J Popul Econ (2013) 26:147-180
DOI 10.1007/s00148-012-0427-7

ORIGINAL PAPER

The effect of fertility decisions on excess female
mortality in India

Daniel Rosenblum

Received: 4 August 2011 / Accepted: 25 May 2012 /
Published online: 23 June 2012
© Springer-Verlag 2012

Abstract In India, many parents follow son-preferring fertility-stopping rules.
Stopping rules affect both the number of children and the sex composition
of these children. Parents whose first child is male will stop having children
sooner than parents whose first child is female. On average, parents of a first-
born son will have fewer children and will have a higher proportion of sons
compared to parents of a first-born daughter. An economic model in which
sons bring economic benefits and daughters bring economic costs, shows the
importance of sex composition on child outcomes: holding the number of
siblings constant, boys are better off with sisters and girls are better off with
brothers. Empirical evidence using the sex outcome of first births as a natural
experiment shows that stopping rules can exacerbate discrimination, causing as
much as a quarter of excess female child mortality. Another implication of the
research is that the use of sex-selective abortion may lower female mortality,
but raise male mortality.
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1 Introduction

Child mortality in the least developed countries (LDCs) is high. The under-
five mortality rate in LDCs is over 15 % compared to 0.6 % in industrialized
countries.! Furthermore, in most of the countries of South Asia and in China,
girls have significantly higher mortality rates than boys (Fuse and Crenshaw
2006). For example, Arnold et al. (1998) find that for children aged 1-4 years
in India, girls have mortality rates 43 % higher than boys. Higher female
mortality is of particular concern because males are biologically weaker than
females. Thus, without any discrimination against girls, we would expect higher
mortality rates among boys, as is seen in all developed countries. There are
several papers that find discrimination in South Asia against girls in the pro-
vision of health resources, yet the reasons for this discrimination are not well
understood.

This paper focuses on how economic incentives cause excess female mor-
tality, and, in particular, how these incentives drive fertility decisions that
exacerbate discrimination against girls. Parents with a strong preference for
sons use two methods to affect the sex composition of their children: sex-
selective abortion and son-preferring fertility-stopping rules (shortened to
“stopping rules” in this paper). A stopping rule is the practice of continuing
to have children until one has a desired number of sons. The pervasiveness
of stopping rules in India has been well documented (Clark 2000; Arnold
et al. 2002). Stopping rules create a distribution of households.? Parents with
a high proportion of sons will tend to stop having children, while parents
with a high proportion of daughters will tend to grow larger. The desire to
have sons has the unintended consequence of creating households with many
daughters. Thus, stopping rules cause the average girl to be in a household with
more siblings than the average boy. Stopping rules also increase the expected
proportion of girls in a girl’s family. One may hypothesize that parents could
be treating their children equally, and girls are only disadvantaged on average
because they have more siblings than boys (Jensen 2003). However, I argue
that these larger households with a high proportion of girls are where parents
treat their children the most unequally.

Another way for parents to affect the sex composition of their children
is through sex-selective abortion, and its use should reduce the number of
children in a household and increase the proportion of boys. Thus, in a way,
selective abortion counteracts the effects of stopping rules, reducing non-
aborted daughters’ number of siblings and the proportion of girls in the
household. However, unlike stopping rules, selective abortion directly reduces

Uhttp://www.unicef.org/statistics/index.html
2See Keyfitz (1968) pp. 379-384 for a brief exposition on the mathematics of stopping rules.
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the number of female births in the population. So, although selective abor-
tion increases the missing women problem, it may reduce excess female
mortality.

The main contribution of the paper is a methodological one. I present a
model in which household fertility, sex composition, discrimination, and child
mortality are simultaneously determined by economic incentives. I argue that
all of these considerations must be taken into account in an empirical analysis
of family formation and child mortality. Having more siblings than boys, the
household size effect, causes girls to live in households with fewer resources
per child. A substantial contribution of the paper is deriving the second
consequence of stopping rules, the sex composition effect, from an economic
model of fertility decisions and the future costs and benefits of girls and boys.
The sex composition effect occurs when an increase in the proportion of girls
in a household causes an increase in discrimination against girls and in favor of
boys. Furthermore, I make a contribution to the literature on the connection
between fertility decisions and child outcomes by showing empirically that the
sex composition effect can have a larger effect on child mortality than the
household size effect.

Any empirical attempt to find the effect of fertility stopping rules on
child mortality are complicated by the possibility of reverse causality. The
empirical approach to testing the effects of stopping rules on child mortality
has two steps. First, using a large Indian household survey, I show that the
sex of the first-born child is random and, in particular, that parents are not
likely to selectively abort their first pregnancy. This plausibly exogenous
variable solves some of the endogeneity problem between child mortality
and fertility. Second, a reduced form approach uses the sex outcome of the
first pregnancy as a natural experiment. A household that has a first-born
boy has fewer children and a higher proportion of boys than a household
with a first-born girl. A first-born boy causes boys to have higher mortality
rates while causing girls to have lower mortality rates. That the mortality rate
of boys is actually higher when they have fewer siblings of which a higher
proportion are male means that the sex composition effect is stronger than the
household size effect for male mortality. Several robustness checks support the
results.

I find that the outcome of the first birth can explain about a quarter of
the child mortality gap between boys and girls. The results also indicate that
one consequence of sex-selective abortion is a reduction in the child mortality
gap by improving girl mortality and worsening boy mortality. Sub-sample
estimates indicate that stopping rules have a larger impact on child mortality
in rural households. Furthermore, if the father is literate while the mother
is illiterate, stopping rules have a larger effect on male mortality compared
to parents who are both literate or both illiterate. In addition, evidence is
provided that the sex outcome of the first-birth affects vaccinations of higher
order births, supporting the hypothesis that fertility-stopping rules exacerbate
parental discrimination in the provision of health resources.
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2 Background

Demographers have known for a long time that India has a relatively low
proportion of women. Visaria (1969) performed a detailed analysis of data
available up to the Indian Census of 1961 and concluded that the low number
of women can be explained by differences in child mortality rather than
differences in sex ratios at birth or other possible explanations. Sen (1990) was
the first economist to articulate the plight of “missing women,” estimating that
100 million more women would have been alive if given the same health and
nutritional resources as males. Refinements by Coale (1991) and Klasen (1994)
provide smaller but still large estimates of the number of missing women. Re-
cent estimates show that half a million pregnancies end in sex-selective abor-
tions annually in India (Jha et al. 2006, 2011; Bhalotra and Cochrane 2010).
However, Anderson and Ray (2010) look into the causes of missing women
and find, like Visaria, that most of India’s missing women are due to excess
female mortality rather than selective abortion or infanticide.

Scrimshaw (1978) argues that parents may be purposefully causing infant
mortality in order to regulate family size. Das Gupta (1987) and Muhuri and
Preston (1991) follow up on that idea by examining the effects of sibling sex
composition on child mortality in India and Bangladesh, respectively. They
both find that girls appear to have lower mortality rates if they have brothers,
and boys appear to have lower mortality rates if they have sisters. Pande (2003)
finds that boys who have older sisters and girls who have older brothers are
more likely to be immunized and avoid stunting, although she attributes this
to a desire for gender balance within the household. A problem with these
studies is that they do not have an economic model to explain their findings,
they do not jointly take into account number of siblings and sex composition,
and they do not have an identification strategy that allows causal estimates of
sex composition on child mortality.

Several studies have documented the relatively poor treatment of girls in
South Asia (Chen et al. 1981; Basu 1989; Hazarika 2000; Asfaw et al. 2007).
However, there has been less attention given to the economic incentives that
cause this discrimination. In India, sons and daughters have opposite future
income effects on their parents, and these differences are likely to cause
differences in childhood health investment. Aside from any labor income
children accrue, sons acquire dowries when they marry, while parents must
pay dowries and wedding costs to get their daughters married. These dowries
can be large. Anderson (2003) suggests that 93-94 % of marriages in India
include a dowry payment, and that these payments can amount to as much
as six times a household’s annual income. Furthermore, the prevalence of
the joint household means that having a son creates a future expectation of
more household workers, namely the son, his future wife, and their children. A
daughter on the other hand leaves with her dowry and labor supply and can no
longer be expected to contribute to her parents’ household. Even if daughters
could help their parents in their old age, women have lower income prospects
than men. Thus, sons provide income security in old age, while daughters
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do not. Rosenzweig and Schultz (1982) argue that gender discrimination in
India could be caused by the relative income of males versus females. Qian
(2008) finds evidence of the importance of labor income for sex differences
in mortality in China. I contribute to the literature by exploring how economic
incentives influence fertility decisions which in turn create more discrimination
against girls.

3 Model of fertility decisions and child investment

Cigno (1998) develops a theoretical fertility model that explicitly endogenizes
childhood survival. However, he does not distinguish between boys and girls.
Rosenzweig and Schultz (1982) provide an economic model linking the future
income of boys versus girls in India to childhood survival. My model takes
these models one step further by both treating fertility decisions as endogenous
and allowing boys and girls to have different future benefits and costs for
parents. The model can also be thought of as an extension of Becker and
Lewis (1973)’s quality/quantity trade-off in having children, with boys and girls
treated separately.

The model is different than many others explaining fertility decisions in
that it explicitly takes sex composition into account. Other models that look
at son-preferring fertility-stopping rules either focus on sibling size (Jensen
2003) or on birth-order effects (Basu and Jong 2010). Garg and Morduch
(1998) investigate the effects of sex composition on child health in Ghana.
In Garg and Morduch (1998)’s model, if the number of children are held
constant, then having a higher proportion of girls in the household is good
for all children. In the model below, boys benefit from a high proportion of
sisters, but girls are hurt by a high proportion of sisters. Both models assume
credit constraints. The major difference between the two models is that in
Garg and Morduch’s model, investments in girls’ health or education always
increase future household income (if at lower marginal returns compared to
boys). The model below examines the Indian context where investing in a
daughter’s health reduces future household income. These costs of investing
more in daughters are what drive stopping-rule behavior and the exacerbation
of discrimination against daughters when there are a high proportion of
daughters in the household. The model makes some strict assumptions, such
as diminishing utility from income, credit constraints, an inability to change
the costs and benefits of surviving children through investment, and the lack
of sex-selective abortion as a fertility option. However, these simplifications
increase the tractability of the model and highlight the essential incentives that
could be causing fertility-stopping rules and excess female mortality.

This section presents a two-period model of fertility and child mortality. In
the first period, parents make fertility decisions conditional on previous birth
outcomes and then decide how much health capital, e.g., food and medical
care, to invest in each child. There is a fixed cost to having each child regardless
of how much the parents invest, e.g., a reduction in mother’s labor supply
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in having and caring for a baby. At the end of the first period, children die
via a survival function, in which the greater the parental investment in child
health, the fewer children die. For simplicity, boys and girls are assumed to
have the same survival function.® In the second period, the children become
adults. Parents suffer a fixed cost for each daughter and parents receive a fixed
benefit for each son. Thus, parents lose income if they have more surviving
daughters than sons. One can think of a girl’s cost being her dowry at the time
of marriage, while a son’s benefit is his labor income as he remains in the joint
household and possibly the labor supplied by his new wife and children as well
as his dowry income. The timing of the model is illustrated below:

e Period 1.

1.  Fertility decisions
2. Health investment in children
3. Child mortality occurs.

e Period 2.

1.  Parents pay the cost of surviving daughters and collect the benefits of
surviving sons.

The parents act as a unitary utility maximizer.* Parents first make the
decision to have children, where they either continue to have a child or stop
fertility altogether, conditional on previous fertility outcomes. After fertility
has stopped, parents invest in these children. Parents make their fertility
decisions based on how their investments and, hence, expected lifetime utility,
are expected to change if they have an additional child. Parents care about
their own consumption in each period, ¢; (j =1, 2). For simplicity, I assume
that given N children, a continuous proportion 7t of them are boys, and 1 — 7
are girls, where 0 < 7t < 1. Parents also care about the number of children who
survive. They can increase the number of children who survive by investing
in child health. p(k;) is the proportion of children of sex i surviving, which is
a positive, strictly concave function of the average health capital invested in
children of sex i, k;, and 0 < p(k;) < 1. For simplicity, parents are assumed to
know the exact proportion of children who survive given the health invest-
ment.’ Thus, if parents invest k in their boys, then p(kg)7tN boys will survive

3This assumption does not have an effect on the comparative statics of the model.

4See Eswaran (2002) for a model of fertility and mortality that includes intra-household
bargaining.

51 follow along the lines of Rosenzweig and Schultz (1982). I avoid the complexity of probability
distributions that are in Cigno (1998) and discrete children with binomial survival distributions
as in Sah (1991). Note that the analytic results could change if expected utility and probability
distributions of child survival are used, depending upon the choice of utility function, distribution,
and risk aversion parameters.

@ Springer



The effect of fertility decisions on excess female mortality in India 153

to adulthood. Parents with N children, and who have decided to have no more
children, have the following lifetime utility function:

Ur = Ui(c) + Uz(c2) + Us(ptkp)tN + p(kg)(1 —mN) (1)

The parents’ lifetime utility (U7) is the sum of their utility from con-
sumption in the two periods, U (c;) and U,(c;), and the utility of having
their children survive, Ug(-). U;(c;) and U,(c;) are assumed to be positive
and strictly concave with respect to consumption. Ug(-) is assumed to be
positive and concave with respect to the number of surviving children. I
assume that parents care about the survival of each child equally and, in
the absence of their desire to spend on themselves, would equally allocate
all their resources to their children. This assumption about survival utility
highlights the tension in parents’ allocation decisions: they want their children
to survive, but they also want to consume resources for themselves. It may
be the case that, in reality, parents care more intrinsically about a son sur-
viving than a daughter or vice versa, and this is what drives discrimination.
However, the model shows that discrimination will follow from economic
incentives, even without different intrinsic preferences over child survival
by sex.

Parents have budget constraints in each period. In the first and second
periods, parents receive exogenous incomes of Y, and Y, respectively. There
is a fixed cost of F per child in the first period. This fixed cost is part of the
household size effect: the more children there are, the less resources there are.
The other aspect of the household size effect is also built into the model via
the fixed income of parents: the more children there are, the less resources
there are per child. In the second period, if children survive, parents must pay
for daughters, but benefit from sons. For simplicity, the future cost of each
surviving daughter and benefit of each surviving son is fixed at a positive
number D. That is, it is assumed that D is unaffected by early childhood
health investments. Households cannot save, borrow, or accumulate assets.
This assumption about credit and saving constraints is crucial to Proposition

%By “intrinsic” preferences for child survival, I mean anything outside of parents’ costs and
benefits included in the D variable, which could include any economic costs and benefits of
children. If parents do care intrinsically more about boys than girls (for cultural or social reasons),
this strengthens the predictions of the model. The reason for the model’s simplification is that
economic incentives are sufficient to explain discrimination even if there are non-economic
incentives for discrimination as well. One could go further and argue that the unfair economic
incentives only exist because of social incentives, and the author concedes that this may be the
case. Yet, a number of parents who find these social incentives unjust and do in fact care equally
about their sons and daughters in a non-economic sense, may discriminate because of the economic
incentives propagated by the social preferences of others.
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1 below and is further discussed in Appendix B.” A household with N children
has the following constraints for each period:

Period 1 budget constraint: ¢; + NF + niNkg + (1 — m)Nkg < Y}
Period 2 budget constraint: ¢c; < Y, + tiNp(kp)D — (1 — m)Np(kg) D

In the first period, parents spend their income on themselves, the fixed costs
of having N children, and any investments they wish to make in their children.
In the second period, parents consume whatever is left over of their income
net of the costs of their surviving children. Parents make all their decisions in
the first period, i.e., how many children to have and how much to invest in
each child. Parents will want to keep their daughters alive if the survival utility
outweighs the consumption utility cost. The results below assume an interior
solution (in particular that parents invest a positive amount in their daughters).

From the model, the following three propositions hold (proofs given in
Appendix A). Propositions 1 and 2 are the theoretical explanations for the
sex composition effect: sons are better off with a higher proportion of sisters,
and daughters are better off with a higher proportion of brothers. Proposition
3 provides an economic explanation for why parents follow stopping rules.

Proposition 1 Assume fertility decisions have stopped (i.e., given a fixed N). If
D is sufficiently large, then the greater the proportion of boys in a family, the
less is invested in each boy: a;‘—Tf < 0.

The intuition for this proposition can be thought of in two ways. As the
proportion of daughters rises, parents face a larger future cost from their
daughters and a smaller future benefit from sons, and so, in order to help to
reduce the future burden, they will want to ensure that their sons survive. Thus,
having a higher proportion of sisters helps sons. From another perspective, a
marginal increase in the proportion of sons means that parents have a larger
future income. Parents will want to smooth this future income by transferring it
to the present. Since parents are assumed not to be able to borrow against their
sons’ future incomes, they can only smooth their consumption between the two
periods by reducing their expenditure on sons in childhood while increasing
spending on their own consumption. Thus, having a higher proportion of boys
hurts sons.

Proposition 2 Assume fertility decisions have stopped. If D is suf ficiently large,
then the greater proportion of boys in a family, the more is invested in each girl:
e
iy
Proposition 2 follows from the income gains from a marginal increase in
the proportion of boys, which allow parents to spend more on girls. Imagine

7 As shown in Appendix B, if there are perfect credit markets, I predict the opposite of Proposition
1. However, given empirical evidence in India, it is likely that many households are, in fact, credit-
constrained.
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a girl with many brothers. The future costs of that girl are ameliorated by the
presence of brothers, and thus parents can better afford to keep the girl alive.
Or from the opposite perspective, the higher the proportion of daughters in
the household, the more costly it is for parents to keep those daughters alive,
and hence, they invest less in all of them. Thus, having a high proportion of
boys is good for daughters.

Proposition 3 Assume that there is a 50 % probability of having a boy or girl.
Assume household 1 (HHI1) has relatively more boys and household 2 (HH?2)
has relatively more girls, (i.e., Ty > Tym), and both households have N total
children. If D is sufficiently large, then parents in HH2 have a larger expected

utility gain from a marginal increase in N than parents in HHI: 2E9rmm

aN
%. That is, parents with relatively more girls have a stronger incentive

to continue having children.®

Proposition 3 follows intuitively from Propositions 1 and 2. A household
with a high proportion of sons, compared to a household with a low proportion
of sons, which then has an additional son, will invest less in each son (from
Proposition 1). The high-son-proportioned household will thus expect smaller
future gains from an extra son, since that son is more likely to die. The house-
hold with a high proportion of sons, compared to the household with a lower
proportion of sons, which then has an additional daughter, will invest more
in each daughter (from Proposition 2). The high-son-proportioned household
will expect higher future costs from an extra daughter, since that daughter is
more likely to live. Thus, the expected gain from more sons is smaller, and
the expected loss from more daughters is larger in the high-son-proportioned
household, giving it a smaller incentive to have an extra child on net compared
to a low-son-proportioned household.

As the parents have children, those with girls are pushed to have more
children. The resulting distribution creates a subset of households that are
particularly disadvantageous to girls: girls are in larger households than boys
on average, which hurts girls, and they are in households with a high proportion
of girls, which is worse than if they had the same number of siblings with a
higher proportion of boys.

31n the case of a discrete, rather than continuous, change in N, the expected future cost of an
additional daughter depends on two competing factors. The first is the sex composition effect,
which increases the mortality rate of all daughters if an extra daughter is added to the household.
This effect is stronger in HH2 compared to HH1, and, thus, HH2 has a lower expected future
cost (in terms of income) from an extra daughter. However, parents with a high proportion of
daughters (HH2) are relatively poor compared to parents with the same number of children,
but a lower proportion of daughters (HH1). Thus, if parents are sufficiently risk-averse, then the
expected future income loss for HH2, although smaller than the expected future income loss for
HHI, creates a larger loss in expected future utility for HH2 compared to HH1. That parents in
India, in fact, follow fertility-stopping rules indicates that parents in general are not so risk-averse
that they are unwilling to risk having an additional daughter.
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Although selective abortion is not explicitly a part of the above model, the
more daughters that parents have, the larger the future economic burden.
Thus, a household with net future losses (with many girls) would gain more
from selective abortion than a household with net future gains (with many
boys). It is a key assumption for the empirical section that selective abortion
occurs mostly in higher order births in India, so it is reassuring that the
theoretical model supports this assumption.

4 Empirical strategy

This section describes a method to empirically test the household size effect
and the sex composition effect. Ideally, if there was no endogeneity problem,
it would be possible to simply regress boy and girl mortality on the number of
children and their sex composition. However, higher child mortality increases
the number of children parents want, which could also influence the sex
composition of children. In particular, a change in a fertility-stopping rule will
affect the number of children born and the sex composition of children. If
families are more or less likely to selectively abort a pregnancy depending on
the expected survival rates of their children, this will also change the number
and sex composition of children.

Jensen (2003) and Angrist and Evans (1998) use the outcome of the first
or first two pregnancies as an instrument for the number of children. Jensen
(2003) follows a similar strategy to the one followed in this paper and uses
the fact that parents’ preference for sons in India will cause parents with a
first-born son to have fewer children than parents with a first-born daughter.
Angrist and Evans (1998) look at American data and use parents’ preference
for a sex-balanced family to predict more children if the first two births are
of the same sex. However, Rosenzweig and Wolpin (2000) point out that the
sex composition of children can affect the outcomes of interest, and, thus, the
instrument is not necessarily valid. In particular, any household size effect may
be conflated with the sex composition effect.’

Thus, we cannot instrument for the two endogenous variables: number of
children and their sex composition. However, we can estimate the reduced
form effect of a first-born boy versus first-born girl on child mortality, which
in itself provides a test of the effect of household size and sex composition on

9Twins as a first pregnancy is another exogenous outcome that affects the number of children
born and the sex composition of these children. Yet, it cannot reliably be used as an extra
instrument because twins are different from non-twins, in particular having lower birth weight
on average. This means that, for example, a pair of boy twins are biologically weaker than two
sons born separately (Rosenzweig and Zhang 2009). To simplify the empirical analysis, I exclude
all households with first-born twins which make up approximately 0.5 % of all observations.
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child mortality.!” If parents are following stopping rules, a first-born daughter
predicts more children on average than a first-born son. Even if households
were not following a stopping rule and having N children of random sex, a
household with a first-born girl will have a higher proportion of girls on aver-
age than a household with a first-born boy. Stopping rules, just like having a
first-born daughter, cause some households to have more children and a higher
proportion of girls. Thus, one can think of the sex outcome of a first birth as
a proxy for measuring the effects of stopping rules on child mortality.

While for girls, having a first-born sister is detrimental both through the
household size and sex composition effect (Proposition 2), they have opposing
effects for boys (Proposition 1). That is, a first-born sister is bad for a boy
because he will have more siblings. However, a first-born sister is beneficial
for a boy because he will have a higher proportion of sisters. If we find that a
first-born boy predicts higher male mortality relative to boys in a household
with a first-born girl, this can only be because the sex composition effect
outweighs the household size effect. Thus, although we cannot estimate the
exact size of each of these effects, we can test whether the sex composition
effect is stronger than the household size effect for boys. We can then make
the following empirical predictions:

Prediction 1 Girls in households with a first-born boy (which predicts fewer
children and a higher proportion of boys) will benefit from both the household
size and sex composition ef fects and have higher childhood investment. This will
result in lower childhood mortality than girls in households with a first-born girl.

Prediction 2 Boys in households with a first-born boy may have either higher
or lower childhood investment. Fewer children decrease mortality via the house-
hold size ef fect, while the higher proportion of boys increases mortality via the
sex composition ef fect.

In order to use the sex outcome of a first birth as a natural experiment, I
follow three steps. First, I show that the sex outcome of a first birth is plausibly
exogenous. Second, I show that, indeed, a first-born son strongly predicts the
number of children born as well as a higher proportion of male children. Last, I
estimate the reduced form effect of having a first-born son on male and female
child mortality. The estimation equation is as follows:

Yij = yFirstBornBoy; + 3, X; + B ;State; + e;; (2)

The outcomes of interest for household i in state j, Y;;, are the number of
children born, the proportion of children born male, the child mortality rate of

19Dahl and Moretti (2008) use a similar estimation technique in the USA and find that first-born
girls are disadvantaged compared to first-born boys. For example, first-born girls’ parents are more
likely to be divorced. Interestingly, a first-born girl in the USA predicts higher fertility, although
by only one-fiftieth as much as in India.
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male children, and the child mortality rate of female children. First BornBoy;
is a dummy variable which takes on the value of 1 if the first-born child in
a household is male and O if female. X; are household variables: mother’s
age and years of schooling, father’s years of schooling,!' religion, caste, and
whether the household is in a rural or urban area. X; are included to reduce
potential bias in the estimates. I also include state-fixed effects (State;) to
account for state level differences in the outcomes of interest. Since a first-
born boy benefits girls through the household size and sex composition effects,
I predicty < O for female child mortality. For male child mortality, y > 0 if the
sex composition effect is stronger than the household size effect, while y < 0
otherwise.

I define child mortality as the percent of children who die between the ages
of 1 and 60 months, multiplied by 100, conditional on surviving up to 1 month
of age. The model yields predictions on average boy and average girl mortality
instead of on specific birth orders, which explains why the empirical results
focus on average mortality. Average mortality is a useful metric in that it
allows us to ignore the number of children born, which is endogenous. Children
who die before 1 month are dropped from the sample because most deaths at
this age are from birth defects or other issues not within parents’ control.!?
The estimates are robust to including these deaths in the specification (see
Appendix D for estimations that include deaths in the first month) and to
extending the time period to, for example, 0-120 months of age (estimations
not shown). Sixty months is a cutoff used in most of the literature on child
mortality because a high proportion of child deaths occur before age 5. I only
provide estimates for households where the mother is aged 35 years and older,
when she is likely to have completed her fertility.!?

First-born children are more likely to die than later-born children (Hobcraft
et al. 1985). Thus, it would not be surprising to find that if we include first-
births, boy mortality is higher and girl mortality is lower among households
with a first-born boy. Given this fact, the sample is restricted to children of
birth order two and higher.

An alternative interpretation of the estimation equation is that if parents do
not selectively abort their first pregnancy, the sex outcome of the first birth
will tell us what would have happened to a household if it had used selective
abortion for the first pregnancy. Ignoring the direct costs of selective abortion,
if we ask what households with first-born girls would look like if they had
selectively aborted the first-born girls, the answer is that, on average, they
would look like families with first-born boys. Thus, the sex outcome of the first

lliterate individuals are coded as having no years of education, which is not necessarily true. The
estimates are robust to simply including dummy variables for literate/illiterate instead of years of
education.

12See, for example, Simmons et al. (1978, 1982), and Smucker et al. (1980).

130nly 12 % of women in the RCH II have a child at age 35 or older, and more than 70 % of
women aged 35 years and older have been sterilized.
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pregnancy can also be used as a test of the impact of sex-selective abortion on
child mortality.

Although I show that selective abortion is unlikely for first pregnancies, it
is useful to discuss its implications for the estimates. As shown by Bhalotra
and Cochrane (2010), sex-selective abortion tends to happen more frequently
among wealthier households, which have lower child mortality rates. Thus, if
sex-selection is occurring amongst first-borns, this would bias the estimated
effect of a first-born boy on child mortality downward.

5 Data

The 2002-2004 Reproductive and Child Health Survey (RCH II) is used to
test the model empirically. The RCH 1I is a nationally representative survey
of approximately 500,000 ever-married women aged 13-44 years (IIPS 2006).
The survey was implemented by the Government of India via the International
Institute for Population Sciences (IIPS), with the goal to better understanding
the demand for family planning, contraceptive use and reproductive knowl-
edge, early child health, and utilization of health facilities. The survey is
designed to be representative at the district level, covering all 593 districts from
the 2001 Indian Census. The survey selected 40 primary sampling units (PSUs)
per district, with the probability of PSU selection weighted by population.
The proportion of rural to urban PSUs is designed to be close to the actual
rural/urban population ratio in the district. Urban areas are over-sampled
in districts with particularly small urban populations. Approximately 1,000
households were sampled per district. The use of such a large dataset, as
opposed to the smaller Indian National Family Health Surveys (NFHS), is
critical for this research. First, it allows enough power to verify the sex ratio
at birth for first-borns. Second, since only a small percentage of children die, it
more precisely estimates effects on child mortality.

The survey in the RCH 1I includes questions similar to the NFHS such as
demographic information (age, education, religion, caste), as well as questions
about child and mother health. In particular, the survey asks about the
mother’s complete birth history, including the age of death of a child if the child
is dead. It includes detailed questions about the mother’s most recently born
children (antenatal care, vaccinations), family planning usage, and parents’
health knowledge. The survey does not ask about household assets, land-
holding, income, expenditure, or wealth.

6 Exogeneity of the sex outcome of the first birth
In order for the empirical approach to be valid, it must be shown that the sex
outcome of a first birth can be treated as a natural experiment. As noted by, for

example, Portner (2010), Bhalotra and Cochrane (2010), and Jha et al. (2011),
the first pregnancy in India has a biologically normal male/female sex ratio
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Table 1 RCH II male/female ratio at birth by birth order

Birth All 95 % CI Born within 10 95 % CI
order ages years of survey

1st 1.089 (1.083, 1.095) 1.066 (1.056, 1.076)
2nd 1.088 (1.081, 1.095) 1.091 (1.080, 1.102)
3rd 1.100 (1.091, 1.109) 1.094 (1.081, 1.107)
4th 1.091 (1.080, 1.102) 1.091 (1.075, 1.108)
Sth 1.070 (1.052, 1.082) 1.073 (1.054, 1.094)

Sample weights used; no twins. Data source is RCH 11

(i.e., in the range of 1.04-1.07 males per female),'* while later births have a
higher sex ratio, indicating the use of selective abortion. As Ebenstein (2010)
points out, we also see the phenomenon of increasing sex ratios among higher
birth orders in China, where the first birth has an approximately normal sex
ratio (also see Das Gupta 2005).

We cannot treat later births as random because some households choose
to have these children only if the fetus is male. If parents do selectively abort
their first pregnancy, this will present a selection bias for the reduced form
estimates in the paper. For example, if parents who selectively abort are those
that are richer or better educated or have better access to health facilities, then
we would expect that in families with first-born girls, girls are more likely to die
for reasons completely outside of resource discrimination within a household.

Table 1 presents estimates of the sex ratio at birth by birth order using
the RCH II. The sex ratio for first-borns among all women surveyed is 1.089,
greater than what we would expect to occur naturally. This number is deceptive
because older interviewed women potentially have recall bias about their birth
history. Recall bias occurs when parents had a first-born daughter, but the
daughter died during infancy and parents do not report the first-born daughter.
Such recall bias has been reported in China (Smith 1994) and in India for the
National Family Health Surveys (IIPS 1995). Another issue is survival bias
because having a first-born girl increases the total number of children born,
which in turn increases maternal mortality. Households where the mother is
dead are excluded from the survey."> Recall and survival bias is reduced if we
restrict the sample to more recent births. For children who were 0-10 years old
at the time the survey was taken, the male/female ratio for first-borns falls to
1.066, in the range considered normal, while remaining high for higher birth
orders.

Figure 1 illustrates changes in the sex ratio at birth over time in the RCH
II. The male/female sex ratio is high in the 1980s but drops to normal levels
for more recent births. Selective abortion did not become widely available in

14See Chahnazarian (1988) for a review of literature on the biologically normal sex ratio at birth
and Parazzini et al. (1998) on global trends in the sex ratio at birth.

15Using back-of-the-envelope calculations, I find that 1.7 percentage points of first-born daughter
households are missing from the survey due to recall and survival bias.
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Fig. 1 Time trends in the reported male/female sex ratio at birth by birth order. Five-year
smoothed birth groups. For example, “1982-1986” on the x-axis in the graph includes all children
born in 1982 through 1986. The 95 % confidence interval is approximately +/— 0.01, where it
is slightly smaller for more recent births and larger for more distant births. The first data point
includes all births in 1985 and earlier. Data source is RCH 11

India until the 1990s, making it unlikely that selective abortion is the cause
of this high sex ratio. Second and third order births have higher than normal
sex ratios going back to the early 1990s, approximately the time sex-selective
abortion was becoming available, and approximately normal sex ratios for a
brief period before this. The sex ratio is always lower for second- and third-
order births in the more distant past (before 1990) than first-order births, and
fourth- and higher-order births have even lower sex ratios before 1990. This
is consistent with the idea of survival bias: we expect a first-born girl to have
a stronger impact on fertility than a second- or third-born girl, while fourth-
and higher-order female births should see little or no impact on fertility. Thus,
if a rise in fertility causes a rise in mortality risk, we expect survival bias to
be stronger for lower birth orders. This pattern is also consistent with recall
bias: it is more likely for a mother to misreport births that are more distant in
her past, so that we should expect more recall bias for first pregnancies than
later pregnancies.'® Even if overall in India the sex ratio of first births appears

16 A similar pattern of rising sex ratios for births more distantly in the past has been reported in
Bangladesh (Majumder et al. 1997).
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Fig. 2 Time trends in the reported male/female sex ratio at birth for first births. Five-year
smoothed birth groups. The 95 % confidence interval is approximately +/— 0.025, where it is
slightly smaller for more recent births and larger for more distant births. The first data point
includes all births in 1979 and earlier. Data source is NFHS 1992/1993, 1998/1999, and 2005/2006

normal, there may be specific states of India where the sex ratio is unnaturally
skewed towards males. This concern is addressed in Appendix C.

Another way to verify the existence of survival or recall bias is to check
whether the reported sex ratio at birth in surveys is rising in the 1980s as
surveys are taken later and later. As the cumulative effects of extra births cause
higher mother mortality or more women forget or choose to ignore their true
first births, we should see such a rise. Figure 2 uses the three Indian National
Family Health Survey rounds in 1992/1993, 1998/1999, and 2005/2006 to look at
trends in the sex ratios of first-borns over time.'” The more recent the survey,
the higher the sex ratio at birth in the 1980s. This finding is consistent with
survival and recall bias.

As an additional test of the exogeneity of the sex outcome of the first
birth, Table 2 shows descriptive statistics for the dependent and independent

17The NFHS surveys were implemented by IIPS with the support of the Indian Government’s
Ministry of Health and Family Welfare. The 1992/1993 round consists of 89,777 ever-married
women, the 1998/1999 round consists of 89,199 ever-married women, and the 2005/2006 round
consists of 124,385 women (married or not). All of the rounds restrict the age of respondents to
15-49. The relatively fewer number of births in the NFHS compared the RCH II cause wider
fluctuations and larger confidence intervals.
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Table 2 Descriptive statistics by first-birth outcome, mother age > 35

Entire First-born First-born Difference
sample boy girl

Dependent variables
Mother’s age (years) 38.99 38.98 39.00 0.02
Mother’s education (years) 3.82 3.78 3.85 —0.07*
Father’s education (years) 6.46 6.43 6.48 —0.05
Hindu (0/1) 0.820 0.819 0.820 —0.001
Muslim (0/1) 0.115 0.116 0.113 0.003
Scheduled caste (0/1) 0.176 0.176 0.177 —0.001
Scheduled tribe (0/1) 0.080 0.080 0.081 —0.001
Backwards class (0/1) 0.393 0.394 0.391 0.003
Rural (0/1) 0.638 0.637 0.639 0.002
Observations 152,059 80,714 71,345

Independent variables
Total children born 3.905 3.749 4.081 —0.332%*
Proportion of male children 0.544 0.693 0.377 0.316**
Observations 152,059 80,714 71,345

Mortality rate (%), boys 3.901 4179 3.616 0.562**
Observations 118,763 60,424 58,339

Mortality rate (%), girls 5.844 5.592 6.124 —0.532**
Observations 105,390 55,741 49,649

No households with first-born twins. Sample weights used. N is slightly smaller for mother and
father education and mother’s age due to missing values. Mortality rate is the percent of boys or
girls of birth order two or higher within a household who died between 1 and 60 months (multiplied
by 100), conditional on having survived past 1 month of age. Data source is RCH I1

*p = 0.10 (significant); **p = 0.01 (significant using ¢ tests for age and education, and Pearson
chi-squared tests for the other variables)

variables divided into sub-samples for households with a first-born son and
those with a first-born daughter. These variables could affect child mortality
and are exogenous with respect to child survival. On average, first-born
boy households have parents who are less educated than parents in first-
born girl households. This difference is only statistically significant for the
mother’s education. These differences are in accord with recall and survival
bias, which make first-born boy households appear worse off than they would
be without these biases. Mothers are older in first-born boy households, which
is consistent with survival bias because women who had first-born sons are
likely to live longer. All of these differences are small, and almost all are not
statistically significantly different between first-born boy and first-born girl
households. Thus, these descriptive statistics indicate that the bias in the data
is not large.'® Including these independent variables in the analysis helps to
reduce this already small bias.

18We may expect a similar bias if infanticide was responsible for the above-normal sex ratios of
first-births in older women since we would expect only the families with the worst socioeconomic
situation to resort to such measures. Note that a first-born boy predicts approximately an extra
3 weeks between the first and second birth. There is evidence that shorter birth intervals cause low
birth weight and, hence, higher mortality rates (Gribble 1993). This would bias the results in the
opposite direction and result in higher mortality rates amongst first-born girl households.
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The evidence shows that the sex outcome of a first-birth can be treated as
a natural experiment, albeit with biases. Households that are not surveyed be-
cause of survival bias are likely to have higher child mortality rates compared
to households where the mother is alive. Recall bias causes parents to not
report first-born girls who died young and, again, these households will have
high mortality rates. Both biases operate in the same direction. Since these
forms of bias are more likely to occur for older parents, there is a trade-off in
choosing an appropriate sample between fertility completion and bias. Since
the focus of this paper is on fertility, I choose fertility completeness (the sample
of mothers aged 35 years and older) and acknowledge the potential bias.

7 Estimates

Given the plausible exogeneity of the sex outcome of a first birth, I can now
estimate Eq. 2. I show that a first-born son predicts fewer total children born
and a higher proportion of male children. I then estimate the impact of a first-
born son on male and female child mortality. A first-born son predicts higher
male mortality but lower female mortality. The estimation results are shown in
Table 3.

A first-born son predicts a decrease in the total number of children born by
more than one third of a child. The average total number of children born is 3.9
for mothers aged 35 years and older. Thus, a first-born boy lowers the number
of children in an average household by almost 10 %. This effect is much larger
than that found in US data. For example, Angrist and Evans (1998) predict a
fertility increase of 0.06 children if the first two children are of the same sex,
while Dahl and Moretti (2008) estimate an increase of 0.007 children if the first-
born is a girl. In addition, a first-born son is also a strong predictor of sibling
sex composition. The proportion of sons in a household with a first-born boy
is almost one-third higher than the proportion of sons in a household with a
first-born girl.

A first-born boy lowers average girl mortality by 0.3 percentage points
(statistically significant at the 1 % level). Although recall and survival bias
will push this coefficient towards a positive number, the coefficient is negative.
Hence, we can conclude that girls with a first-born older brother, with fewer
siblings and a higher proportion of boys, have lower mortality rates than girls
with a first-born sister. Fertility decisions in India, via the use of stopping
rules, cause girls on average to be in households with more children, and in
households with a higher proportion of girls. These fertility decisions translate
into less resources for girls (the household size effect) and increased discrim-
ination (the sex composition effect) and, hence, higher mortality rates among
girls.

Boys are 0.5 percentage points less likely to survive in households with a
first-born boy (statistically significant at the 1 % level). It is possible that bias
in the data caused this positive coefficient. However, as shown above, the bias
is likely small. In addition, if the sample is restricted to women under 35,
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Table 3 OLS: the effect of a first-born boy on number of children, sex composition, and child
mortality

Total Proportion of Male Female
children born children male mortality mortality
First-born boy —0.356%* 0.304%* 0.468%* —0.314%*
(0.011) (0.003) (0.088) (0.110)
Mother’s age 0.068%* 0.000 0.046%* 0.116%*
(0.002) (0.000) (0.016) (0.020)
Mother years of school —0.081%* 0.000 —0.112%* —0.190%*
(0.002) (0.000) (0.012) (0.016)
Father years of school —0.043%* 0.001%#* —0.169%* —0.244%**
(0.002) (0.000) (0.013) (0.017)
Rural 0.166%* 0.003* 0.454%* 1.167%*
(0.018) (0.002) (0.104) (0.148)
R-squared 0.317 0.315 0.024 0.040
Clusters 593 593 593 593
Observations 150,781 150,781 117,734 104,494

Robust standard errors, clustered at district level, are reported in parentheses. All estimates
include religion, caste, and state fixed effects as independent variables. All households are those
where the mother’s age is 35 years or older. No households with first-born twins. Child mortality is
measured as the percentage of children (multiplied by 100) born at least 60 months before survey
and died up to 60 months of age, conditional on surviving up to 1 month of age. Data source is
RCHII

*p < 0.05; % p < 0.01

reducing this bias, the coefficient remains positive and significant, providing
further support that bias is not the cause of the positive coefficient (estimate
not shown). Thus, the results indicate that the sex composition effect is
stronger than the household size effect for boys. These results also show that
discrimination in larger, girl-proportioned households is not just anti-girl, it is
also pro-boy. Thus, the reason that girls have higher childhood mortality rates
than boys is not just that parents are more likely to neglect girls in larger, girl-
proportioned households. In these households, parents actively improve the
health of sons, making them better off than if the sons had fewer sisters.

In the sample of children of birth order two and higher whose mothers are
35 or older, approximately 52 out of 1,000 boys die between 1 and 60 months,
while approximately 72 out of 1,000 girls die.!® Thus, girls suffer 38 % higher
child mortality than boys for this age group. If we unconditionally restrict
ourselves to households with a first-born boy, the gap closes by about a third, so
that girls only suffer 25 % higher child mortality than boys. Using the estimates
in Table 3 to control for the other independent variables, if all children were
in first-born boy households (taking all girl-first households and subtracting
the estimated effect of being in a first-born boy household, vy, from boy and
girl mortality respectively), the gap would close by about a quarter to slightly
under 30 %, which represents a large reduction in the child mortality gap.

19This is the mortality rate of individual children as opposed to the mean of average child mortality
within households reported in Table 2.
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The results also provide insight into what happens when parents use selec-
tive abortion. If parents had used sex-selective abortion for their first preg-
nancy (i.e., they had first-born boys instead of first-born girls), the estimates
predict that non-aborted girls would have lower mortality rates and boys would
have higher mortality rates. The coefficient for male mortality is larger than the
coefficient for female mortality. Hence, sex-selection could result in net higher
child mortality, even if the gap between male and female child mortality would
decrease. The results are partially in accord with that of Hu and Schlosser
(2010), who examine whether sex-selective abortion improves girls’ well-being
and find that female nutrition improves. However, Hu and Schlosser (2010)
do not find an effect of sex-selective abortion on female mortality. My results
contrast that of Lin et al. (2008) who find that both boys and girls had lower
mortality rates soon after selective abortion became legal in Taiwan in the mid-
1980s. The magnitude effects of Lin et al. (2008) are much smaller than in the
RCH II since mortality rates were already very low in Taiwan.

To put the negative effects of stopping rules in perspective, sex-selective
abortion in India accounts for hundreds of thousands of missing women each
year, while excess female mortality from stopping rules can account for tens of
thousands of missing women each year. Thus, the excess mortality caused by
stopping rules is large, but not nearly as large as the number of missing women
caused by sex-selection. If sex-selection mitigates the negative effect of stop-
ping rules, given the approximately half million selective abortions per year, I
estimate that it would reduce missing women due to excess female mortality by
thousands of women each year. Hence, the direct number of missing women
caused by sex selection are two orders of magnitude greater than the reduction
in missing women due to sex selection’s reduction in female mortality.

7.1 Heterogeneity in the effects of a first-born son

On average, a first-born son predicts worse outcomes for boys and better
outcomes for girls. However, these effects vary depending on the type of
household. There are no systematic differences across regions (estimates not
shown). However, I find differences between rural and urban households, as
well as households with literate compared to illiterate parents. Since very few
households exist where the mother is literate and the father is illiterate, I
investigate three sub-samples: (1) both parents are illiterate, (2) only the father
is literate, and (3) both parents are literate. The estimates are presented in
Table 4. The statistically significant positive coefficient for male child mortality
is robust to all sub-samples, giving further strength to the hypothesis that
the sex composition effect outweighs the household size effect for boys. The
coefficients for female mortality are of a similar magnitude as that in the main
estimates. However, these coefficients are not statistically significant for the
urban, both parents illiterate, and only father literate sub-samples. This may
be due to the smaller sample size.

Coefficients of a larger magnitude indicate that there is a larger impact
on child mortality. The estimates imply that stopping rules have a greater
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Table 4 OLS: heterogeneous effects of a first-born boy on child mortality

Rural Urban

Male Female Male Female Male Female
First-born boy 0.510%* —0.358* 0.418%* —0.210

(0.118) (0.142) (0.132) (0.165)
R-squared 0.025 0.040 0.017 0.031
Observations 78,927 70,293 38,807 34,200

Both parents Only father Both parents

illiterate literate literate
First-born boy 0.472% —0.402 0.819%: —0.314 0.319%: —0.274%

(0.197) (0.252) (0.172) (0.203) (0.103) (0.131)
R-squared 0.024 0.036 0.013 0.020 0.007 0.013
Observations 32,593 29,794 35,456 31,574 47,347 41,021

Robust standard errors, clustered at district level, are reported in parentheses. All households
are those where the mother’s age is 35 years or older. No households with first-born twins. Child
mortality is measured as the percentage of children (multiplied by 100) born at least 60 months
before survey and died up to 60 months of age, conditional on surviving up to 1 month of age.
All estimations include household control variables and state fixed effects. The literate/illiterate
sub-samples do not include parents’ years of education as control variables. Data source is RCH 11
*p < 0.05; %*p < 0.01

impact on child mortality in rural compared to urban households. This result
makes sense given that rural households tend to be poorer and have higher
mortality rates than urban households. The coefficients are smaller when both
parents are literate compared to when both parents are illiterate, which again
makes sense as literate parents are likely richer and have lower mortality
rates compared to illiterate parents. Interestingly, the coefficient for male
mortality is largest when only the father is literate. This finding fits into the
larger literature on bargaining power within the household. Fathers may have
a stronger preference than mothers for stopping rules, and fathers will have
more bargaining power the greater their education relative to their wives.
Indeed, if the total number of children is the independent variable, a first-
born daughter predicts 0.43 extra children when only the father is literate,
compared to 0.33 for illiterate parents and 0.32 for literate parents (estimation
table not shown). Thus, the fertility effects of stopping rules and subsequent
discrimination may be larger if there is less equality in education. This finding
is particularly important to policy makers, providing additional evidence that
female education in India has significant positive externalities.

7.2 Robustness check: logit analysis

Average child mortality has discrete steps in it and values will be grouped at,
for example, 0, 25, 33%, etc. Thus, although the theoretical model uses average
child mortality, one may object that ordinary least squares (OLS) is not
the correct estimation model. As a robustness check, I run a logit estimation,
where the estimation equation is the same as in Eq. 2, except that the outcome,
Y, isnow a 0 or 1 variable, which is 1 if the second-born child died between 1
and 60 months of age, conditional on surviving up to the first month of life. I
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only use the second-born child because virtually all households sampled have
at least two children. By the age of 35, 95 % of women have two or more
children. Thus, there should be little selection bias for this sample. However,
we may be concerned with such bias for higher order births, since many
parents will choose not to have more than two children. The results of the
logit estimation are shown in Table 5.

Calculating the marginal effect of a first-born boy on the mean household, I
find that a first-born boy increases the probability of a second-born boy dying
by 0.27 percentage points and decreases the probability of a second-boy girl
dying by 0.24 percentage points. Both coefficients are statistically significant
at the 5 % level. These marginal effects are of a similar magnitude to the
estimated coefficients in the OLS estimations.

7.3 Further analysis of results

A life table is shown in Fig. 3 in order to better understand the empirical
results. The table shows how childhood survival varies by sex and by the
outcome of the first birth. This figure has several salient features. First, the
survival lines are consistent with the empirical results above: a first-born boy
causes girls to have a higher chance of survival while causing a boy to have a
lower chance of survival. Second, the survival gap between boys with an older
brother compared to boys with an older sister is larger than the gap for girls.
The relatively large differences in survival rates between boys of the different
household types compared to girls may be due to recall and survival bias. In
this case, children in boy-first households would seem to be worse off than they
really are because some high mortality girl-first households are either missing
or are misrecorded as boy-first. Third, although it is commonly believed that

Table 5 LOGIT: dependent variable = second order boy or girl dead (0/1)

Male Female
mortality mortality
First-born boy 0.089%%* —0.065*
(0.038) (0.033)
Mother’s age 0.033%** 0.044%*%*
(0.006) (0.006)
Mother years of school —0.074%%** —0.084%**
(0.007) (0.007)
Father years of school —0.040%** —0.041%**
(0.005) (0.004)
Rural 0.186%** 0.173%%*
(0.050) (0.047)
Pseudo R? 0.066 0.070
Clusters 592 592
Observations 75,062 68,524

Robust standard errors clustered by district in parentheses. All households are those where the
mother’s age is 35 years or older. No households with first-born twins. All estimates include
religion, caste, and state fixed effects as independent variables. Data source is RCH 11

#p < 0.1; % p < 0.05; ***p < 0.01
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Fig.3 Number of surviving children per 1,000 births, second order and higher, by sex and outcome
of the first pregnancy. Boy-BF = male survival if first-born boy. Boy-GF = male survival if first-
born girl. Girl-BF = female survival if first-born boy. Girl-GF = female survival if first-born girl.
No households with first-born twins. The darker lines represent male survival, while the lighter
gray lines represent female survival. Solid lines are households in which there is a first-born boy
and dotted lines are households with a first-born girl. Each age point shows the proportion of all
children who were born at least that many months before the survey was taken and who survived
up until that age. Sample weights used. Data Source is RCH 11

boys suffer higher mortality rates than girls in the first year of life (Hill and
Upchurch 1995), in girl-first households, boys have higher survival rates than
girls starting at 6 months of age. Fourth, the survival of girls in first-born boy
households after age 24 months is very close to the survival of boys in first-born
boy households.

The conclusion from the figure is striking: a large portion of the mortality
gap between boys and girls of birth order two and higher would be eliminated
if all of these children were born into boy-first households.?? At age 60 months,
the survival gap between boys and girls is large if they have an older sister. The

20The author does not, therefore, advocate that parents should selectively abort female first preg-
nancies. Rather, the graph points out that girls of birth order two and higher have lower mortality
rates (and boys have higher mortality rates) if they have a first-born brother compared to a first-
born sister. A sensible policy would be to implement programs that raise the relative value of
daughters. Such a policy would both directly incentivize parents to invest more in the health of
their daughters and indirectly allow an increase in girls’ resources by lowering desired fertility.
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gap is almost non-existent if they have an older brother. Because boys naturally
have higher mortality rates than girls, if there were no bias against girls, we
would see significantly higher boy mortality than girl mortality. So even though
the gap for boy-first households appears small, there is still significant bias
against girls if they have an older brother.

7.4 Vaccinations as evidence of health resource discrimination

There may be several mechanisms through which the outcome of the first
pregnancy leads to differential child mortality. For example, sibling rivalry may
account for some of the mortality results. Older sisters may protect and care
for younger brothers but not do so for younger sisters. Older brothers may
protect and care for their younger sisters, but not their younger brothers. The
unitary household model may be unrealistic, and the actual mechanism may be
that having a son gives mothers more bargaining power within a household. If
mothers place a higher value on investing in daughters and less on investing in
sons, then this increase in bargaining power may explain the mortality effects
instead of changes in fertility and sex composition. I have not determined the
exact mechanism through which the first pregnancy affects the well-being of
future children, but it is clear that some causal process exists between fertility
decisions and child mortality outcomes.

Examining the effect of the first pregnancy on health provision instead of
directly on mortality allows us to further understand intra-household resource
discrimination. Such an estimation may provide evidence that fertility deci-
sions lead to health resource discrimination by parents as opposed to some
other mechanism through which mortality could occur. The RCH II asks moth-
ers about the vaccine status of their most recent one or two births after January
1, 1999 or January 1, 2001, depending on the phase of the survey.?! Whether
siblings are vaccinated is probably not an independent event. Thus to avoid
this issue, I restrict the sample to only the single most recent non-twin birth
of a mother. Seventy-six percent of recently born boys have been vaccinated,
while 72 % of recently born girls have been vaccinated.?” This vaccination gap
is not large but, nonetheless, could be one of the causes of higher mortality
amongst girls. Oster (2009), for example, shows that lack of vaccinations can
account for as much as 20-30 % of excess female mortality in India.

The estimation equation is identical to Eq. 2. The effect on vaccinations is
estimated in two ways: first, with the outcome of interest as a binary variable
indicating whether the child received any vaccinations (multiplied by 100),
and second, the total number of vaccinations received. Child age in months
is included as an independent variable. If vaccinations are one way parents
discriminate, we expect to see vy < 0 for males and y > 0 for females. That
is, if a boy is born first, this should cause later born boys to be vaccinated

21 About 20 children were included even though they were born before the cutoff dates.
22Similar discrimination against girls in vaccinations is reported in Borooah (2004).
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Table 6 OLS: effect of a first-born boy on vaccinations of most recently born children

Vaccinated (0/1)* 100 # Vaccinations
Boys Girls Boys Girls
Mother age > 35 —1.439 0.784 —0.142%* 0.088
(0.949) (1.019) (0.070) (0.070)
N 7,993 7179 7,993 7,179
All ages —1.594 %% 0.337 —0.137%#%* 0.033
(0.296) (0.321) (0.022) (0.024)
N 73,156 63,525 73,156 63,525

Robust standard errors clustered by district in parentheses, coefficients on child age, mother’s
age, parent’s education, religion, caste, rural/urban, and state dummy variables not shown. Most
recently born child, birth order > 2. No twins. Data source is RCH 11

*p < 0.1; ¥ p < 0.05; ***p < 0.01

less and girls to be vaccinated more frequently. Because so few women aged
35 years and older have had a recent birth, restricting ourselves to this sample
means large standard errors. Thus, I present separate results for mothers aged
35 years and older and for all mothers. The estimates are shown in Table 6.

As in the mortality estimates above, a first-born boy predicts 0.14 fewer
vaccinations and a 1.4-1.6 percentage point smaller probability of being
vaccinated for boys. However, the result for mothers older than 35 for the
probability of being vaccinated is not statistically significant. The estimations
predict 0.03-0.09 more vaccinations and a 0.3-0.8 percentage point larger
probability of being vaccinated for girls, although the results for girls are not
statistically significant. Thus, there is evidence that fertility decisions lead to
discrimination in health resources by parents, at least among boys. One reason
we might see an effect only for boys is that parents who discriminate against
girls are already not vaccinating their daughters, while they are vaccinating
their boys. Thus, when these parents have a first-born girl, this causes an
increase in the vaccination of sons, but the vaccinations of daughters may not
change.

8 Conclusion

This paper makes several contributions to the literature on fertility decisions
and intra-household discrimination. It provides a theoretical framework to
understand why economic incentives cause parents to follow fertility-stopping
rules and how these decisions disadvantage girls on average. One new the-
oretical result is an economic explanation for why boys are better off with
sisters and girls are better off with brothers. This paper provides evidence that
sex composition must be taken into consideration when trying to understand
the effects of fertility. I find that the sex of the first-born child explains about
one quarter of the child mortality gap between boys and girls. Thus, fertility-
stopping rules and the resulting resource discrimination may be a significant
cause of excess girl mortality in India. Another implication of the estimates
is that sex-selective abortions may counteract the effects of stopping rules,
lowering the child mortality gap. However, the direct loss of women through
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sex selection is far larger than the indirect gain of women through lower child
mortality. I also provide evidence that the allocation of health resources in the
form of vaccinations are affected by stopping rules.

There are several policy implications from the above results. First, if policy
makers want to specifically target households with the greatest discrimination,
they should target large households with many daughters. The sub-sample esti-
mates show that educating women may also reduce the negative consequences
of stopping rules. In addition, the paper’s theoretical framework can help
us understand how changes in the future value of sons and daughters could
affect fertility decisions and child mortality. If the relative value of daughters
rises compared to sons, not only will parents want to directly increase their
investment in daughters but also it may cause them to reduce their use of
stopping rules. This would reduce fertility and allow even more resources to
go to daughters.

Although the above framework can be used to help think about how to
reduce excess female mortality, solutions are far from obvious. Although there
have been some efforts to reduce the burden of marriage costs,?® it seems
unlikely that dowries will be eradicated in India in the foreseeable future,
even though the practice has been officially illegal for almost 50 years. Policy
makers will then need to focus on improving the economic situation of women
or reducing the economic burdens of girls. The rise of women’s microcredit
groups is no doubt a start. Perhaps payments to households with girls tied to
proof of medical care and education for girls is a viable solution. As a start,
this paper provides some insight into the mechanisms through which girls are
disadvantaged in India.
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Appendix A: Proofs of Propositions 1, 2, and 3

Assuming parents have stopped their fertility at N children and taking Eq. 1
above and substituting in the budget constraints yields the following maximiza-
tion problem.

]EIIE}(X Ur = U1(Y1 — 7'CNkB — (- 7T)NkG — NF) + Uz(Yz +7TNDp(kB)
B.kc

—(I =mNDp(kc)) + Us(p(kp)N + p(kc)(1 — tN))

2ZSKDRDP in Dharmasthala, India, for example, has held several free mass weddings which they
have made attractive by using the strong religious influence of the Dharmasthala temple.
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where kp and kg are health investments in boys and girls. 0 < 7t <1 is the
proportion of boys. There are N total children. D is the size of the cost or
benefit of daughters and sons, respectively. Y| and Y, are parents’ income in
periods 1 and 2.0 < p(k;) < 1is the number of surviving children of sex i, given
health investment k;. Uy is a concave function of number of surviving children.
U; and p are positive and strictly concave functions.

A.1 Proof of Proposition 1

Below are first-order conditions of the above utility function.

First-order condition 1:
aUr
3k3

N —Ul+ Dp'(kp)U, + Usp'(kp) =0

First-order condition 2:

kg

a—mN —Uj = Dp'(kc)Uy + Ugp'(kg) =0

Below are the partial derivatives:

92Ur
(na;{\;;)z = U{ + D*p/(kp)*Uy + iNDp" (k)U + Ugp”(kp) + Usp' (kp)* <0
2Ur
% = U{ — D*p'(ke)p'(kp)U3 + U§p' (k) p'(kc)

is positive if D is large enough.

?Ur
o,

(1 — m32N2

= U} + D*p'(k¢)’Uy — (1 = m)NDp' (k) U}
+U§p" (k) + Usp'(ke)*,
which can be positive or negative depending on whether:
D*p'(kg)*U; — (1 — m)NDp" (kc) U}
is positive or negative. It is negative if D is large enough.

?Ur
RO = (kp — ka)UY + D*p/(k)(p(ks) + p(k)U;

+Usp'(kp)p'(kc)(p(kp) + p(kc)) < 0,
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since kg — kg >0

2U7
W™ — N(kp — ka)U| — ND?p/ (k) (p(kp) + p(ke) Uy
Usp'(kc)p'(kc)(ptkp) + p(kg)) > 0
if D is large enough.
Then
2Ur 9*Uy
dkpdm 0k BkG
Det BZUT f 5 n
ok dkgom akZG R
9% _ _ . : — _
” L B
B B G
Det\ 0217, 92Uy

dkgoky 9k

Both of the determinants are positive if D is large enough and Uy > DU,
that is, if the marginal utility of survival is larger than the marginal con-

BkB .o 2Ur 9°Ur PUr_ 8°Ur
sumption utility in period 2, making 52 < 0. (That is 5= ok > kpokg dkoin
3 U[ 3 U[ 3 U[ 3 UI

Tl mm). By First-order condition 2, this must be true:

and

pg@ = U — DUj, which is positive because

have proved Proposition 1.

ch 5 is positive. And, thus, we

A.2 Proof of Proposition 2

?Ur 3°Ur
3k2 8k387‘(
Det B

“N Uy wup bl — ‘
8k_G _ 0kgokp dkgom _ +
am 32UT 32UT Det — +‘
Det| K5 kniko + -

3*Ur 3*Ur

dkGokp k%

The determinant in the denominator will be positive as above. If D is large
enough the determinant in the numerator is negative and 88%6 > 0. This proves
Proposition 2.
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A.3 Proof of Proposition 3

To understand what happens to incentives to continue having children, I
change the model’s notation by letting tN = B and (1 — )N = G.

Ur(kp, ko) = U(Y, — Bkg — Gkg — (B+ G)F)
+Ux(Yz2 + BDp(kp) — GDp(kc)) + Us(pkp) B + p(kc)G)

So now there are explicitly B boys and G girls. Next we examine happens to
parents’ expected utility from having marginally more children (assumed with
50 % probability to be a boy and 50 % probability of being a girl). That is, how
does 0.5% + 0.5% change with an increase in 7, holding N constant.

oUr aUr

5 t 55 = (ks —kc = Ui+ D(ptks) = plkHU"2

+U%(p(kp) + ptkc))

If we raise the proportion of boys, as B goes up and G goes down, kp goes
down and k¢ goes up (from above). Although it is ambiguous what happens to
period 1 and survival marginal utility (depending on how much kp decreases
and how much kg increases), period 2 marginal utility of consumption must
fall. As long as D is large enough, this effect will dominate, causing parents to
gain less utility from an extra child. Thus, we have proved Proposition 3.

Appendix B: Savings and credit

To illustrate as simply as possible how allowing parents to borrow against
future dowry payments may reverse Proposition 1, I simplify the model by
focusing solely on boys, so that the maximization problem becomes:

max Urkp,S) =U,(Y) — Bk — S) + Ux(Y2 + BDp(kp) + RS)

+Us(Bp(kp))

where R is the rate of interest + 1. Let 1N = B and (1 — )N = G.
The first-order conditions are:

aU
WT = —BU, + DBp'(kp)U, + UBp'(kp) =0
B
U
8—ST = U+ RU;,=0
Parents will always set S to satisfy
Ui Usp'(kp)
R=—1=Dp'kp) + .
U, p(kp) + 0

Parents invest in their sons until the return from investing in sons is equal to
the return from saving. If Ug(Bp(kp)) = 0, i.e., parents only care about the

@ Springer



176 D. Rosenblum

economic benefits of sons, then for however many sons they have, they will
invest in their sons up until Dp’(kg) = R. Thus, regardless of the number
of sons, parents will not change their investment and child mortality will
not change. If U§ > 0, this is no longer an equilibrium. To see why, note
that if B increases, ceteris paribus, U goes up and U} goes down. If § is

set such that again R = %i, via borrowing against future child benefits, then
2

Dp'(kp) + USPU—EkB) > R, since U} is smaller than before. Thus, in equilibrium,
k p must rise somewhat, giving the exact opposite result as in Proposition 1. Of
course, if R is sufficiently large, parents will never borrow against future child
benefits, and Proposition 1 will again hold. Since Proposition 2 stems from the
overall wealth increase of extra sons, and not from the inter-period resource re-
allocation as for sons, the introduction of savings and credit should not change
Proposition 2.

Appendix C: Heterogeneity in sex ratios at birth across states

India has large differences in sex ratios across states. For example, Punjab
State has the worst child (age 0-6) sex ratio in India and the 1991 Indian
census estimated this ratio at 1.14, rising to 1.26 in 2001. Thus, it is important to
calculate the sex ratio at birth by state to make sure that some states with low
sex ratios (e.g., Kerala) are not masking the sex ratios of states like Punjab.
Table 7 presents sex ratios for the larger states of India for births within

Table 7 M/F ratio by large Indian state, age 0-10 at time of survey

State First born 95 % CI

Jammu & Kashmir 1.364 (1.280, 1.454)
Uttaranchal 1.109 (1.041,1.181)
Chhattisgarh 1.108 (1.048,1.172)
Karnataka 1.108 (1.064, 1.154)
Assam 1.105 (1.055, 1.158)
Rajasthan 1.101 (1.064, 1.140)
Haryana 1.100 (1.052, 1.151)
Himachal Pradesh 1.079 (1.010, 1.120)
Kerala 1.076 (1.016, 1.139)
West Bengal 1.071 (1.020, 1.124)
Uttar Pradesh 1.064 (1.038, 1.090)
Punjab 1.064 (1.012,1.118)
Madhya Pradesh 1.061 (1.028, 1.096)
Tamil Nadu 1.061 (1.021, 1.102)
Andhra Pradesh 1.046 (0.998, 1.096)
Bihar 1.040 (1.007, 1.075)
Maharashtra 1.039 (1.001, 1.079)
Gujarat 1.031 (0.987, 1.076)
Arunachal Pradesh 1.029 (0.974, 1.088)
Orissa 1.012 (0.973,1.052)

Sample weights used. No households with first-born twins. Large states are those with more than
8,500 survey respondents. Data source is RCH II
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Table 8 OLS: effect of a first-born boy on child mortality in states with a male/female sex ratio of
first-borns < 1.07

Male Female
mortality mortality
First-born boy 0.585%** —0.298*
(0.128) (0.161)
Mother’s age 0.046%* 0.138%**
(0.023) (0.029)
Mother years of school —0.143%%* —0.239%**
(0.017) (0.024)
Father years of school —0.191%** —0.310%**
(0.017) (0.023)
Rural 0.567##* 1.343%%%
(0.142) (0.224)
R-squared 0.023 0.035
Clusters 325 325
Observations 64,283 56,878

Robust standard errors, clustered at district level, are reported in parentheses. All estimates
include religion, caste, and state fixed effects as independent variables. All households are those
where the mother’s age is 35 years or older. No households with first-born twins. Child mortality is
measured as the percentage of children (multiplied by 100) born at least 60 months before survey
and died up to 60 months of age, conditional on surviving up to 1 month of age. Data source is
RCHII

*p < 0.1; ¥ p < 0.05; ***p < 0.01

10 years of being surveyed for the RCH II. The small states are not shown
because their low sample size and correspondingly large confidence intervals
make them uninformative. About half of the states have a sex ratio of first-
borns above 1.07 (although 1.07 is within most of the states’ confidence
intervals). In order to ensure that the estimates in the paper are robust to
the possibility that sex-selective abortion is occurring amongst first-borns in
the states with first-born sex ratios above 1.07, the regressions in Eq. 2 are
estimated with just the states with sex ratios below 1.07 in Table 7, and the
results are similar to those reported in Table 3. The results are shown in
Table 8.

Appendix D: Estimation that includes deaths in the first month of life

The results in Table 3 are robust to the inclusion of the deaths of children
between 0 and 1 month. These deaths are included in Table 9 below. The
results are similar to those above: a first-born boy predicts about a 0.4
percentage point increase in the probability of a higher order boy dying and
about a 0.3 percentage point decrease in the probability of a higher order girl
dying. A logit analysis analogous to the one performed as a robustness check
for the OLS analysis yields similar estimates when deaths in the first month of
life are included (estimations not shown).
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Table 9 OLS: effect of a first-born boy on child mortality, including first month of life

Male Female
mortality mortality
First-born boy 0.420% —0.298*
(0.082) (0.105)
Mother’s age 0.042* 0.108*
(0.015) (0.019)
Mother years of school —-0.107* —0.183*
(0.012) (0.016)
Father years of school —0.154* —0.223*
(0.012) (0.016)
Rural 0.421%* 1.040%
(0.098) (0.142)
R-Squared 0.023 0.038
Clusters 593 593
Observations 119,083 105,943

Robust standard errors, clustered at district level, are reported in parentheses. All estimates
include religion, caste, and state fixed effects as independent variables. All households are those
where the mother’s age is 35 years or older. No households with first-born twins. Child mortality is
measured as the percentage of children (multiplied by 100) born at least 60 months before survey
and died up to 60 months of age. Data source is RCH II

*p < 0.01

References

Anderson S (2003) Why dowry payments declined with modernization in Europe but are rising in
India. J Polit Econ 111(2):269-310

Anderson S, Ray D (2010) Missing women: age and disease. Rev Econ Stud 77(4):1262-1300

Angrist J, Evans W (1998) Children and their parents’ labor supply: evidence from exogenous
variation in family size. Am Econ Rev 88(3):450-477

Arnold F, Choe MK, Roy T (1998) Son preference, the family-building process and child mortality
in India. Popul Stud 52(3):301-315

Arnold F, Kishor S, Roy T (2002) Sex-selective abortions in India. Popul Dev Rev 28(4):759-785

Asfaw A, Klasen S, Lamanna F (2007) Intra-household gender disparity in children’s medical care
before death in India. IZA discussion paper 2586

Basu AM (1989) Is discrimination in food really necessary for explaining sex differntials in
childhood mortality? Popul Stud 43:193-210

Basu D, Jong RD (2010) Son targeting fertility behavior: some consequences and determinants.
Demography 47:521-536

Becker G, Lewis HG (1973) On the interaction between the quantity and quality of children. J
Polit Econ 81(2):5279-S288

Bhalotra S, Cochrane T (2010) Where have all the young girls gone? Identification of sex selection
in India. IZA discussion paper 5381

Borooah VK (2004) Gender bias among children in India in their diet and immunisation against
disease. Soc Sci Med 58:1719-1731

Chahnazarian A (1988) Determinants of the sex ratio at birth: review of recent literature. Soc Biol
35(3-4):214-235

Chen LC, Huq A, D’Souza S (1981) Sex bias in the family allocation of food and health care in
rural Bangladesh. Popul Dev Rev 7(1):55-70

Cigno A (1998) Fertility decisions when infant survival is endogenous. J Popul Econ 11:21-28

Clark S (2000) Son preference and sex composition of children: evidence from India. Demography
37(1):95-108

Coale A (1991) Excess female mortality and the balance of the sexes in the population: an estimate
of the number of missing females. Popul Dev Rev 17(3):517-523

@ Springer



The effect of fertility decisions on excess female mortality in India 179

Dahl GB, Moretti E (2008) The demand for sons. Rev Econ Stud 75(4):1085-1120

Das Gupta M (1987) Selective discrimination against female children in rural Punjab, India. Popul
Dev Rev 13:77-100

Das Gupta M (2005) Explaining Asia’s missing women a new look at the data. Popul Dev Rev
31(3):529-535

Ebenstein A (2010) The missing girls of China and the unintended consequences of the one child
policy. J Hum Resour 45(1):87-115

Eswaran M (2002) The empowerment of women, fertility, and child mortality: towards a theoreti-
cal analysis. J Popul Econ 15:433-454

Fuse K, Crenshaw EM (2006) Gender imbalance in infant mortality: a cross-national study of
social structure and female infanticide. Soc Sci Med 62:369-374

Garg A, Morduch J (1998) Sibling rivalry and the gender gap: evidence from child health outcomes
in Ghana. J Popul Econ 11(4):471-493

Gribble JN (1993) Birth intervals, gestational age, and low birth weight: are the relationships
confounded? Popul Stud 47:133-146

Hazarika G (2000) Gender differences in childrens’ nutrition and access to health care in Pakistan.
J Dev Stud 37(1):73-92

Hill K, Upchurch DM (1995) Gender differences in child health: evidence from the demographic
and health surveys. Popul Dev Rev 21(1):127-151

Hobcraft JN, McDonald JW, Rutstein SO (1985) Demographic determinants of infant and early
child mortality: a comparative analysis. Popul Stud 39(4):363-385

Hu L, Schlosser A (2010) Prenatal sex selection and girls’ well-being: evidence from india. IZA
discussion paper no. 5693

IIPS (1995) National family health survey (MCH and family planning): India 1992-93. Interna-
tional Institute for Population Sciences (IIPS), Bombay

IIPS (2006) District level household survey (DLHS-2): India 2002-04. International Institute for
Population Sciences, Mumbai

Jensen R (2003) Equal treatment, unequal outcomes? Generating sex inequality through fertility
behavior. IDF working paper 3030

Jha P, Kumar R, Vasa P, Dhingra N, Thiruchelvam D, Moineddin R (2006) Low male-to-
female sex ratio of children born in India: national survey of 1.1 million households. Lancet
367(9506):211-218

Jha P, Kesler M, Kumar R, Ram U, Aleksandowicz L, Bassani D, Chandra S, Banthia J
(2011) Trends in selective abortions in India: analysis of nationally representative birth
histories from 1990 to 2005 and census data from 1991 to 2011. Lancet 377(9781):1921—
1928

Keyfitz N (1968) Introduction to the mathematics of population. Reading, Massachusetts:
Addison-Wesley

Klasen S (1994) Missing women reconsidered. World Dev 22:1061-1071

Lin MJ, Liu JT, Qian N (2008) More women missing, fewer girls dying: the impact of abortion on
sex ratios at birth and excess female mortality in Taiwan. Centre for economic policy research
discussion paper DP6667

Majumder AK, May M, Pant PD (1997) Infant and child mortality determinants in Bangladesh:
are they changing? J Biosoc Sci 29:385-399

Muhuri PK, Preston SH (1991) Effects of family composition on mortality differentials by sex
among children in Matlab, Bangladesh. Popul Dev Rev 17:415-434

Oster E (2009) Proximate sources of population sex imbalance in India. Demography 46(2):325—
340

Pande RP (2003) Selective gender differences in childhood nutrition and immunization in rural
India: the role of siblings. Demography 40(3):395-418

Parazzini F, Vecchia CL, Levi F, Franceschi S (1998) Trends in male: female ratio among newborn
infants in 29 countries from five continents. Hum Reprod 13(5):1394-1396

Portner CC (2010) Sex selective abortions, fertility and birth spacing. University of Washington,
Department of Economics, working paper UWEC-2010-4

Qian N (2008) Missing women and the price of tea in China: the effect of sex-specific earnings on
sex imbalance. Q J Econ 123(3):1251-1285

Rosenzweig M, Schultz TP (1982) Market opportunities, genetic endowments, and intrafamily
resource distribution: child survival in rural India. Am Econ Rev 72(4):803-815

@ Springer



180 D. Rosenblum

Rosenzweig M, Wolpin K (2000) Natural natural experiments in economics. J Econ Lit 38:827-874
Rosenzweig M, Zhang J (2009) Do population control policies induce more human capital invest-
ment? Twins, birth weight, and China’s one-child policy. Rev Econ Stud 76(3):1149-1174
Sah RK (1991) The effects of child mortality changes on fertility choice and parental welfare. J
Polit Econ 99(3):582-606

Scrimshaw SCM (1978) Infant mortality and behavior in the regulation of family size. Popul Dev
Rev 4(3):383-403

Sen A (1990) More than 100 million women are missing. NY Rev Books 37(20):61-66

Simmons G, Smucker C, Misra BD, Majumdar P (1978) Patterns and causes of infant mortality in
rural Uttar Pradesh. J Trop Pediatr 24(5):207-216

Simmons G, Smucker C, Bernstein S, Jensen E (1982) Post-neonatal mortality in rural India:
implications of an economic model. Demography 19(3):371-389

Smith H (1994) Nonreporting of births or nonreporting of pregnancies? Some evidence from four
rural counties in north China. Demography 31(3):481-486

Smucker C, Simmons G, Bernstein S, Misra BD (1980) Neo-natal mortality in South Asia: the
special role of tetanus. Popul Stud 34(2):321-336

Visaria PM (1969) The sex ratio of the population of India. Office of the Registrar General, India,
Ministry of Home Affairs, New Delhi

@ Springer



	The effect of fertility decisions on excess female mortality in India
	Abstract
	Introduction
	Background
	Model of fertility decisions and child investment
	Empirical strategy
	Data
	Exogeneity of the sex outcome of the first birth
	Estimates
	Heterogeneity in the effects of a first-born son
	Robustness check: logit analysis
	Further analysis of results
	Vaccinations as evidence of health resource discrimination

	Conclusion
	Appendix A: Proofs of Propositions 1, 2, and 3
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 3

	Appendix B: Savings and credit
	Appendix C: Heterogeneity in sex ratios at birth across states
	Appendix D: Estimation that includes deaths in the first month of life
	References


