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Abstract

Computer simulation techniques such as finite element (FE) methods are used exten-
sively to ensure functionality, reliability, and safety. The accuracy of these simulations
is reliant on how accurately one can describe material behavior through the use of
mathematical formulations known as constitutive material models. However, tradi-
tional methods of fitting constitutive material models are slow, tedious, and require a
skilled researcher to perform correctly. In this thesis, an alternative fitting technique
is investigated. Known as inverse material modeling (IMM), this technique couples
experimental testing, FE modeling, and numerical optimization algorithms. Unlike
traditional fitting techniques, IMM displays a high degree of automation, reducing the
time and effort needed to fit constitutive material models without sacrificing accuracy.
Moreover, as the FE model replicates the experiment being conducted, non-linearities
such as irregular states of stress and specimen fixturing are accounted for; something
which cannot be done with traditional fitting techniques.

This thesis is devoted to the development and use a custom-built IMM framework
known as Compcam. To investigate the effectiveness of IMM and Compcam, two
separate investigations were undertaken. In the first, five wrought alloys of varying
composition and mechanical behavior are fit to four separate constitutive models.
The goal of this study was to fit the stress-strain behavior of each material. In
the second, twelve ferrous sintered powder metallurgy (PM) alloys consisting of four
elemental compositions and three sintered densities are each fit to four constitutive
models each. In addition to stress-strain behavior, the second investigation aimed to
uncover how well said constitutive models and Compcam fit each alloy’s densification
behavior.

The results of these investigations show that Compcam is effective for the fitting
of constitutive material models across a range of material behaviors and constitutive
models for metals. However, there are limitations to Compcam’s effectiveness. In
particular, Compcam and IMM are unable to produce realistic fits for constitutive
models which are not appropriate to describe the material behavior. However, this
limitation can be overcome though appropriate selection of constitutive models by
the user.
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Chapter 1

Introduction

All models are wrong, but some models are useful.

George E.P. Box

Modern design and manufacturing methods rely heavily on computer simulation tech-

niques such as finite element (FE) modeling to shorten the design cycle of a product,

reduce manufacturing costs through process optimization, verify product functional-

ity, and ensure consumer safety in extreme scenarios. The veracity of these modeling

techniques is highly dependant on a number of factors, such as the appropriate dis-

cretization of the model and proper boundary conditions. In the case of FE models

which incorporate the effects of plastic deformation, the largest factor which influ-

ences the validity of the simulation is how accurately the behavior of the material’s

behavior is captured.

In FE modeling, material behavior is described through the use of mathematical for-

mulations known as constitutive material models. Given the wide range of materials,

and hence material behaviors, there exist a very large number of constitutive material

models. These model vary in complexity and application based on the material and

situation they were developed to model. However, a challenge common to all con-

stitutive models is the selection of appropriate input parameters that allow a given

constitutive model to describe a material’s behavior, a process known as model fitting,

or simply fitting. Fitting is complicated by two key factors.

The first complication when fitting a constitutive model is the appropriate character-

ization of a material’s behavior. While simple constitutive models may only require

a single material test to garner enough information to describe a material’s behav-

1



ior, more complex constitutive models require a battery of tests to characterize a

material’s behavior under a range of conditions. A common example is the testing

required to fit the Johnson-Cook model, a commonly used temperature and strain

rate dependent plasticity model. The model’s creators suggest a large test matrix

which characterizes the material using three different material tests, a torsional test,

a uniaxial tension test, and split Hopkinson bar test, at a range of temperatures and

strain rates (Johnson and Cook, 1983). This large test matrix requires three different

testing apparatus, a large number of test specimens, and trained personnel to carry

out testing and data processing. This makes material characterization expensive from

both a financial perspective, but also from the perspective of the amount of time and

effort required.

The second complication to fitting is the constitutive model itself. With the excep-

tion of select constitutive models, fitting is made difficult by both the large number

of parameters needed to fully describe a material and the issue that many of said

parameters do not have analytic or semi-empirical means of determination. Further,

as the complexity of constitutive models increases, there is a trend toward param-

eters which cannot be measured experimentally or are entirely non-physical. While

the authors of some constitutive models do suggest methods or correlations to make

fitting easier, the majority of authors do not. To that end, the majority of existing

fitting techniques are iterative in nature and generally require manual intervention at

each step. As a result, a skilled researcher is generally required, making such methods

tedious and costly.

With the current drive from industry to develop new materials and manufacturing

techniques to improve performance and reduce cost, coupled with the idea of digital

prototyping to mitigate the cost of product design, the use for simulations tech-

niques such as FE modeling is increasing. However, the process of fitting constitutive

models remains a significant time and cost barrier to overcome. From an industrial

perspective, the cost associated with model fitting reduces the incentive to adopt new

material, manufacturing methods, or modeling approaches, slowing or stalling the

widespread adoption of new advancements. From a research perspective, the process

of fitting slows the exploration of new constitutive models which may improve the

predictions of material behavior. To that end, there is a decided need for an efficient

and accurate method to fit arbitrary constitutive material models to the behavior of

arbitrary materials.
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This thesis develops a software tool known as Compcam based on an alternative

model fitting technique which overcomes many of the aforementioned challenges and

limitations of traditional fitting methodologies. This tool, known asCompcam (COn-

stitutive Model Parameters from CAmera Measurements) utilizes a fitting technique

known as inverse material modeling (IMM), which couples numeric optimization al-

gorithms with FE modeling.

One common means of testing the quality of a fitted constitutive model is to create

an FE model of the material test used to generate characterization data and assign it

the fitted constitutive model. This allows one to directly compare the accuracy of the

FE model to experimental data. Instead of using this method as a final validation,

Compcam and IMM use the FE model from the start of fitting. By allowing numeric

optimization algorithms to tune the parameters of the constitutive model inside the

FE model, Compcam automatically determines material parameters which minimize

the error between the response of the FE model and experimental data. Not only

does IMM require no user interaction once optimization is started, phenomena which

make traditional fitting difficult such as stress triaxiality and non-linearity in the

experimental data are easily accounted for, as such phenomena are captured by the

FE model.

The objectives of the work detailed in this thesis are threefold. First, to develop

the aforementioned Compcam, a software tool that performs IMM. Second, to per-

form mechanical characterization of several types of materials, ranging from ferrous

and non-ferrous wrought metals to sintered PM ferrous alloys. By exploring a wide

breadth of materials, not only is a large dataset of material data generated and pre-

sented, but it allows for the effectiveness of IMM and Compcam to be tested under a

variety of materials. Third, to fit several constitutive material models of varying be-

havior and complexity to all material tested and to generate a library of constitutive

model parameters which can be used in future modeling tasks.

IMM and Compcam are not without their drawbacks. As optimization algorithms

require the FE model to be evaluated a significant number of times, FE models

which take a long time to solve or constitutive models with an excessive number

of free parameters can make Compcam prohibitively expensive. Additionally, the

effectiveness of IMM is maximized when the constitutive model being fit is a realistic

description of actual material behavior. While Compcam and IMM can and will

naively fit any constitutive model to any material’s behavior, the quality of the final

set of parameters and final model fit will suffer if inappropriate models are used.
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To show the effectiveness of Compcam, this thesis presents the results of two inves-

tigations. In the first, four constitutive models were fit to the mechanical behavior of

five ductile metals, specifically aluminum 2024-T351, C36000 brass, C10100 copper,

AISI 4140 steel, and AISI 4340 steel. This work not only validated Compcam’s de-

velopment but also showed the effectiveness of IMM on a wide range of constitutive

models and material behaviors. In the second investigation, four sintered, ferrous

powder metallurgy (PM) alloys, each sintered to three final densities, were fit to four

constitutive material models. In this case, not only is the material’s stress-strain be-

havior of interest during fitting, but also the densification of each alloy in compression.

In both investigations, Compcam proved to be an effective and accurate fitting tool,

with certain caveats. Primarily, the constitutive model being fit must be a faithful

representation of all material behaviors present in the target material. Should this

not be true, Compcam can produce artifacts such as unrealistic parameters and poor

model fits.
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Chapter 2

Background and Literature Review

Owing to the breadth of subject matter covered in this thesis, a comprehensive back-

ground which covers several seemingly unconnected fields is required. In this back-

ground and literature review, the primary material test used in this work, the cold

upsetting test, is introduced and discussed. Also presented is an overview of the op-

tical measurement system used with all cold upsetting tests throughout this work.

Following material testing, constitutive material modeling is introduced. This look

at constitutive material models focuses exclusively on metal plasticity. Existing fit-

ting techniques for material models are presented, with a focus on inverse techniques.

Owing to the interconnectivity of inverse techniques and numerical optimization, an

overview of optimization techniques is also presented, including local optimization

and global search algorithms.
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2.1 Material Testing Techniques

Various testing techniques exist to characterize the mechanical behavior of materials.

One of the most ubiquitous is the uniaxial tensile test, made popular due to the simple

equipment and methodology required. In addition, uniaxial tensile tests produce a

state of stress which is predominantly tension with minimal non-linearities imparted

by the test fixturing or specimen geometry, making it an effective means of charac-

terizing a material’s behavior, particularly for constitutive material models.

An alternative material testing method is the cold upsetting test, which involves

the compression of a cylindrical specimen. Compared to the uniaxial tension test,

cold upsetting has several advantages. Test specimens used in tensile tests need to be

specially machined to allow the specimens to be gripped by the testing apparatus. The

machining also ensures the stress in the specimen concentrates at a point away from

the grips. By comparison, test specimens for cold upsetting tests are simple cylinders

which can be parted off a length of bar stock without subsequent machining.

Owing to their simplicity, the testing equipment needed for cold upsetting tests is also

simpler than tensile tests. Instead of the specialized grips required for tensile tests,

cold upsetting merely requires hardened platens to compress the specimen. Further,

compressive test frames are generally easier to design, build, and purchase. As a

result, the overall cost associated with cold upsetting tends to be less than that of

the uniaxial tension tests.

Another major advantage of cold upsetting is that a much larger cross-section of

the material is placed under load compared to tensile tests (Chait and Curll, 1976).

This advantage is particularly apparent when specimens undergo plastic deformation.

While a tensile specimen of ductile material will experience a localized reduction in

cross-section, a phenomena known as necking, a cold upsetting specimen’s cross-

section increases, maintaining and increasing the area under stress. This allows more

of the material to be experiencing plastic deformation, potentially allowing researchers

to measure more information about the material’s behavior.

Despite these advantages, cold upsetting has seen limited application in material

characterization for constitutive material models. In fact, its largest common use has

been limited to the study of failure loci (Bao and Wierzbicki, 2004; Wierzbicki et al.,

2005; Xue and Wierzbicki, 2009), as opposed to characterizing a material’s behavior.

The key reason for this is a phenomenon known as barreling. During testing, a
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cold upsetting specimen will expand radially due to the effects of Poisson’s ratio. In

theory, this expansion will be completely uniform if there is nothing constraining the

specimen radially (Chen and Chen, 2000). However, friction between the platens and

test specimens restricts the expansion of the specimen’s top and bottom faces. This

causes the specimen to bulge about its midplane, hence the name barreling.

In addition to causing non-uniform deformation, barreling introduces significant stress

triaxiality within the specimen, particularly during plastic deformation. This triaxi-

ality results in areas of compression, radial tension, and shear stress developing within

a single specimen, as shown by Figure 2.1. The triaxiality which develops in a cold

upsetting specimen prevents the isolation of a single state of stress, which is a gen-

eral requirement when fitting constitutive material models analytically, as will be

discussed later in Section 2.3. Several methods have been suggested to mitigate the

effects of barreling in cold upsetting specimens, which would make the test more

amenable to use in characterizing material behavior. The most common method is

the application of lubricant between the specimen and platens, with the most common

lubricants being PTFE sheets or molybdenum disulfide grease (ASTM Standard E9-

09, 2012; Banerjee, 1985; Narayan and Rajeshkannan, 2012). Other methods involve

specially machined specimens (Chait and Curll, 1976) which either trap lubricant or

attempt to counteract barreling with specially shaped profiles. While these methods

have been proven to reduce, although not eliminate, barreling in cold upsetting tests,

they tend to add complexity to the testing procedure or expense to the manufacture

of specimens.

An alternative solution to the problem of barreling was developed by Felling and Do-

man (2018). Instead of attempting to mitigate barreling through the use of lubricants

or special specimens, Felling and Doman’s solution was to track the development of

barreling throughout a test. In a system known as Specs (Super Portable Extensome-

ter Camera System), Felling and Doman developed an optical measurement technique

which performs two duties. First, it acts as a non-contact extensometer which tracks

the vertical deformation of a specimen during a cold upsetting test. This allows a

researcher to take a specimen to fracture without needing to stop a test to remove

a contact extensometer. Second, it measures the barreled contour (the deformed ra-

dius at any point in the specimen’s height) of the specimen throughout a test. By

measuring the actual deformed radius of a specimen during a test, a researcher can cal-

culate the bulk true stress in a specimen without relying on assumptions of volume

consistency. Although digital image correlation (DIC) systems can achieve similar
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Figure 2.1: Stress states within a cold upsetting specimen undergoing plastic defor-
mation

measurements, Specs is an order of magnitude less expensive than commercial DIC

systems.

Specs utilizes a computer vision technique known as background subtraction. An im-

age of the experiment’s background is taken without fixturing or specimens installed

prior to the start of testing. Test fixturing, with spherical targets for the optical

system to read, is then installed. These targets are used to compute the vertical

displacement, and hence strain, imposed on the specimen. During a test, images are

taken of the specimen and test fixturing at an arbitrary frequency. In post-processing,

each test image and the background image are broken into their constitutive color

planes (red, green, and blue). For each color plane, the background image is sub-

tracted from the test image. The resulting three images are then summed together to

form a greyscale image which isolates the test fixturing and specimen from the sta-

tionary background. A binary thresholding operation is then applied, converting the

greyscale image to a black and white image which specifically isolates the fixturing

and specimen. Because the thresholding operation removes areas of the image, the

threshold value must be carefully selected to ensure the edges of the specimen are not

cropped. The effect of background subtraction is given in Figure 2.2, where a test

image is shown in its processed and unprocessed state.

To account for distortion in the camera’s optics as well as to convert the image’s

pixels to real-world dimensions, microplane calibration was applied. Developed by
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(a) Unprocessed Image (b) Final Processed Image

Figure 2.2: Before and after background subtraction technique is applied to a test
image

National Instruments and available in LabView, this calibration technique removes

distortion from images by analyzing a calibration image consisting of an array of dots

of known spacing. By analyzing the spacing of the dots in the image, a mathematical

map can be constructed to correct for any deformation as well as determine the size

of a pixel in real-world units.

Information about specimen deformation is extracted from the calibrated, binary

images through the use of two feature recognition techniques. First, a circle detection

algorithm is run to determine the location of all spherical targets. As there are two

targets per platen in the cold upsetting test, the average location of two targets is

used. The difference between the location of the top and bottom platen provides a

measure of the specimen’s height and, therefore, vertical deformation. Next, a rake

algorithm is performed to determine the edges of the deformed specimen, which allows

Specs to calculate the barreled contour. The barreled contour can then be used to

measure the extent of radial deformation or calculate mean deformed diameter. For

more information on the operation of Specs, please refer to Felling and Doman

(2018).

Barreling is caused by a combination of Poisson’s effects and friction. While Specs

provides the researcher with a rich dataset describing the progression of barreling

throughout a test, there is still no closed-form method to analytically isolate the

effects of friction and Poisson’s ratio. Further, Specs does not aid a researcher in

isolating a specific state of stress in the test specimen. However, the computational

methods such as FE modeling can account for the combined effects of material be-
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havior and sliding friction. The barreled contour measured by Specs can allow a

researcher to make direct comparisons to an FE model. This is a key point which

drives the implementation of IMM used in this work. Further, Specs allows one

to take advantage of the triaxial state of stress in barreling to fit models which are

sensitive to different states of stress without multiple tests.

2.1.1 Characterization of Friction in Compressive Testing

Characterization of friction is difficult as it varies based on lubrication, materials,

surface finish, interface velocity, and a host of other factors. For this work, it was

assumed friction is static in nature due to the quasi-static nature of the cold upsetting

test.

To characterize the coefficient of friction between the specimen and the pressing

platens the friction ring test was used. Pioneered by Male and Cockcroft (1964), the

friction ring test makes use of the barreling phenomena to estimate the coefficient of

friction between two materials. This is accomplished by the compression of a short

ring of material. During compression, the outer diameter of the ring bulges outward

while the inner diameter of the ring deforms inward. Using (2.1), where ∆Di is the

percent change in inner diameter (in units of percentage) and δH is the percent change

in the ring’s height (also in units of percentage). Both measurements are made after

testing, so springback is accounted within the equations below.

∆Di = m ln
( µ

0.055

)

(2.1)

where

lnm = (0.044∆H) + 10.6 (2.2)

It is important to note that the results of the friction ring test are not exact, as there

is no method available to analytically resolve coefficient of friction from deformation

(Male and Cockcroft, 1964). The equations used here are approximations based on

several assumptions of material deformation, and as such, the coefficients of friction

determined through this method are approximate in nature. While some works do

attempt more sophisticated mathematics to improve the accuracy of the friction ring
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test (Male and DePierre, 1970), the fact remains that there is no closed form solution

to resolve friction from deformation.

Another consequence of the friction ring test is that it is incompatible with materials

which exhibit compressible behavior. One of the key assumptions which underpin the

analysis of friction ring tests is volume consistency. To that end, the sintered PM

alloys used in this work cannot use the friction ring test.
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2.2 Constitutive Material Models

Constitutive material models are the mathematics which describes how materials

behave. It is a very broad term, as it can cover any type of material behavior, from

thermal, to mechanical, to chemical. While the breadth of constitutive modeling

is vast, this research focuses on the specific branch of that field. As such, for the

purposes of this thesis, the term constitutive material model will refer exclusively to

behavior related to mechanical deformation.

In their simplest form, constitutive material models which describe mechanical be-

havior can be given the general form seen in (2.3), where stress, σ, is a function of

strain, ϵ, and any number of other inputs such as temperature, strain rate, state vari-

ables such as material damage or prior loads, and many others. However, owing to

variations in the behavior of different types of materials, such as between polymers,

metals, and powders, many different approaches to modeling material behavior are

used. As such, this thesis once again narrows the definition of constitutive material

model to limit itself to metals and metal plasticity.

σ = f(ϵ, . . . ) (2.3)

This section begins with a brief introduction to the tensor mathematics which under-

lies metal plasticity. Following this introduction, a broad discussion of stress, yielding,

and metal plasticity is presented. The definitions of the constitutive models used in

this research are also discussed.

2.2.1 Tensor Notation

Prior to discussing metal plasticity and some of the other mathematics used in this

work, it is important to introduce consistent mathematical formatting and notation.

As stress states are inherently three dimensional, a complete mathematical description

of stress or strain cannot be given in a single value. Instead, stress states (and strain

states for that matter) are described using second-order tensors, as given in (2.4).

Because stress states are generally computed in the material’s coordinate system,

stress tensors often use numeric subscripts instead of the traditional x, y, and z

subscripts.
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σij =

⎡

⎢

⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤

⎥

⎦
(2.4)

The use of tensor notation, particularly when discussing metal plasticity, provides

one with the ability to create shorthand forms of matrix operations. Specifically, one

definition of tensor notation is that repeated indices in one tensor or between two

tensors indicates summation over the repeated index. For example, given the tensor

σij, the notation σnn represents the sum of all diagonal components of the tensor (an

operation also known as the trace of a matrix). For the case of two matrices, the ex-

pression σijσji represents multiplication of two second-order tensors and is equivalent

to the longer expression shown (2.5). One interesting facet of tensor notation is that

when multiplying two tensors, the number of repeated indices indicates the number of

orders the solution is reduced by. For example, in the case of matrix multiplication,

the two repeated indices indicated the answer must be a zero-order tensor or a scalar

value. The reader is directed toward an excellent introductory text by Fung (1977)

for a more detailed discussion of tensor mathematics.

σijσji =
∑

i

∑

j

σijσji (2.5)

2.2.2 Yielding and Metal Plasticity

The yield point of a material is the point at which the loads on a material will cause

permanent or plastic deformation. Typically given in terms of stress, any loading

incurred by the material below its yield strength, σy, will cause elastic deformation,

meaning the material will return to its original configuration when unloaded. In

most product design applications, the yield strength of a material is generally used

as a failure criterion to determine if a component can safely withstand operating

loads.

However, unlike the case of product design, there are many applications were perma-

nent deformation is essential. Manufacturing is perhaps the most accessible example

of where loading a material past its yield strength is not only acceptable but neces-

sary. Operations such as stamping and forging require detailed knowledge of how a

material behaves after yielding and permanent deformation occurs. Unlike a mate-
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rial’s elastic behavior wherein stress and strain have a linear relationship, a material’s

plastic behavior can be highly complex and varied. The study of a metals’ post-yield

behavior is known as metal plasticity.

The most common metric used to determine yielding in metals is the von Mises yield

criterion, also known as distortion energy theory. This criterion, given by (2.6) where

σij are the individual components of the Cauchy stress tensor given in (2.4), allows

one to reduce a complex state of stress to a single value. This single value, formally

known as the distortion energy failure criterion but more commonly referred as von

Mises stress, can be compared to a materials yield strength to determine if yielding

has occurred.

σvm =

√

1

2

[

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 + 6(σ2
12 + σ2

23 + σ2
31)
]

(2.6)

Visualized in three dimensions in the stress tensor’s principal axes, the von Mises

yield criterion forms the cylindrical surface shown in Figure 2.3, known as the von

Mises yield surface. This surface has its central axis along the σ1 = σ2 = σ3 line. This

line is referred to as the hydrostatic axis, as it represents the hydrostatic pressure or

stress generated as a result of equal loading in all principal directions experienced

by the material. Any state of stress which falls inside the yield surface will not

cause a material to yield. An important consequence of this is that it implies that

a hydrostatically loaded material cannot undergo yielding, even if the magnitude of

the hydrostatic pressure exceeds the tensile yield strength of a material.

It is important to note that while the von Mises yield criterion is insensitive to hy-

drostatic pressure, some yield and failure criteria such as the Gurson-Tveergard-

Needleman model presented later in this section, show a dependence on hydrostatic

pressure. These models are necessary when a material’s strength is dependant on the

pressure exerted on it, such as the compaction of powders. As such, it behooves one

to decompose the stress tensor in (2.4) into two components, as shown in (2.7), where

δij is the Kronecker delta. The scalar hydrostatic pressure (σH or P ) controls how

far up the hydrostatic axis a particular state of stress is. The deviatoric components

(σ′

ij) account for all stresses which push the stress state off the hydrostatic axis and

toward the yield surface.

σij = σHδij + σ′

ij (2.7)
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Figure 2.3: The von Mises yield surface visualized in three dimensions in the principal
coordinate system.

where

σH =
1

3
σnn (2.8)

σ′

ij = σij − σHδij (2.9)

It is important to note that the yield surface of a material represents the limiting

stress which, at any instant in time, the material can withstand. This implies that

while a material undergoes yielding when its state of stress intersects the yield surface,

it is also true that the stress cannot exceed the yield surface. As such, as a material

undergoes plastic deformation, the stress state must remain on the yield surface, for

that particular loading and instant of time.

However, that most materials experience an increase in yield strength when plasti-

cally deformed, a process known as work or strain hardening. This phenomenon is

modeled by altering the yield surface. The function which modifies the yield surface

is known as the hardening rule. Broadly speaking, hardening rules fall under two

categories; isotropic hardening and kinematic hardening. Isotropic hardening, which
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is used exclusively in this research, allow the yield surface to grow radially about the

hydrostatic axis. Kinematic hardening also allows the yield surface to grow radially

but shift the center of the yield surface off the hydrostatic axis. In the case of uni-

axial loading, such as during a tensile test, and a material which exhibits isotropic

hardening, the hardening rule can be observed as the plastic behavior experienced by

the material.

Because the hardening rule is only active when a material is undergoing plastic de-

formation, it is convenient to decompose the total strain experienced by a material

into the strain caused elastic deformation, ϵe, and plastic deformation, ϵp. This de-

composition is formalized in (2.10).

ϵ = ϵe + ϵp (2.10)

An interesting consequence of the fact that stresses cannot exist outside the yield

surface and that the yield surface itself can grow is that there is no closed form

solution which simultaneously controls the growth of the yield surface and ensures

that the stress in the material remains on the yield surface during plastic deformation.

As such, a key aspect of constitutive material models used with finite element methods

is an iterative procedure known as stress integration or return mapping (Simo and

Hughes, 1998). These procedures ensure that the current stress in the material and

the growth of the yield surface agree. While techniques vary across constitutive

material models, the general procedure is the same. A trial stress is computed based

on the material’s current deformation. If the stress lies outside the yield surface, the

return mapping algorithm starts. First, the hardening rule is evaluated to determine

the extent to which the yield surface will grow. Then, based on a variety of criteria

depending on the model, a trial attempt is taken to return the trial stress to the

new yield surface. The algorithm repeats the process of adjusting the yield surface

and attempting to map the stress onto the surface until the two converge. While

computationally expensive, reliable and robust return mapping algorithms are critical

for efficient and stable constitutive models.

2.2.3 Modeling Approaches for Sintered PM Alloys

In many cases, the behavior of sintered PM alloys can be treated as identical to

wrought alloys, as most end uses of PM alloys, such as components in automotive
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gear trains, require a relative density approaching the theoretical full density of the

alloys. However, in some cases, secondary shaping or forging processes are required

to collapse the residual porosity in as-sintered components. One such processed used

in the production of gears is gear rolling, where an as-sintered PM gear is placed

between to large master gears. The PM gear is then rolled with radial force applied

by the master gears, collapsing the surface porosity of the gear and bringing the gear

into its final shape.

In efforts to understand the underlying operation of gear rolling as well as to perform

process optimization, several researchers have turned to FE modeling. However,

because the collapse of residual porosity within the gear during rolling, the von Mises

yield criterion described in Section 2.2.2 is no longer valid, as this criterion cannot

account for a material changing volume. To that end, alternative constitutive models

and yield criteria are used in the literature.

Klocke et al. (2007) found good agreement between their modeling and experimental

density gradients found in rolled gears. Additionally, they presented the results of a

study which examined the effects of different process parameters on the final gear’s

surface densification and shape. However, the constitutive modeling approach used

in this work was unclear and borderline contradictory, although it seems as though

a bespoke constitutive model based on the Kuhn-Downey and Shima-Oyana models

was used.

Yazici et al. (2008) attempted to model the densification process of both cold upsetting

and gear rolling using the GTN model and the Gologanu-Leblond model. Both models

attempt to recreate the growth, nucleation, and collapse of pores within a ductile

metal. However, while the GTN model only considers spherical pores, the Gologanu-

Leblond considers anisotropic pores, which allows for the model to account for pore

shearing and ovalization (Gologanu and Leblond, 1997; Gologanu et al., 1993). While

Yazici et al. found the Gologanu-Leblond model predicted the final density gradient

of a cold upsetting specimen better than the GTN model, the computational expense

was significantly greater. Yazici et al. did not present a comparison of the two models

for gear rolling due to confidentiality reasons.

Cho et al. (2015) found good agreement between experimental and FE results using a

Shima-Oyana model. However, they noted the difficulty associated with determining

appropriate constitutive parameters. Cho et al. were also one of the only researchers
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to publish direct comparisons of the density gradients between their FE models and

experimental results.

Regardless of the approach, it is clear that pressure-dependant constitutive material

models are required to model the gear rolling process, and by extension, any forging

or shaping operation of sintered PM alloys with residual porosity. But as noted by

Cho et al., a key challenge associated with such models is the difficulty of determining

appropriate constitutive parameters. Given that some parameters used by these mod-

els, particularly the GTN model, which is discussed below, and the Gologanu-Leblond

model, are non-physical or cannot be measured experimentally, time-consuming iter-

ative methods are generally used. However, it is important to note that none of the

works detailed here discuss how parameters were fit, nor do any of the works present

the parameters they used.

2.2.4 Overview of Models Used In This Work

Having covered the basics of metals plasticity and reviewed modeling approaches

seen in the literature, we can now discuss the specific constitutive material models

which will be used in this work. Each of these material models describes plastic

deformation in a different manner. It is important to note that the specifics of the

return mapping algorithm are not introduced. This is because each model presented

here is a built-in model provided with the FE package used in this work (specifically

Ls-Dyna R9.1.0), with little to no information provided as to how the return mapping

is implemented. A key reason for the selection of these constitutive models over other

models presented in the above literature review was their availability in Ls-Dyna

R9.1.0 (LSTC, 2017a,b), as discussed later in this document.

2.2.4.1 Linear Isotropic Plasticity

Perhaps the simplest constitutive model which incorporate some form of hardening,

linear isotropic plasticity models predict plasticity behavior using a single linear func-

tion. In general, this type of material model defines the slope of this hardening curve

with a parameter known as the plastic or tangent modulus. The fact that only one

parameter is needed to describe plastic behavior makes linear plasticity models simple

to fit but can limit their use with certain materials.
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As with all material models used in this work, a built-in material model from Ls-

Dyna 9.1.0 was used. *MAT PLASTIC KINEMATIC, with all kinematic plasticity

effects disabled, provides researchers with the ability to model linear isotropic hard-

ening behavior by defining a single plastic parameter. The linear hardening rule is

used in concert with a von Mises yield surface in this work.

*MAT PLASTIC KINEMATIC allows the user to define the tangent modulus, ET ,

which is then used in concert with the Young’s modulus of the material, E, to compute

the plastic modulus EP , as shown by (2.11). This modulus is then used to compute

the flow stress, or stress incurred solely from plastic deformation, using the (2.12),

where ϵp is the effective plastic strain. The user is also required to specify an initial

yield strength for this material model.

EP =
EtanE

E − Etan

(2.11)

σy = σ0 + EP ϵ
p (2.12)

2.2.4.2 Swift Hardening Rule

A step up in complexity from linear plasticity, the Swift hardening rule (Swift, 1952)

models plastic behavior using an exponential relationship, shown in (2.13) and was

originally developed for use in modeling sheet metal stamping operations. The Swift

hardening rule used in this work is implemented in Ls-Dyna as *MAT POWER

LAW PLASTICITY and allows the user to specify two plasticity parameters in ad-

dition to the initial yield strength of the material. These two parameters are the

hardening coefficient K and hardening exponent n. The term ϵ0 is the yield strain of

the material computed from the material’s Young’s modulus and initial yield strength.

As with linear plasticity, the Swift hardening law is used in concert with a von Mises

yield surface.

σy = K(ϵ0 + ϵp)n (2.13)
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2.2.4.3 Johnson-Cook Model

The Johnson-Cook model (Johnson and Cook, 1983) has become a staple of consti-

tutive material modeling owing to its ability to model large deformation, high strain

rates, and thermal effects. The hardening rule used by this model, given by (2.14),

consists of a power law hardening rule similar to the Swift hardening law, a logarith-

mic dependence on strain rate, and an exponential dependence on the temperature

of the material. The yield surface of the Johnson-Cook model is controlled by the

von Mises stress criterion. This model is given implemented in Ls-Dyna as *MAT

JOHNSON COOK.

σy = (A+B(ϵp)n)(1 + c ln ϵ̇)(1− T ∗m) (2.14)

Where T ∗ is the homologous temperature given by:

T ∗ =
T − Troom

Tmelt − Troom
(2.15)

While thermal and strain rate effects are a key part of the Johnson-Cook model, this

model, as it is implemented in Ls-Dyna, was selected owing to its ability to use an

equation of state.

Equations of state for metals are common when modeling extremely high rate events,

when the hydrostatic pressure far exceed a material’s yield strength, and when shock

waves propagation is of interest. In these situations, the material’s behavior is more

accurately described as a fluid than a solid. Equations of state effect material behavior

by directly controlling the hydrostatic component of the stress tensor, while the hard-

ening rule and yield surface control the deviatoric components of stress. Equations of

state are generally a function of the material volume, internal energy, temperature,

or any combination thereof.

As already noted, the calculation of stress in most FE codes is decoupled into its hy-

drostatic and deviatoric components. This is advantageous for constitutive models,

as most are pressure independent, such as those which use the von Mises yield crite-

rion. In such cases, pressure and volumetric deformation are calculated based on the

material’s bulk stiffness and it is assumed that all volumetric deformation is elastic in

nature. The use of an equation of state allows one to control the material’s pressure

behavior, allowing one to circumvent the pressure-independent nature of yield surface
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and add densification behavior to material models which otherwise be unable to do

so. For a technical treatment of how equations of state are implemented in FE solvers,

please refer to Appendix A. While any material models could be combined with an

equation of state, in practice, the added challenge limits the number of constitutive

models which can do so in most FE solvers. It is for this reason the more complex

Johnson-Cook model is used for equation of state modeling instead of the similar and

far simpler Swift hardening rule.

While work completed in this thesis does not include consideration of high rate and

high energy deformation situations, an equation of state’s ability to link hydrostatic

pressure to volume, and hence material density provides an alternative means of

modeling sintered PM alloys. The usage of an equation of state to model the small

to moderate densification of sintered PM alloys under low strain rate has not been

seen in literature prior to this work.

Two equations of state were used in this thesis. The first was a bi-linear equation

of state implemented in Ls-Dyna as EOS TABULATED COMPACTION. As sug-

gested by its name, this equation of state takes a list of proportionality constants,

Cn, at various volumetric strains, ϵV,n. These pairs form controls points which define

the material’s pressure-volumetric strain behavior, as shown in (2.16). While upward

of eight control points could be selected, only three points were chosen for this work,

providing bi-linear pressure-volume behavior. It was found that this combination

provided a good trade-off of complexity and accuracy compared to higher and lower

order piecewise curves.

P (ϵV ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C1ϵV + P0 ϵV ≤ ϵV,1

C2ϵV + P (ϵV,1) ϵV,1 < ϵV ≤ ϵV,2
...

CnϵV + P (ϵV,n−1) ϵV,n−1 < ϵV

(2.16)

The second equation of state used in this work is based on the P − α compaction

curve. This curve, developed to model the dynamic compaction of ductile porous

bodies (Herrmann, 1969), has several useful properties. Prime amongst them, the

P − α compaction curve, where P is pressure and α is porosity (the inverse of rel-

ative density), prevents a constitutive model predicting impossible densification by

increasing hydrostatic pressure asymptotically as a material approaches full density,

as shown in Figure 2.4. This behavior allows the equation of state to behave like a
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Figure 2.4: The P − α compaction curve

pressure-independent model at full density, something the bi-linear equation of state

listed above would not be able to accomplish without a set of control points forcing

near infinite pressure-volume behavior. It was found that forcing the bi-linear equa-

tion of state to attempt such behavior yielded significant numerical instabilities which

were impossible to overcome.

The P − α curve used by Ls-Dyna is found in EOS MIE GRUNEISEN. While this

equation of state does contain a Gruneisen-type component to deal with internal en-

ergy, the quasi-static nature of this work means that this component is not activated.

Porosity and pressure are tied together using (2.17), were P is the current pressure, Ps

is the hydrostatic pressure when a material reaches full density, Pe is the hydrostatic

pressure at at the material’s yield point, α0 is the initial porosity of the material, and

N is an exponential modifier.

α = 1 + (α0 − 1)

(

Ps − P

Ps − Pe

)N

(2.17)
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2.2.4.4 Gurson-Tvergaard-Needleman Model

The Gurson-Tvergaard-Needleman (GTN) model is a phenomenological model which

attempts to models porous materials. Originally developed by Gurson (1977) to

represent the growth and collapse of pores in a material, the model was expanded

by Tvergaard (1981) and Chu and Needleman (1980) to account for the coalescence

and nucleation of pores during plastic deformation. It is important to note that all

work by Gurson, Tvergaard, and Needleman make the assumption that changes to

porosity only occur under hydrostatic pressure, with no accounting for the devia-

toric components of stress. The GTN model is implemented in Ls-Dyna as *MAT

GURSON.

Unlike the four material models already presented, the GTN model uses its own yield

surface given by (2.18). The yield strength of the material used by the GTN model,

σy, can either be a constant to model perfect plasticity or can be a function of effective

plastic stress to model a material’s hardening behavior.

Φ =
σ2
vm

σ2
y

+ 2q1f
∗ cosh

(

3q2σH
2σy

)

− 1− (q1f
∗)2 = 0 (2.18)

An important component of the GTN yield surface is the effective void fraction f ∗,

which models the degree of porosity in a material. Given by (2.19), the effective

void fraction of the GTN model is dependant on the critical void volume fc. When

the void volume exceeds this critical void fraction, it becomes a function of the void

fraction at material failure fF , which helps account for material damage which occurs

when porosity becomes excessive. It is important to note that under compression,

the void fraction cannot exceed the critical void volume because existing pores will

collapse.

f ∗(f) =

⎧

⎨

⎩

f f ≤ fc

fc +
(

q−1
1 −fc
fF−fc

)

(f − fc) f > fc
(2.19)

Growth and contraction of the void fraction is computed incrementally using (2.20).

The term ḟG represents growth of existing voids and, as shown by (2.21), is solely

dependant on the hydrostatic component of plastic strain. The nucleation of new

voids, defined by ˙fN , is a function of the term A, which attempts to model the
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probabilistic nature of void nucleation or the creation of new pores. As given by

(2.23), the probability of void nucleation is assumed to be Gaussian in nature.

ḟ = ḟG + ˙fN (2.20)

ḟG = (1− f)ϵ̇pnn (2.21)

˙fN = Aϵ̇p (2.22)

A =
fN

sN
√
2π

exp

(

−1

2

(

ϵp − ϵN
sN

)2
)

(2.23)

A major difference between the von Mises yield criterion and the GTN model is that

the yield strength of the GTN model is dependant on both hydrostatic and deviatoric

stress. This is seen in the flow function by the use of both von Mises stress (which is

a measure of deviatoric stress) and hydrostatic pressure σH . Additionally, the yield

surface of the GTN model is also highly dependant on the effective void fraction f ∗.

As the void fraction approaches zero, indicating there is little to no porosity in the

material, the GTN model approaches the behavior of the von Mises yield criterion,

where yielding is only caused by the deviatoric components of stress. However, as

porosity increases and f ∗ increases above zero, yielding can also be triggered by

hydrostatic pressure. This feature helps to model the collapse of pores in a material.

The effect of void fraction on the GTN yield surface is shown in Figure 2.5 as a

function of hydrostatic and deviatoric stress.

Owing to its dependence on both hydrostatic and deviatoric stress, the GTN model is

appropriate for materials whose density and strength change as a function of hydro-

static pressure, including porous materials and powders to a certain degree. Further,

the effective void fraction f ∗ can be used as a direct measure of the relative density of

the material. The conversion between relative density and the effective void fraction

is given in (2.24), where ρrel is defined as relative density.

ρrel = 1− f ∗ (2.24)
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Figure 2.5: The effect of varying void fraction on the GTN model.
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2.3 Model Fitting Techniques

Fitting is the process of choosing the input parameters of a constitutive material

model that provide the best prediction of a material’s real behavior. While this may

sound like an easy proposition on paper, the fitting of material models is a major

challenge in material characterization. This section details some traditional fitting

techniques and their challenges before introducing the methodology used in this work,

inverse material modeling.

2.3.1 Traditional Fitting Techniques

Traditional fitting techniques will be a term used in this document to denote a family

of existing methodologies which have been used extensively to fit constitutive mod-

els. Techniques in this family include analytical solutions, successive iteration, and

specially developed material tests and correlations provided by the creator of the

constitutive material model.

The simplest traditional fitting technique is the determination of input parameters

using analytic solutions of a constitutive model. A well-known example of an analytic

solution is the determination of Young’s modulus from a stress-strain curve. While

analytic solutions make fitting very easy, they are uncommon. The primary reason for

this is that constitutive material models are generally more complex than functions

which consist of one or two parameters. Additionally, complex constitutive models

tend to have model parameters which may not have physical meaning or cannot be

measured. For example, the GTN model described in Section 2.2.4.4 has several

parameters which cannot be measured, such as the void fraction at which pores begin

to nucleate and the so-called critical void fraction.

For cases in which analytic solutions do not exist, the most common methodology is

to manually fit the response of a material directly to the constitutive material model.

Generally speaking, this methodology requires the constitutive material model to be

coded external to the FE package in which it will be used, as the process of manual

fitting tends to be iterative in nature. Externally coded material models can provide

significant computational savings compared to manual iteration on an FE model.

However, fitting using externally coded material models generally require material

specific tests in order to isolate specific stress states and determine specific model
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parameters. Tests which causes significant triaxiality in the test specimen, such as

the cold upsetting test, are not generally compatible with fitting using externally

coded FE models.

A classic example of this method is the determination of parameters for the Johnson-

Cook model. In their original paper, Johnson and Cook (1983) use three separate

material characterization techniques, a split Hopkinson bar test, a tensile test, and

a torsional test, to isolate specific tensile and torsional states of stress as well as

to capture high rate and thermal effects. While not directly stated, Johnson and

Cook likely used an iterative approach, particularly for the determination of the

strain hardening parameter C as they state C was determined from torsional data by

”numerically simulating” the test at high strain rates.

Another interesting factor in how Johnson and Cook recommend fitting parameters

for their model is that a sequential fitting methodology should be adopted (1983).

Specifically, they recommend fitting of the hardening parameters A, B, and n under

quasistatic (ϵ̇p = 0) and isothermal (T ∗ = 0) conditions prior to fitting thermal or

strain rate effects. In the case of the flow rule developed by Johnson and Cook, this

methodology makes sense, as the thermal and strain rate effects are somewhat mod-

ular in nature. However, there are several constitutive models for which sequential

fitting is not an ideal method.

Some examples of sequential fitting include attempts to fit constitutive parameters

for the GTN model. Oh et al. (2007) fit the failure parameters of the GTN model to

API X65 steel starting with the nucleation void fraction, fN before proceeding to fit

the critical void fraction fc and the void fraction at failure ff simultaneously. Kiran

and Khandelwal (2014) used a similar sequential methodology when fitting the GTN

model to ASTM A992 steel, starting with nucleation parameters ϵN and fN before

proceeding to fc and ff . While Oh et al. do not specify the exact method used

to select the final parameters they published, Kiran and Khandelwal used a series

of parametric studies to determine the best input parameters. A final example pre-

sented here is the work of Cuesta et al. (2010) which sequentially fit GTN parameters

using a tensile test to first determine elastic parameters, then a single punch test to

sequentially determine nucleation parameters, the critical void fraction, then the void

fraction at failure. Cuesta et al. made use of semi-empirical formula to aid in the

determination of parameters.
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The use of sequential fitting is not limited to the GTN model. Work on the Bamman

model, a constitutive model for metals which accounts for high rate, thermal soften-

ing, and kinematic hardening effects, recommends a sequential fitting methodology

starting with hardening parameters before proceeding to either rate or thermal effects

(Bammann, 1990; Chuzhoy et al., 2003). Recent work with laminated composites, a

complex, highly coupled material which is challenging to model constitutively, also

advocates the sequential fitting of parameters to both ease the fitting process as well

as to gain an understanding of how parameters interact (Qiao et al., 2017).

While it eases the fitting process, sequential fitting of parameters could present a

major issue. As pointed out by Xue (2008) in a discussion of the GTN model, the

highly coupled nature of that and many other material models makes calibration

difficult. If two parameters are coupled, such as the hardening coefficient K and

exponent n in the Swift hardening rule presented in Section 2.2.4.2, fitting K while

holding n constant would drastically affect the quality of model fit, as both parameters

have a coupled effect on model behavior.

Another issue with traditional fitting techniques is how the constitutive model is

implemented. In many cases, the constitutive material model has to be implemented

in an environment outside the FE package the model will eventually be used in. This

is due to the expense of manually iterating on an FE model. In older works, such

as Johnson and Cook and Bammann, externally coded models were required due

to the expense of running a full FE model to fit parameters. However, externally

coded material models may differ in implementation from their counterparts in the

FE package. Finally, externally coded material models have difficulty dealing with

complex states of stress which can develop due to testing conditions, such as the

cold upsetting test discussed in Section 2.1. While newer works, such as Cuesta

et al., Kiran and Khandelwal, and Qiao et al. iterate on an FE model, there is

still the issue of sequentially fitting parameters in models which have highly coupled

phenomena.

2.3.2 Inverse Material Modeling

Regardless of the fitting methodology selected, a common way of testing the accuracy

of a constitutive model fit is to create an FE model of the experiment from which the

experimental data was retrieved. This way, information such as force-displacement

can be used to validate the model fit. While traditional fitting techniques generally
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produce an FE model which closely replicate the experimental data, there is generally

subsequent tuning of parameters to deal with effects which cannot be accounted for

analytically, such as specimen geometry, non-linearities in the experimental setup, or

most commonly, differences in the implementation between the constitutive model

used in the FE package and the externally coded version used for fitting.

Inverse material modeling (IMM) builds on the idea of tuning an FE model of the

experiment to replicate experimental data. Instead of traditional fitting techniques

involving external coding, IMM determines parameters for the constitutive model

used in the FE package directly. Further, instead of manual iteration and sequential

fitting, IMM fits all parameters simultaneously by coupling the FE model to numer-

ical optimization techniques. These techniques adjust the input parameters of the

constitutive model, and hence the FE model, to minimize the difference between the

responses measured in the experimental test and FE model. Because the FE model

simulates the entire experimental system, directly measured experimental data such

as force-displacement can be used, which removes any reliance on computed values of

true stress. The optimization techniques used for IMM vary across the literature, as

will be shown below. While the following review notes the type of optimization tech-

nique used for IMM varies across the literature, an overview of numerical optimization

algorithms is presented later in this chapter.

There are many good examples of IMM in literature. Springmann and Kuna (2005)

used IMM to determine input parameters for the GTN model for StE 690 struc-

tural steel. Their experimental regime consisted of flat tensile tests from which a

force-displacement curve was extracted. The material model was implemented in the

bespoke FE code SPC-PMHP. Optimization was undertaken using a gradient-based

algorithm. Springmann and Kuna were able to produce GTN parameters which

matched experimental force-displacement curves including the capture of material

failure.

The GTN model is a popular model to be fit using IMM owing to its complexity

and it highly coupled nature. Table 2.1 highlights several examples of this. One

will note that both the types of material test as well as the optimization techniques

used vary between sources. As IMM is an inverse method, a standard material test

technique does not necessarily need to be used to determine material parameters.

Any test which can be effectively reproduced with an FE model and from which an

appropriate response can be extracted can be used.
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Table 2.1: Various IMM approach to fitting the GTN model

Reference Testing Method Optimization Technique

Vaz et al. (2015) Deep drawing of sheet
metal

Various (comparison of
gradient-based,
gradient-free and global
search)

Abbasi et al. (2011) Tensile test Response surface modeling
(statistical approach)

Muñoz-Rojas et al.
(2010)

Tensile test Global search (genetic
algorithm)

In addition to fitting constitutive model parameters for plastic behavior, IMM has

also been used extensively for the fitting of damage models. Cooreman et al. (2008)

used IMM to fit Swift hardening parameters as well as parameters for a Hill 1948

yield and failure surface to DC06 steel sheet. Cooreman et al. used a bi-axial tension

test in concert with digital image correlation (DIC) to make full-field strain measure-

ments, allowing for the experimental strain contours to be used as responses during

optimization. A Gauss-Newton optimization algorithm was used in this work.

Work by Roux and Bouchard (2010, 2015) also looked at hardening and damage model

for sheet metal. However, unlike Cooreman et al., the work of Roux and Bouchard

focused on the optimization techniques and challenges associated with fitting material

parameters than on the final model fit. However, this focus does yield several impor-

tant results. In a conference paper published in 2010, Roux and Bouchard demon-

strated that a rich dataset is required to ensure that the final parameters determined

by IMM are actually the best set to describe a material behavior. Using a Kriging Ef-

ficient Global Optimization (EGO) method, they determined that force-displacement

data alone can produce several local solutions, allowing several parameter sets to de-

scribe material behavior (Roux and Bouchard, 2010). In an effort to isolate a global

best set of parameters, data describing the progression of necking was included, which

helped IMM produce a single best set of parameters. However, the methodology used

to measure necking was not discussed.

Roux and Bouchard later extended their work to include the use of DIC for flat tensile

tests (Roux and Bouchard, 2015), wherein they used the full-field strain measurements

provided by DIC in concert with a force-displacement curve to determine a set of

output parameters. While this work provided significant insight into some of the
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challenges associated with IMM, it is important to note that Roux and Bouchard

limited the number of input parameters they work fitting. Specifically, the 2010

paper limited their work to two parameters while the 2015 article looked at only two

and three free parameters, unlike many of the other works presented here attempt

to optimize the full range of material parameters. In addition, while the 2015 article

discusses DIC in depth, Roux and Bouchard do not actually make use of experimental

data, instead relying on an FE model from which data similar to that measured

with DIC was extracted. Regardless, their finding that a rich dataset is required

to determine an appropriate set of input parameters is of critical importance as the

number of parameters increases.

Primavera et al. (2015) presented a unique take on IMM to determine constitutive

parameters for aluminum foam. Whereas work presented here has so far used re-

sponses gathered from a single test, Primavera et al. used three separate material

tests to determine a single set of parameters. Specifically, they used compression,

three-point bending, and Charpy tests to gather enough data to fully describe the

material’s responses. To accommodate the three material tests, three FE models

were also used. Instead of combining the responses of the three tests into a single

metric for optimization, as was done by Roux and Bouchard (2015), Primavera et al.

used a multi-objective genetic algorithm. Unlike the gradient-based methods or EGO

methods presented earlier, the use of a multi-objective genetic algorithm results in a

very large computational expense, with the three FE models used in this work being

evaluated several thousand times each.

Examples of IMM for various material types, testing methods, and optimization tech-

niques can be found in the literature. Some of these works are summarized in Ta-

ble 2.2. However, two conclusions from these works have greatly influenced this

present research.

1. While various testing techniques have been used, none have used the cold up-

setting test, or compressive testing in general with the exception of powder

compaction documented in Wikman et al. (2006) or compression of aluminum

foam by Primavera et al. (2015).

2. With the exception of Primavera et al. and Roux and Bouchard, all previous

attempts have used a single metric for fitting, such as force-displacement, stress-

strain, or force-time.
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Table 2.2: Various IMM approach to fitting the GTN model

Reference Material Constitutive
Model

Testing
Method

Optimization
Technique

Bondy et al.
(2016)

Aluminum
6061-T6

Johnson-
Cook

Tube cutting Unspecified
(LS-OPT
package)

Umbrello
et al. (2007)

AISI 316L Johnson-
Cook

Metal cutting Gradient-based

Wikman
et al. (2006)

Distalloy AE
powder

Drucker-
Prager

Single action
compaction

Nedler-Mead
type Gradient
free

Morrow et al.
(2010)

Skeletal
muscle tissue

Transversely
isotropic and
hyperelastic

Tensile Gradient-based
(Quasi-Newton)

Chawla et al.
(2009)

Passive
muscle tissue

Linear
viscoelastic

Impactor Global search
(Genetic
algorithm)

Guan et al.
(2011)

Bone (skulls) Linear
plasticity

Three-point
bending

Response surface
modeling
(Kriging)

He et al.
(2016)

Laminated
composites

Ramberg-
Osgood

Three-point
bending

Least-squares
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2.4 Numerical Optimization Techniques

Numerical optimization techniques attempt to find the set of input parameters which

maximize or minimize of a particular function. Because optimization problems gener-

ally seek a minimum, these problems are also sometimes referred to as minimization

problems. Further, any problem seeking a maximum can be easily converted to a

minimization problem by simply multiplying the final result by negative one without

loss of physical significance. The function which is being optimized is referred to as

the cost or objective function. numerical optimization techniques make up a criti-

cal component of IMM, as they control how input parameters are tuned to match

experimental and computational response.

numerical optimization can be broadly broken into two categories: local optimization

algorithms and global search methods. Local optimization algorithms are capable

of precisely determining a minimum of a function. However, they are unable to

determine if the minimum they have found is the global minimum of a function or

a local minimum, the difference between the two is depicted in Figure 2.6. Global

search methods utilize different types of algorithms to sample the entire solution space

to find the global optimum of a function.

One feature common to all optimization techniques is that many evaluations of the

objective function are required. As such, optimization can be a numerically and

computationally expensive process.

This research uses both local optimization techniques and global search methods.

To that end, this section will provide an overview of both categories. However, all

optimization algorithms used in this work were commercially produced. As such,

this section only provides an overview of the methods used. For a more detailed

discussion of the operation of these algorithms, please refer to the sources referenced

in each section.

2.4.1 Local Optimization Techniques

Local optimization algorithms can be broken into two types, those which utilize the

gradient information of the objective function, known as gradient-based algorithms,

and those which do not, which are referred to as derivative-free methods. While

both types of methods cannot distinguish between a local and global minimum, local

33



optimization algorithms generally provide better performance at finding the exact

location of a given minimum than global search algorithms. Another feature of local

optimization techniques is that they require an initial starting point to be specified.

The selection of the starting location can have a significant impact on the efficiency

of the algorithm and whether the algorithm finds a local or global optimum.

2.4.1.1 Gradient-Based Methods

As the name suggests, these optimization techniques take advantage of the derivative

of the objective function to aid in finding the optimum. Their operation can be de-

scribed with the following analogy. If a mountaineer wants to get down a mountain

as fast as possible, it behooves them to find the steepest part of the mountain and

descend in that direction. During their decent, the mountaineer should continuously

monitor the slope of the mountain and adjust their track to follow the steepest route.

While this is obviously not true for a real mountaineer, for whom sheer slopes may im-

pede a swift descent, it is an accurate description of how gradient-based optimization

algorithms operate.

Local Minima

Global Minimum

Figure 2.6: A demonstration of a multi-modal function with a two local minima and
a single global minimum.
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This method is formalized in the appropriately named steepest descent method. Com-

pared to more complex gradient-based optimization methods (which will be presented

later), the steepest descent method has very little computational expense associated

with it. The algorithm only needs to determine the derivative of the function at the

current point and an appropriate step size to take for each iteration (Eiselt et al.,

1987). The step size can either be fixed in the most simple form of steepest descent

or can be adaptive depending on the gradient of the function. For example, it makes

more sense that if the derivative is large, indicating a very steep gradient, a larger

step size would likely allow the algorithm to approach a minimum faster than a small

step.

An extension of steepest descent type algorithms are known as conjugate gradient

methods (Eiselt et al., 1987; Press et al., 2007). These methods not only use gradient

information, but also the second derivative of the function, which provides information

about the curvature, or rate of change of gradient, at a particular point. While such

methods allow algorithms to converge on an optimal point faster than methods which

rely on gradient information alone, they require that second derivative information

of the objective function be provided at every point in the solution space. A more

commonly seen variant of conjugate gradient methods are quasi-Newton methods,

which do not calculate the second derivative at each iteration but instead build an

approximation of the second derivative based on derivative information retained from

previous steps in the algorithm. The approximation of second derivative information

can provide better optimization performance as the algorithm maintains a history of

where it has been (Press et al., 2007).

Gradient-based methods require, at minimum, the first derivative of the objective

function to be known at all points in the solution space, which implies that the ana-

lytic derivative of the objective function must be provided. However, there are many

cases in which the objective function does not have an analytic derivative which can

be calculated. A pertinent example of this would be IMM, as a derivative cannot be

extracted from an FE model. In these cases, the gradient can be approximated nu-

merically through the use of finite difference methods. However, the numeric approx-

imation of the derivative comes with an additional computational cost, as calculation

of the derivative requires one evaluation of the objective function for each dimension

of the problem. For problems with high dimensionality or that have a high compu-

tational cost per evaluation, such as a long-running FE model or a constitute model
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with a large number of tunable parameters, this drastically increases the expense of

gradient-based optimization algorithms.

2.4.1.2 Derivative-Free Methods

Derivative-free methods, sometimes also referred to as direct search methods, are

optimization techniques which do not use the gradient information of the objective

function to determine an optimal solution. These types of methods are more com-

monly seen in global search algorithms, as will be discussed in Section 2.4.2, although

one particular direct search algorithm has proven itself to be a very effective local

optimizer.

The Nelder-Mead method is a derivative-free optimization technique developed by

Nelder and Mead (1965) while working as statisticians at the National Vegetable

Research Station in the United Kingdom. This method consists of creating a simple

convex hulled polygon, known as a simplex, in the solution space with one more

vertex than there are dimensions in the problem. At each iteration of the algorithm,

the objective function is evaluated at all vertices in the simplex. Then, following a

series of predefined rules, the simplex expands, contracts, or translates through the

solution space towards a minimum. As it approaches the minimum, the simplex will

begin to contract, which provides a useful stopping criterion for the algorithm.

Direct search methods are appropriate for objective functions for which an analytic

derivative cannot be supplied. However, they can converge slower for some functions,

as the use of gradient or conjugate gradient information can allow gradient-based

algorithms to find an optimum faster (Press et al., 2007).

2.4.2 Global Search Algorithms

Global search algorithms explore the entire solution space to find the most optimal

solution. In comparison to local optimization techniques, global search methods are

almost exclusively direct search methods because while gradient information will aid

in the determination of a minimum, derivative information cannot be used to dif-

ferentiate between a global and local minimum. While this may imply that global

search methods are superior to local optimization techniques, the trade-off is that

global search methods require significantly more evaluations of the objective func-

tion to fully explore the solution space. Furthermore, global search algorithms do
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not perform as well as local optimization techniques at homing in on the exact final

optimum.

While a very large number of global search algorithms exist, this section looks at

two methods: the genetic algorithm and the particle swarm optimizer. These two

methods were selected due to their prominent use in the literature.

2.4.2.1 Genetic Algorithms

Genetic algorithms attempt to replicate the “survival of the fittest” phenomena seen

in evolutionary biology. Genetic algorithms begin by sampling the solution space of

an objective function to develop what is known as the population. Based on their ob-

jective score, a set number of the best scoring individuals of the population “survive”

each iteration. A new population is then created by combining information from the

surviving population through the use of predefined rules. These rules, in essence,

replicate how the best traits of an individual or set of individuals are passed on to

their offspring. This process, referred to as crossover, allows the population to slowly

converge on an optimal solution. In addition, random mutations are introduced in a

small fraction of the population at each iteration. These mutations help the algorithm

explore the solution space and prevent the algorithm from converging prematurely on

a local optimum (Hassan et al., 2005).

Genetic algorithms are one of the most common global search techniques seen in

literature, leading to their prevalence in commercial optimization or mathematics

packages such as Matlab. However, due to the randomized nature of crossover at

each iteration of genetic algorithms, they can be slow to converge on an optimal

solution, as well as experience difficulty predicting the exact location of a minimum

solution (Hassan et al., 2005).

2.4.2.2 Particle Swarm Optimization

An alternative to genetic algorithms for global optimization is the particle swarm

optimizer (PSO) (Kennedy and Eberhart, 1995). Like genetic algorithms, PSOs are

biologically inspired. However, whereas genetic algorithms model the evolution of

a population, PSOs are based on the swarming behavior of birds and insects. An

initial population of individuals is created. Each individual is also given a random

initial velocity vector. To determine each individual’s location at the next timestep,
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three factors are considered: 1) the individual’s current velocity, 2) the most optimum

location the individual has already visited, and 3) the swarm’s most optimal location.

Each factor results in a separate velocity vector, the magnitude of which is controlled

by a predefined coefficient. The three vectors are summed to produce a final velocity

vector used to calculate the particle’s position in the next iteration.

The behavior of PSOs is largely controlled by the coefficients for each velocity vector.

For example, if a slow convergence with significant exploration of the solution space

is desired, the coefficients modifying the individual’s current velocity and history of

it’s best location could be increased. For faster convergence, the coefficient associ-

ated with the swarm’s best location is increased (Hassan et al., 2005). Furthermore,

PSOs can dynamically adjust their coefficients, allowing the individuals more freedom

to explore the solution space during the first few iterations before forcing them to

converge on the swarm’s optimum (Venter and Sobieszczanski-Sobieski, 2003).

When compared to genetic algorithms, the literature suggests that PSOs can have

better convergence behavior than genetic algorithms for real-value problems (Hassan

et al., 2005; Venter and Sobieszczanski-Sobieski, 2003). This could be a result of PSOs

using the velocity information of swarm in much the same way as a gradient-based

algorithm. As the velocity of the swarm decreases, the swarm converges on a single

location. However, due to its relative youth compared to genetic algorithms, fewer

mathematics packages offer PSOs with the same type of features seen in genetic algo-

rithms. For example, Matlab offers both a genetic algorithm and a PSO. However,

the PSO they offer is unable to accept linear inequality and non-linear constraints,

while the genetic algorithm they offer can do both.
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Chapter 3

Tool Development

This research uses two custom-built software tools to accomplish two key aspects of

the research in this thesis. The primary tool used throughout this document is Com-

pcam, an IMM framework which executes FE models, parses and analyzes the re-

sponses of experimental and computational datasets, and executes numeric optimiza-

tion. Compcam is developed within Matlab, which allows it to take advantage of

built-in libraries of optimization algorithms and other mathematics techniques.

The second tool developed for this work performs optical densitometry. Dead, or

Density by Element Averaged Downsampling, allows one to generate density maps

from tiled micrographs of a specimen’s cross section. With the exception of imaging

stitching, Dead is also developed and implemented in Matlab.

This chapter provides a detailed overview of the development and implementation of

each tool as well as limitations encountered.
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3.1 COMPCAM

As previously mentioned, Compcam (COnstitutive Model Parameters from CAmera

Measurements) performs automated fitting of material model parameters using IMM.

This tool consists of three major components: the experimental data to which the

constitutive model is being fit, an FE model of the experimental system assigned the

constitutive model of interest, and a non-linear optimization algorithm.

As noted in Section 2.3.2, work by Roux and Bouchard (2015) found that a rich

dataset is required to allow IMM to determine a globally optimum set of input pa-

rameters for a given constitutive model. As such, Compcam uses Specs to acquire

multiple datasets acquired from a single test when performing model fitting. For

fitting constitutive models using the cold upsetting test, two datasets are used, the

force-displacement curve and the mean deformed diameter of the specimen as a func-

tion of its vertical displacement. To be clear, both datasets use the displacement data

of the specimen. Both of these datasets are measured using Specs.

Force-displacement is arguably the most important dataset used by Compcam, as

it provides direct information about the material’s plastic behavior. While a stress-

strain curve could have been used instead, force-displacement was selected because it

was the most direct measurement. Creating a stress-strain curve requires both values

to be computed, which in turns relies on force and displacement data. Furthermore,

true stress measurements require knowledge of the deformed diameter of the specimen

throughout a test. While Specs can provide this data, the calculation of stress from

two measured datasets increases measurement uncertainty. Force-displacement can

also be easily extracted from the FE model.

Measurements of how the specimen deforms radially provide information pertaining to

friction between the specimen and platen, Poisson’s effects, and material densification.

Two datasets were considered to capture these effect, both shown in Figure 3.1. The

first option was to compare the final deformed profile of the specimen to that of

the FE model. While this metric was effective, it posed several issues. First, it was

discovered that minor variations between the initial, undeformed diameter and height

of the specimen and FE model had a large impact on the final fit metric. Second, the

amount of data describing radial deformation measured by Specs decreases as the

specimen deforms due to the platens occluding the specimen. It was found that in

cases of extreme deformation, such as the copper specimens tested in Chapter 5, the
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Figure 3.1: Two potential barreling related datasets evaluated for use in Compcam.
Both plots are generated from real experimental material behavior.

amount of profile data remaining at the end of the test was very limited. Finally, this

metric was sensitive to ensuring the FE model and experiment were loaded to the

exact same vertical deformation. It was found that varying the deformation imposed

on the FE model by less than the uncertainty of Specs measurements could affect

the model fit.

The metric that was adopted for final use was the mean deformed diameter of the

specimen with respect to its vertical displacement. This metric had several advantages

over comparing the final deformed radial profile. First, matching the entire history of

radial deformation presents a more challenging metric for the optimization algorithm

and the constitutive model. Second, because the deformed radial profile is averaged

at each time of measurement, issues such as lack of profile data and measurement

noise are mitigated. Finally, it was found that this metric was much less sensitive to

the minor variations between the initial diameter and height of the FE model as well

as the final amount of deformation imposed on the specimen.

The FE model used in this work was simple from a geometric perspective. The model

consisted of a two-dimensional, axisymmetrical representation of a cold upsetting test,

with two rigid platens compressing a deformable specimen, as shown in Figure 3.2.

Friction between the platens and specimen was accounted for using a single parameter

friction model at the interface between platen and specimen. The specimen had a
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(a) FE mesh Geometry (b) Example von Mises stress distribution
and the deformed model

Figure 3.2: FE model used by COMPCAM

uniform mesh size of 0.25 mm with a larger mesh size applied to the rigid platens. In

total, the model consisted of approximately 10,000 elements.

The commercial hydrocode Ls-Dyna R9.1.0 was selected as the solver for this work

owing to its ability to model large deformation, robust contact algorithms, and large

library of built-in material models. To load the specimen, the upper platen was held

fixed while the displacement of the lower platen was controlled to load the specimen.

Displacement control was selected for this work due to its innate stability with both

implicit and explicit time integration routines. It is important to note that this does

break with experimental testing, wherein load control was utilized. However, the

use of displacement control has been used in literature to successfully model load

controlled phenomena (Felling and Doman, 2018).

Two time integration schemes were utilized in this work. This was due to how certain

built-in material models were programmed in Ls-Dyna. Implicit time integration

was used when fitting the isotropic linear plasticity model and the Swift hardening

law. Implicit time integration is the preferred technique when modeling quasi-static

processes such as the cold upsetting technique as the timestep can be much bigger

than explicit time integration (LSTC, 2017b).
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While implicit time integration is the preferred method, many material models in

Ls-Dyna are not available for use in implicit simulations. This is because material

models used in implicit simulations require different stress integration techniques to

accommodate the large time steps. As such, explicit time integration was used when

fitting parameters to the GTN and Johnson-Cook models. The major disadvantage

of using explicit time integration for the modeling of quasi-static processes such as

the cold upsetting test is runtime. The timestep of an explicit model is determined

by the Courant criterion, which specifies the timestep must be smaller than the time

required for an elastic wave to propagate through the smallest element to guarantee

stability. As this is a function of element size, material density, and Young’s modulus,

the Courant timestep for this work would have been extremely small, forcing the

simulation to run for weeks to replicate the experiment.

To alleviate runtime issues, time and mass scaling were applied. The application

of time scaling meant the load was applied in a fraction of the time needed for the

experiment. This was deemed acceptable as none of the models used in this work

had strain rate effects or had their strain rate effects disabled. Mass scaling was also

applied to reduce runtime by artificially increasing the mass of all components. Mass

scaling can be dangerous to use in simulations which rely on inertial effects as the

added mass results in increased energy in the system. This can lead to unrealistic

stresses, non-physical oscillations in the FE model’s energy, and the propagation of

elastic waves in the FE model which should not exist. However, the FE models used

in this work ran stably with mass scaling without measurable numeric artifacts or the

need for dampening to eliminate non-physical vibrations.

Force-displacement data was extracted from the FE model using the contact force

between the platen and specimen and by tracking the displacement of the controlled

platen. Measurements pertaining to the deformed radial profile of the specimen were

done by extracting the displacement of all nodes along the outer edge of the specimen.

The coordinates of these nodes could be used to provide the deformed radial profile

directly or could be averaged to determine the mean deformed radius at each timestep.

Data extraction was the same for implicit or explicit time integration.

In order to perform optimization, an error metric was required to compare the fit of the

FE model against experimental data. For this work, the coefficient of determination

or R-squared value, given by (3.1) was adopted for two reasons. First, as the fit of

the FE model against the experimental data improves, the value of the coefficient

of determination approaches 1 from below. Second, the built-in scaling associated
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with the coefficient of determination negates the large difference in the magnitude

between force measured in kilonewtons and displacement measured in millimeters.

The downside of using the coefficient of determination as an error metric for this

work is the coefficient of determination was developed for linear models. As such, it

can struggle with non-linear data. Despite this, the coefficient of determination has

been used successfully in literature, even with non-linear material models (Morrow

et al., 2010).

R2 = 1−
∑

(yi − fi)
2

∑

(yi − ȳ)2
(3.1)

where y is the experimental response, f is the response of the FE model, and ȳ is the

mean of the experimental dataset.

Using two datasets resulted in the calculation of two coefficients of determinations.

For optimization purposes, these two values were averaged to produce a single final

value. Once again, the literature suggests that this is an appropriate method for IMM

applications (Morrow et al., 2010). Further, to convert the coefficient of determination

into a minimization problem, one minus the coefficient of determination was used

instead. This meant that a perfect fit between the model and experiment approaches

zero from above instead. This change was made as the optimization algorithm used

in this work only worked on minimization problems.

Matlab’s ‘fmincon’, a quasi-Newton, interior-point algorithm (MathWorks Inc.,

2017a) was used to perform all optimization in Compcam. It is important to note

that this is a local optimizer, and as such, can lead to issues such as local minima.

It also requires the user to specify an initial condition. The selection of an initial

condition can affect how long the optimizer takes to solve a problem, as an initial

condition close to the optimum of the problem will allow the algorithm to converge

much faster than an initial condition much further away.

The inputs to the optimization algorithm were the parameters for the constitutive

model of interest and the coefficient of friction between the specimen and platens.

Bounds were placed on each input parameter to ensure the optimization algorithm

converged a realistic final parameter set and to ensure the stability of the FE model.

Further, linear inequality constraints were placed on some parameters to ensure realis-

tic results and a stable FE model. Finally, all input parameters were scaled from their

input bounds to [0,1]. Recommended by Forrester et al. (2008), scaling eliminated
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issues associated with the large variation in magnitudes between input parameters.

This can be exemplified by examining yield strength, generally measured in hundreds

of megapascals, and Poisson’s ratio, generally around 0.3. The optimization algo-

rithm, which lacks the real-world context the researcher has, sees two parameters

which are at least eight orders of magnitude apart. This scaling technique allowed

the optimization algorithm to converge to a final answer faster without compromising

the final parameter set.

The operation of Compcam is summarized graphically in Figure 3.3. Experimental

tests are run, using the cold upsetting test exclusively in this work, to garner data

about material behavior. The two experimental datasets used for model fitting are ex-

tracted. An FE model replicating the experimental test and assigned the constitutive

model of interest is then executed with arbitrary input parameters. The experimental

and computational responses are then compared and fit score computed. If the fit

score falls below a pre-defined termination tolerance, indicating a good fit between

experiment and the FE model, Compcam terminates. Otherwise, the local optimiza-

tion algorithm computes parameters for the next iteration. Because ‘fmincon’ is a

gradient-based algorithm, the FE model must be evaluated repeatedly by the opti-

mization algorithm to determine a gradient to compute the next set of parameters.

The new set of parameters is fed into the FE model and the cycle continues until the

fit score falls within the termination criteria.
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Figure 3.3: A graphical depiction of Compcam’s operation..
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3.2 DEAD

Optical densitometry is the process of measuring density gradients which develop

within a specimen using non-contact, optical methods. Unlike other density mapping

methods such as hardness testing, optical densitometry is not destructive to the pol-

ished specimen. Optical densitometry works by measuring the degree of porosity of

a specimen sectioned about its midplane. By relating this degree of porosity to the

amount of non-porous material in the specimen, relative density can be computed. It

is important to note that this methodology does make the assumption that porosity

is the sole contributor to a specimen being not being fully dense and the porosity in

the measured plane is representative of the full specimen.

Prior to performing optical densitometry, regardless of the tool used, the specimen

in questions must be prepared. First, the bulk density of the specimen must be mea-

sured using traditional means, such as the Archimedes methods laid out by MPIF

standards (Metal Powder Industries Federation, 2010a). Bulk relative density is used

to calibrate image processing during optical densitometry. After bulk density mea-

surements, the specimen is sectioned about its midplane and polished to a mirror

finish using appropriate polishing techniques for the material in question. The spec-

imen is not be etched, as optical density methods rely on having a clear contrast

between pores and base metal. However, specimens can be etched if desired after

imaging has taken place without any additional prep work, which again sets it apart

from other density mapping techniques.

Following polishing, the entire polished cross-section of the specimen is imaged using

optical microscopy. Given the size of most specimens and the typical field of view

of most microscopes, many individual images will be required to generate a tiled

image of the specimen’s cross section. In this work, a magnification of 50x was used,

generating over 200 images for a single specimen. Image stitching is accomplished

using Fiji (Schindelin et al., 2012). The final stitched image is used to measure the

density gradients within a specimen’s cross section.

The optical densitometry tool developed for this work, Dead, is based on an older

tool successfully used for optical densitometry on green compacts (Beck, 2012; Selig,

2012). However, while the mapping resolution of that tool was limited to the number

of images taken during microscopy, Dead allows the user to generate maps of almost
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infinitely variable resolution through a technique referred to in this work as element

averaged downsampling.

Prior to performing downsampling, the tiled image must first be converted to black

and white using binary thresholding. This step in the process is critical, as it en-

sures the accuracy of the density maps generated. The binary thresholding of the

image must be calibrated to ensure the relative percentage of pores, which appear

black against the white base metal, is the same as the relative bulk density of the

specimen in question. At present, this step is accomplished by manual iteration, how-

ever, it could be modified in the future to use a simple, one-dimensional root finding

algorithm.

Once the image is converted to black and white, element averaged downsampling

takes place. Based on an element size inputted by the user, Dead overlays a grid

of uniformly sized elements onto the tiled image. Dead then averages the value of

all pixels within each element, generating a single value for the entire element. This

not only provides the spatial average of the underlying image in a particular area,

it drastically reduces the amount of data which needs to be processed. The grid of

averaged elements becomes the final density map.

One as yet unresolved issue with Dead is the appropriate selection of an element

size. If the size of an element is too small, such as when the element size approaches

the size of a pore in the specimen being mapped, the final map will appear disjointed

and non-smooth, making it hard to interpret trends in the specimen’s density gra-

dients. Alternatively, if the element’s size is too large, the final map lacks detail.

Unlike other computational methods which rely on meshing, such as FE modeling,

convergence studies are difficult to run as determining an appropriate final density

map is primarily qualitative in nature. Because the density maps used in this work

are being compared to FE models, the element size inputted into Dead was selected

to match FE models. While appropriate for this work, it does not resolve the issue

of selecting an appropriate mesh size for general purpose density maps.

In addition to density mapping, Dead has several other features which are currently

in their infancy. The most impactful of these is a pore counting tool. Through

the use of image segmentation techniques, individual pores can be isolated. Not

only does this allow for the counting of individual pores, but this technique can also

provide information about the size and morphology of each pore. At present, only the

equivalent diameter of each pore is measured by Dead, allowing for the generation of
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histograms showing pore size distribution. However, with relatively little additional

work, information such as pore morphology could be incorporated.
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Chapter 4

Experimental and Computational

Methodology

This chapter is broken into two sections. The first details the experimental meth-

ods used to characterize each material. This includes sample geometry, preparation,

and testing methods. The second section describes the computational methods used

throughout this research, with particular focus on the specific implementation of the

material models used in this work.
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4.1 Experimental Methods

All experimental characterization of mechanical behavior in this work was conducted

through the use of the compressive cold upsetting test and the friction ring test.

However, due to minor variations between the procedures used for wrought metals

and PM alloys and the densification behavior of the PM alloys, the procedures used

for the two types of metals are discussed separately.

4.1.1 Ductile, Wrought Metals

Five ductile, wrought metals, shown in Table 4.1 with known material parameters,

were used in this research. These metals were selected as the wide range of expected

material responses would be a suitable means to validate the operation of Comp-

cam. Furthermore, aluminum 2024-T351 and AISI 4340 were selected due to the

large amount of material characterization work seen in the literature. AISI 4140 was

selected as its elemental composition proved to be the closest, commercially available

wrought alloy available to that of Stackpole powder blend SP6664. All wrought al-

loys used in this work underwent two forms of mechanical testing; cold upsetting to

characterize mechanical behavior and friction ring testing to estimate the coefficient

of friction between the material and pressing platens.

Material Young’s Modulus
(GPa)

Density (g/cc)

Aluminum 2024-T351 70 2.7
C36000 brass 97 8.6
C11000 copper 115 8.9
AISI 4140 steel 205 7.8
AISI 4340 steel 200 7.8

Table 4.1: List of known material parameters for each alloy used

Five cold upsetting specimens were created for each material from one-inch nominal

diameter, wrought, round bar stock. Specimens were cut to length from the rod stock

then faced on a lathe to ensure the ends were flat and perpendicular to the cylindrical

sides. The final height of all specimens was 50 mm, providing an aspect ratio of 2:1.

Aspect ratio defined as the ratio of height to diameter for this work. The cylindrical

surface was not altered from its wrought finish. The top and bottom faces of all
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specimens were finished using light file strokes and a non-woven abrasive to remove

machining artifacts.

An Instron 600RD compressive test frame was used to carry out the cold upsetting of

all test specimens. Ground, hardened, and unlubricated platens were used to apply

the load. Each specimen was compressed to 75% engineering strain or until fracture

at a constant load rate of 1.0 kN/s. Additionally, safety limits were imposed to

ensure that at no point did a specimen exceed 2 GPa of engineering stress during

testing. Force measurement was provided by the Instron test frame. Specs was

used to provide measurements of vertical deformation of the specimen as well as

radial deformation. As a physical extensometer was not used, specimens could be

taken all the way to fracture without interrupting a test to remove fragile equipment.

The platens were cleaned between each test specimen of the same material using

a non-woven abrasive pad. Between the testing of different materials, the platens

were polished with 600 grit abrasive paper then cleaned with a small amount of

acetone.

Six friction ring test specimens were created for each material. As laid out by Male and

Cockcroft (1964), the specimens had an outer diameter of 19.1 mm (3/4”), an inner

diameter of 9.5 mm (3/8”), and a height of 6.4 mm (1/4”). Rings were compressed by

the Instron 600RD test frame at a constant load rate of 1.0 kN/s until the specimens

were deformed to 75% their initial height. The same platen preparation done with all

cold upsetting testing was done between friction ring tests. All specimen dimensions

were then measured using a Mitutoyo CD-6” ASX digital caliper.

4.1.2 Sintered, Ferrous PM Alloys

As part of a research contract with Stackpole International, four ferrous PM alloys

at three sintered densities each were provided to Dalhousie University for material

characterization. These alloys are identified by the Stackpole designation 2140, 4420,

6664, and E2148. These codes do not follow MPIF or AISI alloy designation and as

such, this report prepends “SP-” to all Stackpole designators to avoid confusion. The

three sintered densities provided for each alloy were 6.8, 7.1, and 7.4 g/cc. Sintered

density is indicated in the material code by appending two digits to represent density.

For example, a specimen consisting of Stackpole alloy 2140 with a sintered density of

6.8 g/cc is given the code SP-2140-68.
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Six specimens from each alloy-density combination were tested. These specimens

were created through the use of dual action compaction. However, specifics of the

process parameters and sintering procedures used to generate for specimens for each

alloy and density were not provided by Stackpole. Dalhousie University simply re-

ceived the final, sintered specimens. The ends of each specimen were faced to ensure

the specimens were flat and perpendicular. While it was assumed that the sintered

specimens would have appropriate faces without secondary machining, an initial in-

vestigation determined that the ends of each specimen were not flat. This warpage

was likely caused by the sintering process, as the die-compacted green compact likely

had flat and perpendicular faces upon ejection from the die.

All specimens had a nominal aspect ratio of 2:1. However, two specimen diameters

were provided. All specimens made from SP-E2148 had a 25.8 mm nominal diameter

while specimens from the remaining alloys had a nominal diameter of 28.8 mm. The

height of each specimen was roughly constant at 50 mm.

As with the wrought metals, an Instron 600RD compressive test frame was used to

conduct the cold upsetting. Unlubricated, hardened, and ground platens were used to

load the specimen at a constant load rate of 1.00 kN/s. However, unlike the wrought

metals which were loaded until failure or extreme deformation, all tests with sintered

PM alloys were limited to a maximum engineering stress of 650 MPa. While the

Instron 600RD has the ability to apply 3 MN of compressive force, fixturing used to

test these specimens restricted the ability to apply loads which would exceed 650 MPa.

This constraint introduced significant limitations on the ability to test these ferrous

alloys. Once again, Specs was used to provide measures of vertical deflection and

radial deformation.
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4.2 Computational Methods

This section discusses the specifics of the computational methods used in this work.

The operation of Compcam is not discussed as it is presented in Section 3.1, but

rather, the details pertinent to the specific implementation of constitutive material

models used in Ls-Dyna. Also detailed in this section is how volume, and hence

density, is computed from Specs data.

4.2.1 Optical Bulk Density Measurements

Bulk density measurements of a material can be conducted in two ways. The widely

accepted industry practice follows MPIF standard #42 (Metal Powder Industries

Federation, 2010b). This procedure uses Archimedes method to compute the density

of a material by measuring the weight of a specimen in air and water. While this is

an accurate and efficient means of measuring density, it cannot be conducted in-situ.

This generally limits density measurements to initial and final density.

Specs provides the radial profile of a specimen throughout a test. This profile can

be used to calculate the volume of a specimen by constructing a solid of revolution

based on the radial profile and integrating to determine volume. In this work, the

disk method was used to integrate that radial profile, as shown in (4.1), where r(h)

is the specimen’s radius with respect to its height and H is the specimen’s total

height.

V =

∫ H

0

πr(h)2 dh (4.1)

Changes in volume, based on the initial volume of the test specimen, correlate directly

to changes in density and can provide a measure of bulk relative density, as shown by

(4.2). As a result, Specs can be used to measure the bulk densification of a material

with respect to the vertical strain imposed on the specimen without pausing and

unloaded a test specimen.

ρ = ρinitial
Vinitial
V

(4.2)
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4.2.2 Constitutive Material Models

As discussed in Section 2.2, this work does not investigate or develop any new consti-

tutive material models. Instead, it uses pre-existing models implemented in Ls-Dyna

R9.1.0. While Section 2.2 discusses these models from a theoretical perspective, this

section details the specific material parameters which are used by Ls-Dyna and doc-

uments what specific parameters Compcam tunes. It is important to note at this

juncture that this work limits itself to fitting plasticity parameters. Where possible,

elastic parameters such as Young’s modulus are held fixed at literature values, with

the exception of Poisson’s ratio. This is not the case in some material models, such

as the Johnson-Cook model used in this work.

4.2.2.1 Swift Hardening Law

The Swift hardening law allows for the modeling of plastic behavior which is best

described exponentially. Discussed in detail in Section 2.2.4.2, the model’s flow rule

is reproduced below.

σy = K(ϵ0 + ϵp)n (2.13)

Implemented in Ls-Dyna as *MAT POWER LAW PLASTICITY, the Swift hard-

ening law had five free parameters to be tuned by Compcam. These parameters are

listed below. Two parameters were held fixed, the material density ρ and Young’s

modulus E, as the initial density of the material is a known value and elastic param-

eters were not the subject of this work.

• Poisson’s ratio, ν

• Hardening coefficient, K

• Hardening exponent, n

• Initial yield strength, σ0 (converted by Ls-Dyna to initial yield strain ϵ0)

• Coefficient of friction, µ

*MAT POWER LAW PLASTICITY is compatible with Ls-Dyna’s implicit solvers,

which allowed the FE model running this constitutive model to be solved in approxi-

mately 30 seconds. While the Swift hardening law can model linear plastic behavior
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as the value of n approaches 1, FE models in this work which used *MAT POWER

LAW PLASTICITY exhibited numeric instabilities at large values of n. As such,

an additional constitutive model was required to model linear plastic behavior. Fur-

ther, because this constitutive model uses a von Mises yield surface, it is incapable of

modeling densification behavior.

4.2.2.2 Isotropic Linear Plasticity

The isotropic linear plasticity model was used in this work owing to the instabilities

associated with the Swift hardening law discussed previously. While this model is

discussed in detail in Section 2.2.4.1, the flow rule for the linear plasticity model is

repeated below.

σy = σ0 + Epϵ
p (2.12)

Implemented in Ls-Dyna as *MAT PLASTIC KINEMATIC, this material model

has the capacity to model both isotropic and kinematic hardening effects by altering

the parameter β. To limit the model to isotropic plasticity only, β was held fixed at

1.0. As with the Swift hardening law, material density and Young’s modulus were

held fixed for this material model. The four tunable parameters used by *MAT

PLASTIC KINEMATIC are listed below.

• Poisson’s ratio, ν

• Plastic tangent modulus, Etan

• Initial yield strength, σ0.

• Coefficient of friction, µ

As with *MAT POWER LAW PLASTICITY, *MAT PLASTIC KINEMATIC is com-

patible with Ls-Dyna’s implicit solvers. As such, FE models using *MAT PLASTIC

KINEMATIC had a runtime of 30 seconds, comparable to the Swift hardening law.

Like the Swift law, *MAT PLASTIC KINEMATIC used a von Mises yield surface,

making this constitutive model unable to account for material densification.
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4.2.3 Gurson-Tveergard-Needleman Model

The GTN model attempts to model the nucleation, growth, coalescence, and collapse

of pores in a material’s microstructure through the use of a specialized yield surface.

While the GTN model’s derivation is presented in detail in Section 2.2.4.4, its yield

surface model is repeated below.

Φ =
σvm

2

σ2
y

+ 2q1f
∗ cosh

(

3q2σH
2σy

)

− 1− (q1f
∗)2 = 0 (2.18)

Available in Ls-Dyna as *MAT GURSON, this particular implementation of the

GTN model has several features not commonly seen in other GTN implementations.

One of the most prominent features is the option to select from several different

hardening rules such as perfectly plastic, linear hardening, and a very basic power

law hardening rule. Unlike the Swift hardening law or Johnson-Cook model, the

power law hardening rule used by *MAT GURSON only has one input parameter,

the hardening factor N . The hardening coefficient is a function of yield strength

and Young’s modulus, as shown by (4.3). By limiting the hardening rule’s input to

one parameter, the GTN model cannot match the flexibility of other models when

predicting plastic stress-strain behavior. *MAT GURSON’s power law hardening rule

was used exclusively in this work.

σy = σ0

(

ϵp + σ0/E

σ0/E

)( 1
N )

(4.3)

The GTN model used in Ls-Dyna has a large number of input parameters. However,

several input parameters could be held fixed or nulled out based on the circumstances

of this work. For example, parameters relating to the material’s initial and theoret-

ical full density could be held fixed based on experimental measurements. A list of

parameters held fixed in this work is given below.

• Full density of the material was fixed at 7.8 g/cc.

• Gurson parameters q1 and q2 were held at 1.5 and 1.0 respectively, as recom-

mended by the overwhelming majority of literature on the GTN model (Malcher

et al., 2012; Mirajkar et al., 2011; Slimane et al., 2015).
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• Initial void fraction f0 was held at an appropriate value based on initial sintered

density. Fixed values of f0 were 0.128, 0.090, and 0.051 for sintered densities of

6.8, 7.1, and 7.4 g/cc, respectively.

• Failure void volume fraction ff , which controls element deletion was nulled out

with a value of 1.0.

• Void collapse was enabled by setting the void growth flag, VGTYP, to 2.

By holding the above parameters fixed, *MAT GURSON’s large number of input

parameters was reduced to nine. These parameters are listed below. Unlike the

Swift or linear plasticity model, Young’s modulus in *MAT GURSON was selected

as a tunable parameter for this work. While only plastic behavior was fit, Young’s

modulus needed to be tunable as it had an effect on the model’s power law hardening

rule.

• Young’s modulus, E

• Poisson’s ratio, ν

• Coefficient of friction, µ

• Initial yield strength, σ0 (denoted in Ls-Dyna as SIGY)

• Hardening factor, N

• Critical void fraction, fc

• Void fraction of nucleation, fN

• Mean nucleation strain, ϵN

• Standard deviation of mean nucleation strain, sN

Several challenges were encountered when fitting *MAT GURSON. The largest of

which was encountered in the initial modeling approach. Literature from LSTC, the

developer of Ls-Dyna, stated that *MAT GURSON was available for implicit time

integration when used with solid elements (LSTC, 2017a). As implicit analysis is

the most appropriate solution method for modeling quasi-static situations, an eight-

symmetric solid model was created.

However, all attempts to use MAT GURSON with implicit simulations were plagued

by serious stability issues. These issues ranged from impossible material behavior such

as negative void fractions to spontaneous element deletion. An investigation into the
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cause of these instabilities indicated that the plasticity algorithm implemented in

*MAT GURSON was likely to blame. It is the author’s suspicion that despite being

advertised as available for implicit analysis, the plasticity algorithms were not modi-

fied to account for the significantly different mechanics of implicit analysis compared

to explicit analysis. This suspicion was backed up by the fact that the model’s sta-

bility improved when the implicit timestep was forced to be very small. Such a small

timestep made the use of implicit analysis unfeasible, as the simulation would run for

days.

Having exhausted options to make an implicit model run execute successfully, the

decision was made to switch to an explicit model, as *MAT GURSON was initially

developed for and proven to work with explicit analysis. This resolved the majority

of stability issues. Further, switching to an explicit model allowed for the use of

axisymmetric elements, reducing the size and complexity of the FE model. However,

the use of explicit analysis increased the runtime of a single model to many hours,

making it impossible to use with Compcam. As described in Section 3.1, time and

mass scaling were applied to reduce runtime, with significant care taken to ensure

stable and realistic outputs.

Unlike the implicit FE models used by the Swift and linear plasticity models, the

explicit FE model used by the GTN model took approximately five minutes to solve

per evaluation. That, in concert with the nine free parameters which Compcam was

attempting to optimize, lead to much longer Compcam runtimes. While Compcam

could determine optimal Swift and linear plasticity model parameters within one or

two hours on average, determination of GTN parameters took between 18 and 24

hours, depending on the material and the initial input guess. Despite the lengthy

runtime, this is still an improvement on traditional fitting methodology as no user

interaction was needed during those hours.

4.2.3.1 Johnson-Cook Model with a Bi-linear Equation of State

The Johnson-Cook model allows for the modeling of strain rate and temperature

dependent plasticity behavior. While the full definition is given in Section 2.2.4.3,

the flow rule is repeated below.

σY = (A+Bϵpn)(1 + c ln ϵ̇)(1− T ∗m) (2.14)
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The full Johnson-Cook model with damage modeling is available in Ls-Dyna as

*MAT JOHNSON COOK. However, for this research, only the power law hardening

portion of the Johnson-Cook model was used. Rate, thermal, and damage effects

were nulled out, leaving only the hardening rule shown in (4.4).

σy(ϵp) = A+Bϵnp (4.4)

With the removal of rate and thermal effects, the Johnson-Cook flow rule becomes

very similar to the Swift hardening law. However, *MAT JOHNSON COOK affords

much greater flexibility by allowing a researcher to specify an equation of state. Two

equations of state were selected for this work, and as such, the two variants of the

Johnson-Cook model are referred to by their equation of state for clarity.

The first variant of the Johnson-Cook model utilized EOS TABULATED

COMPACTION, which allows one to input a piecewise linear curve represent-

ing the material’s hydrostatic pressure-volumetric strain behavior. This equation

of state is also capable of altering bulk modulus behavior to allow the constitutive

model to have different elastic properties depending on the degree of compaction.

This feature was not used, however, as unloading and hysteretic data were not

available. *EOS TABULATED COMPACTION works by specifying individual

control points on a hydrostatic pressure-volumetric strain curve, with linear interpo-

lation and extrapolation used to determine values between and outside the points

specified.

Despite a seemingly straightforward mode of operation, implementation of this equa-

tion of state proved to be perplexing due to minimal and incorrect documentation.

LSTC provided the figure reproduced in Figure 4.1a to describe a bi-linear curve

(LSTC, 2017a). Based on the documentation, it is implied that *EOS TABULATED

COMPACTION automatically enforces a point at (0,0), with the first user-defined

point (ϵV,1, C1) being used to define the elastic properties of the material.

However, after encountering errors attempting to implement *EOS TABULATED

COMPACTION in the manner indicated in the documentation, an investigation dis-

covered that this equation of state actually operated in a very different fashion. It

turned out *EOS TABULATED COMPACTION did not enforce a point at (0,0) and

was only active during plastic deformation. The real mode of operation is depicted in

Figure 4.1b. All control points needed to be explicitly defined by the user, with the
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Total

(a) Description of a bi-linear curve as
reproduced from Ls-Dyna documentation
(LSTC, 2017a).

(b) Actual description of a bi-linear curve de-
termined by investigation.

Figure 4.1: Variance between documented and actual operation of the equation of
state used in this work.

first point being placed at zero plastic volumetric strain and the hydrostatic pressure

of the material at yield.

The impact of this discovery is significant. While a bi-linear curve implemented

based on LSTC documentation (LSTC, 2017a) would allow one to model the linear

elastic behavior of a material and a linear pressure-volume behavior during plastic

deformation, a bi-linear curve based on Ls-Dyna’s actual operation is modeling a

more complex plastic behavior and is not active during elastic deformation. Further,

parameters between the two modes of operation are not generally transferable.

While *EOS TABULATED COMPACTION has the ability to model plastic pressure-

volume behavior using up to eight control points, only a three are used in this research,

producing a bi-linear curve. As such, this implementation of the Johnson-Cook model

will be henceforth referred to as the bi-linear variant. Early stage testing showed that

three control points afforded greater flexibility than a linear equation of state while

being more stable and determining parameters significantly faster than a three-part

linear curve. The ten free parameters fit for the bi-linear variant of the Johnson-Cook

model are as follows.

• Shear modulus, G

• Hardening constant, A

• Hardening coefficient, B
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• Hardening exponent, n

• Volumetric strains ϵV,2 and ϵV,3. ϵV,1 fixed at zero.

• Hydrostatic pressures, C1, C2 and C3, corresponding to the volumetric strains

above.

• Coefficient of friction, µ

4.2.3.2 Johnson-Cook Model with P − α Compaction Curve

Using the same reduced Johnson-Cook constitutive model described in Section 4.2.3.1,

a P−α compaction curve is used here instead of the bi-linear curve to control pressure-

volume behavior. The main advantage of this equation of state over the piecewise

linear curve is the ability for this equation of state to cap porosity at full density.

This prevents the equation of state from modeling a density greater than physically

possible. The volumetric response of the material stiffens dramatically as the material

approaches full density, allowing the equation of state to behave more like a pressure-

independent material model.

For completeness, the equation relating porosity and pressure is reiterated below.

Further, this particular equation of state uses a linear Hugoniot curve to compute

hydrostatic pressure as a function of density. It is important to note that porosity α

is not the same as material density ρ, although they are closely related.

α = 1 + (α0 − 1)

(

Ps − P

Ps − Pe

)N

(2.17)

PH(α, ρ) =

(

αρ

α0ρ0
− 1

)

(4.5)

Another advantage of the P − α compaction curve the fewer fitted parameters. Fur-

thermore, unlike the control points used by the bi-linear variant, the parameters used

by the P − α curve have a more physical meaning. The eight free parameters fitted

for the reduced P − α variant of the Johnson-Cook model are listed below.

• Shear modulus, G

• Hardening constant, A

• Hardening coefficient, B
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• Hardening exponent, n

• Pressure at elastic limit/yield point, Pe

• Pressure at full density threshold, Ps

• Exponential densification factor, N

• Coefficient of friction, µ
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Chapter 5

Investigation of Wrought, Ductile

Metals

This chapter deals with the investigation of five wrought metals, specifically alu-

minum 2024-T351, C36000 brass, C11000 copper, AISI 4140 steel, and AISI 4340

steel. This work was undertaken as a means to test the performance of the exper-

imental setup and Compcam prior to moving to the more challenging PM alloys

discussed in Chapter 6. This chapter includes a discussion of the experimental results

of the cold upsetting tests including plastic behavior and material failure, the final fits

as determined by Compcam, and discussions regarding experimental and numerical

coefficients of friction and Compcam’s limitations.
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5.1 Experimental Results

The experimental testing regime of each ductile alloy used in this work consisted of

cold upsetting tests to characterize the plastic behavior of each material and fric-

tion ring tests to estimate the coefficient of friction between each material and the

platens used by the compressive test frame. The results of each test are presented

and discussed below.

5.1.1 Results of Cold Upsetting

As noted in Section 2.1, the use of Specs allows a researcher to measure the deformed

barreled contour of a specimen throughout a test. This allows one to calculate true

stress based on the actual cross-sectional area of the specimen at any given time in

the experiment. Contrasted with traditional methods, which include approximating

the deformed specimen diameter by assuming a constant volume throughout the test

(Bao, 2003), the use of Specs removes the need to make such assumptions, which is

particularly valuable in materials which may change volume or density throughout a

test. In fact, the only assumption that needs to be made to use Specs is that the

deformation of the specimen is axisymmetric in nature.

For all stress calculations used in this work, the mean deformed diameter was used

to calculate stress. Work by Felling and Doman (2018) investigated the use of both

the minimum and maximum deformed diameter to calculate true stress. They found

that using the minimum diameter slightly increased the measured stress, while the

maximum diameter slightly decreased stress. However, in both cases, the deviation

was very low. To that end, Felling and Doman found that the mean diameter gave

a good measurement of bulk stress which agreed well with other datasets from the

literature.

True stress-strain curves for all five ductile metals tested are given in Figure 5.1.

Each curve given in Figure 5.1 is constructed from the stress-strain curves of each of

the five test specimens used for each material. As one would expect, each alloy had

unique deformation behavior.

The deformation behavior of aluminum 2024-T351 is remarkable given the degree of

material softening at large deformation and prior to fracture. This softening is likely

not a behavior of the bulk material itself, but rather it likely the accumulation of
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Figure 5.1: Experimental true plastic stress-strain curves for all three wrought metals
tested.

material damage through void nucleation and growth within the specimen. This void

growth is likely a direct contributor to the fracture of this material. Scanning elec-

tron microscopy was attempted on the fracture surface of the aluminum specimens,

however, due to the mode of failure the fracture surface was smeared. As such, no

definitive conclusions can be drawn as to the exact cause of fracture and the softening

behavior seen in Figure 5.1.

Both copper based alloys, C36000 brass and C11000 copper, exhibited linear plastic

deformation behavior, although the stiffness of each material was markedly different.

Brass, which not only exhibited a higher yield point, also displayed much stiffer plastic

deformation behavior. Furthermore, one can note a slight softening trend just prior to

fracture. Similar to aluminum, it is likely this softening is a result of void nucleation

and growth. However, scanning electron microscopy of the fracture surface of the

brass specimens was inconclusive as the fracture surface of these specimens was also

smeared. Copper, on the other hand, exhibited a less stiff plastic response, lower

yield strength, and did not fracture. The increased yield strength and decreased
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ductility of brass compared to copper is a direct result of the addition of alloying

ingredients.

Both AISI 4140 and AISI 4340 specimens exhibited high yield strengths. Later ex-

amination revealed that the rod stock used to make the specimens for both materials

was quenched and tempered, which contributed to their high yield strength. As a

result of their high strength and somewhat surprising ductility, testing was halted

when the load imparted on the specimens reached an engineering stress of 2 GPa for

safety reasons. This is in contrast to the 75% engineering strain imparted in copper

and the fracture experienced by both aluminum and brass. Nonetheless, both steel

alloys exhibited similar plastic behavior including a double yield point and hardening

behavior which grew less stiff at large deformation. However, the double yield point

of AISI 4140 was significantly more pronounced than that of 4340.

Of the five metals tested, only aluminum and brass underwent ductile fracture. This

occurred at true strains of 36% and 52% for aluminum and brass, respectively. The

fracture plane of each specimen, shown in Figure 5.2, is consistent with the region

of maximum shear stress which develops within each specimen during cold upsetting

(Narayan and Rajeshkannan, 2012). However, the actual fracture surface of each

Figure 5.2: Fractured aluminum (left) and the two halves of a fractured brass speci-
men.
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metal was different. Fractured aluminum specimens exhibited a flat fracture surface.

However, in the case of all specimens, the two fractured halves cold welded back to-

gether after fracture. Unlike aluminum, brass specimens did not cold weld together

after fracture. Furthermore, the fracture surface of brass was conic in nature, match-

ing cone of maximum stress which developed in each specimen more closely.

As previously noted, the copper and both steel alloys did not undergo engineering

fracture. Copper was pancaked to 75% engineering strain while material testing of

both steel alloys was limited to 2 GPa . It is interesting to note that all three metals

did slough off particulate from their outer surface. This is shown for the case of

AISI4140 in Figure 5.3. Despite the lower deformation imparted on them, the steel

specimens displayed this behavior more than the copper. This is likely due to the

hardened nature of the specimens. The outer surface of a quenched and tempered

specimens would have decreased ductility compared to the inner material. As a result,

the material on the outermost surface could undergo failure without leading to global

specimen failure. In the case of copper, this sloughing behavior is likely a result

of the extreme stress state and deformation imparted to the outer surface of the

material.

Figure 5.3: An AISI 4140 specimen directly after testing. Note the particulate matter
on the platen and adhering to the specimen.
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5.1.2 Results of Friction Ring Tests

As noted in Section 4.1.1, six friction ring tests per material were carried out, each

deformed to 25% the ring’s initial height before spring back. The average coefficient of

friction as well as the 95% confidence interval (calculated using Student’s T-test), are

given in Table 5.1. To reiterate, the coefficients presented here are for dry, lubricated

contact between the ground and hardened steel platens and the test specimen.

Table 5.1: Coefficients of friction for each material as determined by the friction ring
test

Material Mean Coefficient
95% Confidence

Interval

AA2024-T351 0.1431 [0.1340, 0.1499]
C36000 0.07902 [0.07134, 0.08470]
C11000 0.07190 [0.07035, 0.07346]
AISI 4140 0.05892 [0.05566, 0.06218]
AISI 4340 0.07938 [0.07690, 0.08186]

The results of the friction ring test reveal an interesting distribution in values for

the coefficient of friction for each material. The coefficient of friction for aluminum

2024-T351 is the greatest by a large margin. As one might expect, the frictional

coefficients for copper and brass are low and somewhat similar in nature. This is one

of the reasons these materials are used for bushings. The most interesting result is the

disparity in coefficient of friction calculated for AISI 4140 and AISI 4340 compared

to the remaining metals. The coefficient of friction for AISI 4140 is statistically lower

(using a one-way ANOVA test) than the coefficient for AISI 4340. Furthermore, the

coefficient for AISI 4140 is even lower than the copper and brass. It is not known

why the coefficient of friction for AISI 4140 is so low.

5.1.3 Disparity in Aluminum 2024-T351 Data

Aluminum 2024-T351 was selected for this work owing to a large amount of published

data on its plastic behavior. After testing, the stress-strain behavior of the aluminum

tested in this work was compared to that of Bao (2003) and Felling and Doman (2018).

It is important to note that both works used the cold upsetting test. Further, Felling

and Doman (2018) also used Specs. The true stress-strain curves from both works

are shown with experimental data from this work in Figure 5.4. While the datasets

69



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

True Strain (m/m)

0

100

200

300

400

500

600

T
ru

e
 S

tr
e
s
s
 (

M
P

a
)

Felling Data

Bao Data

New Data

Figure 5.4: Experimental and literature data for 2024-T351. Literature data is from
Bao (2003) and Felling and Doman (2018).

from Bao and Felling and Doman agree well, the stress-strain data from this work

does not agree well at all. The material used in this work has a higher yield strength,

lower ductility, and different plastic behavior.

To confirm that the material tested in this work was indeed aluminum 2024-T351,

several material tests were undertaken. Energy-dispersive X-ray spectroscopy was

performed on the material specimens from this work and the work of Felling and

Doman to provide approximate elemental concentrations of Copper, Manganese, and

Magnesium. The composition of these elements, in addition to the composition limits

laid out by ASTM standard B211-12 (2012), are listed in Table 5.2. While there were

differences between the two batches of material, both batches fall within the ASTM

standard for 2024. To estimate whether the temper of the new batch was indeed

T351, hardness testing was undertaken. The T351 temper is only required to have

a minimum hardness of 66 HRB, with no upper bound on hardness specified by the

standard. The batch of material used in this work had a hardness of 76 HRB, further

showing that this batch of material did fulfill the minimum specifications laid out

by ASTM. A literature view was undertaken to discover if other researchers have
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Table 5.2: Partial elemental composition of two batches of AA2024-T351 with limits
laid out by ASTM Standard B211-12

Material Cu Mn Mg

ASTM Standard [3.8, 4.9] [0.3, 0.9] [1.2, 1.8]
Felling & Doman 4.0 0.7 1.5
Current Work 4.2 0.5 1.4

reported a similarly high yield stress as measured in this work. While there was

a significant variation in yield strength values reported in the literature with most

being lower, there was at least one source which quoted a similarly high yield strength

(Fratini et al., 2009).

The discrepancy in behavior must be a result of the small differences in composition

and processing between the two batches tested. Further, it could be considered almost

coincidental that the material used by Felling and Doman did match the behavior of

Bao. The increased strength and decreased ductility seen in the material used in this

work is likely a result of the increased copper concentration, which would increase

promote the growth of precipitates.

This unexpected discovery of inter-batch variability in elemental composition yields

a rather interesting conclusion for constitutive model fitting. The different plastic

behaviors for the same nominal material shown in Figure 5.4 clearly require different

sets of material parameters for a particular constitutive material model. This raises

the question of whether one set of constitutive model parameters is actually valid for

one material. If one is particularly concerned with the plastic behavior of the material,

such as in the case of manufacturing process simulations or high-end modeling work,

this result means that one has to refit constitutive model parameters for every batch

of material, even if the simulation in question uses the same material in two different

places, but from different batches.

This conclusion highlights the necessity of a tool like Compcam. If material charac-

terization and fitting have to be performed on not just every different material, but

every batch from every material, there is a decided need to accomplish characteriza-

tion faster and cheaper than currently used methods. Compcam could be an ideal

tool to fulfill those stringent requirements.
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5.2 Constitutive Model Fitting

Fitting of constitutive material models to the five materials tested here is broken into

to portions. First, the operation of Compcam is validated by fitting two simple, but

very different constitutive models to all five alloys, which represent a range of material

behaviors. The two models used in this portion are the Swift hardening rule and the

isotropic linear plasticity model. The influence and sensitivity of tuning the coefficient

of friction with constitutive material parameters are also explored here.

The second portion of this section uses Compcam to fit two more complex consti-

tutive models, the GTN model and the P − α variant of the Johnson-Cook model.

While the fitting of sintered PM alloys in Chapter 6 includes the bi-linear variant

of the Johnson-Cook model, that constitutive model was not included for this work.

Because these are wrought allows with little or no porosity, the bi-linear pressure-

volume equation of state would not be appropriate. Furthermore, the numerical

implementation of the bi-linear variant in Ls-Dyna becomes unstable when one tries

to force zero plastic volumetric deformation out of the bi-linear equation of state.

The P −α variant has no problem accepting parameters to enforce little to no initial

porosity.

5.2.1 COMPCAM Validation

Validation will explore the two different sets of responses used by Compcam to deter-

mine optimal material parameters, specifically force-displacement and mean radius-

displacement. The goal of showing these responses is to examine what Compcam

determines as optimal based on the information provided to it. The second set of

responses which will be explored are the true stress-strain curves for each optimum

constitutive model. As stress-strain behavior is not directly fitted, examination of

this response will garner insight into how well Compcam can fit the actual material

behavior from relatively unprocessed experimental data. The number of evaluations

of the FE model for each material and model is not specified, as it was found that

this number was extremely susceptible to the initial condition. However, on average

both models used for validation required between 100 and 150 evaluations of the FE

model. With a model runtime of approximately 30 seconds, this lead to an average

Compcam runtime of around one to two hours.
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Figures 5.5 to 5.9 show force-displacement and radius-displacement behavior for each

material tested. These curves are overlaid with the responses of the best Swift harden-

ing law and linear plasticity fit for each material. The characteristics of each model’s

fits are detailed for each material below. Tables 5.3 and 5.4 provide the final best

parameters for each material model as well as the final R2 for each fit. Recall that this

R2 value is average of the separate R2 values for force-displacement and mean radius-

displacement. Also included in Table 5.3 is the set of Swift hardening parameters

determined by Felling and Doman. When contrasted with parameters determined for

the different batch of material used in this work, one will note there is significant

variation, further reinforcing the statements made in Section 5.1.3.

The plasticity behavior of aluminum 2024-T351 proved to be a good fit to the Swift

hardening rule, as seen in Figure 5.5, with a decent agreement to material behavior

at low deformation when looking at force-displacement data. The quality of the

fit does decline at larger deformation as the Swift model does not have the ability

to model material softening. The Swift model also showed a good fit to radius-

displacement data. Comparing the coefficient of friction determined by Compcam in

Table 5.3: Optimal Swift hardening parameters for ductile metals determined by
Compcam

Material ν
K

(MPa) n
σy

(MPa) µ R2
avg

AA2024-T351 0.3087 662.6 0.0839 391.4 0.1456 0.9953
Felling & Doman - 829.4 0.1960 - 0.1890 -
C36000 Brass 0.3004 717.9 0.4058 277.4 0.1418 0.9957
C11000 Copper 0.3078 279.4 0.3134 288.8 0.07091 0.9989
AISI 4140 0.3006 1324 0.2239 908.3 0.1595 0.9914
AISI 4340 0.3103 1498 0.3949 1198 0.1892 0.9802

Table 5.4: Optimal linear plasticity parameters for ductile metals determined by
Compcam

Material ν
σ0

(MPa)
Etan

(MPa) µ R2
avg

AA2024-T351 0.3040 446.4 553.6 0.1679 0.9400
C36000 Brass 0.3009 306.2 565.8 0.1393 0.9984
C11000 Copper 0.3093 295.9 59.98 0.1433 0.9969
AISI 4140 0.2743 921.0 619.3 0.07468 0.9750
AISI 4340 0.3039 1113 1116 0.1680 0.9802
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Figure 5.5: AA2024-T351 experimental and FEM results for optimal material param-
eter for Swift and linear hardening laws.

Table 5.3, one will note that a coefficient of friction of 0.1451 falls within the confidence

interval presented in Table 5.1. Unsurprisingly, the linear plasticity model proved to

be a very poor fit to aluminum, particularly when observing force-displacement data.

Additionally, the coefficient of friction determined by Compcam falls outside the

interval suggested by friction ring tests.

Both constitutive models proved to be a good fit to experimental force-displacement

and radius-displacement data for brass, despite the variation in model formation.

Experimental data and fits are shown in Figure 5.6. However, one will note the

linear plasticity model does fit plastic behavior and yield strength slightly better.

Interestingly, both set of parameters determined by Compcam suggests a coefficient

of friction which is much greater than that suggested by friction ring tests.

Like brass, both constitutive models were good fits to copper’s force-displacement

and radius-displacement behavior, as shown by Figure 5.7. However, the linear plas-

ticity model exhibited a slightly better fit to the yield strength and plastic behavior

portrayed by force-displacement data and an overall slightly better fit to radius-

displacement data. Despite this, the coefficient of friction determined for the Swift

hardening rule (0.07091) falls within the experimental bounds suggested by friction

ring testing while the coefficient fit to the linear plasticity model was significantly

higher (0.1433).
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Figure 5.6: C36000 brass experimental and FEM results for optimal material param-
eter for Swift and linear hardening laws.
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Figure 5.7: C11000 copper experimental and FEM results for optimal material pa-
rameter for Swift and linear hardening laws.
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Figure 5.8: AISI 4140 steel experimental and FEM results for optimal material pa-
rameter for Swift and linear hardening laws.

Both constitutive models struggled to match the force-displacement behavior of AISI

4140. This is most likely due to the prominent double yield point, which leads to a

prolonged period of near-zero material stiffness. As neither constitutive models can

account for this phenomenon, both experienced difficulty fitting plastic behavior. Re-

gardless, the Swift hardening law was a significantly better fit to radius-displacement

data than the linear plasticity model. However, while neither model estimated co-

efficient of friction to fall within the bound of friction ring experiments, the linear

plasticity model was significantly closer than the Swift law, which was almost three

times the experimental mean coefficient of friction.

Despite having a less prominent double yield point than AISI 4140, once again both

models struggled to fit the force-displacement behavior of AISI 4340. While it is clear

that the from Figure 5.9 that the Swift law fits is a better fit, it is not as good a fit,

especially when compared to some of the other fits presented in this section. As with

AISI 4140, the Swift law was a better fit to radius-displacement data than the linear

plasticity model. However, the coefficients of friction determined for both models

were well above the confidence interval determined from friction ring testing.

While fitting was accomplished using force-displacement and radius-displacement, a

far more important metric is how well a constitutive model predicts a material’s true

stress-strain behavior. For ease of viewing, the stress-strain behavior of each material

compared to actual material behavior is shown in Figure 5.10 for the three non-ferrous
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Figure 5.9: AISI 4340 steel experimental and FEM results for optimal material pa-
rameter for Swift and linear hardening laws.

alloys used in this work and Figure 5.11 for the two steel alloys tested. The stress-

strain curves used to represent constitutive model fits are taken from the centermost

element of each FE model. Von Mises stress and effective strain are used here. True

stress-strain data is used to portray experimental material behavior. Experimental

material curves are identical to those portrayed in Section 5.1.

Beginning with aluminum, one will note, as expected, the Swift hardening rule pro-

vided a much better fit to experimental behavior than the linear hardening rule.

However, as the Swift hardening law cannot account for the softening effect of mate-

rial damage, the quality of the fit is somewhat limited, especially at moderate to large

deformation. However, at low levels of deformation, the Swift law predicts true-stress

strain behavior well.

Referring back to the force-displacement behavior of both constitutive models for

brass presented in Figure 5.6, one will recall that both the Swift and linear models

presented good fits. However, it is clear from Figure 5.10 that the linear plasticity

model is much more appropriate for this material. The Swift model greatly under-

estimates yield strength and does not exhibit the same trend in plastic stress-strain

behavior.

Like brass, both the Swift and linear models were good fits to copper’s force-displacement

data. Interestingly, both models are also good fits to copper’s plastic stress-strain be-

havior. The somewhat wavey behavior seen in copper’s experimental stress-strain
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Figure 5.10: Comparison of experimental stress-strain data to optimal model fits for
the non-ferrous metals tested
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Figure 5.11: Comparison of experimental stress-strain data to optimal model fits for
the ferrous metals tested
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curve does make fitting more challenging, as neither model can account for such be-

havior. However, the linear plasticity model does present do a slightly better job

predicting overall behavior. Although in this instance, both model fits would be

considered appropriate for predicting copper’s plastic behavior.

AISI 4140 exhibited some rather interesting fit behavior. As noted above, the promi-

nent double yield point made the fitting of force-displacement data challenging. This

observation holds true for stress-strain behavior, as shown in Figure 5.11. Both the

linear and Swift models cannot account for the period of very low stiffness associated

with the double yield point. While a swift model a better fit to stress-strain behavior

than the linear model, it is not what one would refer to as exceedingly good.

As with AISI 4140, the yield point phenomena present in AISI 4340, although far less

prominent, also result in poor quality fits both the Swift hardening law and linear

plasticity model. In this case, however, the linear model produced an extremely poor

quality fit. While the swift model does not capture the gradually reducing stiffness

of the AISI 4340’s actual behavior, it does at least overlap with the material’s stress-

strain curve.

The comparison of stress-strain and force-displacement responses yields an interesting

conclusion. Although a constitutive model may fit well to force-displacement data, it

may not fit the stress-strain behavior. Because optimization algorithms are naive to

the nature of the objective function they are solving, Compcam will attempt to tune

parameters of a constitutive model to minimize the error between numeric and exper-

imental responses, regardless of the physical reality of such parameters or formulation

of the constitutive model. A key example of this is the fitting of the Swift hardening

law to brass. While Compcam minimized the error between the force-displacement

curve, the final parameters determined resulted in an unrealistic portrayal of stress-

strain behavior. This leads to the conclusion that while IMM’s effectiveness is limited

by how appropriate a constitutive model is to describe a material’s actual behavior.

A model which predicts linear plastic behavior would not be appropriate for a ma-

terial whose plastic stiffness behavior changes as a function of deformation. Further,

constitutive models which cannot account for yield point phenomena may struggle

to predict the behavior of material with a double yield point, as showcased by the

fitting of AISI 4140 and AISI 4340 to both constitutive models.

While not a conclusion, another point of interest raised in this work is the final fitted

value for the coefficient of friction for each constitutive model fit and material. The
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coefficients of friction determined by Compcam do not reliably align themselves with

the values suggested by friction ring testing. While there are cases, such as aluminum

and the Swift hardening law and copper and the Swift hardening law where the

model and material are a good fit to one another and the coefficients of friction fall

within experimental values, it is not always the case. While one should not expect

an accurate prediction of friction for a model which is not appropriate for a given

material, based on the conclusion made above, there does appear to be additional

factors causing the deviation between experimental and computational coefficients of

frictions.

One possibility is that as a result of the numerical algorithms used by Ls-Dyna,

the coefficient of friction used by the FE package may not have the same physical

meaning as the coefficient of friction determined by the friction ring. Investigating

the algorithms used by Ls-Dyna to account for friction (LSTC, 2017b), one will

observe that while Ls-Dyna does base its friction model on Coulomb friction, there

are several notable features which may change the physical interpretation of both the

friction model and the coefficient used in the FE package. These include a truncated

iterative approach to calculating frictional forces at a contact interface based, in part,

on material stiffness and the limiting of the maximum possible frictional force at a

contact interface in order to improve overall numeric stability. Both factors could

contribute to differences in the coefficients determined experimentally and used by

FE packages, as well as differences in coefficients determined between constitutive

models.

Another possibility is that the coefficients of friction determined through the use of

the friction ring test may not be correct. Coefficients of friction are difficult to publish

as they depend on many different factors such as surface finish, lubricating condition,

and testing method. For example, Mark’s handbook (Avallone and Baumeister, 1996)

gives a coefficient of friction for dry contact between steel and aluminum to be about

0.6 and dry steel on steel to be 0.74. These values are far in excess of the values

determined in this work and seem excessive in nature. In their work developing

the friction ring test, Male and Cockcroft (1964) made estimates of the coefficient

of friction which do lie closer to the values found here, such as 0.18 for aluminum

on a smooth steel die, 0.10 for brass on a smooth steel die, and 0.17 for copper on

a smooth steel die. While there would likely be variations depending on how the

dies were prepared, it does suggest that the coefficients determined in this work are

somewhat low.
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Between the numerical implementation of contact and friction in Ls-Dyna, as well as

the variation and disparity in coefficients of friction suggested by literature sources,

it is difficult to make a conclusive statement on the matter of friction in constitutive

model fitting without further investigation.

5.2.1.1 Investigation of Frictional Effects

To explore the effects of friction on the fitting process, both constitutive models were

fit once again to all five alloys. However, instead of allowing friction to be tuned

by Compcam, the coefficient of friction was held fixed at the mean experimental

coefficient determined by the friction ring test. If friction has a significant physical

effect on barreling, which is a well known physical phenomenon, holding friction fixed

should also have some effect on the fit score and final fitted parameters.

Tables 5.5 and 5.6 provide the final parameters determined by Compcam. The value

of friction provided in these tables is fixed and is equal to the mean coefficient of

friction determined by friction ring testing. Table 5.7 summaries the fit scores for the

parameter sets tuning and holding friction constant.

Table 5.5: Optimal Swift hardening parameters for ductile metals holding friction
constant

Material ν
K

(MPa) n
σy

(MPa)
µ

(fixed) R2
avg

AA2024-T351 0.2945 661.4 0.08754 445.4 0.1431 0.9921
C36000 Brass 0.3015 683.9 0.3599 303.4 0.07902 0.9941
C11000 Copper 0.3116 277.9 0.2762 301.0 0.07190 0.9985
AISI 4140 0.3281 1266 0.1145 898.9 0.05892 0.9840
AISI 4340 0.3002 1498 0.3266 1204 0.07938 0.9661

Table 5.6: Optimal linear plasticity parameters for ductile metals holding friction
constant

Material ν
σ0

(MPa)
Etan

(MPa) µ (fixed) R2
avg

AA2024-T351 0.3054 484.6 399.2 0.1431 0.9674
C36000 Brass 0.3007 312.6 542.6 0.07902 0.9966
C11000 Copper 0.3037 290.6 63.11 0.07190 0.9988
AISI 4140 0.3029 944.7 542.2 0.05892 0.9754
AISI 4340 0.3035 1134 1098 0.07938 0.9802
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Table 5.7: Comparison of fit scores with friction tunable and held fixed

Material Swift Linear

Tunable Fixed Tunable Fixed

AA2024-T351 0.9953 0.9921 0.9400 0.9674
C36000 Brass 0.9957 0.9941 0.9984 0.9966
C11000 Copper 0.9989 0.9985 0.9969 0.9988
AISI 4140 0.9914 0.9840 0.9750 0.9754
AISI 4340 0.9802 0.9661 0.9802 0.9466

Comparing the final fit scores from fixed and tunable coefficients of friction found in

Table 5.7, one will note that with a few exceptions, the fit score associated with a set

of parameters determined by Compcam is improved by tuning friction. This result

was expected, because as stated before, Compcam tunes parameters naively with

the goal of maximizing fit score, regardless of the physical meaning of the parameter.

This means Compcam will find the best coefficient to maximize fit score and that this

coefficient may not correspond to any physically realistic value. This lends credence to

the possibility that the coefficient of friction used in the FE solver may be physically

different than experimental values.

There were a few instances where the physical coefficient of friction provided a higher

fit score than the one determined by Compcam. In two of these cases, specifically

the case of fitting the linear plasticity model to aluminum 2024 and AISI 4140, the

underlying model is inappropriate for predicting the actual materials behavior. As

discussed in Section 5.2.1, Compcam’s ability to accurately tune parameters depends

on the constitutive model being an appropriate representation of actual material

behavior. Otherwise, the quality of the fitted parameters will suffer. Observing

Figures 5.10 and 5.11, one should note that the linear plasticity model is not a good

fit for either aluminum or steel.

The other exception found in Table 5.7 is rather more interesting. When fitting

the linear plasticity model to copper, holding the coefficient of friction at the value

suggested by friction ring testing provides a better fit score than was determined

by tuning the coefficient. Unlike the aforementioned steel and aluminum, the linear

plasticity model does represent a good match to copper’s behavior. In this instance,

the improved fit score achieved by holding the coefficient of friction constant could

imply the solution space has more than one local optima. While care was taken

during the fitting processes to avoid local optima, such as running Compcam more
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than once with different initial conditions as well as seeding Compcam runs with

the coefficient of friction determined through experimentation, it is clear that in

this case, Compcam failed to find the most optimal solution. Short of switching

to a global search algorithm, which would incur a significant and almost prohibitive

computational penalty, there is no way to avoid finding local optima.

However, in this instance, the difference in fit score between the two models is very

small; occurring at the fourth decimal place. Interestingly, this implies that doubling

the coefficient of friction resulted between the value determined by friction ring testing

and using Compcam only resulted in an exceedingly small change in fit score. While

this may explain why the optimization algorithm in Compcam struggled to find the

global optima, it indicates that the objective function used in this work may not be

the most appropriate. As it is well known that friction plays a very large part in the

deformation behavior of a specimen in a cold upsetting test, why does a large change

in coefficient only result in a 0.0004 change in fit score?

While effective in the majority of cases presented in this section, the fit score currently

used in this work may not be the best score, as shown by the low activity associated

with friction. This low activity present in the coefficient of friction would serve

to make optimization more challenging and potentially reduce the accuracy to which

such low activity parameters are fit. While this fit score will be used for the remainder

of the present work, the investigation of an alternative fit score is recommended as a

future extension of this work.

5.2.2 Application to Complex Models

Following completion of validation work, two additional constitutive models were fit

to all five ductile metals; the GTN model and the P − α variant of the Johnson-

Cook model. These models are significantly more complex than the Swift hardening

rule and linear plasticity model used previously. As with validation work and as

a result of the findings in Section 5.2.1.1, the coefficient of friction was tuned by

Compcam.

The final fitted parameters for the GTN model and P − α variant are given in Ta-

bles 5.8 and 5.9, respectively. Unlike validation testing, the fit of each model to the

objective function datasets of force-displacement and mean radius-displacement are

excluded here. Instead, only the final fit to true stress-strain behavior is provided.
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Table 5.8: Optimal GTN parameters for each ductile metal

Material ID
E

(GPa) ν

SIGY
(MPa) N fc fN ϵN sN µ R2

avg

AA2024 69.83 0.3093 426.7 11.17 0.4926 0.2552 0.2224 0.1745 0.1272 0.9927
C36000 94.60 0.3102 253.8 6.587 0.4945 0.2604 0.2131 0.1752 0.1055 0.9675
C11000 105.4 0.3118 197.8 9.879 0.4994 0.2529 0.255230.1633 0.085180.9968
AISI 4140 200.1 03123 743.3 10.29 0.5091 0.2530 0.2339 0.170920.1164 0.9961
AISI 4340 200.2 0.3103 1041 13.83 0.4963 0.2130 0.2253 0.1747 0.1370 0.9966

Table 5.9: Optimal Johnson-Cook parameters using a P − α compaction curve

Material ID
G

(GPa)
A

(MPa)
B

(MPa) n

Pe

(MPa)
Ps

(MPa) N µ R2
avg

AA2024 28.36 425.4 298.0 0.3831 170.7 1171 4.977 0.1596 0.9880
C36000 33.46 289.4 504.7 0.7274 84.70 949.0 4.743 0.08244 0.9974
C11000 44.50 226.0 152.6 0.3670 100.1 897.4 5.114 0.1512 0.9977
AISI 4140 80.15 736.8 611.2 0.3425 523.2 1953 5.417 0.1786 0.9965
AISI 4340 80.17 846.9 698.3 0.1851 481.4 1942 4.768 0.1760 0.9973

These fits are shown in Figures 5.12 and 5.13 for non-ferrous and ferrous alloys,

respectively.

As with the models used for validation work, the fit of the GTN and P − α variant

depended greatly on how appropriate the model’s behavior matches actual material

behavior. In particular, the GTN model proved to be a bad fit for brass’s behavior

and while both constitutive models did not predict copper’s behavior well. That said,

in some cases, these models predicted material behavior significantly better than the

Swift or linear plasticity models. In particular, both models proved to be a much

better fit to aluminum’s plastic behavior than Swift model in Figure 5.10. Further,

while not as good as the linear fit presented in Figure 5.10, the P −α variant proved

to be a surprisingly good fit to brass’s mostly linear behavior. In terms of the steel

alloys tests, both constitutive models provided excellent fits to experimental true

stress-strain curves, as shown in Figure 5.13.

As with the previously discussed constitutive models, the coefficient of friction does

not always align with the values measured using the friction ring test. Nonetheless,

the quality of the fits does not suffer as a result of this. A key example of this

statement is the fit of both these models to AISI 4140 and 4340. Despite providing

an excellent fit to experimental stress-strain behavior, the final coefficients of friction

do not align with the friction ring test. Furthermore, there is variation between the
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Figure 5.12: Comparison of experimental stress-strain data to optimal model fits for
additional constitutive models fitted to non-ferrous alloys

coefficient of friction determined by Compcam for each constitutive model. Given

that, as already mentioned, friction algorithms in the FE model which are influenced

by material stiffness and plastic behavior, such variation is not surprising. Indeed it

further strengthens the argument that the coefficient of friction used by the FE solver

may not be completely physical in nature.
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Figure 5.13: Comparison of experimental stress-strain data to optimal model fits for
for additional constitutive models fitted to ferrous alloys
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Chapter 6

Investigation of Sintered, Ferrous PM

Alloys

This chapter deals with the experimental characterization and subsequent model fit-

ting to twelve ferrous, sintered PM alloys provided by Stackpole International. These

alloys consisted of four elemental compositions and three sintered densities. Unlike

the ductile metals discussed in the previous chapter, true stress-strain behavior is

not the only behavior which is being fit. The densification behavior of these alloys

is a key area of interest for these alloys. As such, in addition to evaluating the fit of

each constitutive model to each alloy’s stress-strain behavior, the progression of bulk

densification is also compared for each alloy and model.
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6.1 Experimental Results

As noted in Section 4.1, all sintered PM alloys were tested compression to an engi-

neering stress of 650 MPa owing to equipment limits related to the Instron 600RD test

frame. As such, the amount of deformation imposed on each alloy varied depending

on the material’s composition and sintered density. For example, Figure 6.1 shows

SP-4420 specimens from each sintered density which have been loaded to 650 MPa.

As sintered density increased, material strength increased and the amount of deforma-

tion imparted in the specimen decreased. While only SP-4420 is shown in Figure 6.1,

the same trend was seen in all alloys tested.

6.1.1 SP-2140

The true stress-strain curves for SP-2140 for all densities are given in Figure 6.2.

Note that only three of the six curves tested are shown for each density to allow for

a cleaner presentation. However, all alloys and densities exhibited highly repeatable

behavior. This style of presentations will be used throughout this chapter.

Figure 6.1: SP-4420 specimens of all three densities (decreasing to the left) after
testing compared to an untested specimen (far left)
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Figure 6.2: True stress-strain curves for SP-2140, all densities

As stated earlier, it is clear that the yield strength of the material increases with

increasing density. However, for SP-2140, this increase does not appear to be linear

despite a linear increase in density. One will note the difference in yield point between

7.4 and 7.1 g/cc appears to be much larger than the difference between the yield points

for 7.1 and 6.8 g/cc.

Another interesting feature of note is the post-yield behavior of each specimen. The

6.8 g/cc specimens appear to smoothly transition from elastic to plastic behavior.

Both the 7.1 and 7.4 g/cc specimens exhibit a double yield point, although the promi-

nence of such yield point phenomena in the 7.4 g/cc specimens was much greater than

the 7.1 g/cc alloy.

A final observation is each density exhibits the same decaying exponential hardening

behavior. Further, as the sintered density increases, the slope of the plastic stress-

strain curve, akin to the plastic stiffness of the material, also increases. Relating this

to a Swift hardening law or similar power law hardening rule, this would result in

an increase in the hardening coefficient. However, fitting later in this section will be

needed to corroborate this observation.
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Figure 6.3: True stress-strain curves for SP-4420, all densities

6.1.2 SP-4420

The true stress-strain curves for all densities of SP-4420 are shown in Figure 6.3.

As with SP-2140, yield strength increased with increasing density. However, unlike

SP-2140, it appears as though the increase was somewhat linear with increasing den-

sity.

The plastic behavior of all densities was quite uniform for SP-4420, much more so

than SP-2140. All SP-4420 alloys exhibited a double yield point. However, unlike

SP-2140, the prominence and extent of each density’s yield point effects were similar

in nature.

6.1.3 SP-6664

The true stress-strain curves for SP-6664 at all densities are shown in Figure 6.4. The

plastic behavior was markedly different from the previous two alloys. Specifically, one

will note that the elastic-plastic transition was smooth, without the double yield point

of the previous alloys. However, as with the other alloys tested, the yield strength of
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Figure 6.4: True stress-strain curves for SP-6664, all densities

the material increased commensurate with density, although not to the degree seen

in the previous alloys.

This material had a higher yield point compared to the previously discussed alloys.

So much so that the test end condition of 650 MPa engineering stress did not invoke

significant plastic deformation, particularly at densities of 7.1 and 7.4 g/cc.

It is important to note at this juncture that one reason that AISI 4340 was used in

Chapter 5 was that it was indicated by Stackpole that SP-6664 had a similar, though

not identical, elemental composition. As such, it was hoped comparisons could be

drawn between the behavior of AISI 4340 and SP-6664. However, given that no

processing information for each alloy was released by Stackpole, coupled with the

somewhat unexpected discovery that 4140 and 4340 specimens were quenched and

hardened, in the end, no comparisons could be drawn.
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Figure 6.5: True stress-strain curves for SP-E2148, all densities

6.1.4 SP-E2148

The true stress-strain behavior for all densities of SP-E2148 is documented in Fig-

ure 6.5. Its behavior was very similar to that of SP-6664 in all aspects, particularly

in terms of yield strength and plastic behavior.

6.1.5 Comparisons of Stress-Strain Behavior

Figures 6.6 to 6.8 show true stress-strain behavior for all alloys at each density, per-

mitting observations to be made across the different alloys. First, as noted in the

previous section, the behavior of SP-6664 and SP-E2148 were indeed very similar at

each density. However, SP-E2148 consistently yields at a somewhat lower stress than

SP-6664. Despite this, it appears as though the plastic behavior is remarkably similar

despite the reduction in yield strength.

Another interesting feature is the when one compares the yield strengths of SP-2140

and SP-4420. SP-2140 yields at a much lower stress than SP-4420 at a density of

6.8 g/cc. However, as sintered density increases, the difference in yield strength
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Figure 6.6: True stress-strain curves for all alloys at 6.8 g/cc

decreases. This is especially apparent at a density of 7.4 g/cc (Figure 6.8) where

the yield strength of both alloys are almost identical. Assuming that SP-2140 and

SP-4420 have similar initial yield strengths at full density (which is reasonable the

results of Figure 6.8), this result indicates that the yield strength of SP-2140 is very

susceptible to sintered density. However, despite similar yield strengths, the elastic-

plastic transitions and plastic hardening behavior are still quite different.

Without knowing more about the chemical composition, sintering process and other

manufacturing details associated with each alloy, any observations as to why the alloys

behave differently cannot be conclusively drawn.

6.1.6 Density Measurements

In addition to work undertaken to characterize stress-strain behavior using the cold

upsetting test, density measurements of all tested alloys were undertaken. Density

measurements were done by two means. First, the final, compressed density was

measured using a modified version of MPIF Standard #42 (Metal Powder Industries

Federation, 2010b), which involves measuring the weight of a specimen in air and
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Figure 6.7: True stress-strain curves for all alloys at 7.1 g/cc
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Figure 6.8: True stress-strain curves for all alloys at 7.4 g/cc
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water then using Archimedes method to determined density. Deviating from the

standard, this work did not impregnate the specimens with oil prior to measuring

weight. Regardless, this methodology provided the means to accurately measure the

final bulk density of the material without needing to consider the geometry of the

specimens. The second method uses the deformed profile of the specimen measured

by Specs and detailed in Section 4.2.1.

Figures 6.9 to 6.12 plot the density of the specimen with respect to vertical strain

for all alloys and initial sintered densities. The final densities measured using the

Archimedes method are also plotted. As one will note, there is a good agreement

between the two methods at final density. Final bulk densities for each material

tested as measured using the optical system and the Archimedes method with sample

uncertainty are given in Table 6.1.

There is one feature of note pertaining to density data, however. There is some spread

to the densities as measured by the MPIF standard in Figure 6.12. Specifically, two

density measurements for SP-E2138-74 fall well below the remainder. While this is

reflected in the average final density shown in Table 6.1 by a larger sample uncertainty,

the exact cause of this variation is unknown. Regardless, it is rather unusual, as the

repeatability of other alloys indicates that outliers should be unlikely, especially for

two specimens from the same alloy/density batch.

Table 6.1: Final densities as measured using Archimedes method and using the optical
measurement system

Material ID
Archimedes Final

Density (g/cc)
Optical Final
Density (g/cc)

SP-2140-68 7.235±0.014 7.263±0.045
SP-2140-71 7.388±0.008 7.409±0.018
SP-2140-74 7.566±0.016 7.537±0.020
SP-4420-68 7.180±0.029 7.137±0.013
SP-4420-71 7.296±0.012 7.311±0.020
SP-4420-74 7.531±0.010 7.474±0.020
SP-6664-68 6.869±0.034 6.964±0.016
SP-6664-71 7.130±0.009 7.184±0.019
SP-6664-74 7.296±0.014 7.249±0.020
SP-E2148-68 6.933±0.022 7.015±0.028
SP-E2148-71 7.145±0.022 7.207±0.018
SP-E2148-74 7.356±0.049 7.398±0.015
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Figure 6.9: Density progression as measured with the optical system overlaid with
final density measured with Archimedes method for SP-2140
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Figure 6.10: Density progression as measured with the optical system overlaid with
final density measured with Archimedes method for SP-4420
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Figure 6.11: Density progression as measured with the optical system overlaid with
final density measured with Archimedes method for SP-6664
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Figure 6.12: Density progression as measured with the optical system overlaid with
final density measured with Archimedes method for SP-E2148
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6.2 Constitutive Model Fitting

As with the ductile metals discussed in Chapter 5, Compcam as utilized to fit four

constitutive material models to the behavior of all sintered materials. However, not

all the same material models were used to represent the behavior of these alloys.

Specifically, the linear plasticity model was not fit to these materials as the exper-

imental plastic behavior for all sintered alloys would not be appropriate for such a

model. As such, the bi-linear variant of the Johnson-Cook model was added to the

Swift hardening rule, GTN model, and P − α variant used in Chapter 5.

Like the fitting of the GTN model and P − α variant in Section 5.2.2, the fit of

each model to the force-displacement and mean radius-displacement curves will not

be shown for fits in this chapter. Instead, the final true stress-strain curves for each

alloy and density will be given. However, the fitting methodology used in this section

is identical to that used for the wrought alloys.

6.2.1 Swift Hardening Law

The Swift hardening law proved to be a very good fit to plastic stress-strain data for

all materials tested. Figures 6.13 to 6.16 show the experimental data overlaid with

the optimal model fits. Table 6.2 provides the optimal constitutive model parameters

determined for each material. As with the wrought alloys in the previous chapter,

optimal Swift parameters were found in less than two hours for all alloys tested.

As already noted, there is good agreement between the Swift hardening law and all

alloys tested. The only areas where the Swift hardening law struggled were with the

alloys which exhibited a double-yield point, particularly SP-2140-74 and the entire set

of SP-4420 alloys. As the Swift law was unable to account for this phenomenon, the

final model fits tend to ignore the post-yield softening region and assume a smooth

curve extending from the yield point. Given the brief duration of double yield point

effects in these alloys, this is an acceptable approximation of material behavior. It is

important to note this approximation was made by Compcam without any outside

influence. It is also interesting to note that the Swift model was able to compensate

for double yield point phenomenon significantly better than AISI 4140 and 4340 in

the previous chapter.
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Figure 6.13: Optimal fits for the Swift model for SP-2140
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Figure 6.14: Optimal fits for the Swift model for SP-4420
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Figure 6.15: Optimal fits for the Swift model for SP-6664

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

True Strain (m/m)

400

450

500

550

600

T
ru

e
 S

tr
e

s
s
 (

M
P

a
)

6.8 g/cc Experimental

6.8 g/cc Swift Fit

7.1 g/cc Experimental

7.1 g/cc Swift Fit

7.4 g/cc Experimental

7.4 g/cc Swift Fit

Figure 6.16: Optimal fits for the Swift model for SP-E2148
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Table 6.2: Optimal Swift hardening parameters as determined through IMM

Material ID ν K (MPa) n σ0 (MPa) µ

SP-2140-68 0.2587 696.5 0.3090 175.9 0.0508
SP-2140-71 0.3018 750.5 0.2623 166.6 0.0550
SP-2140-74 0.2965 839.2 0.2520 250.5 0.1408
SP-4420-68 0.3054 717.3 0.2426 200.0 0.0721
SP-4420-71 0.2778 799.0 0.2300 225.5 0.0573
SP-4420-74 0.2826 884.6 0.2145 254.0 0.1151
SP-6664-68 0.2661 810.2 0.1207 333.4 0.0677
SP-6664-71 0.2886 818.1 0.0964 294.0 0.1206
SP-6664-74 0.2929 879.6 0.0985 269.4 0.0842
SP-E2148-68 0.2962 793.1 0.1236 252.4 0.0566
SP-E2148-71 0.2829 913.9 0.1280 270.5 0.1049
SP-E2148-74 0.2527 895.7 0.1010 276.7 0.0532

Despite good fits to stress-strain behavior, however, the Swift law, as with all con-

stitutive models which use the von Mises yield criterion, was unable to account for

densification of the material. Because the objective functions used by Compcam

utilize barreling behavior to determining material parameters, the inability to ac-

count for changes in volume resulted in unrealistic values of coefficient of friction and

Poisson’s ratio. This is very apparent observing the values of those parameters for

specimens with the lowest sintered density of 6.8 g/cc for all alloys, as lowering Pois-

son’s ratio and coefficient of friction results in reduced barreling. However, it appears

that as the sintered density increases and the densification in the material is reduced,

this fitting technique was better able to determine realistic material parameters as

the minor changes in volume measured experimentally agree better with the Swift

model’s assumption of volume consistency.

6.2.2 Gurson-Tvergaard-Needleman Model

Observing the fits provided by the GTNmodel to each material in Figures 6.17 to 6.20,

one will note that while they are adequate at describing the stress-strain behavior of

the material, they do not have the same quality as Swift hardening law. As noted in

Section 4.2.3, this is due to the lack of flexibility afforded by the one-term power law

hardening rule this implementation of the GTN model uses. Further, like the Swift

law, the GTN model is also unable to account for the post-yield softening seen in

SP-2140 and SP-4420.
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Table 6.3: Optimal GTN parameters as determined through IMM

Material ID
E

(GPa) ν µ

SIGY
(MPa) N fc fN ϵN sN

SP-2140-68 200.3 0.3091 0.1134 158.1 4.5629 0.4729 0.1924 0.2317 0.1772
SP-2140-71 200.2 0.3129 0.1202 199.6 5.3395 0.5000 0.2546 0.2187 0.1732
SP-2140-74 199.2 0.3000 0.1219 265.8 6.5227 0.5085 0.2266 0.2129 0.1657
SP-4420-68 200.1 0.3096 0.1237 201.4 4.7896 0.4981 0.2289 0.2714 0.2272
SP-4420-71 200.2 0.3103 0.1239 205.2 4.6021 0.4917 0.2280 0.2766 0.2256
SP-4420-74 200.2 0.3105 0.1048 254.0 5.2529 0.4714 0.2272 0.2830 0.2341
SP-6664-68 200.9 0.2812 0.0576 398.8 5.5096 0.4752 0.2299 0.2711 0.2525
SP-6664-71 199.7 0.3054 0.1278 378.6 4.6466 0.4839 0.2271 0.2749 0.2199
SP-6664-74 201.9 0.3135 0.0842 375.3 4.4171 0.4845 0.2293 0.2586 0.2178
SP-E2148-68 200.1 0.3086 0.1012 414.6 6.2856 0.4896 0.2276 0.2767 0.2252
SP-E2148-71 198.4 0.2886 0.0844 378.8 4.6073 0.4846 0.2260 0.3045 0.2274
SP-E2148-74 199.4 0.3004 0.0901 383.0 4.4380 0.4943 0.2298 0.2850 0.2272

Despite the reasonable fits produced by Compcam, examining the optimal consti-

tutive parameters in Table 6.3 yields some surprising observations. First, initial

yield strength does not make physical sense, particularly for densities of 6.8 and

7.1 g/cc. However, this discrepancy is due to the power law hardening rule available

in *MAT GURSON. By forcing hardening parameters to be related to elastic param-

eters such as Young’s modulus and initial yield strength, Compcam naively lowered

yield strength to better describe plastic behavior. Trials were conducted constraining

the values which SIGY to correlate with experimental data, however, this resulted

in a significant reduction in the quality of the fits. In many respects, this result is

similar to the issue of fitting friction discussed in Section 5.2.1.1.

Another issue experienced by primarily SP-6664 but also SP-E2148 to a lesser degree

is the unusual values of coefficient of friction and Poisson’s ratio, particularly for SP-

6664-68. This was caused by the GTN model being unable to adequately describe the

densification of the material. While this was an issue for all materials, the combina-

tion of low sintered density and the reasonably small amount of plastic deformation

compared to SP-2140 and SP-4420 amplified this issue. The densification behavior of

the GTN model is elaborated on further in Section 6.2.5.

A final interesting note on the final GTN parameters is the convergence of certain

parameters between the alloys tested. Specifically, the critical void fraction and all

three nucleation parameters showed convergent behavior. However, it is important

to note no FE model actually exhibited a void fraction which approached either fc
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Figure 6.17: Optimal fits for the GTN model for SP-2140

or fN due to the compressive nature of the testing and relatively low amounts of

plastic deformation imparted on the specimens. However, since ϵN and sN are tied to

fN , it is unknown why inactive variables converged to the same values. This finding

implies the majority of GTN parameters are not active or required when modeling a

cold upsetting test, at least to the reasonably small degree of deformation imparted

during the experimental work conducted here.

6.2.3 Johnson-Cook Model with Bi-Linear Equation of State

The bi-linear variant of the Johnson-Cook model proved to be a good fit to experi-

mental stress-strain data, as seen in Figures 6.21 to 6.24. While the quality of the fit

is not quite as consistent as the Swift law, particularly at large deformations with al-

loys SP-2140 and SP-4420, it represents a distinct improvement over the GTN model.

Optimal constitutive material parameters are presented in Table 6.4.

While the Swift law may outperform this implementation of the Johnson-Cook model

in terms of runtime and quality of fit to stress-strain behavior, the use of an equation

of state allows the Johnson-Cook model to model densification. While the ability of
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Figure 6.18: Optimal fits for the GTN model for SP-4420
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Figure 6.19: Optimal fits for the GTN model for SP-6664

104



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

True Strain (m/m)

400

450

500

550

600

650

T
ru

e
 S

tr
e

s
s
 (

M
P

a
)

6.8 g/cc Experimental

6.8 g/cc GTN Fit

7.1 g/cc Experimental

7.1 g/cc GTN Fit

7.4 g/cc Experimental

7.4 g/cc GTN Fit

Figure 6.20: Optimal fits for the GTN model for SP-E2148

all material model used to predict the densification behavior of these sintered alloys

is presented later in this section, one indication that the bi-linear variant provides a

better fit to densification behavior is the consistency of the coefficient of friction tuned

for each alloy. The optimal coefficient remains consistent between sintered densities,

in comparison to the variation seen with both the Swift hardening law in Table 6.2

and the GTN model Table 6.3.

Like the Swift model, this Johnson-Cook model fit the double yield point present in

SP-2140 and SP-4420 by effectively ignoring this region of softening behavior.

6.2.4 Johnson-Cook Model with P−α Compaction Curve

The P − α variant of the Johnson-Cook model proved to be an equally good fit to

stress-stress strain behavior as the bi-linear variant. The fit of the P − α variant to

all alloys is provided in Figures 6.25 to 6.28. Optimal constitutive model parameters

are given in Table 6.5.
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Table 6.4: Optimal Johnson-Cook parameters with a bi-linear equation of state.

Material ID G
(GPa)

A
(MPa)

B
(MPa)

n C1

(MPa)
ϵV,2 C2

(MPa)
ϵV,3 C3

(MPa)
µ

SP-2140-68 80.0 114.5 696.6 0.4261 64.0 -0.0415 167.1 -0.1307 252.3 0.1423
SP-2140-71 80.0 87.6 742.6 0.3373 51.2 -0.0281 181.9 -0.1222 304.6 0.1467
SP-2140-74 80.0 104.5 813.0 0.3229 69.4 -0.0228 294.3 -0.1125 386.7 0.1338
SP-4420-68 79.9 89.8 718.2 0.3133 58.6 -0.0227 162.0 -0.1222 254.7 0.1316
SP-4420-71 79.7 88.0 781.5 0.2897 58.8 -0.0195 201.8 -0.1168 293.4 0.1538
SP-4420-74 79.7 141.5 860.9 0.3215 80.8 -0.0197 281.4 -0.1379 403.8 0.1614
SP-6664-68 80.2 175.2 688.4 0.1781 116.4 -0.0359 269.8 -0.1282 396.5 0.1397
SP-6664-71 80.6 174.0 838.4 0.2038 204.2 -0.0345 330.2 -0.1459 434.0 0.1488
SP-6664-74 81.5 171.1 791.0 0.1549 205.2 -0.0726 316.3 -0.1471 404.7 0.1202
SP-E2148-68 80.0 175.5 694.3 0.1965 117.4 -0.0420 271.9 -0.1406 400.2 0.1477
SP-E2148-71 78.5 159.3 870.2 0.2004 185.0 -0.0406 311.5 -0.1464 413.1 0.1518
SP-E2148-74 80.6 183.3 771.4 0.1611 177.7 -0.0388 310.5 -0.1477 416.5 0.1654
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Figure 6.21: Optimal fits for the Johnson-Cook model with a bi-linear equation of
state for SP-2140
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Figure 6.22: Optimal fits for the Johnson-Cook model with a bi-linear equation of
state for SP-4420
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Figure 6.23: Optimal fits for the Johnson-Cook model with a bi-linear equation of
state for SP-6664
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Figure 6.24: Optimal fits for the Johnson-Cook model with a bi-linear equation of
state for SP-E2148
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Table 6.5: Optimal Johnson-Cook parameters using a P − α compaction curve

Material ID
G

(GPa)
A

(MPa)
B

(MPa) n

Pe

(MPa)
Ps

(MPa) N µ

SP-2140-68 80.0 137.3 690.9 0.4789 92.26 567.8 2.823 0.1530
SP-2140-71 80.3 103.9 756.0 0.3759 103.4 681.2 3.046 0.1457
SP-2140-74 79.9 143.9 779.1 0.3560 84.83 571.3 1.222 0.1649
SP-4420-68 79.2 144.6 714.0 0.4034 120.0 718.3 3.641 0.1510
SP-4420-71 79.9 146.5 745.5 0.3491 92.70 583.6 1.217 0.1610
SP-4420-74 80.7 130.0 856.6 0.3050 70.90 799.4 1.475 0.1873
SP-6664-68 79.0 217.7 707.7 0.2300 126.6 749.1 1.225 0.1233
SP-6664-71 81.1 216.1 827.7 0.2384 122.8 610.2 0.2728 0.1494
SP-6664-74 79.6 198.9 882.3 0.2095 177.4 846.0 3.287 0.1431
SP-E2148-68 78.9 102.2 770.0 0.1801 176.4 787.4 3.153 0.1405
SP-E2148-71 79.7 219.2 770.1 0.2119 99.63 746.3 0.5871 0.1522
SP-E2148-74 78.4 179.0 859.9 0.1830 126.6 1005 1.308 0.1388

Comparing optimal flow rule parameters between the two Johnson-Cook variants, one

will note that there are somewhat large deviations. However, owing to the different

methods of modeling pressure-volume behavior, such difference in flow rule are to be

expected. However, like the bi-linear variant, the values of A and B in the P −α vari-

ant do not exhibit a consistent increase with increasing sintered density, even though

the material’s measured yield strength does increase. However, such deviations are

to be expected as Compcam is attempting to naively minimize the error between the

model response and experimental data. As with the GTN model, attempts to force

Compcam to use realistic parameters resulted in lower quality fits.

Unlike the bi-linear variant, the P − α model does seem to experience somewhat

more variation in coefficient of friction. Based on the optimal parameters from the

Swift and GTN models, this could indicate that the P − α Johnson-Cook model is

not predicting density as well as the bi-linear equation of state. This supposition is

explored more in the following section.

6.2.5 Comparison of Densification Behavior

One of the key aspects of this investigation is how well each material model used in

this chapter captures the densification effects of the alloys tested. Of the four material

models used in this chapter, all but the Swift hardening law are able to account for

changes in a material’s volume during plastic deformation. The GTN model can
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Figure 6.25: Optimal fits for the Johnson-Cook model with a P − α for SP-2140
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Figure 6.26: Optimal fits for the Johnson-Cook model with a P − α for SP-4420

110



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

True Strain (m/m)

350

400

450

500

550

600

650

T
ru

e
 S

tr
e
s
s
 (

M
P

a
)

6.8 g/cc Experimental

6.8 g/cc J-C P-  Fit

7.1 g/cc Experimental

7.1 g/cc J-C P-  Fit

7.4 g/cc Experimental

7.4 g/cc J-C P-  Fit

Figure 6.27: Optimal fits for the Johnson-Cook model with a P − α for SP-6664
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Figure 6.28: Optimal fits for the Johnson-Cook model with a P − α for SP-E2148
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account for changes in material density internally due to the formulation of its yield

criterion while the two Johnson-Cook model variants rely on an external equation of

state. To compare the effectiveness of these models, Figures 6.29 to 6.32 present the

density-strain behavior of each material. The Swift hardening law is not included on

these plots as the density remained constant.

For each alloy and density tested, the experimental density-strain curves are approx-

imately linear. While the GTN model is the only model used which predicts a linear

increase in density with strain, the GTN model consistently underestimates the de-

gree of densification in the material. This underestimation is a direct result of the

formulation of the GTN model used by Ls-Dyna. Ls-Dyna uses the original for-

mulation of the GTN model in *MAT GURSON. The original GTN model was used

primarily to model drawing and forming of sheet metal (Chu and Needleman, 1980;

Tvergaard, 1981), where biaxial tension is the most prevalent state of stress, with

shear stress being a secondary concern. As a result, the original GTN model only

allows for the growth or contraction of pores as a result of hydrostatic stress.

While effective for sheet metal forming, the assumption of minimal shear stress does

not apply to the cold upsetting test where shear stress, which primarily influences the

deviatoric component of stress, is by far the biggest factor. As a result, the original

GTN formulation, and the formulation within Ls-Dyna, cannot accurately model

densification of a cold upsetting test. While several modifications and extensions to

the GTN model exist to account for the effects of a highly deviatoric stress state,

either through the use of a second set of damage parameters (Malcher et al., 2014;

Xue, 2008) or by considering anisotropic pore deformation Gologanu et al. (1993),

they are not available as a stock material model in Ls-Dyna nor were they explicitly

developed to model densification behavior. While these extensions could be added as

a user-defined material model, it as decided not to develop a custom material model

for three reasons. First, development of a user-defined material model takes signifi-

cant time, even for constitutive models which are well documented in the literature.

Second, while it may prove interesting and perhaps even effective, implementing a

material model developed by another researcher does not have the same scientific

novelty as developing one’s own version. Third and finally, the industry client for this

work, Stackpole International, wanted a turnkey solution, not a custom user-defined

material.

Both variants of the Johnson-Cook model proved to be a good fit to experimental

densification behavior. However, one variant does not seem to reliably model density
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better than the other. Interestingly, despite the disparity in optimal coefficients of

friction seen for the P −α variant, this variant predicts densification behavior well for

all alloys, even when the bi-linear variants provides a slightly better fit. This could

imply that when using the P − α variant of the Johnson-Cook model, the coefficient

of friction has much less impact on the quality of fit than the equation of state and

flow rule parameters.

In both variants of the Johnson-Cook model, the disparity in fit to densification

behavior seems to appear during the low deformation region of plastic behavior.

Perhaps the best example of this is seen in Figure 6.29 for SP-2140-71. While the

bi-linear variant predicts initially trends steeply upward before leveling off, the P −α

variant trends upward slowly before beginning to match experimental behavior. This

trend is seen for several other fits presented here. It is possible this behavior is a

result of a local minimum found by Compcam. However, resolving this issue with the

current objective function could be challenging, as this densification is not fit directly,

but is instead inferred through the use of the radius-displacement data extracted

from Specs. This finding further substantiates suggestions made in Section 5.2.1.1

that while largely effective for this work, an alternative objective function should be

investigated to improve performance.

While both Johnson-Cook variants predict bulk densification well, bulk density pro-

vides little information about the density gradient which develops within a specimen.

The different stress states which develop within a cold upsetting specimen will result

in a non-uniform density gradient within the specimen. To that end, work was carried

out to map the density gradient with a specimen using Dead.

This work was hampered by several factors. First, the specimen preparation required

for optical density measurements was very time-consuming, particularly with the large

surface area which needed to be polished. Further, microscopy was also challenging.

In order to capture an image of high enough resolution for a high-quality density

map to be produced by Dead, a mosaic of over 200 images was acquired at 50X

magnification. This process was extremely time-consuming using a microscope with

a manual translation stage. As a result, only one alloy and density was mapped,

specifically SP-2140-68. This material was selected as it experienced the largest degree

of densification, which would make density gradients within a specimen the most

pronounced.
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Figure 6.29: Densification of SP-2140 as predicted by three material models.

0 0.05 0.1 0.15 0.2 0.25

Strain(m/m)

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

D
e

n
s
it
y
 (

g
/c

c
)

Exp.

GTN

J-C Bi-lin

J-C P-

Models

6.8 g/cc

7.1 g/cc

7.4 g/cc

Materials

Figure 6.30: Densification of SP-4420 as predicted by three material models.
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Figure 6.31: Densification of SP-6664 as predicted by three material models.
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Figure 6.32: Densification of SP-E2148 as predicted by three material models.
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Figure 6.33: Optical density map of SP-2140-68 using a 0.35 mesh size

Figure 6.33 shows the density map of the top quarter of a specimen of SP-2140-68

captured with a mesh size of 0.35mm. This allowed for approximately 100 elements

along both dimensions. The final map was filtered through convolution using a 3x3

Gaussian kernel to smooth mapping noise and make trends more pronounced. Even

with filtering, there is significant spatial noise. Nonetheless, one will note that rel-

ative density is highest at the outer corner of the specimen where the barreling of

the material causes the edge to fold over. This area of the specimen is experiences

significantly higher stresses than the rest of the specimen, as such high densification

is to be expected.

The area of lowest density in the specimen occurs near the top of the specimen near its

centerline. This is the area of the specimen which is in direct contact with the platen.

The low densification seen here may be a result of frictional forces mitigating the

degree of deformation this area of the specimen undergoes, hence reducing the degree

of density. Another area of low density is the near the outer surface of the specimen

between the specimen’s midline and outer corner. Note that the high density seen

at the specimen’s midline is actually an artifact caused by incomplete polishing and

should be disregarded.

While material density increases moderately along the specimen’s centerline toward

its midplane, the largest areas of densification are along a diagonal connecting the
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outer corner of the specimen and the very center of the specimen. Interestingly, this

diagonal corresponds with both the area of maximum shear stress in the material as

well as the fracture plane seen in both aluminum and brass specimens detailed in

Section 5.1.1. It is likely the high degree of both shear stress and stress triaxiality

along this diagonal is a direct contributor to increased densification. Work by Yazici

et al. (2008) helps to validate that the density maps produced here as well as the

overall trends in density gradient which develop when performing cold upsetting on

sintered PM alloys.

Drawing direct comparisons between the FE models used in this chapter and the

density maps was not possible without significant modification to the constitutive

models or element formulations used, both of which were beyond the scope of this

project. Ideally, the relative density in an FE model can be extracted by tracking an

element’s volumetric strain. However, none of the material models or element formu-

lations used save volumetric strain as a history variable. Further, the axisymmetric

nature of the simulations prevented the use of nodal displacements to approximate

volumetric strain. This is because axisymmetric formulations account for the circum-

ferential components of displacement and stress, also known as the hoop components,

internally and do not allow for the type of access which would be required to resolve

volumetric strain.

As relative density could not be compared directly between experimental density

maps, a qualitative comparison between the FE models and optical density maps can

be made using an approximation of volumetric strain. This approximation, given

in (6.1), relies on principal strains. While only truly valid at small deformations,

this approximation remains useful for showing trends, if not absolute values, at large

deformation. The fringe plots of the FE models running optimal parameters for the

GTN model and P−α Johnson-Cook variant for SP-2140-68 are shown in Figure 6.34.

Both fringe plots constrain upper and lower bounds of approximate volumetric strain

to allow for direct comparison between the models.

ϵ̃V = (1 + ϵ1)(1 + ϵ2)(1 + ϵ3)− 1 (6.1)

While there are significant differences in the degree of volumetric strain incurred by

the GTN model and P − α variant, this is to be expected given the differing final

bulk densities. Nonetheless, both models exhibit the same patterns of volumetric

strain. Further, while exact values cannot be compared, these patterns agree well
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(a) GTN Model (b) P − α variant

Figure 6.34: Approximate volumetric strain contours used to qualify densification.

with the experimental density map in Figure 6.33. While this result cannot be used

to prove that the experimental and computational density maps agree, it does seem

to suggest it. Further work is required in order to make quantitive comparisons of

FE and experimental density maps
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Constitutive model fitting is a challenging and time-consuming proposition. IMM is a

promising method to save time and cost in the fitting process. Compcam, a custom

developed IMM framework has been the primary focus of this report. Additionally,

research in this thesis has used the compressive cold upsetting test in conjunction

with a specialized optical measurement system to characterize the plasticity behavior

of various materials. This testing method, which is not generally used for the charac-

terization of plastic behavior due to the combined effects of friction between specimen

and platen as well as the significant stress triaxiality which develops within the test

specimen, was shown to be quite effective when used with IMM to fit constitutive

models.

To demonstrate the effectiveness of Compcam, two investigations were undertaken.

In the first, five wrought, ductile metals alloys of varying composition and behavior

were characterized using the cold upsetting test and subsequently fit to four con-

stitutive models to predict the material’s stress-strain behavior. This investigation

yielded two important conclusions. First, the effectiveness of Compcam and IMM is

heavily dependant on how well the constitutive model being fit describes a given ma-

terial’s behavior. For example, a constitutive model designed to model linear plastic

behavior is not appropriate for materials which do not exhibit such linear behavior.

While Compcam will produce model parameters which minimize the error between

the FE model’s response and experimental behavior regardless of the appropriateness
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of a given model, fits for inappropriate models may be poor and produce final ma-

terial parameters which do not make physical sense. To that end, while Compcam

is a valuable tool for model fitting, knowledgeable judgment is still required to select

appropriate constitutive models and verify final model fits.

The second conclusion is that the frictional effects in the cold upsetting test can be

difficult to characterize. While friction ring testing was undertaken to experimentally

determine the coefficient of friction, the optimal coefficient of friction determined by

Compcam rarely aligned with experimental values. In fact, in most cases, fixing the

coefficient of friction used by Compcam and the FE model resulted in a lower quality

fit than allowing friction to be tuned. There are several reasons for this, however, the

two largest are the uncertainties in the friction ring test used and the fundamental

physical differences between the experimental coefficient of friction and the numerical

algorithms used by FE solvers to model friction.

Keeping these findings in mind, the first investigation in wrought alloys showed that

Compcam and IMM were very effective at fitting constitutive models to experimen-

tal behavior, provided the constitutive model was appropriate for a given material.

Furthermore, fitting was accomplished in under 24 hours at most, with user interac-

tion only required at the beginning of that period to initialize Compcam and the

end to confirm the quality of the final fitted model. Compared to manual fitting tech-

niques, which require generally require manual iteration and significant degrees of user

interaction, Compcam presents large savings in terms of both time and personnel

utilization.

In the second investigation, Compcam’s ability to fit constitutive models to signifi-

cantly more complex material behavior was tested using twelve ferrous, sintered PM

alloys of four different compositions and three sintered densities. In this trial, four

constitutive models were fit to each alloy’s behavior with the goal of predicting the

material’s stress-strain and densification behavior. This investigation proved once

again that the quality of the final constitutive model fit was highly dependant on

how well the constitutive model described material behavior. Interestingly, this lead

to the interesting finding that the GTN model, which was developed to model the

nucleation, coalescence, and collapse of pores in a material, was unable to accurately

predict bulk densification for the cold upsetting specimens used in this work. It is

hypothesized that this is because the formulation of the GTN model, wherein pores

only morph under hydrostatic pressure, cannot cope with the high degrees of tri-

axiality and shear stress which develop within a constitutive model. It was found
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instead that the utilization of an equation of state to control a constitutive model’s

volumetric deformation was more successful at predicting bulk densification.

In addition to fitting bulk densification, a qualitative analysis was undertaken using

optical densitometry to compare the density gradients which develop within test spec-

imens to those which developed within the FE models using the fitted constitutive

models. While the qualitative nature of this analysis prevented definitive conclusions

from being drawn, this early work indicated that the density gradients which develop

within experimental and numerical cold upsetting tests are similar, despite the fact

that density gradients were not directly used in the fitting process. This indicates that

Compcam has the ability to fit material behaviors not directly utilized in the fitting

process, provided a sufficiently large and relevant dataset of experimental behaviors

is used.

Overall, this work has shown that IMM and, specifically, Compcam is an effective

tool for constitutive model fitting that is both material and constitutive model ag-

nostic. While this work has shown that Compcam has decided limitation in its

capability, the breadth of the investigations described within this thesis shows that

given appropriate constitutive models are used and limitations are understood, qual-

ity constitutive model fits can be obtained with less effort and time than traditional

fitting techniques.

121



7.2 Recommendations

In many respects, the development of Compcam is still in its infancy. Due to the

time limitations inherent in academia, there was a decided limit to the extent to which

Compcam’s applications could be explored. As such, there is a significant number

of improvements which can be made to the tool as well as future research avenues

which stem from its use.

Two improvements should be immediately investigated to improve Compcam’s per-

formance. The first is the utilization of an alternative objective function used by

the optimization algorithm. As discovered in Section 5.2.1.1, large changes in the

coefficient of friction can result in very small changes in the current objective func-

tion’s value. This is despite the fact that the effects of friction are known to have

a large influence. Work should be undertaken to develop a new objective function

which accounts for the physical activity of each constitutive model parameter more

accurately. This should improve both optimization efficiency as well as the quality of

the final fitted parameters.

The second immediate improvement would be to investigate alternative optimization

methods to reduce the computational expense of IMM. These optimization methods

would serve to reduce the number of FE model evaluations needed to fit a given model.

This improvement would allow Compcam to use FE models which have a signifi-

cantly longer runtime to fit constitutive models without excessively long Compcam

runtimes. It is the author’s recommendation that Kriging surrogate models be inves-

tigated as an alternative fitting technique. Appendix C provides an overview of the

author’s early investigations into Kriging models and the development of a software

tool known as Mike. While it was the author’s intent to utilize Kriging surrogates

more prominently in this thesis, work had to be abandon due to time constraints. It

is recommended that this work is reactivated and, in conjunction with the revised

objective function discussed previously, be implemented into Compcam.

While not directly related to Compcam’s functionality, another item of work should

be undertaken in the short term is to determine how to extract a quantitative mea-

sure of densification from FE models. As presented in Section 6.2.5, the lack of a

quantitative data limits the effectiveness of comparisons between FE models and ex-

perimental density maps. For certain application discussed later in this section, the
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ability to quantitatively measure deformation is a requirement for accurate model

fitting.

On a longer time horizon, work should be undertaken to expand Compcam to use

material tests other than the cold upsetting test. This would allow Compcam to

accommodate a far wider range of materials and behavioral phenomena. One area

of research which is quite pertinent is the fitting of constitutive models to the com-

paction of metal powders, which is of great concern to the manufacturing sector.

Constitutive models used to model powder compaction are generally quite complex

and current fitting methodologies require specialized equipment and intensive test-

ing. It is the author’s opinion that Compcam can be applied to this problem to

overcome many of the challenges in fitting powder models. Exploratory work into

this field completed by the author (not detailed in this thesis) did show promise but

was ultimately abandoned due to time constraints.

In addition to the fitting of powder models, Compcam should be expanded to other

forms of material test for bulk materials, such as the ubiquitous uniaxial tension test

as well as some less common tests such as the short beam bending test/transverse

rupture strength test, the Brazilian disc test, and ideally, the split Hopkinson bar

test. Expansion into these material tests would require somewhat significant work to

modify or develop appropriate instrumentation systems for such tests. In particular, it

is the author’s suggestion that Compcam be modified to accommodate experimental

data from DIC, as this measurement system is becoming increasingly prevalent in

material characterization across all forms of testing methodology.

By expanding Compcam’s reach to more material testing techniques, it will allow

Compcam to not only fit constitutive models to materials which may not be com-

patible with the cold upsetting test, but it would also allow Compcam to fit new

material phenomena. One of the most promising applications, in the author’s opin-

ion, is the utilization of Compcam to fit damage models. Material tests such as the

Brazilian disc test and the short beam bending tests would be ideal for this purpose,

as the fracture can be controlled much easier than with the cold upsetting test.

One concrete application of Compcam which would cement its fitting ability would

be to utilize Compcam to fit the full Johnson-Cook model, including strain-rate

and temperature dependent behavior. Currently, the fitting of the Johnson-Cook

test requires a very large test matrix to fully characterize material behavior. In the

proposed work, Compcam would be used in conjunction with material tests which
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combine several material behaviors, such as elevated temperature cold upsetting tests

where the temperature of the specimen is tracked over the duration of the test. It

is the author’s hypothesis that such a methodology could fully characterize material

behavior with a significantly smaller test matrix. If this hypothesis were to be proven

true, it would have potentially significant ramification across the field of constitutive

modeling.
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Appendix A

Equations of State and the Lagrangian

Timestep

Underpinning all explicit FE solvers is the Lagrangian timestep, the procedure used

to update the all information (stress, strain, displacement, volume, bulk viscosity,

etc.) within an element from timestep to timestep. While the implementation of

the Lagrangian timestep may vary from solver to solver, the basic structure remains

the same. A graphical depiction of this structure is given below in Figure A.1. This

description is taken from Benson’s treatise on Lagrangian and Eulerian hydrocodes

(Benson, 1990).

As already noted in this document, a constitutive material model using the von

Mises yield criterion cannot account for a material’s change in volume. However, the

addition of an equation of state allows for the modeling of such phenomena. The

aim of this appendix is not to discuss the full Lagrangian timestep, but rather to

focus on how an equation of state effects the overall stress update procedure (steps

5-7 in Figure A.1). As will be detailed in the following sections, the introduction of

an equation of state fundamentally alters the stress update portion of the Lagrangian

timestep and how the constitutive material models calculate total stress. To convey

this difference in operation, this appendix will present the stress update procedure

for elements with and without an equation of state. The procedure detailed here

is used by Ls-Dyna and detailed in the Ls-Dyna theory manual (LSTC, 2017b).

Additional content and context are drawn from Benson (1990).
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Figure A.1: Lagrangian timestep procedure
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Prior to diving into the mathematics of the stress update procedure, it is important

to define notation and convention. Because the stress is updated from timestep to

timestep, it is important to track the timestep a particular piece of information is

drawn from. The current timestep is denoted by a superscript n. The next timestep

is denoted by n+1, and a half-timestep (used by integration algorithms for improved

numerical stability and accuracy) is denoted by n+ 1
2
. Hydrostatic pressure for these

derivations is denoted as p, the deviatoric stresses are denoted as sij, and the total

stress denoted as σij. In keeping with the sign conventions used by Ls-Dyna, these

three variables are defined below. It is important to note that pressure is explicitly

given a negative sign following this convention. Additionally, the bulk viscosity is

defined as q, although this particular parameter will not be discussed in detail in this

appendix.

p = −1

3
σijδij − q = −1

3
σkk − q (A.1)

sij = σij + (p+ q)δij (A.2)

Therefore:

σij = sij − (p+ q)δij (A.3)
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A.1 Stress Update Without an Equation of State

The most popular stress update method used by FE solvers is the Jaumann stress rate

(Benson, 1990). Ls-Dyna uses this method with the exception of a few specialized

models. (LSTC, 2017b). While chosen for explicit FE packages for its good balance of

accuracy and computational cost, it can cause problems with implicit time integration

schemes as it can create non-symmetric stiffness matrices.

For materials which exhibit elastic-plastic behavior, the incremental nature of the

stress update procedure is demonstrated by (A.4).

σn+1
ij = σn + σ̇ij∆t (A.4)

where material time derivative, σ̇ij, is defined by (A.5).

σ̇ij = σ∇

ij + σikωkj + σjkωki. (A.5)

The spin tensor, ωij, is defined in (A.6), were vi is the velocity vector.

ωij =
1

2

(

∂vi
∂xj

− ∂vj
∂xi

)

(A.6)

The Jaumann stress rate, σ∇

ij , is defined in (A.7), were Cijkl is the stress-dependant

constitutive matrix and ϵ̇ij is the strain rate tensor defined by (A.8).

σ∇

ij = Cijklϵ̇kl (A.7)

ϵ̇ij =
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

(A.8)

With the stage now set, the stress can now be incrementally updated. This is accom-

plished by first calculating the rotation of stress at the current timestep, as given by

(A.9). This ensures the objectivity of the stress update procedure.

rnij =
(

σn
ikω

n+ 1
2

kj + σn
jkω

n+ 1
2

ki

)

∆tn+
1
2 (A.9)
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Total stress is then calculated using (A.10).

σn+1
ij = σn

ij + rnij + σ
∇n+ 1

2
ij ∆tn+

1
2 (A.10)

where

σ
∇n+ 1

2
ij ∆tn+

1
2 = Cijkl∆ϵ

n+ 1
2

kl (A.11)

and

ϵ
n+ 1

2
ij = ϵ̇

n+ 1
2

ij ∆tn+
1
2 (A.12)

The most important thing to note about the stress update procedure, from the context

of plasticity and volumetric deformation, is Cijkl. While noted above, it is important

to reiterate that this is the stress-dependent constitutive matrix, meaning that it will

change depending on the material loading and whether the material is undergoing

plastic deformation. In many ways, it would be more appropriate to denote this as

Cijkl(σ
n+ 1

2
ij ). It is also very important to note that in (A.10), Cijkl accounts for the

combined effects of hydrostatic pressure and deviatoric stress.

Changes in Cijkl are governed by the constitutive material model used. For pressure-

independent constitutive models, such as models which utilize the von Mises yield

criterion, the portion of Cijkl which governs volumetric deformation is not altered.

As such, while components of Cijkl which are affected by the deviatoric component of

stress may change and allow for permanent deformation, all volumetric deformation

imparted on an element is elastic and fully recoverable. However, for models which do

account for changes in volume, such as the GTN model or a Drucker-Prager-type cap

model, both deviatoric and hydrostatic components of Cijkl are updated, which allows

the constitutive models to account for permanent volumetric deformation.
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A.2 Stress Update Procedure with an Equation of

State

Equations of state control the pressure within an element and are generally functions

of relative volume, V , and internal energy, E. This is formalized below in (A.13).

When defined on an elemental bases, volume is defined as ν and energy as e.

p = p(V,E) (A.13)

When an equation of state is used, the stress update changes quite significantly.

Instead of incrementing total stress, pressure and deviatoric stress are handled sep-

arately. This is important because the pressure the n + 1 timestep is dependant on

the internal energy at n+ 1.

The stress update begins by using the Jaumann stress rate, however, unlike the

previous section, the Jaumann stress rate is only used to calculate the deviatoric

stress at the next timestep as given by (A.14), where ϵ̇′
n+ 1

2
kl is the deviatoric strain

rate tensor defined by (A.15).

sn+1
ij = σn

ij + rnij + pnδij + Cijklϵ̇
′n+

1
2

kl ∆tn+
1
2 (A.14)

ϵ̇′
n+ 1

2
ij = ϵ̇ij −

1

3
ϵ̇kkδ (A.15)

(A.14) displays the key difference between a stress update with and without an equa-

tion of state (given by (A.10)). While both methods use the stress-dependant consti-

tutive matrix Cijkl, which is controlled by the constitutive material model, when an

equation of state is used, only the deviatoric components of Cijkl are used to update

total stress due to the use of the deviatoric strain rate tensor ϵ̇′
n+ 1

2
ij . This implies

that however the constitutive material model may affect the hydrostatic response,

the equation of state will always override it.

The calculation of pressure at the n+1 timestep is challenging because the pressure is

also dependant on the internal energy at the n+1 timestep, which itself is dependant

on pressure. To that end, pressure and internal energy at the n + 1 timestep are

solved implicitly. After updating bulk viscosity, q (not detailed here), a trial internal
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energy at the next time step, e∗n+1 is calculated based on current pressure and change

in volume, as given by (A.16). The change in volume is determined by the geometric

configuration of the element.

e∗n+1 = en − 1

2
∆ν(pn + qn−

1
2 + qn+

1
2 ) + νn+

1
2 s

n+ 1
2

ij ϵ
n+ 1

2
ij (A.16)

where

∆ν = νn+1 − νn (A.17)

νn+
1
2 =

1

2
(νn + νn+1) (A.18)

s
n+ 1

2
ij =

1

2
(snij + sn+1

ij ) (A.19)

The next step requires the assumption that the equation of state is linear in terms

of energy, as shown in (A.20). For the most part, this is a valid assumption, as the

overwhelming majority of equations of state used for metal plasticity are linear in

terms of energy, including all equations of state used in this work. If the equation of

state is not linear, an iterative procedure is used (LSTC, 2017b).

pn+1 = An+1 +Bn+1En+1 (A.20)

where

En+1 =
en+1

ν0
(A.21)

and ν0 is the initial elemental volume.

Because (A.16) calculates the trial energy using the pressure at the current timestep,

the trial energy can be corrected knowing the pressure at next timestep to produce

the actual energy at the next timestep, as shown in (A.22).

en+1 = e∗n+1 − 1

2
∆νpn+1 (A.22)
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Using (A.16), (A.20) and (A.22), the pressure at n + 1 can be calculated implicitly,

as shown in (A.23).

pn+1 =
An+1 +Bn+1E∗n+1

1 + 1
2
Bn+1∆ν

ν0

(A.23)

Once pn+1 is solved for, energy is updated using (A.22). Total stress is then calculated

using (A.3). Because the total stress tensor now accounts for the effects of volumetric

deformation from the equation of state, volumetric deformation of the element is

accounted for when the stress tensor is used to generate nodal forces and hence nodal

accelerations, velocities, and finally, displacements (steps 1-4 on Figure A.1).
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Appendix B

COMPCAM Organization

This appendix is written for future researchers who may need to modify Compcam’s

source code. As is typical with many purpose-built codes, it can be difficult for out-

siders to decipher the design methodology and file structure which was developed by

a single author working alone. However, code that cannot be maintained, particularly

in a high turnover area such as academia, is ultimately useless.

While Compcam was written with the intent to allow for easy modifications by an-

other researcher with some familiarity with Matlab, it became clear to the author

that during collaboration with other researchers, the issue was not readability of the

code, but rather the underlying system architecture. To that end, what follows is two

graphical illustrations of Compcam’s file structure followed by a brief overview of

what each file or function does. Note that this overview only covers parameter iden-

tification using the cold upsetting test. Parameter identification for other types of

tests, such as powder compaction, will follow a slightly different file structure. How-

ever, in general, these file structures generally differ only by the objective function

inputted into the optimization algorithm. Further, it is highly recommended to con-

tinue using this file structure when expanding Compcam’s functionality to maximize

compatibility with previous releases.
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B.1 System Architecture

The graphical depiction of Compcam’s file architecture is broken into two figures.

Figure B.1 covers Compcam’s main entry point, a script titled “MainExecution-

Script.m”. This script handles high-level execution of Compcam, including setting

initial conditions, parameter bounds, solver settings, and optimization. Figure B.2

covers the objective function inputted to the optimization algorithm noted in chart

#1. The objective function handles setting up the solver deck for a particular set of

parameters, executing Ls-Dyna, parsing solver output files (in the form of ASCII

files), and computing the fit score.

These charts are interpreted from top to bottom, with implied data being passed

downward. Items inside a box are called by that function.
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LoadColdUpsetData.m

Optimization Algorithm 
(fmincon)

Optimization Utilities

OptimPlotDeltaFunction.m

OptimPlotDeltaFunction.m

OptimPlotDeltaFunction.m

OptimPlotDeltaFunction.m

Objective Function (FE Execution and Processing)
(See Chart #2)

SPECS Data

Figure B.1: Graphical overview chart #1: Compcam’s main entry point
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Chart #2
Objective Function (FE Execution and Processing)

rbdout_parser.m

rcforc_axisym_parser.m

nodout_parser.m

Force-Displacement

Mean Deformed Diameter - Displacement

Contour Progression (experimental)

Figure B.2: Graphical overview chart #2: cold upsetting objective function
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B.2 Overview of Files

This section provides context to the functions and scripts listed in Figures B.1 and B.2.

Each file used in Compcam is listed below with a brief description and a note on

what function is called by it. This summary is meant to supplement the graphical

overview, not supplant it.

MainExecutionScript.m

The primary entry point into Compcam. Allows the user to change the constitutive

model being fitted, the initial conditions and bounds for the optimization algorithm,

and execute the optimization algorithm. Also used to read existing the results of

previous Compcam runs, as these are saved to a folder.

LoadColdUpsetData.m

Function loads Specs data from file and extracts the information required by Com-

pcam. Therefore, instead of saving the entire Specs dataset of a material during

operation, only data such as force-displacement and radius-displacement are kept in

memory during operation. Specs data is saved in the folder named “Optimization

Goal”.

Optimization Algorithm

The optimization algorithm which powers Compcam. By default, it is “fmincon”,

which is built into Matlab. However, this could be changed to whatever the user

prefers, although care would be taken to ensure optimizer options would be valid

for the new algorithm. Options to run Mike do exist in Compcam by setting a

single execution flag in “MainExecutionScript.m”. In addition to optimization utili-

ties, the main purpose of the optimization algorithm is to call the objective function

repeatedly.
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OptimPlotDeltaFnc.m

Optimization utility, called by the optimization algorithm directly. Allows one to

graphically track the change in objective function from iteration to iteration.

PrintIntermSolution.m

Optimization utility, called by the optimization algorithm directly. Prints the param-

eter set solved by the optimization algorithm at that iteration to screen. This allows

the researcher to easily track the convergence behavior of parameters.

RunIntermFEM.m

Optimization utility, called by the optimization algorithm directly. Runs a simulation

which does not further the optimization algorithm, but instead, allow the user to see

the effect of fit by the iteration’s parameter set. While it increases computational

cost, it provides invaluable service for tracking the progression of the optimization

algorithm.

SaveIntermSolution.m

Optimization utility, called by the optimization algorithm directly. Saves the current

state of the optimization in case the algorithm is interrupted by a failed simulation

or power outage. Allows the user to seed a new Compcam run with the parameters

determined by the optimization algorithm just prior to failure.

ColdUpsetObjective.m

This function serves as the primary objective function called by the optimization

algorithm. This function generates new solver decks, runs simulations, parses outputs,

computes fit scores, and plots experimental and numeric data. This function is also

called when processing preexisting data, such as final values from a Compcam run

or interim values outputted by the optimization algorithm.
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This function creates new solver decks by copying the entire FEM repository of Com-

pcam to a new folder. All modification to the solver deck occurs in this new folder

so that none of the original decks are overwritten.

write ls param.m

Writes the constitutive material model parameters inputted to the objective function

to the solver deck. As the name implies, Ls-Dyna parameters are used to allow

this function to write only a few lines into the solver deck in a single location, in-

stead of trying to modify many independent numbers spread over the entire deck.

The parameters used by Ls-Dyna must match the parameters listed in Compcam’s

“MainExecutionDeck.m”. The Compcam option “paramTarget” must be properly

set to ensure parameters are written to the correct portion of the solver deck.

run LSDYNA.m

Runs a solver deck. The version of Ls-Dyna used and the solver directory are can

be changed by modifying this file. By default, this function runs the solver without

printing solver information to screen, however, this functionality can be enabled with

the second input argument.

Parsing Functions

All parsing functions are found under “Dyna Utilities”, and are meant to parse the

ASCII files outputted by Ls-Dyna. Because Ls-Dyna is not internally consistent

with the format of its output files, a separate parser is needed for each file type. A

list of all parsers found in Compcam is found below, however, only those functions

with an asterisk are called by “ColdUpsetObjective.m”. The remainder were written

for future eventualities.

• elout axisym parser: for element output files from axisymmetric simulations

• elout 3D parser: for element output files from 3D simulations

• eloutDET 3D parser: for interpolated nodal stress/strain output files from 3D

simulations

• glstat parser: for the global statistics file
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• matsum parser: for material energies and statistics

• nodfor parser: for nodal output forces file

• nodout parser*: for nodal displacements and rotations

• rbdout parser*: for rigid-body displacements and coordinates

• rcforc axisym parser*: for contact force files from axisymmetric simulations

• rcforc 3D parser: for contact force files from 3D simulations
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Appendix C

Exploratory Work into Use of Kriging

Models

One of the primary detractors of IMM and Compcam is that the optimization algo-

rithms require the the FE model to be evaluated a significant number of times. While

that is acceptable for FE models which solve in a few minutes, such as the ones cov-

ered the main body of this thesis, it quickly becomes prohibitive as time needed to

solve an FE model exceeds 20 minutes to half an hour.

This appendix covers work which was conducted during my masters into a means to

mitigate this penalty through the use of surrogate modelling techniques. The impetus

of surrogate models can be summed up by the following questions:

Can an expensive, black-box function be approximated with a cheap-to-

evaluate model with sufficient accuracy be used for optimization? Fur-

thermore, can such a model be generated cheaper than executing direct

optimization on the expensive function?

These questions drive the development of a software tool known as Mike, the Mat-

lab Integrated Kriging Environment. Mike is a surrogacy modeling tool which uses

a statistical modeling technique known as a Kriging model to build predictive mod-

els. Kriging models excel at making accurate interpolations from sparsely sampled

datapoints, meaning, in the case of IMM, the FE model only needs to be evaluated a

relatively small low of times. Furthermore, the statistical nature of the Kriging model

can be exploited to allow for predictive infilling, or the use of the existing Kriging

model to predict the point at which a new sampling point will provide the greatest
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improvement to the Kriging model’s predictive accuracy. By harnessing predictive

infilling, the overall accuracy of a Kriging model, particularly around areas of interest

such as global and local minima or maxima, can be incrementally improved through

sequential infilling. However, even with sequential infilling, the expense of develop-

ing a Kriging surrogate model tends to be less than that of standard optimization

techniques, which has caused the Kriging model to be referred to as a form of effi-

cient global optimization (EGO) method. The derivation and implementation of the

Kriging model used in Mike, as well as validation using analytic test functions, are

presented in this document.

While a significant amount of progress and investigation was made into surrogate

modelling Mike, it was ultimately excluded from the main body of the thesis due to

time constraints. As a result of said time constraints, throughout validation and use

in IMM applications was not achieved. However, it is the author’s strong believe that

Kriging surrogate models and Mike represent a very promising means to reduce the

expense of IMM. As such, development and early stage investigations using Mike is

included in this appendix to aid in the future development of Kriging surrogates and

eventual implementation into Compcam as the primary optimization method.
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C.1 Kriging Model Background

The Kriging model was selected for this work due to its ability to not only provides

the ability to make accurate interpolations from sparse datasets, but also because of

its ability to act as a global search method using significantly fewer evaluations of the

objective function compared to the genetic algorithm and PSO. While this section

provides historical context and cites some significant work which use Kriging models,

the actual derivation of the Kriging model, as well as their implementation in Mike,

are provided in Section C.2.

The Kriging model was developed for use in geology as a means to interpolate infor-

mation such as ore yield over a large area from a sparse collection of core samples

(Cressie, 1990). Prior to the development of the Kriging model (also referred to as

the Kriging method), traditional interpolation methods such as splines and geometric

interpolation were used. However, the majority of these fitting techniques either used

only the sampling points immediately surrounding the points of interest or interpo-

lation with fixed weights attached to each sampling point.

South African mining engineer Danie G. Krige formulated an idea for an interpolation

method which varied the weighting of sampling points depending on how far a given

sampling point was from the point where one was making their interpolation (Cressie,

1990). For example, when interpolating the value of any given point, it makes sense

that the sampling points closest to the point of interest have a greater influence on

the interpolated value than points far away. However, it is interesting to note that

Krige did not name his method after himself and that his original work bears little

resemblance to the Kriging models used today. The use of the term Kriging method

or model was adopted by later researchers (Cressie, 1990; Matheron, 1963).

Given its origin in geology and statistics, it should not be surprising that the Kriging

method remained in those fields for many years. It was not until what one could call

a seminal article by Sacks et al. (1989) entitled the “Design and Analysis of Computer

Experiments” that Kriging methods began to appear in other fields. In this article,

Sacks et al. introduced the idea that the Kriging method could be used to generate

a cheap-to-evaluate computer model which could be used as a stand-in for expensive

computer simulations. Such a model, which became known as the DACE model after

the title of the article (Booker et al., 1999; Jones et al., 1998), could then be utilized
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to perform tasks such as parametric studies and design optimizations which would

have been otherwise prohibitively expensive.

It would be unfair to say the use of surrogates as suggested by Sacks et al. was adopted

quickly by other researchers, because it was not. At the time the Sacks article was

published, the computational costs to generate a Kriging-type model were still very

high. As such, its use was limited, despite the potential advantages granted by a

surrogate model, especially for optimization. However, the Kriging method did find

some application in the design of helicopter blades (Booker et al., 1999), multi-physics

models of rocket engines (Queipo et al., 2005; Simpson et al., 2001), and transistor

design for electric circuits (Welch et al., 1992).

While the use of surrogate models remains limited, there is increased interest in their

use. This is driven by reduction in computational cost to build a surrogate, the in-

crease in complexity associated with most simulations, and the push for model-driven

design (Booker et al., 1999; Jones et al., 1998). One of the prominent applications of

surrogate models and, in particular, Kriging surrogates is for design optimization in

the aerospace sector, which use very expensive, but accurate computational fluid dy-

namics models (Huang et al., 2013). In some cases, the original Kriging methodology

is being adapted to work with what is known as multi-fidelity modeling. Multi-fidelity

modeling couples two separate computer simulations: one simulation is reasonably

cheap, but not accurate enough for design optimization; the other is expensive but

accurate. Multi-fidelity Kriging or Co-Kriging (Forrester et al., 2007; Le Gratiet and

Garnier, 2014) uses the cheap simulation, which can be evaluated many times for the

time required for one expensive simulation, to help fill in the gaps in the widely spaced

expensive simulation data by essentially providing an estimate of how the expensive

function should trend.

While the Kriging model is most commonly used as a computationally inexpensive

surrogate for a computationally expensive function, it can be used to perform a global

optimization. This is accomplished through a process called infilling, where the sta-

tistical nature of the Kriging model is exploited to successively add new sampling

points to improve the predictive ability of the model near a global optimum. Infilling

is described in detail in Section C.2.1. This type of optimization is sometimes referred

to as an EGO method, as the significantly fewer evaluations of the objective function

are required to build and infill a Kriging model. Excellent examples of the use of the

Kriging model as an EGO method are seen in the works of Roux and Bouchard (2010,
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2015) when performing IMM to determine parameters for damage and constitutive

material models.
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C.2 Mike Development

Mike, the Matlab Integrated Kriging Environment, is a tool for the construction

and use of Kriging models for interpolation and optimization. Owing to their ability

to created accurate and cheap-to-evaluate approximations of expensive functions,

Kriging models are often referred to as surrogate models, with the computationally

expensive function referred to as the parent function. While used by Compcam in

this work, Mike is completely independent and could be used to create surrogate

models for any arbitrary dataset.

Kriging models do not themselves act as optimizers, despite being referred to as an

EGO technique. A global search method is still required to search the Kriging model

for an optimum solution. However, the use of predictive infilling allows Kriging models

to intelligently sample the solution space of an expensive function in order to improve

the surrogate’s accuracy in areas around the global optimum of the parent function.

While other EGO techniques exist, such as successive response surfacing modeling

(Stander and Craig, 2002), one benefit of Kriging surrogates is that even when used

as an EGO method, the Kriging model still allows for interpolation anywhere in the

solution space.

This section provides a full derivation of the Kriging model in Mike as well as deriva-

tion and discussion of predictive infilling. Programming considerations are discussed,

particularly those related to computational efficiency. Finally, validation of Mike

against analytic test functions is presented.

C.2.1 Model Derivation

The derivation and formulation of the Kriging model used here draw heavily from

the works of Jones (2001; 1998) and Forrester et al. (2008). Many other derivations

exist but approach the subject from a mathematically intensive, statistical perspec-

tive. It was found that Jones and Forrester presented the most approachable and

detailed derivation with a particular focus on real-world applications. Throughout

this derivation, bold variables represent a vector of individual variables, as shown

explicitly in (C.1).

x = [x1, x2, . . . , xn]
T (C.1)
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Prior to beginning the derivation, it is important to understand, from a conceptual

standpoint, what a Kriging model is. Consider the following situation: you are given

an set of sampling points. These sampling points can be scattered or gridded. There

are two common means of extracting information from such as situation. One can fit

a function to the data using regression. While this methodology allows for a simple

analytic function to be used with further data processing, regression suffers from two

drawbacks. First, there is no guarantee that the fitted function will pass through

the sampled points. If we know that there is no error in our measurements, such

as with the deterministic nature of computer models, then a function that does not

pass through sampled points adds error to the surrogate. Second, if the underlying

physics of the system are not known, selection of the interpolation function becomes

arbitrary.

Alternatively, one can use methods to interpolate values between sampling points.

This also presents issues. First, one can to select the type of interpolation function

used. This could be linear, polynomial, or a spline. The selection of interpolation

function greatly influences the value at a given point, especially for sparsely sampled

data. Second, interpolation can be very expensive. Not only does sorting through

the existing data points present a large computational expense, but the cost of in-

terpolation increases dramatically with higher dimensionality, making such problems

prohibitively expensive.

The Kriging model attempts to split the difference between the two methodologies.

Making a prediction with a Kriging models can be described by (C.2), which is often

referred to as the Kriging predictor. The Kriging predictor can be considered the com-

bination of a regression function µ(x) which predicts the underlying trends inherently

in the data, and a stochastic function Z(x), which accounts for the deviation of data

away from the underlying trend. This is depicted graphically in Figure C.1.

y(x) = µ(x) + Z(x) (C.2)

The form of the Kriging predictor shown in (C.2) is known as the universal Kriging

model. It is given this name because the regression component of the predictor µ(x)

is to takes whatever form is required to accurately represent the underlying physics

of the situation. However, the selection of µ(x has the same issues as selection of a

regression function detailed above, namely that if the underlying trend is not known,

the regression function is difficult to choose. To that end, the majority of Kriging
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Figure C.1: Graphical representation of the Kriging predictor’s regression and
stochastic components.
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model implementations, including Mike, use what is known as the Ordinary Kriging,

where the regression function µ(x) is replaced with a single mean value µ0, as shown

in (C.3).

y(x) = µ0 + Z(x) (C.3)

While a large body of work has shown the ordinary Kriging is sufficient for the

majority of applications, one will note that the replacement of a regression function

with a simple mean value does significantly reduce the flexibility of the Kriging model,

placing a much higher importance on the tuning of the stochastic function, which

makes up the bulk of the derivation provided below. To alleviate this, one promising

alternative has been suggested. Known as blind Kriging (Couckuyt et al., 2012;

Joseph et al., 2008), this methodology uses Bayesian forward selection to select the

best regression function for any given constitutive model. In this way, the necessity of

selecting appropriate regression functions is removed, reducing the critically of fitting

an accurate stochastic portion of the model. While some work was undertaken to

implement a blind Kriging model into Mike, this work was abandon due to time

constraints, although early testing showed promising results.

To construct a Kriging surrogate, the parent function must be evaluated using an

initial sampling plan to gather determine enough information to build the surrogate.

For a high-quality surrogate, the sampling plan should be random and uncorrelated,

with x(i) and y(i) representing the i-th sampling point and value at that point, respec-

tively. However, because we assume the underlying system to be random or stochastic

in nature, each evaluation at a given sampling point is also random. Each evaluation

is also a stochastic process and are represented by Y (x(i)). This creates the vector

of stochastic processes Y = (Y (x(1)), . . . , Y (x(n))T. This vector has a mean value of

1µ, where 1 is a n× 1 unity vector.

From this field of stochastic processes, one can determine the statistical correlation

between any two sampling points in the field. In keeping with the assumption of a

stochastic system with normally distributed noise, we can say the two points become

more correlated as the distance between them, ||x(i) − x(j)||, decreases. While many

correlation metrics exist, the Kriging model used in this work computes correlation

using (C.4), where k is the number of dimensions or design variables in the problem,

and θ and p are correlation parameters. These correlation parameters are discussed

in detailed later in this derivation.
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Figure C.2: The effect of θ and p on correlation between sampling points.

Corr
[

Y (x(i)), Y (x(j))
]

= exp

(

−
k
∑

l=1

θl |x(i)l − x
(j)
l |pl

)

(C.4)

Individual correlations are then assembled into an n × n correlation matrix Ψ, as

shown in (C.5). Ψ is the most important variable in the development of Kriging

models as it contains the correlation between every sampling point. The correlation

matrix is used in all aspects of the Kriging model, from prediction to infilling.

Ψ =

⎡

⎢

⎢

⎣

Corr
[

Y (x(1)), Y (x(1))
]

. . . Corr
[

Y (x(1)), Y (x(n))
]

...
. . .

...

Corr
[

Y (x(n)), Y (x(1))
]

. . . Corr
[

Y (x(n)), Y (x(n))
]

⎤

⎥

⎥

⎦

(C.5)

Directing one’s attention back to (C.4), one will note two sets of parameters θ and

p which adjust the correlation between each sampling point for each design variable.

The correlation parameter θ is a Gaussian width parameter which serves to model

the influence or “activity” of each design variable. Design variables with a high

θ or influence imply that sampling points far from where an interpolation is being

made will have a large impact on the interpolated value. Conversely, design variables

with a low influence and small θ mean that only sampling points close to the point

of interpolation will affect the interpolated value. This is depicted graphically in

Figure C.2a.
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The correlation parameter p serves to alter the smoothness of the correlation function

between sampling points for a particular design variable, as shown in Figure C.2b. As

p approaches 0, the correlation between two points becomes sharp and discontinuous

while as p approaches 2, the correlation becomes smooth. As shown by Sacks et al.

(1989), when p = 2 the correlation function is infinitely differentiable, which sets the

bounds of p to be between zero and two. Altering p aids in the modeling of design

variables whose responses may not be smooth in nature.

Selection of appropriate values for each design variable’s θ and p are critical to the

accuracy of the Kriging model. However, there is no analytic method of determining

these parameters as they are a function of not only the parent function being approxi-

mated but also how the parent function was sampled. As such, correlation parameters

are determined numerically through the use of optimization techniques.

As noted in Section 2.4, an objective function is required in order to perform op-

timization. The objective function used to determine correlation parameters takes

advantage of our assumption that the process is stochastic. A stochastic process

implies that the errors, ϵ, in the system are independent and normally distributed.

This further implies the error in the system is associated with the evaluated sampling

point, specifically {(x(1), y(1) ± ϵ), . . . , (x(n), y(n) ± ϵ)}. Using this assumption, we

can determine the probability of the whole dataset, as seen in (C.6) where σ is the

standard deviation of the system.

P =
1

(2πσ2)(n/2)

n
∏

i=1

{

exp

[

−1

2

(

y(i) − f(x)

σ

)2
]

ϵ

}

(C.6)

The underlying assumptions of stochastic processes and probability inherent in Krig-

ing models raise some interesting implications. First, it implies that the Kriging

model perfectly replicates the parent system and the only source of error ϵ is due

to the evaluation of the sampling points, y. However, as surrogate models rely on

deterministic models, we know there is no error in the evaluation of y and that any

error in the surrogate must be due to the surrogate itself. Regardless, we can still

use the probability of the system, expressed instead as the likelihood L, as seen in

(C.7), which now contains the field of stochastic processes Y , as well as the mean µ

and standard deviation σ of the system.

L =
1

(2πσ2)(n/2)
exp

[

−1

2

(∑

(Y (i) − µ)2

σ2

)]

(C.7)
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(C.7) is a difficult function to evaluate directly as Y is not known. As such, likelihood

is often expressed as a function of the sampled data points y and the correlation

matrix Ψ, as seen in (C.8).

L =
1

(2πσ2)(n/2)|Ψ|1/2 exp
[

−(y − 1µ)TΨ−1(y − 1µ)

2σ2

]

(C.8)

Common practice is to take the natural logarithm of likelihood to remove the ex-

ponential from the function, as shown in (C.9). This makes analytic differentiation

simpler, but also makes the function more amenable to numeric optimization, as a

logarithmic solution space is easier to search than an exponential one.

ln(L) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2
ln |Ψ| − (y − 1µ)TΨ−1(y − 1µ)

2σ2
(C.9)

Taking the analytic derivative of (C.9) and setting it to zero, we can obtain what is

known as maximum likelihood estimates of µ and σ2, given by (C.10) and (C.11).

µ̂ =
1TΨ−1y

1TΨ−11
(C.10)

σ̂2 =
(y − 1µ)TΨ−1(y − 1µ)

n
(C.11)

Substituting these estimates back into (C.9) and removing constant terms yields what

is known as the concentrated logarithmic likelihood function, given by (C.12).

ln(L) ≈ −n
2
ln(σ̂2)− 1

2
ln |Ψ| (C.12)

The value of the concentrated logarithmic likelihood function depends solely on Ψ,

which in turn depends only on θ and p as shown in (C.4) and (C.5). As such, we

can now execute an optimization algorithm to maximize (C.12) and generate the

optimal set of parameters for θ and p. Because (C.12) is both cheap to evaluate and

multimodal, optimization is generally conducted using a global search method, with

simulated annealing (Sacks et al., 1989) and genetic algorithms (Forrester et al., 2008;

Sóbester et al., 2005) being used in the literature.

The process of determining optimal θ and p parameters is also referred to as train-

ing; a term borrowed from the field of artificial neural networks. Training of artifi-
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cial neural networks is the process of optimizing model parameters with the goal of

minimizing the error of the neural network with respect to the input data. While

developed independently, the Kriging model can be thought of as a specialized form

of artificial neural network in many respects, making the term training appropriate

for this work.

While optimum correlation parameters are necessary to produce an accurate Kriging

surrogate, it is not yet readily apparent how one extracts the value of the surrogate at

any given point in the solution space, which will be denoted as ŷ(x). To do this, we

recall the Kriging model was derived from the correlation between sampling points,

for which we have just determined optimal parameters for. Therefore, we must also

use correlation to when predicting from the surrogate. Further, we assume that any

prediction being made is consistent with the optimal correlation parameters already

determined. As such, a bias vector ψ can be created for any arbitrary location x,

composed of the correlation between point x and all other sampling points in the

model. This bias vector is given by (C.13) and is used use augment the existing

correlation matrix to form the aptly named augmented correlation matrix Ψ̃, which

contains all sampling points and the arbitrary point. The augmented correlation

matrix is given by the partitioned matrix shown in (C.14).

ψ =

⎛

⎜

⎜

⎝

Corr[Y (x(1), Y (x)]
...

Corr[Y (x(n), Y (x)]

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

ψ(1)

...

ψ(n)

⎞

⎟

⎟

⎠

(C.13)

Ψ̃ =

(

Ψ ψ

ψT 1

)

(C.14)

The augmented correlation matrix is then used to determine a new concentrated

logarithmic likelihood shown in (C.15). However, as correlation parameters have

already been determined, the only unknown value in ln(L) is ŷ, the interpolated value

at any arbitrary location x calculated using maximum likelihood estimates.

ln(L) ≈ −

(

y − 1µ̂

ŷ − µ̂

)T(

Ψ ψ

ψT 1

)−1(

y − 1µ̂

ŷ − µ̂

)

2σ̂2
(C.15)
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The interpolated value ŷ can be determined by analytically maximizing (C.15). How-

ever, to accomplish this, the inverse of Ψ̃ needs to be calculated. Using the method

of Theil (Theil, 1983), the inverse of the partitioned matrix is given by (C.16). For

the details of this calculation, please refer to Forrester et al. (2008).

Ψ̃−1 =

(

Ψ−1 +Ψ−1ψ(1−ψTΨ−1ψ)−1ψTΨ−1 −Ψ−1ψ(1−ψTΨ−1ψ)−1

−(1−ψTΨ−1ψ)−1ψTΨ−1 (1−ψTΨ−1ψ)−1

)

(C.16)

Inserting (C.16) into (C.15) and neglecting terms without ŷ gives (C.17), which is a

quadratic function dependant on (ŷ− µ̂). This quadratic can be maximized by taking

the derivative of (C.17) and setting equal to zero as shown (C.18).

ln(L) ≈
(

− 1

2σ̂2(1−ψTΨ−1ψ)

)

(ŷ − µ̂)2 +

(

ψTΨ−1(y − 1µ̂)

σ̂2(1−ψTΨ−1ψ

)

(ŷ − µ̂) (C.17)

d(ln(L))

d(ŷ − µ̂)
= 0 =

(

− 1

σ̂2(1−ψTΨ−1ψ)

)

(ŷ − µ̂) +

(

ψTΨ−1(y − 1µ̂)

σ̂2(1−ψTΨ−1ψ

)

(C.18)

Solving (C.18) for ŷ yields (C.19), which produces the value of the Kriging model at

any arbitrary point in the solution space. As (C.19) is closed form and a function of

already calculated parameters µ andΨ, it is computationally inexpensive to calculate.

As such, one can use this equation for prediction, visualization, and optimization of

the Kriging model.

ŷ(x) = µ̂+ ψTΨ−1(y − 1µ̂) (C.19)

Recalling the form of the ordinary Kriging model given in (C.3), one can see how

the predictor relates back to that form. The regression component is the maximum

likelihood estimate of the mean, µ̂. Instead of using the actual mean of the dataset,

the mean is value is allowed to be tuned to provide the best fit, although the value

does tend to the actual mean. The stochastic portion of the Kriging predictor is given

by ψTΨ−1(y− 1µ̂), where the correlation parameters θ and p as well as all sampling

points and the point of interest are found in ψ and Ψ.
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C.2.2 Predictive Infilling

The Kriging model relies on sampled data points to tune correlation parameters and

make predictions. As previously noted, an uncorrelated, space-filling sampling plan

is required to allow the surrogate to make accurate predictions of the parent function.

However, even with the best sampling plan, there may be areas of the parent function’s

solution space where the surrogate simply cannot make accurate predictions due to a

lack of information. The simplest method to improve the accuracy of the surrogate

is to add more sampling points, a process known as infilling. However, if the parent

function is expensive, it is important to only evaluate the parent function at a location

we know will improve the surrogate. Fortunately, the statistical nature of the Kriging

model allows us to predict the best location of an infill point based solely on the

Kriging model itself.

Because the Kriging model is a stochastic process which uses a Gaussian correlation

function, one can calculate the estimated error in the overall process. As discussed

previously, we know that the only error in the system has to be a result of the Kriging

model itself, not uncertainties in the computer experiment. As such, we can compute

the mean square error (MSE), ŝ, of the model at any point, as in (C.20) using only

the Kriging surrogate.

ŝ2(x) = σ2

(

1−ψTΨ−1ψ +
1− 1TΨ−1ψ

1TΨ−11

)

(C.20)

The use of MSE has several useful properties for infilling. First, ŝ2 drops to zero at

each of the sampled locations, which prevents infilling points being placed at existing

sampling points. Second, MSE is highly influenced by the location of the existing

sampling points, indicating that MSE increases as the distance between sampling

points also increases. As such, MSE is generally maximized at the largest gap between

sampling points. Because the MSE criteria, and all infilling criteria which will be

introduced, are reduced to zero at a sampling point, the solution landscape is highly

multimodal. As a result, a global search algorithm such as a genetic algorithm or

particle swarm optimizer is required to determine the optimal infill location.

MSE is a useful criterion if one is interested simply filling gaps in the initial sampling

plan. This results in a more globally accurate model, but it may not improve the

surrogate’s ability to predict the parent’s optimum values. If optimization is the goal

of the surrogate, we want to place our infill points at a location which improves the
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estimate of the parent function’s global optimum, a process which is referred to as

exploitation. To do this, we can harness the statistical nature of Kriging models.

One potential infill strategy is to look at the probability that a new point will improve

the estimate of the Kriging model. To do this, we consider our point of interest

ŷ(x) to be the realization of a stochastic process Y (x). We can then compute the

probability of improving the Kriging model where improvement is defined as I =

ymin − Y (x), where ymin is the sampling point with the most optimal value, as given

by (C.21).

P [I(x)] =
1

ŝ
√
2π

∫ 0

− inf

e−
(I−ŷ(x))2

2ŝ2 (C.21)

This criterion is known as probability of improvement and can be expressed in a

closed form manner by evaluating the integral using the error function, resulting

in(C.22), where erf(·) is the error function. While (C.22) is equivalent to (C.21),

its closed form nature greatly simplifies its use, particularly for when implimented

computationally.

P [I(x)] =
1

2

[

1 + erf

(

ymin − ŷ(x)

ŝ
√
2

)]

(C.22)

The advantages of probability of improvement over MSE come from its use of in-

formation in the Kriging model itself, such as standard deviation and best sampling

point. Instead of targeting areas of the surrogate which have widely spaced sampling

points, probability of improvement primarily targets areas of the surrogate which are

predicted to be less than the lowest sampling point. By placing an infill point in

the lowest area of the surrogate, this infill criterion should improve the surrogate’s

prediction of the parent’s optimium.

While probability of improvement is a dramatic improvement over MSE for exploita-

tion of the surrogate, it can still be improved. The key drawback of probability of

improvement is that it does not provide any indication how great an improvement

the addition of an infill point will have. This property is desirable as it ensures the

infill point will have the greatest overall improvement in the surrogate’s predictive

accuracy. This is accomplished with the expected improvement criterion given by

(C.23), where Φ(·) is the cumulative distribution function and ϕ(·) is the probability

density function.
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E[I(x)] =

⎧

⎨

⎩

(ymin − ŷ(x))Φ
(

ymin−ŷ(x)
ŝ(x)

)

+ ŝϕ
(

ymin−ŷ(x)
ŝ(x)

)

if ŝ > 0

0 if ŝ = 0
(C.23)

The advantages of expected improvement are described well by Schonlau (1997) and

Sóbester et al. (2005). The first term in (C.23) is maximized when the surrogate pre-

dicts a value less than the lowest sampling point, like the probability of improvement

criterion. Further, this term also increases when the difference between the lowest

sampling point and an arbitrary point in the surrogate increases. The second term

increases as the distance between existing sampling points increases, which would

result in a greater uncertainty of the surrogate’s accuracy. As a result, expected im-

provement harness the best parts of MSE and probability of improvement, as it is

maximized in areas where the surrogate predicts a value less than the best sampling

point and/or in areas of greatest uncertainty in the surrogate’s accuracy. This combi-

nation allows the expected improvement criterion to be a more effective and efficient

infilling algorithm for exploitation.

For the purposes of infilling, expected improvement can be expressed in the closed

form equation given by (C.24).

E[I(x)] =
(ymin − ŷ(x))

2

[

1 + erf

(

ymin − ŷ(x)

ŝ
√
2

)]

+ŝ
1√
2π

exp

(

−(ymin − ŷ(x))2

2ŝ2

) (C.24)

Regardless of the criterion selected, the process of infilling is as follows. First, an

initial Kriging model is trained using an sampling plan. After initial training of the

Kriging model, the solution space is searched with a global search algorithm with

one of the infill criteria detailed above as the objective function to determine the

location where the criterion is optimized. The parent function is then evaluated at

this optimal location and the Kriging model is retrained with the infill location and

evaluated parent function value appended to existing sampled data. This process

continues until either the desired number of infill points is reached or some other

form of termination criteria, such as the numeric value of the infill criterion.

While the process of infilling seems computationally expensive, one must remember

that the parent function is only being evaluated once per infill point. The remainder
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of the time the Kriging model is searching itself, which is cheap to evaluate compared

to the parent function. As such, the infilling and retraining steps generally take a

fraction of the time required to evaluate the parent function. Further, because of

the expense associated with evaluating the parent function, there is an advantage to

spending the additional cost on the Kriging model to ensure every evaluation makes

a meaningful contribution.

C.2.3 Implementation

While Sections C.2.1 and C.2.2 detail the development of the Kriging model from a

purely mathematical perspective, this section provides details about the implemen-

tation of Mike. As the name implies, Mike is implemented in Matlab for several

reasons. Primarily, Matlab already serves as a base for Compcam and Specs,

which allows for straightforward integration and sharing of data. Secondly, Matlab

is a widely available and easy to use numerical computing package, despite being a

proprietary, commercial product. Finally, the large library of professionally developed

and documented algorithms for optimization and matrix algebra was highly attractive

as a means to reduce development time.

To develop an initial sampling plan, Morris-Mitchell sampling was used (Morris and

Mitchell, 1995). This sampling methodology uses an evolutionary computing tech-

nique suggested by Forrester et al. (2008) to develop sampling plans which have very

good spacing-filling properties. While some of the default sampling methods included

with Matlab were investigated, Morris-Mitchell sampling proved to provide much

better results. This sampling technique was modified for this work to accommodate

the use of linear inequality constraints, which many sampling algorithms cannot ac-

commodate. This modification consisted of making multiple, independent sampling

plans and removing invalid points from each. Points from each culled plan were com-

bined until the desired number of sampling points were achieved. While this does not

have the same robust space filling nature as unconstrained Morris-Mitchell sampling,

the combination of two or more random, independent, should have similar space filling

properties. However, the actual effect of this method is unknown, due in large part

due to the lack of techniques available for quantification of space fillingness under

linear inequality constraints.

Mike is developed using object-oriented (OO) coding to allow it to be a self-contained

tool. Because a Kriging model continually calls on pieces of information inherent to a
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specific Kriging model such as sampling points, evaluated data and the like, OO cod-

ing makes it easy to manage all this information in one place. OO coding allowsMike

to be called by any other package in Matlab without external dependencies.

While OO coding is very efficient in languages such as C++ and Python, there are

downsides using OO in Matlab. Because Matlab is not inherently object-oriented,

there is computational overhead when calling a method, both internal and external to

the object itself. Through initial development work, it was determined this overhead

resulted in a 150% to 200% runtime penalty. Notwithstanding this penalty, OO code

was still selected due to its versatility. To mitigate the penalty associated with OO

coding, several methods were used to increase the computational efficiency of Mike.

These methods and improvements are discussed in the following paragraphs.

It is important to note that expense associated with training and making predictions

from a Kriging model increase as the number of sampling points also increase. This

is because each sampling point adds an additional row and column to the correlation

matrix Ψ. As such, it benefits us to ensure the methods we use to deal with our linear

algebra are as efficient as possible. For example, instead of calculating all matrix

entries, the symmetric nature of Ψ is exploited. Only the upper triangular portion

of the matrix is computed, with the second half being filled in by simply flipping

the matrix about the diagonal. This reduces the number of required calculations to

construct Ψ by over half.

Another computational improvement associated with Ψ is the computation of its

inverse. Because inverting a matrix is an expensive proposition and because the

matrix must be repeatedly inverted during training, an alternative method is ap-

plied. As suggested by Forrester et al. (2008), Cholesky decomposition is used. The

correlation matrix is decomposed into an upper triangular matrix through the use

of Cholesky decomposition. Then, forward and backward substitution is applied to

generate the pseudo-inverse. By replacing the computationally expensive process of

directly inverting Ψ with cheap, easy to compute matrix substitutions, there is a

decided computational saving, even with the optimized mathematics libraries used

by Matlab.

A final technique associated withΨ and the bias vector ψ takes advantage ofMatlab

applications to optimize specific portions of Matlab code. Take for instance the

creation of Ψ, which requires three nested loops; two loops to create the matrix

and the third to perform the summation. Dynamically compiled languages such as
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Matlab and Python all suffer inherent and sometimes significant computational

penalties compared to statically compiled languages like C++ and Fortran. Given

the three nested loop and that these loops are called repeatedly in a global search

algorithm, the runtime penalty is significantly compounded.

To alleviate this penalty, calculation of Ψ and ψ was accomplished using a statically

compiled function created using the Matlab Coder. This tool allows a user to

convert Matlab scripts into statically compiled functions written in C or C++.

These statically compiled functions, which Matlab refers to as MEX functions, can

be called in Matlab just like any other function. While it does not make sense from

a development standpoint to convert the entirety of Mike to compiled scripts, as

that defeats the point of using a dynamically compiled language such as Matlab

and hinders future modifications, components which were called repeatedly, such as

Ψ and ψ, were compiled. The conversation of Ψ to a statically compiled function

resulted in a 6.5 times improvement in runtime, while the conversation of ψ resulted

in a 2.5 times improvement. Overall, the compilation of select components of Mike

resulted in an overall speed improvement of 7.5 to 9 times.

Both training and infilling of Kriging models require the use of global search algo-

rithms. In an effort to improve efficiency, two algorithms were investigated: a genetic

algorithm and a PSO. Both algorithms were included as part of Matlab’s opti-

mization capability (MathWorks Inc., 2017b,c). Through testing, it was found that

Matlab’s PSO converged to optimal correlation parameters and infill locations with

fewer evaluations than the genetic. As such, all training in Mike uses the PSO.

However, both algorithms are used for infilling depending on the constraints of the

problem. The PSO implemented in Matlab is unable to accommodate linear in-

equality constraints. As such, for problems with linear inequalities, the genetic was

used, despite the minor increase in cost.

As noted in Section 2.4, while global search algorithms are good at approaching the

global minima, they do have some difficulty in finding the exact location and value of

that minima. Further, some literature suggests (Forrester et al., 2007; Jones, 2001)

the Kriging surrogate is sensitive to small variations in the correlation parameters

from their optimal values. As such, a hybrid optimization scheme was used, which

couples a global search method to a local optimization algorithm. Once the global

search algorithm locates the approximate location of the global minima, the local

optimization algorithm (specifically ‘fmincon’ in this case) exploits gradient informa-

tion to determine the best set of parameters. While this methodology does increase
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computational expense somewhat, it does result in better correlation parameters and

estimates of infill location.

Despite the dynamically compiled nature of Matlab and the OO programming used

throughout, Mike executes training, infilling and prediction of Kriging models in a

satisfactory length of time. As will be shown in the next section, even with the tech-

niques used here to improve runtime, these techniques do not effect Mike’s accuracy

as a surrogate modeling tool and EGO.

C.2.4 Validation

With any custom built tool, validation of performance against known standards is

critical. In the case of optimization tools such as the Kriging model, analytic func-

tions are used as a benchmark as they have a known global optimum and evaluate

rapidly. In this work, two analytic functions, the two-dimensional Branin function

and the three-dimensional Hartmann-3 function were used to check Mike’s perfor-

mance. These two functions were selection as both are multi-modal and were selected

based on work by Schonlau (1997) and Forrester et al. (2008).

Validation against analytic functions also provides the means to experiment with the

options available to Mike, such as the total number of sampled points used to build

the surrogate model and the ratio of initial to infill points. While there are suggestions

in the literature for these parameters, there is significant variation in what researchers

consider to be best. This section orovides clarification for more costly optimization

in later chapters.

C.2.4.1 Branin Function

The Branin function is a two-dimensional analytic function. The original Branin

function has three identical minima. However, a modified version suggested by For-

rester et al. (2008) was used in this work, which added a small linear term to force the

problem to have one global minimum and two local minima. This altered form, given

by (C.25) makes the Branin function more representative of real-world engineering

problems and a more challenging optimization benchmark.
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Figure C.3: Contour plot of the modified Branin function scaled onto [0, 1]2. Red dot
marks the global minimum

y(x1, x2) =

[

x2 −
(

5.1

4π2

)

x21 +
5

π
x1 − 6

]2

+10

[(

1− 1

8π

)

cos(x1) + 1

]

+5x1 (C.25)

The Branin function is evaluated on x1 ∈ [−5, 10] and x2 ∈ [0, 15] but was scaled to

the [0, 1]2 hypercube. The global minimum of the modified Branin function is 1.0116

at [0.12158, 0.82391] in the scaled hypercube. A contour plot of the Branin function

with the global minima highlighted is seen in Figure C.3.

Two investigations were undertaken with Mike. The first looked at the accuracy of

a surrogate model built with only an initial sampling plan. Based on the literature,

which suggests between 10 and 20 times the number of design variables (denoted

by k) (Jones, 2001; Simpson et al., 2001; Sóbester et al., 2005), three trials were

undertaken with 10k, 15k and 20k sampling points. After sampling and training of

the Kriging model, the same hybrid global optimization scheme used to determine

optimal correlation parameters and infill locations discussed in Section C.2.3 was used

to determine the global minima of the surrogate model. The results of this can be

seen in Table C.1.
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Table C.1: Optimal Kriging predictions built using an initial sampling plan only.

No. Sampling
Points

Global Minimum
Location

Global Minimum
Value

True Function [0.12158, 0.82391] 1.0116
10k = 20 [0.1429, 0.7987] -1.0949
15k = 30 [0.1220, 0.8236] 1.1545
20k = 40 [0.1216, 0.8329] 1.0703

(a) Actual Branin Function (b) Kriging surrogate train with 10k sam-
pling points

Figure C.4: A comparison of the actual Branin function and a Kriging surrogate
trained with 20 sampling points (black dots).

The results in Table C.1 show conclusively that as the number of sampling points

increases, the surrogate model’s predictive accuracy also increases. However, it is im-

portant to note that even at the fewest number of sampling points, 10k, the surrogate

predicts the location of the Branin function’s global minima with reasonable accuracy.

It does, however, struggle to predict the value of the parent at that location. The

Kriging model built with 10k sampling points is compared with the analytic Branin

function in Figure C.4. It is clear that while the surrogate may struggle to predict

the exact value at a given point, it does predict the overall landscape quite well.

The second investigation looked at the exploitation of the surrogate as well as the

optimal number of sampling points and the ratio of initial points to infill points. A

good ratio of infilling to initial points is important because the two sets of points

serve different purposes. The initial sampling plan develops a general prediction of

the parent function while the infill points refine the surrogate in specific areas of
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interest. Insufficient initial points makes exploitation difficult and inefficient as the

surrogate lacks sufficient knowledge of the parent to make accurate infill predictions.

Conversely, overuse of infilling results results in diminishing returns in the surrogate’s

predictive accuracy of the parent’s minima. While literature makes reference to using

infilling to dramatically improve the global accuracy of the surrogate model, but few

sources recommend ideal ratios (Forrester et al., 2008; Sóbester et al., 2005).

All infilling in this research made use of the expected improvement criterion. As with

stage one, a hybrid global optimization scheme was used to determine the minimum of

each Kriging surrogate. Table C.2 documents the trials conducted to determine both

optimal infill ratio as well as the total number of sampling points. As expected, even

the model generated with the fewest total sampling points was able to predict the

location of the global minimum quite accurately, with the error dropping to almost

nil as the number of points increased. Further, all surrogates were able to predict the

global optimum better and cheaper than using pure exploration.

Table C.2: The effects of varying the number of sampling points and initial to infill
ratio.

Total
Points

No.
Initial
Points

No. Infill
Points Global Minimum Location

Global
Minimum

Value

True Function [0.1216, 0.8239] 1.0116
20 10 10 [0.1257, 0.7789] 1.2070
25 10 15 [0.1238, 0.8112] 1.1495
25 15 10 [0.1216, 0.8243] 1.0140
30 10 20 [0.1214, 0.8243] 1.0115
30 13 17 [0.1207, 0.8220] 1.0022
30 15 15 [0.1218, 0.8240] 1.0116
30 17 13 [0.1215, 0.8229] 1.0050
30 20 10 [0.1215, 0.8243] 1.0101
35 20 15 [0.1215, 0.8244] 1.0096

As noted in Section C.2.3, a global search algorithm is required when predicting

optimal infill location. This is exemplified in Figure C.5, which provides a contour

plot of expected improvement values for a Kriging model trained with 20 sampling

points. Not only does this show the multimodal nature of the expected improvement

solution space, but comparing this plot with Figure C.3, one will note that three

basins of highest expected improvement appear at the minima of the actual Branin

function.
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Figure C.5: Contour plot of expected improvement of a surrogate of the Branin
function with 20 points. Basins represent areas of highest expected improvement
(negated for optimization).

While Figure C.5 shows the landscape for 20 sampling points, it is important to

note that the landscape changes with every additional infill point. As such, the

location of maximum expected improvement will shift at every iteration. This is

shown by Figure C.6, which shows a surrogate with an initial to infill ratio of 15:15.

The boxed dots indicate those which are placed by exploitation. One will note that

while infill points do cluster around the global minimum, exploitation using expected

improvement will place infill points in around other areas of interest as well.

While it is impossible to draw conclusions based on the results of one test function, the

results of the investigation into the Branin function indicate that infilling is essential

to generating an accurate surrogate model for use in optimization. Further, these

results seem to indicate that 30 sampling points were sufficient to develop such a

model, implying an optimal number of sampling points of 15 times the number of

design variables. While it is challenging to determine the best ratio at this point,

it appears that surrogates which favour more infilling points than sampling points

produce better accuracy, which supports claims by Forrester et al. (2008) and Sóbester

et al. (2005). Top contenders at this point are 15:15, 13:17, and 20:10, which reduce

to ratios of 1:1, approximately 1:1.618, and 3:2 respectively.
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Figure C.6: A Kriging surrogate of the Branin function generated using exploitation.
Boxed dots represent those added through infilling.

C.2.4.2 Hartmann-3 Problem

The Hartmann-3 function, given by (C.26) is a three-dimensional function evaluated

on [0, 1]3 with three local minima and a single global minimum of -3.86276 at [0.11461,

0.55565, 0.85255]. A three-dimensional isosurface plot of the Hartmann-3 function is

given by Figure C.7. One will note that the Hartmann-3 function is rather deceptive

in the x1 direction, as there is little change along that axis. This shallow gradient

makes this function a challenging benchmark for optimization.

f(x) = −
4
∑

i=1

αi exp

(

−
3
∑

j=1

Aij(xj − Pij)
2

)

(C.26)
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Figure C.7: Isosurface plot of the Hartmann-3 function

As with the Branin function, a series of surrogates were created using only initial

sampling plans of 10k, 15k and 20k. The global minima of these surrogates are

detailed in Table C.3. Unlike the Branin function, the Kriging surrogates generated

with Mike struggle to accurately predict the global minimum of the Hartmann-3
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Table C.3: Optimal Kriging predictions built using an initial sampling plan only.

No. Sampling
Points Global Minimum Location

Global Min
Value

True Function [0.1146, 0.5557, 0.8526] -3.8628
10k = 30 [0.5851, 0.4954, 0.8535] -3.2977
10k = 45 [0.5443, 0.5309, 0.8389] -3.6500
10k = 60 [0.1439, 0.5567, 0.8501] -3.8551

Table C.4: Results of varying initial sampling points and infill points on surrogate
model accuracy

No.
Initial
Points

No. Infill
Points

Total
Points Global Minimum Location

Global
Minimum

Value

True Function [0.1146, 0.5557, 0.8526] -3.8628
30 15 15 [0.0, 0.5557, 0.8539] -3.8552
37 15 22 [0.1768, 0.5536, 0.8552] -3.8727
37 22 15 [0.0, 0.5558, 0.8531] -3.8549
45 15 30 [0.1121, 0.5546, 0.8531] -3.8627
45 17 28 [0.1118, 0.5559, 0.8533] -3.8628
45 22 23 [0.1115, 0.5551, 0.8531] -3.8627
45 28 17 [0.1366, 0.5519, 0.8521] -3.8622
45 30 15 [0.1155, 0.5559, 0.8526] -3.8628
52 30 22 [0.1152, 0.5558, 0.8526] -3.8628

function from only an initial sampling plan due to the lack of activity along the x1

axis. While the all surrogates converge to the proper location of the global minimum

along the x2 and x3 axes, it is only with 60 sampling points does the Kriging surrogate

properly predict the minimum location along x1.

Table C.4 documents a series of trials which alter the number of sampling points and

initial to infill ratio. The number of points and ratios are the same as those used

in Section C.2.4.1 when scaled to the increased number of input variables. As with

the exploratory surrogates built with only a sampling plan, these surrogates which

exploit infilling also struggle to accurately predict the optimal value of x1. Although,

the use of exploitation does produce more accurate surrogate models than surrogates

generated from solely initial sampling plans.

Despite the challenge the Hartmann-3 function represents, the results of the Hartmann-

3 function in concert with those of the Branin function indicate that 15k sampling
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points is sufficient for an accurate surrogate model. However, further investigation

is needed to determine the best ratio of initial to infill points. While work with the

Branin function indicate that more infill than initial points produce a better surro-

gate, it has just been shown that surrogates modeling the Hartmann-3 function seem

to perform better with a larger number of sampling points.
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C.3 MIKE-COMPCAM Integration

In Section C.2.4, the effectiveness of Mike as a surrogate model tool was tested

against analytic benchmarks. While Mike performed well, there is a large divide

between analytic test functions and black-box FE models with the objective func-

tions used by Compcam. For example, there is no analytic solution for the best

parameters to a constitutive model. As such, two trials were carried out using Mike

to determine optimal parameters the Swift hardening law to aluminum 2024-T351.

In this set of trials, Mike used the identical objective function used for direct opti-

mization in Chapter 5. However, unlike the five parameter problem solved by direct

optimization, these two trials had their dimensionality reduced to two and three free

parameters each. This makes the investigation quicker to carry out, but also allows

one to visualize the output of Mike, something that would be impossible in five

dimensions.

Please note that this investigation was undertaken using material data collected by

Felling and Doman (2018). As noted in Section 5.1.3, there was a marked difference

in material behavior between the batches of aluminum 2024-t351 used by Felling and

Doman and the batch used for this work. To that end, there will be discrepancies in

the final fitted parameters listed throughout this section and those tabulated in the

main body of this thesis.

C.3.1 Two Parameter Trial

In this trial, Mike was used to determine optimal parameters for the Swift hardening

parametersK and n, with all other parameters being held fixed. As bounds are explic-

itly needed to generate a Kriging surrogate of any kind, the parameter K was given

the bounds [650, 950] MPA while n was given the bounds [0.1, 0.3]. The remaining

parameters, Young’s modulus, Poisson’s ratio, initial yield stress, and friction, were

held constant at 72 GPA, 0.29, 275 MPa, and 0.18, respectively.

As there is no analytic solution to this problem, Compcam with direct optimization

was executed to determine optimal parameters. To ensure a global optimum was

found, Compcam was executed three times with different initial conditions. The

results of these three trials are shown in Table C.5. While there was some variation

in final parameters, the locations and values of the optima found were tightly grouped.
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The best set of parameters was found to be [K,n] = [812.5 MPa, 0.1690] and an R2

score of 0.99766.

As with the investigations into the two analytic test functions, a Kriging surrogate

was created from three sampling plans of 10k, 15k and 20k points and searched with

a hybrid global search algorithm. The results of which are given in Table C.6 with a

contour plot of the [K,n] solution space generated from the Kriging model with 20k

sampling points is given in Figure C.8. In addition to providing the minimum location

and value of the surrogate, Table C.6 also provides the fit score of the surrogate’s

minimum evaluated directly from the objective function for comparison.

As demonstrated with the analytic benchmarks, the surrogate generated using only

an initial sampling plan does a good job estimating global minimum location and

value. However, it is important to note the value of the surrogate at it’s minimum

location does not completely correspond with the real objective function. This is to

be expected, however, as the Kriging model is predicting based on a small number of

sampling points. In fact, given the reasonably small number of sampling points used,

Mike provides good performance, as little variation in actual fit score can be seen

between the predicted minima and the actual minimum. Further, from a constitutive

modeling prospective, all three parameter sets are approximately equal in terms of

overall quality.

Table C.5: Results of Compcam trials to determine optimal parameters.

Trial
Optimal Parameters

[K,n] Objective Value No. Evaluations

1 [811.4 MPa, 0.1685] 0.99764 39
2 [812.5 MPa, 0.1690] 0.99766 62
3 [813.3 MPa, 0.1700] 0.99765 44

Table C.6: Optimal parameters determined from the surrogate model applying ex-
ploration.

No. Sampling
Points

Surrogate Minimum Location
[K,n]

Surrogate
Value

Actual
Value

Direct Optim. [812.5 MPa, 0.1690] 0.99766 -
10k = 20 [813.5 MPa, 0.1698] 0.99763 0.99766
15k = 30 [817.7 MPa, 0.1733] 0.99755 0.99761
20k = 40 [817.1 MPa, 0.1721] 0.99755 0.99763
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When one compares the number of function evaluations required by Compcam to

the number of sampling points required by Mike, they will note that there is not

a significant advantage to generating a surrogate model. This may be due to the

reasonably simplistic topology of the problem, as discussed below. However, Mike

was still able to generate a surrogate which predicts the optimal set of parameters

with fewer evaluations of the FE model required to execute Compcam directly.

The landscape of the [K,n] solution space shown in Figure C.8 reveals some interesting

results. Primarily, the contour plot shows a long, shallow valley which runs on a

diagonal between K and n. This makes sense mathematically, as the one would

expect there to be many similarly good pairs of K and n given the formulation of

the material model. But this contour plot also shows the power of building cheap

surrogate models. This contour plot required approximately 1000 function evaluations

to generate, which would be computationally prohibitive using Compcam. However,

using the surrogate model generated with Mike, the large number of evaluations took

Figure C.8: Contour plot examining the variation of fit score with K and n, with
small scores indicating a better fit. Generated using 40 sampling points.
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only a couple of seconds to complete and provided a graphic depiction of material

model fit which provides interesting insight into the constitutive model’s fit.

Stage two lookd at the effect of infilling, or exploitation, to improve estimates of

optimal parameters. Instead of running the full gamut of ratios as with the analytic

test functions, only the most promising ratios and with a total number of evaluations

less than or equal to 15k or 30 sampling points were used. The results of this stage

can be found in Table C.7. Figure C.9 displays a contour plot of the surrogate model

generated with 1.618:1 infill ratio with sampling and infilled points overlaid.

While a Kriging surrogate trained with only a sampling plan performed admirably,

infilling produced better predictions of optimal parameter with fewer evaluations than

a surrogate generated from solely infilling. Further, the optimal parameters predicted

by each surrogate showed less variation than both direct optimization of the problem

and the analytic test functions shown in Section C.2.4. This is especially apparent

by observing the minimal variance between the minimum values predicted by the

surrogate and the actual value at the surrogate’s minimum. From a constitutive

modeling prospective, all parameter sets were functionally identical.

Observing Figure C.9, one will observe that all infill locations are on the same [K,n]

diagonal which corresponds to the basin of parameters which provide an almost

equally optimal model fit. This support the claim made above that there are many

equally good pairs of K and n.

No one initial to infill ratio stood out as being the best for this problem as all tests

converged to the the same minimum location and value. Further, there appeared

to be no significant difference between surrogates created with 25 and 30 sampling

Table C.7: Optimal material parameters with the application of infilling

No.
Initial
Points

No.
Infill

Points
Total
Points

Surrogate Minimum
Location [K,n]

Surrogate
Value

Actual
Value

Direct Optim. [812.5 MPa, 0.1690] 0.99766 -
10 15 25 [812.6 MPa, 0.1693] 0.99766 0.99766
15 10 25 [812.9 MPa, 0.1693] 0.99765 0.99766
13 17 30 [813.0 MPa, 0.1697] 0.99766 0.99765
15 15 30 [813.1 MPa, 0.1698] 0.99765 0.99765
17 13 30 [813.9 MPa, 0.1701] 0.99765 0.99765
20 10 30 [812.4 MPa, 0.1691] 0.99766 0.99766
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Figure C.9: Contour plot of material model fit as a function of K and n for the
17:13 trial ratio. Black dots are sampling points and boxed dots represent infilling
locations.

points. As a result, the same combinations of total sampling points and ratios were

repeated in the three parameter trial.

C.3.2 Three Parameter Trial

As with analytic benchmarking, a second trial was run to test the effectiveness of

Mike with a three parameter problem. Hardening parameters K and n and the co-

efficient of friction µ were selected. The bounds of the Kriging surrogate were set

to K ∈ [650, 950] MPA, n ∈ [0.1, 0.3], and µ ∈ [0.1, 0.3]. The remaining three pa-

rameters were held constant with the values cited in the two parameter trial. Like

the two parameter trial, Compcam was used to directly optimize the FE model

to determine optimal parameters. Four direct optimization trials were conducted

with varying initial conditions. The spread of optimum values and locations deter-
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mined from these trials was quite small, with best set of input parameters being

[K,n, µ] = [817.4 MPa, 0.1730, 0.2051] with a fit score of 0.99787. Further, the num-

ber of evaluations of the FE model required for each trial was low, with all trials

taking approximately 15k to 20k evaluations.

As with all other investigations in this work, three surrogate models were created

using sampling plans of 10k, 15k and 20k points. The optimal value and parameters

of these surrogates are listed in Table C.9 along with the actual value of the objective

function at each optimum.

Unlike the previous trial in the previous section, there greater variation in the optimal

parameters and location as the number of sampling points increased. Further, it

is not readily apparent that more sampling points actually increased the accuracy

of the surrogate’s estimate of global minimum. While it should be expected that

accuracy will be somewhat limited by the lack of infilling, the degree of variation

seen in Table C.9 was surprising given the success of the previous trial and analytic

benchmarks. While the variation in estimates of K and n was not too significant, the

large discrepancies seen in the estimates of coefficient of friction are dramatic. Even

more surprising is how little the actual objective function changed given the spread

of friction values.

Table C.8: Results of Compcam trials to determine optimal parameters.

Trial
Optimal Parameters

[K,n, µ]
Objective

Value
No.

Evaluations

1 [813.8 MPa, 0.1700, 0.1970] 0.99772 46
2 [812.8 MPa, 0.1683, 0.2043] 0.99784 65
3 [816.4 MPa, 0.1738, 0.2042] 0.99784 57
4 [817.4 MPa, 0.1730, 0.2051] 0.99787 67

Table C.9: Optimal material model parameters determined by Mike using only a
sampling plan.

No. Sampling
Points Surrogate Minimum [K,n, µ]

Surrogate
Value

Actual
Value

Direct Optim. [817.4 MPa, 0.1730, 0.2051] 0.99787 -
10k = 30 [838.0 MPa, 0.1860, 0.3000] 0.99858 0.99751
15k = 45 [814.5 MPa, 0.1698, 0.2375] 0.99960 0.99514
20k = 60 [807.3 MPa, 0.1657, 0.1644] 0.99933 0.99698
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Table C.10: Optimal material model parameters determined by Mike applying ex-
ploitation.

No.
Initial
Points

No.
Infill

Points
Total
Points

Surrogate Minimum
[K,n, µ]

Surrogate
Value

Actual
Value

Direct Optim. [817.4 MPa, 0.1730, 0.2051] 0.99787 -
15 22 37 [818.9 MPa, 0.1735, 0.3000] 0.99790 0.99790
22 15 37 [818.3 MPa, 0.1724, 0.2420] 0.99788 0.99787
17 28 45 [819.6 MPa, 0.1740, 0.2433] 0.99789 0.99787
22 23 45 [818.0 MPa, 0.1706, 0.2013] 0.99780 0.99773
28 17 45 [819.5 MPa, 0.1738, 0.3000] 0.99789 0.99790
30 15 45 [819.2 MPa, 0.1734, 0.3000] 0.99789 0.99790

As with all previous investigations in this research, and in a bid to reduce the variance

in estimated coefficients of friction, an exploitation study was conducted. The same

ratios of total sampling points and initial to infill ratios used for the two parameter

study were repeated for this trial. The optimal location and value of the resulting

surrogates are given below in Table C.10 with the actual value of the objective function

at the surrogate’s optimum.

Unlike the improvements to optimal parameter estimates seen in previous trials, the

use of exploitation with the three parameter trial raises additional questions. While

infilling helped in the estimates of K and n for all surrogates shown in Table C.10,

the values of friction do not improve. In fact, the estimates for best coefficient of

friction hit the upper bounds placed on that variable. While this is concerning in and

of itself, what is more concerning is the insignficant variation in fit score, both actual

and predicted by the surrogate with the reasonably large variation in coefficient of

friction. In fact, there are cases in Table C.10 where the fit score actually improves

when friction hits the bounds of the problem. While the improvement is small (less

than 3 × 10−5), these results seem to imply that a more optimal set of parameters

for the actual problem exists when friction is allowed to hit or perhaps exceed the

upper bounds of the problem. Given the non-physicality of this situation, there is

clearly an issue, and this issue likely effects the results of both direct optimization

with Compcam and the use of surrogate modeling techniques.
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C.3.3 Discussion of Findings

The investigation into using Mike as an optimization method for Compcam pro-

duced some interesting findings, particularly the three parameter trials. Of particu-

lar interest is the inability of Mike to accurately fit friction to experimental data. If

Mike was effective at fitting the Swift law with two parameters and the analytic test

functions, what makes coefficient of friction different?

Related to the Mike’s inability to fit friction is the minimal change in fit score with

friction, which is particularly apparent in Table C.10. Despite the significant variation

in coefficient of friction (upwards of 20% of the range between upper and lower bounds

of that variable), there is no significant change in fit score. In fact, the only variation

in fit score seen in Table C.10 occurs at the fifth decimal place, indicating that the

effect of friction on the fit score is almost vanishing small.

It is well known that friction has a major impact on the degree of barreling in cold

upsetting tests. The fact that fit score used in this work shows minimal variation with

changing coefficient of friction indicates that perhaps the objective function chosen

for this work may not be appropriate, particularly for capturing barreling behavior.

However, if this is the case, why did direct optimization yield effective and realistic

results in Chapters 5 and 6?

One possible reason why direct optimization proved to be effective whileMike did not

comes down to the formulation of the optimization algorithms. Compcam utilized a

conjugate-gradient optimization algorithm for performing direct optimization. Such

algorithms are effective at tuning parameters with very little change in objective

function, such as changes at the fourth or fifth decimal place required when using

the coefficient of determination as an objective function. Further, the use of gradient

information in optimization allows the algorithm to account for varying influence

between parameters.

The Kriging model used in Mike does not take the gradient of the objective function

into account, primarily because gradient information cannot be extracted from an

objective function without additional function evaluations to perform compute it

numerically. Such a modification would makeMike significantly more expensive than

direct optimization. Instead of relying on slope, Mike uses global search algorithms

to find the best correlation parameters θ and p for each input parameter. Recalling

the derivation of the Kriging model presented in Section C.2.1, it is important to
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Table C.11: Variation in the correlation parameter θ across the three parameters of
the Swift law problem.

K n µ

0.9916 0.7726 2.1451−4

note that the correlation parameter θ is a measure of the activity or influence of a

particular design variable in the problem. A larger value of θ implies that changing

a particular input’s value results in a large change in objective function.

The minimal change in fit score with large variation in coefficient of friction should

result in the coefficient of friction having a small θ. To test this assertion, the correla-

tion parameters from the three parameter surrogate model generated with 28 initial

points and 17 sampling points are extracted and given in Table C.11. While the

exact value or magnitude of θ for each parameter is meaningless when examined in

isolation, a comparison of the three parameters provides insight into the problem’s

solution space. The fact that the activity parameters of K and n have the same mag-

nitude indicate they have roughly the same effect on fit score. However, the fact that

the Gaussian activity of µ is three orders of magnitude smaller than the remaining

two variables imply that friction has a negligible effect on fit score. Relating this

finding back to the work with analytic test functions in Section C.2.4, one will recall

the difficulty Mike had with the Hartmann-3 function due to the deceptively flat

gradient along the x1 axis. The same problem is faced by Mike in this work, but to

a larger degree.

If it can be concluded that the current objective function used to fit parameters does

not account for the physical importance of friction, then the ramifications are signif-

icant, not just for Mike, but for direct optimization as well. While such a scenario

would makeMike completely ineffective, it would also make direct optimization more

difficult, likely requiring more iterations and, hence, evaluations of the FE model to

find optimal parameters. As such, one recommendation for future work is to conduct

further trials to investigate the sensitivity of friction on this objective function and,

if necessary, find alternatives.

Completed work is not sufficient to draw complete conclusions about the objective

function’s sensitivity. As such, a further set of experimental trials are required.

These trials will consist of friction ring and cold upsetting tests of, at minimum,

aluminum 2024-T351 but may be expanded to the remaining wrought metals tested
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in Chapter 5. Both experiments must be repeated owing to changes in the platens

between those sets of experiments and now. The friction ring tests will provide a

good estimate and bounds for the actual coefficient of friction between the specimen

and platens. The cold upsetting tests will provide new data which accounts for the

changed platens.

Holding coefficient of friction constant at the value determined through the use of the

friction ring tests, Compcam will fit the remaining parameters of the Swift hardening

law to the data gathered from the cold upsetting test. Next, using the fitted param-

eters as a baseline, a parametric study will be conducted on the coefficient of friction

and, perhaps, the remaining Swift parameters. The goal of this study will be to un-

derstand how changes in each input parameter effect the overall fit score, as well as to

gauge the influence of each parameter. Further, this work would allow one to gauge

the impact of each parameter on the force-displacement and radius-displacement ob-

jective functions independently. This would confirm supposition made earlier in this

report that hardening parameters such as K and n would have a large impact on

the fit score for force-displacement while µ and ν should a larger effect on radial

deformation.

This parametric study will enable one to draw conclusions as to the effectiveness of

the current objective function. While it is likely the use of force-displacement is effec-

tive for parameter fitting, the use of mean deformed diameter-vertical displacement

may not be as effective as originally hoped. If this is the case, alternative objective

functions will need to be investigated and the impact of potentially changing objective

function on the results presented here will need to be considered.
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