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Results on nonparametric kernel estimators of density di¤er according to

the assumed degree of density smoothness. A kernel/bandwidth pair that

was optimal for a twice di¤erentiable function may not be suitable when

the density is piecewise linear. If there is uncertainty about the degree of

smoothness, an inappropriate choice may lead to under- or oversmoothing.

To examine various possible outcomes we provide asymptotic results on

kernel estimation of a continuous density for an arbitrary bandwidth/kernel

pair and derive the limit joint distribution of kernel density estimators corre-

sponding to di¤erent bandwidths and kernel functions. Using these results,

we propose a combined estimator constructed as an optimal linear com-

bination of several estimators with di¤erent bandwidth/kernel pairs. Its

theoretical properties (Kotlyarova and Zinde-Walsh 2006) are such that it

automatically attains the best possible rate without a priori knowledge of

the degree of smoothness. Our Monte Carlo results con�rm the advantages

of the combined estimator of density.

Keywords: Kernel density estimation; Bandwidth selection; Combined

estimator
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1 Introduction

Investigation of the asymptotic and �nite-sample behaviour of kernel density estimators

focused largely on the search for appropriate values of the bandwidth, assuming that

the underlying model was su¢ ciently smooth. While it enabled researchers to obtain

very precise expressions for the optimal bandwidth, it undermined the primary charac-

teristic feature of non-parametric estimators, their robustness, by restricting density to

belong to a class of smooth functions. If second order or higher order derivatives of the
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density exist, a bandwidth that ensures an optimal convergence rate can be found for

a kernel of su¢ ciently high order. If, however, there is no certainty that the smooth-

ness assumptions hold, under- and especially oversmoothing are likely. Oversmoothing

produces heavily-biased estimators; it occurs when the bandwidth is too large and too

many irrelevant observations are used to determine the density at a particular point,

which leads to elimination of peaks and troughs. Undersmoothing increases the mean

squared error (MSE) as the estimate becomes very volatile. If there are no grounds

on which to assume smoothness of the density, the chosen rate for the bandwidth may

be in error and the estimator will su¤er from the problems associated with under- or

oversmoothing.

In this paper we consider the asymptotic properties of kernel estimators for a con-

tinuous (but not necessarily di¤erentiable) density based on di¤erent bandwidth/kernel

pairs and investigate ways of improving e¢ ciency that do not rely on smoothness as-

sumptions. Because of the nonparametric rates of convergence, each bandwidth/kernel

pair may provide additional information. Similarly to the joint distribution of smoothed

least median of squares estimators (Zinde-Walsh 2002) and smoothed maximum score

estimators (Kotlyarova and Zinde-Walsh 2004), we derive the joint limit distribution

for kernel density estimators. The result demonstrates that some estimators of density

at a point may be asymptotically independent, thus a linear combination of several

such estimators may improve the accuracy relative to each individual estimator.

Kotlyarova and Zinde-Walsh [KZW] (2006) showed how a linear combination of

semi-parametric or non-parametric estimators can protect against negative consequences

of errors in assumptions about the order of smoothness and possible oversmoothing by

automatically attaining the best rate that would have been possible had we known a pri-

ori the optimal bandwidth/kernel pair in the set. The weights in the linear combination

are selected to minimize an estimate of the mean squared error; the resulting estimator

is what we call a �combined estimator�. We demonstrate here that the conditions un-
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der which the asymptotic advantages of the combined estimator hold are satis�ed for

our kernel density estimators. Mostly, the use of combined estimators in the literature

is restricted to convex combinations (see, e.g. Fan and Ullah (1999) where a convex

combination of a parametric and a non-parametric regression estimators is employed to

protect against misspeci�cation of regression functions). Here we do not impose such

restrictions allowing for trade-o¤ between biases in addition to variance reduction.

The results of a Monte Carlo experiment con�rm the usefulness of the combined

estimator in �nite samples. We demonstrate that combined estimators perform as well

or even better than the best individual cross-validated estimator. This is an important

result since the best individual kernel is not the same for the three models considered in

our study. For the standard normal and the mixture of normal densities, the most accu-

rate individual estimator is based on the fourth-order kernel and is signi�cantly better

than the estimator with the second-order kernel. As for the non-smooth, piecewise

linear density, the second-order kernel yields more precise results than the fourth-order

kernel. Thus, the use of the combined estimators protects against losses in accuracy

caused by the absence of information about the properties of the density. Moreover,

the combined estimator is less sensitive to the choice of smoothing functions.

The paper is organized as follows. Section 2 contains the de�nitions, assumptions

and known results for the kernel density estimator. Section 3 provides asymptotic

results under weak (only continuity, no smoothness) assumptions for the kernel density

estimator, as well as for the joint limit process for several estimators. The new combined

estimator is de�ned in Section 4, where we also discuss how to compute it (selection

of bandwidths, smoothing kernels, estimation of the MSE of a linear combination).

Performance of combined estimators is evaluated in aMonte Carlo experiment in Section

5. Appendix provides the proof of Theorem 2 in Section 3.
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2 De�nitions, assumptions, known results

Consider a univariate random variable X and the corresponding density function f():

We are interested in estimating the value of the density function at x.

Assumption 1.

(a) (Xi), i = 1; :::; n, is a random sample of X;

(b) the density function f(x) exists and is continuous at x.

To estimate the density we utilize kernel functions but do not restrict kernels to

be symmetric or nonnegative density functions; as will be clear later, this may give us

some extra �exibility.

Assumption 2.

(a) The kernel smoothing function K is a continuous real-valued function;

(b)
R
K(z)dz = 1;

(c) (Parzen 1962)
R
jK(z)jdz <1; jzjjK(z)j ! 0 as jzj ! 1, sup jK(z)j <1;R

K(z)2+�dz <1 for some � > 0.

Assumption 3.

(a) The bandwidth parameter hn ! 0 as n!1;

(b) hnn!1 as n!1.

The kernel density estimator (Rosenblatt 1956, Parzen 1962) is de�ned as

f̂(x) =
1

nhn

nX
i=1

K

�
Xi � x
hn

�
: (1)

Assumptions 1-3 are su¢ cient to prove that the kernel density estimator is MSE-

consistent and has a normal limiting distribution (Parzen (1962) applies Lyapunov�s
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central limit theorem for triangular arrays to prove normality):

E(f̂(x)� f(x))2 ! 0 as n!1; (2)

(nhn)
1
2

�
f̂(x)� Ef̂(x)

�
d! N

�
0; f(x)

Z
K2(z)dz

�
: (3)

Assumption 3a ensures that the estimator is asymptotically unbiased; Assumptions

3b and 2c guarantee that the variance of the estimator will tend to zero.

If the existence of continuous second order derivatives of the density function is

assumed then the sharp rate of bandwidth hn = cn�
1
5 will be optimal for a second-

order kernel and the convergence rate of the density estimator is n�2=5 (see Pagan

and Ullah (1999) for discussion). If higher order derivatives of density exist, further

improvements in e¢ ciency can be obtained by using a higher order kernel1 to reduce

the bias (Cleveland and Loader 1996, Marron and Wand 1992).

The assumption of continuity of the second derivative of the density function can not

be easily veri�ed although it is routinely made when determining the optimal bandwidth

using Silverman�s (1986) �rule of thumb�, or plug-in methods by Park and Marron

(1990) and Sheather and Jones (1991). However, the bandwidth selection methods

that are based on this assumption may behave very poorly when it is violated (Loader

1999a,b). The data-driven methods of bandwidth selection such as the least squares

cross validation (Rudemo 1982, Bowman 1984) and the likelihood cross validation (Duin

1976) do not assume di¤erentiability of the density function and may be asymptotically

optimal under weak underlying assumptions (Hall 1983, Stone 1984).2

Several Monte Carlo experiments (Park and Turlach 1992, Loader 1999a,b) show

that plug-in methods perform well when the density is relatively smooth (and prefer-

1Higher order kernel may produce negative values for the density at some points.
2When the data set is large, cross validation will take a long time to compute since the computation

time is a quadratic function of the sample size; in such situations one could use the recently proposed
modi�ed versions such as in Lambert et al (1999).
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ably unimodal) but often oversmooth more irregular densities. Cross-validation meth-

ods identify very well steep peaks and other irregularities of the density but tend to

undersmooth in more conventional settings.

The kernel order also plays an important role, with higher order kernel delivering

improved performance in highly smooth cases and lower order being better suited when

the density is not su¢ ciently smooth. Without a priori knowledge of density smoothness

there is no clear indication of how to select the order of kernel and the corresponding

bandwidth.

In this paper we consider the combined estimator designed to circumvent the choice

of bandwidth and kernel problem. In the next section we develop the asymptotic results

that prove that the assumptions in KZW (2006) are satis�ed and thus the combined

estimator will automatically deliver the optimal rate.

3 Asymptotic properties of kernel estimators

3.1 Distribution of a single univariate density estimator when

density is continuous

We de�ne the bias of the kernel density estimator

B(hn; K; x) = E(f̂(x)� f(x)) =
Z
K(z) [f(x+ zhn)� f(x)] dz: (4)

Under Assumption 3a, B(hn; K; x) converges to 0. Under more stringent di¤erentiabil-

ity assumptions, a sharp rate for B(hn; K; x) could be determined but we do not make

such assumptions. To simplify notation, the subscript n will be omitted in hn.

The following theorem is a corollary of Parzen�s results (2) and (3).

Theorem 1. Under Assumptions 1 - 3, if h is such that as n!1
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(a) n1=2h1=2B(h;K; x)! 0

then n1=2h1=2(f̂(x)� f(x)) d! N(0; f(x)
R
K2(w)dw);

(b) n1=2h1=2B(h;K; x)! B(K), where 0 < jB(K)j <1,

then n1=2h1=2(f̂(x)� f(x)) d! N(B(K); f(x)
R
K2(w)dw);

(c) n1=2h1=2 jB(h;K; x)j ! 1

then jB(h;K; x)j�1
h
f̂(x)� f(x)�B(h;K; x)

i
= op(1):

Thus, for case (a) (undersmoothing) we obtain a limiting normal distribution, a

limit normal with a non-zero mean for (b), and in case (c) the bias dominates. Without

making assumptions about the degree of smoothness of density all that is known is that

for some rate of h ! 0 there is undersmoothing and an unbiased limiting Gaussian

distribution, and for some slower convergence rate of h there is oversmoothing. Exis-

tence of an optimal rate depends on convergence properties of B(h;K; x) that cannot

be asserted without strengthening the assumptions.

3.2 The joint limit process for univariate density estimators

of continuous densities

Assume that f̂(h;K; x) represents the estimator when the function K and bandwidth

h are utilized. Consider a number of bandwidths h: fhigmi=1. Assume that hi for

i � m0 corresponds to undersmoothing (part (a) of Theorem 1) while hi for i such that

m0 � m00 < i � m corresponds to oversmoothing (part (c) of Theorem 1). If an optimal

rate exists then one could have m00 � m0+1 and hi for i = m0+1; :::;m00 corresponding

to the optimal rate. For example, for an s times continuously di¤erentiable density and

using some s-order kernel, the optimal bandwidth is O(n�
1

2s+1 ) (see, e.g., Pagan and

Ullah (1999), p. 30).

We combine each hi with each smoothing function Kj from some set of functions

that satisfy Assumption 2, j = 1; :::; l. De�ne
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�(hi; Kj) =

8>>>>>>>>>>><>>>>>>>>>>>:

n1=2h
1=2
i (f̂(hi; Kj; x)� f(x)) for i = 1; :::;m0;

n1=2h
1=2
i (f̂(hi; Kj; x)� f(x)�B(hi; Kj; x))

for i = m0 + 1; :::;m00;

jB(hi; Kj; x)j�1
h
f̂(hi; Kj; x)� f(x)�B(hi; Kj; x)

i
for i = m00 + 1; :::;m:

Theorem 2. Suppose that Assumptions 1-3 hold for each bandwidth hi; 1 � i � m,

and for each kernel Kj, 1 � j � l; and that the functions fKjglj=1 form a linearly

independent set3.

(a) If each h1; :::; hm00 (m00 � m) satis�es condition (a) or (b) of Theorem 1 then

�a � (�(h1; K1)
0; :::; �(h1; Kl)

0; :::; �(hm00 ; K1)
0; :::; �(hm00 ; Kl)

0)0
d! N(0; f(x)	);

where the covariance between �(hi1 ; Kj1) and �(hi2 ; Kj2) is determined by the following

element of the lm00 � lm00 matrix 	:

	(i1�1)l+j1;(i2�1)l+j2 =

8><>:
p
q
R
Kj1 (w)Kj2 (qw) dw if hi1=hi2 ! q <1;

0 if hi1=hi2 ! 0 or hi1=hi2 !1;
(b) If each hm00+1; :::; hm (m

00 � m) satis�es condition (c) of Theorem 1 then

(�(hm00+1; K1)
0; :::; �(hm00+1; Kl)

0; :::; �(hm; K1)
0; :::; �(hm; Kl)

0)0
p! 0;

(c) Cov(�(hi1 ; Kj1); �(hi2 ; Kj2)) ! 0 for 1 � i1 � m00 and m00 + 1 � i2 � m, and

any j1; j2.

The proof is provided in the Appendix. Theorems 1 and 2 can be easily extended

to the case of multivariate density functions at the cost of more notational complexity.

Thus, if the bandwidths approach 0 at di¤erent rates or
R
Kj1(w)Kj2(w)dw = 0, the

corresponding estimators f̂(hi1 ; Kj1 ; x) and f̂(hi2 ; Kj2 ; x) are asymptotically indepen-

dent. This is a consequence of the fact that only a small fraction of observations have

any e¤ect on the estimator, therefore reweighting observations with di¤erent kernel

functions can produce estimators with independent limit processes.

Theorems 1 and 2 of this section correspond to Assumptions 1 and 2 in KZW(2006)

3If some linear combination of smoothing kernels Kj is zero then the joint distribution at each
bandwidth is degenerate.
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where it is shown that once these assumptions hold there will be gains from combining

kernel density estimators.

4 The combined estimator

In this section we de�ne the combined estimator for density and discuss some of the

speci�cs of constructing it.

4.1 De�nition of the combined estimator

Suppose that bandwidths h1 < h2 < ::: < hm correspond to various convergence rates,

where h1 corresponds to undersmoothing and hm to oversmoothing; the optimal rate

may or may not exist. For a set of smoothing functions K1; :::; Kl, Theorem 2 indicates

the structure of the joint limit distribution of f̂(hi; Kj; x).

Construct a linear combination f̂(a) =
mP
i=1

lP
j=1

aij f̂(hi; Kj; x),
P
i;j

aij = 1. Assume that

the biases, variances and covariances for all f̂(hi; Kj; x) are known. Then one could �nd

weights faijg that minimize the mean squared errorMSE(f̂(a)) and provide an optimal

estimator:

MSE(f̂(a)) =
P

i1;j1;i2;j2

ai1j1ai2j2fB(hi1 ; Kj1 ; x)B(hi2 ; Kj2 ; x)

+Cov(f̂(hi1 ; Kj1 ; x); f̂(hi2 ; Kj2 ; x))g:

In KZW (2006) the limit weights are derived and it is shown that the convergence

rate for the optimal combination is at least as fast as that for the best individual esti-

mator. In fact, since the weights are not necessarily non-negative there is a possibility

of trading o¤ the biases of individual estimators. It should be emphasized that the pro-

posed combined estimator is local and the weights change from point to point, allowing

for additional �exibility in �tting the data.

To implement this approach we need to estimate the biases and covariances of all

f̂(hi; Kj; x).
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Denote estimated biases and covariances by �hats�.

Then, for a univariate density,

\MSE(f̂(a)) =
P

i1;j1;i2;j2

ai1j1ai2j2f bB(hi1 ; Kj1 ; x) bB(hi2 ; Kj2 ; x)

+dCov(f̂(hi1 ; Kj1 ; x); f̂(hi2 ; Kj2 ; x))g:

De�ne the combined density estimator bfc as a linear combination cfc = f̂(ba), where
ba = argmin\MSE(f̂(a)); X

i;j

aij = 1: (5)

In KZW (2006) it is demonstrated that as long as Assumptions 1 and 2 hold and

the covariances and biases are consistently estimated the combined estimator performs

similarly to the (infeasible) optimal combination.

4.2 Construction of the combined estimator

4.2.1 Estimation of variances and biases

Consistent estimators for biases and covariances can be obtained by various procedures;

we require that these estimators do not rely on information about density smoothness.

Consider �rst the covariance matrix. For large sample sizes, one can rely on the joint

asymptotic distribution (Theorem 2). For the diagonal elements, V ar(f̂(hi; Kj; x)),

use
df(x) R Kj(w)

2dw

hin
. The estimate of the density, df(x), has to be speci�ed. Since

the smallest bandwidth corresponds to an estimator with the smallest bias, the can-

didates for the estimate are f̂(h1; Kj; x) or a weighted average of individual estima-

tors evaluated at h1 using kernels K1; ::; Kl. For all o¤-diagonal elements, covariances

Cov(f̂(hi1 ; Kj1 ; x); f̂(hi2 ; Kj2 ; x)) can be approximated by
df(x)
nhi2

R
Kj1(w)Kj2(

hi1
hi2
w)dw.

For small sample sizes, it would be more appropriate to apply the bootstrap (see

Hall (1992) for a discussion of the bootstrap for nonparametric estimators) for both

variances and covariances:
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dCov(f̂(hi1 ; Kj1 ; x); f̂(hi2 ; Kj2 ; x))

= (M � 1)�1
MP
s=1

�
f̂s(hi1 ; Kj1 ; x)�M�1

MP
t=1

f̂t(hi1 ; Kj1 ; x)

�
�
�
f̂s(hi2 ; Kj2 ; x)�M�1

MP
t=1

f̂t(hi2 ; Kj2 ; x)

�
;

where M is the number of bootstrap replications, while f̂s and f̂t denote kernel density

estimates based on the sth and tth bootstrapped samples, respectively.

In our Monte Carlo experiment we used the �rst, asymptotic, method, with df(x) =
l�1

lP
j=1

f̂(h1; Kj; x):

Estimation of the bias is more complicated. Without assumptions regarding smooth-

ness of the density function, we do not know the precise convergence rate of the bias.

Existing methods of bias correction and approximation (e.g., Schucany and Sommers

1977, Gerard and Schucany 1999) are based on the assumption that the density is

several times di¤erentiable. The standard bootstrap procedure is not applicable ei-

ther: due to the linear structure of kernel density estimators the expected value of the

bootstrapped bias is zero (Hall 1992).

In our Monte Carlo study, we will use the fact that the estimators with the smallest

bandwidth (undersmoothing) have biases that converge to zero the fastest. To �nd

individual biases, we subtract the average of estimators with the smallest bandwidth

from actual estimators4: bB (hi; Kj; x) = f̂(hi; Kj; x)� l�1
lP

p=1

f̂(h1; Kp; x):

4.2.2 Procedure for computing the combined estimator

To determine a set of bandwidths we start with the bandwidth obtained using least

squares cross validation (LSCV). The robust method of the LSCV is considered to be

appropriate under very weak assumptions (see Li and Racine (2007) for discussion).

Several studies (Park and Turlach 1992, Loader 1999a) indicate that this bandwidth

4According to Hall (1992, p. 207), another approach to bias estimation is to use an estimate bf
of the density f in the de�nition of the bias:

R
K(w) bf(x � hw)dw � f̂(x): However, the question of

choosing an appropriate f̂(x) for this bias estimator remains open.
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is usually smaller than the bandwidths obtained by other methods and corresponds

to undersmoothing. We experimented with bandwidths smaller than LSCV and our

results con�rmed generally poorer performance of such bandwidths both in individual

and combined estimators. Thus we compute other bandwidths as constant multiples

of the LSCV bandwidth determined as di�1hLSCV , where d > 1; for i = 2; :::;m. After

experimenting with a wider range of m we selected d = 1:5 and m = 3.

Recall that the estimators at the lowest bandwidth are used to compute the biases;

this may cause a problem of possible underestimation of the MSE of density estimators

with the lowest bandwidth because, when the combined estimator is based on a single

kernel, the estimate of the bias for the lowest bandwidth is zero by construction. By

experimentation we found that this is indeed the case, therefore we do not include the

lowest bandwidth estimators in the combination.

Symmetric kernels are appropriate when dealing with smooth densities, while asym-

metric functions may pick up some irregularities of the density that will be discarded

by symmetric smoothing functions. There may be some advantage in using mutually

orthogonal kernels since they produce asymptotically uncorrelated estimators that pro-

vide complementary information.

The entire procedure for a combined estimator includes the following steps: (i)

compute the LSCV bandwidth and the other m � 1 bandwidths for each kernel; (ii)

�nd the density estimators for all smoothing functions and bandwidths; (iii) estimate

the biases and the covariance matrix by the methods described in section 4.2.1; (iv)

�nd the optimal weights for the linear combination of estimators for all kernels and all

bandwidths, excluding the lowest, by solving (5) and obtain the combined estimator

by using these weights.
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5 Performance of the combined estimator

5.1 The DGP and combined estimator of density

We consider three di¤erent density functions.

For the �rst model we use the standard normal distribution: f1(x) = �(x). Its

density is in�nitely di¤erentiable and very smooth; the density estimator evaluated at

the rule-of-thumb bandwidth is the optimal choice.

In the second model we consider the mixture of three normal densities

f2(x) = 0:5�(x) + 3�(10(x� 0:8)) + 2�(10(x� 1:2))

analyzed by Härdle et al (1998). This density is also in�nitely di¤erentiable; however,

it is trimodal and much more wiggly than the standard normal density. Theoretically,

the rate of convergence of the estimator is determined, as for the standard normal

distribution, by the order of the smoothing function. The rule of thumb, designed for

bell-shaped symmetric functions, will not be optimal in this case, though it should

produce an estimator converging at the rate n�2=5 for the second order kernel. The

more meaningful comparison here is between the estimator with LSCV bandwidth and

the combined estimators.

The third model contains a piecewise linear density that satis�es the Lipschitz con-

dition everywhere.

f3(x) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

5:25� 5x if x 2 [0:95; 1:05];

0:5 if x 2 [0; 0:95);

0:5 + 5x if x 2 [�0:1; 0);

�0:0475� 0:475x if x 2 [�1:1;�0:1);

0:9975 + 0:475x if x 2 [�2:1;�1:1);

0 otherwise.
The rule-of-thumb bandwidth will converge to zero too slowly. The LSCV band-

width should perform well but the choice of kernel may a¤ect its performance. The
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question is whether the combined estimator could o¤er an advantage.

The sample sizes considered in the experiments are n = 500; 1000; and 2000; 1000

replications per model were performed.

We report results for combined estimators constructed using three bandwidths:

hmin = least squares cross validation, 1:5hmin and 2:25hmin.

We utilize the following four kernel functions de�ned on [-1,1]:

(a) symmetric second-order kernel K2 = 15
16
(1� x2)2 I(jxj � 1);

(b) symmetric fourth-order kernel K4 = 105
64
(1� x2)2 (1� 3x2)I(jxj � 1);

and two orthogonal asymmetric kernels of order three:

(c) K3a(x) = 105
64
(1� 3x2)

�
1 +

p
23x

�
(1� x2)2 I(jxj � 1) and

(d) K3b(x) = 105
64
(1� 3x2)

�
1�

p
23x

�
(1� x2)2 I(jxj � 1).

The two asymmetric kernels may be more appropriate for modelling irregular den-

sities. If the density function is symmetric and more than three times di¤erentiable,

theoretical biases for the two functions are opposite in sign and equal in absolute value,

and a simple average of these two estimators may produce variance reduction by a

factor of 2 and a bias reduction equivalent to using a fourth-order kernel.

We report estimates of integrated MSE for the cross-validated density estimators

based on K2 and K4 and the combined estimators based on (a) the second-order function

K2; (b) K4 only; (c) both K2 and K4, and (d) both K3a and K3b.

The algorithm for the least squares cross validation follows Silverman (1986). For

the combined estimator that uses both K2 and K4, we construct separate sets of band-

widths for the elements with K2 and the elements with K4, since the cross-validated

bandwidths for these two functions are quite di¤erent. In the case of the combined

estimator with third-order functions, the lowest bandwidth corresponds to the cross-

validated bandwidth for the symmetric function 0:5K3a+ 0:5K3b = K4.

For the standard normal density, MSE�s are estimated at 141 points between -3.5

and 3.5. For the mixture of normal densities, we consider 121 points between -3 and 3,
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and for the piecewise-linear density 161 points between -2.5 and 1.5 are evaluated.

The combined estimators are constructed as described in Section 4.2.

5.2 Summary of the results

The purpose of this Monte Carlo experiment is to compare the performances of cross-

validated and combined estimators. We demonstrate that the cross-validated estimates

are quite sensitive to the choice of kernel function and that the combined estimators

o¤er a more reliable way of ensuring robustness and accuracy in density estimation (by

the MISE criterion).

In Table 1 we present estimated MISEs for all the models. Table 2 contains rela-

tive MISEs: for each combination of density and sample size we report the outcomes

normalized by the MISE of the best cross-validated estimator. Thus, for the standard

normal and the mixture of normal densities the denominator is the MISE of the cross-

validated estimator with the fourth-order kernel, while for the non-smooth case the

MISE estimates are normalized by the cross-validated K2.

When the true data-generating process is the standard normal density, all reported

estimators are very precise in absolute terms. The combined estimators are uniformly

better than the cross-validated K2 estimator, while the combined K4 estimator has

about 15% lower MISE than the cross-validated K4 estimator.

For the mixture of normal densities, the second-order cross-validated estimator has

10-20% larger MISE than the corresponding fourth-order estimator. The combined K2

estimator is slightly better than the cross-validated K2, while the remaining combined

estimators are as good or better in terms of MISE than the cross-validated K4. In

fact, as the sample size increases, the combined K4 estimator is gaining in precision

relative to the cross-validated K4. The orthogonal pair of third-order kernels also shows

a strong performance.
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In the case of the non-smooth density, the second-order cross-validated estimator

outperforms the 4th-order kernel, though the di¤erence is decreasing with n. The results

show that all combined estimators are no worse than the 2nd-order cross-validated

estimator and that their relative performance improves with sample size. At n = 2000,

the MISE of the combined K2 estimator is 14% less than that of the cross-validated

K2 estimator (10% less for the combined K4 and 6-7% less for the other two combined

estimators).

The table is representative of a more extensive Monte Carlo experiment with a

variety of bandwidth combinations as well as di¤erent kernel combinations. On the

basis of these experiments we conclude the following:

1. No individual estimator o¤ers a consistently good performance for all cases: the

4th order kernel with CV bandwidth is better in the normal and mixed case, but the

2d order kernel is better in the non-smooth case.

2. The combined estimator always improves on the �incorrect�choice of an individ-

ual estimator: if, for example, we use the second-order kernel in the mixed case (where

the errors could be substantial), any of the combined estimators reduces the error.

3. The combined estimator often improves on the �best� individual estimator:

practically always in the non-smooth case and for all combinations except the one

using only the second-order kernel in the mixed case.

In the absence of knowledge of smoothness, the combined-estimator approach o¤ers

a robust way of obtaining the estimates as good or better than the best (unknown)

individual cross-validated estimator. We recommend using the combined estimators

based on higher-order kernels.
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Appendix: Proof of Theorem 2

To prove Theorem 2 we need to consider covariances between the �(h;K).

For (a), consider �rst estimators that satisfy condition (a) of Theorem 1. Recall from

Theorem 1 (a) that E�(hi; Kj) ! 0; therefore the covariance matrix is determined by

the value of E(�(hi1 ; Kj1)�(hi2 ; Kj2)).

Since xs is independent of xt as long as s 6= t, their functions Kj1(
Xs�x
hi1

) and

Kj2(
Xt�x
hi2

) are also independent. We have that

E(�(hi1 ; Kj1)�(hi2 ; Kj2))

= n (hi1hi2)
1
2 E

h�
1

nhi1

P
Kj1(

Xs�x
hi1

)� f(x)
��

1
nhi2

P
Kj2(

Xt�x
hi2

)� f(x)
�i

= n (hi1hi2)
1
2 1
n2hi1hi2

P
EKj1(

Xi�x
hi1

)Kj2(
Xi�x
hi2

)

+n (hi1hi2)
1
2

h�
1

nhi1

P
EKj1(

Xs�x
hi1

)� f(x)
��

1
nhi2

P
EKj2(

Xt�x
hi2

)� f(x)
�i

�n�1 (hi1hi2)
� 1
2
P
EKj1(

Xi�x
hi1

)EKj2(
Xi�x
hi2

)

= n (hi1hi2)
1
2 1
n2hi1hi2

P
EKj1(

Xi�x
hi1

)Kj2(
Xi�x
hi2

) + o(1)

The last equality follows from condition (a): n1=2h1=2B(h;K; x) ! 0 for all K and

h, the relationship 1
h
EK(Xs�x

h
)� f(x) = B(h;K; x) and Assumption 3b.

Suppose without loss of generality that q12 = hi1=hi2 ! q <1 (if q12 !1 consider

instead q21 = q�112 _): For the �rst term

q
1=2
12

nhi1

P
EKj1(

Xi�x
hi1

)Kj2(
q12(Xi�x)

hi1
) =

q
1=2
12

hi1

R
Kj1(

w�x
hi1
)Kj2(

q12(w�x)
hi1

)f(w)dw; by substi-

tuting z = w�x
hi1
,

q
1
2
12

R
Kj1(z)Kj2(q12z)f(x+ hi1z)dz:
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Thus, as n!1; hi1 ! 0; q12 ! q and by continuity of f;

E(�(hi1 ; Kj1)�(hi2 ; Kj2))! q
1
2f(x)

R
Kj1(z)Kj2(qz)dz:

If q ! 0, the limit is zero.

Then consider for a vector � : �0� = 1 variables zn = �
0��1=2��, where � = V ar(�a).

Using Assumption 2(c) that
R
K(z)2+�dz < 1 for some � > 0, it can be shown that

some higher moment of z2n exists (see Pagan and Ullah (1999), p. 40) and so the

Lyapunov condition is satis�ed. By Lyapunov�s central limit theorem, we have zn
d!

N(0; 1): Part (a) follows by Cramer-Wold theorem.

Part (a) for bandwidths corresponding to condition (b) of Theorem 1 is obtained

similarly by noting that it implies 0 < hi1=hi2 = q <1 when m0 < i1;i2 � m00:

Part (b) follows from (c) of Theorem 1. For part (c) the covariances are zero because

the estimators have di¤erent convergence rates.�
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Table 1. Estimated MISE

Estimated MISE

Density sample size K2,CV K4,CV comb2 comb4 comb24 comb33

Normal 500 0.00240 0.00194 0.00221 0.00162 0.00189 0.00204

1000 0.00132 0.00105 0.00125 0.00089 0.00105 0.00114

2000 0.00079 0.00059 0.00076 0.00051 0.00061 0.00067

Mixed Normal 500 0.0151 0.0138 0.0148 0.0136 0.0134 0.0132

1000 0.0086 0.0075 0.0083 0.0072 0.0074 0.0071

2000 0.0050 0.0042 0.0048 0.0038 0.0042 0.0039

Non-smooth 500 0.0116 0.0125 0.0107 0.0116 0.0115 0.0114

1000 0.0073 0.0078 0.0065 0.0070 0.0071 0.0070

2000 0.0044 0.0046 0.0037 0.0039 0.0041 0.0041

Table 2. Relative MISE

Relative MISE

Density sample size K2,CV K4,CV comb2 comb4 comb24 comb33

Normal 500 1.24 1.00 1.14 0.83 0.97 1.05

1000 1.25 1.00 1.19 0.84 1.00 1.09

2000 1.35 1.00 1.28 0.86 1.04 1.13

Mixed Normal 500 1.10 1.00 1.08 0.99 0.97 0.96

1000 1.14 1.00 1.10 0.95 0.98 0.95

2000 1.20 1.00 1.15 0.92 1.01 0.94

Non-smooth 500 1.00 1.09 0.93 1.01 0.99 0.99

1000 1.00 1.07 0.90 0.96 0.97 0.97

2000 1.00 1.05 0.86 0.90 0.94 0.93
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