires researchers to remove people from the flow state in order to measure it.

A second category of research on this subject involves identifying psychophysio-

logical correlates of the flow state and measuring these when the flow state is expected

to be triggered. Measures that leverage tools such as electroencephalography (EEG)

and electrodermal acivity (EDA) have been found to be correlated in both the class-

room learning and e-learning learning contexts (De Manzano, Theorell, Harmat, &

Ullén, 2010; Léger, Davis, Cronan, & Perret, 2014). Léger et al. (2014), who explored

ways to measure the flow state using electroencephalography, is of particular interest

because they also measure the correlates of cognitive absorption in the context of a

serious game. By observing patterns of neural oscillations and electrodermal activity,

they establish correlates of cognitive absorption which can overcome the limitations

described by Hoffman and Novak (2009). Using psychophysiological measures they

were able to measure correlates objectively and better understand the constituent

processes that comprise the flow construct. Léger et al. (2014) ultimately found cor-

relations between alpha band activity and flow, which we shall see is also correlated

with attentional processes. A robust study of attention therefore has the potential

of giving a deeper and more specific understanding of how constructs such as flow

facilitate successful learning.

2.1.4 The Role of Mind Wandering in the Classroom

Another parallel line of inquiry has been the work on the relationship between mind

wandering, on-task thought and successful learning. As we saw in the introduction,

this has been explored in the context of learning before. Mind wandering refers

to a series of processes commonly referred to as “daydreaming,” or “spontaneous

thoughts”, and has been proposed to play a role in human cognition, particularly in

the routine consolidation of past experiences (Christoff, Gordon, Smith, & Vancou-

ver, 2011). Mind wandering has been of recent interest to the academic psychology

community (Drescher, Van den Bussche, & Desender, 2018; Gonçalves, Carvalho,

Mendes, Leite, & Boggio, 2018) and has also been observed in the applied context of

driving, where it is demonstrated to have a negative impact on performance (Baldwin
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et al., 2017; Y. Zhang & Kumada, 2017). At first glance, it would seem obvious that

mind wandering contrasts with active processing related to learning content. After

all, attending a lecture seems to be a sustained attention task. When students’ minds

are wandering, attention away from a lesson or task and toward something else.

There is considerable research which suggests that mind wandering does indeed

occur in the higher education classroom environment, and that it indeed has an over-

all negative impact on student performance. Lindquist and McLean examined the

impact of daydreaming and task-unrelated thoughts on the success of learning out-

comes (Lindquist & McLean, 2011). In that study the authors used a combination

of self report and experience samples during a lecture, and compared the measures

to academic performance at the end of term. They found significant negative cor-

relations between task-unrelated thoughts and academic performance. It follows to

reason that mind wandering can be disruptive to education and should be limited,

which is a conclusion similarly shared by experts on mind wandering, such as Small-

wood and Schooler (2015). However, though recent research has reaffirmed that mind

wandering has a negative impact on student performance, it has also established that

our intuitions about the ubiquity of mind wandering may be incorrect (Wammes,

Boucher, Seli, Cheyne, & Smilek, 2016; Wammes, Seli, Cheyne, Boucher, & Smilek,

2016; Wammes & Smilek, 2017). Wammes et al. (2016a) found that rates of uninten-

tional mind wandering during live lectures were low at 14% of probes and that mind

wandering did not increase as the lecture went on.

There is also evidence that performance during online lectures is worse than live

lectures and that this may be due to mind wandering. In 2012, San Jose State Uni-

versity launched a partnership program with Udacity where students were offered the

opportunity to either take introductory mathematics or statistics courses live or using

Udacityś platform. Students who took the course for credit and used Udacity’s plat-

form were found to be significantly less likely to complete or pass the course (Firmin

et al., 2014). Wammes and Smilek (2017) later investigated the differences between

in-person lectures and their online counterparts and found that online lectures follow

a different trend than live lectures, with participants reporting higher degrees of mind

wandering as the lecture went on. Using a five-point Likert to measure degrees of

mind wandering, they compared groups enrolled in a live version of a lecture with
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those enrolled in an online video. They found that participants enrolled in the video

were significantly more likely to report heightened degrees of mind wandering later in

the video (after 51 minutes) but those enrolled in the live lecture reported decreased

mind wandering (Wammes & Smilek, 2017).

Curiously however, the Wammes and Smilek study did not find evidence to sup-

port that mind wandering affected academic performance poorly, and it remains to

be seen whether mind wandering actually inhibits learning. A comprehensive re-

view of the costs and benefits of mind-wandering was conducted by Mooneyham and

Schooler, and had specific interest in the context of learning and the question about

whether mind wandering inhibits it (Mooneyham & Schooler, 2013). The review

found that mind wandering negatively impacts reading and aptitude performance,

attention, model building and working memory performance. This is a considerable

span of outcomes, and though many of these were explored by the other theories, it

lends considerable evidence for the role of mind wandering in the education process.

Perhaps the best evidence for this was the review’s finding that mind wandering

plays a positive role in autobiographical planning and creative problem solving. In

a later study, this relationship was further corroborated, as researchers found poten-

tial benefits of mind wandering to creativity, specifically in the online learning and

information technology context (Sullivan et al., 2015). Rather than simply being a

negative phenomenon, mind wandering can have positive benefits. Recent research

on this subject expands on these findings and suggest that mind wandering may not

be detrimental to learning at all (Wammes, Seli, & Smilek, 2018). As Wammes et

al. argue, the distinction between intentional and unintentional mind wandering may

be to blame, as much of the extant research does not make this distinction. In their

work, they find that students who experience mind wandering exhibit poor task per-

formance, while unintentional mind wandering was actually associated with higher

test scores in the long run.

Though mind wandering is a distinct observable phenomenon from the first per-

son perspective, the considerable similarity among the observed learning impact and

the other theories thus far explored should give us pause. The precise reasons why

mind wandering negatively impacts learning remains unclear, in part because mind-

wandering is not a concrete concept. Smallwood and Schooler shed light on this issue
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and asserts that mind wandering can be incorporated into models of executive atten-

tion and attentional control (Smallwood & Schooler, 2006). They observe that mind

wandering is likely to occur when the primary task does not require executive control,

and that the negative relationship between mind wandering and executive functioning

supports such a relationship. They speculate that mind wandering involves redirecting

executive attention away from the primary task to personal goal-oriented processing.

2.1.5 The Attention Lynchpin

This discussion about the relationship between attention and these four distinct areas

of learning research leads us to the core subject of this dissertation. All four of the

learning theories explored in this review hinge on a learner’s ability to pay attention.

The active processing assumption of the Cognitive Theory of Multimedia Learning

requires that participants are attending to the lesson. Active learning techniques are

designed to draw and maintain participant attention. The flow state is rooted in a

deep state of attentiveness where a subject is intrinsically motivated to participate in

an activity. Mind Wandering disrupts flow and is a state of reduced attention to the

task. The concept of mind wandering is therefore fundamentally understood to be a

function of our attentional processes. Participant attention is clearly fundamental to

the successful attainment of learning outcomes and could play an essential role in the

explanatory power of prominent e-learning theories. It thus follows that an inquiry

into the role of attention in the success (or failure) of MOOCs would have significant

implications for the design or implication of future MOOCs.

This should not be surprising to us. Many of the learning theories explored thus

far come from a cognitivist paradigm, which hold that learning is fundamentally an

association building process. Attention has been identified to play a critical role

in this process, serving as an intermediary between stimuli and the formation of

associations (Mitchell & Le Pelley, 2010). We thus have a string motivation for

studying attention.

In order to pursue an inquiry into the relationship between MOOCs and attention

however, we must first construct a functional understanding of the concept attention

in the first place. As we shall see, this inquiry will reveal a gap in the literature

which can only be filled by stretching across the subjects of cognitive neuroscience,
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information systems, and machine learning. We shall now explore the neurophysiol-

ogy of attention before moving into how attention has been observed in Information

Systems research and how new technologies can be constructed to measure it.

2.2 The Neurophysiology of Attention

Attention is an enduring subject of inquiry, particularly in Psychology and Neuro-

science. Before its contemporary conceptualization, it was investigated by philoso-

phers, particularly by early modern philosophers in the Rationalist and Empiricist

traditions (Mole, 2017). Descartes in Meditations, for instance, alludes to the phe-

nomena of attention and memory to justify how clear and distinct ideas cannot be

doubted (Descartes, 1984). 17th century Empiricists such as Locke argued that all

knowledge is rooted in observed phenomena, and that attention is one of the mecha-

nisms that makes knowing possible (Locke, 1689). To this day attention continues to

play a crucial role in philosophical discourse about the nature of consciousness and

its role in the human mind.

Psychological conceptions of attention begin with William James, one of the pio-

neers of the field. James investigated the phenomenology of attention and identified it

as a single function to focus on “one out of what seem several simultaneously possible

objects or trains of thought” (James, 1890). Distinct from his concept of the stream of

consciousness, James conceptualized attention is the mechanism by which particular

experiences are singled out from other experiences. Extending beyond the philosophi-

cal empiricists’ understanding, James also identified attention as a distinct process of

the sensory organs, where such organs adjust to particular objects within the greater

stream of consciousness. This view of attention benefits from being intuitive and

simple, which may be one of the reasons why it is so enduring.

However, modern neuroscience has demonstrated that attention is significantly

more complex than James’ conception. Rather than a single mechanism, attention is

a number of cognitive processes that work together to yield the attention phenomenon.

Though there is some evidence to suggest that different organs do indeed have dif-

ferent attention mechanisms (eg. auditory, visual), there is significant evidence to

suggest the existence of distinct brain networks that govern the sub processes of
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attention (Montemayor & Haladjian, 2015). Though there are different models of at-

tention, we will focus on the the Posner attention networks model, a well-established

and perhaps dominant model, which is grounded in extensive experimental evidence

in visual and auditory attention (Posner & Rothbart, 2007; S. E. Petersen & Posner,

2012).

2.2.1 The Attention Networks Model

An attention network is a network of neurons that govern one of the functions of atten-

tion. We can learn about the existence of an attention network using neuroimaging,

but we need not do so. The original attention networks model advanced by Posner

was established by observing cognitive functions. This is what Posner did in his

groundbreaking Orienting of Attention where he established the distinct orienting

function (Posner, 1980). Many of the studies used to justify this conclusion used a

cuing task designed to compare reaction times to stimuli. By comparing reactions

of healthy and brain injured humans, Posner was able to establish the existence of

a distinct neural mechanism for attentional orienting long before the development of

fMRI.

These accounts of distinct attention networks eventually led Posner to propose a

three function model, where the attention phenomenon is composed of three inter-

dependent but distinct functions: alerting, orienting and executive control. Alerting

describes the function of maintaining a high degree of sensitivity to stimuli, but is

also distinct from general arousal. Orienting describes the process of aligning with

the source of sensory signals. Executive control functions govern the resolution of con-

flict among stimuli, and which stimuli to focus on. Though there are other models,

these three distinct functions continue to form the foundation of a number of ongoing

research programs in attention and neuroimaging, as well as clinical work.

The alerting network was originally identified by observing sustained vigilance

in behavioural studies and was eventually correlated with brain stem activity and

networks in the right hemisphere (Posner & Rothbart, 2007). Though scholarship on

the alerting functions has expanded from the original model, much of the research

has corroborated alerting as a distinct network (S. E. Petersen & Posner, 2012). In

most experiments and in real world scenarios, the alerting function is almost always
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observed in conjunction with orienting. This has led some scholars to question the

independence of the networks (Fan et al., 2009). However, a comprehensive review on

the role of norepinephrine and acetylcholine has been conducted for its role in ADHD

maintenance. Norepinephrine has been observed influencing orienting functions, but

not alerting (Beane & Marrocco, 2004). This lends considerable support for the notion

of alerting as a distinct function of the brain, even if it interacts highly with orienting

functions.

Orienting governs the fundamental mechanism of feature selection, an important

and somewhat mysterious phenomenon which was the original topic investigated by

Posner (Posner, 1980). In Posner’s original conception of the network, orienting was

observed in association with a distinct brain region in the pulvinar and superior col-

liculus (Posner & Petersen, 1990). Recent work on this subject has challenged the sim-

plicity of the original conception, and suggests that orienting is much more complex.

Corbetta and Shulman have reported orienting to be associated with a frontoparietal

network and the dorsal system, where the frontoparietal network works as a sort of

“circuit breaker” for the dorsal system, which generates the salient events (Corbetta

& Shulman, 2002). Other research has found all types of orienting to be associated

with frontal eye field activity in the frontal cortex (Thompson, Biscoe, & Sato, 2005).

This suggested that visual attention may have a distinct premotor ocular component.

However, recent research has called the distinction of unique visual orienting networks

into question (Smith & Schenk, 2012).

Orienting is often further contrasted between overt orienting and covert orienting

in addition to visual/non-visual. Overt orienting is the act of attending to a specific

location by moving the eyes to that location. Covert orienting is the act of shifting

attention without physically moving eyes (Posner, 1980). There is considerable ev-

idence to suggest that these are distinct, if highly similar neural networks, or rely

on a single network and distinct additional mechanisms (R. Klein, Kingstone, &

Pontefract, 1992; Corbetta et al., 1998). More recent work has largely supported this

view. For instance, some research has found that eye movements enhances object dis-

crimination. This suggests that overt orienting follows either an enhanced or distinct

neural process (Harrison, Mattingley, & Remington, 2013).

Of the three attention functions conceptualized by Posner (1990), executive control
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has been most subjected to change. Executive control was originally conceptualized

to describe target detection, and in doing so explain the limited capacity of attention.

Posner and Petersen found this function to be associated with connections between

the medial frontal and anterior cingulate cortex (Posner & Petersen, 1990). These

findings are intuitive, as these are also areas of the brain that are also correlated

with decision making and reward. Recent understandings of executive control have

expanded on this original conception considerably. Prominent theories suggest at

least two separate executive control networks, as evidenced by studies which reveal

distinct frontoparietal and cingulo-opercular networks (S. E. Petersen & Posner, 2012;

Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008). Top-down regulation, which

are brain mechanisms that govern other brain mechanisms, have been shown to play

a role in the executive control process.

There are many other theories of executive control that have emerged since. One

conception that is particularly relevant to this work is the conception of executive

control as a function of working memory or as a component of the working memory

network. The reasoning is that executive control has a capacity, so it would make

sense if it was a function of working memory. Though some theories of executive

control and working memory recognize it as many distinct smaller networks, each

for different domains (i.e. visual, auditory) (Luck & Vogel, 2013) the dominant view

seems to be a single underlying mechanism that unites them. Engle posits working

memory as equivalent to executive attention as evidenced by the correlation between

working memory and attentional control tasks (Engle, 2002). Other evidence for

this relationship is the strong correlation between working memory capacity and

executive functioning constructs, suggesting a common underlying executive attention

component (McCabe, Roediger, McDaniel, Balota, & Hambrick, 2010).

If this is true, the distinction between the three attention networks has implica-

tions for learning experiments and similar information systems problems. Working

memory capacity, which is the underlying mechanism behind cognitive load, can be

conceptualized as a significant part of a student’s ability to attend to a stimulus. The

dominant multimedia and active learning theories were thus correct to account for

this, and may account for executive attention well. However, this is only one part of

attention. The learning theories did not account for alerting and orienting functions,
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and these may play a large role in the successful design of learning multimedia.

2.2.2 Measuring Attention Networks Using Cognitive Tests

As mentioned previously, attention networks have been primarily measured by using

cognitive tests that observe responses, such as reaction time, to stimuli. The Posner

cuing task, for instance, was developed to measure and demonstrate the existence

of a unique orienting network (Posner, 1980). More recently, the Attention Network

Test (ANT) created by Fan et al. has been the most prominent example of a method

to test the distinct attention networks (Fan, McCandliss, Sommer, Raz, & Posner,

2002; Fan, McCandliss, Fossella, Flombaum, & Posner, 2005). The ANT uses a

combination of flanker tests, which are designed to measure response inhibition, as

well as cuing tasks demonstrated to measure orienting. In the ANT, participants are

asked to respond as quickly and accurately as possible to the tests, and these measures

are used to measure the efficiency of the respective systems. The attention networks

are differently engaged by uninformative (alerting) or informative (orienting) cues, as

well as by flanking arrows that are either congruent or incongruent with the target

stimulus (executive control).

There are some limitations with the ANT as developed by Fan (2005). The first

is that the alerting and orienting networks are both observed though the cue condi-

tion, meaning that we cannot identify potential interaction between the two networks.

Further, the nature of the task does not account for potential exogenous and endoge-

nous components of orienting, given that the attention is fixated at the center of

the screen (R. M. Klein, 2004; Ishigami & Klein, 2009). Second, though the ANT

has been consistently demonstrated to be a reliable attention measure (Ishigami &

Klein, 2011; Ishigami et al., 2016), there are components of attention, particularly

executive attention, that it does not take into account. In response, researchers

have developed alternatives to the original ANT that account for some of these criti-

cisms (Callejas, Lupianez, Funes, & Tudela, 2005) or have developed expanded tests.

The Dalhousie Computerized Attention Battery (DalCAB) is an example of such an

attention battery, which uses eight reaction time tests, with additional measures such

as vigilance (Jones et al., 2016). Moving forward, ANT and related cognitive tests can

provide useful measures of attention that can be correlated with learning contexts.
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2.2.3 Investigating Attention Networks using Neuroimaging

Much of the work on attention networks is validated through neuroimaging such

as functional magnetic resonance imaging (fMRI), but also using positron emis-

sion tomography (PET), electroencephalography (EEG) and magnetoencephalogra-

phy (MEG). Perhaps the most notable neuroimaging studies on attention networks

was completed by Posner and Petersen before the advent of fMRI. (Posner, 1987;

S. Petersen, Fox, Miezin, & Raichle, 1988; Posner & Petersen, 1990). By interpreting

the results of animal studies, behavioural studies and on human participants with

disorders caused by brain injury, researchers advanced the three networks model pre-

viously described. Later, when Posner revisited this early work, he reflected that they

were surprised evidence for this model gained evidence and additional support over

time, especially when fMRI became mainstream (Posner & Rothbart, 2007).

After the discovery of fMRI however, much of the research investigating attention

networks came from fMRI brain imaging. As previously described, work by Fan et al.

(2005) on the attention networks test has given the Posner and Petersen model addi-

tional support. Alerting has been found to be associated with thalamic and anterior

activation. Orienting is found at parietal sites, as well as near ocular regions of the

brain. Executive attention is observed in the anterior cingulate. Given the benefits of

source localization and the identification of attention networks, there are clear ben-

efits to using fMRI in attention research. However, fMRI still has some limitations,

especially the limited number of applications that can be tested in an fMRI environ-

ment. In IS research in particular, electroencephalography (EEG) (and consequently

MEG) correlates may be more useful because of their potential in ecologically-valid IS

contexts (Riedl & Léger, 2016). It may also be able to give more insight into changes

in attention over time given the poor temporal resolution of fMRI.

The P1-N1-P2 complex complex is a mandatory event-related potential (ERP)

response triggered by early attention control mechanisms. This complex is sensitive

to both visual and auditory stimuli, and is observed in the occipital regions of the

brain (Hillyard, Hink, Schwent, & Picton, 1973; Hillyard, Vogel, & Luck, 1998). When

a stimulus is detected by the auditory or visual system, this pattern of electrical po-

tentials can be observed at 100-220ms. Attended auditory stimuli can be observed
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Figure 2.1: A hypothetical P1-N1-P2 complex waveform

having higher electrical amplitudes from this response (Teder-Sälejärvi, Münte, Sper-

lich, & Hillyard, 1999). This response can also be observed having higher electrical

amplitudes to so-called oddball paradigm stimuli, which are stimuli that are differ-

ent from those repeated throughout the duration of an experiment (Luck, 2014).

Early negative electrical potential responses from this complex have been found to

be associated with alerting, and have been observed during the Attention Network

Test (Posner & Rothbart, 2007). The P1-N1-P2 complex is thus a useful neurophys-

iological response that can be used to observe alerting and orienting networks in the

context of human-computer interactions.

A second EEG component that is common in attention research is the P3 compo-

nent component. Where the P1-N1-P2 complex is triggered by alerting and orienting

functions at the onset of all detected stimuli, the P3 component is associated with

later attention. The P3 response occurs immediately following the P1-N1-P2 re-

sponse, typically between 250-500 ms, and has been demonstrated to be driven by

the activation of orienting networks (in the case of the P3a subcomponents) or of

executive attention and updating in working memory (in the case of the P3b sub-

component) (Polich, 2007). Research with the ANT has demonstrated that the P3

is also evoked during cuing tasks, and is observed in association with attention ca-

pacity (Petley et al., 2018). The study of the P3 response can thus also be a useful

neurophysiological indicator to observe executive functions.

A final measure that can be detected with electroencephalography (EEG) are the

patterns of oscillatory activity. Neural oscillations are the thought to be the result
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of the central nervous system, and have been noted for their usefulness in measuring

constructs that are relevant to IS research, such as vigilance or relaxation (Riedl &

Léger, 2016). In attention research, oscillatory activity activity at the beta (13-30

Hz) and gamma (30-100 Hz) bands has been found associated with executive atten-

tion, as well as working and long-term memory activation (Tallon-Baudry, Kreiter, &

Bertrand, 1999; Jensen, Kaiser, & Lachaux, 2007). Lower frequency alpha band ac-

tivity (7-12 Hz) have also been observed in conjunction with orienting and attentional

suppression (Klimesch, 2012), suggesting that the activation of attention mechanisms

may be associated with higher band activity.

Oscillatory measures have also been observed in the context of mind wandering.

Braboszcz and Delorme (2011) observed increases the band activity correlates be-

tween mind wandering and on-task states during a meditative task. They observed

increased oscillatory activity at the delta and theta bands and decreased activity at

the alpha and beta bands when participants reported mind wandering. However,

other studies have found different associations, such as a relationship between in-

creased alpha activity and mind wandering during a driving task (Baldwin et al.,

2017), as well as increased somatosensory alpha rhythms when successfully avoid-

ing mind wandering during a meditation task (Brandmeyer & Delorme, 2018). This

suggests that the presence of mind wandering may generate different frequency band

activity depending on the task that participants have been given. Activation of at-

tentional mechanisms, and consequently the alpha activity associated with it, may be

useful correlates of mind wandering or on-task states depending on the experimental

task.

2.3 Bridging the Gap Between Neuroscience and Information Systems

Thus far we have explored learning theories and the neurophysiology of attention.

However, as mentioned in the introduction, this dissertation is fundamentally about

Information Systems (IS) and merely draws on this knowledge to achieve IS research

goals. The subject of Information Systems is an applied discipline, focusing on so-

ciotechnical systems compromising on the interaction between humans and informa-

tion technology. In IS scholarship, it can be easy to be distracted by the technology



28

or reference discipline, and to lose sight over the fact that IS is fundamentally a so-

cial science focused on technology use (Recker, 2012). As with all social sciences, IS

scholars must cope with the imprecision and ambiguity implicit with social science

endeavours. This has motivated IS researchers to create methods that primarily focus

on predicting human behaviour rather than explaining its natural causes. IS scholars

are often content to observe latent variables rather than the natural forces that are

the foundation of those variables in the first place. Though this is a generalization

of an entire discipline that by no means applies to all IS research, it most certainly

applies to the portion of IS research conducted on the topic of attention. Though

there are many potential applications for improved attention measures, perhaps the

most promising is the improvement of existing IS constructs. We shall briefly explore

some of these constructs and suggest how the discussion thus far can inform their im-

provement. We will then discuss the specific constructs explored in this dissertation.

2.3.1 Attention-Related Information Systems Constructs

There are a number of IS contexts where the study of attention is relevant. Perhaps

most notably, attention has been interesting to IS researchers working in the context

of e-commerce, where it has also been studied as a significant factor in visual search.

The first study where this is found observes an attentional capacity construct (Hong,

Thong, & Tam, 2004). Drawing on the work of Khaneman, the study’s attentional ca-

pacity construct was designed to account for central capacity theory, which describes

how when mental resources are spent suppressing a stimulus, such as the interference

of a flash animation, less attention will be available to process non-flashed items,

consequently limiting participantś ability to recall the information they were tasked

with (Kahneman, 1973). Similar to extraneous cognitive load as described by Sweller

and the CTML described by Mayer (Sweller, 1994; Mayer, 2009), Kahnemanś theory

envisions attention as a limited capacity. The attentional capacity construct described

by Hong et al. (2004) uses a combination of ex post questionnaire measures related

to cognitive absorption and concentration, as well as success rates at an information

recall task to account for limitations in attentional capacity. In hindsight, the phe-

nomena observed by Hone et al. (2004) could also be explained by cognitive load

theory, and not necessarily by drawing from attentional processes such as orienting
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or executive control as described thus far. Later studies in this subject have taken

similar approaches to attention, drawing from Kahneman or related literature. For

instance, attentional capacity has been used to explain variances in e-commerce task

performance and measure using total numbers of clicks (Tam & Ho, 2006) or by the

results of online auctions (Tan, Yi, & Chan, 2008).

Another topic of interest related to e-commerce has been the subject of online wait

times. Lee et. al (2012) likewise drew from resource allocation theories of attention,

but also “competition for attention” theories from consumer research (Lee, Chen, &

Ilie, 2012; Janiszewski, 1998). These theories hold that focal and non-focal objects

compete for attention in a visual field, and that the way stimuli are presented will

impact attentions’ limited capacity. The result was an attentional capacity construct

that could account for the impact of online wait times on bounce rates. Curiously, Lee

et al. note that only a handful of IS researchers have successfully applied this theory

to find a significant effect (Lee et al., 2012). The following year, Hong et al. would

call for a new way for e-commerce researchers measure attention in the context of wait

times, focusing on the subjective experience of waiting rather than the objective wait

times themselves (Hong, Hess, & Hardin, 2013). They have inconsistent findings on

the impact of objective wait times, but also found that the amount of visual content

provided during the waits had an impact on user perceptions.

Attention has also been studied outside of e-commerce contexts. Dabbish and

Kraut conducted human-computer interaction experiments to determine optimal aware-

ness displays for summarizing team members’ workloads (Dabbish & Kraut, 2008).

In that study, the authors explored the role of attentional demand, a construct de-

scribed by the authors to account for how increasing the number of visual elements and

movement makes visual stimuli more distracting. Grounded in perceptual psychol-

ogy (Pashler, Johnston, & Ruthruff, 2001; Wickens, Gordon, Liu, & Lee, 1998), the

attentional demand construct was used to account for how differences in the amount of

information presented to the user impacts visual task performance and was measured

using the proportions of eye fixations focused on distracting display features versus

relevant features. Unlike the aforementioned attentional capacity construct, task per-

formance was explained by eye fixations, which may be related to where attention

is oriented and executive attention fixated to particular stimuli. In a similar study,
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Potter and Balthazard investigated the role of attention in electronic brainstorming

software (Potter & Balthazard, 2004). They demonstrated investigated the impacts of

different types of cues on the successful completion of brainstorming tasks. Similarly,

when executive attention is distracted and drawn away from the task, brainstorming

productivity was hindered.

The primary method used in these examples were task success measures, which

can be observed in each of the examples cited above. Additionally, psychometric ques-

tionnaire measures were employed in two studies (Hong et al., 2013; Lee et al., 2012)

while comprehension measures were also employed (Tam & Ho, 2006). It is clear

that the primary methods used to observe attention-related constructs have been be-

havioural tasks and ex post measures, which are also characteristic of measures typi-

cally employed in IS research as a whole. Alternative approaches to observing these

constructs could involve examining them using neuroimaging or electroencephalogra-

phy (EEG), specifically by examining the neurophysiological correlates of attention

in an IS setting. However, it is not immediately clear why we would do this, espe-

cially considering that most IS goals can be accomplished using traditional measures.

We shall now explore why it is desirable to use neurophysiological measures for IS

research in the first place.

2.3.2 The NeuroIS Research Agenda

As mentioned earlier in this chapter, this dissertation is firmly part of the “Neuro-

Information Systems” (stylized NeuroIS) movement. NeuroIS is a new subfield within

IS research, with its origins dating back to a 2008 article by Dimoka and Davis

which explored the neural mechanisms behind the seminal Technology Acceptance

Model (Dimoka & Davis, 2008). That same year, the first NeuroIS retreat was held

in Gmunden, Austria, which aimed to usher in a movement to conduct new IS re-

search using methods from cognitive and affective neuroscience. Subsequent work

at the Association for Information Systems Special Interest Group on Human Com-

puter Interaction (SIGCHI) (Riedl, Randolph, vom Brocke, Léger, & Dimoka, 2010),

Information Systems Research, (Dimoka, Pavlou, & Davis, 2011) and MIS Quar-

terly (Dimoka et al., 2012) explored the methodological and technological founda-

tions of such an endeavour. These early works largely focused on establishing the
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legitimacy of NeuroIS as a subfield by emphasizing how techniques can complement

existing IS research tools, capturing the antecedents of IS constructs, or by enhancing

existing IS theories.

Many of these assumptions continue to inform NeuroIS research today, though the

motivations have expanded. Some researchers such as Riedl and Léger have posited

that neuroscience does not merely need to play a complementary role, but can also

directly inform the design of IT artifacts, particularly in the context of graphical user

interfaces (GUIs) (Riedl & Léger, 2016; Brocke et al., 2013; Riedl, Davis, Banker,

& Kenning, 2017). Hypotheses about GUIs could be tested using neuroimaging in

information technology settings, and directly informs the design of socio-technical sys-

tems. Given a physiological, rather than subjective justification, engineers could have

better justification for applying such findings. Furthermore, though neuroscience can

certainly complement existing subjective measures by triangulating them with tra-

ditional IS observations, there are some measures that cannot be easily observed

subjectively. Some measures, such as trust or attention, may be biased by subjective

report. Others may be impossible to measure using questionnaires because interrup-

tion may invalidate the phenomenon being measured. This motivation informs one of

the core arguments of this thesis, which is that mind wandering is one such measure,

which cannot easily be measured subjectively and interruption may invalidate the

phenomenon being measured.

The history of NeuroIS as of 2017 is meticulously described by Riedl et al. in an

article presented at the International Conference for Information Systems, which we

will not expand on further (Riedl, Fischer, & Léger, 2017). At the subsequent 2018

NeuroIS conference, Fischer et al. presented the results of a survey study on the cur-

rent state of NeuroIS research (Fischer, Davis, & Riedl, 2019). They found that five

have dominated past NeuroIS research: stress, trust, cognitive load, emotion and at-

tention. That survey also queried participants about future research focus, and found

that that the overwhelming majority of respondents were interested in either emotion

or cognitive load. The survey also found a division between American and European

researchers. European researchers were either conducting or aspired to conduct future

research in emotion or stress, while American researchers were interested primarily

in cognitive load and design science. Curiously, American researchers were also more
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likely to identify Attention as a topic of interest than European researchers. We can

speculate that this is because attention informs cognitive load and design science,

which are the primary applications of research among most of the North American

NeuroIS groups.

2.3.3 Attention Constructs and Neurophysiology

Though we are no aware of any extant work in the IS literature that leverages the

neuroscience of alerting or orienting, we are by no means the first to investigate

attention-related neurophysiology in the IS context. Eye tracking is commonly em-

ployed neurotechnology to IS attention research (Riedl, Fischer, & Léger, 2017). In

a seminal paper, eye tracking was used to investigate user interest and attention

to e-commerce images (Cyr, Head, Larios, & Pan, 2009). Ultimately, the authors

demonstrated that eye tracking could be effectively used to identify interesting im-

ages, but did not specifically identify that attentional processes were being observed.

Other researchers have used gaze fixation to measure differences in cognitive load in

reading contexts (Liu, Lai, & Chuang, 2011), to measure attention to specific web

features (Djamasbi, Siegel, & Tullis, 2012), or to measure attention during informa-

tion search (Cole, Hendahewa, Belkin, & Shah, 2015). These examples are relevant

examples of overt attention measurement, but may not be appropriate in all contexts.

In the context of MOOCs, users can fixate in any number of locations and still be in

a generally attentive state.

Alternative methods have been employed to measure attention covertly in more

similar contexts. As already discussed, the neurophysiological correlates of cognitive

absorption have been observed and reported by Léger et al. (Léger et al., 2010; Léger,

Davis, et al., 2014), who studied the role of cognitive absorption in an enactive gaming

context. In this study, EDA as well as EEG oscillatory activity were employed to

observe changes in users’ cognitive absorption states. The authors justified the use of

electrodermal acivity (EDA) by relating it to the literature on arousal, which has been

closely associated with the alerting network (Posner & Petersen, 1990). Additionally,

mid-range frequency activity at the alpha (7-12 Hz) and beta (13-30 Hz) bands were

utilized to observe the cognitive absorption state. Alpha activity, which is commonly

associated with alerting attention, was observed as being positively associated with
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the latent cognitive absorption construct. EEG beta activity, which is commonly

associated with cognitive activity, was observed in negative association.

In a paper published the same year, researchers addressed the neurophysiology of

attention directly by investigating the P3 event related potential and its correlation

with eye-fixation related potential (EFRP)s (Léger, Sénecal, et al., 2014). The em-

phasis of this study was to establish measures of attention that are appropriate in

ecologically-valid IS contexts, and ultimately concluded by establishing the validity of

EFRP in IS research contexts. Though eye-tracking methods reflect the state of the

art in orienting research (Geva, Zivan, Warsha, & Olchik, 2013), the fact that these

measures were justified though association with the P3 component event-related po-

tential (ERP) suggests that they are measures of overt orienting, and not the covert

orienting described by Posner et al. (Posner & Petersen, 1990). The EFRP thus de-

scribed is thus very useful in attention research, but mainly in contexts where eye

fixation is the relevant measure. Covert orienting, by contrast, remains a potential

topic of interest of IS research, especially research that does not involve a visual com-

ponent. Such questions may benefit by leveraging covert orienting measures, which

we will soon explore.

In addition to attention to the work from colleagues at HEC Montréal, there has

been considerable recent interest in covert attention measures and attention-related

constructs among the attendees of the NeuroIS retreat. Shamy and Hassanein are

currently exploring effects of attention-related measures on age (El Shamy & Has-

sanein, 2018) and are using EEG measures to investigate whether attentional over-

load impacts creativity (Calic, El Shamy, Hassanein, & Watter, 2018). Eye tracking

is currently being used to investigate attention and behaviour with security warn-

ings (Vance, Jenkins, Anderson, Kirwan, & Bjornn, 2019), for detecting mind wander-

ing during web tasks (Gwizdka, 2019) and during anomaly detection during software

use (Boutin, Léger, Davis, Hevner, & Labonté-LeMoyne, 2019). We can safely state

that there is not only precedent for exploring the neurophysiology of attention in IS

contexts, but also that there is considerable present interest in this subject among IS

scholars.

When it comes to the specific measures of mind wandering, we have already seen
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that mind wandering can be somewhat effectively measured using ex post question-

naires. However, these methods offer limited insights into their cognitive and neu-

rophysiological correlates. In addition, they do not offer us much insight into the

temporal nature on the phenomenon, and suffers from many of the drawbacks al-

ready discussed in the literature on flow. One method for overcoming this limita-

tion is to use experience sampling, which is a method of employing a simple yes/no

measure in order to determine the occurrence of mind wandering (Schooler, 2004;

Smallwood & Schooler, 2006). Using this method we can measure the presence of the

phenomenon in real time. However, it suffers from the disadvantage of disrupting the

very phenomenon we are trying to measure.

An alternative is to use neuroimaging. Hillyard et al. (1998) describe an EEG

auditory oddball paradigm paradigm which triggers the P1-N1-P2 complex, the series

of three electrical peaks triggered by early attention control mechanisms described

earlier (Hillyard & Anllo-Vento, 1998). This complex is an indicator of the switch

of general selective attention towards a stimulus. Consequently, explicitly attended

stimuli elicit larger amplitudes relative to unattended stimuli. The mechanism has

been well-tested and has been associated with other correlates of attention using

fMRI (Hillyard et al., 1998).

Braboszcz and Delorme (2011) described an experiment to measure mind wan-

dering using both P1-N1-P2 complex oddballs and oscillatory activity. They asked

participants to push a button when they experienced mind wandering and found

heightened P2 amplitude, as well as greater delta and theta band power and lower

alpha activity when participants experienced mind wandering versus when they were

on-task (Braboszcz & Delorme, 2011). Such measures may be applied to the e-learning

context, and could eventually yield a significant measure of mind wandering that can

be employed without disrupting the user.

One of the potential weaknesses of the experience sampling technique described by

Braboszcz and Delorme is that they are binary, and hinge on an individual’s ability

to detect when it occurs. Though they employed a counting task to give an objective

measure of when mind wandering occurs, studies that similarly employ experience

sampling without such a task run the risk of failing to measure the precise point

when the mind wandering phenomena occurs. An alternative approach is to deliver
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“thought probes”, which are questionnaires that occur at fixed times. Wammes and

Smilek employed this technique when investigating the effect of mind wandering in

the classroom environment (Wammes & Smilek, 2017). In addition to overcoming

the timing issue, this method allows researchers to measure the degree of experienced

mind wandering by asking participants to complete a Likert scale questionnaire. Such

techniques could be used to overcome the limitation of subjective mind wandering

measures and by measuring the degree of experienced mind wandering. When com-

bined with neurophysiological data, we could use observe correlates between the de-

gree of reported mind wandering and the degree of measured P2 amplitude.

Other research has observed variances in the P3 component in relation to mind

wandering. Smallwood et al. described an experiment where participants were asked

to attend to visual stimuli while reporting experienced mind wandering (Smallwood

et al., 2008). Visual stimuli triggered the P3 attention response, and exhibited lower

amplitudes when in states of reported mind wandering. The authors inferred that

this phenomenon represents the direction of overt attention away from the task and

towards self-directed thoughts. An alternative approach to observe responses to au-

ditory stimuli was recently taken in the context of simulated driving (Baldwin et

al., 2017). Participants in states of reported mind wandering exhibited lower P3

responses to auditory cues. In this later study, mind wandering was also found to

have a negative impact on driving performance which highlights the importance of

understanding the mind wandering phenomenon.

Finally, combining neurophysiological measures with subjective measures allows

researchers to generate data labels, which can be used to create a machine learning

algorithm which detects attention-related states in real-time. This also raises the

possibility of an attention-adaptive brain-computer intferface (BCI). BCIs have been

proposed and employed in Information Systems research before though they are not

yet widely adopted (Randolph et al., 2015). In the case of mind wandering, self-

reported measures could be used to create labels for machine learning classification.

If such machine learning classifiers could be demonstrated to accurately classify event-

related potentials, the result would be a measure that is able to detect mind wandering

passively in real-time. To the best of our knowledge, this has not been done before,

and would represent a novel contribution to both Information Systems and to the
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literature on mind wandering as a whole. We will explore this concept in detail, but

must first explain how electroencephalography (EEG) data is used to conduct such

research in the first place.

2.4 Techniques for Analyzing EEG Data

We have explored learning theories and the role that attention plays in them. We

have also discussed the neurophysiology of attention, have established that EEG

measures can be used to effectively measure covert attentional orienting, and that

these can also be used to measure mind wandering in e-learning contexts such as

online lectures. The remaining task is to describe how data retrieved from EEG can

be used to accurately measure neurophysiological states, and how it can do so in real

time. This conversation will discuss the details of two technical domains that seem

to be unrelated at first glance. The first is the art of EEG analysis, and specifically

the event-related potential (ERP) technique. The second is machine learning, which

can be used to process and interpret electroencephalography (EEG) data. The two

domains are inter-related to the extent that machine learning informs ERP detection

science and data processing, but also makes it possible to create real-time measures

which are capable of interpreting changes in attention states. We shall explore each

of these three concepts in turn, with attention to the specific applications that inform

the analysis in this dissertation.

2.4.1 Conventional EEG Analysis

Electroencephalography is a relatively old technology, at least from the perspective

of neuroscience. The systematic study of EEG can be traced back to 1929, when

Hans Berger coined the term “electroencephalogram” to refer to refer to devices

which record electrical potential on the human scalp (Haas, 2003). In the early days

of electroencephalography (EEG), the tool was mostly used to observe patterns of

oscillations, which are readily visible to the naked eye. Well-defined neural oscilla-

tions, especially those at the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz)

bands, are an obvious visual feature in EEG data and are present in most sustained

EEG observations. Research into the relationships between event related potentials
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(ERPs) and cognition did not begin earnestly until the 1960’s however, as the instru-

ments remained too crude to detect the comparably smaller event-related potentials.

Starting with the discovery of contingent negative variation, an ERP triggered by

subjects’ anticipation of events, there was excitement in the ERP technique’s po-

tential (Walter, Cooper, Aldridge, McCallum, & Winter, 1964). The following year,

the attention-related P3 component was discovered (Sutton, Braren, Zubin, & John,

1965), triggering a flood of ERP research (Luck, 2014).

What are ERPs? ERPs are the result of postsynaptic potentials triggered by

neurons in response to stimuli. When a large number of neurons trigger simul-

taneously, the electrical potential aggregates and is conducted through the brain

and scalp. Given that the ERP is the result of electrical activity, the result is a

near-instantaneous measure of neurotransmission. Unfortunately however, this is the

source of both ERP’s greatest advantage, as well as its greatest disadvantage. The

disadvantage of measuring such brain-sourced electrical activity is that only a tiny

fraction of neural combinations ultimately result in a sizable enough dipole that is not

equalled out by a similar process and terminates at the scalp. The greatest advantage

is, given its electrical origin, EEG generally offers excellent temporal resolution when

compared to fMRI or PET (Luck, 2014).

Neural oscillations, by contrast, are likewise the result of postsynaptic potentials,

but at a much more general level. Where ERPs are triggered by specific events at

fixed periods of time, oscillatory activity is the result of ongoing brain activity, which

aggregates to create patterns of variance, often referred to as eeg waves. As mentioned

earlier, different electroencephalography (EEG) wave frequencies have been associated

with constructs such as beta and working memory (Roberts, Hsieh, & Ranganath,

2013), or even alpha and mind wandering (Braboszcz & Delorme, 2011). We should

be cautious when making these associations however, as frequency activity reflects

general, as opposed to specific neural processes. The trigger of an ERP is often well-

defined, while EEG wave patterns may the result of completely unrelated processes

such as motor activity or subject fatigue.

Raw EEG data consists of one time series recording for each applied EEG elec-

trode, sampled at a given rate over a sustained experiment. EEG recording hardware

can be configured to facilitate real time recording of events and brain data, while
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Figure 2.2: Raw EEG Data is Transformed into Epochs

limiting outside electrical noise. When it comes to data processing, given that we are

primarily interested in short segments of data around these recorded events (as with

ERP research) or in frequency patterns (as in oscillatory research). At the basic level,

raw EEG data is typically divided into epochs; segments of time that are of interest

to the research question. In traditional ERP research, this usually involves extracting

700-1200 ms intervals around the physically recorded event triggers, which represent

stimulus delivery (Luck, 2014). EEG electrodes detect electrical activity at the scalp,

much of which is generated by muscle activity, rather than brain activity. Blinks and

jaw clenches, for instance, are highly visible artifacts detected by EEG sensors. One

approach is to manually remove epochs that feature such artifacts.

This does not work for all artifacts however. For instance, the noise created by

electrical devices at the 60 Hz frequency cannot be removed this way. An alternative

approach is to apply a spatial filter the data. A common method to filter data of noise
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is to apply a high and low bandpass filters, which filter signals below 0.1 Hz and above

50 Hz. Data can be further filtered using unsupervised machine learning techniques

such as independent component analysis (ICA). Abstractly, ICA interprets a given

vector of observations x = (x1, ..., xm)T using a static linear transformation W into

s independent components such that s = Wx. ICA then identifies the components

as measured by a function of independence F (s1, ..., sn). Practically, the components

that most account for the most variance will usually be muscle or other noise artifacts,

which can be rejected from the data. In some cases, supervised machine learning filters

such as xDAWN may be applied, which uses the epoch labels to maximize the signal

to signal plus noise ratio of an evoked response (Rivet, Souloumiac, Attina, & Gibert,

2009). Common electroencephalography (EEG) analysis tools such as EEGlab are

designed to make it easy to apply these filters in the EEG context (Delorme & Makeig,

2004).

When quality data is filtered, the result will be a number of epochs for each

observed condition that trend toward an event-related potential (ERP) waveform or

actual frequency patterns as illustrated in Figure 2.2. Standard ERP analysis involves

identifying the average waveform by averaging the results of a series of trials within

a subject. The number of trials required in order to accurately calculate the ERP

waveform depends on the type of waveform being observed, ranging from anywhere

between 1-50 for the P3 component to 100-500 for the P1 component (Luck, 2014).

To compound the complexity, there is also significant variance between subjects that

should be accounted for. To account for this, ERP experts often recommend calculat-

ing a grand average, which consists of averages between multiple subjects (Delorme,

Miyakoshi, Jung, & Makeig, 2015). By doing this, we can be more confident that

the waveform accounts for variance between subjects, as well as between conditions.

Tools such as MNE Python facilitate the calculation and visualization of ERP wave-

forms in the Python programming environment, while also maintaining a data struc-

ture that is favorable to leveraging other Python statistical and machine learning

libraries (Gramfort et al., 2013, 2014).

When the waveforms are computed, they can be compared statistically. ERP

waveforms are often defined by their amplitudes and latencies. In the early days
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Figure 2.3: Hypothetical P3 oddball paradigm waveforms

of ERP analysis, specific peaks of a waveform were compared by calculating a de-

fined measurement time window and comparing the peaks of the waveforms between

conditions (Dunchin & Heffley, 1978). Though this technique is still used, there are

arguments against it, and it has been shown that mean amplitude is usually a better

alternative (Luck, 2014). Regardless, both peaks and amplitudes of the calculated

waveforms can be analyzed, and compared statistically using a simple t-test. They

can also be used as features in group-level analysis, and compared to survey instru-

ment results using linear regression or ANOVA analysis. Another procedure is to use

linear mixed effects models (LME), as these models are able to account for suppos-

edly random effects, such as variance between subjects (Davidson, 2009). This helps

establish the validity of results with a large number of trials (such as in ERP analysis)

but also have a small number of subjects. It does this by accounting for inter-subject

variance.

In addition to time domain ERP analysis, we can also conduct frequency analysis

around the events being investigated. As mentioned earlier, electroencephalography

(EEG) oscillations happen at different frequencies, and these are commonly broken

down into frequency bands (i.e. “alpha” at 8-13 Hz, “beta” at 13-30 Hz). Using

the Fourier transformation, we can transform a time-series signal into the frequency

domain spectrum, which can be used to detect these patterns. We can formally

express the Fourier transformation from time into the frequency domain as follows,
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where the independent variable x represents time and k represents frequency (in our

case, Hertz):

f(x) =

∫ ∞
−∞

F (k)e2πikxdk

Heightened activity at particular frequencies are often analyzed in relation to group

features, and can be a meaningful predictor of phenomena. For example, Léger et

al. (2014) investigated the relationship between activity at the alpha and beta band

frequencies to determine a cognitive absorption measure, while Braboszcz and De-

lorme investigated time-frequency differences between mind wandering and on task

states (Léger, Davis, et al., 2014; Braboszcz & Delorme, 2011). Likewise, by inves-

tigating time-frequency segments, we may find they are significant predictors of the

phenomena being investigated.

2.4.2 Machine Learning for Real-Time Signal Detection

So far, our conversation has been about computing the results of EEG and mak-

ing inferences about those computations. These calculations are conducted offline,

and primarily employ statistics to do the job. An alternative approach is to create

measures that interpret EEG data in real-time; a process often referred to as decod-

ing (Haxby, Connolly, & Guntupalli, 2014). Decoded signals can theoretically be used

to translate brain activity patterns into commands in an interactive system. This is

what we mean by brain-computer intferface (BCI). As already discussed however, raw

EEG data is complex and noisy, and it would be very difficult to explicitly create com-

puter programs that interpret such signals. This is why BCIs largely employ machine

learning to interpret the data. We have already discussed some of the applications

of machine learning without having formally discussed what machine learning is. We

will now do this, with special attention to the specifics that inform EEG and BCIs.

Formally, machine learning can be defined as “the field of study that gives com-

puters the ability to learn without being explicitly programmed”. This definition is

normally attributed to Arthur Samuel, one of the field’s pioneers, though it is unclear

whether he actually said it. In popular culture, we often associate machine learn-

ing with intelligent robots, or machines with complex, human-like digital brains with

general intelligences that exceed our own. Even generally educated readers are often

familiar with recent advancements in deep learning, which often leverage neuron-like
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functions and vast amounts of data, feeding this popular conception. However, the

concept of machine learning is much simpler. For instance, machine learning could

involve the application of simple polynomial procedures or heuristics to infer a series

of rules in a game of checkers (Samuel, 1959). What makes it different from regular

programming is the way that rules adapts to the structure to the given data.

Machine learning algorithms are often broken into two categories: supervised and

unsupervised learning (Flach, 2012). Supervised learning involves learning from data

for which one has labels—indicators of the ground truth. For example, having labels

of “spam” and “ham” emails would help supervised learning algorithms identify which

emails are useful to users. Unsupervised learning, by contrast, does not require labels

and tend to work very differently from supervised learning. These techniques often

involve clustering, which is following a rule for grouping data. Other topics in machine

learning include issues of how we prepare or structure data, and evaluate performance

of algorithms. We will not discuss the broad details of this field, but will discuss two

specific issues within machine learning: data dimensionality reduction techniques and

general classification techniques, which are specifically relevant to real-time detection

and BCI tasks.

EEG data is highly dimensional, especially considering the comparatively small

amount of it typically analyzed in ERP research. For a standard 32 channel EEG

system, there are 32 channels recording at 512 Hz; one data point for every 2 millisec-

onds. As mentioned earlier, though there are many methods for representing EEG

signals, the two most common are time-series and frequency band power (Bashashati,

Fatourechi, Ward, & Birch, 2007). For time-series analysis, we may therefore record

hundreds of samples for each observed condition, but have thousands of features for

each sample, when we consider the range of time being observed. Depending on how

the time-series features are segmented, there are potentially dozens of features for

each epoch.

The typical solution to the problem of dimensionality is to add a feature selec-

tion step that reduces the number of features in the data. Using a feature selection

method to either extract the most relevant features or compress the features pre-

vents overtraining effects and reduces the number of features that classifiers need

to process. Lotte et al. (2018) identify three common feature selection approaches
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that are commonly used in BCIs: filter, wrapper and embedded approaches (Lotte

et al., 2018). Filter approaches rely on measures of relationship between each fea-

ture, and transform the data correlating to those measures. Wrapper and embedded

approaches instead use a classifier to obtain a subset of features, and either select a

subset of features (wrapper) or integrate the features selected into a unique process

(embedded). A famous example of embedded feature selection is to apply stepwise

linear discriminant analysis (Krusienski et al., 2006). This technique attempts to

explain differences in classes by identifying linear combinations of data features that

best discriminate between the classes. It has been noted for its improvement of time

domain BCIs.

Following dimension reduction, data can be classified. In its simplest form, clas-

sification involves employing algorithms that interpret data to discriminate between

two classes, though it is by no means restricted to this binary form. The classification

process involves two phases: a training phase and a test phase. During the training

phase, classifiers build models by interpreting the data to discriminate between the

assigned labels. During the test phase, model performance is tested on related data

that was not used in the training phase.

The success of a classification model is often evaluated one of three ways: accuracy,

precision or recall. Accuracy, being the most common measure, can be expressed in

relation to test set Te as follows (Flach, 2012):

acc =
1

|Te|
∑
x∈Te

I[ĉ(x) = c(x)]

In this expression, I is either true or false, and is determined by whether the estimated

class ĉ(x) is equivalent to the true class label c(x). Alternatively, we could express

accuracy as a function of correct classification of true positives and true negatives in

relation to all classified states (including false positives and false negatives). It can

be defined this was as

acc =
TP + TN

TP + TN + FP + FN

Accuracy is often used to denote the estimated probability that a classifier will cor-

rectly classify instances of data. Precision, by contrast, measures the proportion of

true positives among predicted positives. Precision is often employed in contexts

where it is most important that the predicted values are correct. Alternatively, recall
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measures the total proportion of true positives in relation to false negatives. Re-

call measures are employed in contexts where it critical that all true positives are

identified.

There are many different classification algorithms. Trees, rule-based models and

probabilistic models have been employed successfully in many different machine learn-

ing domains, but have fallen short in BCI contexts (Lotte et al., 2018). Linear meth-

ods such as support vector machine (SVM), the aforementioned linear discriminant

analysis (LDA) and other kernel methods have been the prominent tools employed

in BCI classification. Perhaps the greatest reason for this is that SVM and LDA em-

phasize dimensionality reduction, and are optimized for such tasks. We have already

mentioned how LDA reduces dimensionality by identifying the most relevant features.

SVM similarly reduces dimensionality, but does so by constructing a hyperplane in

high dimensional space. It then employs a kernel to classify the data. Though there

are additional variants on these methods, the core concepts of dimensionality reduc-

tion, classification and test accuracy form the basis of machine learning for BCIs,

and most of the attention in this subject has been paid specifically to SVM and LDA

classification techniques (Quitadamo et al., 2017).

There are many tools that can be employed to perform this type of machine learn-

ing analysis, but not many of them are optimized for processing EEG data. Recently,

a stack of Python-based tools have been developed which is optimized for this process.

We have already mentioned that MNE Python facilitates the processing of electroen-

cephalography (EEG) data in a Python based environment (Gramfort et al., 2013,

2014). One advantage of the MNE data structure is that it is compatible with other

Python libraries that are commonly used in statistical and machine learning analysis

such as NumPy (Van Der Walt, Colbert, & Varoquaux, 2011), Pandas (McKinney,

2010) and Scikit-Learn (Pedregosa et al., 2011). When combined, these tools form a

single software environment that facilitates traditional ERP research, machine learn-

ing analysis, and BCI development. We will explore this further in Chapter 3.

2.4.3 Decoding Attention-Related EEG Signals

There has been considerable interest in decoding real-time signals over the past 20

years; this dissertation is by no means the first attempt to use these techniques. Some
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of the literature on this subject comes from aforementioned brain-computer intferface

(BCI)s. Broadly, BCIs can be categorized into two categories based on data domains:

frequency domain BCIs, which are most common and leverage band power or related

parameters, and time domain BCIs which are less common and leverage time point

parameters (Lotte et al., 2018). In the former category, motor-image BCIs have

been widely studied. These have largely used LDA and similar techniques on band

frequencies to perform classification. In addition, mental workload BCIs have been

investigated, particularly by Information Systems researchers, which similarly use

band frequencies to measure cognitive load (Pope, Bogart, & Bartolome, 1995; Berka

et al., 2004), and have even recently been applied to the MOOC context (Lin & Kao,

2018). These BCIs are not typically used to measure specific attention processes

in real-time, but can be used to observe patterns that are correlated with attention

states.

The most prominent example of an attention-related BCI is the P300 BCI (hence-

forth expressed as P3 BCI), which was the first prominent BCI and similarly used an

oddball paradigm to measure an attention-related phenomenon (Farwell & Donchin,

1988; Donchin, Spencer, & Wijesinghe, 2000). The P3 component is a well-studied

event-related potential triggered through an oddball paradigm, and can also be evoked

using an auditory stimulus. The P3 is often observed in conjunction with the P1-N1-

P2 complex, but is only when participants attend to stimuli that are directly related

to their task. It also exhibits a much larger amplitude than the complex, and is there-

fore much easier to detect. The earliest iteration of the P3 BCI was demonstrated

by Farwell and Donchin in 1988, who designed a spelling interface. Using the P3

oddball effect, the characters of the alphabet are presented on a computer screen in a

6 x 6 matrix while the program flashes columns and rows randomly. The participant

is asked to attend to a specific character, and when the character is evoked by the

matrix, a P3 response is observed. After using a classifier, they created a process by

which participants could spell words at the rate of 2.3 characters per minute.

Subsequent work on the P3 speller have focused on improving the tool’s accuracy,

or to applying it to other paradigms. The original speller as proposed by Farwell and

Donchin (1988) used a stepwise linear discriminant classifier to identify P3 oddballs on

crude epochs. Techniques such as SVM and LDA have been consistently demonstrated
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to perform well at these tasks, though a number of techniques have been explored

recently which improve on them (Thulasidas, Guan, & Wu, 2006; Guger et al., 2009).

Recent research has explored the application of random forests to improve the speed

of P3 BCIs (Akram, Han, & Kim, 2015), the application of transfer learning to

improve performance (Gayraud, Rakotomamonjy, & Clerc, 2017), as well as the use

of convolutional neural networks (Cecotti & Graser, 2011). Though these techniques

have been demonstrated to improve the P3 speller performance, they largely offer a

marginal improvement of the traditional LDA/SVM classifier.

In addition to improving the original P3 speller, there have been efforts to apply

the tool to novel applications. The P3 speller has been notably been applied to

video games such as checkers; checkers movement selections can be iterated across a

grid similarly to letters in the P3 speller (Fazel-Rezai et al., 2012). An open source

iteration of the classic video game Space Invaders, called “Brain Invaders” has been

developed using this paradigm, and released publicly (Congedo et al., 2011). Using the

grid format similar to the speller, users focus on a particular point they would like to

“destroy”, using graphics similar to the classic game. A P3 brain-computer intferface

(BCI) has been demonstrated in a virtual reality environment, which contained a

number of objects (Edlinger, Holzner, & Guger, 2011). In this context, users were

instructed to focus on particular objects to “interact” with them. Novel applications

of BCI technology are an area of promising research in its own right.

A critical component of the P3 BCI is that, in addition to offline classification,

they also employ some online signal detection method to enhance or transform the

signal. The P3 component is sensitive to repetition effects, and online recordings are

susceptible to blinks and muscle movements (Fazel-Rezai et al., 2012). In response,

many online BCI classifiers employ an automated method to prepare the data, such

as the xDAWN method explored earlier, which uses supervised learning to build an

algorithm that maximizes the signal to signal+noise ratio (Rivet et al., 2009). By a

method such as xDAWN, the classifier can interpret data that is similar enough to

that which would be observed offline.

Finally, there is an emerging trend in P3 BCIs to emphasize hybrid effects, or in-

corporate the frequency domain. P3 classifier performance has been demonstrated to

improve by incorporating frequency band activity (Speier, Fried, & Pouratian, 2013;
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Käthner, Wriessnegger, Müller-Putz, Kübler, & Halder, 2014). This same activity

can be used to incorporate other features to the BCI, such as mental workload ef-

fects. There are potential applications to leverage these indicators to identify patterns

associated with attention-related constructs, such as mind wandering. In the future,

it could likewise be used to build robust classifiers that explore different dimensions

of the attention construct in real-time. This could potentially lead to a method for

detecting variations of attention in real time for IS research and be further expanded

to create dynamic interfaces or IT artifacts which adapt to users’ attentional states.

2.5 Summary

In this chapter, we explored background literature from four subjects: learning the-

ory, the neuroscience of attention, information systems, and machine learning for

EEG analysis. We have discussed how attention plays a critical role in many of the

major learning theories that inform MOOC design. However, measuring attention is

not simple, as neuroscience informs us that it is actually an emergent process of at

least three sub-processes: alerting, orienting and executive control. The information

systems discipline has traditionally ignored the distinction between these sub pro-

cesses, but has recently been motivated to explore the attention phenomenon using

neurophysiology. Electroencephalography is a great candidate tool because it can

not only measure these sub-processes, but also shows prospects for measuring atten-

tion states in real-time. In Chapter 3, we will describe the detailed hypotheses and

theoretical approach that guides this dissertation, and ultimately how an improved,

passive attention measure can be used to inform MOOC design. We will later draw

from many of the concepts discussed in this chapter, but will either go into greater

detail or will expand on some of the material mentioned here.



Chapter 3

Research Methodology

In Chapter 2 we explored the background of this dissertation’s research question and

ultimately concluded that a study of the neurophysiology of attention can help ex-

plain its role in effective e-learning. However, we are now faced with the challenge

of bridging research methodologies across four disciplines. In this chapter, we will

discuss how we will bridge methods in education, neuroscience, information systems

and machine learning to conduct this research. We will start by developing the hy-

potheses of this research before proceeding to explore the appropriate methodologies

for corroborating them empirically. We will then conclude that two experiments must

be conducted in order to lend sufficient empirical evidence for the research contribu-

tions. These experiments and their results are subsequently discussed in Chapters 4

and Chapter 5.

3.1 Hypotheses and Research Model

When explaining hypotheses, information systems researchers often provide a model

that can easily explain the different constructs and concepts explored. Though some

concepts are excluded, we provide a model that will make many of the concepts easier

to follow. Figure 3.1 is a model of the research questions described in this dissertation.

We will explain each of these hypotheses in turn.

3.1.1 The Mind Wandering Experience

To understand the relationship between mind wandering and e-learning efficacy, we

first need to develop a method for measuring mind wandering in the first place.

Sullivan et al. (2015) developed an ex-post questionnaire and investigated the role

of perceived mind wandering in an IS setting. As we have already seen, this is not

sufficient for understanding the nuances of mind wandering. There is also a crucial

difference between the ex-post questionnaire they developed and many of the other

48
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Figure 3.1: The proposed research model, excluding H5

self-report measures they drew from. They give examples of experimental studies

that used questionnaire instruments to explore the relationship between subjective

experience and observed attentional lapses (Smallwood et al., 2004; McVay, Kane,

& Kwapil, 2009). However, these methods are different from those employed by

Sullivan et al. (2015) insofar as they measure a present experience, not participants’

perception of it afterwards. It is entirely possible that there are significant differences

between mind wandering experienced during an attentional lapse and the perceived

degree of mind wandering reported following a study.

Studies have explored the temporal element of mind wandering using a method

called experience sampling. As previously mentioned, Lindquist and McLearn (2011)

examined the impact of daydreaming and the lecture experience. They explored

this relationship by using an audio probe, and asking participants to record whether

they were experiencing task-unrelated thoughts at that particular moment (Lindquist

& McLean, 2011). With this method, they were also able to determine that mind

wandering was less likely to occur in the front third of a lecture hall, and also dis-

covered a negative correlation between mind wandering and note taking. Similarly,

Wammes and Smilek (2017) employed an auditory probe method to compare online

and in-person lectures. They found different temporal patterns of mind wandering
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between electronic and in-person lectures, ultimately concluding that mind wandering

increases when online, and does not generally increase when lectures are conducted

in person.

One of the primary outcomes of this dissertation is to identify neurophysiological

patterns that are correlated with mind wandering at a particular time, which we

will henceforth refer to as the “mind wandering state”. Such experience samples are

good correlates of EEG patterns, because they give us a fixed time point to compare

to. There is an implicit problem with doing this however; experience samples are

disruptive. One of the primary motivations for building EEG measures in the first

place is to develop a non-disruptive method for measuring mind wandering. By

correlating EEG patterns to experience samples directly, we would run the risk of not

genuinely measuring the mind wandering state.

One way to get around this is to observe the time segments immediately preced-

ing an experience sample probe. Braboszcz and Delorme (2011) took this approach,

and observed the 10 seconds before a mind wandering report with the 10 seconds

after. In that study, participants performed a meditation task while auditory tones

were played. They observed the P2 event-related potential (ERP) triggered by in-

frequent oddball paradigm auditory stimuli and found differences in the amplitudes

between the mind wandering (before a report) and breath focus (after a report) con-

ditions. Though their findings emphasized observed differences in the P2 specifically,

they also observed differences in P1 and N1 amplitudes. Furthermore, they observed

differences in oscillatory patterns. Low frequency patterns (less than 13 Hz) were

found to be correlated with the mind wandering states while high frequency patterns

were inversely correlated. Following Braboszcz and Delorme (2011), we can similarly

hypothesize that we would see these differences in patterns in an e-learning setting,

though we should consider excluding delta band analysis (1-4 Hz) due to the risk of

measuring blinks, which are often detected at that frequency.

An alternative hypotheses can be made about the P3 component. A past study

by Smallwood et al. (2008) identified a reduction in the P3 component that is asso-

ciated with mind wandering during a sustained target detection task (Smallwood et

al., 2008). Reductions in P3 amplitude were reflective of mind wandering and partic-

ipants diverting their attention to internal task-unrelated thoughts. Similarly, we can
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expect a similar effect from a sustained attention task such as learning from a video.

In an auditory paradigm such as that employed by Braboszcz and Delorme (2011)

however, we could also posit that P3 amplitudes would increase during states of mind

wandering, as participants’ attention is directed away from the task of learning from

the video and towards the auditory sounds. These alternative explanations are sum-

marized in Figure 3.1 by H1 and H2 and their sub-hypotheses, where the “reported

mind wandering state” is used to denote in-session self reports. The hypotheses are

summarized below.

H1a — Mean P1 amplitude will distinguish on task and mind wandering states.

H1b — Mean N1 amplitude will distinguish on task and mind wandering states.

H1c — Mean P2 amplitude will distinguish on task and mind wandering states.

H1d — Mean P3 amplitude will distinguish on task and mind wandering states.

H1d — Mean theta power will be positively correlated with the reported mind

wandering state.

H1e — Mean alpha power will be positively correlated with the reported mind

wandering state.

H1f — Mean beta power will be negatively correlated with the reported mind wan-

dering state.

An important limitation to these hypotheses is the difference in experience sam-

pling method used by Braboszcz and Delorme (2011) and the other literature dis-

cussed in this section. During a meditation task, participants were asked to conduct

a specific breath counting exercise, and were asked to report when they began to

lose count of their breathing. In an online lecture context, there is no clear task by

which this distinction can be made, and we would rely on participants’ subjective ex-

perience of what constitutes sufficient mind wandering during an online lecture task.

An alternative approach involves a pseudo-random interval interruption, when par-

ticipants are asked about whether they experienced mind wandering. Using a Likert

scale at these points, we can mitigate this problem of subjective threshold (Wammes
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& Smilek, 2017). It is unclear which of the two methods is more appropriate in the

online lecture setting, so we propose exploring both. In order to do this, we will

need to conduct two studies, one with the experience sampling method described by

Braboszcz and Delorme (2011) and another with the method described by Wammes

and Smileck (2017). We are thus led to hypothesize that there will be no significant

difference between the two.

H2 — There will be statistically significant correlations between neurophysiological

measures and both types of experience samples.

Sullivan et al. (2015) found evidence to support that mind wandering or on-

task thought could be characterized in terms of technology (task) related and non-

technology (task) related when discussed in an information technology setting. They

found that on-task thought which was technology-related was positively associated

with knowledge retention and that technology-related mind wandering had a negative

impact (Sullivan et al., 2015). However, non-technology related mind wandering

had no impact on knowledge retention. This work thus established a method for

investigating mind wandering in an education setting which suggests a distinction

that may be useful when similarly investigating the efficacy of MOOCs.

This said, the authors acknowledge significant limitations to their study. They

recognize the problem of a missing time dimension, the lack of neurophysiological

correlates and even call for a future investigation using neurophysiological tools. Ad-

ditionally, they acknowledge that the study is limited insofar as it only tested the

moderating effect of mind wandering, and ignored other potential moderators such

as working memory capacity and task complexity (Sullivan et al., 2015). A robust

extension of their work should not only consider neurophysiological correlates, but

also the impact of other moderating factors.

A simple way to incorporate this is to include additional ex post questionnaire

content related to working memory and task complexity. The NASA Task Load

Index (TLX) incorporates working memory activation and task complexity, albeit

subjectively (Hart & Staveland, 1988). The original TLX consists of six dimensions

of task load: mental demand, physical demand, temporal demand, performance, effort

and frustration, each answered using a subjective subscale ranging from low to high.
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By incorporating the a reported task load measures in addition to the mind wandering

reports, we can explore the relationship between the two constructs.

Assuming that certain neurophysiological indicators are associated with the mind

wandering state, and that mind wandering can be reliably measured using an ex

post measure, it makes sense that there would be a similar correlation between the

ex post measure and the neurophysiological indicators. However, while the previ-

ous statements concerned particular states in time, the ex post measure concerns

the period following the MOOC session; in other words, it tracks users’ perception

of their experience rather than the experience itself. The neurophysiological indica-

tors in question must therefore represent an entire online lecture session, rather than

small segments of time around experience samples. Assuming the mind wandering

state and participants’ perceptions of it are consistent, we are led draw hypotheses

about the relationship between the ex post measures and session measures. Rather

than specifying the relationship between each component separately, we will com-

bine hypotheses about the individual components to hypotheses about component

amplitudes generally.

H3a — Component amplitudes (P1, N1, P2, P3) will be positively correlated with

reported Technology unrelated mind wandering.

H3b — Component amplitudes (P1, N1, P2, P3) will be positively correlated with

reported Technology related mind wandering.

H3c — Component amplitudes (P1, N1, P2, P3) will be negatively correlated with

reported task load.

H3d — Reported mind wandering experiences will be positively correlated with

reported technology unrelated mind wandering.

H3e — Reported mind wandering experiences will be positively correlated with

reported technology related mind wandering.

H3f — Reported mind wandering experiences will be negatively correlated with

reported task load.
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3.1.2 The Impact of Perceived Mind Wandering

Where hypotheses 1 through 3 concerned the first research question about measuring

the mind wandering state, hypotheses 4 and 5 concern mind wandering’s impact on

learning. Assuming that we can develop a reliable measure of mind wandering, we

can then apply the measure to develop insight into its impact on learning. The

fundamental task of schooling is to facilitate learning, and online lectures or MOOCs

are no exception. This is to say that the purpose of schooling is to facilitate positive

learning outcomes. In Chapter 2, we explored the concept of learning and outlined

a number of theories about how learning is facilitated either online or in a classroom

environment. These theories ultimately explore methods for teaching and learning

better. Yet, what are learning outcomes? A teacher may go their whole life without

asking this fundamental question.

Mayer contrasts three kinds learning outcomes, and though he makes this assertion

in the discussion about the Cognitive Theory of Multimedia Learning (CTML), these

are applicable to classroom teaching in general (Mayer, 2009). The first outcome is

no learning, where a student is unable to retain the content of a lesson, performs

poorly on tests of retention, and is unable to demonstrate knowledge transfer. The

second outcome is referred to as rote learning, where students are able to retain facts

(eg. can remember steps in a process) but are unable to use this knowledge to solve

problems creatively. Rote learning is often distinguished by good retention but poor

knowledge transfer. The third outcome is what Mayer calls meaningful learning, also

often referred to as inferential learning, where students not only retain knowledge,

but demonstrate knowledge transfer, perhaps by using the knowledge to solve novel

problems. All this is to say that knowledge retention precedes mastery.

This distinction is useful because it helps us establish tangible goals in an investi-

gation. Except for extreme circumstances, we can expect a single electroencephalog-

raphy (EEG) session to last up to two hours, after which participants would need

to rest. Meaningful learning is therefore unlikely to be acquired within the limits

of a single session. This said, it is entirely possible and reasonable to demonstrate

rote learning within such a timeframe and it would be useful to constrain the type

of learning conducted by a study. By constraining the study to a single session and

the acquisition of rote learning outcomes, we can establish more detailed temporal
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analysis which can better inform the design of individual MOOC sessions. Given our

previous discussion about how neurophysiological indicators are predicted to relate

to mind wandering.

Tests are perhaps the most common measure of successful of learning outcomes

and one of the most common methods of testing MOOC efficacy. An investigation

into MOOC efficacy could incorporate tests, which many MOOCs already incorporate

into their design. Multiple-choice testing, in particular, is pervasive in MOOCs and is

often used as the primary means of student assessment in a university environment.

The main motivation for multiple choice testing appears to be its scalability and abil-

ity to accommodate large class sizes (Roediger & Marsh, 2005) and not necessarily its

efficacy. There has been growing concern about the applicability of multiple choice as

a primary test mechanism, largely because of challenges with it incorporating different

learning outcomes. For the measurement of rote learning however it is appropriate,

and a simple multiple choice instrument could be successfully used for such a study.

By having participants complete a test before participating in a lecture video, we can

reliably measure their current understanding of the topic. By subtracting scores on

the same test afterwards, a measure we will call quiz deltas, we can see what they

learned from the video. Finally, we should also consider the relationship between the

selected ex post measures and rote learning outcomes. Assuming that the mind wan-

dering experience generalizes to ex post perceptions, we should also observe positive

relationships between ex post reports and rote learning outcomes. Assuming that

mind wandering has a negative impact on learning, we are led to the following set of

hypotheses:

H4a — Quiz deltas will be negatively correlated with component amplitudes.

H4b — Quiz deltas will be negatively correlated with reported technology unrelated

mind wandering.

H4c — Quiz deltas will be negatively correlated with reported technology related

mind wandering.

H4d — Quiz deltas will be negatively correlated with reported task load.
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H4e — Quiz deltas will be negatively correlated with reported mind wandering

states.

3.1.3 Mind Wandering State Decoding

This brings us to the end of Figure 3.1. One final objective of this dissertation is to

create a real-time measure of mind wandering that can be used in MOOC research,

as well as other IS contexts. The experiment and data as described in this chapter

will make it possible to create such a real-time measure. The question of how such a

measure can be deemed successful should be addressed.

As mentioned earlier, though there do not appear to be any extant examples of

decoding in this context, there is considerable research on other ERP detection tasks,

such as that performed by P3 BCIs (Quitadamo et al., 2017). In the case of the

P3 speller, performance of 96.5% accuracy (Rakotomamonjy & Guigue, 2008) using

Ensemble SVM, 85% accuracy using least squares SVM (Gu, Yu, Shen, & Li, 2013)

and 90% accuracy using standard RBF kernel SVM (Salvaris & Sepulveda, 2009) have

been reported. These seem to be useful benchmarks, insofar as they involve a similar

task and all use variants of the SVM classification algorithm. However, we should be

cautious when using these as a benchmark for our task. The P3 is a substantially

more powerful signal, with amplitudes often exceeding twice that of the P2 (Luck,

2014). A P2 time-series classifier is thus likely to perform considerably more poorly

than these benchmarks given that it will have a much lower signal-to-noise ratio.

A better benchmark was given by Furdea et al. (2012), which explored an ERP

BCI for a different task. In this work, they describe a brain-computer intferface

(BCI) that classifies conditioned reactions to semantic stimuli, with the goal of even-

tually developing a BCI to give paralyzed individuals the ability to communicate

verbally (Furdea et al., 2012). They constructed a paradigm for controlling either

agreement or disagreement (”yes/no”) to short propositions, and classified the sub-

sequent low-amplitude waveform. They compared multiple classification techniques

and ultimately found that radial-basis function kernel SVM exhibited the best clas-

sification result at 68.6% accuracy. This was was not statistically significant and was

not sufficient to conclude that classification was being performed above the chance

level of the two reactions, given their sample size.
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We can likewise expect low classification results, given that we will have a low

amplitude waveform, relatively few samples, and considerable noise during recording.

However, we also have reason to believe that it can be accomplished and that the

results will be better than random chance. The P2 ERP has been studied extensively,

and has been used to demonstrate clear differences between mind wandering and on

task states. Further building on the work described in the BCI literature, we can

also hypothesize that SVM or one of its derivatives will perform best at classification

tasks (Lotte et al., 2018). This leads us to articulate our final hypothesis:

H5 — An algorithm can be constructed which measures differences in reported mind

wandering states with at least 70% accuracy.

3.2 Development of Questionnaire Instruments

3.2.1 Pre and Post Study Questionnaires

Following the development of the conceptual framework, we investigated the IS lit-

erature for other suitable measurements of mind wandering. To the best of our

knowledge, there is only one instrument that has been developed to investigate the

role of mind wandering in the IS setting (Sullivan et al., 2015). Given that this is

a post-hoc questionnaire measure, this is a natural candidate for our investigation

into the relationship between traditional and neurophysiological measures, which is

among the main reasons it was selected for this study.

Sullivan et al. (2015) developed their instrument to incorporate the relationship

between on-task thought, mind wandering, creativity and knowledge retention. In ad-

dition to the four constructs measured, they further distinguished technology-related

mind wandering and non-technology related mind wandering. Some of the instru-

ments they developed are relevant to our inquiry. They explored the role of creativity

on mind wandering because it has been separately found to be associated with the

unconscious mind and the way that it processes ideas (Dijksterhuis & Meurs, 2006).

Given that mind wandering is associated with unconscious processing, an investiga-

tion into the relationship between creativity and mind wandering was justified in their

case, but not in ours. They also explored this technology/non-technology distinction
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because they hypothesized that they would result in different behavioural outcomes,

especially with respect to the moderating effect of creativity. We are not interested

in exploring the role of creativity, so we can exclude it.

In order to investigate their hypotheses, Sullivan et al. (2015) developed ques-

tionnaire measures for each of the four constructs, in addition to a number of control

variables. Most of the instruments were derived from previously validated measures,

though some were newly introduced. To validate their scale, they conducted a pretest

of the items, and then conducted a full test of their structural model. The result was

in a valid mind wandering instrument which they could use to test their hypotheses.

They eventually found that mind wandering did have a moderating effect on both cre-

ativity and knowledge retention, but also that this relationship depended on whether

the mind wandering was related to the information technology task. In our case, we

can leverage the technology-related and non-technology related mind wandering scale

to have a valid post-hoc measure.

As previously mentioned however, Sullivan et al. (2015) ultimately concluded that

there are some significant limitations to their study, one of which was its neglect for

the role of working memory capacity and cognitive load (Sullivan et al., 2015). This

is why we complement their measure with questions derived from the NASA Task

Load Index (TLX). Though there are other measures of cognitive load, some of which

are specifically tailored to Sweller’s model or multimedia learning (Brunken, Plass,

& Leutner, 2003; Leppink, Paas, Van der Vleuten, Van Gog, & Van Merriënboer,

2013), none are as widely used and accepted as the NASA TLX and few of them

incorporate extraneous load from a task, such that caused by sitting still through

a long electroencephalography (EEG) experiment. Furthermore, the questionnaire

format of the TLX makes it practical to implement in a ex post fashion. The NASA

TLX therefore represents a very well validated measure with which we can confidently

benchmark physiological measures against.

As such, we constructed a 25 question post-study measure and pre/post test mea-

sure of rote learning. The 25 questions were derived from Sullivan et al. and the NASA

TLX, and were designed to be answered on a 7-point Likert scale. The pre/post test

consists of 10 multiple choice questions on content from the video. By creating a
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pre/post measure, we can effectively account for knowledge that participants had be-

fore joining the experiment while also accounting for rote learning and the difficulty

of subject matter. The detailed pre/post test measures are provided in Appendix B

while the post-study questionnaire is detailed in Appendix C.

3.2.2 Experience Sampling Methods

In addition to pre/post measures, we can also conduct experience sampling. In the

hypothesis development subsection we explore two sampling methods: one where

participants subjectively assert when they experience mind wandering (Braboszcz &

Delorme, 2011) and one where they are prompted to report on their mind wandering

experience (Wammes & Smilek, 2017). In the first has the advantage of being able to

neatly distinguish when participants experience wandering from when they are not.

It also has the disadvantage of not accounting for the degree of experienced mind

wandering, or for the variance in subjective experiences throughout the lecture. The

later has the advantage of being able to account for this variance.

In order to account for the potential differences in these methods, we propose

conducting studies that explore each of them. In the first study, participants can

report when they experience escaping the mind wandering state. These samples

can be aggregated and used as either an ordinal or continuous variable in regression

analysis, and used to distinguish conditions for EEG analysis. In the second study,

the fixed prompt method can be employed. These samples could be again used in

regression to compare continuous variables. The subjective measures can also be

discretized for comparison.

Appendix D describes the two sampling methods. Method 1 describes the self-

reported mind wandering experience. Method 2 describes the potential subjective

responses to the mind wandering prompt. The methods can be further compared by

whether we see statistically significant differences in explanatory power between the

experience sampling methods used in the two studies.

3.3 How to Conduct and Analyze an Auditory Oddball Experiment

There has been some discussion in the NeuroIS community about the appropriate

technical methods for conducting neurophysiological research. While some researchers
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Tool Name Description
Anaconda A distribution of the Python and R programming language for sci-

entific computing (Anaconda, 2019).
Jupyter A notebook format for sharing code and computational narra-

tives (Perez & Granger, 2015).
Matplotlib A 2D graphics package for the creation of publication-quality im-

ages (Hunter, 2007).
Numpy A package for scientific computing and analysis (Van Der Walt et

al., 2011).
Pandas A data library optimized for manipulating large and time series

data (McKinney, 2010).
PsychoPy An application and library used to run psychology and neuroscience

experiments (Peirce, 2007).
MNE A library for preparing, analyzing and visualizing MEG, EEG and

other related data (Gramfort et al., 2013, 2014).
Scikit Learn A machine learning library for Python (Pedregosa et al., 2011).

Table 3.1: Summary of Python tools used for EEG analysis

have been motivated to develop proprietary platforms (Courtemanche et al., 2018)

or open source libraries (Michalczyk, Jung, Nadj, Knierim, & Rissler, 2019), there

is an alternative approach which can be taken. Instead of developing new tools,

existing tools can be adapted to conduct complex experiments. In this subsection,

the tools and approach used to develop experiments and analyze data are described.

All of the software tools discussed are written in the Python programming language

and are freely available under the Python Software Foundation’s open source license.

The “Python Stack” subsequently described can likewise be adapted for other EEG

experiments and it is our hope that this section will be useful to researchers who wish

to explore similar questions in the future.

3.3.1 Python Tools for EEG Processing

In the experiments described in this dissertation, the Python programming language

was used to deliver stimuli, collect data, analyze data and conduct machine learning

analysis. Table 3.1 summarizes the tools used throughout the experiment. Though

the Python programming language, like all programming languages, requires technical

capabilities to use, it is highly portable and is designed to be readable by a broad

audience. Specialized data science Python packages such as Anaconda (Anaconda,
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2019) come with robust package managers, as does Python itself. Package managers

make it relatively simple to install and configure the packages necessary to conduct

and analyze the experiment.

We encourage the use of notebooks when conducting analysis for scientific exper-

iments. Notebooks such as Jupyter (Perez & Granger, 2015) facilitate collaboration

by combining code and markup. They also help make scientific analysis reproducible

by forcing scientists to record their scripts and transparently present results (Toelch

& Ostwald, 2018; Harding, 2019). This is particularly useful when conducting EEG

analysis because of the amount of subjective preprocessing which is often conducted

on participants. Ineffective preprocessing can lead to many problems, and has been

raised as a potential methodological concern in the event-related potential commu-

nity (Luck & Gaspelin, 2017). Replication of preprocessing analysis and data trans-

parency can help neuroscientists and NeuroIS researchers manage this problem.

3.3.2 Design of Auditory Oddball Stimuli

In Chapter 2 we discussed the auditory oddball experimental paradigm. In that ex-

periment, auditory stimuli are presented which elicits the P1-N1-P2 and P3 response.

In the standard oddball paradigm, 80 percent of the stimuli are presented at one audi-

tory frequency while 20 percent are presented at a noticeably different frequency. The

oddball stimuli (20%) elicit a response that is more pronounced, but also sensitive to

differences in covert attention.

To the best of our knowledge, we are the first to apply this paradigm to an adult

MOOC context. We conducted experiments where the standard auditory oddball

paradigm was enacted, but where participants are also asked to observe MOOCs. As

shown by Braboszcz and Delorme, the oddball stimulus response is different in the 10

seconds before a mind wandering report from the 10 seconds afterwards (Braboszcz &

Delorme, 2011). One of the ways that we observed mind wandering is by comparing

the neurophysiological responses throughout the online lecture experiment. In an

effort to replicate their findings in a different setting, we can likewise observe the 10

seconds before and after a button press. Figure 3.2 demonstrates the generic setup

for our experiments.

EEG recording was conducted over the length of a video as oddball stimuli are
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Figure 3.2: A demonstration of the proposed experimental setup

presented. Oddball stimuli were developed using the PsychoPy platform which comes

with auditory stimuli objects (Peirce, 2007). The timing of the auditory signals was

recorded by PsychoPy using its pre-defined parallel function, which allowed us to

activate pins on the computer’s parallel port. The result is a signal that can be

read in the live EEG data. PsychoPy was also used to administer surveys and mind

wandering prompts. PsychoPy also helped us streamline the aggregation of the data

generated throughout the section (i.e. timings and survey results) by simplifying each

recording in a single csv file.

According to Luck (2014) we require approximately 400 recordings to accurately

compare the P1 component; we therefore require long video sessions during which par-

ticipants’ electroencephalography (EEG) data was recorded. We employed a standard

32 channel EEG system with a modified montage to emphasize the paretal and oc-

cipital regions of the head, given that this is the region is where the P1-N1-P2 signal

is strongest (Hillyard & Anllo-Vento, 1998). By using the actiCHamp EEG system

(BrainVision LLC) with low impedances, we can collect high quality signals even with

a limited number of channels.
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3.3.3 Preprocessing, Epochs, Artifacts and Analysis

Once the data was collected, it needed to be prepared. Using MNE (Gramfort et al.,

2013, 2014) users are able to extract prepare data from supported devices. EEG data

can then be saved as a mne.raw object which can be subjected to processing. Raw

objects can be subjected to bandpass filtering, which eliminates noise either below

of above a defined threshold. The mne.preprocessing library provides a number of

methods that can be further applied to this step such as the xDAWN algorithm,

which eliminates artifacts and amplifies differences between ERP conditions (Rivet

et al., 2009).

ERP experiments require researchers to analyze data which is time-locked to

events rather than a continuous stream of data. MNE provides an mne.epochs data

format which is well-suited to this task. This data type can be generated from the

mne.raw data based on the events recorded in the eeg data itself. The mne.epochs

objects which are generated can then be visualized and inspected using a number of

helpful visualization tools that are written into the objects as methods. The visual-

izations are built on Python’s matplotlib library (Hunter, 2007) which is designed to

create publication quality visualizations.

In the experiments described in this dissertation, we expected there to be consid-

erable noise created by blinks and head movement throughout the session, which have

to be filtered before analyzing the data. We used the visualization method described

above to manually investigate the epochs. We then applied MNE’s independent com-

ponents analysis (ICA) library to further clean the data. ICA separates the epoch

data into independent components which explain the variance of the data. When data

are recorded correctly, ICA components which are the result of EEG artifacts will be

visually apparent. Using this method, we can therefore select and remove components

that are likely artifacts (Delorme & Makeig, 2004). We can then save the code that

cleans the futures so that the precise processing results can be replicated.

Following preparation, the oddball response can be averaged compared visually.

We can identify the timing of the the amplitudes and peaks of the P1, N1, P2 and P3

components and compare the responses from each of the conditions during these time

windows. We compared the amplitudes of four conditions: two standard conditions

(mind wander and on-task) and two oddball conditions at the three identified time
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Figure 3.3: An illustration of the Python Stack and EEG data analysis process
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windows. We also identified relevant electrode regions to compare by first visualizing

the average differences during each time window and then extracting a region of

interest to be compared consistently across participants.

In addition to the event-related potentials, we can also compare oscillatory activ-

ity. As mentioned in Chapter 2, unlike ERP, oscillatory activity is often contrasted

in the frequency domain at various bins commonly discussed in the literature: delta

(0-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (30-100 Hz).

When contrasting in the frequency domain, power spectrum analysis is commonly

employed. Frequency power, the squared oscillation amplitude at a given frequency

band, can be calculated across a given period of time. Power spectrum analysis can

also be compared statistically across specific electroencephalography (EEG) channels,

much the same way as analysis on ERP amplitudes. In our analysis, we can calculate

the power at the theta, alpha and beta bands during the 10 seconds before a mind

wandering or on-task report and compare the results.

To quickly summarize, ERP comparisons were made between four conditions:

reported mind wandering standard responses, reported mind wandering oddball re-

sponses, reported on-task standard responses, and reported on-task oddball responses.

Following Braboszcz and Delorme (2011), statistical comparisons will be made among

the responses from the 10 seconds before a report. ERP components will be iden-

tified visually by observing averages, segmented by selecting specific time windows

and groups of electrodes, and then compared. Likewise, oscillatory activity will be

observed at a collection of electrodes in the 10 second windows before a reported

state. We shall now discuss the statistical methods that will be employed and how

they will help maintain validity in the results.

3.3.4 Techniques for Ensuring the Validity of EEG Results

The methodological challenges of statistical analysis for EEG were articulated in an

article eloquently titled “How to get statistically significant effects in any ERP ex-

periment” (Luck & Gaspelin, 2017). In this article, they highlight a fundamental

challenge with ERP experiments. Given the massive size and high dimensionality in

the data, it is likely that any given ERP experiment will produce statistically signif-

icant results of some sort. A fundamental issue is that ERP component amplitudes
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windows are averaged, visualized, and chosen arbitrarily. In doing this, experimenters

are implicitly making hundreds of statistical comparisons (Luck & Gaspelin, 2017).

Further, given that multifactor statistical analysis is frequently used in ERP studies,

it is likely that we will observe false positives. The experiment described thus far is

no exception to these criticisms, as we use the same data preparation process as that

critiqued by Luck and Gaspelin (2017).

This dissertation incorporates two methods to manage these concerns. The first is

that we use mixed effects analysis to interpret the results (Baayen, Davidson, & Bates,

2008). Mixed effects analysis can be used to include both fixed effects (nonrandom and

independent effects) and random effects, which is helpful for contexts with repeated

measures within subjects. It allows us to incorporate both within-subject effects and

intra-electrode effects in our analysis, in addition to the between-condition effects

we desire observe. LME helps mitigate many of the risks of accidentally detecting

between-subject effects which Luck and Gaspelin (2017) warn about by accounting

for random effects which may be present in the data. It has not yet been widely

adopted by NeuroIS researchers, though linear mixed effects analysis was recently

employed in a study of habituation in security warnings (Vance, Jenkins, Anderson,

Bjornn, & Kirwan, 2018). One challenge with this method is that it assumes a linear

relationship, which may not be the case. We will employ a generalized additive

mixed effects model (Tremblay & Newman, 2015) we might ensure that our results

accurately account for variances between participants, especially given the high degree

of expected variance in responses.

The second, and perhaps most important consideration is experiment replication.

Luck and Gaspelin (2017) recommend replication in any experiment where indepen-

dent variables are arbitrarily selected. In our experiment, we must select component

time windows and the period of time to select epochs to compare. Our study could

therefore be a strong candidate for type 1 errors. We manage this by attempting to

replicate the results described in Braboszcz and Delorme (2011) in the online lecture

context. We further manage this by conducting two experiments and cross-referencing

the results with two different mind wandering report techniques, which helps ensure

that significant results discovered are generalizable.
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Figure 3.4: An illustration of the decoding process used

3.3.5 Techniques for EEG Decoding

As previously mentioned, there are two broad categories of decoding techniques and

brain-computer intferface (BCI)s which are relevant to this dissertation. The clas-

sifiers employed in this dissertation each involve three steps: preprocessing, classi-

fication and validation. We shall describe the techniques used in each of the three

steps for both the frequency domain and time-domains. This classifier observes fre-

quency data from the 10 seconds before a report and applies three steps. Likewise,

the time-series classifier assesses 1.2 second epochs around the auditory signals and

applies preprocessing, classification and validation. Both of the tasks will be further

explored in aggregate and for each participant individually.

Concerning preprocessing, the technique employed will depend on the domain be-

ing observed. Common spatial pattern filters are often used in frequency domain

tasks and will be employed in this analysis (Koles, 1991). Common spatial patterns

identify the frequency domain differences between two classes decomposes the data

into subcomponents that maximize the differences. Time series data, by contrast,

will apply the previously discussed xDAWN algorithm, which maximizes the signal

to signal+noise ratio between the epochs. It is important to note that MNE Python
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contains libraries that simplifies these steps, which will be used to perform this anal-

ysis (Gramfort et al., 2013, 2014).

Following preprocessing, data can be classified using any number machine learn-

ing techniques. As previously discussed, given the dimensionality of the data, we

expect two of these techniques to perform well: support vector machines and linear

discriminant analysis. In addition, we shall explore three other classification tech-

niques: Logistic Regression, Naive Bayes, and Random Forests for control. Each of

these techniques are implemented in the Python scikit-learn library (Pedregosa et

al., 2011). These techniques have been explored in previous BCI literature and are

often employed in standard machine learning classification analysis (Lotte et al., 2018;

Quitadamo et al., 2017).

Finally, validation shall be performed using a shuffled 3-fold cross validation (Kohavi,

1995). K-fold cross validation is a non-exhaustive cross validation technique where

the data is divided into three folds. The classifier is trained on two of the folds and

tested on the third; the process then continues for the remaining folds. Accuracy,

as well as other desired measures, are measured for each fold-task. Scores are then

averaged. This method is often employed in machine learning tasks with datasets

with few samples, such as the classification task before us.

3.4 Summary

The hypotheses and methodology used in this dissertation were described. We dis-

cussed the theoretical model and the six categories of hypotheses to be corroborated.

We also discussed the questionnaire methods employed, and how proven mind wan-

dering and task load survey measures will be used to validate the neurophysiological

measures. Components will be observed visually and compared at consistent time

windows at each of the components, while power will be compared at the theta, al-

pha and beta frequency bands. We discussed how mixed effects modelling can account

for differences among participants and electrodes, while incorporating experimental

replication will help ensure the generalizability of our results. Decoding can also be

performed using MNE Python, which may yield a real-time mind wandering measure.

In chapters 4 and 5 we discuss two experiments that both draw from the methodolo-

gies described in this chapter. We shall begin with a smaller study which attempts
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to replicate the results Braboszcz and Delorme (2011) in an online lecture setting.



Chapter 4

An Experiment to Measure Mind Wandering during an

Online Lecture

As mentioned in Chapter 3, prior literature has found that differences in early re-

sponses to auditory evoked potentials have been found to be useful indicators of

mind wandering. Braboszcz and Delorme (2011) observed that differences in the P2

auditory evoked potential were significantly different between states of reported mind

wandering and on-task experiences. In that study, participants were asked to perform

a meditation task and press a button when experiencing mind wandering. Auditory

stimuli were presented following an oddball paradigm and responses to the auditory

tones were found to be significant predictors of mind wandering. However, the task

described by Braboszcz and Delorme (2011) has some challenges that prevent their

findings from being generalizable in an online lecture setting. Not least, they asked

participants to perform counting task which gave a precise method of determining

when mind wandering occurs. Such a counting task would inhibit performance in a

secondary task such as learning from a video.

In this chapter we describe the results of a study that sought to replicate some

of the key findings of Braboszcz and Delorme (2011). We are motivated to replicate

their study to determine whether their findings are generalizable in an online lecture

or broader e-learning context. By doing this, we make strides to identify the neuro-

physiology of the mind wandering state. This forms the foundation for a larger study

which can validate the discovered measures with other methods, including those with

lower expected effect sizes such as questionnaires, subsequently described in Chapter

5.

The primary goal of this study was to identify neurophysiological patterns that

are correlated with mind wandering at a particular time. We predict that the P1, N1

and P2 responses to oddball auditory stimuli will be larger when participants report

being in a mind wandering state than when they are on-task. We believe that this

70
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Figure 4.1: An illustration of the experiment design described

will be the case because when attention is directed at sensory stimuli, such as the

auditory sounds, the amplitudes of the P1, N1, and P2 cortical responses to those

auditory tones will be more pronounced.

The second objective of this study is to determine whether we can accurately de-

tect mind wandering instances during an online lecture. We employed the previously

described decoding processes using both time domain and frequency domain data.

By doing so we identified an appropriate decoding method which can be applied to a

larger population sample using a different experience sampling method.

To identify the moments when mind wandering occurred, we use the experience

sampling method reported in Braboszcz and Delorme (2011). Participants were asked

to press a button when they realized that their mind was wandering. Participants were

told that they would be tested on the content and were tested following We likewise

analyzed responses from the 10 seconds preceding the mind wandering responses and

the 10 seconds afterwards.

4.1 Methods

4.1.1 Participants

Sixteen healthy students (7 females and 9 males; age 19-29 years, mean 23.6 and

SD = 3.7) gave written consent to participate in the experiment. Participants were
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excluded if they reported neurophysiological, emotional, medical, hearing and vision

conditions that could lead to abnormal electroencephalography (EEG). Participants

were also excluded if they were majoring in computer science or had taken a course

related to machine learning (which could confound the results of the study, which

used an instructional video on this topic), or were not fluent in English (the language

of the instructional video). Participants provided written and informed consent and

were financially compensated CAD $25 for their time. All procedures were reviewed

by Dalhousie University’s Research Ethics Board. As detailed below, 6 of the 16

participants were excluded for either technical reasons or because they did not report

enough mind wandering episodes.

4.1.2 Experiment Stimuli

Audio stimuli consisted of 100 ms tones; the frequent standard tones were 500 Hz

while the infrequent oddball tones were 1000 Hz. In total 2446 tones were presented

throughout the experiment. Oddballs and standard conditions were assigned to each

tone randomly at a 80:20 ratio.

4.1.3 Procedure

After completing the informed consent procedure, participants were fitted with the

electroencephalography (EEG) cap (see next section) and brought to the testing room.

Participants were asked to attend to a 51-minute English language video on the

subject of machine learning (Grimson, 2017). The auditory tones were presented at

the same time as the video, over the lecture audio. The subject matter and video

were chosen because it had some utility to the participants. Pilot testing suggested

that this video would trigger variations in mind wandering and alertness for most

participants. The video consists of a lecturer talking, along with an occasional visual

aid created in Microsoft Power Point. Participants were asked to pay attention to

the video and ignore the audio stimuli, which were presented at random every 1-1.5

seconds (mean 1.25). As in Braboszcz and Delorme (2011), participants were asked to

report when they experienced mind wandering by pushing a button on the computer

keyboard. Participants were also asked to complete a multiple choice quiz which was

administered before the video and again following the video, in an effort to control
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for task difficulty. The PsychoPy library was used to present the audio stimuli and

record manual responses (Peirce, 2007).

4.1.4 EEG Recording

Participants were fitted with 32-channel scalp electrodes (ActiCap, BrainProducts

GmbH, Munich, Germany) positioned at standard locations according to the Inter-

national 10-10 system and referenced during recording to the midline frontal (FCz)

location. Bipolar recordings are made between the outer canthi of the two eyes,

and above and below one eye, to monitor for eye movements and blinks. Electrode

impedances were kept below 15 kOhm throughout the experiment. EEG data are

sampled at 512 Hz using a Refa8 amplifier (ANT, Enschende, The Netherlands),

bandpass filtered between 0.01 and 170 Hz, and saved digitally using ASAlab soft-

ware (ANT). The identity of each audio tone (standard/oddball) was communicated

to the EEG amplifier via TTL codes sent from PsychoPy via the parallel port (Peirce,

2007).

4.1.5 Artifact Correction and Data Processing

The MNE-Python library (Gramfort et al., 2013, 2014) was used for all data prepro-

cessing. For ERP and statistical analysis, a 0.1 to 40 Hz bandpass filter was applied to

the data, followed by manual identification and removal of electrodes and epochs with

excessive noise. The data were then segmented into epochs spanning 200 ms prior to

the onset of each auditory tone, to 1 s after. Independent Components Analysis was

then used to identify and remove artifacts such as eye blinks and movements (Delorme

& Makeig, 2004) using the FastICA algorithm (Hyvarinen, 1999). EEG data was ref-

erenced to the mastoids using the average of signals from electrodes located at TP9

and TP10. The epochs that occur in the 10 s before the reported mind wandering

(excluding the 1 s window before the report) were assigned a mind wandering label,

while epochs that occur in the 10 s after the reported mind wandering (excluding the

1 s window after the report) were assigned an on-task label. Oscillatory analysis was

performed on longer 10 s epochs which were similarly bandpass filtered at 0.1 to 40

Hz and labeled but not filtered using ICA.
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4.1.6 Data Analysis

There was a high degree of variability between individuals in the number of mind

wandering events reported (range: 0-61). Following best practices (Luck, 2014), we

opted to control for radical inter-subject variability. Participants were excluded if they

yielded 1 or fewer mind wandering responses. Three participants’ data were excluded

for this reason and three were excluded due to technical issues in their recording.

Each participant included yielded between 12 and 140 relevant events (oddball audio

tones) within the 10 s window before and after self-reported mind wandering events.

This resulted in a total of 5754 epochs (2201 mind wandering standard, 466 mind

wandering oddball, 2552 on task standard, 535 on task oddball).

After assessing the grand average waveform, we selected four time intervals for

statistical analysis. Intervals were chosen based on observed positive and negative

components, which corresponded to the P1, N1, P2 and P3. Analysis was performed

at the 125 to 175 ms, 175-225 ms, 225-275 ms and 275-375 ms intervals in a region of

interest centred around a posterior region centred around the Pz electrode (including

electrodes Pz, Cpz, POz, CP3, CP4, P3, P4). These locations were chosen arbitrarily

for exploratory analysis by visually inspecting the components. Statistical analysis

was performed using linear mixed effects analysis (Tremblay & Newman, 2015). The

mean amplitude over these windows were used as the dependent measure for ERP

analysis. The model’s fixed effects included mental state (mind wandering, on task)

and stimulus type (standard, oddball); random by-subject slopes for mental state and

stimulus type, as well as random intercepts for each subject, were included as well.

These model parameters were selected based on comparison of Akike Information Co-

efficient (AIC) values (Wagenmakers & Farrell, 2004). Posthoc comparisons between

the calculated LME amplitudes were performed by observing differences among the

amplitudes triggered by the oddball and standard stimuli for each condition.

Oscillatory activity was compared by calculating power spectral density (PSD) of

delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz) and beta (13-30 Hz) using multitaper

method on data from the aforementioned region of interest (Percival & Walden, 1993).

Average PSD values each individual were calculated and compared using parametric

t-tests at both the group and individual level. Comparisons were made between pre

and post mind wandering reports (10 s) as well as between the four conditions of
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short epochs (1.2 s).

4.1.7 Decoding

We performed decoding using two methods. Classification on the 1.2 s ERP epochs

was performed on epochs which were processed using ICA, while classification on

the longer 10 s epochs was performed on raw data after transforming the data using

common spatial patterns. Data from participants was analyzed at the participant

level to control for confounding differences between participants. The outcome of

classification is a decision as to whether an epoch is from a reported mind wandering

state (i.e. 10 seconds before the button press) or from the on-task state (i.e. 10

seconds after the button press). We applied five machine learning techniques to this

task: linear kernel Support Vector Machines (SVM), Linear Discriminant Analysis

(LDA), Logistic Regression (LR), Gaussian Naive Bayes (NB) and Random Forest

(RF). Classification results were evaluated using shuffled 3-fold cross validation. We

evaluated the performance of different methods using accuracy, precision and recall.

Tables D.1 and D.2 in Appendix E describe the detailed structure of the data used

in both frequency-series and time-series classification tasks.

4.2 Results

4.2.1 ERP Analysis

A selection of the calculated grand average from the region of interest is illustrated in

Figure 4.2. The grand average yielded four visibly distinct ERP components elicited

by the stimuli. We observed a visible positive component beginning at 125 ms follow-

ing the stimulus presentation, as well as a negative component at 175 ms, followed

by positive components at approximately 225 ms and 275 ms. Figure 4.3 highlights

average amplitudes at select times in the chosen windows. Tables 4.1, 4.2, 4.3 and 4.4

summarizes the results of linear mixed effects analysis of the models. Results from

the mixed effects analysis showed significant effects between the conditions among

the observed P1, N1, P2, as well as P3 components, which will be discussed in turn.

Quiz scores from participants who successfully completed the task with usable EEG
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Figure 4.2: The grand average waveforms from Experiment 1 at the region of interest
observed
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Figure 4.3: Experiment 1 component amplitudes by condition



78

Figure 4.4: Topographic maps of components observed from Experiment 1 grand
average

Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW –0.68 0.230 –2.95 0.0032**
Oddball vs Standard OT 0.20 0.227 0.89 0.7436
MW vs OT Oddball 0.92 0.206 4.43 < 0.001***
MW vs OT Standard 0.03 0.141 0.23 0.8182

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 4.1: P1 amplitude LME contrasts from experiment 1

were analyzed using two-tailed paired t-test. Participants were found to attain sig-

nificantly lower (p < 0.001) pre quiz scores (mean = 1.7, SE = 1.57) as compared to

post quiz scores (mean = 3.7, SE = 1.70). In both the pre and post quiz, participants

correctly answered fewer than 50% of the 8 questions asked.

Highly significant effects of stimulus type during the mind wandering state (p <

0.01) were observed, as well as a highly significant effect of mental state among re-

sponses to oddball stimuli (p < 0.001) of P1 component amplitudes were observed, as

Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW 0.06 0.249 0.23 0.8175
Oddball vs Standard OT 0.64 0.247 2.61 0.0364*
MW vs OT Oddball 0.35 0.237 1.47 0.4212
MW vs OT Standard –0.24 0.176 –1.35 0.4212

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 4.2: N1 amplitude LME contrasts from experiment 1
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Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW -0.54 0.181 -3.00 0.010*
Oddball vs Standard OT 0.10 0.175 0.580 1.000
MW vs OT Oddball 0.51 0.276 1.86 0.190
MW vs OT Standard –0.13 0.223 0.574 1.000

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 4.3: P2 amplitude LME contrasts from experiment 1

Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW –1.45 0.270 –5.38 < 0.001***
Oddball vs Standard OT –0.10 0.269 –0.36 0.785
MW vs OT Oddball 1.50 0.226 6.62 < 0.001***
MW vs OT Standard 0.14 0.164 0.86 0.785

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 4.4: P3 amplitude LME contrasts from experiment 1

summarized in Table 4.1. Differences in N1 responses to oddball stimuli (vs standard

stimuli) were observed (p < 0.05) when participants reported being on task, but not

when mind wandering, as summarized in Table 4.2. As with the P1 component, we

observed significant differences in P2 amplitudes triggered by oddball (vs standard)

stimuli when mind wandering but not when on task (p < 0.01), as summarized in

Table 4.3.

In addition, LME analysis on P3 amplitude revealed significant main effects of

both stimulus type (oddball vs standard) when participants reported being in the

mind wandering state, but not when on-task (p < 0.001). Differences in responses

to oddball stimuli between the mental states (on-task vs mind wandering) were also

found to be highly significant (p < 0.001). Table 4.4 summarizes these findings.

4.2.2 Oscillatory Activity

Comparisons of average epoch power among the long (10 s) epochs among all individ-

uals were not significant at α = 0.05 and is summarized in Table 4.5. Comparisons of

the short (1 s) epochs revealed significant differences in oscillatory activity elicited by

stimulus type, but not among mental states, as summarized in Table 4.6. Differences

in theta (4-7 Hz) activity triggered by oddball stimuli when mind wandering were
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Band Frequency (Hz) t p (raw)
delta 1-4 0.3172 0.7547
theta 5-7 -0.0417 0.9671
alpha 8-12 0.4729 0.6419
low beta 13-21 -0.1238 0.9028
beta 13-30 0.1524 0.8805

* Significant at α = 0.05; ** Significant at α = 0.01

Table 4.5: Results of comparisons of average band power spectral density among
participants based on 10 second (long) epochs

Comparison Frequency (Hz) Condition t p (raw) p (Holm)
Stimulus Type 4-7 MW -4.0101 < 0.001*** < 0.001***
Stimulus Type 4-7 OT -2.5482 0.0201* 0.1206
Stimulus Type 8-12 MW -3.4668 0.0027** 0.0243*
Stimulus Type 8-12 OT -2.1234 0.0478* 0.239
Stimulus Type 13-30 MW -2.5784 0.0189* 0.132
Stimulus Type 13-30 OT -2.9317 0.0089** 0.0712
Mental State 4-7 Standard 0.7139 0.4844 0.4845
Mental State 4-7 Oddball 0.3137 0.7572 0.757
Mental State 8-12 Standard 0.5059 0.6190 0.6190
Mental State 8-12 Oddball 0.5854 0.5655 0.5655
Mental State 13-30 Standard 0.6195 0.5433 0.5433
Mental State 13-30 Oddball 0.0302 0.9761 0.9761

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 4.6: Results of comparisons of average band power spectral density among
participants based on 1 second (short) epochs
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Part. No. No. Trials p (mean theta) p (mean alpha) p (mean beta)
3 74 0.9792 0.0034** 0.0001**
4 60 0.1589 0.0033* 0.0463*
6 16 0.9120 0.0415* 0.7732
7 60 0.3753 0.9059 0.0295*
8 12 0.6599 0.7347 0.5906
9 122 0.6051 0.0359** 0.0963
11 52 0.4111 0.7932 0.5854
12 14 0.8977 0.2066 0.3358
13 40 0.1418 0.3966 0.0016**
14 24 0.2206 0.0268* 0.0253*

* Significant at α = 0.05); ** Significant at α = 0.01

Table 4.7: Comparisons of frequencies band average power over 10 second epochs
between conditions for each participant

highly suggestive. Power comparisons were also conducted on long epochs for each

individual, revealing significant differences in alpha (8-12 Hz) and beta (13-30 Hz)

frequency band power during the mind wandering and on task states among some

participants, though this analysis runs the risk of a Type I error due to the number

of comparisons made. The results of the individual oscillatory analysis is summarized

in Table 4.7.

4.2.3 Classification Performance

We summarize classification accuracy of various machine learning algorithms and

tasks in Table 4.10. We were unable to create a time series classifier that was able

to classify more accurately than random chance. We were able to create a number

of frequency domain classifiers using Common Spectral Patterns and a Linear Dis-

criminant Analysis classifier which performed better than random chance, including

a classifier that performed with a mean of 73.7 % accuracy on the 10 participants.

We also explored other classifiers that used the CSP preparation technique which

produced similar classification results which were not statistically different from this

classifier in classification accuracy.
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Participant Number Pre Post
3 37 37
4 30 30
6 8 8
7 30 30
8 6 6
9 61 61
11 26 26
12 7 7
13 20 20
14 12 12
Total 237 237

Table 4.8: Description of frequency domain classes Experiment 1 decoding analysis

Participant Number Pre Oddball Pre Standard Post Oddball Post Standard
3 76 403 79 338
4 72 329 65 296
6 16 96 23 88
7 67 330 60 294
8 11 73 23 60
9 150 656 102 490
11 57 247 40 208
12 14 79 14 83
13 44 213 34 205
14 28 126 26 139
Total 535 2552 466 2201

Table 4.9: Description of time domain classes for Experiment 1 decoding analysis
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Participant LDA LDA LDA SVM NB RF
7-13 Hz 1-30 Hz 4-30 Hz 4-30 Hz 4-30 Hz 4-30 Hz

3 0.716 0.838 0.689 0.689 0.703 0.703
4 0.617 0.633 0.483 0.717 0.600 0.617
6 0.625 0.750 0.563 0.750 0.75 0.750
7 0.683 0.650 0.683 0.717 0.667 0.783
8 0.500 0.667 0.500 0.750 0.667 0.583
9 0.713 0.713 0.672 0.730 0.672 0.713
11 0.711 0.788 0.712 0.712 0.538 0.731
12 0.500 0.786 0.500 0.500 0.426 0.357
13 0.875 0.875 0.825 0.875 0.875 0.875
14 0.792 0.667 0.500 0.541 0.583 0.583
Mean 0.673** 0.737*** 0.613* 0.698** 0.648** 0.670**

* Significantly better than chance ** Insignificant from best classifier at α = 0.05
*** Best classifier

Table 4.10: Comparison of classification accuracy from select classifiers. Mean accu-
racy is provided for reference

4.3 Discussion

The primary motivation of this study was to replicate the findings of Braboszcz and

Delorme (2011) in an e-learning setting, specifically that of an online lecture. We

did not succeed at replicating these results and instead discovered evidence for a

different effect. Though we observed significant differences in each of the P1, N1,

P2 components, these were centred in the parietal region, unlike the frontal region

described by Braboszcz and Delorme (2011). Similar to their study, P1 and P2

components were significantly more positive when in a reported mind wandering

state, while N1 components were significantly more negative when reporting being

on task. However, responses to P3 stimuli were significantly more positive when in

either mind wandering and on-task states, which was not described by Braboszcz and

Delorme (2011). Unlike the P1-N1-P2 complex, the P3 component is not obligatory

and is typically only present to task relevant stimuli. This suggests that participants’

conscious attention was consistently sifted towards the auditory stimuli immediately

before and after a mind wandering report.

These observations were consistent with our hypotheses H1a and H1c and H1d,

which posited that we would observe differences between the sates and observe greater
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P1 and P2 amplitude, but also a P3 effect. The results also lend evidence for the

converse of hypothesis H1b. We believe that these are the result of user attention is

being re-focused on the oddball stimuli during a mind wandering state, and away from

the task of learning. It is possible that the P3 is observed in both mind wandering

and on-task states because of the nature of the button press report. Participants

become aware of the sounds when mind wandering. They then continue to attend to

the sounds as they complete the task of a button press.

We did not observe the same oscillatory activity as described by Braboszcz and

Delorme (2011). They employed time-frequency map decompositions to determine

differences in oscillatory activity between the mind wandering and on-task states

and discovered significant results. We did not observe any relationships between

mental states at the aggregate level. However, we did observe differences in alpha and

beta band activity at the individual level. This possibly explains how the individual

decoding task using oscillatory data exhibited such strong classification results. It is

likely that there are significant differences in band activity that are not observable in

the aggregate but are occasionally distinct at the individual level. A larger sample

may observe statistical differences of this small effect size. These results lend strong

support for H5, which posited that we could construct an algorithm which could

measure differences in reported mind wandering states.

The best performing classifier used the CSP pre-preparation process on frequency

ranges 1 Hz to 30 Hz with a LDA classifier. One problem with this decoder is that

it is dominated by delta activity. Delta frequencies are also indicative of blinks,

which suggests that this may not be the product of brain data. The attentional blink

is a well-studied phenomenon that is associated with attentional stimuli, and could

have been triggered by auditory stimuli (Horváth & Burgyán, 2011). Such activity

could potentially have an amplification effect on the classification algorithm, as it

detects delta activity that is actually the product of such blinks. Other classifiers

which included CSP with frequencies 4 Hz to 30 Hz (theta, alpha beta) produced

statistically similar results however, which is why they are described in Table 4.9. The

SVM classifier managed to produce a particularly strong result, regularly classifying

with over 70% accuracy.
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4.3.1 Limitations

This experiment was exploratory in nature, and was designed to replicate previously-

reported results in a novel setting. We found statistically significant differences which

corroborated parts of our first hypothesis, but did not lend enough evidence to be

completely confident. Notably, the timing of the potentials and consequently our

contrasts (125-175 ms for P1, 175-225 ms for N1, 225-275 ms for P2, 275-375 ms

for P3) for were very late and were different from those described by Braboszcz and

Delorme (2011), who reported a P2 from 180-280 ms. The differences in timing

is not surprising because of the differences in task in paradigm. However, upon

investigating our experimental setup we discovered a delay in the TTL recording and

the timing recorded by the experiment computer. The delay caused a gap between

the two timings, which resulted in a delayed ERP response. Later experiments on

this gap detected a consistent delay on between our computing system and audio

record time (mean 51.78 ms, SD = 10.345 ms), though the experiment results could

have been further delayed to an even greater degree during the time of recording.

This phenomenon thus warrants continued investigation. Successful replication of the

results in a similar setting with the recording error corrected would add considerable

evidence to the usefulness of the event-related potentials being observed, while also

eliminating concerns about sample sizes, technical errors, statistical and classification

analysis.

A second unrelated related concern is that it is not clear that the phenomenon be-

ing observed truly represents mind wandering; it could be an effect of the button press

report method. Though participants were given instructions about what constitutes

mind wandering and how to observe it, there is a high degree of subjectivity inherent

in the task of self-reporting the timing. The high variance in button press responses

(ranging from 6 to 61) suggests that a different experience sampling method could

be used to determine correlates. It is possible that the observed response is unique

to this e-learning context or specific video. In addition, previously reported psycho-

metric scales could be used to determine whether the ERP and oscillatory activity

observed is correlated with the mind wandering phenomenon. A replication study

could employ such techniques to determine correlates.

A potential issue with our classification analysis is that some classification tasks
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had very small sample sizes. Though we utilized 3-fold cross validation to mitigate the

impacts of small datasets, this technique is prone to overfitting the data. In addition,

the classification analysis was performed offline. Though decoding was performed

on minimally filtered data, it nonetheless used a band pass filter, which may limit

its potential applications to real-time technology such as brain-computer intferface

(BCI)s.

We were thus motivated to conduct a second study with a similar design but with

a number of small differences. The second study should manage the TTL recording

error, but replicate the ERP results earlier than the components described in this

study. The second study was envisioned to involve a different experience sampling

measure such as that described by Wammes and Smilek (2017) to help ensure that the

phenomenon being observed accurately describes mind wandering. Furthermore, the

study should include a larger sample size, a post-hoc measure and a measure of rote

learning. Successful replication of the key findings in this paper would lend consider-

able evidence that we are able to observe mind wandering by observing differences in

the P1, N1, P2, and P3 components, as well as neural oscillations. A disadvantage of

designing a study using such an experience sampling method is that it would not be

able to yield sufficient reports for performing the CSP decoding analysis described in

this study.

4.4 Summary

In this chapter we described an experiment to replicate the results of a prior experi-

ment by Braboszcz and Delorme (2011), but in an online lecture setting. We observed

many of the phenomena that they described, including an amplified P2. However,

the observed differences were greater in the parietal region, rather than frontal, and

we observed different oscillatory activity. Importantly, we observed a distinct P3

effect, rather than just a P2 effect. This experiment provides evidence that we are

able to measure mind wandering using neurophysiological indicators during an on-

line lecture session, and provides evidence that we can measure it in real time using

electroencephalography (EEG) decoding. In the following chapter, we describe an ex-

periment to replicate these findings at a larger scale and corroborate the hypotheses

not addressed by this study.



Chapter 5

An Experiment to Measure the Effect of Mind Wandering on

E-Learning Efficacy

Following the experiment described in Chapter 4, we are left with some questions

about the neurophysiology of mind wandering. Though we successfully identified a

relationship between amplitudes and mind wandering experience samples, the rela-

tionship observed featured a distinct P3 component, normally exhibited by the onset

of task-related stimuli. Furthermore, we did not observe the oscillatory activity re-

ported by Braboszcz and Delorme (2011). It remains to be seen whether this is

the result of the neurophysiology of mind wandering, rather than a product of the

sampling technique employed.

In this chapter we describe the results of a second study that sought to replicate

many of the key findings described in Chapter 4, and extend its conclusions. We

incorporated a number of small changes to the experiment design. We drew from a

larger sample size, incorporated a different experience sampling method and employed

technology that overcame the technical recording error previously discovered. In

addition, we employ some of the ex post measures described by Sullivan et al. (2015),

the NASA Task Load Index (TLX) (1988), and a multiple choice quiz to measure rote

learning. In the case of the multiple choice quizzes, we administered the quiz before

the video and again following the video in an effort to control for task difficulty. The

objective of this study was to uncover evidence that the phenomenon being observed

reflects mind wandering, and to examine mind wandering’s impact on rote learning.

5.1 Methods

5.1.1 Participants

52 healthy students (36 females 16 males; aged 17-28 years; mean 20.6 and SD 2.5)

gave written consent to participate in the experiment. Participants were excluded

87
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Figure 5.1: An illustration of the experiment design used in this experiment

if they were not fluent in English, identified as having neurophysiological disorders

or were taking medication that could lead to abnormal EEG. Participants were also

excluded if they had taken a course in venture capital, the subject of the video.

Participants provided written and informed consent and were financially compensated

CAD $25 for their time. All procedures were reviewed by Dalhousie University’s

Research Ethics Board.

5.1.2 Experiment Stimuli

Audio stimuli consisted of 100 ms tones; the frequent standard tones were 500 Hz and

the oddball tones were 1000 Hz. Oddballs and standard conditions were assigned to

each tone randomly at a 80:20 ratio.

5.1.3 Procedure

After completing the informed consent procedure, participants were again fitted with

the EEG cap and brought to the testing room. Participants were asked to attend to

a 75 minute English language video on the subject of venture capital (Fu, 2017). The

subject matter and video were chosen because it had some utility to the participants

and was on a subject not commonly taught to our subject population. Pilot testing

suggested that this video would trigger variations in mind wandering and attention

for most participants. The video consisted exclusively of two lecturers talking as well
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as questions from the lecture hall audience. Study participants were asked to pay

attention to the video and ignore the audio stimuli, which were presented every 1-1.5

seconds (mean 1.25). 10 mind wandering prompts were triggered pseudo-randomly

throughout the video. At each prompt, participants were asked to report their degree

of mind wandering or on-task experience from the time period immediately before the

mind wandering prompt (Wammes & Smilek, 2017). The timings of the prompts are

summarized in Table D.4 in Appendix E. The PsychoPy library was used to present

the audio stimuli and record manual responses (Peirce, 2007).

5.1.4 EEG Recording

Participants were fitted with 32-channel scalp electrodes (ActiCap, BrainProducts

GmbH, Munich, Germany) positioned at standard locations according to the Interna-

tional 10-10 system and referenced during recording to the midline frontal (FCz) loca-

tion. Bipolar recordings were made between the outer canthi of the two eyes and above

and below one eye, to monitor for eye movements and blinks. Electrode impedances

were kept below 15 kOhm throughout the experiment. Electroencephalography data

were sampled at 512 Hz using Refa8 amplifier (ANT, Enschende, The Netherlands),

and bandpass filtered between 0.01 and 170 Hz, and saved digitally using the ASAlab

software (ANT). The identity of each audio tone (standard/oddball) was commu-

nicated to the EEG amplifier via TTL codes sent from PsychoPy via the parallel

port (Peirce, 2007). To compensate for the difference in timing between the com-

puter and TTL port, an Arduino device was configured to record the precise moment

of the audio sound using the TTL port (Baker, 2013).

5.1.5 Artifact Correction and Data Processing

The MNE-Python library (Gramfort et al., 2013, 2014) was used for all data prepro-

cessing. All audio events were adjusted by calculating the differences between the

Arduino trigger and the computer recorded timings and adjusting the epoch times

using MNE Python. For ERP and statistical analysis, a 0.1 to 40 Hz bandpass filter

is applied to the data, followed by manual identification and removal of electrodes

and epochs with excessive noise. The data were then segmented into epochs spanning

200 ms prior to the onset of each auditory tone, to 1 s after. Independent components
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analysis was then used to identify and remove artifacts such as eye blinks and move-

ments (Delorme & Makeig, 2004) using the FastICA algorithm (Hyvarinen, 1999) and

referenced to the mastoids by averaging the TP9 and TP10 electrodes. The epochs

analyzed were extracted from the 10 seconds before a mind wandering prompt and la-

beled based on user responses to the prompts (see Appendix D). Participant responses

were labeled as either “on task” or “mind wandering” based no their responses, while

“both on task and mind wandering” responses were assigned to the minority class.

Oscillatory analysis was performed on longer 10 s epochs which were similarly band-

pass filtered at 0.1 to 40 Hz and labeled using the protocol above, but not filtered

using ICA. Power spectrum density was calculated at the theta (4-7 Hz), alpha (8-12

Hz) and beta (13-30 Hz) frequency bands using the multitaper method (Percival &

Walden, 1993). The trigger delay identified in Chapter 4 was corrected by basing

the event related potentials around the audio timings recorded by the Arduino device

rather than the timings recorded by the computer.

5.1.6 Data Analysis

Given that there were exactly 10 mind-wandering prompts for each participant, there

was no variability in the number of responses, though there was a variability in the

degree of mind wandering reported. All participants were included in the analysis if

they reported some degree of both mind wandering or on-task experience (i.e. selected

being either “completely on-task” or “somewhat on task” or “neither on task nor mind

wandering” in addition to some degree of mind wandering). Three participants’ data

were excluded for lack of variance in responses while and five were excluded due to

technical issues in their recording. Data was prepared in a way to contrast between

on task and mind wandering states according to a simple protocol. All observations

observed in the 10 seconds before a “completely on task” or “somewhat on task”

report were labeled as “on task”, and conversely for the “mind wandering” label.

Instances preceding a “neither on task nor mind wandering” label were assigned

to either “on task” or “mind wandering” depending on which task was the minority

state. The result is two labels which can be used to contrast between higher degrees of

perceived mind wandering versus lower degrees for each individual. Each participant

included yielded between 1 and 28 oddball audio tones within the 10 s window before
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the mind wandering prompt. This resulted in a total of 6552 epochs (2303 mind

wandering standard, 440 mind wandering oddball, 3201 on task standard, 608 on

task oddball).

After assessing the grand average waveform, we selected four time intervals for

statistical analysis. Intervals were initially chosen by subtracting the observed mean

difference (52 ms) between the Arduino signals and the computer recorded signals

from the previously identified component times. However, these were observed to not

conform to the expected components, as illustrated by figure D1 in Appendix E. We

noticed that components were approximately 100 ms earlier than in Experiment 1,

so analysis was performed at the 25-75 ms, 75-125 ms, 125-175 ms and 175-275 ms

intervals in a new thought region of interest centred around the Pz electrode (including

electrodes Pz, Cpz, POz, CP3, CP4, P3, P4). Statistical analysis was performed using

linear mixed effects analysis and generalized additive models (Tremblay & Newman,

2015). The mean amplitude over these windows were used as the dependent measure

for ERP analysis. Similarly, oscillatory theta, alpha and beta power spectrum density

was calculated using the multitaper method and used as the dependent measure. The

model’s fixed effects included mental state (mind wandering, on task) and stimulus

type (standard, oddball); random by-subject slopes for mental state and stimulus

type, as well as random intercepts for each subject, were included as well. These model

parameters were selected based on comparison of Akike Information Coefficient (AIC)

values (Wagenmakers & Farrell, 2004). Due to the small number of mind wandering

reports, decoding analysis was not performed on this data.

5.2 Results

5.2.1 EEG Correlates of Mind Wandering and On Task States

A selection of the calculated grand average results at the region of interest is illustrated

in Figure 5.2. The grand average resulted in three visibly distinct ERP components

that are elicited by the stimuli. As expected, the components were visible earlier than

in the first experiment due to the audio timing correction, though they were earlier

than the 52 ms expected, as depicted in Figure 5.4 and 5.5. We observed a visible

positive component beginning at 25 ms following the stimulus presentation, as well
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Figure 5.2: The grand average waveforms from Experiment 2 at the region of interest
observed
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Figure 5.3: Component amplitudes by condition
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Figure 5.4: Expected component peaks from Experiment 2, assuming the mean timing
differences were constant

Figure 5.5: Topographic maps of components observed from Experiment 2 grand
average
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Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW 0.27 0.193 1.41 0.262
Oddball vs Standard OT 0.28 0.183 1.51 0.262
MW vs OT Oddball –0.32 0.172 –1.84 0.196
MW vs OT Standard –0.32 0.114 –2.79 0.021*

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 5.1: P1 amplitude LME contrasts from experiment 2

Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW 0.43 0.242 1.79 0.148
Oddball vs Standard OT 1.09 0.232 4.72 < 0.001**
MW vs OT Oddball 0.63 0.201 3.12 0.006**
MW vs OT Standard –0.04 0.139 –0.26 0.793

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 5.2: N1 amplitude LME contrasts from experiment 2

as a negative component at 75 ms, followed by a positive component beginning at

125 ms. These correspond to a regular P1-N1-P2, as before, but were earlier than

expected. The P3 component was not visible but was nonetheless examined.

Figure 5.3 illustrates component amplitude averages by condition at the chosen

windows. Tables 5.1, 5.2, 5.3 and 5.4 summarize the results of linear mixed effects

analysis of component amplitudes. No significant main or interaction effects were

observed among P1 amplitudes. Significant differences in response to stimuli (stan-

dard vs oddball) were observed when participants reported being on task (p < 0.001)

but not when they reported mind wandering. In addition, significant differences in

responses to oddball stimuli among states (mind wandering vs on task) were observed

(p < 0.01).

Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW –0.39 0.250 –1.58 0.115
Oddball vs Standard OT 0.74 0.239 3.08 0.006**
MW vs OT Oddball 0.61 0.198 3.08 0.006**
MW vs OT Standard –0.52 0.125 –4.16 < 0.001***

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 5.3: P2 amplitude LME contrasts from experiment 2
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Contrast Reference Estimate SE t value p-value (Holm)
Oddball vs Standard MW –0.50 0.224 –2.25 0.090
Oddball vs Standard OT 0.28 0.212 1.32 0.188
MW vs OT Oddball 0.50 0.220 2.28 0.090
MW vs OT Standard –0.28 0.164 –1.72 0.172

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 5.4: P3 amplitude LME contrasts from experiment 2

Band Frequency (Hz) t p-value
delta 1-4 0.8497 0.3978
theta 5-7 -0.1316 0.8955
alpha 8-12 0.2775 0.7820
beta 13-30 0.0714 0.9431

* Significant at α = 0.05); ** Significant at α = 0.01

Table 5.5: Results of comparisons of average band power among participants based
on 10 second (long) epochs from Experiment 2

We also observed significant effects at the P2 component. P2 responses to oddball

stimuli were different among the mental states (p < 0.01), as were responses to

standard stimuli (p < 0.001). In addition, responses to stimulus type (oddball vs

standard) were different when on task (p < 0.01), but not when mind wandering. No

significant effects were observed on P3 amplitude. Furthermore, we did not discover

significant differences in oscillatory activity between mind wandering and on-task

states, as summarized in Tables 5.5 and 5.6. Though we observed some significant

differences at the individual level, these are likely circumstantial and the product of

Type I errors due to the umber of comparisons made.

5.2.2 Correlates of Real-Time and Ex-Post Measures

Descriptive results of experience samples collected are provided in Table 5.9. In line

with Wammes and Smilek (2017), we observed increased degrees of mind wandering as

the lecture progressed (p < 0.001), noticing a pronounced difference between samples

collected at the 15 minute and 30 minute marks. We did not observe significant

relationships between the average oddball amplitudes and any of the ex post measures,

as summarized in Table 5.11.
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Participant No. Trials p (mean theta) p (mean alpha) p (mean beta)
1 10 0.0159* 0.8017 0.5801
5 10 0.0408* 0.5723 0.8596
14 10 0.4358 0.0143* 0.3362
27 10 0.3030 0.0016* 0.0900
29 10 0.0411 0.0034* 0.1676
31 10 0.0292* 0.9041 0.49
34 10 0.4463 0.5350 0.0281*
39 10 0.0385* 0.1798 0.0659

* Significant at α = 0.05); ** Significant at α = 0.05 (Holm corrected)

Table 5.6: Participants from Experiment 2 with at least one significant (raw) differ-
ence in frequency bands between the reported states

Prompt Elapsed Time (approx.) Mean Response
1 4 min, 35 sec 2.18
2 8 min, 32 sec 1.84
3 10 min, 20 sec 1.84
4 15 min, 8 sec 1.95
5 30 min, 8 sec 3.34
6 42 min, 50 sec 3.00
7 53 min, 15 sec 3.23
8 56 min, 15 sec 3.05
9 68 min, 7 sec 3.02
10 71 min, 7 sec 2.55

Table 5.7: Summary of mind wandering prompt timings and mean response scores

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 2.00 0.094 21.197 < 0.001***
Time (minutes) 0.016 0.002 7.541 < 0.001*** 0.112

* Significant at α = 0.5; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 5.8: Summary of linear regression of experience sample responses and time
(minutes)
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P1 Coefficients Estimate Std. Error t or F score p-value Adj. R-squared
(Intercept) 0.8297 0.5114 1.62 0.11
Tech. rel. MW -0.0414 0.0323 -1.28 0.21
Tech. unr. MW -0.0061 0.0235 -0.26 0.80
NASA TLX -0.0528 0.0366 -1.44 0.16
Whole Model - - 1.54 0.219 0.0362

N1 Coefficients Estimate Std. Error t or F score p-value Adj. R-squared
(Intercept) -0.7327 0.7527 -0.97 0.34
Tech. rel. MW 0.0552 0.0477 1.16 0.25
Tech. unr. MW -0.0507 0.0347 -1.46 0.15
NASA TLX -0.0459 0.0540 -0.85 0.40
Whole Model - - 1.38 0.262 0.026

P2 Coefficients Estimate Std. Error t or F score p-value Adj. R-squared
(Intercept) -0.2466 0.7235 -0.34 0.74
Tech. rel. MW 0.0512 0.0458 1.12 0.27
Tech. unr. MW -0.0376 0.033 -1.13 0.27
NASA TLX 0.0106 0.0519 0.21 0.84
Whole Model - - 0.61 0.613 -0.028

P3 Coefficients Estimate Std. Error t or F score p-value Adj. R-squared
(Intercept) -0.3315 0.7215 -0.46 0.65
Tech. rel. MW 0.0461 0.0457 1.01 0.32
Tech. unr. MW -0.0252 0.0332 -0.76 0.45
NASA TLX -0.0001 0.0251 0.00 1.00
Whole Model - - 0.408 0.748 -0.043

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.9: Summary of best fit multivariate linear regression models of experience
sample means and average oddball amplitudes

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 3.483e+01 0.617e+00 21.543 < 0.001***
Beta 1.767e+10 9.357e+09 1.888 0.0659† 0.0563

†Significant at α = 0.1; * Significant at α = 0.5; ** Significant at α = 0.01;

Table 5.10: Summary of post-hoc linear regression of NASA TLX and beta band
activity
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Figure 5.6: Summary of multivariate linear regression model of ex post mind wan-
dering measures and experience sample averages

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 2.1743 0.1871 11.62 < 0.001***
Tech. unr. MW 0.0083 0.0114 0.73 0.469
Tech. rel. MW 0.0364 0.0161 2.26 0.029*
Whole Model - - 3.97 0.0264* 0.122

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.11: Summary of multivariate linear regression model of ex post mind wan-
dering measures and experience sample averages
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Figure 5.7: Post-hoc linear regression of mean experience sample reports and partic-
ipant age.

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 3.332 0.245 13.57 < 0.001***
Age –0.076 0.032 –2.36 0.023*
Gender (male) –0.460 0.171 –2.68 0.011* 0.254

* Significant at α = 0.5; ** Significant at α = 0.01; *** Significant at α = 0.001

Table 5.12: Summary of post-hoc multivariate linear regression analysis of mean
experience sample reports including coefficients age and gender
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We also observed a significant positive relationship between average experience

sample reports and ex post mind wandering measures, as depicted in Figure 5.6 and

Table 5.13. Post hoc analysis also revealed significant negative relationships between

mean experience sample response and age (p < 0.05) and gender (p < 0.05). These

results are summarized in Figure 5.7 and Table 5.14. Post hoc analysis also revealed

an interesting relationship between beta activity (p < 0.1) and NASA TLX scores,

summarized in Table 5.12.

5.2.3 Correlates of Rote Learning

Participants were again found to attain significantly lower (p < 0.001) pre quiz scores

(mean = 2.86, SE = 1.27) as compared to post quiz scores (mean = 4.82, SE = 2.18),

which suggests that they learned from the video. In both the pre and post quiz,

participants again correctly answered fewer than 50% of the 10 questions asked. Mul-

tiple linear regression analysis did not reveal any relationship between improvement

in quiz scores and ERP amplitudes, summarized in Table 5.14.

Analysis of quiz delta and survey instruments revealed a significant model using

mind wandering report measures (p < 0.01) with a significant mean experience sample

coefficient (p < 0.05), as depicted in Table 5.16. Univariate regression of the ex

post mind wandering reports and mean experience sample scores revealed significant

relationships between the various mind wandering measures and improvement in test

scores, as depicted in Tables 5.17 and 5.18, 5.19 and Figure 5.8. Task load was

not found to be a significant predictor of quiz performance. Linear regression of quiz

deltas and NASA TLX scores are provided in Figure 5.9 and Table 5.20. This suggests

that mind wandering was a significant factor in learning during this experiment while

task load was not.

5.3 Discussion

These results lend considerable evidence that the N1, P2 and P3 components are use-

ful measures of the mind wandering because we again discovered differences in ERP

components when participants report being in on task or mind wandering states.
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Figure 5.8: Best fit multivariate linear regression model of quiz score deltas
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Figure 5.9: Linear regression of quiz score deltas and NASA TLX
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P1 Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 5.9574 0.3711 16.5 < 0.001***
Amplitude 0.0157 0.3269 0.05 0.96 -0.0238

N1 Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 5.8663 0.4912 11.94 < 0.001***
Amplitude -0.0601 0.2231 -0.27 0.79 -0.22

P2 Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 5.9693 0.3696 16.15 < 0.001***
Amplitude -0.0675 0.2384 0.28 0.78 -0.219

P3 Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 5.9512 0.3730 15.96 < 0.001***
Amplitude -0.0114 0.2410 -0.05 0.96 -0.238

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.13: Summary of best fit linear regression models of quiz score deltas with
EEG amplitudes

However, the components that differentiated the states were different from those dis-

covered in the first experiment. Instead of an elevated P3 amplitude elicited by odd-

ball stimuli during reported mind wandering, we discovered an association between

N1 amplitude elicited by oddball stimuli during the on-task state. In addition, we

discovered significant differences in P2 amplitude to standard stimuli between the two

conditions. We are led to conclude that the different experience sampling methods

employed during the two experiments resulted in different, yet useful ERP correlates.

This potentially reflects two different EEG measures of mind wandering.

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 6.6806 1.4785 7.22 < 0.001***
Exp. sample -1.2480 0.5955 -2.10 0.042*
Tech. rel. MW -0.0687 0.0654 -1.05 0.300
Tech. unr. MW -0.0647 0.044 -1.47 0.149
Whole Model - - 4.85 0.0057** 0.212

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.14: Summary of best fit multivariate linear regression model of quiz score
deltas
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Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 3.256 0.618 5.27 < 0.001***
Tech. rel. MW –0.153 0.060 –2.53 0.015* 0.111

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.15: Summary of linear regression of differences in quiz scores (pre/post) and
ex post reported technology related mind wandering

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 3.416 0.692 4.93 < 0.001***
Tech. unr. MW –0.105 0.043 –2.43 0.019* 0.102

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.16: Summary of linear regression of differences in quiz scores (pre/post) and
reported technology unrelated mind wandering

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 6.407 1.499 4.28 < 0.001***
Exp. sample –1.712 0.562 –3.05 0.003** 0.161

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.17: Summary of linear regression of differences in quiz scores (pre/post) and
average experience samples scores

Coefficients Estimate Std. Error t or F score p-value Adj. R-sq.
(Intercept) 1.291 0.914 1.41 0.17
NASA TLX 0.061 0.077 0.79 0.43 -0.009

† Significant at α = 0.1; * Significant at α = 0.05; ** Significant at α = 0.01

Table 5.18: Summary of linear regression of differences in quiz scores (pre/post) and
NASA TLX
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In this experiment, elevated N1 and P2 responses when mind wandering suggest

that participants oriented attention to the tones when on-task, but not when mind

wandering. One explanation for this is that participants’ attention was instead di-

rected inwardly as their minds wandered and they tuned out the auditory tones.

Though further research is warranted, the discovery of differences in the P2 response

to standard stimuli could provide a useful measure of mind wandering that can have

many applications in information systems research. By employing employing auditory

tones alone and not relying on the oddball paradigm, researchers could potentially

collect enough data to compare ERP responses in much less time.

At first glance, our discovery of differences in N1 and P2 amplitude seem to

replicate some effects reported by Braboszcz and Delorme (2011). However, they

reported elevated P2 responses when participants reported being in states of mind

wandering, which is the opposite of what we found. Additionally, we did not manage

to replicate the suggestive oscillatory results reported in Braboszcz and Delorme

(2011) or those observed in Experiment 1. The small number of participants in the

first experiment suggested it could have been the results of a false positive, and later

revealed to be circumstantial with a larger number of participants. However, the

fact that we did not observe the effects reported by Braboszcz and Delorme (2011)

provides evidence that differences in oscillatory activity may not be generalizable and

may be specific to the meditation task employed.

One possible reason why we did not observe a P3 response to the auditory tones

is the difference in the experience sampling methods employed in the two studies. In

the first study, participants were tasked with reporting when they experienced mind

wandering. One explanation as to the presence of the P3 response to oddball stimuli

is that when participants fell into a mind wandering state, their attention shifted

towards the auditory sounds and pushing the button. In the second experiment,

participants had no such task, so did not identify the stimuli as task-relevant. This

may explain why we also observed lower amplitudes generally when in the mind

wandering state in the second study.

Though we were somewhat surprised that there was no statistical relationship

between average ERP amplitude and reported ex post mind wandering, these findings

lend support to one of the original motivations for undertaking this research. Given
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the consistent correlation between on task states and N1 amplitude, for instance,

we would expect that any similar measure to the mind wandering state would also

share this relationship. However, we did not observe any such relationships. We

did observe a relationship between aggregated state-level mind wandering and the ex

post measures. We also observed a negative relationship between task load. Post hoc

analysis also revealed suggestive (p < 0.1) relationship between EEG beta activity

and task load.

The effects of gender and age on experience sample means was an interesting

and surprising finding. Results indicated that participants identifying as female were

significantly more likely to report mind wandering than males and that older partici-

pants reported less mind wandering. It is possible that these findings were the result

of the video stimulus itself. Though women outnumbered men in this experiment (30

females, 14 males observed) the results are not necessarily effected by differences in

the sample size. The video was very long (75 minutes) and featured a woman presen-

ter. It is possible that these findings reflect gender bias toward the presenter, which

has been reported in the literature (Centra & Gaubatz, 2000), or perhaps some other

effect of gender. Given that the topic was venture capital, older participants may have

been more apt to find the topic interesting due to more experience in the workplace.

Though it is not definitive, these phenomena warrant further investigation.

Finally, it is noteworthy that though the the various mind wandering reports were

correlated with rote learning, the task load survey measure was not. At face value,

this challenges the Cognitive Theory of Multimedia learning, which posits that task

load generated by extraneous factors inhibits learning. However, this lesson was not

media-rich and participants were in a controlled environment with few extraneous

factors. Future research could explore the relationship between mind wandering and

cognitive load to potentially discover how these factors interact to inhibit or facilitate

learning.

5.3.1 Limitations

We did not observe a relationship between ex post mind wandering and ERP ampli-

tudes, but did observe relationships between experience sample means and ex post

measures. This suggests that the observed ERP paradigm is currently limited, and
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must be refined to measure differences at the group level. At face value, this would

not seem surprising, as differences between individuals are often more significant than

differences between conditions (Luck, 2014). However, the linear mixed effects analy-

sis employed considers variance between subjects. We are led to conclude that there

is a gap between the neurophysiological measures employed and the survey measures

employed in mind wandering research. We thus have evidence that neurophysiolog-

ical measures lend useful insight, but are not merely the reduction of psychological

measures. This is a considerable limitation to the potential of the use of ERP for

measuring mind wandering in information systems settings. Information systems

experiments should take care to consider fundamental differences between question-

naire and neurophysiological measures and use multiple measures in future studies.

We discuss the consequences of this finding in Chapter 6.

A second challenge with these results is that the timing of the components was

earlier than expected. Our technical tests suggested that the audio trigger delay

caused an error that was approximately 52 ms later than it should have been. How-

ever, after correcting for the trigger delay, the potentials observed were revealed to

be approximately 100 ms earlier than the first study. It is possible that this was

caused by differences in the Windows operating environment’s background applica-

tions between when the EEG recordings were made and when the audio timing test

was conducted. However, it is also possible that this was caused by differences in

the paradigms employed in the experiments. These concerns could be addressed by

conducting another study that replicates the results of Experiment 2.

Another limitation is that we did not manage to replicate the electroencephalog-

raphy (EEG) decoding results due to limitations in our experiment design. Given

our priority of controlling for gaps between experience samples rather than number of

samples, each participant yielded no more than 10 time samples that could be used

for decoding. As such, we are limited in what we can conclude about the usefulness

of this technique. Future work may overcome this problem by incorporating transfer

learning, which may be able to overcome the challenges by transferring classification

information between subject tasks (Pan & Yang, 2010). Future work could consider

experiment designs which are appropriate for replicating the decoding results and

perhaps apply the findings to real time analysis.
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Finally, though we distinguished mind wandering which may be technology-related

or technology unrelated, we did not distinguish mind wandering which may be task-

related from that which is task unrelated. It is possible that some mind wandering

may not inhibit learning if it is task related. Future work may explore different

dimensions of the mind wandering construct and its affect on learning outcomes.

5.4 Summary

This chapter described a second experiment to measure the neurophysiological in-

dicators of mind wandering, but also their relationship to learning efficacy. This

experiment sought to overcome many of the limitations of Experiment 1 by employ-

ing a larger sample size, a different experience sampling method, and a recording

correction. It employed ex post scales and quiz measures to assess the impact of

mind wandering on learning. Observed results replicated some key findings of Ex-

periment 1 but did not not replicate the P3 effect. Furthermore, we did not identify

a relationship between the ERP or oscillatory measures and the ex post measures.

However, we identified a clear relationship between mind wandering and learning.

These findings suggest that there is a disconnect between mind wandering measured

and real time and perceived mind wandering after the fact. In the final chapter, we

will revisit the hypotheses described in Chapter 3 and draw conclusions about future

research and applications.
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Conclusions

At the outset of this dissertation we discussed how Massive Open Online Courses

(MOOCs) had, in many ways, failed to live up to their potential, and that one of the

possible reasons for this is that they are not very good at keeping users’ attention.

We had three motivations for taking a neurophysiological approach to this question.

The first is that we could learn more about attention-related information systems

constructs by exploring neurophysiology. The second is that it could offer insight into

the experience of mind wandering; unlike post-hoc questionnaires, we could poten-

tially observe changes in real time. The third is that this research could open doors

to the development of new types of technologies. We then formulated the following

two underlying research questions:

RQ1 Can we use neurophysiological measures to detect differences in mind wandering

during online lectures?

RQ2 Does mind wandering affect how well we learn from online lectures?

Upon revisiting these question, we are quickly led to a conclusion. Neurophysio-

logical measures certainly can be used to measure attention; the literature had already

established this. We sought to apply attention-related phenomena to measure mind

wandering, a construct that has been previously observed in information systems re-

search. We found that the the components of the P1-N1-P2 complex, especially N1-P2

and P3 amplitude, are significant correlates of on task or mind wandering states, but

the markers uncovered were not reliable. We are thus left with two potential measures

of mind wandering which could be further validated in future work. Our exploration

also revealed that there is a gap between observed neurophysiological phenomena and

questionnaire measures, especially in the way they measure group-level effects. We

will discuss the implications of this research by revisiting the hypotheses outlined in

110
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Figure 6.1: The proposed research model originally outlined in Chapter 3

Chapter 3. These hypotheses are organized to reflect the two questions described

above.

6.1 Hypotheses Revisited

6.1.1 ERP Markers of Mind Wandering

This dissertation describes two experiments that were conducted in which EEG mea-

sures were correlated with reported mind wandering in an online lecture or MOOC

setting. In both studies, we observed significant differences between event related

potential amplitudes among the mind wandering and on task states. However, we

observed two distinctive patterns which were unique to each study. In the first study,

we significant differences in P1, P2 and P3 component amplitudes elicited by oddball

stimuli versus standard stimuli during reported mind wandering states, but not when

on-task. In the second study we observed significant differences in N1 and P2 com-

ponent amplitude elicited by oddball stimuli versus standard stimuli during reported

on task states, but not during reported mind wandering. Furthermore, in Experi-

ment 2 we observed differences in P2 amplitudes elicited by standard stimuli during

the mind wandering and on task states. We did not observe significant differences
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Hypothesis Finding Description
H1a supported Mean P1 amplitude will distinguish on task and

mind wandering states.

H1b supported Mean N1 amplitude will distinguish on task and
mind wandering states.

H1c supported Mean P2 amplitude will distinguish on task and
mind wandering states.

H1d supported Mean P3 amplitude will distinguish on task and
mind wandering states.

H1e not supported Theta power will be positively correlated with the
reported mind wandering state.

H1f not supported Alpha power will be positively correlated with the
reported mind wandering state.

H1f not supported Beta power will be negatively correlated with the
reported mind wandering state.

H2 not supported There will be statistically significant correlations
between neurophysiological measures and both
types of experience samples.

Table 6.1: Summary of hypotheses and findings related to neurophysiological corre-
lates of the mind wandering state during e-learning
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in oscillatory activity between mind wandering and on-task states in either study.

This suggests that differences in ERP amplitudes may be reliable measures of mind

wandering during MOOCs, though further work is required to further elaborate these

findings. However, we also have evidence that oscillatory patterns are not reliable

measures.

It is likely that the differences between the ERP results observed in the studies

reflect differences in the paradigms employed. In the first study, participants were

asked to press a button when they experienced mind wandering. It is possible that the

oddball tones triggered a P3b response because the participants became externally

focused on the task of making the mind wandering report, and the tones became

task-relevant. In the second study, participants had no such task and were prompted

randomly. It is possible that participants instead focused their attention inward

during the mind wandering state and tuned out external stimuli, such as the auditory

tones.

We are thus led to question the scope and application of the EEG mind wandering

measures that we chose. Though we observed differences in the P1-N1-P2 response in

both studies, there were differences between the studies which resulted in differences

in relevant neural markers. It is therefore likely that the amplitudes and timings

of the ERPs will not generalize to other information technology tasks. However,

it is possible that the general process of observing differences in attention-related

potentials may generalize and could be the ultimate legacy of this work. Future

research employing ERP for attention research in information systems should thus

take care to similarly establish the measure being observed and replicate the result

before drawing conclusions about technology phenomena.

These findings also offer evidence for the reliability of both types of experience

sampling methods. Given that P1, N1, and P2 amplitudes have been associated with

alerting and orienting attention networks (Gonçalves, Rêgo, et al., 2018), we have

strong evidence that both the button press method described Braboszcz and Delorme

(2011) and the Wammes and Smilek (2017) prompt method reliably measure shifts

of attention towards and away from stimuli. We now know that the reported mind

wandering state during an online lecture reflects attention processes.
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Hypothesis Finding Description
H5 supported An algorithm can be constructed which measures differ-

ences in reported mind wandering states with at least
70% accuracy.

Table 6.2: Summary of H5, a hypotheses related to the real-time measurement of the
mind wandering state

Related to the contributions described above, we also succeeded at decoding real-

time mind wandering brain signals, albeit using a different method than expected. At

the outset, we expected that time-series pre-preparation would produce the strongest

classification results. Motivated by work on the P300 speller, an attention-related

classifier, we envisioned that time series analysis would produce strong results (Farwell

& Donchin, 1988). However, we were unable to develop a time series classifier that

performed better than random chance. Instead, frequency domain classifiers that

classified better than random chance were produced. We demonstrated a classifier

that used common spatial patterns and the SVM classifier to analyze data at the

theta, alpha and beta frequencies (4-30 Hz). The selected classifier attained individual

classification results ranging from 50% accuracy to 87.5% accuracy (mean 69.8%

accuracy), depending on the participant. It is surprising that this classifier performed

well while the time domain classifiers did not. Given that we discovered statistically

significant differences in the P1, N1, P2 and P3 ERPs, but not in oscillatory activity,

we would expect time series classifiers to perform best.

We have evidence that the classifier identifies oscillatory patterns that are lost

when they are aggregated. Differences in oscillatory activity were often significant

at the individual level but did not generalize to the group. The CSP processing

algorithm maximizes the difference in frequencies detected among all epochs in each

class. When used with SVM, the dimensions are reduced before the kernel is applied.

It could be that the classifier maximizes differences that are present in many, but

not all epochs, and classifies them accordingly. This would explain why we see such

high variance between the participants. Regardless, these results indicate that it

is possible to create a decoding technique that can reliably interpret differences in

mind wandering in real-time. It is clear that differences in brain patterns are reliable

indicators of the mind wandering state, and that we can build a classifier which can
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Hypothesis Finding Description
H3a not supported Component amplitudes (P1, N1, P2, P3) will

be positively correlated with reported tech-
nology unrelated mind wandering.

H3b not supported Component amplitudes (P1, N1, P2, P3) will
be positively correlated with reported tech-
nology related mind wandering.

H3c not supported Component amplitudes (P1, N1, P2, P3) will
be negatively correlated with reported task
load.

H3d not supported Reported mind wandering experiences will
be positively correlated with reported tech-
nology unrelated mind wandering.

H3e supported Reported mind wandering experiences will
be positively correlated with reported tech-
nology related mind wandering.

H3f supported Reported mind wandering experiences will
be negatively correlated with reported task
load.

Table 6.3: Summary of hypotheses and findings related to EEG and ex post mind
wandering

reliably detect real time differences in mind wandering.

6.1.2 Mind Wandering Consists of More than Attention

Though we observed significant differences in ERPs between the mind wandering

and on-task states, these results did not generalize to the ex post measures. We

did not observe any significant relationship between questionnaires and component

amplitudes. However, we did observe a significant relationship between the average

of experience samples and the ex post questionnaires.

We are therefore led to conclude that there is a gap between observe neurophysi-

ological indicators and the mind wandering construct being reported. At the outset

of this research, we associated mind wandering with attention processes and discov-

ered positive correlations between the neurophysiological signals which are associated
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Hypothesis Finding Description
H4a not supported Quiz deltas will be negatively correlated with

component amplitudes.

H4b supported Quiz deltas will be negatively correlated with
reported technology unrelated mind wander-
ing.

H4c supported Quiz deltas will be negatively correlated with
reported technology related mind wandering.

H4d not supported Quiz deltas will be negatively correlated with
reported task load.

H4e supported Quiz deltas will be negatively correlated with
reported mind wandering states.

Table 6.4: Summary of hypotheses and findings related to group-level ex post mind
wandering and rote learning measures

with attention and mind wandering. However, mind wandering is also associated with

other mental processes such as task-unrelated thoughts and creativity (Sullivan et al.,

2015). The neurophysiological measures employed by this study are not correlates

of these elements of mind wandering, which may confound the transitivity between

observations and the psychological measures employed. Future work may wish to

incorporate different neurophysiological measures to better capture those dimensions

of mind wandering.

6.1.3 The Small Effect of Mind Wandering on Learning

In both studies participants performed significantly better on the multiple choice quiz

following the lecture video versus the quiz conducted before. However, did not observe

a relationship between ERP component amplitudes and quiz delta, but did observe

statistically significant relationships between quiz delta, mean experience samples

and the ex post scales. In the best fit linear regression model of quiz delta, all mind

wandering measures had negative coefficients. We are thus led to the conclusion that

mind wandering has a negative impact on online learning efficacy. However, this

relationship is likely not the largest factor in MOOC efficacy. With an R-squared
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value just over 0.2, it is likely that there are larger factors in how well participants

learn from videos. We conclude that MOOCs should consider designs that reduce

mind wandering, but not at the expense of other facts which influence e-learning

success.

6.2 Contributions and Future Work

6.2.1 ERP Attention Measures for Information Systems Research

Perhaps the greatest contribution of this dissertation is the demonstration of a pas-

sive, real-time measure of mind wandering during technology use. By observing the

differences in P1, N1, P2 and P3 amplitudes, we can reliably measure the on-task

and mind wandering states. This discovery has a number of potential applications to

IS research which should be highlighted.

The first is the application of this passive mind wandering measure to other IS

artifacts. Though mind wandering is particularly relevant to MOOCs, it is also

applicable to other domains such as serious games, business analytics, design science,

and e-commerce. By measuring differences in the N1, P2 and P3 amplitudes elicited

by auditory oddball stimuli, we can gain new insights into whether mind wandering

impacts the outcomes of such artifacts. Additionally, EEG decoding can be employed

to learn about changes in the interaction with IS artifacts over time.

The second is in its applicability to other attention-related IS constructs. Though

we demonstrated neurophysiological correlates of mind wandering, the P1-N1-P2

complex is fundamentally the product of attention processes in the brain. Other

constructs such as acceptance, adoption, communication, user satisfaction, flow or

decision making all reflect dimensions of attention. Though IS constructs do not

necessarily reduce to atomic or measurable neurophysiological measures, as demon-

strated in this dissertation, the event related potentials described in this dissertation

could be used to discover more about the relationship between attention and other

IS constructs.

Finally, the EEG decoding technique demonstrated in this paper can also be

employed to offer new insight into how brain states change over time and can be

used to develop new types of neuro-adaptive information technologies. To the best
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of our knowledge, no IS research has employed EEG decoding techniques to reveal

real-time changes in brain states. Future work could employ the Common Spatial

Patterns technique to construct classifiers that offer insight into this dimension of IS

phenomena. It can also apply the technique to generate e-learning brain-computer

intferface (BCI)s that change with brain states, potentially offering a superior learning

experience. Future work may improve on the results described in this dissertation

by applying transfer learning to these problems and ultimately overcome the need

for a large number of mind wandering report samples (Gayraud et al., 2017). One

potential ways to improve the paradigm could include the experience sampling rate

or to collect data from a longer video.

6.2.2 How to Create Better Teaching Techniques

A second contribution of this research is that it extends the discussion about the

role that mind wandering plays in the online classroom. We ultimately found that

mind wandering has an impact on rote learning. Educators with the goal to transfer

factual knowledge can take heed of these findings and discover ways to effectively de-

sign lectures, either online or in-person, in a way that limits mind wandering. Some

researchers have suggested that asking questions may help manage mind wander-

ing (Szpunar et al., 2013) while others have noted that active learning approaches

offer promise for improving MOOC media (Ubell, 2017).

We should qualify that though we observed a relationship between mind wan-

dering and rote learning, there are likely other factors in online lecture efficacy and

likely other factors in MOOCs specifically. For instance, a recent study in MOOC

completion found that 79% of the variance in completion is determined by the quality

of content, degree of interaction with the instructor and perceived effectiveness of a

MOOC (Hone & El Said, 2016). Future studies on the impact of mind wandering

in MOOCs should also consider these factors in addition to mind wandering. They

should also consider the interaction effects between mind wandering and these fac-

tors. By doing so, we can more precisely identify the role that mind wandering or

similar attentional processes play in MOOC effectiveness. Flow, active learning and

multimedia are all related subjects of inquiry which might be further investigated

using the techniques described in this dissertation.
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In addition, this dissertation explored the impact of mind wandering on rote learn-

ing in the context of a single lecture. Rote learning is only one possible learning

outcome and is often not the goal of quality higher education. As mentioned near

the beginning of this dissertation, what Mayer calls meaningful learning is a more

desirable goal and often takes place over an extended period of time (Mayer, 2009).

Future work could consider the effects of persistent mind wandering over a period of

time, especially in the acquisition of meaningful learning outcomes. Such research

would better identify the role that mind wandering plays in MOOC effectiveness,

and could potentially offer insight into the development of effective, low cost learning

technologies.

Finally, the findings of this research are limited by the fact that the IT artifacts

explored were not manipulated. Though there is evidence that mind wandering has

an impact on MOOC efficacy, we did not identify a method for improving MOOC

multimedia. Future work can be conducted on teaching techniques which limit mind

wandering and can identify effective multimedia for improving learning outcomes.

Researchers could consider investigating how video length or the presence of in-lecture

quizzes impact mind wandering and learning outcomes.

6.2.3 On the Reduction of Constructs into Neurophysiology

A third philosophical finding of this dissertation not directly reflected by the hy-

potheses is the discovery of a gap between neurophysiological measures and ex post

questionnaire measures of mind wandering. In this case, the P1-N1-P2 complex com-

ponents consistently reflect differences in the mind wandering state, but are are not

reflective of ex post mind wandering reports. We can interpret these results to suggest

that there is a difference between participants’ perception of task unrelated thoughts

and their experience of them. However, there are consequences of these results.

In a paper presented at the 2018 NeuroIS retreat, researchers suggested that this

gap between neurophysiological measures and questionnaire instruments offers evi-

dence for the philosophical position of mind body dualism (Buettner, Bachus, Konz-

mann, & Prohaska, 2019). This theory, most famously advanced by Réné Descartes,

suggests that mind and body are fundamentally different from one another, insofar as

they consist of different metaphysical substances. At face value, the results described



120

in this dissertation appear to lend support for this theory. Though physiological mea-

sures were correlated with reports at the individual level, they were not correlated

with instruments that had previously been found to be significant predictors of mind

wandering.

There are other potential explanations for these results however. The phenomenon

being observed is mind wandering, a somewhat poorly defined construct used to

describe a set of experiences in ways that are easy for humans to understand. The

neurophysiological correlates being observed are reflections of well-defined attention

processes, but are merely correlates of the questionnaire constructs explored. When

comparing constructs we pass the buck of causality to human reasoning. Even path

models, often used to model causal relationships in the social sciences, are only as

good as the causal models that humans construct, and are not derived from data

alone (Pearl, 2009). By further refining the paradigm, we might yet overcome these

limitations and eventually get better results at the group level.

We argue that this gives evidence that the ex post questionnaires are simply not

reducable to the neurophysiological indicators explored in these studies. EEG (like

other neuroimaging technologies) measures aggregates of signals produced by millions

of neurons. In the case of EEG, we measure electrical signals that must pass through

a conductive skull. It should not be surprising that the relationships observed are not

correlated with ex post questionnaire measures, which measure perceptions of expe-

riences. Future work in NeuroIS should consider the domain differences in theories

and research methods employed and that there is no a priori reason why existing IS

constructs should reduce to observed neurophysiological phenomena observed using

neuroimaging technologies. By further improving the paradigm employed through

additional studies, we may yet overcome these challenges. We believe that this dis-

sertation may offer a small part in a larger discussion about the role that neuroscience

has to play in extending the field of information systems moving forward, and how

the methods employed may yet be improved to overcome perceived limitations.

6.3 Summary

This dissertation had two overarching goals. The first was to identify a neurophysio-

logical measure that can detect differences in mind wandering during online lectures.
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The second was to identify whether mind wandering affects how we learn from online

lectures. We successfully identified how brain responses to oddball stimuli are cor-

relates of on task and mind wandering states in an online learning setting. Though

we did not identify significant relationships between physiological responses and rote

learning outcomes, we nonetheless identified negative relationship between mind wan-

dering and rote learning. This relationship explained just over 20% of the variance in

learning however. We were thus led to conclude that mind wandering has a small but

significant impact on learning. MOOC providers should therefore consider designs

that limit mind wandering, but not at the expense of other design factors which may

influence learning outcomes.
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Appendix A

Multiple Choice Quiz from Experiment 1

1. Which one of the following is an example of an application of a machine learning

algorithm?

(a) Netflix video rendering process.

(b) Two Sigma hedge fund predictions.

(c) Google Go programming language.

(d) All of the above.

2. Of the following definitions, which best describes machine learning?

(a) A field of study that gives computers the ability to learn without being

explicitly programmed.

(b) A field of study that gives computers the ability to learn by being explicitly

programmed.

(c) A field of study concerning the expression and mechanization of algorithms

that underline the processing of information.

(d) A field of study concerning the creation and implementation of algorithms

that underline the processing of big data.

3. How is training data used in a machine learning task?

(a) Given a set of feature/label pairs, training data is used to predict the label

associated with the previously unseen input.

(b) Given a set of feature vectors (without labels) training data is used to

create natural clusters (or create labels for groups).

(c) Training data describes a set of examples used to infer something about a

process.
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(d) Training data describes a set of previously unseen examples used to im-

prove the algorithm.

4. The following image describes an aspect of machine learning. Which of the

following best describes this aspect?

(a) Training data.

(b) Test data.

(c) Supervised learning.

(d) Unsupervised learning.

5. Grimson describes the concept of feature engineering. If we were to create an

algorithm to predict student performance in a machine learning course, which

of the following features would most probably cause the model to overfit?

(a) SAT scores.

(b) Birth month.

(c) Prior programming experience.

(d) Whether the student participates in the university debate club.
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6. Which of the following best describes the concept of supervised learning?

(a) Supervised learning uses clustering to group similar data into clusters.

(b) Supervised learning uses manually created weights to measure Euclidean

distance.

(c) Supervised learning is a set of algorithms designed to prevent overfitting

using the data features provided.

(d) Supervised learning uses labelled training data to infer a function.

7. There is a picture below. Which of the following statements best describe the

picture?

(a) A confusion matrix.

(b) Data vectors.

(c) Correctly labelled results.

(d) Test data.

8. Are you paying attention to this quiz?

(a) No.

(b) yes.

(c) No.

(d) No.
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9. Which is the best measure of a successful machine learning model?

(a) Good test data.

(b) High precision.

(c) High accuracy.

(d) None of the above.



Appendix B

Multiple Choice Quiz from Experiment 2

1. What is an example of an effective way that a Venture Capital partner can find

investment opportunities?

(a) To regularly read TechCrunch and identify promising start-up companies.

(b) To do comprehensive industry analysis about technology trends.

(c) Host dinners and events to form a personal network.

(d) None of the above.

2. According to Ernestine Fu, what are the most important considerations in the

VCs term sheets?

(a) Economics and Control.

(b) The pre-money and post-money valuations of the company.

(c) The start-up team composition.

(d) Liquidation preference.

3. The board of directors for a start-up company typically consists of:

(a) Two start-up founders and the lead investor.

(b) Two investors and the start-up CEO.

(c) The start-up CEO, start-up CFO and an independent board member.

(d) The start-up CEO, the lead investor and an independent board member.

4. According to Fu, what is the most likely way to become a VC partner?

(a) To apply to a job posting while having 1-4 years management experience.

(b) To found a very successful company or to work as an executive at a suc-

cessful start-up.
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(c) To be an angel investor who is constantly closing on start-up funding deals.

(d) To build a media presence and reputation in the valley before meeting

other partners.

5. The following is an example of a common protective provision in a terms doc-

ument:

(a) The right for investors to withdraw their money in the firm at any time.

(b) An agreement that the next round of financing will be higher than the pre-

vious round.

(c) Insurance against employees taking back control over the firm.

(d) Protection against other venture firms from investing in the firm

6. Why do venture capital firms insist on rights of first refusal?

(a) Due to SEC rules which regulate the maximum number of shareholders

private companies can have.

(b) So that their start-up companies can prevent hostile takeovers.

(c) To prevent employees from taking back control over the firm.

(d) To prevent companies from pivoting their product direction.

7. What does pro rata financing mean?

(a) Maintaining percentage invested though future investment rounds.

(b) Financing that can be renegotiated at any time.

(c) Financing that can be given at any time in the future.

(d) Maintaining control in the companys board of directors in future financing

rounds.

8. How much of the companys stock is typically reserved for the Employee Option

Pool?

(a) Less than 1%

(b) 1-5%
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(c) 5-10%

(d) 15-20%

9. Why do VCs insist on a No Shop Agreement when financing a start-up?

(a) They have a fiduciary duty to their stakeholders.

(b) Term sheets are not binding contracts.

(c) Both a) and b)

(d) Neither a) or b)

10. According to Fu, VCs are more likely to spend time with portfolio companies

that:

(a) Are struggling and could benefit most from the attention.

(b) Are the performing the best.

(c) Have the greatest potential to perform.

(d) Have the highest valuation.



Appendix C

Post Study Questionnaire Instrument

On a scale of 1 (lowest) and 7 (highest) please answer the following questions about

your experience throughout the lecture. Designation in brackets indicates the con-

struct and source of the item.

1. I was interested in the video content. [control item]

2. I focused my total attention on understanding the lecture content. [NASA TLX]

3. I thought about strategies for staying focused on the content. [NASA TLX]

4. I thought ahead about what I would need to do to understand the lecture

content. [NASA TLX]

5. I focused my attention on correctly understanding as much as I could from the

lecture. [NASA TLX]

6. The pace of the lecture felt hurried or rushed. [NASA TLX]

7. I was successful at learning the content of the video. [NASA TLX]

8. I had to work hard to learn the video content. [NASA TLX]

9. I was discouraged, irritated, stressed or annoyed while learning the video con-

tent. [NASA TLX]

10. Learning the video content was mentally demanding. [NASA TLX]

11. Learning the video content was physically demanding. [NASA TLX]

12. I thought about members of my family. [Technology-Unrelated Mind Wander-

ing]

13. I thought about friends. [Technology-Unrelated Mind Wandering]
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14. I thought about something that made me feel guilty. [Technology-Unrelated

Mind Wandering]

15. I thought about personal worries. [Technology-Unrelated Mind Wandering]

16. I thought about something that made me feel angry. [Technology-Unrelated

Mind Wandering]

17. I thought about something that happened earlier today. [Technology-Unrelated

Mind Wandering]

18. I thought about something that happened in the recent past (last few days, but

not today). [Technology-Unrelated Mind Wandering]

19. I thought about something that happened in the distant past. [Technology-

Unrelated Mind Wandering]

20. I thought about something that might happen in the future. [Technology-

Unrelated Mind Wandering]

21. I thought about checking my email. [Technology-Related Mind Wandering]

22. I thought about checking my social media (e.g. Facebook). [Technology-Related

Mind Wandering]

23. I thought about browsing other stuff. [Technology-Related Mind Wandering]

24. I thought about checking my phone. [Technology-Related Mind Wandering]

25. I thought about doing other online activities (e.g. online shopping, online game).

[Technology-Related Mind Wandering]



Appendix D

Experience Sampling Methods

Participants are briefed on these tasks before taking part in the respective experi-

ment. Method 1 was the experience sampling method for the experiment described

in Chapter 4, while Method 2 was the experience sampling method for the experiment

described in Chapter 5.

1. Method 1 - Mind wandering describes self-generated thoughts about something

other than the content of the video. For example, these can be about some-

thing that you experienced earlier today, about your friends, or even about the

funny way something is drawn in the video. When you experience your mind

wandering away from the task of learning from this video, please push the space

bar.

2. Method 2 - Which of the following responses best characterizes your mental

state JUST BEFORE this screen appeared?

(a) Completely on task

(b) Mostly on task

(c) Both on task and mind wandering

(d) Mostly mind wandering

(e) Completely mind wandering
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