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Abstract

The clearing function (CF) models the non-linear relationship between work-in-process
(WIP) and throughput and has been proposed for production planning in environ-
ments with queuing (congestion) effects. However, incorporating the CF concept
in multi-product multi-stage manufacturing networks is still a challenging problem.
One approach proposed in literature is to model the CF at the bottleneck machines
only. However, since the bottleneck may shift as the product mix changes and the
queuing network effect is difficult to capture at the bottleneck, this approach has its
limitations.

The dominant method in the literature to modelling congestion in multi-product
multi-stage networks is the allocated clearing function (ACF) approach. In this ap-
proach, the CF is developed at the resource level using a numerical estimation method
such as discrete-event simulation. Based on these estimates, the CF is fit using piece-
wise linear equations. The ACF linear program (LP) then partitions the CF for
resource product combinations.

This thesis proposes an alternative methodology to ACF, where the release and
WIP levels in each period are discrete (FPR). The CF is estimated at discrete load
combinations using simulation, mean-value analysis (MVA), or queuing network anal-
ysis. A mixed-integer programming (MIP) formulation is developed to determine op-
timal material release. The approach is data-driven and does not require the use of a
curve-fitting function. The CF estimates at the discrete lattice points in this approach
are network based, as opposed to resource based as in ACF. The MIP behaviour is
illustrated using the MVA approximation for a well-known multi-product re-entrant
semiconductor manufacturing case in the literature.

The FPR-MIP formulation is extended to allow release quantities between the
lattice points using a cubic approximation technique (CA). This approach allows the
MIP to potentially obtain better solutions in continuous space and can be seen as
a generalization of piecewise linearization for the single product case. A detailed
comparison between FPR and CA is discussed using an example case.

Finally, FPR and CA are compared and contrasted with the ACF approach.

In summary, this thesis presents an alternative approach to the state-of-art in the

modelling of congestion in manufacturing networks.

xi
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Chapter 1

Introduction

Globalization has created a competitive dynamic market-place that has increased the

demand on manufacturing companies to be responsive to their customers. Respon-

siveness includes the ability to manufacture on short notice and to customize products

for individual customers. To retain their market share and gain a competitive edge,

companies recognize the need to place a greater emphasis on cooperation and coordi-

nation among supply chain parties. This can be accomplished by applying production

planning and control (PPC) concepts, which link the activities of each node in the

supply chain with the rest of the chain.

PPC is a massive and complex task to achieve. Therefore, it is done in the different

departments of each node in the supply chain, adding a coordination dimension,

whereby nodes across the chain need to be connected. The coordination task is

ensured by defining a higher managerial planning level within the PPC framework.

Naturally, the aim of planning is to not only plan resources efficiently and responsively,

but also to minimize conflicts between the production plans at the lower levels.

It is widely accepted that there are two levels of production planning: aggregate

at the higher managerial planning level and disaggregate (detailed) at the shop floor

or lower managerial planning level. The higher planning managerial level assigns

available shop floor capacity (e.g. resource, material, personnel, etc.) to different

products according to anticipated customer demand. Then, the master-production

schedule (MPS) is generated to specify the order release size and timing to cater to

customer demand. Finally, the lower managerial planning level uses material require-

ments planning (MRP) to translate the MPS into a detailed production plan of the

required raw materials based on the product bill of material (BOM). Therefore, ig-

noring the effect of congestion at the higher planning level can make the disaggregate

production plan infeasible and in such situations, shop floor managers are left with

difficult choices such as under production or overtime staffing.

1
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The essential coordination factor between aggregate planning, MPS, and MRP

levels is the material lead time. Material lead time or flow time is the total time that

the material spend in the shop floor to be processed, including queuing, batching,

and processing, to constitute the finished product [25].

The popular production-planning tool MRP, which is used at the lower planning

level, assumes that the lead-time is fixed and not load dependent. In addition, many

of the classical formulations for production planning assume fixed lead times. Unfor-

tunately, this assumption can lead to an overestimation of resource capacity leading

to an infeasible production plan. Planning circularity is the problem where lead time

is dependent on resource load and resource loading depends on the lead time. As-

mundsson, Rardin, and Uzsoy [4] state that “many production systems, especially

wafer fabs that must operate at high utilization for economic reasons, operate under

regimes that cause them to have substantial lead times, which must be considered for

a planning system to match supply to demand. However, per queuing models, lead

time depends on the resource utilization in the system, which in turn is determined by

the assignment of work to resources by the planning models. This constitutes a fun-

damental circularity in planning and a significant difficulty in this field for decades.”

One work around is the linear clearing function introduced by Graves [19] which as-

sumes that the system will be managed in a way that keeps the average cycle time

constant, while the MRP style fixed lead time represents a time-shift of the input.

This is illustrated in Orcun, Uzsoy, and Kempf [57].

Queuing theory has been used in the literature to capture the relationship be-

tween WIP level and resource throughput which takes the form of a non-decreasing

concave function, termed the CF [35, 4]. The CF models the effect of the congestion

on the aggregate plan and permits the production planner to decide on shop floor

release quantities at the higher planning level. The CF concept can greatly enhance

the feasibility of an aggregate production planning solution since it incorporates the

congestion effect. Since the CF is non-linear, the literature presents several ways to

linearize the CF and integrate it within the aggregate production planning optimiza-

tion model.

Recently, the production planning literature has shown an increasing interest in

deriving the CF either by using analytical [47] or simulation [3] approaches. The
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analytical approach relies heavily upon deriving the CF for the bottleneck resource.

Unfortunately, in the case of re-entrant manufacturing environments with multiple

products, the bottleneck shifts with product mix, which varies from one period to

another depending on the recommendation of the planning run (usually a linear pro-

gram). Moreover, the analytical approach is feasible for only relatively small systems.

The simulation approach suffers from the shortcoming that calibrating the CF nu-

merically using simulation is often time-consuming.

1.1 Problem Statement and Thesis Objective

The top level planning system in traditional MPS does not integrate the congestion

effect of queuing in manufacturing systems. Consequently, firms often fail to ful-

fill customer orders within the required time frame, which could lead to customer

dissatisfaction and migration. Therefore, it is important for firms to have accurate

information about shop-floor resource capacity availability encapsulating the conges-

tion effect while generating production planning.

The main objective of this thesis is to contribute to the existing research in aggre-

gate production planning dealing with congestion. One of the consequences of MRP

is the tendency to overload the shop floor, which in turn causes system congestion

and increases the cost of WIP, with marginal gain in productive capacity. There-

fore, the supply chain’s current and future capacity availability should be calculated

with respect to shop floor load capacity. This implies that the BOM based MRP

system should be setup for load-dependent lead time information. In order to achieve

this objective, we propose constructing an aggregate production planning model for

multi-product network manufacturing with load-dependent lead-times (ideally, the

MRP system would also use load-dependent lead-times).

In particular, the following questions are relevant to the thesis:

1. What is the impact of product mix on the location of the network bottleneck

machine?

2. What is the disadvantage of deriving the CF for the bottleneck machine in the

case of multi-product networks?
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3. How can the CF concept be introduced in queuing network models for complex

manufacturing environments?

4. What are the computational implications of using the queuing network approach

to estimate congestion effects in aggregate production planning?

5. How does the proposed approach compare with other approaches in the litera-

ture in dealing with congestion in multi-product network manufacturing?

1.2 Thesis Framework

In this thesis, we show the deficiency of using the CF only for the bottleneck machine

for multi-product networks by using two alternative methods of comparison: simula-

tion for the open queuing network case and MVA for the closed queuing network case.

In practical terms, we look at how the congestion effect of a manufacturing facility

can be introduced to aggregate production planning for closed queuing networks using

MVA [73]. Then we look at the different approaches to incorporate the CF into an

optimization model for aggregate production. The first approach estimates the mul-

tiple products CF at discrete points to avoid linearization complexity, as proposed

in [54]. The second approach proposes a linearization methodology using the cubic

approximation method. The remainder of this thesis is organized as follows:

• Chapter 2 provides a literature review of the relevant areas.

• Chapter 3 describes the methodological development of a data-driven approach

to estimate the clearing function for a multi-product production network based

on mean-value analysis.

• Chapter 4 presents an aggregate production planning formulation with discrete

release choices.

• Chapter 5 illustrates a cubic approximation approach to linearize the multi-

product CF that provides continuous space release options.

• Chapter 6 presents a comparison between the models in Chapter 4 and 5 with

the ACF approach of [3].



5

• Chapter 7 concludes the thesis and outlines directions for future research.



Chapter 2

Literature Review

Supply chain management is the coordination of information and goods flowing

through the nodes of the chain, from the suppliers, to the manufacturer, sometimes

to the warehouse, and finally to the customers [66].

Since customers are the main drivers of supply chain operations, supply chain

activities have to be designed to meet their needs. The advanced planning system

(APS) can accomplish this by bridging the gap of hierarchical planning decisions made

by various organizational functions such as procurement, production, distribution

and sales departments [49]. Figure 2.1 illustrates APS, i.e., advanced planning and

scheduling. APS modules are offered in most enterprise resource planning (ERP)

packages.

Figure 2.1: Advanced planning system matrix [49]

The vertical axis of Figure 2.1 shows the different hierarchical planning tasks in

a supply chain. At the top are the long-term tasks which can be described as the

strategic upper management level. At this level, decisions are made on the supply

chain network configuration including the products to offer, location of nodes, choice

of modes of transportation, and how to serve markets. Next is the master planning

6
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tier, which is usually generated at the middle management level and is termed mid-

term planning. Lastly, the short-term planning tier is often generated daily or weekly,

and this set of decisions are at the lower management level.

To enhance an understanding of the big picture of supply chain management tools,

we briefly discuss the topics shown above in the APS matrix, as they have a direct

relationship to this research.

Strategic network design: This sets the long-term plan ranging from three or five

to ten or 15 years, depending on industry. The supply chain configuration

is determined at this stage. This level includes identifying the market needs

and calibrating production processes and raw material sources. It also includes

determining the best geographical location for facilities (plants, distribution

centres, warehouses, etc.) to serve customer demand, and determining realistic

capacity estimates to help the firm attain its strategic goals.

Master Planning: During this stage, plans are made based on the decisions of the

upper strategic network design tier. The differences between these successive

planning stages are the levels of aggregation. In the master planning stage, a

detailed plan of the flow of goods throughout the entire supply chain is devel-

oped. Moreover, supply is matched with demand by allocating capacity (which

is a decision of the strategic network design) to maintain efficient production,

transportation, and capacity utilization for the raw material and seasonal stock-

piles.

Purchasing and material requirements planning: At this stage, there is a dis-

aggregation of the product families in the master plan, which enables MRP.

The inputs to MRP are the BOM and the lead times for each item in the BOM.

From this, the MRP run is able to develop a time-phased manufacturing and

procurement plan for each item by offsetting the lead-time of the raw materials

and subassemblies required for production. However, MRP does not consider

production resource capacity or the shop floor congestion effect, and may result

in infeasible production plans. While Rough-cut Capacity Planning (RCCP) is

part of the MRP framework, the resource utilization calculation for RCCP is

aggregate. Since the MRP is one of the pillars of this study, we elaborate on it



8

later in the thesis.

Production planning and scheduling: In this stage, the inputs are the planned

targets in response to the customer order due-dates and customer demands fore-

cast in the master plan. The outputs of this stage are the production plans and

schedules including release, setup, and order sequencing. Production planning

and scheduling usually covers the period of the demand forecasting horizon that

can range from a day to a month. Planning is often done at a weekly or monthly

level, while scheduling might take place at the hourly or daily level, depending

on industry.

Distribution and transportation planning: Distribution systems link the nodes

of the chain and in distribution planning, an attempt is made to reduce distri-

bution costs through shipment planning and consolidation. In transportation

planning, an attempt is made to identify truck loads that minimize traveling

distance to the different customer locations considering delivery time.

Demand planning, demand fulfillment, and available-to-promise (ATP): The

main driver of supply chain management is customer demand, which could be

unknown or known. There are two main classifications of manufacturing systems

based on demand. The first type is the make-to-stock (MTS) manufacturing en-

vironment, which deals with unknown demand by forecasting future customer

needs and fulfillment through demand planning. This type of system is the

push system. The second type of manufacturing environment is make-to-order

(MTO), which deals with known demand through confirmed customer orders.

This type of system is the pull system. Many systems are hybrid, and they have

characteristics of both push and pull systems. The planning process of fulfilling

customer orders is referred to as demand fulfillment. In ATP, this is done by

assigning the projected inventory stockpiles to customer orders. In capable-

to-promise (CTP), the demand fulfillment process commits capacity within a

production plan to an individual order. In many cases, a part of a customer

order can be fulfilled using ATP while the rest is fulfilled using CTP.

The themes discussed in this thesis include production planning, material require-

ments planning, and congestion in multi-stage production. We classify the literature
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based on these topics.

2.1 Production Planning

PPC system links a firm’s production objectives with the capacity of its available

resources. A firm’s production objective could manifest itself as a fill rate from cus-

tomer demands. PPC synchronizes the flow of planning information throughout the

firm’s hierarchical planning levels, usually three. The top level is aggregate planning,

where gross customer demand is matched with existing supply. In the second plan-

ning level, the MPS specifies the order release size and timing to cater to customer

demand. Finally, the MRP translates the former plans into a detailed production plan

of the required raw materials. Figure 2.2 illustrates a framework for PPC hierarchical

planning.

Figure 2.2: PPC hierarchical planning framework [20]

A mathematical representation of a manufacturing facility was first used in the

literature to outline the relationship between a firm’s available resources and the antic-

ipated customer demand in the early work of Modigliani and Hohn [53]. Their model

was formulated and solved by Manne [46] using an LP formulation equivalent to the

transportation model. The main factor that links the top aggregate planning with the

lower shop floor planning is the lead-time. Therefore, Hackman and Leachman [21]

proposed a general production planning formulation based on the linear program-

ming framework, where they address the lead-time as an exogenous parameter to the

production resource load.
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Kacar, Mönch and Uzsoy [31] compare the integer fixed lead time estimation

method used in the formulation of Hackman and Leachman [21], a non-integer fixed

lead time estimation, and the ACF formulation of Asmundsson, Rardin, Turkseven,

and Uzsoy [3]. They conclude that the non-integer fixed lead time is superior to

the integer fixed lead time and gives comparable results to the ACF. Therefore, they

suggest considering the non-integer fixed lead time in the case where variability is low.

This is to avoid the complexity of deriving and fitting the CF. The ACF performs

better in the case of high variability.

A firm faces uncertainty (or variability) due to external or internal factors. Ex-

ternal (or environmental) uncertainty is due to those factors which affect a firm’s re-

leased production planning feasibility from outside its boundaries, such as unreliable

suppliers and demand uncertainty. Conversely, internal (or operational) uncertainty

involves factors such as machine failure, defective parts, and setup delays. These un-

certainties have the same effects on production planning feasibility as external ones,

but they come from within the manufacturing environment.

Koh and Simpson [44] studied the agility and responsiveness of ERP to uncer-

tainty and system changes in small and medium enterprises. Their study analyzed

108 enterprises using analysis of variance (ANOVA) for different manufacturing en-

vironments. At the end of their analysis, they delineate 42 uncertainty factors that

could cause late delivery. These factors are categorized into uncertainties in demand,

suppliers, and operations.

As previously mentioned, uncertainty not only affects operational planning but

also the planning and scheduling decisions of the top-level as well. Graves [20] in-

vestigated production planning uncertainty coming from the demand forecast, the

external supply process, and the internal supply process. Graves also described sev-

eral approaches for alleviating the effects of the above-mentioned uncertainties such

as safety stock, frequent re-planning, inflating lead-time, using flexible capacity, and

backlog management. However, because some of the aforementioned tactics are ad

hoc approaches to mitigating the effect of external factors, they may cause an adverse

effect on shop floor processes. This is due to inherent conflict between decisions made

by the top and lower management levels.

Operational uncertainty can dramatically disrupt the due-date delivery schedule.
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For that reason, we survey the literature concerning internal factors.

Roberts and Barrar [63] and Koh, Jones, Saad, Arunachalam, and Gunasekaran [42]

both point out a key factor that can affect the performance of MRP, namely that it

is heavily reliant on the working environment being deterministic. MRP is gener-

ated in response to the demand forecast of the top planning level, i.e., the MPS and

aggregate production plan. The demand forecast always needs minor or even major

modification as one gets closer to the execution date of the generated plans. Hence,

there is a constant need to re-plan and re-schedule MRP plans in order to maintain

a high service level.

Yeung, Wong, and Ma [79] provided an exhaustive review of factors that can

affect the performance of MRP. They grouped these factors into six categories: de-

mand forecast accuracy; product structure; safety stock; re-planning frequency of the

production plans; length of the frozen period; and length of planning horizon.

Demand forecast accuracy: MTS manufacturing environments allocate most of

the available capacity to forecasts of market demand. The accuracy of the

demand forecast is a key factor in the stability of MRP. An unreliable demand

forecast is likely to increase production costs because of planners in such a

situation respond by either increasing inventory levels, increasing capacity in

regular time, or by scheduling overtime. Sridharan and LaForge [70] used a

simulation model to study the effects of integrating the variability of the demand

forecast on the stability of production plans using safety stock. They concluded

that while safety stock does enhance the stability of MPS and MRP, the buffer

quantity should be small; otherwise, it could lead to schedule instability.

De Bodt and Wassenhove [7] examined the influence that forecast error has on

the order quantity rule. Their simulation model shows how a small variation

in the forecast will significantly affect the cost efficiency of the order quantity

rule. Wemmerlöv [77] concluded that forecasting errors will drastically increase

inventory levels and operational costs, which then also increase order costs. This

is in alignment with the conclusion of Fildes and Kingsman [15] that there is an

inverse relationship between forecast accuracy and inventory cost. Specifically,

a high level of forecast accuracy reduces inventory costs and leads to stable

production plans.
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Product structure: BOM flexibility and component commonality improve PPC

stability. Meixell [48] created a simulation model to examine the impact of

product flexibility, capacity, and set-up costs on MRP stability in a precari-

ous demand environment. The results demonstrated that designing component

commonality into the products structure not only augments the stability of the

manufacturer but also of the whole supply chain.

Lin, Krajewski, Leong, and Benton [45] studied the effect of BOM structure,

cost structure, and other environmental factors on MPS-related decisions such

as re-planning frequency and frozen period. The results showed that BOM

structure and cost structure significantly impact MPS design.

Safety stock: Sustaining high service levels requires MTS to use safety stocks to

hedge against demand and supplier uncertainty. However, excessive buffer quan-

tity adversely influences the stability of the MRP [70]. Dolgui and Prodhon [14]

provided a comprehensive review of MRP uncertainty in a supply chain envi-

ronment. They suggested that safety stock strongly induces an increase in the

production cost if it is not correctly set. Ho, Law, and Rampal [22] presented

a framework for studying and classifying uncertainty related to MRP as well

as provided an overview of how such a system’s behavior could be dampened.

Ho and co-authors concluded that investments in safety stock should be applied

after a full analysis of the trade-off between costs and benefits.

Grasso and Taylor III [18] suggested using safety stock rather than safety lead-

time to alleviate supplier delivery timing uncertainty. They used a multi-level

manufacturing and product structure simulation model to examine the effects of

four operating policies on the uncertainty of supplier delivery timing. These po-

lices are: safety stock quantity and safety lead-time; lateness penalty and hold-

ing cost; lot-size rule; and amount of lead-time variability. Similarly, Whybark

and Williams [78] conducted a simulation to study the uncertainty effect on cus-

tomer satisfaction and inventory investment. They concluded that safety stock

should be used for quantity uncertainty, while safety lead-time is favourable for

timing uncertainty. Pujawan [61] concluded that companies should invest in

safety stock to mitigate forecast error and oscillating demand.



13

Re-planning frequency of the production plan: It is common practice in MTS

to track demand changes by frequently re-planning and re-scheduling the re-

leased PPC plans in the hopes of getting higher customer satisfaction. Chung

and Krajewski [12] recommended frequent re-planning for firms with high set-up

and work force costs. A rolling horizon aggregate plan and MPS were employed

to examine the influence of re-planning frequency on the production plans cost

structure in case of deterministic demand.

However, Sridharan, Berry, and Udayabhanu [68] concluded that more fre-

quently re-planning the MPS can lead to adverse effects on the stability of

production operations. They examined the impact of re-planning frequency

on a single-level supply chain environment. Ganeshan, Boone, and Stenger [16]

conducted a simulation to study the influence of three inventory planning factors

(re-planning frequency, forecast error, and information sharing) among supply

chain echelons. They revealed that high re-planning frequencies and unreliable

forecasting could give rise to increased product cycle time, which would decrease

customer satisfaction. Omar and Bennell [55] also concluded that the stability

of MPS is affected by re-planning frequencies.

Length of the frozen period: MTS regularly use the strategy of freezing part of

the production plan in order to diminish uncertainty from re-planning. Al-

though this strategy enhances the stability of the production plan, it may de-

crease customer satisfaction if the plan is unable to meet new or revised customer

demand. Furthermore, firms may incur high production and inventory costs as

a result of freezing.

Sridharan, Berry, and Udayabhanu [69] constructed a simulation study to as-

certain the influence of freezing interval length and the freezing method on

operation and inventory costs. The results showed that freezing half of the

planning horizon has a small effect on cost error. Cost error is the incremental

cost caused by excessive production set-ups and holding inventory. Zhao and

Lee [80] suggested increasing the interval of frozen periods in cases of determinis-

tic demand, as this will improve the stability of production planning and reduce

the total operational cost. On the other hand, stochastic demand conditions
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require a short frozen period to maintain low operational costs and low produc-

tion planning instability. In the paper, a multi-level MRP production system

was simulated to understand the effect of the freezing interval proportion and

methods on MPS stability and total operational cost.

Length of the planning horizon: The length of the planning horizon significantly

affects MTS. Generally, a prolonged planning horizon is favorable in determinis-

tic demand conditions. However, in the case of demand uncertainty, a shortened

planning horizon should be considered, as otherwise the total production cost

could increase [80].

Carlson, Beckman, and Kropp [10] indicated that the planning horizon should

be as long as the order cycle, and that the demand forecast should be examined

to prolong the planning horizon. Moreover, the planning horizon should be

extended in instances where the planning horizon is less than the order cycle.

Conversely, under demand uncertainty, this will increase inventory costs and

make order cycle predictions difficult.

Recently, Sahin, Narayanan, and Robinson [64] surveyed the literature on rolling

horizon planning in the supply chain context. This review looks at demand vari-

ability (deterministic vs. stochastic) and levels in planning (single vs. multiple).

They state that the planning horizon affects cost and stability in all planning

situations. They also conclude that the rolling horizon planning is relevant to

virtually all planning systems where demand is stochastic in the long-term but

there is a need to establish short-term replenishment schedules.

In addition to the uncertainty factors mentioned above, conventional MRP is

constructed assuming a fixed lead-time, which in turn implies infinite production ca-

pacity. From queuing theory, there is a non-linear relationship between lead-time and

utilization, which is affected by the capacity loading decision. Despite the significant

drawback of the capacity loading decision on system performance, it was not captured

in the MRP [42, 59]. Thus, based on what already mentioned about the uncertainty

sources and their impact on the released plans, variability is an integral part of the

production planning.

The majority of the research in the literature on production planning does not
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consider the effect of the shop floor load on the system throughput rate, as the shop

floor load affecting the resource utilization too [59, 52]. This is an important research

gap since these factors affect the feasibility of the released production plans, as the

production lead time may increase along with heavily load the shop floor, which in

turn increases production costs dramatically [20, 5, 42, 63].

To overcome this shortcoming of the MRP, three approaches have been highlighted

in the literature. The first approach is to use the iterative concept to derive the

lead time by imitating the system dynamics using a simulation model. The second

approach is to derive the CF by using queuing theory, to capture production resource

capacity. The third approach is to use the constant work-in-process (CONWIP)

approach of the closed queuing network to avoid excessive WIP levels in the system

that could lead to shop floor congestion.

2.1.1 The Iterative Concept

As discussed above, the early modeling of production planning was deficient in cap-

turing shop floor dynamics. Hung and Leachman [26] proposed first using production

planning optimization model to generate a release schedule, and then introduce this

schedule to the simulation model to collect the flow time, where the shop floor dynam-

ics is embedded. They then use the simulation output to reformulate the optimization

model. This iteration of the optimization model and simulation continue until some

satisfactory criteria are met. Byrne and Bakir [9] used the same approach to get

a real estimation of the shop floor capacity. Kim and Kim [39] combined and fur-

ther extended the idea of Hung and Leachman [26] and the approach of Byrne and

Bakir [9], where they modify the right hand side of the capacity constraint in the

Hung and Leachman [26] LP model. This modification is based on the simulation

model. The simulation model is also used to directly estimate the loading factors

for each machine in each period. Finally, they apply the iteration approach of Byrne

and Bakir [9] to find a feasible production plan. This iterative procedure is based on

constantly updating the shop floor capacity and the production lead-time.

Irdem, Kacar, and Uzsoy [27] provided an exploratory computational experiment

comparing the iterative approaches of Hung and Leachman [26] and Kim and Kim [39],
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and concluded that the iterative approach of [39] converges in a few number of it-

erations. They notice cycling across a few solutions in this methodology. However,

they note that the iterative process of [26] does not converge easily. Missbauer and

Uzsoy [52] indicate that the convergence of the iterative approach needs further re-

search.

Kacar, Irdem, and Uzsoy [28] presented an experimental comparison of the iter-

ative approaches of Hung and Leachman [26] and Kim and Kim [39] with the ACF

of Asmundsson, Rardin, Turkseven, and Uzsoy [3]. They point out that ACF out-

performs the other approaches by giving a realistic representation of the production

planning environment. Their model uses simulation optimization, which is different

from the iterated multi-model approach in Hung and Leachman [26].

2.1.2 The Clearing Function

Planning and coordinating material flow throughout the supply chain is a complex

task. Therefore, planning tasks are held at two different hierarchical planning levels

in a firm. At the higher level, the aggregate plan breaks down the planning horizon

into discrete time buckets and assigns the aggregated demand, in the form of time

units, to the available capacity. The focus at the lower level is on decisions related to

capacity planning and order-release timing. In fact, there is a discrepancy between

the plans of the two hierarchical planning levels because the managers at the higher

level do not consider uncertainty in their aggregate plan. This uncertainty can be

triggered from external and/or internal factors.

As mentioned above, external factors affect the firm’s released production planning

feasibility. Internal factors such as machine failure, defective parts, and order-release

decisions have the same effect on production planning. In fact, order-release decisions

can dramatically affect lead-time. Lead-time or cycle time [3] is defined as the time

required for the transformation process of raw materials into a product that is ready

to be used by customers. This time is measured from the time the work is released

into the factory, and consists of queue, production, and batch time.

The lead-time has a direct relationship to product routing, set-up, and WIP levels.

These operational factors are dependent on shop floor planning decisions such as lot-

size, batch and product mix, which in turn have a significant impact on production
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costs.

Therefore, the release to a production resource is related to its utilization using

the CF concept. The CF can be derived from the steady-state of queuing system or

transient state of a production resource, or estimated using simulation model for the

production system [29]. For a steady state queue, Little’s law shows the relationship

between WIP and throughput. In other words, for a given resource, it provides the

output based on input WIP. Though the steady state queue is often used to illustrate

the CF concept, Missbauer [51] and Selçuk et al. [65] both derive transient clearing

functions that require neither steady-state nor Little’s Law.

For the M/M/1 single product single machine case, the CF can be easily de-

rived. However, it gets more complicated for both multiple products and a network

of machines. Another way of looking at the CF is as a means to achieve consistency

between planning at the aggregate and shop floor levels.

The first attempt to derive the CF was done by Graves [19], who assumed that the

production system could be managed by speeding up or slowing down the production

process to keep the average cycle time constant. This is done using a linear CF that

relates the throughput rate X of a work center i to a constant portion α of the WIP

level W at the beginning of the production period (t), as follows:

Xi,t = αiWi,t (2.1)

The Graves’ linear CF, which represents a managerial policy, implies a fixed lead-

time, which is independent of the WIP level at that period and leads to unlimited

resource capacity. This assumption is different from the one considered in the most

popular production-planning tool, viz., the MRP, as shown in Figure 2.3. MRP

represents the fixed lead-time as a time-shift of the input. Thus, Xt = Rt−L, where

Xt is the output of a resource in period t, Rt−L is the release in period t− L, and L

is the exogenous lead-time [57]

Karmarkar [35] re-defined the CF by relating the congestion at the shop floor for

a single resource to the resource output Xt, using a nonlinear concave non-decreasing

function, as follows:



18

Xt = min

[
Ct(Wt−1 +Rt)

Wt−1 +Rt + k
;Wt−1 +Rt

]
(2.2)

Where: Ct and Rt are the maximum production capacity and the work release in

period t, respectively, Wt−1 is the WIP level at the end of period t− 1, and k is the

curvature shape parameter. Figure 2.3 presents the CFs derived by Graves [19] and

Karmarkar [35], represented by a constant proportion line and an effective curve line,

respectively.

Figure 2.3: Karmarkar’s CF [35]

Due to the importance of integrating the CF in the aggregate plan, there is emerg-

ing research in the literature dealing with this topic, as will be seen through the rest of

this chapter. Spearman [67] derived the CF for a closed production system with high

processing time and failure rate. Hopp and Spearman [23] derived a number of CFs

to relate the WIP level to the practical worst-case analysis of throughput. Srinivasan,

Carey, and Morton [71] constructed a non-linear CF which gives a good estimation

for the due-date, since it reflects the continuous lead-time changes captured at each

workstation.

Missbauer [50] constructed a continuous time based optimization model to balance

order release with capacity. He proposed deriving the CF for M/G/1 steady-state

system by relating the relationship between the expected workload E[L(t)] and the
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expected output E[X(t)] as follows:

E[X(t)] =
[
C+k+E[L(t)]−(C2+2Ck+k2−2CE[L(t)]+2kE[L(t)]+E[L(t)]2)1/2

]
/2

(2.3)

Where:

k =
μσ2

2
+

1

2μ
(2.4)

Here, σ2 and μ−1 are the variance and mean of the processing time of a resource

with the maximum capacity of C in hours of work per period. The parameter k

represents the curvature shape.

Medhi [47] provides an equation to measure the expected number of entities in

a system characterized by the G/G/1 queuing behavior. This is the well-known

Kingman approximation for the expected time in the system for a G/G/1 queue [41,

24]:

W =
c2a + c2s

2

ρ2

1− ρ
+ ρ (2.5)

Where: W is the queue length, c2a, c2s are the squared coefficients of variation

(SCV) of the arrival and service time, respectively, and ρ is the resource utilization.

Because utilization in this expression is a surrogate for throughput, Asmunds-

son, Rardin, Turkseven, and Uzsoy [3] solved Equation 2.5 for the positive root of

utilization, yielding the following CF:

ρ =
W + 1(W 2 + (2c2W ) + 1)

1
2

1− c2
(2.6)

Where:

c2 =
c2a + c2s

2
(2.7)

Kefeli, Uzsoy, Fathi, and Kay [38] compared the CF-based production planning

of Karmarkar [35] with the classical linear programming model based on dual prices.

They concluded that the classical linear programming model underestimates the ca-

pacity constraint dual price since it fails to capture the congestion effect. On the

other hand, the non-linear model shows a positive shadow price as resource utiliza-

tion approaches but is still less than one. Therefore, this approach provides a more
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accurate representation of the system and implies that carrying inventory may be

necessary even if recourse utilization less than one. The authors pointed out that

the approach is difficult to apply in a multi-product and multi-stage manufacturing

environment.

Kim and Uzsoy [40] introduced the effect of engineering process improvement stage

into the production planning generated for a single resource re-entrant manufacturing

environment. The CF concept employed to allocate capacity between the production

stage and the engineering improvement stage. The marginal costs are analyzed us-

ing the Karush-Kuhn-Tucker (KKT) optimality conditions to derive insights on the

effective management of resources.

For the case of multiple products, Asmundsson, Rardin, Turkseven, and Uzsoy [3]

derived the ACF to allocate a portion of the resource capacity to produce different

products according to customer demand. This was done with the aim of introducing

the effect of accumulating different product WIP levels to estimate resource utilization

for a time period in aggregate planning. Therefore, the capacity allocated to each

resource in the aggregate planning model is segregated by product. Their model can

handle CFs at multiple resources. In this approach, clearing functions are developed

for each station and included in a planning LP independently, though they are a

reflection of the effect of correlated flows between stations through a queuing network.

This can be seen in [3] as well as [28, 29, 33] where open queuing network simulation

is used to build the piecewise linear clearing functions at each workstation for the

ACF model.

Orcun, Uzsoy, and Kempf [58] extended the ACF for stochastic demand for the

single product case. The safety stock is integrated into the CF to hedge for demand

uncertainty. Kacar, Mönch, and Uzsoy [30] empirically derived the CF for two prod-

ucts requiring hundreds of operations using multiple runs of a simulation model of

the system. After that, the CF is derived by fitting WIP to the estimated simula-

tion throughput in order to establish a release schedule for both products in each

time period. Finally, the derived CF is integrated to the ACF production planning

formulation (presented in the next subsection).

Kacar and Uzsoy [32] presented a new way to fit the CF to a simulation model

using linear regression. In addition, they compared the load-based CF with the
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product-based CF, where they showed that the load-based CF performs better than

the product-based ones in most cases. Kacar and Uzsoy [33] presented an improved

way for fitting the CF to empirical data using the simulation optimization tool to

optimize the decision variables related to parameterize the CF.

Kefeli and Uzsoy [37] used the ACF of [3] to extend their previous work [38] to

identify the bottleneck machine for multiple products multiple machines presented in

the well known case study presented in [36].

Albey, Bilge, and Uzsoy [1] constructed a multi-dimensional CF simulation model

to show the effect of the product mix on the aggregate plan. They disaggregated the

total workload into individual products by using different combinations of product

ratios to derive the relationship between utilization and lead-time. Kang, Albey,

Hwang, and Uzsoy [34] addressed the effects of lot-size for multiple products produced

on a single machine on the deriving the CF analytically, using queuing theory.

The works of Asmundsson, Rardin, Turkseven, and Uzsoy [3] and Albey, Bilge, and

Uzsoy [1] emphasize the importance of integrating the product mix into the aggregate

capacity planning models; in both cases, the CF is based on an output analysis of a

production facility simulation. This approach suffers from two shortcomings. Firstly,

simulating a real production facility requires a lot of detailed information about the

shop floor performance, which is sometimes hard to get. Secondly, even if it is possible

to gather this information, the task is time-consuming.

2.1.3 Integrating the CF with the Production Planning Formulation

In this section, we begin by looking at how the CF may be integrated into the capacity

constraint of an aggregate planning formulation. The CFs in Missbauer [50] and

Asmundsson, Rardin, Turkseven, and Uzsoy [3] are discussed in detail because they

deal with multiple products. The paper by Albey, Bilge, and Uzsoy [1] came later

and is also covered.

2.1.3.1 Missbauer’s [50] Mathematical Model

The approach of Missbauer [50] in dealing with the order-release problem considers the

transient behavior of queuing networks by deriving a CF for the bottleneck machines

independently. Non-bottleneck machines are assumed to have a fixed lead-time. A
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linear programming model is constructed to optimize the order-release decision in a

multi-product situation. The multiple products are aggregated into product families,

which require a number of processing operations on different machines.

The CF is derived analytically for the bottleneck machines to reduce the size of the

model. Due to this fact, there is a different CF for the different bottleneck machines.

The CF is derived considering Poisson arrivals and general processing or service time

distribution times for the bottleneck machine M/G/1. The proposed CF relates the

expected output E(Xt) to the capacity C and the expected load E(Lt) = E(Wt) +

E(Xt), where E(Wt) is the expected WIP, for time period t. Essentially, the output

increase rate can be controlled by the curvature parameter k, which encompasses the

mean and variance of the machine processing time k =
(
(μσ2)/2

)
+
(
1/(2μ)

)
.

Missbauer proposed applying the CF shown in Equation 2.3 for the multi-product

case. This equation is reproduced here for convenience:

E[X(t)] =
C + k + E[L(t)]−

(
C2 + 2Ck + k2 − 2CE[L(t)] + 2kE[L(t)] + E[L(t)]2

)1/2

2

In this formulation the variance of the processing time comes from the combination

of product mix and different processing time distributions of each product, aggregated

into an effective processing time distribution (Hopp and Spearman [24], Chapter 8).

This model considers product flow between machines in continuous time, while the

planning horizon itself is divided into discrete time buckets in the linear programming

model presented below. Therefore, flow through non-bottleneck machines happens in

discrete time, while flow through bottleneck machines is in continuous time.

Linear programming formulation

The aggregate order-release planning model uses the following notation:

Parameters :

hĵmt The costs of holding WIP for aggregate product ĵ (1..J) at machine

m (1..M) in a discrete period of time t (1..T ),

lĵt The cost of holding finished goods for aggregate product ĵ,

Dĵt Demand of the finished goods for aggregate product ĵ in a discrete

period of time t,
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P̃ĵim Average load of aggregated product ĵ transported to machine m

after completion at machine i,

zĵimτ The output ratio of aggregated product ĵ from machine i to machine m

that reach at m in τ periods of time (continuous) after completion at i,

Decision variables :

Iĵt Level of inventory of aggregated product ĵ at the end of period t,

Îĵt Amount of work of product group ĵ at the end of period t,

with no more bottleneck operations to be performed

(Iĵt plus work at non-bottlenecks after the last bottleneck operation)

Ŵĵmt WIP level in front of machine m (non-bottleneck) after completion

at machine i (bottleneck) of aggregated product ĵ at the end of

period t,

Wĵmt WIP level in front of machine m of aggregated product ĵ

at the end of period t,

Rĵt Work released of aggregated product ĵ in period t,

Xĵmt The output from machine m of the aggregated product ĵ in period t,

Objective function :

min
Ĵ∑

ĵ=1

M∑
m=1

T∑
t=1

Ŵĵmt .hĵmt +
Ĵ∑

ĵ=1

T∑
t=1

Îĵt .lĵt (2.8)

Subject to:

(2.9)
Wĵmt = Wĵ,m,t−1 +

M∑
i=1

∞∑
τ=0

Xĵ,i,t−τ .P̃ĵim .zĵimτ

+
∞∑
τ=0

Rĵ,t−τ .P̃ĵ0m .zĵ0mτ −Xĵmt ∀ĵ, m, t

Ŵĵmt = Ŵĵ,m,t−1 +
M∑
i=1

Xĵit .P̃ĵim +Rĵt .P̃ĵ0m −Xĵmt ∀ĵ, m, t (2.10)

Iĵt = Iĵ,t−1 +
M∑

m=1

∞∑
τ=0

Xĵ,m,t−τ .P̃ĵm0 .zĵm0τ −Dĵt ∀ĵ, t (2.11)
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Îĵt = Îĵ,t−1 +
M∑

m=1

Xĵmt.P̃ĵm0 −Dĵt ∀ĵ, t (2.12)

Ĵ∑
ĵ=1

Xĵmt ≤ αmn + βmn .

Ĵ∑
ĵ=1

(Wĵmt +Xĵmt) ∀n,m, t (2.13)

Rĵt ≤ Rmax
ĵt

∀ĵ, t (2.14)

Ŵĵmt, Wĵmt, Iĵt, Îĵt, Rĵt, Xĵmt ≥ 0 (2.15)

The objective function in the model is to minimize the total cost of holding the

WIP and finished goods inventory, subject to restrictions on material flow (2.9),

(2.10), inventory balance (2.11), (2.12), and machine capacities (2.13). Equation

(2.13) represents the concave CF through piecewise linear constraints aggregated by

products ĵ. The CF is derived with respect to the machine’s expected processing

time. Equation (2.14) prevents overloading the non-bottleneck machines; otherwise,

they will become the bottleneck. This is another limitation of this formulation, since

identifying the bottleneck machines themselves is not obvious. The non-negativity

constraint is shown in (2.15).

In the following section, the partitioned clearing function (PCF) is developed and

compared with Missbauer’s [50] work.

2.1.3.2 Asmundsson, Rardin, and Uzsoy [4] Model

The effect of the product mix on resource utilization and the lead time is captured by

the partitioned CF developed by Asmundsson, Rardin, and Uzsoy [4], in which the

correlation between the utilization and lead-time is exemplified by a concave curve.

The partitioned CF ft(W ) is derived empirically using a simulation model of a

downsized semi-conductor wafer fabrication plant with three products. The plant

consists of eleven individual workstations, one of which is identified as a bottleneck

and two of which are identified as unreliable. The product mix is introduced to the

partitioned CF by ξit, which is the consumption of the resource time to produce

product i at period t.

Formulation of the partitioned clearing function

The formulation uses the following notation:
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Indices :

t Time index,

n Stage index,

i Product index.

Parameters :

φn
it The cost of producing product i in period t at stage n,

ωn
it The cost of holding WIP of product i in period t at stage n,

ρnit The cost of releasing product i in period t at stage n,

πn
it The cost of holding finished goods inventory of product i in period t at stage n,

δnkit The cost of transporting product i in period t from stage n to stage k,

Dn
it The demand of product i in period t at stage n,

Zn
it The fraction of the maximum production at stage n in period t allocated to

produce product i.

Decision variables :

Xn
it The total production quantity of product i in period t at stage n,

Rn
it The released quantity of product i

in period t at stage n,

W n
it The WIP level of product i in period t at stage n,

Init The inventory level of the final product i

in period t at stage n,

ξnit The required time to produce product i

in period t at stage n,

Y nk
it The quantity transported from stage n

to stage k of product i in period t.

Objective function :

min
∑
t

[∑
n

∑
i

(φn
itX

n
it + ωn

itW
n
it + πn

itI
n
it + ρnitR

n
it) +

∑
k

δnkit Y
nk
it

]
(2.16)

Subject to:

W n
it = W n

i,t−1 −
1

2

(
Xn

it +Xn
i,t+1

)
+Rn

it +
∑
k

Y nk
it ∀i, n, t (2.17)
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Init = Ini,t−1 −
1

2

(
Xn

it +Xn
i,t+1

)−∑
k

Y nk
it −Dn

it ∀i, n, t (2.18)

αn
ct ξ

n
it W

n
it + βn

ct Z
n
it − ξnit X

n
it ≥ 0 ∀i, n, t, c ∈ C(n) (2.19)∑

i

Zn
it = 1 ∀n, t (2.20)

Zn
it, W n

it , Xn
it, Init, Rn

it, Y nk
it ≥ 0 ∀i, n, t, k (2.21)

The objective function of the model is to minimize the total cost of production,

holding WIP and finished goods inventory, order release, and transportation. This

is subject to restrictions on the flow conservation of WIP (2.17) and finished goods

inventory (2.18). The CF is used in (2.19) to model the machine capacity at only the

bottleneck machine n. It is estimated using simulation runs from which usually three

lines (i.e., C(n) ∈ 3) are constructed, each with slope (α) and intercept (β). Since

there are multiple products i, the clearing function (capacity) is partitioned using the

variable Z in (2.20). The non-negativity constraint is shown in (2.21).

2.1.3.3 The Albey, Bilge, and Uzsoy [1] Mathematical Model

The next development in the literature on clearing functions is the approach by Al-

bey, Bilge, and Uzsoy [1] who derived a multi-dimensional CF (MDCFs) to predict

resource performance and then disaggregate it for different products.

The MDCFs are derived empirically by constructing a simulation model to study

a manufacturing plant according to the M/G/1 queue. The plant is assumed to consist

of a single machine manufacturing four distinct products. The processing time for

these distinct products follows log-normal distribution, and the demand is assumed

to follow Poisson distribution.

The simulation output fitted for any of the following MDCFs, the one that best

fits the simulation output is used as the CF:

MDCF1 : THi =

(
C −∑

j �=i THj

)
WIP avg

i

Mi +WIP avg
i

∀i (2.22)

MDCF2 : THi =

(
C −∑

j �=i THj

)
WIP avg

i

Mi − bi(
∑

j �=i THj) +WIP avg
i

∀i (2.23)
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MDCF3 : THi =

(
C − ai

∑
j �=i THj

)
WIP avg

i

Mi − bi(
∑

j �=i THj) +WIP avg
i

∀i (2.24)

MDCF4 : THi =

(
C −∑

j �=i aj THj

)
WIP avg

i

Mi − (
∑

j �=i bj THj) +WIP avg
i

∀i (2.25)

MDCF5 : THi =

(
C −∑

j �=i aj WIP avg
j

)
WIP avg

i

Mi − (
∑

j �=i bj WIP avg
j ) +WIP avg

i

∀i (2.26)

MDCF6 : THi =
ai WIP avg

i + bi
∑

j �=i WIP avg
j

Mi + ci WIP avg
i + di

∑
j �=i WIP avg

j

∀i (2.27)

MDCF7 : THi =

∑
j aj WIP avg

i

Mi +
∑

j bj WIP avg
j

∀i (2.28)

where THi and WIP avg
i are the throughput and average WIP level of product i in

time units, C is the maximum resource capacity, Mi is the curvature factor, and ai,

aj, bi, bj, ci, and di are capacity scaling factors for product i, and j (where j �= i).

The first four MDCFs are throughput-based CFs, while the remaining are WIP-

based CFs. All of these MDCFs are derived based on the CF developed by Kar-

markar [35] for the M/M/1 queuing system, whereas the queuing behavior of the

manufacturing plant simulated in this work considers the M/G/1 queue.

Once the clearing function is developed using simulation, the MDCFs are fit to

the data using least squares regression. The conflict between the resource queuing

behavior of the simulation and the CF results in an underestimation of the throughput

at high WIP levels, and an overestimation of throughput at low WIP levels. The best

MDCF then enters the planning model described in the next section.

Aggregate production planning based MDCFs

The formulation uses the following notation:

Indices :

t Time index,

i Product index.

Parameters :

ϕi The cost of producing product i,

ωi The cost of holding WIP of product i,
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ρi The cost of releasing product i,

πi The cost of holding finished goods inventory of product i,

βi The cost of backorder for product i,

dit The demand of product i in period t,

εi The required time to produce product i.

V ariables :

Xit The total production quantity of product i in period t,

Rit The released quantity of product i in period t,

Wit The WIP level of product i in period t,

Iit The inventory level of the final product i in period t,

Bit The backorder quantity of product i in period t.

Objective function :

min z
∑
i,t

[ϕiXit + ωiWit + πiIit + ρiRit + βiBit] (2.29)

Subject to:

Ii,t−1 +Xit +Bi,t − Bi,t−1 − Ii,t = dit ∀i, t (2.30)

Wit = Wi,t−1 −Xit +Rit ∀i, t (2.31)

εi Xit ≤ MDCFi ∀i, t (2.32)

Xit, Wit, Iit, Rit, Bit ≥ 0 ∀i, t (2.33)

The objective function is to minimize the total costs of production, WIP and

finished goods inventory, release, and backorders costs, subject to material flow bal-

ance constraints for the finished goods (2.30) and WIP inventory (2.31). Production

is limited by the CF for machine capacity (2.32). (2.33) presents the nonnegative

constraint.

It should be noted that the method developed in [1] is for a single resource only.

While [3] can handle multiple resources, both approaches involve complex curve-fitting

from empirical data.

A research question investigated in this thesis is whether the manufacturing sys-

tem shop floor resource utilization could be represented in aggregate form (across
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resources). To answer this question, we consider the MVA, which is an approxima-

tion approach for closed-queuing networks. MVA has been successfully used in the

area of flexible manufacturing system (FMS) to capture the congestion of different

parts competing to be processed at the same machine [72]. The CONWIP system

is designed to operate as a closed queuing network, as we shall see in the following

section.

2.1.4 CONWIP

CONWIP is based on the closed queuing network concept and is a production control

system designed to overcome the shortcomings of the MRP and Kanban systems [67].

Kanban is a Japanese term for managing the movement of parts on the shop floor

through the production process. Unfortunately, Kanban only works in a repetitive

manufacturing environment with limited product variety. In CONWIP, the total WIP

level in the system is kept constant and is chosen to support the required production

rate. CONWIP is easier to implement, unlike Kanban that has a high degree of

complexity.

In a closed queuing network (CQN) such as CONWIP, the WIP level is controlled

to achieve a target production rate. In contrast, the consequence of releasing WIP

in an open queuing network sets the production rate. The CQN is more stable

since the production planning matches workload release decisions with actual resource

capacity. To maintain high service levels with a low WIP, the lead-time should match

the committed due date. Therefore, the CQN achieves the required production rate

with the lowest WIP level needed taking into account the congestion effect at the

production resources.

In addition to the aforementioned, CQN can also be used to model the open queu-

ing network. Dallery, David, and Xie [13] used the performance measure of a closed

queuing network to derive an approximation for an open queuing network. Park,

Kim, and Jun [60] proposed an approximation method based on MVA to estimate

the mean cycle time and the mean queue length for an open queuing network system.

MVA gets its name from the fact that it was first developed to study the first

moment of queue length for the exponential service time. It is based on a simple
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computation that relates the WIP level in the system to the production rate and lead-

time. Reiser and Lavenberg [62] studied a multi-chain closed queuing network with

multiple servers by developing an MVA method to calculate performance measures

such as production rate, mean waiting time, and queue length. Spearman [67] derived

an analytical approach based on MVA to compute the throughput of a closed queuing

network as a function of the WIP level in the system. While useful to an extent,

Spearman’s approach has limitations for high congestion stations.

Suri and Hildebrant [73] developed the mean value analysis for queues (MVAQ)

algorithm to predict the performance measure of closed flexible manufacturing sys-

tems producing distinct multiple products. An open question is whether this method

can be integrated into a production planning optimization model to capture the effect

of product mix in a multiple machines supply chain environment.

As discussed earlier, the CF is a concave non-linear mathematical representation

for the relationship between the shop floor load (WIP+release) and the production

system throughput. For that, the CF has to be linearized to be integrated into the

production planning optimization model. The next section will present the approaches

in the literature to linearizing such mathematical functions.

2.2 CF Linearization

The attempts in the literature to linearize a non-linear function, to make it solvable

in linear programming, can be classified into four major areas: fuzzy clustering, fixed

set of points, piecewise linearization, and outer approximation or outer linearization

using a cutting plane algorithm.

2.2.1 Fuzzy Clustering

Fuzzy clustering can be employed to linearize the concave CF into a set of linear

constraints using the method developed by Chiu [11] . This approach is applicable

for the single product case, or in the case of multiple products, for the partitioned

CF approach in Asmundsson, Rardin, and Uzsoy [4]. Omar [56] applied the fuzzy

clustering approach to linearize the CF constraint for the single product case through

a set of 10 linear equations to solve a production planning model.
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In this method, the center of a set of clustered portions is found. Then, the radius

of the cluster determines the correlation of the points spread around the center with

the cluster center in order to determine the members of the cluster. Finally, the

equation line corresponding to each cluster center is derived.

2.2.2 Fixed Points Set

The CF derived for multiple products produced in multiple machines can be repre-

sented by a set of fixed points [54]. These points are considered to be the WIP release

values to the shop floor. Unfortunately, the effects of the product mix on the CF has

been ignored.

2.2.3 Piecewise Linearization

Piecewise linearization is a way to represent the nonlinear function by a set of arbi-

trarily lines [17]. This is done by introducing these lines to subdivide a particular

interval (WIP level) that the nonlinear function lies on, as shown in Figure 2.4. Then,

values of the function at the line break-points can be calculated. The essential chal-

lenge of this approach is the appropriate number of lines that should be introduced

for the linearization. It should not be too few to minimize the approximation error

and not too many to keep the problem tractable.

Figure 2.4: Piecewise linearization

Vielma and Nemhauser [75] constructed a non-separable piecewise linear function

based on triangulating the domain of the nonlinear variable. This is done by adding
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extra constraints and a logarithmic number of binary variable to the formulation.

Thus, an optimal solution for the non-separable objective function may be found by

applying an independent branching and bound technique based on a special order

set for two variables. The branching is applied to the logarithmic binary variables

to approximate the value of the objective function by the piecewise linearization on

each triangle. Unfortunately, their methodology is applicable to a nonlinear objective

function but not for the nonlinear constraint that we have in the case of the integrated

CF. While constraints may be moved to the objective function using the Lagrangian

method, we prefer in this research to leave this technique for future research.

On the other hand, The CF can be linearized using outer approximation. This

function is a constraint in the production planning optimization model to ensure

that the production does not exceed available resource capacity. In this approach,

successive cuts are introduced until the problem converges to a limit solution with

acceptable error [50, 3, 29, 37].

2.3 Summary of the Literature

Firms failing to fulfill customer needs on time can lose their goodwill, which could

then lead to customer migration as the competition has been increased with the

globalization. Therefore, there is need for a reliable production plan which links the

customers demand with the firm resources and with the firm’s suppliers too. The

key factor for the success of this process is synchronizing the information and goods

flow between the supply chain parties. This can be done by estimating a realistic

production lead-time by addressing the firm’s resources utilization. As ignoring the

resource capacity limitation in production planning leads to shop floor congestion,

this then increases production lead-time.

The CF is applied to capture the non-linear relationship between production re-

source capacity loading and lead-time. The literature shows that research on incorpo-

rating analytical approximations for the CF for multi-stage supply chain environments

is beginning to gather interest. The capacity load at the upstream decision affects

the arrival of the lower stream and thus affects the shape of the CF [52].

In addition, various competing products will affect the shape of the CF, so the
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product mix should be included in the formulation of the production planning. Kar-

markar [35] proved this effect, and more recently for the case of multiple products, As-

mundsson, Rardin, Turkseven, and Uzsoy [3] and Albey, Bilge, and Uzsoy [1] present

a way to tackle this problem. Asmundsson, Rardin, Turkseven, and Uzsoy [3] con-

structed a multi-stage CF that they refer to as the allocated clearing function. Albey,

Bilge, and Uzsoy [1] derive a multi-dimensional disaggregation CF for a single stage

to show the effect of the product mix on the aggregate plan. To the best of our knowl-

edge, these papers represent the state-of-the-art in addressing the interaction between

products in a queuing environment. Moreover, the authors in [1] have shown that

in the absence of setup times, ACF performs quite well relative to multi-dimensional

disaggregation CFs.

The closed queuing literature shows that the MVA methodology can successfully

capture the effect of product mix on the performance of the network. Therefore,

for closed queuing networks, the relationship between throughput and available WIP

level may be derived based on the MVA approach, taking into account the effect of

congestion through the network.



Chapter 3

A Data Driven Approach to Estimate the Clearing Function

for Multi-Product Production Network Planning Based on

Mean-Value Analysis

It is widely accepted that there are two levels of production planning: aggregate at the

higher managerial planning level and disaggregate (detailed) at the shop floor or lower

managerial planning level. Ignoring the effect of congestion at the higher planning

level can make the disaggregate production plan infeasible and in such situations,

shop floor managers are left with difficult choices. The popular production-planning

tool MRP, which is used at the lower planning level assumes a fixed lead-time [57].

Unfortunately, this assumption leads to an overestimation of resource capacity leading

to an infeasible production plan.

To address this issue, queuing theory has been used in the literature to capture

the relationship between WIP level and resource throughput which takes the form of

a non-decreasing concave function, termed the CF. The CF models the effect of the

congestion on the aggregate plan and permits the production planner to decide on

shop floor release quantities at the higher planning level.

Recently, the production planning literature shows an increasing interest in differ-

ent ways of deriving the CF using analytical, simulation, or mixed approaches [52].

In addition, since the resource utilization depends on product mix, which may vary

from one period to another depending on the recommendation of the planning run

(which is usually a linear program), this needs to be taken into account.

One method suggested in the literature to model the CF in an aggregate planning

LP is to incorporate it for bottleneck machines only. In this chapter, we first show the

shortcomings of this approach. It has been pointed out in the scheduling literature

(e.g. Lawrence and Buss [43], Uzsoy and Wang [74]) that the representation of a

queuing network by a bottleneck resource alone can be misleading. We then suggest an

MIP formulation to estimate the clearing function at certain discrete WIP points using

34
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the MVA algorithm applicable in closed queuing network settings such as CONWIP

and show how the behavior of an entire queuing network may be encapsulated within

an aggregate planning model.

In this chapter, we show the deficiency of using the CF for the bottleneck machine

only for multi-product networks using two alternative methods of comparison: sim-

ulation for the open queuing network case and MVA for the closed queuing network

case. Section 3.1 presents the aggregate model and shows how congestion is mod-

eled in production planning LPs using the CF. Section 3.2 presents the basic queuing

formulas required for the bottleneck machine approach while section 3.3 shows the

MVA algorithm for closed queuing networks, such as CONWIP. Section 3.4 uses a

numerical example to demonstrate the deficiency of using the bottleneck approach.

Section 3.5 concludes the chapter by summarizing its main contributions.

3.1 Planning Model for Aggregate Production Planning

The aggregate planning problem formulation in Asmundsson, Rardin, Uzsoy [4] is as

follows:

Parameters :

πit Inventory holding cost of product i in time t,

wit WIP holding cost of product i in time t,

ρit Raw material release cost of product i in time t,

φit Production cost of product i in time t,

Dit Demand of product i in time t,

ft Clearing function in time period t.

Decision variables :

Xit Production quantity of product i in time t,

Rit Amount of raw material released of product i in time t,

Wit WIP level of product i in time t,

Iit Finished goods inventory level of product i in time t,

ξit Time required to produce unit product i in time t at the resource.
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Objective function :

min
∑
t

(ρitRit + witWit + φitXit + πitIit) (3.1)

Subject to:

Iit = Ii,t−1 +Xit −Dit ∀i, t (3.2)

Wit = Wi,t−1 +Rit −Xit ∀i, t (3.3)∑
i

ξitXit ≤ ft(
∑
i

ξitWit) ∀t (3.4)

Rit,Wit, Xit, Iit ≥ 0 ∀i, t (3.5)

The objective function of the model is to minimize the total raw material re-

lease, WIP level, production, and finished good inventory cost (3.1). Material flow

conservation for the finished goods and WIP inventory is shown in (3.2) and (3.3),

respectively. Production should not exceed machine capacity, which is represented by

the CF (3.4). Finally, the non-negativity constraints are shown in (3.5).

3.2 Bottleneck Machine CF Approach

The simplest version of the bottleneck machine CF approach is to consider the

M/M/1 model, which is characterized by Poisson arrivals and exponential service

times. It is possible to use other models such as the M/G/1 or the G/G/1, but in

any case, the approach relies on developing the CF for each product on its bottleneck

machine.

Using the notation in Buzacott and Shanthikumar [8]:

E[N ] The expected number of entities in the system (WIP level),

E[T ] The expected flow time of the entities in the system,

λm Arrival rate at machine m,

μm Service rate of machine m,

The first step in the analysis of the M/M/1 system is to calculate server utilization

ρ. In the case of a manufacturing network, the bottleneck machine is identified

by calculating the utilization of each server in the network using Equation 3.6 and



37

selecting the machine with the highest utilization rate:

ρ = max
m

(
λm

μm

)
(3.6)

Let the bottleneck machine be b, i.e.,

b = argmax
m

(
λm

μm

)
(3.7)

Secondly, the expected flow time of the entities in the system can be calculated

by the following equation:

E[T ] =
ρ

λb(1− ρ)
=

1

μb − λb

(3.8)

Thirdly, system throughput, which also may be represented by the arrival rate

(λb) in steady-state, can be found from Equation 3.6, Equation 3.8 and Little’s law,

from which E[N ] = λbE[T ]. Thus, the clearing function is given by:

λb =
E[N ]μb

E[N ] + 1
(3.9)

3.3 MVA Algorithm Development for the Integrated CF Approach

The MVA algorithm can capture the non-linear relationship between the workload and

the throughput for closed queuing networks for multiple products. In this approach,

products are allowed to have different processing times and routings. It is also possible

for some products to revisit a machine more than once along their production route,

which is common in semiconductor manufacturing.

The MVA algorithm is presented in Suri and Hildebrant [73]. This procedure

can be used to model the behavior of a production facility based on the following

parameters, using the notation in Askin and Standridge [2]:

• Number of jobs in process Np, where p = 1, ..., P are the product types.

• Number of servers cj at workstation j.

• Mean processing time μ−1jp of product p at workstation j.
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• Number of visits vjp of product p to workstation j.

The objective of the MVA algorithm is to find the expected lead-time Ljp, pro-

duction rate Xp, and WIP level Wjp, as follows:

Step 1 : Initialize the iteration counter τ = 0, and compute the initial WIP level

in the system W 0
jp = Np

Zp
, where Zp is the number of workstations visited by

product p.

Step 2 : Update Lτ
jp,

τ = τ + 1,

Calculate Lτ
jp = μ−1jp + Np−1

Np
W τ

jpμ
−1
jp +

∑
r �=p(W

τ
jrμ

−1
jr ) ∀j, p ,

or Lτ
jp =

μ−1
jp

cj
+ Np−1

Np
W τ

jp

μ−1
jp

cj
+

∑
r �=p(W

τ
jr

μ−1
jr

cj
) in case the number of servers at

the workstations is more than one.

Step 3 : Update production rate Xτ
p ,

Calculate Xτ
p = Np

∑M
j=1 vjpL

τ
jp

∀p.

Step 4 : Update W τ
jp,

Calculate W τ
jp = Xτ

p (vjpL
τ
jp) ,

If (W
τ
jp−W τ−1

jp

W τ
jp

) > ε go to Step 2; else stop. Here, ε is an arbitrarily small number.

This algorithm can provide the inputs to an aggregate planning model to model

multiple resources multiple products CFs. However, a critical step in this approach

is to choose the WIP level Np of product p, as will be discussed later in Section 3.4.2.

3.4 Numerical Example

We now look at a numerical example to evaluate the difference between the bottleneck

machine CF and the integrated CF approach. The example presented is taken from

the wafer fabrication facility described in Kayton, Teyner, Schwartz, and Uzsoy [36]

with three differences. First, the case presented in the original paper has batching

in machines 1 and 2 and also unreliable machines. For simplicity, we ignore batching

and machine reliability. Second, the lognormal distribution is proposed for processing



39

times in Kacar, Irdem, and Uzsoy [29], who also study this case. Third, the shop

floor runs 8 hours per day, 7 days per week. In this chapter, we assume exponential

processing times. The assumption of exponential processing times and no failures

makes the problem of getting a good fit via MVA a lot easier.

The shop floor comprises eleven stations (see Figure 3.1) and produces three dif-

ferent products with the same processing time on the stations when a product visits

a station. However, the routings are different for each product. The product rout-

ings are shown in Figure 3.1. The average machine processing time for the different

products and the number of visits to each machine are shown in Tables 3.1 and 3.2

respectively. Kacar, Irdem, and Uzsoy [29] identified station 4 as the bottleneck for

the products when the product ratio is 3:1:1. The bottleneck machine could in fact

change based on the product mix recommended by the aggregate planning LP.

Figure 3.1: Production routings as taken directly from Kayton et al. [36]

Table 3.1: Machine processing time

Machines
1 2 3 4 5 6 7 8 9 10 11

Processing Time (min) 80 220 45 40 25 22 20 100 50 50 70
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Table 3.2: Number of visits

Product Machine Total1 2 3 4 5 6 7 8 9 10 11

Number of Visit
1 3 1 1 6 3 2 3 1 1 1 0 22
2 2 1 1 4 1 2 1 0 1 1 0 14
3 2 1 1 0 1 2 1 0 1 1 4 14

3.4.1 Analysis Using the M/M/1 Bottleneck Machine CF Approach

The arrival rate for the three products are shown in Table 3.3.

Table 3.3: Interarrival time

Product 1 Product 2 Product 3
Interarrival Time

(min) 300 350 330

The CF for the M/M/1 requires identifying the bottleneck machine, defined as

the machine with the highest effective utilization rate. The effective arrival rate at

each station for a re-entrant system can be calculated using Equation 3.10. In this

equation, Nim is the number of visits by product i to machine m, PMi is the product

mix proportion and λi represents the product i arrival rate. PMi is a multiplication

factor applied to the nominal arrival rate λi; it will be used later in this chapter to

model a range of product combinations typical in manufacturing systems by enforc-

ing
∑

i PMi = 1. The number of visits Nim is considered because in a re-entrant

production environment, products may need to visit a machine more than once on

their production process route.

λm =
∑
i=1

(NimPMiλi) (3.10)

Then, the bottleneck machine is identified by using Equation 3.11, with the highest

value of effective utilization.

ρe = max
m

(
λm

μm

) (3.11)

In the first numerical experiment, the arrival rate of products 2 and 3 in the
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network are set to zero, and the arrival rate of product 1 (λ1) is varied. For this case,

both stations 1 and 4 are bottlenecks. From Table 3.3, λ1 = 60/300 = 0.2 in units

per hour. This value is multiplied by a factor between 0.1 to 1.2, as illustrated in

Table 3.4. For product 1 on station 1, since the processing time is 80 minutes, the

station service rate is μ1 = 60/80 = 0.75. It can be seen in Table 3.4 that the arrival

rate of product 1 cannot be multiplied by 1.25 or more in order to ensure that ρe < 1

and the system is stable. The ρe < 1 values for station 4 are also identical because

the processing time on station 4 is double, as is the number of visits.

Table 3.4: Effect of product 1 arrival rate at station 1 in M/M/1 model

Multiplier
N1 λ1 (h) Effective

μm=1 (h) Effective
Factor λm=1 ρe

0.1 3 0.2 0.06 0.75 0.08
0.2 3 0.2 0.12 0.75 0.16
0.3 3 0.2 0.18 0.75 0.24
0.4 3 0.2 0.24 0.75 0.32
0.5 3 0.2 0.30 0.75 0.40
0.6 3 0.2 0.36 0.75 0.48
0.7 3 0.2 0.42 0.75 0.56
0.8 3 0.2 0.48 0.75 0.64
0.9 3 0.2 0.54 0.75 0.72
1.0 3 0.2 0.60 0.75 0.80
1.1 3 0.2 0.66 0.75 0.88
1.2 3 0.2 0.72 0.75 0.96
1.25 3 0.2 0.75 0.75 1.00
1.3 3 0.2 0.78 0.75 1.04

The M/M/1 WIP levels are calculated for effective utilization (ρe) values using the

following relation in [6]: WIP = ρ/(1− ρ). These values are contrasted in Figure 3.2

against the WIP obtained from an open queuing simulation model of the network as

well as the MVA method for the closed queuing network case . This figure also shows

the 95% confidence lower and upper bounds of WIP observed from the simulation

model (these values are very close and sometimes not visible on the subgraph). Also,

the WIP levels for the bottleneck M/M/1 are multiplied by a scale factor of 10 in

the subgraph on top. It should be noted that the WIP level is very low because in

the bottleneck M/M/1 case, it is the WIP at machine 1. On the other hand, in the

MVA and simulation cases, the WIP value is the total WIP across all 11 machines.
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The bottom subgraph in Figure 3.2 shows the WIP-Throughput relationship (CF)

for the M/M/1 case and the shape of the non-linear curve can be seen clearly.

Figure 3.2: The CFs of M/M/1, MVA, and open queuing network simulation (upper
and lower bounds)

In the next set of experiments, we look at different proportions of the three prod-

ucts summing up to 1, as shown in Table 3.5. The sets shown in Table 3.5 are

such that there are two active and one inactive product in any row. These are just

representative combinations, it is possible to have all three active products so long

as the queuing network is stable for the open queuing network case. Note that the

product proportions are based on 6 steps, i.e., the step size is 1/6 ≈ 0.17. It is also

worth noting that several product mix sets are considered in Table 3.5, as opposed

to one product mix (3:1:1) in Asmundsson, Rardin, Turkseven, and Uzsoy [3], which

correspond to (0.6, 0.2, 0.2) in our product mix construction. The corresponding

arrival rates for products 1, 2, and 3 turn out to be 0.2, 0.17, and 0.18 units per hour

respectively.

For each product mix, the bottleneck machine is identified by first calculating the

effective arrival rate at each machine using Equation 3.10. Consider the third prod-

uct mix (0.34, 0.66, and 0) in the first set of Table 3.5. Table 3.6 shows the effective

arrival rate for the 11 stations. For this product mix, station 2 is the bottleneck,
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Table 3.5: List of the product mix sets

Set Product Mix
P1 P2 P3

1

0 1 0
0.17 0.83 0
0.34 0.66 0
0.50 0.50 0
0.67 0.33 0
0.83 0.17 0
1 0 0

2

0 0 1
0.17 0 0.83
0.34 0 0.66
0.50 0 0.50
0.67 0 0.33
0.83 0 0.17
1 0 0

3

0 0 1
0 0.17 0.83
0 0.34 0.66
0 0.50 0.50
0 0.67 0.33
0 0.83 0.17
0 1 0
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as indicated by the (*) symbol since the value of λm/μm is the highest for this row

in the table. Table 3.7 shows the bottleneck station for each of the product mixes

of Table 3.5. It can be clearly seen that the bottleneck machine changes its loca-

tion based on the product mix.
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Table 3.6: Effective arrival rates for product mix (0.33, 0.67, 0)

Stn(m) μm (�) Number of Visits Product Mix Arrival Rate (units\h) Effect.
ρmN1 N2 N3 P1 P2 P3 λ1 λ2 λ3 λm

1 0.75 3 2 2 0.33 0.67 0 0.2 0.17 0.18 0.43 0.57
2∗ 0.27 1 1 1 0.33 0.67 0 0.2 0.17 0.18 0.18 0.66
3 1.33 1 1 1 0.33 0.67 0 0.2 0.17 0.18 0.18 0.14
4 1.50 6 4 0 0.33 0.67 0 0.2 0.17 0.18 0.86 0.57
5 2.40 3 1 1 0.33 0.67 0 0.2 0.17 0.18 0.31 0.13
6 2.73 2 2 2 0.33 0.67 0 0.2 0.17 0.18 0.36 0.13
7 3.00 3 1 1 0.33 0.67 0 0.2 0.17 0.18 0.31 0.10
8 0.60 1 0 0 0.33 0.67 0 0.2 0.17 0.18 0.07 0.11
9 1.20 1 1 1 0.33 0.67 0 0.2 0.17 0.18 0.18 0.15
10 1.20 1 1 1 0.33 0.67 0 0.2 0.17 0.18 0.18 0.15
11 0.86 0 0 4 0.33 0.67 0 0.2 0.17 0.18 0.00 0.00
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Table 3.7: Bottleneck machine for each product mix set

Set Product Mix Bottleneck
P1 P2 P3 Machine

1

0 1 0 2
0.17 0.83 0 2
0.34 0.66 0 2
0.50 0.50 0 2
0.67 0.33 0 2
0.83 0.17 0 1
1 0 0 1

2

0 0 1 11
0.17 0 0.83 11
0.34 0 0.66 2
0.50 0 0.50 2
0.67 0 0.33 2
0.83 0 0.17 1
1 0 0 1

3

0 0 1 11
0 0.17 0.83 11
0 0.34 0.66 2
0 0.50 0.50 2
0 0.67 0.33 2
0 0.83 0.17 2
0 1 0 2

4 0.6 0.2 0.2 2

3.4.2 Analysis Using the MVA CF Approach

A critical input in developing the CF for the MVA case is the WIP level of the system.

In order to estimate a reasonable value of WIP, an open queuing simulation model of

the network is used. For each product mix, the open queuing network is simulated and

the average WIP is estimated for a 95% confidence interval. The simulation model

is run for 400 replications with a run length of 100 days per replication. Table 3.8

shows the resulting WIP and half-width of the WIP. Using the WIP levels from the

simulation output of the open queuing network, the MVA method is used to find the

throughput of an equivalent closed queuing system, as can be seen in Table 3.9.
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Table 3.8: Simulation WIP

Set
Product Mix Simulation WIP Half Width 95%

P1 P2 P3 WIP1 WIP2 WIP3 P1 P2 P3

1

0 1 0 0.00 4.17 0.00 0.00 0.06 0.00
0.17 0.83 0 1.16 3.69 0.00 0.02 0.05 0.00
0.34 0.66 0 2.51 3.19 0.00 0.01 0.01 0.00
0.50 0.50 0 4.14 2.60 0.00 0.06 0.04 0.00
0.67 0.33 0 6.10 1.91 0.00 0.10 0.03 0.00
0.83 0.17 0 8.83 1.10 0.00 0.17 0.03 0.00
1 0 0 12.38 0.00 0.00 0.26 0.00 0.00

2

0 0 1 0.00 0.00 9.22 0.00 0.00 0.25
0.17 0 0.83 1.08 0.00 5.62 0.02 0.00 0.10
0.34 0 0.66 2.36 0.00 4.10 0.04 0.00 0.06
0.50 0 0.50 3.83 0.00 2.93 0.05 0.00 0.05
0.67 0 0.33 5.69 0.00 1.97 0.09 0.00 0.04
0.83 0 0.17 8.34 0.00 1.03 0.16 0.00 0.02
1 0 0 12.38 0.00 0.00 0.26 0.00 0.00

3

0 0 1 0.00 0.00 9.22 0.00 0.00 0.25
0 0.17 0.83 0.00 0.65 5.39 0.00 0.01 0.09
0 0.34 0.66 0.00 1.35 3.82 0.00 0.02 0.06
0 0.50 0.50 0.00 1.99 2.54 0.00 0.03 0.04
0 0.67 0.33 0.00 2.69 1.57 0.00 0.04 0.02
0 0.83 0.17 0.00 3.37 0.76 0.00 0.05 0.01
0 1 0 0.00 4.17 0.00 0.00 0.06 0.00
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Table 3.9: MVA throughput

Set
Product Mix MVA WIP MVA Throughput

P1 P2 P3 WIP1 WIP2 WIP3 Th1 Th2 Th3

1

0 1 0 0.00 4.17 0.00 0.00 0.20 0.00
0.17 0.83 0 1.16 3.69 0.00 0.04 0.16 0.00
0.34 0.66 0 2.51 3.19 0.00 0.07 0.13 0.00
0.50 0.50 0 4.14 2.60 0.00 0.11 0.09 0.00
0.67 0.33 0 6.10 1.91 0.00 0.14 0.06 0.00
0.83 0.17 0 8.83 1.10 0.00 0.18 0.03 0.00
1 0 0 12.38 0.00 0.00 0.21 0.00 0.00

2

0 0 1 0.00 0.00 9.22 0.00 0.00 0.20
0.17 0 0.83 1.08 0.00 5.62 0.04 0.00 0.17
0.34 0 0.66 2.36 0.00 4.10 0.07 0.00 0.14
0.50 0 0.50 3.83 0.00 2.93 0.11 0.00 0.10
0.67 0 0.33 5.69 0.00 1.97 0.14 0.00 0.07
0.83 0 0.17 8.34 0.00 1.03 0.18 0.00 0.03
1 0 0 12.38 0.00 0.00 0.21 0.00 0.00

3

0 0 1 0.00 0.00 9.22 0.00 0.00 0.20
0 0.17 0.83 0.00 0.65 5.39 0.00 0.03 0.17
0 0.34 0.66 0.00 1.35 3.82 0.00 0.06 0.14
0 0.50 0.50 0.00 1.99 2.54 0.00 0.10 0.10
0 0.67 0.33 0.00 2.69 1.57 0.00 0.13 0.07
0 0.83 0.17 0.00 3.37 0.76 0.00 0.16 0.04
0 1 0 0.00 4.17 0.00 0.00 0.20 0.00
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3.4.3 Comparison of Results

The WIP level using the different approaches (bottleneck M/M/1 and simulation

or MVA) for each of the product mixes is shown in Table 3.10. The simulation or

MVA WIP level is roughly three times higher than in the M/M/1 case because the

simulation WIP is a total across the 11 stations, while the M/M/1 WIP is at the

bottleneck machine only.

The throughput of the system using the three approaches (bottleneck M/M/1,

open network simulation, and MVA) for each of the product mixes is shown in Ta-

ble 3.11. In the M/M/1 estimation, the bottleneck machine used for the calculation

depends on the product mix and changes according to Table 3.7. Table 3.11 can

also be presented graphically. Since in each set, only two products are active, Fig-

ures 3.3, 3.4 and 3.5 show system throughput as a function of product mix. In each

of these figures, when the proportion of a product is increased (the x-axis in the top

part of each figure), the corresponding proportion of the other product decreases (the

x-axis in the bottom part of each figure).

Figure 3.3: Increasing product 1 while decreasing product 2 WIP level

It is expected that as the product proportion increases (or decreases), its through-

put also increases (or decreases), though it is expected to taper off asymptotically.
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Table 3.10: WIP analysis

Set
M/M/1 Simulation

WIP1 WIP2 WIP3 WIP1 WIP2 WIP3

1

0.00 1.69 0.00 0.00 4.17 0.00
0.35 1.48 0.00 1.16 3.69 0.00
0.73 1.25 0.00 2.51 3.19 0.00
1.15 0.99 0.00 4.14 2.60 0.00
1.62 0.69 0.00 6.10 1.91 0.00
2.59 0.30 0.00 8.83 1.10 0.00
4.00 0.00 0.00 12.38 0.00 0.00

2

0.00 0.00 5.60 0.00 0.00 9.22
0.00 0.00 2.41 1.08 0.00 5.62
0.79 0.00 1.43 2.36 0.00 4.10
1.22 0.00 1.11 3.83 0.00 2.93
1.69 0.00 0.77 5.69 0.00 1.97
2.64 0.00 0.32 8.34 0.00 1.03
4.00 0.00 0.00 12.38 0.00 0.00

3

0.00 0.00 5.60 0.00 0.00 9.22
0.00 0.00 2.41 0.00 0.65 5.39
0.00 0.61 1.28 0.00 1.35 3.82
0.00 0.89 0.95 0.00 1.99 2.54
0.00 1.17 0.62 0.00 2.69 1.57
0.00 1.43 0.30 0.00 3.37 0.76
0.00 1.69 0.00 0.00 4.17 0.00
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Table 3.11: Throughput analysis

Set M/M/1 Simulation MVA
P1 P2 P3 P1 P2 P3 P1 P2 P3

1

0.00 0.17 0.00 0.00 0.16 0.00 0.00 0.20 0.00
0.07 0.16 0.00 0.03 0.14 0.00 0.04 0.16 0.00
0.11 0.15 0.00 0.06 0.11 0.00 0.07 0.13 0.00
0.15 0.14 0.00 0.10 0.08 0.00 0.11 0.09 0.00
0.17 0.11 0.00 0.13 0.05 0.00 0.14 0.06 0.00
0.54 0.17 0.00 0.16 0.03 0.00 0.18 0.03 0.00
0.60 0.00 0.00 0.19 0.00 0.00 0.21 0.00 0.00

2

0.00 0.00 0.73 0.00 0.00 0.19 0.00 0.00 0.20
0.00 0.00 0.61 0.03 0.00 0.14 0.04 0.00 0.17
0.12 0.00 0.16 0.06 0.00 0.12 0.07 0.00 0.14
0.15 0.00 0.14 0.10 0.00 0.09 0.11 0.00 0.10
0.17 0.00 0.12 0.13 0.00 0.06 0.14 0.00 0.07
0.54 0.00 0.18 0.16 0.00 0.03 0.18 0.00 0.03
0.60 0.00 0.00 0.19 0.00 0.00 0.21 0.00 0.00

3

0.00 0.00 0.73 0.00 0.00 0.19 0.00 0.00 0.20
0.00 0.00 0.61 0.00 0.03 0.14 0.00 0.03 0.17
0.00 0.10 0.15 0.00 0.05 0.12 0.00 0.06 0.14
0.00 0.13 0.13 0.00 0.08 0.09 0.00 0.10 0.10
0.00 0.15 0.10 0.00 0.11 0.06 0.00 0.13 0.07
0.00 0.16 0.06 0.00 0.13 0.03 0.00 0.16 0.04
0.00 0.17 0.00 0.00 0.16 0.00 0.00 0.20 0.00
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Figure 3.4: Increasing product 1 while decreasing product 3 WIP level

Figure 3.5: Increasing product 2 while decreasing product 3 WIP level
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This phenomenon is seen in both the simulation and MVA methods in Figures 3.3, 3.4

and 3.5. However, there are anomalies in the bottleneck M/M/1 approach. For ex-

ample, in Figure 3.3, the throughput of product 2 increases even though its WIP

decreases when going from a proportion of 0.33 to 0.17. This is because the bottle-

neck of the system changes from station 2 to station 1 (refer to Table 3.7) and the

throughput of product 2 gets overestimated. The same phenomenon is observed for

product 3 in Figure 3.4 as its proportion decreases from 0.33 to 0.17. On the other

hand, the throughput of product 2 when product mix is 1 in Figures 3.3 and 3.5,

using the M/M/1 model lies between the throughput estimations of the MVA and

the open network simulation.

Thus, there are significant conceptual and numerical differences between the bot-

tleneck M/M/1 CF approach and the MVA or simulation CF approaches. Since the

MVA or simulation looks at the system as a whole (all products and all stations are

considered simultaneously), it provides a more accurate representation of the produc-

tion network capacity than the bottleneck approach. This is despite the fact that

the bottleneck M/M/1 model accounts for the shifting bottleneck as the product mix

changes.

3.5 Conclusions and Future Work

This chapter demonstrates how the effect of product mix can be taken into account

while developing the CF for a multi-product production network. It also presents

the conceptual difference between the bottleneck M/M/1 and MVA CF approaches

and identifies the weakness of the former. It is apparent that using the MVA CF

approach provides consistent results for use in aggregate production planning. From

this, a data driven CF MIP is presented in the next chapter as an alternative to the

ACF model in Asmundsson, Rardin, Turkseven, and Uzsoy [3]. It would be interesting

to see whether the release decisions can be made continuous through an alternative

formulation.



Chapter 4

Data Driven Aggregate Production Planning Model based on

Queuing Network WIP/Throughput Estimates

PPC is a function within a firm’s ERP system required to plan and fulfill customer

demand. PPC synchronizes the flow of planning information throughout a firm’s

hierarchical planning levels. It assigns available shop floor capacity (e.g. resource,

material, personnel, etc.) to different products according to anticipated customer

demand. The top level in the hierarchy is aggregate planning, where gross customer

demand is matched with existing supply. In the second planning level, the MPS

specifies the order release size and timing to cater to customer demand. Finally, the

MRP translates the former plans into a detailed production plan of the required raw

materials based on products BOM.

The essential coordination factor between aggregate planning, MPS, and MRP

levels is material lead time. Material lead time or flow time is the total time that the

material spend in the shop floor to be processed, including queuing, batching, and

processing, to constitute the finished product [25].

The classical aggregate planning model in the literature is based on fixed material

lead times, which could affects the feasibility of a production plan. From queuing

theory, it is well known that the material lead time increases nonlinearly as the server

utilization gets closer to 100%. Therefore, the concept of the CF was developed in

the production planning literature to capture this relationship [35]. The CF concept

can greatly enhance the feasibility of an aggregate production planning solution since

it incorporates the congestion effect.

Most of the analytical approaches in the literature are focused on deriving the CF

for the bottleneck resource. However, as seen in the previous chapter, the location of

the bottleneck shifts based on the release decision (product mix). Also, the queuing

network perspective provides a much better estimate of the relationship between WIP

and throughput.

54
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In this chapter, we look at how the CF for a closed-queuing multi-product man-

ufacturing system such as the CONWIP can be incorporated into an aggregate pro-

duction planning model to optimize the release of parts to the shop floor. In doing so,

the queuing network aspect of the CF is explicitly recognized instead of the indirect

approach using bottleneck machines.

This is a robust method because the use of CONWIP only makes the MVA ap-

proach more accurate; a simulation, or open or closed queuing network analysis, for

example, would not need CONWIP, but could still provide data for the proposed

approach.

The reminder of this chapter is organized as follows: Section 4.1 proposes an

aggregate production planning model. Section 4.2 presents the numerical example.

Section 4.3 shows model results and sensitivity analysis scenarios to gain a deeper

understanding of the model. Section 4.4 presents supplementary constraint and vari-

ables to decrease the computational time. Finally, the summary of the chapter is

presented in Section 4.5.

4.1 Fixed Points Release (FPR) Model

The aggregate planning model of Asmundsson, Rardin, and Uzsoy [4] is formulated

for each product i, each stage or resource n, and each period t. In fact, Asmundsson,

Rardin, Turkseven, and Uzsoy [3] build an aggregate CF at each resource and then

allocate it to the different products using a reservation variable Zn
it for each product

i on resource n in time t such that
∑

i Z
n
it = 1 ∀n, ∀t.

In this chapter, we take an alternative approach and present an aggregate pro-

duction planning model extending the one in Mrishih [54]. The model could be

thought of as a data-driven CF estimation approach since it uses estimates of the

WIP/Throughput relationship at certain discrete WIP values of each product. The

WIP and throughput estimates take a queuing network perspective, and as such are

not broken down by resource. In what follows, the WIP and throughput values are

estimated using MVA for a closed-queuing network example such as the CONWIP

manufacturing system.

The idea here is to use patterns (combinations of product quantities) which result

in discrete permissible values of WIP in each period. A binary variable is introduced
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to make sure that only one of the proposed WIP patterns is active in a given time

period. In what follows, the favors pattern and combination are used interchangeably.

The MIP model for the data-driven CF approach is formulated as follows (we call it

the fixed points release model from here on):

FPR-MIP model

Indices :

g Product index,

p Period index,

r Release index.

Parameters :

xg Raw material release cost of product g,

wg WIP holding cost of product g,

hg Inventory holding cost of product g,

bg Backorder cost of product g,

dgp Demand of product g at period p,

Qgr WIP releasing pattern (MVA input) of product g in WIP pattern r,

Ogr Production throughput based on MVA output of product g in WIP pattern r.

Decision V ariables :

Ygp Production quantity of product g in period p,

Xgp Amount of raw material released of product g in period p,

Wgp WIP level of product g in period p,

Igp Finished goods inventory level of product g in period p,

Bgp Backorder level of product g in period p,

Zrp =

⎧⎨
⎩1, if WIP pattern r is chosen in period p

0,Otherwise
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Objective function :

min
∑
g∈G

∑
p∈P

(xgXgp + wgWgp + hgIgp + bgBgp) (4.1)

Subject to :

Wgp = Wg,p−1 +Xgp − Ygp ∀g ∈ G, p ∈ P (4.2)

Igp = Ig,p−1 + Ygp − Bg,p−1 +Bgp − dgp ∀g ∈ G, p ∈ P (4.3)

Wgp =
∑
r∈R

QgrZrp ∀g ∈ G, p ∈ P (4.4)

Ygp =
∑
r∈R

OgrZrp ∀g ∈ G, p ∈ P (4.5)

∑
r∈R

Zrp = 1 p ∈ P (4.6)

Ygp, Igp, Bgp, Wgp, Xgp ≥ 0 ∀g ∈ G, p ∈ P (4.7)

Zrp ∈ {0, 1} ∀r ∈ R, p ∈ P (4.8)

The objective function is to minimize the sum of raw material release, WIP release,

inventory, and backorder costs. Constraints (4.2), (4.3) are the flow conservation con-

straint for WIP and finished goods inventory. The WIP-Throughput relationship (to

model congestion) is represented by constraints (4.4), (4.5) and (4.6). Constraint (4.4)

states that the system WIP is equal to the WIP represented by discrete WIP pat-

terns for which the throughput of the system is estimated using MVA. Constraint (4.5)

states that the throughput of the system is equal to the MVA estimate for a given

WIP pattern. Constraint (4.6) ensures that only one of the WIP patterns is chosen.

Finally, constraints (4.7), (4.8) are the non-negativity constraint for the model vari-

ables, and the binary constraint for the WIP pattern choice variable Zrp, respectively.

Therefore, this formulation has 5|G||P | continuous decision variables, |R||P | binary

variables, and 4|G||P |+|P | constraints.

As can be seen in the model, the CF is no longer modeled on an individual resource

(workstation) basis; rather, a set of WIP patterns is generated beforehand and for

each WIP pattern, the corresponding throughput of each product is estimated using
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the MVA (the estimates could also come from an open or closed queuing network

simulator).

4.2 Illustrative Example of the Data-Driven CF Aggregate Planning

Model

The example presented in Chapter 3 is used to illustrate how the patterns are gener-

ated. Table 4.1 shows the different product mixes considered in the model, the WIP

values in the patterns (Q), and system throughput computed by the MVA approxi-

mation (O) and can be built as follows:

1. The first step is to decide on how interesting WIP patterns can be generated.

Since there are three products, using a step size of three for example, the prod-

uct mix ratios are stratified as 0.0, 0.33, 0.67, or 1.0. Since the product mix

proportions of each product should add to up to one (with the exception of 0.0,

0.0, 0.0), there are 11 resulting combinations. The (0.0, 0.0, 0.0) combination

is a valid option because the aggregate planning model should be allowed to

decide to produce nothing in a particular period.

2. In the second step, for each product mix, the WIP level is estimated using an

open network simulation of the production queuing network. Strictly speaking,

the WIP patterns can be chosen directly, but using the product mix proportion

approach makes the choice systematic and provides good calibration of the

inputs. In a practical application, the pattern mixes should cover the arrival

proportions of the various products.

3. In the third step, the MVA algorithm is run for each WIP combination to

obtain product throughputs which can then be entered into FPR, the data-

driven aggregate planning MIP model. Although, an open queuing network

simulation model is used to obtain representative WIP levels, the throughput

estimates are for a closed queuing network, which is stable by definition.

The demand for the three products in each time period are first randomly gener-

ated between 0 and 1. Then, the three numbers are normalized so that the sum of
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Table 4.1: Pattern, product mix, WIP, and throughput

Pattern Product Mix WIP (units) MVA Throughput
(units\week)

1 2 3 Q1 Q2 Q3 O1 O2 O3
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 1.00 0.00 0.00 9.22 0.00 0.00 11.10
3 0.00 0.33 0.67 0.00 1.35 3.82 0.00 3.63 7.79
4 0.00 0.67 0.33 0.00 2.69 1.57 0.00 7.33 3.88
5 0.00 1.00 0.00 0.00 4.17 0.00 0.00 10.98 0.00
6 0.33 0.00 0.67 2.36 0.00 4.10 4.12 0.00 7.64
7 0.33 0.33 0.33 2.40 1.55 1.75 4.13 3.61 3.86
8 0.33 0.67 0.00 2.51 3.19 0.00 4.11 7.17 0.00
9 0.67 0.00 0.33 5.69 0.00 1.97 8.11 0.00 3.80
10 0.67 0.33 0.00 6.10 1.91 0.00 8.09 3.50 0.00
11 1.00 0.00 0.00 12.38 0.00 0.00 11.88 0.00 0.00

the product mix is 1.00. Finally, the normalized numbers are multiplied by the cor-

responding arrival rate for each product and the weekly working hours, as shown in

Table 4.2 to obtain the demand in units/week. The cost coefficients of raw material,

WIP, inventory, and backorder used in the example are 3, 7, 15, and 20 respectively.

Table 4.2: Generated demand

Period Random Number Sum Normalized RN Sum
Demand

(units\week)
P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0.75 0.04 0.23 1.02 0.73 0.04 0.23 1.00 8.22 0.34 2.35
2 0.97 0.80 0.08 1.85 0.52 0.43 0.04 1.00 5.87 4.17 0.43
3 0.03 0.87 0.57 1.47 0.02 0.59 0.39 1.00 0.26 5.68 3.92
4 0.79 0.28 0.20 1.27 0.62 0.22 0.16 1.00 6.99 2.11 1.59
5 0.94 0.26 0.25 1.45 0.65 0.18 0.17 1.00 7.28 1.72 1.75
6 0.74 0.60 0.94 2.28 0.33 0.26 0.41 1.00 3.66 2.52 4.18
7 0.99 0.11 0.78 1.88 0.52 0.06 0.42 1.00 5.87 0.57 4.24
8 0.99 0.15 0.11 1.25 0.79 0.12 0.09 1.00 8.87 1.17 0.87
9 0.80 0.88 0.58 2.25 0.35 0.39 0.26 1.00 3.95 3.75 2.61
10 0.88 0.18 0.03 1.08 0.81 0.17 0.03 1.00 9.04 1.60 0.27

The data-driven aggregate planning MIP now is run and the optimal plan gen-

erated for 10 periods, where the length of each period is 7 days and each day has 8

working hours. Table 4.3 shows the optimal FPR model solution using the allowable
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WIP patterns for products 1, 2, and 3. The model selects the appropriate product

mix in each period, and uses an initial WIP of 12.38 units for product 1. This WIP

level is one of the discrete release patterns. The model also chooses an inventory

level of 0.34 and 2.83 for product 2 and 3 respectively. While the initial WIP and

inventory are parameters in the model, we chose to let these be variables to decrease

computation time and ensure feasibility. However, in a practical computation, the

actual value initial WIP should be used.
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Table 4.3: FPR model output

Period X Y W I B D
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2.01 3.19 0.00 11.88 0.00 0.00 2.51 3.19 0.00 3.67 0.00 0.49 0.00 0.00 0.00 8.22 0.34 2.35
2 4.00 5.53 1.75 4.11 7.17 0.00 2.40 1.55 1.75 1.91 3.00 0.06 0.00 0.00 0.00 5.87 4.17 0.43
3 1.73 2.07 2.11 4.13 3.61 3.86 0.00 0.00 0.00 5.77 0.94 0.00 0.00 0.00 0.00 0.26 5.68 3.92
4 5.69 0.00 1.97 0.00 0.00 0.00 5.69 0.00 1.97 0.00 0.00 0.00 1.22 1.17 1.59 6.99 2.11 1.59
5 4.82 1.55 3.57 8.11 0.00 3.80 2.40 1.55 1.75 0.00 0.00 0.46 0.38 2.89 0.00 7.28 1.72 1.75
6 4.13 3.61 3.86 4.13 3.61 3.86 2.40 1.55 1.75 0.09 0.00 0.14 0.00 1.80 0.00 3.66 2.52 4.18
7 14.11 2.07 2.11 4.13 3.61 3.86 12.38 0.00 0.00 0.00 1.24 0.00 1.66 0.00 0.23 5.87 0.57 4.24
8 1.91 1.55 1.75 11.88 0.00 0.00 2.40 1.55 1.75 1.35 0.07 0.00 0.00 0.00 1.10 8.87 1.17 0.87
9 7.83 3.98 2.11 4.13 3.61 3.86 6.10 1.91 0.00 1.53 0.00 0.15 0.00 0.07 0.00 3.95 3.75 2.61
10 1.98 1.59 0.00 8.09 3.50 0.00 0.00 0.00 0.00 0.57 1.83 0.00 0.00 0.00 0.12 9.04 1.60 0.27
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4.3 Results and Sensitivity Analysis

To obtain insight into how changing the model parameters and the demand pattern

affects the behaviour of the FPR-MIP model, and to make things more general, several

input scenarios were examined, highlighting their relationship to the model output.

All model variants in this chapter are solved using Gurobi Optimizer 7.0.1TM from

within the MPL 5.0TM for Windows environment. The run times for the optimization

are based on a 64-bit Windows 10.0TM computer with 24GB RAM and 3.3Ghz clock

speed.

4.3.1 Effect of Introducing the CF on the Model

In the first scenario, we compare model output with and without the nonlinear CF

estimate. To do so, the CF constraints (4.4), (4.5), and (4.6) are dropped and a new

capacity constraint on total production time is added as follows:

∑
g∈G

TPTgmYgp ≤ T ∀m ∈ M p ∈ P (4.9)

The aggregate capacity constraint states that the total production time (TPTgmYgp)

in each period p should not exceed the length of each planning period T , where TPTgm

is the total processing time of product g on machine m, as shown in constraint (4.9).

This is the constant level line apparent in Figure 2.3.

Figures 4.1, 4.2, and 4.3 show the effect of the CF on the aggregate model for

product 1, product 2, and product 3 respectively. The model with the aggregate

capacity constraint is able to satisfy customer demand without holding inventory or

creating backorders. On the other hand, the model with the nonlinear CF has quite a

few capacity restrictions and uses inventory and backorders. This again underlines the

fact that the nonlinear CF gives a more realistic production throughput estimation,

which would be lost with just an aggregate capacity constraint.
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Figure 4.1: CF effect on product 1

Figure 4.2: CF effect on product 2

4.3.2 Increasing Backorder Costs

This scenario looks at the effect of increasing the backorder cost on inventory levels.

These costs are varied from 20 to 160 for the three products. As expected, there
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Figure 4.3: CF effect on product 3

is an inverse correlation between backorder cost and backorder level, while there is

a positive correlation with inventory level (when the backorder cost goes up, the

model chooses to increase inventory to avoid backorders). Figure 4.4 shows these

relationships with backorder cost. When the backorder cost increases, the backorder

levels decrease and the inventory levels increase with a tapering off effect in both

cases.

4.3.3 Effect of Increasing and Decreasing Demand

In this scenario, the demand is increased and decreased by 10%, 20% and 30% for all

products in all periods. Table 4.4, shows the behaviour of the FPR-MIP model.

The objective function value generally increases (or decreases) as demand increases

(or decreases). This is because it is more expensive to build an efficient production

plan when the resource utilization is high, as is the case with increased demand.

However, when the demand is 10% higher, the optimal objective function is actually

lower than the baseline. This is because the MILP is forced to pick a fixed release

pattern and an increase of 10% in demand seems to provide a better match between

supply and demand. Figure 4.5 shows the effect of the demand level (as a fraction of
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Figure 4.4: Effect of increasing backorder cost

baseline) on backorder and inventory. When this fraction is 1.1 (i.e., when demand

is increased by 10%), the MILP is able to find a solution that has the least total cost

of backordering and inventory.

Interestingly, the solution time decreases in this example with both increase and

decrease in demand. Since the aggregate production planning is an MILP, both lower

and higher demands can make the problem easier, as seen in this case. With very

low demand in each period, production in the period can match demand, making the

problem simple. When demand is very high in each period for all products the simple

solution would be to make as much as possible of each, with prioritizing products

with higher inventory and backorder costs.

Table 4.4: Effect of demand changes on objective function

Increase Original Decrease
30% 20% 10% 0% 10% 20% 30%

Cost 1911.66 1492.25 1295.11 1401.41 1314.14 1282.70 1145.85
Run Time 0.08 0.14 0.35 3.14 2.16 1.80 0.86(sec.)

To generalize the results in Table 4.4, a Monte Carlo simulation was performed
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Figure 4.5: Effect of decreasing and increasing the demand on the backorder and
inventory level

with randomly generated demand depending on the scenario (+30%, +20%, etc.).

The simulation was replicated 100 times to estimate the mean of objective function

value and run time. Table 4.5 shows a similar result to Table 4.4. Therefore, the same

conclusions can be drawn , i.e., the objective function is lowest for a 10% increase in

demand and run time is the lowest for the original demand.

Table 4.5: Generalizing the effect of decreasing and increasing demand on objective
function and run time

Increase Original Decrease
30% 20% 10% 0% 10% 20% 30%

Obj. Fun. 1727.78 1262.41 1122.76 1228.80 1170.08 1104.61 1036.63Value
Run Time 0.04 0.45 4.21 20.44 10.95 7.48 5.01
(secs)

4.3.4 Effect of Step Size and the Planning Horizon Length

This scenario looks at the effect of step size changes on the objective function value

and model computation time. The step sizes are varied from 2 to 6 in increments
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of 1. Increasing the step size gives more flexibility to the FPR-MIP model since the

WIP increments are smaller and the MILP solution can find better tuned solutions.

As seen in Table 4.6, the objective function value decreases with step size for the

10, 20, and 30 period models. In the case of the 10 period model, an optimal solution

is found for all step sizes. However, for the 20 and 30 period models, the optimal

solution took a long time, exceeding 10 hours sometimes. Therefore, we report the

objective function solution for a 15% optimality gap. It may be seen that the objective

function value is lower, as step size increases.

It may also be observed for the 10 period model, that the run time increases as

step size goes up from 2 to 5. However, it drops significantly when the step size is 6.

For a 15% MILP gap, the same phenomenon is observed for the 20 period problem

while it increases with step size for all cases in the 30 period problem.

Since MILP solution times depend greatly on problem data (actual demand, in

particular), we generalize the relationship between step size and objective function

value (or run time) in the next section.

Table 4.6: Step size and planning horizon effect on the objective function

Step Size
2 3 4 5 6

10 Periods
Objective Function 1552.36 1401.41 1320.41 1292.76 1267.37
Run Time (secs) 0.26 3.14 16.74 71 1.29

Gap 0% 0% 0% 0% 0%

20 Periods
Objective Function 3092.76 2706.72 2549.96 2520.87 2440.57
Run Time (secs) 0.07 7.45 21.51 133.2 70.8

Gap 15% 15% 15% 15% 15%

30 Periods
Objective Function 4634.67 3997.11 3787.82 3734.88 3582.58
Run Time (secs) 0.64 21.55 41.97 1696.8 1715.4

Gap 15% 15% 15% 15% 15%

4.3.4.1 Generalizing the Effect of Step Size on the Operational Cost

In order to generalize the relationship between step size and the objective function

value (or run time), we conduct a Monte Carlo simulation where the demand is

generated based on a random number between 0 and 1 for 10 periods for the three

products. The simulation is replicated 100 times to estimate the mean and standard
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deviation of the total cost and computational time for the different step sizes.

In the previous section 4.3.4, it was hypothesized that as the step size increases,

the objective function value should decrease because increasing the step size gives

more flexibility to the FPR-MIP model to match supply and demand and to reduce

inventory and backorder costs. In order to test the hypothesis, the confidence intervals

limits are developed from the following equations [76]:

LCL = x̄− zα/2
σ√
n

(4.10)

UCL = x̄+ zα/2
σ√
n

(4.11)

where LCL and UCL are the lower and upper confidence limits, and zα/2 = 1.96 from

z-table for a 95% confidence interval.

Table 4.7: Objective function confidence limits

Step Size x̄ σ
Confidence Interval
LCL UCL

2 1437.83 44.12 1429.18 1446.48
3 1284.62 32.94 1278.17 1291.08
4 1224.27 25.13 1219.34 1229.20
5 1197.86 25.43 1192.87 1202.84
6 1181.10 27.14 1175.79 1186.42

As seen in Table 4.7, the 95% confidence intervals do not overlap. Thus, it may be

concluded that increasing step size reduces the objective function value (i.e., better

solutions are found as the step size is increased).

The same reasoning is extended for run time (in seconds) in Table 4.8, which is

developed in a similar manner for a 95% confidence interval using 100 replications

for randomly generated demand. As can be seen, increasing the step size increases

run time (the confidence intervals do not overlap). The main reason behind that is

increasing the step size increases the number of WIP pattern choices, making the

problem more complex.

Hence, the essential trade-off is that by increasing step size, the solution quality

improves but takes longer to obtain.
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Table 4.8: Run time confidence limits

Step Size x̄ σ
Confidence Intervals
LCL (s) UCL (s)

2 0.6077 0.1112 0.5859 0.6295
3 4.9810 2.2033 4.5492 5.4129
4 19.583 8.6012 17.897 21.269
5 72.266 45.732 63.302 81.229
6 204.13 156.48 173.46 234.81

4.4 Supplementary Constraints and Variables to Decrease Computation

Time

This section presents supplementary constraints and variables which may be added

to the FPR-MIP formulation mentioned in section 4.1, to decrease model run time.

This set of supplementary constraints limits production in each period to be within a

fraction of demand in that period and penalizes production below or above demand.

Ygp = dgp + δ+gp − δ−gp (4.12)

δ+gp ≤ f d̄gp (4.13)

δ−gp ≤ f d̄gp (4.14)

Effectively, δ+gp and δ−gp are the backorder and inventory contributions in period p,

respectively. f represents the fraction of demand variation allowed in each period,

and is applied to the average demand d̄gp over all periods p.

In the objective function δ+gp and δ−gp are penalized, by adding the following term:

M
(
δ+gp + δ−gp

)
(4.15)

The choice of the penalty parameter M needs to be chosen carefully. When it is

very small, the model run time is high, but the cost of the solution is closer to the

optimal of the original problem. This is because, larger deviations of production from

the average demand can be tolerated better. When M is large, the run time is low

but the values of δ+gp and δ−gp are smaller and the cost of the solution is further away

from the optimal of the original problem.
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Similarly, when the value of f gets higher, there is greater latitude in the δ+gp and

δ−gp variables. Therefore, the solutions get better but take longer to find.

These trends are shown in Figure 4.6 for the case in Table 4.6 with 30 periods and

a step size of 6. In this figure, the penalty costs (M) range from 0 to 125 and the

value of f ranges from 100% to 250% of average demand. The one exception to the

rule is the case of M = 125 and f = 250%, where the run time is slightly lower than

for an equivalent f = 200%. This could be because of inherent uncertainties with the

MILP solution process. It should be noted that the values on the Y-axis (run time)

are shown using the logarithmic scale.

Figure 4.6: Objective function value and the run time
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4.5 Conclusion

This chapter presented a data-driven aggregate production planning model to incor-

porate the congestion effects in multi-product manufacturing networks. While the

data-driven approach was illustrated using MVA for closed-queuing manufacturing

networks such as the CONWIP, any other estimation method could also have been

applied. These include: analytical estimates, numerical methods, and the simulation

approach.

The model behavior was examined by changing certain parameters such as backo-

rder cost, demand, etc. Increasing backorder cost decreases the backorder level while

increasing inventory to compensate for the decrease. The objective function value

generally increases as demand goes up.

It was seen statistically that as the number of steps increases (i.e., step size is

small), the solution quality increases (i.e., the objective function value decreases).

However, a small step size makes the problem harder to solve (i.e., the computation

time increases). Also, run times can be improved at the expense of solution accuracy

using the supplementary constraints and variables shown in Section 4.4.

An interesting research question is whether the model presented can be extended

to include decision points that lie between the point estimates of the clearing function.

This will be explored in the next chapter.



Chapter 5

Cubic Approximation (CA) Approach

The CA method may be used to find a solution to the aggregate planning model in

the previous chapter such that the WIP values in each period are continuous. This

is done by first identifying the WIP step size. When the WIP step size is small, the

approximation is more accurate.

Figure 5.1 shows the approximation graphically when there are three products

in the system. For a larger number of products, the method is still valid, but the

visualization can no longer be graphical.

For three products, the WIP levels for each product from (0, 0, 0) to (1, 1, 1)

is seen in the small cube shown in the left of Figure 5.1. Since the WIP values of

different products may have different ranges, the cuboid in the centre of the figure

shows product WIP in the range (0, 12.4), (0, 9.2), and (0, 4.2), for products 1, 2,

and 3. For greater accuracy, this cube can be divided into eight smaller cuboids using

a step size of 2, as seen in the centre cuboid of Figure 5.1. The size of the smaller

cuboids is based on the accuracy requirements and these cubes can further subdivided

if necessary, or a different step size such as 3 or 5 could be chosen.

The throughput levels are calculated using MVA for the corner points of the

cuboids as can be seen in the cuboids on the right. The CA aggregate planning model

formulated below allows for WIP combinations in continuous space, as opposed to

being limited to discrete points (or patterns) in the previous chapter.

5.1 CA Model

The CA parameters and decision variables are described in the following constraints:

Indices :

c Cuboid index,

g Product index,

p Period index.

72
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Figure 5.1: Cubic representation of product mix with corresponding throughput

Parameters :

xg Raw material release cost of product g,

wg WIP holding cost of product g,

hg Inventory holding cost of product g,

bg Backorder cost of product g,

dgp Demand of product g in period p,

∇c
g Throughput gradient of product g in cuboid c.

THc
g Throughput of product g at the lower left hand corner point of cuboid c,

LBc
gp WIP level of product g at the lower left hand corner point of cuboid c,

UBc
gp WIP level of product g at the upper right hand corner point of cuboid c,

M Big M (a very large number).

Decision variables :

Ygp Production quantity of product g in period p,

Xgp Amount of raw material released of product g in period p,

Wgp WIP level of product g in period p,

W c
gp WIP level of product g in period p of the selected cuboid c,

Igp Finished goods inventory level of product g in period p,

ζcp Binary variable to ensure exactly one cuboid c is selected in each period p.
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Objective function :

min
∑
g∈G

∑
p∈P

(xgXgp + wgWgp + hgIgp + bgBgp) (5.1)

Subject to :

Wgp = Wg,p−1 +Xgp − Ygp ∀g ∈ G, p ∈ P (5.2)

Ig,p = Ig,p−1 + Ygp − Bg,p−1 +Bgp − dgp ∀g ∈ G, p ∈ P (5.3)

Ygp ≤ THc
g +

(
W c

gp − LBc
g

)∇c
g +M(1− ζcp) ∀g ∈ G, p ∈ P (5.4)

LBc
g ζcp ≤ W c

gp ≤ UBc
g ζcp +M(1− ζcp) ∀g ∈ G, p ∈ P (5.5)

∑
c

ζcp = 1 ∀c ∈ C, p ∈ P (5.6)

Ygp, Igp, Bgp, Wgp, Xgp ≥ 0 ∀g ∈ G, p ∈ P (5.7)

ζcp ∈ {0, 1} ∀c ∈ C, p ∈ P (5.8)

The essential difference between this model and that in the previous chapter is due

to the difference in how the nonlinear CF is modelled using constraints (5.4), (5.5),

and (5.6). Constraint (5.4) ensures that the production does not exceed the CF

throughput estimate. Note that it is simply a generalization of the piecewise lin-

earization method used for single-variables CFs by [47, 3]. This constraint is only

active for a cuboid that is active. Constraint (5.5) limits the WIP level to the dimen-

sions of the chosen cuboid. Finally, constraint (5.6), ensures that only one cuboid

is active. This model has 5|G||P | continuous variables, |C||P | binary variables, and

4(|G|+|C|)|P | constraints.

Let ωi
g and τ ig be the WIP level and throughput of product g for a corner point i



75

in any cuboid respectively. Also, let Ec
g be the set of edges over which the gradient

∇c
g of product g in cuboid c is estimated.

Figure 5.2 shows the gradient of product 1 is estimated for the edges on the X-axes

(i.e., lines coloured with in cyan). Similarly, for products 2 and 3, the gradients are

estimated for the edges on the Y-axes (i.e.,lines coloured in red) and Z-axes (i.e., lines

coloured in green) respectively.

Thus:

Ec
g = {(2, 1), (3, 4), (6, 5), (7, 8)} g = 1

Ec
g = {(4, 1), (3, 2), (8, 5), (7, 6)} g = 2

Ec
g = {(5, 1), (6, 2), (7, 3), (8, 4)} g = 3

Figure 5.2: Slope of each products

Thus, the gradient ∇c
g in constraint (5.4) is computed using the following equation:

∇c
g =

∑
(ij)∈Ec

g

(
τ jg − τ ig

ωj
g − ωi

g

)
/|Ec

g| (5.9)

5.2 Numerical Example

The example presented in Chapter 3 is used to implement the CA aggregate planning

model, which can be built as follows:

1. The first step is to determine the size of the large cuboid. For this, the prod-

uct mix combinations (1, 0, 0), (0, 1, 0), and (0, 0, 1), corresponding to the
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maximum open network arrival rates for the three products (one at a time) are

chosen from Table 4.1. The corresponding WIP for the three products from

the table (rows 11, 5, and 2 respectively) are 12.38, 4.17, and 9.22. In fact, the

large cuboid in the center of Figure 5.1 is of these dimensions.

2. The second step is to choose a step size. Using an example step size of 3, 27

cuboids with their lower and upper corner points shown in Table 5.1 result.

Table 5.1 also shows the CA throughput (THc
g) for the closed queuing network

using MVA and the product slopes (∇c
g).

The essence of the CA method is to choose one of the smaller inside cuboids. The

selection between the smaller cuboids are based on the MIP model, where the WIP

solution point is within the cuboid, without being restricted to only the cuboid corner

points.
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Table 5.1: CA throughput, slope, lower corner, and upper corner

Set
Cubic Lower Corner Cubic Upper Corner Throughput (unit\week) Slope

LB1 LB2 LB3 UB1 UB2 UB3 TH1 TH2 TH3 ∇1 ∇2 ∇3
1 0.00 0.00 0.00 4.13 1.39 3.07 0.00 0.00 0.00 1.63 2.76 2.09
2 4.13 0.00 0.00 8.25 1.39 3.07 8.12 0.00 0.00 0.63 1.75 1.56
3 8.25 0.00 0.00 12.38 1.39 3.07 10.76 0.00 0.00 0.31 1.27 1.22
4 0.00 1.39 0.00 4.13 2.78 3.07 0.00 5.63 0.00 1.41 1.77 1.84
5 4.13 1.39 0.00 8.25 2.78 3.07 6.92 3.28 0.00 0.72 0.73 1.42
6 8.25 1.39 0.00 12.38 2.78 3.07 9.59 2.24 0.00 0.34 1.02 1.11
7 0.00 2.78 0.00 4.13 4.17 3.07 0.00 8.95 0.00 1.25 1.20 1.63
8 4.13 2.78 0.00 8.25 4.17 3.07 6.02 5.58 0.00 0.61 0.99 1.26
9 8.25 2.78 0.00 12.38 4.17 3.07 8.65 3.97 0.00 0.35 0.83 1.02
10 0.00 0.00 3.07 4.13 1.39 6.15 0.00 0.00 7.90 1.31 2.07 0.79
11 4.13 0.00 3.07 8.25 1.39 6.15 6.34 0.00 5.74 0.58 1.36 0.75
12 8.25 0.00 3.07 12.38 1.39 6.15 8.85 0.00 4.37 0.34 1.03 0.67
13 0.00 1.39 3.07 4.13 2.78 6.15 0.00 3.98 6.93 1.15 1.36 0.79
14 4.13 1.39 3.07 8.25 2.78 6.15 5.51 2.45 5.08 0.65 0.59 0.73
15 8.25 1.39 3.07 12.38 2.78 6.15 8.02 1.76 3.94 0.35 0.85 0.63
16 0.00 2.78 3.07 4.13 4.17 6.15 0.00 6.42 6.07 1.03 0.98 0.77
17 4.13 2.78 3.07 8.25 4.17 6.15 4.88 4.24 4.53 0.56 0.83 0.69
18 8.25 2.78 3.07 12.38 4.17 6.15 7.33 3.16 3.58 0.35 0.71 0.61
19 0.00 0.00 6.15 4.13 1.39 9.22 0.00 0.00 10.25 1.10 1.68 0.38
20 4.13 0.00 6.15 8.25 1.39 9.22 5.22 0.00 8.21 0.53 1.12 0.44
21 8.25 0.00 6.15 12.38 1.39 9.22 7.52 0.00 6.60 0.34 0.87 0.44
22 0.00 1.39 6.15 4.13 2.78 9.22 0.00 3.13 9.43 1.03 0.62 0.42
23 4.13 1.39 6.15 8.25 2.78 9.22 4.58 1.94 7.47 0.53 0.88 0.45
...

...
...

...
...

...
...

...
...

...
...

...
...

27 8.25 2.78 6.15 12.38 4.17 9.22 6.35 2.62 5.60 0.35 0.62 0.42
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The optimal plan is generated for 10 periods, where the length of each period is

7 days and each day has 8 working hours. The demand for the three products in

each time period is based on a random number generated between 0 and 1. The

product mix is normalized as described in Chapter 4 and the normalized numbers are

multiplied by the corresponding arrival rate for each product and the weekly working

hours, to obtain the demand in units per week, as shown in Table 5.2.

The CA model is solved for cost coefficients of raw material, WIP, inventory, and

backorder equal to 3, 7, 15, and 20, respectively.

Table 5.2: Generated demand

Periods Random Number Sum Normalized RN Sum
Demand

(units\week)
P1 P2 P3 P1 P2 P3 P1 P2 P3

1 0.75 0.04 0.23 1.02 0.73 0.04 0.23 1.00 8.22 0.34 2.35
2 0.97 0.80 0.08 1.85 0.52 0.43 0.04 1.00 5.87 4.17 0.43
3 0.03 0.87 0.57 1.47 0.02 0.59 0.39 1.00 0.26 5.68 3.92
4 0.79 0.28 0.20 1.27 0.62 0.22 0.16 1.00 6.99 2.11 1.59
5 0.94 0.26 0.25 1.45 0.65 0.18 0.17 1.00 7.28 1.72 1.75
6 0.74 0.60 0.94 2.28 0.33 0.26 0.41 1.00 3.66 2.52 4.18
7 0.99 0.11 0.78 1.88 0.52 0.06 0.42 1.00 5.87 0.57 4.24
8 0.99 0.15 0.11 1.25 0.79 0.12 0.09 1.00 8.87 1.17 0.87
9 0.80 0.88 0.58 2.25 0.35 0.39 0.26 1.00 3.95 3.75 2.61
10 0.88 0.18 0.03 1.08 0.81 0.17 0.03 1.00 9.04 1.60 0.27

The optimal aggregate production plan can be seen in Table 5.3, with an almost

perfect demand match that has no backorders and a small inventory after period 1

for product 1 of about 0.04 units. Note: The optimal solution requires an initial

WIP of 4.34, 0.20, and 1.51 units for product 1, product 2, and product 3.
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Table 5.3: CA model output

Period
X Y W I B D

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 8.04 1.54 1.07 8.25 0.34 2.35 4.13 1.39 0.23 0.04 0.00 0.00 0.00 0.00 0.00 8.22 0.34 2.35
2 1.89 4.20 2.33 5.83 4.17 0.43 0.18 1.42 2.13 0.00 0.00 0.00 0.00 0.00 0.00 5.87 4.17 0.43
3 4.20 5.47 2.81 0.26 5.68 3.92 4.13 1.21 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.26 5.68 3.92
4 6.99 1.88 1.69 6.99 2.11 1.59 4.13 0.98 1.12 0.00 0.00 0.00 0.00 0.00 0.00 6.99 2.11 1.59
5 5.39 1.65 2.63 7.28 1.72 1.75 2.24 0.91 2.00 0.00 0.00 0.00 0.00 0.00 0.00 7.28 1.72 1.75
6 5.02 1.82 4.21 3.66 2.52 4.18 3.61 0.21 2.03 0.00 0.00 0.00 0.00 0.00 0.00 3.66 2.52 4.18
7 7.60 1.04 2.77 5.87 0.57 4.24 5.33 0.67 0.56 0.00 0.00 0.00 0.00 0.00 0.00 5.87 0.57 4.24
8 5.97 1.87 1.56 8.87 1.17 0.87 2.43 1.36 1.25 0.00 0.00 0.00 0.00 0.00 0.00 8.87 1.17 0.87
9 7.13 3.31 1.53 3.95 3.75 2.61 5.60 0.91 0.17 0.00 0.00 0.00 0.00 0.00 0.00 3.95 3.75 2.61
10 3.44 0.68 0.10 9.04 1.60 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.04 1.60 0.27
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5.3 Effect of Step Size and the Planning Horizon Length

To obtain an insight into how changing the step size affect the behaviour of the CA

model, the size of the smaller cuboids (which represent WIP release patterns) could

be changed based on size.

We consider step sizes in a range from 2 to 6 in increments of 1. It is expected that

increasing the step size gives more flexibility to the MIP model to satisfy demand at

a lower cost. As the grid size gets smaller (number of steps increase), there are more

cube corner points, which increases accuracy.

For sake of exposition, let us assume that the graphical solution for a problem is

as illustrated in Figure 5.3, where the WIP points shown on a two-dimensional plane

for three different step size are as shown in cyan for step size 3, red for step size 6,

and green for step size 9. The grid lines are the dashed lines in gray, while the X and

Y axes are shown in black . It can be clearly seen that the points in step size 9 are

the closest to a grid point, followed by step size 6 and subsequently by step size 3.

Therefore, increasing the step size provides a more accurate approximation.

Figure 5.3: Step size accuracy

However, the step size and the computational time are expected to be positively

correlated, i.e., when step size is increased, the computational time is also expected

to increase.

Table 5.4 shows the effect of step size on the objective function and run time to

optimality for different step size and time period combinations. In the case of the

10 period model, an optimal solution is found for all step sizes in reasonable time.

However, for the 20 and 30 period models, the optimal solution exceeded 10 hours
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for larger step sizes. Therefore, we report the objective function solution for a 15%

optimality gap, as in the previous chapter.

It may be seen that the objective function value is lower, as step size increases.

Also, for the 10 period model, the run time increases as step size goes up from 2

to 6. For a 15% MILP gap, the same phenomenon is true for the 20 and 30 period

problems.

Table 5.4: Step size and planning horizon effect on the objective function

Step Size
2 3 4 5 6

10 Periods
Objective Function 798.24 701.75 661.17 644.58 642.20
Run Time (secs) 1.02 4.95 47.35 268 5687

Gap 0% 0% 0% 0% 0%

20 Periods
Objective Function 1558.97 1453.36 1290.99 1249.61 1242.66
Run Time (secs) 0.94 8.87 125.00 706 31035

Gap 15% 15% 15% 15% 15%

30 Periods
Objective Function 2394.80 2078.90 1889.68 1835.72 1831.45
Run Time (secs) 1.62 21.80 183.00 1421 51562

Gap 15% 15% 15% 15% 15%

5.4 Supplementary Constraints and Variables to Decrease Computation

Time

To decrease the computational time of the MIP the same supplementary constraints 4.12

to 4.15 in Section 4.4 are used in this section to the 30 period problem with step size

6 in Table 5.4 .

Figure 5.4 shows the sensitivity of the solution cost and run time to the parameters

M and f . As in Section 4.4, as the value of M goes up, the solution worsens, but the

run time reduces. The same trend can be seen with respect to f , with the following

exceptions: M = 55, f = 150% and M = 75, f = 200%. Again, the Y-axis in the

bottom graph (for run time) is shown on a logarithmic scale.

5.5 Comparing CA with the FPR Approach

This section looks at the differences between the CA and the FPR aggregate produc-

tion planning model outputs for a randomly generated 10-period problem. In both
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Figure 5.4: Objective function value and the run time
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cases, the step size is 3. Figures 5.5, 5.6, and 5.7 show the difference in production,

inventory, and backorder level.

It can be seen in Figure 5.5 that there is production in every planning period

in the CA solution. However, there are some periods with no production in the

FPR approach. This is because FPR reduces the feasible solution space and it is

harder to match supply and demand. For the same reason, the CA approach holds

no inventory, as shown in Figure 5.6. On the other hand, some inventory is held in

the FPR approach in almost every period. The same phenomena can be seen for

backorder quantity in Figure 5.7. Since the formulation in both approaches consider

inventory and backorder costs, the objective function value in CA is expected to be

lower than in the FPR approach.

Figure 5.8 illustrates that there is an inverse relationship between step size and

best found objective function value (for both the CA and FPR approaches). The best

found objective value is the optimal for the 10 period problems and a solution with

15% gap for the 20 and 30 period problems. As the step size increases, the objective

function value of the solution decreases, though the marginal improvement reduces.

The figure also shows that the best found objective function value is superior in the

CA model.

However, there is a significant increase in run time to optimality (again, for both

the CA and FPR approaches), as can be seen in Figure 5.9, 5.10, and 5.11 for the 10,

20, and 30 time period cases; Here, the step size is divided across two graphs; the one

on the top shows a step size from 2 to 4 and the bottom is for step sizes 5 and 6. In

general, the CA takes longer to run except in the 30 period case in Figure 5.11; here

it is almost the same as FPR in case of step size 3, and it slightly lower in case of

step size 5. This could be because only one instance of the problem is being solved.

Therefore, it appears that the CA method yields better solutions, but takes longer

to run to solve.

5.6 Conclusion

This chapter presented an aggregate production planning model to incorporate the

congestion effects in multi-product manufacturing networks. The MVA approach was

applied to estimate the CF using CA approach. The product mix concept used to
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Figure 5.5: Aggregate production planning comparison for production
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Figure 5.6: Aggregate production planning comparison for inventory
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Figure 5.7: Aggregate production planning comparison for backorder
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Figure 5.8: Total operational cost comparison
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Figure 5.9: Computational time comparison for 10 periods
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Figure 5.10: Computational time comparison for 20 periods
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Figure 5.11: Computational time comparison for 30 periods
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represent throughput as a function of WIP. The solution space is expanded in CA to

include the entire region inside the smaller cuboids whose dimensions depend on step

size. There is a trade-off between the quality of solution obtained and run time as

the step size is increased. CA appears to yield better solutions but takes longer.



Chapter 6

Comparative Analysis of the ACF, the FPR and the CA

Approaches

In this chapter, we look at how the FPR and CA approaches developed in the thesis

compare with the ACF approach of [3]. The main difference between ACF and

FPR/CA is that in the ACF approach, the clearing function is estimated at each

resource (workstation) statistically, based on a simulation of the production facility.

In FPR and CA, the aggregated production facility is considered as a whole and

estimates of throughput are made for discrete values of product WIP. In what follows,

the comparison to the ACF approach paper will be made based on the numerical

results obtained by Kacar, Irdem, and Uzsoy [29].

The comparison is conducted on the case mentioned in Chapter 3. This case is also

presented in Kacar, Irdem, and Uzsoy [29] to illustrate the performance of the ACF

approach. In Chapters 3, 4 and 5 there were no batching or reliability considerations,

both of which are used in Kacar, Irdem, and Uzsoy [29]. To be consistent, the case is

adapted as follows:

• Since the facility in [29] is assumed to operate 24 hours per day, 7 days per

week, this is used in all comparisons.

• The batching workstations in [29] are given as 1 and 2, with the batch size

being two or four products of any of the three products type at the same time

as one batch. The FPR and CA model throughput estimations use MVA, which

does not allow for batching. Thus, the processing time on workstations 1 and

2 are reduced by a factor of four to approximate the batching effect. The

ACF throughput estimates are obtained for an open-queuing network simula-

tion implemented in Simio 8.13TM. While SimioTM allows batching, this was

not implemented in the ACF. Instead, to keep the comparison consistent, the

processing time on these workstations is also reduced by a factor of four.

92
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• In Kacar, Irdem, and Uzsoy [29], workstation 4, the bottleneck workstation,

has two servers. Instead of using this, we assume that this workstation has

only one station with a processing time of 20 minutes, instead of 40 minutes in

Kacar, Irdem, and Uzsoy [29]. This change is also implemented consistently in

the SimioTM simulation model for ACF and MVA.

• While processing times in Kacar, Irdem, and Uzsoy [29] are not exponentially

distributed, we assume exponential processing times. This is because the MVA

algorithm is based on this assumption.

• In Kacar, Irdem, and Uzsoy [29], there are two unreliable workstations (3 and 7)

which could starve the bottleneck workstation. The mean time between failure

(MTBF) and mean time to repair (MTTR) follow the gamma distribution with

specific parameters shown in Table 6.1. Using the approach in Kacar [28], the

machine availability (a) is calculated from the following equation:

a =
MTBF

MTBF +MTTR
=

7200

7200 + 1800
= 0.8 (6.1)

Therefore, in the MVA, workstations 3 and 7 are assumed to have 0.8 ma-

chines. However, in the simulation model of the open queuing network to gather

throughput data for the ACF approach, the MTBF and MTTR values with the

gamma distribution parameters are directly entered into SimioTM.

Table 6.1: Machine reliability parameters

Machine
Time Between Failure Time to Repair
α β Mean α β Mean

3 7200 1 7200 1200 1.5 1800
7 7200 1 7200 1200 1.5 1800

As a result of these changes, the average processing times in Table 6.2 are used

for all comparisons.
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Table 6.2: Processing time

Workstation Mean Processing Time
1 20
2 55
3 45
4 20
5 25
6 22
7 20
8 100
9 50
10 50
11 70

6.1 Numerical Implementation of ACF

The first step in ACF is to find the relationship between resource load (WIP+release)

with aggregate throughput at the individual workstation level. As mentioned earlier,

this is implemented as a queuing network in SimioTM.

1. The base arrival rate in Kacar, Irdem, and Uzsoy [29] is 3:1:1 for the three

products. In order to obtain the clearing functions, the arrival rates for the three

products are adjusted (to preserve the 3:1:1 ratio) to get an average utilization

(ρ) for the bottleneck machine (machine 4) equal to 49%, 60%, 70%, 77%, 87%,

94%, and 99%. These match the average utilizations in Kacar, Irdem, and

Uzsoy [29]. This is done by first computing the effective arrival rate using the

following equation:

λeffective =
ρj μj∑

i(PMi Nij)
(6.2)

Where, ρj (in this case, 49%, 60%, etc.) is the utilization of machine j (which

is the bottleneck machine), PMi is the product mix (in this case, 3:1:1) for each

product i, Nij is the number of visits of product i to machine j, λeffective is

the arrival rate to the machine j, and μj is the process time of machine j. To

obtain the arrival rate for each product i the following equation is used:
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λi = λeffective PMi (6.3)

where, λi constitutes the arrival rate for product i.

2. An open network simulation model of the network is developed in SimioTM to

generate arrivals for the WIP-Throughput relationship calibration experiment.

It should be noted that interarrival time is assumed to be exponential (i.e.,

the number of arrivals in a given period is Poisson). Arrivals are generated for

each of the 7 bottleneck machine utilization scenarios. Each run is 100 weeks

long, with a warm-up of 10 weeks (i.e., no data is collected during the warm-up

period). There are 5 replications for each scenario, resulting in 35 data points

for each workstation.

3. The regression function in Minitab 17.3.1TM is used to develop piecewise linear

estimates of the clearing function at each workstation. In order to do this, the

points are grouped into 7 clouds, each cloud representing the replications for a

utilization scenario. In the first regression, the point (0, 0), which is equivalent

to zero throughput for zero WIP and the first cloud of points are used to get a

regression line. Successive clouds are added and the regression line is revised so

long as the R2 value of the regression is greater than or equal to 95%. If the R2

value is less than 95%, the cloud is not added. In this case, the previous line is

kept and the next two clouds are used to continue with the process. This way,

the change in the CF curvature slope is captured.

The results of the regression are shown in Figures 6.1 to 6.11. In each figure, the

graph on top shows the data points for the resource output (throughput) and

load (WIP+release) from the simulation, while the graphs on the bottom show

the regression results. Also, the line in green on the top is the constant level

capacity of Figure 2.3. This line has a slope of zero, which means increasing

WIP further will have no effect on throughput.

4. The ACF model of Kacar, Irdem, and Uzsoy [29] can now be run for the different

demand scenarios to compare its results versus both the FPR and CA approach.
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Figure 6.1: ACF for machine 1

Figure 6.2: ACF for machine 2
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Figure 6.3: ACF for machine 3

Figure 6.4: ACF for machine 4
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Figure 6.5: ACF for machine 5

Figure 6.6: ACF for machine 6
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Figure 6.7: ACF for machine 7

Figure 6.8: ACF for machine 8
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Figure 6.9: ACF for machine 9

Figure 6.10: ACF for machine 10
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Figure 6.11: ACF for machine 11

6.1.1 Kacar and Uzsoy [37] ACF Model Formulation

After deriving the ACF in the previous subsection, the LP model can be run to

compare it with the proposed approaches. The LP formulation is shown in both

Kacar and Uzsoy [37] and Kacar, Irdem, and Uzsoy [29]:

Indices :

t Time index,

g Product index,

l Operation index,

k Workcenter index.

Parameters :

wg The cost of holding WIP of product g,

hg The cost of holding finished goods inventory of product g,

bg The cost of backorder for product g,

dgt The demand of product g in period t,

C(k) The set of line segment used to linearize the CF for workcenter k,
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μn
k The intercept of the nth linear segment of workcenter k for the CF,

βn
k The slope the nth line segment of workcenter k for the CF.

V ariables :

Ygtl The total production quantity of product g completes

lth operation in period t,

Ygt The total production quantity of product g in period t,

Xgtl The released quantity of product g to operation l in period t,

Wgtl The WIP level of product g of operation l at the end of period t,

Wgt(k) The WIP level of product g at workcenter k in period t,

here Wgt(k) =
∑

l∈L(k) Wgtl,

Igt The inventory level of the final product g in period t,

Bgt The backorder quantity of product g in period t,

Zk
gtl The fraction throughput of kth workcenter allocated to operation l

of product g in period t.

Objective function :

min z
∑
g∈G

[ T∑
t=1

K∑
k=1

wgWgt(k) +
T∑
t=1

hgIgt +
T∑
t=1

bgBgt

]
(6.4)

Subject to:

Ygtl + Ig,t−1 − Bg,t−1 − Ig,t +Bg,t = dgt g ∈ G, t = 1, ..., T, l ∈ L (6.5)

Wgtl = Wg,t−1,l +Xgtl − Ygtl g ∈ G, t = 1, ..., T, l ∈ L (6.6)

Ygtl ≤ Zk
gtlμ

n
k + βn

k (Xgtl +Wg,t−1,l)

g ∈ G, t = 1, ..., T, l ∈ L, k ∈ K, n ∈ C(K)

(6.7)
∑

g∈G, l∈L(k)
Zk

gtl = 1 t = 1, ..., T, k ∈ K (6.8)

Ygtl, Wgtl, Igt, Xgtl, Bgt, Zk
gtl ≥ 0

g ∈ G, t = 1, ..., T, l ∈ L, k ∈ K
(6.9)
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The objective function of the model is to minimize the total cost of holding WIP and

finished goods inventory, and backorder. This is subject to restrictions on the flow

conservation of finished goods inventory (6.5), and WIP (6.6). The CF is used in (6.7)

to model the machine capacity at each machine k. Since there are multiple products

g, the clearing function (capacity) is allocated using the variable Zk
gtl of machine k

for the different operation l in (6.8). Note that
∑

g

∑
l Z

k
gtl = l in Kacar, Irdem, and

Uzsoy in [29]. However, this seems to be a typographical error, with the sum equal

to 1 in Kacar and Uzsoy [37]. The non-negativity constraint is shown in (6.9).

The initial inventory and WIP values have been modified in this comparison to

be decision variables.

6.2 Fixed Points Release Model Parameters

In order to replicate the numerical experiments in Kacar, Irdem, and Uzsoy [29],

where the product demands vary between 30 and 75 for product 1 and between 10

and 25 for products 2 and 3, a grid with step size 5 is created to cover this range, as

can be seen in Table 6.3. The product release combinations in Table 6.3 are simulated

in SimioTM to estimate system WIP for the open queuing network case. As can be

seen in the table, the system throughput values (column 3) are close to the product

release values (column 1). There are 160 release combinations in total (10 discrete

values for product 1 and 4 discrete values for products 2 and 3). As mentioned in

Chapter 4, the finer the grid, the more accurate is the solution (though it takes longer

to compute). Table 6.3 shows 38 combinations only; all 160 combinations are shown

in Appendix D.1.

The WIP levels from Table 6.3 are then used to get the estimates of the equiv-

alent closed queuing network using MVA. The results are shown in Table 6.4. Once

again, Table 6.4 shows only 38 combinations; all 160 combinations are shown in Ap-

pendix D.2.

It can be seen that the MVA throughput estimates are higher than the open

network simulation throughput estimates, because releases are controlled in a closed

queuing network. The WIP-Throughput estimates can now be used in the data-driven

FPR model. This can be done for either the open network case in Table 6.3 or the

closed network case in Table 6.4.
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Table 6.3: Release combinations, simulation WIP and throughput

Set
Product Mix Simulation

WIP
Simulation
Th\Week

P1 P2 P3 P1 P2 P3 P1 P2 P3
1 30 10 10 3.66 0.77 1.01 29.99 10.00 9.96
2 30 10 15 3.79 0.81 1.74 29.96 10.04 15.04
3 30 10 20 3.93 0.84 2.76 30.05 9.97 20.01
4 30 10 25 4.08 0.88 4.42 30.00 10.00 24.98
5 30 15 10 3.86 1.23 1.04 29.98 15.04 9.99
6 30 15 15 3.99 1.29 1.78 29.94 15.01 14.93
7 30 15 20 4.15 1.36 2.86 29.98 15.04 20.04
8 30 15 25 4.31 1.41 4.51 30.08 15.00 25.01
9 30 20 10 4.08 1.76 1.08 29.93 20.02 9.99
10 30 20 15 4.23 1.84 1.84 29.98 19.97 14.96
11 30 20 20 4.42 1.93 2.92 30.07 19.99 20.02
12 30 20 25 4.61 2.03 4.73 30.07 20.01 25.00
13 30 25 10 4.34 2.36 1.12 29.99 25.07 9.97
14 30 25 15 4.53 2.47 1.93 30.03 24.98 15.06
15 30 25 20 4.69 2.60 3.03 29.96 25.02 19.98
16 30 25 25 4.90 2.74 4.79 30.01 25.07 24.95
17 35 10 10 4.73 0.84 1.05 35.05 9.94 9.95
18 35 10 15 4.91 0.88 1.81 35.04 9.94 14.99
19 35 10 20 5.06 0.92 2.86 35.03 10.03 20.03
20 35 10 25 5.26 0.96 4.56 35.08 10.00 25.05
21 35 15 10 5.00 1.36 1.10 34.97 15.01 10.05
22 35 15 15 5.20 1.42 1.86 35.10 15.05 14.97
23 35 15 20 5.34 1.48 2.98 34.89 15.04 20.10
24 35 15 25 5.58 1.55 4.67 35.02 15.01 24.93
25 35 20 10 5.32 1.94 1.13 35.04 19.96 10.01
26 35 20 15 5.51 2.04 1.93 35.00 20.01 14.99
27 35 20 20 5.68 2.12 3.04 34.94 20.02 19.93
28 35 20 25 5.96 2.23 4.86 35.04 19.98 25.00
29 35 25 10 5.66 2.62 1.18 34.90 25.01 10.04
30 35 25 15 5.91 2.75 2.01 35.01 24.97 15.02
31 35 25 20 6.11 2.88 3.14 34.94 25.02 19.95
32 35 25 25 6.36 3.02 4.96 34.96 25.05 24.97
33 40 10 10 5.99 0.93 1.11 40.01 10.03 10.04
34 40 10 15 6.22 0.97 1.90 39.98 10.07 15.04
35 40 10 20 6.40 1.00 2.96 39.97 9.99 19.97
36 40 10 25 6.63 1.05 4.70 39.98 9.97 24.89
37 40 15 10 6.39 1.50 1.15 39.95 15.00 10.04
...

...
...

...
...

...
...

...
...

...
160 75 25 25 648.97 146.53 6.87 63.91 22.41 24.95
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Table 6.4: Release combinations, simulation WIP, and MVA throughput

Set
Product Mix Simulation

WIP
MVA Throuput
(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3
1 30 10 10 3.66 0.77 1.01 37.49 12.91 13.53
2 30 10 15 3.79 0.81 1.74 37.59 13.04 20.27
3 30 10 20 3.93 0.84 2.76 37.83 12.92 26.44
4 30 10 25 4.08 0.88 4.42 38.07 13.03 31.44
5 30 15 10 3.86 1.23 1.04 37.61 19.33 13.53
6 30 15 15 3.99 1.29 1.78 37.64 19.46 20.14
7 30 15 20 4.15 1.36 2.86 37.78 19.59 26.45
8 30 15 25 4.31 1.41 4.51 38.06 19.64 31.34
9 30 20 10 4.08 1.76 1.08 37.55 25.89 13.51
10 30 20 15 4.23 1.84 1.84 37.67 25.88 20.13
11 30 20 20 4.42 1.93 2.92 37.92 25.97 26.28
12 30 20 25 4.61 2.03 4.73 38.16 26.14 31.44
13 30 25 10 4.34 2.36 1.12 37.53 32.31 13.49
14 30 25 15 4.53 2.47 1.93 37.76 32.26 20.23
15 30 25 20 4.69 2.60 3.03 37.71 32.49 26.28
16 30 25 25 4.90 2.74 4.79 37.98 32.65 31.25
17 35 10 10 4.73 0.84 1.05 44.14 12.87 13.52
18 35 10 15 4.91 0.88 1.81 44.29 12.93 20.26
19 35 10 20 5.06 0.92 2.86 44.26 13.03 26.39
20 35 10 25 5.26 0.96 4.56 44.60 13.06 31.38
21 35 15 10 5.00 1.36 1.10 44.03 19.40 13.65
22 35 15 15 5.20 1.42 1.86 44.23 19.47 20.09
23 35 15 20 5.34 1.48 2.98 44.07 19.49 26.45
24 35 15 25 5.58 1.55 4.67 44.48 19.53 31.29
25 35 20 10 5.32 1.94 1.13 43.96 25.73 13.56
26 35 20 15 5.51 2.04 1.93 43.98 25.86 20.15
27 35 20 20 5.68 2.12 3.04 43.95 25.84 26.28
28 35 20 25 5.96 2.23 4.86 44.34 25.91 31.32
29 35 25 10 5.66 2.62 1.18 43.61 32.03 13.65
30 35 25 15 5.91 2.75 2.01 43.82 32.09 20.17
31 35 25 20 6.11 2.88 3.14 43.79 32.18 26.18
32 35 25 25 6.36 3.02 4.96 43.98 32.23 31.19
33 40 10 10 5.99 0.93 1.11 50.37 12.93 13.59
34 40 10 15 6.22 0.97 1.90 50.52 12.99 20.30
35 40 10 20 6.40 1.00 2.96 50.51 12.88 26.31
36 40 10 25 6.63 1.05 4.70 50.72 12.95 31.29
37 40 15 10 6.39 1.50 1.15 50.27 19.29 13.61
...

...
...

...
...

...
...

...
...

...
160 75 25 25 648.97 146.53 6.87 68.50 23.25 32.39
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6.3 Cubic Approximation Approach Parameters

The grid for the CA approach is also chosen based on the demand range in Kacar,

Irdem, and Uzsoy [29], which is (30, 75), (10, 25) and (10, 25) for the three products.

From the open-queuing simulation network results, the corresponding WIP levels for

the three products are in the range (5.02, 47.09), (1.03, 11.43) and (1.22, 3.43). These

WIP levels are covered using a step size of 8, since using few steps reduces numerical

accuracy and using more steps made the optimization run time impractical. Note that

throughput levels for the closed network case are once again calculated based on the

WIP range and step size using MVA. The throughput values are not shown because

there are 83 = 512 data points, which is significantly higher than the 160 points used

for FPR. Since the CA approach actually interpolates between the product release

combination points, it is very important to have a fine grid to make the throughput

estimates more realistic.

6.4 Numerical Experiments

The ACF, FPR, and CA approaches are now compared. The cost factors used in

all comparisons are 50 for backorder, 35 for WIP, and 15 for inventory holding cost.

There are two types of data scenarios in Kacar, Irdem, and Uzsoy [29]: correlated

demands and mixed demands.

All model variants in this chapter are solved using Gurobi Optimizer 7.0.1TM from

within the MPL 5.0TM for Windows environment. The run times for the optimization

are based on a 64-bit Windows 10.0TM computer with 24GB RAM and 3.3Ghz clock

speed.

6.4.1 Correlated Demand

We first begin with a simplified correlated demand scenario where the demand is

(60, 20, 20) for product 1, 2 and 3, in all 26 periods to understand how the models

work. This demand scenario corresponds to a 87% utilization level of the bottleneck

workstation 4.

Four production planning models are considered:

1. ACF
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2. FPR using open queuing network (FPR-O), where product release rates are

(60, 20, 20) and the WIP estimates come from the open network simulation

model. The throughput estimates from the simulation, as seen in Table 6.3 are

(60.0647, 19.9956, 19.9047). However, demand values of (60, 20, 20) are used

for all 26 periods. The grid values for FPR are as shown in Table 6.3.

3. FPR using closed queuing network (FPR-C), where the WIP estimates from

the open network simulation are used to estimate throughput in an equivalent

closed-queuing network using MVA. Once again, the grid values of Table 6.4

are used.

4. CA-8, where the cubic approximation method for the closed queuing network

is used with a step size of 8, as described in Section 6.3.

Figure 6.12 shows the production in each period for ACF, FPR-O, FPR-C, and

CA. In the ACF production graph, there is a build up for product 1 after which

production matches demand. This is not observed for products 2 and 3, which always

match demand. In FPR-O and FPR-C, some oscillations in production are observed,

while in CA, production always matches the demand for the three products. Since the

WIP choices are discrete in FPR-O and FPR-C, if a particular release combination is

not on the grid, the solution oscillates between higher and lower production. For this

case, it should be noted that the values in the load (WIP+throughput) grid yield a

production that differs fractionally from (60, 20, 20). This fractional error causes the

oscillation.

While the ACF model ran in negligible time, the solution time for the FPR and CA

models took significantly longer. Therefore, all FPR and CA cases in this chapter

were solved using the supplementary variables and constraints in Section 4.4 with

M = 55 and f = 0.5. The objective function value for each of the models is shown

in Figure 6.13.

The ACF solution successfully meets demand with very low inventories. The FPR-

O solution has a lower cost (since this solution was the optimal with supplementary

variables and constraints, it represents an upper bound on the optimal FPR solution).

This solution has some backorder costs though the production planning cost (WIP,

inventory, and backorder) are lower.
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Figure 6.12: Production rate comparison for 60-20-20 case



109

Figure 6.13: Production planning cost results for 60-20-20 demand

The production planning cost of FPR-C is much lower than ACF and FPR-O. The

reason for this is that FPR-C is based on the closed queuing network assumption.

From Tables D.1 and D.2, it can be seen that the WIP levels (total of 31.24) in row

107 give an open-queuing network throughput of (60, 20, 20), while in row 70, almost

the same throughput is realized with a total WIP of approximately 15.03 for the

closed-queuing network case. The CA-8 model outperforms FPR-C and is in fact the

one with the lowest cost. Since it is an interpolative method, demand can be met

without holding any inventory or using backorders. The CA-8 model also has the

advantage of the closed queuing network.

In order to further understand the differences, the WIP-Throughput relationship

between the three approaches (ACF, FPR, and CA) are compared in Table 6.5 (also

illustrated in Figure 6.14). As can be seen, the total WIP in ACF and the open

network simulation estimate are close. The MVA estimates of WIP for a throughput

of (60, 20, 20) is found by trial and error to total to be approximately 14.53. The

ACF WIP values are found by examining the LP solution for periods where the
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throughput is exactly (60, 20, 20). The Zk
gtl values in the solution give us the CF

allocations for the operation. Based on these allocations, and the active line in the

piecewise regression, we can find the WIP values corresponding to the throughput

values (60, 20, 20). While the total WIP between ACF and FPR-O (based on an open

queuing network simulation) are close, the individual product WIPs are different. In

ACF, these values are approximately (25.05, 3.63, 2.86) while in FPR-O, they are

approximately (22.77, 4.68, 3.79).

Table 6.5: Product WIP in ACF, FPR, and CA

Product ACF Simulation MVA

1 25.05 22.77 10.32
2 3.63 4.68 2.11
3 2.86 3.79 2.10

Total 31.54 31.24 14.53

This leads us to believe that all three methods (ACF, FPR, and CA) introduce

different types of inaccuracies which can be summarized through the following bullet

points:

1. The ACF seems to introduce inaccuracies in individual product WIPs. This

is the net result of the piecewise regression procedure to estimate the CF lines

and also the allocation of capacity through the Zk
gtl variables.

2. The FPR method can use exact open simulation throughput point estimates,

making it in some sense more accurate than ACF. However, since the WIP

choices are discrete, the MIP optimal solution is only approximate because if

a particular release combination is not on the grid, the solution will need to

produce too much or too little in a period.

3. The CA can better match demand, but because of the discrete steps involved,

the estimates of throughput for intermediate values of WIP in the grid are

approximate.
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Figure 6.14: Product-WIP level for ACF, FPR, and CA
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6.4.1.1 Constant demand based on 70% and 90% utilization

Kacar, Irdem, and Uzsoy [29] discuss two constant demand scenarios based on 70%

and 90% utilization level of the bottleneck machine. The demand values for 70%

utilization are (49, 16, 16), while for the 90% utilization case, they are (62, 21, 21),

for all 26 periods. In Figures 6.15 and 6.16, it can be seen that the ACF model

requires a ramp-up for production 1. The production in FPR-O and FPR-C oscillate

slightly, while in CA, production matches demand.

Figure 6.15: Production rate comparison for constant demand based on 70% utiliza-
tion case

The objective function values for the approaches are shown in Figures 6.17 and 6.18.
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Figure 6.16: Production rate comparison for constant demand based on 90% utiliza-
tion case
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The ACF solution is better than the FPR-O solution for the 70% utilization case,

whereas the reverse trend is observed for 90% utilization. For 70% utilization, FPR-C

gives a better solution than CA-8, though it uses some inventory and backorders. For

90% utilization, CA-8 gives the best solution.

Figure 6.17: Production planning cost results for 70% utilization

6.4.1.2 Varying Demand

In the varying demand scenario in Kacar, Irdem, and Uzsoy [29], the demand is

generated based on 70% and 90% utilization levels of the bottleneck machine using

the normal distribution . The demand values are shown in Table 6.6 and Table 6.7

for 70% and 90% utilization, respectively. In Figure 6.19 and Figure 6.20, it can be

seen that for varying demands, production in ACF, FPR-O, and FPR-C oscillate a

little around the demand. In the case of ACF, the oscillation is only for product 1.

In CA, production and demand are matched in most instances.

The objective function values for the approaches are shown in Figures 6.21 and 6.22.

For 70% utilization with varying demand, FPR-O has a higher cost than ACF, while
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Figure 6.18: Production planning cost results for 90% utilization

it is lower in the two closed queuing network cases (FPR-C and CA-8). In the 90%

utilization case with varying demand, the FPR-O solution has a lower cost than ACF.

6.4.2 Mixed Demand

Finally, we generated demands based on the Poisson distribution with a mean of

(60, 20, 20). The demand values are shown in Table 6.8.

Figure 6.23 shows the demand and production for each of the cases. Once again,

the same behaviour as for the 70% and 90% varying demand scenarios is observed.

The objective function values are shown in Figure 6.24. Again, the same trend as

for 87% fixed demand (60-20-20) and 90% utilization with fixed and varying demand

is seen.

6.4.3 Production Rate Comparison

Table 6.9 shows a summary of the average absolute value of the difference between

demand and production for each of the cases over the 26 periods. As can be seen in
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Figure 6.19: Production rate comparison for varying demand based on 70% utilization
case
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Figure 6.20: Production rate comparison for varying demand based on 90% utilization
case
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Table 6.6: Demand for 70% utilization

Period
Demand

Product 1 Product 2 Product 3
1 49 16 16
2 49 16 16
3 49 16 16
4 44 14 14
5 39 12 12
6 34 10 10
7 29 8 8
8 29 8 8
9 34 10 10
10 39 12 12
11 44 14 14
12 49 16 16
13 49 16 16
14 49 16 16
15 49 16 16
16 54 18 18
17 59 20 20
18 64 22 22
19 69 24 24
20 69 24 24
21 64 22 22
22 59 20 20
23 54 18 18
24 49 16 16
25 49 16 16
26 49 16 16
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Table 6.7: Demand for 90% utilization

Period
Demand

Product 1 Product 2 Product 3
1 60 21 21
2 60 21 21
3 60 21 21
4 59 20 20
5 56 18 18
6 52 16 16
7 48 14 14
8 48 14 14
9 52 16 16
10 56 18 18
11 59 20 20
12 60 21 21
13 60 21 21
14 60 21 21
15 60 21 21
16 61 22 22
17 65 24 24
18 69 26 26
19 73 28 28
20 73 28 28
21 69 26 26
22 65 24 24
23 61 22 22
24 60 21 21
25 60 21 21
26 60 21 21
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Figure 6.21: Production planning cost for 70% utilization for varying demand

Figure 6.22: Production planning cost for 90% utilization for varying demand
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Table 6.8: Demand for Poisson distribution

Period
Demand

Product 1 Product 2 Product 3
1 40 18 21
2 69 24 22
3 54 12 10
4 59 31 25
5 71 19 24
6 79 13 21
7 71 24 21
8 59 24 13
9 54 22 15
10 50 20 21
11 66 20 22
12 75 24 21
13 56 26 18
14 62 20 14
15 55 20 15
16 62 21 20
17 54 23 13
18 67 17 22
19 68 21 22
20 65 18 22
21 52 20 23
22 62 19 18
23 62 17 25
24 66 21 18
25 66 17 11
26 44 18 15
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Figure 6.23: Production rate comparison for Poisson demand case
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Figure 6.24: Production planning cost results for Poisson distribution



124

the table, there is a good match between demand and production in ACF and CA,

while the FPR-O and FPR-C solutions show larger differences.
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Table 6.9: Average value of the absolute difference between demand and production

Case
ACF FPR-O FPR-C CA

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

87% Utilization 1.59 0.00 0.00 0.04 4.98 0.02 1.93 1.91 0.20 0.00 0.00 0.00
Constant 70% Utilization 0.54 0.00 0.00 1.58 1.56 1.58 2.16 3.16 3.01 0.00 0.00 0.00
Constant 90% Utilization 1.80 0.00 0.00 2.35 4.69 1.61 0.38 3.62 1.21 0.00 0.00 0.00
Varying 70% Utilization 1.82 0.00 0.00 1.59 1.72 1.57 3.15 2.50 2.55 0.00 0.00 0.00
Varying 90% Utilization 5.48 0.00 0.00 1.02 2.32 3.36 1.49 2.11 1.54 0.00 0.00 0.19
Poisson 4.51 0.00 0.00 2.11 3.02 1.99 1.60 1.51 2.16 0.00 0.00 0.00
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6.4.4 Computational Time

Table 6.10 shows the computation time for all cases considered in this chapter. The

LP for ACF takes negligible time to solve while, the CA approach always takes the

longest (even with the supplementary variables and constraints). However, the ACF

has the additional overhead of piecewise linear-regression estimates for each resource

(workstation). The grid size used for the CA approach was finer than what was used

for the FPR-O and FPR-C approaches (512 release combinations as opposed to 160).

Table 6.10: Production planning models computational time

Run Time (secs)
ACF FPR-O FPR-C CA

Constant Demand (87%) 0.02 1.73 127 69540
Constant Demand (70%) 0.01 1044 1151 35629
Constant Demand (90%) 0.01 1722 1117 14068
Varying Demand (70%) 0.01 90 1502 39038
Varying Demand (90%) 0.01 8.16 160 35657
Poisson Demand (60, 20, 20) 0.02 27.91 3.4 33275

In the papers by Kacar, Mönch, and Uzsoy [30, 31], a semiconductor fabrication

case with 2 products and 210 and 245 operations for products 1 and 2 respectively is

considered. This case has over 200 machines grouped into 84 workstations. For this

case, developing piecewise linear CF estimates for each of the 84 workstations through

simulation experiments would be a significant challenge. In the data-driven FPR and

CA approaches, similar simulation runs would be needed, if the WIP-Throughput

relationship is built on the open network assumption. However, there would be no

need to estimate the CF through regression. For the closed queuing case, the MVA

procedure would need to be invoked for each release combination. It is expected that

this should be tractable for the problem in Kacar, Mönch, and Uzsoy [30, 31].

In terms of the optimization problem, the ACF LP would be significantly larger,

than for the cases considered in this chapter, since it has variables and constraints for

both workstations and operations. However, the ACF LP only has linear variables,

so solving a problem of this size appears computationally tractable. In the data-

driven FPR and CA approaches, the throughput of the entire system is estimated

for a given WIP combination. Therefore, the number of workstations and operations
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does not change the size of the MILP and the solution times are not expected to

take significantly longer for the scaled up wafer fabrication facility. However, the

main challenge in scaling up for the FPR and CA would be the number of grid

points, which increases exponentially with the number of products. Therefore, an

increase in number of products would pose difficulties with both WIP-Throughput

estimation as well as with the MILP, since the number of integer variables would

increase exponentially.

6.5 Conclusion

This chapter presented a comparison between the ACF, FPR-O, FPR-C, and CA ap-

proaches. The solutions in all three methods are comparable. The ACF consistently

has a lower production planning cost than the FPR-O in the case of low bottleneck

utilization level. However, at high utilization levels, the FPR-O has the lower cost.

The FPR-C and CA approaches have successively lower costs than FPR-O because

the MVA throughput estimate is consistently higher than the open network simu-

lation estimate. However, the FPR and CA approaches require significantly higher

computational time than the ACF.

This chapter also shows that there are differences between the WIP levels in the

solutions. While ACF and FPR-O have similar total WIP levels, these are quite

different at the product level. However, the closed queuing network approaches such

as FPR-C and CA require lower WIPs for the same throughput, since they are based

on a closed queuing network representation.

Finally, as mentioned in Section 6.4.1, the nature of the approximations and the

errors are different between the three approaches. First, the piecewise regression

procedure to estimate the CF lines and also the capacity allocation variables used in

the ACF seems to introduce inaccuracies in individual product WIPs. Second, the

grid of the FPR representing demand patterns may cause oscillations in the FPR

optimal solution. Third, the estimates of throughput for intermediate values of WIP

in the grid of the CA are also approximate. This problem can be mitigated by using

smaller step sizes, i.e., a larger number of steps.



Chapter 7

Conclusion and Future Research Direction

7.1 Conclusions

This thesis consists of seven chapters. The first chapter introduces the problem

of production planning in networks with queuing related congestion. Production

planning circularity has been defined in the literature as the problem where lead

time is dependent on resource load and resource loading depends on the lead time.

Therefore, shop floor congestion should be integrated at the higher managerial level

(aggregate planning) to improve the feasibility of the production plans and schedules

developed at lower levels. One way to do this is by relating the WIP level to the

resource throughput using the CF concept proposed in the literature [19, 35, 47, 3, 1].

In particular, this thesis looks at how the CF can be viably used in production

planning for multistage multiproduct systems and as should be clear, presents an al-

ternative approach to the ACF approach in Asmsundsson et al. [3]. The second chap-

ter presents a literature review for the existing state-of-art in the literature covering

different production planning tools, their advantages and shortcomings, and internal

and external factors affecting production. First, the importance of the production

planning tools in reaching a firm’s production goal is discussed. The production

planning targets set at the higher managerial planning level are communicated as

goals to the lower managerial planning level. Unfortunately, when congestion at the

shop floor is ignored while generating the production plan at the higher managerial

planning level, the plan feasibility at the lower managerial level gets affected.

Moreover, the internal and external factors could also affect production plan fea-

sibility. Internal factors are sometimes under the firm’s control but external factors

are usually beyond a firm’s control. An example of an internal factor not under a

firm’s control may be an unexpected machine failure. The impact of a failure, how-

ever, may be mitigated by the firm, depending on what its recourse measures are.

The operational factors that most commonly affect plan feasibility has been surveyed

128



129

based on the classification by Yeung, Wong, and Ma [79].

MRP is one of the most popular planning tools at the lower managerial planning

level. A MRP plan is constructed based on the fixed lead-time assumption which un-

limited production capacity. To overcome this deficiency in the MRP, two approaches

have been addressed in the literature. The first approach uses an iterative approach

where an optimization model generates a release schedule and a simulation model to

observes the flow time of that schedule and provides this as feedback to the optimiza-

tion model. This iteration continues until some satisfactory criteria are met. The

convergence of the iterative approach needs further research [52].

The second approach uses the CF to relate resource utilization to the WIP level

which is then incorporated into a production planning optimization model through

linearization or piecewise linearization [47, 3]. The CF itself can be derived from the

steady-state of the queuing system or the transient state of a production resource, or

estimated using a simulation model for the production system [29].

While the approach in Missbauer [47] derives the CF for the bottleneck machine

only (based on the M/G/1 queue) and for non-bottleneck machines uses just the con-

stant capacity constraint. The deficiency of using a CF for just bottleneck machines is

presented in Chapter 3, though we show it for the special case of the M/G/1, i.e., the

M/M/1 queue. In the case of multiple products with a shifting bottleneck machine,

using an M/M/1 throughput estimate at the bottleneck can significantly overesti-

mate throughput. From this chapter, it becomes clear that the entire multiproduct

multi-machine queuing network should be used to estimate the CF.

ACF is the dominant approach in the literature to incorporate the CF into an

optimization model [3, 29, 37]. In Kacar, Irdem, and Uzsoy [29], the CF used in the

ACF LP model is based on an open queuing network simulation model, where several

WIP-Throughput estimates are made. A point to note here is that the CF form has

total machine load on the X-axis across multiple visits and products, as is the case

in re-entrant manufacturing systems. Similarly, the Y-axis shows throughput across

multiple visits and products. The allocation variables Zk
gtl are used to disaggregate

throughput for each combination of product, operation, and resource. Since the

simulation estimates are based on the entire queuing network, this approach works

quite well, though it is not clear that the linear disaggregation is always accurate.
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The ACF approach relies on deriving the CF for every resource on the shop floor,

which requires too much information about it to simulated. For a large number of

resources, this can be time consuming. Also, the implementation in Kacar, Irdem,

Uzsoy [29], requires piecewise linearization of the CF from point estimates, which is

also time consuming, and is by definition, an approximation.

The focus of this thesis is to develop an alternative approach to the ACF, where

the WIP-Throughput relationship point estimates are made for an entire queuing

network. These estimates can come from an analytical function, a simulation model,

an open queuing network calculator, or using the MVA, which is an approximation

method for the closed queuing network. This is a robust method, as it could use any

data source that could provide an estimate of system throughput for different WIP

levels to a suitable degree of accuracy.

Chapter 4 illustrates this approach through the FPR MILP. Here, point estimates

of throughput are made on a resource load grid that is dimensioned by product. The

illustrative examples in the chapter use MVA, though any point estimation method

could be used. The restriction in the model is that the load choice (WIP + release) in

each period should correspond to a grid point. The FPR approach is data-driven, be-

cause no attempt is made to develop the piecewise linear function through regression

or any other curve fitting method. We show how using this model leads to a different

(more realistic) solution from the fixed capacity model and look at the behaviour

of the model based on different factors such as backorder costs and demand. The

computational run time is also calibrated for random problems. The results illustrate

that increasing step size increases the accuracy of the method, which manifests itself

in a lower optimal objective function value. Naturally, there is a trade-off between

accuracy requirements and computational run time. A supplementary variable and

constraint approach is presented to reduce run time. Here, production quantities de-

viating from demand are penalized in the objective function. Also, limits are placed

on the inventory and backorder contribution in each period. Once again, when the

penalty in the objective function is low and the limits are tight, the solution is further

away from the optimal solution to the original problem, but quicker to obtain.

Chapter 5 presents the CA approach, which can be seen as an interpolative

method. In this chapter, point estimates of network throughput are made at the
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corner points of the load cuboid, dimensioned by product. Effectively, this is an in-

terpolative approach where the slopes in each cuboid are averaged to get an estimate

of throughputs for a load combination of products. The advantage of this method

is that the load (WIP + release) is no longer restricted to discrete choices. In the

chapter, the CA and FPR methods are compared. The cubic approximation is better

able to match the supply with the demand than FPR. Furthermore, the effect of step

size and planning horizon length on the quality solution obtained and computational

time is examined. There is a trade-off between optimal solution accuracy and run

time. When the step size is high, solutions are more accurate but take longer to find.

Chapter 6 presents a comparison between ACF, FPR, and CA. The ACF seems

to introduce inaccuracies in individual product WIPs. This is the net result of the

piecewise regression procedure to estimate the CF lines and also the allocation of ca-

pacity through the Zk
gtl variables. The FPR method uses exact throughput estimates

at discrete points, making it in some sense more accurate than ACF. However, since

the WIP choices are discrete, the MIP optimal solution is only approximate because

if a release combination is not on the grid, the solution will need to produce too

much or too little in a period. The CA can better match demand, but because of the

discrete steps involved, the estimates of throughput for intermediate values of WIP

in the grid are approximate.

Kacar, Mönch, and Uzsoy [31] state that “ACF requires explicit representation of

WIP at the level of individual operations, which greatly increasing the number of both

decision variables and constraints over”. Adding to that, “The piecewise linearization

of the CF and the additional allocation variables required by the ACF model increase

the size of the formulation even further”. Some of these problems are circumvented

in FPR and CA. However, the load choices are discrete, making these approaches

challenging as the number of products is increased.

7.2 Future Research Directions

Some areas for future research are:

• Further study to obtain insights on the differences between WIP levels in the

partitioning CF proposed by Asmundsson, Rardin, Turkseven, and Uzsoy [3]

and the CF-derived using MVA for a given throughput.
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• Using neural networks to estimate the WIP-Throughput relationship.

• Considering the case of open queuing networks. The challenge here would be

to define the cuboid grid structure such that the network is stable.

• Finding solutions using the FPR and CA methods for scaled up problems such

as the one in Kacar, Mönch, and Uzsoy [30, 31]. This may involve using heuristic

or metaheuristic algorithms to obtain good solutions with reasonable run time.

• The use of non-separable convex programming approaches to solve the aggregate

planning problem with an embedded queuing network CF. One approach would

be the triangulation approach of Vielma and Nemhauser [75] to linearize the CF.

The other might be to relax the binary variable Zrp in FPR to be a continuous

variable between 0 and 1, and make substitutions for WIP level Wgp, inventory

Igp and backorder Bgp in the objective function. A branch and bound procedure

may then be developed based on the cuboid neighbourhood structure. In CA,

the analogous method would be to relax the ζcp variables.

• Representing different parts of a manufacturing network as queuing networks

and piecing them together. The throughput of each queuing network could be

estimated analytically, computationally, or through simulation. This approach

could eventually help us understand the dynamics of a supply chain network

with several entities, each having congestion issues either in manufacturing or

distribution.
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Appendix A

Chapter 3

A.1 Python Code for Computing MVA

#Combinations function

#This function picks all possible combinations from a list

def myCombinations(list):

r=[[]]

for x in list:

t = []

for y in x:

for i in r:

t.append(i+[y])

r = t

return r;

# Mean value analysis algorithm

def MVA(epsilon, num_products, num_stations, N, Z, c, mu_inv, v):

C = [];

s = 0;

L = [];

Looping = True;

while Looping:

#Step 111

for j in range(num_stations):

L_temp = [];

for p in range(num_products):

L_temp.append(float(N[p])/float(Z[p]));
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L.append(L_temp);

#print "L is", L;

#Step 2

W = [];

for j in range(num_stations):

W_temp = [];

for p in range(num_products):

temp1 = float(mu_inv[j][p])/float(c[j])* \

(1+float(N[p]-1)/float(N[p])*L[j][p])

temp2 = 0;

for r in range(num_products):

if (r != p) & (mu_inv[j][p] !=0.0):

temp2 = temp2 + float(L[j][r])* \

float(mu_inv[j][r])/ \

float(c[j]);

#print "j= ",j , "p = ", p, "Temp2 is: ", temp2;

if c[j] > 1:

temp3 = float(c[j]-1)/float(c[j])* \

float(mu_inv[j][p]);

else:

temp3 = 0;

W_temp.append(temp1+temp2+temp3);

W.append(W_temp);

#print "W is", W;

#Step 3

X=[];

for p in range(num_products):

x_temp_denominator = 0;



143

for j in range(num_stations):

x_temp_denominator = x_temp_denominator +\

float(v[j][p])*W[j][p];

x_temp = float(N[p])/float(x_temp_denominator);

X.append(x_temp);

#print "X is", X;

#Step 4-1

#print "Computing L_new"

L_new = [];

for j in range(num_stations):

L_temp = [];

for p in range(num_products):

L_temp.append(float(X[p])*float(v[j][p])* \

float(W[j][p]));

#print "X[p] is ", X[p];

#print "v[j][p] is ", v[j][p];

#print "W1[j][p] is ", W[j][p];

#print "L_temp is", L_temp;

L_new.append(L_temp);

#print "L_new is ", L_new;

#Step 4-2

Looping2 = False;

for j in range(num_stations):

for p in range(num_products):

if L_new[j][p] > 0.0:

if (L_new[j][p] - L[j][p])/L_new[j][p] > epsilon:

Looping2 = True;

if Looping2:

L = L_new;

Looping = Looping2;
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#print "Done, L (final) is ", L;

#print "Done, X (final) is ", X;

#print len(X);

#print X[0];

C_temp = [];

for p in range(num_products):

C_temp.append(X[p]);

C.append(C_temp);

return C;

epsilon = 0.001;

num_products = 1;

num_stations = 11;

num_hours = 24;

num_minutes = 60;

num_days = 7;

N = [22];

Z = [22];

c = [1,1,1,1,1,1,1,1,1,1,1];

mu_inv = [[80],[220],[45],[40],[25],[22],[20], \

[100],[50],[50],[70]];

v = [[3],[1],[1],[6],[3],[2],[3],[1],[1],[1],[0]];

#print "mu_inv is" ,mu_inv[1];

C = [];

#Call mean value analysis function once to test.

C = MVA(epsilon, num_products, num_stations, [12.3804], \

Z, c, mu_inv, v);
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for i in range(len(C[0])):

C[0][i] = C[0][i];

C[0][i] = C[0][i] * 60*8*7;

print ("C MVA for Product 1 i:\n", C[0]);

#Call mean value analysis function within a loop to find \

throughput estimates for different combinations of input products.

step_size = 10;

num_iterations = 1;

R = [];

for p in range(num_products):

R_temp = [];

inventory_value = 10;

for i in range(num_iterations):

R_temp.append(inventory_value);

inventory_value = inventory_value + step_size;

R.append(R_temp);

#print "R is : ", R;

#Inventory combinations

I = myCombinations(R);

##print "Length of I is: ",len(I);

print ("I is : ", I);

#Throughput for each inventory combination

T = [];

for i in range(len(I)):

T.append(MVA(epsilon, num_products, num_stations, \
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I[i], Z, c, mu_inv, v));

print ("I and T are:");

for i in range(len(T)):

print (I[i], T[i]);

###Open a file

##filep = open("data.txt", "w");

##filep.write("param Q := \n");

##for g in range(num_products):

## for r in range(len(I)):

## w_string = str(g+1);

## w_string += " ";

## w_string += str(r+1);

## w_string += " ";

## w_string += str(I[r][g]);

## filep.write("%s \n" %w_string );

##filep.write(";\n");

##

##filep.write("param O := \n");

##for g in range(num_products):

## for r in range(len(T)):

## w_string = str(g+1)print "C [6 3] is:\n", C[0];;

## w_string += " ";

## w_string += str(r+1);

## w_string += " ";

## w_string += str(T[r][0][g]*num_hours*num_minutes*num_days);

## filep.write("%s \n" %w_string );

##filep.write(";\n");

##filep.close();



Appendix B

Chapter 4

B.1 Python Code for the Optimization Model

B.1.1 Main Code

#Replication Difference function of run time

def findR_T(timeSet):

R_T = [];

# The Second Case

## max_i, min_i = 0, 0

##

## for i in range(len(timeSet)):

## if timeSet[i] > timeSet[max_i]:

## max_i = i

## if timeSet[i] < timeSet[min_i]:

## min_i = i

## R_T.append(timeSet[max_i]-timeSet[min_i])

for i in range(len(timeSet)-1):

## R_T.append(timeSet[i+1]-timeSet[i])

# The First Case

R_T.append(abs(timeSet[i+1]-timeSet[i]))

#print "R_T is ", R_T;

return R_T;

#Replication Difference function

def findR(objValueSet):

R = [];

147
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# The Second Case

## max_i, min_i = 0, 0

##

## for i in range(len(objValueSet)):

## if objValueSet[i] > objValueSet[max_i]:

## max_i = i

## if objValueSet[i] < objValueSet[min_i]:

## min_i = i

## R.append(objValueSet[max_i]-objValueSet[min_i])

for i in range(len(objValueSet)-1):

## R.append(objValueSet[i+1]-objValueSet[i])

# The First Case

R.append(abs(objValueSet[i+1]-objValueSet[i]))

#print "R is ", R;

return R;

#Combinations function

#This function picks all possible combinations from a list

def myCombinations(list):

r=[[]]

for x in list:

t = []

for y in x:

for i in r:

t.append(i+[y])

r = t

return r;

#MVA calling function for fixed inventory combinations
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#This function picks fixed inventory combinations I and calls MVA\

for each combination

def get_QO_fromMVA(num_products, epsilon, \

num_stations,num_hours,num_minutes,num_days, \

N,Z,c,mu_inv,v,I):

from Closed_ISERC import MVA

#Call mean value analysis function within a loop to find\

throughput estimates for different combinations of input products.

#print "Length of I is: ",len(I);

#print ("I is :", I);

#Throughput for each inventory combination

T = [];

for i in range(len(I)):

T.append(MVA(epsilon, num_products, num_stations,\

I[i], Z, c, mu_inv, v));

#print ("I and T are:");

##for i in range(len(T)):

## print I[i], T[i];

Q={}

O={}

#Open a file

filep = open("data.txt", "w");

filep.write("param Q := \n");

for g in range(num_products):

for r in range(len(I)):
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Q[g+1,r+1]=I[r][g] #Create Q

w_string = str(g+1);

w_string += " ";

w_string += str(r+1);

w_string += " ";

w_string += str(I[r][g]);

filep.write("%s \n" %w_string );

filep.write(";\n");

filep.write("param O := \n");

for g in range(num_products):

for r in range(len(T)):

#print "g: %s, r: %s"%(g+1,r+1)

O[g+1,r+1]=float(T[r][0][g]*num_hours*\

num_minutes*num_days)

w_string = str(g+1);

w_string += " ";

w_string += str(r+1);

w_string += " ";

w_string += str(T[r][0][g]*num_hours*\

num_minutes*num_days);

filep.write("%s \n" %w_string );

filep.write(";\n");

filep.close();

#print "O:", O

#print "num"

return Q, O, len(I)

#MVA calling function for iterative inventory combinations

#This function picks different inventory combinations and\
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calls MVA for each combination

def get_QO_iterative(num_products,num_iterations, step_size,epsilon, \

num_stations,num_hours,num_minutes,num_days, \

N,Z,c,mu_inv,v):

from Closed_ISERC import MVA

#Call mean value analysis function within a loop to find \

throughput estimates for different combinations of input products.

R = [];

for p in range(num_products):

R_temp = [];

inventory_value = 1;

for i in range(num_iterations):

R_temp.append(inventory_value);

inventory_value = inventory_value + step_size;

R.append(R_temp);

#print "R is : ", R;

#print "len R:", len(R)

#Inventory combinations

I = myCombinations(R);

#print "Length of I is: ",len(I);

#print ("I is :", I);

#Throughput for each inventory combination

T = [];

for i in range(len(I)):

T.append(MVA(epsilon, num_products, num_stations,\

I[i], Z, c, mu_inv, v));
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#print ("I and T are:");

##for i in range(len(T)):

## print I[i], T[i];

Q={}

O={}

#Open a file

#filep = open("data.txt", "w");

#filep.write("param Q := \n");

for g in range(num_products):

for r in range(len(I)):

Q[g+1,r+1]=I[r][g] #Create Q

’’’w_string = str(g+1);

w_string += " ";

w_string += str(r+1);

w_string += " ";

w_string += str(I[r][g]);’’’

#filep.write("%s \n" %w_string );

#filep.write(";\n");

#filep.write("param O := \n");

for g in range(num_products):

for r in range(len(T)):

#print "g: %s, r: %s"%(g+1,r+1)

O[g+1,r+1]=float(T[r][0][g]*num_hours*\

num_minutes*num_days)

’’’w_string = str(g+1);

w_string += " ";

w_string += str(r+1);

w_string += " ";
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w_string += str(T[r][0][g]*num_hours*\

num_minutes*num_days);

filep.write("%s \n" %w_string );’’’

#filep.write(";\n");

#filep.close();

#print "O:", O

#print "num"

return Q, O, len(I)

def callGurobi(products,Q,O,E,h,b,w,x,T,d,d_factor):

import pyomo.environ as cpr

from pyomo.opt import SolverFactory

##### Create Model #####

m=cpr.ConcreteModel()

###############

#### Sets #####

###############

#Set of Products

m.G=cpr.RangeSet(1,products)

#Set of time periods

m.P=cpr.RangeSet(1,T)

#Set of WIP patterns

m.R=cpr.RangeSet(1,E)

m.d=cpr.Param(d.keys(),initialize=d)

m.h=cpr.Param(h.keys(), initialize=h)
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m.b=cpr.Param(b.keys(), initialize=b)

m.w=cpr.Param(w.keys(), initialize=w)

m.x=cpr.Param(x.keys(), initialize=x)

m.d_factor=cpr.Param(d_factor.keys(), initialize=d_factor)

## #initial inventory

## m.initial_inventory=cpr.Param(m.G, initialize=0)

#initial backorder

m.initial_backorder=cpr.Param(m.G, initialize=0)

#Q and O

m.Q=cpr.Param(m.G, m.R, initialize=Q)

m.O=cpr.Param(m.G, m.R, initialize=O)

################

##### VARS #####

################

m.X=cpr.Var(m.G, m.P, within=cpr.NonNegativeReals, name="X")

m.Y=cpr.Var(m.G, m.P, within=cpr.NonNegativeReals, name="Y")

m.W=cpr.Var(m.G, m.P, within=cpr.NonNegativeReals, name="W")

m.I=cpr.Var(m.G, m.P, within=cpr.NonNegativeReals, name="I")

m.B=cpr.Var(m.G, m.P, within=cpr.NonNegativeReals, name="B")

m.Z=cpr.Var(m.R, m.P, within=cpr.Binary, name="Z")

m.initial_inventory=cpr.Var(m.G, within=cpr.NonNegativeReals,\

name="initial_inventory")

m.initial_WIP=cpr.Var(m.G, within=cpr.NonNegativeReals,\

name="initial_WIP")
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######################

##### Objective #####

######################

m.obj=cpr.Objective(expr=sum(m.x[g]*m.X[g,p] for g in m.G \

for p in m.P) +\

sum(m.w[g]*m.W[g,p] for g in m.G for p in m.P) +\

sum(m.h[g]*m.I[g,p] for g in m.G for p in m.P)+\

sum(m.h[g]*m.initial_inventory[g] for g in m.G)+\

sum(m.w[g]*m.initial_WIP[g] for g in m.G) +\

sum(m.b[g]*m.B[g,p] for g in m.G for p in m.P)\

, sense=cpr.minimize)

########################

##### Constraints #####

########################

#Constraint 1+2

def WIP_Balance_rule(m, g, p):

if p==1:

return m.W[g,p]==m.initial_WIP[g]+m.X[g,p]-m.Y[g,p]

if p>1:

return m.W[g,p]== m.W[g,p-1] + m.X[g,p] - m.Y[g,p]

m.WIP_Balance = cpr.Constraint(m.G, m.P, rule=WIP_Balance_rule,\

name=’WIP_Balance’)

#Constraint 3+4

def Inventory_Balance_rule(m, g, p):

if p==1:

return m.Y[g,p] + m.initial_inventory[g] - \

m.initial_backorder[g] - m.I[g,p] + m.B[g,p]\
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== (m.d[g,p]*m.d_factor[g])

if p>1:

return m.Y[g,p] + m.I[g,p-1] - m.B[g,p-1] - \

m.I[g,p] + m.B[g,p] \

== (m.d[g,p]*m.d_factor[g])

m.Inventory_Balance=cpr.Constraint(m.G, m.P, \

rule=Inventory_Balance_rule, name="Inventory_Balance")

#Constraint 5

def Capacity_1_rule(m, g, p):

return sum(m.O[g,r]*m.Z[r,p] for r in m.R) == m.Y[g,p]

m.Capacity_1=cpr.Constraint(m.G, m.P, rule=Capacity_1_rule,\

name="Capacity_1")

#Constraints 6+7

def Capacity_2_rule(m, g, p):

if p==1:

return m.initial_WIP[g] == \

sum(m.Q[g,r]*m.Z[r,p] for r in m.R)

if p>1:

return m.W[g,p-1] == sum(m.Q[g,r]*m.Z[r,p] for r in m.R)

m.Capacity_2=cpr.Constraint(m.G, m.P, rule=Capacity_2_rule,\

name="Capacity_2")

#Constraint 8

def Capacity_3_rule(m, p):

return sum(m.Z[r,p] for r in m.R) == 1

m.Capacity_3=cpr.Constraint(m.P, rule=Capacity_3_rule,\

name="Capacity_3")
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##################

##### Solve #####

##################

import time

start_time = time.time()

#m.write("ACF-1.lp") #Uncomment to write LP File

opt = SolverFactory(’gurobi’)

#opt.options[’Heuristics’]=0.9 \

#Use same structure for any parameter changes

results = opt.solve(m, tee=False)

#print("--- %s seconds ---" % (time.time() - start_time))

time = time.time() - start_time

return m.obj(), time

def main():

import random

from Closed_ISERC import MVA

###################

####Network Data###

###################

#Number of products

products=3

#Number of stations

num_stations = 11;

#WIP

N = [1,1,1];
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#Total number of visits of each product

Z = [22,14,14];

#Number of machines in each station

c = [1,1,1,1,1,1,1,1,1,1,1];

#Processing times

mu_inv = [[80,80,80],[220,220,220],[45,45,45],[40,40,40],\

[25,25,25],[22,22,22],[20,20,20],[100,100,100],[50,50,50],\

[50,50,50],[70,70,70]];

#Number of visits of each product to each station

v = [[3,2,2],[1,1,1],[1,1,1],[6,4,0],[3,1,1],[2,2,2],[3,1,1],\

[1,0,0],[1,1,1],[1,1,1],[0,0,4]];

#Holding, backorder, WIP, and release costs

#h, b, w, x

h={1:15 , 2:15, 3:15}

b={1:20 , 2:20, 3:20}

w={1:7 , 2:7 , 3:7}

x={1:3 , 2:3 , 3:3}

d_factor={1:1 , 2:1 , 3:1}

T=10 #number of time periods

## T=50 #number of time periods

## #Random Demand 10 Period

d = {

(1,1):8.21788942643641,

(1,2):5.86897356542888,

(1,3):0.260097167302294,
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(1,4):6.9901471523404,

(1,5):7.27675679301042,

(1,6):3.6562409455957,

(1,7):5.87353593952824,

(1,8):8.87188928884992,

(1,9):3.95345088433435,

(1,10):9.04028693859194,

(2,1):0.344361575605143,

(2,2):4.16664791424385,

(2,3):5.67985473388697,

(2,4):2.1089864854594,

(2,5):1.71509940753017,

(2,6):2.52280364837306,

(2,7):0.571095198164596,

(2,8):1.17486771608755,

(2,9):3.75474643382683,

(2,10):1.59843166656426,

(3,1):2.34577763820387,

(3,2):0.427215637533297,

(3,3):3.92127785742083,

(3,4):1.5903351042033,

(3,5):1.74753990745853,

(3,6):4.18226193754764,

(3,7):4.23653302661794,

(3,8):0.870392462770855,

(3,9):2.60546509957668,

(3,10):0.268069197348271,

};

###################

####Basic Data#####

###################
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num_hours = 8;

num_minutes = 60;

num_days = 7;

epsilon = 0.001; #For MVA convergence

## num_iterations=4; # Iterative

## step_size=20; # Iterative

## #WIP for Step Size 2

## I = [[0,0,0],[0,0,9.2246],[0,1.9909,2.5294],[0,4.1741,0],\

[3.8257,0,2.9326],[4.1145,2.5785,0],[12.3804,0,0]];

## #WIP for Step Size 3

## I = [[0,0,0],[0,0,9.2246],[0,1.3485,3.8214],[0,2.6941,1.5686],\

[0,4.1741,0],[2.362,0,4.0978],[2.401,1.5456,1.7492],[2.5057,3.185,0],\

[5.6899,0,1.9738],[6.1048,1.908,0],[12.3804,0,0]];

## #WIP for Step Size 4

I = [[0,0,0],[0,0,9.2246],[0,1.0112,4.5352],[0,1.9909,2.5294],\

[0,3.0672,1.1453],[0,4.1741,0],[1.6752,0,4.7463],[1.7091,1.0989,2.7149],\

[1.7467,2.2575,1.2642],[1.8189,3.4348,0],[3.8257,0,2.9326],\

[3.9167,1.2415,1.3299],[4.1145,2.5785,0],[6.8222,0,1.4709],\

[7.3788,1.5279,0],[12.3804,0,0]];

## #WIP for Step Size 5

## I = [[0,0,0],[0,0,9.2246],[0,0.8072,5.0351],[0,1.5791,3.2308],\

[0,2.415,1.9457],[0,3.2598,0.9236],[0,4.1741,0],[1.3406,0,5.2353],\

[1.3484,0.8716,3.4455],[1.353,1.7376,2.0728],[1.3522,2.6127,0.9606],\

[1.4271,3.6048,0],[2.891,0,3.6144],[2.9889,0.9525,2.2097],\

[3.0295,1.9249,1.0283],[3.1564,2.9642,0],[4.9295,0,2.3442],\

[5.037,1.0642,1.107],[5.3653,2.232,0],[7.6971,0,1.2139],\
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[8.1342,1.272,0],[12.3804,0,0]];

## # WIP for Setp Size 6

## I = [[0,0,0],[6.1048,1.908,0],[2.5057,3.185,0],\

[5.6899,0,1.9738],[2.362,0,4.0978],[0,2.6941,1.5686],\

[0,1.3485,3.8214],[12.3804,0,0],[0,4.1741,0],\

[0,0,9.2246],[1.0831,0,5.6239],[0,0.6544,5.3862],\

[1.076,0.7063,3.8598],[2.401,1.5456,1.7492],[3.8257,0,2.9326],\

[0,1.9856,2.5449],[4.1381,2.6039,0],[1.1571,3.6852,0],[8.34,0,1.0324],\

[0,3.3664,0.7616],[8.8283,1.0974,0],[1.1275,2.9137,0.8023],\

[1.1053,2.1518,1.6582],[1.1014,1.4175,2.6714],[2.4475,2.3424,0.8273],\

[2.38,0.7622,2.7975],[5.9093,0.9309,0.9396],[3.8846,0.817,1.8425]];

#Test

#N = [6.1048,1.908,0];

#C = MVA(epsilon, products, num_stations, N, Z, c, mu_inv, v);

#for i in range(len(C[0])):

#C[0][i] = C[0][i] * 60;

#print "C is ", C[0];

Q, O, E = get_QO_fromMVA(products,epsilon, \

num_stations,num_hours,num_minutes,num_days, \

N,Z,c,mu_inv,v,I)

## obj_Value = callGurobi(products,Q,O,E,h,b,w,x,T,d,d_factor);

## print obj_Value;

#Repeat for random demands

#print "d[1,1] is ", d[1,1];

T = 10;
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Arrival_rate = [0.2, 0.171428571, 0.181818182];

num_iterations = 100;

objValueSet = [];

timeSet = [];

for k in range(num_iterations):

for j in range(T):

total = 0;

for i in range(products):

d[i+1,j+1] = random.random();

#print "d[", i+1, ",", j+1, "] is ", d[i+1,j+1];

total = total + d[i+1,j+1];

for i in range(products):

d[i+1,j+1] = float(d[i+1,j+1]/total*Arrival_rate[i]\

*num_hours*num_days);

#print "d[", i+1, ",", j+1, "] is ", d[i+1,j+1];

obj_Value, time = callGurobi(products,Q,O,E,h,b,w,x,T,\

d,d_factor);

objValueSet.append(obj_Value);

timeSet.append(time);

print "Objective values are ", objValueSet;

print "Solution times are ", timeSet;

import numpy;

import math;

x = numpy.mean(objValueSet);

## sigma = numpy.std(objValueSet)#/math.sqrt(num_iterations);

## LCL = x-2.58*sigma;



163

## UCL = x+2.58*sigma;

## percent_limit = 2.58*float(sigma/x)*100;

d_2 = 1.128;

R = findR(objValueSet);

## sigma_E = float(numpy.mean(x)/d_2);

sigma_E = float(numpy.mean(R)/d_2);

LCL_E = x-1.96*float(sigma_E/math.sqrt(num_iterations));

UCL_E = x+1.96*float(sigma_E/math.sqrt(num_iterations));

percent_limit_E = 1.96*float(float(sigma_E/math.sqrt\

(num_iterations))/x)*100;

y = numpy.mean(timeSet);

R_T = findR_T(timeSet);

## sigma_T = float(numpy.mean(y)/d_2);

sigma_T = float(numpy.mean(R_T)/d_2);

LCL_T = y-1.96*float(sigma_T/math.sqrt(num_iterations));

UCL_T = y+1.96*float(sigma_T/math.sqrt(num_iterations));

percent_limit_T = 1.96*float(float(sigma_T/math.sqrt\

(num_iterations))/y)*100;

print "The Mean is ", x;

print "The Estimated Standard Deviation of the Mean is ", sigma_E ;

print "The LCL_E is ", LCL_E;

print "The UCL_E is ", UCL_E;

print "The Mean of the run time is ", y;

print "The Estimated Standard Deviation of the Mean is ", sigma_T ;

print "The LCL_E is ", LCL_T;

print "The UCL_E is ", UCL_T;

if __name__ == ’__main__’:

main()
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B.1.2 Calling Function for Closed_ISERC

# Mean value analysis algorithm

def MVA(epsilon, num_products, num_stations, N, Z, c, mu_inv, v):

C = [];

s = 0;

L = [];

Looping = True;

while Looping:

#Step 1

for j in range(num_stations):

L_temp = [];

for p in range(num_products):

L_temp.append(float(N[p])/float(Z[p]));

L.append(L_temp);

#print "L is", L;

#Step 2

W = [];

for j in range(num_stations):

W_temp = [];

for p in range(num_products):

temp1 = float(mu_inv[j][p])/float(c[j])*\

(1+float(N[p]-1)/float(N[p]+epsilon)*L[j][p])

temp2 = 0;

for r in range(num_products):

if (r != p) & (mu_inv[j][p] !=0.0):

temp2 = temp2 + float(L[j][r])*\

float(mu_inv[j][r])/float(c[j]);

#print "j= ",j , "p = ", p, "Temp2 is: ", temp2;
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if c[j] > 1:

temp3 = float(c[j]-1)/float(c[j])*\

float(mu_inv[j][p]);

else:

temp3 = 0;

W_temp.append(temp1+temp2+temp3);

W.append(W_temp);

#print "W is", W;

#Step 3

X=[];

for p in range(num_products):

x_temp_denominator = 0;

for j in range(num_stations):

x_temp_denominator = x_temp_denominator\

+ float(v[j][p])*W[j][p];

x_temp = float(N[p])/float(x_temp_denominator);

X.append(x_temp);

#print "X is", X;

#Step 4-1

#print "Computing L_new"

L_new = [];

for j in range(num_stations):

L_temp = [];

for p in range(num_products):

L_temp.append(float(X[p])*float(v[j][p])*\

float(W[j][p]));

#print "X[p] is ", X[p];

#print "v[j][p] is ", v[j][p];

#print "W[j][p] is ", W[j][p];

#print "L_temp is", L_temp;
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L_new.append(L_temp);

#print "L_new is ", L_new;

#Step 4-2

Looping2 = False;

for j in range(num_stations):

for p in range(num_products):

if L_new[j][p] > 0.0:

if (L_new[j][p] - L[j][p])/L_new[j][p] > epsilon:

Looping2 = True;

if Looping2:

L = L_new;

Looping = Looping2;

#print "Done, L (final) is ", L;

#print "Done, X (final) is ", X;

#print len(X);

#print X[0];

C_temp = [];

for p in range(num_products):

C_temp.append(X[p]);

C.append(C_temp);

return C;



167

B.2 MPL Code

{ACF-I.mpl}

TITLE

ACFIProblem;

INDEX

g := 1..3; !Set of products

p := 1..10; !Set of time 10 periods

!p := 1..20; !Set of time 20 periods

!p := 1..30; !Set of time 30 periods

r := 1..11; !Set of WIP patterns Step Size 3

!r := 1..15; !Set of WIP patterns Step Size 4

!r := 1..21; !Set of WIP patterns Step Size 5

!r := 1..28; !Set of WIP patterns Step Size 6

!r := 1..55; !Set of WIP patterns Step Size 9

c := 1..27; !Set of Cubes

DATA

f := 2.5;

e := 100;

initial_backorder[g]:= 0;

{

initial_inventory[g]:= 0;

initial_WIP[g]:= 0;

}
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!Random 1

d[g,p] := (

8.217889426 5.868973565 0.260097167 6.990147152 7.276756793 \

3.656240946 5.87353594 8.871889289 3.953450884 9.040286939

0.344361576 4.166647914 5.679854734 2.108986485 1.715099408\

2.522803648 0.571095198 1.174867716 3.754746434 1.598431667

2.345777638 0.427215638 3.921277857 1.590335104 1.747539907\

4.182261938 4.236533027 0.870392463 2.6054651 0.268069197

);

h[g] := (15 15 15);

b[g] := (20 20 20);

w[g] := (7 7 7);

x[g] := (3 3 3);

d_factor[g] := (1 1 1);

!Step Size 3

Q[g,r] := (

0 0 0 0 0 2.362 2.401 2.5057 5.6899 6.1048 12.3804

0 0 1.3485 2.6941 4.1741 0 1.5456 3.185 0 1.908 0

0 9.2246 3.8214 1.5686 0 4.0978 1.7492 0 1.9738 0 0

);

O[g,r] := (
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0 0 0 0 0 4.11863478 4.127180906 4.10863817 8.109192977 \

8.085416059 11.88458619

0 0 3.632653827 7.326128136 10.97620264 0 3.612623464 \

7.171334603 0 3.499280824 0

0 11.10446571 7.791048149 3.880047713 0 7.641140431 \

3.86219321 0 3.798166813 0 0

);

!Step Size 4

{

Q[g,r] := (

0 0 0 0 0 1.6752 1.7091 1.75 1.8189 3.8257 3.9167 \

4.1145 6.8222 7.3788 12.3804

0 1.0112 1.9909 3.0672 4.1741 0 1.0989 2.2575 3.4348\

0 1.2415 2.5785 0 1.5279 0

9.2246 4.5352 2.5294 1.1453 0 4.7463 2.7149 1.2642 0\

2.9326 1.3299 0 1.4709 0 0

);

O[g,r] := (

0.00 0.00 0.00 0.00 0.00 3.06 3.10 3.10 3.12 6.13 6.138829775\

6.125359053 9.09 9.081878684 11.88458619

0.00 2.73 5.45 8.27 10.98 0.00 2.70 5.44 8.07 0.00 2.663044471\

5.292651731 0.00 2.608895476 0

11.10 8.65 5.82 2.91 0.00 8.55 5.78 2.95 0.00 5.71 2.849764966\

0 2.80 0 0

);

}

!Step Size 5

{

Q[g,r] := (

0 0 0 0 0 0 1.3406 1.35 1.353 1.3522 1.4271 2.891 2.9889 \

3.0295 3.1564 4.9295 5.037 5.3653 7.6971 8.1342 12.3804
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0 0.8072 1.5791 2.415 3.2598 4.1741 0 0.8716 1.7376 2.6127\

3.6048 0 0.9525 1.9249 2.9642 0 1.0642 2.232 0 1.272 0

9.2246 5.0351 3.2308 1.9457 0.9236 0 5.2353 3.4455 2.0728\

0.9606 0 3.6144 2.2097 1.0283 0 2.3442 1.107 0 1.2139 0 0

);

O[g,r] := (

0.00 0.00 0.00 0 0 0 2.493731817 2.49095969 2.492893794\

2.46588803 2.503879307 4.892035192 4.969737287 4.951815962\

4.960562253 7.358347594 7.331808583 7.361621856 9.687407662\

9.627292473 11.88458619

0.00 2.18 4.31 6.576133091 8.767073999 10.97620264 0\

2.167597452 4.337122046 6.495258344 8.661713321 0\

2.151009694 4.299682442 6.404593823 0 2.126177147\

4.228770253 0 2.091996766 0

11.10 9.15 7.00 4.678920627 2.37883643 0 9.073367738\

6.972824107 4.670788975 2.339462397 0 6.900416591\

4.620703515 2.311628993 0 4.539541896 2.288530505\

0 2.252448442 0 0

);

}

!Step Size 6

{

Q[g,r] := (

0 0 0 0 0 0 0 1.08 1.076 1.1014 1.1053 1.1275 1.1571 2.362\

2.38 2.401 2.4475 2.5057 3.8257 3.8846 3.9703 4.1381 5.6899\

5.9093 6.1048 8.34 8.8283 12.3804

0 0.6544 1.3485 1.9856 2.6941 3.3664 4.1741 0 0.7063 1.4175\

2.1518 2.9137 3.6852 0 0.7622 1.5456 2.3424 3.185 0 0.817 1.6871\

2.6039 0 0.9309 1.908 0 1.0974 0

9.2246 5.3862 3.8214 2.5449 1.5686 0.7616 0 5.6239 3.8598 2.6714\

1.6582 0.8023 0 4.0978 2.7975 1.7492 0.8273 0 2.9326 1.8425 0.8742\

0 1.9738 0.9396 0 1.0324 0 0



171

);

O[g,r] := (

0 0 0 0 0 0 0 2.048212036 2.043602508 2.073488793 2.063473952\

2.064125278 2.071700316 4.11863478 4.136607263 4.127180906\

4.13022617 4.10863817 6.126605385 6.139263069 6.125210632\

6.131847947 8.109192977 8.140041924 8.085416059 10.07953496\

10.04419349 11.88458619

0 1.7785149 3.632653827 5.430542432 7.326128136 9.081037735\

10.97620264 0 1.805420757 3.604938301 5.451391151\

7.265682395 9.034087951 0 1.793343745 3.612623464\

5.400906975 7.171334603 0 1.762207569 3.568915223\

5.317357387 0 1.764455337 3.499280824 0 1.736384852 0

11.10446571 9.47165867 7.791048149 5.849408673 3.880047713\

1.990650222 0 9.44602769 7.655142035 5.823152931 3.888893174\

1.978376099 0 7.641140431 5.765074325 3.86219321 1.928450254\

0 5.706842736 3.831031316 1.912240819 0 3.798166813\

1.891417781 0 1.88348118 0 0

);

Avg_d[g] := sum(p: d[g,p]);

DECISION VARIABLES

initial_inventory[g];

initial_WIP[g];

X[g,p];

Y[g,p];

W[g,p];
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I[g,p];

B[g,p];

pp[g,p];

nn[g,p];

BINARY VARIABLES

Z[r,p];

MODEL

MIN o = sum(g,p: x[g]*X[g,p]) +

sum(g,p: w[g]*W[g,p]) +

sum(g,p: h[g]*I[g,p]) +

sum(g,p: b[g]*B[g,p]) +

sum(g: w[g]*initial_WIP[g]) +

sum(g: h[g]*initial_inventory[g])

+ e*sum(g,p: pp[g,p] + nn[g,p]);

MACRO

ReleaseCost = sum(g,p: x[g]*X[g,p]);

WIPCost = sum(g,p: w[g]*W[g,p]);

InventoryCost = sum(g,p: h[g]*I[g,p]);

BackorderCost = sum(g,p: b[g]*B[g,p]);

InitialWIPCost = sum(g: w[g]*initial_WIP[g]);

InitialInventoryCost = sum(g: h[g]*initial_inventory[g]);

PenaltyCost = e*sum(g,p: pp[g,p] + nn[g,p]);

ActualCost = ReleaseCost+WIPCost+InventoryCost+BackorderCost
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+InitialWIPCost+InitialInventoryCost;

AverageDemand1 = Avg_d[1]/30;

SUBJECT TO

WIP_Balance_1[g,p=1]: W[g,p] = initial_WIP[g] + X[g,p] - Y[g,p];

WIP_Balance_2[g,p>1]: W[g,p] = W[g,p-1] + X[g,p] - Y[g,p];

Inventory_Balance_1[g,p=1]: Y[g,p] + initial_inventory[g] -\

initial_backorder[g] - I[g,p] + B[g,p]

= d[g,p] * d_factor[g];

Inventory_Balance_2[g,p>1]: Y[g,p] + I[g,p-1] - B[g,p-1] -\

I[g,p] + B[g,p]

= d[g,p] * d_factor[g];

!Fixed Releases

Capacity_1[g,p]: Y[g,p] = sum(r: O[g,r]*Z[r,p]);

Capacity_21[g,p=1]: initial_WIP[g] = sum(r: Q[g,r]*Z[r,p]);

Capacity_22[g,p>1]: W[g,p-1] = sum(r: Q[g,r]*Z[r,p]);

Capacity_3[p]: sum(r: Z[r,p]) = 1;
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!Fix solution to f fraction of demand with penalty cost e

P[g,p]: Y[g,p] = d[g,p]+pp[g,p]-nn[g,p];

Limit_pp[g,p]: pp[g,p] <= f*Avg_d[g]/30;

Limit_nn[g,p]: nn[g,p] <= f*Avg_d[g]/30;

END



Appendix C

Chapter 5

C.1 Python Code for Cubic Approximation

#----------------------------------------------------

# Name: CA-1

# Purpose: Cubic Approximation Model for thesis

#

# Author:

#

# Created: 16/05/2016

#

# Copyright: c)

#----------------------------------------------------

def get_eight_points(num_products, Cube, Cube_Step):

Cube_Points = [];

Cube_Points.append(Cube); #Point 1

Cube_Points.append([Cube[0]+Cube_Step[0],Cube[1], Cube[2]]); #Point 2

Cube_Points.append([Cube[0]+Cube_Step[0],Cube[1]+Cube_Step[1],\

Cube[2]]); #Point 3

Cube_Points.append([Cube[0],Cube[1]+Cube_Step[1],Cube[2]]); #Point 4

Cube_Points.append([Cube[0],Cube[1],Cube[2]+Cube_Step[2]]); #Point 5

Cube_Points.append([Cube[0]+Cube_Step[0],Cube[1], Cube[2]+\

Cube_Step[2]]); #Point 6

Cube_Points.append([Cube[0]+Cube_Step[0],Cube[1]+Cube_Step[1],\

Cube[2]+Cube_Step[2]]); #Point 7
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Cube_Points.append([Cube[0],Cube[1]+Cube_Step[1],Cube[2]+\

Cube_Step[2]]); #Point 8

#print "Cube_Points is: ", Cube_Points;

return Cube_Points;

def get_Slope(num_products, T, Cube_Step):

Temp = [];

#print "T is ", T;

#print "T[0] is ", T[0];

#print "T[0][0] is ", T[0][0];

#rint "T[0][0][0] is ", T[0][0][0];

Temp.append(float((T[1][0][0]-T[0][0][0]+

T[2][0][0]-T[3][0][0]+

T[5][0][0]-T[4][0][0]+

T[6][0][0]-T[7][0][0])/4/Cube_Step[0])); \

#Product 1 slope

Temp.append(float((T[3][0][1]-T[0][0][1]+

T[2][0][1]-T[1][0][1]+

T[7][0][1]-T[4][0][1]+

T[6][0][1]-T[5][0][1])/4/Cube_Step[1]));\

#Product 2 slope

Temp.append(float((T[4][0][2]-T[0][0][2]+

T[5][0][2]-T[1][0][2]+

T[6][0][2]-T[2][0][2]+

T[7][0][2]-T[3][0][2])/4/Cube_Step[2]));\

#Product 1 slope



177

return Temp;

def get_QO_fromMVA(num_products, epsilon, \

num_stations,num_hours,num_minutes,num_days, \

N,Z,c,mu_inv,v,I):

from Closed_ISERC import MVA

#Call mean value analysis function within a loop to find \

throughput estimates for different combinations of input products.

#print "Length of I is: ",len(I);

#print ("I is :", I);

#Throughput for each inventory combination

T = [];

for i in range(len(I)):

T.append(MVA(epsilon, num_products, num_stations, \

I[i], Z, c, mu_inv, v));

Q={}

O={}

## #Open a file

## filep = open("data.txt", "w");

## filep.write("param Q := \n");

## for g in range(num_products):

## for r in range(len(I)):

## Q[g+1,r+1]=I[r][g] #Create Q

## w_string = str(g+1);

## w_string += " ";

## w_string += str(r+1);

## w_string += " ";

## w_string += str(I[r][g]);

## filep.write("%s \n" %w_string );
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## filep.write(";\n");

## filep.write("param O := \n");

## for g in range(num_products):

## for r in range(len(T)):

## #print "g: %s, r: %s"%(g+1,r+1)

## O[g+1,r+1]=float(T[r][0][g]*num_hours*num_minutes*num_days)

## w_string = str(g+1);

## w_string += " ";

## w_string += str(r+1);

## w_string += " ";

## w_string += str(T[r][0][g]*num_hours*num_minutes*num_days);

## filep.write("%s \n" %w_string );

## filep.write(";\n");

## filep.close();

for g in range(num_products):

for r in range(len(T)):

T[r][0][g] = float(T[r][0][g]*num_hours*\

num_minutes*num_days);

#print "T from MVA is: ", T;

return Q, O, T, len(I)

def main():

from Closed_ISERC import MVA

###################

####Network Data###

###################

StepSize = 3; #Step size for cubic approximation
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#Number of products

products=3

#Number of stations

num_stations = 11;

#WIP

N = [1,1,1];

Max_WIP = [12.38,4.17,9.22];

#Total number of visits of each product

Z = [22,14,14];

#Number of machines in each station

c = [1,1,1,1,1,1,1,1,1,1,1];

#Processing times

mu_inv = [[80,80,80],[220,220,220],[45,45,45],[40,40,40],\

[25,25,25],[22,22,22],[20,20,20],[100,100,100],[50,50,50],\

[50,50,50],[70,70,70]];

#Number of visits of each product to each station

v = [[3,2,2],[1,1,1],[1,1,1],[6,4,0],[3,1,1],[2,2,2],[3,1,1],\

[1,0,0],[1,1,1],[1,1,1],[0,0,4]];

num_hours = 8;

num_minutes = 60;

num_days = 7;

epsilon = 0.001; #For MVA convergence
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#Obtain step values for each product

CubeStep = [];

for i in Max_WIP:

CubeStep.append(float(i/(StepSize)));

#print "CubeStep is ", CubeStep;

#print "Number of products is ", Num_Products;

#Define all the points in cubic approximation, \

grouped by product

Point_Array_L = []; #Define lower points array

for i in range(products):

Temp = [];

for j in range(StepSize):

Temp.append(j*CubeStep[i]);

#print "Temp is ", Temp;

Point_Array_L.append(Temp);

Point_Array_U = []; #Define upper points array

for i in range(products):

Temp_U = [];

for j in range(StepSize):

Temp_U.append((j+1)*CubeStep[i]);

#print "Temp is ", Temp;

Point_Array_U.append(Temp_U);

#print "Point_Array_L is ", Point_Array_L;

#print "Point_Array_U is ", Point_Array_U;
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#Code below works only for three products!

import itertools

Cube_List_L = [];

for combination in itertools.product(Point_Array_L[0],\

Point_Array_L[1], Point_Array_L[2]):

Cube_List_L.append(combination);

Cube_List_U = [];

for combination in itertools.product(Point_Array_U[0],\

Point_Array_U[1], Point_Array_U[2]):

Cube_List_U.append(combination);

print "Number of cubes is \n ", len(Cube_List_L);

print "Lower Cube_List is \n", Cube_List_L;

#print "Number of cubes is ", len(Cube_List_U);

#print "Upper Cube_List is ", Cube_List_U;

#Get throughputs

Q, O, T, E = get_QO_fromMVA(products,epsilon, \

num_stations,num_hours,num_minutes,num_days, \

N,Z,c,mu_inv,v,Cube_List_L);

#print "Q is: ", Q;

#print "O is: ", O;

#print "T is: \n", T;

#print "E is: ", E;

Th = T;
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#Get slopes

Slope = [];

for r in range(len(Cube_List_L)):

Temp1 = get_eight_points(products, Cube_List_L[r], CubeStep);

Q, O, T, E = get_QO_fromMVA(products,epsilon, \

num_stations,num_hours,num_minutes,num_days, \

N,Z,c,mu_inv,v,Temp1);

#print "T is: ", T;

Temp2 = get_Slope(products, T, CubeStep);

Slope.append(Temp2);

print "Slope is ", Slope;

## Q, O, T, E = get_QO_fromMVA(products,epsilon, \

## num_stations,num_hours,num_minutes,num_days, \

## N,Z,c,mu_inv,v,[(6.19, 2.085, 4.61)]);

## print "T is: ", T;

## print "Cube_Point_List is: \n ", Cube_Point_List;

## print

##

#MPL Output

print "LB[g,c] = ("

for g in range(products):

for r in range(len(Cube_List_L)):

print Cube_List_L[r][g],;

print;

print ");"

print "UB[g,c] = ("

for g in range(products):



183

for r in range(len(Cube_List_U)):

print Cube_List_U[r][g],;

print;

print ");"

print "TH[g,c] = ("

for g in range(products):

for r in range(len(Th)):

print Th[r][0][g],;

print;

print ");"

print "S[g,c] = ("

for g in range(products):

for r in range(len(Slope)):

print Slope[r][g],;

print;

print ");"

if __name__ == ’__main__’:

main()
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C.2 MPL Code

{ACF-I.mpl}

TITLE

ACFIProblem;

INDEX

g := 1..3; !Set of products

p := 1..10; !Set of time 10 periods

!p := 1..20; !Set of time 20 periods

!p := 1..30; !Set of time 30 periods

r := 1..11; !Set of WIP patterns Step Size 3

!r := 1..15; !Set of WIP patterns Step Size 4

!r := 1..21; !Set of WIP patterns Step Size 5

!r := 1..28; !Set of WIP patterns Step Size 6

!r := 1..55; !Set of WIP patterns Step Size 9

c := 1..27; !Set of Cubes

DATA

f := 1.5;

e := 125;

initial_backorder[g]:= 0;

{

initial_inventory[g]:= 0;

initial_WIP[g]:= 0;

}
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!Random 1

d[g,p] := (

8.217889426 5.868973565 0.260097167 6.990147152 7.276756793 \

3.656240946 5.87353594 8.871889289 3.953450884 9.040286939

0.344361576 4.166647914 5.679854734 2.108986485 1.715099408\

2.522803648 0.571095198 1.174867716 3.754746434 1.598431667

2.345777638 0.427215638 3.921277857 1.590335104 1.747539907\

4.182261938 4.236533027 0.870392463 2.6054651 0.268069197

);

h[g] := (15 15 15);

b[g] := (20 20 20);

w[g] := (7 7 7);

x[g] := (3 3 3);

d_factor[g] := (1 1 1);

LB[g,c] = (

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.12666666667 4.12666666667\

4.12666666667 4.12666666667 4.12666666667 4.12666666667\

4.12666666667 4.12666666667 4.12666666667 8.25333333333\

8.25333333333 8.25333333333 8.25333333333 8.25333333333\

8.25333333333 8.25333333333 8.25333333333 8.25333333333

0.0 0.0 0.0 1.39 1.39 1.39 2.78 2.78 2.78 0.0 0.0 0.0 1.39 1.39 1.39\

2.78 2.78 2.78 0.0 0.0 0.0 1.39 1.39 1.39 2.78 2.78 2.78
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0.0 3.07333333333 6.14666666667 0.0 3.07333333333\

6.14666666667 0.0 3.07333333333 6.14666666667 0.0\

3.07333333333 6.14666666667 0.0 3.07333333333 6.14666666667\

0.0 3.07333333333 6.14666666667 0.0 3.07333333333 6.14666666667\

0.0 3.07333333333 6.14666666667 0.0 3.07333333333 6.14666666667

);

UB[g,c] = (

4.12666666667 4.12666666667 4.12666666667 4.12666666667\

4.12666666667 4.12666666667 4.12666666667 4.12666666667\

4.12666666667 8.25333333333 8.25333333333 8.25333333333\

8.25333333333 8.25333333333 8.25333333333 8.25333333333\

8.25333333333 8.25333333333 12.38 12.38 12.38 12.38 12.38\

12.38 12.38 12.38 12.38

1.39 1.39 1.39 2.78 2.78 2.78 4.17 4.17 4.17 1.39 1.39 1.39 2.78\

2.78 2.78 4.17 4.17 4.17 1.39 1.39 1.39 2.78 2.78 2.78 4.17 4.17\

4.17

3.07333333333 6.14666666667 9.22 3.07333333333 6.14666666667\

9.22 3.07333333333 6.14666666667 9.22 3.07333333333 6.14666666667\

9.22 3.07333333333 6.14666666667 9.22 3.07333333333 6.14666666667\

9.22 3.07333333333 6.14666666667 9.22 3.07333333333 6.14666666667\

9.22 3.07333333333 6.14666666667 9.22

);

TH[g,c] = (

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.11876313895 6.33676900126\

5.219368117 6.92397533432 5.50939067247 4.57818569287 6.01953427594\

4.87940958285 4.0989970098 10.7556693553 8.85334760244 7.51706727343\

9.58943259694 8.01954964484 6.88067971906 8.65065718533\

7.33658423272 6.35523835726

0.0 0.0 0.0 5.62620360739 3.97833681269 3.12515090913 8.94516267044\

6.41667545162 5.01638227643 0.0 0.0 0.0 3.28112594488 2.44557387312\

1.94089934114 5.57310965718 4.23667252573 3.40702516506 0.0 0.0 0.0\

2.23997768958 1.75997131283 1.44302848667 3.96989404318 3.16107796509\
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2.62233006311

0.0 7.90148203149 10.2453866858 0.0 6.93384252079 9.42866197923 0.0\

6.07232350893 8.58572169317 0.0 5.74247150955 8.20892758362 0.0\

5.07966905838 7.46927908254 0.0 4.52733489449 6.82232688669 0.0\

4.36914246153 6.59614502624 0.0 3.94169784817 6.06400153227 0.0\

3.5788754824 5.60138990363

);

S[g,c] = (

1.62897202021 1.31121042914 1.10487569734 1.41350827134 1.15504743284\

0.979758743813 1.24793399403 1.03498870102 0.885423907895\

0.625753294781 0.583214706553 0.530327260399 0.621804147471\

0.577104341431 0.527936623876 0.608002066531 0.56249796122\

0.515942164853 0.313621516371 0.336448185152 0.336229922833\

0.338660043689 0.34933522169 0.344128697432 0.352340205471\

0.354796594985 0.345977669269

2.75741730901 2.06653973671 1.68030607039 1.76985253002\

1.36453138179 1.10307976856 1.1983007948 0.98072590143\

0.821469570774 1.74939726986 1.36501313197 1.11992983633\

1.29750096597 1.04993393979 0.882611365272 0.992600472019\

0.834918259066 0.722461097639 1.27036204743 1.03223870711\

0.868408252762 1.01786269255 0.847936108527 0.728641167343\

0.829728838189 0.708733281386 0.622591815095

2.08710399568 0.788621763369 0.377962047707 1.83946610487\

0.788461469011 0.419681191305 1.62774593343 0.77000774716\

0.444309647346 1.55637046185 0.748810114997 0.441422420715\

1.39324110223 0.718228317925 0.447521442552 1.25604318668\

0.686741779723 0.44729136738 1.22290028298 0.666403104931\

0.435632223105 1.11390400441 0.634844982837 0.429882317347\

1.02006860906 0.605567532695 0.422536953285

);

Avg_d[g] := sum(p: d[g,p]);
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DECISION VARIABLES

initial_inventory[g];

initial_WIP[g];

X[g,p];

Y[g,p];

W[g,p];

I[g,p];

B[g,p];

pp[g,p];

nn[g,p];

BINARY VARIABLES

Z[c,p];

MODEL

MIN o = sum(g,p: x[g]*X[g,p]) +

sum(g,p: w[g]*W[g,p]) +

sum(g,p: h[g]*I[g,p]) +

sum(g,p: b[g]*B[g,p]) +

sum(g: w[g]*initial_WIP[g]) +
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sum(g: h[g]*initial_inventory[g])

+ e*sum(g,p: pp[g,p] + nn[g,p]);

MACRO

ReleaseCost = sum(g,p: x[g]*X[g,p]);

WIPCost = sum(g,p: w[g]*W[g,p]);

InventoryCost = sum(g,p: h[g]*I[g,p]);

BackorderCost = sum(g,p: b[g]*B[g,p]);

InitialWIPCost = sum(g: w[g]*initial_WIP[g]);

InitialInventoryCost = sum(g: h[g]*initial_inventory[g]);

PenaltyCost = e*sum(g,p: pp[g,p] + nn[g,p]);

ActualCost = ReleaseCost+WIPCost+InventoryCost+BackorderCost

+InitialWIPCost+InitialInventoryCost;

AverageDemand1 = Avg_d[1]/30;

SUBJECT TO

WIP_Balance_1[g,p=1]: W[g,p] = initial_WIP[g] + X[g,p] - Y[g,p];

WIP_Balance_2[g,p>1]: W[g,p] = W[g,p-1] + X[g,p] - Y[g,p];

Inventory_Balance_1[g,p=1]: Y[g,p] + initial_inventory[g] -\

initial_backorder[g] - I[g,p] + B[g,p]

= d[g,p] * d_factor[g];

Inventory_Balance_2[g,p>1]: Y[g,p] + I[g,p-1] - B[g,p-1] -\

I[g,p] + B[g,p]

= d[g,p] * d_factor[g];
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!Cubic Approximation

Cubic_Approximation_11[g,c,p=1]: Y[g,p] <= TH[g,c] + initial_WIP[g]*\

S[g,c] - LB[g,c]*S[g,c] + 1000 - Z[c,p]*1000;

Cubic_Approximation_12[g,c,p>1]: Y[g,p] <= TH[g,c] + W[g,p-1]*\

S[g,c] - LB[g,c]*S[g,c] + 1000 - Z[c,p]*1000;

Cubic_Approximation_211[g,c,p=1]: LB[g,c]*Z[c,p=1] <= initial_WIP[g];

Cubic_Approximation_212[g,c,p=1]: initial_WIP[g] <= UB[g,c]*\

Z[c,p=1] + 1000 - Z[c,p]*1000;

Cubic_Approximation_221[g,c,p>1]: LB[g,c]*Z[c,p] <= W[g,p-1];

Cubic_Approximation_222[g,c,p>1]: W[g,p-1] <= UB[g,c]*\

Z[c,p>1] + 1000- Z[c,p]*1000;

Cubic_Approximation_3[p]: sum(c: Z[c,p]) = 1;

!Fix solution to f fraction of demand with penalty cost e

P[g,p]: Y[g,p] = d[g,p]+pp[g,p]-nn[g,p];

Limit_pp[g,p]: pp[g,p] <= f*Avg_d[g]/30;

Limit_nn[g,p]: nn[g,p] <= f*Avg_d[g]/30;

END



Appendix D

Chapter6

D.1 FPR Grid for the Open Queuing Network

Table D.1: All release combinations, simulation WIP and throughput

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

1 30 10 10 3.66 0.77 1.01 29.99 10.00 9.96

2 30 10 15 3.79 0.81 1.74 29.96 10.04 15.04

3 30 10 20 3.93 0.84 2.76 30.05 9.97 20.01

4 30 10 25 4.08 0.88 4.42 30.00 10.00 24.98

5 30 15 10 3.86 1.23 1.04 29.98 15.04 9.99

6 30 15 15 3.99 1.29 1.78 29.94 15.01 14.93

7 30 15 20 4.15 1.36 2.86 29.98 15.04 20.04

8 30 15 25 4.31 1.41 4.51 30.08 15.00 25.01

9 30 20 10 4.08 1.76 1.08 29.93 20.02 9.99

10 30 20 15 4.23 1.84 1.84 29.98 19.97 14.96

11 30 20 20 4.42 1.93 2.92 30.07 19.99 20.02

12 30 20 25 4.61 2.03 4.73 30.07 20.01 25.00

13 30 25 10 4.34 2.36 1.12 29.99 25.07 9.97

14 30 25 15 4.53 2.47 1.93 30.03 24.98 15.06

15 30 25 20 4.69 2.60 3.03 29.96 25.02 19.98

16 30 25 25 4.90 2.74 4.79 30.01 25.07 24.95

17 35 10 10 4.73 0.84 1.05 35.05 9.94 9.95

18 35 10 15 4.91 0.88 1.81 35.04 9.94 14.99

19 35 10 20 5.06 0.92 2.86 35.03 10.03 20.03

Continued on Next Page. . .
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Table D.1 – Continued

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

20 35 10 25 5.26 0.96 4.56 35.08 10.00 25.05

21 35 15 10 5.00 1.36 1.10 34.97 15.01 10.05

22 35 15 15 5.20 1.42 1.86 35.10 15.05 14.97

23 35 15 20 5.34 1.48 2.98 34.89 15.04 20.10

24 35 15 25 5.58 1.55 4.67 35.02 15.01 24.93

25 35 20 10 5.32 1.94 1.13 35.04 19.96 10.01

26 35 20 15 5.51 2.04 1.93 35.00 20.01 14.99

27 35 20 20 5.68 2.12 3.04 34.94 20.02 19.93

28 35 20 25 5.96 2.23 4.86 35.04 19.98 25.00

29 35 25 10 5.66 2.62 1.18 34.90 25.01 10.04

30 35 25 15 5.91 2.75 2.01 35.01 24.97 15.02

31 35 25 20 6.11 2.88 3.14 34.94 25.02 19.95

32 35 25 25 6.36 3.02 4.96 34.96 25.05 24.97

33 40 10 10 5.99 0.93 1.11 40.01 10.03 10.04

34 40 10 15 6.22 0.97 1.90 39.98 10.07 15.04

35 40 10 20 6.40 1.00 2.96 39.97 9.99 19.97

36 40 10 25 6.63 1.05 4.70 39.98 9.97 24.89

37 40 15 10 6.39 1.50 1.15 39.95 15.00 10.04

38 40 15 15 6.61 1.57 1.94 39.97 15.03 14.96

39 40 15 20 6.84 1.63 3.05 40.04 14.96 19.96

40 40 15 25 7.11 1.70 4.83 40.00 14.93 24.98

41 40 20 10 6.81 2.16 1.19 39.94 19.99 10.06

42 40 20 15 7.09 2.26 2.02 40.00 19.99 15.00

43 40 20 20 7.32 2.35 3.21 40.00 19.97 20.05

44 40 20 25 7.62 2.47 5.05 40.00 19.98 25.07

Continued on Next Page. . .
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Table D.1 – Continued

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

45 40 25 10 7.42 2.98 1.23 40.02 25.09 9.96

46 40 25 15 7.67 3.08 2.09 39.98 24.95 14.94

47 40 25 20 7.98 3.24 3.29 40.05 25.08 19.99

48 40 25 25 8.27 3.39 5.19 39.96 24.94 25.01

49 45 10 10 7.51 1.03 1.15 44.95 10.00 10.01

50 45 10 15 7.88 1.07 1.97 45.07 9.97 15.02

51 45 10 20 8.11 1.12 3.09 44.99 9.98 20.02

52 45 10 25 8.40 1.18 4.84 44.92 10.09 24.89

53 45 15 10 8.05 1.67 1.19 44.92 15.01 9.99

54 45 15 15 8.36 1.74 2.03 44.88 14.97 14.93

55 45 15 20 8.78 1.85 3.21 44.99 15.06 19.99

56 45 15 25 9.12 1.93 5.04 45.05 15.08 24.94

57 45 20 10 8.85 2.44 1.25 45.03 19.94 10.07

58 45 20 15 9.17 2.57 2.11 45.10 20.01 14.99

59 45 20 20 9.48 2.67 3.33 45.06 19.93 20.05

60 45 20 25 9.91 2.81 5.20 45.17 19.98 24.91

61 45 25 10 9.74 3.44 1.29 45.10 25.09 9.91

62 45 25 15 10.05 3.56 2.19 44.98 25.03 14.99

63 45 25 20 10.32 3.68 3.42 45.04 24.92 19.99

64 45 25 25 11.03 3.96 5.45 45.25 25.08 25.03

65 50 10 10 9.57 1.15 1.20 50.01 9.99 9.96

66 50 10 15 9.94 1.22 2.07 49.98 10.04 15.08

67 50 10 20 10.23 1.26 3.23 49.85 10.03 20.02

68 50 10 25 10.74 1.31 5.13 50.16 9.94 25.08

69 50 15 10 10.52 1.94 1.27 50.03 15.08 10.06

Continued on Next Page. . .
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Table D.1 – Continued

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

70 50 15 15 10.88 2.00 2.14 50.08 15.00 15.02

71 50 15 20 11.25 2.10 3.34 50.06 15.01 19.98

72 50 15 25 11.66 2.18 5.33 50.05 14.99 25.08

73 50 20 10 11.49 2.84 1.31 49.98 19.96 10.05

74 50 20 15 11.90 2.95 2.21 50.07 19.93 14.97

75 50 20 20 12.30 3.09 3.47 49.99 19.98 20.06

76 50 20 25 12.77 3.24 5.47 49.98 19.94 25.12

77 50 25 10 12.84 4.01 1.36 50.04 24.95 10.01

78 50 25 15 13.28 4.20 2.30 49.97 25.09 15.01

79 50 25 20 13.92 4.43 3.59 50.12 25.00 19.96

80 50 25 25 14.39 4.61 5.64 50.08 25.06 25.00

81 55 10 10 12.30 1.33 1.25 55.09 10.02 9.90

82 55 10 15 12.83 1.39 2.14 55.15 9.96 14.95

83 55 10 20 13.31 1.45 3.38 55.19 9.99 20.01

84 55 10 25 13.87 1.54 5.33 55.26 10.00 25.06

85 55 15 10 13.72 2.26 1.32 55.03 15.01 10.01

86 55 15 15 14.14 2.35 2.22 55.04 15.05 14.98

87 55 15 20 14.63 2.45 3.49 55.03 14.96 19.96

88 55 15 25 15.15 2.56 5.47 55.04 15.00 25.03

89 55 20 10 15.29 3.42 1.36 55.04 20.02 9.98

90 55 20 15 16.13 3.61 2.34 55.22 20.01 15.02

91 55 20 20 16.47 3.73 3.65 55.12 20.00 20.04

92 55 20 25 17.12 3.91 5.68 55.11 20.08 25.00

93 55 25 10 17.70 4.99 1.44 55.04 24.91 10.06

94 55 25 15 18.71 5.35 2.46 55.15 25.16 15.06

Continued on Next Page. . .
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Table D.1 – Continued

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

95 55 25 20 18.72 5.37 3.79 54.94 25.00 20.02

96 55 25 25 19.68 5.67 5.90 55.10 24.98 24.99

97 60 10 10 16.10 1.58 1.32 60.07 9.94 9.99

98 60 10 15 16.67 1.67 2.25 60.02 10.06 15.01

99 60 10 20 17.30 1.72 3.55 60.08 9.98 20.08

100 60 10 25 17.91 1.80 5.57 60.00 9.98 25.11

101 60 15 10 18.26 2.75 1.38 59.98 14.98 10.00

102 60 15 15 19.04 2.89 2.35 60.14 15.05 14.98

103 60 15 20 19.58 2.99 3.65 59.93 15.00 20.01

104 60 15 25 20.51 3.13 5.72 60.14 15.01 25.02

105 60 20 10 21.36 4.35 1.45 60.00 19.99 10.00

106 60 20 15 22.48 4.56 2.47 60.15 19.89 15.04

107 60 20 20 22.77 4.68 3.79 60.06 20.00 19.90

108 60 20 25 23.65 4.88 5.97 60.10 19.96 25.05

109 60 25 10 26.15 6.72 1.52 60.00 24.96 10.03

110 60 25 15 27.26 7.08 2.61 60.06 25.03 15.09

111 60 25 20 27.87 7.25 3.98 60.05 25.00 19.95

112 60 25 25 28.70 7.54 6.20 60.08 25.00 24.98

113 65 10 10 22.24 2.00 1.41 65.16 9.98 10.02

114 65 10 15 22.89 2.06 2.38 65.17 9.96 15.02

115 65 10 20 23.65 2.15 3.72 65.22 9.98 20.05

116 65 10 25 24.59 2.26 5.77 65.17 10.03 25.04

117 65 15 10 26.65 3.67 1.47 65.22 14.97 10.00

118 65 15 15 26.83 3.74 2.50 65.00 15.04 15.03

119 65 15 20 28.15 3.94 3.89 65.12 15.05 20.04

Continued on Next Page. . .
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Table D.1 – Continued

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

120 65 15 25 28.99 4.08 6.02 65.24 15.11 25.00

121 65 20 10 33.83 6.30 1.56 65.19 19.90 10.03

122 65 20 15 35.35 6.64 2.64 65.35 20.06 15.05

123 65 20 20 35.50 6.65 4.06 65.21 19.83 20.06

124 65 20 25 36.63 6.94 6.26 65.28 20.03 25.03

125 65 25 10 53.38 12.80 1.63 64.99 24.97 10.00

126 65 25 15 52.34 12.54 2.77 65.02 24.91 15.03

127 65 25 20 56.36 13.70 4.24 64.90 25.05 19.97

128 65 25 25 53.88 13.05 6.60 65.06 24.92 25.10

129 70 10 10 32.65 2.73 1.49 70.02 10.01 10.01

130 70 10 15 33.13 2.77 2.50 69.99 9.95 14.99

131 70 10 20 34.23 2.89 3.93 70.06 10.02 20.07

132 70 10 25 35.57 3.02 6.01 70.09 9.99 24.95

133 70 15 10 44.11 5.68 1.57 69.98 15.03 10.00

134 70 15 15 45.25 5.83 2.64 70.06 14.99 15.00

135 70 15 20 45.11 5.84 4.13 69.99 14.96 20.07

136 70 15 25 47.98 6.28 6.32 70.03 15.07 25.00

137 70 20 10 88.57 15.93 1.66 69.67 19.97 10.00

138 70 20 15 87.06 15.69 2.82 69.49 19.92 15.07

139 70 20 20 98.30 17.87 4.31 69.61 19.96 20.00

140 70 20 25 95.48 17.32 6.67 69.42 19.92 25.09

141 70 25 10 273.47 64.81 1.71 66.00 24.07 10.03

142 70 25 15 267.24 63.28 2.90 66.11 24.04 15.07

143 70 25 20 266.78 63.04 4.51 66.09 24.07 20.11

144 70 25 25 258.52 61.49 6.85 65.98 24.17 24.99

Continued on Next Page. . .



197

Table D.1 – Continued

Set
Product Mix

Simulation

WIP

Simulation

Th (units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

145 75 10 10 61.98 4.91 1.59 74.87 9.96 9.97

146 75 10 15 61.88 4.93 2.69 74.77 9.98 15.00

147 75 10 20 62.39 4.97 4.13 74.78 9.95 19.92

148 75 10 25 66.96 5.39 6.39 74.97 10.02 24.97

149 75 15 10 171.06 22.02 1.66 72.99 14.77 9.92

150 75 15 15 163.56 20.90 2.83 73.20 14.71 15.05

151 75 15 20 161.84 20.81 4.35 73.03 14.78 19.98

152 75 15 25 168.58 21.78 6.72 73.14 14.76 25.11

153 75 20 10 384.50 68.40 1.70 68.51 18.84 10.02

154 75 20 15 416.49 74.16 2.85 68.42 18.79 14.94

155 75 20 20 380.49 67.87 4.44 68.61 18.89 19.99

156 75 20 25 400.52 71.24 6.85 68.44 18.78 24.99

157 75 25 10 620.76 140.70 1.73 63.99 22.48 9.95

158 75 25 15 644.15 145.75 2.93 64.05 22.45 15.01

159 75 25 20 634.32 144.02 4.53 63.98 22.52 19.98

160 75 25 25 648.97 146.53 6.87 63.91 22.41 24.95
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D.2 FPR Grid for the Closed Queuing Network

Table D.2: All release combinations, simulation WIP, and MVA throughput

Set
Product Mix

Simulation

WIP

MVA Throughput

(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

1 30 10 10 3.66 0.77 1.01 37.49 12.91 13.53

2 30 10 15 3.79 0.81 1.74 37.59 13.04 20.27

3 30 10 20 3.93 0.84 2.76 37.83 12.92 26.44

4 30 10 25 4.08 0.88 4.42 38.07 13.03 31.44

5 30 15 10 3.86 1.23 1.04 37.61 19.33 13.53

6 30 15 15 3.99 1.29 1.78 37.64 19.46 20.14

7 30 15 20 4.15 1.36 2.86 37.78 19.59 26.45

8 30 15 25 4.31 1.41 4.51 38.06 19.64 31.34

9 30 20 10 4.08 1.76 1.08 37.55 25.89 13.51

10 30 20 15 4.23 1.84 1.84 37.67 25.88 20.13

11 30 20 20 4.42 1.93 2.92 37.92 25.97 26.28

12 30 20 25 4.61 2.03 4.73 38.16 26.14 31.44

13 30 25 10 4.34 2.36 1.12 37.53 32.31 13.49

14 30 25 15 4.53 2.47 1.93 37.76 32.26 20.23

15 30 25 20 4.69 2.60 3.03 37.71 32.49 26.28

16 30 25 25 4.90 2.74 4.79 37.98 32.65 31.25

17 35 10 10 4.73 0.84 1.05 44.14 12.87 13.52

18 35 10 15 4.91 0.88 1.81 44.29 12.93 20.26

19 35 10 20 5.06 0.92 2.86 44.26 13.03 26.39

20 35 10 25 5.26 0.96 4.56 44.60 13.06 31.38

21 35 15 10 5.00 1.36 1.10 44.03 19.40 13.65

22 35 15 15 5.20 1.42 1.86 44.23 19.47 20.09

23 35 15 20 5.34 1.48 2.98 44.07 19.49 26.45

24 35 15 25 5.58 1.55 4.67 44.48 19.53 31.29

25 35 20 10 5.32 1.94 1.13 43.96 25.73 13.56

Continued on Next Page. . .
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Table D.2 – Continued

Set
Product Mix

Simulation

WIP

MVA Throughput

(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

26 35 20 15 5.51 2.04 1.93 43.98 25.86 20.15

27 35 20 20 5.68 2.12 3.04 43.95 25.84 26.28

28 35 20 25 5.96 2.23 4.86 44.34 25.91 31.32

29 35 25 10 5.66 2.62 1.18 43.61 32.03 13.65

30 35 25 15 5.91 2.75 2.01 43.82 32.09 20.17

31 35 25 20 6.11 2.88 3.14 43.79 32.18 26.18

32 35 25 25 6.36 3.02 4.96 43.98 32.23 31.19

33 40 10 10 5.99 0.93 1.11 50.37 12.93 13.59

34 40 10 15 6.22 0.97 1.90 50.52 12.99 20.30

35 40 10 20 6.40 1.00 2.96 50.51 12.88 26.31

36 40 10 25 6.63 1.05 4.70 50.72 12.95 31.29

37 40 15 10 6.39 1.50 1.15 50.27 19.29 13.61

38 40 15 15 6.61 1.57 1.94 50.29 19.36 20.09

39 40 15 20 6.84 1.63 3.05 50.37 19.23 26.21

40 40 15 25 7.11 1.70 4.83 50.62 19.29 31.23

41 40 20 10 6.81 2.16 1.19 49.84 25.52 13.62

42 40 20 15 7.09 2.26 2.02 50.03 25.52 20.16

43 40 20 20 7.32 2.35 3.21 49.99 25.44 26.40

44 40 20 25 7.62 2.47 5.05 50.21 25.52 31.30

45 40 25 10 7.42 2.98 1.23 49.59 31.70 13.58

46 40 25 15 7.67 3.08 2.09 49.62 31.52 20.10

47 40 25 20 7.98 3.24 3.29 49.70 31.54 26.22

48 40 25 25 8.27 3.39 5.19 49.75 31.63 31.21

49 45 10 10 7.51 1.03 1.15 56.29 12.82 13.58

50 45 10 15 7.88 1.07 1.97 56.69 12.77 20.18

51 45 10 20 8.11 1.12 3.09 56.61 12.79 26.25

52 45 10 25 8.40 1.18 4.84 56.74 12.96 31.17

Continued on Next Page. . .
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Table D.2 – Continued

Set
Product Mix

Simulation

WIP

MVA Throughput

(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

53 45 15 10 8.05 1.67 1.19 55.88 19.04 13.55

54 45 15 15 8.36 1.74 2.03 56.01 18.99 20.12

55 45 15 20 8.78 1.85 3.21 56.32 19.15 26.26

56 45 15 25 9.12 1.93 5.04 56.52 19.11 31.20

57 45 20 10 8.85 2.44 1.25 55.67 24.92 13.70

58 45 20 15 9.17 2.57 2.11 55.69 25.06 20.15

59 45 20 20 9.48 2.67 3.33 55.70 24.93 26.30

60 45 20 25 9.91 2.81 5.20 55.94 25.04 31.17

61 45 25 10 9.74 3.44 1.29 54.88 30.90 13.61

62 45 25 15 10.05 3.56 2.19 54.88 30.75 20.16

63 45 25 20 10.32 3.68 3.42 54.80 30.67 26.18

64 45 25 25 11.03 3.96 5.45 55.27 30.84 31.25

65 50 10 10 9.57 1.15 1.20 62.08 12.55 13.49

66 50 10 15 9.94 1.22 2.07 62.15 12.66 20.29

67 50 10 20 10.23 1.26 3.23 62.13 12.57 26.28

68 50 10 25 10.74 1.31 5.13 62.57 12.49 31.31

69 50 15 10 10.52 1.94 1.27 61.50 18.72 13.74

70 50 15 15 10.88 2.00 2.14 61.61 18.53 20.24

71 50 15 20 11.25 2.10 3.34 61.60 18.59 26.22

72 50 15 25 11.66 2.18 5.33 61.72 18.51 31.35

73 50 20 10 11.49 2.84 1.31 60.47 24.23 13.78

74 50 20 15 11.90 2.95 2.21 60.53 24.16 20.21

75 50 20 20 12.30 3.09 3.47 60.50 24.24 26.32

76 50 20 25 12.77 3.24 5.47 60.57 24.28 31.29

77 50 25 10 12.84 4.01 1.36 59.24 29.53 13.88

78 50 25 15 13.28 4.20 2.30 59.20 29.63 20.37

79 50 25 20 13.92 4.43 3.59 59.35 29.62 26.31
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Set
Product Mix

Simulation

WIP

MVA Throughput

(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

80 50 25 25 14.39 4.61 5.64 59.39 29.59 31.29

81 55 10 10 12.30 1.33 1.25 67.10 12.21 13.51

82 55 10 15 12.83 1.39 2.14 67.27 12.19 20.12

83 55 10 20 13.31 1.45 3.38 67.36 12.17 26.31

84 55 10 25 13.87 1.54 5.33 67.53 12.25 31.27

85 55 15 10 13.72 2.26 1.32 65.98 17.95 13.74

86 55 15 15 14.14 2.35 2.22 65.97 17.93 20.22

87 55 15 20 14.63 2.45 3.49 66.01 17.89 26.31

88 55 15 25 15.15 2.56 5.47 66.07 17.92 31.26

89 55 20 10 15.29 3.42 1.36 64.37 23.25 13.84

90 55 20 15 16.13 3.61 2.34 64.60 23.18 20.53

91 55 20 20 16.47 3.73 3.65 64.47 23.22 26.52

92 55 20 25 17.12 3.91 5.68 64.54 23.27 31.34

93 55 25 10 17.70 4.99 1.44 62.72 28.04 14.21

94 55 25 15 18.71 5.35 2.46 62.75 28.23 20.88

95 55 25 20 18.72 5.37 3.79 62.62 28.12 26.71

96 55 25 25 19.68 5.67 5.90 62.77 28.10 31.46

97 60 10 10 16.10 1.58 1.32 71.09 11.67 13.77

98 60 10 15 16.67 1.67 2.25 71.06 11.82 20.34

99 60 10 20 17.30 1.72 3.55 71.21 11.66 26.50

100 60 10 25 17.91 1.80 5.57 71.27 11.72 31.38

101 60 15 10 18.26 2.75 1.38 69.31 17.07 13.97

102 60 15 15 19.04 2.89 2.35 69.37 17.12 20.58

103 60 15 20 19.58 2.99 3.65 69.38 17.07 26.51

104 60 15 25 20.51 3.13 5.72 69.56 16.99 31.39

105 60 20 10 21.36 4.35 1.45 67.38 21.95 14.26

106 60 20 15 22.48 4.56 2.47 67.57 21.78 20.99
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Set
Product Mix

Simulation

WIP

MVA Throughput

(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

107 60 20 20 22.77 4.68 3.79 67.43 21.89 26.72

108 60 20 25 23.65 4.88 5.97 67.47 21.88 31.58

109 60 25 10 26.15 6.72 1.52 65.34 26.34 14.61

110 60 25 15 27.26 7.08 2.61 65.28 26.47 21.45

111 60 25 20 27.87 7.25 3.98 65.30 26.40 27.11

112 60 25 25 28.70 7.54 6.20 65.26 26.50 31.75

113 65 10 10 22.24 2.00 1.41 74.14 11.02 14.13

114 65 10 15 22.89 2.06 2.38 74.15 10.98 20.77

115 65 10 20 23.65 2.15 3.72 74.16 11.03 26.75

116 65 10 25 24.59 2.26 5.77 74.21 11.06 31.46

117 65 15 10 26.65 3.67 1.47 71.96 15.95 14.39

118 65 15 15 26.83 3.74 2.50 71.81 16.04 21.13

119 65 15 20 28.15 3.94 3.89 71.90 16.02 27.07

120 65 15 25 28.99 4.08 6.02 71.91 16.03 31.66

121 65 20 10 33.83 6.30 1.56 69.70 20.42 14.88

122 65 20 15 35.35 6.64 2.64 69.65 20.50 21.63

123 65 20 20 35.50 6.65 4.06 69.69 20.37 27.40

124 65 20 25 36.63 6.94 6.26 69.62 20.51 31.85

125 65 25 10 53.38 12.80 1.63 67.24 24.82 15.23

126 65 25 15 52.34 12.54 2.77 67.25 24.76 22.09

127 65 25 20 56.36 13.70 4.24 67.13 24.96 27.73

128 65 25 25 53.88 13.05 6.60 67.15 24.87 32.14

129 70 10 10 32.65 2.73 1.49 76.08 10.32 14.56

130 70 10 15 33.13 2.77 2.50 76.09 10.26 21.16

131 70 10 20 34.23 2.89 3.93 76.07 10.31 27.20

132 70 10 25 35.57 3.02 6.01 76.10 10.32 31.66

133 70 15 10 44.11 5.68 1.57 73.61 14.95 15.00
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Set
Product Mix

Simulation

WIP

MVA Throughput

(units\week)

P1 P2 P3 P1 P2 P3 P1 P2 P3

134 70 15 15 45.25 5.83 2.64 73.63 14.91 21.71

135 70 15 20 45.11 5.84 4.13 73.57 14.92 27.65

136 70 15 25 47.98 6.28 6.32 73.55 15.02 31.95

137 70 20 10 88.57 15.93 1.66 70.92 19.53 15.51

138 70 20 15 87.06 15.69 2.82 70.90 19.54 22.40

139 70 20 20 98.30 17.87 4.31 70.85 19.63 27.97

140 70 20 25 95.48 17.32 6.67 70.86 19.59 32.25

141 70 25 10 273.47 64.81 1.71 67.84 24.25 15.76

142 70 25 15 267.24 63.28 2.90 67.85 24.22 22.66

143 70 25 20 266.78 63.04 4.51 67.88 24.17 28.39

144 70 25 25 258.52 61.49 6.85 67.80 24.29 32.37

145 75 10 10 61.98 4.91 1.59 77.37 9.64 15.17

146 75 10 15 61.88 4.93 2.69 77.33 9.66 21.98

147 75 10 20 62.39 4.97 4.13 77.33 9.65 27.67

148 75 10 25 66.96 5.39 6.39 77.32 9.70 32.05

149 75 15 10 171.06 22.02 1.66 74.31 14.56 15.54

150 75 15 15 163.56 20.90 2.83 74.36 14.46 22.50

151 75 15 20 161.84 20.81 4.35 74.31 14.53 28.14

152 75 15 25 168.58 21.78 6.72 74.27 14.57 32.34

153 75 20 10 384.50 68.40 1.70 71.27 19.12 15.77

154 75 20 15 416.49 74.16 2.85 71.26 19.12 22.50

155 75 20 20 380.49 67.87 4.44 71.24 19.15 28.29

156 75 20 25 400.52 71.24 6.85 71.28 19.09 32.42

157 75 25 10 620.76 140.70 1.73 68.45 23.33 15.90

158 75 25 15 644.15 145.75 2.93 68.47 23.29 22.78

159 75 25 20 634.32 144.02 4.53 68.43 23.35 28.44

160 75 25 25 648.97 146.53 6.87 68.50 23.25 32.39


