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Abstract

Previous asthma pulmonary functional modelling used the locations of ventilation defects
observed in inhaled gas imaging to implement binary airway closures and required additional
random narrowing in ventilated regions to describe measured impedance, compromising
predicted ventilation. Here we used gradations in intensity discretized using k-means clustering,
and simulated annealing to choose degrees of narrowing within these regions to minimize the
difference between measured and predicted ventilation. We found that the resistance (p < 0.005),
reactance (p < 0.05), and ventilation (p < 0.005) predicted by the graded narrowing model was
closer to subjects’ measurements compared to the binary model. The graded approach did not
fully account for the frequency dependence of resistance known to be indicative of
heterogeneity. Thus, while the modelled airway narrowing predicted ventilation and impedance
closer to subjects’ measurements than binary closures, other factors or unobserved heterogeneity

are needed to account for additional frequency dependence of resistance.
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Chapter 1. Introduction

1.1 List of Conference Abstracts and Awards

The following is a list of public contributions arising from the work presented in this
thesis.

Conference Abstracts

1. Young H, Guo F, Eddy R, Church C* et al. (2017). Forced oscillation technique and
MRI predictions of airway reactance in moderate-severe asthma.
European Respiratory Society International Congress 2017
Code that I developed was used to apply closures to a multi-branching airway tree
model, and to calculate impedance.

2. Church C*, Young H, Parraga G, et al. (2018). Improvements in Functional Image
Impedance Modelling of Asthmatic Lungs Using K-means Clustering.

American Thoracic Society Conference
Abstract with Presentation (Selected from submitted abstract for a mini Symposium: 15-
minute talk including questions)
Awards

1. School of Biomedical Engineering — Dalhousie University
Research Day 2018
1¥ Prize — Pre-masters Category (Student Presentation Competition)

1.2 Preface

Asthma is usually described as an inflammatory disease that results in airway obstruction
from physical narrowing of the airways, or airway plugging due to mucous. Symptomatically, it

presents as episodes of breathlessness, chest-tightness and wheezing. The exact cause of



bronchoconstriction and obstruction is believed to be the result of a variety of factors; namely:
physical airway remodelling including increased airway smooth muscle and changes to the
epithelial layer associated with mucous hypersecretion, as well as extravasated plasma.-?
Whether causing immediate narrowing, or linked to narrowing through longer term changes such
as remodelling; the triggers of, and susceptibility to these responses, are believed to be a
combination of environmental factors (airborne irritants, exercise) and likely genetic factors, but
the causes are not often clear.> In 2015, the National Health Interview Survey found a 7.8%
prevalence of asthma in Americans, with a larger prevalence in non-Caucasian races (> 9.0%),
and an increasingly larger prevalence in low-income households.* In 2013, the cost of asthma
per year in the United States totalled approximately $81.9 billion; with $3 billion being owed to
missed work alone.’

1.3 Lung Structure and Function

Breathing is a manoeuvre that is achieved by the synchronous participation of the lungs,
where gas exchange with the blood occurs, and the inspiratory muscles that coordinate to bring
air into the lung, and the elasticity of the lung that follows passive exhalation, sometimes assisted
by ribcage expiratory muscles during active exhalation. During inspiration, the diaphragm
contracts and moves downward, while the external intercostal muscles contract which moves the
ribcage in the cranial and outward direction. This sequence of events creates a more negative
pressure outside of the lungs (relative to the atmosphere) leading to their expansion and
inspiration. First, air flows through the conducting zone which includes: the
oropharynx/nasopharynx, larynx, trachea, and mainstem-bronchi which are the first branches of
airway tree. Next, the air passes into the respiratory region of the lung which includes the

bronchioles, alveolar ducts, and alveoli which make up the majority of the lung parenchyma. The



alveoli are thought of as elastic balloon-like structures, which have largely walls comprised of
collagen and elastin fibres, and various other proteins. The stiffness, or elastance of the lung,
arises largely from the elastic properties of the collagen and elastin fibres stretching during
inspiration and surface tensions generated by the fluid-lining within alveoli. During passive
exhalation, air is expelled from the lungs driven by this elastic recoil. In healthy lungs, the act of
breathing is generally understood to result in a homogeneous filling of the lungs. But, with
obstructive airway disease, ventilation of the lung has been seen to be spatially, and temporally

heterogeneous.®®

1.4 Diagnosis and Classification

Although objective measures are recommended, asthma is more often diagnosed using a
combination of the subject’s medical history, reported symptoms, and sometimes seasonal, and
environmental exposures are considered.” Recommendations are that symptomatic subjects
should receive pulmonary function testing (PFT), specifically spirometry (described in more
detail below) to aid in diagnosis. However, a population-based study found that less than one-
half of all candidates for spirometry actually receive the suggested testing.'® subjects that do
spirometry, will usually do this as part of reversibility testing where the response to a short-
acting beta agonist bronchodilator is assessed by a second PFT.

From spirometry, the two most-common characteristics used to assess lung function are the
forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC). FEV1 is the
volume of air expelled as rapidly as possible after a deep inspiration to total lung capacity (TLC),
measured over the course of one second, and FVC is tofal volume of air that the subject can
expel. Sometimes the FEV1 is used alone or often expressed as a ratio relative to FVC. FEV1 is

used to assess reversibility and is also used to assess the sensitivity of the airways to a



bronchoconstricting agent. This is done via a provocation test where increasing levels of the
bronchoconstrictor, typically methacholine, are introduced in the subject, and the FEV1 is
measured at each increment of added bronchoconstrictor until FEV1 is decreased by at least
20%, and the provocation concentration (PC20) is computed. PC20 values < 8 mg/mL indicate

the presence of airway hyperresponsiveness (AHR) associated with asthma.!!

1.5 Lung Function Testing

1.5.1 Spirometry

Unfortunately, FEV1 is not very sensitive to obstruction of the small airways (< 2 mm),
where most respiratory diseases including asthma are thought to originate. Earlier studies
indicated that a component of the forced exhalation maneuver known as FEF25-75% could be
used to indicate small airway obstruction,'?'*in which FEF25-75% is the forced expiratory flow
from 25% to 75% FVC. However, more recently this was shown to be not well associated with
small airways and was only weakly-moderately correlated with many characteristics of asthma,'®
and it lacked specificity.'®"!® An important limitation of spirometry to mention is that it is
challenging to perform and can suffer from poor reproducibility due to the fact that it is a learned
maneuver that requires expert training to meet the quality criteria current guideline standards.!®-*°
Spirometry is thus challenging for preschool children where asthma is most often diagnosed, the
elderly or geriatric, and impossible for subjects on mechanical ventilators. Approximately 10%
of subjects are still unable to perform spirometry successfully even with training from an

experienced respiratory technician.?!



1.6 Imaging and Asthma

1.6.1 Computed (CT) and Positron Emission Tomography (PET)

Many imaging techniques have been employed that are able to show structural and
functional information about the respiratory system. Computed tomography (CT) is commonly
employed to assess lung structure in chronic obstructive pulmonary disease (COPD). However,
CT is not used clinically for asthma, but structural changes can be observed using high resolution
CT (HRCT). In one study, HRCT was able to show increased structural heterogeneity in persons
with asthma post-methacholine in larger airways compared to healthy subjects.?? However, an
important innovation to understanding changes in lung function in disease including asthma was
the development of imaging methods that rely on an inhaled gas. Positron emission tomography
(PET), nuclear scintigraphy (NS), and single photon emission computed tomography (SPECT)
can be utilized to assess ventilation heterogeneity by inhaling particular radioactive gases, which
these different modalities can regionally quantify.® These techniques do have a disadvantage in
that they confer a quantifiable radiation-dose, with the dose depending on the modality. For
example, the average HRCT of the chest delivers an effective dose of 0.98 mSv,?* which is the
annual dose limit based upon recommendations from the International Commission of
Radiological Protection.”> The other radiation dependent techniques (PET/NS/SPECT) deliver

less radiation but as typically employed, the dose limit prevents visualization of small airways.
1.6.2 Inhaled Gas Magnetic Resonance Imaging (MRI)

Inhaled gas MRI is an imaging technique that does not deliver radiation and uses inhaled
non-radioactive inert gas. It was developed by Albert et al., in 1994 to image regions of the body
that have low inherent proton densities such as lung tissue.’ MRI signal intensity in regions with

low proton density can be increased by introducing a spin %2 noble gas that has been



hyperpolarized. This polarization of a noble gas is achieved through collisions with an optically
pumped metal vapour (typically Rb), which increases the nuclear magnetic resonance signal
from the gas nuclei by ~10°. The hyperpolarized gas is put into a sealed bag, and carried to the
subject waiting in the MRI, who inhales the gas prior to image acquisition. Modern imaging with
hyperpolarized gases typically uses a breath-hold technique over a period of 16 seconds while
images are acquired.?’ The distribution of intensities of the hyperpolarized nuclei are then
indicative of where the gas was inhaled and to where it diffused, and regions of higher intensity
are sometimes termed hyperventilated, while low intensity is hypoventilated, or if sufficiently
low, termed a ventilation defect. The images then are often called ventilation images, even
though this is not usually acquired during breathing, but as breath-hold. In healthy lungs the
ventilation image is largely homogenous, but in asthma, images depict a large degree of
ventilation heterogeneity, which has been correlated with disease severity.?®?° As mentioned,
where the image intensity is very low, below a chosen threshold, these pockets of non-ventilated
regions are referred to as ventilation defects.>® These ventilation defects in asthma are normally
thought to be the result of gas trapping due to airway obstructions.>! While conducting MRI with
hyperpolarized gases uses a breath-hold technique, several factors have been found to affect the
distribution of the gas signal with principal factors including (1) pendelluft flow, which describes
the redistribution and exchange of gas between different regions due to inhomogeneous inflation
of the lung* (2) regional partial pressure differences of oxygen, which causes regional
differences in rapid relaxation of the spins in the hyperpolarized gas through dipolar coupling
2933 and (3) diffusive redistribution, which similar to pendelluft, is redistribution of gas, but via
collateral ventilation pathways (through pores in alveolar walls) in the lung thought to facilitate

gas exchange.**



When first developed, ventilation defect volume (VDV), defined as the volume of lung
devoid of signal, was manually segmented from the central slices of inhaled gas MRI.7*
However, this approach is inherently limited by inter- and intraobserver variability, and it does
not quantify the ventilation defect volume for the entire lung. In recent years, automated

approached have been developed which can segment MR images into meaningful distinct levels

of ventilation.*®
1.6.2.1 K-means Clustering

The approach used to analyze inhaled gas MR images into distinct intensity levels in this
thesis is known as k-means clustering and is described here.?” The objective of k-means
clustering as developed for inhaled gas MRI is to delineate physiologically meaningful different
levels of ventilation from the acquired intensity information, usually compared to an expert who
discerns clusters often from histograms of the image intensities. The mathematical concept of k-
means clustering is to partition a set of measurements, image or other type of data into k-clusters,
where the data in the set of measurements is ‘clustered” with the closest k-mean. To initialize this
algorithm, a set of k means is defined that fit within the set of observations:

x = (x1,%5,...,x;), x;€Ey, i1=12,..,k (1)
where Ey is the set of all points. As described in Kirby et al.,*® the means initialized for this
algorithm applied to an image can be derived from the centers of sorted ventilation intensities.
The centers of each cluster are taken to be the means, and the ventilation intensities are assigned
to the k-cluster by taking the set of points in Ex and evaluating the distance to all k means:

TH(x) ={& &eEy, 1E—x|<|E—x| j=12,..k} )
where Tj' is a set of points in Ex with a mean xi, where the mean is iteratively updated until all

data in the set of observations is sorted:
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where |T}| is the size of subset of points within Ex. In a clinical application, this process can be
applied in 2D, or 3D. In Kirby et al., this process was applied in 3D with four k-clusters, with
four being chosen to be in agreement with an expert chest radiologist’s opinion of clinically
significant signal intensity differences. To identify ventilation defects, they also applied a second
level of k-means clustering (with four levels) to the lowest derived cluster from the first
application of k-means to differentiate signal intensities that included background and the
hypointense intense signal regions or ventilation defects.*®

Delineation of the ventilation defect volume (VDV) from the ventilation defects as
described above, and the ventilation volume (VV) which is the volume of lung with larger signal
than the defect region, has been shown to be a useful method to assess the functional decrement
in ventilating the lung the lung, and differences in correlated to disease severity.**** Commonly

the VDV is normalized as the ventilation defect percentage (VDP), defined from:

* 100% “)

— VDV
T TCV

where TCV is the thoracic cavity volume, identified usually from proton MRI. VDP has been
suggested as a useful biomarker for obstruction in small-airway diseases due to its association
with disease and disease severity, but also in part because of its reproducibility using k-means
clustering.®®

VDP has been used in both *He and '*’Xe imaging, and tends to be larger in '?°Xe images
compared to *He for the same individual.*! The differences in this value are likely due to
differences in the apparent diffusion coefficient or differences in density; however this is still

under speculation.** But, given the scarcity of *He, recent ventilation imaging has moved towards



more use of hyperpolarized '?°Xe, and more recently, free-breathing or inspiratory/expiratory
methods can be used that do not need hyperpolarized gas, utilizing inhaled oxygen and the
changes in density that occurs with changes in lung volume during breathing to identify regions
of poor ventilation thought to correspond to ventilation defects.*>**

While VDP provides an objective quantity where lung function is clearly dysfunctional, it
only characterizes the site, and size of obstruction observed in the lung. The airways responsible
for the defects, cannot be visualized directly with MRI, but the defects do localize the volumes
distal to the sites of airway obstruction. They do not tell us the changes in airway obstruction or
diameters that leads to the development of observed ventilation heterogeneity. To better
understand what changes are likely present to give rise to the ventilation heterogeneity we can
use multi-branching airway trees to explore changes in airway and tissue properties that can lead
to observed heterogeneity in inhaled gas distribution. When combined with measurements of
respiratory system impedance by oscillometry (described below), which is also sensitive to small
airway obstruction we can add another lens to understand the extent and possible variability
underlying pathophysiology in asthma.

1.7 Forced Oscillation Technique (FOT)

Oscillometry is a technique developed by Dubois and colleagues in 1956 to non-
invasively measure mechanics of the respiratory system.*> An oscillating surface (often a
loudspeaker) oscillates low-amplitude multifrequency flow directed into the mouth which results
in pressure waves sinusoidally measured at the mouth during normal breathing. While flow is
normally considered the input, and flow the output, we can examine either. Here we consider the

pressure wave is formed discrete frequencies as depicted in Figure 1.1.



p1 = Asin(2n5t)

p2 = Asin(2m10t)

P = Asin(2m20¢) p(t) =p1 +p2 +ps3

Figure 1.1: A set of sinusoidal pressure waves at discrete frequencies are superimposed to create

a multifrequency pressure wave.

The airflow (V’40) and pressure at the airway opening (Pao) is measured with the subject sitting
upright, wearing nose-clips, and supporting their cheeks firmly with their hands as depicted in
Figure 1.2. Measurements are repeated usually a minimum of 3 times, of duration of about 16
seconds or more and impedance averaged. Measurements are considered acceptable if the

coefficient of variation is less than a threshold, usually 10% or 15%.
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Figure 1.2. A depiction of an oscillometry measurement, where a multifrequency oscillatory
signal is generated and the result pressure at the mouthpiece (Pao), and also airflow at the
mouthpiece (Vao’) are inferred from measurements correcting for the impedance of device
between the subject and the sensors including the anti-viral and anti-bacterial filter and the

subject respiratory impedance computed.

The impedance of the respiratory system (Zs), typically represented as function of frequency, is
calculated by taking Fourier transform of the temporal pressure, and flow at the mouthpiece; and

taking the ratio of these quantities:

__ FT{Pgo(t)} (5)
Zrs(f) = FT{Vqo(t)}

The impedance is a complex mathematical quantity with a real component that is the ratio of

pressure to flow in-phase with pressure, and the imaginary component is the ratio of pressure to
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flow that is 90 degrees out-of-phase. The impedance describes the difficulty in delivering flow
and volume into the lung for a given pressure. However often it is interpreted using mathematical
models with parameters designed to correspond to physical phenomena such as airflow
resistance, or mechanical compliance that link structure to function. Various models have been
developed to attribute airway and tissue mechanics to respiratory function, described further
below. To interpret the impedance most generally, it is understood that the real component of the
impedance, referred to as resistance (Rys), is mostly related to the structure of the airways (largely
the airway diameter). The imaginary component, which is in phase with volume changes of the
lung, is referred to as reactance (Xis), and is attributed to the elastic and inertive properties of the
tissues. Depending on the model, contributions from the lung parenchyma, chest wall, or airway
stiffness can be considered and each contribute to either the real or imaginary part of impedance
to differing degrees. Further comments about mechanical impedance models can be found in the
following sections.

FOT has an advantage over conventional PFTs’ like spirometry, in that it does not require
complex breathing manoeuvres, such as a deep inspiration with forced exhalation to complete;
and it only takes about one minute to complete the typical 3 measurements. This technique has
been shown to be feasible with infants,*® children,*’ elderly,*® geriatric subjects,*’ anaesthetized
subjects,’® and subjects on mechanical ventilation.’! This technique has revealed that subjects
with an obstructive airway disease such as asthma, usually demonstrates an increased Rys, often
with an inversely frequency dependent Ry that is largely attributed to airway structural
heterogeneity. Also, asthmatic subjects tend to exhibit a more negative X5, which implies an
increased mechanical stiffness.’> 3 Rys has likely received the most attention in asthma as it is

related to airway structure (diameter), and asthma is believed to be an obstructive disease of the
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airways (not changes in tissue properties). Like spirometry, several studies have established
reference values to aid clinicians to determine abnormal values for Rys and Xis.>*+% There have
been clinical guidelines and recommendations from the American Thoracic Society (ATS) and
European Respiratory Society (ERS) for FOT as a clinical tool.%* % Additionally, there have
been significant advancements by manufacturers to create user-friendly devices, including hand-

held portable devices as shown in Figure 1.3.

Figure 1.3 The tremoflo™ C-100 AOS™, a handheld oscillometer developed by Thorasys

Thoracic Medical System Inc., Montreal, Canada.

1.7.1 Multi-branching Airway Tree Models for FOT

The emergence of imaging techniques that visualize ventilation have led to the development
of computational multi-branching airway tree models that make use of the ventilation data to

investigate the role of structural heterogeneity in asthma physiology. The complexity of the lung
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poses a significant challenge when designing an accurate model. The first useful airway tree that
used branch airway dimensions was based upon data acquired from a resin cast of the lung down
to the 10" airway generation, and microscopic measurements down to diameters of 2 mm using
histological techniques.®® This model was further developed by Horsfield and Cummings, where
asymmetric branching conditions were added, where variations in daughter airways length and
diameter were introduced.’” Despite a few complex asymmetric bronchial tree models being
available, the first demonstration of ventilation heterogeneity to reproduce a ventilation
distribution similar to that observed in inhaled gas imaging was a simple symmetric bifurcating
model.®®® This model incorporated airway instability whereby each airway was distended by
inflation of the acinus it subtended as developed by Anafi and Wilson for a single airway. This
model notably predicted the development of ventilation heterogeneity through this mechanism.”®
This model was not used to predict impedance, but other models, including models that extended
the airway trees to smaller airways beyond those obtainable by casts have been used in an
approach known as image functional modelling.

High resolution computed tomography (HRCT) with imaging parameters typically used in
clinics can visualize the bronchial tree down to the 5-8™ generation. While this allows the
construction of subject-specific airway trees non-invasively, it does not include small airways.
However, using large airways modelled from the HRCT, the remaining airways can be grown
with a volume-filling algorithm guided by the fractal branching pattern of the lung. For this
thesis, a multi-branching airway tree model generated by Tawhai and Hunter was utilized, and
the process for the generation of the tree is as follows.”"’* A random set of peripheral airway
endpoints are generated and the center of mass from these points is calculated. A vector is

created from final airway of the undeveloped tree to the center of mass of the randomly
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generated points, and the length of the resulting airway is taken as 40% of the length of this
vector. New seed points are generated, and this process is repeated continuously until the airways
reach a boundary, and the airway is terminated. For the purposes of this thesis, the airways at the
end of branch will be referred to as terminal; albeit convention has called for the first airway
where gas exchange is occurring to signify the start of the terminal branch. From the above
process, the diameter of the daughter airway is calculated with:

log(D(x)) = (x — N)log(R,SY?) + (Dy) (6)
where D is the computed diameter, x is the branch order, N is the higher order (trachea being
highest), Ry S'3 is the Strahler-based ratio, and D is the diameter of the highest order branch.
While not contained within this thesis, continual advancements have been made with this
modelling technique to include curvilinear mesh-models, along with physiologically appropriate

lobar boundaries.”?

1.7.2 Single Compartment Lung Mechanics Modelling

As mentioned previously, FOT measures the ratio of pressure to flow referenced at the
airway opening, which is defined as the respiratory system impedance (Zs), a complex
mathematical quantity. The real component (Rys) largely reflects the resistive properties
respiratory system and the imaginary component (Xis) largely reflects the elastic and inertive
properties of the respiratory system:

Zys = Ry + X (7)
If we model the respiratory system as a single compartment model as shown in Figure 1.4, we
can derive an equation of motion pertaining to airflow throughout the system. With this model,

we assume that the elastic recoil pressure (Pei) increases linearly with the volume of gas within
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the elastic sac described by E, and the pressure difference (AP) across the airway tube varies
linearly with airflow (V), described by R:

P(t) = P, + AP = EV(t) + RV () (8)
For frequencies greater than that of normal breathing, we must consider the pressure required to
accelerate the mass of air throughout the tube constituent (V). To account for this, we add an
inertive term, I, to the differential equation above:

P(t) = EV(t) + RV(t) + LV (t) 9)

This equation can be reconstructed in the frequency domain by taking the Fourier transform of

the above function where we use the notation w = 2rf for convenience:

) ET . ) (10)
P(w) =(R(w) +i|wl. — o V(w) =Z(w)V(w)
From the above equation we can separate out the real, and imaginary components, and use
equation 11 to get:
ETS
Xrs = wlr_j (11)
such that:
1 (12)

where C is the compliance. The single-compartment linear model (to model the entire lung) can
model healthy-lung impedance very well,**7* but it lacks the ability to fit well with changes that
occur with obstructive disease, which alters the Z;s behavior with frequency, particularly

increasing Ry at low frequencies (<10 Hz).
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Figure 1.4 Modelling the respiratory system as a single compartment shown in tube and bag
mechanical schematic (left) or as electrical analogue (right). The airway is divided into a tube,
with a resistance which dictates airflow V, across a pressure difference AP. At the end of the tube
is an elastic balloon like structure to represent the elastic forces experienced in the lung
parenchyma. This model is directly analogous to an electric RC-circuit, where the pressure drop

is analogous to a potential difference.

1.7.3 Constant Phase Model

Pre-clinical studies of oscillometry with animal models revealed an inverse frequency
dependence in resistance.”® It was shown later that modelling of the tissue-compartment based
upon an inverse power law had high fidelity with oscillometry measures up to 20 Hz.”% 77 The
following model was derived by modelling tension in response to a step displacement within the
tissue compartment (acinus) with a power law:

T(t) = Tyt ™" (13)
where Ty, and k are constant. As in the previous section, the above expression can be transformed

to the frequency domain, and expressed as a mechanical impedance of the tissue:

G —iH (14)

wa

Zys(w) = F{P x Tot ¥} =
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where G represents tissue damping, and H represents the stiffness of the tissues, P is the pressure

in the tissue compartment, and « is defined as:

a=—tan " |—=
T G

2 (H ) (15)
with a typically less than unity in lung tissue.”® 7 Adding the tissue contributions to the findings

from the single compartment model, the impedance for this system would be:

G —iH (16)

wa

Z(w) =R+ iwl +

grom this model, a parameter that can be defined is a term referred to as the hysteresivity (G/H),
which relates how much proportion of tissue deformation goes into energy dissipation through

frictional or viscous process compared to elastic energy storage. The form of the constant phase

) . . G
model provides a source of inverse frequency dependence in the Rys spectra through — . In
w

healthy humans, the inverse frequency dependence in Rys is only visible below 0.2 Hz.3%8!

Although in disease, this inverse frequency dependence is also seen in the typical FOT range (5-
32 Hz). While the constant phase model can account for frequency dependence of Rrs observed
in lung tissue, it does not necessarily mean that freqeuncy dependence is a tissue-based property.
Frequency dependence of resistance in humans is usually attributed to heterogeneity and can be

described using two or multicompartment models described in the next section.
1.7.4 Impedance Modelling and Asthma

While complex models such as the six-element model®* or multi-branch models have
been derived to simulate the mechanics of the entire respiratory system, the single compartment
model or constant phase model still dominate in the literature due to their ability to be
informative. For example, an early and common model for the respiratory impedance in asthma

is the two-compartment model which consisted of two single compartments in parallel; the
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model was then compared with measured impedance in dogs after the administration of
histamine in the frequency range of 8 to 2048 Hz.%*%4 In this thesis I use a multi-branch airway
tree model which were introduced in section 1.7.1, which at it’s terminal branches each includes

a distinct single compartment.
1.7.5 Cost Function Minimization and Parameter Optimization

This thesis will require a procedure to determine the level of narrowing for a cluster of
airways in a multi-branching airway tree that leads to the closest match to the measured
ventilation pattern. In addition, we will be seeking solutions that best predict measured
impedance as well. This is an optimization problem in a multi-parameter space since the many
interconnected airways can have many different configurations of airway narrowing. In this
section we introduce optimization in multivariate problems, and then describe simulated
annealing which is the approach adopted in this thesis. The mathematical premise of any
optimization procedure is that there is a functional form, f, that describes the cost of a system, 4;
and we seek a parameter set, 3, such that:

f(Bo) < f(B), BoeA, BeA “4)
In complex systems, like mechanical models of respiratory system, parameters are intrinsically
linked with multiple similar configurations, which means that descent-optimization techniques
like the Gauss-Newton algorithm can get trapped in local minima of the objective function and
fail to find the global minima.

1.7.6 Simulated Annealing

While iterative techniques have the potential to get trapped in local minima of large sized
solution spaces, heuristic methods can explore the interdependence of variables on global

optimization. One such technique is simulated annealing which started with the concept of the
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travelling salesman problem, where the cost of a salesman travelling between N cities is
minimized via combinatorial optimization.®*” The formalism for applying simulated annealing

was initially introduced by Kirkpatrick et al.,*

which is rooted in statistical mechanics, and
states that the probability of a system being in a state with energy E with temperature T, would
satisfy the Boltzmann distribution:
1 —Er (21)
P (E , T) =—"7F ¢ ks
where kg is the Boltzmann constant: 1.38 x 102 m?2 * kg * s~2 x K~ and in simulated

annealing this constant is omitted, and the form of this equation is simplified:

P(AE,T) = e~ T (22)

This equation will go to unity at high T, meaning all states are equally likely. As T decreases, the
probability of states occurring is lower; representative of a fine-detailed search of the cost-
function landscape to find a global minimum. For the purposes of a cost-function minimization
problem, this technique improves on other optimization frameworks by occasionally allowing for
worse solutions at high T, i.e, enabling the system to jump out of local minima. Iterative cooling
of the temperature is implements, which puts more stringent tolerances on accepting “worse”
solutions.

In the form presented above, simulated annealing has apparent limitations: (1) the
probabilistic criterion of solution acceptance leads to the potential of escaping the global minima,
and not return due to cooling nature of the technique. (2) Slow cooling is the only way to
overcome (1), and this becomes computationally expensive. Adaptive cooling schedules have

89,90

been developed that address these limitations,” " albeit these techniques were not implemented
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in this thesis. In Yang et al., they proposed a guided annealing schedule where the temperature,
Ty, is as follows:

T,=al + (1 —a)d" )
where T is the current temperature of the system, and is cooled in the conventional way:

T =YTprev (6)
where y is the cooling rate, and T,,.,, is the temperature of the previous iteration. The term d* is
a function used to track performance of the optimization, and can be defined in various ways; for
which they chose:

d* = |lxe = Xyrr (7
where x, is current evaluation of the cost, and X, is the lowest evaluated cost thus far. The

term « is referred to as the information-effectiveness parameter and is defined as:

a(r) = 1 - expf-c (})}] ®)

where Tjy; 1s the temperature of the system at the beginning of simulated annealing, and c is an
adjustable parameter used to control the effectiveness of feedback. They were able to show that
information guided simulated annealing improved over conventional simulated annealing, with
or without a reheating schedule, by quantifying the number of simulations that were trapped in
local minima for common optimization problems (Griegwangk, Rastrigin, and Schwefel function
respectively).®

1.8 Motivation

The motivation for this thesis is as follows. MR ventilation images of an asthmatic lung
can be used to determine the percentage of the lung not participating in ventilation; which is

thought to be the result of small airway narrowing. A broad review of recent literature has
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revealed that the average VDP for a healthy subject is ~4.2 + 5.4%, and ~ 10.0 £ 6.7 % for a
severe asthma.??%419193 The obstruction of an airway (which is thought to cause a ventilation
defect), which consequently blocks access of an FOT oscillation to sense the soft elastic tissue
behind the obstruction, should cause reactance/elastance to stiffen proportionately. Analyzing a
simple multi-branching airway tree model with thirty-two acini as shown in Figure 1.5, the
absence of an acini can be shown to affect the overall stiffness of the lung. Assuming a chest-
wall elastance of 10 cm * H,0 * L™, and an equal stiffness distributed to all acini, the elastance
of a healthy lung as shown in Figure 1.5.A can be calculated:

1 1\ * (27)
R -1
Eheaithy =(—+"'+ ) +E.,, =40 cm x H,0 * L
E, E3q

Using one standard deviation from the mean VDP of severe persons with asthma (~16%) as

depicted in Figure 1.7.B, the elastance is calculated to be:

1 1\ * (28)
-1
Eheaithy = (— +-t —) +E., =444 cm =+ H,0 +L
El E27

This is an observed 11.1% change in elastance from health to severe disease, which is
significantly less than the 400% change interpreted from low frequency (4 Hz) FOT.** To
achieve this same change in elastance with the lung model depicted in Figure 1.5, a VDP of 80%
would be required. It is important to note that MRI ventilation defects are derived from imaging
acquired in the supine position which causes the abdomen to shift upwards, increasing R, and
decreasing E. In severed obesity, E can be increased two-fold in the supine-position compared

with upright.®®

While postural positioning does account for an appreciable change in stiffness of
the lung this is still insufficient to account for the disparity between predictions of lung

mechanics by MRI, and measured oscillometry. In asthma, the reason for the difference in the

relative decrements of lung function compared to health as measured by MRI and oscillometry is
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currently unknown, and I am not aware of any studies that have investigated this. Asthma
includes other factors apart from airway narrowing that could contribute to higher stiffness that
may not produce ventilation defects. This includes potentially increased tissue stiffness from the
higher elevated smooth airway muscle tone associated with asthma,.”® The higher baseline tone
can lead to an increase in stiffness of the lung tissue highly localized to the airways within the
parenchyma, a manifestation of airway tissue parenchymal interdependence.’””® However due to
the parallel nature of the lung tissue, this effect is likely very small compared to the changes in

stiffness measured by oscillometry in asthma.

A) B)

—

Figure 1.5 A multi-branching airway tree with a VDP of ~ 4% (A), and a VDP of ~ 16% (B).

1.10 Functional Image Modelling with Impedance Models of Asthma

Several decades of investigation with animals and computational models have indicated
that heterogeneous small-airway derecruitment in asthma is a major contributor to decrements in
lung function as predicted increases in Rys and more negative values of Xys.”87% 9192 This is
known to be heterogeneous from pathology, but also more recent techniques such as studies from
multi-breath washout also confirm heterogeneity is strongly associated with asthma.!%3-1%
Connecting heterogeneous pathology and small-airway dercruitment in asthma, impedance

models have been developed using functional information from inhaled gas imaging by imposing

closures in multi-branching bronchial tree models. The functional participation of changes in
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airway diameters in asthma was also investigated by simulating ventilation and predicting
impedance with a concept known as image functional modelling (IFM).*>>!% IFM is a technique
that simulates the mechanics of a system, altering internal parameters such as diameters in an
effort to explain function, including both impedance and ventilation distribution using imaging
data. For this thesis, IFM was further developed to simulate the inhalation of gas and was
compared to measured inhaled gas MR images.

The first study of IFM used inhaled gas PET to guide the location of airway closures
within a multi-branching airway tree model; the simulated ventilation produced by the tree
allowed them to predict the size of airways responsible for the presence of ventilation defects
seen in asthma.®” To accurately simulate observed ventilation defects, closures to airways < 2.39
mm were required; this is consistent our understanding of asthma being a small airway disease.
A following investigation used inhaled-gas MRI to similarly guide the location of binary
closures (i.e. dividing the lung into two regions, non-defect and defect within which airways are
effectively closed) within a bronchial tree but required the addition of a normal distribution of
narrowing to upper airways to account for additional impedance to matched subjects’
measurements.'% Common to both studies was the concept of a binary closure to the airway tree,
where airways that fell within defects from the ventilation image were closed to 70-90% of their
initial diameter. While using the additional Gaussian distributed narrowing in the ventilated
regions predicted impedance that matched well with subjects’ measurements, this method
produced substantial and unexplained differences between the real ventilation images from MRI
and the simulated ventilation images as shown in Figure 1.6. The top row of Figure 1.6
demonstrates three central slices of an inhaled gas MR image of one subject, the middle row

depicts the same slices of simulated ventilation images produced from a computational airway
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tree model with a 70% closure to airways within defects, and the bottom for the same tree with
90% closures. The locations of defects are not correct, which could be attributed to the airway
tree registration. But, more importantly, the signal intensity pattern of ventilation in ventilated

regions is significantly lower than measurement.

Figure 1.6 Real (top) and simulated ventilation images for three middle lung slices. The middle
row represents simulated ventilation where defect airways were narrowed by 90%. The bottom
row represents simulated ventilation where defect airways were narrowed by 70%. Red circles

highlight differences in defect location/size. %
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1.11 Hypothesis

The common approach for modelling mechanical impedance in asthma is to employ a
binary closure of 70 to 90% airway narrowing airways that fall within the “defect” regions of
inhaled gas images; a visual depiction of one such closure map is as seen in Figure 1.7. However,
additional constrictions to pre-defined airways generations based upon a normal distribution
have also been required to measured subjects’ impedance, sacrificing the functional participation
of airways in predicting realistic ventilation. The multiple levels of ventilation within the inhaled
gas images were largely discarded when converted only to binary information of regions with or
without ventilation, and thus did not contribute to guiding airway narrowing. To examine how
important this information might be, and to investigate the complex, and heterogeneous
ventilation distribution in persons with asthma, we propose that a higher-level constriction
scheme must be realized. As demonstrated by Kirby et al.,*® k-means clustering is an approach to
segment ventilation levels into clusters, which were matched with expert chest radiologists’

opinions of functionally significant differences in ventilation.
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Figure 1.7 A 3D model airway tree with defect airways derived from inhaled gas MRI in red.
Conventionally asthmatic modelling approaches would narrow these airways by 70-90% to

respiratory mechanics.

General Hypothesis

We hypothesize that the hypointense to hyperintense signal levels in inhaled gas MR images can
be used to guide a graded narrowing scheme in a multi-branching airway tree model that will
improve on previous binary closure models to simulate ventilation images and impedance data
in asthma

Specific Hypotheses

1) We hypothesize that simulated ventilation images predicted from a graded narrowing model
will closer match measured ventilation images as assessed by reduced sum of squared
differences in image intensities when compared to a binary model.

2) We also hypothesize that a graded airway narrowing model will predict a larger change from

baseline Ris and Xis as assessed by a t-test at SHz. Also, we predict that the graded model will
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predict impedance vs. frequency that is closer matched with measurement compared with the
binary closure model; This was assessed by subjective comparison of Zrs of both graded and
binary models by the increase of Rys from baseline, and their statistical differences between
models by t-test, as well as the subjective presence and extent of frequency dependence in Rys
This was also assessed by the difference between binary and graded scheme in the decrease in
reactance from baseline, and subjectively by the rate of increase of X5 as it more closely
resembled measured X,

3) We also hypothesize that the graded airway narrowing model will exhibit a larger inverse
frequency dependence in the resistance spectra as quantified by the difference in resistance at 5
Hz to the resistance at 20 Hz, as assessed by a t-test when compared with predictions from the

binary model.
1.12 Preliminary Development of a Time Constant Map for the Lung

A study performed by Kaminsky and colleagues (2000) found that the average peripheral
airway resistance of seven persons with asthma was 11.9 +/- 2.28 cm-H»0-s-L"! compared to 3.49
+/- 0.82 cm-H»0-s-L! for seven healthy participants with comparable demographics.'% Regions
fed with narrower airways (higher resistance) would take longer to fill than others, which
embodies the idea that ventilation heterogeneity has an associated distribution of time constants
in the lung and governs regional and heterogenous ventilation. We speculate here that the
development and visualization of a time constant map over the lung derived from the ventilation
data could help provide insight into scale of the heterogeneity present in the lung, presenting it in
the familiar units of time rather than image intensity. Thus, new understanding of the scale and
nature of the heterogeneity might be learned of the functional behaviour of the lung during

inhaled gas imaging, and potentially present during breathing.
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Chapter 2. Experimental Methodology
In this thesis, oscillometry and imaging data previously obtained from larger studies
within the Parraga lab was used. Eight subjects (59 +/- 7 years), half male (weight = 86 +/-3 kg,
height = 178 +/- 6 cm), half female (weight = 80 +/-10 kg, height = 164 +/- 3 cm), provided

written informed consent to ethics board approved protocols (https://clinicaltrials.gov,

NCTO02351141, NCT02263794). These subjects exhibited severe clinical asthma based upon the

Global Initiative for Asthma,!” with a VDP range of 2-34 %. MR Images, and FOT were taken at
baseline, and after administration of salbutamol (bronchodilator). The demographics for these

subjects are as shown in Table 2.1

Table 2.1 Demographics of subjects measured with FOT, MRI, spirometry, and

plethysmography.
Subject Age  Sex Height Weight BMI FEV1 VDP Severity
(cm) (kg) (kg/m®)  Ypred (%)
S1 68 M 180 87.9 27.1 105 7.0 Severe
S2 56 M 185.5 86.7 25.2 37 31.5 Severe
S3 48 M 171.5 87.5 29.8 78 9.9 Severe
S4 66 F 161 63 243 54.6 16.5 Severe
S5 67 F 167 83 29.8 56 11.6 Severe
S6 60 F 163 88 33.1 37 29.2 Severe
S7 54 F 163 88.2 33.2 50 38.0 Severe
S8 53 M 173 80.5 26.9 27.9 30.7 Severe
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2.1 Forced Oscillation Technique

Oscillometry was previously collected using a tremoFlo™ C-100 Airwave Oscillometry
System™ as shown in Figure 1.3 by superimposing a multifrequency oscillatory pressure
waveform of approximately 1-2 cm * H,0 with a subject’s normal breathing, over the course of
16 seconds. The waveform delivered oscillations at 5, 11, 13, 17, 19, 23, 29, 31, and 37 Hz. The
impedance, Zs, was calculated by taking the fast Fourier transform of pressure and flow signals
and computing the ratio of the spectra as the average of 1 second overlapping windows and for
signal processing, a Hamming window with a 50% overlap was applied to the one-second
windows prior to averaging from a single 16 second measurement, and 3 measurements were
then averaged for the final Zrs, and accepted if the coefficient of variation for Rrs at 5 Hz was
less than 15%. Any negative resistances of any window or outliers of greater than 3 standard
deviations were rejected from an individual 16 seconds recording and a coherence of > 0.90 was
used as an acceptance criterion; where a coherence of 1.0 assumes perfect linearity between the
measured pressure and flow (meaning the absence of noise). As per ATS/ERS guidelines,
subjects wore a nose-clip during measurements, and supported their cheeks with their hands to
minimize the upper airway shunt impedance.®*

2.2 Hyperpolarized *He MRI

The MRI scans utilized in this study were acquired with a 3 Tesla Discovery MR750
system (General Electric Health Care; Milwaukee, WI). During the procedure, subjects inhaled a
1.0 L gas mixture of *He/N from functional residual capacity (FRC), and the images were taken
under breath-hold conditions (total scan time: 16 s) in the supine position. A whole-body
radiofrequency coil was used with a fast gradient-recalled echo method with partial echo

(TR/TE/flip-angle = 3.8 msec/1.0 msec/7%; FOV = 40x40 cm?; matrix = 128x128, zero padded);
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partial echo percent 62.5%, BW 62.5 kHz, one excitation, 14 sections (section thickness = 15
mm). Scans were performed with a rigid linear bird-cage transmit/receive chest coil (RAPID
Biomedical GmbH, Wuerzburg, Germany). *He gas was polarized with a commercial exchange
polarizer system (Polarean Inc, Durham, NC) to 30-40%. Images were segmented using
software generated from MATLAB R2007b (The Mathworks Inc., Natick, MA). The inhaled gas
3He MR images were clustered using a hierarchical k-means clustering method as described in

section 1.6.2.
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Chapter 3. Modelling Methodology

3.1 Airway Tree Registration

For this thesis, a 3D multi-branching airway tree with 64,895 airways, and 32,447
terminal airways was used for modelling. This model was developed from a HRCT of the lung
from of a single subject, where airways diameters and junctions were derived. From the central
airways, the peripheral airways were created using a fractal growing algorithm to the edges of

the thoracic space, as described in section 1.7.1.72

To model asthmatic physiology in the
computational airway tree model, we used gradations in signal intensity within hyperpolarized
’He MR images to apply local narrowing in the tree. To do this, we registered the 3D airway tree
to a subject-specific MRI lung volume and is described fully in the following sections.

3.1.1 Point Cloud Registration

We implemented a rigid point-cloud registration using the function pcregrigid in
MATLAB (MathWorks, 2017a) to move the airway tree into the MRI lung volume separately for
the left and right lung. This function performs rotations and translations in 3D (X,y,z) to
minimize the differences between two distributions of points. The MRI lung space (coronal
slices) was defined by its boundaries, and a MR point-cloud volume was created by distributing
the slices within the MR data set throughout the extent of the 3D airway tree dimensions. E.g, the

positioning of the i-th slice would be:
N = (i — r,r 29
P()=( 1)*N+2N (29)
where 1 is the slice number, T is the thickness of the lung (as determined from the coronal

resolution of MRI), and N is the number of slices. As shown in Figure 3.1 below, the airway tree

(black dots) was registered to MRI point cloud volume; where a separate registration was
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performed for the airways in the right lung of the tree with the right MR lung (red dots), and

similarly for the left MR lung (blue dots).

Figure 3.1 Rigid registration of the 3D airway tree model (black), to the MRI lung volume for

one subject. The left lung (blue), and right lung (red) are registered separately.

3.1.2 TLC to FRC scaling

We scaled the airway tree lengths, and diameters from TLC, where the tree was derived,
to FRC + 1.0 L. This was done to properly model the mechanics of the lung during the same
state at which ventilation images were acquired. A scaling function that is airway-generation

dependent was utilized:

Lyac(n) = o« (30)

where d is the diameter of the given airway, dp is a threshold to differentiate small airways, and a

and B are model parameters that can vary. This sigmoidal scaling function was derived to reflect
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the scalability of various airway generations based upon their cartilaginous structure and has a

graphical form as shown below in Figure 3.2. In this figure, the scaling function for the airways

lengths are shown where longer/larger airways are scaled less than smaller airway %197

0 ‘ .
0 20 40 60
Length (mm)

Figure 3.2 Scaling function for airway lengths to scale lung from TLC (large length) to FRC.

The scaling parameters a = 1, B =1, and d, = 2 mm were chosen to scale airway lengths for all
subjects, whereas variable a and B were chosen to scale airway diameters. The choice of a and 3
was made to predict a baseline (healthy) lung resistance that was 50-60% lower than the
subjects’ measured resistance. This threshold was chosen because it was the observed difference
between healthy subjects and persons with severe asthma by Calvacanti et al.”* Also, these
parameters were chosen to synergistically match the demographic predictions of the subjects’ Xis
at 5 Hz (further comments below).!%® The different scaling functions for airway diameters of the
8 subjects in this study are shown in Figure 3.3, where each subject required different scaling to

achieve baseline conditions. This plot shows that the majority of subjects required upper airway
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dilation to meet baseline predictions, and likely means that the tree in this study was smaller than

the trees of the actual subjects.

1.5
1
8
a
0.5
0 | L
0 0.5 1 1.5

TLC Diameter (cm)

Figure. 3.3. Scaling function for airway diameters of eight different subjectss, to scale lung from

TLC to FRC.

The results of the registration for one such subject is shown in Figure 3.4, with lateral and medial
registration errors still evident. Given that the scaling function was applied to the entire tree, we
can infer that for some subjects (mostly male), the initial airway tree morphology was incorrect,
1.e, the airway tree was derived from a slim person (small chest cavity), whereas the average
male has a larger chest cavity. Further deformation was needed to improve the matching of the

airway into the thoracic space, and this is addressed in the following section.
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Figure 3.4. Registration of 3D model airway tree (black), to MR lung volume (red = right, blue =

left) after scaling lung from TLC.

3.1.3 Deformable registration using MIND

Following scaling of the airway tree in the previous section, deformation of the tree was
necessary to fill the subjects’ MR lung space. This required the 3D tree to be mapped into image
space (physical lengths/positions to pixel positions). Also, given the slice-format (single images)
of the MR lung volume, the 3D lung-model had to be converted into a slice format as well. Using
a similar logic from the previous section, airways were recruited into a given slice based upon
their positioning. Exceptions were added to incorporate airways that were entering or leaving a
given slice. After discerning the airways within the respective slice, the boundaries of the left
and right lung space were determined separately, and a binary mask image was created for the

airway space.
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To deformably register the airway tree to the MRI volume, the slices of each respective
volume were registered on a slice-by-slice basis, using a binary mask of the MR lung space.
Also, the left and right lung were registered separately. Registration was performed using the
modality independent neighbourhood descriptor (MIND) as outlined in Heinrich et al.!*’ Briefly,
the technique defines an image descriptor, which represents the structure of an image in a local
neighbourhood. The descriptor for each voxel x, in image I, surrounded by a patch r, is defined

as:

1 D, (I,x,x+71 31
MIND(I,x,r)zHexp<— p )>,reR 3D

VI, x)
where R is the spatial search region. The patch distance, Dp(I, X, x+r) represents the difference
between one patch around voxel x, and another patch at voxel x+r:

D,(Lxx+1)= Cx(I-I'(r)) (32)
where C is a convolution filter of size (2p + 1)¢, d is the dimension of the image, and I is a
copy of image I translated by a distance r. The variance, V(I, x) represents the variance of the
patch around the voxel of interest. After the descriptor (represented as a vector) is defined for

each voxel, the similarity between the two images is defined as the sum of squared differences

between corresponding descriptors:

1 2 (33)
S, x) = WZIMIND (I, x,1) — MIND(J, x,7)|
T€ER
These values are then used to influence a deformable registration algorithm which utilizes a
vector field u that minimizes the cost function below:
argmin () = Y, S(1(%),J(x +w)) + atr(Vu(x) Vu(x))* (34)

where I is the image to match, J is the image being deformed, and a is a diffusion regularization

term that was chosen to be 0.05 for all subjects as it maximized registration. The cost function
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was solved using the Gauss-Newton optimization method, with an iterative over-relaxation
technique to converge to a solution. The optimization produced a deformable vector field that
deformed the airway tree to fill the MR lung-space. This deformation field translated voxels in
coronal perspective of the airway tree volume. An example of one such registration is shown in
Figure 3.5 below, where the right MR lung (red dots), and left MR lung (blue dots) images are
represented as slices (as described above), and the black dots are the positions of airways within
the tree. There were high registration statistics (> 0.85 fractional volume overlap described
below) found in slices immediately prior to, and after the cardiac notch, but with deviations with
lower ovelap still seen in the medial/lateral lung within the cardiac notch, as well as deviations in
the far-most posterior and anterior slices. To quantify the quality of registration, a shape-

matching metric, which we call the fractional volume overlap was used:

(ANB) (35)

FVo =
B

where A is the deformed image, and B is the image to match.
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Figure 3.5. Registration of 3D model airway tree (black), to MR lung volume (red = right, blue =

left) following deformable registration.
3.1.4 Registration Limitations

The final component of registration was ensuring the connectivity of the airway tree
following deformation. Since the airways were segmented into individual slices, and the slices
were deformed separately, connectivity of the tree from slice to slice could be lost as depicted in
Figure 3.6.A, which shows airway generations 1 - 14 following deformation, where numerous
subtending airway branch junctions were separated from parent branches. While the impedance
of the tree could still be computed, the disconnected tree was not a realistic representation of the
respiratory system. To reconnect the tree, a conditional framework for connecting the tree was
implemented as follows. After registration, all airways throughout the tree were checked for
connectivity of the left/right daughter branches first; if they were disconnected, they were forced
to junction at the airway which falls within the lower ventilation level (to preferentially maintain
location of defects during simulated ventilation). After this, the parent branches were checked for
connectivity with the daughter branches and the following conditions were imposed: if the parent
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was not connected, calculate the potential length of the parent airway if connectivity was forced;
if the length of the forced stitching does not exceed 150% of the maximum airway length within
that respective airway generation: connect; else find all of the subtending airways from that
parent, and translate them until the airways connect. As shown in Figure 3.6.B this conditional
framework was able to successfully reconnect the airways of the tree and maintained a branch
like appearance. But, this may have affected the location of the acini since some terminal
airways were moved in this procedure. This solution could alternatively be deployed by
stretching the central airways peripherally, which could have the potential of better registration

statistics.

Figure 3.6. 3D Airway tree following deformation using MIND algorithm. (A) Generations 1-14

without stitching. (B) Generations 1-14 with stitching.

40



3.2 Impedance Calculations

To model the impedance of the airway tree, the impedance of individual airways was
calculated, and then were added in parallel (at bifurcations), and in series (for each generation).
The complex impedance of each airway was calculated with Womersely flow; which is derived
from the Navier-Stokes equation for pulsatile fluid-flow. Womersely flow predicts both the
inertive and resistive properties of any fixed tube with flow that is either laminar or approaches
transitional/near Reynold’s number (not fully turbulent), and thus accounts for all the expected
flow regimes in the lung within the frequency region that was tested. The mathematical form is

as shown below:

Z.(f) = j 2fpairla 1— Zjl(aa\/__j) - (36)
¢ raZ aa\/__jjo(aa\/__j)

where 1, is the radius, and 1, is the length of the airway, f is the frequency in Hz, pair is the density

of air (1.16 kg/m®), J; and Jo are the Bessel functions of order 0 and 1 respectively, and o, is the
Womersley number of the airway defined as:

anairf (37)

fa=Ta Hair
where i is the dynamic viscosity of humid air at 37°C (1.85 x 107 Pa-s). For terminal airways, a
constant elasticity for the acinus added to the impedance; also, elasticity was homogeneously
distributed to all acini in the tree model. While some heterogeneity in tissue properties might exist,
asthma is not believed to be a tissue disease; i.e, the cause of ventilation heterogeneity is thought

to be due to the heterogeneity in airway narrowing. For the terminal airways, the impedance is as

defined below:

Za,term(f) = Za(f) + Etor * Nterm (38)
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where E is the elastic contribution of all acini to the total lung elastance (stiffness), and Nierm 1s
the number of terminal airways (which terminate into an acinus). Given that impedance of the
entire tree was determined from the parallel and series addition of impedances for individual
airways, and we assume that elastance is homogeneously distributed to all acini, the elastic
contribution for a single terminal airway would intuitively be the total elastance from N parallel
additions of total measured elastance, Ewt multiplied by Neem. Modelling a healthy lung with the

1.,'1% as shown in

methodology described above, we could reproduce measurements by Lui et a
Figure 3.7. In the left plot of resistance, the model (black dots), qualitatively matches well with
the subject’s measurements; and similar agreement is seen with elastance (right plot). Ei is

approximated from equation 11 by assuming I;s is zero, which is not correct for high frequencies,

and accounts for the descending E;s after 2 Hz.
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Figure 3.7. (Left) Resistance of a healthy lung, (Right) Elastance of a healthy lung using
oscillometry. Model is depicted by solid squares, and measurement from Lui et al.. is depicted by

open squares.'°
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3.2.1 Assumptions

After calculating the impedance of the entire airway tree, a few terms were added to
realistically model the impedance of the entire respiratory system. To calculate the resistance of
the lung, Ry, 0.5 cm * H,0 = s = L™ for the trachea and glottis, as well as 0.5 cm * H,0 * s *
L™ for the chest wall was added to the airway tree resistance, Ryee, to reflective experimental

observations: 0102111

Rys(x) =real(Ziee(x)) + 1.0 cm « Hy0 + s x L7, xef (39)
where f is a discrete frequency measurement. Following this, a chest wall elastance of 10.6
cm = H,0 * L™! was added in parallel with the airway tree elastance: !!>116
E,s(x) = —2mx x imaginary(Ziyee(x)) + 10.6 cm = H,0 « L™, xef (40)
And finally, a measured frequency dependent upper airway shunt impedance was added in

parallel with the lung impedance to calculate the respiratory system impedance, Zs:

s

E
Zys 1 () = Rys(x) + i (Zm 41)

), xef

er,i(x) * Zuaw (x) (42)
er,i(x) + Zuaw (X) ’ fo

er(x) =

where Zuaw is the impedance of the upper airways as measured by Cauberghs et al.!'” The
resistance of the upper-airway shunt at discrete frequencies for 16 subjects with obstructive lung
disease can be seen in Figure 3.8, where shaded circles represent measurements with the cheeks
supported, and open circles represent measurements with the cheeks not supported. Similar

differences are seen in the reactance (Xrs) spectra.
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Figure 3.8. Upper airway shunt resistance (Ruaw) with cheeks supported (filled circles), and

unsupported (unfilled circled) in 6 healthy subjects. Figure reproduced from Cauberghs et al.!!’

We used subject’s demographics to predict baseline (healthy) Xis at 5 Hz, where “baseline,”

reflects a healthy lung without the presence of defects, or obstruction:!%®

— 2.683-0.703xH+0.00185*xW
er,healthy,male =4-—e (43)

X =4 — e2.373—0.707*H+0.0015*A+0.00312*W
rs,healthy,female —

where H is height in meters, A is age, and W is weight in kg. We matched these demographic
predictions by choosing subject-specific variables in equation 30 and adjusting the elastance in
the tree, Etwt in Equation 38. The values chosen for E¢ were within the range of observed

Values.94’1 16,117

3.3. Image Functional Modelling (IFM)

We aimed to deploy a graded narrowing scheme in a bronchial tree to simulate asthmatic
physiology, where the degree of narrowing for individual airways was based upon local
ventilation (derived from the MRI registration procedure). We implemented two techniques

together to realize subject-specific narrowing schemes: IFM and simulated annealing. For
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simulating ventilation with IFM, we used a methodology similar Campana et al.!?’ To implement
IFM, we assume that gas was inhaled in one second during an inhaled gas MR acquisition and
calculate the impedance of each airway at a frequency of 1 Hz. We then sum the voxel intensities
for the entire inhaled gas MR image, and distribute the summed signal intensity (assumed to be
the signal from 1.0 L of gas) throughout the tree, starting at the trachea, using a flow-divider

1.,118

relationship described by Colletti et a where the resulting flow of gas distributed to each

airway was dependent upon the resistance of the subtending branches:

. Ryight : (44)
V =—— x|

left Rleft + Rright parent
. Rleft .
Viight = * Vparent

Riere + Rrigne
This process was completed until the volume of gas in each airway was found as shown in
Figure 3.9, where gas signal intensity, quantified in each airway, generally decreased with
increasing airway generation since the total cross-section increased with increasing number of
branches below about the 3™ generation. To produce the image, it was only important to consider
the degree airflow (proportionally volume of gas) in the terminal airways, as this is the site of gas

exchange, which is functionally observed with inhaled gas MRI.
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Figure 3.9. Signal intensity in each airway after implementing a flow-divider relation to

Signal Intensity
S
o

—
=
a
o

distribute gas throughout an airway tree.

The methodology above assumes that the elastance at the end of all pathways were identical, thus
other than the role of the pathway resistance not differentially affecting the effective time
constant for filling. We then assign signal intensities derived from the flow divider relationship
to a zero-filled matrix to create a ventilation image. Voxels that did not contain an acinus were
assigned a signal intensity using a 3D nearest-neighbour averaging algorithm. Finally, to bring
the simulated ventilation images closer in resolution to the inhaled gas MR images, a 3D median
filter was applied. An example of this entire process is as depicted in Figure 3.10, where in
Figure 3.10.A, voxels in a zero-filled matrix were filled with the local degree of ventilation in
airways determined from the flow divider relationship; In Figure 3.10.B, the remaining zero-
filled voxels were filled with a 3D-nearest-neighbour averaging algorithm and the entire image
was smoothed using a median filter. Both model (Figure 3.10.B) and subject’s ventilation

(Figure 3.10.C) bear some similarity, but they are different. This is described later in section 5.3.
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Figure 3.10. A visualization of the gas-map filling process for simulating ventilation. A) Shows

the gas map filled with signal intensity values for acini that fall within voxels. B) Shows the gas
map after voxels have been filled with a nearest neighbour averaging, and a median filter has
been applied to the whole image. C) Subject’s ventilation image where voxel intensities have

been normalized by the summed signal intensity for the entire lung.

A cumulative distribution function was then constructed from the simulated ventilation images
with:

CDF(x) = f xf(t)dt (45)
0

where x is the degree of ventilation found in a given voxel, and f(t) describes the number of

voxels with a given degree of ventilation.

3.4 Simulated Annealing

We used simulated annealing to realize the optimal narrowing scheme for reproducing
the ventilation distribution seen with MRI. For simplicity, the sum of square differences (SSD)
between each simulated ventilation image and MR image, which we refer to as the objective

function (OF), was chosen to quantify the optimization of the graded narrowing scheme.
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Deriving the appropriate cooling rate was accomplished by iteratively performing simulated
annealing with larger cooling rates and qualitatively assessing the shape of the OF optimization.
Solutions that converged too quickly, or did not converge at all, were discarded. From this
assessment, the optimal cooling rate was found to be 1.5 % per iteration. For this thesis, the
framework for applying simulated annealing is as shown in Figure 3.11.

Three different versions of simulated annealing were tested; in V1/V2 we only
considered the optimization of a graded narrowing scheme for the terminal airways, as we
believed the best possible way to match ventilation would be to apply localized narrowing to the
smallest airways. This methodology limited our ability to match measured impedance, given that
induced heterogeneity was restricted solely to terminal airways. In V3 two levels of simulated
annealing was applied, where the first level optimized a graded narrowing scheme for the
conducting airways, with the goal of improving impedance predictions by introducing structural
heterogeneity throughout the upper airways; and the second level optimized a graded narrowing
scheme for the terminal airways to maintain the quality of simulated ventilation. The technical
difference between each version is related to equation 30, which scales the lung from TLC to
FRC + 1.0L. Below is a description of the methodology for each version, and the motivation for
attempting different methods. In V1 B in equation 30 was set to 1.0 while varying o and dp, this
restricted any airways from being dilated during the scaling, as one might expect when reducing
lung volumes; but, since the airway tree is not that of the target subject, it is possible that some
airway dilation could be needed, particularly in subjects with low impedance. This method did
not provide useful baseline Ry, nor did it match subjects’ Xis as it was less negative than the
measured (obstructed Xis). This motivated a new method for choosing parameters. In V2 we

attempted to seek an appropriate scaling by varying all three parameters, allowing upper airways
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to constrict or dilate, and changing the inflection point in equation 30, which effectively defines
a point where airways become more compliant and scale more easily with volume changes. This
approach did not allow simulated annealing to come to solutions that had important impedance
characteristics seen in persons with asthma like inversely frequency-dependent resistance. Thus,
in V3 scaling was attempted by setting d, equal to 2 mm while varying a and § which is similar
to the scaling approach described by Habib et al.>*!%7. Simulated annealing was applied twice as
previously described. In some subjects X;s was still a too small negative curve, and thus some
subjects benefitted by adjusting acinar stiffness to match Xrs. While this was performed on the
final model tested of this thesis, from deeper analysis of the results, there were clear avenues for
future implementations that are discussed on page 95. To quantity the performance of each

version of simulated annealing, a metric called the performance index was borrowed:**!%

nf (46)

Pl = Z ([Rrs,p(i) — Regin D] + [Xrsp (D) — er’m(i)]z)

l

where Ry, s the resistance of the subject, Rism is the resistance of the model, and similar
subscripts are used to describe the reactance, Xs; this metric is evaluated over the entire

frequency range.
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Figure 3.11. Application of simulated annealing where cost function minimization was based
upon matching simulated and experimental ventilation images. The temperature was defined as

the number of iterations N and is cooled every iteration by 1.5%.
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3.5 Time Constant Map

The time constant of a ventilatory unit (the time it takes to be filled by 63.2 % of its’
maximal volume) if filling is approximated by a single compartment and thus single exponential
relationship can theoretically be calculated using the pathway resistance and tissue compliance
via:

T=R=*C (47)
Given that computation of the pathway resistance may include effects of flow diversion or
pendelluft to other pathways with different rates of filling, making the calculation of individual
time constants from a distributed time constant map is highly complex; we will instead use the
degree of ventilation within an inhaled gas MR as this is the actual filling achieved although it is
the accumulated intensity and not necessarily following a single exponential behavior, thus as a

model for the time for filling in a local region, assuming an exponential degree of filling via:
t
V=V, (1 — e_?) (48)

where t is the time for an inhaled gas MR image acquisition (16 s), and Vn, is assumed to be

63.2% of the maximum observed signal intensity.
3.6 Statistical Analysis

Following simulated annealing, we averaged the graded narrowing scheme solutions for
the eight subjects in this study and performed a paired t-test between the degree of narrowing in
the K(N) level to the degree of narrowing in the K(N+1) level and used a Bonferroni correction
to test for a significant difference in the degree of narrowing between neighbouring K-levels.
The same testing was also performed to evaluate improvements in ventilation between the binary
model and the three version of simulated annealing with the graded narrowing model. Also, a
paired t-test with a Bonferroni correction was used to evaluate significant improvements in the
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resistance at 5 Hz (Rs), the reactance at 5 Hz (X5s), and the difference between the resistance at
S5Hz and the resistance at 20 Hz (Rs-20) for the graded narrowing model, compared with the
binary closure model. A single factor ANOV A was then used to evaluate if there were significant
differences in these metrics between the three versions of simulated annealing. If a significant
difference was found, a Tukeys’ Honest Significant Difference test was implemented to

determine which differences were significant.
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Chapter 4. Results
4.1 Image Registration

As described in the methodology on page 37, the registration of the airway tree to the
host MR volume was quantified with the fractional volume overlap. Registration quality for the
eight subjects pre- and post-salbutamol is shown in Figure 4.1, where we see that there was very
little variation pre- and post-salbutamol respectively. In addition to the fractional volume overlap
we calculated another common image registration metric known as the Dice similarity

coefficient:

2|ANB| (49)

DSC = ———
|Al + |B|

where A is the deformed image, and B is the image to match. For the eight subjects, the DSC

was calculated to be 85 + 3 %, and there were similar differences between pre- and post-

salbutamol.
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Figure 4.1 Fractional volume overlap following deformable registration framework of the same

3D airway tree.to eight different MR volumes.

53



By not forcing the connectivity of the airway tree, the average FVO was 0.81 £ 0.04 for the eight
subjects. Using a paired t-test, the FVO was found to be significantly improved with a
disconnected tree (p < 0.005). For the eight subjects, the largest translation of an airway to
maintain connectivity of the tree was 96 mm, and the average translation within each of the eight
subjects ranged from 3.4 — 14.9 mm. The airways that required the largest changes in position
were typically contained within the most anterior/posterior slices following registration. For all
subjectss there were clear boundaries that formed between some clusters of airways following
the registration process. In Figure 4.2, there is an example of one such registration with gaps
between clusters of airways. This tree appeared to exhibit physiologically reasonable separations
between the apical and posterior segments of the superior lobe, however, there were some
artificially large subsegmental gaps observed that formed as result of the registration process. Of
course, the gaps will translate into an inability to properly quantify simulated ventilation within

these regions and the impact of this is discussed in section 5.3.
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Figure 4.2 Airway tree of subject #1 following deformable registration, Red circles are

representative of apparent sub-segmental boundaries post registration.

The fractional overlap evaluated on a slice-by-slice basis was typically > 0.85 in the
middle of the lung and was markedly lower (< 0.60) in the most posterior and anterior slices.
Although the smaller lung volumes contained within the posterior and anterior slices means that
they contribute proportionally less to the overall simulated ventilation quality. Nevertheless,
there are clear limitations in morphing the tree to a subject-specific volume with the proposed
registration process. However, it was felt that registered the tree can still be used to make

comparisons between the two models (binary vs. graded guided airway narrowing) on predicting

55



asthmatic pathophysiology since the registration is common onto both. The impact of registration

errors will be discussed on page 81-2 in the discussion.
4.2 Optimal Narrowing Scheme and Scaling Parameters

This section will describe the optimal subject-specific narrowing schemes derived with
simulated annealing. Because the number of airways is large, and simulated annealing is a
computationally expensive process, it was useful to develop boundary conditions that speed up
the convergence with solutions that were physiologically reasonable. One boundary condition
that seemed reasonable would be to enforce the degree of narrowing to be higher for lower K-
levels, as it was expected that the degree of narrowing (airway obstruction) should be greater in
regions of low ventilation (lower K-level). To derive these boundary conditions, simulated
annealing was turned off (i.e, airway diameter closures were randomly chosen, and there was no
manipulation of the variables in a pseudo-deterministic way to reduce the OF and improve the
solution) and repeated for 5000 different solutions. This approach is limited to just analyzing the
narrowing scheme that gave the lowest OF, rather than implementing simulated annealing to
converge the system to an optimal solution. An example of the OF for successive iterations for
one such subject is shown in Figure 4.3.A, and one can see that there is a wide range of values
where a minimum OF level was delineated by the dashed red line. The 50 lowest OF are shown
in Figure 4.3.B. The choice of 50 points was somewhat arbitrary, but the choice tended to give a

consistent OF range of ~20 for all subjects; furthermore, these points were chosen to observe
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trends in the graded narrowing scheme for ‘optimal’ solutions to see if there were similarities

across subjects.
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Figure 4.3. (A) The SSD between simulated and experimental ventilation for randomly generated
closure scheme. (B) Taking the 50 smallest OF, illustrated by the red line in (A). (C) The mean
constriction level for each K-level from the 50 points in (B). (D) The specific K-level

distribution in the acini of this subject.
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Taking the 50 lowest points and calculating the average graded narrowing scheme (the average
ratios of each airways’ final diameter to original baseline diameter within a respective K-level)
for each K-level is shown in Figure 4.3.C, and the fractional diameter on average shows a
decreasing trend with decreasing K-level, as was premised above. For this specific subject, the
majority of terminal airways fell within the K3 level, while no terminal airways fell within the
K5 ventilation level as is seen in Figure 4.3.D.

As shown in Figure 4.4, The mean fractional diameters for each K-level as described in
Figure 4.3.C, was averaged across all eight subjects (black circles); Also, we calculated the same
average narrowing scheme excluding three subjects who had 0% of their terminal airways in the
K5 level (blue squares). Again, the trend exhibited a decreasing fractional diameter with
decreasing K-level for all subjectss, where the fractional diameter in the K5 level was higher
with the removal of the three subjects mentioned above. These findings were used to implement
boundary conditions on potential changes to K-levels during simulated annealing, i.e, the degree
of narrowing within the K(N) level must be less than the degree of narrowing in the K(N+1)

level.
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Figure 4.4. The constriction level for each K-level when averaging the findings of the 50 lowest
OF points from each subject as demonstrated in Figure 4.3.C. The black dot includes all subjects,

and blue squares exclude subjects whose airways did not include any acini with that respective

K-level

As shown in Table 4.1, conducting a paired t-test with a Bonferroni correction revealed that the
degree of narrowing between K2 and K3 was significantly different (p = 0.0006, a* =0.01), as
was K4 to K5 (p =0.0099, a* = 0.01) using the unrestricted optimization process described

above.

59



Table 4.1. Statistical difference between degree of narrowing in neighbouring K-levels.

Comparison p-value (a* =0.01)
K1 to K2 0.16
K2 to K3 0.0006
K3 to K4 0.013
K4 to K5 0.0099

e with removal of subjects with 0% of airways within K5 level

When simulated annealing is turned, the system converges to an optimal solution as is
depicted in Figure 4.5 where (A) shows the convergence to an optimal graded narrowing scheme
for simulating ventilation in a single subject with V2 of simulated annealing, and (B) shows an
optimization schedule for a single (different) subject with V3 of simulated annealing, where the
first phase (iterations 1-500) optimized a graded narrowing scheme for the non-terminal airways
by minimizing SSD between simulated ventilation and subject ventilation, and the second phase
(iterations 501-1000) optimized a graded narrowing scheme for terminal airways to achieve the
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