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ABSTRACT 

This research investigates novel approaches to reduce the burden of alert fatigue 
faced by primary care physicians using Clinical Decision Support Systems 
(CDSS) within EMR systems. CDSS issue a range of alerts to assist physicians 
in patient management with respect to clinical guidelines and institutional clinical 
pathways. However, the generation of alerts is usually suboptimal, and does not 
consider the physician’s clinical context. Our approach is to understand the 
physician’s practice to triage alert issuance, ensuring that alerts are adequately 
addressed by physicians without causing unnecessary alert fatigue. We utilize 
machine learning techniques to: cluster physicians into distinct practice groups 
based on their practice data, stratify the wide range of CDSS alerts based on 
key, defining attributes, and learn a classification based mapping between 
physician practice groups and alert types to develop an innovative alert issuance 
strategy that greatly reduces the volume of alerts presented to each physician 
group.  
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CHAPTER 1: INTRODUCTION 

With the increased adoption of electronic medical records in the primary 

care setting, there is an opportunity to leverage Clinical Decision Support  

(CDS) to improve patient care delivery and associated health outcomes. 

Electronic, automated CDSS (Clinical Decision Support System) alerting is 

one mechanism by which physicians can receive real time, evidence-based 

information relating to the patient, whether it be in the form of a suggestion, 

reminder or an urgent care-related alert, in order to help inform care delivery 

[6, 7]. While CDS alerting has been associated with increased patient safety 

and improved patient outcomes [17, 18, 24, 25, 27, 28], significant challenges 

with alert delivery and alert acceptance persist resulting in the widely reported 

phenomenon known as ‘alert fatigue’ [19, 20, 27]. Alert fatigue can be defined 

as the process by which clinicians become desensitized to alerts, and as a 

result ignore or fail to respond appropriately to such warnings [16]. 

Essentially, alert fatigue is a direct result of higher than necessary volumes of 

alerts being presented to clinicians [19, 20, 27]. With studies reporting alert 

override rates as high as 90% [68, 70], there exists significant risk to patient 

safety as important, evidence-based, care related alerts are being ignored. 

Physicians have expressed the importance of delivering the right alert to the 

right provider at the right time and in the right way, noting that alert content is 

not always aligned with the needs of different clinician groups and expressing 

frustration in their inability to influence alert issuance to align with personal 

preferences [60]. There is a need to explore a more personalized approach to 
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CDSS alert delivery in order to reduce the volume of alerts delivered, thereby 

minimizing alert fatigue.  

1.1 Research Intent and Objectives 

This research aims to investigate novel approaches to reduce the burden 

of alert fatigue faced by primary care physicians, thereby ensuring that 

CDSS-generated alerts are actually acted upon in a timely manner in order to 

improve patient safety, and ultimately, patient care. Given the wide variety 

and volume of alerts being generated (with varying degrees of acuity) it is 

important that these alerts are presented to physicians in keeping with the 

dynamic of their clinical practice—i.e. alert response behavior, clinical 

schedule, alert acuity and patient case-mix. Essentially, our approach is to 

understand the physician’s clinical practice in order to triage the issuance of 

alerts to ensure that the alerts are adequately attended to by physicians 

without any unnecessary fatigue due to the plethora of alerts presented. Our 

goal, therefore, is to investigate and develop a personalized, alert triaging 

mechanism to reduce alert fatigue faced by physicians. For personalization, 

we will pursue the following research objectives:  

1) Stratification of physicians into distinct practice groups to design a group-

level alert issuance strategy;  

2) Classification of the wide range of CDSS alerts in terms of their source, 

acuity and response expectations; 

3) Establishing a mapping between physician groups and alerts types; and  
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4) Development of a strategy to issue alerts based on physician’s practice 

and alert response behavior in order to minimize alert fatigue. 

1.2 Research Design 

In order to address our research objectives, we first explore physician 

characteristics, related to both patient and practice attributes. This will permit the 

grouping of physicians into distinct clusters. We seek to leverage as much real 

world data as possible, coupled with attributes taken from current literature. We 

will then utilize well documented, machine learning-based clustering techniques 

to identify physician types. 

Next we will explore CDSS alert classification in the literature. We will seek 

out a framework that could be applied to the primary care setting. From there, we 

develop our own framework for CDSS alert type classification. The goal is to 

utilize this framework for our research; but it will be developed such that it can be 

shared and used by others to support future research as well. 

Finally, we will use our physician clusters and alert classification to generate 

personalized physician response data which will be used to develop a predictive 

model that will help identify how the various physician types (groups) respond to 

the various alert types set forth in our framework. This will enable us to develop 

an innovative strategy for alert issuance based on a physician’s practice and alert 

response behavior. If successful, this will lead the way for future research 

exploring a more personalized approach to CDSS alert delivery that could offer 

significant opportunities to combat alert fatigue. 
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1.3 Contribution 

This research will provide an innovative strategy for the reduction of alert 

fatigue based on a more personalized approach to CDSS alert issuance based 

on the stratification of physicians. While many CDSS related studies leverage 

patient characteristics with respect to alert issuance, we were unable to identify 

any that reported utilizing physician attributes to determine which CDSS alerts 

are displayed. Our approach could lead to a significant reduction in alert 

rejection, and in the volume of alerts displayed to a physician – alerts that we 

know would be ignored based on evidence used to develop our predictive 

models. This work will pave the way for additional work in the area of 

personalized CDSS alerting. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows: Chapter 2 presents the 

background and main concepts related to this research, Chapter 3 presents our 

research methods and design, Chapter 4 presents our classification results, 

Chapter 5 offers our proposed alert issuance strategy, and Chapter 6 provides a 

discussion on study contributions, limitations and future work.  
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CHAPTER 2: BACKGROUND 

2.1 Overview 

 This chapter will provide the reader with a general overview of health 

information technology, specifically focusing on current CDSS implementations 

including reported benefits as well as challenges and barriers to adoption. It then 

provides specific information on CDSS alerting and the phenomenon of ‘alert 

fatigue’, and finally describes the use of data mining in healthcare, focusing on 

the use of clustering and classification techniques. 

2.2 Healthcare IT 

Over the past number of years, organizations governing the delivery of 

healthcare in industrialized nations have identified the need for significant change 

in care delivery models in order to address a variety of challenges including 

increased life expectancy [1], higher volumes of patients with chronic conditions 

and multiple comorbidities [2], mounting financial pressures, and growing 

demands for improved quality and positive patient outcomes [3]. As a result, care 

delivery models have shifted whereby services that have traditionally been 

addressed via acute care models are now being delivered in ambulatory care 

settings [4, 5]. More, and increasingly complex care, creates challenges for 

primary care clinicians in providing patient care. Information technology provides 

one mechanism to overcome challenges faced by primary care providers in 

terms of patient management and care delivery.   

Health information technology (HIT) presents a wide range of 

opportunities for improving and transforming healthcare including improvement of 
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practice efficiencies, facilitating care coordination amongst clinicians, reducing 

human error, improving clinical outcomes, and tracking data over time [50]. Since 

the IOM’s 2001 release of ‘Crossing the Quality Chasm’ report, and with ongoing 

technological advances, HIT continues to be suggested as an important 

mechanism for advancing clinical care and addressing quality and patient safety 

concerns. In fact, in 2009, the HITECH Act was passed into US law, promoting 

the “adoption and meaningful use of health information technology” [51]. 

Meaningful Use goals were established, and set out in stages, beginning in 2011 

through to 2015 (Stages 1, 2 and 3). The Meaningful Use criteria focus on 

discrete data capture and sharing, advanced clinical processes and clinical 

decision support, HIT adoption, improved outcomes, and truly transforming care 

delivery through HIT [52]. Similarly, the NHS claims to be the most globally 

advanced in terms of its use of IT in primary health care, and in the ‘NHS Five 

Year Forward View’ report released in 2017, they commit to being fully paperless 

across the entire healthcare delivery sector by 2020 [53]. These initiatives have 

contributed to further implementation and adoption of HIT applications globally, 

across the entire spectrum of care delivery including computerized physician 

order entry (CPOE), electronic prescribing, electronic patient handover tools, bar 

coded medication administration, automated medication dispensing cabinets, 

electronic medication administration records, patient portals, electronic referrals, 

remote patient monitoring technologies, integrated biomedical devices (i.e. Smart 

pumps), EMR/EHRs, as well as CDS systems. 
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2.3 Clinical Decision Support Systems 

 Clinical decision support systems (CDSS) provide “… clinicians, staff, 

patients or other individuals with knowledge and person-specific information, 

intelligently filtered or presented at appropriate times, to enhance health and 

health care” [6]. The term CDSS is most widely used for computer-based 

interventions/support delivered through clinical information systems [7]. Some 

examples of CDSS functionality include electronic reminders and alerts to 

providers and/or patients, integration of clinical practice guidelines into electronic 

workflows, condition-specific order sets, diagnostic support, or context-based 

reference information, to name a few [6]. CDSS are “not intended to replace 

clinician judgment, but rather to provide information to assist care team members 

in managing the complex and expanding volume of biomedical and person-

specific data needed to make timely, informed, and higher quality decisions 

based on current clinical science” [8].  

 Although a significant volume of research has been published around 

CDSS (a PubMed search through January, 2018 returns 1468 papers), most 

studies involve small, internally developed CDSS applications that have been 

designed for a specific disease or condition [54]. As a result, comparability, and 

therefore generalizability, proves challenging. None the less, many recent papers 

do report positive outcomes related to CDSS implementation. For example, a 

2014 systematic review of US based acute care facility implementation of 

Computerized Provider Order Entry (CPOE) with CDSS found that use of CPOE 

reduced preventable adverse drug events by more than 50% when compared 
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with facilities using paper based ordering [55]. The same study also reported a 

reduction in medication errors by approximately 50% when using CPOE with 

clinical decision support versus paper based ordering [55]. Yet, as of 2012, only 

44% of US based acute care hospitals had implemented an EHR with CPOE and 

clinical decision support [55].  

 More recently, Varghese et al. conducted a review examining the effects 

of CDSS implementations on patient outcomes in inpatient care. This review was 

based on Kawamoto et al.’s definition of CDSS, which states “A CDSS is any 

electronic system designed to aid directly in clinical decision making, in which 

characteristics of individual patients are used to generate patient-specific 

assessments or recommendations that are then presented to clinicians for 

consideration” [56]. This study is unique in that it focuses more broadly on patient 

outcomes as opposed to improvements in physician adherence to clinical 

practice guidelines, error reduction or improving clinical workflows which much of 

the research has reported on to date. Seventy papers were included in the 

review, and researchers found that almost all reported CDSS use as being 

associated with positive patient outcome effects; but with substantial differences 

with respect to clinical impact [57]. The reviewers actually suggest that there are 

some specific use cases for CDSS in terms of improved patient outcomes, 

specifically around blood glucose management, blood transfusion management, 

physiological surveillance, pressure ulcer prevention, acute kidney injury 

prevention and VTE prophylaxis [57].  
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 A 2014 paper published by Loja et al. examined RCT’s “assessing the 

effectiveness of computerized decision support systems (CDSSs) featuring rule- 

or algorithm-based software integrated with electronic health records (EHRs) and 

evidence-based knowledge” [58]. This study focused on RCT’s whose goals 

were to evaluate mortality and morbidity outcomes. Based on the 28 RCT’s who 

met the inclusion criteria, there was no evidence that CDSS improved mortality 

rates, and minimal evidence for a decrease in morbidity associated with CDSS 

use [58]. That being said, the authors also note the limited number of studies 

reporting on solid, tangible outcomes. Yet another, more recent paper, published 

in 2018 highlights the need for caution around CDSS implementations. Stone 

shares two cases in which CDSS’s led to unintended adverse patient outcomes 

related not necessarily to the system itself; but to the reliance on integrated 

applications and the need to be aware of changes to those point of care (POC)  

and other ancillary systems [59]. That being said, there has been minimal 

evidence reported to date around negative outcomes or unintended adverse 

events related to CDSS use.  

 While much evidence exists supporting the use of CDSS in some way, 

and HIT in general, there remain significant barriers to CDSS adoption. Although 

87% of primary care practices in the US report EMR use [12], it is unclear to what 

extent rich, evidence-based knowledge rules and support are integrated into 

those systems. Current research notes key CDSS adoption barriers which 

include a lack of physician involvement in CDSS rule development, the need for 

some level of physician control or choice (for example, addressing physician 
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preferences in terms of the timing of when patient care recommendations are 

presented), and the perceived lack of physician autonomy [60,61]. A 2015 study 

conducted focus groups with primary care physicians, and explored perceived 

barriers to using CDSS in the primary care setting. Commonly perceived barriers 

included: insufficient knowledge of the CDSS, irrelevant alerts, too high an 

intensity of alerts, a lack of flexibility and lack of learning in the CDSS application, 

a negative effect on patient interaction, and additional amount of time and effort 

required to use the CDSS [60]. This study discusses physician concern around 

the reliability and accuracy of the CDSS content; but also highlights the need for 

flexibility and adaptability of the system to allow for personal physician 

preferences [60].  A 2016 study conducted focus groups with both physicians and 

nurses, found incorrect reminders as well as an inability to prioritize reminders to 

be two important barriers to EMR CDSS adoption [77].  Liberati et al. describe a 

CDSS implementation framework to help address challenges with CDSS 

adoption [67]. These challenges include selecting and presenting relevant alerts, 

in order to avoid alert fatigue, and as in the 2016 study, Liberati et al. also 

discuss the need for regular updates and continual improvement of the CDSS 

application [67].   

 Despite some of the challenges and barriers associated with CDSS 

implementation and adoption, its use will likely continue to increase given 

continued calls for meaningful use of HIT, and increased familiarity with 

technology across the clinician population, and growing concerns around quality 

and safety related to patient care [62]. The challenge lies in presenting the right 
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information to the right clinician at the right time in order to ensure that clinician is 

able to make an informed decision and quickly take action on that decision. This 

work attempts to address some of these challenges, particularly in the areas of 

CDSS alerting and alert fatigue. 

2.4 CDSS Alerts 

 With clinical practice guidelines changing every three to five years [63], 

and with over one million new biomedical papers published each year [65], the 

sheer volume of clinical information available to physicians and other clinicians to 

help inform their clinical practice is undoubtedly overwhelming. As the adoption 

of electronic clinical information systems continues to grow, the volume of more 

easily accessible, electronic patient data climbs. CDSS applications attempt to 

address this challenge by linking patient-specific data to a ‘knowledge base’ in 

order to generate information and suggestions meant to directly improve patient 

care delivery. A knowledge base is simply a database that stores knowledge in a 

suitable form depending on its use [13]. Alerting is one form of clinical decision 

support, and can be defined, at a high level, as providing relevant information 

back to the clinician electronically via the clinician’s EMR application. Alerts are 

electronic notifications intended to advise a clinician on a course of action based 

on relevant patient information coupled with supporting clinical evidence. CDSS 

alerts can be synchronous or asynchronous [21]: 

 Asynchronous alerts are non-interruptive notifications or supports [64]. An 

example might be an automatically generated print out to the pharmacy 

when a patient’s INR level is greater than 4. Not triggered by a specific 
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user task at point of care; but could be event-driven (for example, 

notification of an abnormal lab result) or display of filtered reference 

information or other knowledge resources requested of the CDSS by the 

physician for a particular patient or disease/condition type. Asynchronous 

alerts are commonly thought of as ‘inbox notifications’ including referral 

responses or test results ready for review. 

 Synchronous alerts are the focus of this research, and are typically 

delivered in the form of immediate, interruptive activities such as “pop-up” 

alerts, information displays, links, or through targeted highlighting of 

relevant data [14]. This type of alert serves two main functions: either to 

remind the clinician to perform a task, or to alert the clinician about the 

potential consequences with not performing a task [66].  

 

Synchronous CDSS alerts generally take the form of a notification or reminder 

meant to help inform the clinician around best evidence related to patient care. 

These alerts present at the point of decision making. For example, the alert may 

take the form of a preventative care reminder, such as a patient being overdue 

for a vaccine or it could take the form of a more urgent notification or warning of a 

patient drug allergy or contraindication as the physician attempts to order a 

patient prescription. Alerts are either accepted (meaning the provider has 

acknowledged the alert/adjusted course of action in support of the alert) or 

rejected (meaning the alert was overridden, or ignored). Some CDSS 

applications are designed such that alerts deemed critical or urgent enforce a 
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‘hard stop’ preventing a clinical workflow from continuing, although more often 

these high priority alerts simply require physician justification for overriding the 

alert and as a result the workflow is permitted to continue. The latter measure 

aids in supporting physician autonomy – a widely reported barrier to physician 

adoption to date [61, 67].  

Both alert types can be either knowledge-based or data-driven. Asynchronous 

alerts are less likely to contribute to alert fatigue given their non-interruptive 

nature. On the contrary, synchronous alerts, which often take the form of a ‘pop-

up’ box, are a significant contributor to alert fatigue given the interruption to 

clinical workflow [14, 66], and as such, are the focus of this research. 

2.5 Alert Classification 

 Recognizing that differences exist amongst physicians, we also 

acknowledge the heterogeneity amongst EMR alerts. We expect that differences 

in CDSS EMR alerts will invoke varied responses from physicians and physician 

groups. In order to validate these assumptions; however, we require a means of 

classifying the various EMR alerts.  

 An extensive literature review was conducted to determine whether any 

alert classification frameworks had been developed and/or reported on to date. 

PubMed is a free search engine “developed and maintained by the National 

Center for Biotechnology Information (NCBI)” [46], and was utilized extensively 

for this work. Only one paper, published in 2011 by Wright et al., discussed 

development of a CDSS alert taxonomy [21]. The authors had completed an 

extensive comparison of front-end CDSS tools in both commercially developed 
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and internally developed EHRs/EMRs (these terms are frequently used 

interchangeably in the literature). After examination of systematic literature 

reviews on CDSS, coupled with previously conducted qualitative research as well 

as extensive experience in the field of CDSS, the authors developed a 

preliminary list of 46 CDS tools [21]. They subsequently organized and facilitated 

an in person conference attended by eleven US based HIT and CDSS experts, 

as well as the researchers themselves. From there, CDS types were divided into 

6 categories: medication dosing support, order facilitators, point of care 

alerts/reminders, relevant information display, expert systems and workflow 

support [21]. While this taxonomy was not specific to primary care EMR systems, 

relevant CDSS alert types were taken from this taxonomy to create the EMR alert 

classification used in this research.  

 

2.5.1 CDS Group and Type 

 As noted in Section 2.5, Wright et al. identified six CDS categories in their 

taxonomy. For the purposes of our research, relevant information display and 

workflow support were excluded. Relevant information display includes CDS 

tools such as ‘tall man lettering’ (where applications vary the case of medication 

names that resemble one another in order to highlight critical differences), or 

‘context-sensitive information retrieval’ often referred to as info buttons. This type 

of CDS simply occurs and does not offer the clinician to accept or ignore the 

support, and therefore was excluded from this study. Wright et al.’s ‘Workflow 

Support’ category includes things like parsing of free text orders into structured 
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fields, as well as documentation aids such as templates and other tools for 

documenting care in both structured (discrete) and non-structured forms [21]. 

Similar to the ‘relevant information display’ category, these supports are not 

actionable by a physician and cannot be recorded as accepted nor ignored and 

therefore were also excluded from this research. Medication dosing support, 

order facilitators, point of care alerts/reminders and expert systems; however, do 

all consist of synchronous alerts whose acceptance can be captured, and are 

also relevant in the primary care setting, and therefore these categories were 

included in this research.  

 Wright et al. also identified, based on extensive research and engagement 

with experts, sub-categories under each of the six previously discussed 

categories. For each of the four categories included in our research, we reviewed 

each of the sub-categories listed, the evidence referenced for each, and 

determined whether or not they should be included in our research. The inclusion 

criteria included: a) was the CDS delivered in such a way that it could be 

accepted/rejected and could the action taken by the physician be recorded?,  and 

b) was the CDS sub-category relevant to the primary care environment?  

Tables 2-1 through 2-4 provide detail on each CDS group and associated CDS 

types that met the inclusion criteria for our research [21]. 
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Table 2-1: Medication Dosing Support 

CDS 
Group 

CDS Type Description 

1 Medication dose adjustment Assistance with adjusting or calculating 
medication doses based on patient 
characteristics such as age, weight, etc. 

1 Formulary checking Check medication orders against hospital 
or payer formularies. May also suggest 
more cost effective therapies 

1 Single dose range checking 
 

Checking to see whether a single dose of 
a medication falls outside of an allowable 
range 

1 Maximum daily dose 
checking 

Checking to see whether a combined 
daily dose of a medication exceeds a 
specified maximum daily dose.  

1 Default doses/pick 
lists 
 

Providing common doses of a medication 
for a provider to choose from. 

1 Indication-based 
dosing 

Adjusting default medication doses based 
on indications entered by an ordering 
provider. 
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Table 2-2: Order Facilitators 

CDS 
Group 

CDS Type Description 

2 Medication order sentences Complete statements of orders which a 
provider can order as a single unit. 

2 Subsequent or corollary orders Suggesting or automatically ordering 
something based, on or in response to, 
another order. 

2 Indication-based ordering Suggesting orders based on the 
indication entered by the ordering 
provider. 

2 Condition-specific order sets Order sets (collections of common orders) 
based on a disease or problem that the 
patient has.  

2 Non-medication order 
sentences 

Complete statements of non-medication 
orders which a provider can order as a 
single unit. 

 

Table 2-3: Point of Care Alerts/Reminders 

CDS 
Group 

CDS Type Description 

3 Drug-condition interaction 
checking 

Checking medication orders against the 
patient problem list for possible 
contraindications. 

3 Drug-drug interaction checking Checking medication orders and the 
medication list for possible 
contraindications. 

3 Drug-allergy interaction 
checking 

Checking medication orders against the 
allergy list for possible contraindications. 

3 Plan of care alerts Time-based alerts relating to planning of 
care. 

3 Critical laboratory value 
checking 

Comparing laboratory results to reference 
ranges and alerting providers to critical 
values. 

3 Duplicate order checking Checking active medication orders and 
the medication list for possible 
duplication. 

3 Care reminders Reminders to order a diagnostic or 
therapeutic procedure based on patient 
parameters including preventative care 
reminders, chronic disease reminders, or 
palliative care reminders. 

3 Look-alike/sound-alike 
medication warnings 

Warn providers when they order a  
medication whose name looks or sounds 
like another drug. 
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CDS 
Group 

CDS Type Description 

3 Ticklers Time-based alerts that an order has not 
been fully carried out. 

3 Problem list management Alerts, reminders and automated 
documentation tools that help providers 
maintain an accurate problem list. 

3 Radiology ordering support Assistance in selecting appropriate 
radiology studies based on patient 
conditions. 

3 High-risk state monitoring Alerting the provider to high risk states. 

3 Polypharmacy alerts Alerting the provider when patients are on 
a high number of medications. 

 

Table 2-4: Expert Systems 

CDS 
Group 

CDS Type Description 

4 Antibiotic ordering support Antibiotic suggestions based on patient 
history, culture results, patient 
characteristics, etc.  

4 Diagnostic support Differential diagnosis suggestions based 
on patient signs and symptoms. 

 

2.6 Alert Fatigue 

 There are a number of challenges related to CDSS alerts. Arguably, the 

most widely reported impediment is the concept of ‘alert fatigue’. The AHRQ 

defines alert fatigue as the process by which clinicians become desensitized to 

alerts, and as a result ignore or fail to respond appropriately to such warnings 

[16]. There is a general consensus amongst clinicians and administrators that 

CDSS alerts are an important tool in enabling improved, standardized patient 

care [17, 18, 24, 25, 27, 28]; however the majority of systems implemented to 

date struggle to achieve appropriate sensitivity and specificity levels, and 

generate higher volumes of alerts than are necessary and/or clinically relevant 

[19, 20, 31]. Alert sensitivity describes the ability of a CDSS to alert clinicians 
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correctly when patients are at risk of experiencing harm [20]. The specificity of a 

CDSS is a measure of its ability to distinguish between events that put a patient 

at risk of harm as opposed to non-events that will not [20]. The higher the volume 

of false positives, the lower the specificity, resulting in increased clinician 

frustration and lower alert acceptance rates. While alert specificity and sensitivity 

are important, they do not necessarily contribute to the volume of alerts 

presented to clinicians, although arguably, could contribute to a reduction in 

volume should the lower sensitivity and specificity alerts be prevented from firing 

unnecessarily.  

 Several conceptual models have been identified in terms of alert fatigue. 

One has been coined by Ancker et al. as ‘cognitive overload’, which suggests 

that alert fatigue is caused by receipt of large volumes of information with 

“insufficient time or cognitive resources to distinguish relevant from irrelevant 

information” [68]. This theory implies that a reduction in the volume of clinician 

‘workload’ including CDSS alerts will improve override rates which have been 

widely reported as between 50 and as high as 96% across a variety of systems 

and settings [68, 69, 70]. A 2017 study which examined provider acceptance 

responses over time, while factoring in provider workload factors such as volume 

of alerts, patient complexity, volume of patients and quantity of orders reported a 

significant reduction in acceptance rates as increases in the number of 

reminders, increases in the volume of repeated reminders for the same patient, 

and patient complexity also increased [68]. This is particularly relevant in the 

primary care environment, where, as we noted above, with changing care models 
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providers are seeing increasingly complex patients. Most CDSS are developed 

based on treatment guidelines designed to treat single diseases [66], resulting in 

increased reminder volumes for primary health care clinicians. 

Other research, however, reports no evidence of a relationship between 

volume of alerts and override rates [72, 73]. These studies lend support to 

another model: ‘desensitization’, theorizing that repeated exposure to alerts leads 

to decreasing provider responsiveness. This theory suggests that acceptance 

rates are higher for newly added CDSS alerts; but that acceptance rates of those 

alerts decreases over time [68]. There is little evidence to support this theory; 

however, and some evidence actually goes against this hypothesis suggesting 

that physicians do continue to accept alerts even after longer term exposure to 

the same alert when the alert is appropriate [68]. The ability to isolate 

compounding factors, in particular, the appropriateness of the alert in each 

specific context, makes this desensitization theory difficult to evaluate. 

 Some mechanisms/techniques have been identified to help reduce alert 

fatigue, although no real ‘best practices’ surrounding the development of CDSS 

alerts, in order to prevent alert fatigue, have been published to date [74]. McCoy 

et al. (2014) show that increasing clinical context integration increases alert 

appropriateness thereby increasing alert acceptance rates [71]. Alert 

appropriateness is crucial, given findings that at least 70% of alerts need to be 

appropriate if providers are to have any confidence in the CDSS application [75]. 

A recent 2018 review of important CDSS design elements required for provider 

acceptance and subsequent improved outcomes, identified the need for the 
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CDSS to adapt its alerting based on relevant actions taken by physicians in 

similar situations [74] in order to reduce the volume of inappropriate alerts. 

 Another mechanism to address alert fatigue is to review all possible alerts 

and tier or rank the alerts. This method presents alerts differently based on alert 

severity and there is evidence to suggest that the tiering of alerts improves alert 

acceptance. In a randomized control trial (RCT), Paterno et al. tiered DDI alerts 

at one of two facilities using the same knowledge base.  Level 1 alerts interrupted 

the ordering process and presented as a ‘hard stop’ preventing the user from 

proceeding without taking some action at the tiered site. The tiered facility 

reported 100% alert compliance for Level 1 alerts compared with only 34% at the 

non-tiered sight [26] demonstrating the importance of alert stratification as a 

means of presenting the right alert, at the right time and in the right way, in order 

to reduce alert fatigue. Another 2017 study looked at grouping similar medication 

related alerts into single alerts, and showed that by performing this clustering in 

alert generation, they were able to reduce the alert rate within these clusters by 

53-70% [76]. 

 Integrating more clinical and patient context to refine alerts and improve 

alert appropriateness is clearly an important area of CDSS development. 

Provider context, however, must be considered as well. Research in the area of 

personalized provider alert presentation is limited. Coleman et al. identified the 

need for additional research in this area, identifying key gaps in CDSS alert 

research. Presentation and personalization of alerts as well as the design and 

firing of alerts/rules were two of the eight key areas identified [20]. Although 
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significant bodies of knowledge have been published around CDSS alerting, 

most of these studies take place in acute care settings. The Primary Health Care 

environment is very different with providers seeing a wide range of patients over 

extended periods of time.  Patient care needs in this setting are in stark contrast 

to those who find themselves in the acute care setting, and the needs of, and 

demands placed on, primary care providers are also in contrast to their 

counterparts in acute care. This further supports the need for more research in 

the area of CDSS alerting in primary care. We believe that a greater 

understanding and evaluation of the physician’s context can lead to significant 

improvements CDSS alert delivery and acceptance, as a means of addressing 

alert fatigue, particularly in the complex primary care environment. 

2.7 Data Mining and Machine Learning in Healthcare  

 Machine learning itself is not a new concept, having been discussed since 

the introduction of computers in the first half of the nineteenth century. The terms 

“machine learning” and “data mining” are often used interchangeably; however 

there are some notable differences. Data mining pulls from existing data sets in 

order to identify patterns in the data that can help shape decision making, 

whereas machine learning involves observing patterns and learning from them to 

in order to adapt behavior for future incidents [29]. Although data scientists can 

set up data mining to automatically look for specific types of data and 

parameters, it doesn’t learn and apply knowledge on its own without human 

interaction [29]. One of the most commonly cited data mining definitions comes 

from MIT in 2001,  and states that “data mining is the analysis of (often large) 
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observational data sets to find unsuspected relationships and to summarize the 

data in novel ways that are both understandable and useful to the data owner” 

[30]. In that same year, a technology review (again published by MIT) listed data 

mining as one of the top ten emerging technologies that would change the world 

[31]. The goal of data mining is to gain a deeper understanding of large volumes 

of data in order to advance domain knowledge and support improved decision 

making. The digital world continues to grow as more and more information is 

captured electronically across all industries and sectors. Healthcare is no 

different, with massive amounts of data accumulating as much of the patient care 

delivery processes are captured via electronic methods be it through electronic 

physiological monitoring and biomedical devices, or through an expanded use of 

hospital information systems. With electronic storage costs and computational 

power continually decreasing in cost, the field of data mining, and the 

opportunities within, continues to expand.   

 Although data mining has been successfully employed across various 

sectors (financial, retail, marketing, and manufacturing) to date, the use of 

machine learning in healthcare has been minimal. With growing volumes of 

increasingly complex data, and increasing pressures to reduce costs and 

improve outcomes, traditional analysis methods are no longer feasible, and 

machine learning tools are becoming a necessity. Data mining techniques can be 

broadly categorized by their capabilities which include data description and 

visualization, clustering and association, and finally, classification and estimation 

(predictive modeling) [33]. Clustering refers to “the division of data into groups of 
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similar objects” [40]. Clustering is used when there is no class to be predicted; 

rather the goal is to separate the instances into natural groups. A variety of 

different clustering methods exist, each accepting and analyzing training data in 

order to generate clusters by which test data can be evaluated and classified 

against. Each method serves a unique purpose, and results may be expressed 

as overlapping, exclusive, probabilistic or hierarchical [41]. Classification is a 

supervised learning approach in which a computer program learns from the data 

input given to it (training data), and then uses this learning to classify a new 

observation [81]. Essentially, classification techniques are used to group 

membership for data instances. Classification is considered ‘supervised’ given 

that the algorithm learns based on labeled data – meaning the group 

membership, or ‘class’ of an instance is known [81].    

Leveraging these techniques in healthcare can be challenging for several 

reasons. Healthcare data is typically stored across a number of systems: 

administrative, laboratory, clinics, health records, etc. Data must be collected and 

integrated before it can be analyzed, which can be a time consuming, resource 

intense, and therefore costly endeavor. Heterogeneity of patients as well as 

treatments adds additional complexity. Because traditional hospital information 

systems (HIS) were developed for billing and financial objectives, patient specific 

data is often of low quality (i.e. missing, inconsistent, unstructured, and/or non-

standardized) resulting in poor algorithm accuracy insufficient for use in a clinical 

environment. Successful data mining requires both domain expertise and data 

mining proficiency. Health professionals, while domain experts, are generally not 



25 

 

well versed in data mining techniques required for successful development, 

implementation and evaluation.  

 Despite the challenges mentioned above, there have been some notable 

studies published in the area of data mining in healthcare. Findings highlight 

success in the areas of fraud detection, cost prediction, decreased length of stay, 

reduction of readmission by identifying patients who are at high risk for 

readmission and addressing care concerns thereby preventing the need for 

readmission [readmission], disease identification [32], predicting and preventing 

adverse events [35] and personalized medicine [33, 34, 35, 36, 37, 38]. This 

research focuses on predictive modeling using traditional clustering and 

classification algorithms to address the well documented challenge of alert 

fatigue in a novel way. 

2.8 Conclusion 

 In this chapter, we have provided an overview of HIT and Clinical Decision 

Support systems. We have provided a review of recent studies which highlight 

some of the key benefits and challenges associated with CDSS, and CDSS 

alerts, in particular. We discussed alert classification and alert types. We also 

reviewed the phenomenon of alert fatigue, and the implications of alert fatigue in 

the primary care setting. Finally, we have provided some background on data 

mining and machine learning in healthcare.  

 Lugtenburg et al. highlight the need to improve flexibility and learning 

capability of systems in order to increase options to adapt the CDSS applications 

to meet the varying needs of different physicians as an important area for future 
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research [60]. In the next chapter, we will discuss our research methodology and 

solution design which aims to address some of the gaps in existing research 

related to physician context and CDSS alerting.  
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CHAPTER 3: RESEARCH METHODS AND DESIGN  

This chapter will provide an overview of the research methods that were 

used to design, develop, and implement this research study. First, we will discuss 

our overall research design. Next, we will discuss the approach taken to 

assemble physicians into clusters based on a selection of physician and practice 

attributes. We will discuss the need for an alert classification framework, as well 

as the methods and justification for doing so. Finally, in this chapter we discuss 

our approach to patient typing for inclusion in our models.  

3.1 Solution Approach 

 In this section, we will discuss the approach to be taken to address each 

of the research objectives outlined below in Table 3-1.  

Table 3-1: Research objectives guiding the solution approach. 

 Research Objectives 
1 To stratify physicians into distinct practice groups to design a group-level alert 

issuance strategy 

2 To develop a classification scheme for EMR-based CDS alerts based on a review of 
current literature.  

3 To establish a mapping between physician groups and alerts types 

4 To develop a strategy to issue alerts based on physician’s practice and alert response 
behavior in order to minimize alert fatigue 

 

 This work will be designed as a ‘Proof of Concept’ utilizing both collected 

and simulated data to investigate our research objectives and to develop an alert 

issuance strategy. There are several reasons for this approach. Firstly, this 

research will be conducted in the Province of Nova Scotia. While increasing 

numbers of primary care physicians are using electronic medical records, the 

degree to which CDSS is implemented across the primary health care setting in 
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this province is currently limited. Additionally, multiple EMRs are in use 

provincially, and the lack of consistency and standards introduces some 

challenges in terms of our ability to extract meaningful data related to CDSS 

alerts and associated acceptance rates. For these reasons, we chose a proof of 

concept approach, and acknowledge that the outcomes of this research may 

identify opportunities to further explore these concepts with real world data. 

 The Waikato Environment for Knowledge Analysis (Weka) is a suite of 

open-source, java-based, machine learning software developed at the University 

of Waikato, New Zealand [43]. Weka offers a variety of data mining algorithms 

and its use is widely reported in the literature [44]. In addition, it provides an 

intuitive GUI. For all of these reasons, Weka was selected as the data mining 

software for this research. 

 Section 3.2 will discuss, in detail, the approach taken to address our first 

research question. This is a critical first step as the physician clustering will 

provide the foundation for the rest of this research work. We will discuss the data 

collection and preparation methods, and will highlight the clustering techniques 

proposed and the rationale for their selection. 

Section 3.3 focuses on the steps we will take to develop an EMR alert 

classification framework. This is needed in in order to address both our second 

and third research goals: classification of the wide range of CDSS alerts based 

on their source, acuity and response expectations and our ability to establish a 

mapping between physician groups and alert types. A clear alert framework 

which outlines alert severity and indicates alert ‘type’ will enable meaningful 
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predictive modeling. This section will detail the methods used to develop a clear, 

meaningful and re-usable alert classification.  

Finally, Section 3.4 will discuss our approach to stratifying patients. We 

will seek out current research around patient typing, as we acknowledge that 

volumes of CDSS alerts will be higher for patients who take multiple medications 

or who have multiple comorbidities. We will seek out evidence to support a tiering 

of patients as we believe this to be an important factor to be considered as part 

of our proof of concept. We believe that if we are able to cluster physicians into 

distinct ‘types’, and if we are able to design an alert classification, we can then 

leverage machine learning classification algorithms to develop predictive models, 

leading to novel approaches in alert issuance and reductions in alert fatigue. 

Figure 3-1 provides an overview of our research approach.  
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Figure 3-1: Solution Design Overview 
 

 

  



31 

 

3.2 Physician Classification 

 All physicians are not the same, and this research argues that differences 

amongst physicians and their practices will influence how they respond to EMR-

based CDSS alerts.  Although this work is a proof of concept, it was important 

that the data used here is reflective, as best possible, of the real world. Physician 

data was procured from the College of Physicians and Surgeons of Nova Scotia 

(CPSNS) [39] covering data for all physicians with a specialty of ‘Family 

Medicine’ licensed to practice in the province of Nova Scotia. The listing included 

a total of 1544 physicians. Table 3.2 presents the CPSNS data attributes.  

 

Table 3-2: List of Physician Attributes (CPSNS) 

Attribute Description Possible Values 

Registration Number Unique Identifier provided 
by the college 

Numeric 

Gender Sex Male, Female 

Year of Graduation Year physician graduated 
from Medical School  

4-digit year 

University The university the 
physician received their 
degree from 

String 

Specialty 2 Describes a secondary 
specialty (aside from 
Family Medicine) 

String 

Office City City in NS where 
physician’s primary office 
is located 

String 

Office Postal Code Canada Post provided 
postal code of primary 
practice location 

Var Char 

 

Of the 1544 physicians, only 34 contained a secondary specialty. Therefore, this 

attribute was removed. Office postal code was also removed, as the ‘Office City’ 
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attribute provided sufficient detail and the postal code would have been 

redundant. We did not believe that the CPSNS information alone included 

sufficient detail for determination of a physician ‘type’. For this reason, additional 

attributes were identified and added based on our understanding of physician 

characteristics that might influence a family physician’s response to an EMR 

alert. 

 A number of studies have reported differences in terms of EMR adoption 

dependent upon physician age. A 2012 paper reviewed EMR adoption over a ten 

year period beginning in 2002 and reported a significant lag in adoption of these 

electronic tools in physicians aged 55 and older [82].  Another systematic 

literature review of health care provider adoption of eHealth technologies sought 

to identify ‘influential factors’ to provider acceptance of various eHealth systems 

(including CDSS). This study confirmed physician age, gender and years in 

practice all to be important acceptance factors [83]. This aligns with our 

hypothesis that physician age and experience (both in medical practice and in 

technology use) would drive different CDSS alert acceptance behaviors and for 

these reasons, ‘Age’ and ‘Years in Practice’ were added. 

  Physician perception that use of EHR or CDS systems leads to increased 

workload has been widely reported in the literature [25, 28, 68]; however we 

believe that physician workload itself is also an important factor to consider in 

terms of CDSS alert acceptance. A recent study supports this theory, noting that 

physician workload and work complexity are important considerations when 

studying alert fatigue [68]. This study considered the number of patients seen 
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each day, as well as the comorbidity index of these patients as important 

attributes contributing to physician workload. The volume of chronic patients is 

important because the existence of multiple comorbidities requires additional 

evaluation and management on the physician’s part, and would trigger a higher 

volume of CDSS alerts for an individual patient. We believe that another 

important measure of both workload and physician experience is how frequently 

the physician is seeing patients. For these reasons, ‘Days/week’, ‘% Chronic 

Patients’ and ‘Patients/Day’ attributes were included. 

 We believe workload complexity to be another important attribute that 

would drive different CDSS alert responses depending upon physician type. 

Anker et al. suggest that the volume of lab orders per patient encounter is an 

important indicator of physician workload complexity [68]. For the purposes of our 

study, we include both the volume of investigation orders (i.e. lab, diagnostic 

imaging) placed per month as well as the percentage of patients referred to other 

physicians as markers of physician workload complexity. Table 3-3 provides a 

listing of the additional physician attributes included in our study. 
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Table 3-3: List of Additional Physician Attributes  

Attribute Description Possible Values 

Age  Physician age in years Numeric 

Years in Practice Number of years the 
physician has been 
practicing medicine  

Numeric 

Days/week Number of days the 
physician practices each 
week 

1, 2, 3, 4, 5 

Patients/day Number of patients the 
physician sees, on 
average, each day 

20, 25, 30 

% Chronic Patients Percentage of physician’s 
patient roster who have 
chronic conditions 

10, 20, 30, 40, 50, 60, 70% 

% Referrals Percentage of patients 
who are referred to other 
physicians 

10, 15, 20, 25, 30, 40, 50% 

# of Investigation 
Orders/month 

Number of investigation 
orders (lab, DI, etc.) 
ordered by the physician 
per month 

50, 100, 200, 300 

   

 ‘Age’ was generated based on some assumptions related to year of 

graduation and the location of the university graduated from (years to 

complete medical school being fewer in Europe versus North America, as 

an example).  

 ‘Years in Practice’ was simulated based on similar assumptions as those 

for ‘Age’ above.  

 ‘Days/week’ was simulated based on the assumption that more senior 

physicians were likely working less days/week compared to younger 

physicians who were in the earlier stage of their careers.  

 The number of patients a physician sees per day was simulated randomly. 
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 The percentages of chronic patients on a physician’s patient roster were 

simulated randomly.  

 The ‘% Referrals’ and ‘# of Investigation Orders/month’ were loosely tied 

to the number of days the physician worked each week, and the average 

number of patients seen per day.  

 Next, attributes ‘Age’ and ‘Years in Practice’ were discretized.  Figure 3-2 

provides a visual representation of the physician data. Here we list ‘Years in 

Practice’ across the horizontal access (0-10, 11-20, 21-30, 31-40, 41-50 and 

>50). Next we show ‘Age’ based on years of practice, across the horizontal 

access, and split based on physician gender. So, for example, for physicians who 

have been practicing 0-10 years, we see that just under 100 males and just 

under 140 females are between the ages of thirty and forty. 

 

Figure 3-2: Overview of Physician Data. Count of Physician by Gender, Age, and 
Years in Practice. 
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3.2.1 Physician Data Clustering 

 The objective of this task was to determine whether we could identify 

distinct physician groups using clustering techniques. We utilized the k-means 

algorithm [42] against the physician data discussed in Section 3.2. Our choice of 

algorithm was based on the view that k-means provides a simple, straightforward 

and effective technique to identify clusters within a given dataset [41]. K-means 

works as follows: the parameter, k, represents the number of clusters. The 

number of clusters being sought must be specified in advance, and then k points 

are chosen as random cluster centers [41]. All instances in the data set are 

assigned to their closest cluster center according to the Euclidean distance 

metric. The ‘means’ of the algorithm descriptor represents the calculation of the 

mean of the instances in each cluster – termed “centroid” [41]. These centroids 

then become the new center value for their respective cluster, and the process 

continues until the same points are assigned to each cluster in consecutive 

rounds, indicating that the cluster centers have stabilized. 

Parameter selection is a critical step, and a full listing of available 

parameters for the SimpleKMeans algorithm can be found in Appendix A. The 

input parameter of ‘k’ is arguably the most important, and requires some 

experimentation in order to determine the most appropriate setting. Because we 

were targeting identification of distinct physician groups which could be used to 

develop predictive classification models at later stages of our study, we set the 

following values for k: k=4, k=5, k=6, k= 7 and k=8. We set the cluster 

initialization method to ‘Random’ meaning that the initial cluster center locations 
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were set at random. Euclidean distance was used for the distance function, and 

the seed was set to 10. The maximum number of iterations was set to 500. We 

felt this to be reasonable given 1544 instances.  

Unlike clustering, classification and association learning make predictions 

on test data and those predictions are simply true or false [41]. This makes the 

evaluation of clustering techniques challenging. While some techniques for k-

means cluster validation have certainly been reported [45], they are complicated 

to implement and often impractical [41]. We did, however, add the cluster 

assignment as a class, and we subsequently performed a classes to clusters 

evaluation. We ran each value of k through the algorithm ten times (n= 10), and 

then calculated the average error rate for each value of k tested. We found k= 5 

delivered the best fit, as it produced the least cluster variance. Table 3-4 lists the 

error rates for each value of k. k=5 had the lowest error rate and therefore this 

model was selected. With an error rate of 11.33%, we believe that the results 

have balance across the clusters, and are useful and adequate in this application 

context.  

Table 3-4: Error rates for each value of k tested (n=10).  

K value Error Rate (%) 

4 14.25 

5 11.33 

6 13.92 

7 11.72 

8 12.05 

 

The selected model of five distinct clusters is detailed in Table 3-5.  
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Table 3-5: Grouping of physician data into five distinct clusters. 

 Cluster A Cluster B Cluster C Cluster D Cluster E 

Gender Female Male Male Male Female 

Age 55-65 66-80 55-65 66-80 41-54 

Years In 
Practice 

21-30 31-40 21-30 41-50 11-20 

Work 
Days/Week 

4 2 5 1 5 

Patients/Day 20 25 25 20 30 

Patients/Week 80 50 125 20 150 

% Referrals 30 10 20 40 20 

Investigation 
Orders/Month 

100 50 200 100 100 

TOTAL (% 

physicians 
assigned to 
cluster) 

28% 18% 18% 8% 28% 

 

 The emergent clusters have some interesting differences across 

attributes. We note 2 out of 5 clusters are female, and these represent the largest 

clusters. Clusters B, C and D represent males in our older age categories (55+).  

We see variation across the remaining cluster attributes. We review Figure 3-2 

and are confident that our clusters are representative of our data set. At this 

point, we are satisfied that it is, in fact, possible to utilize clustering algorithms to 

group physicians into ‘types’ based on a set of well-defined attributes. 

3.3 EMR Alert Classification  

 As discussed in Section 2, an extensive literature review did not result in 

the identification of an alert classification scheme. Therefore, we set out to 

develop our own alert classification model. We acknowledge that differences in 

the urgency of the alert and the type of alert are likely to affect the physician 
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response. The majority of studies published on CDSS alerting to date reference 

the urgency of the CDSS alert; however the way in which ‘urgency’ is defined 

differs substantially. There is consensus that different levels of urgency exist, and 

approaches to defining this have included both expert panels as well as 

researcher judgement based on knowledge/experience collected and the 

uniqueness of study design. Some studies identify clearly defined alert severity 

levels. For example Cornu et al. developed a six-level severity classification for 

DDI alerts [78].  For the purposes of this study, we reviewed each CDSS type 

and assigned one of two severity levels based on the following definitions: 

 Urgent (1): Requiring immediate response 

 Non-urgent (2): Not requiring immediate response 

We conducted an extensive literature review surrounding CDSS alerts (as 

discussed in Section 2), and found that CDSS alerts are generally categorized 

into one of the following groupings (alert types): alert, reminder, or suggestion. 

We therefore defined these broad categories as follows: 

 Alert: A high priority alert meant to notify a provider that some sort of 

intervention is required.  

 Suggestion: An alert that notifies a provider that they may want to consider 

a particular course of action. 

 Reminder: An alert that notifies a provider that a time-sensitive care 

related activity is due. For example, a patient is due for their annual 

physical. 
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We then reviewed each CDS Group/Type combination, as outlined in Section 

2.5.1. We assigned both a severity level (1 or 2) as well as an ‘alert type’ (alert, 

suggestion, or reminder) to each based on the definitions described above. We 

assigned all CDS types categorized as ‘alert’ with a severity level equal to 1 

(urgent). We then validated our classification with a Nova Scotia-based primary 

care physician who confirmed the reasonability of this design, and the 

applicability of the framework [79]. Our final classification work is detailed in 

Table 3-6.  

Table 3-6: EMR Alert Classification  

CDS 
Group 
# 

CDS Group CDS Type Alert 
Severity 

Alert Type 

1 Medication Dosing Medication dose 
adjustment 

1 Alert 

1 Medication Dosing Formulary checking 2 Suggestion 

1 Medication Dosing Single dose range checking 1 Alert 

1 Medication Dosing Maximum daily dose 
checking 

1 Alert 

1 Medication Dosing Default doses/pick 
lists 

2 Suggestion 

1 Medication Dosing Indication-based 
dosing 

2 Suggestion 

2 Order Facilitator Medication order 
sentences 

2 Suggestion 

2 Order Facilitator Subsequent or 
corollary orders 

2 Suggestion 

2 Order Facilitator Indication-based 
ordering 

2 Suggestion 

2 Order Facilitator Condition-specific 
order sets 

2 Suggestion 

2 Order Facilitator Non-medication 
order sentences 

2 Suggestion 

3 Point of Care 
Alert/Reminder 

Drug-condition interaction 
checking 

1 Alert 
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CDS 
Type 

CDS Group CDS Type Alert 
Severity 

Alert Type 

3 Point of Care 
Alert/Reminder 

Drug-drug interaction 
checking 

1 Alert 

3 Point of Care 
Alert/Reminder 

Drug-allergy interaction 
checking 

1 Alert 

3 Point of Care 
Alert/Reminder 

Plan of care alerts 1 Reminder 

3 Point of Care 
Alert/Reminder 

Critical laboratory value 
checking 

1 Alert 

3 Point of Care 
Alert/Reminder 

Duplicate order checking 1 Alert 

3 Point of Care 
Alert/Reminder 

Care reminders 1 Reminder 

3 Point of Care 
Alert/Reminder 

Look-alike/sound-alike 
medication warnings 

2 Suggestion 

3 Point of Care 
Alert/Reminder 

Ticklers 1 Reminder 

3 Point of Care 
Alert/Reminder 

Problem list management 2 Suggestion 

3 Point of Care 
Alert/Reminder 

Radiology ordering 
support 

2 Suggestion 

3 Point of Care 
Alert/Reminder 

High-risk state monitoring 1 Alert 

3 Point of Care 
Alert/Reminder 

Polypharmacy alerts 1 Alert 

4 Expert Systems Antibiotic ordering 
support 

2 Suggestion 

4 Expert Systems Diagnostic 
support 

2 Suggestion 

 

 Figure 3-3 provides a visual overview of our EMR alert classification. 

Twenty six CDS types have been included across four CDS groups. Of those, ten 

have been categorized as ‘alerts’, three as ‘reminders’, and thirteen as 

‘suggestions’. All suggestions have been categorized as non-urgent (severity 2), 

while all alerts and reminders included in this work have been classified as 

urgent (severity 1). 
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Figure 3-3: Overview of EMR alert categorization.  
 

3.4 Patient Type 

  In order for this proof of concept to be meaningful, it was important to 

think about the context of the patient given that different patient types would 

invariably invoke different CDS alerts. We scanned the literature seeking patient 

classification methods and found that patient classification is heavily dependent 

upon the nature of the research and each study’s specific research objectives. 

For example, many studies site patient attributes such as age or gender as highly 

relevant. For our research, we know that different CDS rules will be invoked 

based on these factors, perhaps; but more importantly, based on the general 

health (and therefore the complexity) of the patient. For this reason, we leverage 

work developed by the Advisory Board® [47] who suggest that there are three 
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main patient types: 1) high risk, 2) rising risk, and 3) low risk as shown in Figure 

3-4. 

  

 Figure 3-4: Population Health and the 3 Types of Patients [47] 
 

The ‘high-risk’ patient is defined as having at least one complex illness, 

multiple co-morbidities and psychosocial problems. These patients make up 

approximately 5% of the overall patient population. The ‘rising-risk’ patient is 

defined as having multiple risk factors that threaten to push them into the higher 

risk category if not addressed/managed. For example, a diabetic patient who also 

smokes. These patients represent roughly 20% of the population. Finally, the 

‘low-risk’ patient, who represents the remaining 75% of the population, are 

generally healthy, or have a well-managed condition.  

It is assumed that given the volume and types of alerts generated for each 

patient type will be different, as will the way in which each physician type 

responds to these alerts (i.e. whether they accept or ignore the alert). 
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3.5 Chapter Summary 

 In this chapter, we have discussed our solution design beginning with our 

approach to physician ‘typing’ using the k-means clustering algorithm. This 

addresses our first research objective confirming the ability to stratify physicians 

based on a selected group of attributes. Next, we introduce an EMR alert 

classification model, built upon an alert classification of CDS group and type, 

alert severity, and alert type. This addresses our second research objective of 

classifying the wide range of CDSS alerts in terms of their source, acuity and 

response expectations. Lastly, we discuss the approach used for patient type 

categorization.  
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CHAPTER 4: CLASSIFICATION RESULTS 

 In this chapter we seek to answer our third research objective: To 

establish a mapping between physician groups and types. To do this, we look to 

machine learning classification algorithms to develop predictive models that will 

help predict how certain physician ‘types’ will respond specific CDSS EMR alert 

types. To do this, we will utilize two well documented, industry standard 

classification algorithms in an attempt to develop a predictive model. The 

Decision Tree (DT) algorithm, C4.5, was selected due to its strong performance 

in terms of classification accuracy, and easily interpreted output [48, 49]. The 

Multilayer Perceptron (MLP) algorithm is a robust algorithm with an ability to 

derive meaning from complicated, voluminous data. They work well for 

classification prediction problems, and for these reasons, we selected the MLP 

algorithm for our research. Our goal will be to develop a model that can predict, 

with a high level of accuracy, the alert response rate category for a given 

physician group.  

Section 4.1 speaks to the alert response data generation process and 

sections 4.2 and 4.3 discuss the algorithms used, the reasons for their selection, 

the tuning of the algorithm parameters, and finally, the results for each. Section 

4.4 provides a chapter summary. 

4.1 Alert Response Data Simulation 

 We next set out to develop data in order to simulate alert response results 

for physicians based on their physician group, the EMR alert presented, and the 

patient type. The data was simulated based on the following assumptions: (i) 



46 

 

volume of alerts is a function of patient type, (ii) whether a physician responds to 

an alert is a function of physician type, patient type, severity, CDS group and 

alert type. 100,000 alert responses were simulated. Figure 4-1 provides a sample 

of the simulated data, and Appendix B includes the simulation script used.  

 

Figure 4-1: Sample physician response simulation data. 
  

 Alert acceptance is defined as a physician responding to an alert, whereas 

alert rejection is defined as a physician ignoring an alert. Response rate was then 

calculated for each instance based on Respond/Volume, and ‘Response Rate’ 

categories were assigned based on both quartiles and quantiles. Response rate 

categories and associated alert acceptance rates are captured in Table 4-1. The 

response rate categories are important for classification purposes. 
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Table 4-1: Response Rate categories and associated Alert Acceptance Rates 
based on Quartiles and Quantiles 
 

 Quantiles Quartiles 

Response Rate 
Category 

Alert Acceptance 
Rate (%) 

Response Rate 
Category 

Alert Acceptance 
Rate (%) 

1 0-30 1 0-32 

2 31-40 2 33-46 

3 41-50 3 47-60 

4 51-63 4 61-100 

5 64-100   

 

4.2 Decision Tree Classification 

 Decision trees are a supervised learning method commonly used for 

classification purposes. Supervised learning can be defined as the data mining 

task of learning or inferring a function based upon labeled training data [41]. 

Decision trees classify instances by “… sorting them based on feature values. 

Each node in a decision tree represents a feature in an instance to be classified, 

and each branch represents a value that the node can assume. Instances are 

classified starting at the root node and sorted based on feature values.” [48]. The 

C4.5 algorithm [49], developed by Ross Quinlan, was selected for its speed, 

simplicity, and ability to create a visual, easily understood/interpreted decision 

tree.  

4.2.1 C4.5 Experimentation and Results 

 To begin experimentation, the simulated alert data was loaded into Weka. 

Feature selection is an important pre-processing step, and at this point attributes 

‘Volume’, ‘Respond’ and ‘Ignore’ were removed given the addition of the 
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‘Response Rate’ category. The ‘Numeric to Nominal’ filter was applied across all 

remaining attributes, which included physician type, patient type, CDS group, 

CDS type, severity, alert type and response rate category ensuring that 

numerical attributes were treated as categorical by the classifier. There are a 

number of parameters available for tuning this algorithm (see Appendix C); but of 

note are pruning, the confidence factor, and minimum number of objects. The 

C4.5 algorithm provides a pruning option as a mechanism to prevent overfitting. 

C4.5 uses a pruning technique based on statistical confidence estimates. The 

core of this is the calculation of the confidence interval for the error rate [49]. In 

order to decide whether to replace a near-leaf node and its child leaves by a 

single leaf node, C4.5 compares the upper limits of the error confidence intervals 

for both the pruned and unpruned trees. For the unpruned tree, the upper error 

estimate is calculated as a weighted average over its child leaves. Finally, the 

tree with the lower estimated upper limit on the error rate "wins" and is selected. 

In Weka, the default confidence value is set to 25%; however can be adjusted. A 

lower value will lead to more drastic pruning. The ‘minimum number of objects’ 

parameter refers to the minimum number of instances – tests are not 

incorporated into the decision tree unless they have at least two outcomes that 

have at least the value set for the minimum number of objects [41]. The default in 

Weka is 2; however this can be increased to help address noisy data.  

 The first step was to import the simulation data into Weka. Preliminary 

tests were performed based on both the quartile and quantile data sets.  
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Figure 4-2: Response Rate Category data (quartiles) 
 
 

 

Figure 4-3: Response Rate Category data (quantiles) 
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Figures 4-2 and 4-3 show the response rate category assignment for both 

quartile and quantiles, respectively. Both demonstrate balance across the 

response rate category output class which is important for classifier algorithm 

performance. The C4.5 classifier algorithm is found in Weka under the title of 

‘J48’. The algorithm was initially run with parameter defaults (confidence factor = 

0.25, minNumObj = 2), and testing options of 80% and 90% training data as well 

as 10 fold cross validation were selected. Results are listed in Table 4-2. 

Classification accuracy was significantly better on the quartile data, and therefore 

further analysis was performed on this data.  

 

Table 4-2: Initial results with both Quartile and Quantile Data 

  

 Next, the Weka Experimenter tool was used to further experiment with 

algorithm tuning. This tool provides the ability to run our algorithm with various 

parameter values, as outlined in Tables 4-3, 4-4, and 4-5. 

  

Quartile Data Quantile Data

Algorithm Learning Method

Correctly classified 

instances (%)

Correctly classified 

instances (%)

80% training/20% test 77.32 67.52

90% training/10% test 77.41 67.21

10 fold cross validation 77.08 67.07
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Table 4-3: Experimenter Data based on a 10-fold cross validation. 
 
No Confidence Factor Minimum Number of 

Objects 
% Correctly Classified 

Instances 

1 0.25 2 77.08 

2 0.25 10 77.08 

3 0.25 20 77.08 

4 0.25 100 77.08 

5 0.24 2 77.08 

6 0.24 10 77.08 

7 0.24 20 77.08 

8 0.24 100 77.08 

9 0.23 2 77.08 

10 0.23 10 77.08 

11 0.23 20 77.08 

12 0.23 100 77.08 

13 0.20 2 77.08 

14 0.20 10 77.08 

15 0.20 20 77.08 

16 0.20 100 77.07 

17 0.18 2 77.08 

18 0.18 10 77.08 

19 0.18 20 77.08 

20 0.18 100 77.08 
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Table 4-4: Experimenter Data based on 80% training data, with holding 20% for 
testing.  
 
No Confidence Factor Minimum Number of 

Objects 
% Correctly Classified 

Instances 

1 0.25 2 77.28 

2 0.25 10 77.28 

3 0.25 20 77.28 

4 0.25 100 77.25 

5 0.24 2 77.29 

6 0.24 10 77.29 

7 0.24 20 77.29 

8 0.24 100 77.25 

9 0.23 2 77.28 

10 0.23 10 77.28 

11 0.23 20 77.28 

12 0.23 100 77.25 

13 0.20 2 77.29 

14 0.20 10 77.29 

15 0.20 20 77.29 

16 0.20 100 77.25 

17 0.18 2 77.29 

18 0.18 10 77.29 

19 0.18 20 77.29 

20 0.18 100 77.25 
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Table 4-5: Experimenter Data based on 90% training data, with holding 10% for 
testing.  
 

No Confidence Factor Minimum Number of 
Objects 

% Correctly Classified 
Instances 

1 0.25 2 77.27 

2 0.25 10 77.27 

3 0.25 20 77.27 

4 0.25 100 77.23 

5 0.24 2 77.27 

6 0.24 10 77.27 

7 0.24 20 77.27 

8 0.24 100 77.23 

9 0.23 2 77.27 

10 0.23 10 77.27 

11 0.23 20 77.27 

12 0.23 100 77.23 

13 0.20 2 77.34 

14 0.20 10 77.34 

15 0.20 20 77.34 

16 0.20 100 77.29 

17 0.18 2 77.34 

18 0.18 10 77.34 

19 0.18 20 77.34 

20 0.18 100 77.29 

 

Although each of the methods of cross validation, 80/20 and 90/10 

testing/training data splits produce similar results in terms of classification 

accuracy, a split using 90% of the data for training and 10% of our data for 

testing our model produces the highest classification accuracy. Neither lowering 

the confidence factor value below 0.2 nor increasing the minimum number of 

objects above 2 did not yield improved classification accuracy. Based on these 

results, we explore and tune the classifier further using C = 0.20 and M = 2 

(values that provided our highest classification accuracy as seen in Table 4-4). 
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We use 90% of the data to train our classifier leaving 10% for testing (10,000 

instances). The classifier was re-run both including and excluding the CDS type. 

Significant improvements were not observed in terms of classification accuracy; 

however the output is more easily interpretable in the absence of CDS type given 

the reduced complexity of the tree itself. These results are displayed in Tables 4-

6, 4-7 and 4-8 below. 

Table 4-6: J48 Classifier Performance Summary 

 

Table 4-7: Detailed Accuracy by Class (DT Classifier) 

 

Table 4-8: Confusion Matrix (DT Classifier) 

 

This tuned model gives us 77.45% correctly classified instances. This was our 

best performing model in terms of accuracy.  

Another metric used to examine classifier performance is the Receiver 

Operating Characteristic (ROC) Curve which uses a two dimensional graph 

whereby the ‘true positive rate’ is plotted on the Y-axis and the ‘false positive 

Correctly Classified Instances 7745 77.45%

Incorrectly Classified Instances 2255 22.55%

Total Number of Instances 10000

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

1 0.954 0.076 0.802 0.954 0.872 0.831 0.971 0.902

2 0.560 0.054 0.789 0.560 0.655 0.571 0.895 0.730

3 0.707 0.114 0.667 0.707 0.696 0.583 0.906 0.702

4 0.896 0.056 0.839 0.896 0.867 0.822 0.979 0.924

Weighted Average 0.775 0.075 0.775 0.775 0.768 0.699 0.937 0.813

a b c d classified as

2325 101 10 1 a = 1

562 1493 601 8 b = 2

10 293 1726 413 c = 3

1 5 250 2201 d = 4
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rate’ is plotted against the X=axis [80, 84]. In this case, the point (0,1) will 

represent a perfect classifier, meaning a curve that visually hugs the upper left 

corner of the graph represents a strong classifier. ROC curves for each of our 

output classes based on this model are shown below (Figures 4-5 through 4-8). 

Classifier performance was relatively strong overall, with particularly high ROC 

areas for Response Rate Categories 1 and 4.  

 

 

Figure 4-5: ROC Curve demonstrating classifier accuracy for Response Rate 
Category = 1 (0-32% acceptance rate). 
 



56 

 

 

Figure 4-6: ROC Curve demonstrating classifier accuracy for Response Rate 
Category = 2 (33-46% acceptance rate). 
 

 

Figure 4-7: ROC Curve demonstrating classifier accuracy for Response Rate 
Category = 3 (47-59% acceptance rate). 
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Figure 4-8: ROC Curve demonstrating classifier accuracy for Response Rate 
Category = 4 (60-100% acceptance rate). 
 

A diagonal line (y=x) represents the strategy of randomly guessing a class, 

whereas a value in the lower right hand quadrant of the graph is indicative of a 

classifier that performs worse than guessing [84]. ROC curves are frequently 

used in classification evaluation due, in part, to their ability to visualize and 

compare classifier performance. Another attractive feature is their insensitivity to 

changes in class distribution [84]. In reviewing Figures 4-4 through 4-8, we note 

that in all cases, our classifier performs well in that all of our points are higher 

than the y=x line. The AUC is greater when RRC = 1 and RRC = 4, representing 

improved accuracy for our classifier when assigning classes to these categories.  

The confusion matrix (Table 4-8) is another helpful tool in terms of 

interpreting results. Here we can see additional detail in terms of the number of 

correctly and incorrectly classified instances and which output class, specifically, 
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they were assigned to. For RRC = 1, we see that for n = 2437, 2325 instances 

were correctly classified, while 112 were incorrectly assigned to RRC = 2 (101 

instances), RRC = 3 (10 instances) or RRC = 4 (1 instance). As we would expect 

based on our ROC analysis above, for RRC = 2, we see poorer classification 

performance with only 1493 correctly classified instances out of 2664 in total. 

Similarly, for RRC = 3 we see a slight improvement (ROC area = 0.906) with 

1726 out of 2442 correctly classified instances. Our confusion matrix in this case 

shows only 6 instances incorrectly classified to RRC = 1 or RRC = 2, and 250 

instances incorrectly assigned to RRC = 3. We acknowledge there is room for 

classifier improvement; but are pleased with our classifier performance over all. 

 A clear advantage of the C4.5 classifier is the ability to generate a 

visualization of the Decision Tree. Figures 4-9 and 4-10 show a small subsection 

of the visualization of the decision tree generated by our model. With 73 leaves, it 

proves difficult to include the full visualization of the tree in a static document and 

the figures here are included to demonstrate to the reader the output of this 

algorithm, and the ease to which this can be shared and explored electronically. 

Appendix D includes the detailed decision tree and associated rules generated 

by our model. 
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Figure 4-9: Top nodes of the decision tree generated by the J48 classifier. 
Although difficult to read, this image illustrates the concept of the lead-node 
splitting.  
 
 
 

 
Figure 4-10: Second layer nodes of the decision tree generated by the J48 
classifier. This image shows how the tree branches after physician type = A, 
splitting next on patient type. 
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4.1.2 Decision Tree: Interpretation of Results 

 Close examination of the model’s output (see Appendix D) permits the 

following interpretations. First, alert severity is not considered in leaf 

development. This makes sense given that all ‘Alerts’ were classified as Severity 

1, all ‘Suggestions’ were classified as Severity 2 and all ‘Reminders’ except three 

of the point of care alerts/reminders were classified as Severity 2. Our top level 

node is ‘Alert Type’. 

 Our next observation has to do with the ‘Reminders’ alert type. This 

portion of the tree is fairly simple, given that CDS group is not important – rather 

the acceptance rate category for each physician type is based solely on patient 

type. We note that physician types B and E are the least likely of all physician 

types to respond to a reminder type alert. On the contrary, physician types A and 

C respond to most reminders, whereas D falls somewhere in the middle, 

although is more likely to respond to reminders for high risk patients (acceptance 

rate of 47-60%).  

 When we look at ‘Suggestions’, we note that physician types B and E 

almost always respond to suggestions (61-100% acceptance rate) regardless of 

patient type or CDS group. Physicians of type D do not respond well to 

suggestions except those related to medication dosing (and even those they 

respond to only ~50% of the time), whereas physicians of type C are likely to 

respond well to suggestions related to medication dosing or those related to high 

risk patient types. Physicians of type A respond well to suggestions when patient 

type is rising risk or the suggestion relates to medication dosing. 
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 For the alert type category of ‘Alerts’, we note that all physician types 

respond well to medication dosing alerts (all physician groups show a 47-100% 

acceptance rate). Type C physicians are least likely to respond to alerts from the 

‘Order Facilitator’ group, regardless of patient type. Similarly, Type E physicians 

show low acceptance rates for point of care alerts/reminders regardless of 

patient type.  

 The output of this model provides us with insight in to how physicians of 

the various groups are likely to respond when faced with these types of alerts for 

particular patient populations. Insights into how a physician is likely to respond 

can help inform decisions – for example, given that physicians from groups B and 

E are unlikely to respond to reminder alerts, why not prevent these non-urgent 

reminders from appearing to these physician groups at all? Physician types B 

and E do respond well to suggestions, though, so we could ensure that those 

alert types always display for these groups. With the alert type of ‘Alerts’, we note 

that all physician groups respond well to medication dosing alerts; however 

differences exist for other CDS groups. We could consider removing order 

facilitator alerts for Type C physicians, and perhaps removing point of care 

alerts/reminders for physicians categorized as group E. In doing so, we reduce 

alerts that we are quite confident will be ignored based on our analysis, thereby 

reducing the ‘noise’ and consequently contributing to a reduction in alert fatigue. 

Application of these findings, including the development of an alert issuance 

strategy, is explored in detail in Chapter 5.  
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4.3 Multilayer Perceptron Classification 

 As with the Decision Tree classification discussed previously, the first step 

was to load the simulated data into Weka. The response rate categories used 

were based on the quartiles given the analysis and experimentation already 

completed and discussed in Section 4.1.1 above. The available parameters for 

the MLP algorithm are listed in Appendix E. As with other classification 

algorithms, the tuning process requires some experimentation. Of note is the 

ability to specify the number of hidden layers.  Witten et al. suggest that a single 

hidden layer is often sufficient [41]; however identifying the appropriate number 

of units for that layer requires experimentation in order to maximize the 

estimation accuracy of the classifier. The default hidden layer value in Weka is 

‘a’, which is defined as:   

total number of attributes + the total number of classes 
2 

 

The ‘training time’ allows the user to specify the number of epochs to train 

through. The default value is 500. Some preliminary tests were run with 300, 400, 

500, 600 and 700 epochs; however the classification accuracy was not 

significantly different with any of these options and therefore all further testing 

was performed with epochs = 500. The learning rate specifies the amount by 

which the weights are updated, and the momentum provides an opportunity to 

adjust the momentum applied to the weights during updating. The default 

learning rate is set to 0.3, and the default momentum to 0.2.  
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 Table 4-9 lists the experimentation performed with the MLP classifier. A 

variety of training methods were employed including using 70%, 80% and 90% of 

the data for training (and the remainder for testing), as well as ten-fold cross 

validation. We also adjusted the number of hidden layers, the learning rate and 

the momentum in an attempt to find the best model. 

Table 4-9: MLP Experimentation Parameters and Results 

Training type 
# of Hidden Layer 

Units Learning Rate Momentum 
Classification 

Accuracy 

90/10 11 0.1 0.2 77.54 

90/10 11 0.01 0.2 77.49 

90/10 11 0.2 0.2 77.43 

90/10 11 0.3 0.2 77.36 

90/10 7 0.3 0.2 75.58 

90/10 6 0.2 0.2 74.63 

90/10 5 0.2 0.2 74.44 

90/10 3 0.3 0.2 61.89 

90/10 2 0.3 0.2 57.46 

80/20 11 0.3 0.2 76.99 

80/20 3 0.3 0.2 65.07 

70/30 11 0.1 0.2 77.17 

70/30 11 0.3 0.2 77.12 

70/30 11 0.25 0.2 77.1 

70/30 11 0.3 0.2 77.09 

70/30 2 0.3 0.2 57.46 

70/30 1 0.3 0.2 41.48 

10 fold cross validation 11 0.3 0.2 76.67 

10 fold cross validation 4 0.3 0.2 71.01 

10 fold cross validation 2 0.3 0.2 59.94 

10 fold cross validation 1 0.3 0.2 48.49 

 

 The first model listed in Table 4-9 provided the best classification 

accuracy, at 77.54% accuracy – just slightly higher than our best performing 

Decision Tree model (Figure 4-6). Additional details for this MLP model (Hidden 
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Layer = a, Learning rate = 0.1, Momentum = 0.2), which was run against 90% of 

the training data, can be seen in Tables 4-10. 4-11 and 4-12. 

Table 4-10: MLP Classifier Accuracy 

 

Table 4-11: Detailed Accuracy by Class (MLP Classifier) 

 

Table 4-12: Confusion Matrix (MLP Classifier) 

 

 Similar to the best performing Decision Tree model, examination of the 

ROC curve indicates that our MLP model performs best in correctly assigning 

test instances to Response Rate Category 1 (0-32% acceptance) and Category 4 

(61-100% acceptance). ROC curve visualizations can be seen in Figures 4-11 

through 4-14. 

Correctly Classified Instances 7754 77.54%

Incorrectly Classified Instances 2246 22.46%

Total Number of Instances 10000

Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

1 0.957 0.077 0.800 0.957 0.871 0.831 0.970 0.910

2 0.557 0.052 0.796 0.557 0.655 0.574 0.895 0.743

3 0.705 0.112 0.670 0.705 0.687 0.583 0.907 0.715

4 0.902 0.058 8.360 0.902 0.868 0.823 0.978 0.940

Weighted Average 0.775 0.074 0.776 0.775 0.768 0.700 0.937 0.825

a b c d classified as

2333 93 9 2 a = 1

567 1484 603 10 b = 2

15 283 1722 422 c = 3

2 4 236 2215 d = 4
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Figure 4-11: ROC Curve demonstrating MLP classifier accuracy for Response 
Rate Category = 1 (0-32% acceptance rate). 
 

 

Figure 4-12: ROC Curve demonstrating MLP classifier accuracy for Response 
Rate Category = 2 (33-47% acceptance rate). 
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Figure 4-13: ROC Curve demonstrating MLP classifier accuracy for Response 
Rate Category = 3 (47-59% acceptance rate). 
 

 

Figure 4-14: ROC Curve demonstrating MLP classifier accuracy for Response 
Rate Category = 4 (60-100% acceptance rate). 
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4.3.1 Multilayer Perceptron: Interpretation 

 While classification accuracy was slightly better with the MLP model, our 

ROC area values and confusion matrix outputs were almost identical. Figure 4-

15 and 4-16 show side by side comparisons of our DT and MLP outputs values 

for ROC area and our confusion matrix, respectively.  

 

Figure 4-15: ROC Area comparison for DT and MLP classifiers 
 

 

Figure 4-16: Confusion Matrix comparison for DT and MLP classifiers 
 

One notable disadvantage of this method is what has been described as the 

‘black box’ processing of this algorithm, meaning that it’s more difficult to 

understand or interpret the output of an MLP classifier given the absence of a 

decision tree or rule list that is favored by domain experts for its ease of 

interpretation [41]. 

 

  

Class ROC Area (DT) ROC Area (MLP)

1 0.971 0.970

2 0.895 0.895

3 0.906 0.907

4 0.979 0.978

Weighted Average 0.937 0.937

Confusion Matrix (DT) Confusion Matrix (MLP)

a b c d classified as a b c d classified as

2325 101 10 1 a = 1 2333 93 9 2 a = 1

562 1493 601 8 b = 2 567 1484 603 10 b = 2

10 293 1726 413 c = 3 15 283 1722 422 c = 3

1 5 250 2201 d = 4 2 4 236 2215 d = 4
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4.4 Chapter Summary 

 In this chapter we have discussed our data generation methods. We have 

successfully leveraged this data to develop predictive models using both 

Decision Tree and MLP classification techniques. Experimentation details for our 

DT and MLP models and the tuning techniques utilized in both cases have been 

described in detail. We chose to work with two different classification algorithms 

to determine whether we would achieve improved performance with different 

modeling techniques. While our classification performance was similar across 

both techniques, these results are also reassuring as they suggest that we have 

likely achieved maximum classification accuracy based on our simulated data 

set.  

 In the next chapter we will further discuss our findings, and how these 

classification models can be used to adapt alert issuance based on physician 

practice and alert response behavior in order to minimize alert fatigue.  
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CHAPTER 5: CDSS ALERT ISSUANCE STRATEGIES 

 In this chapter we will explore strategies for reducing alert fatigue based 

on the predictive models developed in Chapter 4. We will review the output of our 

DT model in greater detail, for each CDSS alert type (Reminders, Suggestions, 

and Alerts) in order to propose changes with respect to alert issuance based on 

physician practice and alert response data in order to address our fourth and final 

research goal. We also intend to demonstrate the benefit of our proposed 

strategy by applying this to our simulated data for each alert type, and finally we’ll 

discuss the implications of our strategy for each physician type and the overall 

implications. 

5.1 Alert Issuance Strategy: Reminders 

 In order to contemplate strategies to reduce alert fatigue based on our 

classification models, closer examination of our model’s predictions related to 

physician alert acceptance rates are required. Table 5-1 highlights our DT 

classifier’s predictions related to ‘Reminders’. Based on our model, all ‘reminder’ 

alert types of from the CDS Group ‘Point of Care Alerts/Reminders’, and as a 

result, the CDS group is not a contributor to acceptance rate for these alert types.   

Table 5-1: Predicted Physician Response to ‘Reminder’ Alerts 

 Physician Type Patient Type Acceptance Rate Category 
A Rising 4 

A High 3 
A Low 3 
B Rising 1 
B High 1 
B Low 1 
C Rising 4 
C High 4 
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 Physician Type Patient Type Acceptance Rate Category 

C Low 3 
D Rising 3 
D High 3 
D Low 2 
E Rising 1 
E High 1 
E Low 1 

 

We note that physicians in groups B and E are least likely to respond to reminder 

alert types, compared to physicians in groups A and C who are most likely to 

respond to CDSS reminder alerts. Physicians from group D are most likely to 

respond to reminders when patient type is equal to ‘Rising’ or ‘High’ risk.  

 We can directly apply the learnings from our model to adjust alert 

issuance to better support physicians based on their alert response behavior, 

clinical schedule, alert acuity and patient case-mix. In this case, we would 

suggest blocking reminder alert types for physicians of groups B and E. For 

Physician Group D, we could adjust the CDSS reminder alerts and only present 

reminders when patient type is equal to ‘Rising’ or ‘High’. If we apply this strategy 

to our simulated data for these physician groupings, we see a reduction in 

issuance of ‘Reminder’ alerts from 11,497 (total number of reminder alerts issued 

across all physician types) out of a total of 100,000 to 4,470 ‘Reminder’ alerts – a 

percentage decrease in ‘Reminder’ alerts issued across all physician groupings 

of approximately 62%. 
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5.2 Alert Issuance Strategy: Suggestions 

 The output of our classification model for the CDSS alert type of 

‘Suggestions’ is detailed in Table 5-2. In this case, we see that CDS Group is an 

important contributor to alert acceptance rate categories.  

Table 5-2: Predicted Physician Response to ‘Suggestion’ Alerts 

Physician 
Type 

Patient 
Type 

Acceptance Rate 
Category 

Physician 
Type 

A Rising Order Facilitator 3 

A Rising Medication Dosing 4 

A Rising Point of Care 
Alert/Reminder 

3 

A Rising Expert System 3 

A High Order Facilitator 1 

A High Medication Dosing 3 

A High Point of Care 
Alert/Reminder 

1 

A High Expert System 2 

A Low Order Facilitator 1 

A Low Medication Dosing 2 

A Low Point of Care 
Alert/Reminder 

1 

A Low Expert System 1 

B Rising Order Facilitator 4 

B Rising Medication Dosing 4 

B Rising Point of Care 
Alert/Reminder 

4 

B Rising Expert System 4 

B High Order Facilitator 4 

B High Medication Dosing 4 

B High Point of Care 
Alert/Reminder 

4 

B High Expert System 4 

B Low Order Facilitator 4 

B Low Medication Dosing 4 

B Low Point of Care 
Alert/Reminder 

4 

B Low Expert System 4 
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Physician 
Type 

Patient 
Type 

Acceptance Rate 
Category 

Physician 
Type 

C Rising Order Facilitator 2 

C High Order Facilitator 3 

C Low Order Facilitator 1 

C Rising Medication Dosing 3 

C High Medication Dosing 4 

C Low Medication Dosing 2 

C Rising Point of Care 
Alert/Reminder 

1 

C High Point of Care 
Alert/Reminder 

2 

C Low Point of Care 
Alert/Reminder 

1 

C Rising Expert System 2 

C High Expert System 3 

C Low Expert System 1 

D Rising Order Facilitator 1 

D High Order Facilitator 2 

D Low Order Facilitator 1 

D Rising Medication Dosing 3 

D High Medication Dosing 3 

D Low Medication Dosing 2 

D Rising Point of Care 
Alert/Reminder 

1 

D High Point of Care 
Alert/Reminder 

1 

D Low Point of Care 
Alert/Reminder 

1 

D Rising Expert System 1 

D High Expert System 1 

D Low Expert System 1 

E Rising Order Facilitator 4 

E Rising Medication Dosing 4 

E Rising Point of Care 
Alert/Reminder 

4 

E Rising Expert System 4 

E High Order Facilitator 4 

E High Medication Dosing 4 

E High Point of Care 
Alert/Reminder 

4 

E High Expert System 4 
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Physician 
Type 

Patient 
Type 

Acceptance Rate 
Category 

Physician 
Type 

E Low Order Facilitator 4 

E Low Medication Dosing 4 

E Low Point of Care 
Alert/Reminder 

4 

E Low Expert System 4 

 

 Based on the detailed outputs of our model, we propose the following 

strategy to adjust alert issuance: we recommend no changes to alert issuance for 

physician groups B and E given that they almost always respond to suggestion 

alerts. For Physician Group A, we recommend suppressing all suggestion alerts 

except where patient type is equal to ‘Rising Risk’, or the CDS group is equal to 

medication dosing. Physicians in group C respond well to CDSS alerts where 

CDS group is equal to medication dosing, or where patient type is equal to ‘High 

Risk’. In this case, we recommend suppressing all other suggestions. For those 

in group D, we propose suppressing all suggestion alerts with the exception 

those from the medication dosing CDS group for patients of ‘High’ and ‘Rising’ 

risk. If we apply these rules to our simulated data, we see a reduction from 

50,163 out of 100,000 suggestion alerts to 20,663 suggestion alerts (across all 

physician types). This is a percent decrease of close to 60%. 

5.3 Alert Issuance Strategy: Alerts 

 Next, we examine the output of our classification models for the CDSS 

alert types of ‘Alert’ more closely. Table 5-3 details our DT model’s prediction of 

alert acceptance rate category for each physician group. 
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Table 5-3: Predicted Physician Response to ‘Alerts’  

Physician 
Type 

Patient 
Type 

CDS group 
Response 

Rate 
Category 

A Rising Order Facilitator 4 

A High Order Facilitator 3 

A Low Order Facilitator 2 

A Rising Medication Dosing 4 

A High Medication Dosing 3 

A Low Medication Dosing 3 

A Rising Point of Care 
Alert/Reminder 

4 

A High Point of Care 
Alert/Reminder 

2 

A Low Point of Care 
Alert/Reminder 

2 

A Rising Expert Systems 4 

A High Expert Systems 3 

A Low Expert Systems 2 

B Rising Order Facilitator 3 

B High Order Facilitator 3 

B Low Order Facilitator 3 

B Rising Medication Dosing 3 

B High Medication Dosing 3 

B Low Medication Dosing 3 

B Rising Point of Care 
Alert/Reminder 

3 

B High Point of Care 
Alert/Reminder 

3 

B Low Point of Care 
Alert/Reminder 

3 

B Rising Expert Systems 3 

B High Expert Systems 3 

B Low Expert Systems 3 

C Rising Order Facilitator 1 

C High Order Facilitator 1 

C Low Order Facilitator 1 

C Rising Medication Dosing 3 

C High Medication Dosing 4 

C Low Medication Dosing 3 
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Physician 
Type 

Patient 
Type 

CDS group 

Response 
Rate 

Category 

C Rising Point of Care 
Alert/Reminder 

2 

C High Point of Care 
Alert/Reminder 

3 

C Low Point of Care 
Alert/Reminder 

1 

C Rising Expert Systems 1 

C High Expert Systems 1 

C Low Expert Systems 1 

D Rising Order Facilitator 3 

D High Order Facilitator 3 

D Low Order Facilitator 3 

D Rising Medication Dosing 4 

D High Medication Dosing 4 

D Low Medication Dosing 4 

D Rising Point of Care 
Alert/Reminder 

3 

D High Point of Care 
Alert/Reminder 

4 

D Low Point of Care 
Alert/Reminder 

3 

D Rising Expert Systems 3 

D High Expert Systems 3 

D Low Expert Systems 3 

E Rising Order Facilitator 2 

E High Order Facilitator 2 

E Low Order Facilitator 2 

E Rising Medication Dosing 3 

E High Medication Dosing 3 

E Low Medication Dosing 3 

E Rising Point of Care 
Alert/Reminder 

2 

E High Point of Care 
Alert/Reminder 

2 

E Low Point of Care 
Alert/Reminder 

2 

E Rising Expert Systems 2 

E High Expert Systems 2 

E Low Expert Systems 2 
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Physicians in group B and D respond well to ‘alert’ types. For these physicians, 

we would not recommend any change in alert issuance for CDSS alerts classified 

as ‘alert’. For physicians in group C, our strategy would be to remove all ‘point of 

care alerts/reminders’, where patient type is equal to ‘low’ or ‘rising’ risk given the 

low acceptance rates. For physicians in group E, we suggest removing all ‘point 

of care alerts/reminders’ as they are actioned less than half of the time. 

Physicians in group A show very low acceptance rates for ‘point of care 

alerts/reminders’ when patient type is equal to ‘High’ risk. For these reasons, we 

suggest altering alert issuance to prevent presentation of these alert types to 

these physicians.  Applying these strategies to the simulated alert response data 

would result in a decrease from 38,340 (total number of ‘alert’ type CDSS alerts 

issued across all physician groups) out of 100,000 alters issued, to 23,506 alerts 

- a decrease of approximately 40%. 

5.4 Alert Issuance Reduction: Overall Approach and Impact 

 In this section we examine the impact of the changes we are proposing to 

alert issuance, and the impact that approach would have on each physician 

group. It’s important to note, that our approach focuses not just on alert 

reduction; but on delivering alerts that are most meaningful to a physician based 

on their practice, and are therefore most likely to be appropriately actioned by 

each physician type.  
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5.4.1 Alert Issuance: Overall Strategy 

 The procedural rules that we propose based on our DT classification 

model, in order to implement our alert issuance strategy are described in Table 

5-4 below. These rules were generated manually, upon careful review of our DT 

classification model’s output. 

Table 5-4: Proposed Alert Issuance Strategy – Procedural Rules 

 

 Table 5-5 demonstrates the impact of our proposed changes to alert 

issuance based on our simulated data.   

 

  

Rule Description

1

If Physician Type = A AND Alert Type = Suggestion BLOCK ALL ALERTS 

except where Patient Type = 'Rising' OR CDS Group = 'Medication Dosing'

2

If Physician Type = A AND Alert Type = Alert BLOCK ALL ALERTS where 

CDS Group = 'Point of Care Alert/Reminder' AND Patient Type = 'High'

3 If Physician Type = B AND Alert Type = Reminder BLOCK ALL ALERTS

4

If Physician Type = C AND Alert Type = Suggestion BLOCK ALL ALERTS 

except where CDS Group = 'Medication Dosing' OR Patient Type = 'High'

5

If Physician Type = C AND Alert Type = Alert BLOCK ALL ALERTS where 

CDS group = 'Point of Care Alerts/Reminders' AND Patient Type = 'Low'

6

If Physician Type = C AND Alert Type = Alert BLOCK ALL ALERTS where 

CDS group = 'Point of Care Alerts/Reminders' AND Patient Type = 'Rising'

7

If Physician Type = D AND Alert Type = Reminder BLOCK ALL ALERTS 

except where Patient Type = 'Rising' OR Patient Type = 'High'

8

If Physician Type = D AND Alert Type = Suggestion BLOCK ALL ALERTS 

except where CDS Group = 'Medication Dosing' AND Patient Type = 'High' 

OR CDS Group = 'Medication Dosing' and Patient Type = 'Rising'

9 If Physician Type = E AND Alert Type = Reminder BLOCK ALL ALERTS

10

If Physician Type = E AND Alert Type = Alert BLOCK ALL ALERTS where 

CDS Group = 'Point of Care Alerts/Reminders'
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Table 5-5: Physician Alert Issuance Data – Pre and Post Intervention (includes 
all Reminders, Suggestions and Alert CDSS alert types) 
 

Physician Type 
# of Alerts 
Issued Pre-
Intervention 

# of Alerts 
Issued Post-
Intervention 

% Reduction 

A 19,977 9,645 48% 

B 19,987 12,014 60% 

C 20,181 8,860 44% 

D 20,021 11,984 60% 

E 19,834 6,436 32% 

 

Through implementation of our alert issuance strategy, we are able to achieve a 

significant reduction in the volume of alerts presented across each physician 

type. Additionally, we are providing a more personalized method of alert 

delivery– delivering specific alerts to each physician type based on their 

personalized response data based on patient and practice characteristics. This 

method allows us to discontinue presentation of alerts that we are confident will 

be ignored based on the machine learning experimentation conducted and 

discussed in Chapter 4.  

 Certainly, there is an implication to suppressing alerts of any type. Our 

proposed alert strategy requires continuous review and engagement with clinical 

end users. For example, for the groups for which alerts were suppressed, some 

of the users in those physician groups would have been responding to those 

alerts. So an assessment of what the impact of suppressing those alerts is will be 

necessary. Is it that the physician continues to perform an action in the absence 

of the alert? Additionally, through engagement with physicians and ongoing 
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monitoring of alert response data, we may determine that changes are required 

to our alert classification framework in order to support increased delivery of 

more important, relevant alerts.  

5.5 Chapter Summary 

 In this chapter we have discussed an innovative CDSS alert issuance 

strategy to address current challenges with alert fatigue in the primary care 

setting developed based on our classification models. We have demonstrated a 

more meaningful, personalized alert issuance approach, which, based on our 

simulated data, shows a significant reduction in the volume of alerts delivered 

across all physician types. 
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CHAPTER 6: DISCUSSION 

 This work commenced with four clear objectives. In this chapter, we will 

discuss how we have addressed each of these objectives. We will also discuss 

our research contributions as well as some study limitations, and finally, we will 

highlight some opportunities for future work. 

 Our first research objective was to stratify physicians into distinct practice 

groups in order to design a group-level alert issuance strategy. To do this, we 

utilized well documented clustering algorithms and developed physician 

groupings based on various physician attributes. This provided us with an 

opportunity to later design group-level alert delivery strategies. We were able to 

utilize the k-means algorithm to cluster our physicians into five distinct groups 

based on both physician specific, as well as physician practice attributes. This 

was a crucial first step in our solution design. 

 Our second objective was to classify the wide range of CDSS alerts in 

terms of their source, acuity and response expectations for EMR- based alerts 

based on a review of current literature. As outlined in Chapters 2 and 3, a 

detailed literature review was conducted, and subsequently we were able to 

develop an alert classification. Our classification work was validated by a Nova 

Scotia-based primary care physician. This classification could be used by others 

researching CDSS alerts in the primary care setting. Additionally, while our 

classification was developed specifically for the primary care setting, the methods 

used for its development could be applied to develop a similar classification 

model for the acute care setting.  
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 Our third goal was to establish a mapping between physician groups and 

alert types. To do this, we employed classification algorithms in order to develop 

predictive models that would help predict how certain physician ‘types’ would 

respond specific EMR alert types. We were able to generate physician response 

data, based on our five physician clusters and our EMR alert classification (n = 

100,000). From there, we were able to successfully utilize DT and MLP 

algorithms to develop predictive alert acceptance rate models. While we would 

have liked to have seen a higher classification accuracy than what we were able 

to achieve (77.45%), we feel these models show promise and do meet our 

research objectives; however an important next step would be to work with real-

world data and subsequently re-evaluate our models.   

 Finally, we were able to develop a strategy to issue alerts based on 

physician’s practice and alert response behavior in order to minimize alert 

fatigue. We were able to develop a strategy, and demonstrate its impact on alert 

reduction across all physician groups based on our simulated alert response 

data.  

6.1 Research Contributions 

Our final research objective highlights our contribution. This objective was 

to develop a strategy to issue CDSS alerts based on a physician’s practice 

(group) and alert response behavior. Understanding how certain groups of 

physicians will respond to certain CDS alerts provides us with an opportunity to 

present only the most relevant alerts for that particular physician group, thereby 

reducing the volume of alerts that will almost certainly be ignored based on the 
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personalized response data. For example, our results show that physicians of 

group B and E have very low acceptance rates for reminders. In this case, alert 

issuance is modified such that reminder alerts no longer fire for physicians 

belonging to group B and E, thereby reducing the volume of what these groups 

likely consider to be unnecessary alerts. Similarly, we found that physicians of 

group D have very low alert acceptance rates for ‘suggestion’ alerts with the 

exception of medication dosing related suggestions. In this case, we suppress all 

‘suggestion’ alert types from firing – again reducing the volume of unnecessary 

alerts thereby contributing to a reduction in alert fatigue. Modification of the 

CDSS alert issuance mechanisms could be adjusted programmatically based on 

our predictive models. Parameters could be set based on acceptance rates – for 

example, do not fire an alert where physician group acceptance of that alert is 

predicted to be less than 33% (Response Rate Category 1). Acceptance rates 

would need to continue to be monitored over time, and alert issuance parameters 

could be readjusted as required in an effort to further reduce alert fatigue. 

Other aspects of this work also offer additional opportunities. For example, 

the physician clustering work could be used to evaluate physician educational 

opportunities or groups that may require additional CDSS related training. It may 

also identify groups who are suited to research initiatives based on patient and 

practice types. With physician engagement, there is a real opportunity to 

evaluate our alert issuance strategy and seek feedback for evaluation and 

improvement. Our strategy focused on alert suppression; but it could be that 

some physician groups could benefit from increased alert issuance based on 
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CDSS alert type. Ongoing monitoring and engagement would be an important 

aspect of this future work. 

This work demonstrates a novel approach to contemplating CDSS alerts. 

To date, much of the CDSS-related research has focused on acute care settings 

and often on specific disease/patient populations. Our work focuses specifically 

on the primary care setting – an important area of research given the reported 

increased demands on physicians in this setting and therefore their susceptibility 

to alert fatigue [4, 5, 68]. In addition, this work focuses broadly on all patient 

types/diseases, an important distinction from most other work published to date.  

Our ability to establish a mapping between physician groups and alert types, and 

to be able to utilize this, coupled with actual response data and data mining 

techniques provides a meaningful tool that can be used to deliver more 

meaningful, personalized alerts to primary care physicians. 

6.2 Study Limitations 

 There are a number of limitations of this study that should be noted. 

Firstly, while based on a portion of real, Nova Scotia-based physician data, other 

physician attributes used in our cluster modelling were added based on some 

documented workload [68] and patient characteristics [47]; but more focused 

research in this area is needed. Additionally, domain experts should be consulted 

to identify more scientifically supported attributes for consideration in physician 

‘typing’. Obviously, this was a proof of concept, and our classification models 

were built on artificial, simulated data. A better approach, and recommended next 
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step, would be to use real world physician alert response data. Unfortunately, 

that was not possible as part of the scope of this initiative. 

 Another important limitation to note, is that my research assumes that 

alerts presented are appropriate. We do not evaluate whether an alert should 

have fired or not. We also do not consider repeated alerts – meaning the same 

alert might present to a primary care physician repeatedly given that a number of 

patients would see their primary care physician regularly, have multiple 

comorbidities, so, as an example, a medication risk/reminder might fire at each 

patient visit. Perhaps the clinician accepted the alert the first time, and then 

ignored all subsequent alerts. We have no way of tracking this based on our 

simulated data and parameters of this study; but it is an important consideration 

that should be included in future work.  

 While our alert classification was reviewed by a family physician, this 

should be reviewed by a more robust, representative panel to confirm its validity. 

Additionally, it should be reviewed against a wide range of primary care EMR 

systems to confirm its applicability. While we did receive endorsement from the 

family physician we reviewed with, and do feel our classification covers most 

primary care CDSS alert types, some additional validation of this work would lend 

further credence to its future use. 

6.3 Future Work 

 Our classification results show promise in terms of CDSS alert response 

predictability; however real world data is required to further test and to further 

improve classification accuracy of these algorithms. Opportunity exists to further 
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explore physician grouping via clustering perhaps by partnering with a group of 

primary care physicians, and domain experts to improve upon the attributes 

included and the clustering techniques used. Leveraging real world alert 

response data will provide additional opportunities to further validate the 

concepts and results reported here. The classification models used in this 

research were purposely selected; however future research could explore other 

classification techniques as well. Once these models are implemented and 

validated against live data, there is almost certainly an opportunity to track 

physician responses in order to optimize and continuously improve the 

classification models.  

 Future work in this area should also include physician engagement - there 

is an opportunity to assess physician satisfaction with the CDSS alerting pre and 

post intervention. The real opportunity lies in changing the way these CDSS 

alerts are delivered based on the physician context, and measuring impact of this 

change in alert delivery on alert acceptance rates, provider satisfaction, and 

ultimately, patient outcomes. 
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APPENDIX A 

SimpleKMeans: Available Parameters and their Definitions in Weka 

seed -- The random number seed to be used. 
 
displayStdDevs -- Display std deviations of numeric attributes and counts of 
nominal attributes. 
 
numExecutionSlots -- The number of execution slots (threads) to use. Set equal 
to the number of available cpu/cores 
 
dontReplaceMissingValues -- Replace missing values globally with mean/mode. 
 
canopyMinimumCanopyDensity -- If using canopy clustering for initialization 
and/or speedup this is the minimum T2-based density below which a canopy will 
be pruned during periodic pruning 
 
canopyT2 -- The T2 distance to use when using canopy clustering. Values < 0 
indicate that this should be set using a heuristic based on attribute standard 
deviation 
 
numClusters -- set number of clusters 
 
doNotCheckCapabilities -- If set, clusterer capabilities are not checked before 
clusterer is built (Use with caution to reduce runtime). 
 
preserveInstancesOrder -- Preserve order of instances. 
 
maxIterations -- set maximum number of iterations 
 
canopyPeriodicPruningRate -- If using canopy clustering for initialization and/or 
speedup this is how often to prune low density canopies during training 
 
canopyMaxNumCanopiesToHoldInMemory -- If using canopy clustering for 
initialization and/or speedup this is the maximum number of candidate canopies 
to retain in main memory during training of the canopy clusterer. T2 distance and 
data characteristics determine how many candidate canopies are formed before 
periodic and final pruning are performed. There may not be enough memory 
available if T2 is set too low. 
 
initializationMethod -- The initialization method to use. Random, k-means++, 
Canopy or farthest first 
 
distanceFunction -- The distance function to use for instances comparison 
(default: weka.core.EuclideanDistance).  
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canopyT1 -- The T1 distance to use when using canopy clustering. Values < 0 
are taken as a positive multiplier for the T2 distance 
 
fastDistanceCalc -- Uses cut-off values for speeding up distance calculation, but 
suppresses also the calculation and output of the within cluster sum of squared 
errors/sum of distances. 
 
reduceNumberOfDistanceCalcsViaCanopies -- Use canopy clustering to reduce 
the number of distance calculations performed by k-means 
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APPENDIX B 

B.1: Simulation Script 

#Simulating Jamey's thesis data 
#For now I'll simulate the characteristic variables naively 
library(xlsx) 
physicianType = LETTERS[1:5] 
patientType = c("High",rep("Rising",4),rep("Low",15)) 
alertTypes = read.xlsx2("Alert Types for Model - 2018-04-29.xlsx",sheetName="Alert 
classification detail",startRow=2,stringsAsFactors=FALSE) 
names(alertTypes) = c(NA,'cdsGroup','cdsType','severity','alertType',NA,NA,NA,NA,NA) 
alertTypes = alertTypes[,which(!is.na(names(alertTypes)))] 
alertTypes$cdsType = gsub("\n"," ",alertTypes$cdsType) 
#so for a random physician and patient type I need to get ALL the alert types 
frame = 
expand.grid(physicianType=physicianType,patientType=patientType,1:dim(alertTypes)[1]) 
frame = cbind(frame[,1:2],alertTypes[frame[,3],]) 
 
###two random components: 
#1. Volume is a function of patient severity 
#2. Volume needs to be split into "accept" and "ignore" based on a bunch of variables 
n=100000 
k=dim(frame)[1] 
set.seed(11) 
#getting the samples 
dat = frame[sample(1:k,n,replace=TRUE),] 
#getting the Volumes 
pts = as.numeric(dat$patientType) 
dat$Volume = round(runif(n,min=(pts*3)^2,max=(pts*6)^2)) 
###for the decision making: response should be a function of 
# patientType, severity and alertType (leaving the CDS components out) 
# each physician should have their own response probabilities 
 
pMatrix = #matrix(ncol=9,nrow=5) 
    rbind(#  Int     Low Rising   High      1      2 Suggestion  Alert Reminder 
        A=c(0.100, 0.100, 0.400, 0.150, 0.000, 0.000,     0.000, 0.100,  0.200), 
        B=c(0.125, 0.000, 0.000, 0.000, 0.000, 0.400,     0.100, 0.350,  0.000), 
        C=c(0.000, 0.000, 0.100, 0.200, 0.200, 0.000,     0.100, 0.000,  0.250), 
        D=c(0.000, 0.100, 0.200, 0.250, 0.000, 0.000,     0.000, 0.400,  0.350), 
        E=c(0.100, 0.000, 0.000, 0.000, 0.100, 0.400,     0.200, 0.100,  0.000) 
    ) 
colnames(pMatrix) = c("Int","Low","Rising","High","1","2","Suggestion","Alert","Reminder") 
 
#adding cdsGroup probabilites 
pMatrix2 = rbind( 
         #Expert, Dosing, Order, POC Alert 
    A = c(0.100,  0.250,  0.100, 0.100), 
    B = c(0.000,  0.000,  0.000, 0.000), 
    C = c(0.200,  0.300,  0.200, 0.100), 
    D = c(0.100,  0.300,  0.100, 0.000), 
    E = c(0.000,  0.200,  0.000, 0.100) 
) 
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colnames(pMatrix2) = names(table(dat$cdsGroup)) 
 
p0 = pMatrix[dat$physicianType,1] 
p1 = pMatrix[as.matrix(cbind(dat[,c("physicianType","patientType")]))] 
p2 = pMatrix[as.matrix(cbind(dat[,c("physicianType","severity")]))] 
p3 = pMatrix[as.matrix(cbind(dat[,c("physicianType","alertType")]))] 
p4 = pMatrix2[as.matrix(cbind(dat[,c("physicianType","cdsGroup")]))] 
p = p0+p1+p2+p3+p4+runif(n,-0.05,0.05) 
 
dat$Respond = rbinom(n,size=dat$Volume,p=p) 
dat$Ignore = dat$Volume-dat$Respond 
 
write.csv(dat,file='simDataForJamey.V3.csv',row.names = FALSE) 
#testing the results 
dat$responseRate = dat$Respond/dat$Volume 
 
library(rpart) 
library(rattle) 
library(e1071) 
library(nnet) 
n=dim(dat)[1] 
nTrain = round(n*0.7) 
train = dat[1:nTrain,] 
test = dat[(nTrain+1):n,] 
mod = 
rpart(responseRate~physicianType+patientType+alertType+severity+cdsGroup,data=train,control
=list(cp=0.0000)) 
fancyRpartPlot(mod) 
pred = predict(mod,newdata=test) 
 
 
 
library(klaR) 
clust01 = kmodes(dat[,1:6],modes = 5) 
clust02 = kmodes(dat[,c(1,2,5,6)],modes=5) 

 

B.2: Complete Proof of Concept Data (n=100,000) 

simDataV3_quartile

s.csv
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APPENDIX C 

J48 (C4.5) Available Algorithm Parameters in Weka 

seed -- The seed used for randomizing the data when reduced-error pruning is used. 
 
unpruned -- Whether pruning is performed. 
 
confidenceFactor -- The confidence factor used for pruning (smaller values incur more 
pruning). 
 
numFolds -- Determines the amount of data used for reduced-error pruning.  One fold is 
used for pruning, the rest for growing the tree. 
 
numDecimalPlaces -- The number of decimal places to be used for the output of 
numbers in the model. 
 
batchSize -- The preferred number of instances to process if batch prediction is being 
performed. More or fewer instances may be provided, but this gives implementations a 
chance to specify a preferred batch size. 
 
reducedErrorPruning -- Whether reduced-error pruning is used instead of C.4.5 pruning. 
 
useLaplace -- Whether counts at leaves are smoothed based on Laplace. 
 
doNotMakeSplitPointActualValue -- If true, the split point is not relocated to an actual 
data value. This can yield substantial speed-ups for large datasets with numeric 
attributes. 
 
debug -- If set to true, classifier may output additional info to the console. 
 
subtreeRaising -- Whether to consider the subtree raising operation when pruning. 
 
saveInstanceData -- Whether to save the training data for visualization. 
 
binarySplits -- Whether to use binary splits on nominal attributes when building the trees. 
 
doNotCheckCapabilities -- If set, classifier capabilities are not checked before classifier 
is built (Use with caution to reduce runtime). 
 
minNumObj -- The minimum number of instances per leaf. 
 
useMDLcorrection -- Whether MDL correction is used when finding splits on numeric 
attributes. 
 
collapseTree -- Whether parts are removed that do not reduce training error. 
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APPENDIX D 

J48 Pruned Tree 

=== Run information === 
 
Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     simDataV3_quartiles-weka.filters.unsupervised.attribute.Remove-R7-10-
weka.filters.unsupervised.attribute.NumericToNominal-Rfirst-last-weka.filters.unsupervised.attribute.Remove-R4 
Instances:    100000 
Attributes:   6 
              physicianType 
              patientType 
              cdsGroup 
              severity 
              alertType 
              Response Rate Category 
Test mode:    split 90.0% train, remainder test 
 
=== Classifier model (full training set) === 
 
J48 pruned tree 
------------------ 
 
alertType = Suggestion 
|   physicianType = A 
|   |   patientType = Rising 
|   |   |   cdsGroup = Order Facilitator: 3 (768.0/369.0) 
|   |   |   cdsGroup = Medication Dosing: 4 (434.0/3.0) 
|   |   |   cdsGroup = Point of Care Alert/Reminder: 3 (501.0/245.0) 
|   |   |   cdsGroup = Expert Systems: 3 (334.0/156.0) 
|   |   patientType = High 
|   |   |   cdsGroup = Order Facilitator: 1 (181.0/93.0) 
|   |   |   cdsGroup = Medication Dosing: 3 (103.0/49.0) 
|   |   |   cdsGroup = Point of Care Alert/Reminder: 1 (112.0/63.0) 
|   |   |   cdsGroup = Expert Systems: 2 (70.0/36.0) 
|   |   patientType = Low 
|   |   |   cdsGroup = Order Facilitator: 1 (2888.0/835.0) 
|   |   |   cdsGroup = Medication Dosing: 2 (1728.0/669.0) 
|   |   |   cdsGroup = Point of Care Alert/Reminder: 1 (1633.0/471.0) 
|   |   |   cdsGroup = Expert Systems: 1 (1137.0/372.0) 
|   physicianType = B: 4 (9979.0/3433.0) 
|   physicianType = C 
|   |   cdsGroup = Order Facilitator 
|   |   |   patientType = Rising: 2 (771.0/170.0) 
|   |   |   patientType = High: 3 (197.0/115.0) 
|   |   |   patientType = Low: 1 (2864.0/811.0) 
|   |   cdsGroup = Medication Dosing 
|   |   |   patientType = Rising: 3 (491.0/155.0) 
|   |   |   patientType = High: 4 (116.0/61.0) 
|   |   |   patientType = Low: 2 (1776.0/256.0) 
|   |   cdsGroup = Point of Care Alert/Reminder 
|   |   |   patientType = Rising: 1 (501.0/159.0) 
|   |   |   patientType = High: 2 (112.0/63.0) 
|   |   |   patientType = Low: 1 (1733.0/7.0) 
|   |   cdsGroup = Expert Systems 
|   |   |   patientType = Rising: 2 (324.0/82.0) 
|   |   |   patientType = High: 3 (86.0/48.0) 
|   |   |   patientType = Low: 1 (1130.0/361.0) 
|   physicianType = D 
|   |   cdsGroup = Order Facilitator 
|   |   |   patientType = Rising: 1 (783.0/253.0) 
|   |   |   patientType = High: 2 (208.0/114.0) 
|   |   |   patientType = Low: 1 (2935.0/4.0) 
|   |   cdsGroup = Medication Dosing 
|   |   |   patientType = Rising: 3 (488.0/180.0) 
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|   |   |   patientType = High: 3 (137.0/78.0) 
|   |   |   patientType = Low: 2 (1750.0/242.0) 
|   |   cdsGroup = Point of Care Alert/Reminder: 1 (2314.0/36.0) 
|   |   cdsGroup = Expert Systems: 1 (1586.0/163.0) 
|   physicianType = E: 4 (9993.0/198.0) 
alertType = Alert 
|   physicianType = A 
|   |   patientType = Rising: 4 (1551.0/74.0) 
|   |   patientType = High 
|   |   |   cdsGroup = Order Facilitator: 3 (0.0) 
|   |   |   cdsGroup = Medication Dosing: 3 (125.0/68.0) 
|   |   |   cdsGroup = Point of Care Alert/Reminder: 2 (272.0/155.0) 
|   |   |   cdsGroup = Expert Systems: 3 (0.0) 
|   |   patientType = Low 
|   |   |   cdsGroup = Order Facilitator: 2 (0.0) 
|   |   |   cdsGroup = Medication Dosing: 3 (1803.0/269.0) 
|   |   |   cdsGroup = Point of Care Alert/Reminder: 2 (4039.0/567.0) 
|   |   |   cdsGroup = Expert Systems: 2 (0.0) 
|   physicianType = B: 3 (7709.0/3384.0) 
|   physicianType = C 
|   |   cdsGroup = Order Facilitator: 1 (0.0) 
|   |   cdsGroup = Medication Dosing 
|   |   |   patientType = Rising: 3 (443.0/219.0) 
|   |   |   patientType = High: 4 (130.0/13.0) 
|   |   |   patientType = Low: 3 (1712.0/432.0) 
|   |   cdsGroup = Point of Care Alert/Reminder 
|   |   |   patientType = Rising: 2 (1109.0/286.0) 
|   |   |   patientType = High: 3 (250.0/137.0) 
|   |   |   patientType = Low: 1 (4090.0/1249.0) 
|   |   cdsGroup = Expert Systems: 1 (0.0) 
|   physicianType = D 
|   |   cdsGroup = Order Facilitator: 3 (0.0) 
|   |   cdsGroup = Medication Dosing: 4 (2253.0) 
|   |   cdsGroup = Point of Care Alert/Reminder 
|   |   |   patientType = Rising: 3 (1076.0/538.0) 
|   |   |   patientType = High: 4 (251.0/93.0) 
|   |   |   patientType = Low: 3 (3951.0/946.0) 
|   |   cdsGroup = Expert Systems: 3 (0.0) 
|   physicianType = E 
|   |   cdsGroup = Order Facilitator: 2 (0.0) 
|   |   cdsGroup = Medication Dosing: 3 (2252.0/654.0) 
|   |   cdsGroup = Point of Care Alert/Reminder: 2 (5324.0/943.0) 
|   |   cdsGroup = Expert Systems: 2 (0.0) 
alertType = Reminder 
|   physicianType = A 
|   |   patientType = Rising: 4 (417.0) 
|   |   patientType = High: 3 (114.0/63.0) 
|   |   patientType = Low: 3 (1767.0/434.0) 
|   physicianType = B: 1 (2299.0/2.0) 
|   physicianType = C 
|   |   patientType = Rising: 4 (498.0/112.0) 
|   |   patientType = High: 4 (119.0/14.0) 
|   |   patientType = Low: 3 (1729.0/284.0) 
|   physicianType = D 
|   |   patientType = Rising: 3 (490.0/128.0) 
|   |   patientType = High: 3 (126.0/70.0) 
|   |   patientType = Low: 2 (1673.0/660.0) 
|   physicianType = E: 1 (2265.0/705.0) 
 
Number of Leaves  :  73 
 
Size of the tree :  101 
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APPENDIX E 

Weka MLP Parameters 

seed -- Seed used to initialise the random number generator. Random numbers are used for setting the initial 
weights of the connections between nodes, and also for shuffling the training data. 

momentum -- Momentum applied to the weights during updating. 

nominalToBinaryFilter -- This will preprocess the instances with the filter. This could help improve performance 
if there are nominal attributes in the data. 

hiddenLayers -- This defines the hidden layers of the neural network. This is a list of positive whole numbers. 
1 for each hidden layer. Comma seperated. To have no hidden layers put a single 0 here. This will only be 
used if autobuild is set. There are also wildcard values 'a' = (attribs + classes) / 2, 'i' = attribs, 'o' = classes , 't' = 
attribs + classes. 

validationThreshold -- Used to terminate validation testing.The value here dictates how many times in a row 
the validation set error can get worse before training is terminated. 

GUI -- Brings up a gui interface. This will allow the pausing and altering of the nueral network during training. 

normalizeAttributes -- This will normalize the attributes. This could help improve performance of the network. 
This is not reliant on the class being numeric. This will also normalize nominal attributes as well (after they 
have been run through the nominal to binary filter if that is in use) so that the nominal values are between -1 
and 1 

numDecimalPlaces -- The number of decimal places to be used for the output of numbers in the model. 

batchSize -- The preferred number of instances to process if batch prediction is being performed. More or 
fewer instances may be provided, but this gives implementations a chance to specify a preferred batch size. 

decay -- This will cause the learning rate to decrease. This will divide the starting learning rate by the epoch 
number, to determine what the current learning rate should be. This may help to stop the network from 
diverging from the target output, as well as improve general performance. Note that the decaying learning rate 
will not be shown in the gui, only the original learning rate. If the learning rate is changed in the gui, this is 
treated as the starting learning rate. 

validationSetSize -- The percentage size of the validation set.(The training will continue until it is observed that 
the error on the validation set has been consistently getting worse, or if the training time is reached). 

If This is set to zero no validation set will be used and instead the network will train for the specified number of 
epochs. 

trainingTime -- The number of epochs to train through. If the validation set is non-zero then it can terminate the 
network early 

debug -- If set to true, classifier may output additional info to the console. 

autoBuild -- Adds and connects up hidden layers in the network. 

normalizeNumericClass -- This will normalize the class if it's numeric. This could help improve performance of 
the network, It normalizes the class to be between -1 and 1. Note that this is only internally, the output will be 
scaled back to the original range. 

learningRate -- The amount the weights are updated. 

doNotCheckCapabilities -- If set, classifier capabilities are not checked before classifier is built (Use with 
caution to reduce runtime). 
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reset -- This will allow the network to reset with a lower learning rate. If the network diverges from the answer 
this will automatically reset the network with a lower learning rate and begin training again. This option is only 
available if the gui is not set. Note that if the network diverges but isn't allowed to reset it will fail the training 
process and return an error message. 
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