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Abstract 

Previous asthma pulmonary functional modelling used the locations of ventilation defects 

observed in inhaled gas imaging to implement binary airway closures and required additional 

random narrowing in ventilated regions to describe measured impedance, compromising 

predicted ventilation. Here we used gradations in intensity discretized using k-means clustering, 

and simulated annealing to choose degrees of narrowing within these regions to minimize the 

difference between measured and predicted ventilation. We found that the resistance (p < 0.005), 

reactance (p < 0.05), and ventilation (p < 0.005) predicted by the graded narrowing model was 

closer to subjects’ measurements compared to the binary model. The graded approach did not 

fully account for the frequency dependence of resistance known to be indicative of 

heterogeneity. Thus, while the modelled airway narrowing predicted ventilation and impedance 

closer to subjects’ measurements than binary closures, other factors or unobserved heterogeneity 

are needed to account for additional frequency dependence of resistance. 
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Chapter 1. Introduction 

1.1 List of Conference Abstracts and Awards 

The following is a list of public contributions arising from the work presented in this 

thesis. 

Conference Abstracts 

1. Young H, Guo F, Eddy R, Church C* et al. (2017). Forced oscillation technique and 

MRI predictions of airway reactance in moderate-severe asthma.  

European Respiratory Society International Congress 2017  

Code that I developed was used to apply closures to a multi-branching airway tree 

model, and to calculate impedance. 

2. Church C*, Young H, Parraga G, et al. (2018). Improvements in Functional Image 

Impedance Modelling of Asthmatic Lungs Using K-means Clustering.  

 American Thoracic Society Conference  

Abstract with Presentation (Selected from submitted abstract for a mini Symposium: 15-

minute talk including questions) 

Awards 

1. School of Biomedical Engineering – Dalhousie University 

Research Day 2018 

1st Prize – Pre-masters Category (Student Presentation Competition) 

1.2 Preface 

Asthma is usually described as an inflammatory disease that results in airway obstruction 

from physical narrowing of the airways, or airway plugging due to mucous. Symptomatically, it 

presents as episodes of breathlessness, chest-tightness and wheezing. The exact cause of 
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bronchoconstriction and obstruction is believed to be the result of a variety of factors; namely: 

physical airway remodelling including increased airway smooth muscle and changes to the 

epithelial layer associated with mucous hypersecretion, as well as extravasated plasma.1,2 

Whether causing immediate narrowing, or linked to narrowing through longer term changes such 

as remodelling; the triggers of, and susceptibility to these responses, are believed to be a 

combination of environmental factors (airborne irritants, exercise) and likely genetic factors, but 

the causes are not often clear.3 In 2015, the National Health Interview Survey found a 7.8% 

prevalence of asthma in Americans, with a larger prevalence in non-Caucasian races (> 9.0%), 

and an increasingly larger prevalence in low-income households.4   In 2013, the cost of asthma 

per year in the United States totalled approximately $81.9 billion; with $3 billion being owed to 

missed work alone.5 

1.3  Lung Structure and Function 

Breathing is a manoeuvre that is achieved by the synchronous participation of the lungs, 

where gas exchange with the blood occurs, and the inspiratory muscles that coordinate to bring 

air into the lung, and the elasticity of the lung that follows passive exhalation, sometimes assisted 

by ribcage expiratory muscles during active exhalation. During inspiration, the diaphragm 

contracts and moves downward, while the external intercostal muscles contract which moves the 

ribcage in the cranial and outward direction. This sequence of events creates a more negative 

pressure outside of the lungs (relative to the atmosphere) leading to their expansion and 

inspiration. First, air flows through the conducting zone which includes: the 

oropharynx/nasopharynx, larynx, trachea, and mainstem-bronchi which are the first branches of 

airway tree. Next, the air passes into the respiratory region of the lung which includes the 

bronchioles, alveolar ducts, and alveoli which make up the majority of the lung parenchyma. The 
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alveoli are thought of as elastic balloon-like structures, which have largely walls comprised of 

collagen and elastin fibres, and various other proteins. The stiffness, or elastance of the lung, 

arises largely from the elastic properties of the collagen and elastin fibres stretching during 

inspiration and surface tensions generated by the fluid-lining within alveoli. During passive 

exhalation, air is expelled from the lungs driven by this elastic recoil. In healthy lungs, the act of 

breathing is generally understood to result in a homogeneous filling of the lungs. But, with 

obstructive airway disease, ventilation of the lung has been seen to be spatially, and temporally 

heterogeneous.6-8 

1.4  Diagnosis and Classification 

Although objective measures are recommended, asthma is more often diagnosed using a 

combination of the subject’s medical history, reported symptoms, and sometimes seasonal, and 

environmental exposures are considered.9 Recommendations are that symptomatic subjects 

should receive pulmonary function testing (PFT), specifically spirometry (described in more 

detail below) to aid in diagnosis. However, a population-based study found that less than one-

half of all candidates for spirometry actually receive the suggested testing.10 subjects that do 

spirometry, will usually do this as part of reversibility testing where the response to a short-

acting beta agonist bronchodilator is assessed by a second PFT.  

From spirometry, the two most-common characteristics used to assess lung function are the 

forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC). FEV1 is the 

volume of air expelled as rapidly as possible after a deep inspiration to total lung capacity (TLC), 

measured over the course of one second, and FVC is total volume of air that the subject can 

expel. Sometimes the FEV1 is used alone or often expressed as a ratio relative to FVC. FEV1 is 

used to assess reversibility and is also used to assess the sensitivity of the airways to a 
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bronchoconstricting agent. This is done via a provocation test where increasing levels of the 

bronchoconstrictor, typically methacholine, are introduced in the subject, and the FEV1 is 

measured at each increment of added bronchoconstrictor until FEV1 is decreased by at least 

20%, and the provocation concentration (PC20) is computed. PC20 values < 8 mg/mL indicate 

the presence of airway hyperresponsiveness (AHR) associated with asthma.11  

1.5 Lung Function Testing 

1.5.1 Spirometry 

 Unfortunately, FEV1 is not very sensitive to obstruction of the small airways (< 2 mm), 

where most respiratory diseases including asthma are thought to originate. Earlier studies 

indicated that a component of the forced exhalation maneuver known as FEF25-75% could be 

used to indicate small airway obstruction,12-14 in which FEF25-75% is the forced expiratory flow 

from 25% to 75% FVC. However, more recently this was shown to be not well associated with 

small airways and was only weakly-moderately correlated with many characteristics of asthma,15 

and it lacked specificity.16-18 An important limitation of spirometry to mention is that it is 

challenging to perform and can suffer from poor reproducibility due to the fact that it is a learned 

maneuver that requires expert training to meet the quality criteria current guideline standards.19,20 

Spirometry is thus challenging for preschool children where asthma is most often diagnosed, the 

elderly or geriatric, and impossible for subjects on mechanical ventilators. Approximately 10% 

of subjects are still unable to perform spirometry successfully even with training from an 

experienced respiratory technician.21  
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1.6  Imaging and Asthma 

 

1.6.1 Computed (CT) and Positron Emission Tomography (PET) 

 
Many imaging techniques have been employed that are able to show structural and 

functional information about the respiratory system. Computed tomography (CT) is commonly 

employed to assess lung structure in chronic obstructive pulmonary disease (COPD). However, 

CT is not used clinically for asthma, but structural changes can be observed using high resolution 

CT (HRCT). In one study, HRCT was able to show increased structural heterogeneity in persons 

with asthma post-methacholine in larger airways compared to healthy subjects.22 However, an 

important innovation to understanding changes in lung function in disease including asthma was 

the development of imaging methods that rely on an inhaled gas. Positron emission tomography 

(PET), nuclear scintigraphy (NS), and single photon emission computed tomography (SPECT) 

can be utilized to assess ventilation heterogeneity by inhaling particular radioactive gases, which 

these different modalities can regionally quantify.23 These techniques do have a disadvantage in 

that they confer a quantifiable radiation-dose, with the dose depending on the modality. For 

example, the average HRCT of the chest delivers an effective dose of 0.98 mSv,24 which is the 

annual dose limit based upon recommendations from the International Commission of 

Radiological Protection.25 The other radiation dependent techniques (PET/NS/SPECT) deliver 

less radiation but as typically employed, the dose limit prevents visualization of small airways.  

1.6.2 Inhaled Gas Magnetic Resonance Imaging (MRI) 

Inhaled gas MRI is an imaging technique that does not deliver radiation and uses inhaled 

non-radioactive inert gas. It was developed by Albert et al., in 1994 to image regions of the body 

that have low inherent proton densities such as lung tissue.26 MRI signal intensity in regions with 

low proton density can be increased by introducing a spin ½ noble gas that has been 
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hyperpolarized. This polarization of a noble gas is achieved through collisions with an optically 

pumped metal vapour (typically Rb), which increases the nuclear magnetic resonance signal 

from the gas nuclei by ~105.  The hyperpolarized gas is put into a sealed bag, and carried to the 

subject waiting in the MRI, who inhales the gas prior to image acquisition. Modern imaging with 

hyperpolarized gases typically uses a breath-hold technique over a period of 16 seconds while 

images are acquired.27 The distribution of intensities of the hyperpolarized nuclei are then 

indicative of where the gas was inhaled and to where it diffused, and regions of higher intensity 

are sometimes termed hyperventilated, while low intensity is hypoventilated, or if sufficiently 

low, termed a ventilation defect. The images then are often called ventilation images, even 

though this is not usually acquired during breathing, but as breath-hold. In healthy lungs the 

ventilation image is largely homogenous, but in asthma, images depict a large degree of 

ventilation heterogeneity, which has been correlated with disease severity.28,29 As mentioned, 

where the image intensity is very low, below a chosen threshold, these pockets of non-ventilated 

regions are referred to as ventilation defects.30 These ventilation defects in asthma are normally 

thought to be the result of gas trapping due to airway obstructions.31 While conducting MRI with 

hyperpolarized gases uses a breath-hold technique, several factors have been found to affect the 

distribution of the gas signal with principal factors including (1) pendelluft flow, which describes 

the redistribution and exchange of gas between different regions due to inhomogeneous inflation 

of the lung32 (2) regional partial pressure differences of oxygen, which causes regional 

differences in rapid relaxation of the spins in the hyperpolarized gas through dipolar coupling 

29,33 and (3) diffusive redistribution, which similar to pendelluft, is redistribution of gas, but via 

collateral ventilation pathways (through pores in alveolar walls) in the lung thought to facilitate 

gas exchange.34  



7 
 

When first developed, ventilation defect volume (VDV), defined as the volume of lung 

devoid of signal, was manually segmented from the central slices of inhaled gas MRI.7,35 

However, this approach is inherently limited by inter- and intraobserver variability, and it does 

not quantify the ventilation defect volume for the entire lung. In recent years, automated 

approached have been developed which can segment MR images into meaningful distinct levels 

of ventilation.36 

1.6.2.1 K-means Clustering 

The approach used to analyze inhaled gas MR images into distinct intensity levels in this 

thesis is known as k-means clustering and is described here.37 The objective of k-means 

clustering as developed for inhaled gas MRI is to delineate physiologically meaningful different 

levels of ventilation from the acquired intensity information, usually compared to an expert who 

discerns clusters often from histograms of the image intensities.  The mathematical concept of k-

means clustering is to partition a set of measurements, image or other type of data into k-clusters, 

where the data in the set of measurements is ‘clustered’ with the closest k-mean. To initialize this 

algorithm, a set of k means is defined that fit within the set of observations: 

 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑘),   𝑥𝑖𝜖𝐸𝑁 ,   𝑖 = 1,2, … , 𝑘 (1) 

where EN is the set of all points. As described in Kirby et al.,38
 the means initialized for this 

algorithm applied to an image can be derived from the centers of sorted ventilation intensities. 

The centers of each cluster are taken to be the means, and the ventilation intensities are assigned 

to the k-cluster by taking the set of points in EN and evaluating the distance to all k means: 

 𝑇𝑖𝑡(𝑥) = {𝜉:    𝜉𝜖𝐸𝑁 ,   |𝜉 − 𝑥𝑖| ≤ |𝜉 − 𝑥𝑗|,     𝑗 = 1,2, … , 𝑘} (2) 

where Ti
t is a set of points in EN with a mean xi, where the mean is iteratively updated until all 

data in the set of observations is sorted: 
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  𝑥𝑖(𝑡+1) = 1|𝑇𝑖𝑡| ∑ 𝑥𝑗𝑥𝑗𝜖𝑇𝑖𝑡
 

(3) 

where |𝑇𝑖𝑡| is the size of subset of points within EN. In a clinical application, this process can be 

applied in 2D, or 3D. In Kirby et al., this process was applied in 3D with four k-clusters, with 

four being chosen to be in agreement with an expert chest radiologist’s opinion of clinically 

significant signal intensity differences. To identify ventilation defects, they also applied a second 

level of k-means clustering (with four levels) to the lowest derived cluster from the first 

application of k-means to differentiate signal intensities that included background and the 

hypointense intense signal regions or ventilation defects.38  

Delineation of the ventilation defect volume (VDV) from the ventilation defects as 

described above, and the ventilation volume (VV) which is the volume of lung with larger signal 

than the defect region, has been shown to be a useful method to assess the functional decrement 

in ventilating the lung the lung, and differences in correlated to disease severity.39,40 Commonly 

the VDV is normalized as the ventilation defect percentage (VDP), defined from: 

 𝑉𝐷𝑃 = 𝑉𝐷𝑉𝑇𝐶𝑉 ∗ 100% 
(4) 

where TCV is the thoracic cavity volume, identified usually from proton MRI. VDP has been 

suggested as a useful biomarker for obstruction in small-airway diseases due to its association 

with disease and disease severity, but also in part because of its reproducibility using k-means 

clustering.38  

VDP has been used in both 3He and 129Xe imaging, and tends to be larger in 129Xe images 

compared to 3He for the same individual.41 The differences in this value are likely due to 

differences in the apparent diffusion coefficient or differences in density; however this is still 

under speculation.42 But, given the scarcity of 3He, recent ventilation imaging has moved towards 
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more use of hyperpolarized 129Xe, and more recently, free-breathing or inspiratory/expiratory 

methods can be used that do not need hyperpolarized gas, utilizing inhaled oxygen and the 

changes in density that occurs with changes in lung volume during breathing to identify regions 

of poor ventilation thought to correspond to ventilation defects.43,44    

While VDP provides an objective quantity where lung function is clearly dysfunctional, it 

only characterizes the site, and size of obstruction observed in the lung. The airways responsible 

for the defects, cannot be visualized directly with MRI, but the defects do localize the volumes 

distal to the sites of airway obstruction. They do not tell us the changes in airway obstruction or 

diameters that leads to the development of observed ventilation heterogeneity. To better 

understand what changes are likely present to give rise to the ventilation heterogeneity we can 

use multi-branching airway trees to explore changes in airway and tissue properties that can lead 

to observed heterogeneity in inhaled gas distribution. When combined with measurements of 

respiratory system impedance by oscillometry (described below), which is also sensitive to small 

airway obstruction we can add another lens to understand the extent and possible variability 

underlying pathophysiology in asthma.   

1.7  Forced Oscillation Technique (FOT) 

Oscillometry is a technique developed by Dubois and colleagues in 1956 to non-

invasively measure mechanics of the respiratory system.45 An oscillating surface (often a 

loudspeaker) oscillates low-amplitude multifrequency flow directed into the mouth which results 

in pressure waves sinusoidally measured at the mouth during normal breathing. While flow is 

normally considered the input, and flow the output, we can examine either. Here we consider the 

pressure wave is formed discrete frequencies as depicted in Figure 1.1.  
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flow that is 90 degrees out-of-phase. The impedance describes the difficulty in delivering flow 

and volume into the lung for a given pressure. However often it is interpreted using mathematical 

models with parameters designed to correspond to physical phenomena such as airflow 

resistance, or mechanical compliance that link structure to function. Various models have been 

developed to attribute airway and tissue mechanics to respiratory function, described further 

below. To interpret the impedance most generally, it is understood that the real component of the 

impedance, referred to as resistance (Rrs), is mostly related to the structure of the airways (largely 

the airway diameter). The imaginary component, which is in phase with volume changes of the 

lung, is referred to as reactance (Xrs), and is attributed to the elastic and inertive properties of the 

tissues. Depending on the model, contributions from the lung parenchyma, chest wall, or airway 

stiffness can be considered and each contribute to either the real or imaginary part of impedance 

to differing degrees. Further comments about mechanical impedance models can be found in the 

following sections.  

FOT has an advantage over conventional PFTs’ like spirometry, in that it does not require 

complex breathing manoeuvres, such as a deep inspiration with forced exhalation to complete; 

and it only takes about one minute to complete the typical 3 measurements. This technique has 

been shown to be feasible with infants,46 children,47 elderly,48 geriatric subjects,49 anaesthetized 

subjects,50 and subjects on mechanical ventilation.51 This technique has revealed that subjects 

with an obstructive airway disease such as asthma, usually demonstrates an increased Rrs, often 

with an inversely frequency dependent Rrs that is largely attributed to airway structural 

heterogeneity. Also, asthmatic subjects tend to exhibit a more negative Xrs, which implies an 

increased mechanical stiffness.52, 53 Rrs has likely received the most attention in asthma as it is 

related to airway structure (diameter), and asthma is believed to be an obstructive disease of the 
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airways (not changes in tissue properties). Like spirometry, several studies have established 

reference values to aid clinicians to determine abnormal values for Rrs and Xrs.54-63 There have 

been clinical guidelines and recommendations from the American Thoracic Society (ATS) and 

European Respiratory Society (ERS) for FOT as a clinical tool.64, 65 Additionally, there have 

been significant advancements by manufacturers to create user-friendly devices, including hand-

held portable devices as shown in Figure 1.3.  

 

 

Figure 1.3 The tremofloTM C-100 AOSTM, a handheld oscillometer developed by Thorasys 

Thoracic Medical System Inc., Montreal, Canada.  

 

1.7.1 Multi-branching Airway Tree Models for FOT 

The emergence of imaging techniques that visualize ventilation have led to the development 

of computational multi-branching airway tree models that make use of the ventilation data to 

investigate the role of structural heterogeneity in asthma physiology. The complexity of the lung 
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poses a significant challenge when designing an accurate model. The first useful airway tree that 

used branch airway dimensions was based upon data acquired from a resin cast of the lung down 

to the 10th airway generation, and microscopic measurements down to diameters of 2 mm using 

histological techniques.66 This model was further developed by Horsfield and Cummings, where 

asymmetric branching conditions were added, where variations in daughter airways length and 

diameter were introduced.67 Despite a few complex asymmetric bronchial tree models being 

available, the first demonstration of ventilation heterogeneity to reproduce a ventilation 

distribution similar to that observed in inhaled gas imaging was a simple symmetric bifurcating 

model.68,69  This model incorporated airway instability whereby each airway was distended by 

inflation of the acinus it subtended as developed by Anafi and Wilson for a single airway. This 

model notably predicted the development of ventilation heterogeneity through this mechanism.70 

This model was not used to predict impedance, but other models, including models that extended 

the airway trees to smaller airways beyond those obtainable by casts have been used in an 

approach known as image functional modelling.    

 High resolution computed tomography (HRCT) with imaging parameters typically used in 

clinics can visualize the bronchial tree down to the 5-8th generation. While this allows the 

construction of subject-specific airway trees non-invasively, it does not include small airways. 

However, using large airways modelled from the HRCT, the remaining airways can be grown 

with a volume-filling algorithm guided by the fractal branching pattern of the lung. For this 

thesis, a multi-branching airway tree model generated by Tawhai and Hunter was utilized, and 

the process for the generation of the tree is as follows.71,72 A random set of peripheral airway 

endpoints are generated and the center of mass from these points is calculated. A vector is 

created from final airway of the undeveloped tree to the center of mass of the randomly 



15 
 

generated points, and the length of the resulting airway is taken as 40% of the length of this 

vector. New seed points are generated, and this process is repeated continuously until the airways 

reach a boundary, and the airway is terminated. For the purposes of this thesis, the airways at the 

end of branch will be referred to as terminal; albeit convention has called for the first airway 

where gas exchange is occurring to signify the start of the terminal branch. From the above 

process, the diameter of the daughter airway is calculated with: 

 log(𝐷(𝑥)) = (𝑥 − 𝑁) log(𝑅𝑏𝑆1/3) + (𝐷𝑁) (6) 

where D is the computed diameter, x is the branch order, N is the higher order (trachea being 

highest), Rb S1/3 is the Strahler-based ratio, and DN is the diameter of the highest order branch. 

While not contained within this thesis, continual advancements have been made with this 

modelling technique to include curvilinear mesh-models, along with physiologically appropriate 

lobar boundaries.73 

1.7.2 Single Compartment Lung Mechanics Modelling  

As mentioned previously, FOT measures the ratio of pressure to flow referenced at the 

airway opening, which is defined as the respiratory system impedance (Zrs), a complex 

mathematical quantity. The real component (Rrs) largely reflects the resistive properties 

respiratory system and the imaginary component (Xrs) largely reflects the elastic and inertive 

properties of the respiratory system: 

 𝑍𝑟𝑠 = 𝑅𝑟𝑠 + 𝑗𝑋𝑟𝑠  (7) 

If we model the respiratory system as a single compartment model as shown in Figure 1.4, we 

can derive an equation of motion pertaining to airflow throughout the system. With this model, 

we assume that the elastic recoil pressure (Pel) increases linearly with the volume of gas within 
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the elastic sac described by E, and the pressure difference (Δ𝑃) across the airway tube varies 

linearly with airflow (𝑉̇), described by R: 

 𝑃(𝑡) = 𝑃𝑒𝑙 + ΔP = 𝐸𝑉(𝑡) + 𝑅𝑉̇(𝑡) (8) 

For frequencies greater than that of normal breathing, we must consider the pressure required to 

accelerate the mass of air throughout the tube constituent (𝑉̈). To account for this, we add an 

inertive term, Ir, to the differential equation above: 

 𝑃(𝑡) = 𝐸𝑉(𝑡) + 𝑅𝑉̇(𝑡) + 𝐼𝑟𝑉̈(𝑡) (9) 

This equation can be reconstructed in the frequency domain by taking the Fourier transform of 

the above function where we use the notation 𝜔 = 2𝜋𝑓 for convenience: 

 𝑃(𝜔) = (𝑅(𝜔) + 𝑖 [𝜔𝐼𝑟 − 𝐸𝜔]) 𝑉̇(𝜔) = 𝑍(𝜔)𝑉̇(𝜔) 
(10) 

From the above equation we can separate out the real, and imaginary components, and use 

equation 11 to get: 

 𝑋𝑟𝑠 = 𝜔𝐼𝑟 − 𝐸𝑟𝑠 𝜔   (11) 

such that: 

 𝐶𝑟𝑠 =  1𝐸𝑟𝑠 
(12) 

where C is the compliance. The single-compartment linear model (to model the entire lung) can 

model healthy-lung impedance very well,64,74 but it lacks the ability to fit well with changes that 

occur with obstructive disease, which alters the Zrs behavior with frequency, particularly 

increasing Rrs at low frequencies (<10 Hz).  
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where G represents tissue damping, and H represents the stiffness of the tissues, P is the pressure 

in the tissue compartment, and 𝛼 is defined as: 

 𝛼 = 2𝜋 tan−1 (𝐻𝐺)  (15) 

with α typically less than unity in lung tissue.78, 79 Adding the tissue contributions to the findings 

from the single compartment model, the impedance for this system would be: 

 𝑍(𝜔) = 𝑅 + 𝑖𝜔𝐼 + 𝐺 − 𝑖𝐻𝜔𝛼  
(16) 

grom this model, a parameter that can be defined is a term referred to as the hysteresivity (G/H), 

which relates how much proportion of tissue deformation goes into energy dissipation through 

frictional or viscous process compared to elastic energy storage. The form of the constant phase 

model provides a source of inverse frequency dependence in the Rrs spectra through 
𝐺𝜔𝛼  . In 

healthy humans, the inverse frequency dependence in Rrs is only visible below 0.2 Hz.80,81 

Although in disease, this inverse frequency dependence is also seen in the typical FOT range (5-

32 Hz). While the constant phase model can account for frequency dependence of Rrs observed 

in lung tissue, it does not necessarily mean that freqeuncy dependence is a tissue-based property. 

Frequency dependence of resistance in humans is usually attributed to heterogeneity and can be 

described using two or multicompartment models described in the next section.   

 1.7.4 Impedance Modelling and Asthma 

While complex models such as the six-element model82 or multi-branch models have 

been derived to simulate the mechanics of the entire respiratory system, the single compartment 

model or constant phase model still dominate in the literature due to their ability to be 

informative. For example, an early and common model for the respiratory impedance in asthma 

is the two-compartment model which consisted of two single compartments in parallel; the 
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model was then compared with measured impedance in dogs after the administration of 

histamine in the frequency range of 8 to 2048 Hz.83,84  In this thesis I use a multi-branch airway 

tree model which were introduced in section 1.7.1, which at it’s terminal branches each includes 

a distinct single compartment.       

1.7.5 Cost Function Minimization and Parameter Optimization  

This thesis will require a procedure to determine the level of narrowing for a cluster of 

airways in a multi-branching airway tree that leads to the closest match to the measured 

ventilation pattern. In addition, we will be seeking solutions that best predict measured 

impedance as well. This is an optimization problem in a multi-parameter space since the many 

interconnected airways can have many different configurations of airway narrowing.  In this 

section we introduce optimization in multivariate problems, and then describe simulated 

annealing which is the approach adopted in this thesis. The mathematical premise of any 

optimization procedure is that there is a functional form, 𝑓, that describes the cost of a system, 𝐴; 

and we seek a parameter set, 𝛽0, such that: 

 𝑓(𝛽0) ≤ 𝑓(𝛽),   𝛽0𝜖𝐴,   𝛽𝜖𝐴 (4) 

In complex systems, like mechanical models of respiratory system, parameters are intrinsically 

linked with multiple similar configurations, which means that descent-optimization techniques 

like the Gauss-Newton algorithm can get trapped in local minima of the objective function and 

fail to find the global minima. 

1.7.6 Simulated Annealing 

While iterative techniques have the potential to get trapped in local minima of large sized 

solution spaces, heuristic methods can explore the interdependence of variables on global 

optimization. One such technique is simulated annealing which started with the concept of the 
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travelling salesman problem, where the cost of a salesman travelling between N cities is 

minimized via combinatorial optimization.85-87 The formalism for applying simulated annealing 

was initially introduced by Kirkpatrick et al.,88 which is rooted in statistical mechanics, and 

states that the probability of a system being in a state with energy E with temperature T, would 

satisfy the Boltzmann distribution:  

 𝑃(𝐸, 𝑇) = 1∑ 𝑒− 𝐸𝑖𝑘𝐵𝑇𝑖 𝑒− 𝐸𝑘𝐵𝑇
 

(21) 

where kB is the Boltzmann constant: 1.38 x 10-23 𝑚2 ∗ 𝑘𝑔 ∗ 𝑠−2 ∗ 𝐾−1 and in simulated 

annealing this constant is omitted, and the form of this equation is simplified: 

 𝑃(Δ𝐸, 𝑇) = 𝑒−ΔET  
(22) 

This equation will go to unity at high T, meaning all states are equally likely. As T decreases, the 

probability of states occurring is lower; representative of a fine-detailed search of the cost-

function landscape to find a global minimum. For the purposes of a cost-function minimization 

problem, this technique improves on other optimization frameworks by occasionally allowing for 

worse solutions at high T, i.e, enabling the system to jump out of local minima. Iterative cooling 

of the temperature is implements, which puts more stringent tolerances on accepting “worse” 

solutions.  

 In the form presented above, simulated annealing has apparent limitations: (1) the 

probabilistic criterion of solution acceptance leads to the potential of escaping the global minima, 

and not return due to cooling nature of the technique. (2) Slow cooling is the only way to 

overcome (1), and this becomes computationally expensive. Adaptive cooling schedules have 

been developed that address these limitations,89,90 albeit these techniques were not implemented 
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in this thesis. In Yang et al., they proposed a guided annealing schedule where the temperature, 

Tg, is as follows: 

 𝑇𝑔 = 𝛼𝑇 + (1 − 𝛼)𝑑∗ (5) 

where T is the current temperature of the system, and is cooled in the conventional way:  

 𝑇 = 𝛾𝑇𝑝𝑟𝑒𝑣 (6) 

where 𝛾 is the cooling rate, and 𝑇𝑝𝑟𝑒𝑣 is the temperature of the previous iteration. The term 𝑑∗ is 

a function used to track performance of the optimization, and can be defined in various ways; for 

which they chose: 

 𝑑∗ = ‖𝑥𝑒 − 𝑥̂𝑐𝑢𝑟𝑟∗ ‖ (7) 

where 𝑥𝑒 is current evaluation of the cost, and 𝑥̂𝑐𝑢𝑟𝑟∗  is the lowest evaluated cost thus far. The 

term 𝛼 is referred to as the information-effectiveness parameter and is defined as: 

 𝛼(𝑇) = [1 − exp {−𝑐 ( 𝑇𝑇𝑖𝑛𝑖)}] 
(8) 

where 𝑇𝑖𝑛𝑖 is the temperature of the system at the beginning of simulated annealing, and c is an 

adjustable parameter used to control the effectiveness of feedback. They were able to show that 

information guided simulated annealing improved over conventional simulated annealing, with 

or without a reheating schedule, by quantifying the number of simulations that were trapped in 

local minima for common optimization problems (Griegwangk, Rastrigin, and Schwefel function 

respectively).89 

1.8  Motivation 

 The motivation for this thesis is as follows. MR ventilation images of an asthmatic lung 

can be used to determine the percentage of the lung not participating in ventilation; which is 

thought to be the result of small airway narrowing. A broad review of recent literature has 
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revealed that the average VDP for a healthy subject is ~ 4.2 ± 5.4%, and ~ 10.0 ± 6.7 % for a 

severe asthma.29,39,41,91-93 The obstruction of an airway (which is thought to cause a ventilation 

defect), which consequently blocks access of an FOT oscillation to sense the soft elastic tissue 

behind the obstruction, should cause reactance/elastance to stiffen proportionately. Analyzing a 

simple multi-branching airway tree model with thirty-two acini as shown in Figure 1.5, the 

absence of an acini can be shown to affect the overall stiffness of the lung. Assuming a chest-

wall elastance of 10 𝑐𝑚 ∗ 𝐻20 ∗ 𝐿−1, and an equal stiffness distributed to all acini, the elastance 

of a healthy lung as shown in Figure 1.5.A can be calculated: 

 𝐸ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = ( 1𝐸1 + ⋯ + 1𝐸31)−1 + 𝐸𝑐𝑤 = 40 𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝐿−1 
(27) 

Using one standard deviation from the mean VDP of severe persons with asthma (~16%) as 

depicted in Figure 1.7.B, the elastance is calculated to be: 

 𝐸ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = ( 1𝐸1 + ⋯ + 1𝐸27)−1 + 𝐸𝑐𝑤 = 44.4 𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝐿−1 
(28) 

This is an observed 11.1% change in elastance from health to severe disease, which is 

significantly less than the 400% change interpreted from low frequency (4 Hz) FOT.94 To 

achieve this same change in elastance with the lung model depicted in Figure 1.5, a VDP of 80% 

would be required. It is important to note that MRI ventilation defects are derived from imaging 

acquired in the supine position which causes the abdomen to shift upwards, increasing R, and 

decreasing E. In severed obesity, E can be increased two-fold in the supine-position compared 

with upright.95 While postural positioning does account for an appreciable change in stiffness of 

the lung this is still insufficient to account for the disparity between predictions of lung 

mechanics by MRI, and measured oscillometry. In asthma, the reason for the difference in the 

relative decrements of lung function compared to health as measured by MRI and oscillometry is 
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airway diameters in asthma was also investigated by simulating ventilation and predicting 

impedance with a concept known as image functional modelling (IFM).99,100 IFM is a technique 

that simulates the mechanics of a system, altering internal parameters such as diameters in an 

effort to explain function, including both impedance and ventilation distribution using imaging 

data. For this thesis, IFM was further developed to simulate the inhalation of gas and was 

compared to measured inhaled gas MR images.  

The first study of IFM used inhaled gas PET to guide the location of airway closures 

within a multi-branching airway tree model; the simulated ventilation produced by the tree 

allowed them to predict the size of airways responsible for the presence of ventilation defects 

seen in asthma.99 To accurately simulate observed ventilation defects, closures to airways < 2.39 

mm were required; this is consistent our understanding of asthma being a small airway disease. 

A following investigation used inhaled-gas MRI to similarly guide the location of binary 

closures (i.e. dividing the lung into two regions, non-defect and defect within which airways are 

effectively closed) within a bronchial tree but required the addition of a normal distribution of 

narrowing to upper airways to account for additional impedance to matched subjects’ 

measurements.100 Common to both studies was the concept of a binary closure to the airway tree, 

where airways that fell within defects from the ventilation image were closed to 70-90% of their 

initial diameter. While using the additional Gaussian distributed narrowing in the ventilated 

regions predicted impedance that matched well with subjects’ measurements, this method 

produced substantial and unexplained differences between the real ventilation images from MRI 

and the simulated ventilation images as shown in Figure 1.6.  The top row of Figure 1.6 

demonstrates three central slices of an inhaled gas MR image of one subject, the middle row 

depicts the same slices of simulated ventilation images produced from a computational airway 
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tree model with a 70% closure to airways within defects, and the bottom for the same tree with 

90% closures. The locations of defects are not correct, which could be attributed to the airway 

tree registration. But, more importantly, the signal intensity pattern of ventilation in ventilated 

regions is significantly lower than measurement.  

 

  

Figure 1.6 Real (top) and simulated ventilation images for three middle lung slices. The middle 

row represents simulated ventilation where defect airways were narrowed by 90%. The bottom 

row represents simulated ventilation where defect airways were narrowed by 70%. Red circles 

highlight differences in defect location/size.100 

 

 

 



26 
 

1.11 Hypothesis 

 The common approach for modelling mechanical impedance in asthma is to employ a 

binary closure of 70 to 90% airway narrowing airways that fall within the “defect” regions of 

inhaled gas images; a visual depiction of one such closure map is as seen in Figure 1.7. However, 

additional constrictions to pre-defined airways generations based upon a normal distribution 

have also been required to measured subjects’ impedance, sacrificing the functional participation 

of airways in predicting realistic ventilation. The multiple levels of ventilation within the inhaled 

gas images were largely discarded when converted only to binary information of regions with or 

without ventilation, and thus did not contribute to guiding airway narrowing. To examine how 

important this information might be, and to investigate the complex, and heterogeneous 

ventilation distribution in persons with asthma, we propose that a higher-level constriction 

scheme must be realized. As demonstrated by Kirby et al.,38 k-means clustering is an approach to 

segment ventilation levels into clusters, which were matched with expert chest radiologists’ 

opinions of functionally significant differences in ventilation.  
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Figure 1.7 A 3D model airway tree with defect airways derived from inhaled gas MRI in red. 

Conventionally asthmatic modelling approaches would narrow these airways by 70-90% to 

respiratory mechanics. 

 

General Hypothesis 

We hypothesize that the hypointense to hyperintense signal levels in inhaled gas MR images can 

be used to guide a graded narrowing scheme in a multi-branching airway tree model that will 

improve on previous binary closure models to simulate ventilation images and impedance data 

in asthma 

Specific Hypotheses 

1) We hypothesize that simulated ventilation images predicted from a graded narrowing model 

will closer match measured ventilation images as assessed by reduced sum of squared 

differences in image intensities when compared to a binary model.  

2) We also hypothesize that a graded airway narrowing model will predict a larger change from 

baseline Rrs and Xrs as assessed by a t-test at 5Hz. Also, we predict that the graded model will 
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predict impedance vs. frequency that is closer matched with measurement compared with the 

binary closure model; This was assessed by subjective comparison of Zrs of both graded and 

binary models by the increase of Rrs from baseline, and their statistical differences between 

models by t-test, as well as the subjective presence and extent of frequency dependence in Rrs 

This was also assessed by the difference between binary and graded scheme in the decrease in 

reactance from baseline, and subjectively by the rate of increase of Xrs as it more closely 

resembled measured Xrs. 

3) We also hypothesize that the graded airway narrowing model will exhibit a larger inverse 

frequency dependence in the resistance spectra as quantified by the difference in resistance at 5 

Hz to the resistance at 20 Hz, as assessed by a t-test when compared with predictions from the 

binary model. 

1.12 Preliminary Development of a Time Constant Map for the Lung 

A study performed by Kaminsky and colleagues (2000) found that the average peripheral 

airway resistance of seven persons with asthma was 11.9 +/- 2.28 cm-H20-s-L-1 compared to 3.49 

+/- 0.82 cm-H20-s-L-1 for seven healthy participants with comparable demographics.106 Regions 

fed with narrower airways (higher resistance) would take longer to fill than others, which 

embodies the idea that ventilation heterogeneity has an associated distribution of time constants 

in the lung and  governs regional and heterogenous ventilation. We speculate here that the 

development and visualization of a time constant map over the lung derived from the ventilation 

data could help provide insight into scale of the heterogeneity present in the lung, presenting it in 

the familiar units of time rather than image intensity. Thus, new understanding of the scale and 

nature of the heterogeneity might be learned of the functional behaviour of the lung during 

inhaled gas imaging, and potentially present during breathing. 
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Chapter 2. Experimental Methodology 

 In this thesis, oscillometry and imaging data previously obtained from larger studies 

within the Parraga lab was used. Eight subjects (59 +/- 7 years), half male (weight = 86 +/-3 kg, 

height = 178 +/- 6 cm), half female (weight = 80 +/-10 kg, height = 164 +/- 3 cm), provided 

written informed consent to ethics board approved protocols (https://clinicaltrials.gov, 

NCT02351141, NCT02263794). These subjects exhibited severe clinical asthma based upon the 

Global Initiative for Asthma,17 with a VDP range of 2-34 %. MR Images, and FOT were taken at 

baseline, and  after administration of salbutamol (bronchodilator). The demographics for these 

subjects are as shown in Table 2.1 

 

Table 2.1 Demographics of subjects measured with FOT, MRI, spirometry, and 

plethysmography. 

Subject Age Sex Height 
(cm) 

Weight 
(kg) 

BMI 
(kg/m2) 

FEV1 
%pred 

VDP 
(%) 

Severity 
 

S1 68 M 180 87.9 27.1 105 7.0 Severe 

S2 56 M 185.5 86.7 25.2 37 31.5 Severe 

S3 48 M 171.5 87.5 29.8 78 9.9 Severe 

S4 66 F 161 63 24.3 54.6 16.5 Severe 

S5 67 F 167 83 29.8 56 11.6 Severe 

S6 60 F 163 88 33.1 37 29.2 Severe 

S7 54 F 163 88.2 33.2 50 38.0 Severe 

S8 53 M 173 80.5 26.9 27.9 30.7 Severe 

 

 

https://clinicaltrials.gov/
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2.1 Forced Oscillation Technique 

Oscillometry was previously collected using a tremoFloTM C-100 Airwave Oscillometry 

SystemTM as shown in Figure 1.3 by superimposing a multifrequency oscillatory pressure 

waveform of approximately 1-2 𝑐𝑚 ∗ 𝐻2𝑂 with a subject’s normal breathing, over the course of 

16 seconds. The waveform delivered oscillations at 5, 11, 13, 17, 19, 23, 29, 31, and 37 Hz. The 

impedance, Zrs, was calculated by taking the fast Fourier transform of pressure and flow signals 

and computing the ratio of the spectra as the average of 1 second overlapping windows and for 

signal processing, a Hamming window with a 50% overlap was applied to the one-second 

windows prior to averaging from a single 16 second measurement, and 3 measurements were 

then averaged for the final Zrs, and accepted if the coefficient of variation for Rrs at 5 Hz was 

less than 15%. Any negative resistances of any window or outliers of greater than 3 standard 

deviations were rejected from an individual 16 seconds recording and a coherence of ≥ 0.90 was 

used as an acceptance criterion; where a coherence of 1.0 assumes perfect linearity between the 

measured pressure and flow (meaning the absence of noise). As per ATS/ERS guidelines, 

subjects wore a nose-clip during measurements, and supported their cheeks with their hands to 

minimize the upper airway shunt impedance.64 

2.2 Hyperpolarized 3He MRI 

 The MRI scans utilized in this study were acquired with a 3 Tesla Discovery MR750 

system (General Electric Health Care; Milwaukee, WI). During the procedure, subjects inhaled a 

1.0 L gas mixture of 3He/N2 from functional residual capacity (FRC), and the images were taken 

under breath-hold conditions (total scan time: 16 s) in the supine position. A whole-body 

radiofrequency coil was used with a fast gradient-recalled echo method with partial echo 

(TR/TE/flip-angle = 3.8 msec/1.0 msec/70; FOV = 40x40 cm2; matrix = 128x128, zero padded); 
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partial echo percent 62.5%, BW 62.5 kHz, one excitation, 14 sections (section thickness = 15 

mm). Scans were performed with a rigid linear bird-cage transmit/receive chest coil (RAPID 

Biomedical GmbH, Wuerzburg, Germany). 3He gas was polarized with a commercial exchange 

polarizer system (Polarean Inc, Durham, NC) to 30-40%.  Images were segmented using 

software generated from MATLAB R2007b (The Mathworks Inc., Natick, MA). The inhaled gas 

3He MR images were clustered using a hierarchical k-means clustering method as described in 

section 1.6.2.  
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Chapter 3. Modelling Methodology 

3.1 Airway Tree Registration 

For this thesis, a 3D multi-branching airway tree with 64,895 airways, and 32,447 

terminal airways was used for modelling. This model was developed from a HRCT of the lung 

from of a single subject, where airways diameters and junctions were derived. From the central 

airways, the peripheral airways were created using a fractal growing algorithm to the edges of 

the thoracic space, as described in section 1.7.1.72 To model asthmatic physiology in the 

computational airway tree model, we used gradations in signal intensity within hyperpolarized 

3He MR images to apply local narrowing in the tree. To do this, we registered the 3D airway tree 

to a subject-specific MRI lung volume and is described fully in the following sections.  

3.1.1 Point Cloud Registration 

We implemented a rigid point-cloud registration using the function pcregrigid in 

MATLAB (MathWorks, 2017a) to move the airway tree into the MRI lung volume separately for 

the left and right lung. This function performs rotations and translations in 3D (x,y,z) to 

minimize the differences between two distributions of points. The MRI lung space (coronal 

slices) was defined by its boundaries, and a MR point-cloud volume was created by distributing 

the slices within the MR data set throughout the extent of the 3D airway tree dimensions. E.g, the 

positioning of the i-th slice would be: 

    𝑃(𝑖) = (𝑖 − 1) ∗ 𝑇𝑁  + 𝑇2𝑁   (29) 

where i is the slice number, T is the thickness of the lung (as determined from the coronal 

resolution of MRI), and N is the number of slices. As shown in Figure 3.1 below, the airway tree 

(black dots) was registered to MRI point cloud volume; where a separate registration was 
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performed for the airways in the right lung of the tree with the right MR lung (red dots), and 

similarly for the left MR lung (blue dots).  

 

Figure 3.1 Rigid registration of the 3D airway tree model (black), to the MRI lung volume for 

one subject. The left lung (blue), and right lung (red) are registered separately. 

 

3.1.2 TLC to FRC scaling 

 We scaled the airway tree lengths, and diameters from TLC, where the tree was derived, 

to FRC + 1.0 L. This was done to properly model the mechanics of the lung during the same 

state at which ventilation images were acquired. A scaling function that is airway-generation 

dependent was utilized: 

 𝐿𝑓𝑎𝑐(𝑛) = 𝛼1 + [𝑑(𝑛)𝑑𝑝 ]−𝛽 (30) 

where d is the diameter of the given airway, dp is a threshold to differentiate small airways, and α 

and β are model parameters that can vary. This sigmoidal scaling function was derived to reflect 
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the scalability of various airway generations based upon their cartilaginous structure and has a 

graphical form as shown below in Figure 3.2. In this figure, the scaling function for the airways 

lengths are shown where longer/larger airways are scaled less than smaller airway 84,107   

Figure 3.2 Scaling function for airway lengths to scale lung from TLC (large length) to FRC.  

 

The scaling parameters α = 1, β = 1, and dp = 2 mm were chosen to scale airway lengths for all 

subjects, whereas variable α and β were chosen to scale airway diameters. The choice of α and β 

was made to predict a baseline (healthy) lung resistance that was 50-60% lower than the 

subjects’ measured resistance. This threshold was chosen because it was the observed difference 

between healthy subjects and persons with severe asthma by Calvacanti et al.94
 Also, these 

parameters were chosen to synergistically match the demographic predictions of the subjects’ Xrs 

at 5 Hz (further comments below).108 The different scaling functions for airway diameters of the 

8 subjects in this study are shown in Figure 3.3, where each subject required different scaling to 

achieve baseline conditions. This plot shows that the majority of subjects required upper airway 
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dilation to meet baseline predictions, and likely means that the tree in this study was smaller than 

the trees of the actual subjects.  

 

Figure. 3.3. Scaling function for airway diameters of eight different subjectss, to scale lung from 

TLC to FRC. 

 

The results of the registration for one such subject is shown in Figure 3.4, with lateral and medial 

registration errors still evident. Given that the scaling function was applied to the entire tree, we 

can infer that for some subjects (mostly male), the initial airway tree morphology was incorrect, 

i.e, the airway tree was derived from a slim person (small chest cavity), whereas the average 

male has a larger chest cavity. Further deformation was needed to improve the matching of the 

airway into the thoracic space, and this is addressed in the following section. 
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Figure 3.4. Registration of 3D model airway tree (black), to MR lung volume (red = right, blue = 

left) after scaling lung from TLC. 

 

3.1.3 Deformable registration using MIND 

Following scaling of the airway tree in the previous section, deformation of the tree was 

necessary to fill the subjects’ MR lung space. This required the 3D tree to be mapped into image 

space (physical lengths/positions to pixel positions). Also, given the slice-format (single images) 

of the MR lung volume, the 3D lung-model had to be converted into a slice format as well. Using 

a similar logic from the previous section, airways were recruited into a given slice based upon 

their positioning. Exceptions were added to incorporate airways that were entering or leaving a 

given slice. After discerning the airways within the respective slice, the boundaries of the left 

and right lung space were determined separately, and a binary mask image was created for the 

airway space.  
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To deformably register the airway tree to the MRI volume, the slices of each respective 

volume were registered on a slice-by-slice basis, using a binary mask of the MR lung space. 

Also, the left and right lung were registered separately. Registration was performed using the 

modality independent neighbourhood descriptor (MIND) as outlined in Heinrich et al.109 Briefly, 

the technique defines an image descriptor, which represents the structure of an image in a local 

neighbourhood. The descriptor for each voxel x, in image I, surrounded by a patch r, is defined 

as: 

 𝑀𝐼𝑁𝐷(𝐼, 𝒙, 𝒓) = 1𝑛 exp (− 𝐷𝑝(𝐼, 𝒙, 𝒙 + 𝒓)𝑉(𝐼, 𝒙) ) , 𝒓𝜖𝑅 
(31) 

where R is the spatial search region. The patch distance, Dp(I, x, x+r) represents the difference 

between one patch around voxel x, and another patch at voxel x+r: 

 𝐷𝑝(𝐼, 𝒙, 𝒙 + 𝒓) =  𝐶 ⋆ (𝐼 − 𝐼′(𝒓))2
 (32) 

where C is a convolution filter of size (2𝑝 + 1)𝑑, d is the dimension of the image, and I’ is a 

copy of image I translated by a distance r.  The variance, V(I, x) represents the variance of the 

patch around the voxel of interest. After the descriptor (represented as a vector) is defined for 

each voxel, the similarity between the two images is defined as the sum of squared differences 

between corresponding descriptors:  

 𝑆(𝐼, 𝐽, 𝒙) = 1|𝑅| ∑|𝑀𝐼𝑁𝐷(𝐼, 𝒙, 𝒓) − 𝑀𝐼𝑁𝐷(𝐽, 𝒙, 𝒓)|𝒓𝜖𝑅
2
 

(33) 

These values are then used to influence a deformable registration algorithm which utilizes a 

vector field u that minimizes the cost function below: 

   𝑎𝑟𝑔𝑚𝑖𝑛 (𝒖) =  ∑ 𝑆(𝐼(𝒙), 𝐽(𝒙 + 𝒖)) + 𝛼𝑡𝑟(∇𝒖(𝒙)𝑇∇𝒖(𝒙))2𝒙        (34) 

where I is the image to match, J is the image being deformed, and α is a diffusion regularization 

term that was chosen to be 0.05 for all subjects as it maximized registration. The cost function 
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was solved using the Gauss-Newton optimization method, with an iterative over-relaxation 

technique to converge to a solution. The optimization produced a deformable vector field that 

deformed the airway tree to fill the MR lung-space. This deformation field translated voxels in 

coronal perspective of the airway tree volume. An example of one such registration is shown in 

Figure 3.5 below, where the right MR lung (red dots), and left MR lung (blue dots) images are 

represented as slices (as described above), and the black dots are the positions of airways within 

the tree. There were high registration statistics (> 0.85 fractional volume overlap described 

below) found in slices immediately prior to, and after the cardiac notch, but with deviations with 

lower ovelap still seen in the medial/lateral lung within the cardiac notch, as well as deviations in 

the far-most posterior and anterior slices. To quantify the quality of registration, a shape-

matching metric, which we call the fractional volume overlap was used: 

 𝐹𝑉𝑂 = (𝐴 ⋂ 𝐵)𝐵  
(35) 

where A is the deformed image, and B is the image to match. 
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Figure 3.5. Registration of 3D model airway tree (black), to MR lung volume (red = right, blue = 

left) following deformable registration. 

 3.1.4 Registration Limitations 

 The final component of registration was ensuring the connectivity of the airway tree 

following deformation. Since the airways were segmented into individual slices, and the slices 

were deformed separately, connectivity of the tree from slice to slice could be lost as depicted in 

Figure 3.6.A, which shows airway generations 1 - 14 following deformation, where numerous 

subtending airway branch junctions were separated from parent branches. While the impedance 

of the tree could still be computed, the disconnected tree was not a realistic representation of the 

respiratory system. To reconnect the tree, a conditional framework for connecting the tree was 

implemented as follows. After registration, all airways throughout the tree were checked for 

connectivity of the left/right daughter branches first; if they were disconnected, they were forced 

to junction at the airway which falls within the lower ventilation level (to preferentially maintain 

location of defects during simulated ventilation). After this, the parent branches were checked for 

connectivity with the daughter branches and the following conditions were imposed: if the parent 
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3.2 Impedance Calculations 

To model the impedance of the airway tree, the impedance of individual airways was 

calculated, and then were added in parallel (at bifurcations), and in series (for each generation). 

The complex impedance of each airway was calculated with Womersely flow; which is derived 

from the Navier-Stokes equation for pulsatile fluid-flow. Womersely flow predicts both the 

inertive and resistive properties of any fixed tube with flow that is either laminar or approaches 

transitional/near Reynold’s number (not fully turbulent), and thus accounts for all the expected 

flow regimes in the lung within the frequency region that was tested. The mathematical form is 

as shown below: 

 𝑍𝑎(𝑓) = 𝑗 2𝑓𝜌𝑎𝑖𝑟𝑙𝑎𝑟𝑎2 [1 − 2𝐽1(𝛼𝑎√−𝑗)𝛼𝑎√−𝑗𝐽0(𝛼𝑎√−𝑗)]−1
 

(36) 

where ra is the radius, and la is the length of the airway, f is the frequency in Hz, ρair is the density 

of air (1.16 kg/m3), J1 and J0 are the Bessel functions of order 0 and 1 respectively, and αa is the 

Womersley number of the airway defined as: 

 𝛼𝑎 = 𝑟𝑎√2𝜋𝜌𝑎𝑖𝑟𝑓𝜇𝑎𝑖𝑟  

(37) 

where µair is the dynamic viscosity of humid air at 37oC (1.85 x 10-5 Pa-s). For terminal airways, a 

constant elasticity for the acinus added to the impedance; also, elasticity was homogeneously 

distributed to all acini in the tree model. While some heterogeneity in tissue properties might exist, 

asthma is not believed to be a tissue disease; i.e, the cause of ventilation heterogeneity is thought 

to be due to the heterogeneity in airway narrowing. For the terminal airways, the impedance is as 

defined below: 

    𝑍𝑎,𝑡𝑒𝑟𝑚(𝑓) = 𝑍𝑎(𝑓) + 𝐸𝑡𝑜𝑡 ∗ 𝑁𝑡𝑒𝑟𝑚                                               (38) 
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3.2.1 Assumptions 

After calculating the impedance of the entire airway tree, a few terms were added to 

realistically model the impedance of the entire respiratory system. To calculate the resistance of 

the lung, Rre, 0.5 𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝑠 ∗ 𝐿−1 for the trachea and glottis, as well as 0.5 𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝑠 ∗𝐿−1 for the chest wall was added to the airway tree resistance, Rtree, to reflective experimental 

observations:101,102,111 

 𝑅𝑟𝑠(𝑥) = 𝑟𝑒𝑎𝑙(𝑍𝑡𝑟𝑒𝑒(𝑥)) + 1.0 𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝑠 ∗ 𝐿−1,       𝑥𝜖𝑓  (39) 

where 𝑓 is a discrete frequency measurement. Following this, a chest wall elastance of 10.6  𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝐿−1  was added in parallel with the airway tree elastance: 112-116  

 𝐸𝑟𝑠(𝑥) = −2𝜋𝑥 ∗ 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦(𝑍𝑡𝑟𝑒𝑒(𝑥)) + 10.6 𝑐𝑚 ∗ 𝐻2𝑂 ∗ 𝐿−1,       𝑥𝜖𝑓 (40) 

And finally, a measured frequency dependent upper airway shunt impedance was added in 

parallel with the lung impedance to calculate the respiratory system impedance, Zrs:  

 𝑍𝑟𝑠,𝑖(𝑥) = 𝑅𝑟𝑠(𝑥) + 𝑖 ( 𝐸𝑟𝑠2𝜋𝑥) ,        𝑥𝜖𝑓  (41) 

 𝑍𝑟𝑠(𝑥) = 𝑍𝑟𝑠,𝑖(𝑥) ∗ 𝑍𝑢𝑎𝑤(𝑥)𝑍𝑟𝑠,𝑖(𝑥) + 𝑍𝑢𝑎𝑤(𝑥) ,        𝑥𝜖𝑓  (42) 

where Zuaw is the impedance of the upper airways as measured by Cauberghs et al.117 The 

resistance of the upper-airway shunt at discrete frequencies for 16 subjects with obstructive lung 

disease can be seen in Figure 3.8, where shaded circles represent measurements with the cheeks 

supported, and open circles represent measurements with the cheeks not supported. Similar 

differences are seen in the reactance (Xrs) spectra. 
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Figure 3.8. Upper airway shunt resistance (Ruaw) with cheeks supported (filled circles), and 

unsupported (unfilled circled) in 6 healthy subjects. Figure reproduced from Cauberghs et al.117 

 

We used subject’s demographics to predict baseline (healthy) Xrs at 5 Hz, where “baseline,” 

reflects a healthy lung without the presence of defects, or obstruction:108 

 𝑋𝑟𝑠,ℎ𝑒𝑎𝑙𝑡ℎ𝑦,𝑚𝑎𝑙𝑒 = 4 − 𝑒2.683−0.703∗𝐻+0.00185∗𝑊 𝑋𝑟𝑠,ℎ𝑒𝑎𝑙𝑡ℎ𝑦,𝑓𝑒𝑚𝑎𝑙𝑒 = 4 − 𝑒2.373−0.707∗𝐻+0.0015∗𝐴+0.00312∗𝑊 

(43) 

where H is height in meters, A is age, and W is weight in kg. We matched these demographic 

predictions by choosing subject-specific variables in equation 30 and adjusting the elastance in 

the tree, Etot in Equation 38. The values chosen for Etot were within the range of observed 

values.94,116,117 

3.3. Image Functional Modelling (IFM) 

We aimed to deploy a graded narrowing scheme in a bronchial tree to simulate asthmatic 

physiology, where the degree of narrowing for individual airways was based upon local 

ventilation (derived from the MRI registration procedure). We implemented two techniques 

together to realize subject-specific narrowing schemes: IFM and simulated annealing. For 
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simulating ventilation with IFM, we used a methodology similar Campana et al.100 To implement 

IFM, we assume that gas was inhaled in one second during an inhaled gas MR acquisition and 

calculate the impedance of each airway at a frequency of 1 Hz. We then sum the voxel intensities 

for the entire inhaled gas MR image, and distribute the summed signal intensity (assumed to be 

the signal from 1.0 L of gas) throughout the tree, starting at the trachea, using a flow-divider 

relationship described by Colletti et al.,118 where the resulting flow of gas distributed to each 

airway was dependent upon the resistance of the subtending branches: 

 𝑉̇𝑙𝑒𝑓𝑡 = 𝑅𝑟𝑖𝑔ℎ𝑡𝑅𝑙𝑒𝑓𝑡 + 𝑅𝑟𝑖𝑔ℎ𝑡 ∗ 𝑉̇𝑝𝑎𝑟𝑒𝑛𝑡 

𝑉̇𝑟𝑖𝑔ℎ𝑡 = 𝑅𝑙𝑒𝑓𝑡𝑅𝑙𝑒𝑓𝑡 + 𝑅𝑟𝑖𝑔ℎ𝑡 ∗ 𝑉̇𝑝𝑎𝑟𝑒𝑛𝑡 

(44) 

This process was completed until the volume of gas in each airway was found as shown in 

Figure 3.9, where gas signal intensity, quantified in each airway, generally decreased with 

increasing airway generation since the total cross-section increased with increasing number of 

branches below about the 3rd generation. To produce the image, it was only important to consider 

the degree airflow (proportionally volume of gas) in the terminal airways, as this is the site of gas 

exchange, which is functionally observed with inhaled gas MRI.  
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Figure 3.9. Signal intensity in each airway after implementing a flow-divider relation to 

distribute gas throughout an airway tree. 

 

The methodology above assumes that the elastance at the end of all pathways were identical, thus 

other than the role of the pathway resistance not differentially affecting the effective time 

constant for filling. We then assign signal intensities derived from the flow divider relationship 

to a zero-filled matrix to create a ventilation image. Voxels that did not contain an acinus were 

assigned a signal intensity using a 3D nearest-neighbour averaging algorithm. Finally, to bring 

the simulated ventilation images closer in resolution to the inhaled gas MR images, a 3D median 

filter was applied. An example of this entire process is as depicted in Figure 3.10, where in 

Figure 3.10.A, voxels in a zero-filled matrix were filled with the local degree of ventilation in 

airways determined from the flow divider relationship; In Figure 3.10.B, the remaining zero-

filled voxels were filled with a 3D-nearest-neighbour averaging algorithm and the entire image 

was smoothed using a median filter.  Both model (Figure 3.10.B) and subject’s ventilation 

(Figure 3.10.C) bear some similarity, but they are different. This is described later in section 5.3. 
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Figure 3.10. A visualization of the gas-map filling process for simulating ventilation. A) Shows 

the gas map filled with signal intensity values for acini that fall within voxels. B) Shows the gas 

map after voxels have been filled with a nearest neighbour averaging, and a median filter has 

been applied to the whole image. C) Subject’s ventilation image where voxel intensities have 

been normalized by the summed signal intensity for the entire lung.  

 

A cumulative distribution function was then constructed from the simulated ventilation images 

with: 

 𝐶𝐷𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡𝑥
0  

(45) 

where 𝑥 is the degree of ventilation found in a given voxel, and 𝑓(𝑡) describes the number of 

voxels with a given degree of ventilation. 

 

3.4 Simulated Annealing 

We used simulated annealing to realize the optimal narrowing scheme for reproducing 

the ventilation distribution seen with MRI. For simplicity, the sum of square differences (SSD) 

between each simulated ventilation image and MR image, which we refer to as the objective 

function (OF), was chosen to quantify the optimization of the graded narrowing scheme. 
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Deriving the appropriate cooling rate was accomplished by iteratively performing simulated 

annealing with larger cooling rates and qualitatively assessing the shape of the OF optimization. 

Solutions that converged too quickly, or did not converge at all, were discarded. From this 

assessment, the optimal cooling rate was found to be 1.5 % per iteration. For this thesis, the 

framework for applying simulated annealing is as shown in Figure 3.11.  

Three different versions of simulated annealing were tested; in V1/V2 we only 

considered the optimization of a graded narrowing scheme for the terminal airways, as we 

believed the best possible way to match ventilation would be to apply localized narrowing to the 

smallest airways. This methodology limited our ability to match measured impedance, given that 

induced heterogeneity was restricted solely to terminal airways.  In V3 two levels of simulated 

annealing was applied, where the first level optimized a graded narrowing scheme for the 

conducting airways, with the goal of improving impedance predictions by introducing structural 

heterogeneity throughout the upper airways; and the second level optimized a graded narrowing 

scheme for the terminal airways to maintain the quality of simulated ventilation. The technical 

difference between each version is related to equation 30, which scales the lung from TLC to 

FRC + 1.0L. Below is a description of the methodology for each version, and the motivation for 

attempting different methods. In V1 β in equation 30 was set to 1.0 while varying α and dp, this 

restricted any airways from being dilated during the scaling, as one might expect when reducing 

lung volumes; but, since the airway tree is not that of the target subject, it is possible that some 

airway dilation could be needed, particularly in subjects with low impedance. This method did 

not provide useful baseline Rrs, nor did it match subjects’ Xrs as it was less negative than the 

measured (obstructed Xrs). This motivated a new method for choosing parameters. In V2 we 

attempted to seek an appropriate scaling by varying all three parameters, allowing upper airways 
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to constrict or dilate, and changing the inflection point in equation 30, which effectively defines 

a point where airways become more compliant and scale more easily with volume changes. This 

approach did not allow simulated annealing to come to solutions that had important impedance 

characteristics seen in persons with asthma like inversely frequency-dependent resistance.  Thus, 

in V3 scaling was attempted by setting dp equal to 2 mm while varying α and β which is similar 

to the scaling approach described by Habib et al.84,107. Simulated annealing was applied twice as 

previously described. In some subjects Xrs was still a too small negative curve, and thus some 

subjects benefitted by adjusting acinar stiffness to match Xrs.  While this was performed on the 

final model tested of this thesis, from deeper analysis of the results, there were clear avenues for 

future implementations that are discussed on page 95. To quantity the performance of each 

version of simulated annealing, a metric called the performance index was borrowed:99,100 

 𝑃𝐼 = √∑ ([𝑅𝑟𝑠,𝑝(𝑖) − 𝑅𝑟𝑠,𝑚(𝑖)]2 + [𝑋𝑟𝑠,𝑝(𝑖) − 𝑋𝑟𝑠,𝑚(𝑖)]2)𝑛𝑓
𝑖  

(46) 

where Rrs,p is the resistance of the subject, Rrs,m is the resistance of the model, and similar 

subscripts are used to describe the reactance, Xrs; this metric is evaluated over the entire 

frequency range. 
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3.5 Time Constant Map 

The time constant of a ventilatory unit (the time it takes to be filled by 63.2 % of its’ 

maximal volume) if filling is approximated by a single compartment and thus single exponential 

relationship can theoretically be calculated using the pathway resistance and tissue compliance 

via: 

 𝜏 = 𝑅 ∗ 𝐶 (47) 

Given that computation of the pathway resistance may include effects of flow diversion or 

pendelluft to other pathways with different rates of filling, making the calculation of individual 

time constants from a distributed time constant map is highly complex; we will instead use the 

degree of ventilation within an inhaled gas MR as this is the actual filling achieved although it is 

the accumulated intensity and not necessarily following a single exponential behavior, thus as a 

model for the time for filling in a local region, assuming an exponential degree of filling via: 

 𝑉 = 𝑉𝑚 (1 − 𝑒−𝑡𝜏) 
(48) 

where t is the time for an inhaled gas MR image acquisition (16 s), and Vm is assumed to be 

63.2% of the maximum observed signal intensity.  

3.6 Statistical Analysis 

Following simulated annealing, we averaged the graded narrowing scheme solutions for 

the eight subjects in this study and performed a paired t-test between the degree of narrowing in 

the K(N) level to the degree of narrowing in the K(N+1) level and used a Bonferroni correction 

to test for a significant difference in the degree of narrowing between neighbouring K-levels. 

The same testing was also performed to evaluate improvements in ventilation between the binary 

model and the three version of simulated annealing with the graded narrowing model. Also, a 

paired t-test with a Bonferroni correction was used to evaluate significant improvements in the 
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resistance at 5 Hz (R5), the reactance at 5 Hz (X5), and the difference between the resistance at 

5Hz and the resistance at 20 Hz (R5-20) for the graded narrowing model, compared with the 

binary closure model. A single factor ANOVA was then used to evaluate if there were significant 

differences in these metrics between the three versions of simulated annealing. If a significant 

difference was found, a Tukeys’ Honest Significant Difference test was implemented to 

determine which differences were significant. 
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Chapter 4. Results 

4.1 Image Registration  

As described in the methodology on page 37, the registration of the airway tree to the 

host MR volume was quantified with the fractional volume overlap. Registration quality for the 

eight subjects pre- and post-salbutamol is shown in Figure 4.1, where we see that there was very 

little variation pre- and post-salbutamol respectively. In addition to the fractional volume overlap 

we calculated another common image registration metric known as the Dice similarity 

coefficient: 

 𝐷𝑆𝐶 = 2|𝐴 ⋂ 𝐵||𝐴| + |𝐵| (49) 

where A is the deformed image, and B is the image to match. For the eight subjects, the DSC 

was calculated to be 85 ± 3 %, and there were similar differences between pre- and post-

salbutamol. 

 

Figure 4.1 Fractional volume overlap following deformable registration framework of the same 

3D airway tree.to eight different MR volumes. 



54 
 

By not forcing the connectivity of the airway tree, the average FVO was 0.81 ± 0.04 for the eight 

subjects.  Using a paired t-test, the FVO was found to be significantly improved with a 

disconnected tree (p < 0.005).  For the eight subjects, the largest translation of an airway to 

maintain connectivity of the tree was 96 mm, and the average translation within each of the eight 

subjects ranged from 3.4 – 14.9 mm. The airways that required the largest changes in position 

were typically contained within the most anterior/posterior slices following registration. For all 

subjectss there were clear boundaries that formed between some clusters of airways following 

the registration process. In Figure 4.2, there is an example of one such registration with gaps 

between clusters of airways. This tree appeared to exhibit physiologically reasonable separations 

between the apical and posterior segments of the superior lobe, however, there were some 

artificially large subsegmental gaps observed that formed as result of the registration process. Of 

course, the gaps will translate into an inability to properly quantify simulated ventilation within 

these regions and the impact of this is discussed in section 5.3.   
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Figure 4.2 Airway tree of subject #1 following deformable registration, Red circles are 

representative of apparent sub-segmental boundaries post registration.  

 

 The fractional overlap evaluated on a slice-by-slice basis was typically > 0.85 in the 

middle of the lung and was markedly lower (< 0.60) in the most posterior and anterior slices. 

Although the smaller lung volumes contained within the posterior and anterior slices means that 

they contribute proportionally less to the overall simulated ventilation quality. Nevertheless, 

there are clear limitations in morphing the tree to a subject-specific volume with the proposed 

registration process. However, it was felt that registered the tree can still be used to make 

comparisons between the two models (binary vs. graded guided airway narrowing) on predicting 
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asthmatic pathophysiology since the registration is common onto both. The impact of registration 

errors will be discussed on page 81-2 in the discussion. 

4.2 Optimal Narrowing Scheme and Scaling Parameters 

 This section will describe the optimal subject-specific narrowing schemes derived with 

simulated annealing. Because the number of airways is large, and simulated annealing is a 

computationally expensive process, it was useful to develop boundary conditions that speed up 

the convergence with solutions that were physiologically reasonable. One boundary condition 

that seemed reasonable would be to enforce the degree of narrowing to be higher for lower K-

levels, as it was expected that the degree of narrowing (airway obstruction) should be greater in 

regions of low ventilation (lower K-level). To derive these boundary conditions, simulated 

annealing was turned off (i.e, airway diameter closures were randomly chosen, and there was no 

manipulation of the variables in a pseudo-deterministic way to reduce the OF and improve the 

solution) and repeated for 5000 different solutions. This approach is limited to just analyzing the 

narrowing scheme that gave the lowest OF, rather than implementing simulated annealing to 

converge the system to an optimal solution. An example of the OF for successive iterations for 

one such subject is shown in Figure 4.3.A, and one can see that there is a wide range of values 

where a minimum OF level was delineated by the dashed red line. The 50 lowest OF are shown 

in Figure 4.3.B. The choice of 50 points was somewhat arbitrary, but the choice tended to give a 

consistent OF range of ~20 for all subjects; furthermore, these points were chosen to observe 
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Taking the 50 lowest points and calculating the average graded narrowing scheme (the average 

ratios of each airways’ final diameter to original baseline diameter within a respective K-level) 

for each K-level is shown in Figure 4.3.C, and the fractional diameter on average shows a 

decreasing trend with decreasing K-level, as was premised above. For this specific subject, the 

majority of terminal airways fell within the K3 level, while no terminal airways fell within the 

K5 ventilation level as is seen in Figure 4.3.D.  

As shown in Figure 4.4, The mean fractional diameters for each K-level as described in 

Figure 4.3.C, was averaged across all eight subjects (black circles); Also, we calculated the same 

average narrowing scheme excluding three subjects who had 0% of their terminal airways in the 

K5 level (blue squares). Again, the trend exhibited a decreasing fractional diameter with 

decreasing K-level for all subjectss, where the fractional diameter in the K5 level was higher 

with the removal of the three subjects mentioned above. These findings were used to implement 

boundary conditions on potential changes to K-levels during simulated annealing, i.e, the degree 

of narrowing within the K(N) level must be less than the degree of narrowing in the K(N+1) 

level.  
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Table 4.1. Statistical difference between degree of narrowing in neighbouring K-levels.  

Comparison p-value (α* = 0.01) 

K1 to K2 0.16 

K2 to K3 0.0006 

K3 to K4 0.013 

K4 to K5 0.0099 

• with removal of subjects with 0% of airways within K5 level 

 

When simulated annealing is turned, the system converges to an optimal solution as is 

depicted in Figure 4.5 where (A) shows the convergence to an optimal graded narrowing scheme 

for simulating ventilation in a single subject with V2 of simulated annealing, and (B) shows an 

optimization schedule for a single (different) subject with V3 of simulated annealing, where the 

first phase (iterations 1-500) optimized a graded narrowing scheme for the non-terminal airways 

by minimizing SSD between simulated ventilation and subject ventilation, and the second phase 

(iterations 501-1000) optimized a graded narrowing scheme for terminal airways to achieve the 

same goal mentioned above. The same cooling rate, and number of iterations was used for both 

applications.  
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each version.  Simulated ventilation images with V1/V2 were significantly improved compared 

with binary-defect modelling as evaluated by a paired t-test with a Bonferroni correction (p = 

0.005, α* = 0.017), as was V3 (p = 0.004, α* = 0.017). However, there was not a significant 

difference in simulated ventilation (OF) between V1/V2 and V3 (p = 0.39, α* = 0.017). 

Figure 4.10 The objective function for binary modelling, and the three different versions of 

simulated annealing. Version 1 and 2 were represented as one bar (V1/2) as their values were 

within 1% of each other.  

 

Compared with the binary closure model, the graded narrowing model was able to 

produce ventilation images that were visually closer to measured ventilation in terms of defect 

size, as well as degree of ventilation within hyperventilated regions; albeit, the binary closure 

model was able to produce a ventilation intensity within defect regions that more closely 

resembled subjects’ measurements. An example of this finding is shown in Figure 4.11, where 



67 
 

the degree of ventilation within a defect region (highlighted by a red circle) from the subject 

(right), bears a closer resemblance with simulated ventilation of the binary model (left), 

compared with the graded narrowing model (middle).  

 

Figure 4.11 Simulated ventilation images of subject #2 for binary model (left), graded narrowing 

model (middle), and MR ventilation image (right). Red circles highlight the degree of ventilation 

with defect regions. 

 

Additionally, we observed that a higher of heterogeneity present in the subjects’ ventilation 

image (evaluated qualitatively) typically resulted in simulated annealing producing ventilation 

images that were qualitatively closer matched with the subjects’ MR images. An example of one 

such subject with a high degree heterogeneity is shown in Figure 4.12. The graded narrowing 

model (middle) produced a ventilation image that was very similar to subjects’ ventilation 

(right), whereas the binary model (left) did not.  
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Figure 4.12. Simulated ventilation images of subject #6 for binary model (left), graded narrowing 

model (middle), and MR ventilation image (right). 

 

Although the graded narrowing scheme was able to produce simulated ventilation images that 

were quantitatively closer to subjects’ measured ventilation (compared with ventilation produced 

by the binary model); when ventilation was largely homogeneous, the outcomes of simulated 

annealing was notably limited. An example of a poor simulated ventilation image where the 

subject exhibited arguable ventilation homogeneity is shown in Figure 4.13; where the graded 

narrowing model (middle) produced patchy ventilation in regions that were homogeneous in the 

subjects’ measured ventilation (right). But, the graded narrowing model still produced 

qualitative, and quantitative improvements in ventilation comparatively with the binary model.  

 

Figure 4.13. Simulated ventilation images of subject #1 for binary model (left), graded narrowing 

model (middle), and MR ventilation image (right). 
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various models tested. As shown for the baseline model (dashed-dotted line), it predicts a 

homogeneous distribution of ventilation for > 25% of all voxels. 

 

4.4 Modelled Impedance 

Manual selection of the free parameters in equation 30 was performed to achieve a 

baseline resistance that was 50-60% lower than the subjects’ measurements.This process could 

be automated by integrating it into the simulated annealing method, albeit at the expense of 

computational time. The list of these parameters for each version of simulated annealing is 

presented in Table 4.2, as well as scaling for the terminal airways (Dterm), the conducting airways 

(Dcond), and additional stiffness of the lung (Eacini,add) to match subjectss’ measured impedance. 

We also see that V3 was able to reduce the PI in 6 of 8 subjects, which is a metric used to 

quantify the degree of matching with subjectss’ impedance measurements (lower is better). The 

subjects that did not show improved PI in V3, exhibited worse matching of Rrs, but closer 

matched Xrs
 to subjects’ measurements. 
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Table 4.2 Scaling parameters for equation 30, and lung elastance, Eacini, for baseline conditions. 

Scaling factor applied to conduction airways, Dcond, and terminal airways, Dterm, as well as added 

Elastance, Eacini,add after the application of simulated annealing.  

Subject α β dp Eacini 
(cm-H2O-

L-1) 

Dcond Dterm Eacini,add 

(cm-H2O-
L-1) 

PI (cm-
H2O-s-

L-1) 

1 1.3 
1.36† 

1.608†† 

 

1 
1.145† 

0.89†† 

2.14 
2.14† 

2†† 

11.3 
12† 

20.6†† 

- 
- 

0.875†† 

1.066 
1.151† 

1.2†† 

- 
- 

0†† 

2.59 
2.63 
2.32 

2 1.3 
1.432† 

1.686†† 

 

1 
1.1† 

0.81†† 

1.888 
1.888† 

2†† 

8.6 
8.9† 

15†† 

- 
- 

0.988†† 

1.063 
0.96† 

0.9†† 

- 
- 

104†† 

6.12 
6.27 
3.42 

 
3 1.3 

1.272† 

1.41†† 

 

1 
1.2† 

0.85†† 

2.48 
2.48† 

2†† 

14.1 
14.6† 

30.3†† 

- 
- 

1.15†† 

1.43 
1.53† 

1.12†† 

- 
- 

0†† 

0.64 
0.67 
0.63 

 
4 1.3 

1.265† 

1.218†† 

 

1 
1.1† 

0.79†† 

2.28 
2.28† 

2†† 

15.9 
16.8† 

26.8†† 

- 
- 

1.26†† 

1.3 
1.216† 

1†† 

- 
- 

0†† 

1.32 
1.23 
1.64 

 
5 1.9 

1.852† 

1.615†† 

 

1 
1.7† 

0.9†† 

4.16 
4.16† 

2† 

13.1 
8.6† 

33.8†† 

- 
- 

1.14†† 

1.23 
1.245† 

0.8†† 

- 
- 

0†† 

3.77 
3.52 
3.70 

 
6 2 

1.8† 

1.601†† 

 

1 
1.722† 

0.85†† 

4.72 
4.72† 

2††
 

15.3 
10.3† 

43.1†† 

- 
- 

1.7††
 

1.61 
1.585† 

1.2†† 

- 
- 

47† 

5.77 
5.47 
3.30 

 
7 2 

1.75† 

1.449†† 

 

1 
1.689† 

0.87†† 

4.705 
4.705† 

2†† 

15.6 
10.8† 

42.2†† 

- 
- 

0.93†† 

1.22 
1.061† 

1.02†† 

- 
- 

90†† 

7.46 
7.03 
5.13 

 
8 1.3 

1.275† 

1.38†† 

1 
1.1† 

0.85†† 

2.266 
2.266† 

2†† 

14.0 
16.0† 

25.8†† 

- 
- 

0.56††
 

0.917 
0.766† 

0.7†† 

- 
- 

110†† 

7.05 
7.71 
6.11 

† Second version of simulated annealing 
†† Third version with two levels of simulated annealing 
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 4.4.1 Comparison of Binary Constriction to Graded Scheme 

For all subjects, the graded narrowing scheme was able to produce larger changes in 

resistance from baseline predictions compared with binary defect modelling (p = 0.0003, p = 

0.0002, p = 0.0003, α* = 0.017, for V1, V2, and V3 respectively). There was not a significant 

difference between each version of graded narrowing model at the confidence level, α = 0.05, for 

the calculation of R5 [F(2,21) = 0.000341, p > 0.05]. Figure 4.15.A shows the baseline R5 

prediction, the binary model R5 prediction, the graded narrowing model R5 prediction (all 

versions), and the subjects’ measured R5 for all subject; where the predicted R5 from all versions 

of the graded narrowing model fell within the standard deviation of subjects’ FOT 

measurements. Similar information is presented in Figure 4.15.B, but for X5 predictions. The X5 

prediction from the graded narrowing model was not statistically different than binary defect 

modelling (p = 0.1, p = 0.17, p = 0.028, α* = 0.017, for V1, V2, and V3 respectively), but within 

a larger sample size, V3 shows promise of improvement. Using single factor ANOVA with a 

Bonferroni correction, there was a significant difference between the predictions of X5 different 

versions of graded narrowing modelling [F(2,21) = 6.3535, p < 0.01].  Using a Tukeys’ Honest 

Significant Difference test, we found a significant difference between V1 and V3 (2.17 > 1.43), 

as well as V2 and V3 (2.09 > 1.43). Also, V3 of the graded narrowing model was able to predict 

an X5 that was within the standard deviations of subjects’ measurements for 6 out of 8 subjects. 

Compared with binary defect modelling, all versions of the graded narrowing model were able to 

produce significantly larger R5-20 (p = 0.0012, p = 0.0012, p = 0.0017, α* = 0.017, for V1, V2, 

and V3 respectively). There was not a significant difference in the predicted R5-20 between the 

different versions of the graded narrowing model [F(2,21) = 0.004818, p > 0.05]. In Figure 

4.15.C, we show the R5-20 for the same models/measurements shown in Figure 4.15.A, and 
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Figure 4.15.B. In Figure 4.15.C, we can see that only subject #3 and #4 had a predicted R5-20 with 

the graded narrowing model that was close to the subjects’ measured R5-20; all other subjects had 

predicted values that appeared lower than subjects’ measurements. A single factor ANOVA test 

revealed that the predicted R5-20 was not significantly different between different versions of the 

graded narrowing model [F(2,21) = 0. 00403, p > 0.05]. 

In Figure 4.16 we show the Rrs spectra (left), and the Xrs (right) for all versions of 

simulated annealing. Over the full frequency range, V3 of the graded narrowing model predicted 

an Xrs spectra that appeared more closely matched with subjects’ measurements, comparatively 

with the other versions of the graded narrowing model, as well as the binary closure model. An 

apparent larger frequency dependence in Rrs was seen with V3, but this result was unique to 

subject #2, for other subjects’, the improved matching of Xrs came at the expense of worse 

matching of Rrs at high frequencies (and similarly worse R5-20). An example of one such subject 

is shown in Figure 4.17, where we show the Rrs and Xrs spectra for all three versions of simulated 

annealing, and worse matching of Rrs to subjects’ measurements in V3 was evident. Regardless, 

V3 of the graded narrowing model was able to produce a Xrs spectra that apparently closely 

matched measured FOT in subjects 2,4,5,6,7, and 8. 
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Figure 4.16 A plot of Rrs (left), and Xrs (right) for subject #2. The rows represent the different 

version of the graded narrowing model. Triangles represent healthy predictions, stars binary 

model predictions, hexagrams graded narrowing predictions, diamonds are with scaling, and 

circles with error bars that are standard deviations from three consecutive subject measurements.  
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Figure 4.17 A plot of Rrs (left), and Xrs (right) for subject #4. The rows represent the different 

version of the graded narrowing model. Triangles represent healthy predictions, stars binary 

model predictions, hexagrams graded narrowing predictions, diamonds are with scaling, and 

circles with error bars are the standard deviations from three consecutive subject measurements.  
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Chapter 5. Discussion 

 The intent of this work was to improve upon previous models of respiratory mechanics in 

asthma, which used a multi-branching airway tree model with binary closures that were derived 

from inhaled gas imaging.  This modelling paradigm has been used in many studies to predict 

respiratory impedance;99-102 but, its’ ability to simulate ventilation that matches subjects’ 

measurements is limited.  This could have an impact on the interpretation of oscillometry and the 

nature of heterogeneous airway narrowing in disease. We hypothesized that the remaining 

information within the inhaled gas MRI, in the form of hypointense to hyperintense signal, could 

be used to guide a graded narrowing scheme within a multi-branching tree model, and would 

improve predictions of respiratory impedance and ventilation, when compared with the previous 

binary closure model.  

The following discussion is separated into sections where the principal findings will be 

each discussed in turn. In the first section, the development of a registration framework that 

deformed the airway tree to fit within the subject-specific MRI lung space will be discussed. 

Following this, the appropriateness of the optimization framework, which derived an optimal 

subject-specific graded narrowing scheme (for the airway tree) to match simulated ventilation 

with subjects’ measurements, will be discussed in the context of global optimization. Next, the 

implications of the graded narrowing scheme on ventilation, impedance predictions, and 

structural heterogeneity will be discussed at length. Then, a comparison of the findings from this 

study will be made with findings of Campana et al., who simulated ventilation with a multi-

branching airway tree model that had binary closures.100 Finally, there will be a discussion of the 

limitations in the modelling approach.  
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5.1 MIND for Morphing Airway Trees  

The MIND algorithm described in section 3.1.3 was created to deformably register 

intensity-based images from different imaging modalities. Previous results from Heinreich et 

al.,109 indicate that the MIND algorithm is superior to other common registration metrics for the 

same optimization framework by minimization of localization errors for 119 landmarks located 

in the Visible Human dataset. But, the registration proposed in this thesis did not produce 

impressive registration statistics (85 ± 4% DSC and 79 ± 4% FVO between tree and MRI) 

largely driven by poor registration in the periphery, and mis-registration in the medial/lateral 

long abutting the cardiac notch. There are two main reasons for mis-registration, (1) the smaller 

airway tree volume necessitated larger deformations which would sometimes create non-realistic 

airway tree volumes, (2) The algorithm relies on an automated MATLAB function, alphashape, 

to create an outline of the airway tree in slice-format. Alphashape creates an envelope around a 

set of 2D or 3D points (like a coronal slice of the MR image) with polygons. However, this 

function is unable to operate for < 3 points and sometimes has difficulty with a small amount of 

oddly oriented points. If the envelope of the tree is not indicative of the tree’s actual shape, this 

will increase the burden on the MIND algorithm to implement large deformations. Poor 

registration dictates the lowest achievable OF, since airways could be missing in regions where 

ventilation was present, or conversely, airways could be where they should not be. When 

airways are improperly registered, matching ventilation in individual lobes could potentially 

require that airways from different lobes or segments to be narrowed, which of course is not a 

depiction of reality. While ventilation can be well-matched by implementing local narrowing to 

small airways in the overlapping regions, this likely limits the ability to match subjects’ 

impedance. 



80 
 

Perhaps, extending this approach to a 3D registration has the potential to improve these 

statistics. The MIND algorithm requires an isotropic voxel size to perform registration, so for 3D 

MIND, we would require an up-scaling of the resolution in the MRI dataset along the “slice” 

direction because the original image resolution is ~ 3 x 3 x 14 mm3. This creates a significant 

challenge for converting the airway tree into an image-volume (like the MRI dataset). To meet 

the requirements for isotropic voxel sizes, the 3D-MIND algorithm requires the airway-tree to be 

divided into 78 slices. Due to the existing algorithm for rigid registration of the tree to the MR 

volume (before deformation), an application of 3D MIND that was attempted was only able to 

work for three subjects (#1, #2, #7). For these subjects, we saw an average of a 2% increase in 

registration (quantified by FVO). For the remaining subjects, the implementation of alphashape 

on the far-most anterior and posterior slices did not work, causing the algorithm to fail. To 

preserve the entire tree structure and accommodate the needs of the 3D-MIND algorithm, one 

approach to help would be to create an in-house software that can draw intelligible polygons for 

any number of points. 

Likely the choice of MIND, or any other intensity/information-based registration 

algorithm would be inappropriate for this problem type. Given that the registration problem in 

this thesis is simplified to shape-matching, one being an airway tree, and the other being an MR 

volume; a mesh-based registration algorithm is likely to be best suited.119-121  To register the 

highly complex airway tree structure to the MR image set, landmarks such as branching point 

locations within the subject’s CT-set, lobar boundaries, and parenchymal boundaries should be 

known to guide registration. This poses significant a challenge as our computational airway tree 

is only physically accurate down to 8th generation. However, a possible registration framework 

could look something like: (1) manual identification of large-airway landmarks within CT image 
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set (2) deformable registration of landmarks / CT lung space to MR lung space similar to Guo et 

al.122 (3) co-register available landmark fiducials within the tree to MR fiducials (4) Create a 

mesh out of the MR image set and stretch terminal airways to lobar boundaries.  

Nevertheless, the methodology in this thesis was able to improve simulated ventilation 

(over the binary closure model), and improve impedance predictions in several subjects, but in 

some, the impedance was only well matched at low frequencies. The registrations were similar 

across subjects, thus issues in registration may not explain this difference, and possibly had more 

to do with the possibility that these subjects possessed an airway tree structure that more strongly 

differed from our tree. Therefore, although accuracy in registration was limited, and could be 

improved, since both graded and binary approaches shared the same registration, any 

improvements in registration are not likely to significantly impact the improved performance of 

graded imaging for modelling asthmatic physiology.   

5.2 Simulated Annealing for Optimization 

Simulated annealing was able to find an OF that was highly reproducible; but, there were 

still variations in the OF and thus in the fractional diameters for each K-level in the final 

solution, implying that the solution space near the final solution was ‘bumpy,’ with many equally 

shallow local minima. While one of these could be a global minimum, it appeared not to be too 

different from other local minima. Also, while the variability in the final graded narrowing 

scheme had a minor impact on the OF, it surprisingly did have a significant impact on Zrs. 

Potentially, this is because the ventilation distribution is more sensitive to relative differences in 

airway diameters, but less sensitive to the overall constriction or scaling of the airways than Zrs, 

or because of differences in sensitivity to locations in the airway tree vs small and large airways. 
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We did employ some scaling of the final fractional diameters in four subjects to predict 

impedance that was closer matched with subjects’ measurements, but, using Zrs within the OF as 

in Figure 5.2 may have greater flexibility, and be more equipped to find a more optimal OF. In 

any case while this could improve the OF in both binary and graded schemes, it’s unlikely to 

improve the binary to the level of the graded scheme since the information in the ventilated 

regions is not used in the binary modelling. 

5.3 Outcomes of Graded Narrowing 

The graded narrowing model was able to improve over the binary closure model by 

producing ventilation images that were closer matched with subjects’ measurements. However, 

the binary model predicted ventilation with defect regions that was closer matched with subjects’ 

measurements compared to the graded narrowing model. The binary closure model significantly 

limits the flow of air to these regions by narrowing airways by 90% (effectively increasing the 

Poiseuille resistance by 104) while the graded scheme chose an optimal fractional narrowing for 

this level together with all levels. Also, beyond simulating ventilation defects, the binary closure 

model struggled to produce hypointense signals (equivalent to K2-K3 ventilation level); whereas 

the graded narrowing model did not. Only one graded narrowing scheme was derived (for 

subject #6) that was able to simulate well-matched ventilation in defect regions, and hypo to 

hyper intense signals elsewhere. This subject had a graded narrowing scheme for the terminal 

airways of fractional diameters of [0.04,0.16,0.23,0.29,0.34], which correspond to the K-levels in 

the initial graded ventilation image [K1, K2, K3, K4, K5]. The first level of airway narrowing 

found from optimization was 4% relative diameter (i,e 96% closure) in this subject, which is 

greater than the 90% that was required for the K1 level in the binary model. But, in other 

subjects the requirement was less than 90%. Thus, it appeared that 90% closures on their own, 
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particularly in binary threshold-ed images was too limiting, which was observed in previous 

modelling literature.99-100  

5.3.1 Optimal Graded Narrowing Schemes 

 V3 of the graded narrowing model demonstrated the largest improvements in impedance 

predictions (mainly Xrs predictions) compared with the binary model, therefore, this section will 

only focus on the optimal graded narrowing scheme found with this version. Using a paired t-test 

with a Bonferroni correction, only the difference in airway narrowing from K2 to K3, and K3 to 

K4 was found to be significant (p = 0.0005, p = 0.005, α* = 0.01 for K2 to K3, and K3 to K4 

respectively). These findings may suggest that the delineation of five levels for describing 

heterogeneity might be unnecessary for describing the functional behaviour of the airway tree during 

ventilation, when using k-means clustered ventilation to guide the narrowing. However, in a study 

with more subjects, perhaps also K1 to K2 and K4 to K5 may also b significantly different. Also, in 

any given subject, more thresholds may be important to capture the detail in gradation of ventilation. 

Indeed, it is possible that an optimization of airway diameters could work without any discretization 

of the ventilation, using the raw images alone, but this would be computationally expensive. 

5.3.2 Impedance Accuracy 

In the first modelling paradigm tested, V1 and V2, subjects #5-7 when calculated from 

their demographic data had a predicted healthy baseline resistance at high frequencies that was 

larger than the subjects’ measurements (in disease). To accommodate this, we imposed that the 

baseline healthy lung resistance should be 50-60% lower than the high frequency Rrs between 

healthy subjects and subjects with severe asthma as observed by Calvacanti et al.94 The purpose 

of these changes was to give the graded narrowing model the opportunity to narrow airways 

while not overestimating the Rrs of the subject. However, predicted Rrs was still overshot in half 
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of the subjects. Also, all subjects benefited from a final uniform dilation or constriction factor for 

the conducting airways (the airways not adjusted using simulated annealing in V1 and V2, but 

were adjusted in V3), and a separate uniform dilation or constriction factor for the terminal 

airways to best match impedance measurements through qualitative assessment. The largest 

reason for final scaling is likely because the starting morphology of the airway tree was not that 

of the individual subjects’. Additionally, airway lengths were altered during the registration, 

which would impact the contribution of the inertance to high frequency Xrs,123 perhaps explaining 

in part why the graded scheme high-frequency Xrs tended to be over-estimated. Using a subject-

specific tree obtained at the same volume as MRI would eliminate the need for such large 

deformations, reducing the need to optimize registration in 3D, and may provide improved 

estimates of both ventilation and impedance. Here it was likely that matching impedance while 

matching ventilation could only be approached but not achieved, due to the differences in airway 

tree structure and additional differences caused by scaling the lungs from one shape to another.  

5.4 Comparison to Campana et al100   

Campana et al., used a binary closure scheme for defect airways, and added random 

closures throughout upper airways to model ventilation distribution and impedance in asthma.100 

Similar to our findings, they found that predicted ventilation was much too-low such that their 

images appeared dimmer than the subject’s data. The deviation from the subject’s data likely 

means that there is a scaling factor that is needed within Campana’s technique to get values 

closer to the real ventilation image, but it may be more complex that this, since neither the binary 

approach or binary with added random variation have guidance to match ventilation in the non-

defect regions. Also, Campana and colleagues performed a more complex treatment of closures 

to airways (like the binary model in this thesis) by only closing the largest airways that would 
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decrease regional ventilation that best matched any given defect, as opposed to applying closures 

at the site of ventilation. This treatment could very well predict ventilation and impedance that 

more closely resembles subjects’ measurements; however, given that simulating ventilation was 

our dependent variable for optimization, local closures would be more appropriate.  

Like the findings of Campana and colleagues, we found it necessary to include 

heterogeneity in the larger airways (all airways larger than terminal airways) for proper modelling 

of airways mechanics. However, we used a graded narrowing scheme derived from the K-levels 

(ventilation levels) within our MR image to simulate upper airway heterogeneity; whereas 

Campana and colleagues used a Gaussian distribution of closures to a set range of airway 

generations with the intent of minimizing the differences with subjects’ measurements 

(minimizing PI). While this improved their impedance estimates, it was at the expense of adding 

variation to the ventilated regions that did not match subject images. A difference between our 

model and that of Campana et al. is that they only used their model to predict Zrs up to 8 Hz and 

without knowing the high-frequency predictions from their model, we cannot be certain if their 

model would predict the same higher frequency deviations in Rrs that we found. Given that they 

only model Zrs at frequencies lower than what was modelled in this thesis, we can only make 

qualitative comparisons in which we see that their Rrs spectra has an inverse frequency dependence 

that had close resemblance with subject measurements. While this can arise form heterogeneity 

that was central to our, and their findings, they also employed the constant phase model for their 

terminal airways. The constant phase model has a built-in inverse frequency dependence, so this 

could have contributed to the frequency dependence they observed. As described in section 1.7.2 

the healthy frequency dependence attributed to the tissue compartment of healthy humans is 

appropriate to describe the very low frequency range and is not usually thought to describe the 
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frequency dependence in the FOT range > 4 Hz. However, we used a single-compartment model 

for the terminal airways, which, while it was able to predict some of the observed frequency 

dependence, it was less than observed in our subjects. Perhaps the combination of constant phase 

behavior and heterogeneity could improve the predicted frequency dependence. Another 

difference is that they modelled flow as laminar, whereas we modelled the flow with the 

Womersley model which is theoretically superior to model transitional (near turbulent) flow 

typical for the upper airway and some central airway mechanics.78.79.101.102 This likely only affects 

higher frequency behavior and the reactance where inertive effects begin to become prominent, 

while their results were confined to 8 Hz and below, so any difference with our results is likely 

modest. 

5.5 Model Limitations 

Here the main limitations of the approach in this thesis are listed and discussed following: 

(1) A single tree was used for all subjects as opposed to using subject-specific trees. (2) We 

assumed ventilation for the acinus was entirely determined from the simple single compartment 

model (3) and we assumed each acinus was the same size. (4) W assumed each acinus was 

described by the same compliance at the end of each terminal airway, and airway compliance was 

negligible. (5) We used an airway tree and acquired MRI ventilation that was obtained in the supine 

position but measured subject impedance upright.  

(1) We used a single airway tree that was registered to the ventilation images of each 

subject and used it to compute impedance of each subject, while the location of defects and 

different k-means levels of ventilation were used to guide airway narrowing were obtained from 

the registration of the tree to each individual subject. The poor registration likely limited the ability 

to match ventilation and impedance as discussed in detail in section 5.1.   
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(2) We prescribed the ventilation behaviour of the acinus to be entirely determined from 

the simple model of a terminal resistance and fixed compliance. However, the shape of the terminal 

airway and how it merges with the acinus can affect its ventilation. Kumer et al., has shown that 

the complexity of the respiratory bronchiole with variations of abutting alveoli can lead to variable 

degrees of entrainment (gas-trapping), that can affect the degree of recirculation and redistribution 

of gas which we largely ignored.124 These effects are accounted for in our model only insofar as 

they can be described by changes in airway diameter coupled with the acinar compliance, 

However, this simplification may provide sufficient detail for the purposes of describing overall 

ventilation distribution at the scale of the lung.  

(3) Additionally, we assumed that every acinus was the same size (one voxel, 3.125 mm). 

However, the size of an acinus has been reported to be 5-10 mm long,125which would correspond 

to 2-3 voxels in our simulated ventilation image. This merely means the image resolution was 

higher than that of the branching tree. To bridge these resolutions, we prescribed the ventilation at 

the end of each terminal airway from the branching tree to the nearest voxel and spatially averaged 

the intensity to neighbouring voxels. These gas distribution effects at the acinar levels are the limits 

of the scale of our imaging resolution. However, we used a flow-divider approach to determine 

the ventilation pattern, which assumes filling uniquely from the trachea to the acini, and we have 

ignored the longer range interbranch effects such as pendelluft, whereby gas can redistribute up to 

13% of the input flow at bifurcations near defects.126 This may mean that the airway diameters are 

predicted to be slightly larger for regions with larger time constants that received some ventilation 

due to pendelluft after the initial inhalation, and possibly diameters are predicted to be smaller for 

regions from regions with smaller time constants which donate gas after the initial inhalation 

during the breath-hold.   
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(4) We used identical elastances for all terminal acini, and rigid airways (no airway 

compliance), which can affect flow distribution; instead we relied on airway asymmetry 

(heterogeneous airway resistance) to dictate flow. This is in contrast with Alder et al., who 

suggested tissue stiffness is likely heterogeneous98 and Swan et al.,127
 who found evidence to 

suggest that a gravitationally-dependent tissue density, and iso-gravitational heterogeneity is 

needed to best simulate ventilation, albeit in a healthy lung. There would likely be some variation 

in elastance amongst acini (independent of gravitational effects) from changes in tissue properties 

and differences in acinar volume; but this was largely ignored because asthma is larger thought to 

induce heterogeneity arising from airway diameter variation, Furthermore, implementing a 

compliance distribution would require a complex treatment of Zrs to distribute airflow as in Coletti 

et al.,118 as opposed to the straightforward used of pathway resistance that was used in this thesis. 

However, the differences in compliances amongst acini are likely small compared to the effects 

from airway narrowing, which is well established to be the source of heterogeneity in ventilation 

in asthma.  

 (5) We used an airway tree and acquired MRI ventilation that was obtained in the supine 

position but measured subject impedance upright. In the supine position the abdominal contents 

move upwards and this decreases lung volume narrowing airways, increasing Rrs, and also can 

cause more negative Xrs if airways become sufficiently narrowed. The chest wall may also change 

its contribution to Xrs when supine particularly in obese subjects. Peters and colleagues have 

recently performed measurement of oscillometry in upright, and supine position for severely obese 

subjects before and after undergoing bariatric surgery.95 In these subjects the supine position 

increased Rrs approximately 15 % and Xrs by approximately 100%. The changes due to supine 

position in our study should be less than this since our subjects were not severely obese. Also, 
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these differences would still not be sufficient to account for the disparity that was described in 

section 1.8 in the percent change in Xrs from healthy to mechanics in asthma and the percent change 

in ventilation defects that exists similarly comparing healthy to asthma. 
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Chapter 6. Conclusion and Future Work 

6.1 Conclusions 

 The use of inhaled hyperpolarized gas MR images has been used in the past to guide 

airway closures within multi-branching airway tree models to model defects and its affects on 

respiratory mechanical impedance in health and disease. Closures were applied to airways within 

the defect regions of the tree, while airways outside the defects remained open with random 

narrowing being applied. While this binary closure paradigm can produce ventilation defects in 

simulated ventilation images, it is unable to properly model hyperintense ventilation, as well as 

respiratory mechanics without the need for additional closures throughout the tree which in 

previous modelling approaches were not guided from the imaging data.100 In this thesis, a graded 

narrowing scheme was developed, where the ventilation information within the original inhaled 

gas image was used to guide the degree of narrowing within multi-branching airway tree. 

Ventilation images were created from a tree narrowed by a graded narrowing scheme and were 

shown to be closer to subjects’ measurements than a binary closure model (p < 0.005) in an 

eight-subject study. However, the binary closure model did predict ventilation within defect 

regions that was closer to subjects’ measurements (refer to section 4.3). Furthermore, while 

improved there remained clear discrepancies between the simulated ventilation images of the 

graded narrowing model and measured ventilation images as well as the size or location of 

regional ventilation. The differences are possibly in part due due to errors in airway tree 

registration with the subjects’ MR lung space, as well as the fact that the tree itself was not 

subject specific, which contributed to limiting accuracy in registration, and which could lead to 

airways being in impossible locations (crossing lobar boundaries, etc.) which likely limited the 

achievable accuracy or the modelled ventilation. 
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 As described previously, we did not add random, Gaussian distributed closures to the 

non-defect airways, which had been employed in previous studies to well match subjects’ 

impedance.99,100 We used a guided graded narrowing scheme that more closely matched subjects’ 

ventilation, but this sacrificed our ability to some extent to match subjects’ impedance 

measurements, particularly not providing sufficient frequency dependence of Rrs. In our study, 

we employed a modelling paradigm which was able to introduce airway heterogeneity but 

constrained by k-means clustered intensities, and simulated ventilation that very closely matched 

subjects’ measurements (in 5 of 8 subjects). Thus, by using the ventilation data from within the 

inhaled gas MR image, we were able to introduce guided heterogeneity in the bronchial tree, 

which was used to predict respiratory impedance that for the most part matched subjects’ 

measurements. This is important as it means that this approach may be physiologically closer to 

the true airway distribution that led to the measured ventilation and impedance data, leading to a 

more accurate interpretation of heterogeneity amongst the airways in asthma. 

 The graded narrowing model was able to produce larger changes to Rrs (p < 0.005) and 

Xrs (p < 0.05) from baseline when compared with the binary model. This affirms the initial 

hypothesis that the remaining information within the inhaled gas MR image beyond the defect 

level makes a substantial and significant contribution to the airway mechanics. This is important 

because it means that a large amount of disease pathology is contained within the ventilated 

regions, while currently ventilation data in disease is largely interpreted with quantifying the 

ventilation defects, while the ventilation outside of these regions is largely ignored.  

While Xrs was quantitatively well matched with subjects’ measurement using the graded 

narrowing model, the Rrs spectra was not matched for all frequencies. Rrs at 5 Hz was matched 

well for all subjects with the graded narrowing model by imposing separate closures/dilations to 
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the conducting and terminal airways separately post – simulated annealing. But, the frequency 

dependence of resistance, quantified by R5-20, was on average 40 ± 20% lower than subjects’ 

measurements. While this was still an improvement over the binary model: 90 ± 10%, this 

implies that there is something missing from our model that contributes to greater frequency 

dependence. This could have arisen from various assumptions in our modelling such as: (1) 

neglecting pendelluft flow when simulating ventilation, which may have limited our predictions 

of airway heterogeneity, (2) using a homogeneous distribution of acinar stiffness, although 

adding heterogeneity in the acini might decrease heterogeneity for the airways, or (3) due to an 

inaccurate registration which could lead incorrect determination of the narrowing and a resulting 

bias to potentially lower predicted heterogeneity 

6.2 Statement of Original Contributions  

The following is a brief summary of my original contributions to the development of this thesis. 

1. I developed a rigid-registration algorithm to translate and rotate the airway tree to align 

with subject-specific MRI data using a point-cloud registration that iteratively moves the 

entire tree, promoting maximal overlap of the tree with the MRI lung that was applied 

before the application of MIND. 

2. I developed the code to implement a generation-dependent scaling of the airway tree 

when scaling from TLC to smaller lung volumes, whereas previous approaches used a 

homogeneous scaling of the airway tree diameters and lengths. 

3. I have developed the code to segment the airway tree into a slice-format like the MR 

images and bound the outline of the airway tree to compare with the lung outline of the 

subjects’ MRI. 
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4. I have further developed the code to deploy the 2D-MIND algorithm (developed by 

previous students) applied here to deform the airway tree by applying voxel-based 

deformations from the resultant transformation vector-field. 

5. I have developed the code to translate the airway tree (in image-slice format) to a usable 

data structure for performing fast impedance calculation following deformation.  

6. I have developed an algorithm to reconnect the airway tree following deformable 

registration with linear algebra.  

7. I have reformatted previous iterations of code to calculate impedance throughout an 

airway tree, increasing efficiency (decreasing computational time), and improved 

modularity. 

8. I developed the code to implement Simulated Annealing for optimizing appropriate 

closure levels for modelling ventilation and determined optimal conditions for “cooling” 

to achieve very good solutions as measured by the cost function.  

9. I developed the code to simulate airflow throughout an airway tree with a flow divider 

relationship, using calculated impedances from the tree. 

10. I developed the code to convert the airflow throughout the tree to an image format for 

comparison with inhaled gas MRI.  

11. I have showed that a graded-narrowing approach for an airway tree is a better method for 

simulating ventilation, as well as predicting impedance compared with previous binary 

closure approaches.  

12.  I developed the code to create a time constant map from an airway tree that has been 

narrowed by subject-specific graded narrowing solutions. 
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6.3 Future Work 

 6.2.1 Subject Specific Tree 

As mentioned previously, while we managed substantial improvements in ventilation 

images, there remained significant differences between the simulated ventilation images and the 

real ventilation images. We believe that these differences were largely due to the deformation of 

the generic airway tree to subject-specific MR lung spaces, both due to the fact that the tree was 

generic and not the subject’s, and as well that considerable manipulation of the tree was required 

to fit within the subjects’ MR lung space that was only partially successful. The best way to test 

both factors would be to use subject-specific grown trees. One way to test this would be to used 

software like VIDA (VIDA Diagnostics Inc, Coralville, IA, USA), which can be used to 

delineate airways from a CT data set up to a given generation. The remaining generations can be 

grown using a fractal-growing algorithm or something equivalent.72,73 The CT-sets for these eight 

subjects have already been collected, and testing this premise only requires the generation of 

subject-specific trees, which I hope to be able to do in the future. 

 6.2.2 Modified Simulated Annealing 

 In the study by Campana and colleagues in 2009, they imposed significant closures 

derived from inhaled gas MR images, to airways with the intent to simulate ventilation images, 

and then imposed further closures to airways outside of defects to model airway mechanics. We 

imposed a graded narrowing scheme derived from inhaled gas images to a model airway tree to 

simulated ventilation, and to model respiratory mechanics. This paradigm improved the quality 

of the simulated ventilation images and accounted for more changes to Zrs than the binary model. 

However, the respiratory mechanics were not perfectly modelled, namely the Rrs spectra did not 

exhibit as strong of a frequency dependence from 5 Hz to 20 Hz as the subjects’ measurements. 
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One way to tackle this is to modify the objective function within the simulated annealing 

framework to consider the quality of the simulated ventilation imaged defined by the SSD, as 

well as the Rrs at 5 Hz and the R5-20. The graded narrowing scheme, along with elastance of the 

terminal airways, Eacini, would be modified to minimize the OF. This novel OF that uses both sets 

of data would look something like: 

 𝑂𝐹 = √𝛼 (| 𝑅5𝐻𝑧,𝑚 − 𝑅5𝐻𝑧,𝑝|𝑅5𝐻𝑧,𝑝 )2 + 𝛽 (| 𝑅5−20,𝑚 − 𝑅5−20,𝑝|𝑅5−20,𝑝 )2 + 𝛾(𝐺𝑎𝑠𝑝 − 𝐺𝑎𝑠𝑚)2
 

(50) 

Where α, β, γ are normalization parameters that would have to be iteratively solved to weigh the 

contribution of the simulated ventilation image, and respiratory mechanics to the overall fit of a 

given graded narrowing scheme for accurately modelling a given subjects’ respiratory 

physiology.  

Another potential approach would be to alter the flow divider approach to permit other 

solutions to the ventilation where pendelluft might be approximated. For example, it might be 

possible to add a pendelluft factor, which increases the heterogeneity predicted from the flow 

divider approach, exaggerating narrowing of airways as we believe greater heterogeneity is 

needed (from the lower frequency dependence compared with the measured data). This may be 

an iterative approach considering high ventilation regions as ‘sources’ and low ventilation areas 

as ‘sinks’ much like the trachea was a source and the entire tree was a sink using the flow divider 

approach performed in this work.  

 6.2.3 Time Constant Map 

An interesting development in this thesis was the concept of a time constant map. The 

purpose of this map was to re-represent the degree of ventilation distribution within inhaled gas 

MR images as but rescaled using a timescale for filling. The regional time-scale of filling was 
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hoped to give useful functional information of the lung using a potentially more familiar variable 

time instead of gas intensity. The time constant map revealed that much of the lung appeared to 

be filling or distributing the hyperpolarized 3He within time-scales of normal breathing (1-5 s), 

but the filling of regional defects was much longer than the time of an MR image acquisition (> 

16 s).  This appears to mean that in asthma, airway obstruction is sufficient to limit the 

effectiveness of inhalation to provide fresh air to the gas-exchanging region of the lung. I find 

this particularly interesting and would like to develop a time constant map derived from the 

predicted impedances of an airway tree to compare to the map here which was predicted from the 

ventilation images directly. 

. 
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