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Abstract

Large-scale bubble plumes of sour gas from underwater wells pose many environmental
health and safety concerns. The prediction of the physical extent of the release and the
amount of dissolution into the surrounding ocean water is important for emergency
preparedness planning. The two-fluid model has been used in multiphase applications
for bubbly flow, and could be applicable for modeling scenarios such as the plume
region of an underwater gas well blowout.

A customized two-fluid model was implemented in OpenFOAM to account for mass
transfer processes. Two separate hydrodynamic studies were performed. It was con-
cluded that the model is likely only applicable in scenarios where the parameters of
the model can be tuned to experimental data. Extrapolation of a tuned model to
significantly different geometries, larger scales, or more complicated scenarios could
pose significant challenges.
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Chapter 1

Introduction

The offshore oil and gas industry continues to improve its environmental and safety

procedures. A common industry technique used to replace flaring and venting of waste

gas streams is reinjection of the unwanted gas back into the reservoir. This practice

serves to reduce greenhouse gas emissions while maintaining pressure in the reservoir.

In order to plan for the safety of the workers and the environment, numerical modeling

has been used to aid in the prediction of the surface concentration and extent of the

gas, if an accidental release were to occur.

The waste gas is typically composed of hydrogen sulfide (H2S) and carbon dioxide

(CO2), called “sour gas”, which is highly toxic. H2S can cause headaches and airway

problems at low concentrations, olfactory paralysis at or above 100 ppm, and death

in humans beyond 700 ppm. It is also potentially lethal to fish and other aquatic

animals when dissolved into water at all concentrations (Chou, 2003).

In the event of a loss of containment, it is desirable to be able to predict the

magnitude and extent of the gas release in order to assess the appropriate emergency

response plan. An underwater well blowout can release a large quantity of gas very

quickly due to the high pressure within the well, but the exact amount and its be-

haviour over time is unknown. Data from past blowouts is not available for analysis

and, even if it were, could not necessarily be used to inform detailed predictive models

directly.

To attempt to characterize this type of scenario, numerical modeling has been

used. Generally, numerical models of underwater gas releases can be divided into three

major categories: cone models, integral models, and computational fluid dynamics

(CFD) models (Olsen and Skjetne, 2016a; Sridher, 2012).

Cone models are the simplest to implement, but are the most empirical and can

therefore be the least valid. The simplest cone models rely on an assumed cone angle,

from which average values of gas dissolution can be obtained. This has the potential to

be an oversimplification of gas-jet dynamics because many important characteristics,

such as bubble size and local velocity fluctuations, have an impact on the rate and

magnitude of the dissolution as well as mixing and jet breakup.

1
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Integral models are capable of capturing more of the flow characteristics. They

have been written in both the Eulerian (stationary) and Lagrangian (moving) refer-

ence frames. Models which have been used in underwater gas blowout applications

include DeepBlow (Johansen, 2000, 2003), CDOG (Yapa and Li, 1997), COMBOS3D

(Yapa et al., 1999), JETLAG (Lee and Cheung, 1990), VDROP-J (Zhao et al., 2016),

and others. Their main limitations are the empirical parameters they must incorpo-

rate, such as for the prediction of entrainment. An assumption must also be made

about the location of the transition from pressure-driven to buoyancy-driven flow.

These assumptions have been discussed by Dasanayaka and Yapa (2009), who deter-

mined that the empirical tuning can have a major impact on model predictions under

varying conditions.

CFD models use fewer empirical tuning parameters, and should be able to more

accurately predict the hydrodynamic behaviour of a jet or plume. Modeling of gas

well blowouts using CFD is not currently as common in the literature, but it has been

done by several groups in recent years (Olsen and Skjetne, 2016b; Pan et al., 2014;

Socolofsky et al., 2016).

1.1 Finite Volume CFD

Solids, liquids and gases are typically considered to be continuua. In other words, they

are treated as macroscopic materials in lieu of a collection of sub-atomic particles.

Statistical mechanics can be used to describe the microscopic behaviour of nuclei

and particles, while continuum mechanics is applied to describe the behaviour of

all macroscopic materials. The applicability of either method is determined by the

Knudsen number,

Kn =
λ

L
=

⎧⎨⎩<< 1, Mechanics of Continua

>> 1, Statistical Mechanics
(1.1)

Where λ is the mean free path of the particle, and L is the characteristic length-scale

of the material.

Partial differential equations which capture mass, momentum, and energy conser-

vation are used in continuum mechanics to find intrinsic and extrinsic properties of

materials, such as mass, temperature and pressure, as well as mechanical properties

such as displacement and momentum. Analytical solutions for the equations have

not been found without major assumptions. Obtaining the true field of each property
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would require the solution of the equations at all points in space and time. Since

this is not possible without an analytical solution, computational methods break the

domain up into discrete locations in space and time in order to obtain a system

of algebraic equations, which can be solved to approximate the properties at those

locations (LeVeque, 2002).

The finite volume method is the most commonly used numerical technique in

computational fluid dynamics. The spatial discretization divides the domain up into

finite regions defined by a mesh, referred to as control volumes or cells. If the solution

will change with time, the time domain can also be divided into intervals, called

time-steps. The solution of the properties, functions of space and time, can then be

determined based on a relationship between the properties at neighbouring cells and

previous times at each point.

There are several discretization methods available for the solution of the partial

differential fluid transport equations. An example would be the simple case of the

1-D scalar transport equation of some property f = f(x, t). The equation is,

∂f

∂t
time dependance

+
∂f

#»

U

dx  
advection

− d

dx

(
Γ
∂f

∂x

)
  

diffusion

= S (1.2)

Where
#»

U is the velocity, Γ is a diffusion coefficient, and S = g(f, x, t) are any source

terms of the equation.

The equation is second-order in space and first-order in time. To maintain ac-

curacy the spatial and temporal discretizations must be of the same order or above

(Jasak, 1996). The mesh is usually taken to be a fixed size based in a cartesian coor-

dinate system, but this is no longer universally the case with the increasing number

of studies with adaptive mesh refinement and/or moving meshes.

To discretize the equation, a volume average of each property is taken over each

control volume, which can then be stored at the cell centre of the current cell (P ).

The volume average usually assumes a linear profile between the edge property values

which are found with the interpolation of the cell centre values. Higher order property

profiles can also be selected. A 1-D mesh is given for reference in Figure 1.1.
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Figure 1.1: A 1-D finite volume mesh. The labels indicated the neighbouring points
at the cell centres (uppercase) and the cell surfaces (lowercase).

Integrating equation 1.2 over a control volume gives,

˚
V

∂f

∂t
dV +

˚
V

∂f
#»

U

dx
dV −

˚
V

d

dx

(
Γ
∂f

∂x

)
dV =

˚
V

SdV (1.3)

Which reduces to,

ˆ
x

∂f

∂t
��Adx+

ˆ
x

∂f
#»

U

dx
��Adx−

ˆ
x

d

dx

(
Γ
∂f

∂x

)
��Adx =

ˆ
x

S��Adx (1.4)

The integration of the advection term involves the application of Gauss’s theorem,

which states that the volume integration of the divergence of a quantity (e.g.
#»

F ) is

related to the flux across its boundary by,

˚
V

∇ · #»

FdV =

‹
S

#»

F · n̂dS (1.5)

Which can be applied to the advection term across the control volume in 1-D as,

ˆ
x

#  »

dF

dx
dx =

∑
faces

#»

F face · n̂ =
# »

Fe −
#  »

Fw (1.6)

The fluxes
# »

Fe and
#  »

Fw can be approximated as the average between cell centre values.

Both the velocity and the property values at the face would then be taken as the

average between cell centre values. The diffusion term is integrated over the control

volume similarly to the advection term, where

#»

F = Γ
∂f

∂x
= Γ

∆f

∆x
(1.7)

A second order spatial discretization of the 1-D advection-diffusion equation on the
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mesh is,

∂f

∂t
=

−1

∆x

[[
UEfE + UPfP

2
−UPfP + UWfW

2

]
−
[
Γe
fE − fP
xE − xP

−Γw
fP − fW
xP − xW

]
−Savg∆x

]
(1.8)

The spatial discretization of the advection term can incorporate the characteristics

of the flow, for instance if the flow is primarily in one direction, an upwind scheme

could be used in lieu of the symmetric scheme shown. The upwind-weighted schemes

determine the direction of the flow using an upwind factor, and weight the value

of the upstream property more heavily than the downstream. The incorporation of

both schemes with a weighting factor which allows for one or the other scheme to be

preferentially applied is the basis for the total variation diminishing (TVD) schemes.

The mesh arrangement can be staggered or co-located (Figure 1.2), which can have

a major impact on the solution. In the co-located arrangement, all property values

are stored at the cell center. In the staggered arrangement, the scalar properties

(temperature, pressure, etc.) are stored at the cell centers, while the velocity is stored

at the cell faces. This arrangement prevents “checkerboarding” of the pressure, as

described in Patankar (1980). Keeping track of the variables and their locations in a

staggered grid arrangement can be more difficult in practice, however. As a result,

most finite volume codes employ the co-located arrangement along with interpolation

methods that avoid the checkerboarding issue.

Figure 1.2: Staggered (left) and co-located (right) grid arrangements.

The time dependence is often dealt with by using either implicit (backward) or

explicit (forward) Euler’s method, but higher order schemes can also be used. Apply-

ing the forward Euler scheme gives the new value of the property (t + ∆t) at point

P ,

f t+∆t
P = f tP−

∆t

∆x

[[
Ue
fE + fP

2
−Uw

fP + fW
2

]
−
[
Γe
fE − fP
xE − xP

−Γw
fP − fW
xP − xW

]
−Savg∆x

]t
(1.9)
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The equations for mass, momentum and energy must always be closed; the linear

relationship must be based on values of the property itself and its derivatives at

different points in space and previous times, or other known quantities. If it is not

closed, the system is underdetermined and cannot be solved.

To close the equations, most finite volume algorithms solve the equations in a

segregated manner. In other words, the momentum, energy, and continuity equations

are solved sequentially because the properties all rely on each other (Jasak, 1996).

The equations are solved one after another with initial and boundary conditions,

and their solutions are used as the new conditions for the next iteration. Once the

solutions to the equations no longer change (to some pre-determined tolerance), the

solution of each property in the domain at that time is considered to have been found.

For transient simulations, the equations would then advance to the next time-step.

Coupled solvers, which solve all the equations simultaneously, are also commonly

used for a solution which is ostensibly more stable. In this thesis, a segregated finite

volume method was used.

1.2 Two-phase CFD Modeling of Underwater Gas Well Blowouts

An underwater gas well blowout would usually result in the release of what is often a

gas-liquid mixture into the underwater environment. For the purposes of this research,

it is assumed that the inlet fluid would be pure gas. Initially the release is likely

driven by the rapid expansion from a highly pressurized pipe into the relatively low

pressure of the surrounding water. This highly transient behaviour is expected to

be short-lived before reaching pseudo-steady state. Bubble breakup would probably

occur immediately as the gas moves upward, eventually reducing the gas to smaller

dispersed bubbles.

After the bubbles have reached a certain height, the pressure gradient may no

longer be the dominant driving force, and buoyancy may take precedence. If so,

the bubbles would slow down to their terminal velocity because of the drag force

and dissolve more quickly into the surrounding water due to their increased area-to-

volume ratio, increased residence time, and exposure of the gas bubbles to areas with

low dissolved gas concentrations. Close to the surface of the ocean, surface conditions

would determine the behaviour of the gas.

In general, underwater releases have been characterized by three distinct regions,

as shown in Figure 1.3. Near the inlet, the jet region contains large gas bubbles with

well-defined gas-liquid interfaces. In this region, CFD models that track the bubble
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interface, such as the Volume of Fluid (VOF) methodology, are optimal for predicting

the gas behaviour. The VOF method is one of the most commonly used interface

tracking algorithms. It uses an Eulerian reference frame and solves a continuity

equation in one of the phases to capture interface movement. The primary limitation

to the model is that it is computationally intensive because it requires very small

mesh cells to accurately resolve the interface. As the bubbles break up and increase

in number, the interface prediction will break down.

Figure 1.3: The three regions of an underwater gas release.

The plume region is where dispersed phase models, for instance the popular Euler-

Euler or Euler-Lagrange models, are likely to be more accurate. In this region, the

flow transforms from pressure-driven to buoyancy-driven, and bubbles reach their

terminal velocities. The Euler-Lagrange models, also called discrete phase models

(DPMs), track the movement each bubble or parcel of bubbles with a Lagrangian

reference frame, while the liquid is modeled in the Eulerian frame. Breakup and

coalescence models determine the bubble size and frequency. DPMs can be built

such that the continuous phase impacts the bubbles, but not the other way around

(one-way coupling), or they can be built such that both phases can impact each other
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(two- or multi-way coupling). The main downside to the model is that as the number

of bubbles in the domain increases, tracking each bubble or parcel can become more

computationally expensive.

The Euler-Euler, or two-fluid, model solves for both gas and liquid phases from

Eulerian reference frames. The phases are treated as inter-penetrating continuua

using force terms to couple phase-averaged momentum equations. The gas present in

each cell of the mesh is represented by the volume, or phase, fraction. It is then solved

for with a continuity equation to identify the location of the gas. This allows for a

coarser mesh than the interface tracking method, while being less computationally

expensive than the DPMs.

Assuming that the cell is a mixture of the two phases instead of discrete locations

where the phase exists in the cell results in phase-averaging. The amount of the phase

in the cell is represented by a phase fraction, α [m3 phase/m3 cell], which acts as a

weighting factor. Since the properties are all calculated volumetrically due to the

volume averaging, multiplication by the phase average results in the cell center values

of the properties for that phase. Figure 1.4 shows how the phase-average is taken

for the properties of each phase i in the Euler-Euler representation of a multiphase

bubbly system: phase fraction, density, velocity, pressure, temperature, etc.

Figure 1.4: A representation of the phase-average for the properties stored at the cell
centre.

At the moment, there is no single CFD model which can accurately incorporate the

dramatically varying gas behaviour from the bottom to the top of the water column

in the type of release scenario described. It is required, therefore, to use separate

techniques for regions defined by the gas dynamics. A multi-model approach requires

that the outlet conditions of the previous region are the inlet conditions to the next,

which can involve certain complications. In this research, the focus is restricted to

the plume region, and the techniques required to model it with the two-fluid model.
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1.2.1 The Two-Fluid Modeling Approach

Two-fluid models are broadly applicable to the simulation of fluidized beds, bubble

columns, and other complex two-phase flows. They are also less computationally ex-

pensive than many other modeling approaches when high phase fractions are present.

These models solve the flow equations in both phases with the addition of interphase

force terms.

The majority of the gas dissolution is expected to occur in the plume region,

where the residence time is greatest, so a good prediction of the mass of CO2 and

H2S transferred from the gas to the liquid is essential. For this to be possible, the

hydrodynamics must be accurately represented. Bubble size has a direct influence

on the magnitude of the interphase forces, as well as being important in the mass

transfer prediction. For these reasons, the inclusion of a bubble size model is ulti-

mately necessary to help prevent the over or underprediction of the dissolution. The

turbulence prediction is also of great importance, because it is directly related to the

lateral spreading of the plume via the turbulent dispersion force, the breakup pro-

cesses which determine the bubble size, and the mass transfer, which is related to the

size of the bubbles.

Since the two-fluid model only accounts for two phases, bubble size distributions

must eventually be reduced to a single average size for use in the source terms of

the momentum equations. To improve the prediction, additional phases could be

incorporated in the model to account for bubbles of different size. This has been

done with application of the inhomogeneous MUSIG (multiple size group) model

Frank et al. (2005), in which multiple momentum equations are solved for different

bubble size classes.

The lack of turbulence model development for the Euler-Euler models is one of its

main limitations. Although there are many models which have been fitted to specific

data sets, they are not necessarily broadly applicable. Often the models are tuned for

bubble column simulations, which may not be applicable at all to other flow regimes.

Confined and unconfined flow simulations can result in totally different conclusions

for turbulence as well due to the effect of nearby walls. The ratio of bubble size to

mesh size in confined flows has been established in the literature by Milelli et al.

(2001b) for instance, but mesh effects in unconfined flow have not been.

The two-fluid model is also disadvantaged due to the number of sub-models it re-

quires. Many of them are simplified in preference of computational speed or stability

over accuracy. The amount of tuning for sub-model coefficients that is required can
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be daunting, particularly of the drag, lift, and turbulent dispersion force coefficients.

A slight alteration in one of the models could dramatically influence the whole sim-

ulation. The effects could only become more pronounced with addition of a bubble

size model to an inappropriate suite of tuning parameters.

Euler-Euler models continue to be competitive against other models because the

sub-models are relatively simple to implement, the simulations are comparatively

faster than many other models, and the predictions are often very good if the models

can be tuned to the particular flow conditions of the physical system. Extension

of the sub-models to other modeling problems, such as unconfined plumes and gas

well blowouts, is essential for exposing and remediating its current limitations. For

the two-fluid models to dominate the landscape of dispersed flow simulations, more

development in these areas is required.

The gas well blowout is a particularly challenging application due to the multi-

scale nature of the bubble plume. The small bubbles in the plume impact and are

impacted by the larger bubbles primarily through turbulent and wake interations,

while the larger bubbles can significantly alter the dynamics of the continuous liquid

phase. An appropriate mesh size to capture these interactions is unclear, and it isn’t

clear that any bubble size distribution model currently available would be capable of

describing the interactions between bubbles on such as wide variation of scale. Due

to the lack of available well blowout data, the tuning of sub-model coefficients on

smaller-scale cases is required before application to the large-scale gas well blowout.

1.3 Objectives

This research is intended to evaluate a two-fluid modeling approach for two-phase

computational fluid dynamics simulations of the plume region of an underwater gas

blowout. The use of Euler-Euler models for this type of modeling is not ubiquitous

in the literature, but they have the potential to become one of the dominant model-

ing approaches. An open-source software package for computational fluid dynamics,

OpenFOAM, was used for this work.

The following objectives are met in this work:

• Comprehensive literature review of all sub-models for the two-fluid model

• Incorporation of mass transfer capability into the twoPhaseEulerFoam solver

• Study of applicable two-fluid turbulence models with the

twoPhaseEulerFoam solver
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• Implementation of the interfacial area transport equation (IATE) with the

twoPhaseEulerFoam algorithm

• Verification that the mass transfer additions to the solver were working as ex-

pected on a 1-D case study and a 3-D case with fluid flow

1.4 Organization

Chapter 2 of this thesis will outline the model equations and algorithm of the two-

fluid model in OpenFOAM, as well as the implementation of mass transfer into the

code. Chapter 3 provides a review of the available interphase force, bubble size,

and mass transfer models. Chapter 4 includes a study of the two-fluid turbulence

models. Chapter 5 includes the study of the hydrodynamics of an unconfined flow

case and IATE model for the bubble size. The mass transfer modeling of two separate

cases, with and without flow, are included in Chapter 6. Conclusions about the

twoPhaseEulerFoam solver and its applicability to scenarios such as the full-scale gas

well blowout are presented in Chapter 7.



Chapter 2

Numerical Methodology

OpenFOAM is an open-source CFD software package which has been used throughout

academic and industry literature to solve a variety of fluid dynamics problems. It

includes a wide selection of solvers with differing solution procedures, several mesh-

ing utilities, and is packaged with popular thermophysical and turbulence models

(OpenCFD Ltd., 2017). Of the multiphase solvers, the Euler-Euler model is rep-

resented by twoPhaseEulerFoam and reactingTwoPhaseEulerFoam. The latter has

not been commonly cited in the literature and, in the cases of interest in this research,

did not provide satisfactory results.

The twoPhaseEulerFoam solver has been validated over a range of cases in the

literature which is why it has been adapted for this work. OpenFOAM version 3.0+

was used because it was the most recent version at the beginning of the project, but

more recent versions are now available. New releases of the solver and utilities have

not changed the numerical algorithm of twoPhaseEulerFoam, but some of the code

implementation has been altered.

Details of an earlier, incompressible version of the twoPhaseEulerFoam algorithm

have been described in Rusche (2002). Its PIMPLE (Pressure Implicit Method for

Pressure-Linked Equations) algorithm linearizes the momentum equations for use in

the pressure equation in the same style as the SIMPLER (Semi Implicit Method for

Pressure-Linked Equations - Revised) algorithm (Patankar, 1980). It is also similar to

the PISO (Pressure Implicit with the Splitting of Operators) algorithm of Issa (1985)

in the coupling of pressure and velocity. PISO solves the momentum equations first

and then updates the pressure with a separate equation. The twoPhaseEulerFoam

solver splits the momentum equations as well, but does not solve them, instead

solving the pressure equation based only on the linearization and iterating. Addi-

tional improvements to the stability of the solution procedure were also built into

twoPhaseEulerFoam.

One of the downsides to the basic version of twoPhaseEulerFoam is that it cannot

be used in cases where interphase mass transfer occurs. In OpenFOAM,

12
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reactingTwoPhaseEulerFoam was meant to be used for this purpose, but as men-

tioned above, this solver did not provide adequate stability and accuracy for the cases

investigated in this study. Therefore, in this work, a generalized mass transfer algo-

rithm was added to the solution procedure of twoPhaseEulerFoam. This addition is

discussed in detail in the following sections.

2.1 The twoPhaseEulerFoam Algorithm

The twoPhaseEulerFoam solution procedure is shown in Figure 2.1.

Figure 2.1: The twoPhaseEulerFoam algorithm built into OpenFOAM.

Once the initial and boundary conditions are specified, the phase continuity equa-

tion is solved and the momentum equations are discretized and linearized for use in

the pressure equation. The energy equation is solved based on the solution of conti-

nuity and the previous conditions for the velocity. The flux is predicted based on the

linearization of the momentum equations, and the inner corrector loop of the PIM-

PLE solution procedure begins. In the inner loop, the root of the pressure equation is

found and the fluxes and velocities are corrected based on the updated pressure for a

user-defined number of iterations. Following the inner loop, the turbulence equations

can then be solved before restarting the outer loop. Alternatively, the turbulence

equations can only be solved on the final iteration of the outer loop. The outer loop

then begins again based on the new pressure. The outer PIMPLE loop corrects the
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continuity equation based on the new velocity, and is crucial for maintaining bound-

edness and stability in the phase fractions. Once the loops complete, a new time step

begins.

The solution procedure within twoPhaseEulerFoam does not include a species

equation and does not solve for mass transfer between the phases, but this addition

was made with a few changes to the algorithm. The changes that were made are

shown in Figure 2.2.

Figure 2.2: The new twoPhaseEulerFoam algorithm after adding mass transfer capa-
bility.

The outer loop begins with the solution of the phase continuity equation. Next,

the interfacial temperature and compositions are found so that the appropriate source

terms can be incorporated into the species equations. Once the species equations

are computed, the momentum equations are linearized as usual, now inclusive of

an explicit source term associated with interphase mass transfer. As in the original

algorithm, the energy equation is solved with the incorporation of a latent heat term

as well as a term accounting for the convective heat transfer across the gas-liquid

interface. The flux is predicted and passed to the pressure equation in the inner loop.

The only change in the pressure equation is the addition of the mass transfer term,

which is also added in to the phase continuity equations as a source term for the next

outer iteration. The fluxes are corrected along with the velocities and passed to the
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next inner iteration. The equations to account for turbulence are solved before the

outer loop once again calculates the phase fraction from the phase continuity equation.

The number of inner and outer iteration loops are specified in the PIMPLE dictionary

of the solver.

In the first time-step, the mass transfer term is not actually incorporated into the

solution of the continuity equations until the first outer corrector loop is finished be-

cause the dilatation rate is not calculated until the pressure equation has been solved.

It is this lag in the calculation that makes the reliance on the outer corrector loops

so great. The fully adapted algorithm is expanded upon in the following sections.

2.1.1 Interphase Heat and Mass Transfer

Gas-liquid mass transfer was added to the base algorithm by first considering the

interface between the phases as infinitely thin and calculating the interfacial quanti-

ties. The species fractions and temperature at the interface determine the direction

of mass transfer and heat transfer from one phase to the other. If the transfer is

from the gas phase to the liquid phase, then the bulk liquid species fraction will be

less than the liquid species fraction at the interface, as shown in Figure 2.3. If the

transfer is in the opposite direction, the bulk gas species fraction will be lower than

the gas species fraction and temperature at the interface. Temperatures within the

two phases can also influence the mass transfer, not only the heat transfer, which is

why the temperature at the interface must also be calculated.

Figure 2.3: The interface between the gas and the liquid. The temperature and
compositions are calculated at the interface and included in the source terms of the
species equations.

It is further assumed that equilibrium is maintained at the interface, such that the

species fractions at the interface can be related by algebraic relationships based on
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known or empirically obtained quantities, for instance Henry’s law. The interfacial

energy balance is,

Q̇latent,g→l + Q̇convective,g = Q̇convective,l (2.1)

Where the subscripts g and l indicate the gas and liquid phases respectively, Q̇latent,g→l

[J/(s ·m2)] is the latent heat flux, which is the heat associated with phase change at

the interface, and Q̇convective [J/(s ·m2)] is the convective heat flux. Since it is assumed

that the interface is infinitely thin, there is no accumulation and the latent heat of

dissolution and the total convective heat in the liquid and gas phases must be equal.

The volume-averaged convective energy is the sum of the latent heat on either side

of the interface,
Q̇latent,g→lA

V
= kh,g(Tg − T I) + kh,l(Tl − T I) (2.2)

Where kh,g = hgai and kh,l = hlai are the volumetric convective heat transfer coeffi-

cients [kg/(s3 ·K ·m)] in the gas and liquid phases respectively, hl and hg [J/(s ·K ·m2)]

are the convective heat transfer coefficients, ai [m
−1] is the interfacial area concen-

tration, Tg and Tl [K] are the gas and liquid temperatures respectively, and the

superscript I denotes an interfacial property. A [m2] is the interfacial area. The

volume-averaged latent heat of dissolution is also equal to,

Q̇latent,g→lA

V
=
∂m

∂t
(Hg −Hl) (2.3)

Where ∂m
∂t

[kg/(m3 · s)] is the interfacial volumetric mass transfer rate, equal in value

but opposite in sign for the liquid and gas sides, and Hg and Hl [J/kg] are the

enthalpies of the gas and liquid respectively. The sign is determined by the mass

transfer rate. The mass transfer rate is defined for the gas side as,

∂m

∂t
= ρgkm,g

n∑
i=1

(Y I
i − Yi) (2.4)

Where ρg [kg/m
3] is the density of the gas, km,g [s

−1] is the gas-side (finite) mass trans-

fer coefficient multiplied by the area-to-volume ratio of a bubble, and Yk [kgk/kggas]

is the mass fraction of species i in the gas.

The interfacial species fractions are calculated based on the balance of the gas and

liquid side mass transfer rates for each species,

∂mg,k

∂t
=
∂ml,k

∂t
(2.5)
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Which can be represented by,

ρgkm,g(Y
I
k − Yk) = −ρgkm,l(XI

k −Xk) (2.6)

Where Xk [kgk/kgliquid] is the mass fraction of species k in the liquid. The Henry’s

law relation between the gas and liquid concentrations of a species in equilibrium is,

XI
k = Hk

Y I
k ρg
ρl

(2.7)

Where Hk is the dimensionless Henry’s law coefficient. Including the Henry’s law

relationship in the species balance at the interface and rearranging gives,

Y I
k =

ρgkm,gYk + ρlkm,lXk

ρgkm,lHk + ρgkm,g
(2.8)

The volumetric mass transfer coefficients are defined through Sherwood number cor-

relations as,

km = aiDk,jSh (2.9)

Where ai =
6αd

d
[m−1] is the interfacial area-to-volume ratio, or interfacial area con-

centration, of the dispersed phase, αd is the phase fraction of the dispersed phase, d

[m] is the dispersed phase (bubble or droplet) diameter, Dk,j [m
2/s] is the diffusion

coefficent, and Sh = kmd
Dk,j

is the Sherwood number. Since both the calculation of

the diffusion coefficient and the Henry’s law coefficient can be taken as temperature

dependent, the interfacial temperature must be found simultaneously. The van’t Hoff

relation, which provides the temperature dependence of the Henry’s law coefficient

(Sander, 1999), is written as,

Hk = Ho
k exp

(
sk

(
1

T
− 1

T o

))
(2.10)

Where the superscript o indicates the reference value at 298 K, and sk is the slope

for the specific species. The expanded energy balance at the interface is,

∂m

∂t
(Hg −Hl) = kh,g(Tg − T I) + kh,l(Tl − T I) (2.11)
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Which can be rearranged for the interfacial temperature,

T I =
kh,gTg + kh,lTl − ∂m

∂t
(Hg −Hl)

kh,g + kh,l
(2.12)

Fixed point iteration with Wegstein acceleration was used to find T I before the species

equation is solved. First the interfacial mass transfer was calculated by finding the

new interfacial Y I with Equation 2.8 based on a guess for T I . The new T I was found

with Equation 2.12 and was used as a new guess for once again calculating the inter-

facial mass transfer rate from equation 2.4. The process repeats until convergence.

The initial guess for the interfacial temperature was the initial temperature of the

liquid phase. The final value found for the interfacial temperature is stored until the

outer correction completes. The process is repeated on the new outer iteration.

2.1.2 Continuity

Continuity is ensured by solving the phase continuity equation for the dispersed phase,

which can change based on the solution of the velocity and pressure fields. The phase

continuity equation is not solved in its original form because it must remain tightly

coupled to the pressure and momentum equations. As a result, additional terms are

incorporated which result in a more stable and bounded solution. The continuity

equation in the dispersed phase (subscript d) with mass transfer is written in its

original form as,
∂ρdαd
∂t

+∇ · (αdρd
# »

Ud) =

(
∂md

∂t

)
(2.13)

Where αd [m3
phase/m

3
cell] is the dispersed volume fraction. The left hand side can

be separated into a substantial derivative of the phase fraction, and a substantial

derivative of the density, which is brought to the right hand side as follows,

∂αd
∂t

+∇ · αd
# »

Ud = −αd
ρd

Dρd
Dt

+
1

ρd

(
∂md

∂t

)
(2.14)

Zero-sum terms (in bold) are added on either side of the equation and are used in the

derivation later,

∂αd
∂t

+∇ · αd
# »

Ud +∇ · (αd
#»

U) − ∇ · (αd
#»

U)

= −αd
ρd

Dρd
Dt

+
1

ρd

(
∂md

∂t

)
+αd∇ · #»

U − αd∇ · #»

U
(2.15)
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Since
#»

U = αd
# »

Ud + αc
# »

Uc, where c indicates the continuous phase, one of the added

terms on the left hand side can be expanded,

∂αd
∂t

+∇ · αd
# »

Ud +∇ · (αd
#»

U )−∇ ·
(
αd(αd

# »

Ud + αc
# »

Uc)

)
(2.16)

Combining the second term with the first part of the fourth term gives,

∂αd
∂t

+∇ · (1− αd)αd
# »

Ud +∇ · (αd
#»

U )−∇ · (αdαc
# »

Uc) (2.17)

This equation can be rewritten, recalling the definition of the relative velocity,
# »

Ur =
# »

Ud −
# »

Uc,
∂αd
∂t

+∇ · (αdαc
# »

Ur) +∇ · (αd
#»

U ) (2.18)

It will be shown later in the derivation of the pressure equation that the dilatation

rate for the phase-averaged velocity is,

∇ · #»

U = −

(
αd
ρd

Dρd
Dt

− 1

ρd

(
∂md

∂t

))
−

(
αc
ρc

Dρc
Dt

− 1

ρc

(
∂mc

∂t

))
(2.19)

Looking at the right-hand side of equation 2.15 and substituting gives,

− αd
ρd

Dρd
Dt

+
1

ρd

(
∂md

∂t

)
+αd∇· #»

U −αd

(
1

ρd

(
∂md

∂t

)
− αd
ρd

Dρd
Dt

+
1

ρc

(
∂mc

∂t

)
− αc
ρc

Dρc
Dt

)
(2.20)

Combining the first term with the first two parts of the fourth term gives,

αd∇· #»

U +(1−αd)

(
− αd
ρd

Dρd
Dt

+
1

ρd

(
∂md

∂t

))
−αd

(
− αc
ρc

Dρc
Dt

+
1

ρc

(
∂mc

∂t

))
(2.21)

The dilatation rate for each individual phase is,

∇ · #»

U i = −

(
αi
ρi

Dρi
Dt

− 1

ρi

(
∂mi

∂t

))
(2.22)

And noting that αc = 1− αd, yields the final form of the RHS of 2.15,

αd∇ · #»

U + αc∇ · # »

Ud − αd∇ · # »

Uc (2.23)
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All together, the compacted form of the continuity equation solved in twoPhaseEulerFoam

is,

∂αd
∂t

+∇ · (αdαc
# »

Ur) +∇ · (αd
#»

U ) = αd∇ · #»

U + αc∇ · # »

Ud − αd∇ · # »

Uc (2.24)

It should be noted that in the code the relative velocity at this point incorporates the

turbulent dispersion from the pressure equation as,

Ur = (Ud − Uc) + FTD,d + FTD,c (2.25)

In the code, equation 2.24 is split into an implicit and an explicit part, which is

determined based on the sign of the substantial derivative terms, in the code they are

called dgdt, in each cell. If they are negative, they are handled implicitly, and if they

are positive, they are handled explicitly, which works out because the second term on

the right-hand side is also equal to ∇ · # »

Ud − αd∇ · # »

Ud.

The equation is solved for αd using the MULES (Multidimensional Universal Limited

Explicit Solver) (Jasak and Weller, 1995), which requires the implicit and explicit

terms to be given as inputs. Finally, the phase fraction of the continuous phase is

calculated as αc = 1− αd.

This is not the only way to compute the phase continuity equation, but its form

helps maintain boundedness when coupled with the other equations. Prosperetti and

Tryggvason (2009), for example, give a summary of other approaches.

2.1.3 Species Conservation

Considering the existence of n species in each phase, n− 1 species conservation equa-

tions were written to solve for the mass fractions of each species in each phase. The

mass fraction of the remaining “inert” species was calculated to enforce the condition

that the mass fractions in each phase sum to unity. Interphase mass transfer was

incorporated through volumetric source terms. The equations were added into the

solver for the gas phase as,

∂αgρgYk
∂t

+∇ · (αf,gρf,g
#»

φgYk)−∇2

(
αf,gν

t
f,gρf,gYk

Sctf,g

)
−∇2

(
αf,gνf,gρf,gYk

Scf,g

)
=
∂mk,g

∂t
(2.26)

Where the subscript f indicates interpolation to the face, the subscript k indicates

the species, νt and ν [m2/s] are the turbulent and molecular kinematic viscosities,



21

respectively, Sct and Sc are the turbulent and molecular Schmidt numbers for the

phase, respectively, and
#»

φ is the face-flux of the phase. The face-flux has units of

[m3/s], but the divergence operator in the code divides through by the face area,

giving it effective units of [m/s] in the transport equations. For the liquid phase the

equation is,

∂αlρlXk

∂t
+∇ · (αf,lρf,l

#»

φlXk)−∇2

(
αf,lν

t
f,lρf,lYk

Sctf,l

)
−∇2

(
αf,gνf,gρf,gYk

Scf,g

)
=
∂mk,l

∂t
(2.27)

The individual mass transfer rates are calculated in the gas phase as,

∂mk,g

∂t
= ρgkm,g(Y

I
k − Yk) (2.28)

And in the liquid phase as,

∂mk,l

∂t
= ρlkm,l(X

I
k −Xk) (2.29)

The new species quantities are not incorporated into the continuity equation on the

same outer loop iteration, as noted in Section 2.1, but are incorporated into the

pressure equation on the first outer loop iteration. The discretized species equations

are solved using the linear solution algorithm specified by the user.

2.1.4 Momentum Conservation

In twoPhaseEulerFoam the momentum equations are merely set up, but not solved.

Their solution is not necessary because of the operator-splitting procedure of Issa

(1985) in which the flux across the face is predicted and then corrected by the new

pressure, which is shared between the two phases. The momentum equations are

written for the i-th phase with the semi-implicit mass transfer source term as,

∂αiρi
#»

Ui
∂t

+∇ · (αi,fρi,f
#»

φi
#»

Ui)− conti
#»

Ui + (αiρi + Cvm)
∂

#»

Ui
∂t

= ∇ ·Reff
i − Cd

#»

Ui − Cvm(
D

#»

Ui
Dt

− D
# »

Uj
Dt

) +
∂m

∂t

#»

Ui

(2.30)

Where Cd is the drag coefficient and Cvm is the virtual mass coefficient. The continuity

equation without source terms is subtracted from the momentum equation as,

conti =
∂αiρi
∂t

+∇ · (αi,fρi,f
#»

φi) (2.31)
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Which should be equal to the interphase mass transfer rate and the substantial deriva-

tive of the density. The stress rate tensor, Reff
i [N/(s ·m2)] incorporates both the

molecular kinematic viscosity and the turbulent kinematic viscosity in the same term,

νeff = νi + νi,t, and is computed as,

Reff
i =

[
∇ · (αiρi,fνeff

#»

Ui)−
(
αiρiν

eff
(
∇ #»

Ui
T − 2

3
tr(∇ · #»

Ui)I
))

+ αiρi
2

3
kiI

]
(2.32)

Where k [m2/s2] is the turbulent kinetic energy. The substantial derivatives, which

are multiplied by the virtual mass coefficient, are defined as usual. Due to the way

the divergence terms are written in the code, they appear as,

D
#»

Ui
Dt

=
∂

#»

Ui
∂t

+∇ · #»

φi
#»

Ui −
#»

Ui∇ · #»

φi (2.33)

Once the momentum equations have been set up, they are discretized and linearized

into the form outlined by Patankar (1980),

AP
#  »

UP =
∑

Anb
#   »

Unb + b− α∇Prgh (2.34)

Where the subscript P denotes the centre of the cell, subscript nb denotes the neigh-

bour cell centres, Prgh = P − ρgh [Pa] is the modified pressure, g [m/s2] is the

acceleration due to gravity, and h [m] is the height from the reference location. The

modified pressure is the pressure without the static component, and is the pressure

which is shared between the phases. All of the terms that were not included implicitly

in the momentum equation are lumped into the b term, including the lift force, and

any other relevant explicit sources.

The explicit part of the drag term is not incorporated at this stage, which will

be explained in more detail in the solution to the pressure equation. The pressure

gradient term is also left out, as it is solved for as per the operator-splitting method.

The linearization as written in Rusche (2002) is adopted,

#»

Ui = A−1
i

# »Hi −A−1
i αi∇Prgh (2.35)

2.1.5 Energy Conservation

The next part of the solution procedure is to solve the energy equations for each

phase, which may be based on the enthalpy or on the internal energy according to

the user’s preference. The volume-averaged energy balance for the total energy in
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each phase is,

∂αiρiEi
∂t

+∇ · (αi,fρi,f
#»

φiEi)−∇2(αi,fα
eff
i,f ρiEi) = Q̇i,convective + Q̇i,latent + Q̇i,potential

(2.36)

Where Ei [J] is the total energy, and αt,effi = αti + αtt,i [m
2/s] is the effective thermal

diffusivity, where the subscript t indicates the addition due to turbulence and the

superscript t indicates a thermal property. The total energy can be separated into

kinetic energy and internal energy. In some cases using the enthalpy is preferable in

lieu of internal energy, so there are two choices provided, denoted hei. A term which

adds the extra sources for either the internal energy or the enthalpy is defined as,

si =

⎧⎨⎩P ∂αi

∂t
+∇ · (αi,f

#»

φiP ), Internal Energy

−αi ∂P∂t , Enthalpy
(2.37)

Substituting for the total energy recasts equation 2.36 as,

∂αiρi(Ki + hei)

∂t
+∇ · (αi,fρi,f

#»

φi(Ki + hei))−∇2(αi,fα
t,eff
i,f hei) + si

=
Q̇i,convective

V
+
Q̇i,latent

V
+
Q̇i,potential

V

(2.38)

Where K = 1
2
U2
i [J/kg] is the kinetic energy. Since there is only thermal diffusion

of the internal energy, the kinetic energy in the Laplacian term vanishes. Through

expansion of the terms, the equation becomes,

∂αiρihei
∂t

+∇ · (αi,fρi,f
#»

φihei) +
∂αi,fρi,fKi

∂t
+∇ · (αi,fρi,f

#»

φiKi)− heiconti −Kiconti

−∇2(αi,fα
t,eff
i,f hei) =

Q̇i,convective

V
+
Q̇i,latent

V
+
Q̇i,potential

V
(2.39)

Expanding the source terms on the right hand side results in the final form of the

energy equation in twoPhaseEulerFoam,

∂αiρihei
∂t

+∇ · (αiρi
#»

φihei) +
∂αiρiKi

∂t
+∇ · (αiρi

#»

φiKi)− heiconti −Kiconti

−∇2(αiα
eff
i hei) = kh,i(T

I − Ti) +

(
keffh,i

Cpv,i
heIi

)explicit
−
(
keffh,i

Cpv,i
hei

)implicit
+αiρi

#»

Ui · g +
(
∂mi

∂t
heIi

)explicit
−
(
∂mi

∂t
hei

)implicit (2.40)
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Where kh,i [W/(m2K)] is the convective heat transfer coefficient of the phase, keffh,i =
kh,ikh,j
kh,i+kh,j

[W/(m2K)] is the effective volumetric convective heat transfer coefficient,

and Cpv [J/(kg ·K)] is the specific heat capacity at constant pressure or volume,

depending on the energy type selected. The energy equations are solved using a

solution algorithm specified by the user.

2.1.6 The Pressure Equation

To solve for the new pressure field, as per Rhie and Chow (1983), the
#»H vector and

A matrix of the linearized momentum equations must be interpolated to the face

while the pressure is calculated at the cell centre. A phase average of the linearized

equations in each phase is taken as in the volume fraction equation, beginning with

the continuity equation in each phase,

∂ρiαi
∂t

+∇ · (αiρi
#»

Ui) + αi
Dρi
Dt

− ∂mi

∂t
= 0 (2.41)

This can be expanded to become,

ρi
∂αi
∂t

+ αi
∂ρ

∂t
+ ρi∇ · αi

#»

Ui + αi
#»

Ui · ∇ρi + αi
Dρi
Dt

− ∂mi

∂t
= 0 (2.42)

Rearranging,
∂αi
∂t

+∇ · αi
#»

Ui +
αi
ρi

Dρi
Dt

− 1

ρi

(
∂mi

∂t

)
= 0 (2.43)

The equations for each phase must be added together, and because the sum of the

phase fractions does not change with time, the resulting equation is,

∇ · αd
# »

Ud +
αd
ρd

Dρd
Dt

+∇ · αc
# »

Uc +
αc
ρc

Dρc
Dt

− 1

ρd

(
∂md

∂t

)
− 1

ρc

(
∂mc

∂t

)
= 0 (2.44)

Recalling αd
# »

Ud + αc
# »

Uc =
#»

U , the equation reduces to,

∇ · #»

U +
αd
ρd

Dρd
Dt

+
αc
ρc

Dρc
Dt

− 1

ρd

(
∂md

∂t

)
− 1

ρc

(
∂mc

∂t

)
= 0 (2.45)

This equation can be rearranged for the dilatation rate, ∇· #»

U , between the two fluids.

It must be noted that the substantial derivative of the density is incorporated into
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the pressure equation as,

αi
ρi

(
Dρi
Dt

)
=

1

ρexpliciti

([∂αiρi
∂t

+∇ · (αi,fρi,f
#»

φi)
]
− ρimpliciti

[∂αi
∂t

+∇ · (αi,f
#»

φi)
])

+

(
αi
ρi

)explicitD(ψiPN
rgh

)
Dt

(2.46)

Where ψi = ρi/Prgh is the phase compressibility factor. In the code, the compress-

ibility term included in the substantial derivative uses a correction function defined

in fvMatrix.C. The velocity is written as,

#»

U = αd
# »

Ud + αc
# »

Uc = αd

#  »Hd + Cd
# »

Uc + αd∇Prgh
Ad

+ αc

#»

Hc + Cd
# »

Ud + αc∇Prgh
Ac

(2.47)

Defining the overall
#»

H term as inclusive of the explicit drag terms,

#»

H = αd(
#  »Hd + CdUc) + αc(

#  »Hc + CdUd) (2.48)

Equation 2.47 is interpolated to the face and written more compactly as,

# »

Uf =

#  »Hf

Af

+ (α2
dA−1

d + α2
cA−1

c )f∇Prgh (2.49)

The total pressure equation becomes,

∇ ·
( #  »Hf

Af

+ (α2
dA−1

d + α2
cA−1

c )f∇Prgh
)

+
αd
ρd

(
Dρd
Dt

)
+
αc
ρc

(
Dρc
Dt

)
− 1

ρd

(
∂md

∂t

)
− 1

ρc

(
∂mc

∂t

)
= 0

(2.50)

Which can be separated to become the final form of the pressure equation as written

in the code,

∇ ·
( #  »Hf

Af

)
+∇2

(
(α2

dA−1
d + α2

cA−1
c )fPrgh

)
+
αd
ρd

(
Dρd
Dt

)
+
αc
ρc

(
Dρc
Dt

)
− 1

ρd

(
∂md

∂t

)
− 1

ρc

(
∂mc

∂t

)
= 0

(2.51)
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The equation is solved iteratively to find the modified pressure. Once the convergence

criteria (specified by the user) is met, the average flux is reconstructed as,

#»

φ =

(
A−1
f

#  »Hf + (α2
dA−1

d + α2
cA−1

c )∇ · Prgh
)
f

· As (2.52)

Where As is the surface area vector. In order to reconstruct the phase fluxes, several

intermediate steps are taken. In this solver, the explicit drag terms were only added

into the
#  »Hf and not into the individual

#     »Hi,f because a reliance on the old value of the

individual
#»

φi when reconstructing the two fluxes could be unstable in flow cases. The

twoPhaseEulerFoam solver approximates the new fluxes with an expression based on

the drag coefficient which requires calculating the dragless
#»

φi. It seems quite stable in

flow cases, but could cause significant problems in low-flow cases because the pressure

field may overcompensate for a drag contribution which should be negligible.

The individual
# »Hi, calculated at the cell centres, do not contain the explicit drag

source terms in the current notation. The first step is to create individual
#»

φi without

the drag term,
#   »

φs,i = (A−1
i

#     »Hi,f + αiA−1
i ∇ · Prgh)f · As (2.53)

A relative flux term is created from the two individual dragless phase fluxes and the

drag additions. It is defined as,

#»

φr =

(
(

#   »

φs,1 +A−1
1,fCd

#   »

φs,2)− (
#   »

φs,2 +A−1
2,fCd

#   »

φs,1)

)
1− (A−1

1,fCd)(A
−1
2,fCd)

(2.54)

Where Cd is the drag coefficient, which should be equal in both phases. The individual

phase fluxes are then constructed from the relative and average quantities,

#»

φ1 =
#»

φ + α2,f
#»

φr
#»

φ2 =
#»

φ − α1,f
#»

φr
(2.55)

Once the fluxes have been found, the face values must be reconstructed to the cell

centres in order to find the velocities. Again, since the
# »Hi values do not contain the

explicit drag sources, they must be reincorporated into the velocity reconstruction at

this stage. As with the fluxes, the velocities are calculated in stages because the drag

term is problematic.

The pressure and force terms are reconstructed to the cell centres. This is done by
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taking the sum of all the faces multiplied by the unit vector to the face, multiplying

the face values by their area and summing them, and taking the dot product of the

two quantities,

reconstructi =
∑
S

[(
As
|As|

)
As

]−1

·
∑
S

As

[
(αiA−1

i ∇·Prgh)f ·As−αiA−1
i (Fg,f,i+Fs,f,i)

]
(2.56)

Where Fg,f,i is the gravitational source term of the i-th phase interpolated to the face,

and Fs,f,i are all other source terms (except drag) of the i-th phase interpolated to

the face. The individual dragless velocities are calculated as,

#   »

Us,i = A−1
i

# »Hi + reconstructi (2.57)

The drag terms are incorporated into an average velocity,

#     »

Uavg = α1(
#    »

Us,1 +A−1
1 CdU2) + α2(

#    »

Us,2 +A−1
2 Cd

# »

U1) (2.58)

And a relative velocity is also constructed using the same technique as was done with

the relative flux,

# »

Ur =
(1 +A−1

2 Cd)
#    »

Us,1 − (1 +A−1
1 Cd)

#    »

Us,2

1− (A−1
1 Cd)(A−1

2 Cd)
(2.59)

The velocities are then constructed from the average and relative quantities,

# »

U1 =
#     »

Uavg + α2
# »

Ur
# »

U2 =
#     »

Uavg − α1
# »

Ur
(2.60)

The static pressure is recalculated and limited,

P = Prgh + ρg · h (2.61)

where ρ is the phase-averaged density. The densities are updated using the compress-

ibility and the new and old modified pressure values,

ρi = ρ0i + ψi(P
N
rgh − PN−1

rgh ) (2.62)
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Where the superscript N−1 indicates the old-time value. Finally the kinetic energies,

for use in the energy equation, are updated,

Ki =
| #»

Ui|2

2
(2.63)



Chapter 3

Sub-Models for the Transport Equations

The Euler-Euler approach requires the use of empirical models, which provide the

closure relations for the equations of mass, momentum and energy. The sub-models

must be selected based on their ranges of applicability to each specific case. For a

gas dispersed in a liquid, there are a number of relationships that must be taken

into account. Figure 3.1 shows some of the known interactions for the bubbly flow

scenarios of interest for the present study.

Figure 3.1: The interactions between a single sour gas bubble and the surrounding
water in the plume region.

The interactions can be divided into three categories. The first category comprises

the interphase forces, the forces which account for the presence and behaviour of

the other fluid. The second is heat and mass transfer across the bubble interface,

both of which determine the composition and temperature of the phases. The final

category is the fluid stress due to velocity fluctuations, which can alter the normal

Newtonian behaviour of the liquid continuous phase. Additional models which can

be implemented account for the interactions of the bubbles with themselves, and how

their population and size evolve over time.

29
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To this day, semi-empirical models are commonly used in simple hand calcula-

tions to predict the behaviour of two-phase flow. Many of the same models have

been adapted for use in CFD codes. The implementation of models that are not

valid within the range of application or overly simple in a CFD simulation can add

significant error when comparing to experimental results. Selection of appropriate

models is paramount to making an accurate prediction, particularly in complicated

flow scenarios such as the underwater gas well blowout.

There are a plethora of models available for each of the interphase forces, turbu-

lence, mass transfer, and bubble size. Since almost all of the models require tuning

parameters, the number of variables can quickly become unmanageable if all of the

possible models must be validated and cross-validated with each other. Due to the

number of sub-models and their inter-dependence, it is also nearly impossible to find

the exact value for each of the tuning parameters in the models which give the most

realizable result. For this reason, most of the interphase force models used in this

study were selected based on their ranges of applicability from the literature, and

were used consistently throughout in the individual studies which proceed from this

chapter. Tuning was applied only to the lift force and the turbulent dispersion force to

attempt to match experimental data. This chapter details and provides justification

for the use of the models implemented in the following chapters.

3.1 Interphase Force Modeling

At low gas volume fractions, or holdups, the behaviour of the dispersed phase is

primarily impacted by the behaviour of the continuous phase. At moderate or high

dispersed phase fractions, the dispersed phase has a greater impact on the behaviour

of the continuous phase (Behzadi et al., 2004). In the cases of interest to most of

industry, the dispersed phase fraction will be high, and for this reason a two-way

coupling between the phases is required. The formulation of the momentum equation

in the twoPhaseEulerFoam algorithm allows for this coupling by ensuring that the

momentum equation does not become singular in regions where the liquid phase

fraction approaches zero and becomes the dispersed phase (Rusche, 2002).

Interphase forces help to maintain the two-way coupling between the phases pri-

marily through their reliance on the relative velocity. Without the presence of these

terms in the momentum equations, the velocity of the other phase would never appear

in the momentum equations for the phase. Some of the interphase forces have been

derived directly from the physical laws, and do not require a model on the macroscale
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as a result. The two forces which do not require modeling are the buoyancy force

and the gravitational force. The buoyancy force is driven by the difference in density

between the two phases, and is the dominant upward force in the plume region. The

gravitational force accounts for the weight of the bubble by the downward accelera-

tion due to gravity. The pressure is also responsible for the direction and magnitude

of motion of the bubble, but it is determined directly through the algorithm and also

does not require a model.

One of the most important considerations for the application of interphase force

models is the flow regime. Table 3.1 from Coulson et al. (1996) gives a description

of some of the known flow regimes at different gas and liquid velocities for horizontal

and vertical flow through pipes. In vertical pipes, mist flow, stratified flow, and plug

flow are not typically seen. Since this table describes pipe flow, and not unconfined

flow such as the gas well blowout scenario, many of the regimes are not applicable. In

the plume region of an underwater gas well blowout, the bubbly regime is the most

likely.

Table 3.1: Flow regimes for two-phase flows (Coulson et al., 1996)
Typical Velocities [m/s]

Regime Description Liquid Vapour

1. Bubble Flow Bubbles of gas dispersed throughout the liquid 1.5− 5 0.3− 3

2. Plug flow Plugs of gas in liquid phase 0.6 < 1.0

3. Stratified flow Layer of liquid with a layer of gas above < 0.15 0.6− 3

4. Wavy flow As stratified but with a wavy interface due to higher velocities < 0.3 > 5

5. Slug flow Slug of gas in liquid phase Occurs over a wide range of velocities

6. Annular flow Liquid film on inside walls with gas in centre > 6

7. Mist flow Liquid droplets dispersed in gas > 60

The bubbly flow regime does not necessarily indicate a uniform bubble shape or

size. Bubble shape is known to be influenced by surface tension, viscosity of the

continuous phase, bubble diameter and relative velocity, as well as the presence of

surfactants or other contaminants. Aside from the relative velocity, these parameters

are all intrinsic fluid properties dependent only on the intensive thermodynamic quan-

tities. It is the balance between the intrinsic nature of the two fluids and the inertial

forces which determine the bubble shapes that are possible. The different shapes can

be divided into regimes which represent the balance between the properties of the

fluids and the forces acting upon them.

Since many interphase force models are based on the assumption of a spherical
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bubble, the shape regime must be known in advance to ensure that a model in the

correct range of validity is selected. This is much easier in theory than in practice,

particularly since many of the models are only valid within small ranges for specific

flow regimes. Figure 3.2 adapted from Clift et al. (1978), plots the bubble shape

regime over a range of Reynolds numbers, Re, Morton numbers, M , and Eötvös

numbers, Eo.
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Figure 3.2: Shape regimes for bubbles and drops in unhindered gravitational motion
through liquids (adapted from Clift et al. (1978)).

The dimensionless numbers are defined as,

Eo =
g∆ρd2

σ
, M =

gµ4
l∆ρ

ρ2l σ
3
, Re =

ρlUtd

µl
(3.1)
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Where the Reynolds number is evaluated at the magnitude of the terminal bubble

velocity, Ut.

Spherical bubbles are observed at lower Reynolds numbers over the full range

of Eötvös numbers, where the viscous forces are higher and the bubble diameter

is lower. Larger diameter bubbles tend to be ellipsoidal at higher Eötvös number

because their surface tension is no longer able to maintain their shape and inertial

forces can deform them. Ellipsoidal bubbles are not necessarily symmetric, and tend

to wobble at higher Reynolds numbers. Spherical cap bubbles will appear at even

higher Reynolds and Eötvös numbers where the buoyancy can form them into half-

spheres or -ellipsoids, leading with their curved side. At very low surface tension and

gas density, the skirted and dimpled-ellipsoidal cap bubbles are present (Clift et al.,

1978). The flow and shape regimes must be taken into account before the models are

chosen. In the plume region of an underwater blowout, it is likely that many of the

bubble types discussed would be present at various locations in the plume, so multiple

models could be implemented depending on the bubble size and relative velocity.

3.1.1 The Drag Force

The drag force is of particular importance in the two fluid model because it is the force

which accounts for the resistance of the liquid to the movement of the bubble. It also

is the primary force which influences the liquid to move due to the gas, and is the only

interphase force which is contained in the explicitHi terms of the momentum equation

linearization, as well as in the flux correction of twoPhaseEulerFoam. Coupling is

provided through the relative velocity. The drag force is represented by,

Fdrag = −3αdρc
4d

Cd|
# »

Ur|
# »

Ur (3.2)

Where Cd is the modeled drag force coefficient, d is the bubble diameter, the subscript

d represents the dispersed phase,
# »

Ur =
# »

Ud −
# »

Uc [m/s] is the relative velocity, and the

subscript c indicates the continuous phase. It is known from experiment that the drag

coefficient is dependent on the bubble radius, the particle Reynolds number based on

the relative velocity, and the shape and impurities of the bubble (Kolev, 2012). The

presence of other bubbles in the vicinity can also impact the drag force due to their

influence on the continuous phase through which the bubble must move, for instance

the wake effects which alter the viscosity of the liquid.

Figure 3.3 shows the value of the drag coefficient for gas bubbles moving through
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a continuous liquid medium at terminal velocity for three popular models: Ishii and

Zuber (1979), Schiller and Naumann (1933), and Kolev (2007). The graph is not

representative of bubbles which have not yet reached their terminal velocities. The

Schiller and Naumann (1933) model was originally derived for glass beads, and is only

meant to be used for solid spherical particles. It is given as,

Cd =

⎧⎨⎩ 24
Re
(1 + 0.15Re0.687), Re ≤ 800

0.44, Re > 800
(3.3)

The Ishii and Zuber (1979) model is a combination model that is represented by a

step function. It is given for a range of flow regimes as,

Cd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
24
Re
(1 + 0.1Re0.75), Undistorted rd

(
ρcg∇ρ
µc

)
≥ 34.65

2
3
(Eo)1/2

[
1+17.67f(αg)6/7

18.67f(αg)

]2
, Nµ ≥ 0.11(1+ψ)

ψ8/3 Distorted

8
3
(1− αg)

2, Churn− turbulent

(3.4)

Churn-turbulent flow is typified by a high Reynolds number with bubbles which

readily coalesce, and is usually classified in the bubbly regime. The other parameters

are defined as,

f(αg) =
µl(1− αg)

1/2

µmix
, µmix = µl(1− αg)

−2.5(µg+0.4µl)

µg+µl

Nµ =
µl(

ρlσ(
σ
g∆ρ

)1/2
)1/2 , ψ = 0.55

[
(1 + 0.08r3o)

4/7 − 1
]3/4

, ro =
rd

(ρlg∆ρ
µl

)1/3

(3.5)

Where rd [m] is the bubble radius. Finally, the model assembled by Kolev (2007,

pp. 37-39) for the viscous (Cd,vis), distorted (Cd,dis), and spherical-cap (Cd,cap) bubble

regimes is,

Cd =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cd,vis =

24
Re
(1 + 0.1Re0.75) Cd,dis < Cd,vis

Cd,dis =
2
3

√
gρl
σ
d

(
1+17.67α1.286

l

18.67α1.5
l

)2

Cd,cap > Cd,dis > Cd,vis

Cd,cap =
3
8
α2
l Cd,dis > Cd,cap

(3.6)



35

0.2 0.4 0.6 0.8 1

·10−2

0

2

4

6

8

10

12

14

16

Bubble Diameter (m)

D
ra
g
C
o
effi

ci
en
t,
C
d

Schiller & Naumann
Ishii & Zuber

Kolev

0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

Bubble Diameter (m)

D
ra
g
C
o
effi

ci
en
t,
C
d

Schiller & Naumann
Ishii & Zuber

Kolev

Figure 3.3: Drag coefficient vs. bubble diameter at terminal velocity. Low (left) and
higher (right) ranges of bubble sizes. The Ishii and Zuber (1979) and Kolev (2007)
models were calculated with αg = 0.3 and properties were obtained for air (dispersed)
and water (continuous) at STP.

Other correlations for the drag force, such as Tomiyama et al. (2002a) require the

advance knowledge of an approximate distortion coefficient β. As data for large scale

gas well blowouts is unavailable, the distortion coefficient cannot be known in advance,

and these models would not necessarily be more accurate. For the bubble sizes of

interest in the validation cases, the Kolev (2012) and Schiller and Naumann (1933)

models yield very similar results, overlapping at several diameters on the graph.

In the simulations of a gas-stirred ladle, carried out by Lou and Zhu (2013b),

the drag coefficient of Kolev (2012) was determined to give the most accurate result

for the liquid velocity and the turbulent kinetic energy out of the five models they

compared. The drag force was assumed to be well-represented by the model of Kolev

(2012) for the validation cases in this work for this reason unless otherwise indicated.

3.1.2 The Lift Force

The lift force acts in the direction perpendicular to the direction of flow. It is very

important in the determination of the lateral spreading of bubbles, and aside from

turbulence effects, is the only other mechanism by which the characteristic cone of the

bubble plume is achieved. Many authors have determined the analytical, numerical,

or experimental lift force in a variety of fluid regimes. For the present discussion,
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focus is on models for the lift force acting on clean bubbles in viscous flow, as there

are several proposed forms for the lift force. It is typically written for a gas-liquid

system as,

FL = −CLαdρc
πd3

6

# »

Ur × (∇× # »

Uc) (3.7)

Where CL is the lift coefficient.

Legendre and Magnaudet (1998) studied the flow around a single spherical bubble

by numerically solving the three-dimensional momentum (Navier-Stokes) equations

for a spherical shear-free bubble at constant velocity in a variety of flows. They found

that the lift coefficient was strongly dependent on Reynolds number and shear rate

at low Reynolds number, but became less so at higher Reynolds numbers. Legendre

et al. (2003) investigated the interactions between two bubbles rising side by side.

The study revealed that when the Reynolds number crossed a certain critical value,

the sign of the lift force was reversed. Other studies have confirmed the assertion of a

critical value for the sign change of the lift force based on the bubble diameter (Lucas

and Tomiyama, 2011).

Hibiki and Ishii (2007) put together an extensive list of lift force models with their

applicability limits. The majority of the models in the list have only been formulated

for single solid spheres or bubbles, and very few are within the appropriate regime

for the cases of interest to the current research.

Tomiyama et al. (2002b) proposed a model obtained through experiment for a

single bubble in laminar, high-viscosity flow,

CL =

⎧⎨⎩min
[
0.288tanh(0.121Re), f(Eo)

]
, Eo < 4

f(Eo), 4 ≤ Eo ≤ 10.7
(3.8)

Where,

f(Eo) = 0.00105Eo3 − 0.0159Eo2 − 0.0204Eo+ 0.474 (3.9)

The model was determined to be valid for −5.5 ≤ logM ≤ −2.8. Referring to

Figure 3.2, the given range is within the spherical, spherical cap, and ellipsoidal

bubble regimes. The model was later used for multiple-bubble turbulent simulations

in air-water systems for small and large diameter pipes with good results (Lucas and

Tomiyama, 2011). As discussed by Sokolichin et al. (2004), lift coefficients for small

bubbles < 6 mm are predicted in the range 0 < CL ≤ 0.288, and for large bubbles

−0.288 < CL < 0.

For this work, a constant lift coefficient was used within the given limits which
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gave the most realizable results. Although the coefficient of Tomiyama et al. (2002b)

would technically be applicable to all bubble sizes, in the validation cases of this

work it did not provide satisfactory results. This was likely because many of the

cases assumed a constant bubble size and in these cases the lift coefficient would have

been represented better with a statistical average of the lift coefficients of the true

bubble size distribution instead of simply the calculated lift coefficient at that single

size. Being able to tune the coefficent was absolutely necessary as the lift force had

a major impact in all of the validation cases studied.

3.1.3 The Virtual Mass Force

The virtual mass force accounts for the weight of the surrounding fluid due to the

acceleration of another body through it. It is of particular importance in bubbly flow

because the bubble density is normally much lower than the density of the liquid it

displaces. Several models have been proposed for the virtual mass effect in bubbly

two-phase flows. Soo (1967), Hinze (1963), and Wallis (1969) observed through ana-

lytical derivation that the force was proportional to the substantial derivative of the

relative velocity.

Drew et al. (1979) determined that previous formulations of the virtual mass force

were not mathematically objective. They derived a new formulation of the virtual

mass force on the basis that the objectivity of the surface traction must be maintained.

The result was similar to previous models but with two additional spatial derivative

terms and an empirical parameter, λ.

The virtual mass force model of Cook and Harlow (1984) was derived with math-

ematical objectivity in mind. They sought to find a virtual mass model which did

not require two empirical parameters. They defined three phases - the bulk fluid, the

dispersed gas phase, and the liquid phase surrounding the gas - and derived a model

similar to the others which only incorporated the fractional multiplier relating the

gas phase and the surrounding liquid phase as an adjustable parameter.

The well-posedness of the two-phase Navier Stokes equations has been addressed

by Gidaspow (1974). It was determined that the equations had complex eigenvalues

and as a result were intrinsically unstable. Ramshaw and Trapp (1978) observed

that the reduction of the imaginary component (i.e. by reducing the first and third

characteristic invariants) in relation to the real component improved the stability of

the equations. They also determined that the incorporation of known physical effects,

such as the surface tension, achieved this. Lahey (2005) concluded that the inclusion
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of a virtual mass force also improves stability in the CFD solution of the momentum

equations for the same reason.

Lahey (2005) compared the models of Drew et al. (1979) and Wallis (1969) to

momentum equations with no virtual mass force in a number of simulations with

different gas nozzle shapes and flow orientations. They found that the formulation of

the virtual mass force and the magnitudes of the virtual mass coefficient and λ did

not affect the result significantly, but the simulations without a virtual mass force

were less stable and required longer computational time.

Since the formulation of the virtual mass force, regardless of objectivity, is unlikely

to significantly impact the solution, a version which is simple to implement was used

for the sake of stability. For the present study, the virtual mass force was represented

by the relation used by Soo (1967),

FVM = αgρgCVM

[
D

# »

Ug
Dt

− D
#»

Ul
Dt

]
(3.10)

Where CVM = 0.5. Some bubble plume studies do not implement it at all, e.g. Lou

and Zhu (2013a), but many who do, use this version.

3.1.4 Turbulent Dispersion

Lopez de Bertodano (1992) observed that the momentum equations do not account for

the fluctuating component of the dispersed phase fractions which would be expected

in a turbulent field. He proposed an analogue to thermal diffusion of air molecules

for bubbles under the influence of turbulence due to the turbulent energy of the other

phase. He derived the following expression for the turbulent dispersion force,

FTD = CTDρlkl∇αg (3.11)

Where CTD is the turbulent dispersion coefficient and the ∇αg came from approxi-

mating ln(1− α) as the first term in a Taylor series expansion. Although there have

been other forms for the turbulent dispersion force (Drew, 2001; Gosman et al., 1992;

Lopez de Bertodano, 1998) which have been proposed, this formulation has been

widely used.

Values of the coefficient vary between 0 and 1 in the literature. The magnitude

of the force is very important in determining the spread of the gas and feeds back

into the turbulence model. In this work, CTD was tuned along with the lift coefficient
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through trial and error to attempt to obtain the most realizable result.

Another model which has been used in the literature is the model of Davidson

(1990). It does not involve any tuning parameters of its own, but its result is highly

dependent on the choice of drag model. The model is written as,

FTD = 0.75
Cd
d
µtαlρl|Ur|∇αg (3.12)

3.2 Turbulence Modeling

Turbulence poses a significant modeling challenge in the numerical simulation of bub-

bly two-phase flow. In turbulent flow, the Newtonian fluid stress is increased by the

additional stress due to the fluctuating velocity. With the inclusion of two phases,

the fluid stresses become more difficult to characterize. The stress in each phase is

increased with the generation of turbulent fluctuations with low energy dissipation.

These conditions could be caused by minor variations in the other properties or inlet

effects. The motion of the bubbles also has a major influence on the stresses in the

liquid.

Kolmogorov (1941) identified three ranges in what is referred to as the energy

cascade: energy generation, the inertial subrange, and energy dissipation. The gener-

ation of energy occurs at the largest turbulence length scales, while the dissipation of

energy occurs at smaller scales by viscous forces. The generated energy passes from

the larger, anisotropic scales to the smaller, statistically isotropic scales.

The largest length scales of the eddies in any fluid system are restricted to the

shortest dimension of the fluid’s container, while the smallest are not determined by

geometry but by the Kolmogorov length scale (first similarity hypothesis). In between

the smallest and largest scales is the inertial subrange, where inertial forces dominate

over viscous forces, but not to the extent that energy is generated. In this range, the

length scale is determined by the dissipation only, and not by the viscosity (second

similarity hypothesis).

There are several popular methods used to determine the total and turbulent

stresses in single phase flow. In Reynolds-averaged Navier-Stokes simulations (RANS),

the fluid velocity is represented by an average and a fluctuating component, u = U+u′.

Plugging this definition into the Navier-Stokes equations and taking the time-average
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results in an additional term accounting for the stress due to turbulent velocity fluc-

tuations, the Reynolds stress tensor,

Rij = ∇ · ρ < #»ui
′ #»uj

′ > (3.13)

Where #»ui
′ and #»uj

′ are the i-th and j-th components of the fluctuating velocity. To

obtain closure of the momentum equations, this quantity must be a function of the

average velocity, its derivatives, or other known quantities.

In Large Eddy Simulations (LES), a low-pass filtering process is applied to the

momentum equations which results in a residual stress term τ rij, in addition to the

resolved stress. The residual stress is usually referred to as the sub-grid stress (SGS)

because the filtering process is typically equivalent to the spatial discretization (im-

plicit filtering), and must be modeled. That is to say, LES simulations usually (but

not always) consider the stresses at or above the grid scale to be resolved.

The most popular models for both LES-SGS modeling and RANS usually rely

on the eddy viscosity hypothesis of Boussinesq (1877). As Rivlin (1997) notes, the

normal components of total stress of a fluid in turbulent flow are not equivalent to

the hydrostatic pressure, as would be the case in a Newtonian fluid. The turbulent

kinetic energy, k [m2/s2], represents normal components of total stress in turbulent

flow which are present in addition to the hydrostatic pressure. It is sourced through

the solution of a transport equation. The Boussinesq hypothesis is written for a

compressible system as,

τij = ρ
2

3
kδij − ρνtS̄ij (3.14)

Where τij [N/m2] is the modeled stress, νt [m2/s] is the eddy viscosity, and S̄ij

[m/(m · s)] is the compressible mean rate of strain,

S̄ij = ∇ #»

U +∇ #»

U T − 2

3
I∇ · #»

U (3.15)

The validity of the Boussinesq hypothesis has been questioned, and even in homoge-

neous, isotropic turbulence (i.e. at small length scales), it has been shown to fail due

to the direct proportionality between the stress and the strain rate (Schmitt, 2007).

Despite this finding, remarkably good results have been achieved for two-phase bub-

bly flows using the basic linear eddy-viscosity hypothesis. Even so, Speziale (1987)

recommended the use of nonlinear eddy viscosity models to avoid potential issues in

more complex turbulent flows.

For this work, modeling the Reynolds stress transport equation (RSTE) directly
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in the style of Launder et al. (1975) or Speziale et al. (1990) was not considered,

even though their models provide an alternative to the Boussinesq hypothesis. The

RSTE can only be closed through the use of empirical functions of the mean veloc-

ities, Reynolds stresses, and their derivatives (Launder et al., 1975). This closure

necessarily requires many tuning parameters. Due to the lack of empirical data for

underwater gas well blowouts, obtaining the correct values of the parameters through

an optimization study is not possible. Algebraic RSTE, such as the type proposed

by Rodi (1993) which are nonlinear eddy-viscosity models, were also not considered

because the abundant empirical parameters would still pose a problem.

Predictive accuracy was given preference over computational efficiency in this

study. Considering the number of empirical models which must be incorporated in

the Euler-Euler model, all of which rely on the accuracy of the turbulence model, any

economizing in computational time could end up counterbalanced by a heavy increase

in error or a poor prediction of the interphase forces.

The majority of RANS and LES-SGS models have been developed and validated

only for single-phase cases. This limits the choice of available models significantly,

but there have been some proposed improvements to the single-phase models which

incorporate effects due to the second phase. These extensions are discussed in the

following sections.

3.2.1 Two-phase RANS Modeling

Several RANS models have been considered for implementation in this work, but

only two have been chosen for the comparison study. Unfortunately, few nonlinear

eddy-viscosity RANS models have been validated for two-phase flow, so models which

rely on the linear hypothesis were used. The mixture k − ϵ model of Behzadi et al.

(2004) and the k− ϵ model of Simonin and Viollet (1988) have been selected, and are

discussed in this section.

The k − ϵ model is one of the most popularly developed for use in two-phase

flow. For single-phase flow it is arguably the most popular RANS model. It was

originally conceived by Launder and Spalding (1974) and requires the solution of

two transport equations for both k and the eddy dissipation rate, ϵ [m2/s3]. The
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single-phase turbulent dissipation rate transport equation is,

∂ρϵ

∂t
+∇ · (ρϵ #»

U )−∇2

(
ϵ

(
µ+

µt
σϵ

))
= C1

ρϵ

k
G−

((2
3
C1 + C2

)
ρϵ∇ · #»

U

)
− C2ρϵ

2

k

(3.16)

Where C1 = 1.44, C2 = 1.92, C3 = −0.33 and σϵ = 1.3 are empirical tuning parame-

ters for the standard k − ϵ model, and the generation term, G, is defined as,

G = νt

(
∇ #»

U : dev(2∇ #»

U )

)
(3.17)

Where dev() indicates the deviatoric. The turbulent kinetic energy transport equation

is written as,
∂ρk

∂t
+∇ · (ρk #»

U )−∇2

(
k(µ+

µt
σk

)

)
= G− ρϵ (3.18)

Where σk = 1 is an empirical tuning parameter. The expression for the eddy-viscosity

is,

νt = Cµ
k2

ϵ
(3.19)

3.2.1.1 Behzadi et al. (2004) k − ϵ Model

Lee et al. (1989) derived a k − ϵ model which assumed that the bubble-induced tur-

bulence was proportional to the bubble-induced generation rate of Rodi (1993). This

was based on the observation that the length scales of turbulence in the liquid were

broken up by the bubble moving through it, and new length-scales were generated.

They also observed that the constant parameter Cµ = 0.09 for single-phase flows

needed to be artificially increased to 0.8 for two-phase flows.

The model used a term created by Sato and Sekoguchi (1975), who suggested

implementing turbulence only in the continuous phase with the addition of a viscosity

due to bubble-induced turbulence (BIT) to capture wake effects. It was derived by

incorporating a second fluctuating velocity due to bubble agitation. The bubble-

induced viscosity is,

µBIT = cµ,BIρlϵBI (3.20)

Where cµ,BI = 0.6 is a model constant, and

ϵBI = αgd|
# »

Ur| (3.21)
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The single phase k − ϵ model combined with the BIT viscosity was used by Dı́az

et al. (2008) for the liquid phase, while the gas phase eddy viscosity was computed

as a multiple of the liquid-phase eddy viscosity based on the densities of the phases

and the turbulent Prandtl number. It was shown to be very effective for obtaining

both time-averaged and transient results. Contrarily, Zhang et al. (2006) compared

the BIT source terms of Pfleger and Becker (2001), and Troshko and Hassan (2001)

with the standard k − ϵ model, all including the addition of the BIT viscosity. They

determined that without source terms to account for BIT, a quasi-steady state bubble

plume is produced by the k− ϵ model. For this reason there was no comparison with

the basic k − ϵ model without source terms in the present study.

The k − ϵ model of Lee et al. (1989) is the basis for the Behzadi et al. (2004)

model. A bubble-induced turbulence source term is incorporated in both transport

equations of the continuous phase as well as the addition of the Sato and Sekoguchi

(1975) bubble-induced turbulent term in the calculation of the eddy viscosity. In

OpenFOAM, the ϵ transport equation for the Lee et al. (1989) model is implemented

as,

∂(αlρlϵl)

∂t
+∇ · (αlρlϵl

#»

Ul)−∇2

(
αlϵ

(
µ+

µt
σϵ

))
= αlρlC2ϵl − C1

αlρlϵl
k

G

−
((2

3
C1 + C2

)
αlρlϵl∇ · #»

Ul

)
− C2αlρlϵ

2
l

kl
+ SBIT

(3.22)

Where the constants are the same as for the single-phase version but αI = 0.3 and

the source term is,

SBIT =
αlρlC2ϵlGbubble

k
+max(αI − αl, 0)min

(
ϵg
kg
,
1

∆t

)
ρl(ϵg − ϵl) (3.23)

Where,

Gbubble =
Cpαg
dg

| # »

Ur|5/3(Cd|
# »

Ur|)4/3 (3.24)

The turbulent kinetic energy transport equation is implemented as,

∂(αlρlkl)

∂t
+∇·(αlρlkl

#»

Ul)−∇2

(
αl(µ+

µt
σk

)

)
= αlµtG− 2

3
ρϵ∇· #»

U−αlρlϵl+SBIT (3.25)
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The source term is,

SBIT = αlρlGbubble +max(αI − αl, 0)min

(
ϵg
kg
,
1

∆t

)
ρl(ϵg − ϵl)(kg − kl) (3.26)

The model was initially intended to be implemented only in the liquid phase. In

cases where phase-inversion is likely to occur, this could become problematic if there

is no model available in the gas phase. To prevent this, a complementary model was

included in the gas phase such that the source terms are applied in only one or the

other phase depending on which phase is continuous. In OpenFOAM the complementary

model is called the continuousGasKEpsilon model. It employs a blending function

to determine when phase-inversion has occurred, i.e. when α = αI . If the condition

is met, the g subscript and l subscripts are switched, and the effective turbulent

viscosity in the gas phase is calculated as,

νefft =
1−min(1, e

min(
Θl
Θg

,50)
)

1 +min(1, e
min(

Θl
Θg

,50)
)

(3.27)

Where,

Θl =
kl
ϵl

Θg = d2
ρg + CVMρl

18ρlνl

(3.28)

Behzadi et al. (2004) used a similar strategy for the source terms, but used mixture

values for k and ϵ instead of switching between models when phase-inversion occurs.

The second term of the sources used for the Lee et al. (1989) model is not used, but

the first term is the same for both k and ϵ equations. Mass-averaging k, ϵ, φ, ρ,

νt and the generation term and then substituting them into the single-phase k − ϵ

transport equations in place returns the new mixture values, km and ϵm. These are

then converted back to individual phase fields using a turbulence response coefficient

defined as,

Ct2 =

√
1 + (Ct0 − 1)exp(−αfd) (3.29)
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Where,

Ct0 =
3 + β

1 + β + 2ρg
ρl

, β =
6CµCdkl

4
√

3
2
ρlϵl

αfd = αg

(
180 + αg(−4.71× 103 + 4.26× 104αg)

) (3.30)

The weighting is first applied to the liquid phase,

kl = km
ρm

αlρl + αgρgCt2
, ϵl = ϵm

ρm
αlρl + αgρgCt2

, νt,l = Cµ
k2l
ϵl

(3.31)

And then to the gas phase,

kg = kmCt2, ϵg = ϵmCt2, νt,g = νt,l
Ct2νl
νg

(3.32)

3.2.1.2 Simonin and Viollet (1988) Model

Another model that has been used in the literature, this time specifically for uncon-

fined flows, is the model of Simonin and Viollet (1988). They applied the k− ϵ model

in the liquid phase only, with additional source terms in the two transport equations.

The source terms they used were,

Sk = Ck2CfαgρLk

Sϵ = Cϵ2CfαgρLϵ
(3.33)

Where Ck2 = Cϵ2 = 0.6 are constant coefficients, and the friction coefficient is,

Cf =
3

4d
Cd|Ur| (3.34)

Where Cd is the drag coefficient. Sheng and Irons (1993) later altered the source term

coefficients slightly for their ladle simulations, and found that changing Ck2 = 0.75

gave a better fit to their experimental data.

3.2.1.3 Wall Functions

Wall functions are used in RANS modeling to account for the boundary layer effects

near the walls in a simulation which does not have the near-wall mesh resolution such

that the logarithmic behaviour of the flow in these regions is represented. Assuming
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equilibrium between the generation and dissipation of turbulent kinetic energy, wall

functions calculate the values for νt, αt, k and ϵ within a certain distance from the

boundary. For example, the epsilonWallFunction in OpenFOAM calculates the

value of ϵ and the generation term, G, near the wall as,

ϵ =
1

W

∑
faces

C
3/4
µ k3/2

κy

G =
1

W

∑
faces

(νt + ν)|∇U |C1/4
µ k1/2

κy

(3.35)

Where κ = 0.41 is the von Karman constant, W is the number of faces and y is the

distance from the wall.

The nutkWallFunction in OpenFOAM calculates the near-wall values of the viscos-

ity as,

νt =

⎧⎨⎩ν(
y+κ

log(Ey+)
− 1), y+ > y+laminar

0, y+ ≤ y+laminar

(3.36)

Where E = 9.8 is a constant and y+ is the dimensionless distance from the wall,

y+ =
C

1/4
µ yk

ν
(3.37)

Typically, the wall functions for the single-phase flows are also applied to two-phase

applications (Gosman et al., 1992; Issa, 1988). In the full-scale gas well blowout the

only wall in evidence is the seabed, and it is not expected to influence the simulation

because it commences at the beginning of the plume region, not at the ocean floor.

The validation cases which were chosen in Chapter 4 are also cases in which the flow

should be minimally affected by the wall, and the mixing is driven primarily by the

gas velocity. For this reason, a Neumann boundary condition, ∂k
∂n

= ∂ϵ
∂n

= 0, was

applied at the wall for the k and ϵ transport equations in lieu of wall functions for

many of the case studies in this work.

3.2.2 LES Sub-grid Scale Modeling

LES-SGS models typically are quite computationally expensive because the grid size

must be close to the size of the turbulent length scales of interest. Considering these

length scales can be on the order of the bubble diameter, this could be problematic



47

for the two-fluid model. In Euler-Euler modeling, one of the basic assumptions is

that the bubble size should not be greater than the grid size because the model is not

intended to be used for capturing the gas-liquid interface and could encounter large

gradients in the phase fraction between adjacent cells.

Using an LES-SGS model to predict dynamic behaviour in a bubble column, where

bubbles are usually expected to be quite small, may not be theoretically sound. On

an Euler-Euler-appropriate mesh the model might then accidentally be applied to

all the length scales of turbulence, like a RANS-type model. This type of validation

case would not necessarily be indicative of the model’s efficacy on any other case. In

modeling the gas well blowout, the size of the cells would necessarily be larger, and this

scenario could easily occur if an LES-SGS model were applied without consideration

of this fact. Even so, good results have been achieved with LES-SGS models in bubble

columns (Deen et al., 2001; Dhotre et al., 2009; Lakehal et al., 2002).

For the large-scale gas blowout plume, a wide variety of bubble regimes could be

present which may overshadow the importance of resolving the length scales generated

by the smallest bubbles. In multiscale, multiphase scenarios the LES-SGS models may

be a far more worthwhile approach, but this has not been demonstrated to date for

the Euler-Euler model.

SGS models, unless they are derived for wall-modeling specifically, do not generally

represent wall effects properly. In wall-bounded cases (e.g. bubble columns) this could

be problematic because a false positive or negative result could be achieved due to the

presence of the walls. In application to the large-scale blowout, however, this would

not be a problem.

The potential for achieving realizable results in the scale-up from the small val-

idation cases to the large, real-world blowout cases could be increased with the use

of a dynamic LES-SGS model, despite the associated computational expense. This

has not been explored much in the literature, and as a result was not incorporated in

the validation cases. It would be an interesting topic to pursue in future work. The

LES-SGS models selected are discussed in the following sections.

3.2.2.1 Two-phase Smagorinsky Models

Most LES-SGS models for two-phase flow modeling used in the literature are linear

eddy viscosity models which do not incorporate the turbulent kinetic energy term, as-

suming the modified pressure will account for all normal components of stress (Ničeno
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et al., 2008a). In general, the models which have been used are rooted in the single-

phase Smagorinsky (1963) style of eddy viscosity modeling. The single-phase equation

for the eddy-viscosity of Smagorinsky (1963) is,

νt = C2
s∆

2 ¯|Sij| (3.38)

Where ∆ is the grid scale filter width, and Cs = 0.1−0.2 is the Smagorinsky constant.

The basic single-phase Smagorinsky (1963) model was compared against the other

models in the validation section of this work.

Lakehal et al. (2002) used the single-phase Smagorinsky (1963) model in both

phases and compared it to the same with a bubble-induced turbulence term and also

to the dynamic Smagorinsky model of Germano et al. (1991). They determined that

the Smagorinsky model with no additional bubble-induced turbulent viscosity and

a Smagorinsky constant of Cs = 0.12 behaved best in their simulations of a small

rectangular channel. Their mesh study and others (Milelli et al., 2001b) showed that

the optimal results were obtained with ∆
dg

= 1.5, which could result in a very large

number of mesh cells if the bubble size is very small. This is usually referred to as

the Millelli condition.

The simulations of Milelli et al. (2001a) and Lakehal et al. (2002) are very similar

and share many of the same conclusions. Milelli et al. (2001a) recommend that in

bubble plumes, application of a bubble-induced turbulence term was likely to be

successful for predicting the velocity field in the cases they studied. Zhang (2007)

suggested implementing the single-phase model in only the continuous phase with the

addition of the Sato and Sekoguchi (1975) BIT term discussed in Section 3.2.1.

Zhang et al. (2006) compared a number of Smagorinsky constants for the same

setup and determined that a lower value was appropriate for two-phase flow than

for single phase flow. In their simulations, a constant of Cs = 0.08 produced the

closest mean gas and liquid velocities to their experimental data. This model, with

the altered coefficient, was also used to compare results between the RANS and other

LES-SGS models in the case studies in this work.

3.2.2.2 One-Equation LES Subgrid Model

Ničeno et al. (2008a) suggested using the one-equation model of Davidson (1997) to

account for the loss of information associated with using only the deviatoric part

of the sub-grid stress. They also included the BIT viscosity of Sato and Sekoguchi
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(1975). The compressible turbulent kinetic energy transport equation is,

Dk

Dt
= ∇

[
αl(µ+ µt)∇k

]
+ αlµtG− αlρlCϵ

k3/2

∆
(3.39)

Where Cϵ = 1.05 and the turbulent viscosity is defined as,

µt = Ck∆k
1/2 (3.40)

Where Ck = 0.07. They compared this model to the dynamic model of Germano et al.

(1991) as well as to the model of Davidson (1997) with the Pfleger and Becker (2001)

BIT viscosity, and it performed better than both at predicting gas and fluctuating

liquid velocity profiles. In their mesh refinement study they concluded that the grid

to bubble size ratio obtained by Milelli et al. (2001b) was consistent with their result.

This model was used to compare with the other turbulence models in the validation.

3.3 Modeling Bubble Size

The bubble diameter is one of the main bubble properties responsible for the be-

haviour of the dispersed flow hydrodynamics. It must be carefully approximated,

as it directly influences the drag force through the particle Reynold’s number. The

mass transfer prediction is also highly dependent on the bubble diameter, since the

empirical correlations used in this research are multiplied by the area-to-volume ra-

tio, or interfacial area concentration, of the individual bubbles. It has been shown

that the bubble size is also a major factor in the lateral movement of bubbles, with

smaller bubbles moving toward areas of higher shear, and bigger bubbles moving away

(Tomiyama et al., 2002b).

If it is assumed that all the bubbles remain at an initially assigned approximate

size, or that their only volume change is due to the decrease in pressure as they

move up the water column, this could be an extreme oversimplification in certain

cases. Bubbles tend to break apart and recombine, and their tendency to do so is

dependent on many factors, including the flow regime, the surface tension, and the

viscous stresses in the continuous phase (Kocamustafaogullari and Ishii, 1995). Many

breakup and coalescence rates have been determined through mechanistic modeling,

and have been implemented as source or sink terms to a conservation equation for

the number of bubbles present in each cell.

The choice of equation itself must be based on one of the known conservative
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quantities and cannot be highly nonlinear or anisotropic, but beyond these require-

ments, is relatively inconsequential in acquiring an acccurate result. The strength of

the approach, in terms of realizability, is primarily determined by the breakup and

coalescence models, which can only be evaluated through comparison to experimental

data.

3.3.1 Population Balance Modeling

Population balance models (PBM) track the bubble size distribution over time. The

most popular of these are the class method (CM), which identifies discrete bubble size

classes and tracks their populations (and velocities, in the inhomogeneous method)

over time, and the method of moments (MOM), which requires the solution of multiple

transport equations to track the moments of the bubble size distribution, such as the

mean, variance, and skew. The CM has some of the same downsides as the Lagrangian

particle tracking models; it can be very slow when a large number of classes must be

solved for.

In the simulations of Selma et al. (2010), it was concluded that the direct quadra-

ture MOM (DQMOM) (Marchisio and Fox, 2005) with three moments and the mul-

tiple size group (MUSIG) (Lo, 1996) CM with 15+ classes are equivalently accurate,

but as the number of classes is increased, the MOM becomes comparatively more

computationally efficient. This result could change with the application of different

breakup and coalescence models, or by changing the turbulence model, as the former

models are often proportional to the cube root of the turbulent dissipation rate. The

MOM may be more computationally efficient but also can be disadvantageous. These

methods require a moment inversion algorithm for back-calculating the bubble size

distribution. According to Marchisio and Fox (2013), moment-inversion algorithms

must have four basic properites which can be difficult to meet if the particle density

function requires higher-order moments to attain realizability.

Population balance modeling of any kind is limited in its range of applicability,

which can only be expanded through validation on different cases and tuning of the

models. The bubble sizes expected in the large-scale gas well blowout occur at many

scales, and the domain is not wall-bounded. It is not common to see PBM used in

unconfined, multiscale bubble plumes, and it is unknown whether they would improve

accuracy in cases such as the blowout which cannot be compared to experimental data.

Lab-scale experiments of unconfined flow can be used to validate PBM models,

but their applicability to large-scale models is still questionable. For the purposes of
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this research, the interfacial area transport equation was used to attempt to expand

the range of applicability of PBM to unconfined bubbly flow at the lab scale.

3.3.2 The Interfacial Area Transport Equation

The interfacial area transport equation (IATE) was based on the population balance

model concept, and was developed specifically with bubbly flow systems in mind un-

like other methods (Kocamustafaogullari and Ishii, 1995). The IATE method solves

for the interfacial area concentration, and returns an effective bubble diameter in

each cell which can then be used by the empirical models for the interfacial forces

and mass transfer rates. The one-group IATE treats all the bubbles as if they were in

the spherical/distorted regimes, which can be a valid assumption in many flow scenar-

ios. This formulation only solves one transport equation, and is not computationally

expensive.

In cases where large-cap, churn-turbulent, or slug bubble regimes are present,

the one-group IATE will no longer be sufficient. A second group was introduced

to account for these regimes, resulting in the creation of a two-group IATE (Ishii

and Kim, 2004). Although this should add additional accuracy, inter-group transfer

terms must be incorporated into the source terms of the equations to account for

bubbles which enter or exit their original regime. These terms can reduce accuracy

if the number of bubbles which could coalesce and/or break up is restricted to some

maximum. For example, uniform binary breakup restricts the number of daughter

bubbles to two identical bubbles, but this may not be representative of physical reality.

The two-group method has promise for the scaled-up gas well blowout case, but

has not been validated in the literature for a wide range of expected bubble sizes

or in large geometries which are unconfined. Furthermore, the implementation of

a two-group IATE method would necessitate the prediction of the velocity of the

bubbles in the second group (Smith et al., 2012b). The twoPhaseEulerFoam solver

could be altered to include a third momentum equation, but the coupling between

the equations through the force terms would have to reflect the change in regime and

be appropriately tuned, which is beyond the scope of this work.

For this study, the one-group IATE method was employed in an unconfined flow

system. The available source terms for the model were not developed for very large

systems, so their applicability is in question. At the assumed bubble sizes of a well

blowout, the drag coefficient may be effectively constant, so should not have a great

impact on the flow dynamics.
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The one-group IATE is derived by consideration of the bubble number density

equation (without phase change) as described by Ishii and Hibiki (2010),

∂f

∂t
+∇ · (f # »

Ug) +
∂

∂t

(
f
dVb
dt

)
=
∑
j

Sj (3.41)

Where f(Vb, x, t) is the number density distribution, Vb [m3] is the bubble volume,

and Sj are the source terms. This equation is multiplied by the interfacial area, Ai,

and integrated between the minimum and maximum bubble volumes of the group,

ˆ Vb,max

Vb,min

[
Ai
∂f

∂t
+Ai∇·(f # »

Ug)+Ai
∂

∂t

(
f
DVb
Dt

)]
dVb =

ˆ Vb,max

Vb,min

Ai

(∑
j

Sj

)
dVb (3.42)

The interfacial area concentration is given by,

ai(x, t) =

ˆ Vb,max

Vb,min

fAidVb (3.43)

This simplifies the first two terms on the left side of Equation 3.42 to be,

∂ai
∂t

+∇ · (ai
# »

Ug) (3.44)

The third term of Equation 3.42 is slightly more difficult to prove. Rewriting Vb = x,

and Ai(Vb) = g(x), the equation becomes,

ˆ Vb,max

Vb,min

g(x)
∂

∂t

(
f
dx

dt

)
dx (3.45)

Through partial integration,

ˆ Vb,max

Vb,min

g(x)
∂

∂t

(
f
dx

dt

)
dx =

[
f
Dx

Dt
g(x)

]Vb,max

Vb,min

−
ˆ Vb,max

Vb,min

dg(x)

dt

(
f
Dx

Dt
g(x)

)
(3.46)

Recalling that f(Vb,min) = f(Vb,max) = 0 because the bubble size only exists between

Vb,min and Vb,max, the first term on the right hand side is zero. Rearranging the

interfacial area to be dependent on bubble volume gives,

Ai = g(x) =

(
6Vb
π

) 2
3

π (3.47)
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And its derivative is,
∂g(x)

∂t
=

2

3x
g(x) (3.48)

Substituting everything into Equation 3.42 and rewriting in terms of V and Ai,

ˆ Vb,max

Vb,min

Ai
∂

∂t

(
f
dVb
dt

)
dVb = −

ˆ Vb,max

Vb,min

2

3Vb

DVb
Dt

fAi (3.49)

Which can be rewritten as,

−
ˆ Vb,max

Vb,min

2

3V

DVb
Dt

fAi = −
ˆ Vb,max

Vb,min

2

3αg

Dαg
Dt

fAi (3.50)

It is assumed at this point that the change in the phase fraction is independent of the

volume of the bubbles, i.e. 1
αg

Dαg

Dt
̸= f(Vb). Ultimately there is some dependence on

the bubble volume, in that the substantial derivative of the phase fraction is equal to

the interphase mass transfer rate, which relies on the interfacial area concentration.

This could be a problematic assumption for this reason. Finding a numerical solution

of the integral could be a potential workaround for this approximation, but this

extension was not attempted in the present study.

Continuing the derivation, from the continuity equation it is known that the sub-

stantial derivative of the phase fraction is equal to the dilatation rate,

∂αg
∂t

+
# »

Ug · ∇αg = ∇ · # »

Ug (3.51)

Adding the dilatation rate into Equation 3.42 results in,

∂ai
∂t

+∇ · (ai
# »

Ug) =
2ai
3αg

∇ · # »

Ug +

ˆ Vb,max

Vb,min

Ai

(∑
j

Sj

)
dVb (3.52)

The source terms are written assuming that the decrease or increase in interfacial area

is always associated with either the doubling or halving respectively of a spherical

bubble volume, i.e. ∆Ai =
1
3
Ai. Since Ai =

ai
n
, where n is the number density of

bubbles equal to n = Ψ
a3i
α2
g
, where Ψ = 1

36π
is the sphericity of spherical bubbles, the

source terms become,

ˆ Vb,max

Vb,min

Ai

(∑
j

Sj

)
dVb =

∑
j

Sj∆Ai =
∑
j

1

3Ψ

(
αg
ai

)2

Sj (3.53)
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The final equation for the IATE, assuming spherical bubbles, is written as,

∂ai
∂t

+∇ · (ai
# »

Ug) = − 2ai
3αg

∇ · # »

Ug +
∑
j

1

3Ψ

(
αg
ai

)2

Sj (3.54)

The processes which contribute to the fluid particle breakup and coalescence were

outlined by Kocamustafaogullari and Ishii (1995). Typically, bubble breakup is con-

sidered to be mostly driven by turbulent eddies and interfacial stability, which are

usually lumped together into a single turbulent interaction term. The turbulent in-

teraction term is an additive term because the interfacial area is greater for the same

volume if there are more bubbles, and by extension, more breakup. The bubble coa-

lescence is usually taken to be a product of random collisions and wake entrainment,

which is highly dependent on the turbulent fluctuations as well. The bubble coales-

cence terms are sink terms because random collisions and wake entrainment usually

result in larger bubbles, reducing the area-to-volume ratio.

The one-group IATE has been shown by Ishii et al. (2005) to be accurate for

pipe diameters between 5.08− 15.2 cm in the bubbly flow regime with small bubbles,

having error less than ±20% when using the source and sink terms of Sun et al.

(2004). For large diameter pipes of 10.2 cm and 20 cm, Tian et al. (2015) found that

the models of Sun et al. (2004) gave the best results for the one-group IATE, along

with that of Smith et al. (2012b) and Ishii and Kim (2001) which all had error less

than ±10 % when compared to interpolated experimental values.

Smith et al. (2012a) indicated that, since most of the models are not dependent on

the channel geometry, there is no obvious impediment to applying them to different

geometries. Some studies, such as Hansen (2009), have used the one-group IATE

model in a bubble column with the source terms of Wu et al. (1998) and Moilanen

et al. (2008). Acher (2015) has compared the IATE model kernels used by Hansen

(2009) with DQMOM, however there were very few bubble size data points. In

general the IATE model was shown to predict a lower bubble size near the walls than

DQMOM.

The IATE model has promise for large-scale cases with larger bubbles (< 1 cm)

where the drag coefficient is likely to be fairly constant, but where the mass transfer

can be highly influenced by the effective bubble diameter in each cell. It has been

applied in this work to attempt to determine its efficacy in unconfined flow, however

additional modifications to the source terms may be required for larger bubbles in

future work.
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3.3.3 OpenFOAM Implementation of the IATE Model

In OpenFOAM, the model was written based on the interfacial curvature κi =
6
d
in lieu

of the interfacial area concentration ai =
6αg

d
. The equation is only slightly different

once the change is worked through, and is written as,

∂κi
∂t

+
# »

Ug · ∇κi = − κi
3αg

∇ · # »

Ug +
∑
j

1

3αgΨ

(
αg
ai

)2

Sj (3.55)

The source terms are written to be implicit in κi. Since κi =
ai
αg
, the summed source

and sink terms envelope the preceeding coefficients and become,

∑
j

1

3αgΨ

(
αg
ai

)2

Sj = κi
∑
j

1

3Ψ

α2
g

a3i
Sj (3.56)

The number of bubbles is n = Ψ
a3i
α2
g
, so the coefficient to the sources becomes 1

3n
.

In this study, the breakup and coalescence models of Wu et al. (1998) have been

implemented in the code. This was one of the original source term models for the

IATE. The turbulent interaction source is,

STI = CTI
n| #»

Ut|
d

(
1− Wecr

We

)1/2

exp(−Wecr
We

) (3.57)

The equation is valid for We > Wecr and does not exist otherwise. CTI = 2.0 is

a constant, Wecr = 0.18 is the critical Weber number, where the Weber number is

defined as,

We =
ρl|

# »

Ur|2d
σ

(3.58)

Where σ [N/m] is the surface tension, and the magnitude of the terminal velocity is,

| #»

Ut| ≈ 1.4(ϵld)
1/3 (3.59)

The random coalescence sink term is given as,

SRC = −CRC
(

n2| #»

Ut|d2

α
1/3
max(α

1/3
max − α

1/3
g )

)(
1− exp

(
− C

α
1/3
maxα

1/3
g

α
1/3
max − α

1/3
g

))
(3.60)

Where αmax = 0.8, CRC = 0.0565 and C = 3.0 are constants.
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Finally, the wake entrainment sink term is given by,

SWE = −CWEC
1/3
D n2d2| # »

Ur| (3.61)

Where CWE = 0.151 is a constant, the drag coefficient is found using a combination

model of Tomiyama et al. (1998) for a pure system,

CD =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16
Re
(1 + 0.15Re0.687) Spherical Bubbles

48
Re

Re > 43.4 Spherical Bubbles

8Eo
3(Eo+4)

Non− Spherical Bubbles

(3.62)

And the relative velocity is approximated to avoid iterating with the drag coefficient,

| # »

Ur| = (1− αg)
1.75

√
2

(
σg(ρl − ρg)

ρ2l

)1/4

(3.63)

The IATE is treated as a diameter model in twoPhaseEulerFoam, which is solved at

the beginning of each new outer PIMPLE loop.

3.4 Mass Transfer Modeling

The new mass transfer algorithm for the solver is capable of selecting a number of

mass transfer models for the Sherwood number to determine the volumetric mass

transfer coefficient. To verify that the algorithm was working as expected, a case

which used a constant Sherwood number was executed in Chapter 6 along with a

case which used a model. Several applicable mass transfer models were considered.

One of the most popular models is that of Frössling (1938) which was derived for

evaporation from falling liquid droplets. It is written as,

Sh = 2 + 0.552Re1/2Le1/3Pr1/3 (3.64)

Where Pr is the Prandtl number, Le is the Lewis number, and Sh is the Sherwood

number defined as,

Pr =
νl
αt
, Le =

αt
Dij

, Sh =
kmd

Dij

(3.65)

Where km [m/s] is the convective mass transfer coefficient (not volumetric). The

volumetric mass transfer coefficient is simply the mass transfer coefficient multiplied

by the interfacial area concentration, as previously noted (km,i). The dimensionless
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numbers were all calculated using the molecular transport coefficients.

The Frössling correlation has been widely used for Re = 2− 2000. For very large

bubbles reaching their terminal velocities, this range could be too low, but should

remain appropriate for the cases discussed in this work.

Akita and Yoshida (1974) experimentally derived a correlation for the Sherwood

number in a bubble column at varying pressures. For Bond numbers between 0.1−100

they found,

Sh = 0.5Sc1/2Ga1/4Bo3/8 (3.66)

Where the Schmidt, Galilei and Bond numbers are defined as,

Sc =
νl
Dij

, Ga =
gd3

ν2l
, Bo =

gd2ρl
σ

(3.67)

Hughmark (1967) determined that for swarms of bubbles in a bubble column, the

Sherwood number is,

Sh = 2 + 0.0187Re0.779Sc0.546
(
dg1/3

D
2/3
ij

)0.116

(3.68)

For much larger Reynolds numbers, Griffith (1960) provides a review of available

models and their ranges of applicability. The three mass transfer models have been

compared against each other at their terminal velocities (determined by the Kolev

(2007) drag model). Figure 3.4 shows the change in km,l value with bubble diameter.
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Figure 3.4: Volumetric mass transfer coefficient (km,l) vs. bubble diameter at terminal
velocity. Small (left) and larger (right) bubble diameters. Liquid properties were for
water at 298 K, and gas properties were for oxygen at STP, αg = 0.3.

Above a 5 cm bubble diameter the km,l values become very close in value, and

stop changing as radically as at the lower bubble sizes. In the large-scale case the

bubbles are expected to be quite large, so the km,l value will be less reliant on the

interfacial area concentration in that range, and the mass transfer coefficient should

stay relatively constant. The Frössling correlation gives the lowest km,l values of the

three models in the larger bubble size range, and highest in the lower size range. It

should give the upper limit on dissolution in the smaller bubble sizes up to 2 cm. Mass

transfer models which were not purely empirical, such as the surface renewal model

or penetration theory, were not used in this study in order to reduce the reliance on

the turbulence and/or bubble size model.

3.5 Finite Volume Methods

The numerical methods which were used in the validation cases were kept consistent

for all validations. The following sections give details on the discretization schemes

and the linear equation solvers which were used.

3.5.1 Interpolation Schemes

The convective terms were discretized in OpenFOAM according to Table 3.2.
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Table 3.2: Convection schemes
Term Scheme

∇ · #»

φα Gauss vanLeer

∇ · αρ #»

φ
#»

U Gauss limitedLinearV 1

∇ · #»

φ
#»

U Gauss limitedLinearV 1

∇ · αρ #»

φe Gauss limitedLinear 1

∇ · αρ #»

φK Gauss limitedLinear 1

∇ · α #»

φP Gauss limitedLinear 1

∇ · αρ #»

φk Gauss limitedLinear 1

∇ · αρ #»

φϵ Gauss limitedLinear 1

∇ · αρ #»

φY Gauss limitedLinear 1

∇ · αρ #»

φκi Gauss limitedLinear 1

∇ · (αρνeff
#»

U ) Gauss linear

∇ ·
[(
αρνeff

(
∇ #»

U T − 2
3
tr(∇ · #»

U )I
))

+ αρ2
3
kI

]
Gauss linear

Gauss vanLeer indicates the use of the Van Leer (1974) flux-limiting total varia-

tion diminishing (TVD) scheme. It is a weighted average of the upwind and central

finite volume schemes with a limiter function of,

φ(r) =
r + |r|
1 + |r|

lim
r→∞

φ(r) = 2 (3.69)

Where r is the ratio between the upwind and downwind gradients. Gauss limitedLin-

ear and limitedLinearV are also flux-limiting TVD schemes which discretize scalar

and vector arguments respectively. The limiter function is similar to that of the

well-known MUSCL scheme and is given by,

φ(r) = max

[
min

(2r
k

)
, 0

]
(3.70)

Where k = 1 is the specified flux limiter coefficient. Gauss linear indicates the

symmetric scheme. Using the TVD schemes ensures that monotonicity is preserved

(Harten, 1983) which is important for the tightly coupled twoPhaseEulerFoam solver.

All other terms were discretized according to type, and all terms of that type used

the same scheme. The schemes which were selected in OpenFOAM are summarized in

Table 3.3.
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Table 3.3: Finite volume schemes

Time Discretization euler

Gradient Discretization Gauss linear

Laplacian Discretization Gauss linear uncorrected

Face Interpolation linear

Surface Normal Gradient Discretization uncorrected

The Laplacian and surface normal gradient terms were discretized using a sym-

metric scheme with no correction for non-orthogonality in all orthogonal meshes.

Some of the meshes detailed in chapters 4-6 were cylinders, and necessarily had some

non-orthogonality. For those cases, a correction was applied. The phase continuity

equation uses the MULES solver in lieu of forward Euler. The selected combination

of schemes provided stability for the validation cases in this work, and were chosen

on this basis.

3.5.2 Linear Equation Solvers

MULES was used for the solution of the phase continuity equation, as previously

mentioned in Chapter 2. The MULES solution is calculated as,

ψi+1 =
1

ϕ 1
∆t

+ Sp

(
ϕψi

1

∆t
+ Su−

∑
faces

(ψ(Φψ)

Vcell

)
(3.71)

Where ψ is the variable to be solved for, Su indicates an explicit source term, Sp

indicates an implicit source term, ϕ is the multiplier to ψ in the time derivative

and (Φψ) represents any additional convective terms in the equation for ψ, treated

explicitly. The final sum indicates a linear interpolation of a surface field to the cell

centers. The MULES solver also limits the discretization of the convective terms like

the TVD schemes.

The pressure equation was solved using the geometric-algebraic multigrid (GAMG)

solver with a diagonal-based incomplete Cholesky (DIC) smoother. All other fields

were solved with the Gauss-Seidel method except for the species equations which

were solved using the preconditioned bi-conjugate gradient (PBiCG) method with

the simplified diagonal-based incomplete L-U (DILU) preconditioner. These meth-

ods are described in detail elsewhere (Hestenes and Stiefel, 1952; Moukalled et al.,

2016). The linear equation solvers which were used were kept consistent throughout
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the validation cases in this work unless otherwise stated.

3.6 Blending

The twoPhaseEulerFoam algorithm was built to accept phase-inversion. For this

reason, models in the gas and liquid must be specified for both the case where gas

is the dispersed phase and the case where liquid is the dispersed phase. In regions

where the dispersed and continuous phase are more difficult to determine, for instance

in the case where αg = 0.5, a blending model can be implemented. This allows for

the coefficients of the interphase forces to have a value which corresponds to a partly

continuous or partly dispersed phase instead of fully continuous or fully dispersed

phase. The blending models can also help stabilize the solution in regions where an

interface, such as a free surface, occurs.

There are three blending models that can be chosen: None, Linear, or Hyperbolic.

Each of the models applies a weighted average,

kblended = (f1 − f2)k + f1k12 + f2k21 (3.72)

Where k is an unordered pair (for an undefined continuous phase) if it exists, k12 is

the coefficient if phase 1 is dispersed, k21 is the coefficient if phase 2 is dispersed, and

f1 and f2 are weights. The weights are defined for the linear model as,

f1 = min

(
max

(
α1 − α1,max

α1,min − α1,max

, 0

)
, 1

)

f2 = min

(
max

(
α2,min − α2

α2,min − α2,max

, 0

)
, 1

) (3.73)

Where αmin is the volume fraction at which the phase is fully dispersed, and αmax

is the volume fraction at which the phase is fully continuous. To avoid using an

intermediate model, theses values can be the same for both phases (i.e. the first term

vanishes). For the no-model blending, the weights are,

f1 = α1

f2 = α2

(3.74)
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And for the Hyperbolic model,

f1 =
1 + tanh(4

s
(α1 − α1,min))

2

f2 =
1 + tanh(4

s
(α2,min − α2))

2

(3.75)

Where s is an adjustable constant. The three blending methods are demonstrated

in Figure 3.5 for arbitrary coefficient values of k = 1, k12 = 0.1 and k21 = 5 with a

symmetric αmin and αmax.
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Figure 3.5: The three blending models for values of α1,min = 0.3, α1,max = 0.7, and
s = 0.5.

For the purposes of the current study, the linear blending model was sufficient.

The blended region was minimized such that each case was unlikely to have any

blended regions.



Chapter 4

Turbulence Model Study

In two-phase flow, the turbulence and interphase forces are strongly coupled, so val-

idating the turbulence models separately is theoretically problematic. Despite the

demonstrated effectiveness of turbulence models in many applications, foundation-

ally they are not verifiable and can only be labeled either realizable or not based on

validation against experimental data. In combination with different interphase force

models, the results also may vary. For this reason the models described in Chapter 3

are consistent throughout the validation studies in this chapter.

Optimization of all models is practically impossible, particularly when validating

against small-scale experiments for potential use on a multiscale simulation such as

the gas well blowout case. Although it may be possible to isolate certain forces

in experiment and validate models against the results, the turbulence model may

ultimately not work well with other models, or it may work better. In this chapter,

several turbulence models were compared to experimental data to investigate the

effect of the turbulence model on simulations of a bubble plume.

4.1 Fluid Properties

The fluid properties, which were used for all the simulations in this chapter and in

Chapter 5 are given in this section to avoid ambiguity. Table 4.1 gives the relevant

fluid properties for the gas species in the simulations. The ideal gas law was used

to determine the density for all gas-phase species while the liquid phase was incom-

pressible. Other properties were calculated at the temperature condition given in the

study, but were not temperature dependent in the simulations.

Table 4.1: Gas phase species properties

Species Molecular Weight Viscosity Specific Heat Capacity Prandtl Number

Air 28.9 g/mol 1.7× 10−5 Pa · s 1004 J/kg ·K 0.7

The temperature for all the validation simulations was 20◦C. The properties of

each species in the liquid phase are given in Table 4.2.

63



64

Table 4.2: Liquid phase species properties

Density Molecular Weight Viscosity Specific Heat Capacity Prandtl Number

1000 kg/m3 18 g/mol 1× 10−3 Pa · s 4293 J/kg ·K 8.34

4.2 Sheng and Irons (1993) Experiment

An experiment which was expected to maintain a fairly constant bubble size was used

for comparing turbulence models in this work. As the bubble size model is likely to

improve the prediction, determining appropriate turbulence models to use without it

first is sensible. An absolute determination of the best turbulence model to use for

bubbly plumes with all force models and over all length-scales is not realistic. For

this study, a bubble plume produced in a model ladle was simulated because it was

one of the largest available bubble plume data sets.

The results of Sheng and Irons (1993) were used to compare the turbulence models.

They showed that coalescence was negligible at a gas flowrate of 5× 10−5 m3/s from

the nozzle in their study. The flowrate chosen also resulted in a relatively high inlet

velocity, which is desirable when comparing models for eventual application to a

scenario where the inlet velocity is also high, and mixing is due solely to the gas

injection, such as for the full-scale gas well blowout. The experiment was also chosen

because the gas inlet was a single sparger instead of a porous or perforated plate.

This allowed for the analysis of the gas spread, which is important when considering

the large-scale gas well blowout scenario.

The study of Lou and Zhu (2013b) replicated the ladle of Sheng and Irons (1993)

with their own suite of interphase force and turbulence models. They determined

that the Kolev (2012) drag model in conjunction with the Lopez de Bertodano (1998)

model with CTD = 0.1 and CL = 0.1 gave the optimal result. Since these details were

not included in the Sheng and Irons (1993) paper, which also included a turbulence

model comparison, the force models used in their study were used in the present

study as well. The Sheng and Irons (1993) study compared five RANS turbulence

models and determined that their tuned model, that of Simonin and Viollet (1988)

with Ck = 0.75, gave them the best result. Sheng and Irons (1993) assumed axial

symmetry and gave 2-D simulation results, while Lou and Zhu (2013b) gave 3-D

results.

One of the most important aspects of the full-scale well blowout is the amount of
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lateral spreading of the gas. Aside from the lift and turbulent dispersion forces, tur-

bulence is primarily responsible for the lateral distribution of the gas phase fraction.

The experimental setup in Sheng and Irons (1993) was a model ladle, 500 mm

in diameter with a flush-mounted 4 mm diameter nozzle at the centre bottom. The

ladle was 760 mm high with a free surface at 420 mm, surrounded by a water-filled

box to prevent distorion. Five, 3 mm measurement slots were cut into the wall of

the cylinder, as shown in Figure 4.1. Measurements were taken with a combined

laser Doppler anemometer (LDA) and electrical probe for the measurement of bubble

velocities and phase fractions.

Figure 4.1: The vertical cross-section of the model ladle of Sheng and Irons (1993).

Since the bubble diameter was not given in Sheng and Irons (1993), the formula

of Sano and Mori (1976) was used to estimate the initial diameter of bubbles exiting

a nozzle, as in Lou and Zhu (2013b), in the simulations in this chapter,

d =

[(
6σdo
ρlg

)2

+ 0.0248(Q2do)
0.867

]1/6
(4.1)

Where do [m] is the nozzle diameter and Q [m3/s] is the volumetric flowrate. The
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bubble diameter obtained for a flowrate of 5× 10−5 m3/s was 0.014 m. This value is

consistent with the range of bubble sizes in the column, between 5−10 mm, reported

by Sheng and Irons (1993) and also would correspond to a bubble frequency of around

10 Hz as observed by Hoefele and Brimacombe (1979) and Coppock and Meiklejohn

(1951).

4.3 Case Setup for the Turbulence Study

The computational domain was taken to be cylindrical with D × z = 65 × 40 cells

(max ∆
dg

= 0.934, min ∆
dg

= 0.35). The nozzle was represented by 1 cell on the bottom

surface, totalling approximately the nozzle diameter (Area = 1.60 × 10−5 m2). The

domain was meshed as a central rectangle with four curved blocks surrounding it, as

shown in Figure 4.2. The blocks were graded in the z-direction with a first-to-last cell

expansion ratio of 1:2. The majority of the plume was contained near the center of

the ladle, so it was more refined than the rest of the domain, which was kept relatively

fine to capture the liquid velocity recirculation.

Figure 4.2: The computational domain for the turbulence model comparison cases.
Top view (left) and cross-section (right).

The boundary conditions for all the simulations are summarized in Table 4.3.

Wall functions were not used for the k and ϵ equations. Some of the OpenFOAM ter-

minology for the boundary conditions is explained here. The inletOutlet condition

determines the boundary condition based on the direction of the flux, setting the
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boundary condition to a Neumann condition ∂ξ
∂n

= 0 if it is out of the domain and

a Dirichlet condition ξ = 0 if it is inward unless otherwise specified in the table.

The fixedFluxPressure condition sets the modified pressure gradient based on the

flux at the boundary. The prghPressure condition uses the density and the height,

relative to a reference height in the domain, to determine the modified pressure at

the boundary with a set value of pressure. In the present simulations, the mixture-

averaged density was used. The calculated specification indicates that no boundary

condition was applied. Finally, the slip condition imposes a zero-shear wall condition

for velocity at the boundary.

Table 4.3: Boundary conditions for the turbulence validation cases

Walls Outlet Bottom Inlet

Temperature
Gas zeroGradient inletOutlet 293 K zeroGradient 293 K

Liquid zeroGradient inletOutlet 293 K zeroGradient 293 K

Phase Fraction
Gas zeroGradient inletOutlet 0 zeroGradient 0.7853

Liquid zeroGradient inletOutlet 1 zeroGradient 0.2147

Velocity
Gas (0, 0, 0) m/s zeroGradient (0, 0, 0) m/s (0, 0, 3.979) m/s

Liquid (0, 0, 0) m/s slip (0, 0, 0) m/s (0, 0, 0) m/s

Modified
Pressure

zeroGradient prghPressure zeroGradient zeroGradient

Turbulent
Kinetic Energy

zeroGradient inletOutlet 0 zeroGradient zeroGradient

Turbulent
Dissipation Rate

zeroGradient inletOutlet 0 zeroGradient 1× 10−3 m2/s3

Turbulent
Thermal Diffusivity

calculated calculated calculated calculated

Turbulent Viscosity calculated calculated calculated calculated

The initial conditions for the fields are given in Table 4.4.
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Table 4.4: Initial field conditions for the turbulence validation cases

Temperature Phase Fraction Velocity Modified
PressureGas Liquid Gas Liquid Gas Liquid

293 K 293 K 0 1 (0, 0, 3.979) m/s (0, 0, 0) m/s 1× 105 Pa

Turbulence initial conditions are given in Table 4.5 below. The turbulent kinetic

energy was initialized as non-zero even though the liquid was initially stationary to

avoid division by zero errors. The same was done for the turbulent kinematic viscosity

and the turbulent thermal diffusivity.

Table 4.5: Initial turbulent field conditions
Turbulent Kinetic
Energy [m2/s2]

Turbulence
Dissipation
Rate [m2/s3]

Turbulent Thermal
Diffusivity [kg/m · s]

Turbulent
Kinematic

Viscosity [m2/s]

Liquid Liquid Gas Liquid Gas Liquid

1× 10−3 1× 10−3 1× 10−12 1× 10−12 1× 10−12 1× 10−12

All of the simulations were initially unstable due to the high inlet velocity. The

simulations were initialized with a low time-step which was allowed to increase over

time based on the Courant Freidrichs Lewy (CFL) condition (Comax = 0.5). All the

simulations were very sensitive to the time-step, particularly in the calculation of

drag. A maximum of ∆t = 0.001 s was therefore also employed as a second condition

on the time-step.

Four outer correctors and two inner correctors were selected for the PIMPLE loop,

and turbulence was solved on every outer loop. Residuals (absolute tolerance) for the

solutions of every property were kept below 1 × 10−7 and convergence on the outer

PIMPLE loops was closely monitored.

4.4 Results

To assess which turbulence models could be suitable for application with the

twoPhaseEulerFoam solver, the phase fraction contours between the model result and

the experiment were compared. Predicting the correct spread of the gas is important

for the interfacial area concentration prediction as well as the mass transfer rate,

both of which are proportional to the phase fraction. The magnitude of the turbulent
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kinetic energy in the liquid is also very important to predict correctly because it has

a major impact on the liquid velocity. The experimental results of Sheng and Irons

(1993) are shown for reference in Figure 4.3, with 10 levels of the phase fraction and

9 levels of the turbulent kinetic energy.
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Figure 4.3: Experimental results from Sheng and Irons (1993). Turbulent kinetic
energy (left) and phase fraction (right) contours for a volumetric gas flowrate of 50
mL/s in a model ladle. The graph begins from the first measurement location, 0.027
m up the ladle.

For the simulations, all data was averaged over a minimum of 50 s, after the

gas had reached the free surface. Each of the cases was executed on four processors,

however computational speed was not compared due to the difference in frequency and

age of the processors that were used. In general, the simulation which incorporated

the Smagorinsky (1963) model was the fastest to run. The phase fraction contours in

each of the following figures are the same as the contours of Figure 4.3.

The combinations of simulations that were included in this chapter are summarized

in Table 4.6. Several lift force coefficients were applied to test cases in advance of the

included simulations, and the results were consistent with the conclusion of Lou and
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Zhu (2013b) that the lift coefficient should be CL = 0.1. The boundary conditions

were also varied to attempt to obtain the most realizable result in the final simulations.

Table 4.6: Models and tuned parameters

Model Bubble Sizes Meshes BIT Viscosity
Lopez de Bertodano (1998)

Turbulent
Dispersion Coefficient

Behzadi et al. (2004) d = 0.014 m M2 Yes 0.2

Ničeno et al. (2008b) d = 0.014 m M2 Yes 0.1

Smagorinsky (1963) d = 0.014 m
M2 No 0.4

M2 Yes 0.2

Simonin and Viollet (1988)

d = 0.005 m M2 Yes 0.2

d = 0.01 m M2 Yes 0.2

d = 0.014 m

M1 Yes 0.2

M2 Yes 0.2

M3 Yes 0.2

d = 0.02 m M2 Yes 0.2

4.4.1 General Model Comparison

The time-averaged result for the phase fraction from the simulation of the ladle with

the Behzadi et al. (2004) model is shown in Figure 4.4. A turbulent dispersion

coefficient of CTD = 0.2 was found to be the most appropriate through trial and error.

The coefficient was chosen based on whether it maximized the spread without splitting

the plume down the centre, as well as how closely it matched the experimental data.

The model yielded the least spread of the phase fractions compared to the other

turbulence models, but the general shape was correct.

The Simonin and Viollet (1988) model result for the time-averaged phase fraction

is shown in Figure 4.5. A turbulent dispersion coefficient of CTD = 0.2 was used to

maximize the spread while attempting to match the experimental data. The spread

and location of the contours are similar to those in the Sheng and Irons (1993) experi-

mental study. The α = 0.233 contour is slightly higher, and the higher phase fraction

contours disappear much lower in the ladle simulation than in the experimental study.
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Figure 4.4: Phase fraction contours using the Behzadi et al. (2004) k − ϵ model.

Figure 4.5: Phase fraction contours using the Simonin and Viollet (1988) k−ϵ model.

The time-averaged phase fraction result for the Ničeno et al. (2008b) model case

is shown in Figure 4.6. A turbulent dispersion coefficient of CTD = 0.1 was used,
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although all coefficients caused overly high spreading of the low phase fractions and

not enough spreading of the higher fractions. The phase fraction contours are also not

quite symmetric about the axis, and a longer averaging time may have been necessary

for the case.

Figure 4.6: Phase fraction contours using the Ničeno et al. (2008b) model.

The time-averaged phase fraction result for the Smagorinsky (1963) model case

is shown in Figure 4.7. A turbulent dispersion coefficient of CTD = 0.4 was found

to yield a result which was closest to the experimental data through trial and error.

Compared to the experimental result, the contours are closer than those of Behzadi

et al. (2004), but the higher phase fraction contours still did not extend far enough

up the ladle.

The time-averaged phase fraction result for the Smagorinsky (1963) model case

with the BIT viscosity is shown in Figure 4.8. A turbulent dispersion coefficient of

CTD = 0.2 was used based on trial and error. The plume developed a minimum down

the center, but the simulation came closest to the experimental data with this value.

The phase fraction contours are not totally symmetric about the axis, which, like with

the Ničeno et al. (2008b) model, indicates that a longer averaging time may have been

necessary for the case. The high phase fractions were suppressed, and spreading was

only observed in the lowest phase fractions.
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Figure 4.7: Phase fraction contours using the Smagorinsky (1963) model.

Figure 4.8: Phase fraction contours using the Smagorinsky (1963) model with the
BIT viscosity term of Sato and Sekoguchi (1975).
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4.4.2 Detailed Model Comparison

The centreline profile of the axial liquid velocity obtained with each model is shown

in Figure 4.9. The Smagorinsky (1963) model produced the best result of the five

models, but it, like all the other models except the Simonin and Viollet (1988) model,

exhibited strange behaviour near the top of the ladle. This may be due to the un-

physicality of the boundary conditions compared to the true free-surface behaviour.

The Simonin and Viollet (1988) model did not have this effect, but resulted in a very

low liquid velocity along the centreline. This result is not the same as that obtained

by Sheng and Irons (1993), who found that their modification to the turbulent kinetic

energy and turbulent dissipation rate equation source terms gave them results for the

liquid axial velocity which matched well with the experimental data. Lou and Zhu

(2013b) also found good agreement between their model and the experiment. The

overprediction of the liquid axial velocity by the Behzadi et al. (2004) model was ex-

pected due to the comparisons made by Sheng and Irons (1993), which showed that

several other k − ϵ models tended to result in a high liquid axial velocity along the

centreline as well. The other two models gave similar results to each other, but did

not match the trend of the data well.
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Figure 4.9: The time-averaged axial liquid velocity along the centreline of the plume.

The radial profile of the time-averaged axial liquid velocity at 0.21 m is shown in

Figure 4.10. None of the models were able to capture the effect of the wall, and this
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may be due to the lack of wall functions used in the k − ϵ cases. The Smagorinsky

(1963) model was the closest to predicting the correct phase fraction at 0.21 m at the

centreline, but did not produce the correct amount of spreading, resulting in an overly

steep slope in the radial direction between r = 0 m and r = 0.05 m. The Simonin and

Viollet (1988) model predicted too much spreading of the phase fraction in the radial

direction, caused by too high a value of liquid axial velocity, and underpredicted the

value at the centreline. The Ničeno et al. (2008b) model, as seen on the contour map,

resulted in a large spread of the lower phase fractions, which is also shown by the

radial profile for the velocity seen here. The Smagorinsky (1963) model with the BIT

viscosity term appears to have the most accurate trend in the liquid axial velocity

along the radial direction, however only three experimental data points were provided

near the centreline so this would be difficult to quantify.
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Figure 4.10: The average axial liquid velocity in the radial direction at 0.21 m from
the bottom of the ladle.

The time-averaged phase fractions from each model along the centreline of the

plume are shown in Figure 4.11. The Smagorinsky (1963) model gave the closest

result to the experimental value, followed by the Simonin and Viollet (1988) model.

The Behzadi et al. (2004) model has a large dip in its profile adjacent to the centreline,

and also exhibited the most spread of the higher phase fractions. The Ničeno et al.

(2008b) and Behzadi et al. (2004) models were very far off from the experimental
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data.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Distance from Bottom (m)

G
a
s
P
h
as
e
F
ra
ct
io
n
,
α
g

Measured

Behzadi et al. (2004)

Smagorinsky (1963)

Smagorinsky (1963) with BIT

Simonin and Viollet (1988)
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Figure 4.11: The average phase fraction along the centreline of the plume.

The turbulent kinetic energy in the liquid phase was plotted for the five models.

The k − ϵ models resulted in the lowest turbulent kinetic energies in the liquid.

The Behzadi et al. (2004) model gave the lowest values along the centreline, which

is consistent with the finding in Sheng and Irons (1993). The Simonin and Viollet

(1988) model simulation results were not consistent with the modeled results of Sheng

and Irons (1993), who found that their simulations came very close to matching with

the experiment, which was not the case in the present study. The resolved turbulent

kinetic energies for the two no-equation LES-SGS models were computed as,

k =
1

2
Ul

2
(4.2)

The Smagorinsky (1963) model predicted the highest value for the turbulent kinetic

energy along the centreline, which did not correspond with the experimental data.

Considering only the resolved stress was plotted, the total turbulent kinetic energy

including the sub-grid quantity would have resulted in an even higher value. Al-

though the Simonin and Viollet (1988) model with the altered coefficient of Sheng

and Irons (1993) did not yield a result close to the experimental result, nor did the

case reproduce the modeled result of Sheng and Irons (1993) it probably gave the best
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prediction aside from the two Smagorinsky (1963) models for the turbulent kinetic

energy.
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Figure 4.12: The average turbulent kinetic energy along the centreline of the plume.

In general, the Smagorinsky (1963) model and the model of Simonin and Viollet

(1988) gave the best predictions for the parameters shown. The Smagorinsky (1963)

model overpredicted the turbulent kinetic energy in the liquid, but obtained the

closest results to the experimental study for all the other parameters. The Simonin

and Viollet (1988) model with the altered coefficient did not behave as it did in the

Sheng and Irons (1993) study, and the reason for this is unknown, but is likely due

to the tuning of the force models. The differences could have come down to the

convergence criteria of the other studies, number of dimensions simulated, numerical

schemes, etc. Aside from the Smagorinsky (1963) model, the Simonin and Viollet

(1988) model still gave better predictions for the parameters than the other models.

To test whether the Simonin and Viollet (1988) model with the alterations of

Sheng and Irons (1993) was obtaining the best result, two additional studies were

performed. The first, a mesh study, compared three meshes to verify that the optimal

mesh was being used for the model. The second study was performed to observe the

sensitivity of the results to the bubble size. The results of these studies are given in

the following sections.
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4.4.3 Mesh Study

A mesh study was performed using the Simonin and Viollet (1988) model, to be sure

the model had been optimized in the turbulence model comparison. To determine

the mesh which yielded the best result for the Simonin and Viollet (1988) turbulence

model, the axial liquid velocity, volume fraction, and liquid turbulent kinetic energy

along the centreline were compared to the experimental values. Mesh sizes of M1 =

187500 cells (max ∆
dg

= 0.76) and M3 = 42750 cells (max ∆
dg

= 1.4) were compared to

the original mesh (M2 = 105000).

The first comparison for the three meshes was for the phase fraction along the

centreline. The most resolved mesh, M1, resulted in the lowest phase fraction along

the centreline. This was likely because the mesh size was so small that the turbulent

kinetic energy was overly dissipated near the inlet to the domain. The least refined

mesh, M3, overpredicted the phase fraction along the centreline, despite being the

closest to obeying the Milleli condition of ∆
dg

= 1.5. The best result for the phase

fraction along the centreline was decidedly the mesh which was used in the turbulence

model comparison, M2.
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Figure 4.13: Comparison of experimental and mesh study results for the phase fraction
along the centreline.

The axial liquid velocity along the centreline is shown in Figure 4.14 for the three
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meshes. The least refined mesh gave the highest average liquid axial velocity along

the centreline of the three meshes, making it slightly closer to the experimental values

than the other meshes. The most refined mesh gave the worst result for the liquid

axial velocity, which lines up with the result obtained for the phase fraction as well.
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Figure 4.14: Comparison of experimental and mesh study results for the axial liquid
velocity along the centreline.

The turbulent kinetic energy in the liquid along the centreline is shown in Figure

4.15. None of the meshes improved upon the result obtained in the turbulence model

comparison. The trends are very different than in the experiment, and the values

are very far off. The turbulent kinetic energy is dissipated too quickly near the inlet,

where it should be increasing. Near the top of the ladle, the turbulent kinetic energy

increases, where it appears to be decreasing in the experimental data.
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Figure 4.15: Comparison of experimental and bubble size study results for the tur-
bulent kinetic energy along the centreline.

The mesh that was used in the turbulence comparison should have given the best

result for the Simonin and Viollet (1988) model. The mesh was clearly not the cause

for the discrepancy in simulation results between the study of Sheng and Irons (1993)

and those displayed in this study. Lou and Zhu (2013b) did not give the details about

the mesh they used, but based on the picture, it appears to be similar to the second

mesh in this study. Mesh independence does not appear to be achievable with the

parameters selected.

4.4.4 Bubble Size Study

In the turbulence model comparison, only a single constant bubble size was chosen.

To ensure that the choice of bubble size did not have an extraordinary influence on

the model of Simonin and Viollet (1988), a range of bubble sizes was chosen to be sure

that the bubble size was not the cause for the discrepancy between the result of the

current study and that of Sheng and Irons (1993). Bubble diameters of d1 = 0.005

m, d2 = 0.01 m, d3 = 0.014 m (the original size), and d4 = 0.02 m were compared to

the experimental values.

The phase fraction along the centreline for the four different bubble sizes is shown

in Figure 4.16. The two middle bubble sizes, d2 and d3 gave the closest results to the
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experimental data. Bubble size d2 was closer to the experimental result near the inlet

of the plume, but maintained too high of a phase fraction near the outlet. The same

is true for bubble size d3, but the phase fraction in that simulation stayed the closest

to the experimental result for both the top and bottom of the ladle. For the phase

fraction prediction, the bubble size selected in the original turbulence comparison

study, d3, behaved the best with the selected model.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

Distance from Bottom (m)

G
as

P
h
as
e
F
ra
ct
io
n
,
α
g

Experiment
d1 = 0.005 m
d2 = 0.01 m
d3 = 0.014 m
d4 = 0.02 m

Figure 4.16: Comparison of experimental and bubble size study results for the phase
fraction.

The axial liquid velocity for each bubble size simulation is shown in Figure 4.17.

The smallest bubble size simulation, d1, obtained the closest result to the experi-

mental values. None of the curves had the correct trend for the liquid axial velocity,

instead of increasing in value quickly near the bottom and gradually decreasing, all

the simulations resulted in liquid axial velocity trends which were low near the bot-

tom but higher at the top of the ladle. The original bubble size, d3, had the lowest

liquid axial velocity of all the bubble size simulations, but bubbles sizes d1, d2, d3,

and d4 all gave very close results to each other in their predictions.
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Figure 4.17: Comparison of experimental and bubble size study results for the axial
liquid velocity along the centreline.

The liquid turbulent kinetic energy is shown for the four bubble sizes in Figure 4.18

along the centreline of the plume. The smallest bubble size, d1, again gave the closest

result to the experimental data. The trend for the turbulent kinetic energy for all the

bubble sizes was not similar to that given by the experiment, still decreasing near the

bottom of the ladle, and then only increasing again near the top. The experimental

data may be subject to variability of the flow field, but the study of Sheng and Irons

(1993) was capable of reproducing the experimental data nevertheless.

Despite bubble size d1 resulting in the closest prediction for the liquid axial ve-

locity and the liquid turbulent kinetic energy, its phase fraction prediction along the

centreline was so far off from the experimental values that it must be disqualified.

The original bubble size, d3, resulted in approximately the same liquid axial veloc-

ity as the other sizes, although it was slightly lower. It also was the closest along

the centreline to the experimental data for the phase fraction. The originally chosen

bubble size was most likely to have been the optimal choice for those reasons.
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Figure 4.18: Comparison of experimental and bubble size study results for the tur-
bulent kinetic energy along the centreline.

4.5 Discussion

Based on the results from the mesh and bubble size studies, the Simonin and Viollet

(1988) model with the alterations of Sheng and Irons (1993) was optimized in the

original comparison study between the five turbulence models. Nevertheless, it did

not yield the same or similar result as in the simulation of Sheng and Irons (1993).

The number of possible sources for error were reduced through the mesh and bubble

size studies, but there are other tuning parameters that could be investigated more

closely, such as wall functions and boundary conditions, the turbulent dispersion

force, and the lift force. These parameters had been tested by trial and error before

executing the simulations, but all the permutations of the tuning parameters could

not be compared in the current study due to the time required for each simulation.

The twoPhaseEulerFoam algorithm appears to be very sensitive to tuning, and this

characteristic would indicate that it may not be a good model to use on a simulation

where tuning parameters could not be adjusted to match experimental data.



Chapter 5

Hydrodynamic Study and IATE Model Evaluation

The results of the previous chapter did not compare well with the results obtained

by Sheng and Irons (1993). An experiment which was more representative of the

hydrodynamics in the plume region of the full-scale case was used to attempt to fur-

ther assess the hydrodynamic predictions obtained using twoPhaseEulerFoam. The

numerical study of Dhotre and Smith (2007), which used the data from the second

experimental study of Simiano (2005), was reproduced in this section. In order to

assess the effectiveness of the IATE model, the experimental results from the first

experimental study of Simiano (2005) were used to apply the model of Wu et al.

(1998) described in Chapter 3. The two separate case studies are referred to as case

1 and case 2, respectively, throughout this chapter.

5.1 Experimental Configurations of Simiano (2005)

The experiments of Simiano (2005) were chosen because the wall was quite far from

the plume, and the flow could potentially be considered almost unconfined. Experi-

mental measurements of the interfacial area were also provided at several heights in

the vessel, and were used for comparison. Additionally, simulation results from Dhotre

and Smith (2007) and Dhotre et al. (2009) were available to help in the tuning of the

sub-models.

In the experiment, a bubble plume was produced in a large vessel, D × z = 2 m

× 3.4 m, which was monitored using a combination of photography, thermocouple

measurements, pitot tubes, optical and electromagnetic probes, and particle image

velocimetry (PIV). The vertical cross-sections of the two setups are shown in Figure

5.1. Two separate case studies were used to assess the hydrodynamics and bubble

size predictions for the two setups.

The injection plate was comprised of 350 needles with 1 mm inner diameters in

the first case, and 716 needles with inner diameters of 1 mm for the second case,

distributed on a 0.15 m diameter plate and a 0.3 m diameter plate respectively.

84
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Figure 5.1: The cross-sections of the geometry for the experiments of Simiano (2005).
Case study 1 (left) and case study 2 (right).

5.2 Setup for the First Case Study

Three meshes for case 1 were used to simulate the first experimental study of Simiano

(2005). Mesh 1 had 12150 cells, with max ∆
dg

= 54.00 and min ∆
dg

= 7.00 for the same

initial bubble diameter as the first mesh (Figure 5.2). The inlet of the second mesh

did not have smooth circular edges, which could cause artificial turbulence generation.

The first mesh was made to address this potential issue.

Figure 5.2: The first computational domain for the case 1 simulation of the experi-
ments of Simiano (2005). The meshed domain (left) and cross-section of the domain
(right).

Mesh 2 had 108750 cells, D × z = 85 m × 30 m, with max ∆
dg

= 24.84 and min
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∆
dg

= 4.03 assuming a 2.5 mm bubble diameter (Figure 5.3). This mesh was slightly

less refined than that of Dhotre and Smith (2007) in the radial direction, and had

the same refinement in the z-direction. Smearing of the properties in the corner

directions of the central rectangle due to the interpolation was not observed. The

inlet was modeled as the 0.15 m diameter circular plate and the free surface was not

included in the simulations.

Figure 5.3: The second computational domain for the case 1 simulation of the exper-
iments of Simiano (2005). Top view (left) and cross-section (right).

Mesh 3 was the same mesh as in Dhotre and Smith (2007), but no free surface

was included in the simulation. It had 352000 cells with max ∆
dg

= 18.30 and min
∆
dg

= 2.03 with the same initial bubble diameter as the first mesh. Figure 5.4 shows

mesh 3.

Figure 5.4: The third computational domain for the case 1 simulation of the experi-
ments of Simiano (2005). Top view (left) and cross-section (right).

The boundary conditions for the first case are given in Table 5.1 and were the same

for all meshes, except in the simulations with wall functions. The inlet gas flow rate

was 7.5 NL/min in the experimental study, and the velocity was calculated based on

the whole needle plate as the inlet. The gas flow in was not adjusted for the pressure
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or temperature, which was a minor oversight. This would change the density slightly,

but would not change the trends in the results appreciably for these cases. Since the

model of Simonin and Viollet (1988) is only meant to be solved in the liquid, only

the liquid turbulence model transport equations were solved. The turbulent kinetic

energy and dissipation rate were set to low values at the inlet to avoid division by

zero, although their values would have been zero since no liquid entered the vessel

through the inlet. Adjusting this low value did not have an appreciable impact on

the result.

Table 5.1: Boundary conditions for case 1

Walls Oulet Bottom Inlet

Temperature
Gas zeroGradient zeroGradient zeroGradient 293 K

Liquid zeroGradient zeroGradient zeroGradient 293 K

Phase Fraction
Gas zeroGradient zeroGradient zeroGradient 0.5

Liquid zeroGradient zeroGradient zeroGradient 0.5

Velocity
Gas (0, 0, 0) m/s zeroGradient (0, 0, 0) m/s (0, 0, 0.01415) m/s

Liquid (0, 0, 0) m/s slip (0, 0, 0) m/s (0, 0, 0) m/s

Modified Pressure zeroGradient 1× 105 Pa zeroGradient zeroGradient

Turbulent
Kinetic Energy

zeroGradient inletOutlet 0.001 zeroGradient 1× 10−3 m2/s2

Turbulent
Dissipation Rate

zeroGradient inletOutlet 0.001 zeroGradient 1× 10−3 m2/s3

Turbulent Thermal
Diffusivity

calculated calculated calculated calculated

Turbulent
Viscosity

calculated calculated calculated calculated

The turbulent dispersion model of Davidson (1990) was used with a constant

value for the drag coefficient, Cd = 0.44, along with a lift coefficient of CL = 0.1 and

a virtual mass coefficient of CVM = 0.5 as in the study of Dhotre and Smith (2007).

The bubble diameter was set as a constant value of 2.5 mm as in Dhotre and Smith

(2007). The initial field conditions for the first case are specified in Table 5.2.

Table 5.2: Initial field conditions for case 1
Temperature Phase Fraction Velocity Modified

Pressure

Turbulent
Dissipation

Rate

Turbulent
Kinetic
Energygas liquid gas liquid gas liquid

293 K 293 K 0 1 (0, 0, 0.01415) m/s (0, 0, 0) m/s 1× 105 Pa 1× 10−3 m2/s3 1× 10−3 m2/s2
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5.3 Setup for the Second Case Study

The mesh for case 2 had 181250 cells, D × z = 85 m × 50 m, with max ∆
dg

= 4.17

and min ∆
dg

= 16.06 assuming a 4 mm inlet bubble diameter. The inlet was modeled

as the whole 0.3 m diameter circular plate. The mesh is shown in Figure 5.5.

Figure 5.5: The computational domain for the case 2 simulation of the experiments
of Simiano (2005). Top view (left) and cross-section (right).

The initial field conditions for the second case are specified in Table 5.3. The

turbulent dissipation rate and the turbulent kinetic energy were set to low values to

avoid division by zero.

Table 5.3: Initial field conditions for case 2
Temperature Phase Fraction Velocity Modified

Pressure
Interfacial
Curvature

Turbulent
Dissipation

Rate

Turbulent
Kinetic
Energygas liquid gas liquid gas liquid

293 K 293 K 0 1 (0, 0, 0.71) m/s (0, 0, 0) m/s 1× 105 Pa Varies 1× 10−3 m2/s3 1× 10−3 m2/s2

The boundary conditions for the second case are given in Table 5.4. The inlet gas

flow rate was 30 NL/min in the experimental study, and the velocity was calculated

based on the whole needle plate as the inlet (i.e. superficial velocity). Again, the

inlet flowrate was not adjusted for temperature and pressure. The phase fraction was
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set to a low value in this case, unlike in the previous case where the phase fraction

was initially high. The phase fraction was set to a lower value than in the first case,

approximately corresponding to the mean phase fraction at the four locations in the

vessel where it was experimentally measured.

Table 5.4: Boundary conditions for case 2

Walls Oulet Bottom Inlet

Temperature
Gas zeroGradient zeroGradient zeroGradient 293 K

Liquid zeroGradient zeroGradient zeroGradient 293 K

Phase Fraction
Gas zeroGradient zeroGradient zeroGradient 0.01

Liquid zeroGradient zeroGradient zeroGradient 0.99

Velocity
Gas (0, 0, 0) m/s zeroGradient (0, 0, 0) m/s (0, 0, 0.71) m/s

Liquid (0, 0, 0) m/s slip (0, 0, 0) m/s (0, 0, 0) m/s

Modified Pressure zeroGradient 1× 105 Pa zeroGradient zeroGradient

Interfacial Curvature zeroGradient zeroGradient zeroGradient Varies

Turbulent
Kinetic Energy

zeroGradient inletOutlet 0.001 zeroGradient 1× 10−3 m2/s2

Turbulent
Dissipation Rate

zeroGradient inletOutlet 0.001 zeroGradient 1× 10−3 m2/s3

Turbulent Thermal
Diffusivity

calculated calculated calculated calculated

Turbulent
Viscosity

calculated calculated calculated calculated

5.4 Results and Discussion

The first case was done to verify that the hydrodynamics of the Dhotre and Smith

(2007) study could be replicated with twoPhaseEulerFoam. As previously noted, the

same parameters and force models were used as in the 3-D Dhotre and Smith (2007)

simulation. The turbulence model of Simonin and Viollet (1988) with the altered

parameters of Sheng and Irons (1993) was used consistently for all the cases discussed

in this chapter. The second case was divided into two sections. The first section used

the same parameters as the first case, but also included the implementation of the

IATE model. The second section used the turbulence dissipation model of Lopez de

Bertodano (1998) along with the IATE model, with all the other parameters the same

as the previous case. The fluid properties from Chapter 4 for an air-water system
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were used (Table 4.1). The results that were obtained are reported in this section.

5.4.1 Case 1

The comparison between the current study and the study of Dhotre and Smith (2007)

is given in this section. The liquid axial velocity across the radius of the plume at

35 cm is shown in Figure 5.6. Although 35 cm is fairly far from the inlet, the axial

liquid velocity is almost three times as large as the measured value at the centreline

for all three meshes. The results also do not match that found by Dhotre and Smith

(2007), and were almost double their reported centreline value.
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Figure 5.6: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.35 m.

The liquid axial velocity across the radius of the plume at 75 cm is shown in Figure

5.7. At this height from the inlet, the results for all the meshes are much closer to the

results obtained by the Dhotre and Smith (2007) study and the experiment. Mesh 1

and mesh 3 gave a better prediction for the centreline value for both the Dhotre and

Smith (2007) study and the experimental result, but had the most unphysical lateral

spread. Mesh 2 gave a higher value along the centreline than all the other results.
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Figure 5.7: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.75 m.

The liquid axial velocity across the radius of the plume at 110 cm is shown in

Figure 5.8. The first and third meshes underpredicted the liquid axial velocity, while

the second mesh still overpredicted it at this height. None of the simulations gave a

result at this height which matched that of Dhotre and Smith (2007).

The axial gas velocity across the radius of the plume at 35 cm is shown in Figure

5.9. The high value at the centreline caused by mesh 2 is consistent with the high

liquid axial velocity value previously noted at this point in the plume. Mesh 3 gave

the closest trend to the experimental data, but was still much higher at the centreline

and along the radius. The values along the centreline for all the meshes are almost

twice the measured value, and are significantly higher than the value obtained by

Dhotre and Smith (2007).

The axial gas velocity across the radius of the plume at 75 cm is shown in Figure

5.10. Similarly to the axial liquid velocity, the two simulation values and the measured

values are significantly closer to the measured value than at 35 cm. The centreline

value is matched by the simulation with mesh 1 and 3, but the axial gas velocity

past r = 0.07 m begins to diverge, with higher values for all three meshes than the

experimental result.
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Figure 5.8: Comparison of experimental and simulation results for the axial liquid
velocity at z = 1.10 m.
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Figure 5.9: Comparison of experimental and simulation results for the axial gas ve-
locity at z = 0.35 m.
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Figure 5.10: Comparison of experimental and simulation results for the axial gas
velocity at z = 0.75 m.

The axial gas velocity across the radius of the plume at 110 cm is shown in Figure

5.11. The gas velocity at the centreline for mesh 2 is much closer to that obtained in

the study of Dhotre and Smith (2007) as well as the experiment. Although mesh 3

produced the correct centreline value at 75 cm height, it underpredicts it slightly at

this height. Mesh 2 obtained a very close result to the measured values. Mesh 1 was

the farthest from the measured values of all the simulations.

Perhaps the most surprising result is the turbulent kinetic energy across the radius

of the plume at 35 cm, shown in Figure 5.12. The turbulent kinetic energy at this

height is overpredicted by a large margin by all the meshes. This could account for

the inaccurate values for the velocities at this height, as well as the overprediction of

the spread. The general trend appears to be correct, but the value at r ∼ 0.075 m for

the current study is almost three times as high as the measured quantity for mesh 2,

and even higher for mesh 1. Mesh 3 and mesh 2 give similar results at the centreline

at this height, although the level of refinement is significantly higher for mesh 3.
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Figure 5.11: Comparison of experimental and simulation results for the axial gas
velocity at z = 1.10 m.
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Figure 5.12: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 0.35 m.
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The turbulent kinetic energy across the radius of the plume at 75 cm is shown in

Figure 5.13. Like with the velocities, at this level in the vessel, the turbulent kinetic

energy predictions for all three meshes appear to be closer to the experimental values

as well as those obtained by Dhotre and Smith (2007). All meshes overpredict the

experimental value at this height and resulted in very close results to each other.
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Figure 5.13: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 0.75 m.

The turbulent kinetic energy across the radius of the plume at 110 cm is shown

in Figure 5.14. The Dhotre and Smith (2007) prediction underpredicts the turbulent

kinetic energy at this height while the simulation with mesh 2 and 3 overpredict it.

Mesh 1 has a very close centreline value to that of the experiment, but has a higher

spread. Mesh 3 gave the least accurate prediction at this height.

The phase fraction across the radius of the plume at 35 cm is shown in Figure

5.15. It is important to note that mass was conserved, although it does not look like

it at first glance. The area of the cylinder must be taken into account at all radii.

The measured phase fraction at this height is more than double the values obtained

along the centreline for all the meshes. Mesh 1 gave a lower result than mesh 2 and

mesh 3 at this height. Mesh 3 was closest to the measured result, but was still off

along the centreline by a significant margin. All three meshes overpredict the lateral
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spread, which could be because of the overprediction of the turbulent kinetic energy

at this height.
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Figure 5.14: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 1.10 m.

The gas phase fraction across the radius of the plume at 75 cm is shown in Figure

5.16. The predictions obtained by the three meshes are still significantly lower than

the experimental results as well as the study of Dhotre and Smith (2007). This is

most likely caused by the overprediction of the turbulent kinetic energy which is still

evidenced at this height. The turbulent kinetic energy prediction would also account

for the large amount of spreading of the phase fraction at this height.

The phase fraction across the radius of the plume at 110 cm is shown in Figure

5.17. The phase fraction is still underpredicted at this height. Even though the gas

and liquid velocities at this height are much closer to the experimental value for all the

meshes, the phase fraction appears to remain low for mesh 1. This is not consistent

with the turbulent kinetic energy at this height, as it was very close to the measured

value at the centreline at this height. Mesh 3 was the closest to the measured value

at this height but was still spread out too far laterally, like the other meshes.
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Figure 5.15: Comparison of experimental and simulation results for the phase fraction
at z = 0.35 m.
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Figure 5.16: Comparison of experimental and simulation results for the phase fraction
at z = 0.75 m.
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Figure 5.17: Comparison of experimental and simulation results for the phase fraction
at z = 1.10 m.

It appears to be the case, based on the obtained results, that the simulations in

this study and those of Dhotre and Smith (2007) are not comparable, despite having

the same tuning parameters, using the same sub-models, and using the same mesh.

At higher locations in the vessel, the results for the velocities and the turbulent kinetic

energy appear to be closer to the study of Dhotre and Smith (2007) for the meshes,

but the simulations never gave exactly the same result. Convergence for the three

mesh simulations, in both the inner and outer PIMPLE loops was achieved, and

steady state had been reached, so this could not be the reason for the discrepancy.

The spread of the phase fraction near the inlet is unlike the experimental data, and

improves only slightly at higher locations in the domain. The effect of the turbulent

kinetic energy at the inlet is likely to be the cause - it spread the gas out initially so

that it could not recover at other heights. This could also be why the cases in Chapter

4 resulted in inaccurate predictions for the phase fraction. If the inlet conditions are

not correctly predicted, the inaccuracy propagates through the rest of the simulation.

This is problematic for obtaining a mass transfer prediction of a full-scale gas well

blowout. The mass transfer is highly dependent on the phase fraction and the relative

velocity, so if either is incorrectly predicted near the inlet of the domain, the amount

of transfer could be seriously over- or under-predicted as well.
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The results indicate that the combination of sub-models and their tuning parame-

ters, boundary conditions and numerical settings could not achieve an accurate result

for each of the three meshes. The second mesh gave increasingly better predictions

as the height was increased, while the same was not true for the first or third meshes.

The first experiment of Simiano (2005) has results at higher elevations in the vessel,

so it is possible that at these heights the accuracy of the current model is good enough

to test the effectiveness of the IATE model. It is also possible that the settings need

to be tweaked for any subtle differences between the code used by Dhotre and Smith

(2007) and twoPhaseEulerFoam.

5.4.1.1 Effect of the Inlet Condition

Dhotre and Smith (2007) found that the choice of inlet phase fraction had almost no

effect in their simulations. Reproduction of this result was attempted. Two separate

inlet phase fractions were compared: α = 0.5 and α = 1 on the fine mesh (Mesh 3).

Both cases were adjusted to give the correct superficial velocity in accordance with

the phase fraction.

The contours from all the cases with a phase fraction inlet condition of α = 0.5

looked quite similar. This inlet condition was applied to the fine mesh and the result

for the velocity vectors and the phase fraction at steady state are shown in Figure

5.18. The phase fraction field has a similar look to that reported by Dhotre and

Smith (2007) but it is much different in magnitude, as evidenced by the low values

noted along the centreline. The large velocity vectors at the bottom are not present

in their case either. The recirculation pattern at the bottom is counter to the flow

when it should be in line with the flow. The recirculation at the top is also closer to

the plume than the result of Dhotre and Smith (2007).

Figure 5.19 shows the velocity vectors and phase fraction field for the inlet con-

dition of α = 1. The velocity vectors are much closer to that obtained by Dhotre

and Smith (2007), although there is still much more spreading in the current case.

The high velocity vectors are no longer observed near the inlet, and the recirculation

pattern at the bottom is in line with the flow. This should have caused the plume to

pinch in toward the centreline, but this behaviour does not appear to have occurred.

The phase fraction appears to be inhibited, with the higher fractions staying near the

inlet instead of spreading upward, as expected.
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Figure 5.18: The liquid velocity vector plot (left) and phase fraction field for the case
with an inlet of α = 0.5 and the finest mesh.

Figure 5.19: The liquid velocity vector plot (left) and phase fraction field for the case
with an inlet of α = 1 for the finest mesh.

Comparing the inlet turbulent kinetic energy in Figure 5.20 for the inlet condition

of α = 1, it can be seen that the turbulent kinetic energy is much closer to the

measured value in general at z = 0.35 m, but does not exhibit the bump at 0.075 m

caused by the edges of the inlet. The inlet condition of α = 0.5 does have this effect,

but it is overly exaggerated.

The phase fraction along the radial direction is compared between the two simula-

tions in Figure 5.21. The spread in the simulation with an inlet condition of α = 1 is

greater than that of α = 0.5, despite the high velocity vector near the inlet not being

in evidence. Neither simulation comes close to the measured values or that which

was simulated by Dhotre and Smith (2007) away from the inlet, but that of α = 0.5

is closer along the centreline. The slight bump in the measured data is not given by

the simulation of α = 1 at the inlet.
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Figure 5.20: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 0.35 m with inlet conditions on the phase fraction of α = 0.5
and α = 1.
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Figure 5.21: Comparison of experimental and simulation results for the phase fraction
at z = 0.35 m with inlet conditions of α = 0.5 and α = 1.
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The choice of inlet condition clearly has an effect on the velocity vectors near

the inlet. The behaviour at the inlet is ultimately responsible for the spreading of

the plume throughout the duration of the simulation at all heights. Although the

inlet condition of α = 1 gave a better prediction for these vectors, it did not produce

accurate results for the phase fraction or the turbulent kinetic energy. The conclusion

of Dhotre and Smith (2007) that the inlet phase fraction is inconsequential could not

be reproduced with twoPhaseEulerFoam. This is likely due to the pressure profile

produced near the inlet due to the change in phase fraction. Dhotre and Smith (2007)

used a constant density, while the current work allowed density to change according

to the ideal gas law, which may have been partially responsible.

5.4.1.2 Effect of Wall Functions

The wall functions described in Chapter 3 were applied to the coarsest and finest

meshes of Section 5.4.1 (Mesh 1 and 3) along the walls and bottom of the domain.

The y+ value for the case gave the distance from the wall of the first cell well above

the value for y+ = 30 for both meshes. The results with and without wall functions

were compared in this section. Figure 5.22 shows the axial liquid velocity at 0.35 m

for the four cases compared to the experimental result and the result of Dhotre and

Smith (2007). Without wall functions, mesh 1 is quite far from the measured value

along the centreline, but with wall functions the radial profile is very similar to that

obtained by Dhotre and Smith (2007) at this height. Similarly, Mesh 3 with wall

functions is closer to the measured value along the centreline and has a similar profile

to the experimental result. The two meshes with wall functions gave very similar

results. The inlet fields for both meshes appear to have been significantly affected by

the application of wall functions at the bottom of the domain.

The radial liquid axial velocity profiles at 0.75 m obtained are shown in Figure

5.23. At this height, the cases without wall functions appear to be significantly closer

to the experimental data along the centreline than the cases which had wall functions.

Mesh 1, which was the coarser mesh, was still fairly close to the result of Dhotre and

Smith (2007) at this height. Mesh 3 was the least accurate for the liquid axial velocity

along the centreline and in its radial profile at 0.75 m.

The radial profiles for the axial liquid velocities obtained at 1.10 mthrough the

experiment and the simulations are shown in Figure 5.24. The cases without wall

functions and with wall functions all came quite close to the measured values along

the centreline. Farther from the centreline, mesh 1 and 3 with wall functions appear
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to acquire a similar profile to the result of Dhotre and Smith (2007), but nearer to the

centre their profiles are much different. The results with wall functions were again

very close to each other.
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Figure 5.22: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.35 m between the cases with and without wall functions.
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Figure 5.23: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.75 m between the cases with and without wall functions.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

Radial Distance from Centreline (m)

A
x
ia
l
L
iq
u
id

V
el
o
ci
ty

(m
/s
)

Experiment

Dhotre and Smith (2007)
Mesh 1
Mesh 3

Mesh 1 WF
Mesh 3 WF

Figure 5.24: Comparison of experimental and simulation results for the axial liquid
velocity at z = 1.10 m between the cases with and without wall functions.

Figure 5.25 shows the measured and simulation results for the axial gas velocity
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at 0.35 m. Mesh 1 and 3 with wall functions are very close to the result obtained by

Dhotre and Smith (2007) along the radial profile, diverging around 0.08 m from the

centre. The two cases without wall functions are significantly less accurate than the

cases with wall functions at this height.

The radial profiles of the axial gas velocity for the experiment and simulations are

shown in Figure 5.26 at a height of 0.75 m. The finest mesh is the least accurate at

this height at the centreline, while the other results are fairly similar. Mesh 1 with

wall functions was the closest to the measured result at the centreline, but deviated

from the experimental radial profile further away from the centre. Mesh 1 and mesh

3 with wall functions gave practically the same result at this height.
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Figure 5.25: Comparison of experimental and simulation results for the axial gas
velocity at z = 0.35 m between the cases with and without wall functions.
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Figure 5.26: Comparison of experimental and simulation results for the axial gas
velocity at z = 0.75 m between the cases with and without wall functions.

The radial axial gas velocity profiles for the simulations and experiment are shown

in Figure 5.27 at a height of 1.10 m up the vessel. All of the simulations appear to

come very close to the measured result along the centreline.
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Figure 5.27: Comparison of experimental and simulation results for the axial gas
velocity at z = 1.10 m between the cases with and without wall functions.

The radial profiles of the turbulent kinetic energy for the simulations and experi-

ment are shown in Figure 5.28 at a height of 0.35 m up the vessel. Mesh 3 without

wall functions obtained the closest centreline value to the experiment at this height.

With wall functions, mesh 1 was the closest in magnitude to the experiment along

the radius of the domain, and was quite close to the result obtained by Dhotre and

Smith (2007).

At a height of 0.75 m, none of the simulations could obtain an accurate centreline

value for the turbulent kinetic energy, as shown in Figure 5.29. At this height, meshes

1 and 3 with wall functions came the closest to the centreline value, but did not exhibit

the exaggerated bump around 0.075 m caused by the inlet nozzle.
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Figure 5.28: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 0.35 m between the cases with and without wall functions.
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Figure 5.29: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 0.75 m between the cases with and without wall functions.
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The radial profiles of the turbulent kinetic energy at a height of 1.10 m for the

simulations and experiment are shown in Figure 5.30. Meshes 1 and 3 with wall

functions came the closest to replicating the radial profile at this height. Mesh 3

without wall functions was the farthest from the experimental result.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5
·10−2

Radial Distance from Centreline (m)

T
u
rb
u
le
n
t
K
in
et
ic

E
n
er
gy
,
k
(m

2
/s

2
) Experiment

Dhotre and Smith (2007)
Mesh 1
Mesh 3

Mesh 1 WF
Mesh 3 WF

Figure 5.30: Comparison of experimental and simulation results for the turbulent
kinetic energy at z = 1.10 m between the cases with and without wall functions.

The gas phase fraction was underpredicted by the two simulations without wall

functions, but overpredicted by the two simulations with wall functions at a height

of 0.35 m. The results for the gas phase fraction at this height are shown in Figure

5.31. The radial trend for the two simulations with wall functions were quite similar

to that of Dhotre and Smith (2007).

The gas phase fraction along the radius of the vessel is shown in Figure 5.32 at

a height of 0.75 m. Again, the simulations performed in the chapter all resulted in

underpredictions of the gas phase fraction at this height along the centreline. At this

height, meshes 1 and 3 with wall functions came the closest to the measured centerline

value, and generally followed the experimental results well along the radius.
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Figure 5.31: Comparison of experimental and simulation results for the phase fraction
at z = 0.35 m between the cases with and without wall functions.
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Figure 5.32: Comparison of experimental and simulation results for the phase fraction
at z = 0.75 m between the cases with and without wall functions.
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The radial profiles for the gas phase fraction at a height of 1.10 m in the vessel

are shown in Figure 5.33. Meshes 1 and 3 with wall functions came the closest to the

measured value at the centreline but exhibited more spread than the experiment at

this height due to the high turbulent kinetic energy prediction. The other two results

were still underpredictions of the gas phase fraction along the centreline and did not

come close to the same profile along the radius.
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Figure 5.33: Comparison of experimental and simulation results for the phase fraction
at z = 1.10 m between the cases with and without wall functions.

It appears to be the case that the application of wall functions has a large effect

on the simulation results. Meshes 1 and 3 with wall functions seemed to be closer

to the experimental data at heights nearer to the inlet and generally at all heights.

The two simulations without wall functions were fairly accurate in the axial gas and

liquid velocities, but were not very accurate in the turbulent kinetic energy or gas

phase fraction at all heights in the plume.

An interesting thing to note is that the third and first mesh with wall functions

could not obtain the exaggerated bump in the radial profile predicted at z = 0.75

m in the simulation of Dhotre and Smith (2007) and the result obtained through

the experiment. The bump in the curve at r = 0.075 m along the radius is most

likely caused by the distributor, and it would be expected that it would be primarily
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caused in the simulations by the mesh. Considering the meshes were kept the same,

this result indicates that the wall functions smoothed out some of the turbulent inlet

effects near the centreline and away from the distributor that was observed in the

experiment and other simulations, while enforcing the turbulent effect near the inlet.

5.4.2 Case 2 with the Turbulent Dispersion Force of Davidson (1990)

Since it was shown in case 1 that the far-field results seemed to be reasonably close to

the experimental data for the second mesh, application to an experiment with more

data at higher elevations could allow for evaluation of the IATE model. The first

experiment of Simiano (2005) was used for this purpose. The case was simulated

with both a constant diameter of 4 mm as well as the IATE model with an initial

bubble diameter of 4 mm. All the parameters and models for case 1 were also used

in these simulations, but wall functions were omitted.

The inlet vectors for the liquid velocity are shown in Figure 5.34. The phase

fraction chosen, α = 0.01, for the simulations did not produce the circulation pattern

or high velocities at the inlet which were observed in the previous case. The vectors

displayed similar behaviour for all the simulations of case 2.

Figure 5.34: The liquid velocity vectors near the inlet for case 2.

The results for the axial liquid velocity at 0.6 m are shown in Figure 5.35. The

constant and IATE model bubble diameters gave exactly the same result for the liquid

axial velocity. In both cases the simulations underpredicted at the centreline at this

elevation.
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Figure 5.35: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.6 m for an initial bubble size of 4 mm.

The results for the axial gas velocity at 0.6 m are shown in Figure 5.36. The two

simulations were again identical, and the velocity was predicted rather well at the

centreline. The trend of the simulation results seems to be closer to the experiment

for the axial gas velocity.

The phase fractions for both simulations and the interfacial area concentration

predictions for the IATE model are given in figures 5.37-5.40 for four heights in the

vessel. The phase fractions for both simulations are once again identical, and appear

to maintain a trend close to that of the experimental data for all heights. At all

heights, the centreline prediction of the phase fraction was lower than the measured

data. This difference appeared to increase at higher locations in the vessel. The

interfacial area was also underpredicted for all heights, but as with the phase fraction

prediction, appeared to follow the correct trend. The interfacial area concentration

appeared to be primarily influenced by the phase fraction as it produced a similar

trend to the phase fraction at all heights.
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Figure 5.36: Comparison of experimental and simulation results for the axial gas
velocity at z = 0.6 m for an initial bubble size of 4 mm.
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Figure 5.37: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 151 mm for an initial bubble
size of 4 mm.
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Figure 5.38: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 552 mm for an initial bubble
size of 4 mm.
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Figure 5.39: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 978 mm for an initial bubble
size of 4 mm.
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Figure 5.40: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 1.291 m for an initial bubble
size of 4 mm

Clearly the tuning of the first case was not applicable to the second case, because

none of the predictions obtained in case 2 were close to the measured quantities in

the far-field or near-field except the axial gas velocity. In fact, at greater heights, the

discrepancy between the measured and simulated results became more pronounced.

It is possible that with the addition of wall functions or a better condition for pressure

at the inlet, these problems would be minimized.

The IATE model, despite having underpredicted all the experimental values, did

have the correct response at different heights in the plume, decreasing the interfacial

area concentration as the height increased. This could indicate that some coalescence

was predicted by the model, or that it was very dependent on the value of the phase

fraction. Based on the fact that the IATE model gave the same hydrodynamic predic-

tion as when using a constant bubble size, the latter explanation is more likely. This

result could potentially have been improved if the hydrodynamics had been correctly

predicted, so no conclusion can be drawn about the IATE model at this point. It is

also unclear that the initial bubble size selected, 4 mm, gave the optimal result for

the simulation.
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5.4.3 Case 2 with the Turbulent Dispersion Force of Lopez de

Bertodano (1998)

In this section of case 2, the drag model was changed to the Kolev (2012) model as

suggested in Lou and Zhu (2013b) for cases with gas-mixing. In this section, the use

of the Lopez de Bertodano (1998) model for the turbulent dispersion force was tested

to attempt to get a closer prediction to the experimental result of Simiano (2005).

The IATE model was also implemented so that any change in the IATE model caused

by the change in sub-model could be observed. Five initial bubble diameters were

selected. The turbulent dispersion coefficient was also tuned to attempt to optimize

the result.

The liquid axial velocity obtained through the simulations was compared to the

experimental result for each of the five initial bubble diameters, as shown in Figure

5.41 at a height of 0.6 m. The 15 mm and 5 mm initial bubble sizes yielded the closest

values to the experimental velocities, but all of the cases underpredicted the liquid

velocity near the centre of the plume. In the simulations of Dhotre and Smith (2007),

they used the same turbulence model and lift coefficient, but they obtained much more

satisfactory results. The underprediction of the liquid velocity is consistent with what

was observed in Chapter 4, as the Simonin and Viollet (1988) model underpredicted

the velocity in the ladle case as well in conjunction with the Lopez de Bertodano

(1998) turbulent dispersion model.

The axial gas velocity at the same height for the same range of bubble sizes as

before are shown in Figure 5.42. As the initial bubble size is increased, the gas velocity

increased in all cases. The 15 mm initial bubble diameter produced a much higher

gas velocity than any of the other initial diameters, but still ended up producing a

lower liquid velocity than the 5 mm case. The profile of the experimental values was

not reproduced well by any of the simulations, and none of the simulations could

reproduce the gas velocity.

The phase fraction and the interfacial area concentrations from the experiment

and the simulations were compared at a range of heights and initial bubble sizes

in Figures 5.43-5.46. At lower heights in the vessel, the 3 mm initial bubble size

appears to give better results. As the bubbles moved upward, it can be seen that

the amount of coalescence induced by the IATE model was not enough to match the

experimental values. In general, the 4 mm initial bubble size was relatively close to

the experimental values for interfacial area concentration and phase fraction for all

vessel heights, which was not the case for the other sizes.
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Figure 5.41: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.6 m for a range of initial bubble sizes.
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Figure 5.42: Comparison of experimental and simulation results for the axial gas
velocity at z = 0.6 m for a range of initial bubble sizes.
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Figure 5.43: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 151 mm for a range of initial
bubble sizes.
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Figure 5.44: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 552 mm for a range of initial
bubble sizes.
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Figure 5.45: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 978 mm for a range of initial
bubble sizes.
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Figure 5.46: Comparison of experimental and simulation results for the phase fraction
(left) and interfacial area concentration (right) at z = 1.291 m for a range of initial
bubble sizes.
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The initial bubble size guess had large effect on the predictions for all the proper-

ties. Without information about the inlet bubble size in the physical case, guessing

it for simulations which use the IATE model is probably not prudent. In the full-

scale gas well blowout, the inlet bubble diameter could not be known, and would

be more likely to be a distribution of bubble sizes in lieu of a single inlet size. A

really good prediction with the IATE model was probably not feasible, considering

the hydrodynamics of the simulations do not seem to match the experimental data

very well.

Since the Simonin and Viollet (1988) turbulence model underpredicted the liquid

axial velocity and the turbulent kinetic energy in Chapter 4, it could be one of the

causes for the incorrectly predicted hydrodynamics in the present case. As was noted

in Chapter 4, the turbulent kinetic energy was underpredicted, which was not observed

in the simulations of Dhotre and Smith (2007) or in Sheng and Irons (1993). As

previously discussed, the simulation parameters of Dhotre and Smith (2007) and the

present study were the same aside from the drag and turbulent dispersion forces, but

whether they used wall functions is unknown. The reason for the major difference

in results between these two studies is not entirely clear because the equations and

sub-models are so coupled that any change in one equation could cause a large effect

in another.

5.4.3.1 Turbulent Dispersion Force Effects

The underprediction of the turbulent kinetic energy produces feedback with the tur-

bulent dispersion force in the momentum equation as well as the phase continuity

equation. A separate study was necessary to determine whether it was the under-

prediction of the turbulent kinetic energy and not the magnitude of the turbulent

dispersion force that was causing the vast discrepancies between the hydrodynamic

predictions of the current study and the experimental results of Simiano (2005).

Since the 4 mm initial bubble diameter produced the closest results overall for the

liquid axial velocity, gas velocity, phase fraction and interfacial area concentration, it

was the case which was used to compare a range of turbulent dispersion coefficients.

Figure 5.47 shows the experimental and simulation results for the liquid axial velocity

at 0.6 m up the vessel for a range of turbulent dispersion coefficients. The CTD = 0.1

case produced the highest liquid velocity, and CTD = 0.2 the lowest, but the other

two coefficients were virtually identical in their prediction. Changing this parameter

does not appear to have a large effect on the hydrodynamic prediction in the liquid,
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which could be due to the velocity and turbulent kinetic energy near the inlet.
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Figure 5.47: Comparison of experimental and simulation results for the axial liquid
velocity at z = 0.6 m for a range of turbulent dispersion coefficients.

Figure 5.48 shows the gas velocity at 0.6 m for the same turbulent dispersion

coefficients. The experimental results on the graph are not matched well in shape by

the simulations, as before. For all the turbulent dispersion coefficients except CTD =

0.2, the gas velocity was still overpredicted. The turbulent dispersion coefficient of

CTD = 0.2 gave the result closest to the experimental values for the axial gas velocity.

Although there were no experimental results reported at 0.6 m for the phase frac-

tion or interfacial area concentration, the values were compared to see if there was

any significant effect. Figure 5.49 shows a comparison between a range of turbulent

dispersion coefficients. Clearly changing the magnitude of the turbulent dispersion

force did not have a great impact on the phase fractions or the interfacial area con-

centrations in this case.
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Figure 5.48: Comparison of experimental and simulation results for the axial gas
velocity at z = 0.6 m for a range of turbulent dispersion coefficients.
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Figure 5.49: Comparison of simulation results for the phase fraction (left) and in-
terfacial area concentration (right) at z = 0.6 m for a range of turbulent dispersion
coefficients for the 4 mm initial bubble size.
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The underprediction of the turbulent kinetic energy by the turbulence model of

Simonin and Viollet (1988) with the coefficient changes of Sheng and Irons (1993) is

likely to be one of the causes for the poor prediction of the hydrodynamics. This is

concluded because increasing the magnitude of the turbulent dispersion had a minimal

effect on the results of the simulation. The current formulation of the IATE model

was also unable to predict the coalescence interactions in the present study, but there

may not have been much coalescence in the experiment to begin with.

5.5 Summary

The following two sections detail the overall results and conclusions that have been

drawn from the simulations of this chapter.

5.5.1 Hydrodynamics

The simulations in the first case showed that the near-field predictions, with the

tuning parameters and models used successfully in the study of Dhotre and Smith

(2007), were not accurate with the twoPhaseEulerFoam solver. The phase fraction

was underpredicted throughout the vessel for the three meshes. Further, the velocity

vectors at the inlet appeared to be highly dependent on the inlet condition. One of

the parameters which could not be investigated in depth is the effect of the bound-

ary conditions, although wall functions were tested. Application of wall functions

appeared to improve the results, but it is not clear that they didn’t just help to repli-

cate the conditions of the inlet distributor. Since few boundary conditions were given

by Dhotre and Smith (2007), the exact case could not be reproduced. The current

simulations also did not model the free surface, which could have contributed to the

discrepancy in the results. The inlet phase fraction was changed to a higher value,

which improved the liquid velocity vector map, but did not improve the hydrody-

namic prediction. This is not consistent with the conclusion reported by Dhotre and

Smith (2007) that the phase fraction at the inlet did not cause significant changes to

the simulation.

In the first section of the second case, which used the same sub-models and pa-

rameters as the first case, the velocity in both the liquid and the gas phase was

underpredicted. The phase fraction was more accurate in the near-field than the far-

field, which is a contrary result to the first case. This indicates that the tuning and

sub-model choices of the first case do not necessarily provide a consistent result when

applied to a similar case with a different phase fraction inlet.
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Applying different sub-models in the second section of the second case still resulted

in an underprediction of the liquid velocity along the centreline for all initial bubble

diameters. The gas velocity was highly dependent on the initial bubble size selected

by the IATE model, as expected. The hydrodynamic prediction was not improved

by changing the magnitude of the turbulent dispersion force of Lopez de Bertodano

(1998).

5.5.2 IATE Model

The first section of case 2 showed that using the IATE model gave the exact same

prediction as using a constant bubble diameter. This suggests that the IATE model

was more dependent on the value of the phase fraction than on the IATE model itself.

This explains the similar trendlines between the phase fraction and the interfacial area

concentration seen in the first case. Since the velocity in the liquid was inaccurate, no

real conclusion about the effectiveness of the IATE model can be made. There also

may not have been much breakup or coalescence in the experimental study, however.

In section 2 of the second case, the IATE model predictions obtained using five

different inlet bubble sizes were compared. The hydrodynamic predictions of the 4 mm

initial bubble size gave the best result overall, but the result was neither consistent

with the interfacial area concentration predicted by the first section of case 2, or

with the measured values. No conclusions about the fitness of the IATE model for a

larger-scale simulation can be given based on this result either.



Chapter 6

Mass Transfer Modeling

The major changes to the basic twoPhaseEulerFoam algorithm were the addition of

a species equation and mass transfer capability, so those new aspects of the solver

had to be tested. Even though the hydrodynamic predictions could not be tuned

to reproduce the results from Chapter 4 or 5, the additions that were made to the

solver for mass transfer should still behave properly for a stationary case and for a

case where the hydrodynamics are properly predicted. This section verifies that the

mass transfer algorithm described in Chapter 2 was implemented correctly and is

performing as expected.

6.1 Mass Transfer Verification

Two very simple cases were used to verify that the mass transfer algorithm was behav-

ing as expected. The setup for both cases was a 2-D box, 0.1×0.1×0.01 m with no in-

terphase forces and no gravitational force in order to keep the fluid effectively station-

ary throughout the duration of the simulation. As mentioned, twoPhaseEulerFoam

may not handle low flow cases well due to the reliance on the drag term in the flux

reconstruction. Since the solution to this particular case relies heavily on the correct

pressure prediction, and therefore the correct density prediction, the flux and velocity

reconstructions were omitted for the test cases. The drag coefficient was set to zero

and the fluxes were calculated by setting φi = φi,s, the dragless fluxes.

In the first case, the box contained a 50/50 dispersed mix of liquid and gas, with a

50/50 mix of species 1 and species 2 in the gas phase initially. The slim edges allowed

pure water into the domain to maintain conservation of mass, but no mass could

leave. Since the case was not technically supposed to be a flow case, although there

was some flow in from the edges, turbulence was not incorporated into the solution.

The boundary conditions are summarized in Table 6.1.
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Table 6.1: Boundary and initial conditions for the stationary mass transfer algorithm
verification

Initial Condition 0.1× 0.01 sides
Gas Phase Fraction, αg 0.5 0
Liquid Phase Fraction, αl 0.5 1
Gas Mass Fraction of Species 1, Y1 0.5 0
Gas Mass Fraction of Species 2, Y2 0.5 0
Gas Mass Fraction of Water, YH2O 0 calculated

Liquid Mass Fraction of Species 1,X1 0 0
Liquid Mass Fraction of Species 2, X2 0 0
Liquid Mass Fraction of Water, XH2O 1 calculated

Gas Velocity, Ug (0, 0, 0) m/s (0, 0, 0) m/s
Liquid Velocity, Ul (0, 0, 0) m/s outletInlet

Pressure, P 1× 105 Pa calculated

Modified Pressure, Prgh 1× 105 Pa 1× 105 Pa
Gas Temperature, Tg 293.15 K zeroGradient

Liquid Temperature, Tl 293.15 K zeroGradient

The second case was identical to the first case, but it only incorporated one species

(species 1 of the first case). The case used the same boundary conditions as the first

case, but with a zeroGradient condition for the gas mass fraction instead of a fixed

value, and the equilibrium values were calculated in a similar way. The second case

used two inner correctors, ten outer correctors, and two non-orthogonal correctors in

the PIMPLE loop. The species, continuity, and pressure equations were all relaxed by

a factor of 0.7. The two tests were to determine that the algorithm was calculating the

phase fraction equation, which was modified, and species fraction equations, which

were added, properly based on the given inputs to the solver. The mesh consisted of

four equally sized cells. The continuity and modifed pressure equations were relaxed

by a factor of 0.7 and 0.5 respectively. The limited discretization scheme was used for

all divergence terms except species, which used limitedLinear, and linear was used for

all other schemes except the timestepping, which used explicit Euler. The simulation

was run for 50 s at a constant time step of 0.1 s, at which time equilibrium had

essentially been reached in the box.

The properties used for the calculation of the diffusion coefficient, molar mass, and

mass transfer coefficient are summarized in Table 6.2. These values are fictional and

do not represent real-world values. The volume addition was incorporated directly

into the solution of the continuity equation to solve for the phase fraction, which is

the primary difference between the spreadsheet solution and the OpenFOAM solution.
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Table 6.2: Species properties for the stationary mass transfer algorithm verification
Gas Viscosity [kg/s ·m] Liquid Viscosity [kg/s ·m] Prg Prl Leg Lel Sh M [g/mol] Hi Sc

Species 1 9e− 6 1e− 6 0.713 2.289 100 1 2 28.97 1.45e− 2 1000
Species 2 9e− 6 5e− 5 0.71 2.289 100 1 2 44.01 0.818 1000
H2O 2.04e− 5 5e− 5 0.63 2.289 100 1 2 18.0153 N/A 1000

For comparison, the equilibrium concentrations and volume fractions were calcu-

lated, and a transient solution was performed in Excel.

6.1.1 Equilibrium Calculation

To set up the equilibrium calculation, the total mass and the species masses before

and after were taken into account. This was because the pressure and the volume of

the box were kept constant for the case. Only pure water was allowed to enter the

box, to make up for the change in gas volume due to dissolution. Figure 6.1 shows

the mass in the box initially and at equilibrium.

Figure 6.1: Total mass conservation in the box between the initial state (left) and at
equilibrium (right).

The equilibrium calculation was a system of seven coupled equations and two

extra algebraic equations. The total mass balance is,

ρlVin + ρogα
o
gV + ρl(1− αog)V − (ρgαgV + ρl(1− αg)V ) = 0 (6.1)

Where the subscript o indicates the initial value, Vin is the volume of pure water

which entered the domain, and V is the total volume of the box. The species mass
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balances are,

ρogα
o
gV Y

o
2 − ρgαgV Y2 − ρl(1− αg)V X2 = 0

rhoogα
o
gV Y

o
1 − ρgαgV Y1 − ρl(1− αg)V X1 = 0

(6.2)

The Henry’s Law relations are,

Y1 −
X1ρl
H1ρg

= 0

Y2 −
X2ρl
H2ρg

= 0

(6.3)

The species fractions must sum to unity in both phases,∑
i

Yi − 1 = 0∑
i

Xi − 1 = 0
(6.4)

The two algebraic equations for the molar mass and the gas density were,

Mg =

(∑
i

Yi
Mi

)−1

ρg =
PM

RT

(6.5)

Where M [kg/mol] is the molar mass, and R [(Pa ·m3)/(mol ·K)] is the ideal gas

constant.

6.1.2 Transient Excel Calculation

The spreadsheet algorithm for the transient solution involved the calculation of the

equations as in the order given to follow. The density was calculated from the molar

mass at each time step,

Mg =

(∑
i

Yi
Mi

)−1

(6.6)

ρg =
PM

RT
(6.7)

The mass transfer coefficients were calculated based on the Sherwood correlation,

km = aiDi,jSh (6.8)
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The interfacial compositions in the gas phase were calculated using the Henry’s law

constants given in Table 6.2,

Y I
i =

ρgkm,gYi + ρlkm,lXi

ρgkm,lHi + ρgkm,g
(6.9)

Each gas side mass transfer component was calculated and the two were summed,

∂mg

∂t
= ρg

n∑
i=1

ki,m,g(Y
I
i − Yi) (6.10)

The mass coming in at each time step was calculated as the difference in density

between the current timestep and the last,

min = V (ρngα
n
g − ρogα

o
g)∆t (6.11)

The new gas volume fractions were then calculated,

αng = αog +
1

ρgV
(
∂mg

∂t
∆t− Vin

ρl
) (6.12)

Finally the species fractions were calculated in the gas and liquid,

Yi =
1

V ρgαg
(
∂mi

∂t
∆t+ V αogρgY

o
i )

Xi =
1

V ρlαl
(V αol ρlX

o
i −

∂mi

∂t
∆t)

(6.13)

6.1.3 Results

The results of the comparison between the volume fractions for the first case are

shown in Figure 6.2. The Excel calculation clearly behaved correctly, with the final

value being equal to the equilibrium value. It can be seen that the two transient cases

obtained very similar values until around two seconds, at which point the solutions

began to diverge. The discrepancy was not caused by the temporal discretization, but

this case did have some problems converging in the pressure equation. The likely rea-

son for the difference in the predictions is that the solver was fundamentally built for

cases involving flow. The coupling between the phases is weakened when the majority

of the interphase force terms are omitted from the momentum equations. This could

cause small errors in the calculation of continuity due to incomplete convergence of
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the pressure equation.
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Figure 6.2: Case 1 - Change in gas phase fraction over time.

The volume fractions for the second case are given in Figure 6.3. The error at

equilibrium is much smaller for the second case, at 0.016 %. Between the two cases,

the temperature at the interface was closer to the initial gas temperature in the second

case than in the first case. Slight variations in the temperature at the interface were

not incorporated in the hand calculations, which could change the volumetric mass

transfer coefficient, through the diffusion coefficient, and could contribute to the error.

The species fractions in the first case were also somewhat different between the

OpenFOAM result and the hand calculation. In the case of species 2, the species frac-

tions were higher than expected, and in the case of species 1, they were lower, as

can be seen in Figure 6.4. This was to be expected because of the volume fraction

discrepancy. The error was 2.06 % in species 1 and 4.71 % in species 2 at equilibrium.

In the single species case, the gas mass fraction remained at 1.0 as was to be expected.
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Figure 6.3: Case 2 - Change in gas phase fraction over time.
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The pressure field remained constant throughout the duration of the simulation,
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but the velocity in the box was on the order of 10−3 at the beginning of the sim-

ulation. This could have altered the solution of the continuity equation somewhat.

Since no fluid was allowed to escape the box, Henry’s law should have forced the mass

fractions toward the correct equilibrium value, but this did not occur.

Although the diffusive component was left out of the hand calculations and the equi-

librium calculation it did not impact the result since the Schmidt numbers were set

very high. This was checked by removing the diffusion term from the transport equa-

tion.

At present, it is not clear why the simulation does not yield the exact results at

equilibrium. There is either too much volume in the first case, or too little volume

in the second case allowed to enter through the sides, which is ultimately linked back

to the substantial derivative of density. Everything is coupled such that isolating the

problem is made more difficult, but it is likely to be the lack of multiphase forces

applied. Additional testing must be performed in the future, but the mass transfer

predictions obtained with the new twoPhaseEulerFoam algorithm are off by less than

5% in the mass fractions and 1% in the volume fraction, which is within a reasonable

amount of error.

6.2 Application of the Algorithm to a Large-Scale Bubble Plume

The algorithm described in Chapter 2 was tested to ensure it worked as expected on a

hydrodynamic case. Although it was shown in Chapter 5 that the hydrodynamics were

inaccurately predicted with twoPhaseEulerFoam, case 1 from that chapter was used to

ensure the algorithm would work on a case involving flow despite the poor prediction.

The experimental study of Simiano (2005) did not include mass transfer data, but

the literature does not have many studies of gas-stirred systems that include both

detailed hydrodynamic and mass transfer data. Those that do often lack important

details for the case setup, and so were unsuitable. This is an area for future research.

All boundary and initial conditions were kept the same as in Chapter 5, except

the gas coming in through the inlet was changed to pure oxygen instead of air. The

fluid properties used for oxygen can be found in Table 6.3. The mass transfer model

used was that of Akita and Yoshida (1974). Mesh 1 from Case 1 of Chapter 5 was

used for this study along with all the same sub-models and tuning parameters. It

was assumed that aqueous properties for all species were the same and equal to that

of water (dilute) as given in 4.2.
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Table 6.3: Gas phase species properties
Species Molecular Weight Viscosity Specific Heat Capacity Prandtl Number Schmidt Number

O2 32 g/mol 2× 10−5 Pa · s 918 J/kg ·K 0.82233 0.8

Since no experimental data was available, the only way to verify that the algo-

rithm was calculating correctly was by calculating both sides of the species transport

equation for the liquid side and ensuring they gave the same result and mass was

conserved. The species transport equation is,

∂αlρlXO2

∂t
+∇ · (αf,lρf,l

#»

φlXO2)−∇2

(
αf,lνf,lρf,lYO2

Scf,l

)
−∇2

(
αf,lν

t
f,lρf,lYk

Sctf,l

)
=
∂mO2,l

∂t
(6.14)

Since the only term which adds mass to the liquid volume is the source term, since

no liquid was allowed to escape, the mass balance reduces to,

˚
V

αlρlXO2dV =

ˆ t

0

(˚
V

∂mO2,l

∂t
dV

)
dt (6.15)

The integral of the total mass in the liquid at any time in the system with volume

(LHS of Equation 6.15) can be calculated from the printed fields as,

mt
O2

=
∑
cells

αlρlXO2∆Vcell (6.16)

The total mass transferred to the liquid must be equal to the integral of the source

term over time. Using the printed fields from the simulation, the source term inte-

gration (RHS of Equation 6.15) was calculated as,

mt
O2

=

ˆ t

0

(˚
V

∂mO2,l

∂t
dV

)
dt =

ˆ t

0

(˚
V

ρlkm,l(X
I
O2

−XO2)dV

)
dt (6.17)

Where ρL was approximated to be 1000 kg/m3 throughout. The quantity was multi-

plied by the time-step and summed for each new time,

mt
O2

=
t∑
0

∑
cells

ρlkm,l(
ρgHO2

ρl
−XO2)∆Vcell∆t (6.18)

The saturation value, XI
O2

was calculated from Henry’s law and used an approximate

gas density of 1.4 kg/m3.

The source term was also printed directly from the code. The results of the two
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calculations and the printed source term are given in Figure 6.5. The left hand side

of the mass balance (calculated mass) and the printed source term from the code are

almost identical. The small differences between the three lines is most likely due to

the rough integrations of the two quantities.
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Figure 6.5: Mass of aqueous oxygen in the vessel over time.

The mass transfer algorithm described in Chapter 2 conserves mass for the case in

which there is fluid flow. This verifies that the additions to the twoPhaseEulerFoam

solver are behaving as expected.



Chapter 7

Conclusion

In Chapter 4, five turbulence models were compared to each other by simulating the

model ladle of Sheng and Irons (1993). Sheng and Irons (1993) had tuned the Simonin

and Viollet (1988) turbulence model specifically for their experimental data, but the

result from the present study, which implemented the same model, was that the liquid

axial velocity and the turbulent kinetic energy were underpredicted by a large margin.

The four other turbulence models which were compared have been used throughout

the literature for bubbly flow conditions, yet none of their predictions were close to

the experimental data in every property. The mesh resolution and the bubble size

estimate were tested in separate studies, but it was concluded that the mesh size

and bubble size which had been chosen in the comparison study would have been

reasonable. The tuning parameters which were used by Sheng and Irons (1993) were

not given, but in a later study of the same ladle by Lou and Zhu (2013b), they were.

They used a different turbulence model and turbulent dispersion force model than

the current study, but otherwise the parameters were the same. The results between

their model and the current work were different. The effect of using wall functions

on the cases of Chapter 4 was not studied, but may improve the result based on the

study of Chapter 5.

The turbulent dispersion force interactions in conjunction with the turbulence

model in the present Euler-Euler model requires future investigation. The two models

necessarily have a feedback effect on each other, but the reaction of the flow to any

change in the turbulent dispersion force does not seem to be something that can

be known a priori. The tuning between the turbulence model and the turbulent

dispersion force, in addition to the tuning of the lift force and the bubble size, that is

required could be one of the greatest impediments to the application of the two-fluid

model to the large-scale gas well blowout.

At the bubble size for the ladle simulations, the drag coefficient should have been

approximately constant for the assumption of a spherical bubble, and the choice

of drag model would probably not have been of great importance, as the constant

value only varies very slightly between models. The turbulent dispersion model of

136



137

Davidson (1990) relies on the drag force, unlike that of Lopez de Bertodano (1998),

which could potentially further couple the momentum equation to the other phase

in a superior way. This was tested in Chapter 5, where both were compared in the

study of the large-scale bubble plume. The turbulent dispersion model of Davidson

(1990) seemed to give a better hydrodynamic prediction at the height of 0.6 m where

it was measured.

The study of Dhotre and Smith (2007), who tuned the sub-models to match the

experimental data of Simiano (2005) was used in Chapter 5 to attempt to replicate

their result, using the exact same tuning parameters. The result obtained in the

current research gave a good prediction to the Dhotre and Smith (2007) simulation

and experimental results, but only after significant tuning. The boundary conditions

of the study of Dhotre and Smith (2007) were not provided, but they simulated

the free surface unlike in the current work. As with the model ladle simulations of

Chapter 4, including the free surface in the modeled domain did not give satisfactory

results with twoPhaseEulerFoam. Based on the result of the current study, changing

the phase fraction at the inlet had a large effect on the velocity vectors, which is a

contrary result to that of Dhotre and Smith (2007). The application of wall functions,

originally conceived for single-phase systems, provided what appears to have been a

more physically realizable solution near the inlet. In general, more experimental and

modeling studies are required to give more guidance for proper tuning of the two-fluid

model in unconfined bubbly flow cases. This would potentially provide a baseline

tuning strategy for extending the two-fluid model to more complicated scenarios.

The result of the first case of Chapter 5 was considered suitable enough to attempt

to apply the IATE model to a second experimental study of Simiano (2005), with the

same tuning parameters selected. The phase fraction chosen for the inlet gave a

recirculation pattern near the bottom of the domain which was not unreasonable. It

was shown that the IATE model did not behave as well as it potentially could have

due to the poor hydrodynamic prediction. For this reason a really rigorous analysis

of the IATE model’s effectiveness could not be done in the current study.

Two different turbulent dispersion models were implemented to determine whether

it was the parameter which was responsible for the inaccurate hydrodynamic predic-

tion. Using the model of Lopez de Bertodano (1998) instead of the model of Davidson

(1990) gave a worse prediction of the hydrodynamics and, as a result, the IATE model.

Changing the turbulent dispersion model coefficient did not alter the results signifi-

cantly, which indicates that the simulation had more sensitivity to the Simonin and

Viollet (1988) turbulence model prediction for the turbulent kinetic energy than the
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turbulent dispersion model.

To evaluate what the initial bubble size should be for the IATEmodel, five separate

initial bubble diameters were implemented and simulated. None of the initial bubble

diameters resulted in a good prediction for the IATE model or the hydrodynamics.

It must be concluded that the IATE model could not be evaluated properly in the

current study due to the hydrodynamic results which were obtained. Further study

in this area is necessary, as the IATE model does seem like a promising model for

bubble plumes because of the direct solution for the interfacial area concentration

instead of the bubble diameter, as in other models such as MUSIG. The interfacial

area concentration prediction is very important for the heat transfer and mass transfer

model predictions, and may be a simpler way to determine the bubble size.

The top boundary of the simulated model ladle of Sheng and Irons (1993) was the

effective free surface, as the free surface was not included in the current simulations.

The boundary conditions which were applied at the top may not have been completely

optimized, but created the most realizable liquid circulation. The pressure condition

at the inlet that should be specified is also not entirely clear, but changing it to any

other condition type gave unrealistic results for the phase fraction spread and velocity

vectors. This is an area that should be investigated in more detail in future work.

The algorithm adjustments which were made for incorporating mass transfer into

the base solver worked well for the verification cases in Chapter 6. The algorithm was

applied to a no-flow case and gave a maximum error of 5% in the phase fraction and

less than 1% in the species fractions when compared to hand calculations. When ap-

plied to a flow case, it was confirmed that mass was conserved. With the appropriate

hydrodynamic prediction, a prediction of the total dissolved mass in the large-scale

gas well blowout scenario would be possible with the additions made in this work.

The detailed validation of the mass transfer model itself should be performed in a

future work.

Upon reviewing the results of the numerical studies, it is clear that the hydrody-

namic prediction obtained by twoPhaseEulerFoam is not accurate without significant

fine-tuning for the large-scale bubble plume applications in this work. The mesh,

boundary conditions, force models, initial bubble size, and model constants must all

work in tandem to give a good prediction, but they cannot be optimized if there is no

experimental data available to compare the prediction to, such as in the large-scale

gas well blowout. Application of the two-fluid model to a bubble plume of a certain

scale, using optimized parameters from a study of a different scale, could result in

predictions not representative of physical reality. Further work should also be done
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to investigate the scaling behaviour of this method for unconfined bubbly flows.
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617–627, 2007.

B. Selma, R. Bannari, and P. Proulx. Simulation of bubbly flows: Comparison be-
tween direct quadrature method of moments (DQMOM) and method of classes
(CM). Chemical Engineering Science, 65(6):1925–1941, 2010.

Y. Y. Sheng and G. A. Irons. Measurement and modeling of turbulence in the
gas/liquid two-phase zone during gas injection. Metallurgical and Materials Trans-
actions B, 24(4):695–705, 1993.

M. Simiano. Experimental investigation of large-scale three dimensional bubble plume
dynamics. PhD thesis, ETH Zürich, 2005.
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A. Tomiyama, H. Tamai, I. Ž, and S. Hosokawa. Transverse migration of single
bubbles in simple shear flows. Chemical Engineering Science, 57(11):1849–1858,
2002b.

A. A. Troshko and Y. A. Hassan. A two-equation turbulence model of turbulent
bubbly flows. International Journal of Multiphase Flow, 27(11):1965–2000, 2001.

B. Van Leer. Towards the ultimate conservative difference scheme. II. monotonicity
and conservation combined in a second-order scheme. Journal of computational
physics, 14(4):361–370, 1974.

G. B. Wallis. One-dimensional two-phase flow. McGraw-Hill, 1969.

Q. Wu, S. Kim, M. Ishii, and S. G. Beus. One-group interfacial area transport in
vertical bubbly flow. International Journal of Heat and Mass Transfer, 41(8-9):
1103–1112, 1998.

P. D. Yapa and Z. Li. Simulation of oil spills from underwater accidents I: Model
development. Journal of Hydraulic Research, 35(5):673–688, 1997.

P. D. Yapa, L. Zheng, and K. Nakata. Modeling underwater oil/gas jets and plumes.
Journal of Hydraulic Engineering, 125(5):481–491, 1999.

D. Zhang. Eulerian modeling of reactive gas-liquid flow in a bubble column. PhD
thesis, University of Twente, 2007.

D. Zhang, N. G. Deen, and J. A. M. Kuipers. Numerical simulation of the dynamic
flow behavior in a bubble column: A study of closures for turbulence and interface
forces. Chemical Engineering Science, 61(23):7593–7608, 2006.

L. Zhao, M. C. Boufadel, K. Lee, T. King, N. Loney, and X. Geng. Evolution of
bubble size distribution from gas blowout in shallow water. Journal of Geophysical
Research: Oceans, 121(3):1573–1599, 2016.



Appendix A

Electronic Supplement

The electronic supplement to this document is available on DalSpace and contains

the modified twoPhaseEulerFoam solver which was used in this work.
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