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ABSTRACT 

The Gulf of Mexico (GOM) is of great ecological and socio-economic importance; 

however, its ecosystems are increasingly stressed by anthropogenic pressures. Two of the 

most serious are excessive nutrient inputs from land that affect the shelf in the northern 

GOM and lead to reoccurring extensive hypoxia, and oil exploration and extraction 

activities that have become more risky by increasingly extending into the deep sea leading 

to pollution there. Realistic physical-biogeochemical models are invaluable tools for 

understanding and predicting the resulting effects on the marine system, but a model’s 

predictive capabilities are limited by various sources of error resulting from imperfect 

descriptions of physical and biological processes, inaccurate forcing, uncertain initial and 

boundary conditions, and imprecise parameter values. Data assimilation methods that 

merge the information contained in observations and dynamical models are crucial for 

providing the most accurate views of ocean processes. This thesis aims to improve our 

understanding and our predictive capabilities of shelf hypoxia and movement of deep-

water pollutants in the GOM through regional-scale numerical modeling and data 

assimilation. First, two numerical models of dissolved oxygen with different ecological 

complexity are applied to investigate the mechanisms controlling the development of 

seasonal bottom-water hypoxia on the continental shelf in the northern GOM. Next, a 

multivariate sequential data assimilation method, the deterministic Ensemble Kalman 

Filter (DEnKF), is tested in an idealized upwelling model to explore the effects of 

multivariate updates of physical and biogeochemical model states. Finally, the DEnKF 

technique is implemented in a realistic physical-hydrocarbon model of the GOM to assess 

the effects of data assimilation on the mesoscale circulation and the movement of a deep-

water hydrocarbon plume. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The Gulf of Mexico (GOM) is a semi-enclosed marginal sea, characterized by a complex 

set of physical and biogeochemical processes, and a vast and productive body of water 

with tremendous ecological, economic and social value. However, this valuable 

ecosystem, along with the goods and services it provides, is threatened by intensifying 

anthropogenic pressures. Two of the most serious are: 1) excessive inputs of 

agriculturally derived nutrients by the Mississippi and Atchafalaya Rivers which lead to 

widespread seasonal hypoxia (oxygen concentrations < 2 mg l-1 or 62.5 mmol m-3) on the 

shelf of northern GOM, and 2) pollution associated with intensive oil exploration and 

extraction activities that increasingly occur in the deep sea. Developing effective 

mitigation and management strategies for these environmental threats demands improved 

understanding and prediction capabilities for the fundamental physical and 

biogeochemical processes in the GOM. 

Numerical models are invaluable tools for understanding the dynamics of marine 

systems, predicting their responses to natural and anthropogenic perturbations, and 

providing useful information for marine management and decision-making. In recent 

decades, a surge in computing power has greatly advanced the development of numerical 

ocean models with improved predictive capabilities and increased value as scientific tools 

(e.g., Allen et al. 2010; Peña et al., 2010; Gehlen et al. 2015; Bianucci et al., 2015). 

Nevertheless, models offer an imperfect representation of the true ocean, involving only a 

limited number of complex processes, simplifying their characterization as well as being 

prone to errors arising from numerical approximations, choice of mathematical functions 

and parameter values, and specification of model forcing, initial and boundary conditions.  

Observations are an essential source of information for understanding the ocean 

and for validating and calibrating models. In the past decades a revolution in global 



ocean-observing capabilities has occurred, providing an unprecedented view of marine 

ecosystems from the ocean surface to the ocean interior (Johnson et al., 2009, 2013; 

Schofield et al., 2013). Of course, these observations also contain errors arising from 

various sources, such as the measuring device, and instrumental and environmental noise 

(Robinson and Lermusiaux, 2002).  Moreover, in utilizing observations for model 

validation or assimilation into models, the observations additionally have representation 

(or representativeness) errors. The representation error often arises from a mismatch 

between the scales and processes represented in the observations and model fields, from 

the approximations involved in the observation operators mapping the model fields to the 

observation equivalent, and from quality-control or pre-processing procedures of 

observations (e.g., Lorenc, 1986; Daley, 1991; and a recent review by Janjić et al., 2017). 

Last but not least, despite substantially improved data coverage, the ocean is still severely 

undersampled with respect to its complexity and temporal and spatial scales of variability.  

In this context, using data assimilation (DA) methods to optimally merge the 

heterogeneous and potentially erroneous information in observations and dynamical 

models is crucial for providing the most accurate representation of marine physical and 

biogeochemical processes. The foundations of DA methods are rooted in Bayes’ theorem, 

which fuses observational data with prior knowledge (e.g., mathematical models 

approximating physical laws) to obtain an estimate of the distribution of the true state of a 

process (Wikle and Berliner 2007). Ocean DA methods generally fall into two categories: 

the variational approach, which seeks the model trajectory that best fits available 

observations by minimizing a cost function measuring the model-data misfit (e.g., Le 

Dimet and Talagrand, 1986; Thacker and Long, 1988), and the sequential approach, 

which seeks a best state vector that maximizes the posterior distribution at each instant 

observations become available (e.g., Kitagawa, 1996; Doucet et al., 2000). Dependent on 

whether future observations are included to constrain the current model state estimates, 

the DA methods could also be loosely divided into filtering and smoothing approaches, 

where the former does not include future observations for current assimilation step (e.g., 

Kalman Filter) while the latter includes all previous and future observations within an 

assimilation time window to determine the analysis state (e.g., Kalman Smoother, 4D-Var 



approach). In the case of linear dynamics and Gaussian error distributions, the cost 

function in the variational approach is proportional to the negative of the logarithm of the 

posterior distribution in the sequential approach such that minimizing the cost function 

becomes equivalent to maximizing the posterior distribution (Lorenc, 1986; Wikle and 

Berliner, 2007).   

One state-of-art DA method following the sequential assimilation approach is the 

Ensemble Kalman Filter (EnKF), which applies the Monte Carlo method to propagate 

model uncertainties with the full nonlinear model before sequentially updating the model 

state based on the Bayesian inference (Evensen, 1994). The EnKF and its variants have 

gained popularity in geophysical applications because they are relatively easy to 

implement, computationally tractable and robust, have a flow-dependent background 

error covariance, and their multivariate nature allows updates to state variables not 

directly observed. The covariance-based EnKF method by nature is not best suited for 

correcting model bias. However, through state augmentation the EnKF can also be used to 

jointly estimate the bias and the model state variables (e.g., Dee, 2005; Houtekamer and 

Zhang, 2016). Nevertheless, this thesis will not explore EnKF’s potential of simultaneous 

bias correction but focus on its application in improving physical and/or biogeochemical 

ocean state estimation.  

1.2 Objectives 

This thesis focuses on the two major anthropogenic stressors in the Gulf of Mexico—

shelf water hypoxia and deep-sea oil spill pollution—with the overall goal to improve 

predictive capabilities of the effects of these anthropogenic stressors in the GOM. Steps 

taken toward this goal are: i) regional-scale numerical ecosystem modeling to investigate 

recurring bottom-water hypoxia on the shelf in the northern GOM, ii) implementation of 

the EnKF, which is first examined in an idealized upwelling model to explore the 

potential benefits of multivariate model updates, and iii) the application of this method to 

a realistic physical-hydrocarbon model for the GOM to assess if the characterization of 

mesoscale circulation features and the movement of a simulated deep-water oil plume are 

improved through DA.   



The specific objectives of this thesis work, which are organized into the four 

following chapters, are as follows: 

1. Identify the primary processes controlling oxygen dynamics and hypoxia in the 
northern GOM. (Chapter 2) 

The shelf in the northern GOM receives large amounts of freshwater and nutrients from 

the Mississippi and Atchafalaya Rivers. These river inputs contribute to widespread 

bottom-water hypoxia on the shelf every summer. Understanding the causes of the 

seasonal hypoxia and designing effective nutrient management strategy requires 

quantitative knowledge of the mechanisms controlling dissolved oxygen (DO) 

dynamics. Generally, the distribution of DO is determined by physical processes (air-

sea flux, horizontal advection, vertical mixing across the pycnocline) and 

biogeochemical processes (photosynthetic production, respiration in the water column 

and sediments, and oxidation of reduced substances). To constrain the magnitudes and 

spatial and temporal dynamics of these processes I conducted a comprehensive model-

data comparison between a realistic three-dimensional (3D) physical-biogeochemical 

model that explicitly simulates oxygen sources and sinks on the shelf, and then used the 

validated model to identify the key mechanisms controlling oxygen dynamics and 

hypoxia development.  

2. Develop a relatively simple oxygen model to examine the physical controls on hypoxia 
generation in the northern GOM. (Chapter 3)    

Models with different complexities, ranging from statistical to fully coupled physical-

biogeochemical models, have been developed to understand mechanisms controlling 

hypoxia formation on the northern GOM shelf. While statistical models are simple and 

instructive, they can only demonstrate correlation not causation. Fully coupled 

physical-biogeochemical models like the one used in Chapter 2 can mechanistically 

elucidate the complex interactions of physical and biological processes, but they can be 

difficult to calibrate and their results are sometimes difficult to interpret.  The objective 

of this chapter is to assess whether an intermediate approach, coupling a simple oxygen 

model (which parameterizes biological oxygen terms using empirical relationships 



derived from observations) with the realistic circulation model used in Chapter 2, can 

skillfully simulate hypoxic conditions on the LA shelf.  After demonstrating that the 

model reproduces the observed variability of dissolved oxygen and hypoxia on the 

shelf, I use it to evaluate the role of physical forcing factors (river discharge, wind 

speed, and the seasonal shift in wind direction) in hypoxia formation. 

3. Investigate the potential benefits of multivariate EnKF updates of physical and 
biogeochemical ocean state variables.  (Chapter 4) 

Effective data assimilation methods for incorporating observations into marine 

biogeochemical models are required to improve hindcasts, nowcasts and forecasts of 

the ocean's biogeochemical state. Recent assimilation efforts have shown that updating 

model physics alone can degrade biogeochemical fields while only updating 

biogeochemical variables may not improve a model's predictive skill when the physical 

fields are inaccurate. This chapter aims to systematically investigate whether 

multivariate EnKF updates of physical and biogeochemical model states, taking 

advantage of the inherently multivariate nature of the EnKF, can outperform isolated 

updates of either physical or biogeochemical variables. Towards that aim, a series of 

twin experiments is conducted in an idealized model of upwelling to test the 

performance of different strategies for assimilating different combinations of synthetic 

physical and biogeochemical observations.  

4. Apply EnKF to improve the simulation of circulation and movement of a deep-water 
hydrocarbon plume in the Gulf of Mexico. (Chapter 5) 

Accurate estimates of ocean circulation are essential for predicting transport of ocean 

biogeochemical constituents and pollutants, assessing environmental impacts, and 

managing accident response efforts. For example, the explosion and sinking of the 

offshore drilling rig Deepwater Horizon (DwH) in April 2010 resulted in the delivery 

of an unprecedented quantity of crude oil (4.9 million barrels) into the GOM. The 

frenzied response that followed clearly demonstrates the need for reliable circulation 

forecasts to aid in response and mitigation actions after such incidents.  In this chapter, 

the EnKF implementation developed in Chapter 4 is applied to a 3D physical-



hydrocarbon model for the GOM. The skill of the data-assimilative system is rigorously 

assessed through fraternal and identical twin experiments as well as a realistic 

assimilation experiment for satellite and in situ profile observations. Through the twin 

experiments, the following three questions are addressed: i) what are the relative 

benefits of assimilating temperature and salinity profiles versus satellite data in 

improving the skill of different physical variables in the model? ii) does the 

assimilation system’s skill in reproducing the satellite-observed dynamics of the LC 

and associated eddies in the GOM translate into skill in simulating the subsurface 

circulation? iii) does an improvement in circulation of the deep GOM lead to improved 

circulation near the DwH spill site and hence improved distribution of the deep-water 

hydrocarbon plume?  

1.3 Outline 

This thesis is organized into manuscripts where Chapters 2 to 4 contain the 

individual manuscripts published in peer-reviewed journals and Chapter 5 is to be 

submitted in the fall/winter of 2018.  

In Chapter 2, a 3D physical-biogeochemical model that can explicitly simulate 

oxygen sources and sinks on the shelf in the northern GOM is presented and validated 

against available observations. The validated model is then used to analyze the summer 

dissolved oxygen balance for different regions to quantify the relative importance of the 

key controlling processes and examine how they vary in space.  

In Chapter 3, a simple oxygen model, which parameterizes biological oxygen 

terms using empirical relationships derived from observations, is coupled to the same 

physical model used in Chapter 2. The coupled model is validated against available 

observations and outputs from the full biogeochemical model of Chapter 2, and then used 

to investigate the role of different physical forcing factors in hypoxia formation.  

In Chapter 4, an idealized ocean model of upwelling for conducting twin 

experiments is described. The principles, implementation and configuration of the EnKF 

technique are detailed. The impacts of updating physical and biogeochemical model fields 



individually versus simultaneously via different assimilation strategies on ocean 

ecosystem estimation and prediction are assessed through a series of twin experiments. 

In Chapter 5, the EnKF-based data assimilative model for the GOM is described, 

validated through fraternal and identical twin experiments, and tested in a realistic 

configuration for assimilating satellite and profile observations. 

The main conclusions of this thesis are given in Chapter 6.  



CHAPTER 2 

PRIMARY PROCESSES CONTROLLING OXYGEN 

DYNAMICS IN THE NORTHERN GULF OF MEXICO1 

2.1 Introduction 

The Louisiana shelf (LA shelf) in the northern Gulf of Mexico receives large 

inputs of freshwater, nutrients and organic matter from the Mississippi/Atchafalaya River 

system and experiences widespread hypoxia (oxygen concentrations < 2 mg l-1 or 62.5 

mmol m-3) in bottom waters every summer (Rabalais et al. 2007; Bianchi et al. 2010). 

Hypoxia stresses and can even lead to death of marine animals. The classic paradigm for 

explaining the recurring hypoxic conditions on the LA shelf is that high nutrient inputs 

from the river stimulate high rates of primary production in coastal waters; as this organic 

matter sinks below the pycnocline and is respired, dissolved oxygen (DO) becomes 

depleted due to a combination of high microbial respiration and low re-oxygenation of the 

bottom waters because of strong stratification (Rabalais et al. 2002).  

While the statistical linkage between spring nutrient loads and the spatial extent of 

summer hypoxic area is well documented (Turner et al., 2005; Greene et al., 2009; Forrest 

et al., 2011), the distribution of hypoxia on the LA shelf is known to be the integrated 

result of various physical and biogeochemical processes that interact non-linearly 

(Bianchi et al. 2010; Fennel et al. 2011). Rowe and Chapman (2002) suggested that as the 

distance from the river mouth increases, the primary driver of hypoxia changes from 

deposition of riverine organic matter to biological production and respiration and finally 

to physical stratification. Model simulations (Bierman et al., 1994; Breed et al., 2004; 

Eldridge and Roelke 2010) also show that the dominant processes contributing to hypoxia 

change in the westward direction, namely allochthonous organic matter accounts for most 

of DO consumption near the Mississippi river mouth and autochthounous organic

Based on: Yu, L., Fennel, K., Laurent, A., Murrell, M. C., and Lehrter, J. C. (2015) Numerical analysis of 
the primary processes controlling oxygen dynamics on the Louisiana shelf, Biogeosciences, 12, 2063-2076.



matter dominates DO consumption farther west. Hetland and DiMarco (2008) suggested 

that the differences in vertical stratification within the Mississippi and Atchafalaya River 

plumes lead to differences in the dominant type of respiration responsible for hypoxia 

with water column respiration driving hypoxia near the Mississippi River plume and 

benthic respiration controlling hypoxia near Atchafalaya Bay and further west. Recent 

work suggests that the main axis of variability in hydrography and metabolism is inshore 

to offshore on the shelf (Lehrter et al. 2012; Murrell et al., 2013a; Lehrter et al., 2013; Fry 

et al., 2014).  

Understanding the causes of hypoxia on the LA shelf requires quantitative 

knowledge of the mechanisms controlling DO dynamics. Generally, the distribution of 

DO is determined by physical processes (air-sea flux, horizontal advection, vertical 

mixing across the pycnocline) and biogeochemical processes (photosynthetic production, 

respiration in the water column and sediments, and oxidation of reduced substances) 

(Testa and Kemp, 2011). The magnitudes and spatial and temporal dynamics of these 

processes on the LA shelf are as of now poorly constrained. 

Circulation over the LA shelf displays two distinct modes (Cochrane and Kelly, 

1986; Cho et al., 1998): an upcoast circulation mode during the dominantly upwelling-

favorable (westerly) winds in summer (June to August) versus westward flow during the 

dominantly downwelling-favorable (easterly) winds for the rest of the year. Previous 

statistical studies (Forrest et al., 2011; Feng et al., 2012) have shown that the observed 

hypoxic extent is correlated to the duration of upwelling-favorable wind. Feng et al. (2014) 

further showed that the wind influences the distribution of low salinity, high chlorophyll 

water on the shelf and thereby the bottom water DO concentrations and hypoxic area. 

A substantial fraction of phytoplankton production is observed below the 

pycnocline (Lehrter et al., 2009) and even at the sediment-water interface when light is 

available (Lehrter et al., 2014), but the effect of sub-pycnocline production on bottom 

water hypoxia is not well known. Eldridge and Morse (2008) highlighted the importance 

of benthic respiration as a DO sink at the beginning and end of hypoxic events, and 

suggested water column respiration in bottom water near the pycnocline as primary O2 



sink once hypoxia has developed. Quinones-Rivera et al. (2007, 2010) estimated benthic 

respiration to account for ~73% of the total DO loss within 1 m of the bottom sediments 

during summer based on  measurements and an isotope fractionation model, whereas 

Murrell and Lehrter (2011) found that benthic respiration only contributes on average 

20 4% of total respiration below the pycnocline. The relative contributions of benthic 

and water column respiration are strongly affected by the assumed depth of the bottom 

layer. 

In order to better understand the relative importance of these processes, 

considerable efforts have been invested in modeling the DO dynamics and hypoxia within 

the system. These models range from relatively simple regression models (Turner et al., 

2005, 2006; Greene et al., 2009; Forrest et al., 2011; Feng et al. 2012) to more complex 

process simulations that emphasize either biogeochemical processes in simplified 

physical frameworks (Justić et al. 1996, 2002; Eldridge and Morse, 2008; Green et al. 

2008) or physical circulation using detailed hydrographic models with simple 

parameterizations of biogeochemical process (Hetland and DiMarco 2008; Lehrter et al., 

2013). More recently a number of fully coupled physical-biogeochemical models have 

become available (Fennel et al. 2013; Laurent and Fennel 2014; Feng et al. 2014; Justić 
and Wang 2014). 

Coupled models of DO dynamics and circulation have been used successfully in 

other coastal systems with seasonal hypoxia including Chesapeake Bay (i.e., Cerco and 

Cole, 1993; Cerco, 1995). More recently, Li et al. (2015) coupled an empirical DO model 

derived from observations with a high-resolution hydrodynamic model to derive a DO 

budget for Chesapeake Bay. An even simpler empirical DO parameterization was used by 

Scully (2013) to illustrate the important role of physical forcing in the formation of 

seasonal hypoxia. Both, Li et al. (2015) and Scully (2013) obtained a realistic simulation 

of the seasonal cycle of DO and spatial distributions of hypoxic water. 

Here I use a coupled physical-biogeochemical model for the LA shelf described in 

Fennel et al. (2011, 2013) that was recently extended to include phosphate by Laurent et 

al. (2012) and Laurent and Fennel (2014). The biogeochemical model explicitly simulates 



DO and is coupled to the realistic 3-dimensional circulation model of Hetland and 

DiMarco (Hetland and DiMarco 2008, Hetland et al. 2012). Here I build upon the earlier 

work to identify the key processes controlling DO dynamics.  

The chapter is organized as follows. First I describe the coupled physical-

biogeochemical model and its DO source and sink terms. Then I validate model-simulated 

DO and oxygen production and consumption rates against available observations. I 

explore spatial and temporal patterns of water column metabolism across the shelf and its 

interaction with air-sea fluxes. I also analyze the summer DO balance for different regions 

which allows me to identify the key controlling processes and how they vary in space.  

Finally, I examine the role that sub-pycnocline primary production plays in hypoxia 

generation. 

2.2 Model Description 

The physical model is the Regional Ocean Modelling System (Haidvogel et al. 

2008, ROMS, http://myroms.org) configured for the Mississippi/Atchafalaya outflow 

region as described in Hetland and DiMarco (2008, 2012).  The model grid covers the 

Louisiana continental shelf with a horizontal resolution ranging from ~20 km in the 

southwestern corner to 1 km near the Mississippi Delta, and has 20 terrain-following 

vertical layers with increased resolution near the surface and bottom (Fig. 2.1). The model 

uses a fourth-order horizontal advection scheme for tracers and a third-order upwind 

scheme for the advection term in the momentum equation. Vertical gradients are 

calculated with conservative parabolic splines, and vertical mixing is parameterized using 

the Mellor and Yamada (1982) turbulent closure scheme. An average profile of 

temperature and salinity, based on historical hydrographic data (Boyer et al., 2006) and 

assumed to be horizontally uniform, is used as physical boundary condition.  At the three 

open boundaries, gradient conditions are used for the free surface, radiation conditions for 

the three-dimensional velocities, and a Flather (1976) condition with no mean barotropic 

background flow for the two-dimensional velocities. The model is forced with 3-hourly 

winds from the NCEP North American Regional Reanalysis (NARR) and climatological 

surface heat and freshwater fluxes from da Silva et al. (1994a, b). Freshwater inputs from 



the Mississippi and Atchafalaya rivers are based on daily measurements of transport by 

the US Army Corps of Engineers at Tarbert Landing and Simmesport, respectively.  

 The physical model realistically captures the two distinct modes of circulation 

over the LA shelf: an upcoast circulation mode during the dominantly upwelling-

favorable (westerly) winds in summer (June to August) versus westward flow during the 

dominantly downwelling-favorable (easterly) winds for the rest of the year (Hetland and 

DiMarco, 2008). The skill assessment by Hetland and DiMarco (2012) shows that the 

physical model is able to faithfully reproduce the observed broad-scale features and 

seasonal patterns of the Mississippi/Atchafalaya River plume system and hence can be 

considered a reasonable hydrodynamic foundation for regional biogeochemical models. 

 
Fig. 2.1. Model grid (light grey lines) and bathymetry (in meters). The black lines 
delineate areas used during model analysis and are referred to as Mississippi Delta, 
Mississippi Intermediate, Atchafalaya Plume and Mid-shelf region in the text. The black 
dots are stations where primary production (Lehrter et al. 2009) and respiration rates 
(Murrell et al. 2013) were collected. 
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The biological component of the model uses the nitrogen cycle model of Fennel et 

al. (2011, 2013) but was extended to include phosphate (Laurent et al., 2012) and river 

dissolved organic matter as additional state variables.  The model is a relatively simple 

representation of the pelagic nitrogen (N) cycle, including two species of dissolved 

inorganic N, nitrate (NO3) and ammonium (NH4), phosphorus (PO4), one phytoplankton 

group (Phy), chlorophyll (Chl) as a separate state variable to allow for photoacclimation, 

one zooplankton group (Zoo), two pools of detritus representing large, fast-sinking 

particles (LDet), and suspended, small particles (SDet), and river-born dissolved organic 

matter (RDOM). Combined with the freshwater discharge described above, the model 

receives river nutrients (NO3 and NH4) and organic matter based on the US Geological 

Survey (USGS) estimates (http://toxics.usgs.gov/). More specifically, river dissolved 

organic nitrogen (DON) was determined as the difference between filtered Total Kjeldahl 

Nitrogen (TKN) and NH4; and particulate organic nitrogen (PON) was defined as the 

difference between unfiltered and filtered TKN (Fig. 2.2). Different from the previously 

published simulations of this coupled model where river organic nitrogen enters the pool 

of SDet in the model without distinguishing between dissolved and particulate fractions, 

here river DON and PON enter the pools of RDOM and SDet, respectively.  The only 

biological term in the equation for RDOM is remineralization to NH4 in the water column. 

I chose a remineralization rate of 0.03 d-1 for RDOM, an order of magnitude lower than 

that of small detritus (0.3 d-1) to reflect the observation that riverine dissolved organic 

matter is less labile than phytoplankton-derived organic matter (Shen et al., 2012).  

A schematic of the extended N cycle model is shown in Figure 2.3. Also shown 

are the biological sources and sinks of DO, including photosynthetic production, 

nitrification, respiration in water column and sediment, and the air-sea flux of oxygen 

across the air-sea interface. At the open boundaries NO3, PO4 and oxygen were prescribed 

using the NODC World Ocean Atlas. All other biological state variables at the boundary 

were set to small positive values. Model parameterization and previous validations were 

described in Fennel et al. (2006, 2011, 2013), Laurent et al. (2012), Laurent and Fennel 

(2014). For completeness’ sake, all parameter values are given in Table B1 of the 

Appendix B.   



 
Fig. 2.2. Mississippi and Atchafalaya River freshwater discharge (upper panel) and 
nutrient loads (lower panel) in 2004-2007. The dash line indicates the long-term 
climatology (1983-2010). 

 

 



 
Fig. 2.3. Schematic of the biological model.  
 

The equation for the evolution of DO is given by  

                         (2.1) 

where x and y represent the two horizontal coordinates and z the vertical coordinate, u, v, 

and w (m s-1) represent velocity components in x-, y-, and z-coordinates, respectively, and 

 is the vertical diffusivity (m s-2).  On the right-hand side of the Eq. (2.1), the first term 

represents horizontal and vertical advection of DO, and the second term is the vertical 

diffusion of DO (horizontal diffusivity  is set 0 in the model and hence I neglected 

horizontal diffusion terms in equation 2.1). Here the advection and diffusion terms are 

computed using the advanced numerical schemes built into the ROMS hydrodynamic 

model. The term PP is the primary production and WR represents the sum of water 

column respiration and nitrification. Although not strictly accurate, the use of the 

terminology WR is consistent with the use of WR in the observational literature where 
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measurements of water column oxygen consumption include the contribution of 

nitrification. The term  represents the boundary oxygen fluxes, namely the air-sea flux 

of oxygen at the top layer and the sediment oxygen consumption at the bottom layer, the 

parameterizations of which are detailed below. 

Following Fennel et al. (2013), an air-sea flux of oxygen ( , in units of 

mmol O2 m-2 d-1) is prescribed in the top layer of the model as: 

,                                                                    (2.2) 

where  and  are the oxygen concentration and concentration at saturation, 

respectively,  is the thickness of the respective surface grid box, and  is the gas 

exchange coefficient for oxygen based on Wanninkhof (1992), such that: 

 ,                                                                         (2.3) 

where  is the wind speed at 10 m above the sea surface, and  is the Schmidt 

number, calculated as in Wanninkhof (1992). 

The parameterization for Sediment Oxygen Consumption (SOC) used in this 

chapter was developed by Hetland and DiMarco (2008) and based on observed sediment 

oxygen fluxes from Rowe et al. (2002). In this parameterization, SOC (mmol O2 m-2 d-1) 

linearly increases with increasing bottom water oxygen (DO, mmol O2 m-3) for 

concentrations lower than about 50 mmol O2 m-3 and saturates when concentrations are 

higher than 100 mmol O2 m-3. Also, SOC is dependent on temperature (T, ) such that it 

doubles for every 10  temperature increase above 0  (i.e., Q10 = 2). The equation is 

given as follows: 

.                   (2.4) 

In Fennel et al. (2013) this parameterization was extended to include an NH4 flux 

into the bottom water proportional to oxygen uptake by the sediments. Therefore, organic 

matter sinking out of the water column essentially leaves the system while empirically 



determined fluxes of oxygen into the sediments and ammonium out of the sediments are 

prescribed.  

Motivated by the model-data comparisons, described below, I conducted a 

sensitivity experiment where a spatially and temporally constant oxygen consumption rate 

(1.5 mmol O2 m-3 d-1) was added to the water column oxygen pool (simulation denoted as 

‘Model+CCR’). In order to distinguish between the role of biological processes in the 

water column (primary production and water column respiration, denoted as PP and WR, 

respectively) and the combination of physical transport and sediment respiration, I 

conducted two further sensitivity experiments where all biological processes in the water 

column were turned off (denoted as ‘Model w/o PP and WR’ and ‘Model+CCR w/o PP 

and WR’ in comparison to the full model simulation and Model+CCR, respectively).  

All simulations were run from 1 January 2004 to 31 December 2007. For model 

analysis I defined four geographical zones across the Louisiana continental shelf: three 

subregions associated with the Mississippi River plume (Mississippi Delta, Mississippi 

Intermediate, Mid-shelf), and another subregion associated with the Atchafalaya River 

plume (Atchafalaya Plume) (Fig. 2.1). These four subregions cover most stations that 

comprise the observational data sets used for model validation: (1) DO concentrations 

from Rabalais et al. (2007), Nunally et al. (2013), Murrell et al. (2013b), and the 

Mechanisms Controlling Hypoxia (MCH) program; (2) in situ measurements of water 

column respiration rates from 10 cruises during spring, summer and fall from 2003 to 

2007 (Murrell et al., 2013a); (3) the concurrent measurements of phytoplankton 

production from Lehrter et al. (2009); (4) benthic flux measurements from Rowe et al. 

(2002), Murrell and Lehrter (2011), Lehrter et al. (2012), and McCarthy et al. (2013). 

Locations for the observed primary production and water column respiration rates are 

shown as black dots in Figure 2.1.  



2.3 Results 

2.3.1 Simulated oxygen dynamics and model validation 

Time series of simulated and observed bottom DO both show a seasonal cycle 

reaching a maximum between December and February and minimum between July and 

August (Fig. 2.4). In summer the median of simulated bottom DO is consistently larger 

than observations in the Mississippi Intermediate region, but otherwise observations and 

simulation agree well. Simulated bottom DO falls within the observed range of variability 

for all 4 regions.  

I report model bias and root mean square error (RMSE) as statistical measures of 

agreement between simulated and observed bottom DO in Table 2.1. Bias was calculated 

as model minus observations; thus a positive bias indicates that the model overestimates 

the observations. Table 2.1 indicates that the model overestimates the observed bottom 

DO in all regions with an average bias of 33.7 mmol O2 m-3. Based on this comparison, 

the model performs best in the Mid-shelf region (bias of 15.6 mmol O2 m-3) and worst in 

the Mississippi Delta region (bias of 43.3 mmol O2 m-3).  



 
Fig. 2.4. Time series of simulated and observed dissolved oxygen concentration (DO) in 
bottom water in the Mississippi Delta, Mississippi Intermediate, Atchafalaya Plume and 
Mid-shelf regions.  For the simulations, the medians are shown as solid lines (Model: blue 
line, Model+CCR: red line), the range between the 25th and 75th percentiles as dark 
blue/red area and the range between the minimum and maximum value as light blue/red 
area. For the observations, the medians of monthly binned observations are shown as 
black dots, the range between the 25th and 75th percentiles as thick vertical lines and the 
range between minimum and maximum values as thin vertical lines. The number of 
observations in each monthly bin is given above each maximum value. The dashed line 
indicates the hypoxia criterion of 62.5 mmol O2 m-3. Observations are from Rabalais et al. 
(2007), Lehrter et al. (2009, 2012), Nunnally et al. (2012), Murrell et al. (2013b), and the 
MCH program. 

 

 

 

 

 



Table 2.1. RMSE and bias (both in units of mmol O2 m-3) between simulated and 
observed bottom DO concentrations. Comparisons were conducted over the simulation 
period from 2004 to 2007 using all available observations. Bias was calculated as model 
minus observation. N is the number of observations available for each category.   

 Model  Model+CCR  
 RMSE Bias  RMSE Bias N 
Mississippi Delta 74.6 43.3  61.6 15.6 182 
Mississippi Intermediate 72.2 40.3  61.5 18.7 845 
Atchafalaya Plume 66.3 35.0  58.7 16.6 377 
Mid-shelf 48.9 15.6  54.0 -18.8 435 
All data 66.4 33.7  59.3 9.1 1839 

 

Profiles of bias between simulated and observed DO profiles are shown in Figure 
2.5 for the summer months. Simulated DO often overestimates observed DO, but remains 
typically within one standard deviation of the observations except for the bottom layer 
(e.g. in June). 



 
Fig. 2.5. Vertical profiles of model bias (model minus observations, mmol O2 m-3) in 
dissolved oxygen (DO) calculated from 2004 to 2007 for June to August in the 4 
subregions. The vertical axis is the scaled depth, where 0 corresponds to the surface and -
1 to the bottom. The light grey areas represent the standard deviation in the observations. 
Observations are from Rabalais et al. (2007), Lehrter et al. (2009, 2012), Murrell et al. 
(2013b), and the MCH program. 
  

 

 



Observed and simulated rates of primary production (PP) and water column 

respiration (WR) are shown in Figure 2.6, and statistical measures of model-data 

agreement are given in Table 2.2. The model simulates the observed PP reasonably well, 

but underestimates the WR observations, although the model is within one standard 

deviation of the observations (Fig. 2.6 and Table 2.2).  

 
Fig. 2.6. Vertically integrated rates of observed and simulated primary production (upper 
panel) and water column respiration (lower panel) in the 4 subregions. The error bars 
indicate the standard deviation. The number of observations in each subregion is given 
above the error bars. 

  

 

 



Table 2.2. RMSE and bias (both in units of mmol O2 m-2 d-1) between simulated and 
observed primary production (PP) or water column respiration (WR). Comparisons were 
conducted over the simulation period from 2004 to 2007 using all available observations. 
Bias was calculated as model minus observations. N is the number of observations for 
each category.   

 PP  WR  

 Model  Model+CCR  Model  Model+CCR  

 RMSE Bias  RMSE Bias  RMSE Bias  RMSE Bias N 

Miss. Delta 145.2 -42.3  145.5 -43.6  115.8 -49.4  104.4 -17.9 55 

Miss. Inter. 94.7 10.5  95.0 9.2  93.3 -45.9  84.5 -19.4 60 

Atch. Plume 114.1 12.5  114.0 11.2  62.6 -27.6  58.4 -8.2 77 

Mid-shelf 91.8 50.2  91.1 48.4  75.8  -7.0  81.7  35.6 71 

All data  112.0 10.8  112.0    9.3  86.5 -30.8  81.9 -1.0 263 

 

Simulated SOC within all 4 regions is plotted against bottom DO and compared 

with available observations in Figure 2.7. Simulated SOC increases with increasing 

bottom DO for oxygen concentrations below ~80 mmol O2 m-3 and declines thereafter 

because of the temperature effect (SOC halves for each temperature decrease of 10 ). 

SOC observations from different sources vary over a large range from 0 to 40 mmol O2 m-

2 d-1 (Fig. 2.7). Simulated SOC is at the upper range of the available observations. Model 

bias in Table 2.3 indicates that the median of simulated SOC overestimates the observed 

SOC when combining all sources (average bias 18.2 mmol O2 m-2 d-1). 

 



 
Fig. 2.7. Model simulated sediment oxygen consumption (SOC) versus bottom dissolved 
oxygen (DO) for the period 2004 to 2007, including the median (solid line) and the range 
between 25th and 75th percentiles (shaded area).  Also shown for comparison are 
observations from Rowe et al. (2002), McCarthy (2013), Lehrter et al. (2012) and Murrell 
and Lehrter (2011).  

 

Table 2.3. RMSE and bias (both in units of mmol O2 m-2 d-1) between simulated median 
of sediment oxygen consumption (SOC) and observed SOC. The simulation period 
ranged from 2004 to 2007 while observations from different sources were collected 
during longer period from 1991 to 2011. Bias was calculated as model median minus 
observation with same bottom dissolved oxygen (DO) concentration. N is the number of 
observations available for each category.   

 Model  Model+CCR  

 RMSE Bias  RMSE Bias N 

Rowe et al. 2012 15.9 11.1  13.6 8.0 12 

McCarthy et al. 2013 15.8 10.2  13.9 7.0 18 

Lehrter et al. 2012 26.1 24.6  22.4 20.7 22 

Murrell and Lehrter 2011 24.7 21.2  21.7 18.1 31 

All data 22.3 18.2  19.5 14.9 83 

 

2.3.2 Validation of the Model+CCR simulation 

The model biases described in previous section (i.e. the underestimation of WR 

and overestimation of SOC) motivated us to carry out an additional simulation 



(Model+CCR) with increased WR. The additional, constant oxygen consumption rate (1.5 

mmol O2 m-3 d-1) was determined from Table 2.2 (average bias of 30.8 mmol O2 m-2 d-1 

divided by the average water column depth of 20.4 m) and should compensate for the bias 

in model-simulated WR. 

Compared with the previous model simulation, Model+CCR reduces the overall 

model data discrepancy in WR (average bias of -1.0 mmol O2 m-2 d-1) but overestimates 

the observed WR in the Mid-shelf region (bias of 35.6 mmol O2 m-2 d-1) (Fig. 2.6 and 

Table 2.2). The increased WR draws down the simulated DO concentrations, improving 

agreement between the observed and simulated bottom DO in all regions (average bias of 

9.1 mmol O2 m-3) except in the Mid-shelf region where the observed bottom DO is 

significantly underestimated (bias of -18.8 mmol O2 m-3) (Fig. 2.4 and Table 2.1). 

Compared to the previous simulation, the reduced DO concentrations throughout the 

water column in Model+CCR generally improve the model performance with lower 

biases, except for the Mid-shelf region in June and July (Fig. 2.5).  The reduced bottom 

DO concentrations in Model+CCR also lead to a reduction in the simulated SOC (as SOC 

is dependent on bottom DO) and thereby slightly improve the agreement between 

simulated and observed SOC with lower RMSE and bias (average bias of 14.9 mmol O2 

m-2 d-1) (Fig. 2.7 and Table 2.3).  

2.3.3 Oxygen balance 

In this section, I evaluate the DO balance for the summer period (June to August) 

for different regions of the LA shelf to identify the key processes controlling hypoxia. I 

focus the detailed analysis on the model simulation without additional WR; results from 

Model+CCR will be discussed at the end of the section. For simplicity, I am considering 

that oxygen consumption due to nitrification to be included in the respiration term, and 

not as a separate process for deriving the oxygen balance. Though I am referring to the 

sum of respiration and nitrification as WR, I recognize that nitrification is a 

chemoautotrophic process. While not strictly accurate, this is consistent with the use of 

WR in the observational literature where measurements of water column oxygen 

consumption include the contribution of nitrification. 



I first explore the simulated seasonal and spatial patterns in water column 

metabolism across the shelf and its interaction with the air-sea flux of oxygen (Fig. 2.8).  

The Mississippi Delta and Atchafalaya Plume regions, which are directly impacted by the 

river, transit from autotrophy in June and July to heterotrophy for the rest of the year. The 

Mississippi Intermediate and Mid-shelf regions, however, are heterotrophic throughout 

the year.  In terms of air-sea exchange, oxygen is outgassing during summer and taken up 

during the rest of the year in all subregions, corresponding to the seasonal pattern in water 

column metabolism (more heterotrophic in winter and less heterotrophic or autotrophic in 

summer) and the seasonal cycle of surface water temperatures, which affect oxygen 

solubility contributing to outgassing in summer and uptake in winter. The oxygen flux 

into the ocean increases with the degree of heterotrophy, demonstrating the important role 

of air-sea gas exchange in replenishing DO in the water column.  



 
Fig. 2.8. Simulated net community production (PP-TR) versus air-sea flux of oxygen for 
the 4 subregions. The colored dots represent monthly means averaged over 2004 to 2007. 
Positive air-sea flux indicates oxygen is taken by water whereas negative air-sea flux 
indicates oxygen outgasses.  Positive (PP-TR) suggests autotrophic whereas negative (PP-
TR) suggests heterotrophic.  Standard deviations of the air-sea flux in different months 
and subregions range widely from 13 to 58 mmol O2 m-2 d-1 and standard deviation of 
(PP-TR) range from 12 to 63 mmol O2 m-2 d-1, both of which are higher in Mississippi 
Delta and Atchafalaya Plume and lower in the other two regions.   

 

When considering an oxygen balance for the water column it is useful to 

distinguish distinct vertical layers. I considered the following three layers in my analysis 

of the summer oxygen balance: a surface layer above the main pycnocline, a mid-layer 
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extending from the main pycnocline to 5 m above the sediment and a 5-m thick bottom 

layer above the sediment (i.e., the layer where hypoxia occurs most frequently, as 

demonstrated in Figure 6 in Fennel et al., 2013). I defined the pycnocline as the depth of 

maximum Brunt-Vaisala Frequency (Pond and Pickard, 1983) and restricted my analysis 

to horizontal grid cells where all three layers existed (i.e. a main pycnocline was present 

and was more than 5 m above the bottom). I then integrated the terms in Eq. (2.1) 

vertically over each layer at each desired grid cell on each desired day. The advection and 

diffusion terms were evaluated as divergences, namely fluxes of DO into or out of the 

given volume through advection or diffusion.  Finally I averaged the integrated results 

over all grid cells within a selected subregion and over June to August in order to obtain 

the summer oxygen balance for the subregion. 

Figure 2.9 shows the summer oxygen balance in the three layers and four 

subregions (numbers are provided in Table B2 of the Appendix B). The surface layers in 

all four subregions are autotrophic while the bottom layers are heterotrophic (Fig. 2.9).  In 

the surface layer, biochemical processes (PP and WR) far exceed physical transport of 

oxygen. The positive net community production and decreasing oxygen solubility 

associated with the increasing water temperature in summer lead to oxygen outgassing to 

the atmosphere and net transport of oxygen downward to deeper waters.  

The mid-layer is autotrophic in all four subregions as well, with an average PP of 

48% occurring below the pycnocline and 38% in the mid-layer. About 10% of PP occurs 

within the 5-m bottom layer where hypoxia occurs most frequently (Fig. 2.9). I compared 

the simulation results with observations from Lehrter et al. (2009), as percentage of 

production below the pycnocline for each cruise (Table 4). Considering the rather large 

observed standard deviations, the percentages of sub-pycnocline PP in the simulations 

(18.6 - 40.9%) agree well with observations (23.3 - 38.7%).  



 
Fig. 2.9. Simulated 4-year (2004-2007) mean oxygen balance in summer for the 4 
subregions. Oxygen source and sink terms are given for the surface layer above the 
pycnocline, for the mid layer and for the 5-m thick bottom layer. The average depth of the 
pycnocline, depth at 5 m above bottom and the average water column depth are indicated 
for each subregion. The open circles indicate the balance of primary production (PP) and 
respiration+nitrification (WR) in each layer. For the bottom layer, the bars for 
respiration+nitrification (WR) and sediment oxygen consumption (SOC) are shown 
stacked and SOC is repeated separately. The net rate of oxygen change in each layer (i.e. 
the sum of all oxygen source and sink terms) is given and denoted as Net.  
  



Table 2.4. Shelf-wide average observed and simulated percentage of primary production 
below the pycnocline (mean standard deviation). N is the number of observations.  

Cruise N Percentage of PP below 
pycnocline (%) 

   Observation Simulation 

Mar 2005 24 23.3 29.4 27.8 26.9 

Apr 2006 31 35.3 30.0 23.4 25.2 

Jun 2006 54 29.3 25.7 18.6 19.2 

Sep 2006 71 38.7 25.7 39.4 28.2 

May 2007 64 25.8 25.0 36.2 29.6 

Aug 2007 60 24.7 23.3 40.9 30.9 

RMSE   42.5 

Bias   2.8 
N   304 

 

On average the sub-pycnocline PP offsets 68% of total respiration below the 

pycnocline and 27% of total respiration within the 5-m bottom layer (Fig. 2.9). The 

percentages are higher in 2006 (a drought year) where PP offsets 72% of total respiration 

below pycnocline and 31% of total respiration within the bottom 5 m.  

The 5-m bottom layer is heterotrophic in all subregions with SOC representing the 

single largest oxygen flux (Fig. 2.9).   The SOC accounts for 36% of total respiratory 

oxygen demand below the pycnocline when averaged over the shelf and summer months. 

The fraction of SOC rises to 68% when limited to the bottom 5 m (Fig. 2.9).  Driven by 

the strong vertical DO gradient in the water column, vertical diffusion is the primary 

mode of DO replenishment for the bottom layer offsetting on average 32% of total 

respiration over the shelf. Advection, driven by the typical summer upwelling circulation 

on the LA shelf, is another important DO source for bottom waters offsetting on average 

29% of total respiration shelf-wide.  

Adding WR in the Model+CCR simulation impacted the summer oxygen balance 

by making the water column more heterotrophic and decreasing the relative contributions 



of SOC and WR to total respiration (Table B3 and Fig. B3). In Model+CCR the mid 

layers in all subregions and all three layers in Mid-shelf region become heterotrophic in 

summer months. Also, the simulated fraction of SOC to total respiration averaged over 

the 4 subregions during summer decreases from 36% to 26% within below-pycnocline 

water layer and from 68% to 57% within the bottom 5-m layer. 

2.3.4 Role of sub-pycnocline PP in hypoxia generation 

Time series of simulated hypoxic area from the sensitivity run without biological 

processes in the water column (Model w/o PP and WR) are shown in comparison to the 

full model and the observed hypoxic extent in Figure 2.10. The temporal evolution of 

hypoxic area is almost identical in both simulations, with ‘Model w/o PP and WR’ 

simulating an only slightly larger hypoxic area in summer. A similar pattern is observed 

for simulated hypoxic volume (Fig. B1) and for the simulations with the additional 

oxygen sink (Fig. B4).  



 
Fig. 2.10. Time series of simulated hypoxic extent for the full model (black line) and the 
model without biological processes in the water column (red line). Also shown is the 
observed hypoxic extent in late July (black dots). The observed hypoxic extent was 
estimated by linearly interpolating the observed oxygen concentrations onto the model 
grid and then calculating the area with oxygen concentrations below the hypoxic 
threshold (Fennel et al., 2013).   
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2.4 Discussion 

2.4.1 Simulated oxygen dynamics and model validation 

Overall, the model simulates the evolution of oxygen and the magnitudes and 

spatial distribution of PP well, but tends to overestimate bottom DO and underestimate 

WR (within one standard deviation of observations). One possible explanation is that the 

model does not receive any dissolved or particulate organic matter inputs from estuarine 

sources other than the Mississippi and Atchafalaya rivers. Several recent studies (Bianchi 

et al. 2010, Murrell et al. 2013a, and Fry et al. 2014) suggested that the inshore coastal 

waters represent a source of oxygen-consuming organic matter that may be episodically 

transported onto the LA shelf.  

The model also overestimates the observed SOC from all sources, especially those 

observed by Lehrter et al. (2012) and Murrell and Lehrter (2011) (Fig. 2.7, Table 2.3). 

Using the same model as in this chapter, Fennel et al. (2013) have shown that generation 

of hypoxia on the LA shelf is very sensitive to the parameterization of SOC, primarily 

because the hypoxic conditions on the shelf are restricted to a relatively thin layer above 

the sediment.  Fennel et al. (2013) have further shown that the SOC parameterization 

based on observations from Rowe et al. (2002), which is used in this chapter, performed 

best in simulating the observed hypoxic extent whereas parameterization based on lower 

SOC values from Murrell and Lehrter (2011) led to almost no hypoxia in this model. The 

apparent discrepancy between SOC observations and parameterizations used in 

mechanistic models remains to be reconciled. One explanation could be that empirical 

SOC measurements underestimate the true oxygen demand, because they do not account 

for accumulation of reduced metabolites of anaerobic metabolism (e.g., NH4
+, HS-, Fe2+). 

Accumulation of anaerobic metabolites can be episodically important in scavenging 

oxygen, thus acting to maintain hypoxic conditions during periods when traditional SOC 

measurements suggest a small DO sink. This interpretation is supported by Lehrter et al. 

(2012) who found that DIC fluxes (a better measure of total oxygen demand) were 

relatively constant and insensitive to overlying DO concentration.  Another explanation 

could be that the thickness of the simulated bottom boundary layer is overestimated. If 



this is the case, SOC would have to be larger than in reality in order to produce hypoxic 

bottom water. Future work on validating the expression and dynamics of the bottom 

boundary layer and its effect on hypoxia dynamics will address this question. 

The SOC parameterization has the inherent limitation that it does not account for 

spatial variability in the supply of particulate organic matter reaching the sediment. An 

alternative model, where SOC varies responsive to the amount of organic matter sinking 

to the sediment (Fennel et al. 2011, 2013), simulated essentially identical results as 

presented here. While the SOC parameterization used here is simple, it does include two 

key parameters known to modulate SOC: temperature and dissolved oxygen. 

In order to assess the effects of the model biases in WR I conducted a sensitivity 

experiment where an additional, constant oxygen consumption rate was applied to the 

water column DO based on observed WR rates from Murrell et al. (2013a). This generally 

improves the comparisons among measured and simulated WR, bottom water DO and 

SOC except in the Mid-shelf region where WR is overestimated and bottom DO is 

underestimated.  The increased WR and slightly decreased SOC in the Model+CCR 

simulation also reduce the SOC fraction of total respiratory oxygen demand.  

2.4.2 Primary processes controlling oxygen dynamics  

The simulated seasonal transition from autotrophy to heterotrophy in the 

Mississippi Delta and Atchafalaya Plume regions has previously been reported in 

mesohaline waters (salinity: 15-29) in the Mississippi River plume (Breed et al., 2004). 

The Mississippi Intermediate and Mid-shelf regions were heterotrophic throughout the 

year, implying a net import of organic carbon. This result is consistent with the 

observations of Murrell et al. (2013a) who found net heterotrophy on the western shelf 

and in deeper waters of the LA shelf. A more recent study by Fry et al. (2014) also 

suggested that the autotrophic near-river and nearshore areas could be net source regions 

of carbon fueling hypoxia in adjacent mid-shelf waters.   

Despite the heterotrophy, the main sink for oxygen is outgassing in the Mississippi 

Intermediate and Mid-shelf regions during the summer hypoxic season. This result is 



consistent with frequent observations of supersaturated DO concentrations in surface 

plume waters, particularly in the Louisiana Bight region (Murrell et al. 2013b). The 

simultaneous occurrence of heterotrophy and outgassing of oxygen is primarily due to 

density stratification of the water column, which isolates the autotrophic upper waters that 

actively exchange oxygen with the atmosphere from the heterotrophic waters below.  As 

shown in the summer DO balance (Fig. 2.9), the surface layers above the pycnocline were 

autotrophic in all subregions, driving outgassing of oxygen to the atmosphere despite the 

whole water column being heterotrophic. The decreased oxygen solubility of warmer 

waters typical of summer conditions also promotes outgassing, but the effect is relatively 

small compared to the autotrophy in surface waters (oxygen gas-exchange is fast and the 

summer change in water temperature is relatively small on the LA shelf).  I have carried 

out sensitivity experiments where I doubled and halved the air-sea gas exchange 

coefficient (results not presented in the manuscript) and found that the model results are 

insensitive to the air-sea gas exchange rates, likely because the air-sea oxygen flux is fast. 

It has previously been demonstrated, based on observations, that a strong near-

surface pycnocline is a prerequisite for hypoxia on the LA shelf, while a weaker, near-

bottom pycnocline determines the hypoxic layer that actually forms (Wiseman et al., 

1997).  This was confirmed by model simulations (Fennel et al., 2013), which show that 

hypoxia is constrained to a thin layer above the sediment over large parts of the shelf. A 

more recent retrospective analysis of data collected during shelf-wide sampling cruises 

reported that the 27-year (1985-2011) average thickness of the bottom hypoxic layer is 

3.9 m and that there was an increasing trend in hypoxic layer thickness from 1985 to 2011 

(Obenour et al., 2013).  

Consistent with observations by Lehrter et al. (2009), the model demonstrated that 

a large fraction of PP occurred below the pycnocline and even within bottom 5-m water 

(Fig. 2.9, Table 2.4). This is presumably because the euphotic zone extends well below 

the pycnocline and sometimes to the bottom on the LA shelf (Chen et al., 2000; Lehrter et 

al., 2009).  Lehrter et al. (2009) also observed that the euphotic zone in non-plume areas 

(salinity>31) is deeper than in plume areas, and that the average shelf-wide light 

attenuation strongly correlates with freshwater discharge from the Mississippi and 



Atchafalaya rivers. In agreement with these observations, the simulated percentage of 

sub-pycnocline PP is higher in the Mississippi Intermediate region (52% below the 

pycnocline and 13.6% in the 5-m bottom layer) than in the Delta region (48% and 8.3%, 

respectively), and higher throughout the shelf in 2006 (a drought year with low freshwater 

discharge) than in average over the 4 years simulated (52% compared to 48%).  

The importance of physical transport in replenishing bottom-water DO pools has 

been found in other coastal systems with seasonal hypoxia including Chesapeake Bay, 

where Kemp et al. (1992) estimated that in summer the vertical oxygen flux across the 

pycnocline and the net longitudinal oxygen exchange offset ~55% and ~38% of total 

respiration below the pycnocline, respectively.  More recent modeling work by Li et al. 

(2015) estimated that vertical diffusion and net advective fluxes respectively offset ~27% 

and ~64% of total respiration in the bottom 10 m during summer. Kemp et al. (1992) also 

showed that increased biological consumption of DO in bottom waters of Chesapeake 

Bay increases horizontal and vertical DO gradients and thereby increases physical 

transport of DO to the bottom waters during March to July. On the LA shelf the 

occasional occurrence of tropical storms and hurricanes can rapidly erode stratification 

and replenish bottom waters with DO.  The lateral advection of oxygenated water from 

adjacent deep basins during upwelling-favorable wind conditions can also increase 

bottom-water DO on the LA shelf (Rabalais et al, 2007).    

The result that SOC is the dominant oxygen sink in waters directly overlying the 

sediments (within 5 m above the bottom) is consistent with previous observational 

estimates for the LA shelf. Quinones-Rivera et al. (2007) estimated that SOC accounts for 

~73% of the total DO loss within 1 m of the sediments during summer based on O 

measurements and an isotope fractionation model. Since the isotope approach only 

provides relative fractions of sediment and water column respiration, I cannot directly 

compare SOC and WR from Quinones-Rivera et al. (2007) to my simulations. However, 

the simulated proportions of sediment respiration to total respiration (on average 36% 

below pycnocline and 68% in the 5-m bottom layer) are consistent with the estimates of 

Quinones-Rivera et al. (2007).  Adding the additional DO sink decreased the proportions 

of SOC to total respiration (26% below the pycnocline and 57% in the 5-m bottom layer) 



but did not change the model result that SOC is the dominant DO sink in the bottom 5 m, 

demonstrating the relative sensitivity of the model to the SOC parameterization used.  

2.4.3 Role of sub-pycnocline PP in hypoxia generation 

The summer oxygen balance presented in the previous section suggests that 

physical transport processes and sediment respiration are major drivers of oxygen 

dynamics on the LA shelf, and that PP below the pycnocline may mitigate hypoxic 

conditions. However, in a sensitivity experiment where I disabled all biological processes 

in the water column the spatial extent of hypoxic bottom waters is only slightly reduced, 

suggesting that PP below the pycnocline has only a minor effect on hypoxia. 

2.5 Summary 

In this chapter I used a physical-biogeochemical model to investigate the 

dynamics of dissolved oxygen and hypoxia on the LA shelf and to identify the key 

controlling processes. Comparisons with observations demonstrate that the model 

simulates the evolution of oxygen well but tends to overestimate bottom DO and SOC, 

and underestimates WR. When adding a constant oxygen consumption rate in the water 

column to correct the bias in WR rates, the model-simulated oxygen dynamics agree 

better with observations in all subregions except the Mid-shelf. This result suggests that 

organic matter from inshore waters may need to be included in future versions of the 

model.  

Consistent with observations of Murrell et al. (2013a), the model simulation 

demonstrated that the LA shelf is essentially heterotrophic throughout the year except for 

the areas directly impacted by rivers during June and July. This implies a net import of 

organic carbon on the LA shelf. Air-sea gas exchange was the primary mode of 

replenishing the very heterotrophic waters in non-summer months with relatively strong 

mixing. However, in summer, stratification isolates the autotrophic surface from the 

heterotrophic lower waters. In the Mississippi Intermediate and Mid-shelf regions this 

isolation results in significant outgassing of oxygen across the air-sea interface despite a 

heterotrophic water column, exacerbating the risk of hypoxia in these regions. 



In summer, the model indicates that a substantial fraction of primary production 
(~48%) occurs below the pycnocline and about 10% of primary production occurs within 
5 m of the bottom where hypoxia forms most frequently.  In a sensitivity experiment 
where biological processes in the water column (i.e. PP and WR) were turned off I 
demonstrate that the below-pycnocline PP mitigates hypoxia only slightly, and that 
physical processes and sediment oxygen consumption together largely determine the 
spatial extent and dynamics of hypoxia on the LA shelf.   

 



 
CHAPTER 3 

PHYSICAL CONTROLS ON HYPOXIA GENERATION IN 

THE NORTHERN GULF OF MEXICO2 

3.1 Introduction 

The Louisiana shelf (LA shelf) in the northern Gulf of Mexico receives large 

amounts of freshwater and nutrients from the Mississippi/Atchafalaya River System. The 

freshwater discharge enhances the vertical water column stratification in summer, limiting 

the oxygen supply to near-bottom waters from above (Wiseman et al., 1997). The nutrient 

inputs stimulate primary production, leading to high sedimentation fluxes of organic 

matter and significant microbial consumption of oxygen below the pycnocline. The 

combined effects of water column stratification and nutrient-enhanced primary production 

lead to the recurring development of near-bottom hypoxia (oxygen concentrations < 2 mg 

l-1 or 62.5 mmol m-3) on the LA shelf every summer (Rabalais et al., 2007; Bianchi et al., 

2010).  

Retrospective analysis (Obenour et al., 2013) and statistical regression models 

(Forrest et al., 2011) show an increasing trend in the areal extent of hypoxia over the LA 

shelf from 1985 to 2011. It is generally accepted that this increase in hypoxic extent is 

mainly driven by rising anthropogenic nutrient inputs from the watershed. However, 

statistical regressions using nutrient load as the only independent variable do not explain 

the majority of inter-annual variability in hypoxia; when physical factors are included a 

much larger fraction of the variability can be explained (Forrest et al., 2011; Feng et al., 

2012).  Forrest et al. (2011) found that nitrogen load alone explains only 24% of the 

variability in observed hypoxic area (from 1985 to 2014) whereas including the east-west 

wind in addition to the nitrogen load explains 47% of the variability. Feng et al. (2012) 

Based on: Yu, L., Fennel, K. and Laurent, A. (2015) A modeling study of physical controls on hypoxia 
generation in the Northern Gulf of Mexico. Journal of Geophysical Research-Oceans, 120, 5019-5039. 



demonstrated that for the 1985-2010 and 1993-2010 hurricane-exclusive periods, May-

June nitrate load correlates with the observed hypoxic area at r2 = 0.36 and r2 = 0.24, 

respectively. Including May-June nitrate load and the duration of upwelling favorable 

(eastward) wind improves the statistical relationships for both periods to r2 = 0.69 and r2 = 

0.74, respectively. A geostatistical modeling study by Obenour et al. (2012) suggests that 

both river nutrient concentration and stratification play substantial and comparable roles 

in the year-to-year variability of hypoxia in the northern Gulf of Mexico.  A more recent 

mechanistic modeling study by Obenour et al. (2015) found that, while seasonal nutrient 

loading remains an important driver of hypoxia, stratification (presented as a function of 

river discharge, summer east-west wind velocity, and wind stress) contributes to a larger 

extent to the interannual variability in hypoxia than indicated in their previous empirical 

modeling study (Obenour et al., 2012), especially on the western LA shelf.   

While the statistical modeling studies are instructive, they can only demonstrate 

correlation not causation. Coupled physical-biogeochemical models are important 

complements that help build mechanistic understanding of the processes underlying 

hypoxia development and variability (Fennel et al., 2011, 2013; Feng et al., 2013; Laurent 

and Fennel, 2014; Justić and Wang, 2014; Yu et al., 2015a). While the fully coupled 

physical-biogeochemical models can mechanistically elucidate the complex interactions 

of physical and biological processes, they can be difficult to calibrate and their results are 

sometimes difficult to interpret. An intermediate approach is to couple a detailed 

hydrodynamic model with a simple parameterization of biogeochemical processes. This 

approach has been used successfully in Chesapeake Bay where physical forces play an 

important role in the development of seasonal hypoxia.  For example, Scully (2013) 

implemented a very simple empirical dissolved oxygen parameterization (assuming a 

constant oxygen consumption rate in the water column) in a three-dimensional circulation 

model to examine the role of physical forcing on hypoxia in Chesapeake Bay. Despite its 

simplicity, the model skillfully reproduces the observed variability of dissolved oxygen 

and hypoxic volume in the Bay.  

Motivated by these previous studies, I assess whether very simple oxygen 

parameterizations coupled with the hydrodynamic model I have used in Chapter 2 can 



simulate hypoxic conditions in the northern Gulf of Mexico. I find this to be the case and 

then use the simplified model to evaluate the role of different physical forcing factors in 

hypoxia formation, including river discharge, wind speed, and the seasonal shift in wind 

direction from upwelling-favorable in summer to downwelling-favorable during the rest 

of the year. 

The chapter is organized as follows. In section 3.2 I describe the models used in 

this chapter including a validation of the simple oxygen models against available 

observations and outputs from the fully coupled physical-biogeochemical model. In 

section 3.3 I examine how variations in river discharge, wind speed and wind direction 

change the distribution of river plume, stratification and thereby the extent and 

geographic distribution of hypoxia.  The main conclusions, given in section 3.5, are that 

the simple oxygen parameterization coupled with a realistic hydrodynamic model 

realistically simulates hypoxic conditions on the LA shelf, and that river discharge, wind 

speed and wind direction can all significantly influence the distribution of the river plume 

and stratification, and thereby the bottom oxygen concentrations and hypoxia 

development on the LA shelf. The ability of the simple oxygen model to closely 

reproduce the hypoxia evolution of the full biogeochemical model, and the determining 

role of physical processes in hypoxia generation suggest that a full biogeochemical model 

may not be necessary for short-term hypoxia forecasting on the LA shelf. 

3.2 Methods 

3.2.1 Model description 

The physical model described in Chapter 2 is used here (Fig. 3.1). I implemented 

three relatively simple oxygen models with different prescriptions of oxygen sinks in the 

water column and sediment within the three-dimensional circulation model. All models 

use the same parameterization of air-sea gas exchange ( , in units of mmol O2 m-2 

d-1) following Fennel et al. (2013) which acts on the top layer of the model: 

.             (3.1) 



Here  and  are the oxygen concentration and concentration at saturation, 

respectively,  is the thickness of the respective surface grid box, and  is the gas 

exchange coefficient for oxygen based on Wanninkhof (1992), given as 

 ,                         (3.2) 

where  is the wind speed at 10 m above the sea surface, and  is the Schmidt 

number, calculated as in Wanninkhof (1992). 

 

Fig. 3.1. Model grid (light gray lines) and bathymetry (dark gray lines). The black boxes 
indicate selected subregions for averaging: Mississippi delta, Mississippi Intermediate, 
Atchafalaya Plume and Mid-shelf region. Also shown are the stations on transect C (dots) 
from nearshore to offshore which represent stations C2, C3, C4, C5, C6 (blue dot), C7, 
C8, C9, C10 and C11.  
 

The first simple oxygen model has sinks in both the water column and the 

sediment. A net water respiration rate (NWR, in units of ) is prescribed 

in the water column that is constant in time and spatially varying with bathymetry ( , in 

units of , with a minimum at 5m in the model). The functional form, shown in Figure 

3.2, is a fit to the mean NWR observations for different isobath bins. Observations are 
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calculated from data in Murrell et al. (2013) by converting the net metabolism values in 

their Figure 5b (solid circles) to volumetric units. The NWR data set includes 341 

measurements collected in spring, summer and fall from 2003 to 2007 at multiple sites 

across the LA shelf. The observations didn’t show seasonal or along-shelf variability, but 

there is a cross-shelf gradient with negative NWR (indicating that primary production 

exceeds biological oxygen consumption in the water column) in shelf regions shallower 

than 20 m and positive NWR (indicating that biological consumption of oxygen exceeds 

primary production) deeper than 20 m (as shown by the gray bars in Figure 3.2). The 

functional form of NWR captures this cross-shelf variability and is given as:   

             (3.3) 

where . 

 

Fig. 3.2. Fitted net water column respiration rate (NWR) based on observations of Murrell 
et al. (2013b). 
 

In addition, similar to Chapter 2, a temperature- and oxygen-dependent sediment 

oxygen consumption (SOC) rate is implemented in the model, drawing down oxygen in 

the bottom-most grid cell (Hetland and DiMarco, 2008) according to:  

,                   (3.4)  

 

 



where T ( ) and  (mmol O2 m-3) are the temperature and oxygen concentrations in the 

bottom water, respectively. I will refer to this model as NWR+SOC. 

To examine the sensitivity of hypoxia to different prescriptions of oxygen sinks in 

water column and sediment, I ran two additional simple oxygen models in which either 

water column respiration or the sediment oxygen sink is turned off. These two models are 

denoted as ‘SOC only’ (without NWR) and ‘NWR only’ (without SOC), respectively. An 

overview of all models is given in Table 3.1. 

I evaluate the performance of the three simple oxygen models, which were ran 

from 1 January 2004 to 31 December 2007, by comparing the simulated hypoxic extent 

and oxygen concentrations with available observations from Rabalais et al. (2007), 

Murrell et al. (2013a), Nunnally et al. (2013) and the Mechanisms Controlling Hypoxia 

(MCH) program. Considering that observations are spatially and temporally limited, I 

extended the validation by comparing output from the simple oxygen models to that of the 

full physical-biogeochemical model used in Chapter 2, which has been shown to 

realistically reproduce the observed oxygen dynamics on the LA shelf.  

 
Table 3.1. Overview of models 
Model  Description 
Full bio-
geochemical model 
(Full) 

Realistic hydrodynamic model coupled with N-cycle model.  

NWR+SOC model 
 

Realistic hydrodynamic model coupled with simple DO 
parameterization where oxygen utilization rate in the water column 
is constant and sediment oxygen consumption rate is a function of 
bottom water oxygen and temperature.  

 SOC only model Turn off the water column oxygen sink in the NWR+SOC model. 
NWR only model Turn off the sediment oxygen sink in the NWR+SOC model. 

 

3.2.2 Model experiments 

Based on the validation of the simple oxygen models against available 

observations and output from the full physical-biogeochemical model (see Results 



section), I choose the NWR+SOC model to conduct sensitivity experiments that examine 

the effects of river discharge, wind speed and wind direction on the extent and geographic 

distribution of hypoxia.      

The NWR+SOC model was first run with realistic river discharge and wind 

forcing (denoted as ‘Baseline’ simulation).  Sensitivity experiments with varying river or 

wind forcing were then conducted and are compared with the baseline model experiment 

to evaluate the role of river discharge and wind forcing on the seasonal cycle of hypoxia 

(Table 3.2).  I focus the detailed analysis of model experiments on the year 2007, which is 

an average year in terms of the hypoxic extent, freshwater discharge and duration of 

upwelling-favorable (westerly) wind in summer.    

Table 3.2. Overview of model experiments. 
Experiment Description 
Baseline Baseline run with realistic river discharge and wind forcing in year 2007. 
River discharge runs 
Const RD River discharge is set to annual average value. 
High RD Double the river discharge.  
Low RD Halve the river discharge. 
Wind runs 
UF Winds from mid July to mid August (upwelling-favorable wind) were 

repeated each month of the year. 
DF Winds from January (downwelling-favorable wind) were repeated each 

month of the year. 
High UF  The repeated upwelling-favorable wind magnitude was increased to be 

comparable to January upwelling favorable wind. 
Low DF The repeated downwelling-favorable wind magnitude was decreased to 

be comparable to summer upwelling favorable wind. 
 

The freshwater discharge from the Mississippi River varies considerably on both 

seasonal and inter-annual time scales (Fig. 3.3). The discharge magnitude typically 

increases from winter to spring and then decreases to a minimum in summer. To evaluate 

the role of the seasonal variation in river discharge (RD) on the hypoxic area, I conducted 

a sensitivity experiment (denoted as ‘Const RD’) where river discharge was set to the 

annual average value throughout the year. To examine the role of the magnitude of river 



discharge, I conducted High RD and low RD experiments where the event-scale 

variability in river discharge is preserved but the magnitude was doubled or halved, 

respectively.  These changes in river discharge are mostly within the long-term (1983-

2007) range of annual river discharge data, except in winter months and July when the 

increased river discharge exceeds the high end, and in spring, October and December 

when the decreased river discharge is below the low end of the range (Fig. 3.3).  

 
Fig. 3.3. Mississippi and Atchafalaya River freshwater discharge. The shaded area 
indicates the range of annual river discharge from 1983 to 2010. 
 

Wind speed and wind direction over the LA shelf also have pronounced seasonal 

variability, namely low magnitude and dominantly upwelling-favorable direction 

(westerly) in summer (June to August) and relatively high magnitude and downwelling-

favorable direction (easterly) during the rest of the year (Fig. 3.4).  To evaluate the role of 

this seasonal change in wind forcing, I conducted an upwelling-favorable wind run 

(denoted as ‘UF’) where the mid-July to mid-August upwelling-favorable wind was 

repeated each month of the year, and a downwelling-favorable wind run (denoted as ‘DF’) 

where the downwelling-favorable wind from January was repeated each month of the year. 

To further examine the respective effects of wind speed and wind direction, I conducted a 

‘High UF’ wind run where the wind speed from the UF run was increased (by ~2.2 times) 

to be comparable in terms of strength to the downwelling-favorable wind in the DF run, 

and a ‘Low DF’ wind run where the wind speed from the DF run was decreased (by ~46%) 

to be comparable in strength to the upwelling-favorable wind from the UF run. Hence one 

 

 



can assess the effects of wind speed by comparing UF and High UF or DF and Low DF 

runs, and evaluate the effects of wind direction by comparing the UF and Low DF, or 

High UF and DF. Although not realistic, these simulations provide insight into the 

impacts of wind speed and direction on the seasonal cycle of hypoxic area. 

 
Fig. 3.4. a) NARR W-E wind and b) NARR N-S wind averaged over the shelf (shaded 
area in Figure 1). The blue and red lines indicate the January wind and Jul 13rd -Aug 12th 
wind repeated throughout the year for DF and UF scenarios, respectively. c) NARR wind 
speed in baseline run (gray shadow) and wind speed used in High UF (thin red line) and 
Low DF (thin blue line) scenarios. Values are averaged over the shelf (shaded area in 
Figure 1). The blue and red shaded area indicates the indicate the January wind speed and 
Jul 13rd -Aug 12th wind speed repeated throughout the year for DF and UF scenarios, 
respectively. 
 

I quantify the hypoxic extent by calculating the total area of water that has bottom 

dissolved oxygen concentrations below a threshold value.  To represent different degrees 

of hypoxia, four different threshold values are used: 0.5 mg l-1 (anoxic), 1 mg l-1 (strongly 

hypoxic), 2 mg l-1 (hypoxic) and 3 mg l-1.  In addition, I calculated the duration of hypoxia 

for each simulation by counting the number of days when bottom oxygen was less than a 

 

 



threshold value at each grid box.  I also calculated the shelf area where hypoxic duration 

exceeds 50 and 250 days/year by summing the area of grid cells where hypoxic conditions 

(DO < 2 mg l-1) last for more than 50 days and 250 days in year 2007, respectively. I 

calculated the value of the maximum Brunt-Vaisala Frequency (N2) as a measure of the 

stratification strength (Pond and Pickard, 1983) for each grid box. I further calculated 

averaged stratification (maximum N2 value) by first spatially averaging the N2 value over 

the shelf and then averaging over the entire summer (Jun-Aug) and the whole year, 

respectively. I also quantified the extent of the surface river plume by calculating the 

daily shelf area with surface water salinity less than 24 and then averaging these values 

over the entire summer (Jun-Aug) and the whole year, respectively, for comparison with 

other metrics. 

3.3 Results 

3.3.1 Model validation 

Simulated temporal variations and spatial distributions of hypoxia from the 

different model variants are shown in comparison to the observed hypoxic extent in July 

in Figures 3.5 and 3.6, respectively.  Despite their simplicity, both NWR+SOC and SOC 

models simulate temporal variations (Fig. 3.5) and spatial distributions of hypoxia (Fig. 

3.6) that are very similar to those of the full biogeochemical model, with the two simple 

oxygen models producing only a slightly larger hypoxic area in summer. Comparison of 

the NWR+SOC and the SOC models illustrates the effect of turning off the oxygen term 

in the water column. The difference is small indicating that the net water column 

respiration rate (NWR) only slightly increases the simulated hypoxic area. The NWR 

simulation shows that without sediment oxygen consumption the model does not produce 

any hypoxia at all (Fig. 3.5). Therefore I do not present any further results from the NWR 

simulation.  



 
Fig. 3.5.  Time series of simulated hypoxic extent (i.e. the area with oxygen 
concentrations below 2 mg l-1 or 62.5 mmol m-3) for the full biogeochemical model (black 
line), the NWR+SOC model (blue line), the SOC only model (red line) and the NWR 
only model (green line). Also shown is the observed hypoxic extent in late July (black 
dots). The observed hypoxic extent was estimated by linearly interpolating the observed 
oxygen concentrations onto the model grid and then calculating the area with oxygen 
concentrations below the hypoxic threshold (Fennel et al., 2013).   
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Fig. 3.6. Simulated (gray areas) and observed (dots) hypoxic conditions from the full 
biogeochemical model (left column), the NWR+SOC model (middle column) and the 
SOC only model (right column) for the years 2004 to 2007.  The simulated hypoxic area 
includes all bottom grid boxes where dissolved oxygen < 2 mg l-1 during the July 
monitoring cruise. The stations where hypoxia was observed are shown as filled black 
dots, while stations without hypoxia are shown as open dots.  
 

Figure 3.7 shows profiles of bias between simulated and observed oxygen profiles 

in summer months. Overall, the model-data biases are often within one standard deviation 

of the observations. The full biogeochemical model generally overestimates the observed 

oxygen throughout the water column, whereas the two simple oxygen models mostly 

underestimate the observations in the upper layers but overestimate them in the lower 

layers (except in the Mississippi Intermediate region in August and Mid-shelf region in 

June and July). Of the three model simulations, NWR+SOC simulates the lowest oxygen 

values and agrees best with observed oxygen in bottom layers except in the Atchafalaya 

plume and Mid-shelf region in June and July. Since I am most interested in the oxygen 
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concentrations in bottom layers where hypoxia develops, I will focus on comparisons 

between NWR+SOC and the full biogeochemical models for the remainder of the 

manuscript.    

 
Fig. 3.7. Vertical profiles of model bias (model minus observations, mg O2 l-1) in 
dissolved oxygen (DO) from June to August in 2004-2007 in the 4 subareas. The vertical 
axis is the scaled depth, where 0 and -1 represent surface and bottom, respectively. The 
light shadows represent the one standard deviation in the observations. Observations are 
from LUMCON (Rabalais et al., 2007), EPA (Lehrter et al., 2009, 2012), Murrell et al. 
(2013b), and MCH.  

 

 



Figure 3.8 shows a comparison between the simulated and observed oxygen 

concentrations at station C6.  Both the full biogeochemical model and the NWR+SOC 

model reproduce the observed vertical distribution in oxygen concentrations and seasonal 

drawdown of oxygen in summer and the subsequent ventilation in the fall. The surface 

and bottom oxygen concentrations are similar in winter when the water column is well 

mixed, but they greatly diverge from each other in summer when strong stratification 

isolates the oxygen-rich surface waters from the oxygen-poor bottom waters (Fig. 3.8 

lowest panel).  The simulated oxygen distribution of the NWR+SOC model is almost 

identical to that of the full model, except that the former produces slightly lower oxygen 

concentrations throughout the water column and does not capture the observed super-

saturation of surface oxygen during spring and summer. Profiles of bias between 

simulated and observed oxygen at station C6 (Figure C1, see Appendix C) show that both 

models underestimate observations in the upper half of the water column and 

overestimate observations in the lower half of water column; however, compared with the 

full model, the NWR+SOC model underestimates the observed oxygen more in the upper 

layers (i.e., surface layer biases are -0.65 and -0.72 mg l-1 for the full and the NWR+SOC 

models, respectively) but overestimates the observed oxygen less in the lower water 

layers (bottom layer biases are 1.19 and 0.84 mg l-1, respectively). 



 

Fig. 3.8. Top panels: Comparison between the simulated (color map) and observed 
(colored dots) DO concentrations at station C6 for full biogeochemical model (top panel) 
and the simple NWR+SOC model (middle panel). Bottom panel: Comparison between the 
simulated surface (thick lines) and bottom (thin lines) DO concentrations at station C6 for 
the full biogeochemical model (black) and the simple NWR+SOC model (gray). Also 
shown are observations of surface DO averaged over top 5-m layer (red spots with error 
bars indicating standard deviations) and bottom DO concentrations (blue spots).  

 

A comparison between the simulated and observed summer and non-summer 

average oxygen concentrations along the C transect is shown in Figure 3.9.  Both the full 

biogeochemical model and the NWR+SOC model capture the observed vertical 

differences in average oxygen for all stations along the C transect and cross-shore 

variations in the oxygen distribution. The models also capture the seasonality of those 

differences but generally underestimate the observations in the upper water column in 

non-summer months (see Figure C2, biases in the top 5 m range from -1.54 to -0.03 mg l-1 

and -2.15 to -0.06 mg l-1 for the full and NWR+SOC models, respectively) while 

overestimating observations in the lower water column in summer (biases in the bottom 

layer range from 0.63 to 3.15 mg l-1 and 0.57 to 1.72 mg l-1 for the full and NWR+SOC 



models, respectively). Compared to the full model, the NWR+SOC model simulates 

slightly lower oxygen concentrations in summer months within the whole water column 

and hence has relatively larger underestimation of the observed oxygen within the upper 5 

m of the water column but smaller overestimation of the observed oxygen in the water 

column below 5 m.  

 
Fig. 3.9. Comparison between the simulated (color map) and observed (dots) seasonal 
average DO concentrations along the C transect for the full biogeochemical model (top) 
and simple NWR+SOC model (bottom). 

 

3.3.2 Response of hypoxia and stratification to river discharge and wind forcing  

3.3.2.1 River discharge 

The simulated temporal variations in hypoxic area in the Const RD run are almost 

identical to those of the baseline run (Fig. 3.10a), with the former simulating lower 



hypoxic areas (a 15 to 36% decrease in integrated hypoxic area for different hypoxia 

thresholds, see Table 3.3).  Doubling the river discharge increases the total integrated 

hypoxic area by up to 145% for the lowest hypoxia threshold. Halving the river discharge 

reduces the total integrated hypoxic area by up to 64%. Also noticeable in Table 3.3 is 

that the proportional changes of integrated hypoxic area are more pronounced for the 

more stringent threshold values of hypoxia. 

 

Fig. 3.10. Comparison of the simulated hypoxic area for the baseline run (shaded gray 
area) with a) river discharge runs (Const RD: blue line; High RD: red line; Low RD: 
green line) and b) wind runs (UF: thick red line; DF: thick blue line; High UF: thin red 
line; Low DF: thin blue line). 
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Table 3.3 Integrated hypoxic areas simulated by different model runs in 2007. For each 
model run, the total area of water with dissolved oxygen concentration below 0.5 mg l-1 
(anoxic), 1 mg l-1 (strongly hypoxic), 2 mg l-1 (hypoxic) and 3 mg l-1 was calculated at 
each day and integrated over all days in 2007. The percentage change relative to the 
Baseline model run is calculated for each model run ([model-Baseline)/Baseline) and 
presented in parenthesis. For clarity, changes relative to the Baseline model run are 
highlighted in blue if there was a decrease and in red if there was an increase in the 
respective metric.  

Model run Integrated hypoxic area (103 km2 days) 

 < 0.5 mg l-1 <1 mg l-1 < 2 mg l-1   < 3mg l-1 

Baseline   140.1   364.0   820.7 1390.2 

Const RD   89.8      (-36%)   261.2    (-28%)   656.1    (-20%) 1181.1    (-15%) 
High RD   343.3 (+145%)   666.3   (+83%) 1254.5   (+53%) 1927.5   (+39%) 

Low RD     50.7    (-64%)   161.6    (-56%)   479.5    (-42%) 955.6      (-31%) 

UF   946.9 (+576%) 1861.8 (+411%) 3383.4 (+312%) 4934.3 (+255%) 

DF       0.0  (-100%)       0.0  (-100%)       0.3  (-100%)       3.1  (-100%) 
High UF        0.1  (-100%)       0.8    (-99%)     10.0    (-98%)     51.9    (-96%) 

Low DF   403.5 (+188%) 1045.1 (+187%) 2517.4   (207%) 4255.9 (+206%) 
 

The duration of hypoxia (bottom oxygen < 2 mg l-1) for each simulation is shown 

in Figure 3.11. Compared with the baseline run, holding river discharge constant reduces 

the duration of hypoxia on the western shelf (Fig. 3.11d). Doubling river discharge leads 

to a westward extension of persistent hypoxia (hypoxia lasting more than 50 days a year) 

(Fig. 3.11e) and increases the area experiencing persistent hypoxia by 215% above the 

baseline run, whereas halving river discharge restricts persistent hypoxic condition to the 

eastern shelf (Fig. 3.11f) and decreases the area experiencing persistent hypoxia by 46% 

relative to the baseline run (Table 3.4).  



Fig. 3.11. Simulated number of hypoxic days for each model run. The value is calculated 
at each model grid by counting the number of days when bottom DO < 2 mg l-1 (or 62.5 
mmol m-3) in year 2007. 
  



Table 3.4. Shelf area where hypoxic duration exceeds 50 and 250 days/year, average area 
of the surface river plume (area of surface salinity <=24) and average stratification 
(maximum N2) over specific periods for all model runs. The percentage change relative to 
the Baseline model run ([model-Baseline]/Baseline) is given in parentheses. Changes 
relative to the Baseline model run are highlighted in blue if there was a decrease and in 
red if there was an increase in the respective metric.  

Model 
Run 

Area of DO < 2 mg l-1   
(103 km2) 

Average area of surface river 
plume (106 km2) 

Average N2 (10-3 s-2) 

 duration>50 
days/year 

duration>250 
days/year 

summer 
average 

 yearly 
average 

summer 
average 

 yearly 
average 

Baseline   3.2 0.0 0.9   2.3  15.9   9.2  

Const RD   2.0    (-36%) 0.0 0.8    (-13%)   2.2    (-7%) 15.3    (-4%)   9.0    (-2%) 

High RD 10.0 (+215%) 0.0 2.1 (+116%)   4.8 (+107%) 22.0 (+39%) 13.3 (+45%) 
Low RD   1.7    (-46%) 0.0 0.4    (-62%)   1.0  (-56%)   9.5  (-40%)   5.4  (-41%) 

UF 23.7 (+647%) 1.3 1.1   (+11%)   4.2 (+78%) 18.0 (+13%) 17.9 (+95%) 

DF   0.0  (-100%) 0.0  0.3    (-67%)   1.3  (-46%)   4.5  (-72%)   4.4  (-52%) 

High UF    0.0  (-100%) 0.0 0.4    (-57%)   1.6  (-31%)   5.3  (-67%)   5.2  (-43%) 
Low DF 24.3 (+667%) 0.2  1.0     (+4%)   3.8 (+64%) 13.7  (-13%) 13.0 (+42%) 

 

The shelf-averaged stratification changes markedly with the changes in river 

discharge (Fig. 3.12). Doubling or halving the river discharge leads to a significant 

increase or decrease in the shelf-averaged stratification throughout the year (Fig. 3.12a). 

The deviation in stratification for the Const RD run relative to the Baseline run (Fig. 

3.12d) demonstrates a strong negative correlation (r=-0.74) with river discharge (Fig. 3.3) 

when lagged by 9 days.   



 
Fig. 3.12. Averaged stratification over the shelf (shaded area in Figure 1) for a) baseline 
run (gray shadow) and river discharge runs (Const RD: blue line; High RD: red line; Low 
RD: green line); b) baseline run (gray shadow) and upwelling-favorable wind runs (UF: 
thick red line; High UF: thin red line); c) baseline run (gray shadow) and downwelling-
favorable wind runs (DF: thick blue line; Low DF: thin blue line); d) Relative change in 
shelf-averaged stratification associated with holding river discharge constant [(Const RD-
Baseline)/Baseline]. Positive values indicate higher stratification for Const RD run than 
baseline run. 

 

 

 

 

 

 

 

 



Figure 3.13 further shows that doubling or halving the river discharge respectively 

enhances or reduces stratification over the majority of the shelf in summer months, except 

in the regions adjacent to the river mouths where stratification goes down with increasing 

river discharge.   

 
Fig. 3.13. The deviation in summer averaged stratification from the baseline model run 
(model - Baseline). Stratification is quantified by maximum N2 value and averaged for the 
period June-August. Red (positive value) represents higher and blue (negative value) 
represents lower stratification than the baseline run. 

 

The horizontal and vertical distributions of the river plume under the different 

river scenarios are shown in Figures 3.14 and 3.15, respectively.  Increasing the river 

discharge leads to a large westward and offshore extension of the lighter, fresher plume 



water, where the isohalines are almost parallel to the coast (Fig. 3.14c) and are 

significantly tilted offshore (Fig. 3.15c).  In contrast, decreasing river discharge confines 

the plume water to near the river mouths (Fig. 3.14d), which can also be observed in the 

vertical section where the 24 isohaline is pushed toward the shore and is less tilted than in 

the baseline run (Fig. 3.15d).   

The metrics reported in Table 3.4 further show that variations in river discharge 

markedly affect the average area of the surface river plume (salinity < 24), average shelf 

stratification, hypoxic area (Table 3.3) and the duration of persistent hypoxia.  



 
Fig. 3.14. Averaged surface salinity for all model runs. Values are averaged for the period 
June-August. The black line shows the 24 isohaline. The gray dashed line shows the 
position of cross-shore transect in Figure 3.15. 
  



 

Fig. 3.15. Averaged salinity on a cross-shore transect for all model runs. Values are 
averaged for the period June-August. The black line shows the 24 isohaline. The position 
of the transect is shown in Figure 3.14. 
  



3.3.2.2. Wind forcing 

Seasonal changes in wind speed and direction strongly influence the seasonal 

cycle of the simulated hypoxic area (Fig. 3.10b).   In the baseline run, hypoxia develops 

from June to September when wind direction switches to upwelling-favorable and wind 

speed is relatively low, and it shrinks and disappears for the rest of the year. In the UF 

wind run where light, upwelling-favorable wind conditions are imposed all year, 

extensive hypoxic conditions begin in January and persist through the year, and the 

integrated hypoxic area increases by roughly a factor of 2.6 to 5.8 compared to the 

baseline run (Table 3.3). In contrast, when strong, downwelling-favorable winds are 

imposed all year in the DF run, essentially no hypoxia is simulated.   

Increasing the speed of upwelling-favorable wind in the High UF run essentially 

eradicates hypoxia, similar to the DF wind case (Fig. 3.10b). Decreasing the speed of 

downwelling-favorable wind in the Low DF run produces extensive hypoxia throughout 

the year, similar to the UF wind case; however, the simulated hypoxic area in the Low DF 

run is smaller than in the UF wind run (Fig. 3.10b).  

The geographic distributions of hypoxia are also significantly different between 

the UF wind run and the Low DF wind run. As shown in Figure 3.11 (b, c) and Table 3.4, 

both runs result in an expansion of persistent hypoxic conditions over the shelf, with the 

area of persistent hypoxia respectively increased by 6.5 and 6.7 times than that in the 

baseline run. In the UF wind case a large area of extreme hypoxic conditions (>250 days 

within a year) is simulated along the eastern shelf. In the low DF wind case extreme 

hypoxic conditions are simulated closer to shore on the eastern shelf. 

The shelf-averaged stratification is high for the whole year in the UF and the Low 

DF wind cases, but is relatively low throughout the year for the High UF and DF wind 

cases (Fig. 3.12b, c).  The deviation in summer stratification from the baseline model run 

under the different wind forcing is shown in Figure 3.13 and the shelf-wide average 

values are summarized in Table 3.4.  The persistent upwelling-favorable wind in UF wind 

case enhances stratification over the majority of the eastern shelf and in regions offshore, 

but reduces stratification on the western shelf and in near-shore regions (Fig. 3.14c). The 



strong downwelling-favorable wind in the DF wind case (Fig. 3.13d) and the increased 

upwelling-favorable wind in High UF wind case (Fig. 3.13e) both reduce stratification 

throughout the shelf, except that the latter enhances stratification within a small area near 

shore around 91 W.  Decreasing the downwelling-favorable wind in the Low DF case 

reduces stratification in river plumes while enhancing stratification on the western shelf 

and in the portion of the shelf (~91 W) between the Mississippi and Atchafalaya plumes 

(Fig. 3.13f).  

The persistent upwelling-favorable wind in the UF wind case continuously drives 

freshwater eastward and offshore (Fig. 3.14e, Fig. 3.15e).  The High UF wind case also 

drives freshwater eastward and offshore (Fig. 3.14g), but the increased wind speed in this 

scenario is able to mix the water column more thoroughly (Fig. 3.15g). Similarly, the 

strong downwelling-favorable wind in the DF wind case drives freshwater westward and 

onshore (Fig. 3.14f), and the wind speed is high enough to mix the water column 

thoroughly (Fig. 3.15f). Decreasing the downwelling-favorable wind in the Low DF wind 

case moves light plume water westward and onshore (Fig. 3.14h) but the wind speed is 

unable to mix the water completely (Fig. 3.15h). 

3.4 Discussion 

3.4.1 Model validation and roles of water column versus sediment processes 

The simple NWR+SOC model closely reproduces the observed temporal 

variations and spatial distributions of hypoxic extent and oxygen concentrations on the 

LA shelf when compared to the full biogeochemical model. The NWR+SOC model 

cannot capture the observed super-saturated oxygen concentrations at the surface due to 

the lack of biological oxygen production.   

Comparison of the NWR+SOC, the SOC and the NWR simulations illustrates the 

relative importance of oxygen sinks in the water column versus the sediment.  When 

turning off the water column oxygen sink, the SOC model simulates an only slightly 

smaller hypoxic area than the NWR+SOC model does; whereas when turning off the 

sediment oxygen consumption, the NWR model does not produce any hypoxia. This 



supports the hypothesis that on the LA shelf, total oxygen consumption in the bottom 

layer is more associated with sediment oxygen consumption than water column 

respiration (Fennel et al., 2013), which is in contrast to the situation in Chesapeake Bay 

(Li et al., 2015). The difference in the dominant type of respiration responsible for 

producing hypoxia might be due to the differences in geometry and hypoxia structure 

between the LA shelf and Chesapeake Bay. The LA shelf is largely characterized by a 

broad and gently-sloping area where hypoxic conditions are restricted to a relatively thin 

layer above the sediment (Fennel et al., 2013); while the Chesapeake Bay has a relatively 

deep and narrow central channel isolated by sills and flanked by wide shallow areas, 

where the dense, low-oxygen waters can accumulate and form a thick hypoxic layer 

extending tens of meters above the bottom (Pierson et al., 2009).  While the importance of 

local respiration of organic matter to seasonal oxygen decline has been well recognized in 

other upwelling coastal systems (Hales et al., 2006; Connolly et al., 2010; Bianucci et al., 

2011; Adams et al., 2013; Siedlecki et al., 2014), the relative importance of sediment 

versus water column respiration to near-bottom hypoxia formation in these systems is still 

debated. An observational study by Connolly et al. (2010) found that biochemical oxygen 

consumption in the water column and sediments each contribute ~50% to the total oxygen 

consumption in near-bottom water over the Washington shelf. Using a coupled physical 

and biogeochemical model, Bianucci et al. (2011) demonstrated that remineralization 

within the sediments, representing ~75% of total oxygen sink, is the dominant process 

consuming oxygen within the bottom layers on the Vancouver Island shelf.  A more 

recent modeling study by Siedlecki et al. (2014) found that sediment oxygen demand is 

more important in the Washington coast, which has a broad and shallow shelf (< 60 m), 

whereas water column respiration is more important in recirculation regions such as the 

Heceta Bank in Oregon coast.   

In summary, the fact that the simple oxygen model with a constant oxygen 

utilization rate in the water column and an oxygen- and temperature-dependent sediment 

oxygen consumption rate can reproduce the observed variability in oxygen concentrations 

well indicates the important role of physical processes and sediment oxygen sink. The 

controlling role of sediment oxygen utilization in hypoxia generation on the LA shelf is 



further demonstrated by the sensitivity experiments disabling oxygen utilization either in 

the water column or in the sediment.  In addition, the ability of the simple oxygen model 

to closely reproduce the hypoxia evolution of the full biogeochemical model implies that 

full biogeochemical model may not be necessary for short-term hypoxia forecasting on 

the LA shelf. However, I would like to note that a full biogeochemical model is necessary 

to study the effects of varying river nutrient loads on hypoxia and to evaluate the 

effectiveness of nutrient management strategies (e.g., as in Laurent and Fennel, 2014). 

The simple model is appropriate for short-term hypoxia forecasting but not for scenario 

simulations with varying nutrient loads in this region. 

3.4.2. Model response to river discharge and wind forcing: from stratification to 
hypoxia 

The importance of stratification for the generation of hypoxia has long been 

discussed (Wiseman et al., 1997) and revealed in previous numerical studies (Hetland and 

DiMarco, 2008; Fennel et al., 2013). Using the same circulation model as in this chapter, 

Fennel et al. (2013) demonstrated that stratification strongly correlates (r = -0.78 in year 

2007) with the bottom oxygen concentration on the LA shelf.  It follows that stratification 

is an important indicator of oxygen concentration in bottom waters and hence hypoxic 

conditions. In this section, I discuss how stratification and hypoxia respond to variations 

in river discharge and wind forcing on the LA shelf.  

3.4.2.1. River discharge 

The simulated seasonal cycle of hypoxia and time-integrated hypoxic area vary 

significantly with the overall magnitude of river discharge.  This can be explained by the 

significant changes in shelf-averaged stratification associated with the changes in 

buoyancy inputs.  Increasing river discharge leads to an expansion of the lighter, fresher 

river plume water offshore and westward and an enhancement of shelf-wide stratification, 

which consequently results in an increase in hypoxic area and the duration of hypoxic 

conditions over the shelf; whereas decreasing river discharge shrinks the plume, reducing 

the shelf-wide stratification and thereby significantly decreases the hypoxic area and 

duration of hypoxia over the shelf.  An exception is observed in the regions adjacent to 



the river mouths where stratification goes down as river discharge increases. I attribute 

this to the fact that with increased river discharge the freshwater plume is bottom-attached 

rather then a surface plume and thus less stratified; this is demonstrated in Figure 3.15c 

for the High RD run.   

The slight difference in simulated seasonal cycle of hypoxic area between the 

Const RD run and the Baseline run (Fig. 3.10a) suggests that the temporal evolution in 

river discharge is not an important factor controlling the seasonal cycle of hypoxic area. 

However, temporal variations in river discharge significantly influence stratification, as 

suggested by the strong negative correlation between the deviation in stratification for the 

Const RD run relative to the Baseline run (Fig. 3.12d) and river discharge (Fig. 3.3).  A 

similar result was reported by Scully (2013) who used a simple oxygen parameterization 

with a three-dimensional circulation model in Chesapeake Bay. This is presumably 

because seasonal bottom oxygen drawdown is the combined result of stratification and 

oxygen consumption, the latter of which is more associated with the oxygen consumption 

in sediment than water column on the LA shelf as shown in the model experiments. 

Hetland and DiMarco (2008) suggested that stratification sets a physical bound on 

the region where hypoxia might occur whereas respiratory oxygen consumption 

associated with organic matter inputs sets the biological bound on the extent and 

magnitude of hypoxia. In the selected year 2007, the river discharge was mostly above the 

annual average before June and then decreased to below the annual average for the rest of 

the year, except for a small rise from mid-July to August (Fig. 3.3).  As a result, the most 

significant deviations in stratification associated with holding river discharge constant 

occurred in non-summer months when sediment oxygen consumption was relatively low 

to form hypoxia (Fig. 3.12d). In other words, while stratification responds quickly to the 

temporal variability in river discharge, the lack of sufficient oxygen consumption to fuel 

hypoxia during the same period moderates the impact of temporal variability in river 

discharge on hypoxia.  

  



3.4.2.2. Wind forcing 

Using the same realistic biogeochemical model that I used for validation in this 

chapter, Feng et al. (2013) illustrated how changes in wind associated with changes in the 

horizontal river plume position affect stratification, primary production, and thereby 

hypoxia on the shelf. They found that the switch of wind direction to upwelling-favorable 

directions facilitates hypoxia development, and that the duration of upwelling-favorable 

wind affects the evolution of hypoxic conditions and the dates when maximum hypoxic 

extent occurs (for example, an earlier start of upwelling-favorable wind leads to an earlier 

maximum extent of the hypoxic area). My results show that the seasonal changes in wind 

speed and direction significantly influence the shelf-wide stratification and hence the 

simulated hypoxia, which are consistent with the mechanism demonstrated by Feng et al. 

(2013), but eliminate the confounding effects of a full biogeochemical model. In my 

simulations the persistently weak upwelling-favorable wind continuously expands the 

lighter and fresher plume water eastward and offshore, which enhances shelf-wide 

stratification and promotes widespread hypoxia.  In contrast, the persistently strong 

downwelling-favorable wind confines the fresher river plume to the near-shore and the 

high wind speed homogenizes the water column, reducing stratification and producing 

essentially no hypoxia throughout the year. Regardless of the wind direction, increasing 

wind speed destroys the water column stratification and hence decreases hypoxic area, 

whereas decreasing wind speed enhances water column stratification and hence hypoxic 

area.  This result suggests that changes in wind speed can have a strong impact on 

stratification and the seasonal cycle of hypoxia.     

Despite the similar wind magnitude in the UF wind and low DF wind cases, the 

stratification in the former is overall stronger than that in the latter case, implying that 

wind direction can also impact stratification significantly.  Moreover, wind direction 

significantly influences the geographic distribution of the river plume and thereby the 

geographic distribution of hypoxia.  For example, the UF wind case and low DF wind 

case have similar wind speed, but the UF wind expands the lower-salinity river plume 

eastward and to the offshore and hence mainly enhances stratification and hypoxic 

conditions over the eastern shelf and offshore regions; whereas the low DF wind 



constrains the lower-salinity river plume near the shore and thereby enhances 

stratification and hypoxia more significantly in near-shore regions. 

3.4.3 Consistency with observations of hypoxia 

The dominant role of SOC as an oxygen sink in driving hypoxia is consistent with 

observations by Quinones-Rivera et al. (2007), who estimated that SOC accounts for ~73% 

of the total DO loss within 1 m of the sediments during summer based on O 

measurements and an isotope fractionation model. Using a different measurement method, 

Murrell and Lehrter (2011) estimated that the benthic respiration only contributes on 

average 20 4% of total respiration below the pycnocline. The very large difference in the 

relative contributions of sediment and water column respiration in these two studies is due 

to the assumed depth of the bottom layer, as illustrated by Fennel et al. (2013) using the 

same full biogeochemical model as here. 

Both Wiseman et al. (1997) and Bianchi et al. (2010) have demonstrated a strong 

correlation between the observed mid-summer hypoxic area and the Mississippi River 

flow.  Bianchi et al. (2010) further showed that hypoxic area has a similar correlation with 

either river flow or nutrient loading due to the high correlation between river flow and 

nutrient loading.  Consistent with these studies, my model simulations show that the 

hypoxic area is very sensitive to the magnitude of river discharge. In fact, doubling the 

river discharge increases the integrated anoxic area (oxygen < 0.5 mg l-1) by 145% while 

halving the river discharge reduces the integrated anoxic area by 64%. This is also true for 

the integrated hypoxic area (oxygen < 2 mg l-1) but the changes are smaller. Since my 

simulation results are based on a model independent of nutrient loading they are not 

obscured by the effects of nutrient discharge on hypoxic area and isolate the systems 

response to physical processes.  

The impact of wind speed and direction on hypoxia on the LA shelf has already 

been discussed by Wiseman et al. (1997), who found that the low-speed, upwelling-

favorable wind during summer drives the river plume eastward and offshore, intensifying 

stratification and inhibiting the re-oxygenation of the near-bottom waters from above. 

This mechanism described by Wiseman et al. (1997) is well reflected by the differences in 



distribution of the river plume and stratification from my four wind simulations with 

different wind speeds and directions. Under persistently weak upwelling-favorable wind, 

the low salinity river plume extends eastward and offshore, enhancing shelf-wide 

stratification and promoting widespread hypoxia. Under persistently strong downwelling-

favorable wind, however, the low salinity river plume is confined to the near-shore and 

the water column reaches near vertical homogenization, producing essentially no hypoxia. 

Despite the direction, increasing (decreasing) wind speed weakens (strengthens) water 

column stratification and hence decreases (increases) hypoxic area on the LA shelf.  Wind 

direction influences the geographic distribution of the river plume and thereby the 

geographic distribution of hypoxia.  

Using a statistical model, Forrest et al. (2011) found significant correlation 

between observed hypoxic area and east-west wind speed. Similarly, Feng et al. (2012) 

showed that the observed hypoxic area significantly correlates with the duration of east-

west wind. With a more realistic biogeochemical model as I used for validation in this 

chapter, Feng et al. (2013) further elucidated the underlying mechanism, namely that 

wind influenced hypoxia by affecting the vertical and horizontal distribution of low 

salinity, high chlorophyll plume water on the shelf.  Here I took an intermediate approach 

between the simple statistical model and the more complex biogeochemical model. The 

coupling of a relatively simple oxygen model to a high-resolution, three-dimensional 

circulation model in this chapter allowed me to separate and investigate the effects of 

wind forcing on the spatial and temporal variability in hypoxia on the LA shelf without 

the confounding effects of a full biogeochemical model. The model did not capture the 

observed super-saturated surface oxygen concentrations during spring and summer, which 

might reduce the vertical oxygen flux through the pycnocline as the oxygen gradient 

between the upper and lower layers was moderated. But given that I examined the 

difference between the baseline run and sensitivity runs with different river and wind 

forcing, the results should not be strongly affected by the slight discrepancy between 

model and observations.  

It is also worth noting that the river discharge and wind forcing ranges used in my 

model scenarios are not all realistic. The river discharges in the High RD and Low RD 



runs vary, respectively, around the upper and lower range of the long-term river discharge 

(1983 to 2010). The wind scenarios have preserved the event-scale variability but they do 

not represent realistic seasonal variations in wind forcing over the LA shelf.  To assess the 

impacts of climate change on hypoxia, more realistic model scenarios based on climate 

projections of river discharge and wind field changes in this region are required.  

3.5 Summary  

In this chapter I used a three-dimensional circulation model with a relatively 

simple parameterization of oxygen dynamics to isolate and investigate the effects of 

physical processes on the development of seasonal hypoxia on the LA shelf.  Despite 

simply assuming a constant biological oxygen utilization rate in the water column and an 

oxygen- and temperature-dependent sediment oxygen consumption rate, the model 

reasonably reproduces the observed variability of oxygen and the hypoxic area on the LA 

shelf, highlighting the important role of physical processes. Further, the model sensitivity 

experiments disabling oxygen utilization either in water column or in the sediment show 

that hypoxia generation on the LA shelf is driven by oxygen utilization in the sediment. 

Based on the model simulations, the temporal variability in river discharge 

influences stratification significantly but has less effect on the seasonal evolution of the 

hypoxic area because oxygen consumption moderates the impact of stratification changes 

associating with temporal changes in river discharge.   The seasonal cycle of hypoxia and 

integrated hypoxic area are very sensitive to the overall magnitude of river discharge.  

The increase in total river discharge leads to an offshore and westward expansion of the 

lighter, fresher river plume and enhances shelf-wide stratification, and thereby greatly 

increases the hypoxic area over the shelf.  In contrast, the decrease in total river discharge 

shrinks the plume, reducing the shelf-wide stratification and hence significantly decreases 

the hypoxic area.     

Model simulations demonstrate that changes in wind speed have the greatest 

impact on the seasonal cycle of hypoxia and hypoxic duration. Persistently weak 

upwelling-favorable winds expand the low-salinity river plume eastward and offshore, 

enhancing shelf-wide stratification and promoting widespread hypoxia, whereas 



persistently strong downwelling-favorable winds confine the low-salinity river plume to 

the near-shore and homogenize the water column, precluding the generation of hypoxia. 

Regardless of the wind direction, increasing wind speed weakens the water column 

stratification and hence decreases the hypoxic area, while decreasing wind speed does the 

opposite. Wind direction significantly influences the geographic distribution of the river 

plume and thereby the geographic distribution of hypoxia.  

The facts that the simple oxygen model essentially reproduces the hypoxia 

evolution of the full biogeochemical model, and that physical dynamics are key for 

determining magnitude and distribution of hypoxia has implications for short-term 

hypoxia forecasting, namely that a full biogeochemical model may not be necessary for 

this purpose. It follows that prior to using a complex biogeochemical model, one could 

take an intermediate approach by developing a relatively simple model that parameterizes 

biological oxygen terms using empirical relationships derived from observations.  This is 

especially the case for regions that have already developed skillful hydrodynamic models.  

  



CHAPTER 4 

INSIGHTS ON MULTIVARIATE UPDATES OF PHYSICAL 

AND BIOGEOCHEMICAL OCEAN VARIABLES USING AN 

ENSEMBLE KALMAN FILTER AND AN IDEALIZED 

MODEL OF UPWELLING3 

4.1 Introduction 

With the rapid expansion of ocean observing platforms, which now provide a 
wealth of observations, and growing numerical model capabilities, effective ways of 
combining observations and dynamic models through data assimilation (DA) are needed. 
While DA techniques and methodologies are well developed in meteorology and physical 
oceanography (e.g., Ghil and Malanotte-Rizzoli, 1991; Houtekamer and Mitchell, 1998, 
2001; Kalnay, 2003), their applications in marine biogeochemical models are less mature, 
but actively developing (see reviews of biogeochemical state estimation in Gregg, 2008, 
Edwards et al., 2015, and state-parameter estimation in Gharamti et al., 2017a, b). 
Biogeochemical data assimilation falls into two general categories, the optimization of 
biogeochemical model parameters through minimization of a cost function (e.g., Fennel et 
al., 2001; Friedrichs et al., 2007; Kuhn at el. 2015) and updates to the biogeochemical 
model state by incorporating available observations sequentially (e.g., Eknes and Evensen, 
2002; Natvik and Evensen, 2003; Ciavatta et al., 2011; Hu et al., 2012; Ford et al., 2012; 
Mattern et al. 2013; Ford and Barciela, 2017). Recent efforts have shown that model 
parameters can also be updated sequentially along with the model state variables (e.g., 
Simon et al., 2015; Gharamti et al., 2017a, b). 

For biogeochemical state estimation, efforts have primarily been made in 
assimilating satellite ocean color observations, predominantly satellite-derived 

Based on: Yu, L., Fennel, K., Bertino, L., Gharamti, M.E., and Thompson, K. (2018) Insights on 
multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and 
an idealized model of upwelling. Ocean Modelling, 126, 13-28  



chlorophyll, into coupled physical-biogeochemical models (e.g., Natvik and Evensen, 
2003; Gregg, 2008; Ciavatta et al., 2011; Hu et al., 2012; Ford et al., 2012; Fontana et al., 
2013; Ford and Barciela, 2017). Assimilation of satellite ocean color products other than 
chlorophyll, such as phytoplankton absorption coefficients (Shulman et al., 2013), diffuse 
light attenuation coefficients (Ciavatta et al., 2014), and remote-sensing reflectance (Jones 
et al., 2016) are also being pursued. However, it has long been recognized that 
deficiencies in biogeochemical fields can arise from deficiencies in the physical state 
(e.g., Doney, 1999; Oschlies and Garcon, 1999; Doney et al., 2004) because the physics 
controls both horizontal and vertical transport of nutrients, oxygen, plankton and many 
other biogeochemical variables. Several studies have investigated the impact of 
assimilating physical data alone on coupled physical-biogeochemical systems (Berline et 
al., 2007; Samuelsen et al., 2009; While et al., 2010; El Moussaoui et al., 2011; Fiechter 
et al., 2011; Raghukumar et al., 2015). One important and perhaps surprising finding 
drawn from these studies is that, despite the clear improvement in physical model fields, 
the physical data assimilation alone does not generally improve, but often degrades, 
simulated biogeochemical fields. For example, While et al. (2010) and El Moussaoui et al. 
(2011) reported overestimated surface nutrients and chlorophyll concentrations, 
particularly in equatorial regions, associated with spurious increases in vertical velocities 
when assimilating physical data in global ocean models. Berline et al. (2007) found large 
increases in vertical nutrient fluxes in mid-latitudes and sub-tropics that were partly due 
to the misalignment between physical and biogeochemical fields resulting from updates 
of the physical fields. Raghukumar et al. (2015) also showed that assimilating physical 
data leads to elevated production, particularly in oligotrophic regions, and attributed the 
overestimation to a net upward nutrient flux resulting from high vertical velocity 
fluctuations due to the “initialization shocks” after updates to the density distribution, and 
increased nutrient variance on density surfaces due to the adjustment of physical variables 
in the assimilation step.  

Collectively the above studies demonstrate that adjusting only physical or 
biogeochemical fields is not sufficient to improve the full three-dimensional (3D) 
biogeochemical model state. An obvious next step is the simultaneous updating of 



physical and biogeochemical fields. Two approaches have emerged to address it. The 

simpler approach is applying a correction to the nutrient field alongside the physical data 

assimilation (Shulman et al., 2013, While et al. 2010). The second approach is to jointly 

assimilate physical and biogeochemical observations into the models. To date, few studies 

have explored this idea but with encouraging results (Anderson et al., 2000; Ourmières et 

al., 2009; Song et al., 2016a,b; Mattern et al., 2016). These studies show that assimilating 

both physical and biogeochemical data can maintain dynamical consistency between the 

physical and biogeochemical fields and provide better state estimates than only 

assimilating one or the other. However, one clear drawback of this approach is that the 

required physical and biogeochemical observations might not always be available 

concurrently. 

Here I propose and test an alternative approach for updating both types of model 

fields even when only one data type (biogeochemical or physical) is available. The 

approach takes advantage of the inherently multivariate nature of the Ensemble Kalman 

Filter (EnKF) to generate multivariate increments that can be applied consistently to all 

model state variables. While the EnKF has been used to assimilate physical or biological 

ocean observations in the past, its ability to update biological model fields by assimilating 

physical observations and vice versa has not yet been tested in ocean applications. This 

paper aims to systematically assess whether, when and why multivariate EnKF updates of 

both physical and biogeochemical fields can outperform isolated updates of physical or 

biogeochemical fields by assimilating only one observation type, and compare these two 

DA strategies against the joint updates of both fields by assimilating both observation 

types. This is achieved by conducting a series of twin experiments in an idealized ocean 

channel that experiences wind-driven upwelling.  

4.2 Model description and experimental setup 

4.2.1 The coupled physical-biogeochemical model 

I use the ROMS model configured in a computationally efficient idealized channel. 

ROMS is a free-surface, terrain-following, primitive equation ocean model that has been 

used extensively for coupled physical-biogeochemical modeling and data assimilation 



(e.g., Hu et al., 2012; Raghukumar et al., 2015; Song et al., 2016a, 2016b). The idealized 

channel is 82 km wide, with the depth symmetrically increasing from 25 m at the two 

edges to 140 m in the middle (Fig. 4.1). The model grid is uniformly spaced with a 

horizontal resolution of 1 km, generating 84 cross-channel and 82 along-channel grid 

points, and has 16 terrain-following vertical layers with thickness ranging from 1.6 m at 

the surface near the channel edges to 22.6 m at the bottom of the mid-channel. Periodic 

lateral boundary conditions are applied to the southern and northern open boundaries; that 

is, any physical or biogeochemical tracer or flow that leaves the domain through one 

boundary will re-enter at the opposite side. Vertical mixing is parameterized using the 

Mellor and Yamada (1982) Level 2.5 turbulence closure scheme. Bottom friction is 

specified using a linear drag formulation. 

The model is forced with a uniform along-channel wind that generates upwelling 

on one side of the channel and downwelling on the other. The wind forcing is prescribed 

by a clipped sine curve resulting in 30 days of non-zero wind stress followed by 30 days 

of relaxation without any wind forcing. Gaussian noise with a standard deviation of 0.002 

Pa is added to generate a more realistic wind regime. One cycle with a peak wind stress of 

0.07 Pa (high wind) and 0.06 Pa (low wind) is shown in Figure 4.1a.   

 

 



 
Fig. 4.1. (a) Wind stress for the high-wind and low-wind model runs. The vertical lines 
indicate the timing of assimilation steps. (b) Model bathymetry and (c) vertical grid of 
cross-channel transect. The red dashed lines in (b) show the position of the cross-channel 
transect and an along-channel section. The circles show the 28 stations where temperature 
profiles are sampled. The filled circles show the 16 stations where nitrate profiles are 
sampled.  
 

The biogeochemical component of the coupled model uses the nitrogen cycle 

model of Fennel et al. (2006). The model is a relatively simple representation of the 

pelagic nitrogen (N) cycle, including two species of dissolved inorganic nitrogen, nitrate 

(NO3) and ammonium (NH4); one phytoplankton group (Phy); chlorophyll (Chl) as a 

separate state variable to allow for photoacclimation; one zooplankton group (Zoo); and 

two pools of detritus representing large, fast-sinking particles (LDet) and suspended, 

small particles (SDet). The model accounts for photoacclimation of phytoplankton based 

on the model of Geider et al. (1997), resulting in a variable ratio of chlorophyll to 



phytoplankton biomass. In the model, the biogeochemical fields do not influence physical 

fields, i.e. there is no feedback from biology to physics. This coupled model has been a 

valuable tool for understanding interacting physical and biogeochemical processes within 

realistic configurations for both coastal (e.g., Fennel et al., 2006, 2008) and open ocean 

ecosystems (e.g., Xue et al., 2013), as well as for data assimilation experiments (e.g., Hu 

et al., 2011; Mattern et al. 2013). 

The biogeochemical component of the coupled model was spun up for 1 year 

without any wind forcing, and no flow at the lateral boundaries. The initial temperature 

ranges from 14.5  at the mid-channel bottom to 22  at the surface, initial nitrate 

ranges from 13.5 mmol N m-3 at depth to 0.5 mmol N m-3 at the surface, and all other 

initial biogeochemical variables were homogeneous at a low positive value. Salinity was 

fixed at 35 PSU and surface heat flux was not included in this idealized setup. The 

biogeochemical variables reached a steady state after 1 year of spin-up. The spun-up 

biogeochemical fields were used as initial condition for all coupled simulations, which 

were forced with high or low wind shown (Fig. 4.1a) for 180 days (covering three wind 

cycles).  

4.2.2 Experimental framework  

The performance of different data assimilation strategies is evaluated in twin 

experiments that consist of a reference model run representing the ‘truth’ from which 

synthetic observations are generated, and a model with biased physics and biology that is 

subject to ensemble-based assimilation of the synthetic observations. I test two 

contrasting scenarios: Scenario 1, where the forecast model is forced with lower wind 

stress and a lower photosynthesis-irradiance (PI) parameter value than the truth leading to 

underestimation of the true upwelling and productivity; Scenario 2, where a higher wind 

stress and higher PI value lead to overestimation of upwelling and productivity. For the 

sake of brevity, I only detail the experimental setup of Scenario 1; Scenario 2 is identical 

except for the wind forcing and biological parameter set. 

In Scenario 1, the reference (or ‘truth’) is generated by running the coupled model 

as described in section 4.2.1 and forced with higher wind (peak wind stress of 0.07 Pa, 



denoted as high wind in Fig. 4.1a). The along-channel, northward wind leads to upwelling 

of nutrient-rich, cold water at the western edge of the channel stimulating phytoplankton 

growth (assuming Coriolis frequency f > 0).  

Synthetic observations are sampled from the reference run, including sea surface 

height (SSH), sea surface temperature (SST) and surface chlorophyll at all grid points 

(assuming no data missing due to cloud cover), and 28 temperature and 16 nitrate profiles 

from a regular sampling grid (see Fig. 4.1b). Typical Gaussian observation errors, i.e. 

variable (mean, standard deviation), of N(0, 0.3 ) for temperature (both SST and 

temperature profiles), N(0, 1 cm) for SSH, N(0, 35%*true concentration) for surface 

chlorophyll, and N(0, 10%*true concentration) for nitrate profiles are added to the 

synthetic data. In addition, smaller errors in the biological observations, i.e. N(0, 

10%*true concentration) for chlorophyll and N(0, 5%*true concentration) for nitrate, are 

tested as described in section 4.2.2.3.   

In the biased model, the peak wind stress is about 14% smaller. Gaussian noise 

with a standard deviation of 0.002 Pa was added to the wind stress to create an ensemble 

of wind forcing files (one realization is shown in Fig. 4.1a, denoted as low wind). In 

addition, the five biological parameters to which the system is most sensitive were 

perturbed. These parameters were identified in sensitivity experiments as follows. For 

each parameter the model was run twice, after doubling and halving the parameter value. 

The five parameters for which these perturbations resulted in the largest total Root Mean 

Square (RMS) difference of biogeochemical variables to the unperturbed simulation are 

referred to as the most sensitive ones.  In the ensemble simulations, all five parameters are 

sampled from a uniform distribution around their nominal value with a variance of 75% 

of the nominal value.  The nominal values of the top two most sensitive parameters, the 

photosynthesis-irradiance initial slope (0.015 mg C (mg chl W m-2 d)-1) and zooplankton 

grazing rate (0.6 d-1), are set to be 40% lower than those of the reference run to simulate 

model bias errors. The other three parameters, phytoplankton growth rate (1.0 d -1), 

mortality rate (0.1 d -1), and maximum chlorophyll to carbon ratio (0.0535 mg chl (mg C) -

1), are not biased. 



4.2.2.1 DEnKF algorithm 

I use the deterministic formulation of the EnKF (DEnKF), which was introduced 

by Sakov and Oke (2008) and has been used previously in biogeochemical data 

assimilation applications (e.g., Simon et al., 2015; Jones et al., 2016).  

The central idea underlying the EnKF is that an ensemble of model simulations 

can be used to approximate the model’s estimate of uncertainty, and that the model state 

can be updated using available observations as the ensemble is integrated forward in time 

(Evensen 1994). The EnKF algorithm consists of sequential forecast and analysis steps.  

During the forecast step, the model ensemble is propagated forward in time.  During the 

analysis step, the model state is updated using the Kalman Filter (KF) analysis equation: 

,                             (4.1)       

where  is the  model state estimate vector (n is the number of model state variables 

at all grid points), the superscripts  and  represent the analysis and the forecast 

estimates, respectively,  is the  vector of observations (m is the number of 

available observations),  (linear in this form, dimension of ) is the measurement 

operator mapping the model state onto the observations, and  is the  Kalman gain 

matrix, given as 

                        (4.2) 

where represents the  prior sample error covariance matrix (approximated using 

the forecast ensemble), is the  observation error covariance, and superscript  
denotes matrix transpose.    

In the original stochastic EnKF (Burgers et al. 1998), the forecast ensemble  is 

updated via Kalman analysis Eq. 4.1 and requires perturbing observations  in order to 

obtain an analysis error covariance consistent with that given by the (linear) Kalman 

Filter.  In contrast, the DEnKF updates the ensemble mean and ensemble anomalies 

separately without perturbing observations, and is hence termed ‘deterministic’. First, the 



forecast ensemble mean  is updated as in Eq. 4.1.  Then, the forecast ensemble 

anomalies  are updated to obtain the analysis ensemble anomalies  by 

, which ensures that the resulting covariance matrix is slightly inflated compared 

to the theoretical value given by the Kalman Filter. Finally, the analysis ensemble is 

reconstructed as .  For more details on the DEnKF see Sakov and 

Oke (2008). 

In principle, the DEnKF can update the entire model state based on the 

correlations in the ensemble covariance between the observations and model variables. 

However, computational constraints often prohibit inclusion of all 3D state variables in 

the assimilation state vector  (the ith ensemble member). Here I limit updates to the 

four biological variables (nitrate, chlorophyll, phytoplankton and zooplankton) and one 

physical variable (temperature) that are most relevant to the dynamics of the system.  

4.2.2.2 Assimilation settings 

I chose an ensemble size of 20 for the data assimilation experiments. Relatively 

small ensembles like this can lead to spurious correlations between distant grid points. To 

prevent the potential negative effects of spurious correlations, I applied a distance-based 

localization method known as local analysis (Evensen, 2003; Hunt et al., 2007; Sakov and 

Bertino, 2011). In local analysis, the spatial domain of influence of each observation is 

artificially reduced by multiplying the ensemble anomalies and innovations with a 

distance-dependent localization function (Gaspari and Cohn 1999). I chose a localization 

radius of 20 km for SST, SSH, temperature profiles and nitrate profiles, and 10 km for 

surface chlorophyll. Additionally, to account for the underestimation of the forecast error 

covariance due to the small ensemble size, an inflation factor of 1.05 was applied to the 

ensemble anomalies inflating the ensemble around its mean at every update step 

(Anderson and Anderson 1999). The localization radius and inflation factor are based on 

initial tests that involve selecting the values that best reduce the model-data errors without 

causing ensemble collapse or generating discontinuities in the analyzed fields. 



Additional practical implementation choices were made to make the DEnKF 

performance more robust as follows. Because chlorophyll and nitrate concentrations at 

some grid points can be as low as 10-4 mg/m3 (for chlorophyll) or mmol/m3 (for nitrate), 

resulting in extremely low magnitudes of the observation error covariance R, I set a lower 

limit of 10-2 for the diagonal elements of R corresponding to chlorophyll and nitrate 

observations. This is equivalent to artificially increasing the error of very low chlorophyll 

and nitrate observations. This can be thought of as applying inflation in the observation 

space, which has already been explored in Anderson (2009). I also inflate the assumed 

observation error covariance by a factor of 2 when updating the ensemble anomalies 

while using the original observation error variance for updating the ensemble mean as 

proposed in Sakov et al. (2012). This is done to produce a weaker update for the 

ensemble-based state error covariance without changing the ensemble analysis mean, and 

hence retain a larger ensemble spread. To prevent an initial shock to the system due to 

large initial updates, I increased the observation error by a factor of 8, 4 and 2 for the first 

three DA steps, respectively as in Sakov et al. (2012). Finally, a post-processing step was 

performed at the end of each update step resetting any negative values of temperature and 

biogeochemical variables to their corresponding forecast values (less than 0.2% of grid 

cells were affected by this throughout the assimilation period).  

4.2.2.3 Data assimilation experiments 

I carried out a series of assimilation experiments for Scenarios 1 and 2 (Table 4.1) 

using different strategies for assimilating a single (biogeochemical or physical) or both 

observational data types: Method 1 “Isolated updates”, where only one of the two data 

types is used, either physical observations to update physical model fields or 

biogeochemical observations to update biogeochemical model fields; Method 2 

“Multivariate updates | single data type”, where only one data type is used to update both 

physical and biogeochemical model fields taking advantage of the multivariate covariance 

structure within the DEnKF; and Method 3 “Joint updates | both data types”, where both 

data types are assimilated in a two-step update, with physical observations being used first 

and biogeochemical observations used next. The acronyms for assimilation experiments 

introduced in Table 4.1 are in accord with the posterior probability of the model state 



given the observations (e.g., p(model | observation)). In all experiments, the DEnKF 

update is performed every two days during upwelling peaks of the second and third wind 

cycle (day 74 to 98 and 134 to 158, respectively) leading to 26 assimilation steps in total. 

Detailed analysis of the experiments focuses on the third wind cycle when the largest 

deviation between the biased ensemble runs and the true state has developed.  

The assimilation impact is assessed by comparing the assimilative runs to an 

ensemble of model simulations with the same model configuration but without any data 

assimilation. This ensemble run is referred to as the ‘free run’.  The model’s forecast skill, 

a metric of how long the model’s forecast from the analysis outperforms the free run, is 

also assessed. For this purpose, I perform 25-day ensemble runs, referred to as ‘forecast 

runs’, that are initialized from the updated states on day 140 (the 17th DA step) and forced 

with the same winds as the assimilation runs.  

Model-data misfit is quantified by examining the deviations from the truth (model 

minus truth). For DA runs at assimilation times, when both forecast and analysis exist, the 

forecast ensemble mean is used for calculating the deviation. I first computed the daily 

deviations at each grid point during the analysis period (day 134 to 158), and then 

averaged the deviation or absolute deviation values over space and time to obtain the 

mean deviation (bias) and the mean absolute deviation (MAD). Symbols and 

 represent bias and MAD averaged over the surface layer only, whereas  

represents averaging over the entire water column. 

 

 

 

 

 

 



Table 4.1. Overview of assimilation experiments. Assimilated or updated fields are 
checked ( ) and marked by blue and green area to distinguish physical and 
biogeochemical fields.  The numbers 1 and 2 in Method 3 experiments indicate the step 
where the corresponding field is assimilated or updated.  The second column gives the 
code for each experiment. In accord with the posterior probability of the model state 
given the observations (e.g., p(model | observation)) the capital letters that appear before 
the vertical line define the 3D fields to be updated. B, N and T correspond to the 
biogeochemical variables (chlorophyll, phytoplankton, zooplankton and nitrate), just 
nitrate, and temperature, respectively. The variables that appear after the vertical line 
define the observations that are assimilated, where chl, N,  and  denote surface 
chlorophyll, nitrate profiles, physical variables at the surface (SSH and SST), and 
physical variables at both surface and depth (SSH, SST and T profiles), respectively. The 
subscript following chl (or N) denotes reductions in the observation error of surface 
chlorophyll (or nitrate profiles) to 10% (or 5%) instead of the default 35% (10%) used in 
the other experiments. The underscore in Method 3 codes indicates the separation of the 
two update steps. 

 Experiment Updated 3D Fields  Assimilated Observations 

  T N chl, phy, 
zoo 

 SSH, 
SST 

T 
profiles 

Surface 
chl 

N 
profiles 

Method 1  
“Isolated updates” 

B|chl         
B|         
B|chlN        
B|chl         
T|         
T|         

 
Method 2 
“Multivariate 
updates | single 
data type” 

TB|chl         
TB|         
TB|chlN        
TB|chl         
TN|         
TN|         

 
Method 3  
“Joint updates | 
 both data types” 

T| _B|chl 1 2 2  1  2  
T| _B|chlN 1 2 2 1 1 2 2 
TN| _B|chl 1 1, 2 2 1  2  
TN| _B|chlN 1 1, 2 2 1 1 2 2 

 

 

 



4.3 Results  

Below I provide a detailed analysis of Scenario 1 (the case underestimating 

upwelling and productivity). Results from Scenario 2 (the case overestimating upwelling 

and productivity) are presented in section 4.3.4. 

4.3.1 Comparison between truth and free run 

Time series of domain-averaged surface temperature, nitrate and phytoplankton 

from the truth, free run and different DA runs are shown in Figure 4.2. Compared to the 

truth, the free run is overall warmer and has lower surface nitrate and phytoplankton due 

to weaker upwelling. Figure 4.3 shows a snapshot of SSH, surface temperature, nitrate 

and phytoplankton on day 140. SSH anomalies on both upwelling and downwelling edges 

are smaller in the free run than the truth.  In the free run, the band of cold, nutrient-rich 

water along the upwelling edge is much narrower than in the truth, and the band of 

elevated phytoplankton concentrations detached from the coast in the truth is not 

simulated by the free run. The corresponding vertical distributions of the same variables 

along a cross-channel transect are shown in Figure 4.4. The reference isotherm 

(represented by the 16  isotherm) and reference isopleth of nitrate (represented by the 5 

mmol NO3 m-3 isoline) coincide and are deeper in the free run than the truth at the 

upwelling edge. Along-channel section-averaged temperature and nitrate profiles near the 

upwelling edge (Fig. 4.5a, e) show that in the free run temperature is warmer and nitrate 

concentration lower than the truth in the top 60 m. The differences between the truth and 

free run are also reflected by the positive in temperature, negative  in 

nitrate and phytoplankton as well as the large  in all variables (Fig. 4.6). 

  



 
Fig. 4.2. Time series of the surface domain-averaged water temperature (T), 
concentrations of nitrate (NO3), and phytoplankton (Phy) for truth, free run and different 



assimilation runs. For the free and assimilation runs, the ensemble means are shown as 
solid colored lines, the standard deviation of the ensemble as dark colored area, and the 
range between the minimum and maximum value of the ensemble as light colored area. 
Black vertical lines indicate the timing of assimilation steps.  
 

 
Fig. 4.3. Surface layer on day 140 (assimilation step 17) for different state variables from 
the truth, free run and different assimilation runs. The black dashed line shows the zero 
contour line. 



 
Fig. 4.4. Cross-channel transect (see Fig. 4.1 for its location) on day 140 (assimilation 
step 17) for different state variables from the truth, free run and different assimilation 
runs. The 16  isotherm and 5 mmol NO3 m-3 isopleth for the truth are marked as solid 
black and white lines, respectively. Dashed black and white lines mark the 16  isotherm 
and 5 mmol NO3 m-3 isopleth for the actual simulation in each panel. 



 
Fig. 4.5. Averaged (a-d) temperature (T) and (e-j) nitrate (NO3) profiles over stations 
along the along-channel section (see Fig. 4.1 for their locations) on day 140 (assimilation 
step 17) for the truth, free run and different assimilation runs. For the free and 
assimilation runs, the solid colored lines represent ensemble means of the section-
averaged profiles, the dark colored areas represent standard deviation of the ensemble, 
and the light colored areas represent range between the minimum and maximum value of 
the ensemble.  The positions of 16  isotherm and 5 mmol NO3 m-3 isopleth are marked 
as dashed lines. 



 

 
Fig. 4.6. The domain- and time-averaged (a-d) , (e-h)  and (i-k)  
for different state variables from the free run and different assimilation runs. The 
narrower bars partially overlapping some assimilation runs represent the metrics for 
sensitivity runs with lower observation error of chlorophyll (B|  in dark red and 
TB|  in dark blue) and nitrate (B|chl  in 2nd red bar and TB|chl  in 2nd blue 
bar), respectively.  
 

4.3.2 Impact of assimilation on physical and biogeochemical states 

4.3.2.1 Method 1 “Isolated updates” 

First, I assess the assimilation impact when biogeochemical variables are used to 

update only biogeochemical variables, or physical variables to update only physical 

variables.  Assimilating surface chlorophyll to correct the biogeochemical variables alone 

(B|chl and B| ) barely affects the time evolution of surface nitrate and improves 

surface phytoplankton only when the chlorophyll observation error is reduced to 10% 

(Fig. 4.2, second row). The point-to-point comparison metrics confirm that B|chl and 

B|  slightly reduce  and for phytoplankton, but B|  leads to 



an increase in  for nitrate and phytoplankton (Fig. 4.6). In B|chlN and B|chl , 

where nitrate profiles are assimilated in addition to surface chlorophyll, the updates in 

surface nitrate and phytoplankton are more noticeable than in B|chl, but the ensemble 

mean is still far from the truth (Fig. 4.2, third row), and the reference isopleth of nitrate in 

B|chlN is only slightly lifted up to the truth (Fig. 4.5f). The metrics in Figure 4.6 show 

that B|chlN improves nitrate with a smaller  and  than B|chl. Reducing the 

nitrate observation error (B|chl ) leads to little further improvement relative to B|chlN. 

Assimilating SST and SSH (T| ) remarkably improves surface temperature and 

increases surface nitrate and phytoplankton concentrations toward the truth without 

directly updating them during analysis steps (Fig. 4.2, fourth row). However, the 

phytoplankton peak is delayed and concentrations are overestimated after the peak in 

upwelling. T|  clearly lifts up the reference isotherm and isopleth of nitrate toward the 

truth (Fig. 4.5c, g), but degrades the nitrate profile at depths greater than 25 m (Fig. 4.5g). 

The comparison metrics show that T|  improves SSH, temperature, surface nitrate, and 

phytoplankton with lower biases and MAD values, but degrades subsurface nitrate with 

higher  than the free run (Fig. 4.6). Compared to T| , assimilating additional 

temperature profiles (T| ) improves the timing of the phytoplankton peak but 

overestimates phytoplankton more after peak upwelling (Fig. 4.2, fifth row).  Comparison 

metrics in Figure 4.6 show that T|  further improves temperature with lower , 

but degrades nitrate with higher MAD values than those in T|  and the free run (Fig. 

4.6).   

None of the Method 1 “Isolated updates” approaches satisfactorily improves the 

biogeochemical ocean model state, although the physical model state is remarkably 

improved by assimilating the physical data.  

  



4.3.2.2. Method 2 “Multivariate updates | single data type” 

Second, I assess the impact of multivariate updates, where a single data type 

(biogeochemical or physical observations) is used for multivariate updates of 

biogeochemical variables and temperature. Assimilating only surface chlorophyll (TB|chl) 
slightly improves surface temperature and nitrate relative to B|chl (Fig. 4.2, second row) 

with slightly smaller  and  (Fig. 4.6). Reducing the chlorophyll observation 

error (TB| ) leads to larger increases in surface nitrate and phytoplankton (Fig. 4.2, 

second row) that further reduce their  and nitrate , but also substantially 

increases nitrate . Assimilating additional nitrate profiles to update both physical 

and biogeochemical fields in TB|chlN and TB|chl , remarkably improves the time 

evolution of surface temperature during the upwelling period, and nitrate and 

phytoplankton for the entire time period (Fig. 4.2, third row) compared to B|chlN, 

B|chl  and TB|chl. Improvement in TB|chlN is also obvious in the spatial distributions, 

with an extended area of cold and high-nutrient water along the upwelling edge (Fig. 4.3) 

and a clear lift of the reference isotherm near the surface and isopleth of nitrate toward the 

truth compared to the free run and B|chlN (Figs. 4.4 and 4.5). TB|chlN and TB|chl  
yield the smallest  for all variables among DA runs that only assimilate 

biogeochemical observations (Fig. 4.6).  

Then I used physical observations (SSH and SST in TN| ; SSH, SST and 

temperature profiles in TN| ) for multivariate updates of physical variables and the 

nitrate field. I only update the nitrate field instead of all biogeochemical variables because 

of the high correlation between physical fields and nitrate in contrast to the relatively low 

correlation between physical fields and other biogeochemical variables. Compared to 

T|  and T|  (Method 1), TN|  and TN|  lead to larger increases in surface 

nitrate and phytoplankton and overall agree better with the truth except that surface 

phytoplankton is overestimated after peak upwelling (Fig. 4.2, fourth and fifth rows).  

TN|  also remarkably improves the spatial distribution of surface and subsurface 

temperature and nitrate, but fails to improve that for phytoplankton (Figs. 4.3 and 4.4). 

Vertically viewed, both TN|  and TN|  effectively lift the depths of reference 



isotherm and isopleth of nitrate approaching the truth (Fig. 4.5). Overall TN|  yields 

lower  for temperature and nitrate than TN|  (Fig. 4.6).  

Method 2 “Multivariate updates | single data type” improves the physical and 

biogeochemical ocean model states more satisfactorily than Method 1 “Isolated updates” 

does.  

4.3.2.3. Method 3 “Joint updates | both data types” 

The last set of assimilation experiments used both data types (physical and 

biogeochemical observations) to provide a two-step update, where physical observations 

are assimilated first to update physical fields or both types of fields and biogeochemical 

observations are assimilated next to update biogeochemical fields only. I have also 

performed tests where in the second step biogeochemical observations are used to update 

both types of variables but found this slightly degraded the updated physical fields from 

step one, probably because in the first step physical observations already provide 

sufficient improvement to physical fields. Here I used a two-step update approach for two 

practical reasons: (i) its relatively lower computation cost, and (ii) ease of selecting 

subsets of variables to be updated. Theoretical considerations do provide some support for 

the two-step update. Specifically in a Bayesian formulation, if the observations have non-

correlated errors, one and two-step updates should produce the same results (e.g., 

Bierman 1977). I note however, this exact equivalence is broken by the presence of 

localization, inflation, and the linearity assumption underlying the EnKF. 

Compared with the physical DA runs (T| , T| , TN|  and TN| ), 

Method 3 runs (T| _B|chl, T| _B|chlN, TN| _B|chl and TN| _B|chlN) are as 

effective in increasing the surface nitrate, but underestimate surface phytoplankton 

slightly more during peak upwelling while agreeing better with the truth afterwards (Fig. 

4.2, sixth and seventh row). Similar to TB|chlN and physical DA runs, Method 3 

effectively raises the reference isopleth of nitrate to the truth (Figs. 4.4 and 4.5). However, 

T| _B|chl and TN| _B|chl lead to relatively high  for nitrate, similar to that 

in T|  and TN| , suggesting that the assimilation of additional surface chlorophyll 

has little information to constrain subsurface nitrate. With additional profile observations, 



T| _B|chlN and TN| _B|chlN simulate nitrate profiles that better delineate the true 

pattern throughout the water column (Fig. 4.5i, j) and substantially reduce  for 

nitrate than T| _B|chl and TN| _B|chl (Fig. 4.6).   

Table 4.2. Overview of assimilation effect on physical and biogeochemical model state 
variables in Scenario 1. The assimilation effect for each variable is quantified by the 
percentage change of  in each assimilation experiment relative to the Free run 

. A decrease larger than or equal to 10% is considered a “beneficial” effect 
(marked by green), an increase larger than or equal to 10% is considered “detrimental” 
(marked by blue), while less than 10% change is considered “neutral”. Variables that are 
not affected by assimilation in a specific experiment are left blank. 

 

Among all DA runs across different methods (with the same observation error 

applied), TN| _B|chlN generally yields the lowest  or  for all variables 

presented in Fig. 4.6 as well as zooplankton, small and large detritus listed in Table 4.2. 

Based on Table 4.2, the Method 2 and Method 3 generally yield beneficial effects on 

more biogeochemical variables than Method 1. Interestingly, despite the beneficial effects 

on phytoplankton in many assimilation runs, zooplankton is barely improved except in 

Unit: % Experiment SSH T NO3 Chl Phy Zoo SDet LDet NH4 

 
 

Method 
1 

B|chl   -4.9 -3.3 -9.7 -2.4 -7.0 -4.2 -3.8 
B|    +20 +13 -2.6 +14 +1.4 +15 +4.6 
B|chlN   -18 -2.1 -10 -4.2 -13 -8.7 -8.3 
B|chl    -22 +3.7 -3.9 -6.8 -14 -9.0 -9.9 
T|  -53 -25 +14 +5.0 -13 -4.9 -32 -20 +4.3 
T|  -58 -36 +24 +8.6 -10 -3.9 -29 -20 +5.7 

 
 
 

Method 
2 

TB|chl -4.9 -9.0 -10 -6.3 -10 -4.2 -8.1 -6.2 -5.1 
TB|  -12 +0.3 +11 -0.4 -9.8 -1.7 -8.5 -11 -5.8 
TB|chlN -25 -20 -33 -15 -19 -4.8 -23 -15 -5.4 
TB|chl  -29 -27 -41 -23 -28 -17 -32 -26 -11 
TN|  -53 -25 -5.8 +18 +1.2 -4.9 -32 -19 +4.0 
TN|  -58 -36 -24 +9.1 -7.2 -2.9 -28 -22 +5.7 

 
 

Method 
3 

T| _B|chl -53 -25 +13 -6.3 -20 -4.9 -32 -20 +4.2 
T| _B|chlN -58 -36 -21 -16 -23 -6.6 -33 -23 +4.4 
TN| _B|chl -53 -25 -0.2 -1.0 -12 -3.0 -31 -20 +4.5 
TN| _B|chlN -58 -36 -37 -13 -18 -11 -34 -31 +2.9 



TN| _B|chlN and TB|chl . I found that surface zooplankton is persistently 

underestimated in all assimilation runs (not shown), consistent with the lower grazing rate 

used in the biased model in Scenario 1. Also noticeable from Table 4.2 is that small and 

large detritus are improved in all assimilation runs except those only assimilating surface 

chlorophyll, while ammonium is least improved by assimilation among all variables.  

4.3.2.4 Nitrate and temperature correlation 

To investigate whether and to what degree the assimilation affects the correlation 

between temperature and nutrients, I present scatterplots of nitrate and temperature from 

the 28 stations shown in Fig. 4.1b at all assimilation dates (Fig. 4.7).  In the free run (Fig. 

4.7a), there is a tight correlation between temperature and nitrate in nitrate-rich subsurface 

water, the variance of the nitrate concentration around the best fit between nitrate and 

temperature is small and its PDF (probability density function) peaks sharply near 0 (Fig. 

4.7h). Compared to the free run, Method 1 runs that adjust only the nitrate or temperature 

fields (B|chlN in Fig. 4.7b and T|  in Fig. 4.7c) and a Method 3 run that has weak effect 

on nitrate with assimilation of surface chlorophyll (T|  _B|chl in Fig. 4.7d) degrade the 

temperature-nitrate relationship. In these cases the nitrate variance on temperature 

surfaces increases by more than 4 times and flatter, more skewed PDFs of nitrate result 

(Fig. 4.7h, i, j) compared to the free run. In contrast, assimilation runs in which 

temperature and nitrate are adjusted simultaneously either based on multivariate updates 

(Method 2 runs TB|chlN in Fig. 4.7e and TN|  in Fig. 4.7f, and Method 3 run 

TN| _B|chl in Fig. 4.7g) or by assimilating both fields (Method 3 runs T| _B|chlN 

and TN| _B|chlN, not shown) better preserve the temperature-nitrate relationship. In 

these multivariate update runs the nitrate variance increases much less (compared Fig. 

4.7e, f, g with Fig. 4.7b, c, d) and the PDF of nitrate is much sharper than in isolated 

update runs (Fig. 4.7h, i, j).   

  



 
Fig. 4.7. (a-g) Scatterplots of nitrate (NO3) and temperature (T) collected from 28 stations 
shown in Fig. 4.1b at all depths and at all analysis dates for the free run and different 
assimilation runs. The red line indicates the linear fit between nitrate and temperature for 
nitrate concentration between 2 and 12.5 mmol m-3. Variance (var) is calculated as the 
squared deviation of actual nitrate values from the linear fitted nitrate values at 
corresponding temperatures.  (h-j) Probability density function (PDF) of the deviation of 
actual nitrate values from fitted nitrate values for each run.  

 



4.3.3. Impact of assimilation on the forecast skill  

The comparisons of assimilation experiments in previous sections show that 

Method 2 “Multivariate updates | single data type” and Method 3 “Joint updates | both 

data types” improve ocean model fields more significantly and better preserve the 

temperature-nitrate correlation than Method 1 “Isolated updates”. Here I examine whether 

the different assimilation methods improve model forecast skill and how they differ.   

Figure 4.8 shows the difference of domain-averaged  and  

between the free and forecast runs for SSH, temperature, nitrate and phytoplankton, 

where a positive value indicates improvement by assimilation. It is evident that all 

assimilation methods improve model forecast skill in all or at least some model fields and 

display positive MAD differences for 10 to 25 days depending on the method and model 

field. Specifically for physical fields, Method 2 run TB|chlN improves forecast skill of 

SSH for 24 days and temperature fields for 15 days, which is as good as the physical DA 

runs (T|  and TN| ) and Method 3 runs (Fig. 4.8a, b, e). Assimilating additional 

temperature profiles slightly improves forecast skill for physical fields with overall higher 

MAD differences (e.g., compare T| _B|chlN and T| _B|chl in Fig. 4.8a, b, e).  With 

respect to nitrate, Method 2 (TB|chlN, TN| ) and Method 3 (all except T| _B|chl, 
which has little improvement on nitrate ) strongly improve forecast skill for 10 

days in surface waters and 12 days in the entire water column. By comparison, Method 1 

leads to smaller and shorter-lasting improvements (B|chlN) or even has a deleterious 

impact (T|  in nitrate).  Assimilating additional profiles brings extra improvement in 

forecast skill for nitrate (e.g., compare TN| _B|chlN and TN| _B|chl in Fig. 4.8f). 

For the phytoplankton field, the improvement in forecast skill from assimilation is 

sustained for longer, with positive  and  difference for 25 days in all 

forecast runs except for surface phytoplankton in TN| , and overall larger MAD 

difference in Method 3 runs than Method 2 or Method 1 runs (Fig. 4.8d, g).  

  



 
Fig. 4.8. Difference of domain-averaged (a-d)  and (e-g)  between the free 
run and forecast runs initialized from the ensemble analysis on day 140 (assimilation step 
17).  

 

4.3.4. Sensitivity of the assimilation methods to twin experimental design  

I have shown in the above sections that assimilation corrects the “underestimating 

upwelling and productivity” Scenario 1 by increasing the upwelling and/or concentrations 

of biogeochemical variables, with the improvements varying among different assimilation 

methods. The conclusions drawn in Scenario 1 hold in the contrasting Scenario 2 where 

upwelling and productivity are overestimated. Consistent with Scenario 1, Figure 4.9 

shows that when only assimilating surface chlorophyll, Method 2 run TB|chl only slightly 

outperforms Method 1 run B|chl with slightly reduced upwelling of cold water and nitrate 

to the surface. However, when additional nitrate profiles are assimilated, the improvement 

by Method 2 run TB|chlN over Method 1 run B|chlN is clear with both, surface 

temperature and nitrate, substantially improved. Assimilating physical observations 

satisfactorily improves surface temperature and results in a better representation of 

surface nitrate when nitrate is updated along with temperature (TN|  compared with 

T| ). However, both runs, particularly T| , substantially increase surface 

phytoplankton, leading to even larger overestimation of surface phytoplankton than in the 

free run (Fig. 4.9). The elevated production at the surface is partially associated with 

spurious fluctuations in vertical velocity when physical fields are significantly adjusted 



(e.g., see higher Root Mean Square (RMS) vertical velocity in TB|chlN, TN|  and 

TN|  in Fig. D1 in the Appendix D). As a result, more nutrients are brought from the 

subsurface to the surface. The problem of overestimating surface phytoplankton is 

substantially mitigated when surface chlorophyll and nitrate profiles are assimilated in 

addition to physical observations in TN| _B|chlN (Fig. 4.9).  

Fig. 4.9. Same as Figure 4.2 but for the “overestimating upwelling and productivity” 
Scenario 2 twin experiments.  
 



The quantitative effects are summarized in Table D1 in the Appendix D. 

Compared to Scenario 1, the beneficial effects on biogeochemical variables in Scenario 2, 

in terms of  reduction, are weaker, but the degradation of biogeochemical fields 

(except surface nitrate) when assimilating physical observations to update physical fields 

alone (T| ) is clearer. Consistent with Scenario 1, Table D1 shows that Method 2 

outperforms Method 1 also in Scenario 2 with lower  and  for all 

biogeochemical variables. Overall, Method 3 yields the lowest  or  for 

physical and biogeochemical variables.  

4.4 Discussion 

I have performed a series of twin experiments comparing different assimilation 

strategies in an idealized upwelling channel that is subject to biased physics, i.e. with 

weaker or stronger upwelling than the truth, and biased biology, i.e. with perturbed 

biogeochemical parameters. The results show that updating the biogeochemical or 

physical model state alone (Method 1 “Isolated updates”) is not sufficient for improving 

the biogeochemical ocean state and forecasts. Without addressing the issue of biased 

upwelling, which is at the root of the inaccurate simulation of biogeochemical fields, any 

corrections to the biogeochemical fields during assimilation updates dissipate quickly and 

do not lead to sustained improvements. When adjusting the physical model state alone, 

subsurface nitrate distributions are degraded and surface productivity is overestimated 

despite substantial improvements in physical fields. The degradation in biogeochemical 

fields is primarily due to two issues: the increased nutrient variance on temperature iso-

surfaces when only adjusting the temperature or nutrient field, and the spurious, high 

vertical velocities when physical fields are substantially adjusted. Both issues can result in 

unreasonable nutrient inputs to the euphotic zone as has been reported in Raghukumar et 

al. (2015). 

My experiments show that simultaneously adjusting physical and biogeochemical 

fields is key to avoid breaking the temperature-nutrient relationship, and to improve the 

biogeochemical ocean model state estimation.  The simultaneous update can be achieved 

by Method 2 “Multivariate updates | single data type”, which takes advantage of the 



correlation between physical and biogeochemical fields and the multivariate nature of the 

Kalman filter, or by Method 3 “Joint updates | both data types”, which assimilates 

physical and biogeochemical observations sequentially. In realistic applications, Method 

3 is more cumbersome because physical and biogeochemical observations may not be 

available concurrently.  This makes the remarkable improvement obtained by Method 2 

very attractive when only one type of observations is available. In my case, the extra 

benefit of Method 2 over Method 1 results from a strong correlation between the 

biogeochemical (or physical) observations and the unobserved physical (or 

biogeochemical) model fields to be updated, specifically temperature and nitrate. For 

example, assimilating surface chlorophyll alone leads to limited improvement on the 3D 

biogeochemical state estimation even when correcting both physical and biogeochemical 

fields, because the correlation between surface chlorophyll and interior temperature and 

nitrate fields is weak. This is also confirmed by the sensitivity tests which show that 

assimilating surface chlorophyll with lower observation error increases the  for 

temperature and nitrate despite the improvement in surface phytoplankton. In contrast, 

when additional nitrate profiles are assimilated, the biogeochemical state is much 

improved and the superiority of Method 2 over Method 1 is much clearer. Reducing the 

observation error of nitrate profiles further reduces  for all physical and 

biogeochemical model fields (compare TB|chlN and TB|chl  in Table 4.2).  

Other studies have reported similar success in taking advantage of the relationship 

between temperature (or density) and nutrients using methods other than EnKF. While et 

al. (2010) showed that applying an increment to the nutrient field based on the nutrient-

potential density relationship during the physical data assimilation improves nutrient 

distribution. Shulman et al. (2013) found that instantaneously updating nitrate based on 

observation-derived statistical relations between temperature and nitrate improves model 

nitrate fields.  

Coupled physical-biogeochemical data assimilation as in Method 3 “Joint updates 

| both data types” has demonstrated success in a few studies using methods other than 

EnKF (Anderson et al., 2000; Ourmières et al., 2009; Song et al., 2016a, b, Mattern et al., 

2016). Here I demonstrate the advantages of Method 3 for the EnKF. My results add that 



even when physical and biogeochemical observations are assimilated using Method 3, 

updating physical and biogeochemical fields simultaneously with physical observations 

can result in a bigger improvement in the biogeochemical model state (e.g., see higher 

forecast skills in TN| _B|chl and TN| _B|chlN in relative to T| _B|chl and 

T| _B|chlN in Fig. 4.8c, f).  This is especially true when the available biogeochemical 

observations are not able to effectively constrain the biased biogeochemical fields, i.e. 

T| _B|chl (where only surface chlorophyll is assimilated to update the biology) fails to 

reduce the increased nitrate variance on temperature surfaces following assimilation of 

physical data.  

I notice that despite the remarkable improvement in nitrate in Method 2 and 3 runs 

which assimilate nitrate profiles (TB|chlN and T| _B|chlN), discrepancies between the 

domain-averaged surface phytoplankton (Figs. 4.2 and 4.9) in the DA runs and the truth 

remain. I attribute these discrepancies to a combination of two factors. First, the relatively 

high observation error of 35% for chlorophyll results in more modest DEnKF updates 

than a smaller observation error would. An uncertainty of 35% is typically used for 

satellite chlorophyll and has been adopted in several prior assimilation studies (e.g., 

Ciavatta et al., 2011; Hu et al., 2012).  The sensitivity experiments show that reducing the 

chlorophyll observation error could drive surface phytoplankton closer to the truth (e.g., 

compared B|  with B|chl, and TB|  with TB|chl in Fig. 4.2). Second, I forced 

the ensemble of free and DA runs with phytoplankton initial slopes and zooplankton 

grazing rate values that are 40% lower than those for the truth in Scenario 1 and 40% 

higher in Scenario 2, which act to exacerbate the underestimation or overestimation of 

productivity. The two factors contributing to the bias in phytoplankton estimation, in 

addition to the biased physical fields, can also explain the inaccurate zooplankton which 

is consistently underestimated in Scenario 1 and overestimated in Scenario 2. 

Improvements could be achieved by applying bias correction methods such as state 

augmentation to simultaneously estimate and correct biased parameters with the model 

state variables (e.g., see review in Dee 2005, and more recent biogeochemical ocean 

model applications in Simon et al., 2015 and Gharamti et al., 2017a, b) and will be the 

focus of future work. 



I would also like to note that in my experiments, assimilating SSH and SST alone 

(e.g., TN| ) is almost as effective as assimilating additional temperature profiles (e.g., 

TN| ) in lifting the depths of the reference isotherm and isopleth of nitrate toward the 

truth, primarily due to the tight correlation between SSH and model interior density and 

nutrient structures (Wilson and Adamec, 2002). It should be noted, however, that surface 

heat flux was not included in my model simulations. I expect that the performance of 

assimilating SST to update the thermocline will diminish as surface heat fluxes modify 

upper water temperatures. Nevertheless, TN|  outperforms TN|  with clearly lower 

 for temperature, nitrate and phytoplankton, demonstrating the importance of 

assimilating additional subsurface observations in improving the accuracy of estimated 

3D fields beyond the position of the thermocline and nutricline. 

To date, satellite chlorophyll, SST and SSH observations are the main observation 

streams for data assimilation due to their excellent spatial and temporal resolution and 

almost real-time accessibility for most regions of the world’s oceans.  Fortunately with 

the rapid expansion of ocean observing platforms, profiles of physical and 

biogeochemical variables from floats and gliders will become more abundant and 

available for data assimilation to further improve model estimation and prediction. 

4.5 Summary   

In this chapter I have assessed the impacts of updating physical and 

biogeochemical model fields individually versus simultaneously via different DA 

strategies on ocean ecosystem estimation and prediction. I found that adjusting the 

physical or biogeochemical model state alone (Method 1 “Isolated updates”) degrades the 

tight correlation between temperature and nitrate and is insufficient to improve 

biogeochemical ocean state and prediction. Simultaneous multivariate or sequential 

updates to physical and biogeochemical fields are required to avoid degrading the 

temperature and nitrate relationship and to strongly improve the biogeochemical model 

state. Simultaneous updates can be realized through Method 2 “Multivariate updates | 

single data type” by assimilating either physical or biogeochemical observations to update 

both model fields or Method 3 “Joint updates | both data types” that sequentially 



assimilates physical and biogeochemical observations. Surface chlorophyll is of limited 

use for improving the 3D model state in my idealized upwelling system even when 

correcting physical and biogeochemical fields because the correlation between surface 

chlorophyll and interior nitrate and density structures is weak. This highlights the 

importance of collecting subsurface information for improving biogeochemical ocean 

model state. Overall, Method 3 “Joint updates | both data types” outperforms Method 2 

“Multivariate updates | single data type” in terms of skill metrics, while Method 2 

represents a capable alternative when only physical or biogeochemical observations are 

available.  



CHAPTER 5 

ENSEMBLE DATA ASSIMILATION FOR IMPROVING 

THE SIMULATION OF CIRCULATION AND MOVEMENT 

OF A DEEP-WATER HYDROCARBON PLUME IN THE 

GULF OF MEXICO 

5.1 Introduction 

Accurate estimates of ocean circulation are essential for predicting transport of ocean 

biogeochemical constituents and pollutants, assessing environmental impacts, and 

managing accident response efforts. This is particularly true for the Gulf of Mexico 

(GOM), which has rich fisheries, diverse ecosystems, and marine protected areas but also 

experiences significant anthropogenic pressures from oil and gas extraction, including 

deep-sea oil drilling, and river discharge of excess nutrients to the northern shelf leading 

to widespread seasonal hypoxia there (Sturges and Lugo-Fernández, 2005). The explosion 

of the offshore drilling rig Deepwater Horizon (DwH) in April 2010 delivered an 

unprecedented quantity of crude oil (4.9 million barrels) into the GOM (Camilli et al., 

2010) and served as a clear demonstration of the need for reliable circulation forecasts to 

aid in response and mitigation actions after the incident. 

Circulation in the deep basin of the GOM is dominated by the intrusion of the 

Loop Current (LC) which aperiodically sheds large anticyclone eddies (known as Loop 

Current eddies, LCEs) (Sturges and Leben, 2000). The LC is a warm ocean current, 

originating in the Caribbean Sea, which flows northward into the GOM via the Yucatan 

Strait, and then loops east and south before exiting through the Florida Straits and feeding 

the Gulf Stream. Circulation on the continental shelves of the GOM is largely driven by 

wind and freshwater discharge from rivers with distinct seasonal variability (Morey et al., 

2005). Interactions between the shelf and the deep ocean circulation occur through 

onshore/offshore transports, though constrained by the conservation of potential vorticity 

(Schmitz et al., 2005; Zavala-Hidalgo et al., 2014).  



Numerous observational and modeling studies have advanced our understanding 

of the ocean circulation in the GOM (see, e.g., contributions in Sturges and Lugo-

Fernández 2005, Lugo-Fernández 2016). These studies demonstrate that observations 

(either from satellites or in situ) and numerical models are complementary and 

indispensable resources to increase knowledge of the GOM circulation, and that 

combining the two via data assimilation (DA) is necessary to accurately hindcast/forecast 

the circulation given its complexity and broad range of spatial and temporal scales.  

Earlier data assimilation efforts in the GOM have assimilated satellite sea surface 

height (SSH) with or without sea surface temperature (SST) and/or in situ data using 

simple techniques such as optimal interpolation (OI) (e.g., Wang et al., 2003; Kantha et 

al., 2005; Oey et al., 2005b; Chassignet et al., 2007) or a combination of OI and nudging 

(Fan et al., 2004; Lin et al., 2007). Despite their simplicity, the assimilation methods 

demonstrated that assimilation of satellite altimetry data improves model skill in 

reproducing mesoscale (10-100 km) circulation variability, primarily associated with 

dynamics of the LC and LCEs. However, some studies found that smaller-scale eddies in 

the shelf break and slope regions of the GOM are not reproduced by assimilating SSH 

data alone (Wang et al., 2003) but require inclusion of higher-resolution localized data 

such as drifters (Lin et al., 2007). This is primarily because satellite altimetry currently is 

capable of resolving large-scale to mesoscale structures but not submesoscale processes 

(100 m - 10 km) (Jacobs et al., 2014; Berta et al., 2015). Other in situ datasets, such as 

temperature and salinity profiles and surface drifter observations of velocity, have been 

reported as valuable complementary datasets in further improving model-simulated 

temperature fields (Shay et al., 2011), and velocity and trajectory estimates (Carrier et al., 

2014; Muscarella et al., 2015) in the upper ocean of the GOM.  

Advances in computing power in the past decades have spurred the application of 

more advanced ensemble DA techniques for the GOM with two benefits. First, ensemble 

mean forecasts can outperform the conventional single forecast of flow fields in the GOM, 

as shown by both Yin and Oey (2007) and Khade et al. (2017) who performed ensemble 

forecasts with perturbed initial fields obtained by the breeding method introduced in Toth 

and Kalnay (1993). Second, ensemble spread can provide confidence indices for the 



ensemble mean forecast, as demonstrated in Counillon and Bertino (2009a, b) who used 

the Ensemble Optimal Interpolation (EnOI) method to assimilate altimetry data and show 

success in forecasting LC eddy shedding. 

The Ensemble Kalman Filter (EnKF) is an alternative ensemble DA technique 

with the advantage that a flow-dependent background error covariance is used in contrast 

to the time-invariant covariance in OI- or variational-based DA systems. When 

assimilating SSH, the multivariate EnKF propagates SSH information into temperature 

and salinity profiles based on the correlations between SSH and temperature and salinity 

fields contained in the ensemble covariance. Hoteit et al. (2013) applied the EnKF to an 

ocean circulation model of the GOM with a horizontal resolution of 1/10 , and showed 

that the DA system realistically reproduced the evolution of the LC when assimilating 

weekly satellite SSH and SST data.  Xu et al. (2013) implemented a variant of the EnKF 

method into a GOM model and found that it reproduced the position of LCEs and the 

strength of the LC more accurately in hindcast and forecast mode than OI due to the 

EnKF’s time-evolving error covariance.  

A practical limitation of the GOM assimilation efforts described above is that the 

skill assessments of the hindcasts or forecasts were mostly relying on comparisons against 

surface or near-surface observations (e.g., SSH, SST, surface velocities) largely due to a 

lack of observations at depth.  Necessarily, these previous assimilation studies focussed 

on the improvements of the dynamics of the LC and associated eddies and/or surface 

current fields observeable from satellite or drifters without direct examination of the 

impact of assimilation on subsurface flow fields. As the deep-water oil spill at the DwH 

rig has shown, knowledge of an assimilation system’s skill in simulating the subsurface 

circulation is important for prediction of deep hydrocarbon plume transport and design of 

effective response efforts.  

One approach for skill assessment of a DA system is to conduct twin experiments 

(e.g., Anderson 1996; Halliwell et al., 2014). The essential idea is to predefine a 

simulation as the “truth,” sample synthetic observations from this “truth,” assimilate these 

into a different simulation referred to as the forecast run, and assess the skill against 



independent observations sampled from the “truth.” If the chosen truth and forecast runs 

are from different model types or significantly different configurations of the same model 

type (e.g., using different physical parameterizations or spatial resolution) the method is 

referred to as the ‘fraternal twin’ approach; otherwise, if the same model but with 

perturbed initial, forcing or boundary conditions is used, the method is referred to as the 

‘identical twin’ approach (Halliwell et al., 2014). The identical twin approach can provide 

biased impact assessments when the error growth rate between the truth and forecast runs 

is insufficient. To avoid this potential bias in impact assesments, Halliwell et al. (2014) 

suggested that the model for the forecast run should be configured differently enough 

from that for the truth run so that error growth between them has the same magnitude as 

the error growth between state-of-the-art ocean models and the true ocean. In practice this 

is difficult to assess. Halliwell et al. (2014) showed that alternatively one can compare the 

assimilation impact in the fraternal twin framwork with that in a realistic configuration; if 

similar impact is obtained in both twin and realistic configurations, the fraternal twin DA 

framwork can be considered rigorous for assessing assimilation impact and conducting 

Observing System Simulation Experiments (OSSEs).  OSSEs are useful for evaluating the 

impact of an ocean observing systems prior to deployment and/or the impact of alternate 

designs of existing systems (e.g., Halliwell et al. 2015). 

Collectively previous assimilation studies in the GOM demonstrate the high 

potential of applying DA to improve model hindcasts/forecasts of circulation features in 

the GOM, but assessments of DA systems are limited and especially rare for subsurface 

waters. The objectives of this chapter are to develop an EnKF-based assimilative model to 

rigourously assess the model’s skill and different observing system configurations 

through fraternal twin experiments and in realistic assimilation mode, and to assess the 

impact of the data assimilation system on the distribution of a simulated deep-water 

hydrocarbong plume through identical twin experiments. Specifically, the following 

questions are addressed: i) What are the relative benefits of assimilating temperature and 

salinity profiles versus satellite data in improving the skill of different physical variables 

in the model? ii) Can the identical twin approach yield impact assessments consistent with 

those using the fraternal twin approach? iii) Does the assimilation system’s skill in 



reproducing the satellite-observed dynamics of the LC and associated eddies in the GOM 

translate into skill in simulating the subsurface circulation? And iv), does an improved 

simulation of circulation of the deep GOM lead to improvements near the DwH spill site 

and more accurate simulation of the deep-water hydrocarbon plume?  

Toward the objectives the following steps are taken. First, I implement the EnKF 

technique in a high-resolution ROMS model configured for the GOM. The physical 

model is coupled with a simple hydrocarbon model that includes two hydrocarbon tracers 

to mimic the neutrally buoyant fractions (i.e., insoluble and soluble) of the deep-water oil 

plume emanating from the DwH spill site. I then conduct a rigorous skill assessment of 

the assimilation system using fraternal twin experiments where the “truth” is a data-

assimilative global Hybrid Coordinate Ocean Model (HYCOM) simulation (Chassignet et 

al., 2009). Motivated by the practical interest of tracking the deep-water hydrocarbon 

plume from the DwH spill, the assimilation impact on the subsurface circulation (between 

200 m and 1000 m) is emphasized, and the degree of improvement in the open GOM 

(where mesoscale processes like LC and LCEs dominate) and in the shelf-break region 

near the DwH site (where submesoscale processes are important and impacts of open 

ocean, bathymetry and local wind and river forcing coexist) is compared. The assimilation 

system is then applied in a realistic configuration by assimilating real satellite SSH and 

SST data and profile observations. Lastly, a series of identical twin experiments is 

conducted with the ROMS physical-hydrocarbon model to investigate the assimilation 

impacts on the movement of the deep-water hydrocarbon plume.  

5.2 Model description and experimental setup 

5.2.1 The coupled physical-hydrocarbon model 

The circulation model is a configuration of ROMS for the entire GOM (Fig. 5.1). 

The model has a horizontal resolution of 5 km and 36 terrain-following vertical layers 

with higher resolution near the surface and bottom layers. Vertical turbulent mixing is 

parameterized using the Mellor and Yamada (1982) Level 2.5 closure scheme, and bottom 

friction is specified using a quadratic drag formulation. The model utilizes a third-order 

accurate, non-oscillatory HSIMT (High-order Spatial Interpolation at the Middle 



Temporal level) (Wu and Zhu, 2010) advection scheme for tracers, which is mass-

conservative and positive-definite with low dissipation and no overshooting. The model is 

forced with 6-hourly atmospheric surface forcing from the European Centre for Medium-

Range Weather Forecasts (ECMWF) global atmospheric reanalysis (Dee et al., 2011).  

River input is included using daily runoff data from US Geological Survey river gauges 

along the coast. For open-boundary conditions, the model is one-way nested inside the 

1/12  data-assimilative global HYCOM (Chassignet et al., 2009). Tidal forcing is 

neglected because tides are small in the GOM. 

 

 

 

 



 
Fig. 5.1. Model domain and bathymetry. The red star denotes the location of the 
Deepwater Horizon oil rig. (a) The symbols represent stations where temperature (circles) 
and salinity (magenta diamonds) profiles were collected by Shay et al. (2011), with deep 
temperature or salinity profiles (down to 1000 m) marked as filled circles or magenta 
diamonds and shallow temperature profiles (down to 400 m) as open circles. This 
sampling scheme was used for twin experiments F2 and I2. The white rectangle indicates 
a subregion used for averaging. (b) Sampling scheme for twin experiments F3 and I3. The 
dots represent stations where temperature and salinity profiles extending to 1000 m depth 
were sampled from the truth run. 

 

 



The model includes two hydrocarbon tracers, HydroC1 and HydroC2, to represent 

the insoluble and soluble fractions of the deep-water oil plume, respectively. Hydrocarbon 

weathering and removal in the water column are prescribed by a constant decay rate (r). 

The equation for the evolution of hydrocarbon tracers, denoted as C, can be written as:   

                                        (5.1) 

where the four terms on the right-hand side represent horizontal and vertical advection, 

vertical diffusion, hydrocarbon source term and decay of hydrocarbon, respectively. 

Specifically, x and y represent the two horizontal coordinates and z the vertical 

coordinate, u, v, and w (m s-1) are velocity components in x-, y-, and z-coordinates, 

respectively,  is the vertical diffusivity (m2 s-1),  represents the hydrocarbon source (kg 

m-3 d-1), and  represents hydrocarbon decay rate (d−1). Horizontal diffusion of 

hydrocarbons is considered very small compared to other terms and neglected in equation 

(5.1) but is non-zero for temperature and salinity. The hydrocarbon sources  for the two 

tracers are based on the measurements of hydrocarbon flow rate and compositions of 

hydrocarbon in Ryerson et al. (2012). According to Ryerson et al. (2012), the 

hydrocarbon mass flux into the deep plume was around 3.4 106 kg d-1 averaged over the 

87-day spill period (20 April to 15 July 2010), with the insoluble and soluble fractions 

contributing to 31% and 69% of the deep plume mass, respectively. Therefore, I assumed 

spill rates of 1.05 106 kg d-1 and 2.35 106 kg d-1 for HydroC1 and HydroC2, respectively 

during the oil spill period, and 0 kg d-1 before or after. In the model, the hydrocarbons 

were released only into the grid cell closest to the DwH location centered at 1100 m. 

Dividing the spill rates by the volume of this grid cell yields the oil source term values S 

for the two hydrocarbon tracers 4.3 10-4 and 1.4 10-3 kg m-3 d-1, respectively. At all other 

grid cells in the domain, the hydrocarbon sources are set to 0. The hydrocarbon decay 

rates are uncertain. A half-life of 3.05 day (corresponding to a decay rate of 0.23 d-1) is 

adopted for the soluble fraction HydroC2 following North et al. (2015) and a half-life of 

13.86 day (decay rate of 0.05 d-1) for the slower-decaying insoluble fraction HydroC1. 

The latter is based on sensitivity tests using different decay rates for HydroC1; the one 

that led to the simulated hydrocarbon concentrations closest to the available 



measurements in August 2010 was chosen. Model simulations were run from 1 April to 1 

October 2010.  

The skill of the model without data assimilation is very important in a DA system, 

because the model controls the propagation and growth of errors. Previous studies in the 

GOM have highlighted two important aspects for model skill, namely a sufficiently high 

horizontal resolution to represent mesoscale dynamics (e.g., Chassignet et al., 2005) and 

accurate representation of the LC inflow through the Yucatan Straits (e.g., Oey, 2003). 

My ROMS model generally meets the two requirements in that its 5-km horizontal 

resolution is sufficient to resolve mesoscale processes (the baroclinic Rossby radius is 30 

to 40 km in the central GOM, see, e.g., Oey et al., 2005); and that the ROMS model is 

nested in a data-assimilative HYCOM model that simulates an accurate structure of the 

LC and its eddies through assimilation. Initial model-data comparisons to assess the 

model’s skill showed that it has skill in simulating the dominant features of the LC 

intrusion although it tends to overestimate the northward extension of LC. The model 

simulation also shows reasonably good agreement when compared with Argo temperature 

and salinity profiles. With respect to hydrocarbons, the model is able to simulate the 

observed westward extension of the deep-water oil plume.   

5.2.2 Experimental framework 

The DEnKF technique described in Chapter 4 was implemented in the GOM 

model. The robustness of the assimilation system as well as the impact of assimilation on 

physical variables are assessed through fraternal twin experiments, and in an assimilation 

experiment with real observations. Also, the impact of assimilation on hydrocarbon plume 

movement is assessed through identical twin experiments. The three groups of 

experiments (i.e., fraternal twin, realistic assimilation, and identical twin) share the same 

ROMS model and utilize the similar assimilation configurations as described in more 

detail below.   

 

 



5.2.2.1 Fraternal twin experiments  

In the fraternal twin experiments, the “truth” is generated by interpolating the 

daily outputs of the 1/12  data-assimilative global HYCOM (Chassignet et al., 2009) onto 

the ROMS model grid. Synthetic observations are sampled from the truth, including SSH, 

SST, and temperature and salinity profiles. Typical Gaussian observation errors of N(0, 2 

cm) for SSH, N(0, 0.3 °C) for temperature (both SST and temperature profiles), and N(0, 

0.01) for salinity are added to the sampled data. SSH and SST are sampled weekly at 

every fifth horizontal grid point to yield a spatial resolution similar to that of the real 

satellite SSH and SST observations (both at 1/4  resolution) assimilated in the realistic 

configuration. In addition, SSH in regions shallower than 300 m is not used for 

assimilation because satellite altimetry data is less accurate in coastal areas. For SST, only 

those in regions shallower than 10 m are excluded. Importantly when preparing the 

synthetic SSH observations, the mean dynamic topography (MDT) of the HYCOM truth 

run had to be removed from the sampled SSH data and the MDT of the ROMS model had 

to be added. The MDTs of the HYCOM and ROMS models were obtained by averaging 

their respective daily SSH outputs from 2010 to 2016. Temperature and salinity profiles 

were sampled with two different sampling schemes (see locations in Fig. 5.1). The first 

scheme adopts the sampling dates and locations used in the survey described in Shay et al. 

(2011). The key features of this scheme are: i) the sampling is centered on the LC region; 

ii) the majority of the temperature profiles are limited to the upper 400 m; and iii) very 

few salinity profiles were collected. The second scheme represents an extended coverage, 

where temperature and salinity profiles are simultaneously sampled at a horizontal 

resolution similar to the first scheme but covering the central GOM, extending vertically 

to 1000 m depth, and sampled on 23 instead of 9 dates.   

A non-assimilative run, subsequently referred to as the free run, is initialized on 1 

April 2010 from the global HYCOM. This ROMS simulation is used to evaluate the 

impact of the assimilation by comparisons with data-assimilative runs. SSH and 

temperature and salinity transects of the truth and free runs on 28 May (58 days after 

initialization) are shown in Figure 5.2. In the truth, an anticyclonic eddy has already shed 

from the LC (Fig. 5.2a), while in the free run the eddy is forming but has not yet detached 



from the LC (Fig. 5.2a). In the vertical view, the differences in temperature and salinity 

between the truth and free runs are most significant within the LC’s vertical extent (top 

~800 m). This comparison illustrates that the free run approximately satisfies the 

requirements of a credible twin experiment suggested in Halliwell et al (2014). It is able 

to reproduce the key feature of the ocean phenomenon (i.e. the LC intrusion) with some 

realism, and there are sufficient differences (errors) between the free and truth runs for the 

assimilation method to correct. 

 
Fig. 5.2. Sea surface height (SSH, cm), and transects of temperature (T, ) and salinity 
(S) on 28 May 2010. Panels a, d, and g are from HYCOM and used as the truth in the 
fraternal twin experiments. Panels b, e, and h are from ROMS and used as truth in 
identical twin experiments. Panels c, f, and i are from the free ROMS run. The gray 
contour in the SSH maps marks the bathymetric depth of 300 m, and the red dashed line 
shows the position of the transect in panels d to i. 
 

In the DA experiments, 20-member ensembles of model integrations are started 

from different initial conditions and forced by perturbed boundary conditions and wind 

fields. The initial conditions were created by using three-dimensional (3D) fields from 

daily HYCOM outputs within a 20-day window centered on the initialization date 1 April 

2010. The boundary conditions were generated by applying a time lag of up to +/-10 days 

to the boundary condition (i.e., the first member’s boundary conditions are 10 days ahead 



while the 20th member’s are 10 days behind the actual date) following Counillon and 

Bertino (2009). The perturbed wind fields were created by first conducting an empirical 

orthogonal function (EOF) decomposition of the wind field and then adding perturbations 

from the mixture of first 4 EOF modes to the wind field, where the four perturbation 

modes were multiplied with zero-mean unit-variance random numbers and a scale factor 

of 0.5 similar to Thacker et al. (2012) and Li et al. (2016).  

The ensemble size of 20 was chosen largely due to the limitations on the 

computing resources available. However, this small size works reasonably well in my 

application and has been successfully applied in previous ensemble-based assimilation 

studies (e.g., Hu et al., 2012; Mattern et al., 2013). Distance-based localization with an 

influence radius of 50 km was applied as described in Evensen (2003) to prevent the 

potential negative effects of spurious correlations between distant grid points that can 

result from relatively small ensembles. Furthermore, an inflation factor of 1.05 was 

applied to the ensemble anomalies inflating the ensemble around its mean at every 

assimilation step (Anderson and Anderson, 1999) to account for the underestimation of 

the forecast error covariance due to the small ensemble size. The localization radius and 

inflation factor are both based on initial tests and were selected to best reduce the model-

data misfit without losing ensemble spread or generating discontinuities in the analysis 

fields. Finally, a post-processing procedure was performed after each assimilation step, 

which reset any negative values of temperature or salinity analysis to their corresponding 

forecast values (less than 0.1% of grid cells were affected by this throughout the 

assimilation period). 

Observations are assimilated weekly from 2 April to 3 September 2010 updating 

the 3D temperature and salinity fields by taking advantage of the multivariate nature of 

the EnKF. After the last assimilation step on 3 September 2010, the ensemble of 

simulations is run without any data assimilation for 4 more weeks. An overview of the 

three assimilation experiments (referred to as F1, F2 and F3) is presented in Table 5.1. 

Model-data misfit is quantified by computing the Mean Absolute Deviations (MAD) of 

model simulations and the truth or real observations. For ensemble assimilation runs the 

forecast ensemble mean at assimilation steps is used for calculating the MAD.  



Table 5.1. Overview of data assimilation twin experiments. Capital letters F and I refer to 
fraternal twin and identical twin experiments, respectively.  Sampling scheme for twin 
experiments F2 and I2 is based on the actual sampling locations and dates for temperature 
and salinity profiles in Shay et al. (2011). 

Experiment Synthetic observations assimilated 

F1 & I1 Weekly SSH and SST within regions deeper than 300 m and 10 m, respectively. 
F2 & I2 Weekly SSH and SST as in F1 and I1, and temperature and salinity profiles at 9 

sampling dates from 8 May to 9 July 2010 and at locations shown in Fig. 5.1a 
- 472 temperature and 34 salinity profiles  
- 363 of the temperature profiles are sampled to depth < 400 m 

F3 & I3 Weekly SSH, SST as in F2 and I2, and weekly 108 temperature and salinity 
profiles that extend to 1000 m at locations shown in Fig. 5.1b. 

 

5.2.2.2 Data assimilation experiment assimilating real observations 

The DA experiment assimilating real observations is similar to the fraternal twin 

experiment F2 except that Sea Level Anomaly (SLA) from AVISO (Archiving Validation 

and Interpretation of Satellite Oceanographic Data, http://www.aviso.oceanobs.com/),  

1/4  SST from the AVHRR (Advanced Very High Resolution Radiometer, 

http://marine.copernicus.eu/), and temperature and salinity profiles from Shay et al. 

(2011) are assimilated.  Similar to the procedure in the fraternal twin, an MDT obtained 

from the 7-year averaged SSH of the free-running ROMS model was added to the satellite 

SLA. Argo temperature and salinity profiles (http://www.usgodae.org/) available during 

the simulation time were not assimilated but retained for an independent skill assessment.  

5.2.2.3 Identical twin experiments 

The identical twin experiments have similar setup as the fraternal twin 

experiments except the “truth” is generated from a ROMS simulation that differs from the 

free run only in its initial conditions, boundary conditions and wind forcing. More 

specifically, the truth run is started from an initial state on 1 April 2010 sampled from an 

earlier spinup ROMS simulation, and forced with boundary conditions that are lagging 

behind those of the free run by 14 days and wind fields reconstructed from the first 10 



EOFs of the realistic ECMWF wind. Since the same model architecture is used in free and 

reference runs, there is no need to correct MDT when sampling SSH observations. A 

comparison of the truth and free runs in the identical twin setup is shown in Fig. 5.2, 

where differences between the truth and free runs in SSH and subsurface temperature and 

salinity fields are obvious and qualitatively comparable to the difference between the truth 

and free runs from the fraternal twin setup.  

Similar to the fraternal twin setup, three data assimilation experiments (I1, I2 and 

I3) are conducted in the identical twin framework assimilating only SSH and SST weekly 

or with additional temperature and salinity profiles using the two different sampling 

schemes described earlier (Table 5.1).  

5.3 Results  

5.3.1 Impact of assimilation on physical variables: fraternal twin experiments 

First, the impact of the assimilation system on physical variables in the fraternal 

twin experiments (F1, F2 and F3) is described. The overall improvement of physical 

variables throughout the open Gulf (defined as regions deeper than 300 m) is assessed by 

quantifying the reductions in MAD between the assimilation run and the free run.  

Figure 5.3 shows the temporal evolution of domain-averaged MAD. Temporally 

and spatially averaged MAD are summarized in Table 5.2.  Assimilating SSH and SST in 

F1 significantly reduces the MAD of SSH (reduction of 51%), temperature (29%) and 

velocity fields (25%), and slightly reduces MAD in salinity (11%). After the last 

assimilation step, MAD remain reduced for 4 weeks. Assimilating additional temperature 

and salinity profiles (in F2 and F3) further benefits the simulation of temperature and 

especially salinity fields, in particular in F3, where MAD in salinity are reduced by 23%. 

However, there is almost no effect on MAD of SSH and velocity fields from assimilating 

additional profiles (comparing F2 and F3 to F1). 

 
 



Table 5.2. Mean Absolute Deviations (MAD) from the “truth” of physical variables for 
free and data assimilation runs in fraternal twin and identical experiments. The MAD 
were averaged over all grid cells excluding the shelves (defined by water depths  300 m) 
and daily snapshots from 1 April to 1 October 2010.  At assimilation steps the forecast 
ensemble mean was used for the calculation. The percentage change relative to the free 
run is presented in parentheses. The location of the subregion used for averaging 
velocities in the last two columns is shown as a white rectangle in Fig. 5.1a. 
 

 SSH (cm) T ( ) S  u (m/s) v (m/s) u (m/s) 
in subregion 

v (m/s) 
in subregion 

Fraternal twin 
Free 11 0.72 0.15  0.11 0.11 0.13 0.084 
F1 5.3 (-51%) 0.51 (-29%) 0.13 (-11%) 0.079 (-25%) 0.079 (-25%) 0.090 (-28%) 0.067 (-20%) 
F2 5.3 (-52%) 0.50 (-30%) 0.13 (-13%) 0.079 (-26%) 0.080 (-24%) 0.088 (-30%) 0.065 (-23%) 
F3 5.4 (-51%) 0.48 (-33%) 0.11 (-23%) 0.078 (-27%) 0.079 (-26%) 0.089 (-29%) 0.064 (-24%) 
Identical twin 
Free 10 0.58 0.093 0.10 0.10 0.11 0.087 
I1 4.2 (-59%) 0.32 (-45%) 0.073 (-21%) 0.055 (-47%) 0.055 (-46%) 0.065 (-41%) 0.052 (-40%) 
I2 4.1 (-60%) 0.31 (-47%) 0.072 (-23%) 0.055 (-47%) 0.054 (-47%) 0.064 (-42%) 0.051 (-41%) 
I3 4.4 (-57%) 0.29 (-50%) 0.068 (-27%) 0.056 (-46%) 0.055 (-46%) 0.064 (-42%) 0.050 (-42%) 

 

 



Fig. 5.3. Time series of MAD averaged over the open Gulf (excluding shelf regions 
shallower than 300 m) for (a) SSH (cm), (b) temperature (T, ), (c) salinity (S), (d) u 
(m/s), and (e) v (m/s) from the free run and fraternal twin runs. MAD of all physical 



variables except SSH were averaged over the entire water column. Black dashed lines in 
(a, b) denote the values of observation errors. Gray vertical lines indicate the assimilation 
steps. The gray area marks the 4-week time period without data assimilation. 

 

Figures 5.4 and 5.5 illustrate where the MAD reductions occur horizontally. 

Compared to the free run, F1 reduces the MAD in SSH, temperature, and velocity 

components for almost entire domain, with the most significant reductions within the LC 

region (Fig. 5.4).  The reduction in salinity MAD is relatively small in F1 but larger in F3 

where additional temperature and salinity profiles are assimilated (Fig. 5.5). In contrast to 

the other physical variables (i.e., SSH, T, u and v), the biggest impact of assimilation on 

the salinity field is on the shelf where variability in salinity is larger than in the open Gulf 

because of river inputs. Also, in the fraternal twin the difference in salinity between truth 

and free run is largest on the shelf because of the differences in river inputs between the 

HYCOM and ROMS model configurations.  

 



 
Fig. 5.4. The difference of physical variables’ time-averaged (daily snapshots from 1 
April to 1 October) MAD between fraternal twin F1 and the free run. MAD of 
temperature and velocities were averaged over the entire water column. Negative values 
(cold colors) correspond to a decrease in MAD compared to free run, whereas positive 
values (warm colors) correspond to an increase. The gray contour marks the bathymetric 
depth of 300 m. 
 

 
Fig. 5.5. Same as Figure 5.4 but for salinity comparing the fraternal twins F1 and F3. 
MAD of salinity were averaged over the entire water column. 
 



Vertically, the reductions of spatially and temporally averaged MAD extend to 

nearly 900 m depth for temperature and velocities and 500 m depth for salinity (Fig. 5.6). 

The maximum reductions in MAD are on the order of 0.6  for temperature at around 

200 m, of 0.12 for surface salinity and of 0.07 m/s for surface velocities.  Compared to 

F1, assimilating temperature and salinity profiles in F3 leads to a greater reduction of 

MAD for temperature and salinity primarily in the upper 300 m, but no further impacts on 

MAD for velocities. 

 

 
 
Fig. 5.6. Profiles of MAD averaged over the open Gulf (excluding shelf regions shallower 
than 300 m) and daily snapshots from 1 April to 1 October 2010 for (a) temperature (T, 

), (b) salinity (S), (c) u (m/s), and (d) v (m/s) from the free run and the fraternal twin 
runs. 
 
 
 

Next, I assess the impact of assimilation on subsurface temperature and salinity 

fields. Temperature and salinity from the free run and the F1 and F3 runs are compared 

point-by-point against the “truth” in Fig. 5.7. Even without assimilation, the linear 

correlation between free and truth run for temperature is very close to the 1:1 line (with a 

slope of 0.97 and coefficient of determination R2 of 0.98). Large variances only occur in 

the thermocline region ranging in temperature from 8 to 26  (Fig. 5.7a). Assimilation 

further improves the linear correlation between the model and “truth” with increased 

slopes and R2, significantly reduced variance in subsurface temperature, and reduced bias 



and MAD (Fig. 5.7b, c). Compared to temperature, the linear correlation in salinity 

between the free run and “truth” is weaker and has larger variances (Fig. 5.7d). Again, 

assimilation improves the linear correlation between the model and “truth” with increased 

slope and R2, and reduced MAD especially when extra temperature and salinity profiles 

are assimilated in F3 (Fig. 5.7e, f). 

Fig. 5.7. Point-by-point comparison of (a, b, c) temperature (T, ) and (d, e, f) salinity 
(S) from the “truth” versus those from free, F1 and F3 runs. Data values are shown as a 
two-dimensional histogram, with the color scale denoting the number of data. T and S 
data were sampled at every 10 grid cells within the open Gulf (excluding shelf regions 
shallower than 300 m) and every 5 days during the simulation period. T and S in top layer 
were excluded to ensure independent assessment. The total number of data is 401940. The 
black line is the linear regression between variable from the truth and other run. The 
dashed line is the 1:1 ratio line. 

 

 



The “true” spatial distribution of mean temperature and salinity at 400 m depth in 

August shows only a weak northward intrusion of warm and salty LC water into the Gulf 

and a detached anticyclonic eddy that propagates northwestward (Fig. 5.8a, e). Compared 

to the “truth”, the free run overestimates the northward extension of the LC (depicted by 

the 12  isotherm and 35.5 isohaline), and the detached eddy is misaligned (Fig. 5.8 b, f). 

Assimilation corrects the extension and angle of the LC intrusion and the position of the 

eddy, significantly reducing the averaged MAD error by 47% (52%) and 31% (46%) for 

temperature and salinity, respectively in the F1 (F3) run (Fig. 5.8c, d, g, h).  

Lastly the impact of the assimilation scheme on circulation near the spill site is 

examined. The temporal evolution of velocity MAD averaged over the water column and 

subregion defined in Fig. 5.1a is shown in Fig. 5.9.  In contrast to the noticeable MAD 

reductions in the domain-averaged velocity MAD (Fig. 5.3d, e), reductions in velocity 

MAD in the subregion are negligible from April to mid-June but are obvious from mid-

June to the end of September (Fig. 5.9). Overall the time-averaged MAD reduction in the 

subregion is of similar magnitude as in the open GOM (Table 5.2).   



Fig. 5.8. August-mean (a, b, c, d) temperature (T, ) and (e, f, g, h) salinity (S) at 400 m 
from the “truth”, free, F1 and F3 run in fraternal twin experiments. The white dot denotes 
the location of the Deepwater Horizon oil rig. The contours mark the 12  isotherm and 
35.5 isohaline, respectively, where the black contours denote the isotherm or isohaline for 
the truth while red contours denote those for the actual simulation in each panel.  



 
Fig. 5.9. Time series of subregion- and water column-averaged MAD for velocity 
components (a) u (m/s) and (b) v (m/s) from the free and fraternal twin runs. The location 
of the subregion for averaging is shown in Fig. 5.1a. 

 

A comparison of subsurface mean circulation in August is shown in Fig. 5.10 to 

provide some context for the velocity MAD. The “truth” shows a limited northeastward 

intrusion of the LC into the GOM and two eddies shedding from the LC (Fig. 5.10a). As 

indicated by the water properties in Fig. 5.8, the free run overestimates the northward 

extension of the LC and simulates a more energetic detached anticyclonic eddy that has 

propagated further west (Fig. 5.10b). Assimilation in F1 brings the overall circulation

pattern in the open GOM close to the “truth”, with a simulated shape, strength and 

location of the LC and LC eddies closer to the truth (Fig. 5.10c). However, the smaller-

scale currents surrounding the spill site observed in the truth (i.e., the strong anticyclonic 

eddy on the east of the spill site and cyclonic eddy on the southwest of the site) are not 

satisfactorily represented in either free run or F1 run (Fig. 5.10d, e, f).   



 
Fig. 5.10. August-mean velocity at 400 m in the “truth” (a, d), free (b, e) and F1 run (c, f) 
in fraternal twin experiments. Panels in the right column are zoomed into the region near 
the oil spill location. The white dot denotes the location of the Deepwater Horizon oil rig, 
and gray contours mark the bathymetric depths of 300, 1000, 2000 and 3000 m, 
respectively.   
  



5.3.2 Impact of assimilation on physical variables: assimilating real observations 

The previous section has shown the positive impact of assimilation on physical 

variables in the mesoscale through fraternal twin experiments. Now the impact of 

assimilation in a realistic configuration is assessed using satellite and in situ observations.  

Consistent with the results from the fraternal twin experiments, assimilating SSH 

and SST significantly reduces the MAD for SSH (43%) and SST (27%), and the 

improvement remains for 4 weeks after the last assimilation step (Fig. 5.11, Table 5.3). 

The MAD for SSH and SST are reduced in most of the domain. The most significant 

reduction in MAD for SSH is in the LC region and westward pathway of LC eddies (Fig. 

5.12).  

 
Fig. 5.11. Time series of MAD averaged over the open Gulf (excluding shelf regions 
shallower than 300 m) for (a) SSH (cm) and (b) SST ( ) from the free run and data 
assimilation run with real observations. Black dashed lines denote the values of 
observation errors. Gray vertical lines indicate assimilation steps. The gray area marks the 
4-week time period without data assimilation. 
 

 



Fig. 5.12. Temporally averaged (daily snapshots from 1 April to 1 October) difference in 
MAD between the DA run and the free run for SSH and SST. Negative values (cold 
colors) correspond to a decrease of MAD compared to the free run, whereas positive 
values (warm colors) correspond to an increase in MAD. The gray contour marks the 
bathymetric depth of 300 m. 

 

To evaluate the impact of assimilation on the temporal and spatial evolution of the 

LC and its eddies, the altimeter-derived and model-simulated LC fronts and eddies 

(depicted by the 10-cm SSH isoline following Counillon and Bertino 2009) are shown in 

Fig. 5.13. Compared to observations, the free run overestimates the northward extension 

of the LC (Fig. 5.13b), whereas the DA run better reproduces the observed shape and 

position of the time-evolving LC front (Fig. 5.13c).  



 
Fig. 5.13. Time-evolving Loop Current front depicted by the 10 cm SSH isoline from (a) 
altimeter observations, (b) free run and (c) DA run. Light to dark red green lines represent 
the 10 cm SSH isolines derived from observational or model data from 1 April to 1 
October 2010 every 3 days. The gray contours mark the bathymetric depths of 300, 1000, 
and 3000 m, respectively.   

 



Table 5.3. Mean Absolute Deviations (MAD) from the observations of physical variables 
for free and data assimilation runs in the assimilation system using real data. The MAD 
for SSH and SST were averaged over all grid cells excluding the shelves (defined by 
water depths  300 m) and daily snapshots from 1 April to 1 October 2010.  At 
assimilation steps the forecast ensemble mean was used for the calculation. The 
percentage change relative to the free run is presented in parentheses. 
 
 SSH (cm) SST ( ) Argo T ( ) Argo S 
Free 13 0.82 1.31 0.26 
DA 7.4 (-43%) 0.60 (-27%) 0.65 (-50%) 0.22 (-15%) 
 

The observed temperature and salinity profiles from Argo provide a completely 

independent source of model validation. Figure 5.14 shows the point-by-point comparison 

of model-simulated versus observed Argo temperature and salinity. The linear fit line 

between the simulated and observed temperature for the free run (with a slope of 0.97 and 

R2 of 0.95) is very close to the 1:1 ratio line but shows large variances at temperatures 

ranging between 8 and 28  (Fig. 5.14a). The assimilation further improves the linear 

correlation between the simulated and observed temperature with an increased slope and 

R2, significantly reduced variances, and reduced bias and MAD (Fig. 5.14b). Compared 

with temperature, the linear correlation between the simulated and observed salinity is 

weaker and has larger variances (Fig. 5.14c). Again, assimilation improves the linear 

correlation between the simulated and observed salinity with increased slope and R2, and 

reduced bias and MAD (Fig. 5.14d). 

To illustrate at what depths the assimilation has the strongest impact, Figure 5.15 

shows temporally and horizontally averaged profiles of MAD and bias between the model 

and the independent Argo observations. The temperature MAD for the free run is largest 

(> 0.8 ) at depths between 50 and 600 m; this is where the MAD reduction by 

assimilation has the strongest impact (Fig. 5.15a). In the free run, Argo temperatures are 

underestimated at all depths; DA notably reduces the underestimation throughout the top 

600 m except for a layer around 100 m depth where a positive bias is created (Fig. 5.15b). 

The salinity MAD for the free run are largest at the surface and gradually decrease with 

depth (Fig. 5.15c). DA reduces the salinity MAD in the upper 400 m (Fig. 5.15c). The 



free run also underestimates the Argo salinity in the top 400 m and, while DA reduces the 

underestimation in the upper 400 m it creates positive biases below (Fig. 5.15d). 

 

 
Fig. 5.14. Point-by-point comparison of (a, b) temperature (T, ) and (c, d) salinity (S) 
from Argo observations versus those from free and DA run. The total number of data is 
7018. The black line is the linear regression between variable from the truth and other 
run. The dashed line is the 1:1 ratio line. 



 
 
Fig. 5.15. Profiles of averaged MAD and bias for (a, b) temperature (T, ) and (c, d) 
salinity (S) from the free and the DA run in relative to Argo observations. 
 
 

Lastly, Figure 5.16 illustrates where and how the deviations between model and 

observations and the corrections by DA are distributed horizontally. The spatial 

distribution of the Argo temperature and salinity observations at 200 m clearly show the 

distinction between warmer and more saline LC waters from the colder and fresher rest of 

the Gulf (Fig. 5.16 a, d). The free run underestimates the observed temperature and 

salinity primarily in two regions: east of the LC and near the Mississippi delta; the former 

is associated with the exaggerated westward LC intrusion in the free run, while the latter 

might be more associated with river plume dynamics. Compared to the free run, the 

assimilation significantly reduces the deviations between model and observations, 

especially in the LC region, with significantly reduced bias and MAD reductions of 56% 

for temperature and 33% for salinity (Fig. 5.16c, f).   



 
Fig. 5.16. Argo observations of (a) temperature (T, ) and (d) salinity (S) at 200 m. (b, c, 
e, f) Difference between simulated and observed T and S at 200 m in (b, e) the free run 
and (c, f) DA run. The gray contours mark the bathymetric depths of 300, 1000, and 2000 
m, respectively.   

 

 



5.3.3 Impact of assimilation on physical variables and hydrocarbon fields: identical 
twin experiments  

This section focuses on the impact of assimilation on circulation near the DwH 

spill site and the hydrocarbon plume distribution. First, the impact of assimilation on 

physical variables is briefly described in comparison to the corresponding results from the 

fraternal twin experiments. Then the impact of the assimilation on the hydrocarbon plume 

distribution is presented in more detail. 

5.3.3.1 Physical variables 

Compared with fraternal twin experiment F1, assimilating SSH and SST in 

identical twin experiment I1 leads to even larger reductions in domain-averaged MAD of 

temperature, salinity and velocity fields. However, the benefit of assimilating additional 

temperature and salinity profiles is smaller than in the fraternal twin experiments (Table 

5.2). Assimilating SSH and SST in I1 also reduces the subregion-averaged MAD for both 

u and v near the spill site with largest reductions in July (Fig. 5.17). The temporally 

averaged MAD reduction in the subregion is of a similar magnitude as the domain-

averaged MAD for u and v (Table 5.2).  

 
 
Fig. 5.17. Time series of subregion- and water column-averaged MAD for velocity 
components u and v (m/s) from the free run and I1. The location of the subregion for 
averaging is shown in Fig. 5.1a.  



Figure 5.18 shows the time-averaged circulation at 1000 m during the first 4 

months of the spill. The “truth” has three major circulation features near the DwH spill 

site: i) a southwestward current flows along the slope near the spill site for the first 2 

months of the spill and then reverses direction for the following 2 months; ii) a strong 

anticyclonic eddy is present south of the spill site in the 1st month of the spill and then 

gradually propagates westward away, and iii) a weaker anticyclonic eddy is directly 

affecting the spill site in the 4th month (Fig. 5.18 a, d, g, j).  

The free run reproduces the southwestward current along the spill site in the two 

months, but overestimates its magnitude on the western side and underestimates it on the 

eastern side of the spill site compared to the “truth” (Fig. 5.18b, e). Compared to the 

“truth”, the free run does not correctly simulate the reversal in current direction from 

southwestward to northeastward in the 3rd month (Fig. 5.18h). In the 4th month, the free 

run reproduces an anticyclonic flow field near the spill site, but its shape differs from that 

in the “truth” (Fig. 5.18k).  The strong anticyclonic eddy in the free run is located further 

south than in the “truth” in the 1st month but then propagates closer to the spill site in the 

3rd and 4th months (Fig. 5.18 b, e, h, k).   

By assimilating SSH and SST, the major circulation features of the “truth” are 

reproduced better in assimilation run I1, but current velocities tend to be smaller 

especially for the anticyclonic circulation near the spill site in the truth during the 4th 

month (Fig. 5.18 c, f, i, l). 

 
 



Fig. 5.18. Overlay of time-evolving 0.1 g m-2 HydroC contours (red lines) with the time-averaged velocity (m/s) at 1000 m (color 
map) during selected time interval in the truth (a, d, g, j), free (b, e, h, k) and DA1 run (c, f, i, l) in identical twin experiment. Blue to 
red color lines represent the 0.1 g m-2 HydroC contours from the first to last day of each averaging interval. The white dot denotes the 
location of the Deepwater Horizon oil rig, and gray contours mark the bathymetric depths of 300, 1000 and 2000 m, respectively.   
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5.3.3.2 Hydrocarbon fields 

Circulation near the spill site strongly impacts the hydrocarbon plume 

distribution. In the “truth”, the hydrocarbon plume (represented by 0.1 g m-2 HydroC 

contours, where HydroC is the sum of HydroC1 and HydroC2) is mostly confined along 

the 1000 and 2000 m bathymetric contours (Fig. 5.18 a, d, g, j). It propagates 

southwestward along the slope during the first 2 months of the spill, before moving 

northeastward in the 3rd month and then southeastward in the 4th month. This plume 

movement clearly reflects the evolution of current direction around the spill site.  

Consistent with the observed mismatch in current direction between the free run 

and the “truth”, the free run wrongly simulates a northeastward movement of the 

hydrocarbon plume in the 2nd half of 1st month and first half of the 2nd month (Fig. 5.18 b, 

e). In the 3rd month, the strong anticyclonic eddy impinges on the spill site in the free run 

but is more distant in the “truth” and directly affects the hydrocarbon plume (Fig. 5.18h). 

The resulting southward transport of plume water across the 2000 m bathymetric contour 

does not reflect the “truth”. In the 4th month, the free run reproduces the northeastward 

propagation of the hydrocarbon plume on the eastern side of the spill site but slightly 

overestimates the southwestward extension of the plume on the western side (Fig. 5.18k).  

With assimilation in the I1 run, several of the discrepancies between the free run 

and “truth” are improved, especially in the first 3 months but the eastward propagation in 

the 4th month is missed almost entirely (Fig. 5.18 c, f, i, l). Also, the plume in the I1 run is 

less dynamic in the 4th month than that in the free run and “truth”, consistent with the 

smaller current velocities. 

The temporal evolution of the hydrocarbon MAD in the free run peaks in mid 

May when it underestimates the magnitude of southwestward current along the spill site 

and mid July when it wrongly simulates a strong anticyclonic eddy that impinges on the 

spill site (Fig. 5.19).  Assimilation in the I1 run leads to significantly reduced MAD in 

only May, otherwise the MAD is similar or higher than in the free run. The overall MAD 

reduction is 8% in I1 relative to the free run. 



Also shown in Fig. 5.19 is the MAD from an extreme ‘zero-HydroC prediction’, 

which simply assumes no hydrocarbon in any grid cell at any time. In this case the MAD 

gradually increase during the spill period (20 April to 15 July) and then dramatically 

decreases after 15 July when the spill stops while hydrocarbons are continuously 

decaying.  The free and I1 runs generally have lower MAD than the extreme prediction 

during the spill period, with exceptions in mid-May for the free run and mid-July for both 

free and I1 runs.    

 
Fig. 5.19. Time series of domain-averaged MAD (mg/m2) for water column integrated 
HydroC from free run and I1 run in the identical twin experiments.  

 

5.4 Discussion  

I implemented the EnKF technique in a high-resolution regional model for the GOM. The 

skill of this data-assimilative system was rigorously assessed through a series of fraternal 

and identical twin experiments as well as a realistic assimilation experiment using 

satellite and in situ profile observations. The combination of twin and realistic 

assimilation experiments has demonstrated that the data-assimilation system is robust and 

effective in improving the 3D temperature/salinity fields and the dominant circulation 

features (i.e., the intrusion of LC and shed eddies) in the open GOM. Here I address each 

of the questions raised in the Introduction. 

Assimilating profiles versus satellite data: Tests of different observing system 

configurations in fraternal twin experiments have illustrated the relative benefits of 

temperature and salinity profiles versus satellite SSH and SST in improving the skill of 

different physical state variables in the model. Consistent with previous assimilation 



studies in the GOM (e.g., Wang et al., 2003; Counillon and Bertino 2009; Hoteit et al., 

2013), my results show that assimilation of altimetry data can sufficiently constrain a 

range of large-scale to mesoscale features such as the LC and associated eddies. The 

warmer and more saline LC and its eddies have a temperature and salinity signature that 

is distinct from the so-called Gulf Common Water and have a clear signal of elevated 

SSH. Assimilation of SSH using the multivariate EnKF therefore can adjust temperature 

and salinity profiles based on the SSH information. This is shown in my fraternal twin 

and realistic assimilation experiments, where the assimilation of SSH and SST 

substantially corrects the subsurface temperature and salinity fields, with clear 

improvements in location and intensity of the LC and LC eddies. Salinity is less 

constrained than temperature when assimilating only SSH and SST. Assimilation of 

additional temperature profiles (experiment F2) slightly improves salinity but inclusion of 

salinity profiles (experiment F3) is more effective in improving salinity. This highlights 

the value of collecting in situ salinity profiles. A similar conclusion about the role of 

salinity measurements has been reached by Halliwell et al. (2015). 

Fraternal twin versus identical twin experiments: Twin experiments have been 

widely used for assessing the performance of data assimilation schemes (e.g., Anderson 

et al., 1996; Srinivasan et al., 2011; Song et al., 2016; Yu et al., 2018) and for OSSE 

impact analyses (Halliwell et al., 2014, 2015). Halliwell et al. (2014) developed a 

complete set of design criteria and rigorous evaluation procedures for ocean OSSEs, 

which also serves as guidance on designing twin experiments for assessing the skill of a 

data-assimilative system. My fraternal twin experiments satisfied the requirements 

articulated by Halliwell et al. (2014) and thus enable a credible skill assessment. 

Additionally, the impact of assimilation in the fraternal twin experiment is very similar to 

that with realistic assimilation configuration, which further confirms the validity of the 

impact analysis by fraternal twin experiments.  The identical twin experiments, however, 

are prone to biased skill assessments as the differences between the “truth” and free runs 

are often insufficient to represent the actual error growth between the ocean model and 

the true ocean. In identical twin experiment I1, the MAD reductions in physical fields are 

larger than in fraternal twin experiment F1; however, little further improvement is found 



in the identical twin experiments when assimilating additional temperature and salinity 

profiles. The identical twin approach likely underestimates the value of the additional 

information from the profiles while overestimating the improvement resulting from 

assimilating SSH and SST. This issue is well known for identical twins in atmospheric 

OSSEs but not yet sufficiently recognized in ocean OSSEs and skill assessments of 

oceanic data-assimilative systems (Halliwell et al., 2014). A direct comparison of 

fraternal and identical twin experiments has, to the best of my knowledge, not been 

conducted previously for an ocean data assimilation system. The results of this chapter 

emphasize that caution is warranted when interpreting skill assessments and OSSEs from 

identical twin experiments. 

Subsurface circulation: Based on my fraternal twin experiments, the improvement 

in temperature and velocity fields through assimilation of SSH and SST with or without 

temperature and salinity profiles extends as deep as 900 m. This is primarily because the 

deep basin of GOM is dominated by the energetic LC and associated eddies which extend 

from the surface to depths of 500 to 1000 m (Oey, 2008). The system’s ability to 

accurately capture the dynamics of the LC and its eddies thus transfers into skill in 

reproducing the dominant features of the mesoscale subsurface circulation.  

Circulation near the DwH spill site: While my assimilation experiments indicate 

that assimilating satellite altimetry satisfactorily constrains the large- to mesoscale 

structures on the order of 100 km that dominate the deep GOM, improvement in the 

circulation near the spill site is modest because submesoscale processes (100 m – 10 km) 

prevail in this region. The DwH spill site is located in the DeSoto Canyon region, a 

transition zone between the open Gulf where the circulation is dominated by the 

mesoscale LC and its eddies and the shelf where currents are largely driven by wind and 

density forcing. Therefore, the assimilation of SSH, SST and additional temperature and 

salinity profiles (at a resolution of ~70 km) in my twin experiments have relatively 

limited constrains on the smaller-scale circulation features near the spill site. This is 

consistent with Wang et al. (2003) who found that assimilating SSH and SST could not 

accurately reslove the smaller-scale eddies in the DeSoto Canyon. It has been suggested 

previously that higher-resolution localized observations would help to constrain 



submesoscale processes in models (Lin et al., 2007; Jacobs et al., 2014; Carrier et al., 

2014; Berta et al., 2015; Muscarella et al., 2015). Nevertheless, the substantial 

improvement in reproducing the mesoscale circulation features obtained through 

assimilation of SSH and SST does benefit the circulation near the spill site by more 

accurately simulating the impingement of LC eddies in the shelf break and slope regions.  

The horizontal resolution of the model may also contribute to the 

misrepresentation of the submesoscale circulation. With a horizontal resolution of 5 km, 

the GOM model used here is not capable of fully resolving the submesoscale features. 

Ledwell et al., (2016) suggested that a horizontal resolution finer than 5 km is required in 

this region. Considering the computational costs of running an ensemble of finer-

resolution model simulations for the GOM, a two-way nested approach with higher 

resolution near the oil spill site might be most affordable. Such a two-way nested 

modeling system could be based on the data-assimilative model developed here.  

Distribution of the deep-water hydrocarbon plume: Similar to the fraternal twin 

experiments, in identical twin experiments the small-scale circulation near the spill site is 

improved only modestly despite of the significant improvement in circulation throughout 

the open GOM. While the movement of the hydrocarbon plume center is clearly 

determined by the currents near the spill site, the reduction in hydrocarbon MAD is much 

smaller than the reduction of MAD in the velocity fields, even during the time period 

when small-scale circulation patterns appear to be well captured by the DA run (21 Apr – 

20 Jun). It is possible that a better representation of the submesoscale features (as 

discussed above) would significantly improve the simulation of hydrocarbon plume 

movement or else that observations of hydrocarbon concentrations itself need to be 

assimilated. Efforts to use information on surface oil distributions from satellite have 

been made by Liu and Weisberg (2011) to track surface oil slicks after the DwH spill and 

proved useful, but observation of deep plumes is more challenging. I would also like to 

note that, although the identical twin approach comes with a risk of overestimating the 

improvement on physical fields by assimilating SSH and SST, it does not affect the 

conclusion in this case because the focus is on the impact of improved circulation on 

hydrocarbon distributions.  



5.5 Summary  

An assimilation system that applies the EnKF to a high-resolution regional model 

of the Gulf of Mexico has been developed. The system was rigorously validated through 

fraternal twin experiments and tested in a realistic configuration assimilating satellite and 

in situ profile observations. In both, a fraternal twin framework and a realistic 

configuration, the data-assimilative system leads to robust improvements in temperature 

and salinity (both at the surface and in the subsurface). In particular, the location and 

strength of the LC and its eddies are improved by assimilating SSH, SST and profile 

observations.  

In fraternal twin experiments, it is shown that despite the system’s skill in 

reproducing the LC and mesoscale eddy dynamics, submesoscale features near the DwH 

spill site are not sufficiently improved, at least in part because no nearfield observations 

resolving submesoscale features were assimilated into the model. It is also possible that 

the horizontal resolution of 5 km is not fine enough to adequately resolve the 

submesoscale features. A two-way nested model with higher resolution in the region 

surrounding the oil spill site may be needed. The data-assimilative model developed here 

could serve as the coarser parent in such a two-way nested system.  

In a series of identical twin experiments the impact of assimilation on the 

distribution of a deep-water hydrocarbon plume was investigated. While the movement of 

the hydrocarbon plume is clearly determined by the circulation near the spill site, the 

improvements in near-field circulation due to assimilation did not yield noticeable 

improvements in the representation of the plume. An accurate representation of the 

hydrocarbon plume distribution will likely require an assimilation system capable of 

resolving the submesoscale features near the spill site and may even require incorporation 

of observations of the evolving hydrocarbon distribution. 

  



CHAPTER 6 

CONCLUSIONS 

The Gulf of Mexico, like many other marine systems in the world, is increasingly 

stressed by anthropogenic pressures, including excessive nutrient inputs from the 

Mississippi and Atchafalaya Rivers that promote widespread seasonal hypoxia on the 

shelf in the northern GOM, and the intensive oil exploration and extraction activities 

extending to the deep sea that lead to elevated risk of oil pollution. Capabilities that 

combine observations and numerical models for predicting the effects of these 

anthropogenic stressors are urgently needed. Neither observations nor numerical models 

alone are sufficient for providing a complete view of the true ocean state due to inherent 

errors, uncertainties and limitations in each; combining the two through data assimilation 

is crucial for achieving the best possible representation of the ocean state.  

This situation has motivated me to apply regional-scale numerical ecosystem 

modelling (supplemented by comprehensive model-data comparisons) and the EnKF data 

assimilation technique in my thesis with the goal of improving our understanding and 

predictive capabilities for shelf water hypoxia and deep-sea oil spill pollution in the 

GOM. Specifically, in Chapter 2 I applied a physical-biogeochemical model that 

explicitly simulates oxygen sources and sinks in the northern GOM to identify the key 

mechanisms controlling hypoxia development. Using the same physical model but 

coupled to a simpler oxygen model that parameterizes biological oxygen terms using 

empirical relationships derived from observations, I examined the role of physical forcing 

factors in hypoxia generation in Chapter 3. In Chapter 4, I implemented and tested the 

EnKF method in an idealized upwelling model, where I demonstrated the benefits of 

multivariate EnKF updates to physical and biogeochemical model states through a series 

of twin experiments. Lastly in Chapter 5, the EnKF method is applied to a realistic 

physical-hydrocarbon model for the GOM to improve the simulated mesoscale 

circulation features and the movement of deep-water hydrocarbon plumes in the GOM.  

 



6.1 Major findings  

The major findings of the thesis and their significance are summarized below 

corresponding to the scientific questions and primary objectives listed in Chapter 1.  

1. Identify the primary processes controlling oxygen dynamics and hypoxia in the 
northern GOM. (Chapter 2) 

A comprehensive model-data comparison was first conducted, which demonstrates that 

the model can reasonably simulate the evolution of oxygen and associated key oxygen 

source and sink terms. The model simulation shows that in summer, stratification 

isolates oxygen-rich surface waters from hypoxic bottom waters; at the surface oxygen 

outgasses to the atmosphere at this time. The summer oxygen balance suggests that the 

combination of physical processes (advection and vertical diffusion) and sediment 

oxygen consumption largely determine the spatial extent and temporal dynamics of 

hypoxia on the shelf of northern GOM. Specifically, sediment oxygen consumption is 

the dominant oxygen sink within the bottom water volume that becomes hypoxic 

(within 5 m above the sediment). A large fraction of primary production occurs below 

the pycnocline in summer, but this primary production reduces the spatial extent of 

hypoxic bottom waters only slightly. 

2. Develop a relatively simple oxygen model to examine the physical controls on hypoxia 
generation in the northern GOM. (Chapter 3)    

The simple oxygen model assumes a constant oxygen utilization rate in the water 

column and a sediment oxygen consumption rate that depends on bottom water oxygen 

concentration and temperature. Despite its simplicity, the model reproduces the 

observed variability of dissolved oxygen and hypoxia in the northern GOM, 

highlighting the importance of physical processes. Model simulations further 

demonstrate that both river discharge and wind forcing have a strong effect on the 

distribution of the river plume and stratification, and thereby on bottom dissolved 

oxygen concentrations and hypoxia formation in the northern GOM. The seasonal 

cycle of hypoxia is relatively insensitive to the seasonal variability in river discharge, 



but the time-integrated hypoxic area is very sensitive to the overall magnitude of river 

discharge. Changes in wind speed have the greatest effect on the simulated seasonal 

cycle of hypoxia and hypoxic duration, while changes in wind direction strongly 

influence the geographic distribution of hypoxia.  

3. Investigate the potential benefits of multivariate EnKF updates of physical and 
biogeochemical ocean state variables.  (Chapter 4) 

Through a series of twin experiments conducted in an idealized upwelling model, I 

show that when biogeochemical and physical properties are highly correlated (e.g., 

thermocline and nutricline), multivariate updates of both are essential for improving 

model skill. This can be accomplished by assimilating either physical (e.g., 

temperature profiles) or biogeochemical (e.g., nutrient profiles) observations, taking 

advantage of the inherently multivariate nature of the EnKF. In the idealized upwelling 

system, the improvement of multivariate updates is largely due to a better 

representation of nutrient upwelling, which results in a more accurate nutrient input 

into the euphotic zone. In contrast, assimilating surface chlorophyll improves the 

model state only slightly, because surface chlorophyll contains little information about 

the vertical density structure. It is also shown that a degradation of the correlation 

between observed subsurface temperature and nutrient fields, which has been an issue 

in several previous assimilation studies, can be reduced by multivariate updates of 

physical and biogeochemical field. 

4. Apply EnKF to improve the simulation of circulation and movement of a deep-water 
hydrocarbon plume in the Gulf of Mexico. (Chapter 5) 

The EnKF method examined in Chapter 4 was implemented in a physical-hydrocarbon 

model for the GOM. In both, a twin and a realistic configuration, the data-assimilative 

system is demonstrated to be robust and effective in improving 3D temperature/salinity 

fields and dominant circulation features (i.e., the intrusion of the LC and shedding of 

eddies) in the open GOM. Fraternal twin experiments testing different observing 

systems show that: i) while the assimilative model can satisfactorily reproduce the 

mesoscale circulation features in the GOM by assimilating satellite data (i.e., SSH and 



SST) alone, in situ temperature and especially salinity profiles are required to 

effectively constrain salinity fields; ii) the model’s capability of capturing the 

dynamics of the LC and its eddies is related to its skill in reproducing the dominant 

features of subsurface circulation; iii) despite the system’s skill in reproducing the LC 

and mesoscale eddy dynamics, submesoscale features near the DwH spill site are not 

sufficiently improved, which might be partly because no nearfield observations 

resolving submesoscale features were assimilated into the model, and partly because 

the model’s horizontal resolution of 5 km is not fine enough to adequately resolve the 

submesoscale features. Identical twin experiments further show that the movement of 

the deep-water hydrocarbon plumes are essentially determined by the direction and 

magnitude of the currents near the spill site. The improvements in circulation near the 

spill site due to assimilation only yield modest improvements in the distribution of the 

plume. This suggests that an accurate representation of the deep-water hydrocarbon 

plume distribution might require an assimilation system capable of resolving the 

submesoscale features near the spill site and possibly observations of the evolving 

hydrocarbon distribution. 

6.2 Implications for model development and assimilation method implementation 
and assessment 

Throughout the thesis, I have applied two numerical models of dissolved oxygen 

with different ecological complexity for the northern GOM focusing on different aspects 

of the oxygen dynamics, and implemented the state-of-the-art EnKF technique in an 

idealized upwelling model and a realistic model configured for the GOM. Thus, in 

addition to the scientific achievements described in the previous section, some 

implications for hypoxia model development and assimilation implementation and 

assessment are also achieved.  

Implications for hypoxia forecasting and model development  

The facts that the simple oxygen model in Chapter 3 essentially reproduces the 

hypoxia evolution simulated by the full biogeochemical model in Chapter 2 and that 

physical processes largely determine the magnitude and distribution of hypoxia imply 



that a full biogeochemical model might not be necessary for short-term hypoxia 

forecasting in the northern GOM. It further implies that prior to using a complex 

biogeochemical model, one could take an intermediate approach by developing a 

relatively simple model that parameterizes biological oxygen terms using empirical 

relationships derived from observations. This is particularly true for regions that have 

already developed skilful hydrodynamic models. Furthermore, since the simple oxygen 

model is free of the potentially confounding effects of a full biogeochemical model, it is 

well suited for conducting model intercomparisons to identify the major physical model 

aspects that affect a model’s ability to accurately simulate or predict hypoxia (e.g., as in 

Fennel et al., 2016).  

Nevertheless, the simple model developed here is appropriate for short-term hypoxia 

forecasting but not for scenario simulations to assess the effects of varying nutrient loads 

in this region because the model is independent of nutrient loading. Instead, a full 

biogeochemical model like the one in Chapter 2 is necessary to study the effects of 

varying river nutrient loads on hypoxia and to evaluate the effectiveness of nutrient-

reduction strategies (e.g., as in Laurent and Fennel, 2014; Fennel and Laurent, 2018).  

Implications for EnKF implementation 

A few assimilation settings were identified to be important for the performance of 

the assimilation system, as listed below.  

Ensemble generation. Perhaps not surprisingly I found that the sources of error 

used to perturb (or generate) the ensemble simulations are crucial, as they largely 

determine whether the ensemble spread is representative of the forecast error (sufficiently 

large). This is especially the case for the GOM, where the dominant forcing of the 

circulation is distinct in the open Gulf and the shelf region. The open Gulf is dominated 

by the LC and its mesoscale eddies while shelf circulation is heavily influenced by wind 

and density forcing.  In order to properly represent the forecast error, initial conditions, 

lateral boundary conditions and wind forcing were perturbed to generate the ensemble 

simulations in my assimilation experiments. I found that perturbing initial and boundary 

conditions mainly influences the dynamics in LC region by changing the position and 



orientation of the LC and the propagation of the cyclonic eddies shed from the LC, 

whereas perturbing the wind forcing has the strongest impact in the shelf areas. My initial 

sensitivity tests show that simultaneously perturbing the three error sources yields a more 

realistic ensemble spread in the entire GOM domain than only perturbing one or two of 

them.  

Ensemble size, localization and inflation. The biggest limitation for most 

ensemble-based data assimilation systems is probably the small ensemble size dictated by 

the availability of computing resources. This limitation requires the use of localization, 

which artificially reduces the spatial domain of the influence of observations at the 

update step, and hence prevents the potential negative effects of spurious correlations 

between distant grid points resulting from relatively small ensembles. In addition, to 

accounting for the underestimation of the forecast error covariance due to the small 

ensemble size, inflation of the ensemble spread is often applied. In practice, localization 

radius and inflation factor are selected by finding the values that best reduce the model-

data errors without causing ensemble collapse or generating discontinuities in the 

analyzed fields. My initial tests of seeking the optimal values for localization radius and 

inflation factor show that the upwelling and GOM systems are more sensitive to the 

localization radius than the choice of inflation factor. The optimal value of the 

localization radius is also strongly impacted by the spatial resolution and type of the 

observations (e.g., a larger radius is required for assimilating nitrate profiles at coarser-

resolution while a smaller radius is needed for assimilating surface chlorophyll at higher-

resolution in Chapter 4).  

Implications for designing twin experiment framework 

Twin experiments are very useful for assessing the performance of an assimilation 

scheme and evaluating the impact of different observation sampling strategies, as 

demonstrated in Chapters 4 and 5. However, despite the carefully chosen error sources 

for ensemble generation and well-selected assimilation configuration parameters, the 

identical twin approach used in Chapter 5 was found to overestimate the positive impacts 

of assimilating satellite data while underestimating the impact of assimilating extra 



profiles. This highlights the importance of designing credible fraternal twin experiments 

that allow a more rigorous assessment of the assimilation impact. Following Halliwell et 

al. (2014), Chapter 5 gives an example of setting up a fraternal twin experiment 

framework that meets the following requirements: i) the ‘truth’ run (a data-assimilative 

global HYCOM run) is able to reproduce the key feature of the ocean phenomenon (i.e. 

the LC intrusion) with sufficient realism; and ii) there are sufficient differences (errors) 

between the free and ‘truth’ runs for the assimilation method to correct. 

6.3 Future work 

The two numerical models of dissolved oxygen for the northern GOM were 

applied to investigate hypoxia evolution under present forcing scenarios. They are also 

useful for conducting future scenario simulations to assess the impact of other 

anthropogenic stressors including global warming and rising atmospheric carbon dioxide 

level on the oxygen dynamics as well as other functions of the ecosystems in the GOM, 

as have been done in Laurent et al. (2018). 

The benefits of multivariate EnKF updates of physical and biogeochemical ocean 

state variables have been thoroughly demonstrated in an idealized upwelling model in 

Chapter 4. These benefits need to be further tested and explored in a realistic model 

configured for the GOM or another region where sufficient observations for assimilating 

real physical and/or biogeochemical measurements are available.  

Throughout the thesis, the EnKF method is only used to sequentially correct the 

model state by incorporating available observations. Nevertheless, even with perfect 

initial conditions obtained by state estimation, numerical models are expected to diverge 

from the true state due to the various sources of model errors, such as the inaccurate 

model forcing, boundary conditions, and other parameters associated with the physically 

or/and biologically mediated processes. It follows that, generating reliable forecasts 

requires good estimates of not only the current system state but also the model parameters 

(the “parameters” here is used in a broad sense to include forcing, boundary conditions, 

as well as parameter values used in physical and/or biogeochemical components of the 

model). One approach to achieve the simultaneous estimation of the model state variables 



and biased parameters is the state augmentation method, which can be formulated either 

in a variational or sequential assimilation framework (e.g., see review in Dee, 2005). 

Successful applications of the EnKF method with state augmentation to jointly estimate 

the time-varying model state variables and biogeochemical model parameters have 

emerged and shown positive results (e.g., Simon et al., 2015; Gharamti et al., 2017a,b).  

Similar ideas could be applied to simultaneously correct the model forcing and boundary 

conditions along with the model state (e.g., by conducting an EOF analysis to obtain the 

spatial modes (or patterns) and corresponding time series of each mode’s amplitude for 

the forcing fields or/and boundary conditions, and then introducing perturbation 

parameters to the time series that could be augmented to the model state vector and be 

updated simultaneously). Additionally, considering that the errors in model parameters 

(e.g., biogeochemical parameters, model forcing and boundary conditions) are likely 

correlated through time, an autoregressive (AR) model (e.g., AR(1) model) could be used 

to incorporate the time-dependence feature of the parameters when they are augmented 

with the state. Such ideas have not yet been explored in the EnKF assimilation 

framework and could be a focus of future work.  

Impact analyses in fraternal twin OSSEs are needed to assess whether high-

resolution in situ observations (e.g., measurements from drifters and/or current meters, 

and temperature and salinity profiles) that resolve the submesoscale features near the 

DwH spill site could improve the simulation of small-scale circulation features and hence 

the deep-water hydrocarbon plume distribution. Among the in situ observations, data 

collected by drifters might need to be handled differently as they are Lagrangian data that 

consist of position-time measurements instead of ocean velocity that could be directly 

assimilated into the model. Two common ways to assimilate drifter data are: i) derive 

velocity from the dataset by computing the change in drifter position within a time 

interval; ii) assimilate the drifter positions directly by simulating a series of tracers and 

then minimizing the distance between the observed and model simulated drifter 

trajectories via some assimilation schemes, or by state augmentation that augments the 

model with tracer advection equations and then tracks the correlations between the flow 

and tracers via Kalman Filter scheme (see, e.g., Carrier et al. (2013) and references 



therein).  In addition to the impact analysis on submesoscale circulation, identical twin 

OSSEs could be conducted to examine the impact of assimilating hydrocarbon 

information to further improve the simulated plume distribution.  

As also suggested by the fraternal twin experiments, a two-way nested model with 

higher resolution near the DwH spill site may be needed to better resolve the 

submesoscale features of the circulation. The data-assimilative model developed in 

Chapter 5 could serve as the coarser parent in such a two-way nested system.  

Last but not least, the impact of assimilation on hydrocarbon plume distribution in 

a realistic configuration assimilating satellite and in situ profile observations should be 

examined. The simulated deep-water hydrocarbon plume distribution could be validated 

against the observed oxygen drawdown in the deep water, a signal of hydrocarbon 

degradation, for independent skill assessment. Ultimately, the data-assimilative physical-

hydrocarbon model will be built on to predict the movement and monitor the decay of 

hydrocarbon plumes in the water column in the event of a deep-water oil spill like the 

2010 DwH disaster. 

As a final remark, while in this thesis the regional-scale numerical modelling and 

data assimilation tools were applied to the Gulf of Mexico and focusing on the hypoxia 

and deep-water oil spill pollution only, these techniques are also applicable to other 

marine ecosystems and/or to improve our understanding and predictive capabilities of the 

effects of other anthropogenic perturbations. 
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APPENDIX B 

Table B1. Parameters and parameter values of the biogeochemical model in Chapter 2. 
Symbol Description Value  Unit 

Nutrients 

 Maximum nitrification rate 0.2  

 Light intensity for half-saturated nitrification inhibition 0.1  

 Threshold for light-inhibition of nitrification 0.0095  

Phytoplankton 

 Phytoplankton growth rate at 0  0.59  

 Initial slope of P-I curve 0.025  

 Half saturation concentration for nitrate 0.5  

 Half saturation concentration for ammonium 0.5  

 Half saturation concentration for phosphate 0.03  

 Phytoplankton mortality 0.15  

 Phytoplankton and suspended detritus aggregation rate 0.01  

 Maximum chlorophyll to phytoplankton ratio 0.0535  

 Sinking velocity of phytoplankton 0.1  

Zooplankton 

 Maximum grazing rate 0.6  

 Phytoplankton ingestion half-saturation concentration 2  

 Assimilation efficiency 0.75 Dimensionless 

 Excretion rate due to basal metabolism 0.1  

 Maximum rate of assimilation related excretion 0.1  

 Zooplankton mortality 0.025  

Detritus 

 Remineralization rate of suspended detritus 0.3  

 Remineralization rate of large detritus 0.01  

 Remineralization rate of river detritus 0.03  

 Sinking velocity of suspended detritus 0.1  

 Sinking velocity of large particles 5  

 Yield of POM oxidation to ammonium in sediments 0.25  



I. Simulated oxygen budget and hypoxia by normal model simulation in Chapter 2 
Table B2. Simulated 4-year (2004-2007) mean oxygen budget in summer for the four 
sub-regions. Oxygen source and sink terms are given for the surface layer above the 
pycnocline, for the mid layer and for the 5-m thick bottom layer.  
Layers O2 flux Mississippi 

Delta 
Mississippi 

Intermediate 
Atchafalaya 

Plume 
Mid-shelf All 

regions 
 
 
 
Surface  

Airsea -21.2 -10.0 -12.2 -4.8 -11.3 
PP 85.1 68.9 94.8 79.3 79.7 
WR 56.9 55.7 59.6 67.1 60.2 
PP-WR 28.2 13.3 35.2 12.1 19.5 
H+Vadv -7.8 -4.1 -12.0 -11.6 -8.5 
Vdiff -5.5 -5.8 -21.1 -5.4 -7.8 
Net -6.3 -6.6 -10.1 -9.7 -8.0 

       
 
 
Mid 

PP 65.4 55.3 44.4 61.8 58.1 
WR 61.3 45.6 38.7 55.9 51.5 
PP-WR 4.1 9.7 5.7 5.9 6.7 
H+Vadv 4.8 2.3 1.5 8.3 4.7 
Vdiff -7.0 -11.5 -2.0 -14.7 -10.1 
Net 2.0 0.5 5.3 -0.4 1.2 

       
 
 
 
Bottom  

PP 13.6 19.6 23.9 8.7 15.4 
WR 14.1 19.2 35.3 11.1 17.8 
SOC 37.0 39.8 42.8 36.0 38.4 
PP-WR-SOC -37.5 -39.4 -54.2 -38.5 -40.8 
H+Vadv 21.2 16.4 13.2 14.4 16.4 
Vdiff 12.4 17.3 23.1 20.1 17.9 
Net -3.9 -5.7 -17.8 -4.0 -6.5 

  



 
Fig. B1. Time series of simulated hypoxic volume for the full model (black line) and the 
model without biological processes in the water column (red line).   
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Fig. B2. Simulated (gray areas) and observed (dots) hypoxic conditions for the full model 
(left column) and the model without biological processes in water column (right column) 
for the years 2004 to 2007.  The simulated hypoxic area includes all grid boxes where 
bottom water dissolved oxygen < 62.5 mmol/m3 during the July monitoring cruise. The 
stations where hypoxia was observed are shown as filled black dots, while stations 
without hypoxia are shown as white dots.  
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II. Simulated oxygen budget and hypoxia by Model+CCR simulation in Chapter 2 

Table B3. Simulated 4-year (2004-2007) mean oxygen budget in summer for the four 
sub-regions by Model+CCR simulation. Oxygen source and sink terms are given for the 
surface layer above the pycnocline, for the mid layer and for the 5-m thick bottom layer.  
 
Layers O2 flux Mississippi 

Delta 
Mississippi 

Intermediate 
Atchafalaya 

Plume 
Mid-shelf All 

regions 
 
 
 
Surface  

Airsea -10.2 5.1 1.1 17.9 5.1 
PP 83.1 67.3 93.3 77.3 77.9 
WR 62.7 64.9 65.7 81.7 69.8 
PP-WR 20.4 2.4 27.5 -4.3 8.1 
H+Vadv -6.7 -2.9 -12.8 -11.9 -8.1 
Vdiff -9.8 -11.4 -26.4 -12.3 -13.5 
Net -6.2 -6.8 -10.5 -10.7 -8.4 

       
 
 
Mid 

PP 64.7 54.6 44.0 61.1 57.4 
WR 83.7 64.3 45.1 81.2 71.4 
PP-WR -19.0 -9.7 -1.1 -20.1 -13.9 
H+Vadv 24.2 17.3 4.1 27.4 20.2 
Vdiff -3.7 -7.8 1.7 -8.7 -5.8 
Net 1.5 -0.3 4.8 -1.4 0.5 

       
 
 
 
Bottom  

PP 13.6 19.6 23.9 8.7 15.4 
WR 21.6 26.7 43.1 18.8 25.4 
SOC 32.4 36.7 38.4 30.9 34.1 
PP-WR-SOC -40.4 -43.8 -57.6 -41.1 -44.1 
H+Vadv 22.6 17.8 12.2 14.8 17.2 
Vdiff 13.6 19.2 24.7 21.0 19.3 
Net -4.2 -6.8 -20.7 -5.3 -7.7 

  



 
Fig. B3. Simulated 4-year (2004-2007) mean oxygen budget in summer for the 4 sub-
regions by Model+CCR simulation. Oxygen source and sink terms are given for the 
surface layer above the pycnocline, for the mid layer and for the 5-m thick bottom layer. 
The average depth of the pycnocline, 5 m above bottom and the average water depth are 
indicated for each sub-region. The open circles indicate the balance of primary 
production and respiration in each layer. For the bottom layer, the bars for water column 
respiration (WR) and sediment oxygen consumption (SOC) are shown stacked and SOC 
is repeated separately.  

 

 



 
Fig. B4. Time series of simulated hypoxic extent for the normal model simulation (gray 
shadow), Model+CCR simulation (black line) and Model+CCR without biological 
processes in the water column (Model+CCR w/o PP and WR, red line). Also shown is the 
observed hypoxic extent in late July (black dots). The observed hypoxic extent was 
estimated by linearly interpolating the observed oxygen concentrations onto the model 
grid with Matlab’s grid data function and then calculating the area with oxygen 
concentrations below the hypoxic threshold (Fennel et al., 2013).   
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APPENDIX C 

 
Fig. C1. Vertical profiles of model bias (model minus observations, mg O2 l-1) and RMSE 
(root mean squared error, mg O2 l-1) in dissolved oxygen (DO) in 2004-2007 at station 
C6. The light shadows represent the one standard deviation in the observations.  
 
 

 

 



 
Fig. C2. The model bias (model minus observations, mg O2 l-1) in non-summer and 
summer averaged dissolved oxygen (DO) in 2004-2007 at stations along C transect.  

 



 
Fig. C3. The model RMSE (root mean squared error, mg O2 l-1) in non-summer and 
summer averaged dissolved oxygen (DO) in 2004-2007 at stations along C transect.  

  



APPENDIX D 

Table D1. Overview of assimilation effect on physical and biogeochemical model state 
variables in Scenario 2. The assimilation effect for each variable is quantified by the 
percentage change of  ( ) in each assimilation experiment relative to the 
Free run  ( ). A decrease larger than or equal to 10% is considered a 
“beneficial” effect (highlighted in bold), an increase larger than or equal to 10% is 
considered “detrimental” (highlighted in bold and italic), while less than 10% change is 
considered “neutral”. Variables that are not affected by assimilation in a specific 
experiment are left blank. 

     Percentage change of    Percentage change of  
Unit: % Experiment SSH T NO3 Chl Phy  T NO3 Chl Phy 
 
Method 1 

B|chl   -2.8 -39 -43   -6.6 -12 -10 
B|chlN   -17 -34 -33   -10 -4.6 -0.2 
T|  -41 -57 -40 +204 +178  -24 +75 +76 +61 

            
 
Method 2 

TB|chl +1.3 +14 -29 -48 -55  +13 -4.1 -14 -12 
TB|chlN +7.7 -10 -61 -36 -25  +6.2 -23 -6.4 +1.1 
TN|  -41 -57 -62 +53 +92  -24 -10 +30 +40 

            
Method 3 TN| _B|chlN -41 -57 -61 -20 -2.0  -24 -16 +4.8 +18 

 

 



 
Fig. D1. Root mean square (RMS) vertical velocity at depths above 50 m, averaged at all 
analysis dates, for the truth, free run and different assimilation runs. 
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