LEARNING EMBEDDINGS FOR TEXT AND IMAGES FROM
STRUCTURE OF THE DATA

Behrouz Haji Soleimani

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia
June 2019

© Copyright by Behrouz Haji Soleimani, 2019

Dedicated to my beloved parents,

for their endless love, support, encouragement and sacrifices.

ii

Table of Contents

List of Tables vi
List of Figures X
Abstract xii
List of Abbreviations oo xiii
Acknowledgements xvii
Chapter 1 Introduction 1

1.1 Contributions 5

1.2 Outline 6

Chapter 2 Dimensionality Reduction for Image Clustering 9

2.1 Imtroduction 9
2.2 Background and Related Work 0. 11
2.2.1 Linear Dimensionality Reduction 12

2.2.2 Nonlinear Dimensionality Reduction 13
2.2.2.1 Global Approaches 14

2.2.2.2 Local Approaches 15

2.3 Proposed Dimensionality Reduction Method 18
2.3.1 Calculating Input Similarities 18
2.3.2 Cost Function 20
2.3.3 Optimization 21
2.3.3.1 Stochastic Gradient Descent Optimization 22

2.3.3.2 Newton’s Optimization Method 23

2.4 Experiments and Results 25
2.5 Visualizations of the Embedding Space 29
2.6 Conclusion. 30
Chapter 3 Kernelized PMI Based Word Embedding 32
3.1 Introduction 32
3.2 Related Worko 34

il

3.3 Kernelized Unit Ball Word Embedding (KUBWE)
3.3.1 Preparing the Input for the Optimization
3.3.2 Cost Function
3.3.3 Optimization
3.3.4 Kernelized Objective Function
3.3.5 Reducing the time complexity by approximating the repulsive

force

3.4 Experiments Lo
3.4.1 Analysis of the Polynomial Kernel Degree
3.4.2 Quantitative Evaluation
3.4.3 Qualitative Evaluation

3.5 Conclusion,

Chapter 4 EigenWord and Spectral Word Embeddings

4.1 Introduction

4.2 Background
421 Notation.
4.2.2 Pointwise Mutual Information (PMI)
4.2.3 Singular Value Decomposition (SVD)
4.2.4 Skip-Gram with Negative Sampling (SGNS)
4.2.5 Global Vectors (GloVe)

4.3 EigenWord: Spectral Word Embedding with Negative Sampling
4.3.1 EigenWord Formulation
4.3.2 Connection to SVD and an alternative solution (SVD-NS)

4.4 Experiments
4.4.1 Data and Vocabulary 0oL
4.4.2 Evaluation method
4.4.3 Analysis of the amount of negative examples
4.4.4 Quantitative Evaluation
4.4.5 Qualitative Evaluation

4.5 Conclusion

Chapter 5 Efficient Word Sense Disambiguation

5.1 Introduction,

5.2 Proposed Method
5.2.1 Refining the co-occurrences and extracting word relations
5.2.2 Word Sense Disambiguation: Obtaining Sparse Sense Vectors

v

5.2.3 Word Sense Induction Using the Sparse Sense Representation 74

5.2.4 Word Sense Embedding: Obtaining Dense Representations . . 75

5.3 Evaluation 76

54 Conclusion e 7

Chapter 6 Intrinsic Evaluation of Word Embeddings 78

6.1 Corpus for training word embeddings 78

6.2 Cleaning and Preprocessing of the Wikipedia Corpus 79

6.3 Results on Word Similarity Datasets 80
Chapter 7 Extrinsic Evaluation: Experiments with Downstream NLP

Applications 85

7.1 FEmotion Intensity Recognition from Tweets 85

7.1.1 Emotion Intensity Recognition (El-reg) Dataset 87

7.1.2 Corpus for training word and tweet embeddings 87

7.1.3 Cleaning and Preprocessing of El-reg Dataset and DISC Corpus 88
7.1.4 Results of Traditional Methods and Document Embeddings . 89

7.1.5 Results of Word Embedding Based Algorithms 92

7.2 Sentiment Analysis of IMDB Movie Reviews 96
7.2.1 IMDB Movie Reviews Dataset 96

7.2.2 Results of Traditional Methods and Document Embeddings . 97

7.2.3 Results of Word Embedding Based Algorithms 100
Chapter 8 Conclusion and Future Research 107
8.1 Conclusion 107
8.2 Future Research, 109
Bibliography 112
Appendix A Copyright Permissions 127

List of Tables

2.1

2.2

2.3

3.1

4.1

5.1

5.2

6.1

6.2

6.3

The symbols and notation used in the chapter.

Image recognition datasets used for comparison of dimensiona-
lity reduction methods and clustering.

Results of k-means clustering on the low-dimensional embedding
evaluated by Normalized Mutual Information (NMI) multiplied
by 100. The first row for each dataset shows the mean and
standard deviation of NMI values in 50 runs and the second row
shows the p-value of t-test against the best performing method
on that dataset. oo

Evaluation of different word embedding algorithms on 8 word
similarity datasets. The dimensionality of the embeddings is
100 for the top part and 300 for the bottom 5 rows. Numbers
in the table are Pearson’s rank-order correlation between the
human scores and scores from algorithms.

Evaluation of different word embedding algorithms on 8 word
similarity datasets. oL

Nearest neighbors of sample words in our sense embedding vec-
tor space Lo

Comparison of our method’s performance to participants of the
SemEval 2013 Task 13 and two systems based on word sense
embeddings (AdaGram and SenseGram)

Statistics of the English Wikipedia dump (April 2018)
Word similarity datasets used for comparison.

Evaluation of different word embedding algorithms on five word
similarity datasets (part 1). The dimensionality of the embed-
dings is 100. Numbers in the table are Spearman correlations
between the human-assigned similarity scores and Cosine simi-
larities calculated in the embedding spaces.

vi

6.4

6.5

7.1

7.2

7.3

7.4

7.5

Evaluation of different word embedding algorithms on five word
similarity datasets (part 2). The dimensionality of the embed-
dings is 100. Numbers in the table are Spearman correlations
between the ground truth similarities and Cosine similarities in
the embedding spaces obtained from algorithms.

Overall evaluation of different word embedding algorithms on 10
word similarity datasets. The dimensionality of the embeddings
is 100. Numbers in the table show the average Spearman corre-
lations over 10 datasets between the human-assigned similarity

scores and Cosine similarities calculated in the embedding spaces. 84

SemEval 2018 — Task 1 — El-reg dataset information
DIstant Supervision Corpus (DISC) information

Comparison of different feature extraction methods and diffe-
rent regression algorithms on “anger” emotion of El-reg data-
set. For each feature extraction method, the first row shows
the mean and standard deviation of Pearson correlation (%)
between the predicted emotion intensity values and the ground-
truth intensity values, and the second row shows the p-value of
t-test against the best performing feature extraction using the
same regression algorithm. 0000

Comparison of different feature extraction methods and diffe-
rent regression algorithms on “fear” emotion of El-reg data-
set. For each feature extraction method, the first row shows
the mean and standard deviation of Pearson correlation (%)
between the predicted emotion intensity values and the ground-
truth intensity values, and the second row shows the p-value of
t-test against the best performing feature extraction using the
same regression algorithm.

Comparison of different feature extraction methods and diffe-
rent regression algorithms on “joy” emotion of El-reg dataset.
For each feature extraction method, the first row shows the
mean and standard deviation of Pearson correlation (%) bet-
ween the predicted emotion intensity values and the ground-
truth intensity values, and the second row shows the p-value of
t-test against the best performing feature extraction using the
same regression algorithm.

vii

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

Comparison of different feature extraction methods and diffe-
rent regression algorithms on “sadness” emotion of El-reg da-
taset. For each feature extraction method, the first row shows
the mean and standard deviation of Pearson correlation (%)
between the predicted emotion intensity values and the ground-
truth intensity values, and the second row shows the p-value of
t-test against the best performing feature extraction using the
same regression algorithm.

The architecture and hyper-parameters of the LSTM neural net-
work used for the El-reg task.

Comparison of different word embedding algorithms used in the
LSTM neural network for emotion intensity recognition. For
each embedding method, the first row shows the mean and stan-
dard deviation of Pearson correlation (%) between the predicted
emotion intensity values and the ground-truth intensity values,
and the second row shows the p-value of t-test against the best
performing embedding on the same emotion.

IMDB movie reviews dataset information

Comparison of accuracies for different feature extraction met-
hods and different classification algorithms on the IMDB data-
set. For each feature extraction method, the first row shows the
mean and standard deviation of accuracy, and the second row
shows the p-value of t-test against the best performing feature
extraction using the same classification algorithm.

Comparison of AUC values for different feature extraction met-
hods and different classification algorithms on the IMDB data-
set. For each feature extraction method, the first row shows
the mean and standard deviation of AUC, and the second row
shows the p-value of t-test against the best performing feature
extraction using the same classification algorithm.

Comparison of F'1 measures for different feature extraction met-
hods and different classification algorithms on the IMDB data-
set. For each feature extraction method, the first row shows the
mean and standard deviation of F1 measure, and the second row
shows the p-value of t-test against the best performing feature
extraction using the same classification algorithm.

The architecture and hyper-parameters of the neural network
used for the IMDB sentiment analysis task.

viil

102

7.14

Comparison of different word embedding algorithms used in our
CNN-LSTM neural network for sentiment analysis. For each
embedding method, the first row shows the mean and standard
deviation of evaluation metrics (%), and the second row shows
the p-value of t-test against the best performing embedding with
respect to the same evaluation metric.

X

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

The elbow point shown as red for a randomly selected point in
COIL20 dataset, found based on the distribution of distances
to its neighbors.

Performance of different dimensionality reduction algorithms
on 10 datasets for 3-dimensional output. In this figure, only the
average performance values are shown. Top left: average NMI
values on 50 runs of k-means clustering. Top right: average
NMI values on 50 runs of spectral clustering. Bottom: Silhou-
ette measure of cohesion and separation between the embed-
dings and the true labels.

3-D Visualizations of UBE, t-SNE, Sammon, LPP, and PCA
algorithms on COIL-100, MNIST, Umist, CMUface, and COIL-
20 datasets.

Distribution of cosine similarity of 100,000 pairs of random vec-

tors. The distribution of cosine similarities is N (0, \/Lg)

The effect of polynomial kernel degree in the repulsive force
in KUBWE algorithm: (a) linear kernel (p = 1), (b) degree 3
polynomial, and (c) degree 5 polynomial. Considering the word
being updated at the top of the sphere, the colors represent the
strength of negative force from other words that is dependent
to their distance. Lo

Quality of embeddings (d = 100) obtained from KUBWE using
different kernel degrees measured on different (a) word simila-
rity, and (b) word analogy tasks.

The effect of polynomial kernel degree in different dimensiona-
lity in KUBWE algorithm evaluated on (a) WordSim353, (b)
MEN, (¢) MC.

Distribution of 40 word vectors from two groups of 20 animal
names and 20 food related words. PCA algorithm is applied on
100-dimensional vectors from KUBWE (left) and SGNS (right)
to obtain a 2-d visualization.

3.6

3.7

4.1

4.2

5.1

6.1

7.1

7.2

Distribution of 30 word vectors (15 positive and 15 negative
adjectives). PCA algorithm is applied on 100-dimensional vec-
tors from KUBWE (left) and SGNS (right) to obtain a 2-d
distribution. 51

Heatmap of 28 word vectors obtained from KUBWE (top) and
SGNS (bottom). The top 14 rows in the heatmaps are animal
names and the bottom 14 rows are food related words. 52

Accuracy of SVD-NS algorithm on (a) word analogy (b) word
similarity tasks with respect to the amount of negative samples. 66

Cosine similarity matrix of 22 words in different embedding
spaces (a) EigenWord, (b) SGNS, (c) GloVe, and (d) FastText.
Words are from two groups of 11 animal names and 11 food
related words. Dimensionality of embeddings is 100 for all em-
beddings. Colors range from dark blue for lowest similarity to
dark red for highest similarity. 69

Flowchart of the proposed Word Sense Disambiguation (WSD)
and multi-sense embedding technique. 75

Comparison of different word embedding algorithms on 10 word
similarity datasets. Y axis shows the Spearman correlation
between the ground truth similarities and the similarities in
the embedding space.o 82

Receiver Operating Characteristic (ROC) diagram of (a) sup-
port vector machines, (b) random forests, (c) naive Bayes, and
(d) k nearest neighbors classification methods on all six feature
SPACES. .+« v o e e e e e e 105

Receiver Operating Characteristic (ROC) diagram of our CNN-
LSTM neural network using different word embeddings. 106

xi

Abstract

In the big data era, most of the data generated every day are high dimensional such
as text and image data. Learning compact representations from the input data can
help in dealing with the high dimensionality and visualization of the data. These re-
presentations can be learned to map the input space into a latent space in which, e.g.,
complex relationships present in the data become more explicit, while preserving the
structure and geometrical properties of the data. In the case of discrete input features
such as text data, embedding algorithms try to learn a vector space representation
of inputs while preserving certain aspects of similarity or relatedness. Training these
embeddings is time-consuming and requires a large corpus. This makes it difficult to
train task-specific embeddings due to insufficient data in the downstream tasks which
has given rise to pre-trained models and embeddings.

In this thesis, we first study dimensionality reduction methods and propose Unit
Ball Embedding (UBE), a spherical representation learning method that learns the
structure of manifolds and maximizes their separability, which makes it suitable for
both clustering and visualization. We then generalize the algorithm and apply it to
learn word embeddings, taking into account the contexts of individual words. Our
word embedding solution learns a better distribution of words in the latent space by
pushing unrelated words away from each other. We investigate and address the naive
procedure of negative sampling in Word2Vec and exploit the full capacity of negative
examples. We also analyze frequency-based and spectral word embedding methods
and show how the idea of negative context can be used in these types of algorithms.
We propose EigenWord, a spectral word embedding with an intuitive formulation that
makes use of negative examples, and theoretically show that it has an optimal closed-
form solution. Finally, we tackle the Word Sense Disambiguation (WSD) problem
and propose a multi-sense embedding algorithm based on EigenWord. We evaluated
the proposed algorithms using both intrinsic and extrinsic evaluation of embeddings.
Extensive experiments on word similarity datasets, emotion recognition from tweets,

and sentiment analysis show the effectiveness of our proposed methods.

xii

List of Abbreviations

Notation Description

AIT Affect In Tweets

API Application Program Interface

AUC Area Under the Curve

BERT Bidirectional Encoder Representations from
Transformers

biLM Bidirectional Language Model

BOW Bag Of Words

CBOW Continuous Bag-Of-Words

CNN Convolutional Neural Network
CoVe Context Vectors
DISC Distant Supervision Corpus

EI-Reg Emotion Intensity Recognition

ELMo Embeddings from Language Models
EM Expectation Maximization

FA Factor Analysis

GNB Gaussian Naive Bayes

GPLVM Gaussian Process Latent Variable Model

HTML HyperText Markup Language

ICA Independent Component Analysis

xiii

Notation Description

IMDB

KL

KLD
KNN
KUBWE

LASSO

LDA
LDA
LLE
LMNN
LoCH
LPP
LS
LSTM
LTSA

MCML
MDS
MNB
MSE
MVU
MWE

NB
NCA
NLI

Internet Movie DataBase

Kullback-Leibler

Kullback-Leibler Divergence

K Nearest Neighbor

Kernelized Unit Ball Word Embedding

Least Absolute Shrinkage and Selection Ope-
rator

Latent Dirichlet Allocation
Linear Discriminant Analysis
Locally Linear Embedding
Large Margin Nearest Neighbor
Local Convex Hull

Locality Preserving Projection
Least Squares

Long Short-Term Memory
Local Tangent Space Alignment

Maximally Collapsing Metric Learning
Multi-Dimensional Scaling
Multinomial Naive Bayes

Mean Squared Error

Maximum Variance Unfolding

Multi-Word Expression

Naive Bayes
Neighborhood Component Analysis

Natural Language Inference

Xiv

Notation

Description

NLP
NLTK
NMF
NMI
NNDSVD

NPE

0]0)%

PCA
PMI
PPCA
PPMI
PSD

RF
ROC

SGD
SGNS
SNE
SPE
SPPMI

SVD
SVD-NS

SVM

Natural Language Processing

Natural Language Toolkit

Non-negative Matrix Factorization
Normalized Mutual Information
Non-Negative Double Singular Value Decom-
position

Neighborhood Preserving Embedding

Out-Of-Vocabulary

Principal Components Analysis

Pointwise Mutual Information

Probabilistic Principal Components Analysis
Positive Pointwise Mutual Information

Positive Semi-Definite

Random Forest

Receiver Operating Characteristic

Stochastic Gradient Descent

Skip-Gram with Negative Sampling
Stochastic Neighbor Embedding

Structure Preserving Embedding

Shifted Positive Pointwise Mutual Informa-
tion

Singular Value Decomposition

Singular Value Decomposition with Negative
Sampling

Support Vector Machine

XV

Notation

Description

SVR

t-SNE
TF-IDF

UBE
UICA

ULMFiT
URL

VP-Tree

WNDCG

WSD
WSI

XML

Support Vector Regression

t-distributed Stochastic Neighbor Embedding

Term Frequency Inverse Document Frequency

Unit Ball Embedding

Undercomplete Independent Component Ana-
lysis

Universal Language Model Fine-Tuning

Uniform Resource Locator

Vantage Point Tree

Weighted Normalized Discounted Cumulative
Gain

Word Sense Disambiguation

Word Sense Induction

Extensible Markup Language

xvi

Acknowledgements

This dissertation would not have been possible without the support of many people.
First and foremost, I would like to express my sincere gratitude to my advisor, Profes-
sor Stan Matwin, for his continuous support throughout my PhD. He is an excellent
mentor who provided me with the perfect balance of guidance and freedom, and gave
me the opportunity to pursue my interest in Machine Learning, Deep Learning, and
Natural Language Processing. I am forever grateful for his support and encourage-
ment and for the lessons I learned from him.

I would also like to thank my thesis committee: Dr. Vlado Keselj, Dr. Daniel
Silver, Dr. Sageev Oore, and Dr. Robert Beiko who have generously given their
time and expertise, and provided me with constructive feedback to better my work.
Special thanks to Dr. Jackie Cheung from McGill University, for kindly accepting to
be my thesis external examiner, and for his insightful questions and suggestions that
certainly improved my thesis.

My deep appreciation to my colleagues at the Institute for Big Data Analytics
and MALNIS research group for all the brainstormings, inspiring discussions, and
for all the great times that we have had in the last couple of years. Special thanks
to Dr. Armin Sajadi for helping me to ramp up in the embedding space and NLP
and for providing me with the clean text of Wikipedia, Xiang Jiang for the great
discussions we had and for letting me use his GPUs for my thesis experiments, Dr.
Erico Neves de Souza for his valuable feedback on my work and papers, Casey Hilliard
and Dr. Amilcar Soares for their help and technical support with respect to BigData
servers. It is due to the friendly and supportive environment in the Institute for Big
Data Analytics, and the overall atmosphere of the Faculty of Computer Science at
Dalhousie that I was lucky enough to find so many great people to work with.

Last but not the least, I would like to thank my family, especially my parents,
who did everything in their power for me to succeed. Thanks for always being there
for me. Anything good that has come to my life has been because of your support,

love and encouragement. I will never be able to thank you enough.

Xvil

Chapter 1

Introduction

Machine learning is a growing field of research which has a wide spectrum of ap-
plications ranging through text mining, computer vision, speech recognition, spam
detection, weather forecast, bioinformatics, etc. Most of these applications of ma-
chine learning deal with high-dimensional data. For instance, in a collection of text
documents, there are tens of thousands of unique words which are usually used as
features. In an image collection, each picture consists of tens of thousands of pixels.
Dealing with high-dimensional data brings on difficult challenges. Recent progress
in deep learning resulted in breakthroughs in the performance of learning algorithms
working on image and text data. Even though deep learning algorithms have been
successful in computer vision and Natural Language Processing (NLP), they require
large amounts of data to be trained on. This has led to an increasing interest in

learning representations from high-dimensional and unstructured data.

One way to deal with the high dimensionality is to learn a low-dimensional com-
pact representation of input data. These mappings typically take into account some
notion of similarity in the input space and try to preserve the structure and geome-
trical properties of the data during the mapping. These representations can often
make the complex relationships present in the data more explicit. For instance, if the
data consists of low-dimensional manifolds embedded in a high-dimensional space,
mappings can unveil the structure of manifolds and map them to a low-dimensional
space by unfolding the twisted shapes [93, 165]. Such manifolds can be formed due
to slight changes in a certain aspect of input datapoints. For instance, slight changes
in lighting conditions or slight rotations in images from the same object can form a
manifold. In this thesis, we review and study dimensionality reduction and manifold
learning algorithms and propose a spherical representation learning algorithm that
learns the structure of manifolds. One of the key distinguishing factors of our algo-

rithm is that it maximizes the separability of manifolds by using a strong repulsion

force in the optimization.

Dealing with high-dimensional data becomes even more challenging in NLP where
we have to work with discrete features (i.e. words). The traditional ways of repre-
senting documents with Bag Of Words (BOW) [133] or bag of n-grams [50] have
strong limitations. The bag of words model does not consider the word order in the
sentences. Bag of n-grams alleviates this to some extent by considering phrases, but
it still does not capture semantic aspects of the documents in a corpus. Recently,
word embedding methods consider the context of words and embed words in a vector
space based on semantic or topical similarity. Most word embedding algorithms are
pivoted around the distributional hypothesis that suggests words that share similar
context have similar meanings [136]. Considering context in the embedding helps in
capturing semantic and topical information as well as word relatedness and syntactic
relations to a great extent. To clarify how context helps in identifying these relations,

consider the following examples:

o Disambiguation: The word “bank” in “The bank will not be accepting cash
on Saturdays.” and “The river overflowed the bank.” refers to two distinct

meanings of the word “bank” that can be disambiguated using the context.

o Semantic similarity: The words “brother” in “I help my younger brother in
his homeworks.” and “sister” in “I help my younger sister in her homeworks.”

are semantically similar with a lot of common context.

o Topic similarity: The words “coffee” in “I drink coffee every morning.” and
“milk” in “I drink milk every morning.” are both drinkable and in food /beverage

category.

e Syntactic similarity: The words “go” in “I go to school”” and “went” in “I

went to school.” are tenses of the same verb.

Y

* Relatedness: The words “money” and “bank” in “Demand deposit withdra-
wals can be performed in person, via checks or bank drafts, using automatic
teller machines (ATMs), or through online banking.” are related and have a
lot of context words in common such as “deposit”, “withdrawals”, “checks”,

“drafts”, etc.

3

Word embedding algorithms make use of this rich context information and try to
preserve the word similarity and relatedness in the embedding space, so that words
that share similar context will be placed close to each other. In this thesis, we
propose a word embedding technique that also uses the context information when
constructing the vector space. However, we apply a refinement technique on the
contexts and remove the uninformative and insignificant co-occurrences. Another key
distinguishing element of our method is our effective use of negative context: word
pairs that never co-occur. This negative context is ignored in most algorithms, or is
naively used in others. For instance, algorithms like Word2Vec [101] that only observe
a local context at a time have no knowledge about negative context and cannot predict
it either. Consequently, they use a naive sampling technique to incorporate negative
context, hoping that the sampled words are not related to the current word. On the
contrary, we calculate the global co-occurrence statistics, and therefore we accurately
know the strength of positive association as well as the exact negative context. By
exploiting the negative context, our algorithm pushes away unrelated words from each
other while making the semantically similar words close to each other. This way, our
method improves the distribution of words in the latent space and provides a higher

quality embedding.

There exist another family of word embedding algorithms that work directly on the
word-word co-occurrence matrix and are mostly known as frequency-based or count-
based methods. These algorithms usually employ eigenanalysis on the co-occurrence
matrix and extract the word vectors using algebraic techniques. Even for the modern
embedding algorithms such as Word2Vec [101], it is shown that its objective function
can be interpreted as an implicit matrix factorization problem. GloVe [122] is no
exception either and is implicitly factorizing the log co-occurrence matrix. Although
this family of algorithms have their own drawbacks, it is shown that there is no
consistent advantage between prediction-based and frequency-based embeddings if
they are used and tuned properly [90]. In this thesis, we analyze frequency-based word
embeddings and propose a new spectral word embedding that takes into account the
notion of negative examples. This was completely ignored in the previous algorithms
and we shed some light on the usage of negative context in spectral methods. We

provide an intuitive formulation for the embedding problem that justifies the use of

negative examples and has an optimal closed-form solution through eigenanalysis.

An important challenge in natural language processing when using pre-trained
embeddings is Word Sense Disambiguation (WSD). Since most popular embeddings
provide a single vector for each word, it is not possible to disambiguate and identify
the correct sense of the words. In fact, the learned word vectors are the weighted
average of all the meanings of the words. Traditional disambiguation techniques
based on context clustering are helpful in identifying the different senses, however,
they do not provide embeddings for the senses, e.g. to be used in neural networks.
Later in this thesis, we study the different WSD methods and propose a multi-sense
embedding technique based on EigenWord. Our solution works on the co-occurrence
matrix and using a soft clustering approach it breaks each global context vector
into multiple sense-specific context vectors in order to obtain the sense-word co-
occurrence matrix. Since there exist lots of common context among different senses
of ambiguous words, the soft clustering strategy enables the fuzzy assignment of
context words into different senses and enhances the disambiguation quality. At the
end, EigenWord is applied on the sense-word co-occurrence matrix in order to obtain

the sense embeddings.

Embedding algorithms require large amounts of training data to learn the em-
beddings and it is shown that the size of the corpus has a significant impact on the
quality of embeddings. We are living in an era where huge amounts of textual data
is generated every day, from blogs and tweets to product reviews and websites. This
abundance of data readily available to researchers has made training of complex lear-
ning systems possible. On the one hand there exist huge amounts of unlabeled text
data on the web, but on the other hand task-specific labeled data is rather small.
This makes training of embedding directly for the downstream NLP tasks difficult
and has given rise to the pre-trained embeddings. In fact, in most NLP applications
pre-trained embeddings are used as input features to the models and it is shown that
embeddings improve the accuracy of many NLP tasks by a great margin. The solu-
tions that we provide in this thesis are also considered as methods for pre-training
embeddings. These embeddings are usually trained on large corpora such as Wikipe-
dia, large collections of tweets, Common Crawl, etc. It is often recommended to use

a pre-trained embedding that is trained on a corpus consistent with the downstream

5

NLP task. For instance, if one is building a neural network model for Twitter data
analysis, it is better if they use pre-trained embeddings on Twitter data as well. In
our experiment, we also take this into account and pre-train embeddings appropriate
to the underlying task.

We have conducted extensive experiments and evaluated our embedding algo-
rithms both intrinsically and on downstream NLP tasks including emotion recognition
and sentiment analysis. We have compared our proposed solutions with traditional
approaches such as TF-IDF as well as with state-of-the-art methods like FastText [19]
and Word2Vec. Results show the effectiveness of our proposed solutions and signifi-

cant improvements in many application areas.

1.1 Contributions

The outcome of this research is a collection of methods to train high quality em-
beddings for natural language processing and manifold learning for images. The

contributions of the thesis are!:

1. We propose a spherical representation learning algorithm for manifold learning
in image datasets. We also propose an adaptive neighborhood and variance
calculation for manifolds that better learns the structure of data. We show
that the spherical representation combined with the Cosine metric enhances
the separability of classes, and consequently, improves the clustering quality

and visualization.

2. We study word embedding algorithms and propose a PMI-based embedding

technique based on global co-occurrence statistics.

3. We analyze the use of negative context in the embeddings and propose a way to
maximally exploit the negative examples in order to improve the distribution

of words in the latent space.

4. We propose a kernel similarity measure specifically designed for high-dimensional
data where the distances become unreliable. The kernel similarity measure gives

the learning algorithm more discriminative power in the metric space.

IParts of this thesis is published earlier in our research articles [142, 141, 144, 140, 139, 143, 138,
112, 111, 110].

6

5. We propose a fast nearest neighbor search for high-dimensional data based on
Vantage Point (VP) trees. Almost all fast nearest neighbor search algorithms
are ineffective in high dimensions and their performance is almost equal to
exhaustive search. We use a modified VP-tree approach to approximate the

forces in our algorithm in order to improve the computational complexity.

6. We introduce a way to enable the use negative examples in frequency-based
embedding techniques. We propose a spectral word embedding algorithm that

incorporates the negative context to achieve higher quality embedding.

7. We propose an intuitive formulation for the word embedding problem that jus-
tifies the use of negative context. We theoretically show through eigenanalysis

that our proposed algorithm has an optimal closed-form solution.

8. We present a multi-sense embedding solution to tackle the Word Sense Disambi-
guation (WSD) problem. We show that learning the distribution of words across
senses by employing a soft clustering of context vectors can better handle the

common context among senses and results in better disambiguation.

1.2 Outline

The overall structure and organization of the thesis is as follows.

Chapter 2 In this chapter, we introduce a dimensionality reduction algorithm for
image datasets, Unit Ball Embedding (UBE), that learns the structure of data and
is particularly suitable for datasets with manifold structure. We propose an adaptive
neighborhood construction techniques and use a spherical representation which to-
gether help in separability of manifolds and ultimately result in an inherent clustering
of manifolds in the latent space. We apply the algorithm on various face, digit, and
object recognition datasets and show the effectiveness of the proposed approach in
clustering and visualization of high-dimensional data. Chapter 2 presents the main

contributions from our research articles [139, 140, 143].

7

Chapter 3 In this chapter, we generalize the UBE algorithm and make it applicable
to text domain and use it to learn word embeddings. In this case, we utilize the global
co-occurrence statistics and refine it using Pointwise Mutual Information (PMI) and
use the PMI matrix as the neighborhood connectivity structure in the algorithm. We
also examine the use of negative context in the embeddings and propose a way to
exploit the full power of negative examples in the embedding. Moreover, we propose
a kernel similarity measure for the embedding space that gives the algorithm the
discriminatory power to distinguish between the small and large distances in high di-
mensions. Furthermore, we present a fast version of the algorithm that approximates
the forces from the negative context by adopting a VP-tree based fast nearest neig-
hbor search. The original VP-tree search is not efficient for high-dimensional data,
therefore, we propose a modified version of VP-tree that is designed to tackle curse

of dimensionality. Chapter 3 is an extended version of our research article [142].

Chapter 4 In this chapter, we study the frequency-based word embeddings and
propose a way to incorporate negative context in these types of embeddings. We
introduce a new intuitive formulation for the word embedding problem that justifies
the use of negative examples, and we theoretically show that it has an optimal closed-
form solution through eigenanalysis. Consequently, we propose EigenWord, a spectral
word embedding technique that exploits the negative examples to a great extent.

Parts of Chapter 4 is published in our earlier research article [141].

Chapter 5 In this chapter, we investigate the Word Sense Disambiguation (WSD)
problem and study the existing approaches. We then propose a multi-sense embedding
method based on EigenWord. The proposed solution in this chapter uses an efficient
soft clustering of context vectors to break down the global context vector of ambiguous
words into multiple sense-specific context vectors. The soft clustering approach is
perfectly suitable for this purpose since it inherently handles the context similarity
among different senses. We show the effectiveness of this approach both qualitatively

and quantitatively. Chapter 5 is an extended version of our research article [144].

Chapter 6 We evaluate our proposed embedding algorithms intrinsically in this

chapter. We use Wikipedia as the training corpus and train the algorithms on all the

8

articles of Wikipedia. We compare the quality of our embeddings with the state-of-
the-art embedding techniques on multiple word similarity datasets. Results in this
chapter show significant improvements achieved by our proposed algorithms on the

word similarity task.

Chapter 7 This chapter presents the experimental results of our algorithms on two
real-world downstream NLP tasks: emotion recognition from tweets and sentiment
analysis from movie reviews. We compare our proposed solutions to the state-of-
the-art word embedding algorithms as well as traditional methods (e.g. BOW and
TF-IDF) and also document embedding solutions. Results show the effectiveness of

the proposed algorithms in both tasks.

Chapter 8 A review of our findings and concluding remarks are presented in this
chapter. We also briefly present our future research directions, which spawn from the

research presented in this thesis.

Chapter 2

Dimensionality Reduction for Image Clustering

Mining, visualizing, and making sense of high-dimensional data is of great interest in
machine learning community. In this chapter, we present an unsupervised nonlinear
dimensionality reduction algorithm which is aimed to preserve the local structure of
data by building and exploiting a neighborhood graph. Many high-dimensional data,
such as object or face images, lie on a union of low-dimensional subspaces which are
often called manifolds. The proposed method is able to learn the structure of these
manifolds by exploiting the local neighborhood arrangement around each point. It
tries to preserve the local structure by minimizing a cost function that measures the
discrepancy between similarities of points in the high-dimensional data and simila-
rities of points in the low-dimensional embedding. Our proposed method, Unit Ball
Embedding (UBE), creates larger gaps between the manifolds compared to the state-
of-the-art methods which results in better separability of clusters. By maximizing
the within-cluster cohesion and between-cluster separation, UBE remarkably impro-
ves the quality of clustering algorithms on the low-dimensional embedding. Our
experiments on face, object, and handwritten digit recognition datasets show that
UBE can learn the structure of manifolds and it significantly improves the clustering

quality and unsupervised learning.

2.1 Introduction

Data visualization and knowledge discovery using machine learning is of particular
interest since most of the data being generated everyday is unlabeled and unstructu-
red (e.g. text data). Dimensionality reduction and embedding algorithms are one of
the core components in such unsupervised applications. The low-dimensional repre-
sentation allows us to train learning algorithms more efficiently as well as reducing
the chances of overfitting. It also enables us to visualize and make sense of the data

more easily.

10

Training learning algorithms using huge number of variables will increase the
chances of overfitting. For instance, training a deep neural network or any parametric
model on a high-dimensional data will result in an exorbitant amount of parameters
which in turn requires enormous data to be trained on [77]. There exist many appli-
cation areas (e.g. medical domain) where we simply do not have enough data to train
complicated neural networks in order to solve the problem. In these types of settings,
a dimensionality reduction technique can become helpful to tackle high number of

features compared to little amounts of data.

Dimensionality reduction is being referred by different names in the literature,
such as feature reduction/transformation, multidimensional projection, representa-
tion learning, manifold learning and it is also related to distance metric learning.
Generally speaking, the aim of dimensionality reduction methods is to embed in-
put observations into a low-dimensional vector space. In the next section, we will

categorize these methods and discuss them in details.

The two main categories of dimensionality reduction techniques are global and
local methods, each of which has its own drawbacks. Global methods such as Multi-
Dimensional Scaling (MDS) [36] and Sammon [135] try to preserve the global structure
and configuration of points while local methods such as Locally Linear Embedding
(LLE) [130], Laplacian eigenmaps [12], and t-distributed Stochastic Neighbor Embed-
ding (t-SNE) [161] try to preserve the local neighborhood structure. Local approaches
are also known as manifold learning methods. A manifold is basically a topological
space that locally resembles Euclidean space around each point. These algorithms
try to capture the manifold structure by assuming and exploiting the locally smooth

properties of the data.

Global approaches have several drawbacks and disadvantages. They require no-
tably more resources than local methods both in terms of computational complexity
and memory complexity, mostly because of calculating, storing, and maintaining all
pairwise distances. Moreover, they are less accurate than local methods. This is
because they are driven to preserve small and large distances to the same extent.
Having to preserve large distances makes the algorithm to lose the ability to model

the local neighborhoods’ structure.

Local approaches also have their own weaknesses. They depend on the smoothness

11

assumption and the neighborhood connectivity graph. These local approaches work
pretty well in datasets with manifold structure. However, there are certain situations
when manifold learning approaches may fail: noise around the manifold, high cur-
vature of manifold, high intrinsic dimensionality of manifold, and lastly presence of
many manifolds in the data [15].

In this chapter, we propose a nonlinear local dimensionality reduction method,
Unit Ball Embedding (UBE), which tries to address some of the aforementioned
drawbacks of previous methods. The proposed algorithm uses a sparse representation
of input data similarities, and consequently, does not suffer from quadratic memory
complexity of global approaches. Moreover, we use adaptive variance calculation
in our input space Gaussian similarities which helps to identify multiple manifolds.
This adaptive variance technique helps in both tackling high intrinsic dimensionality
of manifolds and also dealing with presence of many manifolds. The algorithm is
designed in a way that exploits the repulsion force between the neighborhoods in
the optimization which leads to creation of large gaps between the manifolds. This
property makes UBE a very useful visualization tool. Furthermore, by ensuring a
larger margin between the classes, UBE results in clustering quality higher than in

other embedding spaces, including the original feature space.

2.2 Background and Related Work

In this chapter, we will use a consistent notation for the equations as described in
Table 2.1.

Dimensionality reduction is being referred by different names in the literature such
as feature reduction/transformation, multidimensional projection, representation le-
arning, manifold learning and it is also related to distance metric learning. There
are supervised as well as unsupervised algorithms for dimensionality reduction. The
supervised algorithms make use of the labels to transform the data into some low-
dimensional space in which the classes are easily separable. On the other hand,
unsupervised techniques look solely at the structure of points and their relative dis-
tances without consideration of labels. Most notable supervised algorithms are Li-
near Discriminant Analysis (LDA) [17] and its variants such as kernelized LDA [100],
Neighborhood Component Analysis (NCA) [129]. Some supervised methods find the

12

Table 2.1: The symbols and notation used in the chapter.

Symbol Dimension Description

n integer # of datapoints

D integer # of dimensions in the input feature space

d integer # of dimensions in the output space (mapped data)
k integer Maximum # of neighbors in the k-NN graph
X nxp Input data matrix

T px1 1-th datapoint in the input space

Y nxd Output data matrix

Yi dx1 1-th datapoint in the target space

A% nxmn Sparse adjacency matrix (i.e. k-NN graph)
W double Adjacency value between z; and z;

d;; double Distance between z; and x;

« double Step size or learning rate in gradient descent
Ai double Lagrange multiplier for i-th constraint

A double Regularization Parameter

mapping by learning a distance metric. The distance metric learning incorporates the
labels, and thus, the resulting target space will have better class separability. Among
these methods Large Margin Nearest Neighbor (LMNN) [168] and Maximally Col-
lapsing Metric Learning (MCML) [52] can be mentioned. Although these algorithms
have been used in a wide range of applications, supervised methods are outside of the
scope of this thesis.

Unsupervised dimensionality reduction methods can also be divided into linear

and nonlinear methods, described in the following sections.

2.2.1 Linear Dimensionality Reduction

In linear algorithms each attribute in the target space is considered to be a linear
combination of input features. More formally, if X,,«, is the coordinates of points in
the original feature space and Y, .4 is the coordinates of points in the target space,
where p and d are the dimensionality of input space and target space, respectively,
then Y = XP where P4 defines the linear mapping.

One of the traditional linear methods for dimensionality reduction which is widely

used in many different application is PCA [70]. It picks the dimensions of the greatest

13

variance in the data and maps all the points to the new coordinate system which is

built by the maximum variance directions.

Some of the linear algorithms such as PCA and classical MDS impose orthogona-
lity constraint on the attributes of the target space. Orthogonality of the attributes is
of great comfort to visualizations and many application areas since it ensures that dif-
ferent types of structure will not be artificially created in the data. Among other linear
methods that use unconstrained objective functions we can mention Undercomplete
Independent Component Analysis (UICA) [169], Probabilistic PCA (PPCA) [153]
and Factor Analysis (FA) [72].

ICA specifies the data X as a mixture of unknown and independent sources Y.
The independence in ICA is different from uncorrelatedness in PCA. Here the inde-
pendence means that for all points y; in Y we have p(y;) ~ H;‘l=1 p(y!) where the p(y!)
are the univariate marginals of the lower dimensional data. PPCA adds a prior to
PCA and assumes that high-dimensional data is a linear mapping of low-dimensional
data plus a Gaussian noise. This model yields a natural likelihood objective which has
a closed form solution using singular value decomposition. Factor Analysis is a more
general case of PPCA, in which noise is fit per observation rather than across all the
data. This will lead to a different likelihood function that, unlike PPCA, does not
have closed form solution. Typically, Expectation-Maximization (EM) or gradient

descent is used for optimizing the likelihood in Factor Analysis.

2.2.2 Nonlinear Dimensionality Reduction

Linear dimensionality reduction algorithms cannot capture nonlinearities in the data.
Nonlinear dimensionality reduction methods namely Isomap [151], Laplacian eigen-
map [12], Locally Linear Embedding (LLE) [130], etc. have been proposed to over-
come this issue. In this chapter, we will mainly focus on nonlinear algorithms since our
proposed algorithm is also a nonlinear method. Nonlinear dimensionality reduction

algorithms can further be broken down into global and local approaches.

14
2.2.2.1 Global Approaches

Global methods try to preserve the global structure of the data by sustaining pairwise
distances between all pairs of points. Among these methods we can mention Multi-
Dimensional Scaling (MDS) [36], modern MDS [20], Sammon [135], Isomap [151],
multilayer autoencoders [60], Maximum Variance Unfolding (MVU) [167], and Dif-
fusion Maps [80]. Almost all methods in this category try to somehow preserve the
big picture and global structure of the data. Modern MDS methods optimize a stress
objective function of the following form:

2 (dij = llvi — w5l)?
j(Y):\/ZlZ](Z‘z.Hj?. y;ll) 2.1)

where d;; are the distances in the original input space. It basically tries to maintain
all the pairwise distances. Sammon mapping [135] uses a similar objective function
but it is different in scaling and normalization. Onclinx et al. [118] proposed a rank
preserving dimensionality reduction method which uses a spherical representation and
tries to preserve the ranks of distances instead of the distance values. However, this
rank-based dimensionality reduction method also suffers from the same drawbacks of
global approaches, since the order/rank of large distances should not be as important
as the order/rank of small distances.

Isomap [151] initially builds a knn or e-radius neighborhood graph, then it recalcu-
lates all the pairwise distances as the shortest distance on the graph. These shortest
path distances on the graph are called geodesic distances. Finally, it uses MDS to
find a coordinate system that preserves the geodesic distances.

MVU [167] also builds a neighborhood graph G and uses the connectivities of the
graph as constraints in its optimization. It tries to maximize all pairwise distances
with the constraints that the distance of those points connected in the graph should

be preserved:
Mazimize Z Z lyi — y;|I?
(N
subject to: ||ly; — y;|| = dij for ¥(i,j) € G (2.2)

MVU uses semidefinite programming to optimize its cost function. Landmark

MVU [37] is another improved variant which is more efficient for large datasets.

15

Recently, deep neural networks are gaining the attention of researchers [83]. They
can be used for representation learning since each layer of the network provides a
new representation of the data [13]. For instance, autoencoders [60] consist of an
encoder and a decoder. The encoder maps the input to some low-dimensional re-
presentation and the decoder takes the low-dimensional representation and map it
to some high dimensional space. Autoencoders try to minimize the reconstruction
error between the original input and the reconstructed high-dimensional output. If
the reconstruction error is low, it means that the output of the encoder (i.e. low-
dimensional representation) is capturing most of the structure and information in the

input.

2.2.2.2 Local Approaches

The last group of methods to consider is the nonlinear local dimensionality reduction
approaches. The intuition for local methods is that if two points are close in the
high-dimensional space, they should be close in the low-dimensional embedding as
well. Among them we can mention LLE [130], Laplacian eigenmap [12], Locality Pre-
serving Projections (LPP) [117], Hessian LLE [40], Local Tangent Space Alignment
(LTSA) [179], Linear Local Tangent Space Alignment (LLTSA) [178], Local Convex
Hull (LoCH) [45]. All these methods look at neighborhood structures and try to
preserve the local geometry of the data, but the global structure may change.
Locally Linear Embedding (LLE) [130] describes the local properties of the ma-
nifold around point x; by representing the datapoint as a linear combination of its
neighbors. A sparse matrix W of weights is calculated from the high-dimensional data
and the same weights are used to reconstruct the low dimensional representation that

results in the following objective function.
TOY) = lyi = > wiyll3 (2.3)
i=1 j=1
Using matrix notation it can be written down as:
J(Y) =Y - WY (2.4)

where ||.||r is the Frobenius norm. Equation 2.4 can be written in terms of trace

16

of a matrix:

JY) =Y - WY
= trace[Y (I - W)' (I - W)Y] (2.5)

Based on a theorem in matrix trace optimization, if we add an orthonormal con-
straint on output data Y7'Y = I, then the eigenvectors of (I—W)?(I—W) correspon-
ding to the smallest nonzero eigenvalues form the optimal solution that minimizes the
cost function [76].

Laplacian eigenmap [12] constructs a knn neighborhood graph in which each point
is connected to its k nearest neighbors. A sparse matrix W of knn distances is
obtained and used for optimization. This matrix can be interpreted as a weighted
adjacency graph. If two points are connected in the high dimensional space, their
distance in low dimensional representation is minimized, otherwise their distance

does not have any effect in the cost function.
TOY) =D wijlly: — ysll3 (2.6)
i=1 j=1

If we define a diagonal matrix M with diagonal elements m;; = Z?:l w;; then the
Laplacian L of the graph W can be defined as L = M — W. This Laplacian allows

us to formulate the minimization problem as an eigenproblem.
TY) = wii(wlvi + v v; — 2 y;)
(N
=2 ulw) wy =23) wiyly, (2.7)
i j i

By introducing M and using matrix notation we have:

J(Y) = 2trace[YIMY] — 2trace[YT WY]
= 2trace[Y' (M — W)Y (2.8)

Similar to LLE it has a closed form optimal solution in that Y is built by eigen-
vectors of the Laplacian L corresponding to its smallest nonzero eigenvalues.
Hessian LLE is a variant of LLE that tries to minimize the curvature of the high

dimensional manifold when finding the low dimensional embedding. The curvature

17

of the manifold is measured using the local Hessian at each datapoint. Similar to
Hessian LLE, LTSA also describes the local properties of the data using the local
tangent space of each datapoint. LTSA is based on the idea that if local linearity
of the manifold is assumed, there exists a linear mapping from a point to its local
tangent space and there also exists a linear mapping from the corresponding low
dimensional representation of the point to the same local tangent space [179].
Stochastic Neighbor Embedding (SNE) [59] is another successful method in that

for each point x;, a probability distribution over its neighbors is calculated as follows.

cap(~d3)
Pij =
! Zk;ﬁi exp(—d3,)

Then an iterative optimization procedure minimizes the sum of Kullback-Leibler

(2.9)

divergences between the distributions in high dimensional space and low dimensional

embedding. The objective function of SNE has the following form.

T = pijlog q_j => KL(P|Q:) (2.10)
i=1 j=1 i=1

where ¢;; is the same as p;; but it is calculated in low dimensional space. Several
variants of SNE such as Symmetric SNE [172] and t-distributed Stochastic Neig-
hbor Embedding (t-SNE) [161] have been introduced. t-SNE is a successor which
uses a t-distribution rather than Gaussian for calculating the similarities in the low-
dimensional embedding. The t-distribution is heavier-tailed than Gaussian and re-
sults in more gaps between groups of points. This property makes t-SNE a great
visualization tool that is widely used for many application areas. An accelerated
version of t-SNE is also proposed that uses tree based algorithms to improve its com-
putational complexity [160]. Accelerated t-SNE uses Vantage-Point (VP) trees for
finding nearest neighbors, as well as quad-trees and oct-trees combined with Barnes-
Hut technique [8] to approximate the gradient during the optimization. However,
due to the structure of trees, its computational and memory complexities are expo-
nential in terms of the dimensionality of embedding. This makes it only suitable for
visualization purposes.

Local Convex Hull (LoCH) [45] is also a recent neighborhood based multidimen-

sional projection technique that works based on local convex hulls of datapoints. A

18

detailed comparative study of nonlinear dimensionality reduction is provided by Van
Der Maaten et al. [159].

Our proposed method follows the locality preserving approach. It tries to pre-
serve the neighborhood connectivity graph in the low-dimensional embedding. The
dimensionality of the target space can be chosen by the user and the method locates
the points on the surface of a hypersphere in such a way that it retains most of the

neighborhood structure.

2.3 Proposed Dimensionality Reduction Method

Our proposed method, Unit Ball Embedding (UBE), is a local dimensionality re-
duction method which tries to preserve the neighborhood structure. We use a nearest
neighbor graph to capture the local structure and define an objective function that
preserves the structure. The objective function is defined in a way to minimize the
discrepancy between similarities of points in the input space and similarities of points
in the transformed feature space. The dimensionality of the target space can be
chosen by the user.

As the name of the algorithm suggests, we use a spherical representation for the
low-dimensional embedding in which points are located on the surface of a hypersp-
here. This type of spherical representation is of great interest in the natural language
processing community and in text mining applications. It can also be embedded in
interactive visualization tools to provide insightful and interactive visualizations.

In the following, we first propose an effective way to determine the structure of
input data using a sparse representation for input similarities. We then propose our
objective function that is aimed to minimize the squared difference between simila-
rities of points in input and output spaces. Eventually, we investigate two different
optimization technique for minimizing the cost function followed by experimental

results and visualizations of the embedding space.

2.3.1 Calculating Input Similarities

The proposed method starts by calculating k,,., nearest neighbors for each point

using Euclidean distance. The set of neighboring points for x; is represented as

19

{xl ,X2 R x,(;) _} where x) denotes the j-th nearest neighbor of x; and d W de-

notes the distance between x; and its j-th nearest neighbor. Distances to the nearest
neighbors are then converted to affinity values by centering a Gaussian function on
top of each datapoint. We adaptively choose the number of neighbors as well as the
variance of the Gaussian for each datapoint since the density around points can be
very different. This will ensure that the algorithm can model the local neighborhood
structure even when having various density levels in the dataset.

One of the most important factors in choosing the right number of neighbors is
the intrinsic dimensionality of the manifolds. If the data lies on a line or plane in
a local neighborhood, a few number of neighbors is enough to reasonably represent
the structure of the manifold in that region. But as the intrinsic dimensionality of
manifold increases, more neighbors are needed to effectively capture the structure. In
this work, we do not estimate or approximate the intrinsic dimensionality of manifold,
however, we propose an elbow based technique on the distances to find a good cut-
off neighbor/distance for each datapoint. If we consider the first k., neighbors
of x; ordered in increasing distance, we find the elbow point after which there is
no significant increase in the distances. This can be a good indication of moving
to another cluster or manifold in the data which we exploit in order to maximize

the separation of different manifolds. Figure 2.1 illustrates the 100 nearest neighbor
(i)

distances for a sample point in COIL20 image dataset. The elbow point x.;,, is
represented as red which has the maximum distance from the line connecting first
and last point.

After detecting the elbow, we choose the variance of the Gaussian for each data-
point in a way that its elbow point falls exactly on 30 of the Gaussian. Then we will
set the similarities for points outside of 30 zone to zero. More formally, the input

similarities are calculated as follows:

llxi —; > (@) @) (4)
eXpl—">%2 X1 HX5 5 Xetbow
wij = (20$) J { 1 2 b } (2'11>
0 otherwise
i) (4)
l|x; — X(lb I degy
Z' eLoow — eloow 2'12
o 3 3 (2.12)

where xy) is the j-th nearest neighbor to the i-th datapoint and w;; is their cor-

responding similarity. Unlike global dimensionality reduction methods (e.g. MDS,

20

100
80 I
S e0f
-
40 F

201

1 1 1 1 1 1

0 20 40 60 80 100
Neighbor index (i)

Figure 2.1: The elbow point shown as red for a randomly selected point in COIL20
dataset, found based on the distribution of distances to its neighbors.

Sammon, ISOMAP), UBE does not need to store all the pairwise distances which
requires O(n?) memory where n is the number of points in the data. Since each point
is only connected with a few neighbors, the entire input similarity graph can be stored
as a sparse adjacency matrix. This sparse matrix of input similarities, W, contains
at most O(nkq:) non-zero elements which is linear in terms of input datapoints.
Having a low memory complexity is a vital property for running the algorithm on

large datasets.

2.3.2 Cost Function

Our proposed method uses a spherical representation for the output data which is
interesting for interactive visualization tools and also for natural language processing
applications. In this representation, we use cosine similarity as our similarity measure

between datapoints:

T
YiYi
S(yuyi) = 7= (2.13)
7 lyillllys |

The objective function is then defined to minimize the sum of squared differences

between similarities in the input space and the similarities in the transformed feature

21

space:
n n

JY) = %ZZ (wi; = S(yiryy)’ (2.14)

i=1 j=1
where w;; and S(y;,y;) are calculated using Equations 2.11 and 2.13, respectively.
Here we propose a constrained variant of the objective function which makes the

normalizations fade away as well as resulting in a simplified gradient:

J(Y)= %Z > (wiy - y'y,)’

i=1 j=1

subject to: yly; =1 Vi (2.15)

Here, the objective function forces the points to be on the surface of a hypersp-
here. The unit length constraints is not restrictive, since most of the volume of a
hypersphere is in its crust, and therefore its surface has enough room to locate all the
points in a desired way. More precisely, the surface of the hypersphere has only one
less degrees of freedom than the entire volume of the hypersphere. In the constrained
form of the objective function, the dot product of output vectors gives the cosine si-
milarity and is used as a kernel in the transformed feature space to weight the closer
points more than the farther points in a nonlinear manner.

The similarities of the points in the input space and transformed feature space
are calculated using Gaussian and Cosine kernels, respectively. However, Gaussian
ranges in [0,+1] and cosine ranges in [—1,+1]. For this reason, we normalize the
cosine kernel in [0, +1] by using 1 (y7y; + 1). This way, if the Gaussian similarity
of two points in the input space is high, the method tries to place them as close as
possible. And if they are not connected in the input space, w;; = 0, the method tries

to place them as far as possible.

2.3.3 Optimization

We find the embedding in the low-dimensional space in an iterative optimization
procedure. We have employed two different optimization techniques to minimize
our objective function. In both cases, we initialize the datapoints randomly on the
surface of a hypersphere and try to change the configuration of points to get a better

objective value. We have used the general projected gradient descent framework [91]

22

to project the solution of each iteration onto the constraints, y; = Py(y; — gyj)

where Py(y) = arg m13r}1]|y — z||? is the projection that finds the closest solution in
ze

the feasible region (i.e. satisfying the constraints). In other words, the solution is

projected onto the feasible region after each iteration.

2.3.3.1 Stochastic Gradient Descent Optimization

If we expand the cost function we will get:
T \2
Z Z [— 2wy (! y;) + (v]y5) (2.16)
i=1 j=1

In each iteration of the algorithm, datapoints are being relocated in order to

achieve a lower loss value. The gradient of the cost function with respect to a data-

point y; is:
0T <
VI == [—wyy;+ (yi yj)yj}
Oyi 4
= = wyyi+ Y (ViYi)Y; (2.17)
=1 i=1
yi =y; —aVJI(y) (2.18)

where « is the learning rate, y; is the coordinates of the point before updating and
y; is its coordinates after being updated. We have used a time decaying learning
rate for the experiments.

The gradient consists of two components v; and vy. The former, vy, defines the sum
of attractive forces being applied to the point while the latter, v,, defines the sum of
repulsive forces being applied to the point. This idea of attractive and repulsive forces
in the embedding is similar to the ones in Elastic Embedding algorithm [28], however,
the affinity measures, formulations of the problem, and the objective functions are
different. The attractive force tries to attract the point of interest to the center of
gravity of its neighbors in the input space. The repulsive force tries to repel all
other points from the point of interest. Since W is a sparse affinity matrix, only the

connected edges in the neighborhood graph will have a contribution in the attractive

23

force v;. Please note that, we normalize the similarities of points in the transformed
feature space in [0, +1] by using %(yiTyj +1) instead of the dot product. This way, vy

will be the sum of weighted repulsive forces applied from different points in the data.

Minimizing v; leads to maximization of the similarity in target space whenever
two points are connected in input space while minimizing v, is equivalent to pushing
all points away from each other. From this perspective, UBE and Maximum Variance
Unfolding (MVU) [167] share the same interest: maximize all the pairwise distances

except for the ones that are close in the input space.

The optimization continues until some stopping criteria are met. The algorithm
can be stopped after a certain number of iterations have passed or simply if no
significant improvement in the objective value is observed. Of course, the cost function
cannot be minimized to zero, but it converges to a stable configuration of points in the
target space. The computational complexity of our optimization is O(ind) where 7 is

the number of iterations in the optimization. Therefore, it is equal to that of t-SNE.

2.3.3.2 Newton’s Optimization Method

Higher order derivatives can generally be used to extract more information about
the curvature and have a more accurate approximation of the cost function behavior
at a particular point during the optimization [26]. Consequently, it leads to faster
optimization and having better convergence rate than first order gradient based op-
timization techniques. In our method, the second order derivatives can be obtained
and the Hessian can be formed easily. Based on Equation 2.17, first and second order

derivatives with respect to different dimensions of a datapoint can be obtained by:

szﬂyﬁ + Z yi Yi)Yir (2.19)

5‘yzr

ayzr ayzs

Z Yirlis (2.20)
j=1

24

where y;, is the r-th dimension of i-th datapoint in transformed feature space. Then

the Hessian matrix at point y; can be calculated in the following form:

H(y:) = V27 (v:)
2;21 YirY1 .- E};l Yj1Yjd
= : - : =Y'Y (2.21)
2?21 YjdYjr - - 2?21 YjdYjd

Then, the Newton direction N(y;) will be the solution of the following linear
system:

V2T (yi)N(y:) = =VI(yi) (2.22)

The Newton direction can be obtained efficiently without requiring matrix in-
version and by using LU factorization of the Hessian matrix [155]. Eventually, the

location of points can be updated using the Newton direction:
yi =y; +aN(y) (2.23)

Newton’s optimization method has better convergence rate than first order gra-
dient based optimization techniques and is mainly used in convex optimization [92].
Using Newton’s method in non-smooth and non-convex functions may cause insta-
bility or even overshooting and divergence form the solution. However, in smooth
non-convex functions as ours, it can be used by employing a decreasing learning
rate [175].

In terms of computational complexity, the amount of time required to compute
the Hessian for a given point, H(y;) = Y7Y, is O(nd?) which compared to O(nd)
for calculating the first order gradient, is a bit costlier. However, since d is usually
very small, the difference in timing is negligible. In general, d is 2-3 for visualization
and around 50 for vector embedding applications. In total, the Newton’s optimiza-
tion method will require O(in?d?) time, where 7 is the number of iterations in the
optimization.

Algorithm 1 summarizes all the steps in our embedding algorithm. UBE is im-
plemented in C using OpenMP parallel computing library. The datasets used in this

chapter are available online! and the source code of the algorithm is available at our

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UXU6Z3

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/UXU6Z3

25

Algorithm 1 Unit Ball Embedding (UBFE)
Input: X, p,d, kper = 50,1 = 3, Iter = 250
Output: Y4

Y = rand(n,d)
W=0
fori=1 to n do
{x1 ,x2 o ,(;) } = knn(xi, kmaz)
X\ thow = ewow<{xl L x?
B N .
o; = . s
for x; € {x{",x{’, -+ ,x{}},,} do
wij = eXP(—%)
end for 1
end for
for t =1 to Iter do
for i =1ton do
v = — Z;Ll Wi5yj // Attractive force
Uy = Z?:1<Y?Yj)yj // Repulsive force

VI (yi) = v+ v
V2T (y)=Y'Y
V2T (yi)N(y:) = =V I (y:) // Solve linear system
yi =yi+aN(y;) // Newton’s method
Yi = Tyl

end for

_ 01
=1

end for

GitHub page?.

2.4 Experiments and Results

Image recognition datasets are considered as classical examples of high-dimensional

data since they consist of large number of pixels. If each pixel is treated as a feature,

Zhttps://github.com/behrouzhs/kube

https://github.com/behrouzhs/kube

26

Table 2.2: Image recognition datasets used for comparison of dimensionality reduction
methods and clustering.

Dataset Name Type Images Classes Dimensions
Yale [11] Face 165 15 64 %64
Olivetti [134] Face 400 40 64x64
Umist [53] Face 575 20 112x92
CMUfaces [105, 42] Face 640 20 128x120
COIL-20 [114] Object 1440 20 32x32
Optdigits [42] Digit 5620 10 32x32
YaleB [51, 87] Face 2414 38 32x32
COIL-100 [113] Object 7200 100 32x32
USPS [65, 84] Digit 9298 10 16x16
MNIST (test set) [85] Digit 10000 10 2828

images can easily have tens of thousands of features. In this work 10 different image
recognition tasks are chosen to examine the effect of dimensionality reduction on
the data. We have used face recognition, handwritten digit recognition and object
recognition as benchmark datasets. Table 2.2 describes the datasets used in this
chapter and their number of images, classes, as well as the dimensions of the images.
Using these datasets, we treat each image as a vector of pixel intensities. The number
of pixels in these datasets varies from 256 in USPS handwritten digits to 15386 in
CMUfaces dataset.

We have chosen several state-of-the-art dimensionality reduction algorithms to
transform each dataset to a three dimensional space and compared the quality of our

embedding with those algorithms.

For evaluating the quality of mapping, we have run unsupervised learning al-
gorithms on the output of each embedding method to see how learning algorithms
can perform on the low-dimensional embedding. In fact, we associate the quality of
clustering algorithms on transformed feature space to the embedding algorithm. In
particular, we have used k-means clustering [57] and spectral clustering [115] on low-
dimensional data to see how good the clustering results will be on the transformed
feature space. The output of clustering is evaluated using Normalized Mutual Infor-
mation (NMI) [4, 44]. We have also used Silhouette metric for measuring cohesion
and separation of clusters in the embedding space. Another way to evaluate the low-

dimensional embeddings is to use them in supervised tasks such as classification. In

27

Table 2.3: Results of k-means clustering on the low-dimensional embedding evaluated
by Normalized Mutual Information (NMI) multiplied by 100. The first row for each
dataset shows the mean and standard deviation of NMI values in 50 runs and the
second row shows the p-value of t-test against the best performing method on that
dataset.

UBE t-SNE Raw Data LLE PCA Sammon

Yale 61.9 + 1.2 605+19 533+34 521+19 492+1.6 487 +1.3
1.0000 ~107° ~ 10729 ~ 10750 ~ 10795 ~ 10~

Olivetti 7984+ 06 80.5+1.1 73.8+16 71.8+0.7 633=+£0.7 64.5+07
0.0007 1.0000 ~ 1074 /10790 ~ 1079 ~ 1079

Unnist 844+ 14 T42£14 6454£20 580+£05 584+13 595 & L0
1.0000 ~ 1056 ~10"7 ~ 10107 ~ 10797 ~ 10799

CMUfaces 594+ 0.8 828426 75.7+30 743+15 595+1.2 59.0+ 1.2
1.0000 ~ 10730 ~ 105! ~ 10778 ~ 107113 ~ 10~114

92.6 + 1.3 84.9+23 754+16 754+13 T719+10 T71.2+1.7

COTL.20 1.0000 ~ 1036 ~ 10-78 ~10782 ~10-% ~ 10~

Optdigits 86.0 + 0.8 845+47 736+24 753+1.7 61.3+15 528+ 1.7
1.0000 0.0307 ~ 10750 ~ 10761 ~ 107100 10109

YaleB 256+ 04 25.7+1.1 13.1+08 33.8+04 101+0.2 109+ 0.3
~ 10797 /10799 ~ 107118 1.0000 ~ 10711 107144

como NS AT TS TiSe Uigow 2w

USPS 849+ 1.1 858 +3.2 609+09 348+0.6 41.3+10 447+0.5
0.0706 1.0000 ~ 1077 A~ 107104 ~ 10797 ~ 1079

MNIST 812 +18 81.8+24 509+17 604+10 38.9+0.3 367407
0.1657 1.0000 ~ 10787 /10776 ~ 107109 & 107109

terms of classification accuracy, our method provides similar results to the state-of-
the-art algorithms such as t-SNE. Moreover, several graph-based evaluation measures
have been recently proposed [107] for the assessment of dimensionality reduction met-
hods. However, in this work we have mainly evaluated different methods by using the
embeddings in unsupervised machine learning tasks since the embeddings themselves

are trained in an unsupervised way.

Table 2.3 represents the results of k-means clustering on the low-dimensional em-
beddings found by different algorithms and evaluated by NMI. K-means clustering
is run 50 times in order to get the average and standard deviation of accuracies.
The first row in each dataset shows the mean and standard deviation of NMI and
the second row shows the p-value of t-test against the best performing method on
that dataset. The best performing method in each dataset is represented as bold-

face. The third column, “Raw Data”, shows the results of clustering on the original

28

2 1y 2 1r
o kel le)
g2 19 5 &,
X
50.8’ & 8 @ o) 50.8’ % g Q g
2 © 2 8 o ® ® [} o x O @ R ° o e}
: o X & T o C] x
bid o X % 6 @ o 5 5 % S Q é é Q %
< c X =
Sosf © 0 o X g O 8 86 6§ o © S 06 o o °© 9 9988 g
2 0o ? x © =g x & 9 «
= X O 5 X X £ o x X
g o o © 0 9 09 5 % 0 45 % 0 0 o o0
S04t %% EXy X o
© X . X x ¥ G x X X
2 " ©
g ° X
€02 202
¥)
k) 8
; ?‘/ \L(, \‘\ . ?\ % 0
2 \& 0™ 0° @0 ,oP O € d? € L 0f o o WP o D W€
OV 082 (W& 0™\ @ GOR AN (0 (0P O 082 € o (0050 0TI TP (2R 10° o
RPN X o AR\ P PR X 3o & PV of W
Fge© W T o e C
0.8
g) 2 « X O Yale
S gl ¥ © % Olivetti
° .6 X C)? O Umist
-g x X o O CMUfaces
§o4F O X o Q O colL20
o © o -
[a] o o Q % X Optdigits
™
02 ISENe) . x YaleB
5 e 9 ® o % o o % o < | x cowto
g ol X « X ® X X « % X USPS
2 © o 4 o C’; g 9 © Q@ QO x MNIST
3 g 8 o 8
g-o.zf 5 g Q %
= &
3 -04r
=
®
06 . . . Lox

Qa4 o o (E WP e® o
D \’2\,\\‘?;:“@\%@’0@6 N \,;a«\(‘\%’?\ﬂ ?O\%oﬂ("b \\0 \\\\\\
o

Figure 2.2: Performance of different dimensionality reduction algorithms on 10 data-
sets for 3-dimensional output. In this figure, only the average performance values are
shown. Top left: average NMI values on 50 runs of k-means clustering. Top right:
average NMI values on 50 runs of spectral clustering. Bottom: Silhouette measure of
cohesion and separation between the embeddings and the true labels.

high-dimensional data. As we can see from the table, our proposed method is sig-
nificantly better than all other methods in six datasets. These datasets include face
recognition (Yale, Umist, CMUfaces), object recognition (COIL20, COIL100) and
digit recognition (Optdigits). In Olivetti and YaleB face datasets, t-SNE and LLE
are significantly better than others, respectively. In USPS and MNIST handwritten
digits, our proposed algorithm and t-SNE are performing equally well. It is also no-
teworthy to mention that some of the embeddings such as LLE, PCA, and Sammon
are usually leading to a lower quality clustering compared to the clustering on the
original data. This is because of losing some valuable structure information during
the transformation. However, our proposed method and t-SNE always result in a

better clustering performance compared to the original data. The main reason for

29

achieving a higher quality clustering is that they make the clusters more separable
by creating large gaps between them.

Figure 2.2 illustrates the overall performance of different dimensionality reduction
algorithms on 10 datasets. Each dataset is mapped to a 3-D space by different met-
hods and evaluated by three measures: 1) NMI value for k-means clustering on low-
dimensional embedding, 2) NMI value for spectral clustering on low-dimensional em-
bedding, and 3) Silhouette measure between the 3-D embedding and the true labels.
In this figure only the average performance values are shown and the dimensionality
reduction methods are ordered based on their overall performance on 10 datasets.
As we can see from the figure, UBE has the best overall performance in all three
metrics. It preserves the neighborhood graph structure which results in retaining
the clustering structure. Spectral clustering algorithms also use the idea of nearest
neighbor graphs and as we can see, they work extremely well on UBE embedding
output. Therefore, our proposed methods will perform exceptionally well in datasets

with manifold structures since they can be well-represented by a neighborhood graph.

2.5 Visualizations of the Embedding Space

Figure 2.3 illustrates the three dimensional visualizations of UBE, t-SNE, Sammon,
LPP, and PCA algorithms on different datasets. As we can see, our proposed method
provides great visualizations with better cluster separability. t-SNE which is one of the
state-of-the-art visualization techniques also results in good visualizations. However,
our method creates a larger gap between the clusters and makes them more separable.
The reason behind that is the use of Cosine kernel whose rate of decrease is lower
than t-student kernel used in t-SNE. Consequently, the repulsive force applied in our
algorithm pushes clusters farther away from each other compared to t-SNE.

Another observation from Figure 2.3 is that global dimensionality reduction al-
gorithms such as PCA and Sammon cannot identify and isolate the manifolds in
the embedding since they consider the global configuration of points in the mapping
which makes it difficult to preserve local properties of the data.

We have to mention that UBE cannot be used for visualization of multi-class
datasets into 2-D space since it effectively maps the data onto a line (i.e. the ci-

rcumference of the circle) and one dimension is not enough to make the manifolds

30

separable. However, as long as d > 3, UBE will work effectively and can be used for

visualization.

2.6 Conclusion

In this chapter, we presented a novel dimensionality reduction algorithm, UBE, that
can be used for visualization, vector embedding applications, or as a pre-step for
clustering of data. UBE builds a neighborhood graph and exploits the local structure
around each point to find an embedding that preserves the structure the most. We
have defined our objective function so as to minimize the squared difference between
the similarities in the input and output spaces. The method uses a spherical repre-
sentation for a low-dimensional embedding in which cosine metric is used to measure
the similarities of points. Experiments on 10 different image clustering tasks show
that our proposed method, UBE, significantly improves the quality of clustering and
provides very good visualizations by maximizing the separability of clusters.

The proposed method tries to address some of the weaknesses of local dimensio-
nality reduction methods. In particular, having many manifolds in the data is not
a problem in our method. As we saw in the experiments (e.g. COIL100), if there
exist many disjoint or loosely connected manifolds in the data, our methods separates
them and makes enough gaps between the manifolds. Moreover, by using the elbow
technique, we try to determine the right number of neighbors for each datapoint to
capture the local structure.

In the next chapter, we generalize the proposed algorithm and make it applicable
for the text domain and natural language processing. In particular, we modify it and
use it to learn word embeddings from large corpora. We will show that the algorithm
can learn high quality embeddings in any domain as long as we can calculate the

input similarities in a meaningful way.

31

*,,‘h\ ¥ e)

!:f ¢ ¥ © {f ® ® . . [y
¢’~f ”‘ ’ . » & ") S ' 00 :
EZ\? . :%?-' < s ’ f 4 LE . . 20, :

A N o . '

PO o -

e , o) -
(a) COIL100 - (b) MNIST - {0 (d) CMUface - (e) COIL20 -
UBE UBE UBE
<

= Tl w o>
@ % k#%
"n’o R e
(f) COIL100 - (h) Umist - (i) CMUface - (j) COIL20 -
t-SNE t-SNE t-SNE t-SNE

i

(k) COIL100 - (1) MNIST - (m) Umist - (n) CMUface - (o) COIL20 -

Sammon Sammon Sammon Sammon Sammon
\
' -
® -
e L
[| 5
W 5k I %w y 5
%5 A i n

._:»'x:0 g 9 ‘\
N (s) CMUface -
(r) Umist - LPP LPP

LPP

(1) COIL100 -
PCA

(x) CMUface - (y) COIL20 -
(w) Umist - PCA PCA PCA

Figure 2.3: 3-D Visualizations of UBE, t-SNE, Sammon, LPP, and PCA algorithms
on COIL-100, MNIST, Umist, CMUface, and COIL-20 datasets.

Chapter 3

Kernelized PMI Based Word Embedding

Continuous word representations that can capture the semantic information in the
corpus are the building blocks of many natural language processing tasks. Pre-trained
word embeddings are being used for sentiment analysis, text classification, question
answering and so on. In this chapter, we analyze different word embedding methods
and propose a new word embedding algorithm that addresses the problem of negative
sampling to improve the distribution of word in the embedding space. In particular,
we generalize the UBE algorithm that we proposed in previous chapter and make
it applicable for learning word vectors. Our algorithm calculates the global word-
word co-occurrence statistics and works on a smoothed Positive Pointwise Mutual
Information (PPMI) matrix. We model the input similarities using PPMI which is
known to capture word associations well. One of our major contributions is to propose
an objective function and an optimization framework that exploits the full capacity
of “negative examples”, the unobserved or insignificant word-word co-occurrences.
This function pushes unrelated words away from each other in the embedding, which
improves the distribution of words in the latent space. We also propose a kernel simi-
larity measure for the latent space that can effectively calculate the similarities in high
dimensions. Moreover, we propose an approximate alternative to our algorithm using
a modified Vantage Point (VP) tree [173]. This advanced data structure reduces the
computational complexity of the algorithm to |V|log|V| with respect to the number
of words in the vocabulary. We have trained various word embedding algorithms on
articles of Wikipedia with 2.1 billion tokens, and shown that our method outperforms

the state-of-the-art in most word similarity tasks by a good margin.

3.1 Introduction

Learning continuous representations of words (i.e. word embeddings) is increasingly

popular in the machine learning and Natural Language Processing (NLP) community.

32

33

The goal is to learn a vector space representation for words aiming to capture semantic
similarities and syntactic relationships between words. These representations are

typically learned in an unsupervised mode from large, unlabeled corpora.

Classical vector space models use linear algebraic techniques on the matrix of
word-word co-occurrence counts [158, 9]. These methods include Latent Semantic
Analysis [38], factorizations of the co-occurrence matrix, factorizations of the Point-
wise Mutual Information (PMI) and Positive PMI (PPMI) matrices, etc., which can
be collectively referred to as count-based methods. GloVe [122] is among the most
popular word embedding algorithms that directly work on the co-occurrence matrix.
One of its main advantages over the unweighted optimization, used of the matrix
factorization-based approaches, is its hand-crafted word-pair frequencies weighting
optimization scheme. Another family of word embedding algorithms uses neural net-
work based approaches to learn the word vectors. Collobert and Weston [32] proposed
to learn the word embeddings using a feed-forward neural network that predicts a
word by looking two words ahead and two words behind. More recently, Mikolov et
al. [101] proposed log-bilinear models known as Continuous Bag-Of-Words (CBOW)

and Skip-Gram to learn continuous representations of words.

Lately, contextual word representations have been shown to be effective in many
NLP tasks. CoVe [99] contextualizes the word vectors using a deep attentional
sequence-to-sequence model that is trained on machine translation. The authors show
that using these context vectors improves performance compared to using only unsu-
pervised word vectors. More recently, ELMo [124, 123] uses bidirectional language
models (biLLMs) trained on large corpus and uses the internal states of the model as
contextualized word vectors. BERT [39] uses bidirectional transformers [163] where
the representations are jointly conditioned on both left and right context. BERT has
shown to be very successful by improving the state-of-the-art on eleven NLP tasks,

surpassing human performance in some tasks.

In this chapter, we propose a new word embedding algorithm that exploits some
information that other algorithms pay little or no attention to. Most word embedding
algorithms only use the word pairs that occur in the corpus (i.e. positive examples)
and maximize the similarity of those word vectors based on how frequent they co-

occur. This can result in a concentration effect: word clusters from totally different

34

topics can be placed somewhat close to each other. There are lots of possible word
pairs that never co-occur in the corpus or they co-occur insignificantly, which we call
negative examples. We argue that minimizing the similarity of negative examples is
also crucial for the quality of the final embedding and results in a better distribution
of words in the latent space. Our first major contribution is to design an optimization
framework that exploits the full capacity of negative examples in order to push unre-
lated words away from each other, which leads to a better use of the latent space and
improves the distribution of words. Skip-Gram with Negative Sampling (SGNS) [101]
makes use of the negative examples to a small extent in that for each word, it rand-
omly samples k context words as negative examples and minimizes the similarity of
the word with those k context words. However, in SGNS [101], these contexts are
employed in an unweighted manner in that they all have the same strength in the
optimization. Our second major contribution is that we incorporate a kernelized weig-
hting scheme for the negative examples where their influence in the optimization is
proportionate to their kernel similarity with the word. We show that our kernel simi-
larity measure is a more powerful way of calculating similarities in high-dimensional
embeddings where the dimensionality d is greater than 50, and that it enables the
algorithm to differentiate between the closer and further points and to employ them
accordingly. Our third major contribution is that we propose a modified Vantage
Point (VP) tree data structure and make it suitable for high dimensional vectors.
We then use this VP-tree and propose an approximate solution to our optimization,
which improves the computational complexity of the method from |V |*> to [V|log |V|
with respect to the size of the vocabulary.

We have trained our algorithm as well as several others on the articles of Wikipedia
and compared the quality of embeddings on various word similarity and analogy tasks.

Results show that our algorithm outperforms the state-of-the-art in most of the tasks.

3.2 Related Work

Distributed word representation algorithms have been shown to be very effective in
capturing certain aspects of similarity between words. Many neural-network based
approaches have been proposed for learning distributed word representations [16, 32,

101, 103]. Skip-Gram with Negative Sampling (SGNS) [101] uses a shallow neural

35

network and trains the network in a way that given a word, it predicts the proba-
bility of each context word [101]. SGNS is still the state-of-the-art word embedding
algorithm and is successfully applied in a variety of linguistic tasks [101, 103]. Re-
searchers have proposed various modifications to the Skip-Gram model and tried to
enrich that with other information. For instance, Levy and Goldberg [88] proposed
to use the dependency parsing information and use a dependency-aware context for
each word, rather than considering all the neighbors in a fixed window. This cu-
stomization makes the algorithm to learn more from the syntax and less from the
semantics. Recently, FastText [19], a library developed by Facebook, enriches the
Skip-Gram word embeddings with sub-word information. It considers character n-
grams of different lengths and represents words as the sum of their n-gram vectors.
This enrichment has been shown to substantially improve the performance of NLP
tasks on morphologically rich languages, such as Turkish or Finnish. It is also shown
to be very effective for text classification [71]. A major advantage of the FastText is
that it can handle Out-Of-Vocabulary (OOV) words by predicting their word vectors
based on the learned character n-grams embeddings. Another line of work to improve
the word embeddings using external resources includes retrofitting embeddings [47]
to semantic lexicons such as WordNet and counter-fitting word vectors to consider
antonymy and synonymy constraints [108]. However, this line of work requires exter-
nal resources and is not completely unsupervised and therefore, beyond the scope of
this thesis.

Pointwise Mutual Information (PMI) is an information theoretic corpus-based me-
asure that can be used for finding collocations or associations between words [31] and
is widely used in count-based and matrix factorization based word embeddings. For
any word pair (w;, w;), PMI is defined as the log ratio between their joint probability

and product of their marginal probabilities:
P('LUZ', w]-)
Pw;) P(w;)

Based on the formulation, if two words co-occur more often in a given corpus than

PMI(w;,w;) = log (3.1)

being independent, then their PMI will be positive, and if they co-occur less frequent
than being independent then their PMI will be negative. Since the co-occurrence
matrix is sparse, PMI is only calculated for the non-zero entries. Another commonly

accepted approach is to use Positive PMI (PPMI) matrix by replacing all the negative

36

values with 0.

PPMI(w;, w;) = max(PMI(w;,w;),0) (3.2)

In fact, a traditional approach to word representation is to use explicit PPMI
representation in which each word is described by its corresponding sparse row vec-
tor in the PPMI matrix. Such PPMI-based representation is shown to outperform
the PMI approach on semantic similarity tasks [25]. Levy and Goldberg [89] showed
that SGNS is implicitly factorizing a Shifted Positive Pointwise Mutual Information
(SPPMI) matrix, and they argue that the shift parameter is almost equivalent to
the negative sampling parameter k& in SGNS. However, their proposed alternative
approach using SVD on shifted PPMI matrix provides lower quality embeddings
than SGNS, mainly because of the unweighted L, optimization in SVD, which cau-
ses frequent and infrequent word pairs to have the same amount of influence on the
reconstruction error of the matrix. We have shown that keeping a fraction of small
negative PMI values outperforms the PPMI approach [141]. Other than using the
raw PPMI matrix or the factorizations of the PPMI matrix, the idea of PMI-based
embedding has also been proposed and studied in the literature. Arora et al. [5] pro-
posed an objective function similar to that of GloVe which implicitly factorizes the
PMI matrix instead of the log co-occurrence matrix. They also showed that if the
PMI values are good approximations of the dot products of vectors, then the linear
algebraic relations (i.e. word analogies) will hold. Nevertheless, the novelty of our
method is in our optimization and the effective use of negative examples.

Another research direction in learning word embeddings is to apply sparsity con-
straints on the word vectors [150, 148] and is shown to improve the quality of embed-
dings when the desired dimensionality is greater than 300. For other tips on training
good quality embeddings one can refer to [81] which study the effect of various hyper-

parameters in different embedding algorithms.

3.3 Kernelized Unit Ball Word Embedding (KUBWE)

At a glance, our approach builds a symmetric co-occurrence matrix from the corpus,
then calculates an adjusted form of the PMI matrix to remove insignificant and unin-

formative co-occurrences, and finally obtains the embedding by minimizing a sum of

37

squared error between the PMI values and the cosine similarity of word vectors in
the embedded space.

The intuition behind our algorithm is that if two words have a high degree of
association (i.e. high PMI), their embedded word vectors must be similar (i.e. high
cosine similarity), and if their degree of association is low or zero, they should not
be placed close to each other. The second part of the intuition is usually ignored in
other algorithms and is the main strength of our method.

Our proposed algorithm, KUBWE, is aimed to preserve the word-word connecti-
vity structure (encoded in the PMI matrix) in the final embedding. It uses a spherical
representation for the latent space in which points are located on the surface of a hy-
persphere. The spherical representation is not restrictive, as other algorithms also
normalize the word vectors to unit length before using them in NLP tasks. Similar
spherical embeddings have been proposed and used for visualization [140] and image
clustering application [139].

In the following, we first propose an effective way to measure word-word associa-
tions. We then propose our objective function and its gradient descent optimization.
Afterward, we propose a kernelized version of the algorithm which enhances the si-
milarity calculations in the latent space. Eventually, we propose a modification to
VP-trees to make them suitable for high dimensional data and use them to reduce

the computational complexity of the method.

3.3.1 Preparing the Input for the Optimization

We first calculate the global symmetric word-word co-occurrence counts matrix X by
moving an L-sized context window over the corpus. We use a weighted count strategy
similar to the one used in GloVe [122] in which co-occurrences are weighted inversely
proportional to the their distance in the text. This co-occurrence matrix is the main
source of information for many word embedding algorithms including GloVe. We
also use the same co-occurrence matrix but not in the raw format since many of the
co-occurrences are meaningless.

PPMI can be used to filter out uninformative co-occurrences. However, a recogni-
zed shortcoming of PMI and PPMI is their bias towards infrequent events [158]. This

happens when a rare context word w; co-occurs with a word w; a few times (or even

38

once) and this often results in a high PMI value since P(w;) in PMI's denominator is
very small. To overcome this situation, we smooth the distribution of context words
in which all context counts are raised to the power of a. Hence, we use the following

adjusted form of PPMI as input to our optimization:

PPMI,(w;, w;) = max(PMI,(w;, w;),0) (3.3)

P(wi, wj)

PMIa(wi,wj) = log W (34)
() =) (35

> im #(w;)®

where P(w;) and P,(w;) are the unsmoothed and smoothed distribution of words.
Context distribution smoothing alleviates PMI’s bias towards rare words, like other
smoothing techniques [119, 157]. It increases the probability of a rare context P(w;),
which in turn reduces the PMI of (w;, w;) for any w; co-occurring with the rare context
wj.
We refer to the adjusted PPMI matrix as A with entries a;; = PPMI,(w;, w;).

In all our experiments, we used o = 0.75 which is known to be a good smoothing

factor [103].

3.3.2 Cost Function

Our proposed method uses a spherical representation for the latent space, which is
common for natural language processing tasks. In this representation, we use cosine

similarity as our similarity measure between word vectors:

L Wi W
S(U)Z’,U}j>: 2

(3.6)

i []
The objective function is then defined to minimize the sum of squared differences
between the smoothed PPMI values a,; and the similarities in the embedded space:

Vi Vi

TW) = 53" (a = St 7))’ (3.7

i=1 j=1
where a;; and S(wj;, w;) are calculated using equations (3.3) and (3.6), respectively.

Here we propose a constrained variant of the objective function which makes the

39

normalizations fade away, as well as resulting in a simplified gradient:

1 Vi Vi)
JW) =3 > D (ay —wiady)
i=1 j=1
subject to : wi.w; =1 Vi (3.8)

Here, the objective function forces the word vectors to be on the surface of a
hypersphere. The unit length constraints is not restrictive, since the surface of a
hypersphere has only one fewer degree of freedom than the entire volume. Therefore,
the surface will have enough room to locate all the points in the desired way. In the
constrained form of the objective function, the dot product of output vectors is the
cosine similarity and is used as the similarity measure between word vectors in the
embedded space.

Cosine values range in [—1, 4+1] and we normalize them to [0, 41] by using 3 (w};.w;+
1). This is done because a;; values are also positive. In fact, PMI values a;; can be
greater than 1, however, we handle this in the next section. By normalizing the cosine
values to [0, +41], if the PMI of two words is high (i.e. they co-occur to a significant
degree), then the method tries to place them as close as possible. And if the PMI is
zero (i.e. the co-occurrence is unobserved or insignificant), a;; = 0, then the method

tries to put them as far as possible.

3.3.3 Optimization

We use stochastic gradient descent to minimize our objective function. We initialize
the word vectors randomly on the surface of a hypersphere and incrementally change
the configuration of them to get a better objective value. We have used the general
projected gradient descent framework [91] in order to satisfy the constraints. In this
setting, the solution is projected onto the feasible region after each iteration. The

gradient of the cost function with respect to a word vector wj; is:

0T Vi

VI (W) = 5 = D | = i) + (0
7]:1

Tv W X

= = ayj + Y (i) (3.9)
j=1 j=1

40

The gradient consists of two components v; and v,. The former, vy, defines the
sum of attractive forces being applied to the word vector while the latter, vy, defines
the sum of repulsive forces being applied to the word vector. In fact, each context
word is having a contribution in the gradient of w;. Since W is a sparse affinity
matrix, only the non-zero PMIs will have a contribution in the attractive force v;.
However, all other words vectors will have a contribution to the repulsive force v,
based on their similarity to the word vector being tuned. In other words, w; will
be attracted to its significant context vectors and it will be pushed away from its
current neighbors if it shouldn’t be close to them. Please note that, by normalizing
the similarities in [0, 4+1], vy will be the sum of weighted repulsive forces applied from

different word vectors.

One of the distinguishing characteristics of our method is that unlike SGNS and
GloVe which update a word vector based on each entry in the matrix (or each occur-
rence of two words in the moving window), our algorithm updates the word vector wj;
based on its entire row in the smoothed PMI matrix A. This way, all the attractive
forces in v, are automatically weighted according to their smoothed PMI value. The-
refore, using an auxiliary weighting function as in GloVe is totally unnecessary and
here, the weighting is done seamlessly. As for the negative force vy, we take out the
non-zero PMIs and calculate the negative force only based on the word pairs with
zero PMI. This slightly improves the distribution of words, as each context will have

either an attractive or repulsive effect when updating a particular word vector.

The time complexity for calculating the gradient vector for a particular word j; is
O(]V| x d) where |V| and d are the vocabulary size and the dimensionality of the em-
bedded space, respectively. The calculation of the repulsive force is more costly than
the attractive force because of the similarity computations. In total, the optimization
requires O(i x |V]? x d) time, where 7 is the number of iterations in the optimiza-
tion. However, the size of the vocabulary |V| is several orders of magnitude less than
the number of tokens in the corpus. For instance, in our experiments on Wikipedia
(dump of March 2016), 163,188 words were extracted from 2.1 billion tokens. Later,

we will adopt an approximation technique to reduce the time complexity.

41

0.8
06
04
0.2 H
-0.21

04

Cosine Similarity
o

-06

-0.8

.
10 20 30 40 50 60 70 80 90 100
Dimensionality

Figure 3.1: Distribution of cosine similarity of 100,000 pairs of random vectors. The
distribution of cosine similarities is A'(0,).

3.3.4 Kernelized Objective Function

Figure 3.1 illustrates the distribution of cosine similarities between thousands of
random vectors in different dimensionality. We generated 100,000 pairs of random
vectors in each case and calculated their cosine similarity and plotted the distribution
of similarities with respect to the dimensionality of vectors. As we can see from the
figure, in lower dimensions we have a wider distribution between [-1, +1]. But, as
we increase the dimensionality, the distribution narrows down and the chances of
getting two similar or dissimilar vectors is getting lower and lower. In fact, in hig-
her dimensions, almost all vectors will be equidistant and almost orthogonal to each
other. Specialized distance measures have been proposed in the literature [143], but
the curse of dimensionality in metric spaces is not well-studied.

Considering ineffectiveness of cosine similarity (and every other metric) in higher
dimensions, we propose a kernelized variant of our objective function which improves
the distribution of similarities and enables the algorithm to differentiate between the
closer and further vectors.

Looking at Equation 3.9, the repulsive force vy consists of a dot product of vectors
in the embedded space which measures their similarity. Here, we can apply a kernel
to calculate the similarities of vectors in an implicit high-dimensional feature space.
If ¢(-) is the implicit mapping function to the high-dimensional space, the kernel

function K : R x R? — R will compute the inner product of those vectors in an

42

efficient way K(y;,y;) = (¢(yi), #(y;)). The gradient of the objective function is
then:

0T - n
dy: =Y wyy+) K(yiyy) Xy, (3.10)
! j=1 j=1

Here we apply the kernel just in the repulsive force and not in the objective
function directly. PMI has proven to be able to capture the strength of association of
words very well [25, 31]. Therefore, we do not need to adjust the attractive force and
we only want to tune the similarities in the embedded space. Moreover, applying the
kernel in the repulsive force will simplify the formulation and consequently, simplify
the numerical optimization by preventing the derivative of ¢(.) to appear in the
gradient. Here, we propose to use a polynomial kernel to adjust the nonlinearity and

further strengthen the effect of closer points in negative force.
K (f,15) = (sl + 1) (3.11)

where p is the degree of the polynomial kernel. Please note that in the kernelized form,
there is no need to normalize the dot product between [0, +1] because of the increment
in the formula which makes all similarities positive. In fact, by using a polynomial
kernel p > 2, the negative cosine similarities are weakened while the positive cosine
similarities are strengthened. This provides a more powerful similarity measure for
higher dimensions and more discriminative power for our learning algorithm.

We have illustrated the effect of the polynomial kernel in adjusting the repulsive
force in Figure 3.2. Figures 3.2a, 3.2b, and 3.2c depict the effects of linear kernel
(p = 1), degree 3 polynomial, and degree 5 polynomial, respectively. Considering the
word being updated at any given time at the top of the sphere, the colors represent
the strength of negative force from other words that is dependent to their distance,
farther the other words lesser the negative force associated to them. The kernel
function sharpens this effect by adjusting the similarities in the embedding. Please
note that this is only a 3D illustration to clarify the impact of kernel, however, in
high-dimensional embedding spaces where d > 100, the outcome is a bit different. In
a high-dimensional embedding space, if we assume the current word at the top again,
then almost all other words will be close to the equator of the hypersphere. In this
case, the kernel strengthens the negative force from the ones on the northern hemisp-

here and weakens the force from the ones on the southern hemisphere. Consequently,

1 1 1

Point of interest

©
o
©

Point of interest Point of interest

> o

28

Normalized negative froce
z

4
=)
>

o
o

[/
1

7777/
171/]1]
Normalized negative froce

S
&
Normalized negative froce

(a) Linear kernel (p =1) (b) Degree 3 polynomial (c) Degree 5 polynomial

Figure 3.2: The effect of polynomial kernel degree in the repulsive force in KUBWE
algorithm: (a) linear kernel (p = 1), (b) degree 3 polynomial, and (c) degree 5
polynomial. Considering the word being updated at the top of the sphere, the colors
represent the strength of negative force from other words that is dependent to their
distance.

this leads to a more effective approximation of forces in the optimization.

3.3.5 Reducing the time complexity by approximating the repulsive

force

The most time consuming part of our algorithm is the calculation of repulsive force
that requires all the pairwise similarity calculations. Here, we propose an alternative,
efficient solution that reduces the complexity from |V'|? to |V|log |V | with respect to
the size of the vocabulary. In this fast version of the algorithm we only take into
account the k£ nearest neighbors of each word for calculating the repulsive force vy in
Equation 3.9. This way, each word w; attracts words wj if a;; > 0 (i.e. positive PMI)
and pushes away words w; for which a;; = 0 that are among its nearest neighbors
w; € knn(w;). In fact, we do not need to push words further away if they are already
far apart, but if they are mistakenly close to the word, we use the repulsive force to
improve the distribution of words.

Nearest neighbor search has a long history and is well-studied in the literature.
kd-trees [49] are the most recognized method for fast nearest neighbor search. They
hierarchically partition the space into two axis parallel regions where the median
value in the splitting axis is used as the splitting threshold. The search is done by
traversing the tree from the root to a leaf node. Some extra checking is also needed

to see whether there could be any points on the other sides of the splitting planes.

44

The main drawback of kd-trees is their inefficiency when used with high-dimensional
data. As a general rule, if the dimensionality of the data is d, then the number of
points in the data, IV, should be N > 2¢. Otherwise, most of the branches in the tree

will be visited and the efficiency is no better than exhaustive search [154].

Another approach for nearest neighbor search is to use a Vantage Point tree (VP-
tree) [173]. A VP-tree is a binary tree that is hierarchically built by randomly selecting
a point as a vantage point and calculating the distance from the vantage point to every
other point. Then using the median distance as the splitting threshold, half of the
points fall under the left child (closer than median) and the other half fall under
the right child (farther than median). The splitting process for each node using the
median distance can be thought of as centering a hyper-sphere on the vantage point
in a way that half of the point are inside the hyper-sphere, and the other half are
outside of it. The main advantage of VP-trees is that they do not depend on the
distribution of the data and they only work based on the distances.

VP-trees [173] along with kd-trees [49] and almost any other data structure suffer
from the curse of dimensionality and are only suitable for low-dimensional data. The
problem arises due to the ineffectiveness of distance measures in high dimensions [1].
In fact, in high dimensions all the points will be almost equidistant and it is hard
to distinguish between the closest and farthest points. Therefore, while searching a
query point in a VP-tree, if it falls within the hypersphere of a vantage point we still
need to check the outside points since the query will be very close to the median
distance and the nearest neighbor may be on the other side. And similarly if the
query point falls outside of the hypersphere of the vantage point we still need to
check the inside points. Consequently, this leads to traversing the entire tree and its

performance will be equivalent to that of exhaustive search.

There exist many approximate nearest neighbor search methods as summarized
in [109]. However, due to the nature of our problem and its known structure we
propose our own alternative. We use a modified Vantage Point tree (VP-tree) [173]
combined with a heap data structure to calculate and maintain the nearest neighbors
of each word. In our algorithm, all the words are distributed on the surface of a

hypersphere, and therefore their dot product is equivalent to their cosine similarity.

45

Cosine similarity of vectors in d dimensions has a distribution of A/ (0, \/Lg) [146]. Si-
milarly, the cosine distances are distributed from N (1, \/LE) For instance, considering
d = 100, then the cosine distances will be in [0.7, 1.3] range with 99.7 probability (i.e.
p £ 30). We incorporate this information in our VP-tree search in order to decide
whether or not the other branch needs visiting. Using this technique we get more
than 99% accuracy on our k nearest neighbor search, while ensuring the log |V| search
time for each word.

By adopting the aforementioned technique, the time complexity of our algorithm is
O(id|V|(p+(k+log |V]) log p)) where p is the average number of positive examples per
word (p < |V|) and k is the number of nearest neighbors (i.e. negative examples) that
is used. O(id|V'|p) corresponds to the attractive force calculations, while O(id|V'|(k +
log |V]) log p) corresponds to the repulsive force calculations. logp correspond to the
binary search inside the positive indices to ensure that the negative set does not
overlap with the positives. Algorithm 2 describes the search mechanism in our high-
dimensional VP-tree algorithm. The tree construction procedure is identical to the
original VP-tree. However, in the search time we calculate d,,;, as the minimum
possible distance between words, and use it to eliminate unnecessary branch visits.
The variable T represents the furthest neighbors’ distance found so far and is initially
set to infinity.

KUBWE is implemented in C using the OpenMP parallel computing library and

the source code can be found on GitHub!.

3.4 Experiments

We have used all the articles of English Wikipedia (dump of March 2016) as the
training corpus, which has around 2.1 billion tokens after applying a few basic pre-
processing steps. As for the vocabulary, we have limited the vocabulary to English
words by using the WordNet database which resulted in about 163K words. In our
experiments, all the algorithms were trained on the exact same preprocessed input
corpus to ensure a fair comparison. We have also used the exact same vocabulary for
all the algorithms.

For the quantitative evaluation of algorithms we have used two well-known tasks

https://github.com/behrouzhs/kubwe

https://github.com/behrouzhs/kubwe

46

Algorithm 2 VPtreeSearch — modified Vantage Point tree search

Input: node, heap, query, positivelndices, k, 7, d

Output: heap, 7 //7 is the furthest neighbors’ distance found so far
nin =1 — 5
dist = CosineDistance(node.data, query.data)
if node.idx != query.idx && BinarySearch(node.idx, positivelndices) is False then
if heap.count < k then
heap.Push(dist, node.idx)
if heap.count = k then
7 = heap.top.dist
end if
else if dist < 7 then
heap.Pop()
heap.Push(dist, node.idx)
end if
end if
if node.left = NULL && node.right = NULL then
return heap, 7
end if
if dist < node.medianThreshold then
heap, 7 = VPtreeSearch(node.left, heap, query, positivelndices, k, 7, dpin)
if dist + 7 — d,,;, > node.medianThreshold then
heap, 7 = VPtreeSearch(node.right, heap, query, positivelndices, k, 7, dyin)
end if
else
heap, 7 = VPtreeSearch(node.right, heap, query, positivelndices, k, 7, dyin)
if dist — 7 4+ d,; < node.medianThreshold then
heap, 7 = VPtreeSearch(node.left, heap, query, positivelndices, k, 7, dynin)
end if
end if

of word similarity and word analogy. For the word similarity task, there exist several

datasets containing word pairs with their corresponding human-assigned similarity

09

08

0.7

Spearman's Correlation
o
o

L —©— WS353-ALL

——MC

——RG

—&— SimLex

—%— MEN
RW-STANFORD

—&— Average

I I I I I I I I I I I
1 3 5 7 9 1" 13 15 17 19 21
Degree of polynomial kernel

(a) Word similarity task

0.65

0.6

0.55

Accuracy
o o
o w o 'S o
w (3] = (4] (4]
T T T

o
N
a

47

—OS— Semantic Analogies
Syntactic Analogies
—&— Mixed Analogies

.
1 3 5 7 9 1 13 15 17 19 21
Degree of polynomial kernel

(b) Word analogy task

Figure 3.3: Quality of embeddings (d = 100) obtained from KUBWE using different
kernel degrees measured on different (a) word similarity, and (b) word analogy tasks.

Spearman's Correlation
o
>

/
/
#
/
Spearman's Correlation
2
&

06

Spearman's Correlation

1 3 5 7 9
Degree of polynomial kernel

1" 13 15 17 19 21 1 3 5 7 9

(a) WordSim353

M3 15 17 19 21 T3 5 7 9
Degree of polynomial kernel

(b) MEN

" 13 15 17 19 21
Degree of polynomial kernel

(c) MC

Figure 3.4: The effect of polynomial kernel degree in different dimensionality in

KUBWE algorithm evaluated on (a) WordSim353, (b) MEN, (c¢) MC.

score. In this task we have used 8 different dataset including WordSim353 (WS-
ALL), WordSim Similarity (WS-SIM) and WordSim Relatedness (WS-REL), MEN,
SimLex, MC, RG, and Stanford Rare Words (RW-STN). For the analogy task, we
have used Google’s analogy dataset [101] which contains 19,544 questions of the form

“a is to a* as b is to b*”. Given three of the words, the algorithm is expected to

predict the fourth word. About half of the questions are semantic (e.g. “father is to

son as mother is to daughter”) and the other half are syntactic questions (e.g. “big

is to bigger as tall is to taller”).

48
3.4.1 Analysis of the Polynomial Kernel Degree

We first analyze the effect of the kernel degree in a fixed dimensionality of 100. Our
algorithm is trained using various polynomial degrees 1,3, ...,21 and the quality of
embeddings is measured on different word similarity and word analogy tasks. Fi-
gure 3.3 shows the performances with respect to the kernel degree. As we can see
from Figures 3.3a and 3.3b the general trend is increasing as we increase the degree of
the polynomial. This shows that in 100-dimensional space using a high degree poly-
nomial kernel significantly improves the distribution of words, nonetheless, it reaches
a plateau at some point.

In another experiment, we run the algorithm with different embedding dimensio-
nality (10, 20, 50, and 100) and in each case, we use various kernel degrees 1,3, ..., 21.
Figure 3.4 illustrates the performance of our algorithm on different dimensionality
using different kernel degrees. As we can see from the figures, generally we get better
embedding as we increase the dimensionality of the embedding. This is true in other
algorithms as well. We can also observe that in lower dimensions (10 and 20), using a
high degree kernel will degrade the quality of embedding significantly. This is because
of distribution of cosine similarities (i.e. dot products) in the first place. If we look
back at Figure 3.1 we see that when d = 10 and d = 20 the similarities are spread
all over [-1, +1]. Using a high degree polynomial in such cases causes a few negative
examples to have extremely high kernel similarity with the word being updated and
they dominate all the rest of the negative examples. This leads to inappropriate use
of negative examples which in turn deteriorates the quality of the embedding. Ho-
wever, in higher dimensions where the distributions of similarities are close to zero
(almost orthogonal vectors), using a higher degree polynomial will further improve

the similarity calculations in the repulsive force.

3.4.2 Quantitative Evaluation

Table 3.1 compares 14 algorithms on 8 word similarity datasets. The numbers in
the table are Pearson’s correlation between the rankings provided by the algorithms
and the rankings of the human-scoring. These algorithms are selected mainly be-
cause of their popularity and the reproducibility /availability of their source code.

SVD, SVD-Log, and SVD-Sqrt are the factorizations of the co-occurrence, the log

49

Table 3.1: Evaluation of different word embedding algorithms on 8 word similarity
datasets. The dimensionality of the embeddings is 100 for the top part and 300 for the
bottom 5 rows. Numbers in the table are Pearson’s rank-order correlation between
the human scores and scores from algorithms.

WS-SIM WS-REL WS-ALL MC RG MEN SimLex RW-STN

of word pairs 203 252 353 30 65 3000 999 2034
SVD 0.533 0.282 0.410 0.331 0.491 0.390 0.202 0.229
SVD-Sqrt 0.754 0.605 0.681 0.729 0.667 0.657 0.286 0.395
SVD-Log 0.741 0.629 0.699 0.783 0.693 0.712 0.328 0.386
SVD-PPMI 0.720 0.638 0.692 0.803 0.740 0.740 0.318 0.381
SVD-SPPMI 0.669 0.593 0.646 0.774 0.709 0.716 0.297 0.360

GloVe (z,, = 100) 0.674 0.553 0.599 0.664 0.706 0.704 0.315 0.329
CBOW (k = 10) 0.740 0.584 0.665 0.703 0.756 0.709 0.326 0.393
CBOW (k =5) 0.745 0.585 0.671 0.742 0.773 0.707 0.327 0.398

FastText 0.765 0.649 0.713 0.793 0.787 0.741 0.326 0.442
SGNS (k = 10) 0.774 0.650 0.712 0.801 0.789 0.732 0.324 0.423
SGNS (k =5) 0.758 0.651 0.709 0.794 0.783 0.730 0.323 0.421
Fast KUBWE 0.746 0.663 0.728 0.805 0.807 0.735 0.367 0.444

KUBWE (p=13) 0.770 0.692 0.740 0.809 0.827 0.761 0.376 0.439
GloVe (z,, =100) 0.695 0.572 0.621 0.749 0.744 0.726 0.354 0.353

FastText 0.794 0.669 0.733 0.821 0.805 0.766 0.381 0.483
SGNS (k = 10) 0.792 0.667 0.732 0.830 0.799 0.753 0.383 0.455
Fast KUBWE 0.781 0.704 0.753 0.828 0.836 0.765 0.421 0.451

KUBWE (p=13) 0.783 0.710 0.759 0.851 0.845 0.775 0.411 0.452

co-occurrence, and the square root of co-occurrence matrices, respectively. SVD-
PPMI and SVD-SPPMI are the SVD factorization of the PPMI and Shifted PPMI
(with shift parameter of — log5) matrices, respectively. SVD-NS is the factorization
of thresholded PMI table which incorporates a fraction of negative PMI values [141].
GloVe is trained with its recommended parameter setting (i.e. Zq = 100). FastText
is trained with the recommended parameter settings that considers character n-grams
of length 3 to 6. CBOW and SGNS are trained with negative sampling set to 5 and
10. Our proposed algorithm, KUBWE;, is trained with p = 13, and the fast KUBWE
is trained with & = 3000. The dimensionality of embeddings is 100 in the top part of
the table and 300 in the bottom 5 rows.

As we can see from Table 3.1, our algorithm provides the best results on 7 out of
8 datasets using 100-dimensional embeddings and on 6 out of 8 datasets using 300-
dimensional embeddings. It is noteworthy to mention that even the fast approximate
version of KUBWE outperforms the state-of-the-art in 6 out of 8 word similarity
tasks. Using 100-dimensional embeddings, SGNS is the best on only WordSim Si-

milarity dataset, and on the rest of the datasets, our method outperforms others by

50

0.6 1 jurfigner lunch
brunchSLIpper 2.0
044 breakfast breakfaiiRRE"
g . meal = 157
S c brunch
o
g g 109 meal
s 021 dog <] '
% food horse i{;
a eat sheepeBull 2 054 eat
S n |
I o R eozgpatie ons o9, MoRR
-; yummy pig 2 o004 curry cow rabgiFt{iQ@fé‘@&fon
c I
8 soup Stew e e ard g soup salt yurfiy shesh leopard
n ; & -0.5 stew sugaPrganic
—-0.24 cuisi@ry organic frog . fish
crispy cuisine
-1.0 fruit
sauce .
—o0al spicy sugagalfruit sagiegy
-0.4 -0.2 0.0 0.2 0.4 0.6 -20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0
First principal component First principal component
(a) KUBWE (b) SGNS

Figure 3.5: Distribution of 40 word vectors from two groups of 20 animal names and
20 food related words. PCA algorithm is applied on 100-dimensional vectors from
KUBWE (left) and SGNS (right) to obtain a 2-d visualization.

a good margin. We have to mention that in the analogy task GloVe provides the
best results and is better than KUBWE and SGNS. However, GloVe’s performance
on word similarity tasks is not comparable with that of KUBWE and SGNS.

3.4.3 Qualitative Evaluation

Figure 3.5 illustrates the 2-d distribution of 40 word vectors (20 animal names and
20 food related words) obtained by applying Principal Components Analysis (PCA)
on the resulting embedding vectors from KUBWE and SGNS. As we can see, our
algorithm provides a better separation and a larger gap between the two word clusters
by pushing unrelated words away from each other which is the consequence of the
repulsive force and better utilization of negative examples. Moreover, in the SGNS
distribution “yummy” is closer to the animal group which is not correct, and “salt”
and “organic” are also very close to the boundary.

Figure 3.6 illustrates the 2-d distribution of 30 word vectors (15 positive and 15
negative adjectives) obtained by applying PCA on KUBWE and SGNS embeddings.
Again we can see that our algorithm provides a better semantic distribution in the
latent space with a much clearer separation between antonym word clusters. In the
SGNS embedding, “pretty” and “cute” are quite close to the negative adjectives such

as “beastly” and “aweful”.

ol

0.6 1 poor crude
ordinary 1.5

0.4 excellent foul)
o
g dull ungirgstive I 1.04 repulsive unptfnsa.ctlve
5 hand g & ordinary
a andsome S
£ 0.2 . foul g exce“eréﬁegant
S v elegant pleasing S osd
§_ ‘ . = . dull handsome
2 charming repulsive =3 |
c pret% 2 pleasing
E 0.0 u .E 0.0 grotesque
2 Eﬁ&“@t‘ﬁ ugly T ugly charmingeagRIGTAGMIFENt
S hegartly disgusti S
& _92] magnificent grot & peastly cre pretty

02 Jorgeots ; ~057 gisqunkirigd <°US ngangYGy

marvelous awful hﬁﬁ{adous -
wonderful horrible awful wonderful
horrible
-0.4+ awesome -1.01 awesome
T T T T T T T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 -1.5 -1.0 -0.5 0.0 0.5 1.0 15
First principal component First principal component
(a) KUBWE (b) SGNS

Figure 3.6: Distribution of 30 word vectors (15 positive and 15 negative adjectives).
PCA algorithm is applied on 100-dimensional vectors from KUBWE (left) and SGNS
(right) to obtain a 2-d distribution.

Figure 3.7 shows the heatmaps of 28 word vectors (14 animal names at the top
and 14 food related words at the bottom) from the KUBWE and SGNS embeddings.
In each of the heatmaps, columns are ordered by the difference between the average
magnitude of the features among the two word groups. Here we can see that our
algorithm provides a better inter-group dissimilarity and a nicer distinction between
two unrelated word groups. This property will potentially improve the accuracy of

classifiers in many NLP tasks including text classification.

3.5 Conclusion

In this chapter, we analyzed different word embedding algorithms and proposed our
algorithm KUBWE. Our method has clear advantages over matrix factorization met-
hods, since the attractive and repulsive forces in the optimization are weighted ac-
cording to the similarities in the input (i.e. smoothed PPMI) and similarities in the
output (i.e. polynomial kernel), respectively. It has also advantages over “prediction-
based” methods such as SGNS and GloVe for two main reasons: 1) The smoothed
PPMI input to our algorithm is more reliable than the raw co-occurrence counts. 2)
The adaptive way of utilizing the negative examples prevents the concentration effect
and improves the distribution of words in the final embedding. Moreover, the effect of

cosine similarity in higher dimensions is analyzed and a kernelized way of calculating

52

(b) SGNS

Figure 3.7: Heatmap of 28 word vectors obtained from KUBWE (top) and SGNS
(bottom). The top 14 rows in the heatmaps are animal names and the bottom 14
rows are food related words.

similarities is suggested to alleviate the ineffectiveness of cosine similarity. Further-
more, by adopting a modified Vantage Point-tree and approximating the repulsive
force in the optimization we reduced the computational complexity of our algorithm
by orders of magnitude. Our algorithm has only one parameter, which is the polyno-
mial degree p in the exact version, and the number of negative neighbors k in the fast
approximate version. As a rule of thumb, one should pick the degree proportionate to
the log of embedding dimensionality p &~ log d, and the number of negative neighbors
roughly equal to the square root of the number of words in the vocabulary k ~ \/ﬁ .
In the next chapter, we focus on spectral methods for word embedding and propose
an alternative spectral word embedding that takes into account the notion of negative

examples.

Chapter 4

EigenWord and Spectral Word Embeddings

In this chapter, we investigate word embedding algorithms from a different per-
spective. In particular, we examine the notion of “negative examples”, the unobser-
ved or insignificant word-context co-occurrences, from the perspective of the spectral
methods. We provide a new formulation for the word embedding problem by pro-
posing a new intuitive objective function that perfectly justifies the use of negative
examples. In fact, our algorithm not only learns from the important word-context
co-occurrences, but also it learns from the abundance of unobserved or insignificant
co-occurrences to improve the distribution of words in the latent embedded space.
We analyze the algorithm theoretically and provide an optimal closed-form solution
for the problem using spectral analysis. We have trained various word embedding
algorithms on articles of Wikipedia with 2.1 billion tokens and show that negative
sampling can boost the quality of spectral methods. Our algorithm provides results

as good as the state-of-the-art but in a much faster and efficient way.

4.1 Introduction

In recent years there has been an increasing interest in learning compact representati-
ons (i.e embeddings) for a set of input datapoints. In these approaches, input data is
mapped to a low-dimensional latent space with the goal of preserving the geometrical
properties of data with respect to some similarity measure in the input space. That
is, similar datapoints in the input space should be mapped to nearby points in the
latent embedded space. In the embedded space, each input datapoint is described
with a dense d-dimensional continuous-valued vector representing the coordinates of
the datapoint in the latent space.

In natural language processing, embedding algorithms are used to learn a vector
space representation for words aiming to capture semantic similarities and syntactic

relationships between words. The traditional way of treating individual words as

23

54

unique symbols and representing documents by sparse word count vectors, known as
Bag-of-Words (BOW) representation [133], has strong limitations since it does not
exploit countless semantic and syntactic relations encoded in the corpus. Moreover,
it does not take into account the ordering of the words, therefore, two different sen-
tences can have the same representation as long as they use the same words. n-gram
models [149, 23, 50] tried to overcome these limitations by counting the occurrences
of sequences of words rather than individual words (1 < n < 5). They consider the
word order in a short context but suffer from the curse of dimensionality, since the
number of n-grams increases dramatically as n increases. They also do not capture

the semantics of the words or more formally the similarities between the words [82].

In recent years, distributed word representations or word embedding algorithms
have shown to be very effective in capturing certain aspects of similarity between
words. Statistical language modeling methods take advantage of the fact that words
that are temporally closer in a sentence are statistically more dependent, and the-
refore, model the probability of a word conditioned on the previous words in the
sentence [14]. The idea of using a moving context window and assuming words in the
same window are semantically similar is widely exploited [103, 101, 122]. GloVe cal-
culates the global co-occurrence statistics first using a fixed-size context window, and
then minimizes its least squares objective function using stochastic gradient descent
which is essentially factorizing the log co-occurrence matrix [122]. Many neural-
network based approaches have been proposed for learning distributed word repre-
sentations [16, 32, 101, 103|. Skip-Gram with Negative Sampling (SGNS) is still the
state-of-the-art word embedding algorithm and is successfully applied in a variety of

linguistic tasks [101, 103].

Levy et al. in [90] have studied the effect of various hyper-parameters in different
embedding algorithms and showed that many of these parameters can be transferred
to traditional methods (e.g SVD) to boost their performance. In fact, they showed
that explicit matrix factorization methods can provide competitive results if used
properly, and there is no significant advantage over any of the algorithms. Levy and
Goldberg in [89] showed that SGNS is implicitly factorizing a Shifted Positive Point-
wise Mutual Information (SPPMI) matrix and they argue that the shift parameter

is almost equivalent to the negative sampling parameter k£ in SGNS. However, their

95

proposed alternative approach using SVD provides lower quality embedding than
SGNS, mainly for two reasons: first, the unweighted Ly optimization in SVD which
gives equal importance to frequent and infrequent pairs, and second, the shift cannot
capture certain aspects of the parameter k£ in SGNS: higher k£ in SGNS results in using
more data and better estimating the distribution of negative examples [90]. Therefore,
SGNS remains superior to others with a small margin in most NLP applications.

In this work, we provide a different perspective for looking at the negative samples,
word pairs that never co-occur. Most embedding algorithms only use the word pairs
that occur in the corpus and maximize the similarity of those word vectors based on
how frequent they co-occur. This can result in concentration effect: word clusters
from totally different topics can be placed somewhat close to each other. There
are lots of possible word pairs that never co-occur in the corpus or they co-occur
insignificantly, which we call them negative examples. We argue that minimizing
the similarity of negative examples is also crucial in the quality of final embedding,
and results in better distribution of words in the latent space. We show how matrix
factorization methods can benefit from the abundance of information (i.e. negative
examples) which was disregarded previously since they were considered useless. We
incorporate the notion of negative sampling in standard matrix factorization methods
by randomly choosing a tiny fraction of zeros in the PMI matrix and assigning negative
values to them or simply by not ignoring all negative PMI values. We formulate the
problem as an optimization task by proposing an intuitive objective function which
perfectly justifies the use of negative values in the PMI matrix. Our optimization has

an optimal closed-form solution and we make a theoretical connection between our

solution and SVD.

4.2 Background

4.2.1 Notation

Let’s assume we have a text corpus which is a sequence of words w € Vj where Vi
is the word vocabulary. The context of a word w; is commonly defined as the words
surrounding it in a window of size L, w;_r,...,w;_1,Wii1,...,w;rr. This results in

a set of context words ¢ € Vi with their corresponding context vocabulary V. The

56

sizes of the vocabularies are typically in 10° — 10° range.

For each word-context pair (w, c), we use #(w, ¢) to denote the number of times
they co-occurred in the corpus. Similarly, we use #(w) = Zl‘;ﬁ' #(w, ¢;) and #(c) =
Z‘Z‘g" #(wj, ¢) for denoting the number of times w and ¢ occurred in the corpus,
respectively.

By moving an L-sized context window over the corpus, a global co-occurrence
matrix X of size |Viy| x |Ve| can be built where each matrix entry x;; = #(w;, ¢;)
denote the number of times w; and ¢; co-occurred. The co-occurrence matrix is a
very sparse matrix with lots of zero entries since most possible word-context pairs
never co-occur in the corpus.

Most word embedding algorithms embed all words and contexts in a d-dimensional
space where each word w € Vi and each context ¢ € Vi is represented with a vector

@ € R? and & € RY. The set of all word vectors is commonly represented by a matrix

W of size |Viy| x d. Similarly, context vectors are the rows in a |V| x d matrix C'.

4.2.2 Pointwise Mutual Information (PMI)

The co-occurrence matrix contains the global statistics of the corpus and is the pri-
mary source of information for most algorithms. However, not all co-occurrences are
meaningful. Pointwise Mutual Information (PMI) is an information theoretic measure
that can be used for finding collocations or associations between words [31] and can
detect significant versus insignificant co-occurrences to some extent. For any word-
context pair (w, ¢), PMI is defined as the log ratio between their joint probability and
product of their marginal probabilities:

P(w, c)

PMI(w,c) = log m

(4.1)

Based on the formulation, if two words co-occur more often than being indepen-
dent then their PMI will be positive, and if they co-occur less frequent than being
independent then their PMI will be negative. For instance, in the data we used for
the chapter, the words “right” and “align” have a high PMI of 10.38' which indicates
a strong collocation, but words “school” and “species” have a low PMI of -6.88 which

means they are not likely to happen in the same context.

!Base 2 logarithms has been used here as well as all the experiments in the thesis.

57

Calculating PMI values for all word-context pairs gives us a |Viy| x [Vo| PMI

MPMI Nost of entries in the co-occurrence matrix are

matrix which we call it
zero #(w,c) = 0, for which PMI(w,c) = log0 = —oo. A common approach to
handle the situation is to use MM’ in which PM1(w,c) = 0 whenever #(w, c) = 0.
Another commonly accepted approach is to use Positive PMI (PPMI) matrix MPTM!

by replacing all the negative values with 0.
PPMI(w,c) = max(PMI(w,c),0) (4.2)

In fact, a traditional approach to word embedding is to use explicit PPMI repre-
sentation in which each word is described by its corresponding sparse row vector in
the PPMI matrix MPPM! and it is shown that it outperforms MFIM! on semantic
similarity tasks [25].

A recognized shortcoming of PMI and consequently PPMI is their bias towards
infrequent events [158]. This happens when a rare context ¢ co-occurs with a word w a
few times (or even once) and this often results in a high PMI value since P(c) in PMI’s
denominator is very small. However, explicit PPMI representation is a well-known

approach in distributional-similarity models.

4.2.3 Singular Value Decomposition (SVD)

SVD is a matrix factorization technique in linear algebra which has a broad range
of applications. It is widely used for image compression and also dimensionality
reduction. SVD on the matrix X,,, gives a factorization of the form X = uxv?
in which V., = [vi v2 ... v,] is an orthonormal basis for the row space of X,
U,xn = [u; us ... u,] is an orthonormal basis for the column space of X and X is
a diagonal matrix of singular values oy, 09, ...,0,. If n > p then the corresponding
Opt1s---, 0n Will be 0. The matrix X can be seen as a transformation matrix between
the two bases X[vy vy ... v, = [o1uy oouy ... 0,1, or XV = UX.

Using this factorization one can just choose the largest singular values from X
and eliminate the vectors in U and V corresponding to the smallest singular values
to compress the data. In fact, the largest singular values and their corresponding
columns in U and V can explain most of the information in the matrix, and hence we

can reconstruct the original matrix even after removing the smallest singular values.

o8

If we just pick the r largest singular values X, = U,,, 3, VL, then X, will be the

rXp)
best rank r approximation of X.

SVD can be applied to either co-occurrence matrix or the PPMI matrix to obtain
the embedding. The word embedding is taken as the first d columns of U usually

weighted by the singular values or the square root of singular values.

4.2.4 Skip-Gram with Negative Sampling (SGNS)

Word2vec [101] is the most popular and state-of-the-art method for training vector
space representations for words. There are two types of training for the word2vec
model: Continuous Bag-Of-Words (CBOW) and skip-gram. Word2vec scans the
corpus and employs a moving window which defines the context of the words. The
intuition of the method is that co-words that frequently appear in the same window
have high semantic relatedness and hence, they should have similar word vectors.
Both variants use a single layer neural network but their objective is different. In the
CBOW model, the aim is to predict a word given its context while in the skip-gram
the objective is to predict the context given the word itself. The error term is defined
in such a way that maximizes the dot product of words and their context words’
vectors. At the end of the optimization, weights of the network are considered as the

word vectors.

Word2vec learns the words and context words’ vectors separately. Updating the
weights of the network for context words is computationally expensive and requires
iterating over the entire vocabulary for each input instance. For this reason, hier-
archical Softmax and negative sampling methods as optimization tricks have been
proposed in order to improve the efficiency [103]. Negative sampling works better in
practice, in which k words are randomly sampled from the vocabulary (i.e. negative
samples) and considered as negative context, hoping that the sampled words are not
related to the current word being processed. Then the weights for these negative
context are updated accordingly. Since Word2Vec algorithm only observes the local
context at any given time, it has no other choice than adopting such naive sampling

strategy. The objective function of Skip-Gram with Negative Sampling (SGNS) [101]

59

can be written as:

T
1 _ - -
J = 7 E log o(w.€) + k.E.\~pp,[log(—w.cx)]
=1

where T is the size of the corpus, k is the number of negative samples, ¢ and cy are

the current local context and the sampled negative context, respectively.

4.2.5 Global Vectors (GloVe)

The GloVe model [122] scans the corpus to determine the vocabulary and then build
the global co-occurrence table by moving a context window over the text and coun-
ting the co-occurrences of the words. The co-occurrence table contains the global
statistics about words that appear together in a window and is the primary source of
information for unsupervised learning of word vectors. They exploit the information
encoded in this table and formulate the problem as a sum of squared error mini-
mization between the dot product of word and context word vectors and the log of
their co-occurrences. Another weighting function is also applied to each error term to
make the importance of error terms proportional to their co-occurrence value. This
way, more frequent co-words will have more weight in updating their vectors. The

objective function of GloVe is as follows:

1%
T =Y f(Xi) (i 4l + bi + b — log X;5)° (4.3)
ij=1
() Timaz)? ™ if ¥ < Tppae
f(x) = (4.4)
1 otherwise

where b; and b; are the bias terms for w; and w}, X;; is the co-occurrence count of the
words, Z,q, is the only hyper-parameter to be tuned, and f(X;;) is the handcrafted

weighting function to adjust the error term proportional to the co-occurrence value.

4.3 EigenWord: Spectral Word Embedding with Negative Sampling

At a glance, our approach builds a symmetric co-occurrence matrix, calculates the
PMI matrix, applies a threshold on PMI matrix to remove only some of the negative

PMI values, and finally factorizes the resulting matrix to find the embedding.

60

In the first step, we use a fixed-size context window and scan through the corpus to
build the global co-occurrence statistics matrix, just like many other methods such as
GloVe. One of the key differences of our algorithm to others such as SGNS, is that we
use a symmetric context in which we update X;; and X;; symmetrically whenever two
words w; and w; appear in the same window. This will provide nice properties for the
matrix in our optimization. Please note that from now on, we do not refer to context
words as c¢ since there is no distinction between words and contexts. Consequently, in
our approach |Viy| = |V¢| = n and hence both X and MPM! are symmetric matrices
of dimension n x n.

After calculating the global co-occurrence matrix X, we apply PMI on it to obtain
MPMI Here, instead of using MTPM! we propose to apply a threshold o on the PMI

table to obtain M“ where each entry in the matrix is calculated as follows:

PMI(w;,w;) PMI(w;,w;) > «
me = (4.5)
0 otherwise

We refer to the word pairs with m; > 0 as positive examples, and word pairs
with m{; < 0 as negative examples. M® is the final matrix that we factorize and the
negative values in this matrix correspond to the negative examples that we employ
in our model. Please note that by setting a = 0 we get MPPM! which does not
exploit the negative examples. However, by choosing a negative threshold o < 0, we
keep a portion of negative values while disregarding the extreme cases. In fact, by
adjusting this parameter o, we control the amount of negative examples to be used
in the model.

It is noteworthy to mention that this thresholded PMI matrix, M, is different
from what is being used in Levy and Goldberg’s work [89]. In the shifted PPMI
approach proposed by Levy and Goldberg [89], the PMI values are shifted by — log k
and then all the negative values are removed. This way, not only all the originally
negative PMI values are removed, but also some of the small positive PMI values
(which are less than log k) are eliminated as well. On the contrary, our method does
the opposite operation by encouraging to keep the negative values. In the following,
we will see how this negative threshold o can provide a better approximation to the

true PMI matrix.

61

4.3.1 EigenWord Formulation

We propose an intuitive objective function that justifies the use of negative examples
in the PMI matrix.

n n

TW) =2 > miy(ii) (4.6)

i=1 j=1
where w; and w; are the d-dimensional embedded word vectors for w; and w; in the
vocabulary, and W is the n X d matrix of all word vectors. Here, we formulated the
problem as a maximization task where J (W) has to be maximized.

In this maximization formulation, the algorithm will maximize the similarity of
word vectors, w;.wj, whenever mg; > 0 (i.e. positive examples), and it will minimize
the similarity of word vectors whenever mg; < 0 (i.e. negative examples). Describing
this maximization in different terms, word pairs with a strong degree of association
will be placed close to each other while the negative examples will be placed far
apart in the latent embedded space. The use of negative examples is ignored in

most embedding algorithm since zero or negative PMI values in M M1

are typically
ignored and considered useless as in the explicit PPMI [25] and factorizations methods
on PPMI [89]. Here, we show that the appropriate use of negative examples can be
beneficial to the spectral algorithms and factorization based embedding methods.

Please note that most of the entries in M are zero, and word pairs with mg; =0
have no effect on our optimization. It is also noteworthy to mention that positive
examples are indeed more informative than negative examples. This means that
excessive use of negative examples can have destructive effects on the quality of final
embedding since the algorithm will mostly focus on making negative examples far
apart rather than making word vectors with strong association closer to each other.
However, we show that appropriate use of negative examples improves the distribution
of words in the embedded space and prevents the concentration effect.

Considering Equation 4.6, we can rewrite our objective function as a trace opti-

mization:

= Tr[W' M*W] (4.7)

62

Then, our objective function has an optimal closed-form solution as a result of

the following two theorems.

Theorem 1 (Courant-Fischer Theorem) Let A be a symmetric n x n matriz

with eigenvalues Ay < Ay < --- < N\, and corresponding eigenvectors uy, Us, . .., Uy,
then:
bT Ab
= minb” Ab = mi =ul'A 4.
A1 ”rgﬁlznlb b min= 7= = uy Auy, (4.8)
bT Ab
Y L PR _ T
Ay = ”rgﬁlznlb Ab = min = = U Aug, (4.9)
bluy bluy
M= Amae = min b" Ab = maxb’ Ab (4.10)
[lo]|=1 [[bll=1
blug Lo Lupy_q
bT Ab T
= 1?23; T u, Auy, (4.11)

Proof of the Courant-Fischer theorem can be found in standard linear algebra
textbooks [43]. The following theorem [120] is an immediate consequence of the

Courant-Fischer theorem.

Theorem 2 Given a symmetric matriz A,xn, and an arbitrary unitary matric B,xq,
then the trace of BT AB is maximized when B is an orthonormal basis for the eigen-

space of A associated with its algebraically largest eigenvalues [76]. In particular, the

eigenbasis itself is an optimal solution: If U = [uy,. .., ug| is the set of eigenvectors
associated with d largest eigenvalues \1, ..., \q, and UTU = I, then:
maXdTT[BTAB] =Tr[UTAU) = M\ + -+ Mg (4.12)
BER"X
BTB=I

Our thresholded PMI matrix, M, is symmetric and therefore, our optimization
in Equation 4.7 fits into theorem 2. Consequently, our optimization has an optimal
closed-form solution in which the word vectors matrix W is formed by the eigenvectors
of M corresponding to its d algebraically largest eigenvalues. This formulation is
simply a more accurate approximation of the true objective than SVD factorization
of PPMI or shifted PPMI.

63
4.3.2 Connection to SVD and an alternative solution (SVD-NS)

Consider the singular value decomposition of the thresholded PMI matrix, M* =
UXUT. We know that U is the set of eigenvectors of M*M®T and V is the set
of eigenvectors of M*TM®. In case of symmetric input, M*MT = M*TM*, and
consequently, U = V and the well-formed unique factorization of UXUT can be
obtained.

Moreover, it is easy to show that eigenvectors of powers k of a matrix, A¥, are
equivalent to the eigenvectors of the matrix itself, but, their corresponding eigenvalues

will be taken to the power k.

Av = v (4.13)
A% = AAv = A(MW) = MAv) = A = 2o (4.14)

Therefore, U which is the set of eigenvectors of M*M®T = M*? is equivalent
to the eigenvectors of M®, and ¥ will be the absolute value (i.e. magnitude) of
eigenvalues of M® in decreasing order. As a consequence, one can apply SVD on
the symmetric thresholded PMI matrix M* and consider the first d columns of U,
corresponding to d largest singular values of the matrix, as the final word embedding.

We should mention that this alternative solution is equivalent to the originally
proposed solution only if the d largest singular values correspond to the d algebraically
largest eigenvalues. More formally, if Ay > Ay > --- >), are the eigenvalues in
decreasing order, then the condition is satisfied if A\, < 0 such that | Ak| > Ag. This
is a guaranteed case when M is Positive Semi-Definite (PSD) since all the eigenvalues
will be positive. Nevertheless, in case of non-PSD, M“ can be easily converted into a
PSD matrix since it is already symmetric. This can be done by making it a diagonally

dominant matrix, in that each diagonal element is greater than or equal to the sum

of all non-diagonal elements on that row, m$ > > i G- In fact, by adjusting
only the diagonal elements of M which are the strength of association of words with
themselves, we can make it a PSD matrix. This process should not have drastic effects
on the quality of embedding since it does not change the strength of pairwise word
relations. However, in our experiments in this chapter, we have used the alternative
SVD solution on the original M without converting it to PSD, and still achieved

promising results. We refer to this alternative solution as SVD-NS.

64

Let us analyze the SVD-NS algorithm in the case of non-PSD M® matrix. Since
the matrix U in SVD is the set of eigenvectors of M*M*T | applying SVD on M* and
taking the first d dimensions of U as word vectors is equivalent to plugging in M*M*T
instead of M in our EigenWord formulation in Equation 4.7. This is not a bad solu-
tion at all, since the elements in M*M*T correspond to context similarity of words.
We can say that elements in M are the first-order affinities or first-order similarities
of words directly through co-occurrence and elements in M*M7 are the second-order
affinities of words through context similarity. Each row of M® corresponds to the
global context vector of a particular word. Since M® is symmetric, each element of
MeM*T corresponds to the dot product of two context vectors that gives us their
context similarity. To clarify this, consider the words “go” and “went” in sentences “I
go to school” and “I went to school”. The words “go” and “went” may never co-occur
directly in the corpus resulting the corresponding entry in M“ to be zero, however,
they have a lot of common context which makes them similar and is quantifiable in
MeMeT . Please note that the context-based similarity M*M°T is a dense matrix
and is computationally impractical to compute, however, SVD-NS implicitly solves
the formulation for context-based similarity without needing to explicitly compute the
MeMT . In fact, EigenWord and SVD-NS both use the same formulation with the
difference that one works on the co-occurrence based similarity and the other works
on the context based similarity. The source code of both algorithms is available at

our GitHub page: https://github.com/behrouzhs/svdns.

4.4 Experiments

4.4.1 Data and Vocabulary

For the training of models, we have used English Wikipedia dump of March 05, 2016.
After stripping the HTML tags and extracting the clean text of Wikipedia articles, we
removed all the special characters and punctuation from the text. Then we converted
the text into lowercase and tokenized it. The data have 2.1 billion tokens resulting
in 8.9 million unique words as vocabulary. However, most of the vocabulary are
infrequent words or they belong to named entities such as names of people, places,

and organizations.

https://github.com/behrouzhs/svdns

65

We have applied a filtering on the vocabulary to target the words in English
dictionary as well as to reduce the size of vocabulary to a reasonable range. First,
we filtered out all the words that appeared in the data less than 5 times. This is
a common threshold that is used in other algorithms as well (e.g GloVe). We also
removed all the words that contained non-English alphabet (e.g. names of people).
Afterwards, we used WordNet database to identify words that exist in the English
dictionary. WordNet is an ontology defining the relationship between the words and
has an internal categorization of words into verbs, nouns, adjectives, and adverbs. We
have used all the words that appeared in WordNet database as the English vocabulary.
We also kept all the words with more than 3000 occurrences which do not necessarily
exist in the English dictionary. After these filtering steps, the 8.9M unique words in
Wikipedia were filtered and resulted in 163188 words.

In our experiments, all the algorithms were trained on the exact same preprocessed
input text data. We have also used the exact same vocabulary for all the algorithms.
This will ensure a fair comparison as the size of the training data has a great influence
on the quality of embeddings. The dimensionality of embeddings is 100 in all our

experiments.

4.4.2 Evaluation method

For the evaluation of algorithms, we have used two well-known tasks of word similarity
and word analogy. For the word similarity task, there exist several datasets contai-
ning word pairs with their corresponding human-assigned similarity score. These
datasets are commonly used to evaluate the quality of word embeddings and to see
how good they have modeled the word similarities in the embedding. The quanti-
tative values of scores are not important here, but rather the ranking of different
word pairs is the main focus. Therefore, Pearson’s rank-order correlation is always
used in word similarity task. In this task we have used 8 different dataset including
WordSim353 (WS-M) [48], WordSim Similarity (WS-S) and WordSim Relatedness
(WS-R), MEN [24], Mechanical Turk (MTurk), SimLex [58], MC, and YP [171]. For
the analogy task, we have used Google’s analogy dataset [101] which contains 19544
questions of the form “a is to a* as b is to b*”. Given three of the elements, the

algorithm has to predict the missing element. About half of questions are semantic

66

o
o
1
o
©

—OS— Semantic Analogies
Syntactic Analogies
| —8— Mixed Analogies 0.8

N
'S
@

N
~
T

o

w

a
T

—S— WordSim-353
MC-30

—8— MTurk-771

—£&— MEN-3000

L |~ SIMLEX-999

YP-130

Accuracy

o
w
T

0.25

=~ Average = 2
T TT TV TV g
02r 3¢ g oo ITVIIT Y N Vv
015 ‘ ‘ ‘ ‘ s ; 02 ‘ ‘ : ‘ s |
-10 -8 -6 -4 -2 0 2 -10 -8 6 -4 2 0 2
o PPMI o PPMI
(a) Word analogy task (b) Word similarity task

Figure 4.1: Accuracy of SVD-NS algorithm on (a) word analogy (b) word similarity
tasks with respect to the amount of negative samples.

(e.g. “brother is to sister as son is to daughter”) and the other half are syntactic

questions (e.g. “cold is to colder as short is to shorter”).

4.4.3 Analysis of the amount of negative examples

Let us first analyze the effect of the quantity of negative examples in the model. For
this reason, we have run SVD-NS algorithm with various PMI thresholds ranging in
[—10,4+2] and evaluated each case on analogy and word similarity tasks. Figure 4.1
illustrates the results of this experiment. Figures 4.1a and 4.1b show the accuracy
of our algorithm on word analogy and word similarity tasks, respectively. Please
note that the special case of a = 0 is equivalent to the SVD factorization of PPMI
matrix [90]. As we can see from both figures, using negative examples can boost
the performance of factorization methods dramatically and yields a better quality
embedding. In both analogy and word similarity tasks, the peak performance and
accuracy has achieved when o« = —2.5 and in that case the number of positive exam-
ples is 1.54 times the number of negative examples. As we discussed before, excessive
use of negative examples will have harmful effects since it will shift the focus of the
algorithm to less important information. For instance, as we can observe from the
Figure 4.1 and it was previously shown in [25], using the entire PMI matrix M1

and factorizing it using SVD yields worse results than factorizing MPMI

67

Table 4.1: Evaluation of different word embedding algorithms on 8 word similarity
datasets.

WS-S WS-R WS-M MC MEN MTurk SimLex YP
203 252 353 30 3000 771 999 130

SVD 0.4913 0.1890 0.3624 0.4096 0.2722 0.1600 0.0881 0.122
SVD-L 0.2705 0.1091 0.1866 0.1301 0.2321 0.2650 0.0882 0.0878
SVD-S 0.6245 0.3235 0.4854 0.6483 0.5356 0.4124 0.212 0.2445

PPMI-SVD-US 0.6865 0.4893 0.5968 0.7257 0.6823 0.5713 0.2683 0.3710
PPMI-SVD-Us 0.7189 0.6007 0.6674 0.7749 0.7302 0.6155 0.2976 0.4490
PPMI-SVD-U 0.7201 0.6387 0.6925 0.8035 0.7402 0.6217 0.3180 0.4496
SPPMI-SVD-Us 0.6469 0.5416 0.6046 0.7405 0.7075 0.5735 0.2728 0.4472
SPPMI-SVD-U 0.6412 0.5813 0.6238 0.7566 0.7000 0.5766 0.2764 0.4574

GloVe 0.6743 0.5534 0.5991 0.6649 0.7040 0.6227 0.3154 0.4872
CBOW 0.7457 0.5853 0.6714 0.7427 0.7079 0.6132 0.3274 0.3403
SGNS 0.7587 0.6519 0.7096 0.7946 0.7306 0.6441 0.3236 0.4679
SVD-NS 0.7519 0.6537 0.7120 0.8008 0.7534 0.6499 0.3297 0.5145

4.4.4 Quantitative Evaluation

Table 4.1 compares 12 algorithms on 8 word similarity datasets. The numbers in the
table are Pearson’s correlation between the rankings provided by the algorithms and
the rankings of the human-scoring.

SVD, SVD-L, and SVD-S are the factorizations of co-occurrence, log co-occurrence,
and square root of co-occurrence matrices, respectively. This type of factorization is
popularized in NLP through Latent Semantic Analysis [38]. PPMI-SVD-US, PPMI-
SVD-Us, and PPMI-SVD-U are all SVD factorizations on PPMI matrix but they
have different singular vector weighting scheme in that, they weight the singular vec-
tors by singular values, square root of singular values, and no weighting, respectively.
SPPMI-SVD-Us and SPPMI-SVD-U are the SVD factorizations on shifted PPMI ma-
trix [89] where the shift is log5. GloVe is trained with its recommended parameter
setting (i.e. Zyee = 100), CBOW and SGNS are trained with negative sampling set
to 5. Our proposed algorithm, SVD-NS; is trained with o = —2.5.

As we can see from Table 4.1, our algorithm provides the best results in 6 out of 8
datasets. SGNS is the best on only WordSim Similarity dataset, and PPMI-SVD-U
is the best on MC dataset and on the rest of the datasets our method outperforms
others by a fair margin. We have to mention that in analogy task SGNS provides

better results than SVD-NS. However, our main goal is to boost matrix factorization

68

methods with the use of negative examples. We have parallelized SVD-NS algorithm
using OpenMP and it is one order of magnitude faster than multi-threaded SGNS.

4.4.5 Qualitative Evaluation

For the qualitative evaluation of embeddings, we selected 22 words from two groups
of 11 animal names and 11 food related words and visualize the pairwise Cosine
similarity of words in the embedding spaces. Figure 4.2 illustrates the similarity
matrix for four algorithms: EigenWord, SGNS, GloVe, and FastText. Colors range
from dark blue for lowest similarity to dark red for highest similarity and the color-bar
is removed to save space.

As we can see from Figure 4.2, almost all embedding algorithms are able to cap-
ture semantic similarity and consequently, they all have great within-group cohesion.
However, our proposed algorithm, EigenWord, has remarkably better between-group
separation, and the two unrelated word clusters are well separated in the embedding.
This is the result of effectively utilizing negative examples that leads to better use of

the space in the embedding.

4.5 Conclusion

In this chapter, we analyzed the use of negative examples in word embedding context
both theoretically and empirically. We proposed an intuitive objective function for
the word embedding problem and provided an optimal closed-form solution for it
using matrix factorization techniques. Our thresholded PMI matrix is simply a better
approximation of the word associations. And our objective function is a more accurate
approximation of the true objective than SVD factorization of PPMI or shifted PPMI.
Our algorithm removes the use of many hyper-parameters in other algorithms, such
as eigenvalue weighting and dealing with word and context vectors separately. In fact,
our optimal solution is achieved using the eigenvectors themselves and no additional
weighting is needed. Moreover, it builds, maintains, and exploits symmetric co-
occurrence and PMI matrices, and consequently, its word and context vectors happen
to be the same in our algorithm. The only parameter in our method is a which controls

the amount of negative examples to be used in the algorithm. As a rule of thumb,

2

one should not have more negative examples than £ of positive ones. In the next

cat
dog
rabbit
bull
lion

tiger

elephant

camel
bear
raccoon
wolf
meal
breakfast
lunch
dinner
brunch
supper
cuisine
soup
stew
spicy
crispy

elephant
breakfast

(a) EigenWord

rabbit
bull

lion

tiger
elephant
camel
bear
raccoon
wolf
meal
breakfast
lunch
dinner
brunch
supper
cuisine
soup
stew
spicy

crispy

b g £ T 5 T 26z € g esiooa
o o 8 E Q £ ¢ € € & 3 o & 5 a
e - g E¥ 3§55 050 &g
5 g 3 5 5 3 3
@ S

69

£ s 7 5 5 ¢
5 g & -
5 S E 2 g2
5 g E 523
g 5

bear
raccoon
wolf
meal
breakfast
lunch
dinner
brunch
supper
cuisine

soup

stew
spicy
crispy

g
&
2
&
o
T

raccoon

7
£
<
s
4
5

(d) FastText

Figure 4.2: Cosine similarity matrix of 22 words in different embedding spaces (a)
EigenWord, (b) SGNS, (c¢) GloVe, and (d) FastText. Words are from two groups of
11 animal names and 11 food related words. Dimensionality of embeddings is 100
for all embeddings. Colors range from dark blue for lowest similarity to dark red for

highest similarity.

chapter, we extend the approach and propose a multi-sense embedding technique to

tackle Word Sense Disambiguation (WSD).

Chapter 5

Efficient Word Sense Disambiguation

In previous chapters, we analyzed word embedding algorithms and proposed two
embedding methods, KUBWE and EigenWord, that both address the negative sam-
pling problem in order to improve the distribution of words in the latent space. In this
chapter, we take it a step further and present an efficient word sense disambiguation
and embedding algorithm that learns multi-prototype sense vectors to accommodate
different meanings of words. Our method provides both sparse sense vectors to be
used for word sense induction, and dense sense embeddings to be used in training
of machine learning models for downstream NLP tasks. We disambiguate the am-
biguous words by clustering their context words. However, unlike previous methods
where each context is assigned to one sense, we use a soft clustering approach to
learn the distribution of context words over different senses, and use it to break the
global context vectors into multiple sense-specific sparse vectors. After constructing
the sense-word relation matrix from the word-word co-occurrence matrix, we use it
for learning sense embeddings using a fast matrix factorization approach. Our ex-
periments on SemEval 2013 competition data show that our method achieves the

state-of-the-art accuracy in a more efficient way.

5.1 Introduction

Continuous-valued word representations have become very popular since they im-
prove the performance of many natural language processing applications. These dis-
tributional representations are learned from large text corpora and can explain many
semantic properties and relationships between concepts represented by words. Many
neural-network based approaches [16, 32, 101, 103] as well as count-based [122, 5] and
matrix factorization-based methods [89, 141] have been proposed for learning distri-
buted word representations. The Skip-Gram model was very successful so that many

improvements and variants are proposed for it. For instance, FastText [19] enriches

70

71

the Skip-Gram word embeddings with sub-word information by considering charac-
ter n-grams of different lengths and representing words as the sum of their n-gram

vectors.

Conventional word embeddings learn a unique representation for each word and
therefore, they cannot deal with word ambiguity which is an important property of the
natural language. For example, the word “right” may refer to a direction or to being
correct depending on the context. Consequently, the learned vector representation
is either dominated by the most frequent meaning or it is a weighted average of all
the meanings [6]. Clearly neither case is desirable for practical applications. Since
word representations have been used as word features in many NLP tasks including
dependency parsing [29], named-entity recognition [156], emotion recognition from
tweets [112] and sentiment analysis [97], using a multi-prototype representation can

potentially increase the performance of such representation-based approaches.

Several approaches have been proposed for learning sense-specific word vectors.
Reisinger and Mooney [127] proposed a clustering based approach in which context
words are clustered in order to produce groups of similar context vectors. An average
“prototype” vector is then computed separately for each cluster, producing a set of
sparse sense vectors for each word. Huang et al. [64] uses a similar clustering approach
to cluster sparse TF-IDF context vectors to create a fixed number of senses for each
word. Then they relabel each word token with the clustered sense before learning
embeddings. SenseGram [121] and AdaGram [10] are among the most successful word
sense embedding methods. AdaGram is a Bayesian extension of the Skip-Gram model
and provides Word Sense Disambiguation (WSD) functionality based on the induced
sense inventory. SenseGram transforms word embeddings to sense embeddings via

graph clustering and uses them for WSD.

In this work, we present a fast unsupervised multi-prototype sense representation
method. Instead of using traditional clustering approaches which assign each context
word to a specific sense, we use an efficient soft clustering approach where contexts are
assigned to different senses according to their membership values. For any ambiguous
word w, most of its context words are common across all of its senses. Therefore,
learning the distribution of context words across senses is an intuitive and natural

choice. Moreover, our algorithm outputs both sparse and dense representations for

72

senses. The sparse representations are interpretable and can be used for word sense
induction. The correct sense of the word can be induced by comparing the usage
of the word in a given sentence with the sparse sense vectors and picking the most
similar sense. The dense representations can be used as word features in training
machine learning models for any desired NLP application such as sentiment analysis,

translation, etc.

5.2 Proposed Method

Similar to word embeddings, sense embeddings should also be learned from a large text
corpus such as Wikipedia or Common Crawl data. In our method, we first calculate
the global symmetric word-word co-occurrence counts matrix X by moving a t¢-sized
context window over the corpus. Assuming that the corpus contains n unique words
(i.e. vocabulary V' = {wy,ws, ..., w,},|V] = n), then the co-occurrence counts X is a
highly sparse n x n matrix. This co-occurrence matrix contains global statistics about
word relations and is the primary source of information for many word embedding
algorithms such as GloVe [122]. Each row ¢ of this matrix is the global context vector
Z; of a particular word w; which represents all possible context words that are co-
occurred with w; in the corpus. Please note that each global context vector 7, is the
algebraic sum of all context vectors of all the meanings of w;. In section 5.2.2 we will

break these vectors down into multiple context vectors, one for each sense.

5.2.1 Refining the co-occurrences and extracting word relations

Many of the co-occurrences in X are not informative. For instance, the words “also”
and “their” co-occur thousands of times in Wikipedia but this should not be con-
sidered as a high degree of association. Pointwise Mutual Information (PMI) is an
information theoretic measure that can be used for finding collocations or associations
between words [31] and is widely used in count-based and matrix factorization based
word embeddings. For any word pair (w;, w;), PMI is defined as the log ratio between
their joint probability and product of their marginal probabilities:

P('LUZ', w]-)

PMI(wiwj) =log 5o Spay

(5.1)

73

If two words co-occur more often than being independent then their PMI will
be positive, and if they co-occur less frequently than being independent then their
PMI will be negative. Hence, a commonly accepted approach is to use Positive
PMI (PPMI) matrix by replacing all the negative values with 0, PPMI(w;, w;) =
max(PMI(w;,w;),0). Therefore, unlike many sense disambiguation methods that
use TF-IDF approach which is more suitable for document-term matrices, we take
the PPMI of the co-occurrence matrix X that results in a more refined and accurate

word relation matrix P.

5.2.2 Word Sense Disambiguation: Obtaining Sparse Sense Vectors

For any ambiguous word w; we break its refined context vector gig (i.e. i-th row of
the PPMI matrix P) into multiple context vectors, one for each sense of the word.
Assuming that word w; has k; different senses {s;, S, ..., Si, }, we learn a sparse
context vector ?ij for each sense s;; in such a way that Z?zl ?ij — ;. This
will ensure that sum of all context vectors from different senses equals to the global
context vector of the word.

We break the context vector 71 of the word w; by clustering the context vectors
of its context words. Let L; = {l1,l2,..., L} be the set of all non-zero entries in gig
which is the set of indices of all context words of w;. Then, we select a slice C; of
the matrix P where only rows corresponding to L; are selected. C; will be a m x n
matrix representing the context vectors of the context words of w;. Our aim is to
learn the distribution of context words over senses and we achieve this by applying a
soft clustering. We need to do this in an efficient way since the clustering has to be
done for each ambiguous word separately.

Fuzzy C-means clustering is not applicable in this case since the input matrix is
high dimensional and therefore, all the centroids in fuzzy clustering will converge to
the center of gravity of the entire data distribution [170]. We propose to use Non-
negative Matrix Factorization (NMF) [86] in order to cluster the columns of C;. NMF
decomposes the matrix C; = W H in the form of multiplication of two matrices W,,,xx
and Hjy, by minimizing the reconstruction error of the original matrix constraining
all elements of all three matrices to be non-negative. NMF can be used to cluster the

columns of the input matrix and Hyy,, is known to produce membership values of n

74

points to k clusters [79]. We use WordNet lexical database to obtain the number of
senses k; for each ambiguous word w; and apply NMF with k; components. Finally,
we normalize membership values for each context word to sum 1 and multiply the
membership matrix by the global context vector ?Z to obtain the sparse sense vectors
?Zj = ﬁj oNifh Normalizing the columns of H ensures Zle ?Z-j =7

Latent Dirichlet Allocation (LDA) and topic modeling [18] also seem to be a good
choice for the soft clustering of contexts as it can learn the distribution of context
words in different topics (or senses in this case). However, LDA is resource intensive
and it was computationally intractable to disambiguate all words in our experiments
using LDA. For instance, disambiguating a single word with around 50,000 context

words (i.e. LDA on a matrix of 50,000 rows) takes more than 1.5 hours while NMF

on the same matrix ends in 2 minutes.

Further improving the efficiency Although NMF using coordinate descent op-
timization is pretty fast, we take it a step further and make our algorithm faster by
only taking the initialized value of H. We use the Non-Negative Double Singular
Value Decomposition (NNDSVD) method [21] which is often used to initialize W and
H matrices for NMF and is shown to provide a very good starting point [21]. The-
refore, we just use the output of NNDSVD without optimizing it further to reduce
the runtime to the minimum. Our experiments did not show a significant difference
between the accuracy of the two methods, thus, we pick the fastest and report the

results of NNDSVD in section 5.3.

5.2.3 Word Sense Induction Using the Sparse Sense Representation

The sparse sense vectors can be used to infer the correct sense of a word in a given
sentence based on its context words. Then we can select the corresponding sense
embedding and use it for the underlying NLP task. For the purpose of word sense
induction, we build the context vector of the query sentence 71 and use Cosine

similarity to find the most similar sense vector {?ﬂ, e ?zk}

2.7,
j* = argmax i 4 (5.2)
i 8l < Tl

75

Global co-occurrence matrix Global context vector of “bank” Context vectors of context words Sliced context matrix of “bank” Sparse sense vectors of “bank”
Word Sense Disambiguation (WSD)

finance
money
bank
rate
iver
beach
finance
money
rate
beach
finance
money
bank
rate
fiver
beach

finance
money
beach

finance finance finance

bank
ate
river

money money money.

. finance [
_ il Slice
bank = pank| O[O O| [O[O] | ===t vank — T

rate

" fiver
ate rate rate e NNDSVD

iver river river

beach beach beach

(a) Disambiguation procedure for a particular word, “bank” in this example.

Sparse sense-word relation matrix Sense embeddings
— Global —
co-occurrence matrix

Word Sense Induction (WSI) downstream NLP applications
(b) Overall flowchart for disambiguating all words and multi-sense embedding.

wi Wy W 4 d, dioy

bank_1 bank_1
Di bank_2 bank_2

- all words i
-ﬁI o program_1 program_1
uninformative program_2 program_2
program_3 SVD-GloVe a3

surrounding surrounding

Count
» | co-occurrences

Interest_1 Interest_1

Interest_2 Interest_2

Figure 5.1: Flowchart of the proposed Word Sense Disambiguation (WSD) and multi-
sense embedding technique.

5.2.4 Word Sense Embedding: Obtaining Dense Representations

We augment all the sparse sense vectors of all ambiguous words to the PPMI matrix
P, build a global sense-word co-occurrence matrix S, and use it for the embedding.
After constructing the sense-word relation matrix, one can use GloVe [122] optimi-
zation or any type of matrix factorization approaches [89, 141] in order to obtain
the sense embeddings. For the purpose of efficiency we use a sparse Singular Value
Decomposition (SVD) on the sense-word relation matrix S = UXV? and take the
first d singular vectors of U as our dense representations. This sparse factorization
uses the efficient Lanczos iterative sparse eigensolver to obtain the top d singular
vectors corresponding to the largest singular values and is shown to capture semantic

similarities pretty well when applied on co-occurrence type relational matrices [141].

Figure 5.1 shows the flowchart of our proposed Word Sense Disambiguation (WSD)
and multi-sense embedding technique. Figure 5.1a illustrates the disambiguation pro-
cedure for a particular word, “bank” in this example, and Figure 5.1b depicts the

overall flowchart for disambiguating all words and multi-sense embedding.

76

Table 5.1: Nearest neighbors of sample words in our sense embedding vector space

Word Nearest neighbors

program__1 mentoring, internships, scholarships, educational, volunteering, trainings
program_ 2 software, implementations, computing, data, protocol, algorithms, automated
program_ 3 aired, hosted, televised, telecast, christmas, filmed, wrestling, announcer

square_ 1 plaza, street, apartments, palace, town, cafe, landmark, mall
square_ 2 rectangular, arched, octagonal, cornice, triangular, hexagonal, gable
square_ 3 km, meters, households, kilometers, hectares, ft, sq, islander, wingspan

interest_ 1 interested, attention, fascination, curiosity, attraction, hobby, keen, enthusiasm
interest_2 ventures, assets, acquisitions, investments, contracts, subsidiaries, leases, holdings
interest_3 romantically, girlfriend, friend, relationship, friendship, actress, partner

5.3 Evaluation

We used Wikipedia dump of April 2018 as our training corpus which has about 2.2
billion tokens. After a few preprocessing steps we applied our algorithm to learn both

sparse and dense representations for all the senses of all words.

Qualitative Evaluation Table 5.1 shows the nearest neighbors of the different
senses of words “program”, “square”, and “interest” in our sense embedding vector
space. As we can see it can disambiguate different senses very well. For instance,
the three senses of word “program” correspond to training/educational programs,

software programs, and television programs which are quite distinct.

Quantitative Evaluation We evaluated our learned sense vectors on the SemEval
2013 Task 13 word sense disambiguation competition data. This dataset contains
50 ambiguous words and about 100 example sentences per each word for a total
of 4664 instances. The algorithms have to infer the correct sense for each of the
instances. For many test sentences, multiple senses are applicable with different
levels of appropriateness and this enables various scoring systems. We have used
all 5 official scoring functions released by the competition organizers (Jaccard Index,
Positional Tau, Weighted NDCG, Fuzzy NMI, and Fuzzy B-Cubed) and compared
our algorithm with the top winning teams as well as the current state-of-the-art
approaches AdaGram and SenseGram in Table 5.2. Looking at the performances of
different algorithms in the table we can see that our method has achieved the best

overall accuracy, and that it is very close to the current state-of-the-art.

7

Table 5.2: Comparison of our method’s performance to participants of the SemkE-
val 2013 Task 13 and two systems based on word sense embeddings (AdaGram and

SenseGram)
Model Jaccard Tau WNDCG Fuz. NMI Fuz. B-Cub. Average
AI-KU 0.197 0.620 0.387 0.065 0.390 0.3318
AI-KU (rem5-add1000) 0.245 0.642 0.332 0.039 0.451 0.3418
Unimelb (50k) 0.213 0.620 0.371 0.060 0.483 0.3494
UoS (top-3) 0.232 0.625 0.374 0.045 0.448 0.3448
SenseGram, p=2, d=100 0.197 0.615 0.291 0.011 0.615 0.3458
AdaGram, a=0.05, d=100 0.274 0.644 0.318 0.058 0.470 0.3528
Our Method 0.215 0.610 0.335 0.072 0.560 0.3584

5.4 Conclusion

In this chapter, we analyzed word sense disambiguation and embedding methods in

NLP and proposed an efficient alternative that achieves state-of-the-art accuracy.

Our method uses a soft clustering approach to group context words, which has a

clear advantage over conventional context clustering methods by learning a more

accurate distribution of words across different meanings. In fact, it splits the global

co-occurrence distribution into multiple distributions over the senses of words. We

provide both sparse and dense representations for each sense that can accommodate

most NLP needs from word sense induction (i.e. inferring the correct sense of a word

given a query sentence) to training machine learning models using dense vector space

representations. Qualitative and quantitative evaluations show the effectiveness of

the proposed method.

Chapter 6

Intrinsic Evaluation of Word Embeddings

In this chapter, we present the results of intrinsic evaluation of different word em-
bedding algorithms. In particular, we use word similarity datasets to compare the
accuracy of embeddings. These datasets contain word pairs with their corresponding
human-assigned similarity score. The idea is that the embedding space has to reflect
these similarity scores to some degree. In other words, similar words should be spa-
tially close together while dissimilar words should be further away, which is basically
the main objective of word embeddings.

This type of evaluation is called intrinsic evaluation since the word vectors are
evaluated in an isolated way and are not used in any downstream NLP task. Nevert-
heless, it is a fundamental manner of evaluating how embeddings preserve semantics
and word similarity, and it is being used as a standard benchmark by many resear-

chers.

6.1 Corpus for training word embeddings

For the training of models, we have used English Wikipedia dump of April 20, 2018.
The set of articles in Wikipedia is considered as a good representative of the English
language since it contains a broad range of topics and vocabularies. Moreover, it has
diverse and accurate grammar and contains a wide variety of sentence structures. For
these reasons, it is often used as a generic corpus for pre-training models. We also
used this huge corpus for training different word embeddings.

Table 6.1 shows some statistics about the Wikipedia text corpus. The number
of paragraphs, sentences, tokens, and vocabulary are calculated after the preproces-
sing. Even after extensive preprocessing, there are about 7.8 million unique words in
the vocabulary even though the entire English dictionary has no more than 200,000
words. Most of these 7.8 million words are non-English words, pseudo codes or code

snippets, markup text, and many other forms of non-textual content in Wikipedia

78

79

Table 6.1: Statistics of the English Wikipedia dump (April 2018)

Element Value
Size of the original XML formatted data ~ 65GB
Size of the clean text data ~ 12GB
Articles 5,838,382
Paragraphs 36,525,012
Sentences 93,993,014
Tokens 2,222,963,243
Unique words (vocabulary size) 7,775,664
Common words with IMDB movie review dataset 87,486
Common words with IMDB with minimum 5 occurrence 75,914

pages. Removing these rare vocabularies does not affect the corpus in any way and
it will still be as good a representative of the language as it was before.

In Chapter 7 we evaluate the embeddings on downstream NLP tasks and we
use the same corpus introduced here. The same Wikipedia dump is used for both
intrinsic evaluation and also for the sentiment analysis task on IMDB movie reviews in
Section 7.2. Therefore, we limited the vocabulary of the embeddings to the common

vocabulary between Wikipedia and IMDB, which contains nearly all English words.

6.2 Cleaning and Preprocessing of the Wikipedia Corpus

The Wikipedia dump comes in XML format where all the articles are in a single
large XML file. There are many components in every page including the header,
sidebars, table of contents, notes, references, external links and the main body of
content. These parts are nicely formatted in XML and is pretty straightforward to
remove the nonessential components and extract the clean text from the articles. Our

preprocessing and cleaning steps are listed below:

1. Strip the HTML tags and extract the clean text of Wikipedia articles using the
WikiExtractor tool! [7].

2. Remove any remaining tags between “<” and “>” characters. This removes
some of the remaining markup text from the articles, though not all, for instance

from https://en.wikipedia.org/wiki/HTML.

https://github.com/attardi/wikiextractor

https://en.wikipedia.org/wiki/HTML
https://github.com/attardi/wikiextractor

80

Table 6.2: Word similarity datasets used for comparison.

Dataset Name Number of Word Pairs
WordSim Similarity (WS-SIM) [2] 203
WordSim Relatedness (WS-REL) [2] 252
WordSim-353 (WS-ALL) [48] 353
MEN [24] 3000
MC [104] 30
RG [131] 65
SimLex [58] 999
YP Verbs [171] 130
MTurk-771 [56] 771
Stanford Rare Words (RW-STN) [96] 2034

3. Remove any content between parentheses. Most of the content enclosed in
parentheses in Wikipedia are either non-English roots of words or equivalents,
non-English named entities including peoples’ names, pronunciation tips, etc.

Removing this information does not affect the content of the sentences.

4. Remove any content between braces. This removes most of the content from
code snippets, for example from https://en.wikipedia.org/wiki/C_Sharp_

(programming_language).

5. Remove links and URLs from all articles. This is done by using a simple regular

expression.
6. Use spaCy library? [62] to detect sentences and break paragraphs into sentences.

7. Tokenize text using spaCy library and lowercase all tokens.

6.3 Results on Word Similarity Datasets

We have used 10 different word similarity datasets to compare the quality of word
embeddings. These datasets and their corresponding number of word pairs are shown
in Table 6.2.

As for the word embedding algorithms, we used a variety of algorithms in the com-

parisons. For all the matrix factorization based algorithms we used first d columns in

’https://spacy.io/

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://spacy.io/

81

the U matrix as the word vectors without any eigenvector weighting techniques. The
original eigenvectors in U without weighting are shown to be good in general [89]. We
tuned all word embedding algorithms as described below. The list of word embedding

algorithms and their parameters are as follows:

1. SVD: Truncated Singular Value Decomposition on the co-occurrence matrix.

2. SVD-Sqrt: Truncated Singular Value Decomposition on the square root of the

co-occurrence matrix.

3. SVD-Log: Truncated Singular Value Decomposition on the natural logarithm

of the co-occurrence matrix.

4. SVD-PPMI [89]: Singular Value Decomposition on the Positive Point-wise
Mutual Information (PPMI) matrix.

5. SVD-SPPMI [89]: Singular Value Decomposition on the Shifted Positive

Point-wise Mutual Information (SPPMI) matrix where the shift value is —log 5.

6. GloVe [122]: For GloVe we tried 4 different values for the x,,,, parameter,
Tmae € {10,20,50,100}. We only report the results for the best setting in the

comparisons, Te, = 20.

7. Word2Vec [101]: For Word2Vec we tried both Continuous Bag-Of-Words
(CBOW) and Skip-Gram. In both cases, we tried k € {5,10} as the nega-
tive sampling parameter, resulting in four different settings and reported the

best results which was for Skip-Gram and k£ = 10.

8. FastText [19]: For FastText we tried k& € {5,10} as the negative sampling
parameter and used the default character n-gram lengths between three and

six. The best result is reported in the comparisons which is obtained by using

k = 10.

9. SVD-NS: For our proposed algorithm, SVD-NS (described in chapter 4) we
used PMI thresholds in {—6,—5,...,0} and reported & = —3 in the compari-

so1s.

82

Embedding
mm SVD-PPMI
mmm GloVe
{ mmm Word2Vec
Emm FastText
mmm SVD-NS
B EigenWord
I KUBWE

Spearman correlation

SIMLEX-999 RW-STANFORD YP-130 WS-REL MTurk-771 WS-ALL-353 MEN-TR-3k WS-SIM RG-65 MC-30

Figure 6.1: Comparison of different word embedding algorithms on 10 word similarity
datasets. Y axis shows the Spearman correlation between the ground truth similarities
and the similarities in the embedding space.

10. EigenWord: For our proposed algorithm, EigenWord (described in chapter
4), we used PMI thresholds in {—6,—5,...,0} and reported @« = —3 in the

comparisons.

11. KUBWE: For our proposed algorithm, KUBWE (described in chapter 3), we
used kernel degrees in {1,3,5,...,21} and reported p = 13 in the comparisons.

In our experiments, all the algorithms are trained on the exact same preprocessed
input text data as explained in previous sections 6.1 and 6.2. We have also used the
exact same vocabulary for all the algorithms. This will ensure a fair comparison as
the size of the training data has a great influence on the quality of embeddings. The
dimensionality of embeddings is 100 in all the results in this chapter.

Figure 6.1 shows the comparison of different word embedding algorithms on 10
word similarity datasets. The Spearman correlation between the human-assigned
similarities and the similarities in the embedded space is used as the metric to evaluate
the quality of embeddings.

Tables 6.3 and 6.4 show the evaluation of various word embedding algorithms on
10 different word similarity datasets. Numbers in the table represent the Spearman

correlation between the human-assigned similarity scores and the Cosine similarity

83

Table 6.3: Evaluation of different word embedding algorithms on five word similarity
datasets (part 1). The dimensionality of the embeddings is 100. Numbers in the table
are Spearman correlations between the human-assigned similarity scores and Cosine
similarities calculated in the embedding spaces.

MC-30 RG-65 WS-SIM WS-REL WS-ALL

SVD 0.2839 0.4418 0.5132 0.2962 0.4099
SVD-Sqrt 0.7003 0.6672 0.7417 0.5637 0.6459
SVD-Log 0.7682 0.7153 0.7332 0.589 0.6589
SVD-PPMI 0.851 0.8179 0.7343 0.6128 0.675
SVD-SPPMI 0.8487 0.817 0.7079 0.6022 0.6595
GloVe 0.7387 0.7704 0.7316 0.5528 0.617
Word2Vec 0.7606 0.7812 0.7845 0.6073 0.6851
FastText 0.8192 0.7841 0.7893 0.6611 0.7216
SVD-NS 0.855 0.789 0.7649 0.6339 0.6987
EigenWord 0.8809 0.8458 0.78 0.6832 0.7389
KUBWE 0.8375 0.8439 0.7721 0.6847 0.7224

scores calculated in the embedding spaces. As we can see from the tables, our propo-
sed algorithms perform the best in eight out of ten datasets. EigenWord algorithm
proposed in chapter 4 is the best performing embedding in MC, RG, WS-ALL, MEN,
and YP datasets, KUBWE proposed in chapter 3 works best in WS-REL and SimLex
datasets, SVD-NS explained in chapter 4 performs the best in MTurk-771 dataset,
while Word2Vec and FastText perform the best in RW-STN and WS-SIM datasets,
respectively.

Table 6.5 shows the average accuracy of different word embedding algorithms over
10 word similarity datasets. The numbers in the table show the average of Spearman
correlations over 10 datasets. As we can see from the table, our prosed algorithm,
EigenWord, performs the best by an average Spearman of 0.6871 followed by KUBWE
at 0.6712 and followed by SVD-NS at 0.6611, while the top competitor is SVD-PPMI
at 0.6484. It is noteworthy to mention that FastText performs better than Word2Vec
and GloVe on most datasets with an average score of 0.6414.

Our proposed algorithm, EigenWord, proved the best algorithm on word similarity
task and it is better than the state-of-the-art by a margin of about 4% which is very

significant.

84

Table 6.4: Evaluation of different word embedding algorithms on five word similarity
datasets (part 2). The dimensionality of the embeddings is 100. Numbers in the
table are Spearman correlations between the ground truth similarities and Cosine
similarities in the embedding spaces obtained from algorithms.

MEN MTurk-771 SimLex YP Verbs RW-STN

SVD 0.3989 0.2608 0.2154 0.213 0.2876
SVD-Sqrt 0.6616 0.5575 0.2999 0.3569 0.4797
SVD-Log 0.7232 0.6394 0.3519 0.4415 0.4831
SVD-PPMI 0.7751 0.6375 0.3746 0.5324 0.473
SVD-SPPMI 0.7646 0.62 0.3577 0.5356 0.45

GloVe 0.7551 0.6594 0.3628 0.5385 0.4587
Word2Vec 0.7384 0.6318 0.358 0.485 0.519
FastText 0.744 0.6214 0.3408 0.4751 0.457
SVD-NS 0.7729 0.6648 0.3644 0.5744 0.4928
EigenWord 0.7811 0.6633 0.4017 0.6041 0.4917
KUBWE 0.7749 0.6471 0.4059 0.5165 0.5071

Table 6.5: Overall evaluation of different word embedding algorithms on 10 word
similarity datasets. The dimensionality of the embeddings is 100. Numbers in the
table show the average Spearman correlations over 10 datasets between the human-
assigned similarity scores and Cosine similarities calculated in the embedding spaces.

Embedding Average Accuracy

SVD 0.3321
SVD-Sqrt 0.5674
SVD-Log 0.6104
SVD-PPMI 0.6484
SVD-SPPMI 0.6363
GloVe 0.6185
Word2Vec 0.6351
FastText 0.6414
SVD-NS 0.6611
EigenWord 0.6871

KUBWE 0.6712

Chapter 7

Extrinsic Evaluation: Experiments with Downstream NLP

Applications

In this chapter, we present the results of applying our proposed algorithms on down-
stream Natural Language Processing (NLP) tasks and compare them with existing
approaches. We have picked two standard tasks for this purpose: 1) Emotion recog-
nition from tweets, and 2) Sentiment analysis on IMDB movie review dataset.

This type of evaluation is often referred to as extrinsic evaluation of embeddings
since it is an indirect way of measuring the quality of word embeddings. In fact,
we associate the accuracy that we get on the underlying NLP task to the quality of
embedding, so, the higher the accuracy we obtain, the better the embedding. We
compare the quality of different word embeddings on the task by employing the same

classifier and fixing all other experimental settings.

7.1 Emotion Intensity Recognition from Tweets

Emotion recognition is one of the challenging tasks in natural language processing
which has attracted a lot of attention recently. The dataset we use in this section
was released as part of SemEval 2018 competition, task 1: Affect In Tweets (AIT-
2018) [106]. The AIT-2018 considers four fundamental emotions for the most parts

including: anger, fear, joy, and sadness. This task consists of four subtasks:

1. El-reg (emotion intensity regression): Given a tweet and an emotion E, deter-
mine the intensity of emotion E that best represents the mental state of the

tweeter. The target value is a continuous number between 0 (lowest £) and 1
(highest E).

2. El-oc (emotion intensity ordinal classification): Given a tweet and an emotion

E, classify the tweet into one of four ordinal classes of intensity of emotion F

85

86

that best represents the mental state of the tweeter. The four ordinal classes
are:
e 0: no E can be inferred
e 1: low amount of E can be inferred
e 2: moderate amount of E can be inferred
e 3: high amount of E can be inferred
3. V-reg (sentiment intensity regression): Given a tweet, determine the intensity

of sentiment that best represents the mental state of the tweeter. The target

value is a continuous number between 0 (most negative) and 1 (most positive).

4. V-oc (sentiment ordinal classification): Given a tweet, classify it into one of
seven ordinal classes of intensity that best represents the mental state of the
tweeter:

» 3: very positive emotional state can be inferred

» 2: moderately positive emotional state can be inferred
o 1: slightly positive emotional state can be inferred

e 0: neutral or mixed emotional state can be inferred

o -1: slightly negative emotional state can be inferred

o -2: moderately negative emotional state can be inferred
« -3: very negative emotional state can be inferred

5. E-c (emotion classification): Given a tweet, classify it as ‘neutral or no emotion’
or as one, or more, of eleven emotions that best represent the mental state of

the tweeter. The 11 emotions include anger, anticipation, disgust, fear, joy,

love, optimism, pessimism, sadness, surprise, and trust.

All the subtasks are somewhat related both in terms of their data and the pre-
diction task itself. They are all based on Twitter data which comes with its own
challenges including inaccurate grammar, typos and shortened words, emojis and
hashtags, sarcastic opinions, etc. Considering the similarity of subtasks we only re-

port the results for the main subtask El-reg which is emotion intensity recognition.

87

Table 7.1: SemEval 2018 — Task 1 — El-reg dataset information

Emotion Number of Number of Number of
train tweets validation tweets test tweets
Anger 1701 388 17939
Fear 2252 389 17923
Joy 1616 290 18042
Sadness 1533 397 17912

Table 7.2: DIstant Supervision Corpus (DISC) information

Element Count
Tweets 21,466,106
Tokens 301,221,506
Unique words (vocabulary size) 1,489,453
Common words with El-reg 15,484
Common words with El-reg with minimum 5 occurrence 14,213

7.1.1 Emotion Intensity Recognition (EI-reg) Dataset

As mentioned before, this task considers four emotions: anger, fear, joy, and sadness.
The data for each emotion is split into train, validation, and test sets by the compe-
tition organizers. Table 7.1 shows the number of tweets for the train, validation and

test sets of each emotion.

7.1.2 Corpus for training word and tweet embeddings

The competition data itself is too small to train any kind of meaningful embedding on
it either for word-level or document-level embeddings. For this reason, competition
organizers also released a DIstant Supervision Corpus (DISC) containing approxima-
tely 100 million tweet IDs. This distant supervision corpus was collected by querying
the Twitter API for tweets that included emotion-related words such as “angry”, “an-
noyed”, “panic”, “happy”, “scared”, “surprised”, etc. However, we could not collect
all the 100 million tweets because of the limitations on the number of tweets we could
pull using the API. We managed to get a subset of the dataset containing 21,466,106
tweets and used it to train various embeddings. All word embedding algorithms as
well as Doc2Vec [82] and Doc2VecC [30] algorithms in this section are trained on this

corpus. Table 7.2 shows some statistics about the DISC dataset after cleaning and

preprocessing.

88
7.1.3 Cleaning and Preprocessing of ElI-reg Dataset and DISC Corpus

In order to achieve the highest similarity, consistency, and common vocabulary, we
applied the exact same cleaning and preprocessing steps to both datasets. This
ensures that we obtain the most meaningful embeddings and representations from
the large corpus that helps solving the task the most.

Our preprocessing steps are listed below:

1. Lowercase all tweets.

2. Convert emojis to a canonical form (i.e. demojize) using Emoji library® [74]. Ex-
amples of standard emojis include “emoji_face with tears of joy” or “emoji-
_loudly_crying face”. This is particularly useful for separating emojis in a
tweet since users often use multiple emojis consecutively with no space in bet-

weell.

3. Remove hashtags. Although hashtags often convey a lot of meaning about
the topic in a tweet, they are not parts of the sentences and can come in any
arbitrary order or position in text. Moreover, they are mostly made-up words
or phrases and are often misused/overused. Therefore, we removed hashtags

for simplicity.

PR PR RPN

4. Remove HTML character codes such as “&”, “"”, “'”, “£”,
“<”, “>”, ete.

5. Remove user IDs and mentions from tweets (i.e. starting with @).
6. Remove links and URLs from tweets.

7. Find and fix elongated words. If any character is repeated more than two
times, we replace the repeated character with exactly two occurrences of the

same character. For instance, we replace “gooooood” with “good”.

8. Generate a list all possible ways that emotion-related words can be written
by repeating any of their characters and then standardize them. For instance,

the acronym “rofl” (rolling on floor laughing) can be written as “roofl”; “rofll”,

https://github.com/carpedm20/emoji/

https://github.com/carpedm20/emoji/

89

“rrofl”, etc. and we standardize them as “rofl”. Or the word “love” can be
written as “luv”, “lovee”, “lovve”, 'lovvee”, etc. Therefore, we compiled a list
of approximately 50 emotion related words and generated all possible combina-

tions of mistakes and standardized them.

9. Replace abbreviated words with their corresponding complete word. For in-
stance, we replace “sry” with “sorry”, “bday” with “birthday”, “xmas” with
“christmass”, “thx” with “thanks”, “tbh” with “to be honest”, “there’s been”

bR A

with “there has been”, “we’d” with “we would”, “doesn’t” with “does not”, and

so on. We compiled a list of 104 such abbreviations and standardized them.

10. Remove all special characters.

After applying all the preprocessing steps above, we lemmatized tweets using
WordNetLemmatizer in NLTK library? [94] and tokenized tweets using spaCy li-
brary® [62].

7.1.4 Results of Traditional Methods and Document Embeddings

In this section, we present the results of methods that encode a document, tweet in this
case, into a single vector. This includes traditional algorithms such as Bag-Of-Words
(BOW) [133] and Term Frequency Inverse Document Frequency (TF-IDF) [145] and
also some modern document embedding approaches such as Doc2Vec [82]. In par-
ticular, we have used bag of unigrams, bag of unigrams and bigrams, TFIDF of
unigrams, TFIDF of unigrams and bigrams, Doc2Vec, and Doc2VecC [30]. For the
Doc2Vec algorithm we used the implementation available in GenSim library* [126].
For the Doc2VecC we used the original implementation by the authors®. Doc2Vec
and Doc2VecC algorithms in this section are trained on the DISC corpus explained
in section 7.1.2 with embedding dimensionality of 100.

Each of the aforementioned methods provides a single vector for each tweet which
we use as input features for those tweets. We then use a classification /regression algo-

rithm to learn the task (i.e. mapping between the input features and the ground-truth

’https://www.nltk.org/

3https://spacy.io/
‘https://github.com/RaRe-Technologies/gensim
Shttps://github.com/mchen24/iclr2017

https://www.nltk.org/
https://spacy.io/
https://github.com/RaRe-Technologies/gensim
https://github.com/mchen24/iclr2017

90

Table 7.3: Comparison of different feature extraction methods and different regression
algorithms on “anger” emotion of El-reg dataset. For each feature extraction method,
the first row shows the mean and standard deviation of Pearson correlation (%)
between the predicted emotion intensity values and the ground-truth intensity values,
and the second row shows the p-value of t-test against the best performing feature
extraction using the same regression algorithm.

RF SVR KNN LASSO
i 60.6 £ 2.909 52.68 + 3.91 3083 + 544 43.58 + 18.0
BOW (unigram) 0.0884 le-18 le-53 1e-9
)) 60.77 + 2.95 59.51 & 2.89 292 + 4.87 43.72 + 18.08
BOW (uni + bi) 0.1447 0.244 1e-59 1e-9
IFIDF (unigram) 58.7;153.21 60.2 + 3.05 50.511ej;13.21 60.05 + 3.26
i 5942+ 308 59.76 + 259 49.03 + 3.04 59.5 + 3.45
TFIDF (uni + bi) 0.0006 0.4385 le-27 0.4165
Doca Ve 3269 + 4.0 529+ 256 19.57 + 4.81 54.94 + 3.25
le-62 1e-23 le-71 le-12
61.69 + 3.28 57.41 &+ 3.05 57.4 + 2.51 58.13 & 2.89
Doc2VecC - le-5 i 0.0024

label). For the final regression task, we used Random Forests (RF) regression [22],
Support Vector Regression (SVR) [41], K-Nearest Neighbors (KNN) regression [3],
and Least Absolute Shrinkage and Selection Operator (LASSO) regression [152]. We
used 50 times repeated 5-fold cross-validation for all the experiments below and re-
port the mean and standard deviation of accuracies to makes sure that results are
fair and unbiased. Moreover, we use t-test as a statistical significance test to compare

different embedding algorithms.

Tables 7.3, 7.4, 7.5, and 7.6 show the results of different regression algorithms app-
lied on different feature spaces for emotions anger, fear, joy, and sadness, respectively.
Numbers in the tables show the mean and standard deviation of Pearson correlation
between the predicted emotion intensity and the ground-truth emotion intensity, as
well as the p-value of t-test against the best performing feature extraction method.
T-test in done separately for each column (i.e. column-wise), in order to compare
the statistical significance for the feature extraction methods. Mean and standard
deviations of Pearson correlations are converted into percentages (i.e. multiplied by

100) to save space.

As we can see from Table 7.3, random forests and k-nearest neighbors regression

91

Table 7.4: Comparison of different feature extraction methods and different regression
algorithms on “fear” emotion of El-reg dataset. For each feature extraction method,
the first row shows the mean and standard deviation of Pearson correlation (%)
between the predicted emotion intensity values and the ground-truth intensity values,
and the second row shows the p-value of t-test against the best performing feature
extraction using the same regression algorithm.

RF SVR KNN LASSO
i 61.05 £ 3.24 55.73 + 3.46 3421 + 4.69 56.73 + 4.02
BOW (unigram) le-5 le-34 le-53 le-24
X) 61.15 + 3.21 621 +34 30.18 +4.22 56.61 + 4.0
BOW (uni + bi) 0.0001 le-13 le-61 1e-25
X 59.80 + 3.1 66.26 + 2.69 53.1 + 2.82 66.34 + 2.92
TFIDF (unigram) 1e-9 0.094 1e-20 -
) . 59.86 +£3.04 67.14 4+ 2.52 49.09 + 4.05 65.54 + 2.93
TFIDF (uni + bi) le-9 - le-27 0.1739
Doca Ve 202 + 4.66 47.01 +£4.09 1652 + 4.33 48.31 + 3.32
le-67 le-50 le-76 le-49
DocoVeeC 63.61 + 2.76 59.02 + 3.33 60.41 + 3.5 60.28 + 3.12
- le-24 - le-16

methods work best with features extracted from Doc2VecC for anger emotion, while
support vector regression and LASSO work best with unigram TF-IDF features. The
maximum achieved correlation for the anger emotion is by using random forests on
Doc2VecC features which is 61.69%. We can say that Doc2VecC has the best overall

performance on anger emotion.

From Table 7.4 we can observe that similar to anger, random forests and k-nearest
neighbors regression methods work best with features extracted from Doc2VecC on
fear emotion, while support vector regression and LASSO work best with TF-IDF
features. And the maximum achieved correlation for the fear emotion is by using
support vector regression on unigram and bigram TF-IDF features which is 67.14%.
For the fear emotion, TF-IDF is the winner and has the best overall performance.

As we can see from 7.5, random forest works best with Doc2VecC features on joy
emotion while support vector regression, k-nearest neighbors, and LASSO work best
with TF-IDF features. For the joy emotion, TF-IDF is the clear winner with best
overall performance and the maximum achieved correlation is 65.87%.

Lastly, from Table 7.6 we can observe that for the sadness emotion Doc2VecC

either has the best performance or is very close to the best performance (statistically

92

Table 7.5: Comparison of different feature extraction methods and different regression
algorithms on “joy” emotion of El-reg dataset. For each feature extraction method,
the first row shows the mean and standard deviation of Pearson correlation (%)
between the predicted emotion intensity values and the ground-truth intensity values,
and the second row shows the p-value of t-test against the best performing feature
extraction using the same regression algorithm.

RF SVR KNN LASSO
. 57.05 £ 3.6 5506 + 4.01 3432 £ 471 _ 52.1 + 3.69
BOW (unigram) 0.1145 1e-25 le-49 1e-27
X . 56.51 + 3.61 6241 +3.79 3223 + 543 5255 & 3.79
BOW (uni + bi) 0.0211 le-6 le-48 1e-25
. 56.29 + 3.59 64.57 + 3.21 57.03 + 3.09 61.77 + 2.76
TFIDF (unigram) 0.0092 0.0344 - -
. . 56.07+371 65.87 +2.83 5498 +323 60.89 + 2.9
TFIDF (uni + bi) 0.0046 - 0.0016 0.1241
Doc2Vec 93.91 + 4.63 39.88 + 4.64 15.06 + 6.36 42.78 + 4.26
le-64 le-56 le-64 le-46
58.2 + 3.62 5773 +3.23 56.07 &+ 3.76 58.21 + 3.64
Doc2VecC - le-24 0.1636 le-7

not significant) regardless of the regression method. The maximum correlation in this
emotion is 63.03% and is achieved by LASSO on Doc2VecC features.

From all the experiments on document-level feature extraction, we can conclude
that TF-IDF is a very powerful technique and for that reason it is always used as a
strong baseline in many natural language processing tasks. From the modern docu-
ment embedding approaches, Doc2VecC has the best accuracy and its performance is
comparable to TF-IDF. We should mention that Doc2Vec performed poorly compared

to other approaches in all emotions.

7.1.5 Results of Word Embedding Based Algorithms

In this section, we present the results of different word embeddings being used in a
recurrent neural network. We have used a Long Short-Term Memory (LSTM) [61]
network as the learning method. We have used the same neural network with the
exact same architecture and hyper-parameters for all the embeddings to make sure
we have a fair comparison.

We did not do exhaustive architecture and hyper-parameter search for the LSTM

as it was not the intent of the experiment. However, we followed common best

93

Table 7.6: Comparison of different feature extraction methods and different regres-
sion algorithms on “sadness” emotion of El-reg dataset. For each feature extraction
method, the first row shows the mean and standard deviation of Pearson correlation
(%) between the predicted emotion intensity values and the ground-truth intensity
values, and the second row shows the p-value of t-test against the best performing
feature extraction using the same regression algorithm.

RF SVR KNN LASSO
. 61.02 £ 2.60 5155 + 3.62 3444 + 535 60.56 + 3.1
BOW (unigram) 0.51 1e-30 le-42 0.0001
X . 61.39 4+ 2.87 6212429 2501 +£591 60.19 + 3.07
BOW (uni + bi) - 0.6157 le-54 le-6
) 60.6 + 3.0 50.3 + 312 5354 4+ 2.87 62.26 & 2.89
TFIDF (unigram) 0.1831 le-6 0.006 0.1761
) 6021 £292 62.42 + 2.96 4838 + 3.55 61.24 + 3.11
TFIDF (uni + bi) 0.0435 - le-17 0.0032
Doca Ve 34.45 + 4.97 50.80 & 3.07 23.33 + 4.66 50.81 + 2.81
le-59 le-35 le-63 le-39
61.02 + 3.06 624 + 237 55.2 + 3.05 63.03 + 2.82
Doc2VecC 0.5388 0.9684 - -

practices in applying recurrent neural networks and after trying tens of different
settings, we used the architecture described in Table 7.7. We also tried different
regularization methods, dropout [147, 164], batch normalization [66, 33], bidirectional
LSTM [54] and attention-based recurrent neural networks [166], but they did not show

a significant difference on this task.

As for the word embedding algorithms, similar to the intrinsic evaluation we used
a variety of algorithms in the comparisons. We used the exact same algorithms as
listed in section 6.3. We tuned all word embedding algorithms with parameter ranges
as described in section 6.3 and used the best settings for each algorithms. The best
settings for the algorithms were almost identical to the ones in chapter 6 with the

exception of FastText where k = 5 for negative sampling was better for tweet data.

Table 7.8 shows the results of different word embedding algorithms being used in
an LSTM neural network to predict emotion intensity for the El-reg task. Numbers
in the table show the mean and standard deviation of Pearson correlation between
the predicted emotion intensity and the ground-truth emotion intensity, as well as
the p-value of t-test against the best performing word embedding. T-test in done

separately for each emotion (i.e. column-wise), in order to compare the statistical

94

Table 7.7: The architecture and hyper-parameters of the LSTM neural network used
for the El-reg task.

Element Size /Info
Layers
LSTM 64
Fully Connected 32
Fully Connected 32
Fully Connected (prediction layer) 1
Optimizer Adam [75]
Loss Mean Squared Error (MSE)
Batch size 128
Epochs 80
Validation ratio 15%
Early stopping patience 10

significance for the embedding methods. Mean and standard deviations of Pearson
correlations are converted into percentages (i.e. multiplied by 100) to save space.
The size of embedding vectors is d = 100 in all cases. Experimenting with higher
dimensionality up to d =~ 300 improves the accuracy consistently for all methods.
However, due to the limited number of datapoints in El-reg dataset and in order to
avoid over-fitting of the LSTM, we used d = 100 and only report the results of that
setting.

As we can see from the Table 7.8, our proposed algorithms work best in all emoti-
ons and are significantly better than Word2Vec and GloVe and others. For the anger
emotion, KUBWE is the best performing one with 69.34% Pearson correlation. For
the fear and sadness emotions, SVD-NS is the best performing one with 72.51% and
71.8% Pearson correlations, respectively. Finally, for the joy emotion, EigenWord is

the best performing method with 68.19% Pearson correlation.

Please note that FastText also works better than Word2Vec and GloVe since it
considers the character n-grams as well when constructing the vector space. Another
important point to mention is that word embedding based methods improve the
accuracy on the underlying NLP task significantly. For instance, the average of best
accuracies over all emotions achieved by traditional methods (e.g. BOW and TF-IDF)
and document embedding methods (e.g. Doc2Vec and Doc2VecC) is approximately
64.43% while using the word embedding features in LSTM we achieved an average of

95

Table 7.8: Comparison of different word embedding algorithms used in the LSTM
neural network for emotion intensity recognition. For each embedding method, the
first row shows the mean and standard deviation of Pearson correlation (%) between
the predicted emotion intensity values and the ground-truth intensity values, and the
second row shows the p-value of t-test against the best performing embedding on the
same emotion.

Anger Fear Joy Sadness
SVD 3797 £ 43 4054 £ 532 50390 + 4.64 3757 + 5.31
le-67 le-61 le-42 1e-65
53.73 + 3.66 60.75 + 3.48 57.7+3.92 57.05 + 2.78
SVD-Sqrt le-45 1e-36 1e-29 le-51
65.03 &+ 3.04 6944252 6535+ 351 69.33 + 2.41
SVD-Log le-12 1e-9 le-6 le-7
65.60 &+ 2.48 71.31 +2.35 64.21 + 3.76 70.51 + 2.06
SVD-PPMI le-11 0.0137 le-8 0.0021
60.74 &+ 2.61 67.39 + 2.77 57.80 + 3.82 65.58 + 2.55
SVD-SPPMI le-31 le-16 1e-29 le-24
GloV 66.64 +31 7024266 6563+34 69.85+ 2.75
ove 1e-6 le-5 le-5 0.0001
67.32 4+ 2.66 7144 211 65.69 + 3.53 70.49 + 2.29
Word2Vec 0.0001 0.0157 0.0001 0.0032
ot Tt 67.96 &+ 246 7153 + 247 66.49 + 3.48 70.68 + 2.07
0.005 0.0468 0.006 0.0077
68.31 + 2.64 72.51 + 2.42 67.94 + 277 71.8 + 2.04
SVD-NS 0.0421 - 0.645 -
BivenWord 68.18 + 2.82 71.65 +2.49 68.19 + 2.48 71.07 + 2.06
g 0.0279 0.0819 - 0.0789
69.34 + 2.35 7173+ 242 6721 +3.39 71.46 + 2.42
KUBWE - 0.1105 0.1037 0.4527

70.46% over all emotions which is about 6% better.

We should also mention that 70.46% on average is not state-of-the-art on the EI-
reg task and the winning teams have achieved accuracies as high as 76%. However,
here we did not optimize everything in order to achieve the highest possible accuracy
since the intention was just to compare the word embeddings. For example, for the joy
emotion Convolutional Neural Networks (CNN) work better than LSTM, but we used
the same LSTM network for consistency. Moreover, the winning teams have done a

lot of preprocessing and feature extraction from emojis, hashtags, etc. Additionally, a

96

lot of teams have used other external tools such as AffectiveTweets® in order to extract
lexical features from tweets. Furthermore, concatenating different types of features
and performing ensemble learning as well as using higher dimensionality embeddings
improve the accuracy on this task. However, we only used the word embedding
features since the main point of the experiment was to compare the quality of word

embeddings in a downstream NLP task.

7.2 Sentiment Analysis of IMDB Movie Reviews

Sentiment analysis is one of the core and fundamental tasks in natural language
processing. It is being used as a standard task to compare various classifiers, neu-
ral networks, attention-based methods, embeddings, etc. Internet Movie DataBase
(IMDB) movie reviews [98] is the most well-known dataset for sentiment analysis
and has been used as a standard benchmark by many researchers. In this binary
classification task, the algorithm has to classify movie reviews into either positive or
negative category based on its sentiment.

In this section, we use IMDB movie reviews dataset and train a neural network
using different pre-trained embeddings to do the sentiment analysis. We use the
same neural network and associate the accuracy of sentiment analysis with the word

embeddings being used.

7.2.1 IMDB Movie Reviews Dataset

The IMDB dataset [98] contains 100,000 movie reviews, 50,000 of which are labeled
into positive /negative. The other 50,000 unlabeled instances can be used for unsuper-
vised training of algorithms. From the 50,000 labeled reviews, 25,000 are for training
and 25,000 for testing. Both training and testing sets are perfectly balanced with
12,500 positive and 12,500 negative reviews. Table 7.9 shows the basic information
about this dataset and the distribution of labels in the train and test sets.

There may be more than one review per movie with a maximum limitation of 30
reviews per movie. Since multiple reviews for the same movie can be correlated, the

dataset is prepared in such a way that all the reviews for the same movie are either

Shttps://github.com/felipebravom/AffectiveTweets

https://github.com/felipebravom/AffectiveTweets

97

Table 7.9: IMDB movie reviews dataset information

Positive Negative Unlabeled | Total
Train 12,500 12,500 - 25,000
Test 12,500 12,500 - 25,000
Unsupervised (Train) - - 50,000 50,000
Total 25,000 25,000 50,000 100,000

in the training or the test set with no overlap. Consequently, the train and test sets
cannot be mixed together and used for cross-validation. In our experiments, we also

made sure that we leave the test data untouched at all times during training.

7.2.2 Results of Traditional Methods and Document Embeddings

In this section, we present the results of methods that encode a document, mo-
vie review in this case, into a single vector. This includes traditional algorithms
such as Bag-Of-Words (BOW) [133] and Term Frequency Inverse Document Fre-
quency (TF-IDF) [145] and also some modern document embedding approaches such
as Doc2Vec [82]. We have used the same algorithms as described in section 7.1.4 that
include bag of unigrams, bag of unigrams and bigrams, TFIDF of unigrams, TFIDF
of unigrams and bigrams, Doc2Vec, and Doc2VecC [30]. For the Doc2Vec algorithm
we used the implementation available in GenSim library” [126]. For the Doc2VecC
we used the original implementation by the authors®. Doc2Vec and Doc2VecC al-
gorithms in this section are trained on all the 100,000 reviews of the IMDB dataset
with the embedding dimensionality of 100.

Each of the aforementioned methods provides a single vector for each movie re-
view which is then used as input features for those reviews. We then train a classifier
to classify the sentiment and learn the mapping between the input features and
the ground-truth label. As for the classifiers, we used Random Forests (RF) clas-
sification [22], Support Vector Machines (SVM) [35] with linear kernel, K-Nearest
Neighbors (KNN) classification [34], and Naive Bayes (NB) classification [128]. Naive
Bayes classifiers have different variants suitable for different types of input. We used

Gaussian Naive Bayes algorithm [68] for the Doc2Vec and Doc2VecC embeddings

"https://github.com/RaRe-Technologies/gensim
Shttps://github.com/mchen24/iclr2017

https://github.com/RaRe-Technologies/gensim
https://github.com/mchen24/iclr2017

98

which consist of continuous-valued features and contain both positive and negative
numbers. For the BOW and TF-IDF feature vectors we used Multinomial Naive
Bayes algorithm [73] which has been proven to work well on count vectors and for

text classification tasks.

Since this is a binary classification task, we use probabilistic output predictions
from different classifiers and take into account various evaluation metrics including
accuracy (i.e. Correct Classification Rate), Area Under the Curve (AUC), Precision,
Recall, and F'1 measure. Some algorithms, such as KNN or Naive Bayes can inherently
provide probabilistic output while some others cannot. For instance, the linear SVM
from LIBLINEAR library that we used [46] does not support probabilistic predictions.
However, certain probability calibration techniques can be used to turn the output of
any classifier into a probabilistic output [176, 177, 116] such as the Platt’s algorithm
for SVMs [125].

We did not use cross-validation on this task due to having multiple reviews for
many movies which are most often correlated. Instead, we used the train-test ap-
proach where the test data is always the same, but we randomly sampled 80% of
the training data in each run. We repeated this train-test validation 25 times for all
the experiments below and report the mean and standard deviation of accuracies to
makes sure that results are fair and unbiased. Moreover, we use t-test as a statistical

significance test to compare different embedding algorithms.

Tables 7.10, 7.11, and 7.12 show the results of different classification algorithms
applied on different feature spaces evaluated by accuracy, Area Under the Curve
(AUC), and F1 measure, respectively. Numbers in the tables show the mean and
standard deviation of evaluation metric, as well as the p-value of t-test against the best
performing feature extraction method. T-test in done separately for each column (i.e.
column-wise), in order to compare the statistical significance for the feature extraction
methods. Mean and standard deviations of evaluation metrics are converted into

percentages (i.e. multiplied by 100) to save space.

As we can see from these tables, random forests and k-nearest neighbors classifi-
cation methods work best with features extracted from Doc2VecC algorithm, while

support vector machines and naive Bayes work best with TF-IDF features. Adding

99

Table 7.10: Comparison of accuracies for different feature extraction methods and
different classification algorithms on the IMDB dataset. For each feature extraction
method, the first row shows the mean and standard deviation of accuracy, and the
second row shows the p-value of t-test against the best performing feature extraction
using the same classification algorithm.

RF SVM NB KNN
. 81.39 £ 025 85.35 + 0.11 81.17 + 013 64.54 + 0.17

BOW (unigram) 1e-30 le-62 1e-50 le-84
.. 81.91 + 0.23 88.24 + 0.08 8541 + 0.12 62.74 + 0.41

BOW (uni + bi) 1e-22 1e-29 le-17 1e-72
. 80.41 + 0.22 87.11 +0.09 8274 +0.26 69.49 + 0.21

TFIDF (unigram) le-42 1e-50 1e-39 1e-73
... 80974034 88.77 + 0.08 86.35 + 0.35 (9.7 + 0.82

TFIDF (uni + bi) 1630)) lo.48
Doc2Vec 7617 + 013 81.68 + 0.06 62.0 + 0.54 70.07 + 0.23

le-70 le-84 le-70 le-71
DocaVecC 82.83 + 0.12 848+ 005 752+ 0.08 80.6 + 0.15

- 1e-73 1e-66 i

bigrams generally improves the results since it helps in identifying phrases, collocati-
ons, and sometimes disambiguation. The maximum accuracy and AUC are achieved
by using support vector machines on TF-IDF of unigrams and bigrams features which
are 88.77% (Table 7.10) and 95.14% (Table 7.11), respectively. The results of SVM
on TF-IDF features is significantly better than all other methods.

From all the experiments on document-level feature extraction, we can conclude
that TF-IDF is a very powerful technique and for that reason it is often used as a
strong baseline in many natural language processing tasks. Specially for the senti-
ment analysis, linear SVM on TF-IDF is the best approach to try first. From the
modern document embedding approaches, Doc2VecC has the best accuracy, though

its performance is not comparable to that of TF-IDF.

Figure 7.1 illustrates the Receiver Operating Characteristic (ROC) diagram of the
four classifiers on all six input feature spaces. For the support vector machines and
random forests where the performances on some feature spaces are similar, a portion
of the diagram is zoomed to make the comparison clearer. The ROC diagrams also
confirm our findings explained before. By comparing the four ROC plots we can
clearly see that SVM and Naive Bayes work better than random forests and KNN for
sentiment analysis task. Also, we can see that TF-IDF and Doc2VecC are the best

100

Table 7.11: Comparison of AUC values for different feature extraction methods and
different classification algorithms on the IMDB dataset. For each feature extraction
method, the first row shows the mean and standard deviation of AUC, and the second
row shows the p-value of t-test against the best performing feature extraction using
the same classification algorithm.

RF SVM NB KNN
. 89.61 £ 0.16 92.5 £ 0.09 89.04 + 0.08 70.47 + 0.25

BOW (unigram) le-34 1e-65 1e-78 1e-83
L 89.97 + 0.22 9459 + 0.04 924 + 0.07 68.25 + 0.53

BOW (uni + bi) le-21 le-48 le-58 1e-70
. 88.50 + 0.17 94.15 + 0.04 9158 + 0.07 76.27 + 0.24

TFIDF (unigram) le-45 le-58 1e-66 1e-75
. 89.094+ 028 95.14 + 0.02 94.33 & 0.06 77.24 + 0.5

TFIDF (uni + bi) le.39)) le.59
Doc2Vec 8419 + 0.11 89.01 + 0.03 74.08 + 0.77 T7.52 + 0.27

le-75 1e-98 1e-63 le-71
Doc2VeeC 90.72 + 0.07 92.1 +0.02 83.0 + 0.08 88.28 + 0.06

- 1e-89 1e-93 i

representations for the input data in this task.

7.2.3 Results of Word Embedding Based Algorithms

In this section, we present the results of different word embeddings being used in a
neural network for sentiment analysis. We have used a complex architecture which
consists of a mixture of Convolutional Neural Networks (CNN) [78] and Long Short-
Term Memory (LSTM) [61] networks. We have used the same neural network with
the exact same architecture and hyper-parameters for all the embeddings to make
sure we have a fair comparison.

We did not do exhaustive architecture and hyper-parameter search for the network
as it was not the intent of the experiment. However, we followed common best
practices in applying convolutional and recurrent neural networks and after trying
tens of different settings, we used the architecture described in Table 7.13. We also
tried bidirectional LSTM [54] networks, but it did not show a significant difference
on this task. However, unlike the emotion recognition task explained in section 7.1,
attention-based recurrent neural networks [166] improved the results on sentiment
analysis and therefore we used the attention-based network in the experiments of this

section.

101

Table 7.12: Comparison of F1 measures for different feature extraction methods and
different classification algorithms on the IMDB dataset. For each feature extraction
method, the first row shows the mean and standard deviation of F1 measure, and the
second row shows the p-value of t-test against the best performing feature extraction
using the same classification algorithm.

RF SVM NB KNN
. 81.38 + 0.25 85.35 £ 0.11 81.09 + 0.13 64.34 £ 0.19

BOW (unigram) 1e-30 le-62 le-49 1e-82
) . 81.91 + 0.23 88.24 + 0.08 85.39 + 0.13 62.41 + 0.52

BOW (uni + bi) 1e-22 1e-29 le-16 le-68
) 80.4 4+ 0.22 87.11 + 0.09 82.66 + 0.28 69.45 + 0.23

TFIDF (unigram) le-42 1e-50 le-38 le-72
i . 8097+ 034 88.77 + 0.08 86.31 + 0.36 69.27 + 1.03

TFIDF (uni + bi) 1630)) lodd
Doc2Vec 76.16 + 0.13 81.68 + 0.06 60.33 + 0.61 69.95 + 0.25

le-70 le-84 le-70 le-70
DocaVecC 82.83 + 0.12 848 + 0.05 75.19 + 0.08 80.6 + 0.15

- 1e-73 1e-65 -

During the experiments, we found out that LSTM networks alone do not work well
on very long sequences. In the IMDB dataset, the length of the reviews varies from 8
to 2371 words with an average of 263 words per review. One of the reasons that we
added the convolutional and pooling layers was to shorten the sequence lengths before
feeding them to the recurrent network. Convolutional layers have limited field-of-view
and analyze the sentences in short sections and therefore learn n-gram-like features
from the input sequence. And the max pooling layers identify and select the most
important phrases or n-grams to be processed. We also tried dilated convolutional
layers [174, 95] and convolutional layer with different strides instead of pooling, but
the standard convolution with max pooling turned out to be the most effective in this

task.

For the word embedding based experiments in this section, we used the English
Wikipedia dump of April 2018 as described in section 6.1 with the same preprocessing
steps explained in section 6.2. In fact, we used the exact same pre-trained embeddings
that we obtained in chapter 6 and did not tune them for the IMDB task. Therefore,
the list of algorithms and their best parameter settings are the same as the ones listed

in section 6.3.

Table 7.14 shows the results of different word embedding algorithms being used

102

Table 7.13: The architecture and hyper-parameters of the neural network used for
the IMDB sentiment analysis task.

Element Size /Info
Layers
Convolution 1D (kernel=3) 64
Max pooling 1D pool size=2
Convolution 1D (kernel=3) 64
Max pooling 1D pool size=2
Attention-based LSTM [166] 64
Fully Connected 64
Fully Connected 32
Fully Connected (prediction layer) 1
Optimizer Adam [75]
Loss Mean Squared Error (MSE)
Batch size Dynamic between 256 and 512
Epochs 100
Validation ratio 15%
Early stopping patience 10

in our CNN-LSTM neural network (described in Table 7.13) to predict the sentiment
for the IMDB movie reviews task. We used the same 25 times repeated train-test
evaluation strategy explained in section 7.2.2. Numbers in the table show the mean
and standard deviation of accuracy, AUC, and F1 measure, as well as the p-value of
t-test against the best performing word embedding. T-test in done separately for each
evaluation metric (i.e. column-wise), in order to compare the statistical significance
for the embedding methods. Mean and standard deviations of evaluation metrics
are converted into percentages (i.e. multiplied by 100) to save space. The size of
embedding vectors is d = 100 in all cases.

As we can see from the Table 7.14, our proposed algorithms work best with regard
to all evaluation metrics and are significantly better than Word2Vec, GloVe, FastText
and others. The proposed algorithm KUBWE with 88.75% accuracy is the best
performing one, followed by SVD-NS with 88.66% accuracy followed by EigenWord
with 88.53% accuracy.

Please note that FastText also works better than Word2Vec and GloVe since it
considers the character n-grams as well when constructing the vector space. Another
point to mention is that unlike the EI-Reg task where the embedding based methods

were significantly better than traditional methods, word embedding based methods

103

Table 7.14: Comparison of different word embedding algorithms used in our CNN-
LSTM neural network for sentiment analysis. For each embedding method, the first
row shows the mean and standard deviation of evaluation metrics (%), and the second
row shows the p-value of t-test against the best performing embedding with respect
to the same evaluation metric.

Accuracy AUC F1

SVD 75.715€_i590.44 83.6116_:240.37 75.7126_:;90.46
SVD-Sqrt 78.836_:560.34 86.?5;_2:10.3 78.8166_:;60.35
SVD-Log 87.01le_i220.33 94.018e_i280.19 87.Olle_i220.34
SVD-PPMI 88.1?6%60.38 94.81le_i110.24 88.191;_:60.38
SVD-SPPMI 87.4;16_1160.39 94.412e_il80.27 87.4ii_1i60.4

GloVe 87.66 + 0.29 94.75 £ 0.16 87.66 £ 0.29

le-15 le-16 le-15

Word?2Vec 87.236_:?90.33 94.4136_:;50.14 87.2186_:590.34
FastText 87.7116_1140.31 94.7;18?;50.18 87.711(:;40.31
T
EigenWord 88.530:;20.32 95.%)?03:33.17 88.%?0;)&3;).32
KUBWE 88.75 + 0.38 95.32 + 0.17 88.74 £+ 0.38

did not work significantly better than traditional methods on this sentiment analysis
task. In fact, with the embedding based approach and using neural networks we
achieved almost the same result as the SVM with TF-IDF features. Perhaps, further
tuning of the neural network or using higher dimensional embeddings could help.
However, we did not tune them further as the main point of this experiment was
to compare the quality of different word embedding methods on a real world NLP

application, and not to obtain the best possible accuracy on the task.

We should also mention that 88.75% accuracy is less than the state-of-the-art
accuracy on the IMDB task. The state-of-the-art accuracy is about 95% by ULM-
FiT [63] and block-sparse LSTM [55] followed by onehot LSTM (i.e. oh-LSTM) [69]

104

with 94.1% accuracy. However, here we did not optimize all the hyper-parameters in
order to achieve the highest possible accuracy, since the intention was to compare the
word embeddings. For instance, using a larger and more appropriate corpus instead
of Wikipedia for pre-training the embeddings, as well as using higher dimensional
embeddings would have improved the results significantly. Furthermore, following
best practices in training word embeddings [90, 81|, as well as using various tricks
and techniques for improving the quality of embeddings [102] can result in higher
accuracies on the task. One such technique is the repeated identification and repla-
cement of Multi-Word Expressions (MWE) [132] as described in [102]. Nevertheless,
we did not use those types of techniques and kept the experimental setting simple in
order to compare the quality of word embeddings on a real world NLP task.

Figure 7.2 illustrates the Receiver Operating Characteristic (ROC) diagram of
our CNN-LSTM neural network using various pre-trained word embeddings as input
features. Part of the plot is zoomed for better clarification. As we can see from the
figure, the three proposed algorithms, KUBWE, SVD-NS, and EigenWord have the
best ROC curve and therefore, the highest Area Under the Curve (AUC).

105

1.0 — 1.0
0.8 0.8
2061 2061
3 3
[-4 (-4
A v
2 2
b 3
5 2
& &£
¥ v
3 E]
£ o4 £ 0.4q
0.2 - 0.2 :
—— BOW (unigram) (AUC = 0.925) —— BOW (unigram) (AUC = 0.8961)
—— BOW (uni + bi) (AUC = 0.9459) —— BOW (uni + bi) (AUC = 0.8997)
—— TFIDF (unigram) (AUC = 0.9415) —— TFIDF (unigram) (AUC = 0.8859)
—— TFIDF (uni + bi) (AUC = 0.9514) —— TFIDF (uni + bi) (AUC = 0.8909)
—— Doc2Vec (AUC = 0.8901) —— Doc2Vec (AUC = 0.8419)
0.0 Doc2VecC (AUC = 0.921) 0.01 Doc2VecC (AUC = 0.9072)
2 Z
00 02 04 06 08 10 0.0 02 04 06 08 10
False Positive Rate False Positive Rate
(a) Support Vector Machines (SVM) (b) Random Forests (RF)
1.0 1.0
0.8 0.8
2061 206
3 g
[-4 o
P v
g s
- -
5 2
g £
p v
3 g
F 044 F 044
0.21 021
—— BOW (unigram) (AUC = 0.8904) —— BOW (unigram) (AUC = 0.7047)
—— BOW (uni + bi) (AUC = 0.924) —— BOW (uni + bi) (AUC = 0.6825)
—— TFIDF (unigram) (AUC = 0.9158) —— TFIDF (unigram) (AUC = 0.7627)
—— TFIDF (uni + bi) (AUC = 0.9433) —— TFIDF (uni + bi) (AUC = 0.7724)
l —— Doc2Vec (AUC = 0.7408) —— Doc2Vec (AUC = 0.7752)
009 Doc2VecC (AUC = 0.83) 001 Doc2VecC (AUC = 0.8828)
00 02 04 06 08 10 00 02 04 06 08 10

False Positive Rate

(c) Naive Bayes (NB)

False Positive Rate

(d) K Nearest Neighbors (KNN)

Figure 7.1: Receiver Operating Characteristic (ROC) diagram of (a) support vector
machines, (b) random forests, (c) naive Bayes, and (d) k nearest neighbors classifica-
tion methods on all six feature spaces.

106

SVD-SPPMI (AUC = 0.9442)

1.0
0.8 A
2 0.6
©
o
()
=
=
o
o
()
Z
= 0.4 A
0.2 A
= GloVe (AUC = 0.9475)
— Word2Vec (AUC = 0.9443)
- FastText (AUC = 0.9474)
= SVD-NS (AUC = 0.9523)
—— EigenWord (AUC = 0.9518)
0.0 A - KUBWE (AUC = 0.9532)

0.0 0.2 0.4 0.6
False Positive Rate

0.8 1.0

Figure 7.2: Receiver Operating Characteristic (ROC) diagram of our CNN-LSTM

neural network using different word embeddings.

Chapter 8

Conclusion and Future Research

8.1 Conclusion

In this thesis, we studied embedding techniques for learning representations from
text and images. We first reviewed dimensionality reduction and manifold learning
methods and proposed a spherical representation learning algorithm with an intui-
tive objective function that learns the structure of manifolds and maximizes their
separability in the embedding. This makes it suitable particularly for clustering ap-
plications. Our experiments on face, digit, and object recognition datasets showed
that our proposed algorithm significantly improves the clustering quality in the em-
bedding space.

We then extended our approach to the text domain to learn word embeddings from
a corpus. In this case, we calculate the global co-occurrence matrix and refine it using
Pointwise Mutual Information (PMI) matrix and use it as input to the optimization.
The main advantage of our algorithm compared to other word embedding algorithms
is that our approach makes use of the negative context to improve the distribution of
words in the embedding.

We also analyzed frequency-based or count-based approaches and proposed a
spectral word embedding method that takes into account negative examples. This
information was previously ignored by almost all algorithms and we showed both the-
oretically and empirically that it improves the embedding quality in the frequency-
based algorithms. Our proposed solutions, EigenWord and SVD-NS, have intuitive
formulation, can consider co-occurrence based similarity and context-based similarity,
and they have an optimal closed-form solution through eigenanalysis.

We also proposed an efficient Word Sense Disambiguation (WSD) and multi-sense
embedding technique to tackle the ambiguity in natural language. Our approach uses
a soft-clustering of contexts which is a natural choice since a lot of context words

are common among different senses of words. We showed the effectiveness of our

107

108

approach on a WSD competition data.

Finally, we evaluated our proposed word embedding techniques on two NLP tasks:
emotion recognition from tweets and sentiment analysis from movie reviews. Our
proposed algorithms achieved significantly higher accuracy than other embedding
algorithms in both tasks.

Based on the research in this thesis and our experiments we have the following

conclusions for word embeddings:

e The co-occurrence counts and consequently, the PMI matrix are great ways to
represent word associations. They contain global statistics about the contextual

information in the corpus and are good measures for semantic similarity.

o Calculating global context is a useful strategy since it is a more accurate way of
representing context vectors. Embeddings that are based on global context can

work at least as well as prediction-based embeddings that use local context.

o Negative examples are indeed important in the embeddings and appropriate use
of negative context can significantly improve the quality of embedding. Pushing
unrelated words away from each other is as important as placing semantically
similar words close to each other. Calculating the global co-occurrence statistics
enables us to accurately make use of negative examples as we did in our proposed
algorithms. Prediction-based algorithms such as Word2Vec [101] that use local
context simply do not have access to this valuable knowledge and therefore,

have no other choice than random sampling.

o Factorization-based methods and spectral word embeddings are computatio-
nally fast compared to prediction-based algorithms. Their computational ad-
vantage comes from the fact that they work on count-aggregated data, as oppo-
sed to Word2Vec’s training procedure which requires each observation to be pre-
sented separately [89]. They are also exact and have almost no hyper-parameter
to tune. In this thesis, we proposed EigenWord, a spectral word embedding
technique that is extremely fast and has all the advantages of frequency-based
embeddings and in addition, it makes use of negative examples to improve
the distribution of words in the embedding, and it has an optimal closed-form

solution.

109

o The size of the corpus and the size of vocabulary have great a effect on the qua-
lity of embedding. Careful preprocessing of the corpus can significantly decrease
the amount of unwanted words. This helps in reducing the computational cost

as well as improving the embedding for the remaining words.

o Embeddings improve the accuracy on the downstream NLP tasks by a great
margin. Based on our experiments, embedding-based learning of the underlying

task improves the accuracy by about 5%.

8.2 Future Research

GloVe extension We showed that PMI is a very effective way to measure word
associations, and that PMI-based embeddings can capture the semantic similarity of
words. GloVe originally works on the log co-occurrence matrix and a natural extension
would be to use PMI matrix in the optimization. Although there exist PMI-based
embeddings that use objective functions similar to Glove [5], the usage of negative
examples in GloVe is still unexplored. GloVe provides the best results in the word
analogy task compared to all other methods, and we believe extending that to take

into account the negative context can significantly improve its quality of embedding.

Negative examples in context-dependent embeddings Another possible ex-
tension is to explore the usage of negative examples in the context-based embeddings.
Recently, context-dependent embedding methods such as BERT [39], ELMo [123],
and CoVe [99] have caught a lot of attention and have been successfully applied in
many NLP tasks. It has been shown that they improve the accuracy on almost any
NLP task by a significant margin. Therefore, it would be interesting to explore the

possibility of using negative context in these embeddings and improve them further.

Kernel theory In KUBWE algorithm, we proposed a kernel similarity measure for
the embedding space and showed its effectiveness compared to the Cosine similarity.
We used polynomial kernel, without an extensive investigation of the choice of the
kernel. It would be interesting to study the kernel and its effect from a theoretical

perspective and also examine various kernels. Moreover, the Cosine similarity is

110

the main similarity function in NLP and embeddings. Therefore, should the kernel
similarity be shown more effective than Cosine, then due to its easy generalization to

other embeddings it would be beneficial to other algorithms.

Unobserved instead of insignificant In our spectral word embedding solution,
EigenWord, we use the negative PMI values as our negative context. This might
seem counter-intuitive as the negative PMI correspond to word pairs that have co-
occurred in the corpus, though insignificantly. However, the zeros are the ones that
are unobserved and it makes sense to sample from zeros for negative context. We have
done some experiments to sample from zeros and replace them by random negative
values and did not observe a significant differencein the quality of embedding. It

would be insightful to study the effect of random sampling in spectral methods.

WSD extension In our multi-sense embedding approach, we analyze and disambi-
guate each ambiguous word separately and expand their context vector into a context
matrix of senses. This creates a lot of redundancy as there many words that have a
common meaning. In fact, there are a lot of highly correlated senses in our sense-word
co-occurrence matrix. One possible extension to the approach is to learn the latent
senses simultaneously. In other words, one can learn the distribution of words over
the global pool of senses/concepts at once. This will improve the computational time

and reduce the redundancy.

Out-Of-Vocabulary (OOV) extension Currently our proposed embedding algo-
rithms cannot handle out-of-vocabulary words. A valuable extension to our work is to
generalize it to OOV words. Right now, there are very limited number of algorithms
with OOV capability such as FastText [19] and Char2Vec [27]. Let’s assume the
embedding is already learned from the corpus. For a new OOV word, if we calculate
its similarity to the existing words (possibly few words), then one can formulate the
OOV extension as a Least Squares (LS) minimization problem to the current vector
space and obtain the embedding for the new word. This is a vital extension to almost

any embedding method and provides practical benefits to all pre-trained embeddings.

111

More complicated NLP tasks In this thesis, we applied the pre-trained em-
beddings on word similarity, word analogy, emotion recognition from tweets and
sentiment analysis from movie reviews. It would be interesting to see its application
on more complicated NLP tasks such as Natural Language Inference (NLI) and also

compare them with context-dependent embeddings.

Bibliography

1]

[10]

[11]

Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surpri-
sing behavior of distance metrics in high dimensional space. In International
Conference on Database Theory, pages 420-434. Springer, 2001.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca,
and Aitor Soroa. A study on similarity and relatedness using distributional and
wordnet-based approaches. In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 19-27. Association for Computational
Linguistics, 2009.

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparame-
tric regression. The American Statistician, 46(3):175-185, 1992.

LNF Ana and Anil K Jain. Robust data clustering. In 2003 IEEE Compu-
ter Society Conference on Computer Vision and Pattern Recognition, 20083.
Proceedings., volume 2, pages II-11. IEEE, 2003.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A
latent variable model approach to PMI-based word embeddings. Transactions
of the Association for Computational Linguistics, 4:385-399, 2016.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski.
Linear algebraic structure of word senses, with applications to polysemy. Tran-
sactions of the Association of Computational Linguistics, 6:483-495, 2018.

Giuseppe Attardi. Wikiextractor: A tool for extracting plain text from wikipe-
dia dumps, 2009.

Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm.
nature, 324(6096):446-449, 1986.

Marco Baroni and Alessandro Lenci. Distributional memory: A general fra-
mework for corpus-based semantics. Computational Linguistics, 36(4):673-721,
2010.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin, and Dmitry Vetrov. Bre-
aking sticks and ambiguities with adaptive skip-gram. In Artificial Intelligence
and Statistics, pages 130-138, 2016.

Peter N Belhumeur, Jodo P Hespanha, and David J Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. IEEE Transacti-
ons on Pattern Analysis € Machine Intelligence, (7):711-720, 1997.

112

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]
23]

[24]

[25]

113

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373-1396, 2003.

Yoshua Bengio, Aaron Courville, and Pierre Vincent. Representation learning:
A review and new perspectives. Pattern Analysis and Machine Intelligence,
IEEFE Transactions on, 35(8):1798-1828, 2013.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
3(Feb):1137-1155, 2003.

Yoshua Bengio and Martin Monperrus. Non-local manifold tangent learning.
Advances in Neural Information Processing Systems, 17(1):129-136, 2005.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and
Jean-Luc Gauvain. Neural Probabilistic Language Models, pages 137—186. Sprin-
ger Berlin Heidelberg, Berlin, Heidelberg, 2006.

CM Bishop. Pattern recognition and machine learning. Springer, New York,
2006.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enri-
ching word vectors with subword information. Transactions of the Association
for Computational Linguistics, 5:135-146, 2017.

Ingwer Borg and Patrick JE Groenen. Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

Christos Boutsidis and Efstratios Gallopoulos. SVD based initialization: A head
start for nonnegative matrix factorization. Pattern Recognition, 41(4):1350—
1362, 2008.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vincent J Della Pietra, and
Jenifer C Lai. Class-based n-gram models of natural language. Computational
linguistics, 18(4):467-479, 1992.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. Distribu-
tional semantics in technicolor. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers-Volume 1, pages
136-145. Association for Computational Linguistics, 2012.

John A Bullinaria and Joseph P Levy. Extracting semantic representations
from word co-occurrence statistics: A computational study. Behavior research
methods, 39(3):510-526, 2007.

[26]

[27]

[30]

[31]

[32]

[35]

[36]
[37]

[38]

[39]

114

Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use
of stochastic hessian information in optimization methods for machine learning.
SIAM Journal on Optimization, 21(3):977-995, 2011.

Kris Cao and Marek Rei. A joint model for word embedding and word mor-
phology. arXiv preprint arXiv:1606.02601, 2016.

Miguel A Carreira-Perpinan. The elastic embedding algorithm for dimensiona-
lity reduction. In ICML, volume 10, pages 167174, 2010.

Dangi Chen and Christopher Manning. A fast and accurate dependency parser
using neural networks. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 740-750, 2014.

Minmin Chen. Efficient vector representation for documents through corrup-
tion. In 5th International Conference on Learning Representations (ICLR),
2017.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual
information, and lexicography. Computational linguistics, 16(1):22-29, 1990.

Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of
the 25th international conference on Machine learning, pages 160-167. ACM,
2008.

Tim Cooijmans, Nicolas Ballas, César Laurent, Caglar Giilgehre, and Aaron
Courville. Recurrent batch normalization. arXiv preprint arXiv:1603.09025,
2016.

Danny Coomans and Désiré Luc Massart. Alternative k-nearest neighbour rules
in supervised pattern recognition: Part 1. k-nearest neighbour classification by
using alternative voting rules. Analytica Chimica Acta, 136:15-27, 1982.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine lear-
ning, 20(3):273-297, 1995.

Trevor F Cox and Michael AA Cox. Multidimensional scaling. CRC press, 2000.

Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using
landmark points. Technical report, Technical report, Stanford University, 2004.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
and Richard Harshman. Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391, 1990.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiw preprint arXiw:1810.04805, 2018.

[40]

[46]

[47]

[52]

115

David L Donoho and Carrie Grimes. Hessian eigenmaps: Locally linear embed-
ding techniques for high-dimensional data. Proceedings of the National Academy
of Sciences, 100(10):5591-5596, 2003.

Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and
Vladimir Vapnik. Support vector regression machines. In Advances in neural
information processing systems, pages 155-161, 1997.

Dheeru Dua and Casey Graftf. UCI machine learning repository, 2019.

Harry Dym. Linear algebra in action, volume 78. American Mathematical Soc.,
2013.

Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. Nor-
malized mutual information feature selection. IEEFE Transactions on Neural
Networks, 20(2):189-201, 2009.

Samuel G Fadel, Francisco M Fatore, Felipe SLG Duarte, and Fernando V
Paulovich. Loch: A neighborhood-based multidimensional projection technique
for high-dimensional sparse spaces. Neurocomputing, 150:546-556, 2015.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. Journal of machine
learning research, 9(Aug):1871-1874, 2008.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. Retrofitting word vectors to semantic lexicons. pages 16061615,
2015.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. Placing search in context: The concept

revisited. In Proceedings of the 10th international conference on World Wide
Web, pages 406-414. ACM, 2001.

Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm
for finding best matches in logarithmic time. ACM Trans. Math. Software,
3(SLAC-PUB-1549-REV. 2):209-226, 1976.

Johannes Fiirnkranz. A study using n-gram features for text categorization.
Austrian Research Institute for Artifical Intelligence, 3(1998):1-10, 1998.

Athinodoros S Georghiades, Peter N Belhumeur, and David J Kriegman. From
few to many: Illumination cone models for face recognition under variable lig-
hting and pose. IEEE Transactions on Pattern Analysis & Machine Intelligence,
(6):643-660, 2001.

Amir Globerson and Sam T Roweis. Metric learning by collapsing classes. In
Advances in neural information processing systems, pages 451-458, 2005.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

116

Daniel B Graham and Nigel M Allinson. Characterising virtual eigensignatures
for general purpose face recognition. In Face Recognition: From Theory to
Applications, pages 446-456. Springer, 1998.

Alex Graves and Jurgen Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18(5-6):602-610, 2005.

Scott Gray, Alec Radford, and Diederik P Kingma. GPU kernels for block-
sparse weights. arXiv preprint arXiv:1711.09224, 2017.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. Large-scale
learning of word relatedness with constraints. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1406-1414. ACM, 2012.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clus-
tering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100-108, 1979.

Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. Computational Linguistics, 2016.

Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. In
Advances in neural information processing systems, pages 833-840, 2002.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. Science, 313(5786):504-507, 2006.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Matthew Honnibal and Ines Montani. spacy 2: Natural language understan-
ding with bloom embeddings, convolutional neural networks and incremental
parsing. To appear, 2017.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for
text classification. arXiv preprint arXiv:1801.06146, 2018.

Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Im-
proving word representations via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 873-882. Association for Computa-
tional Linguistics, 2012.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE
Transactions on pattern analysis and machine intelligence, 16(5):550-554, 1994.

[66]

[77]

[78]

117

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiw:1502.03167, 2015.

Xiang Jiang, Erico N de Souza, Xuan Liu, Behrouz Haji Soleimani, Xiaoguang
Wang, Daniel L Silver, and Stan Matwin. Partition-wise recurrent neural net-
works for point-based ais trajectory classification. In 25th Furopean Symposium
on Artificial Neural Networks (ESANN), Computtional Intelligence and Ma-
chine Learning, volume 6, pages 529-534, 2017.

George H John and Pat Langley. Estimating continuous distributions in bay-
esian classifiers. In Proceedings of the Eleventh conference on Uncertainty in
artificial intelligence, pages 338-345. Morgan Kaufmann Publishers Inc., 1995.

Rie Johnson and Tong Zhang. Supervised and semi-supervised text catego-
rization using Istm for region embeddings. arXiv preprint arXiv:1602.023783,
2016.

lan Jolliffe. Principal component analysis. Wiley Online Library, 2002.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of
tricks for efficient text classification. In Proceedings of the 15th Conference of the
FEuropean Chapter of the Association for Computational Linguistics: Volume 2,
Short Papers, pages 427-431. Association for Computational Linguistics, April
2017.

Yi-Hao Kao and Benjamin Van Roy. Learning a factor model via regularized
pca. Machine learning, 91(3):279-303, 2013.

Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes.
Multinomial naive bayes for text categorization revisited. In Australasian Joint
Conference on Artificial Intelligence, pages 488-499. Springer, 2004.

Taehoon Kim and Kevin Wurster. Emoji python library.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

Effrosini Kokiopoulou, Jie Chen, and Yousef Saad. Trace optimization and
eigenproblems in dimension reduction methods. Numerical Linear Algebra with
Applications, 18(3):565-602, 2011.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

[79]

[30]

[81]

[82]

[83]

[33]

[39]

[90]

[91]

118

Da Kuang. Nonnegative matriz factorization for clustering. PhD thesis, Georgia
Institute of Technology, 2014.

Stephane Lafon and Ann B Lee. Diffusion maps and coarse-graining: A unified
framework for dimensionality reduction, graph partitioning, and data set para-
meterization. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 28(9):1393-1403, 2006.

Siwei Lai, Kang Liu, Shizhu He, and Jun Zhao. How to generate a good word
embedding. IEEFE Intelligent Systems, 31(6):5-14, 2016.

Quoc V Le and Tomas Mikolov. Distributed representations of sentences and
documents. In ICML, volume 14, pages 11881196, 2014.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436-444, 2015.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recog-
nition with a back-propagation network. In Advances in neural information
processing systems, pages 396-404, 1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEFE,
86(11):2278-2324, 1998.

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788-791, 1999.

Kuang-Chih Lee, Jeffrey Ho, and David J Kriegman. Acquiring linear subspaces
for face recognition under variable lighting. IFEE Transactions on Pattern
Analysis & Machine Intelligence, (5):684-698, 2005.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2, pages 302-308, 2014.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems, pages
21772185, 2014.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association
for Computational Linguistics, 3:211-225, 2015.

Chih-Jen Lin. Projected gradient methods for nonnegative matrix factorization.
Neural computation, 19(10):2756-2779, 2007.

[92]

93]

[94]

[98]

[101]

[102]

[103)]

119

Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. Trust region Newton met-
hod for logistic regression. Journal of Machine Learning Research, 9(Apr):627—
650, 2008.

Tong Lin and Hongbin Zha. Riemannian manifold learning. IEFEFE Transactions
on Pattern Analysis and Machine Intelligence, 30(5):796-809, 2008.

Edward Loper and Steven Bird. NLTK: the natural language toolkit. arXiv
preprint ¢s/0205028, 2002.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the
effective receptive field in deep convolutional neural networks. In Advances in
neural information processing systems, pages 4898-4906, 2016.

Thang Luong, Richard Socher, and Christopher D Manning. Better word re-

presentations with recursive neural networks for morphology. In CoNLL, pages
104-113, 2013.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies-volume 1, pages 142—-150. Association
for Computational Linguistics, 2011.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y
Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies-volume 1, pages 142—-150. Association
for Computational Linguistics, 2011.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned
in translation: Contextualized word vectors. In Advances in Neural Information
Processing Systems, pages 6294-6305, 2017.

S. Mika, G. Ratsch, J. Weston, B. Scholkopft, and K. R. Mullert. Fisher discri-
minant analysis with kernels. In Proceedings of IEEE Signal Processing Society
Workshop, pages 41-48, 1999.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and
Armand Joulin. Advances in pre-training distributed word representations.
arXiw preprint arXiw:1712.09405, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems, pages 3111-3119, 2013.

104]

[105]

[106]

107]

[108]

109

[110]

[111]

[112]

[113]

114]

120

George A Miller and Walter G Charles. Contextual correlates of semantic
similarity. Language and cognitive processes, 6(1):1-28, 1991.

Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

Saif M. Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana
Kiritchenko. Semeval-2018 Task 1: Affect in tweets. In Proceedings of Interna-
tional Workshop on Semantic Evaluation (SemEval-2018), New Orleans, LA,
USA, 2018.

Robson Motta, Rosane Minghim, Alneu de Andrade Lopes, and Maria Cris-
tina F Oliveira. Graph-based measures to assist user assessment of multidimen-
sional projections. Neurocomputing, 150:583-598, 2015.

Nikola Mrksi¢, Diarmuid O Séaghdha, Blaise Thomson, Milica Gasi¢, Lina
Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. Counter-fitting word vectors to linguistic constraints. In Proceedings
of the 15th Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL), pages 142-148. Association for
Computational Linguistics, 2016.

Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for
high dimensional data. [EEFE transactions on pattern analysis and machine
intelligence, 36(11):2227-2240, 2014.

Habibeh Naderi, Behrouz Haji Soleimani, and Stan Matwin. Manifold learning
of overcomplete feature spaces in a multimodal biometric recognition system of
iris and palmprint. In 2017 14th Conference on Computer and Robot Vision
(CRV), pages 191-196. IEEE, 2017.

Habibeh Naderi, Behrouz Haji Soleimani, Stan Matwin, Babak Nadjar Araabi,
and Hamid Soltanian-Zadeh. Fusing iris, palmprint and fingerprint in a multi-

biometric recognition system. In 2016 13th Conference on Computer and Robot
Vision (CRV), pages 327-334. IEEE, 2016.

Habibeh Naderi, Behrouz Haji Soleimani, Saif Mohammad, Svetlana Kirit-
chenko, and Stan Matwin. DeepMiner at semeval-2018 task 1: Emotion in-
tensity recognition using deep representation learning. In Proceedings of The
12th International Workshop on Semantic Evaluation, pages 305-312. Associa-
tion for Computational Linguistics (ACL), 2018.

Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image
library (coil-100). 1996.

Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image
library (coil-20). 1996.

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

121

Andrew Y Ng, Michael T Jordan, Yair Weiss, et al. On spectral clustering:
Analysis and an algorithm. Advances in neural information processing systems,
2:849-856, 2002.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities
with supervised learning. In Proceedings of the 22nd international conference
on Machine learning, pages 625-632. ACM, 2005.

X Niyogi. Locality preserving projections. In Neural information processing
systems, volume 16, page 153. MIT, 2004.

Victor Onclinx, John A Lee, Vincent Wertz, and Michel Verleysen. Dimensio-
nality reduction by rank preservation. In Neural Networks (IJCNN), The 2010
International Joint Conference on, pages 1-8. IEEE, 2010.

Patrick Pantel and Dekang Lin. Discovering word senses from text. In Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 613-619. ACM, 2002.

Beresford N Parlett. The symmetric eigenvalue problem. STAM, 1998.

Maria Pelevina, Nikolay Arefyev, Chris Biemann, and Alexander Panchenko.
Making sense of word embeddings. In Proceedings of the 1st Workshop on Re-
presentation Learning for NLP, pages 174-183. Association for Computational
Linguistics, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Glo-
bal vectors for word representation. In EMNLP, volume 14, pages 1532-1543,
2014.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-
tations. In Proceedings of the 17th Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL). Associa-
tion for Computational Linguistics, 2018.

Matthew Peters, Mark Neumann, Wen-tau Yih, and Luke Zettlemoyer. Dis-
secting contextual word embeddings: Architecture and representation. In Em-
pirical Methods in Natural Language Processing, EMNLP, 2018.

John Platt et al. Probabilistic outputs for support vector machines and compa-
risons to regularized likelihood methods. Advances in large margin classifiers,
10(3):61-74, 1999.

R Rehurek and P Sojka. Gensim—python framework for vector space modelling.
NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic,
3(2), 2011.

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

122

Joseph Reisinger and Raymond J Mooney. Multi-prototype vector-space mo-
dels of word meaning. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computa-
tional Linguistics, pages 109-117. Association for Computational Linguistics,
2010.

Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3, pages 41-46,
2001.

Sam Roweis, Geoffrey Hinton, and Ruslan Salakhutdinov. Neighbourhood com-
ponent analysis. Advances in Neural Information Processing Systems (NIPS),
17:513-520, 2004.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323-2326, 2000.

Herbert Rubenstein and John B Goodenough. Contextual correlates of syno-
nymy. Communications of the ACM, 8(10):627-633, 1965.

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann Copestake, and Dan Flickin-
ger. Multiword expressions: A pain in the neck for NLP. In International
Conference on Intelligent Text Processing and Computational Linguistics, pa-
ges 1-15. Springer, 2002.

Gerard Salton. The smart retrieval system—experiments in automatic document
processing. 1971.

Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochastic
model for human face identification. In Proceedings of 1994 IEEE Workshop on
Applications of Computer Vision, pages 138-142. IEEE, 1994.

John W Sammon. A nonlinear mapping for data structure analysis. [IEEFFE
Transactions on computers, (5):401-409, 1969.

Hinrich Schiitze and Jan O Pedersen. Information retrieval based on word
senses. 1995.

Behdad Soleimani, Mohammad-Hassan Zokaei Ashtiani, Behrouz Haji Solei-
mani, and Hadi Moradi. A disaster invariant feature for localization. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1096-1101. TEEE, 2010.

Behrouz Haji Soleimani, Erico N De Souza, Casey Hilliard, and Stan Matwin.
Anomaly detection in maritime data based on geometrical analysis of trajecto-
ries. In 2015 18th International Conference on Information Fusion (Fusion),
pages 1100-1105. TEEE, 2015.

[139)]

[140]

[141]

142]

[143]

144]

[145]

[146]

[147]

[148]

[149]

123

Behrouz Haji Soleimani and Stan Matwin. Nonlinear dimensionality reduction
by unit ball embedding (UBE) and its application to image clustering. In
15th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 983-988. IEEE, 2016.

Behrouz Haji Soleimani and Stan Matwin. Dimensionality reduction and visu-
alization by doubly kernelized unit ball embedding. In Advances in Artificial
Intelligence: 31st Canadian Conference on Artificial Intelligence, Canadian Al
2018, pages 224-230. Springer, 2018.

Behrouz Haji Soleimani and Stan Matwin. Spectral word embedding with ne-
gative sampling. In Thirty-Second AAAI Conference on Artificial Intelligence,
pages 5481-5487. Association for the Advancement of Artificial Intelligence
(AAAT), 2018.

Behrouz Haji Soleimani and Stan Matwin. Fast PMI-based word embedding
with efficient use of unobserved patterns. In Thirty-Third AAAI Conference on
Artificial Intelligence. Association for the Advancement of Artificial Intelligence
(AAAT), 2019.

Behrouz Haji Soleimani, Stan Matwin, and Erico N De Souza. A density-
penalized distance measure for clustering. In Advances in Artificial Intelligence:
28th Canadian Conference on Artificial Intelligence, Canadian Al 2015, pages
238-249. Springer, 2015.

Behrouz Haji Soleimani, Habibeh Naderi, and Stan Matwin. Efficient unsuper-
vised word sense induction, disambiguation and embedding. In 32nd Conference
on Neural Information Processing Systems (NeurlPS 2018), Workshop on Re-
lational Representation Learning, 2018.

Karen Sparck Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation, 28(1):11-21, 1972.

Marcus Spruill et al. Asymptotic distribution of coordinates on high dimensional
spheres. FElectronic communications in probability, 12:234-247, 2007.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929-1958, 2014.

Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick,
and Eduard Hovy. Spine: Sparse interpretable neural embeddings. In AAAI
Conference on Aritificial Intelligence, AAAIL 2018.

Ching Y Suen. N-gram statistics for natural language understanding and text

processing. IEEE transactions on pattern analysis and machine intelligence,
(2):164-172, 1979.

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

159

[160]

[161]

162]

124

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word
embeddings using 11 regularized online learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016.

Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. science, 290(5500):2319—
2323, 2000.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267-288, 1996.

Michael E Tipping and Christopher M Bishop. Probabilistic principal compo-
nent analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3):611-622, 1999.

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete
and computational geometry. Chapman and Hall/CRC, 2017.

Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.
Siam, 1997.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics, pages 384—
394. Association for Computational Linguistics, 2010.

Peter D Turney and Michael L Littman. Measuring praise and criticism: In-
ference of semantic orientation from association. ACM Transactions on Infor-
mation Systems (TOIS), 21(4):315-346, 2003.

Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37:141-188,
2010.

L. J. P. Van Der Maaten, E. O. Postma, and H. J. Van den Herik. Dimensiona-
lity reduction: a comparative review. Journal of Machine Learning Research,
10:66-71, 2009.

Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. The
Journal of Machine Learning Research, 15(1):3221-3245, 2014.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(2579-2605):85, 2008.

Farshid Varno, Behrouz Haji Soleimani, Marzie Saghayi, Lisa Di Jorio, and Stan
Matwin. Efficient neural task adaptation by maximum entropy initialization.
arXiw preprint arXiw:1905.10698, 2019.

163

[164]

[165]

[166]

[167]

[168]

[169]

[170]

171]

[172]

173

174]

[175]

125

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998-6008,
2017.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regu-
larization of neural networks using dropconnect. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13), pages 1058-1066,
2013.

Jing Wang, Zhenyue Zhang, and Hongyuan Zha. Adaptive manifold learning.
In Advances in neural information processing systems, pages 1473-1480, 2005.

Yequan Wang, Minlie Huang, Li Zhao, et al. Attention-based Istm for aspect-
level sentiment classification. In Proceedings of the 2016 conference on empirical
methods in natural language processing, pages 606-615, 2016.

Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of image
manifolds by semidefinite programming. International Journal of Computer

Vision, 70(1):77-90, 2006.

Kilian QQ Weinberger and Lawrence K Saul. Distance metric learning for large

margin nearest neighbor classification. The Journal of Machine Learning Re-
search, 10:207-244, 2009.

Max Welling, Richard S Zemel, and Geoffrey E Hinton. Probabilistic sequential
independent components analysis. Neural Networks, IEEE Transactions on,
15(4):838-849, 2004.

Roland Winkler, Frank Klawonn, and Rudolf Kruse. Fuzzy c-means in high di-
mensional spaces. International Journal of Fuzzy System Applications (IJFSA),
1(1):1-16, 2011.

Donggiang Yang and David MW Powers. Verb similarity on the taxonomy of
WordNet. Masaryk University, 2006.

Zhirong Yang, Irwin King, Zenglin Xu, and Erkki Oja. Heavy-tailed symmetric
stochastic neighbor embedding. In Advances in neural information processing
systems, pages 2169-2177, 2009.

Peter N Yianilos. Data structures and algorithms for nearest neighbor search
in general metric spaces. In SODA, volume 93, pages 311-321, 1993.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-
volutions. arXiv preprint arXiv:1511.07122, 2015.

Jin Yu, SVN Vishwanathan, Simon Ginter, and Nicol N Schraudolph. A quasi-
newton approach to nonsmooth convex optimization problems in machine lear-
ning. Journal of Machine Learning Research, 11(Mar):1145-1200, 2010.

[176]

[177]

178

[179]

126

Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates
from decision trees and naive bayesian classifiers. In Ieml, volume 1, pages 609—
616. Citeseer, 2001.

Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate
multiclass probability estimates. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 694—
699. ACM, 2002.

Tianhao Zhang, Jie Yang, Deli Zhao, and Xinliang Ge. Linear local tan-
gent space alignment and application to face recognition. Neurocomputing,
70(7):1547-1553, 2007.

Zhen-yue Zhang and Hong-yuan Zha. Principal manifolds and nonlinear dimen-
sionality reduction via tangent space alignment. Journal of Shanghai University
(English Edition), 8(4):406-424, 2004.

Appendix A

Copyright Permissions

This appendix includes the copyright forms for our publications in:

1. 15th TEEE International Conference on Machine Learning and Applications
(ICMLA 2016) [139]

2. 31st Canadian Conference on Artificial Intelligence (Canadian AI 2018) [140]
3. 32nd AAAI Conference on Artificial Intelligence (AAAI 2018) [141]

4. 33rd AAAI Conference on Artificial Intelligence (AAATI 2019) [142]

127

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording
of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material
in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Nonlinear Dimensionality Reduction by Unit Ball Embedding (UBE) and its Application to Image Clustering
Behrouz Haji Soleimani and Stan Matwin

2016 15th IEEE International Conference on Machine Learning and Applications

COPYRIGHT TRANSFER

The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights
under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE
by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements
accompanying the Work.

GENERAL TERMS

N

. The undersigned represents that he/she has the power and authority to make and execute this form.

. The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the
event of a breach of any of the warranties set forth above.

. The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB
Operations Manual.

4. In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before
acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of
the manuscript for internal administrative/record-keeping purposes.

. For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the
others.

. The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is
the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the
works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third
party permissions and consents to grant the license above and has provided copies of such permissions and consents
to IEEE

N

w

[$)]

[<2]

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms
and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

1. In the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in
part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the
unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,
reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation
and comments at the conference; (b) any written materials or multimedia files used in connection with his/her
presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted
includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and
live or recorded broadcast of the Presentation during or after the conference.

. In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,
irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,
distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on
right of privacy or publicity.

N

128

129

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION
CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH
AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A
VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Behrouz Haji Soleimani 07-10-2016
Signature Date (dd-mm-yyyy)

Information for Authors

AUTHOR RESPONSIBILITIES

The |IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its
publications is properly available to the readership of those publications. Authors must ensure that their Work meets the
requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,
authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at
http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of
|EEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether
disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE
PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of
the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS

- Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

- Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or
derivative works for the author's personal use or for company use, provided that the source and the |IEEE copyright notice are
indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the
copies themselves are not offered for sale.

- Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party
requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such
third-party requests.

- Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates
from that funding agency.

AUTHOR ONLINE USE

- Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted
articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided
that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the
original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published
versions of their papers.

- Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her
own |EEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in
connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and
reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-
reserves, conference presentations, or in-house training courses.

- Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their
own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission
of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any
previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by
the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

130

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only
(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article
in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.
Please direct all questions about IEEE copyright policy to:
IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

Consent to Publish
Lecture Notes in Computer Science

@ Springer

When Author is more than one person the expression “Author” as used in this agreement will apply collectively unless
otherwise indicated.

§1 Rights Granted

Author hereby grants and assigns to Springer International Publishing AG, Cham (hereinafter called Springer) the exclusive,
sole, permanent, world-wide, transferable, sub-licensable and unlimited right to reproduce, publish, distribute, transmit,
make available or otherwise communicate to the public, translate, publicly perform, archive, store, lease or lend and sell
the Contribution or parts thereof individually or together with other works in any language, in all revisions and versions
(including soft cover, book club and collected editions, anthologies, advance printing, reprints or print to order, microfilm
editions, audiograms and videograms), in all forms and media of expression including in electronic form (including offline
and online use, push or pull technologies, use in databases and networks for display, print and storing on any and all
stationary or portable end-user devices, e.g. text readers, audio, video or interactive devices, and for use in multimedia
or interactive versions as well as for the display or transmission of the Contribution or parts thereof in data networks or
seach engines), in whole, in part or in abridged form, in each case as now known or developed in the future, including the
right to grant further time-limited or permanent rights. For the purposes of use in electronic forms, Springer may adjust the
Contribution to the respective form of use and include links or otherwise combine it with other works. For the avoidance
of doubt, Springer has the right to permit others to use individual illustrations and may use the Contribution for advertising
purposes.

The copyright of the Contribution will be held in the name of Springer. Springer may take, either in its own name or
in that of copyright holder, any necessary steps to protect these rights against infringement by third parties. It will have
the copyright notice inserted into all editions of the Contribution according to the provisions of the Universal Copyright
Convention (UCC) and dutifully take care of all formalities in this connection in the name of the copyright holder.

§2 Regulations for Authors under Special Copyright Law

The parties acknowledge that there may be no basis for claim of copyright in the United States to a Contribution prepared
by an officer or employee of the United States government as part of that person’s official duties. If the Contribution was
performed under a United States government contract, but Author is not a United States government employee, Springer
grants the United States government royalty-free permission to reproduce all or part of the Contribution and to authorize
others to do so for United States government purposes.

If the Contribution was prepared or published by or under the direction or control of Her Majesty (i.e., the constitutional
monarch of the Commonwealth realm) or any Crown government department, the copyright in the Contribution shall,
subject to any agreement with Author, belong to Her Majesty.

If the Contribution was created by an employee of the European Union or the European Atomic Energy Community
(EU/Euratom) in the performance of their duties, the regulation 31/EEC, 11/EAEC (Staff Regulations) applies, and copy-
right in the Contribution shall, subject to the Publication Framework Agreement (EC Plug), belong to the European Union
or the European Atomic Energy Community.

If Author is an officer or employee of the United States government, of the Crown, or of EU/Euratom, reference will be
made to this status on the signature page.

§ 3 Rights Retained by Author

Author retains, in addition to uses permitted by law, the right to communicate the content of the Contribution to other
scientists, to share the Contribution with them in manuscript form, to perform or present the Contribution or to use the
content for non-commercial internal and educational purposes, provided the Springer publication is mentioned as the

16.02.2016
10:50

131

original source of publication in any printed or electronic materials. Author retains the right to republish the Contribution
in any collection consisting solely of Author’s own works without charge subject to ensuring that the publication by
Springer is properly credited and that the relevant copyright notice is repeated verbatim.

Author may self-archive an author-created version of his/her Contribution on his/her own website and/or the repository of
Author’s department or faculty. Author may also deposit this version on his/her funder’s or funder’s designated repository
at the funder’s request or as a result of a legal obligation. He/she may not use the publisher’s PDF version, which is posted
on SpringerLink and other Springer websites, for the purpose of self-archiving or deposit. Furthermore, Author may only
post his/her own version, provided acknowledgment is given to the original source of publication and a link is inserted to
the published article on Springer’s website. The link must be provided by inserting the DOI number of the article in the
following sentence: "The final publication is available at Springer via http://dx.doi.org/[insert DOI]". The DOI (Digital
Object Identifier) can be found at the bottom of the first page of the published paper.

Prior versions of the Contribution published on non-commercial pre-print servers like ArXiv/CoRR and HAL can remain
on these servers and/or can be updated with Author’s accepted version. The final published version (in pdf or html/xml
format) cannot be used for this purpose. Acknowledgment needs to be given to the final publication and a link must be
inserted to the published Contribution on Springer’s website, by inserting the DOI number of the article in the following
sentence: "The final publication is available at Springer via http://dx.doi.org/[insert DOI]".

Author retains the right to use his/her Contribution for his/her further scientific career by including the final published
paper in his/her dissertation or doctoral thesis provided acknowledgment is given to the original source of publication.
Author also retains the right to use, without having to pay a fee and without having to inform the publisher, parts of the
Contribution (e.g. illustrations) for inclusion in future work, and to publish a substantially revised version (at least 30%
new content) elsewhere, provided that the original Springer Contribution is properly cited.

§4 Warranties

Author warrants that the Contribution is original except for such excerpts from copyrighted works (including illustrations,
tables, animations and text quotations) as may be included with the permission of the copyright holder thereof, in which
case(s) Author is required to obtain written permission to the extent necessary and to indicate the precise sources of the
excerpts in the manuscript. Author is also requested to store the signed permission forms and to make them available to
Springer if required.

Author warrants that he/she is entitled to grant the rights in accordance with Clause 1 “Rights Granted”, that he/she has
not assigned such rights to third parties, that the Contribution has not heretofore been published in whole or in part, that
the Contribution contains no libelous statements and does not infringe on any copyright, trademark, patent, statutory right
or proprietary right of others, including rights obtained through licenses; and that Author will indemnify Springer against
any costs, expenses or damages for which Springer may become liable as a result of any breach of this warranty.

§5 Delivery of the Work and Publication

Author agrees to deliver to the responsible Volume Editor (for conferences, usually one of the Program Chairs), on a date
to be agreed upon, the manuscript created according to the Springer Instructions for Authors. Springer will undertake the
reproduction and distribution of the Contribution at its own expense and risk. After submission of the Consent to Publish
form Signed by the Corresponding Author, changes of authorship, or in the order of the authors listed, will not be accepted
by Springer.

§6 Author’s Discount

Author is entitled to purchase for his/her personal use (directly from Springer) the Work or other books published by
Springer at a discount of 40% off the list price as long as there is a contractual arrangement between Author and Springer
and subject to applicable book price regulation. Resale of such copies or of free copies is not permitted.

§7 Governing Law and Jurisdiction

This agreement shall be governed by, and shall be construed in accordance with, the laws of Switzerland. The courts of
Zug, Switzerland shall have the exclusive jurisdiction.

Corresponding Author signs for and accepts responsibility for releasing this material on behalf of any and all Co-authors.

Signature of Corresponding Author: Date:

February 26, 2018

I’m an employee of the US Government and transfer the rights to the extent transferable
(Title 17 §105 U.S.C. applies)

I’'m an employee of the Crown and copyright on the Contribution belongs to Her Majesty

I’m an employee of the EU or Euratom and copyright on the Contribution belongs to EU or Euratom
16.02.2016
10:50

132

Association for the Advancement of Artificial Intelligence
A 2275 East Bayshore Road, Suite 160
Palo Alto, California 94303 USA

AAAT COPYRIGHT FORM

Spectral Word Embedding with Negative Sampling
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-18)

Title of Article/Paper:

Publication in Which Article/Paper Is to Appear:
Behrouz Haji Soleimani, Stan Matwin

Author's Name(s):

Please type or print your name(s) as you wish it (them) to appear in print

PART A — COPYRIGHT TRANSFER FORM

The undersigned, desiring to publish the above article/paper in a publication of the Association for the Advancement of Artificial Intelligence, (AAAI), hereby trans-
fer their copyrights in the above article/paper to the Association for the Advancement of Artificial Intelligence (AAAI), in order to deal with future requests for reprints,
translations, anthologies, reproductions, excerpts, and other publications.

This grant will include, without limitation, the entire copyright in the article/paper in all countries of the world, including all renewals, extensions, and
reversions thereof, whether such rights current exist or hereafter come into effect, and also the exclusive right to create electronic versions of the article/paper,
to the extent that such right is not subsumed under copyright.

The undersigned warrants that they are the sole author and owner of the copyright in the above article/paper, except for those portions shown to be in quo-
tations; that the article/paper is original throughout; and that the undersigned right to make the grants set forth above is complete and unencumbered.

If anyone brings any claim or action alleging facts that, if true, constitute a breach of any of the foregoing warranties, the undersigned will hold harmless
and indemnify AAAL their grantees, their licensees, and their distributors against any liability, whether under judgment, decree, or compromise, and any legal
fees and expenses arising out of that claim or actions, and the undersigned will cooperate fully in any defense AAAl may make to such claim or action. Moreover,
the undersigned agrees to cooperate in any claim or other action seeking to protect or enforce any right the undersigned has granted to AAAI in the article/paper.
If any such claim or action fails because of facts that constitute a breach of any of the foregoing warranties, the undersigned agrees to reimburse whomever
brings such claim or action for expenses and attorneys’ fees incurred therein.

Returned Rights
In return for these rights, AAAI hereby grants to the above author(s), and the employer(s) for whom the work was performed, royalty-free permission to:

1. Retain all proprietary rights other than copyright (such as patent rights).

2. Personal reuse of all or portions of the above article/paper in other works of their own authorship. This does not include granting third-party requests for
reprinting, republishing, or other types of reuse. AAAI must handle all such third-party requests.

3. Reproduce, or have reproduced, the above article/paper for the author’s personal use, or for company use provided that AAAI copyright and the source are
indicated, and that the copies are not used in a way that implies AAAI endorsement of a product or service of an employer, and that the copies per se are not
offered for sale. The foregoing right shall not permit the posting of the article/paper in electronic or digital form on any computer network, except by the
author or the author’s employer, and then only on the author’s or the employer’s own web page or ftp site. Such web page or ftp site, in addition to the afore-
mentioned requirements of this Paragraph, shall not post other AAAI copyrighted materials not of the author’s or the employer’s creation (including tables
of contents with links to other papers) without AAAI's written permission.

4. Make limited distribution of all or portions of the above article/paper prior to publication.

5. In the case of work performed under a U.S. Government contract or grant, AAAI recognized that the U.S. Government has royalty-free permission to repro-
duce all or portions of the above Work, and to authorize others to do so, for official U.S. Government purposes only, if the contract or grant so requires.

In the event the above article/paper is not accepted and published by AAAL or is withdrawn by the author(s) before acceptance by AAAL this agreement becomes
null and void.

® 2017-November-21

Author/Authorized Agent for Joint Author’s Signature Date

Employer for whom work was performed Title (if not author)

(For jointly authored Works, all joint authors should sign unless one of the authors has been duly authorized to act as agent for the others.)

133

134

Association for the Advancement of Artificial Intelligence
2275 East Bayshore Road, Suite 160
Palo Alto, California 94303 USA

PART B — U.S. GOVERNMENT EMPLOYEE CERTIFICATION

This will certify that all authors of the above article/paper are employees of the U.S. Government and performed this work as part of their employment, and
that the article/paper is therefore not subject to U.S. copyright protection. The undersigned warrants that they are the sole author/translator of the above arti-
cle/paper, and that the article/paper is original throughout, except for those portions shown to be in quotations.

@
U.S. Government Employee Authorized Signature Date
Name of Government Organization Title (if not author)

(Please read and sign and return Part B only if you are a government employee and created your article/paper as part of your employment. If your work was performed under Government
contract, but you are not a Government employee, sign only at signature line (1) in Part A and see item 5 under returned rights. Authors who are U.S. government employees should also
sign signature line (1) in Part A above lo enable AAAI to claim and protect ils copyright in international jurisdictions.)

PART C-CROWN COPYRIGHT CERTIFICATION

This will certify that all authors of the above article/paper are employees of the British or British Commonwealth Government and prepared the Work in con-
nection with their official duties , and that the article/paper is therefore subject to Crown Copyright and is not assigned to AAAI as set forth in the first sentence
of the Copyright Transfer Section in Part A. The undersigned warrants that they are the sole author/translator of the above article/paper, and that the arti-
cle/paper is original throughout, except for those portions shown to be in quotations, and acknowledges that AAAT has the right to publish, distribute, and reprint
the Work in all forms and all media.

(3)
British or British Commonwealth Government Employee Authorized Signature Date
Name of Government Organization Title (if not author)

(Please read and sign and return Part C only if you are a British or British Commonwealth Government employee and the Work is subject to Crown Copyright. Authors who are British or
British Commonuwealth government employees should also sign signature line (1) in Part A above lo indicate their acceptance of all terms other than the copyright transfer.)

Association for the Advancement of Artificial Intelligence
A 2275 East Bayshore Road, Suite 160
Palo Alto, California 94303 USA

AAAI DISTRIBUTION LICENSE

Spectral Word Embedding with Negative Sampling
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-18)

Title of Article/Paper (Work):

Publication in Which Article Is to Appear:
Behrouz Haji Soleimani, Stan Matwin

Please type or print your name(s) as you wish it to appear in print

Author's Name(s):

Author’s Grant

The undersigned, desiring to publish the above Work in a publication of the Association for the Advancement of Artificial Intelligence, (AAAI), hereby hereby
grants to the Association for the Advancement of Artificial Intelligence the following nonexclusive rights:
(1) The perpetual, nonexclusive world rights to use the above-named Work as part of an AAAI publication, in all languages and for all editions.
(2) The right to use the Work, together with the author's name and pertinent biographical data, in advertising and promotion of it and the AAAT
publication.
(3) The right to publish or cause to be published the Work in connection with any republication of the AAAI publication in any medium including
electronic.
(4) The right to, and authorize others to, publish or cause to be published the Work in whole or in part, individually or in conjunction with other works,
in any medium including electronic.

Author’s Warranty

The undersigned warrants that they are the sole author and owner of the Work, except for those portions shown to be in quotations; that the Work is original
throughout; that publication thereof will not violate or infringe any copyright or proprietary right; that the Work contains no scandalous, libelous, obscene, or
otherwise unlawful matter, and that it does not invade the privacy or otherwise infringe upon the common-law or statutory rights of anyone; and that the
undersigned's right to make the licenses set forth is complete and unencumbered.

Indemnifications; Enforcement of Rights

If anyone brings any claim or action alleging facts that, if true, constitute a breach of any of the foregoing warranties, the undersigned will hold harmless and
indemnify AAAL their grantees, their licensees, and their distributors against any liability, whether under judg- ment, decree, or compromise, and any legal fees
and expenses arising out of that claim or actions, and the undersigned will cooperate fully in any defense AAAI may make to such claim or action. Moreover,
the undersigned agrees to cooperate in any claim or other action seeking to protect or enforce any right the undersigned has granted to AAAI in the article/paper.
If any such claim or action fails because of facts that constitute a breach of any of the foregoing warranties, the undersigned agrees to reimburse whomever
brings such claim or action for expenses and attorneys’ fees incurred therein.

If the foregoing correctly reflects the understanding between us, please sign this document in the place indicated below and return it to us. In the event the
above article/paper is not accepted and published by AAAL or is withdrawn by the author(s) before acceptance by AAAL this agreement becomes null and void.

2017-November-21

Author's Signature Date

Employer for whom work was performed Title (if not author)

135

Association for the Advancement of Artificial Intelligence
A 2275 East Bayshore Road, Suite 160
Palo Alto, California 94303 USA

AAAT COPYRIGHT FORM

Fast PMI-Based Word Embedding with Efficient Use of Unobserved Patterns
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-19)

Title of Article/Paper:

Publication in Which Article/Paper Is to Appear:
Behrouz Haji Soleimani, Stan Matwin

Author's Name(s):

Please type or print your name(s) as you wish it (them) to appear in print

PART A — COPYRIGHT TRANSFER FORM

The undersigned, desiring to publish the above article/paper in a publication of the Association for the Advancement of Artificial Intelligence, (AAAI), hereby trans-
fer their copyrights in the above article/paper to the Association for the Advancement of Artificial Intelligence (AAAI), in order to deal with future requests for reprints,
translations, anthologies, reproductions, excerpts, and other publications.

This grant will include, without limitation, the entire copyright in the article/paper in all countries of the world, including all renewals, extensions, and
reversions thereof, whether such rights current exist or hereafter come into effect, and also the exclusive right to create electronic versions of the article/paper,
to the extent that such right is not subsumed under copyright.

The undersigned warrants that they are the sole author and owner of the copyright in the above article/paper, except for those portions shown to be in quo-
tations; that the article/paper is original throughout; and that the undersigned right to make the grants set forth above is complete and unencumbered.

If anyone brings any claim or action alleging facts that, if true, constitute a breach of any of the foregoing warranties, the undersigned will hold harmless
and indemnify AAAL their grantees, their licensees, and their distributors against any liability, whether under judgment, decree, or compromise, and any legal
fees and expenses arising out of that claim or actions, and the undersigned will cooperate fully in any defense AAAl may make to such claim or action. Moreover,
the undersigned agrees to cooperate in any claim or other action seeking to protect or enforce any right the undersigned has granted to AAAI in the article/paper.
If any such claim or action fails because of facts that constitute a breach of any of the foregoing warranties, the undersigned agrees to reimburse whomever
brings such claim or action for expenses and attorneys’ fees incurred therein.

Returned Rights
In return for these rights, AAAI hereby grants to the above author(s), and the employer(s) for whom the work was performed, royalty-free permission to:

1. Retain all proprietary rights other than copyright (such as patent rights).

2. Personal reuse of all or portions of the above article/paper in other works of their own authorship. This does not include granting third-party requests for
reprinting, republishing, or other types of reuse. AAAI must handle all such third-party requests.

3. Reproduce, or have reproduced, the above article/paper for the author’s personal use, or for company use provided that AAAI copyright and the source are
indicated, and that the copies are not used in a way that implies AAAI endorsement of a product or service of an employer, and that the copies per se are not
offered for sale. The foregoing right shall not permit the posting of the article/paper in electronic or digital form on any computer network, except by the
author or the author’s employer, and then only on the author’s or the employer’s own web page or ftp site. Such web page or ftp site, in addition to the afore-
mentioned requirements of this Paragraph, shall not post other AAAI copyrighted materials not of the author’s or the employer’s creation (including tables
of contents with links to other papers) without AAAI's written permission.

4. Make limited distribution of all or portions of the above article/paper prior to publication.

5. In the case of work performed under a U.S. Government contract or grant, AAAI recognized that the U.S. Government has royalty-free permission to repro-
duce all or portions of the above Work, and to authorize others to do so, for official U.S. Government purposes only, if the contract or grant so requires.

In the event the above article/paper is not accepted and published by AAAL or is withdrawn by the author(s) before acceptance by AAAL this agreement becomes
null and void.

® 2018-November-13

Author/Authorized Agent for Joint Author’s Signature Date

Employer for whom work was performed Title (if not author)

(For jointly authored Works, all joint authors should sign unless one of the authors has been duly authorized to act as agent for the others.)

136

137

Association for the Advancement of Artificial Intelligence
2275 East Bayshore Road, Suite 160
Palo Alto, California 94303 USA

PART B — U.S. GOVERNMENT EMPLOYEE CERTIFICATION

This will certify that all authors of the above article/paper are employees of the U.S. Government and performed this work as part of their employment, and
that the article/paper is therefore not subject to U.S. copyright protection. The undersigned warrants that they are the sole author/translator of the above arti-
cle/paper, and that the article/paper is original throughout, except for those portions shown to be in quotations.

@
U.S. Government Employee Authorized Signature Date
Name of Government Organization Title (if not author)

(Please read and sign and return Part B only if you are a government employee and created your article/paper as part of your employment. If your work was performed under Government
contract, but you are not a Government employee, sign only at signature line (1) in Part A and see item 5 under returned rights. Authors who are U.S. government employees should also
sign signature line (1) in Part A above lo enable AAAI to claim and protect ils copyright in international jurisdictions.)

PART C-CROWN COPYRIGHT CERTIFICATION

This will certify that all authors of the above article/paper are employees of the British or British Commonwealth Government and prepared the Work in con-
nection with their official duties , and that the article/paper is therefore subject to Crown Copyright and is not assigned to AAAI as set forth in the first sentence
of the Copyright Transfer Section in Part A. The undersigned warrants that they are the sole author/translator of the above article/paper, and that the arti-
cle/paper is original throughout, except for those portions shown to be in quotations, and acknowledges that AAAT has the right to publish, distribute, and reprint
the Work in all forms and all media.

(3)
British or British Commonwealth Government Employee Authorized Signature Date
Name of Government Organization Title (if not author)

(Please read and sign and return Part C only if you are a British or British Commonwealth Government employee and the Work is subject to Crown Copyright. Authors who are British or
British Commonuwealth government employees should also sign signature line (1) in Part A above lo indicate their acceptance of all terms other than the copyright transfer.)

Association for the Advancement of Artificial Intelligence
A 2275 East Bayshore Road, Suite 160
Palo Alto, California 94303 USA

AAAI DISTRIBUTION LICENSE

Title of Aricl/Paper (Work): Fast PMI-Based Word Embedding with Efficient Use of Unobserved Patterns

Publication in Which Artile Is o Appear Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-19)

Behrouz Haji Soleimani, Stan Matwin

Please type or print your name(s) as you wish it to appear in print

Author's Name(s):

Author’s Grant

The undersigned, desiring to publish the above Work in a publication of the Association for the Advancement of Artificial Intelligence, (AAAI), hereby hereby
grants to the Association for the Advancement of Artificial Intelligence the following nonexclusive rights:
(1) The perpetual, nonexclusive world rights to use the above-named Work as part of an AAAI publication, in all languages and for all editions.
(2) The right to use the Work, together with the author's name and pertinent biographical data, in advertising and promotion of it and the AAAT
publication.
(3) The right to publish or cause to be published the Work in connection with any republication of the AAAI publication in any medium including
electronic.
(4) The right to, and authorize others to, publish or cause to be published the Work in whole or in part, individually or in conjunction with other works,
in any medium including electronic.

Author’s Warranty

The undersigned warrants that they are the sole author and owner of the Work, except for those portions shown to be in quotations; that the Work is original
throughout; that publication thereof will not violate or infringe any copyright or proprietary right; that the Work contains no scandalous, libelous, obscene, or
otherwise unlawful matter, and that it does not invade the privacy or otherwise infringe upon the common-law or statutory rights of anyone; and that the
undersigned's right to make the licenses set forth is complete and unencumbered.

Indemnifications; Enforcement of Rights

If anyone brings any claim or action alleging facts that, if true, constitute a breach of any of the foregoing warranties, the undersigned will hold harmless and
indemnify AAAL their grantees, their licensees, and their distributors against any liability, whether under judg- ment, decree, or compromise, and any legal fees
and expenses arising out of that claim or actions, and the undersigned will cooperate fully in any defense AAAI may make to such claim or action. Moreover,
the undersigned agrees to cooperate in any claim or other action seeking to protect or enforce any right the undersigned has granted to AAAI in the article/paper.
If any such claim or action fails because of facts that constitute a breach of any of the foregoing warranties, the undersigned agrees to reimburse whomever
brings such claim or action for expenses and attorneys’ fees incurred therein.

If the foregoing correctly reflects the understanding between us, please sign this document in the place indicated below and return it to us. In the event the
above article/paper is not accepted and published by AAAL or is withdrawn by the author(s) before acceptance by AAAL this agreement becomes null and void.

2018-November-13

Author's Signature Date

Employer for whom work was performed Title (if not author)

138

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations
	Acknowledgements
	Introduction
	Contributions
	Outline

	Dimensionality Reduction for Image Clustering
	Introduction
	Background and Related Work
	Linear Dimensionality Reduction
	Nonlinear Dimensionality Reduction
	Global Approaches
	Local Approaches

	Proposed Dimensionality Reduction Method
	Calculating Input Similarities
	Cost Function
	Optimization
	Stochastic Gradient Descent Optimization
	Newton's Optimization Method

	Experiments and Results
	Visualizations of the Embedding Space
	Conclusion

	Kernelized PMI Based Word Embedding
	Introduction
	Related Work
	Kernelized Unit Ball Word Embedding (KUBWE)
	Preparing the Input for the Optimization
	Cost Function
	Optimization
	Kernelized Objective Function
	Reducing the time complexity by approximating the repulsive force

	Experiments
	Analysis of the Polynomial Kernel Degree
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion

	EigenWord and Spectral Word Embeddings
	Introduction
	Background
	Notation
	Pointwise Mutual Information (PMI)
	Singular Value Decomposition (SVD)
	Skip-Gram with Negative Sampling (SGNS)
	Global Vectors (GloVe)

	EigenWord: Spectral Word Embedding with Negative Sampling
	EigenWord Formulation
	Connection to SVD and an alternative solution (SVD-NS)

	Experiments
	Data and Vocabulary
	Evaluation method
	Analysis of the amount of negative examples
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusion

	Efficient Word Sense Disambiguation
	Introduction
	Proposed Method
	Refining the co-occurrences and extracting word relations
	Word Sense Disambiguation: Obtaining Sparse Sense Vectors
	Word Sense Induction Using the Sparse Sense Representation
	Word Sense Embedding: Obtaining Dense Representations

	Evaluation
	Conclusion

	Intrinsic Evaluation of Word Embeddings
	Corpus for training word embeddings
	Cleaning and Preprocessing of the Wikipedia Corpus
	Results on Word Similarity Datasets

	Extrinsic Evaluation: Experiments with Downstream NLP Applications
	Emotion Intensity Recognition from Tweets
	Emotion Intensity Recognition (EI-reg) Dataset
	Corpus for training word and tweet embeddings
	Cleaning and Preprocessing of EI-reg Dataset and DISC Corpus
	Results of Traditional Methods and Document Embeddings
	Results of Word Embedding Based Algorithms

	Sentiment Analysis of IMDB Movie Reviews
	IMDB Movie Reviews Dataset
	Results of Traditional Methods and Document Embeddings
	Results of Word Embedding Based Algorithms

	Conclusion and Future Research
	Conclusion
	Future Research

	Bibliography
	Copyright Permissions

