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Abstract

In this dissertation, we theoretically study nonlinear optical effects inside hollow

core photonic crystal fibers (HCPCFs). In particular, we explore the formation of

optical rogue waves near resonance in stimulated Raman scattering inside HCPCF.

We further examine the role of coherence time, coherent memory and source noise

in the formation of a long-tailed probability density function (PDF) as a signature

of ORWs. We also investigate the design of highly nonlinear liquid-filled PCFs for

different nonlinear applications. The research performed throughout this thesis leads

to the following results.

1. In the case of noisy Stokes pulses, we show that the degree to which the PDF

deviates from Gaussian, sharply increases as the source coherence time decreases.

Our results establish a clear link between optical coherence and rogue wave theories.

2. In the case of noisy pump pulses, we demonstrate that Stokes power PDF tail

increases as the system coherent memory is enhanced. We show that the maximum

attainable power level strongly depends on the pump noise level. We develop the

analytical theory of noise transfer in the system in the initial stage of SRS within the

undepleted pump approximation.

3. We demonstrate that RWs can be excited in a self-similar asymptotic regime of

integrable turbulence and they appear as giant fluctuations away from the average

(self-similar) evolution of the system.

4. We design a highly nonlinear liquid-filled PCF with a nonlinear coefficient of

7700 W−1km−1 and a total loss lower than 0.3 dB/m. Using the proposed PCF, we

theoretically show the possibility of slowing down the group velocity of light to c/50

with a required power of only 25 mW via stimulated Brillouin scattering.

5. We design a carbon-disulfide-filled PCF with nearly-zero dispersion of 0.00007

ps/(nm km) and a dispersion slope of 0.0000018 near 1550 nm. We demonstrate

theoretically widely tunable wavelength conversion based on four-wave mixing using

the proposed PCF. A 3-dB tunable wavelength conversion bandwidth is about 108

nm and the conversion efficiency is about −10.6 dB.

xiii



List of Abbreviations and Symbols Used

Aeff Effective area

Di Dispersion parameter

Ep,s Pump and Stokes amplitudes

Gth Exponential Brillouin gain threshold of fiber

Hn(x) Hermite polynomial of order n

Leff Effective fiber length

Ppump Pump power

Pth Threshold pump power

Tc Coherence time

Γ−1 Coherence memory of the system

ΩB Brillouin frequency

α Loss coefficient of fiber

β1 Inverse group velocity

β2 Group velocity dispersion

γ SRS medium relaxation rate

γ−1 Relaxation time

γNL Nonlinear coefficient

ωp Pump pulse frequency

ωs Stokes frequency

cn Complex Gaussian random variable

lSRS Raman characteristic length

n2 Nonlinear refractive index

np,s Refractive indices of pump and Stokes pulses

reff Raman transition dipole matrix element

tSRS Raman characteristic time

tp,s Pump and Stokes pulse durations

FWM Four-wave mixing

xiv



GSM Gaussian Schell model

GVD Group velocity dispersion

HC-PCF Hollow-core photonic crystal fiber

MI Modulation instability

NA Numerical aperture

NLSE Nonlinear Schrodinger equation

ORW Optical Rogue Wave

PDF Probability density function

RW Rogue wave

SBS Stimulated Brillouin scattering

SRS Stimulated Raman scattering

TIR Total internal reflection

TLA Two level amplification

UPA Undepleted pump approximation

xv



Acknowledgements

I would like to express my deepest appreciation to my supervisor Dr. Sergey Pono-

marenko for his excellent scientific guidance, continuous support and motivation dur-

ing my Ph.D program. I would also like to thank my committee members, Dr.

Zhizhang (David) Chen and Dr. William Phillips for their support and recommen-

dations

xvi



Chapter 1

Introduction

1.1 Preface

In this thesis, we focus on rogue waves and nonlinear effects inside hollow-core pho-

tonic crystal fibers. This chapter starts with an introduction to the general theme of

our thesis. Thesis objectives, contributions, and organization are then presented.

1.2 Thesis theme

The development of laser technology, initiated by the invention of ruby lasers in

the late 1950s [1], has paved the way for the generation of short and high intensity

pulses at optical frequencies. The generation of high intensity laser pulses opened

new prospects in different fields in optics and, especially, in the field of nonlinear

optics [2, 3]. The generation of such pulses sparked ever growing interest in studying

resonant light-matter and light-light interactions. Resonance occurs when a pulse car-

rier frequency coincides with a particular optical transition frequency of the medium.

The importance of near resonance optical studies arises from the fact that there are

many significant optical phenomena that occur only near optical resonance [4]. Such

near resonant phenomena include enhanced absorption, amplification and self-induced

transparency effects.

In the first few chapters of this thesis, our research focuses on resonant and near

resonant regimes of pulse propagation in the medium with random input fields. Stim-

ulated Raman scattering (SRS) is used to describe the characteristics of light-matter

interactions inside a hollow-core photonic crystal fiber (HCPCF). HCPCFs has two

1
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major benefits for realizing near-resonance pulses in SRS: first, it increases the in-

teraction length between the laser and the medium significantly. Second, it isolates

the fundamental Raman mode from higher-order ones by suppressing the latter with

an appropriate fiber design. [5]. One of the interesting near resonance phenomena is

formation of unusually large amplitude statistical waves with a non-Gaussian prob-

ability distribution [6, 7]. These giant waves are called optical rogue waves (ORWs)

and they have attracted a lot of attention in academia in the recent years [6-8]. Even

though the ORWs in various media have been explored, no study has yet, to the best

of our knowledge, investigated the ORW formation near optical resonances. There-

fore, explorations into the near resonance behaviour of extreme waves are of great

importance.

Furtheremore, light guidance through liquids in HCPCFs rather than glass in con-

ventional fibers, can result in dramatic increase in the nonlinear coefficient of a fiber

which opens new prospects in various fields, especially in low threshold nonlinear

optics. In the second part to this thesis we investigate design of highly nonlinear

liquid-filled PCFs for various applications including slow light generation and wave-

length conversion based on different nonlinear processes inside the fiber.

1.3 Thesis objectives

Our overarching goal throughout this thesis is to explore nonlinear processes such as

stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS)and four-

wave mixing (FWM) inside hollow-core photonic crystal fibers (HCPCF). We have

also studied statistical properties of optical rogue waves (ORWs) in SRS in the vicinity

of an optical resonance. More specifically, the objectives of this study are summarized

as follows:

1. We aim to numerically explore the possibility of having extreme events in the

vicinity of optical resonance in SRS with noisy Stokes pulses.

2. We intend to examine ORW formation near optical resonance in SRS with noisy

pump pulses.



3

3. We propose to explore the extreme wave excitation dynamics in a self-similar

regime of SRS in HCPCF, employing different source noise models.

4. We plan to explore the possibility of design of a highly nonlinear liquid-filled

HCPCFs as a medium for slow light generation based on SBS.

5. Our aim is to study wavelength conversion based on FWM in a dispersion-flattened

highly nonlinear liquid-filled HCPCF.

1.4 Thesis contributions

This thesis explores ORW formation in SRS and also nonlinear processes such as SBS

and FWM inside a hollow-core photonic crystal fiber. Gaussian-Schell model pulses

are employed as a generic model to simulate realistic partially coherent pulses in the

study of ORWs.

The research performed throughout this thesis is divided into into five interrelated

projects which are published (or submitted) as journal papers [9-14]. Contributions

to each research project are summarized as follows:

1. We explored ORW formation in SRS inside HCPCF in the case of the noisy Stokes

pulses. We showed that the degree to which the probability density function (PDF)

deviates from Gaussian, sharply increases as the source coherence time decreases.

This tail dependence on source coherence time can be explained by the concept of

statistical granularity in time. As coherence time decreases, the number of uncorre-

lated modes (statistical granules) increases. These uncorrelated modes all compete

for energy supply from the pump, resulting in a selective amplification and leading to

a giant amplitude granule formation within the Stokes pulse profile during the SRS

amplification process. The results of this project are already published as a journal

paper [9].

2. We studied the formation of ORWs in near-resonance SRS with noisy pump pulses.

We showed the Stokes power PDF tail becomes longer as the system coherent memory

enhanced. This is because the enhanced coherent memory implies efficient noise
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transfer from the pump to the Stokes pulses. We further showed that the maximum

attainable power level strongly depends on the pump noise level. The results of this

project are already published as a journal paper [10].

3. Using various source noise models, we investigated the formation of ORWs in a

self-similar regime of SRS. We demonstrated that RWs can be excited in the asymp-

totic self-similar regime of integrable turbulence. We further showed that the RW

appearance is independent of a particular source model, thereby representing a uni-

versal signature of the self-similar regime of integrable turbulence. The results of this

project are submitted for publication as a journal paper [11].

4. We studied liquid-filled PCFs and their nonlinear characteristics. We designed a

highly nonlinear carbon-disulfide-filled PCF with nonlinear coefficient of more than

7700W−1km−1 and a moderate loss. Using the proposed PCF, we show the possibility

of slowing down the light to c/50 via the SBS process. The results of this project are

already published as a journal paper [12].

5. We investigated the possible dispersion engineering methods in a CS2-PCF. We

obtained an ultra-flattened nearly-zero dispersion fiber near 1550 nm with a high

nonlinear coefficient. Using the proposed fiber, we demonstrated the possibility of

a broadband wavelength conversion based on FWM with a conversion bandwidth of

108 nm and a maximum conversion efficiency of -10 dB. The results of this project

are submitted for publication as a journal paper [12].

1.5 Thesis organization

This dissertation is in a paper-based format and is composed of a brief introduction

to the physical concepts of the theories used throughout the thesis along with the

results of our research as published or submitted journal papers.

Chapter 1 presents the introduction to a general theme of this research, along with

the objectives and contributions. The remainder of this thesis is organized as follows.

Chapter 2 briefly reviews the hollow-core photonic crystal fibers and the theory behind

nonlinear processes such as SRS, SBS and FWM. The basic concepts of SRS and SBS,
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and some parameters like Raman threshold and Brillouin threshold are also presented

in this chapter.

Chapter 3 discusses some background theories on the physics of RWs. In this chapter,

the importance of the study of ORWs near resonance is stressed.

In Chapter 4, ORW formation in SRS when the noise exists in the Stokes pulses is

explored. The role of coherence time and source noise in the formation of a long-tailed

probability distribution function as a signature of ORW is investigated.

Chapter 5 studies the formation of ORWs in SRS with noisy pump pulses. We explore

the role of coherence memory and source noise in this process and also present the

differences between this case and the noisy Stokes case.

In chapter 6 the formation of ORWs in the self-similar regime of SRS is investigated

using various noise models in the source is investigated. Our results hold irrespective

of a specific source correlation model, suggesting the universality of the proposed

scenario.

Chapter 7 presents liquid-filled PCFs and their nonlinear characteristics. We design

a highly nonlinear carbon-disulfide-filled PCF with the nonlinear coefficient of more

than 7700 W−1km−1 and moderate losses. Using the proposed PCF, we show the

possibility of slowing the group velocity of light down to the c/50 via the SBS process.

Chapter 8 shows possible dispersion engineering methods in a CS2-PCF. We obtain

an ultra-flattened nearly-zero dispersion fiber near 1550 nm with a large nonlinear co-

efficient. Using the proposed fiber, we show the possibility of a broadband wavelength

conversion based on FWM with a conversion bandwidth of 108 nm and a maximum

conversion efficiency of -10 dB.

Chapter 9 provides a brief summary of the main results of this thesis along with

suggestions for future work.
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Chapter 2

Hollow-core photonic crystal fibers

2.1 Hollow-core photonic crystal fibers

Since the major breakthroughs in the 1970s [1, 2], optical fibers have evolved into

many forms over time. Conventional fibers have been used for different important

applications such as fiber-optic telecommunications [3], fiber-optic sensors [4, 5], op-

tical imaging [6, 7] and fiber-based lasers [8]. Conventional optical fibers consist of

a solid core with the refractive index n1 surrounded by a cladding of slightly lower

refractive index n2 < n1 [9]. Light can be completely confined inside the fibre core

if the incidence angle (on the boundary) is smaller than the critical angle for total

internal reflection θ < θcr = arcsin(n2/n1). This mechanism of light confinement

in the core of conventional optical fibers is called total internal reflection (TIR) [9]

which is illustrated in the Fig. 2.1.

Figure 2.1: Guiding the light through TIR in a conventional optical fiber.

However, conventional optical fibres have some limitations for specific applications

because the fiber geometry and refractive index deviation of the core and cladding

are restricted and we cannot use a low index material in the core. Furthermore, silica

glass does not exhibit a high nonlinearity [10] and therefore there is little incentive

for considering silica fibers for nonlinear applications.

Photonic crystal fibers (PCFs) is another class of optical fibers [11]. PCFs consist

7
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of a core which is surrounded by a periodic array of air holes (cladding) [11]. In

recent years, PCFs have attracted much attention of the scientists and engineers due

to numerous unique features such as ultra flattened dispersion, endlessly single mode

operation, low propagation loss, high nonlinearity and small effective mode area [12-

14]. There are two main classes of PCFs: solid-core PCFs and hollow-core PCFs.

In solid-core PCFs the guiding mechanism is based on TIR similar to conventional

optical fibers whereas in hollow-core PCFs (HCPCFs) the guiding mechanism strongly

depends on the core material. If we fill the core of the HCPCF with a high index

material such as a high index liquid, the guiding mechanism is still TIR. However

if we fill the core with a low index material such as gas, the guiding mechanism

cannot be TIR as the core has a lower refractive index than the cladding. The light

guidance is possible via photonic bandgap with extremely low loss over a narrow

bandwidth [15]. The photonic bandgap can be described as a situation where a given

photonic structure exhibits forbidden frequencies for optical waves (stop bands) [15].

The photonic bandgaps in HCPCFs are formed by the periodic lattice of air holes

running along the entire length of fiber. The cross section of a solid-core PCF and a

hollow-core PCF is illustrated in Fig. 2.2.

Figure 2.2: Cross section of a solid core PCF (left) and a hollow-core PCF (right),
reprinted, with permission, from ref. 42, IEEE 2007.

In HCPCFs the light propagates in a diffractionless fashion, in contrast to the intrin-

sic diffractive nature of free space laser beams [15]. Therefore light guidance through

liquids or gasses in HCPCFs can result in dramatic increase in the effective interac-

tion length which opens new prospects in various fields, especially in low threshold

nonlinear optics [15, 16]. The schematic cross-section of a regular hexagonal lattice

hollow-core PCF is shown in Fig. 2.3.

One of the most important characteristics of a fiber is its nonlinear coefficient which
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Figure 2.3: Cross section of a regular hexagonal lattice hollow-core PCF.

contains information about both mode confinement (effective mode area) and the

nonlinear refractive index of the fiber material. The nonlinear coefficient γNL is

defined as [17]

γNL =
2πn2

λAeff

, (2.1)

where n2 is a nonlinear refractive index, λ is the wavelength and Aeff is an effective

area of the fundamental fiber mode, defined as [18, 19]

Aeff =

∫ ∫
(|E|2dA)2∫ ∫
(|E|4dA) . (2.2)

where E is transverse electric field vector and A is the fiber cross section. Due to the

high refractive index contrast between silica and air, the PCFs offer a much tighter

mode confinement over a wide range of wavelengths and thereby a lower effective mode

area than do conventional optical fibers. Another important characteristic of a fiber is

the fiber group velocity dispersion (GVD). In some nonlinear processes such as four-

wave mixing (FWM), fiber GVD will determine the efficiency of the process through

a phase matching condition. The GVD parameter of a fiber is usually calculated in
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terms of the dispersion parameter Di, defined as [20]

Di = −λ

c

d2neff

dλ2
. (2.3)

where c is the velocity of light in free space and neff is the effective index of the

propagating mode. The dispersion parameter Di and GVD parameter β2 are related

to each other as

Di = −2πc

λ2
β2. (2.4)

The total dispersion is calculated as the sum of waveguide and material dispersion

[20, 21]. In our calculations, the material dispersion has been taken into account.

2.2 Stimulated Raman scattering in HCPCFs

Raman scattering was first observed in 1928. It is named after the Indian physicist

Chandrasekhara Raman, who discovered this phenomenon in the laboratory [22].

Raman discovered the existence of a frequency-shifted wave during the investigations

of light scattering in different media. The vibrational oscillations that occur within

the molecules of the material determine the frequency shift of the scattered light

[22]. Spontaneous Raman scattering is a result of the weak molecular resonance

excitation due to the presence of an input field (pump wave). As the pump wave

intensity increases, the scattering process eventually becomes stimulated. In the

stimulated regime, the resonances will be further excited due to a coherent interaction

of the scattered field with the pump field, which dramatically enhances the transfer of

power between the two waves [22]. The process of Raman scattering is schematically

depicted in Fig. 2.4. According to Fig. 2.4 and considering the quantum mechanical

picture, the stimulated Raman scattering (SRS) process can be viewed as absorption

of a photon from the pump pulse at frequency ωp and the emission of a photon at

Stokes frequency ωs. The difference in energy is taken up by molecular vibrations at

frequency Ω. Thus, SRS provides energy gain at the Stokes frequency at the expense

of the pump.

Through the Raman scattering process, both downshifted (Stokes) and upshifted
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Figure 2.4: Illustrating SRS process using a photon picture.

(anti-Stokes) waves can be generated. However, in the optical fibers, the Stokes ra-

diation is generally much stronger than the anti-Stokes radiation [22]. SRS has two

feasible regimes: the co-propagating regime where the pump and Stokes pulses prop-

agate in the same direction and counter-propagating regime in which the pump pulse

propagates in the direction opposite to the Stokes pulse. We usually try to maximize

the pulse profile overlap in order to increase the Raman interaction efficiency. In the

co-propagating regime, this can be achieved with nearly identical temporal profiles

of the pump and Stokes pulses. In the counter-propagating regime, we usually use a

long pump pulse in order to enable the short Stokes pulse to extract as much energy

from it as possible. The two SRS propagation regimes are shown in Fig. 2.5. Note

that in this thesis, we use the co-propagating regime for SRS excitation.

Figure 2.5: Two different SRS excitation regimes : a) co-propagating regime and b)
counter-propagating regime.

SRS has some remarkable characteristics: high conversion efficiency to scattered fre-

quency, explicit excitation threshold and quite narrow linewidth compared with the
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spontaneous regime [22]. These characteristics make SRS an excellent tool with a

wide range of applications in the areas such as high-resolution spectroscopy, optical

communications, frequency shifting applications, pulse compression and comb fre-

quency generation [23-25]. HCPCFs can enhance the interaction length significantly

and they can suppress higher order Raman modes in specific applications due to

the fiber stop bands. Compared to free-space systems, gas-filled HCPCFs provide

huge advantages for SRS applications, including pressure-controllable and structure-

controllable dispersion and low SRS thresholds [16, 27]. One important parameter

in SRS is Raman threshold [36]. The threshold for stimulated Raman scattering is

defined as the input pump power at which the output power for the pump and Stokes

waves become equal. The SRS threshold formula for a fiber is usually given by [22,

26]

Pth =
16Aeff

gRLeff

(2.5)

where Aeff is an effective mode area of the fiber, gR is a Raman gain coefficient,

Leff = (1− exp(−αpL))/αp is an effective length of the fiber and αp is a propagation

loss rate. Since Raman threshold is dependent on the fiber characteristics, several

improved fiber designs have been recently proposed [27, 29]. Many of these designs

are based either on modifying certain guiding properties of the fiber or on scaling up

the core area. HCPCFs can reduce Raman threshold significantly where conventional

techniques require high power lasers (1 MW) to reach Raman threshold. The unique

characteristics of gas-filled HCPCFs have opened new opportunities in the field of gas

nonlinear optics [30]. The reduction in threshold power for SRS in gases should allow

the use of low-power lasers as pumps and should extend the wavelengths of sources

into new spectral regions [30]. The ability to load HCPCFs at high pressure without

damage could also be of great importance for SRS in the transient regime (that is,

when the pulse duration is much shorter than the dephasing time), where Raman

gain is proportional to gas pressure [30].
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2.3 Stimulated Brillouin scattering in HCPCFs

Brillouin scattering is an interaction of light and sound waves within a medium [22].

The scattered part of the optical field remains weak for the low input intensities.

However, the process becomes powerful and stimulated as we increase the input in-

tensities which is possible with powerful lasers [22]. Stimulated Brillouin scattering

(SBS) is similar to SRS in that a Stokes wave is also generated in this case. However,

instead of internal material resonances, an acoustic wave causes the interaction be-

tween the pump and Stokes waves in the SBS process [22]. The acoustic wave will be

generated if the frequency and linear momentum matching conditions are satisfied,

ΩB = Ωp - Ωs, where ΩB is the Brillouin frequency, Ωp is a pump frequency and Ωs is

a probe frequency. We can describe the SBS process using the classical picture where

the pump wave creates a pressure wave in the medium through electrostriction [22].

A material density wave propagates at the velocity of sound in the medium. Thus,

a moving refractive index grating appears due to the periodic changes in material

density. The input pump generates the acoustic wave that scatters the pump, and

the scattering creates a Stokes wave [22]. The Stokes wave is shifted to a lower fre-

quency because of the Doppler shift and a large portion of the pump power will be

converted into the Stokes wave (travels in the backward direction). The process of

SBS is schematically shown in Fig. 2.6.

Figure 2.6: SBS process which includes counterpropagating pump and Stokes pulses
and a generated acoustic wave.

The Brillouin gain bandwidth is usually very small (about 30 MHz) in optical fibers

[22, 31]. Thus, we can view SBS as a narrowband amplification process in which a

strong pump wave produces a narrowband gain region in a spectral region around

Ωp −ΩB and a loss region around Ωp +ΩB [31]. The process of forming gain and loss

regions via SBS is schematically shown in Fig. 2.7.
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Figure 2.7: Spectral manifestation of SBS: a narrow band gain and a narrow band
loss.

SBS and SRS have five major differences. First, SBS only occurs when the pump

and Stokes counterpropagate inside the fiber. Second, a Stokes frequency shift for

SBS is smaller by three orders of magnitude compared to that of SRS. Third, the

Stokes component generation mechanism of SBS is totally different from that of SRS.

Fourth, the Brillouin gain spectrum is extremely narrow. Finally, the peak of the

Brillouin gain coefficient is over 100 times greater than the Raman gain peak [22],

which makes SBS the dominant nonlinear process in solid core optical fibers. One

of the important parameters when we deal with Brillouin scattering is the Brillouin

threshold. We may estimate the pump power Brillouin threshold as [22]

Pth =
GthKBAeff

gBLeff

, (2.6)

where Gth is an exponential gain threshold of the fiber which depends on the ex-

perimental parameters such as input pulse, material, length and numerical aperture

(NA) of the fiber; KB is a constant depending on the polarization property of the

fiber which is equal to 1 if the fiber is polarization maintaining and 1.5 otherwise,

Aeff is the effective fiber area and Leff is the effective fiber length, Leff = 1− eαL/α,

where L is a physical length of the fiber and α is a loss coefficient of the fiber.

As the Brillouin gain of high-index liquids is large and we can control the effective

area of the fiber, SBS process in liquid-filled HCPCFs can be efficient and useful for

a number of applications including optical amplification, optical phase conjugation,

temperature and strain sensing, slow and fast light generation, optical storage and

many others [32-36].
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2.4 Four-wave mixing in HCPCFs

Four-wave mixing (FWM) is a parametric process in which waves interact with each

other due to the third-order nonlinearity of a material [22]. FWM can occur if at

least two frequency components propagate together in a nonlinear medium such as

a PCF. The occurrence of the FWM phenomenon in optical fibers was observed for

the first time by Stolen et al. [37] using a 9 cm long multimode fiber pumped by a

double-pulsed YAG laser at 532 nm. When three frequencies ωi, ωj and ωk interact

in a nonlinear medium, they give rise to a fourth wavelength ωijk which is formed by

the scattering of the incident photons, producing the fourth photon. The nonlinear

medium will produce ±ωi±ωj±ωk frequency components, one of these components is

given by ωijk = ωi+ωj−ωk as we illustrate in the Fig. 2.8. FWM is a phase-sensitive

process and the interaction depends on the relative phases of all waves [22]. Thus

if the frequencies involved are close to each other, or if the dispersion profile has a

suitable shape, FWM can be efficient in the fiber [40]. On the other hand, FWM is

effectively suppressed if there is a strong phase mismatch. FWM is also present if

Figure 2.8: Possible mixing processes which can occur when three input waves interact
in a nonlinear medium.

only two frequency components interact. Therefore, FWM can cause the generation

of new frequency components as we show in the Fig. 2.9. Suppose we have a pump

wave at frequency ωp and a signal at frequency ωs. If we mix these waves and transmit

them together along a highly nonlinear HCPCF, we will obtain two new frequency

components ωconverted = 2ωp−ωs and ωidler = 2ωs−ωp if a phase-matching condition is

satisfied [38]. As stated above, the efficiency of this phenomenon strongly depends on

the phase matching condition as well as fiber dispersion and even dispersion slope [39,

40]. Finite phase mismatch in the degenerate case of FWMwhen we only have a strong
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Figure 2.9: Generation of new frequency components in HCPCF via FWM.

pump, a signal and an idler can be calculated from [40] Δk = βs+βi− 2βp, where βi,

βp and βs are idler, pump and signal wave vectors. Δk is usually approximated by

a Taylor expansion around the pump frequency as Δk = β2Ω
2, where β2 is the GVD

parameter at the pump wavelength and Ω is the optical frequency shift between signal

and pump waves [41]. When β2 is small, we must take into account the fourth-order

term in the expansion of Δk since the odd-order terms (such as β3) exactly cancel

out due to the opposite signs of the frequency detuning of the signal from the pump

and that of the idler from the pump [42]. Thus the finite phase mismatch parameter

becomes [22, 42]

Δk = β2Ω
2 + (β4/12)Ω

4 (2.7)

where β4 is the fourth order dispersion defined as β4 = d4β/dω4. As we can shorten

the fiber and control the dispersion slope and nonlinearity in liquid-filled HCPCFs,

FWM in HCPCFs can have important applications to all-optical signal amplification

and all-optical wavelength conversion systems where the fiber length, pump power

and, at the same time, dispersion controllability are important [40, 41].
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Chapter 3

Rogue waves

3.1 Oceanic rogue waves

Rogue waves (RWs) are rare and unusually large amplitude statistical waves that

appear more frequently than predicted by Gaussian statistics [1]. The terminology

was first coined in the context of oceanography as oceanic RWs [2], but has since

been generalized to describe huge waves in different physical media [3]. Unexpectedly,

large surface waves at high seas is a real threat to maritime activities and offshore

structures. Intensive research efforts are conducted to understand the physics of RWs

and to develop measures to predict or detect such waves [2, 4]. There are several

definitions for such surprisingly huge waves. In oceanography, RWs are usually defined

as waves whose height satisfies the following criteria [5]

AI = H/HS ≥ 2, (3.1)

where AI is an abnormality index, H is the wave height defined as the vertical distance

between the highest and the lowest surface elevation of a wave and HS is a significant

wave height. The significant wave height can be defined as the mean of the largest

third of waves in a wave train using the following formula [6]

HS =
1

N/3

N/3∑
j=1

Hj (3.2)

where j is the rank number of the waves based on the wave height (i.e., j=1 is the

tallest wave, j=2 is the second tallest wave, etc.). Some authors suggest a more

simplified formula for calculating the significant wave height: HS = 4σ where σ is the
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standard deviation of the wave height [5]. The statistical distribution of ocean wave

heights and the concept of significant wave height are illustrated in Fig. 3.1. When the

latter convention is accepted, the AI is the only parameter defining whether the wave

is rogue or not. However the RW definition is not always consistent and it actually

varies from study to study. For example, in Louis Majesty incident [7], the estimated

maximum wave amplitude is between 8.4 and 9.4 m, while the significant wave height

was 5 m and it is still considered a RW in some literature. Therefore, RWs are not

Figure 3.1: Statistical distribution of ocean wave heights and the concept of significant
wave height (HS).

necessarily huge, they are rather unusually large for a given sea state. The emergence

of giant waves involves the physics different from that generating a usual population

of ocean waves. However, the existence of a universal RW generation mechanism

appears highly unlikely. [1, 8]. Oceanic RWs arise at arbitrary water depths (in deep

as well as shallow water), with or without currents. Moreover, oceanic RWs have

been shown to form due to different mechanisms—from linear effects such as random

superposition of independent wave trains and geometrical focusing to nonlinear effects

associated with the growth of surface noise [1, 8].

3.2 Optical rogue waves

As stated above, RWs exist in media other than water. The analogous physics of

nonlinear wave propagation in optics and hydrodynamics has triggered a flurry of

theoretical and experimental research in optics aimed at understanding RW generat-

ing mechanisms [9, 10]. The common property heralding RW formation in the diverse

systems is the observation of large deviations from Gaussian statistics of the wave
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amplitude (or wave power/intensity), with a heavy tail (or long tail) probability den-

sity function (PDF) which predicts the occurrence of high amplitude events with the

probability greater than that allowed by Gaussian statistics [11, 12].

Optical rogue wave (ORW) formation can be influenced by a number of factors. In

other words, the statistics of the giant waves can be affected by changing incident

conditions [13]. For example, Dudley et al. [14] showed that RW formation can be

enhanced or suppressed through a small modulation across the input pulse envelope

or using a sliding frequency filter. Furthermore, Buccoliero et al. [15] demonstrated

that rogue waves will not occur in any supercontinuum (SC) spectrum that is limited

by fiber loss, such as commercial silica fiber based SC sources. There are also a few

papers exploring how to generate high intensity RW in a more controlled manner. For

example, using the generalized nonlinear Schrödinger equation (GNLSE), K. Ham-

mani et al. [16] investigated the emergence of RWs from turbulent fluctuations. As

another example, A. Mathis et al. [17] proposed some particular conditions leading

to the extended tails in the associated PDF of optical RWs. Recently, H. Yang et al.

[18] studied the induced modulation instability in the process of SC generation and

showed the possibility of ORW formation regardless of noise effects.

There have been a number of theoretical or experimental studies of ORWs after the

pioneer work of Solli et al. in 2007 [19] when measurements of optical fiber supercon-

tinuum spectra yielded long-tailed histograms for intensity fluctuations. ORWs have

been demonstrated in different systems such as optical cavities, passively mode-locked

fiber lasers, erbium-doped fiber systems, parametric processes, in microwave settings

and even in linear light propagation inside multimode fibers [20-23]. However, most

studies have focused on the nonlinear Schrödinger equation (NLSE) which applies to

both optics and hydrodynamics systems in certain limits. The modulation instability

(MI) is believed to be the mechanism for optical rogue wave (ORW) formation in such

systems where noise-induced fluctuations can modify the dynamics and generate rare

but extreme events [13]. In other words, MI is causing broadband noise amplification

through phase-matched four-wave mixing (FWM) [13]. MI is usually investigated

within NLSE which studies weakly nonlinear and dispersive waves.

There exists a class of NLSE solutions known as breathers [1]. Most breathers are
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localized in space and oscillate (breathe) in time or vice versa [15]. Breathers form

because small amplitude fluctuations are susceptible to MI which causes them to

grow to large amplitude modulations on top of a finite-amplitude background [24].

Breather solutions of NLSE, especially a limiting case which is called the Peregrine

soliton, are presently well accepted as potential prototypes for the rogue waves in

the ocean and optics [25]. The Peregrine soliton shows a double spatio-temporal

localization and therefore, presents a progressive increase of its amplitude and a

narrowing of its temporal duration [26]. At the maximum compression, the amplitude

is three times larger than that of the level of the continuous background (or the

intensity is nine times larger than the background) [27]. This feature of the Peregrine

soliton is in agreement with the criteria usually applied to identify a wave as rogue.

Therefore, Peregrine soliton formation is one the most attractive hypotheses to explain

the formation of RWs.

Another possible driver mechanism behind ORW generation is solition collisions. The

fundamental solitons have different peak intensities and durations and therefore mul-

tiple collisions occur between them due to different group velocities. Noise-induced

MI results in soliton fission which ,in turn, leads to a number of solitons that interact

and transfer energy during multiple collisions. The interaction will increase the noise

level which strongly depends on the phases and amplitudes of solitons. This energy

transfer can result in the formation of ORWs with large amplitudes (at least two times

larger than that of the average wave amplitude). As an example, Eberhard et. al.

[32] demonstrated a cascade model with an energy-exchange mechanism that drives

the formation of ORWs in GNLSE with the third-order dispersion via quasi-solition

collisions. These explorations have motivated much research to gain analytic insight

into conditions favouring rogue wave emergence [25-32].

3.3 Optical rogue waves near resonance

As we mentioned in the previous section, RW excitation in the NLSE model with

random input fields has been studied both numerically and experimentally. These

studies show the emergence of heavy-tailed probability density distributions (PDF)
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Table 3.1: NLSE and near-resonance models

Property NLSE Near-resonance

Nonlinearity weak strong

Medium response instantaneous long memory

Amplification/absorption no yes

of field intensities which indicate the RW excitation in the system. However, the

work on ORW excitation with random sources has so far been limited to optical

waves far away from internal medium resonances. The NLSE model cannot accurately

describe the dynamics of nonlinear waves in the vicinity of wave-wave or wave-matter

resonances [33, 34]. The NLSE model implies instantaneous medium response and

weak nonlinearity. However strong nonlinearity, long coherent memory of the system,

and strong amplification/absorption near resonance are the main characteristics of

a resonant wave-wave or wave-matter interaction regime [33]. Thus the two models

differ profoundly in many respects. We point out the differences between these two

models in table 3.1.

In optical physics, we usually model the resonant RW excitation through either two

level amplification (TLA) or SRS-like process. The energy transfer to an optical wave

from either medium atoms (TLA) or from another wave via two-photon resonance

(SRS) serves as a resonant amplification mechanism. The ORW emergence in resonant

nonlinear media is of fundamental interest. The level diagram for SRS and TLA

processes is schematically depicted in Fig. 3.2.

We propose to study ORW generation through SRS in optical fibers as an ideal

model for near resonant ORW excitation because of the existence of the natural

noise transfer and amplification mechanisms. The noise can be transferred from the

pump to amplified Stokes waves (noisy pump case) or the noise present in a seeded

Stokes wave is amplified as the Stokes amplitude is amplified (noisy Stokes case).

Both of these mechanisms in SRS can lead to a heavy-tailed probability distribution

of the Stokes wave peak power which is a signature of the ORW formation in the

system. As we said above, one of the fundamental differences between NLSE and



26

Figure 3.2: Level diagram for SRS (left) and TLA (right); the black dots denote
initial atomic population.

near-resonance models is coherent memory of the medium in the case of resonance

interactions. In SRS, the coherent memory (Γ−1) is controlled by relative magnitudes

of a characteristic SRS interaction time (TSRS) and the Raman medium relaxation

time, T2 = γ−1. Thus we can define the coherent memory parameter as

Γ = γTSRS (3.3)

where γ is a medium dipole relaxation rate. Γ determines the extent of system mem-

ory and the system proximity to the integrability limit. If Γ � 1 the SRS is highly

transient with an extremely long memory time. Another important aspect of near

resonant interaction studies is the effect of the source noise. Optical pulses are gener-

ally assumed to be fully deterministic or fully coherent [35]. However, experimental

evidence shows that we cannot accurately simulate and study optical pulses in purely

deterministic terms [35]. In fact, optical pulses are intrinsically stochastic or partially

coherent [35, 36]. It means realistic laser sources generate pulses with random fluctu-

ations in their amplitude and phase. These amplitude and phase fluctuations should

be taken into account in simulation of realistic optical sources and optical systems.

Optical coherence theory investigates optical phenomena as stochastic processes and

therefore, considers pulses to be partially coherent. To this end, we use partially

coherent pulses to study the effect of source noise and coherence time of the source

on the formation of large amplitude waves with non-Gaussian statistics in the output

of the system.
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4.1 Abstract

We explore theoretically and numerically optical rogue wave formation in stimulated

Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We

assume a weak noisy Stokes pulse input and explicitly construct the input Stokes

pulse ensemble using the coherent mode representation of optical coherence theory,

thereby providing a link between optical coherence and rogue wave theories. We show

that the Stokes pulse peak power probability distribution function (PDF) acquires

a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a

clear link between the PDF tail magnitude and the source coherence time. Thus,

the latter can serve as a convenient parameter to control the former. We explain our

findings qualitatively using the concepts of statistical granularity and global degree

of coherence.

4.2 Introduction

Optical rogue waves (ORWs) are rare and uncommonly large amplitude statistical

optical waves with heavy-tailed probability distributions [91]. The pioneering work of

30
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Solli et.al on ORW excitation in supercontinuum generation in optical fibers [7] has

triggered a tsunami of publications on ORWs in various contexts [137, 135, 5]. The

vast majority of ORW research has so far focused on the modulation instability excita-

tion scenario within the framework of integrable nonlinear Schr odinger equation [135].

Yet, optical rogue waves have also been theoretically predicted and/or experimentally

demonstrated in such diverse systems as optical cavities [140, 141], passively mode-

locked fiber lasers [142, 143, 144], erbium-doped fiber systems [145] , Raman fiber

amplifiers [98], spatiotemporal structures and laser filamentation [147, 148], paramet-

ric processes [101] and even in linear light propagation inside multimode fibers [150]

as well as in microwave settings [103]. To date, several coherent structures such as the

Peregrine soliton [91, 104, 19, 106], solitons on finite background [91, 19, 105, 152],

and superregular breathers [108] have been conjectured to serve as ORW prototypes in

weakly dispersive, weakly nonlinear wave systems described by the integrable 1D non-

linear Schr odinger equation. These predictions have prompted elegant experiments

aiming to realize such coherent ORW prototypes in highly controlled environments

in fiber optics [109, 110] .

On the other hand, the role played by source coherence in shaping emergent nonlinear

wave structures is a fundamental issue in nonlinear statistical optics [151]. In this

context, the ORW generation with random sources has lately triggered growing in-

terest. In particular, the source coherence influence on the ORW emergence has been

examined both numerically [24, 181, 113, 154, 115] and experimentally [24, 181] and

a pronounced sensitivity of the peak wave power probability density function (PDF)

shape to random initial conditions was established. The above results were obtained

for 1D wave turbulence described by the nonlinear Schrdinger equation within the

framework of integrable turbulence [116]. The ORW excitation in nearly integrable,

Hamiltonian nonlinear systems with noisy input waves was also studied [117, 25, 118]

To our knowledge however, the work on ORW excitation with random sources has

so far been limited to optical waves far away from internal medium resonances. Yet,

resonant light-matter interactions are known to strongly enhance media nonlinear-

ity, dispersion and absorption, giving rise to a host of new nonlinear phenomena

such as electromagnetically- and self-induced transparency [182]. Lately, self-induced
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transparency and the ensuing random phase soliton formation with statistical light

has been explored in resonant nonlinear media in the two-level approximation [120].

Thus, the ORW emergence in resonant nonlinear media is of fundamental interest.

In this context, we anticipate stimulated Raman scattering (SRS) in optical fibers to

be a fertile ground for ORW exploration. The latter arise naturally in SRS as either

noise is irreversibly transferred from the pump to amplified Stokes waves or the noise

present in a seeded Stokes wave is amplified as the Stokes amplitude is amplified, lead-

ing to a heavy-tailed probability distribution of the Stokes wave peak power. The

first mechanism was explored in SRS generation in highly nonlinear solid-core fibers

in the picosecond pulse regime [98]. Although the influence of pump noise on the

Stokes pulse characteristics in SRS generation from quantum noise in the nanosecond

regime was examined in detail [121, 122, 123], no explicit connection to rogue waves

was made. Moreover, the ORW excitation in the SRS amplification regime with a

noisy Stokes input present has not, to our knowledge, been addressed. A related

fundamental issue concerns rogue wave control in the nanosecond SRS regime. The

issue has also a practical dimension in light of recent efforts to realize novel SRS and

supercontinuum generation regimes, controllable over long interaction lengths inside

hollow core photonic crystal fibers [124, 32, 125].

In this work, we numerically study SRS in the amplification regime of a weak noisy

probe Stokes pulse, mediated by a strong coherent Raman pump pulse inside a hy-

drogen filled hollow core photonic crystal fiber (HC PCF). We show that nonlinear

noise amplification, concurrent with the Stokes pulse amplitude growth, skews the

Stokes pulse peak power statistics, converting it to a heavy-tailed non-Gaussian one

which is a statistical signature of rogue wave excitation. We model fluctuating input

Stokes pulses as a Gaussian random process. We explicitly construct the input Stokes

pulse ensemble using the coherent mode representation of optical coherence theory.

Our approach has two major benefits. First, we establish a link between fundamental

concepts of optical coherence theory such as coherence time and global degree of co-

herence of the source and the generated rogue wave statistics. Second, we show that

the source coherence time can serve as a versatile control parameter for ORW exci-

tation in the system. In particular, we show how the Stokes power distribution tail

can be enlarged or shortened by simply adjusting the Stokes input coherence time.
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We explain our findings qualitatively using the concepts of statistical granularity and

global degree of coherence.

4.3 Theoretical formulation and statistical source description

We start by considering the standard SRS equations, written in a moving reference

frame, τ = t− β1z, where β1 is an inverse group velocity assumed to be the same for

co-propagating pump and Stokes pulses. The wave equations for the slowly-varying

pump Ep and Stokes Es amplitudes read

∂ζEp =

(
iωpNreff
2ε0cnp

)
σEs (4.1)

and

∂ζEs =

(
iωsNreff
2ε0cns

)
σ∗Ep, (4.2)

and the Schr odinger equation for the medium dipole matrix element σ can be written

in the weak excitation limit as

∂τσ = −γσ +

(
ireff
4h̄

)
E∗sEp. (4.3)

Here ωp,s and np,s are the carrier frequencies and refractive indices of the pump and

Stokes pulses, respectively, N is a medium density, γ is an SRS medium relaxation

rate, and reff = 1
h̄

∑
i

d3idi1
ωi3+ωi1−ωp−ωs

is a Raman transition dipole matrix element [32,

125, 158]. We also assumed that the fiber is designed to suppress all but the pump

and fundamental Stokes modes of molecular hydrogen [32].

Next, suppose all hydrogen molecules are in their ground states prior to interac-

tion with the pulses and take the strong input pump pulse to be a Gaussian such

that Ep(t, 0) = |Ep0| e−t2/2t2p , where tp is a pump pulse duration. At the same time,

we assume a weak probe Stokes pulse to be fluctuating such that at the fiber in-

put, Es(t, 0) = |Es0| as(t)e−t2/2t2s , where ts is a Stokes pulse duration and as(t) is a

dimensionless statistically stationary random amplitude. Introducing peak optical

intensities of the pulses Is0,p0 = ε0ns,pc |Es0,p0|2 /2 we scale the pulse fields to the peak
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pump intensity at the source, Ep =
√

2Ip0/ε0cnpEp and Es =
√

2Ip0/ε0cnpEs. Next,

we introduce dimensionless distance and time, Z = ζ/lSRS and T = τ/tSRS where

lSRS = (2ε0c/Nreff )
√

npns/ωpωs and tSRS = 2h̄ε0cnp/reffIp0 are characteristic length

and time over which energy exchange between pulses and the medium unfolds. The

SRS equations can then be cast into a dimensionless form as

∂ZEp = ikσEs, (4.4)

∂ZEs = ik−1σ∗Ep, (4.5)

and

∂Tσ = −Γσ + iEpE∗s (4.6)

Here k =
√
ωpns/ωsnp and Γ = γtSRS is a key dimensionless parameter governing

the SRS process. Further, the dimensionless initial conditions read

Ep(T, 0) = e−T
2/2T 2

p , (4.7)

and

Es(T, 0) =
√

npIs0
nsIp0

as(T )e
−T 2/2T 2

s (4.8)

Let us now construct an input Stokes pulse ensemble. To enhance the SRS efficiency

we want to maximize the pump and Stokes pulse intensity overlap. To this end, we

assume that Stokes and pump pulses have the same durations, tp = ts = t0. We

model Stokes pulses as a Gaussian random process, which is completely specified by

its second-order correlation function, the mutual coherence function. The latter is

assumed to be Gaussian; this is a celebrated Gaussian Schell model (GSM) of optical

coherence theory [232]. With the help of Eqs. (4.7) and (4.8), the GSM mutual

intensity can be expressed as

Γ(T1, T2, 0) ≡ 〈E∗s (T1, 0)Es(T2, 0)〉 =
(
np 〈Ws〉
nsWp

)

× exp

(
−T 2

1 + T 2
2

2T 2
0

)
exp

[
−(T1 − T2)

2

2T 2
c

]
.

(4.9)
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Here the angle brackets denote ensemble averaging; Tp = Ts = T0 = t0/tSRS and

Tc = tc/tSRS, where tc is a Stokes pulse coherence time and we eliminated the pump

and Stokes peak intensities in favor of the pulse energies, Wp and 〈Ws〉.

To construct the random pulse ensemble, we employ the Karhunen-Loève expan-

sion [231]

Es(T, 0) =
∑
n

cnψn(T ), (4.10)

where the random coefficients {cn} are orthogonal such that

〈c∗ncm〉 = λnδmn, (4.11)

and the coherent modes are orthonormal, implying that

∫ ∞

−∞
dTψ∗n(T )ψm(T ) = δmn. (4.12)

The mutual coherence function is then represented as a Mercer-type series in coherent

modes as [232]

Γ(T1, T2, 0) =
∑
n

λnψ
∗
n(T1)ψn(T2). (4.13)

Next, the complex random amplitudes {cn} can be expressed in the polar form as

cn =
√
ine

iφn . (4.14)

We stress that Eqs. (3) through (12) describe any statistical source. Thus, we must

spell out a concrete model for the random amplitudes and phases, adequately de-

scribing a given physical source. In our case, we assume random phases {φn} to be

uniformly distributed in the interval 0 ≤ φn ≤ 2π, and random amplitudes {|cn|}
to obey the Rayleigh distribution such that {in}’s are governed by the exponential

distribution as

P(in) =
1

λn

e−in/λn . (4.15)

Thus cn is a complex Gaussian random variable. It follows that the incident Stokes

pulse ensemble {Es(T, 0)} is Gaussian as a sum of independent Gaussian random vari-

ables [231]. We stress that the mode power distribution of the form (4.15) is sufficient



36

to guarantee Gaussian statistics of the source regardless of its temporal coherence.

On the one hand, in the low-coherence limit when many coherent modes in the ex-

pansion (6) are required to faithfully reproduce the source mutual intensity, Gaussian

statistics of the pulse ensemble can be ensured for any mode power distribution P (in)

by virtue of the central limit theorem [231, 157]. On the other hand, however, as

the source becomes sufficiently coherent such that only a few coherent modes enter

Eq. (6), the central limit theorem no longer applies. Yet, the input source ensem-

ble is Gaussian, provided it is a sum of independent modes each obeying Gaussian

statistics. We note in passing that the present source ensemble is drastically different

from previously considered non-Gaussian stochastic input pulses, generating random

phase solitons in resonant media [120]. We also note that we focus on noise effects due

to strongly fluctuating input Stokes pulses. In other words, we ignore spontaneous

Raman scattering (quantum) noise which is dwarfed by thermal-like fluctuations of

the incident Stokes pulses.

To complete our source modelling, we observe that the GSM eigenvalues and coherent

mode profiles are given by [232]

λn =
√
πT0

(
npWs

nsWp

)
(α + ξ)βn

(α + β + ξ)n+1
, (4.16)

and

ψn(T ) =

(
2ξ

π

)1/4 (
1

2nn!

)1/2

Hn(T
√

2ξ)e−ξT
2

, (4.17)

where Hn(x) is a Hermite polynomial of the order n and we introduced the notations

α = (2T 2
0 )
−1, β = (2T 2

c )
−1, and ξ =

√
α2 + 2αβ.

4.4 Numerical results

As a practical realization of the system, we consider a meter long hydrogen-filled HC

PCF with typical parameters representative of the HC PCFs previously designed for

SRS experiments [124, 32]. The HC PCF has a low-loss transmission window between

1030 and 1150 nm. As a result, only the pump and first Stokes modes, interacting

with the J=1 to J=3 rotational transition, can co-propagate in the HC PCF. We
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choose a narrow linewidth laser delivering 10 ns pulses of a 20 μJ energy at 1064 nm

as the pump. The Stokes pulses with the mean peak power of 10 W operate at 1134

nm. Such Stokes pulses can be excited by time modulating (chopping) an output of

a cw partially coherent source using, for instance, electro-optical modulators [161].

We take the relaxation time of hydrogen in the HC PCF to be γ−1 = 5 ns [158]; the

effective Raman interaction length and time are estimated to be lSRS = 1 mm and

tSRS = 6 ns, respectively.

Figure 4.1: Normalized (to the average power at the source) peak power fluctuations
of a random Stokes pulse with Tc = 0.1 T0 at the fiber output (blue) and input
(orange). To facilitate the visualization, the orange curve is scaled by the factor of
10.

We use the same numerical Monte Carlo simulation procedure as the one described

in [120] in the context of random phase soliton excitation in two-level media to gen-

erate a random Stokes pulse ensemble of 2 × 104 realizations and examine its power

fluctuations on pulse propagation inside the fiber. Our extensive numerical simula-

tions indicate that power fluctuations 90 times greater than the mean power–nearly

900 W compared to the mean power of 10 W–can occur at the fiber output. We

illustrate this point by exhibiting a time series of the normalized Stokes pulse powers

at the fiber input and output in Fig. 4.1. We checked that giant power fluctuations

can take place even for shorter fiber lengths. For instance, power fluctuations greater

than 50 times the mean power (around 500 W) occur in 1 cm long fibers. These
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observations are reflected in the presence of a very long probability distribution tail

in Fig. 4.2 where we display the normalized Stokes peak power PDF for three cases:

Tc = 10Tp (rather coherent input pulses), Tc = Tp, and Tc = 0.1Tp (nearly inco-

herent Stokes input). All powers are normalized to the average power of the input

Stokes pulse ensemble. It is seen in Fig. 4.2 that as the Stokes source coherence time

progressively increases, the probability distribution tail gradually depopulates. The

Figure 4.2: Normalized Stokes pulse peak power PDF at the entrance (blue) and exit
to the HC PCF. The input/output pulse power is normalized to the average power
at the source. The Stokes source coherence time takes on values Tc = 0.1 T0, Tc= T0

and Tc=10T0.

exponential power distribution of the input Stokes ensemble is also displayed for com-

parison. It can be inferred from the figure that in all three cases, the PDF, exhibited

in the logarithmic scale, nearly coincides with the exponential input distribution for

sufficiently low powers, but it sharply deviates from the exponential distribution in

the high Stokes power limit. Thus, the PDF is strongly non-Gaussian. Moreover,

the output PDF appearance–including the magnitude of its tail–can be controlled by

adjusting the Stokes source coherence time.

We notice that the degree to which the peak power statistics deviates from Gaussian,

sharply increases as the source coherence time shrinks. This trend is opposite to the

one recently encountered for integrable turbulence governed by the nonlinear Schr
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Figure 4.3: Normalized (to the average power at the source) peak power fluctuations of
a random Stokes pulse for (a) very coherent, Tc = 10T0 and (b) nearly incoherent, Tc =
0.1T0 Stokes ensemble at the source as functions of time and propagation distance.

odinger equation [113]. This circumstance should not be surprising as SRS is funda-

mentally different from the system studied in [113]. While the former unfolds as a

noinstantaneous resonant light-matter interaction, described, in general, by noninte-

grable nonlinear equations, the latter is essentially a weakly dispersive wave system

with a weak instantaneous nonlinearity. The ORW emergence in [113] is linked by

the authors to soliton and breather collisions, the frequency of which is enhanced

with the source coherence time increase. The ORW generation in SRS cannot be

explained by this mechanism because, even in the coherent transient limit when the

input pulse duration is much shorter than the SRS medium relaxation time and the

SRS equations are integrable [185], solitons are known to be transient in SRS, giving

way to self-similar waves as fundamental asymptotics of the system in the long-term

limit [32, 132]. Furthermore, SRS soliton lifetimes are expected to shrink as the input

pulse duration becomes comparable to the SRS medium relaxation time which is the

case here.

To explain the PDF tail dependence on the source coherence time in SRS, we em-

ploy the concept of statistical granularity in time. Statistical granularity implies

that the SRS interaction is coherent within a time interval of tc and Stokes pulses
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outside these time intervals are uncorrelated. The number of statistical granules cor-

responds to the effective number of coherent modes entering the Karhunen-Loève

representation, Eq. (3), of the Stokes pulse ensemble. As tc decreases, the number of

uncorrelated modes (statistical granules) representing each Stokes ensemble member

increases, making the Stokes source noisier. As the statistical granules are uncor-

related, they all compete for energy supply from the pump, resulting in a selective

granule amplification and, eventually, leading to a giant amplitude granule formation

within the Stokes pulse profile during the SRS amplification process. We stress that

the long memory of the system plays an important role in facilitating selective ampli-

fication of large amplitude Stokes granules, leading to champion pulses of enormous

amplitudes. This situation is vividly illustrated in Fig. 4.3 where we display, side by

side, the Stokes ensemble member evolution as the pulse propagates along the fiber

for a very coherent source, Tc = 10T0, and a nearly incoherent one, Tc = 0.1T0. The

formation of a large amplitude statistical granule within the incoherent Stokes pulse is

manifest in the figure. On the contrary, amplification is coherently distributed across

the pulse profile in the coherent case, resulting in fairly uniform amplification.

The characteristic number of statistical granules present at the source is related to the

source coherence time. We can estimate the number of statistical (time) granules N

as an inverse of the global degree of coherence of the source. The latter is defined as

ν = λ0/
∑

n λn [232]. It follows at once from Eq. (4.16) that for a nearly incoherent

Stokes source, Tc � Tp, the number of time granules can be estimated as N 	
ν−1 ∝ T−1c . Thus, the number of statistical granules grows in inverse proportion to

shrinking source coherence time, augmenting the probability of rogue-wave events,

and hence the emergence of a non-Gaussian, heavy-tail statistics of the Stokes pulse

power. We note that statistical time granules are temporal analogs of spatial speckles,

hypothesized to give rise to rogue waves in spatially extended systems [140, 141].

To confirm the crucial role played by the source coherence time and rule out the

source nonstationarity influence, we carried out a series of simulations with highly

coherent input Stokes pulse ensemble with Tc = 200 T0 for different values of T0. The

results are displayed in Fig. 4.4. It can readily be inferred from the figure that source

nonstationarity has a negligible effect on the ensemble PDF shape at the fiber exit.
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Figure 4.4: Normalized (to the average power at the source) peak power PDF of the
Stokes pulse ensemble at the fiber exit for highly coherent Stokes input ensemble with
Tc = 200 T0 for different T0 values.

Finally, we show that a heavy-tail Stokes output statistics can be generated with

not too incoherent (Tc = T0) and even rather coherent (Tc = 10T0) Stokes input if

we increase the pump pulse energy. As we illustrate in Fig. 4.5, by increasing the

pump pulse energy (Wp) from 20μJ to 80μJ the statistical behaviour of the Stokes

pulses begins to shift from Gaussian to highly non-Gaussian, heavy-tail statistics.

This deviation is more pronounced for the less coherent case of Tc = T0 in complete

agreement with the just outlined qualitative picture of ORW formation in the SRS

in HC PCFs.

4.5 Conclusion

In conclusion, we have explored a Stokes power statistics in SRS inside hydrogen filled

HC PCFs. We have shown that the statistics significantly deviates from the normal

distribution, exhibiting heavy tails indicative of anomalously high probabilities of

extremely large amplitude output pulses. We have shown that the extreme-value

output statistics strongly depends on the initial noise level of the source Stokes pulses.

The latter can be conveniently controlled by adjusting the source Stokes coherence

time. Thus our findings establish a clear link between optical coherence and rogue

wave theories. We explain our results invoking the concepts of statistical granularity

and global degree of coherence. The former emerges as a crucial driving factor behind

optical rogue wave formation in transient SRS. We observe that while the medium
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Figure 4.5: Normalized (to the average power at the source) Stokes pulse peak power
PDF at the HC PCF exit for different input pump pulse energies and Stokes input
coherence times: a) Tc = 10 T0 and b) Tc = T0.

relaxation time in solid-core fibers is so short, Γ � 1, that the SRS interaction is

virtually instantaneous, the SRS in HC PCFs has a finite relaxation time, Γ ∼ 1, and

hence a non-instantaneous character. This circumstance makes the latter especially

conducive to ORW formation because the noninstantaneous nonlinear light-matter

interaction leads to an efficient energy redistribution to higher-energy realizations of

the Stokes pulse ensemble. We anticipate our work to stimulate further theoretical

and experimental investigations into rogue wave formation in nonlinear wave systems

in the vicinity of optical resonances.
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5.1 Abstract

We explore theoretically and numerically extreme event excitation in stimulated Ra-

man scattering in gases. We consider gas filled hollow core photonic crystal fibers

as a particular system realization. We show that moderate amplitude pump fluctua-

tions obeying Gaussian statistics lead to the emergence of heavy-tailed non-Gaussian

statistics as coherent seed Stokes pulses are amplified on propagation along the fiber.

We reveal the crucial role that coherent memory effects play in causing non-Gaussian

statistics of the system. We discover that extreme events can occur even at the initial

stage of stimulated Raman scattering when one can neglect energy depletion of an

intense, strongly fluctuating Gaussian pump source. Our analytical results in the

undepleted pump approximation explicitly illustrate power-law probability density

generation as the input pump noise is transferred to the output Stokes pulses.
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5.2 Introduction

Rogue waves were originally observed as giant amplitude waves occurring in high

seas more frequently than predicted by Gaussian statistics [133, 4, 134]. The con-

cept has subsequently been extended from oceanography to other areas of physics

to describe waves of enormous amplitudes, or, in general, extreme statistical events

obeying heavy-tailed probability distributions [135]. Optics has proven to be an espe-

cially fertile ground for extreme event and, in particular, optical rogue wave (ORW)

exploration [136, 137]. To date, ORWs have been discovered theoretically and/or

experimentally in supercontinuum generating optical fibers [7, 138, 139], optical cav-

ities [140, 141], passively mode-locked fiber lasers [142, 143, 144], erbium-doped fiber

systems [145], Raman fiber amplifiers [98, 146], spatiotemporal structures and laser

filamentation [147, 148, 149], parametric processes [101], stimulated Raman scattering

(SRS) [17] and even in linear light propagation inside multimode fibers [150].

As ORWs are inherently statistical structures, their universal statistical signature

is encapsulated in heavy-tailed non-Gaussian statistics of their amplitudes and/or

powers. Non-Gaussian statistics emergence in nonlinear media has been a central

theme of the burgeoning field of nonlinear statistical optics [151]. Specifically, non-

Gaussian statistics generation and ORW excitation with a source field comprised of a

coherent (cw) condensate component mixed with Gaussian noise has been extensively

examined numerically [25, 118, 152, 24, 181, 115, 154] and experimentally [24, 181]

within the framework of the 1D nonlinear Schr odinger equation (NLSE) [116]. The

particulars of system statistics were shown to be very sensitive to initial conditions,

strongly depending on the ratio of the condensate to random component amplitudes

and the coherence time of the source [25, 118, 154]. Lately, the generation of highly

non-Gaussian, heavy-tailed probability distributions has been numerically discovered

and explored in stimulated Raman scattering (SRS) [17].

The just mentioned two models profoundly differ in many respects. While the first

encompasses a class of weakly nonlinear wave systems with instantaneous response

(no memory), governed by the integrable 1D NLSE, the second features a strong

nonlinearity, long memory, and is, in general, nonintegrable. In this context, it is
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instructive to explore the role of coherent memory in causing non-Gaussian statistics

of nonlinear systems. SRS appears to be a suitable candidate to address this question

because its coherent memory is controlled by relative magnitudes of a characteristic

SRS interaction and the Raman medium relaxation times. In the limit of an infinitely

long Raman relaxation time, the system has extremely long memory and the SRS

equations are integrable [185, 186]. Another fundamental issue concerns the source

noise modelling in rogue-wave generating systems.

In our previous work on statistical SRS [17], we examined the case of noisy Stokes

input pulses, amplified by a coherent pump in a gas filled hollow-core photonic crystal

fiber (HC PCF). In this work, we study the same system under the condition that

seed Stokes pulses are perfectly coherent, but pump pulses carry fluctuations obeying

thermal statistics. This type of noisy pump can be implemented with amplitude-

modulated statistically stationary sources or with multimode lasers operating at a

large number of uncorrelated modes, yielding thermal-like source statistics [157]. We

show, in particular, that SRS with a noisy pump is conducive to non-Gaussian statis-

tics generation. We demonstrate that the Stokes pulse power PDF acquires a long

tail at the fiber exit. The PDF tail extent strongly increases as the system approaches

the long-memory integrability limit. In sharp contrast to the previously studied SRS

with noisy input Stokes pulses, the Stokes pulse statistics is virtually unaffected by the

source coherence time. We examine separately the Stokes pulse area PDF behaviour

in the undepleted pump approximation regime. We analytically demonstrate that the

PDF exhibits power-like behaviour, failing to attain finite moments over fairly short

propagation distances. This behaviour points to the feasibility of ORW excitation

over remarkably short distances in this SRS regime. We stress that this conclusion is

independent of the initial Stokes pulse profile because our analytical theory gives a

universal PDF in the undepleted pump approximation.

This work is organized as follows. In the next section, we introduce our theoretical

model, including key dimensionless parameters describing the SRS physics. We for-

mulate the statistical ensemble of fluctuating pump pulses in Section III. We then

present our analytical theory in the undepleted pump approximation in Section IV.

Next, we present the results of our numerical simulations in Section V. Finally, we
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summarize our findings in Section VI.

5.3 Theoretical model and key dimensionless parameters

We consider stimulated Raman scattering in a gas sample of molecular hydrogen,

filling the core of a hollow core photonic crystal fiber (HC PCF). The fiber is assumed

to be designed such that only pump and the first Stokes modes lie within the fiber

transparency window. In the usual weak excitation limit, the governing SRS equations

in the co-propagating geometry can be written in the dimensionless variables as [17]

∂ZEp = iκσEs, (5.1)

∂ZEs = iκ−1σ∗Ep, (5.2)

and

∂Tσ = −Γσ + iEpE∗s (5.3)

Here we introduced dimensionless pump and Stokes pulse amplitudes, Ep and Es; the
distance and time are scaled to the characteristic SRS interaction length and time,

respectively, Z = z/LSRS and T = τ/TSRS, where τ = t − z/vg is a time coordinate

in the reference frame moving with the pulse group velocity vg.

The characteristic SRS interaction length and time scales are defined as

LSRS =

(
2ε0c

Nreff

)√
npns

ωpωs

, (5.4)

and

TSRS =

(
2h̄ε0cnp

reff〈Ip0〉
)
. (5.5)

Here ωp,s and np,s are the carrier frequencies and refractive indices of the pump and

Stokes pulses, respectively, N is a medium density, 〈Ip0〉 is a peak average pump

intensity at the source, the angle brackets denoting ensemble averaging, and reff =

1
h̄

∑
i

d3idi1
ωi3+ωi1−ωp−ωs

is a Raman transition dipole matrix element at the exact Raman

resonance [124, 158].
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Further, we introduced κ =
√

ωpns/ωsnp and a coherent memory parameter Γ. The

latter, defined as

Γ = γ TSRS, (5.6)

where γ is a medium dipole phase relaxation rate, determines the extent of system

memory and the system proximity to the integrability limit. Indeed, whenever Γ � 1,

the SRS is highly transient with an extremely long memory time and its governing

equations approach the mathematical integrability limit, Γ = 0, first discussed in

Refs. [185, 186]. Thus, Γ is a key dimensionless parameter of the system as its

magnitude distinguishes quasi-cw, Γ � 1, from transient, Γ � 1, SRS regimes.

While SRS in the former regime has a relatively short memory, it is described by

nearly integrable equations with long memory in the transient regime.

We stress that the magnitude of Γ demarcates the boundary between quasi-cw and

transient SRS regimes in the nonlinear domain where pump depletion is no longer

negligible. One should then exercise caution employing the usual “rule-of-thumb cri-

terion classifying SRS with pump pulses much shorter than the Raman relaxation

time as transient [159]. The latter criterion, based on quantum SRS theory in the

undepleted pump approximation [160], can prove too restrictive in the nonlinear do-

main. Indeed, coherent oscillations of pump and Stokes pulse profiles, which are

unambiguous signatures of the transient dynamics, have been vividly displayed in

the recent SRS experiments with pulses as long as, or even longer than the Raman

relaxation time [40] . A typical period of such oscillations in Ref. [40] was of the order

of TSRS � γ−1, implying that Γ � 1.

5.4 Input pump and Stokes pulses and statistical ensemble formulation

We consider a pump source pulse composed of a coherent Gaussian and a random

component such that

Ep(T, 0) = e−(T−T0)2/2T 2∗ +ΔEp(T ), (5.7)
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where T0 is a (dimensionless) pulse peak time. Such a source pulse can be experi-

mentally realized by coherently combining a Gaussian pulse with a partially coherent

one at a beam splitter, for example. The partially coherent (random) component

can be generated by time modulating a statistically stationary source employing an

electro-optical modulator, operating on the basis of either linear [6] or quadratic [161]

electro-optical effect. All this is readily achievable in the nanosecond pulse range, ad-

equate for SRS in gas-filled HC PCFs. The input Stokes pulse field reads

Es(T, 0) =
√

npPs

nsPp

e−(T−T0)2/2T 2∗ , (5.8)

where Pp,s are peak powers of the (coherent components of) pump and Stokes pulses

and np,s are the refractive indices at the pump ωp and Stokes ωs frequencies, respec-

tively. Further, we assume the pump and Stokes pulses to have the same duration

(in dimensionless units) T∗ at the source. Such a Stokes source can be produced in

a separate fiber using the pump coherent component and quantum noise as inputs.

A coherent macroscopic Stokes pulse is then formed as quantum noise is “cleaned up

[162]. This Stokes input can then be transported back into the original fiber to study

ORW formation in the amplification regime of SRS.

We express the mutual intensity of the random component ΔEp using a celebrated

Gaussian Schell model (GSM) of statistical optics [232]. The GSM presumes that

both the intensity and the temporal degree of coherence of the fluctuating part have

Gaussian profiles. We assume, for simplicity, that the fluctuating and coherent com-

ponents have the same width Tp at the source. The mutual intensity of the random

component, defined as

Γ(T1, T2, 0) ≡ 〈ΔE∗p (T1, 0)ΔEp(T2, 0)〉, (5.9)

can then be written as

Γ(T1, T2, 0) =

(
ΔPp

Pp

)
exp

[
−(T1 − T0)

2 + (T2 − T0)
2

2T 2∗

]

× exp

[
−(T1 − T2)

2

2T 2
c

]
. (5.10)
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Here ΔPp/Pp is a ratio of the random to coherent component peak powers, and

Tc is a coherence time of the random component. It follows from Eq. (2) that the

correlation spectrum of GSM is also Gaussian. The GSM is a generic statistical source

model, widely used in statistical optics [232]. For instance, a Gaussian correlation

spectrum was shown to better approximate statistical properties of supercontinuum

sources than does another commonly used model featuring a one-photon-per-mode

spectrum [164].

We can now represent the random component of the source using the Karhunen-Loève

expansion [231, 120]

ΔEp(T, 0) =
∑
n

cnψn(T ), (5.11)

where the random coefficients {cn} are statistically orthogonal such that

〈c∗ncm〉 = λnδmn, (5.12)

and the coherent modes are orthonormal, implying that

∫ ∞

−∞
dT ψ∗n(T )ψm(T ) = δmn. (5.13)

The mutual coherence function is then represented as a Mercer-type series in coherent

modes as [232]

Γ(T1, T2, 0) =
∑
n

λnψ
∗
n(T1)ψn(T2). (5.14)

The coherent modes {ψn} are determined by solving the following Fredholm integral

equation ∫ ∞

−∞
dT1 Γ(T1, T2, 0)ψn(T1) = λnψn(T2). (5.15)

In the GSM case, Eq. (7) can be analytically solved and all modes and the eigenvalues

{λn} determined such that [232]

ψn(T )=

(
2ξ

π

)1/4 (
1

2nn!

)1/2

Hn[
√

2ξ(T − T0)]e
−ξ(T−T0)2 , (5.16)
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where Hn(x) is a Hermite polynomial of the order n, and

λn =
√
πT∗

(
ΔPp

Pp

)
(α + ξ)βn

(α + β + ξ)n+1
. (5.17)

Here we introduced the notations

α =
1

2T 2∗
, β =

1

2T 2
c

, (5.18)

and

ξ =
√
α2 + 2αβ. (5.19)

We note that the mode powers, Eq. (9), are normalized such that they add up to the

total power of the random component (relative to the coherent component power).

To complete the ensemble description, we must specify the random amplitude statis-

tics to any order such that it is consistent with Eq. (4). Expressing the complex

random amplitudes {cn} in the polar form as

cn =
√
ine

iφn , (5.20)

we stipulate that the complex amplitudes be independent random variables; the

phases are assumed to be uniformly distributed in the interval −π ≤ φn ≤ π, while

{in}’s obey the exponential distribution such that

P(in) =
1

λn

e−in/λn ; in ≥ 0. (5.21)

If coherent modes correspond to natural oscillation modes of the source, such a source

can be interpreted as a multimode laser source with each mode having a random phase

and a strongly fluctuating power. The overall field at the source is a superposition

of uncorrelated mode fields. As each mode obeys Gaussian statistics, the overall

source PDF is guaranteed to be Gaussian (thermal-like) for any source coherence

time Tc [17].
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5.5 Undepleted pump approximation

We first focus on the case of a very long, high-power pump pulse, tp � ts and Pp � Ps

such that the pump pulse can be treated as a plane wave. In the undepleted pump

approximation (UPA), Ep = const and the SRS equations linearize. They can then

be solved by a Fourier transform technique. Introducing a Fourier transform of the

Stokes field,

Ẽs(Ω, Z) =
∫ ∞

−∞
dT e−iΩTEs(T, Z), (5.22)

where Ω is a frequency shift from the Stokes carrier and the Stokes pulse area,

As(Z) =

∫ ∞

−∞
dT Es(T, Z), (5.23)

we can conclude at once that the latter is a component of the former at the carrier

frequency, i. e.,

As(Z) = Ẽs(0, Z). (5.24)

This observation allows to quickly solve linearized Eqs. (5.1) through (5.3) to obtain

for the area the expression

As(Z) = As0 exp

( |Ep|2Z
κΓ

)
. (5.25)

The area describes a universal dynamics of Stokes pulses: whatever the initial pulse

shape, the area grows exponentially.

Next, we can determine the PDF of the area magnitude under the UPA. We assume a

strong coherent pump with small intensity fluctuations such that the (dimensionless)

intensity can be written as

|Ep|2 = 1 + ip − 〈ip〉 	 1 + ip, 〈ip〉 � 1. (5.26)

This model is in sync with our general ensemble construct of Sec. III. The intensity

fluctuations are specified by the PDF

P(ip) =
1

〈ip〉 e
−ip/〈ip〉. (5.27)
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The area PDF is then given by the expression

P(|As|, Z) = 〈δ [|As| − |As(Z)|] 〉. (5.28)

A straightforward calculation using the δ−function property

δ[f(x)] =
∑
n

1

|f ′(xn)| δ(x− xn), (5.29)

where xn is an nth root of f(x), f(xn) = 0, yields

P(|As|, Z) =
κΓ e1/〈ip〉

〈ip〉Z|As0|
∣∣∣∣ As

As0

∣∣∣∣
−1− κΓ

〈ip〉Z

× θ
(|As| − |As0|eZ/κΓ

)
. (5.30)

Here θ(x) is a unit step function. It can be easily verified that the PDF is normal-

ized to unity at any Z = const and Eq. (5.30) works for any Z 
= 0; it is singular

at Z = 0 because P is a δ-function at the source. We note in passing that a qual-

itatively similar form of PDF was derived for Stokes wave statistics in silica glass

Raman amplifiers [146]. However, the long coherent memory of SRS in gases makes

our system fundamentally different from silica glass Raman amplifiers with an instan-

taneous medium response. Further, we consider pump pulses with a strong coherent

component superimposed with weak fluctuations whereas the authors of [146] discuss

the opposite regime of incoherent pump input.

The PDF of Eq. (5.30) is displayed in Fig. 5.1 in a logarithmic scale at several

propagation distances. It can be inferred from Eq. (5.30) that the PDF shape is

determined by two factors. First, the unit step-function describes a shift toward

larger areas upon propagation due to the Stokes pulse amplification. Second, the

power-law dependence is brought about by the noise transfer from the pump to the

Stokes pulse in the course of SRS. Qualitatively, the interplay of these two trends

fixes the Stokes area PDF shape. Further analysis of Eq. (5.30) reveals that the area

PDF becomes so broad-tailed, it ceases to attain finite moments at the distances

Z ≥ Z∗ = κΓ/〈ip〉, (5.31)
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Figure 5.1: Analytics: Stokes Area PDF in the logarithmic scale at several propaga-
tion distances Z. Numerical values of the parameters are: Tp = 102Ts , Ps = 10−3Pp

and Γ = 0.24.

estimating for our regime κ 	 1, Γ ∼ 1, 〈ip〉 ∼ 10−2, corresponding to 10% amplitude

noise in the pump, z∗ ∼ 100LSRS 	 10 cm. It follows from Eq. (5.31) that z∗ is

controlled by the pump noise intensity and coherent memory of the system; it can

drop to a fraction of LSRS for sufficiently long coherent memory times (small Γ) or

noisy enough pump. Thus, rogue-wave like phenomena can potentially unfold at very

short propagation distances and be quantitatively described by our analytical theory.

We stress that this conclusion is applicable to input Stokes pulses of any shape.

To test our UPA predictions, we carried out numerical simulations for the long intense

pump case such that Tp = 102Ts and Ps = 10−3Pp. We use ip = 10−2 and Γ = 0.24

in our numerical simulations. In Fig. 5.2 we display the average pump and Stokes

pulse profiles at Z = 0.3 indicating that the UPA still holds at this propagation

distance. We then exhibit the Stokes area PDF at several propagation distances and

compare it with the corresponding analytical results in Fig. 5.3. It can be seen in

the figure that while the theory and simulation agree very well up to Z = 0.3 for our

pump noise level and coherent memory time, the two start deviating at Z = 0.5 and

differ substantially at Z = 0.7. Thus the UPA breaks down rather quickly in this
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Figure 5.2: Intensity profiles of the pump and Stokes modes at Z = 0.3. Numerical
values of the parameters are: Tp = 102Ts , Ps = 10−3Pp and Γ = 0.24.

Figure 5.3: Analytical versus numerical Stokes area PDF profiles at several propaga-
tion distances inside the fiber. Numerical values of the parameters are: Tp = 102Ts ,
Ps = 10−3Pp and Γ = 0.24.
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parameter regime. The ORW formation can occur at distances of the order Z ∼ 0.1,

though, provided coherent memory, Γ−1, is boosted by two orders of magnitude for

the same pump noise level. This can be achieved by increasing the pump intensity,

for instance, which would incidentally extend the UPA applicability range. However,

the true significance of our UPA theory lies in its ability to qualitatively predict the

physical nature of the PDF transformation in SRS with noisy pump. We will use the

gained insights to explain the emergence of non-Gaussian statistics beyond the UPA

in the following section.

5.6 Non-Gaussian statistics beyond the undepleted pump

approximation

Figure 5.4: Average intensity profiles of the pump (dashed line) and Stokes (solid line)
pulses at several propagation distances. The coherent memory parameter is taken to
be Γ = 0.24.

We now numerically simulate SRS with fluctuating pump pulses beyond the UPA.
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As a generic realization of the system, we consider a hydrogen-filled HC PCF with

typical parameters representative of the HC PCFs previously designed for SRS ex-

periments [124]. The HC PCF has a low-loss transmission window between 1030 and

1150 nm. As a result, only the pump at λp = 1064 nm and first Stokes at λs = 1134

nm modes, interacting with the J=1 to J=3 rotational transition, can co-propagate

in the HC PCF. The coherent component of the pump is supplied by a Wp = 100 μJ

laser operating at 1064 nm. The characteristic Raman interaction length and SRS

interaction time are LSRS = 1 mm and TSRS = 1.2 ns, respectively. We assume the

relaxation time of hydrogen in the HC PCF to be γ−1 = 5 ns [158]. The coherent

memory parameter Γ is then Γ = 0.24; it can be controlled by adjusting the pump

energy Wp. The input pump (coherent component) and Stokes pulses are assumed to

be Gaussian of the same duration tp = ts = t∗ = 10 ns, but the Stokes input is much

weaker such that the Stokes input energy is just 1% of the pump one. The pump and

Stokes pulses centered at t0 = 24 ns. We treat the pump source noise level, quantified

by ΔPp/Pp, as a variable in our simulations.

Figure 5.5: Stokes pulse ensemble realization at the fiber exit for (a) ΔPp/Pp = 0.3
and (b) ΔPp/Pp = 0.5. The pulse power is scaled to the average power 〈P 〉 at the
fiber exit. In both cases, Γ = 0.24.

In Fig. 5.4 we display the average intensities of the pump and Stokes pulses at

several propagation distances. As is expected, the Stokes pulse intensity grows at

the pump expense. Notice characteristic oscillations experienced by both average

intensity profiles which are unambiguous signatures a transient SRS regime. We then
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exhibit a time series of the peak Stokes power in Fig. 5.5 for ΔPp/Pp = 0.3 (left) and

ΔPp/Pp = 0.5 (right) at the fiber exit. It can be inferred from the figure that although

extreme events do take place in both cases–the peak power reaches magnitudes around

20 to 40 times its average value at the fiber exit–the maximum attainable power level

strongly depends on the pump noise level. In particular, the curve in Fig. 5.5.b can

be interpreted to represent a bona fide ORW with a peak pulse amplitude exceeding

6 times its average value at the fiber output.

Figure 5.6: Peak power PDF of a Stokes pulse ensemble at the fiber output for (a)
relatively short, Γ = 0.97, and (b) rather long, Γ = 0.24, coherent memory times.
The pulse power is scaled to the average power 〈P 〉 at the fiber exit. The source noise
level is ΔPp/Pp = 0.5.

Figure 5.7: Peak power PDF of a Stokes pulse ensemble at the fiber output for
relatively coherent (solid line), and nearly incoherent (dashed line) sources. The
pulse power is scaled to the average pump power 〈P0〉 at the source. The source noise
level is ΔPp/Pp = 0.01 and Γ = 0.24.

Next, we examine the Stokes power statistics in the present SRS regime. In Fig. 5.6,

we exhibit the peak Stokes power PDF in a logarithmic scale for the two cases: (a)

relatively short system memory with Γ = 0.97 and (b) rather long system memory
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with Γ = 0.24 . The peak Stokes power is evaluated at the fiber output and scaled to

its average value there. The non-Gaussian behaviour of the PDF is manifest in both

cases on comparing it with a straight line Gaussian PDF of the peak pump power.

Further, we can infer from Fig. 5.6 that the peak Stokes power PDF acquires a long

tail and the tail extent markedly increases as the system coherent memory is enhanced.

This is because the enhanced coherent memory implies the SRS interaction is robust

against medium dipole damping, thereby accommodating efficient noise transfer from

the pump to the Stokes pulses. This point illustrates the crucial role the coherent

memory effects play in ensuring that extreme events take place in the system. Finally,

we exhibit the peak Stokes power PDF for rather coherent and nearly incoherent

pump sources in Fig. 5.7. It is evident from the figure that in sharp contrast to

the noisy Stokes SRS case, the PDF in the present regime is virtually independent

of the source pump coherence time. This circumstance can be explained by noting

again the different physical origin of PDF tails–and hence ORW emergence–in the

two SRS regimes that we have already discussed. Specifically, the PDF structure in

the present situation depends solely on the amount of pump noise, but not on the

noise particulars, including its spectrum and, by extension, its coherence time.

5.7 Summary

We explored the emergence of non-Gaussian statistics and optical rogue waves in

stimulated Raman scattering in gases, focusing on a gas filled, hollow core photonic

crystal fiber as a particular system realization. We specifically examined the role of

coherent memory and source noise modelling in extreme event excitation in the sys-

tem. We have demonstrated the crucial role that coherent memory plays in triggering

heavy-tailed statistics of the system in the situations when the input Stokes or pump

pulses are noisy. However, the non-Gaussian statistics emergence has fundamentally

different physical origins in the two cases. On the one hand, we demonstrated ear-

lier [17] that heavy-tailed statistics and ORWs result from the competition for the

pump energy among coherent modes constituting a statistical Stokes input. On the

other hand, we have shown here that the non-Gaussian statistics and ORW excitation
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in SRS with noisy pump can be attributed to noise transfer from the pump to ini-

tially coherent Stokes pulses. We have developed the analytical theory of such noise

transfer in the system in the initial stage of SRS, well described within the unde-

pleted pump approximation. We also discussed the parameter regime in which the

emergent extreme events can be quantitatively described under the UPA. The gained

insights enabled us to interpret our numerical findings beyond the undepleted pump

approximation which qualitatively follow the same scenario as was discovered under

the UPA.
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Chapter 6

Rogue waves, self-similarity, and integrable turbulence

Yashar E. Monfared and Sergey A. Ponomarenko
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6.1 Abstract

We explore extreme event occurrence in the integrable turbulence with self-similar

asymptotics. We posit that rogue waves in such systems manifest themselves as giant

fluctuations away from average self-similar dynamics of the system. We support our

proposition with numerical simulations of rogue wave excitation in the self-similar

regime of stimulated Raman scattering. We show that our results hold irrespective

of a specific source correlation model, suggesting the universality of the proposed

scenario.

6.2 Introduction

Turbulence, defined as chaotic changes of dynamical variables throughout the evo-

lution of the corresponding physical systems, is a subject with a long and venerable

history [166]. The subject has recently acquired a new dimension with the intro-

duction of the integrable turbulence concept by Zakharov [2] who pointed out that

nonlinear statistical wave systems, described by the integrable equations, differ from

conventional turbulent systems in several important aspects. In this context, the

rogue wave (RW), or, in general, extreme event excitation mechanisms in integrable

turbulence present a special interest. RWs are extremely rare, giant waves, obeying

68
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non-Gaussian statistics [167]. To date, RWs have been proven ubiquitous in oceanog-

raphy [4], plasma physics and Bose-Einstein condensates [167] as well as in nonlinear

optics [?, ?] among many other branches of physics.

The RW generation in integrable turbulence is commonly studied within the frame-

work of a generic (1+1)D nonlinear Schr odinger equation (NLSE). The latter governs

time-evolution of weakly dispersive wave systems with weak instantaneous nonlinear-

ities of the Kerr type [19]. The RW excitation in the NLSE model with random input

wave fields has been studied both numerically [178, 179, 115, 19, 105, 24, 181] and

experimentally [24, 181]. These studies helped elucidate the respective roles of spon-

taneous Peregrine-like breather excitation from a noisy environment and of random

soliton collisions in triggering the emergence of heavy-tailed probability density distri-

butions (PDF) of field intensities. Such heavy-tailed PDFs herald the RW generation

in the system [179, 24, 181, 19, 105].

However, the NLSE model fails to accurately describe the dynamics of nonlinear

waves in the vicinity of either wave-wave or wave-matter resonances. The resonant

wave-wave or wave-matter interaction regime is characterized by strong nonlinear-

ity, long coherent memory of the system, and strong amplification/absorption near

resonance [182]. In optical physics, the resonant RW excitation can be generically

modelled through either two-level amplification (TLA) or stimulated Raman scatter-

ing (SRS) processes. The energy transfer to an optical wave from either (inverted)

medium atoms (TLA) or from another wave via two-photon resonance (SRS) serves

as a generic resonant amplification mechanism. In fluid mechanics, a resonant interac-

tion between short surface and long internal waves occurs whenever the phase velocity

of a short wave matches the group velocity of a long wave. The short-wave-long-wave

interaction equations are known to be integrable [183]. The TLA and SRS are also

governed by integrable equations in the transient regime [184, 185, 186]. The key

feature of both TLA and SRS is a transient character of solitons and breathers and

universal long-term self-similar evolution of the system in the integrable limit [187].

Thus, neither soliton collisions nor breathers can trigger extreme events in the long-

term evolution of self-similar integrable turbulence. A fundamental question then

arises: What is a physical manifestation of extreme events and, especially, RWs if
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any, in the integrable turbulence with self-similar asymptotics?

In this work, we explore extreme event excitation in the long-term, self-similar regime

of integrable turbulence for the first time to our knowledge. We propose that RWs

appear as rare, giant fluctuations away from a self-similar, on average, dynamics of

the system. Our extensive numerical simulations of extreme event occurrence in the

self-similar regime of SRS reveal the existence of RWs and support the proposed

scenario of their emergence. We also confirm that RWs can be excited regardless of

the source statistical model. We anticipate the proposed RW excitation scenario to

be ubiquitous for self-similar integrable turbulence, characterized by long coherent

memory.

6.3 Self-similar regime of SRS

We consider the Raman interaction between a pump and fundamental Stokes modes.

This SRS modality can be realized, for instance, in a gas-filled hollow core photonic

crystal fiber, designed to suppress higher-order Stokes modes [32]. In the extreme

transient regime, the characteristic SRS interaction time TSRS is much shorter than

the medium dipole relaxation time T2 [17]. The slowly-varying pump Ep and Stokes

Es pulse amplitude evolution is then governed by simplified Maxwell’s equations

∂ZEp = −κσEs, ∂ZEs = κ−1σEp, (6.1)

and the dipole moment matrix element σ obeys the Schr odinger equation, which,

in the weak excitation approximation pertaining to realistic experimental conditions,

takes the form [17, 18, 185, 186, 187]

∂Tσ = EpEs. (6.2)

Here κ =
√
ωpns/ωsnp ≈ 1, ωp,s and np,s being the carrier frequencies and linear

refractive indices of the pump and Stokes modes, respectively. In writing Eqs. (6.1)

and (6.2), we assumed chirpless pump and Stokes input pulses, implying that all field

variables are real, and used the same dimensionless variables as in Ref. [17, 18].
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Figure 6.1: (color online). (Left panel:) Self-similar phase θ as a function of the
similarity variable s. We take κ = 1 and assume that the energy initially resides al-
most entirely with the source pump mode, P0s = 0.01P0p. (Right panel:) Normalized
intensities of the Stokes (solid blue) and pump (dashed magenta) pulses as functions
of s.

The power conservation law implies the following parametrization of the pulse ampli-

tudes

Ep = (κK)1/2 cos(θ/2), (6.3a)

and

Es = (K/κ)1/2 sin(θ/2). (6.3b)

Here θ is a real phase and the integral of motion K(T ) is defined as

K(T ) = κ−1E2
p (T, 0) + κE2

s (T, 0). (6.4)

In SRS in molecular gases, κ ≈ 1 andK(T ) is well approximated by the total intensity

at the source, Itot(T, 0). In the self-similar regime, the phase depends only on the

similarity variable s such that [188, 189]

θ = θ(s), s = 2

√
Z

∫ T

−∞
dxK(x). (6.5)

The SRS dynamics is then governed by the single ordinary differential equation in
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Figure 6.2: (color online). Evolution of the normalized intensity of a Gaussian Stokes
pulse with no input noise at the source as a function of dimensionless time T and
propagation distance Z for two stages: (a) initial exponential amplification stage and
(b) self-similar stage. The other parameters are: κ = 1, T0 = 30 and the Gaussian
pump/Stokes pulse duration is T∗ = 8.3.

the form

θ′′ss +
1
s
θ′s = sin θ. (6.6)

Eq. (6.6) must be solved subject to the boundary conditions, θ′(0) = 0 and θ(0) =

tan−1(κ
√

npP0s/nsP0p), where P0s (P0p) is an input power of the Stokes (pump) pulse.

Hereafter, we assume that the energy initially resides almost entirely with the source

pump mode, P0s = 0.01P0p. In Fig. 6.1, we exhibit a numerical solution to Eq. (6.6)

(left panel) and the universal normalized intensity profiles of the pump, Ip = Ip/κK

(magenta curve, right panel) and Stokes, Is = κIs/K (blue curve, right panel). We

clearly observe gradual pump mode energy depletion, resulting in the Stokes mode

amplification in Fig. 6.1. The process is accompanied by coherent oscillations due to

long coherent memory of the SRS interaction in this regime. In Fig. 6.2, we display

the normalized intensity evolution of a Stokes pulse with no input noise at the source.

The input Stokes and pump pulses are assumed to have the same Gaussian profile

with the temporal width T∗ = 8.3, which corresponds to a physical pulse duration

of t∗ = 10 ns and the SRS interaction time TSRS = 1.2 ns [18, 32]; the pulses are

centred at T0 = 30. The analysis of Fig. 6.2 reveals that an initial, nearly exponential
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Figure 6.3: (color online). Power fluctuations of a random realization of the Stokes
pulse ensemble at Z = 3 for (a) GSM and (b) FBWN source pump pulse ensembles.
The numerical parameters are: ΔP/P0 = 0.4, κ = 1, and Tc = 0.1T∗. The Stokes
pulse power is normalized to its average value at the same propagation distance,
Z = 3.

amplification stage (Fig. 6.2a) is followed by a self-similar evolution stage (Fig. 6.2b).

The self-similar stage onset is unequivocally marked by the appearance of intensity

oscillations. We then infer from the figure that the self-similar regime starts past

around Zcr 	 1 in our units. To ensure that our system is well into the self-similar

regime, we examine extreme event excitation in the Stokes output at distances larger

than Zcr.

6.4 Extreme events in self-similar integrable turbulence

We study SRS with a small-amplitude coherent Stokes pulse seed, interacting with

a strong fluctuating pump pulse. The pump pulse field at the source is assumed to

consist of a coherent and random components such that

Ep(T, 0) = Ep0(T, 0) + ΔEp(T, 0), (6.7)
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where the random component can be expressed in terms of coherent modes {ψn(T )}
of the source as

ΔEp(T, 0) = 2−1/2
(∑

n

cn(T )ψn(T ) + c. c.

)
. (6.8)

Here {cn} are random complex amplitudes and c. c. stands for a complex conjugate.

To explore the generality of our results, we consider two physically very different

statistical models of the pump. In the first model, the coherent component has a

Gaussian pulse envelope centred at T0 with the temporal duration T∗ (in the dimen-

sionless units). The random component has a Gaussian average intensity profile of

the same duration, for simplicity, and a Gaussian fluctuation spectrum of the width

inversely proportional to the source coherence time Tc. Thus, the pair correlations

among the monochromatic components of such a pump source strongly decay with

the frequency separation between the components. This model is known as a Gaus-

sian Schell-model (GSM) which has been extensively employed before in statistical

nonlinear optics [17, 18, 120]. The second model allows for an arbitrary temporal

envelope of the pump pulse, but assumes, for simplicity, that the random component

has the same average intensity profile as the coherent component profile. Further,

the model stipulates that the fluctuation spectrum of the random component be flat

within a finite bandwidth. In this model, the spectral correlations among pairs of

monochromatic components of the source are uniform within the source bandwidth,

making this finite-bandwidth white noise (FBWN) model drastically different from

GSM. In the Appendix C, we present details of statistical ensemble construction for

GSM and FBWN models. In particular, we are able to analytically determine the co-

herent modes {ψn(T )} and demonstrate how the statistical properties of {cn}’s shall
be specified to ensure the source GSM and FBWN ensembles obey Gaussian statistics

for any second-order coherence time.

In the self-similar regime of interest, the Stokes and pump field ensemble representa-

tions are determined from Eqs. (6.3) with their evolution being governed by Eq. (6.6).

We assume that the coherent pump pulse component for both GSM and FBWN en-

sembles has a Gaussian pulse profile and perform extensive Monte-Carlo simulations
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for an ensemble of 104 realizations of the pump field. Hereafter, we assume that

κ = 1. We introduce an average peak power ΔP of the random component of the

pump pulse at the source and the corresponding peak power of the coherent compo-

nent P0 [?]; their ratio is taken to be ΔP/P0 = 0.4 henceforth. In Fig. 6.3, we exhibit

the normalized power of a Stokes pulse ensemble realization at a distance Z = 3,

well within the self-similar evolution domain for both GSM (Fig. 6.3a) and FBWN

(Fig. 6.3b) source ensembles; the Stokes pulse power is normalized to its average

magnitude at Z = 3. We notice a quantitatively different behaviour of the output

Stokes pulse fluctuations in the two cases: the FBWN ensemble fluctuations are more

spread in time than are the GSM ensemble ones. This is because the Gaussian GSM

source time correlations are more localized than are the FBWN ones, the latter being

governed by a sinc function, (see the Appendix C for details.) Further, we can infer

from the figure that the output Stokes pulse realization for either ensemble attains a

peak power nearly 45 times its average power at this propagation distance, thereby

unambiguously qualifying the output as an RW. Thus, RWs can be generated in the

self-similar regime of SRS which is in qualitative agreement with our previous results

for SRS approaching the integrability limit [17]. Most important, we confirm that

the RW appearance is independent of a particular source correlation model, thereby

representing a universal signature of the self-similar regime of integrable turbulence.

To explore generic features–independent of a particular pump pulse profile at the

source–of extreme event generation in the self-similar regime of integrable turbulence,

we scale away the source intensity profile by introducing the Stokes and pump pulse

intensities scaled to the average total intensity at the source, 〈Itot〉. In Fig. 6.4a, we

display the average dynamics of the scaled Stokes (solid blue curve) and pump (solid

red curve) intensities for the GSM source ensemble, together with the corresponding

deterministic SRS quantities for which no pump noise is present at the source. The

deterministic dynamics of the scaled intensities of the Stokes and pump pulses are dis-

played with dashed magenta and dash-dotted green curves, respectively. We clearly

observe that the average pulse dynamics follows closely the deterministic self-similar

evolution scenario. Next, we juxtapose in Fig. 6.4b the self-similar average Stokes

pulse intensity evolution in the scaled variables (dashed magenta curve) with a Stokes

pulse ensemble realization dynamics in the scaled variables (solid blue curve). Note
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Figure 6.4: (color online). (a) Scaled average intensities of the GSM Stokes (solid
blue) and pump (solid red) pulse ensembles at Z = 3. The scaled intensities of
deterministic Stokes (dashed magenta) and pump (dash-dotted green) pulses in the
absence of source noise are shown for comparison as well. (b) Scaled intensity of a
random realization of the GSM Stokes pulse ensemble (solid blue) and the average
Stokes pulse ensemble intensity (dashed magenta) at Z = 3. The average intensity
is enhanced by a factor of three to facilitate visualization. All intensities are scaled
to the total average intensity at the source. The numerical parameters are: κ = 1,
ΔP/P0 = 0.4, and Tc = 0.1T∗.

that the scaled average intensity is enhanced by a factor of 3 to facilitate visualiza-

tion. It is evident from the figure that extreme events appear as giant fluctuations

away from the average self-similar evolution of the system. Further, we repeat the

calculations for the FBWN ensemble and exhibit the corresponding results for a white

noise pump source in Fig. 6.5 using the same colour scheme. Despite quantitative

differences of Fig. 6.5 from Fig. 6.4, our main conclusion regarding the RW mani-

festations as enormous fluctuations away from the long-term self-similar evolution of

integrable turbulence holds for the FBWN source ensemble as well, supporting the

universality of the proposed scenario.

Finally, we examine extreme event statistics by calculating the probability density

function (PDF) of the normalized peak power of the Stokes pulse at an output dis-

tance. The peak power is normalized to its average value at the output distance.

The results are shown in Fig. 6.6 where we display the peak power PDFs of the

Stokes pulse output at Z = 3 for a nearly incoherent GSM ensemble of pump pulses

at the source, with the coherence time being the fraction of the input pulse width,
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Figure 6.5: (color online). Same as in Fig. 6.4 for FBWN pulse ensembles.

Tc = 0.1T∗ (solid magenta curve), and that for a highly coherent GSM ensemble of

such pulses with Tc = 10T∗ (dashed blue curve). The solid red straight line corre-

sponds to a Gaussian PDF with the same average peak power as the average peak

power of the Stokes ensemble at Z = 3. We immediately notice that both output PDF

curves strongly deviate from the Gaussian by acquiring long tails for the peak powers

substantially exceeding their average values. This circumstance points to a greatly

enhanced likelihood of extreme event generation in the system, compared against

predictions based on Gaussian statistics. We also observe that the solid magenta

and dashed blue curves are very close to each other–taking into account inevitable

data spread in a Monte-Carlo simulation–reinforcing our message that extreme event

excitation in integrable SRS is barely affected by the source coherence time. This

conclusion is in qualitative agreement with our previous findings for extreme event

excitation in non-integrable regime of SRS with noisy input pump [17]. The solid

magenta and dashed blue curves were determined using the self-similar evolution de-

scription of SRS with the aid of Eqs. (6.3) through (6.6). To confirm that the system

is indeed in the self-similar regime, we repeated the PDF calculations using the full

set of SRS equations, Eqs. (6.1) and (6.2). The resulting PDF is represented by a

dash-dotted green curve for a highly coherent GSM ensemble with Tc = 10T∗ . We

can clearly see in the figure that the dash-dotted green curve nearly coincides with the

dashed blue curve, as expected, and is very close to the solid magenta one. It follows
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Figure 6.6: (color online). Normalized peak power PDF of a GSM Stokes pulse ensem-
ble at Z = 3 for a nearly incoherent Tc = 0.1T∗ (solid magenta), and fairly coherent,
Tc = 10T∗ (dashed blue) ensembles; the solid magenta and dashed blue curves are
obtained using the self-similar evolution equations, Eqs. (6.3) through (6.6). The
dash-dotted green curve displays the peak power PDF for a fairly coherent ensemble,
Tc = 10T∗, evaluated using the full set of SRS equations, Eqs. (6.1) and (6.2). The
peak power is normalized to its average value at Z = 3. The solid red line represents
a Gaussian PDF with the same average peak power. The other numerical parameters
are: κ = 1 and ΔP/P0 = 0.4.

that the self-similar evolution description accurately captures the system statistics

behaviour.

6.5 Conclusion

We have demonstrated that RWs can be excited in a self-similar asymptotic regime

of integrable turbulence and they appear as giant fluctuations away from the average

(self-similar) evolution of the system. Although our results are based on numerical

simulations of SRS in the transient regime, the conclusions are model independent;

we can expect qualitatively similar findings in the TLA case. Indeed, the TLA and

SRS in the integrable regime can be shown to be governed by the same set of evo-

lution equations with an appropriate choice of variables [185]. However, there is an

important difference: While one can neglect the amplified spontaneous emission noise

contribution to SRS in gases in the weak excitation approximation–because there is
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a negligible population of the excited virtual states of the two-photon transition–

strongly amplified spontaneous emission noise cannot be neglected in TLA. We an-

ticipate that the additional amplified noise in the TLA case will only increase the

likelihood of extreme event occurrence in the system.
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7.1 Abstract

We theoretically investigate slow light generation using stimulated Brillouin scatter-

ing (SBS) in a short highly nonlinear liquid-filled photonic crystal fiber (PCF). We

study optical properties of hollow-core PCFs, filled with liquids exhibiting strong

optical nonlinearities. We propose a design of carbon-disulfide-filled fiber with an ef-

fective area of 1.8μm2, nonlinear coefficient larger than 7300 W−1.Km−1, confinement

loss of 0.007 dB/km and total loss lower than 0.3 dB/m over the C-band. Relative

to standard single mode fibers, the proposed fiber reduces power× fiber length re-

quirement for a given gain (delay) by nearly three orders of magnitude (830 times).

Furthermore, using just a one-meter long fiber, we demonstrate that pulses can be

slowed down to c/50 with a required power level of only 25mW. We show that our

PCF is about 7 times more efficient than the previously reported fiber designs.
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7.2 Introduction

The group velocity of light control has attracted much attention in both academia

and industry because it provides optically controllable pulse delays for applications

such as data synchronization, optical memory, optical buffering, and optical signal

processing [1]. The prevalent protocols for slowing down optical pulses in bulk media

and semiconductor devices include the electromagnetically induced transparency and

coherent population oscillations [1]. However, slow light generation inside optical

fibers can be realized at room temperature with a good deal of flexibility and rather

simple configurations via stimulated Brillouin scattering (SBS) [2, 3]. The SBS slow

light generation makes use of an optically controlled narrowband gain in a fiber, thus

the group velocity of optical pulses can be tuned continuously by simply controlling

the pump power level. There are two main research trends around the world in this

area. First, optimizing SBS pump profiles for increasing the bandwidth, reducing

pulse distortions, and overcoming inherent SBS line width limitations [4, 5]. The

second amounts to SBS slow light realization in highly nonlinear fibers. The SBS

gain coefficient in silica fibers is just about 5×10−11 m/W. Thus, we cannot attain

a considerable change of group velocity using SBS in short span standard fibers or

with low pump powers [6]. Okawachi et al. [6], have achieved a 25 ns long slow

light delay of signal pulses along a 500 meter long SMF-28e fiber. Using shorter fiber

lengths has a benefit for overall performance of the system in terms of minimizing

the inherent latency of the device [7]. In recent years, SBS slow light generation has

been caried out in chalcogenide glass, bismuth oxide glass, tellurite glass fibers and

PCFs [5, 7, 8]. Nonstandard fibers, made of nonlinear glass materials, could support

the SBS interaction that is 2−3 orders of magnitude stronger than that obtained in

standard silica fibers. For example, J. Misas et al. [7] substantially slowed down

pulses over a distance of just 2 meters using a pump power level of 400mW in a BiO2

nonlinear fiber. However, the loss in this type of glasses is really high within the

optical communication window. Thanks to small effective mode areas in photonic

crystal fibers (PCFs), we could also achieve an enhanced SBS interaction there. The

highly nonlinear PCFs (HNPCFs) made with silica have nonlinear coefficients less
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than 60.5 W−1 km−1, while nonlinear coefficients of the conventional SMFs are only

around 1.3W−1 km−1 [9]. For example, using a 50m long PCF, Yang et al. [10]

demonstrated a delay of a half a pulse length. One way to enhance both nonlinear

and Brillouin gain coefficients of a fiber is to infiltrate PCFs with highly nonlinear

liquids. The technique to fill in the hole of a hollow-core PCF with a liquid has already

been developed and utilized experimentally [11-13]. In recent years, researchers have

worked on designing liquid-filled optical fibers filled by highly nonlinear liquids such as

carbon disulfide (CS2) and nitrobenzene. Previous studies on liquid filled PCFs have

shown that extremely high values of nonlinear coefficients of the order of 2000−4000

W−1.km−1 can be achieved [12-14]. Poletti et al. [15] proposed theoretically a highly

nolinear CS2-filled PCF with the nonlinear coefficint of 6548 W−1.km−1 at 1550nm.

However, their proposed PCF structure has a relatively large filling fraction, which

makes the PCF fabrication process rather difficult. Combining small effective areas in

PCFs and large Brillouin gain coefficients of nonlinear liquids can result in minimizing

power and length requirements for a given delay and, at the same time, increase the

delay time. In this work, we will present a comprehensive study of liquid-filled PCFs

with different materials and different structural parameters. We then demonstrate

how the novel fiber design becomes highly advantageous for slow light generation

using SBS.

7.3 PCF design

We will now present our liquid-filled hollow-core PCF design and optimize its param-

eters for slow light generation. The liquids that we use in our simulations are CS2,

nitrobenzene, toluene, benzene, chloroform and methanol, and the corresponding lin-

ear refractive indices at 1550 nm are 1.59, 1.524, 1.477, 1.476, 1.433,1.317 respectively.

PCFs are a class of optical fibers, usually designed and fabricated with a solid pure

silica core, surrounded by periodic air holes which serve as a cladding [16]. The air

holes makeup in the cladding region of the PCF leads to tailored optical properties

such as nearly zero flattened dispersion and low confinement loss; further, one can

adjust the PCF core area to control the fiber nonlinearity [16, 17]. For example,

by increasing the number of air holes in the cladding region, we can decrease the
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confinement loss of the fiber dramatically. Although we use only six liquids for our

investigations, our studies can be extended to other liquids as well. The cladding

material of our proposed PCF is silica with the linear refractive index of n=1.446

at 1550nm. Our proposed PCF has a hexagonal lattice with five rings of air holes

surrounding a liquid-filled core in the center of the fiber. Thus, the design parameters

of the liquid-filled PCF are the hole diameter d, hole pitch Λ, and core diameter D.

The cross section of the proposed liquid-filled PCF is shown in Fig. 7.1. Our analysis

Figure 7.1: Cross section of the liquid-filled PCF with hole dimension (d), hole pitch
(Λ) and core diameter (D).

is restricted to mode confinement through multiple total internal reflections. We do

not consider the bandgap guiding mechanism in hollow-core PCFs because it would

greatly restrict benefits of the high nonlinear index of the liquid. Using a finite differ-

ence time domain analysis [17-18] applied with OptiFDTD commercial software [19],

we theoretically study the effective mode area, nonlinear coefficient and confinement

loss properties of the liquid-filled PCFs. One of the most important characteristics of

a highly nonlinear fiber is its nonlinear coefficient which contains information about

both mode confinement (effective mode area) and the nonlinear refractive index of

the medium. The nonlinear coefficient γ is defined as [17, 20]

γ =
2πn2

λAeff

, (7.1)
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where n2 is a nonlinear refractive index and Aeff is an effective area of the fundamental

fiber mode, defined as [17, 20]

Aeff =

∫ ∫
(|E|2dA)2∫ ∫
(|E|4dA) . (7.2)

Due to the high refractive index contrast between silica and air, the PCFs offer a

much tighter mode confinement over a wide range of wavelengths and thereby a

lower effective mode area than do conventional optical fibers. In our case, this index

contrast is very high, especially in the case of CS2 and nitrobenzene, due to a large

liquid core refractive index. First, the dependences of the nonlinear coefficient on

the core filling liquids are simulated and shown in Fig. 7.2, with the fixed hole

pitch Λ=1.5μm, d/Λ=0.66 and D/Λ=0.53 while changing the operation wavelength

from 1μm to 1.8μm in steps of 0.2μm. As we can see in Fig. 7.2, the CS2 has the

highest γ due to its huge nonlinear refractive index (n2=320×10−20 m2/W at 1550nm)

and a rather tight mode confinement which results in the ultra small effective mode

area (Aeff=1.8μm2 at 1550nm). These exceptional values lead to the magnitude of

γ between 7300 and 8000 over the S-, C- and L-bands (1460nm to 1625nm). We

note that n2 decreases and Aeff increases with the wavelength for nonlinear liquids.

Therefore, we expect γ to decrease with the wavelength according to Eq. (1). As

we can see in Fig. 7.2, γ decreases gradually with the wavelength and agrees well

with the theoretical prediction. We also notice that the rate of decrease of γ with the

wavelength is faster for CS2 and nitrobenzene than for the other liquids we examine.

The second critical parameter of a highly nonlinear fiber is its energy loss. We examine

different kinds of filling liquids in the PCF and compare the amount of confinement

loss for fixed structural parameters. Confinement loss of a liquid-filled PCF with

fixed hole pitch Λ=1.5μm, d/Λ = 0.66 and D/Λ=0.53 at the operation wavelength

of 1550nm for different core filling liquids is simulated and displayed in Fig. 7.3.

As we can see in the figure, confinement loss strongly depends on the filling liquid

type. The amount of confinement loss in the proposed fiber design for CS2 and

nitrobenzene is really low (in order of 10−3 dB/km), and for liquids like toluene and

benzene is low (in order of 10−2 dB/km). Losses will increase dramatically (larger than
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Figure 7.2: Nonlinear coefficient of the liquid-filled PCF with Λ=1.5μm, d/Λ=0.66
and D/Λ=0.53 and different core filling liquids as a function of wavelength.

5 dB/km) for low index liquids such as methanol, ethanol and water. Due to nearly-

zero confinement loss of CS2-filled PCF, however, the total fiber loss will be likely

dominated by absorption and scattering losses in the liquid. Fortunately, the CS2

transmission spectrum is almost absorption peak free in the spectral range extending

from the visible to the midinfrared [15]. Therefore, we can expect an overall loss

lower than 0.3dB/m for our CS2-filled fiber [15]. The proposed fiber with ultra-high

nonlinearity and relatively low loss, can have other applications in nonlinear devices.

We can use the proposed fiber as a nonlinear medium for wavelength conversion

based on four-wave mixing, frequency comb generation, supercontinuum generation

and other nonlinear processes.

7.4 Slow light generation

The SBS process can be described as an interaction of a strong pump and counter-

propagating weak probe waves. An acoustic wave will be generated if the frequency-

matching condition is satisfied, ΩB = Ωp - Ωs, where ΩB is the Brillouin frequency,
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Figure 7.3: Confinement loss of the liquid-filled PCF with Λ=1.5μm, d/Λ = 0.66 and
D/Λ=0.53 as a function of core filling liquid.

Ωp is a pump frequency and Ωs is a probe frequency. The Brillouin gain bandwidth is

usually very small in optical fibers; for example, it is about 30 MHz in conventional

optical fibers. Thus, we can view SBS as a narrowband amplification process. In this

process, a strong pump wave produces a narrowband gain in a spectral region around

Ωp − ΩB and a loss around Ωp + ΩB [5, 8]. The group index of a pulse is defined as

ng = n+ω dn
dω
. The group index change can serve as a control parameter to realize an

optical time delay [5]. These changes in the group index can be used as a controllable

optical time delay. The linear Brillouin gain along a fiber can be expressed as [6]

G =
g0LeffPpump

Aeff

, (7.3)

where Leff is an effective fiber length, Leff = 1− eαL/α, where L is the physical

length of the fiber,α is the loss coefficient of the fiber and Ppump is the pump power.

The center-line gain coefficient g0 depends only on the fiber core material [21]. In our

calculations, we take g0=1.5m/GW, an estimate for CS2 known from the literature

[21]. Using realistic physical dimensions and an optimized design for the proposed

CS2-filled PCF with d/Λ=0.75, D/Λ=0.58 and Λ=1.2μm, we exhibit the Brillouin
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gain of the proposed fiber for different pump powers and fiber lengths in Fig. 7.4.

As we can see in the figure, G strongly depends on the fiber length and pump power.

Figure 7.4: Amount of Brillouin gain as a function of the pump power in the CS2-filled
PCF for different fiber lengths.

Thanks to the small effective area and high g0 of CS2, we can achieve a relatively high

exponential gain (around G=20) at a very low power level in a quite short fiber. We

note that the gain parameter G is limited by the exponential gain threshold of the fiber

Gth due to spontaneous Brillouin scattering. For G = Gth, photons spontaneously

scattered from thermal phonons are exponentially amplified which leads to the Stokes

field generation at the output that saturates the pump field [22]. For bulk media it

has been shown that Gth is approximately constant [23]. For CS2 bulk material,

Gth is measured to be 22.8 at 1060nm [23]. In optical fibers, Gth depends on the

experimental parameters such as input pulse, material, length and numerical aperture

(NA) of the fiber [6, 23]. However, it can be shown that in a very short fiber with

a moderate numerical aperture, Gth tends to its value in the bulk material[23]. In

our case, we utilize a very short fiber (only 1 meter long) with NA=0.5, thus we can

expect Gth to be around 20-28, depending on the experimental parameters. Moreover,

Gth is generally taken to be equal to 21 in optical fibers [23, 24]. Therefore, we may
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Table 7.1: Simulation parameters and optical properties of the proposed PCF at
λ = 1.55μm.

Aeff (μm2) γ (W−1km−1) α(dB/m) g0(m/W) L(m) Ppump (mW)

1.8 7300 0.3 1.5 × 10 −9 1 25

estimate the pump power threshold as [24]

Pth =
GthKBAeff

gBLeff

, (7.4)

where KB is a constant depending on the polarization property of the fiber which is

equal to 1 if the fiber is polarization maintaining and 1.5 otherwise [24]. Considering

Gth=21 and L = 1m, we obtain Pth=25.2 mW for the proposed fiber. Table 1 shows

all of the simulation parameters and optical characteristics of the proposed PCF for

slow light generation via SBS.

In order to compare optical fibers as SBS slow light media, it is necessary to define

a proper figure of merit for evaluation. According to the previous experimental and

theoretical analyses of the SBS process, the slope of the time delay versus Brillouin

gain only depends on the inverse of the gain bandwidth [5]. However, this bandwidth

can be arbitrarily extended in the broadband scheme by pump dithering [5]. Thus, the

gain coefficient and effective area are the only parameters that will scale the efficiency

in the time delay generation. Response speed and the stability are other significant

parameters [5]. These parameters are inversely proportional to the refractive index

of the fiber. Therefore, we can define the Brillouin figure of merit (FOM), following

the FOM in the [5] as

FOM =
G

PpumpLeffn
=

g0
nAeff

. (7.5)

As our analysis is restricted to very short fibers, we can neglect fiber birefringence

and the effect of random polarization change along the fiber. Using realistic physical

parameters and optimized design for the proposed CS2-filled PCF with d/Λ=0.75,

D/Λ=0.58 and Λ=1.2μm, and considering L = 1m, we can obtain total loss lower

than 0.3dB/m, Aeff=1.8 μm2, Pth=25.2mW and B-FOM=0.528dB/mW/m. For

a sufficiently weak Stokes field which is the case for most of the SBS slow light
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Table 7.2: Optical properties of different fibers near λ = 1.55μm for SBS slow-light
generation.

Property SMF-28 Silica fiber Tellurite fiber [8] As2S3 fiber [5] CS2-filled PCF

g0(m/W) 5 × 10 −11 2.16 × 10 −10 6.08 × 10−9 1.5 × 10 −9

α(dB/m) 0.2 × 10 −3 0.51 0.84 ∼0.3

n 1.44 2.3 2.8 1.59

Aeff (μm2) 50 9.2 ∼30 1.8

FOM 0.0007 0.011 0.079 0.528

experiments, a continuous-wave (cw) pump is undepleted. Using the undepleted CW

pump approximation and following the procedure of [22], we can obtain the expression

for the group index of a probe pulse as

ng(ω) = nfg +

(
cg0Ppump

ΓBAeff

)
1− 4δω2/Γ2

B

(1 + 4δω2/Γ2
B)

2 , (7.6)

where ΓB/2π is a FWHM bandwidth of Brillouin gain, nfg is the group index of the

fiber mode and δω is the frequency detuning between the Stokes pulse (Ωs) and the line

center of the SBS gain bandwidth (Ωp − ΩB). The SBS-induced group index change

(ng − nfg) depends on the fiber type and the pump power. Assuming 1 mW pump

power, the group-index change in the proposed CS2-filled fiber is 1.9 while it is equal to

3.4×10−4 in the standard SMF-28-e fiber. In order to achieve the maximum delay, the

frequency difference between the pump and Stokes waves is set to the Brillouin shift of

the fiber (δω = 0). For CS2, ΓB/2π = 52.3MHz at 694nm and it is proportional to ω2

[21]. Thus, we can estimate ΓB/2π = 21MHz at 1550nm. Assuming Ppump=25mW,

we obtain a group index of 49.3 which approximately corresponds to the group veloctiy

of c/50. Comparing this with the group velocity of c/10 in BiO2 fiber, which is

reported in [8], we can achieve 5 times greater delay in the proposed PCF at a lower

pump power and shorter length of the fiber. As we can see from Table 2, FOM in

the proposed fiber has improved significantly as compared with the standard silica

fibers or non-standard nonlinear glasses. The FOM of the proposed fiber is about 750

times greater than that of the conventional silica fibers and about 7 times larger than
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that in the As2S3 fiber considered in [5]. The main reasons for these improvements

are high SBS gain coefficient of CS2, low effective area and relatively low loss of our

proposed fiber. Our results also suggest that the proposed fiber reduces the power to

fiber length (Ppump × L) requirement for a given gain (delay) by nearly three orders

of magnitude (830 times) relative to standard single mode fibers. Note that in our

case, the pump power is only 25 mW and length of the fiber is only 1 m.

7.5 Conclusion

In this paper, slow light generation using stimulated Brillouin scattering (SBS) in

a short highly nonlinear liquid-filled photonic crystal fiber (PCF) has been investi-

gated. We studied optical properties of hollow-core PCFs, filled with highly nonlinear

liquids such as nitrobenzene and carbon-disulfide. We proposed a design of carbon-

disulfide-filled fiber with an effective area of 1.8μm2, nonlinear coefficient larger than

7300 W−1.Km−1, confinement loss of 0.007 dB/km and total loss lower than 0.3 dB/m

over the C-band. Relative to standard single mode fibers, the proposed fiber reduces

power× fiber length requirement for a given gain (delay) by nearly three orders of

magnitude (830 times). Furthermore, using just a one-meter long fiber, we demon-

strate that pulses can be slowed down to c/50 with a required power level of only

25mW. We show that our PCF is about 7 times more efficient than the previously

reported fiber designs.
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Chapter 8

Design of a dispersion-flattened highly nonlinear

carbon-disulfide-filled photonic crystal fiber for broadband

wavelength conversion based on four-wave mixing

Yashar E. Monfared and Sergey A. Ponomarenko

Part of this chapter is submitted to Optik - International Journal for Light and

Electron Optics

8.1 Abstract

We present a theoretical study of widely tunable wavelength conversion based on

four-wave mixing using a carbon-disulfide-filled photonic crystal fiber (CS2-PCF).

Considering the fabrication challenges and using realistic hole dimensions, we design

a CS2-PCF with nonlinear coefficient of 7740 W−1km−1, total loss lower than 0.3

dB/m, SBS threshold of more than 28 mW, nearly-zero dispersion of 0.00007 ps/(nm

km) and a dispersion slope of 0.0000018 near 1550 nm. We further investigate the

tolerance of the design to fabrication imperfections. A two-meter long CS2-PCF is

used as a nonlinear medium for an all-optical wavelength conversion. A 3-dB tunable

wavelength conversion bandwidth is 108 nm and the conversion efficiency is about

−10.6 dB when the pump power is only 14 dBm.

8.2 Introduction

Wavelength conversion is a promising candidate for providing wavelength flexibility

in the high-capacity optical telecommunication systems [1]. Wavelength converters
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perform functions such as wavelength routing and switching in the wavelength division

multiplexing (WDM) systems [2]. Among all of the methods for all-optical wavelength

conversion, four-wave mixing (FWM) is one of the most reliable techniques due to

the ultra fast nonlinear medium response and high transparency to bit rate and

modulation format [3]. In conventional setups, a strong pump wave is combined with

an incoming signal wave and the combined wave is launched into a several kilometer

long fiber, such that a desirable converted wave is generated by the FWM process

[2-4].

In order to have tunability over a broad wavelength range, maintaining phase match-

ing between the signal and pump is the main concern [5]. Due to group velocity

dispersion (GVD), it is difficult to maintain phase matching in a long fiber, especially

in a fiber with large GVD [2-5]. It should be mentioned that not only the amount of

GVD, but also the slope of GVD curve is important for phase matching over a range

of wavelengths [6]. For example, Inoue et al. reported a wavelength converter with

only 7.6 nm bandwidth and conversion efficiency of -24 dB using a 10km-long conven-

tional dispersion-shifted optical fiber with the dispersion slope of 0.07 ps/(nm2km)

[6]. The phase mismatch problem can even exists in a one-meter-long fiber with

moderate dispersion [3]. One solution is to use highly nonlinear fibers as the nonlin-

ear medium with nearly-zero flattened dispersion characteristics. In photonic crystal

fibers (PCFs) [7], FWM can occur for low pump powers and over short propaga-

tion distances due to tight mode confinement and, as a consequence, high nonlinear

coefficient of PCFs. Moreover, using a small dispersion slope in PCFs, wavelength

conversion can be attained in a wide frequency range. Recently, PCFs with low effec-

tive area (in the order of 2μm2), high nonlinear coefficient (60.5-72 W−1km−1) and

low dispersion (in the order of 0.3-0.7 ps/(nm km) ) have been reported [5, 8].

Although these PCFs show promise for FWM applications, the amount of dispersion

slope (0.002 ps/[nm2km]) can still lead to phase mismatch. Using dispersion engineer-

ing techniques, we can further decrease dispersion slope and achieve an ultra-flattened

dispersion in PCFs [9-16]. There is further room for increasing the nonlinear coef-

ficient using non-silica fibers. Using bismuth-oxide PCF (Bi-PCF), Chow et al. [3]
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obtained the nonlinear coefficient of 580 W−1km−1 at 1550 nm wavelength. The mag-

nitude of nonlinear coefficient is about 100 times greater than that in silica fibers and

10 times greater than that in highly nonlinear silica-based PCFs. Chow et al. [3]

obtained a 3-dB conversion bandwidth of 35nm with the conversion efficiency near

-20dB using only a 1.09m dispersion-shifted Bi-PCF. By filling a core of a hollow

core PCF with a highly nonlinear liquid, we can increase nonlinear coefficients and

still benefit from tight mode confinement of PCFs. The technique to fill the hole of a

hollow-core PCF with a liquid has already been taken into practice [17, 18]. Previous

studies on liquid filled PCFs have shown that extremely high nonlinear coefficient

magnitudes of the order of 2000−4000 W−1km−1 can be achieved [17-19]. Poletti et

al. [19] attempted to flatten the liquid-filled PCFs dispersive properties. They ob-

tained an optimized carbon-disulfide-filled PCF (CS2-PCF) with γ=6548 W−1km−1

and dispersion of 0.6 ps/(nm km) at 1550nm wavelength. However, the PCF struc-

ture proposed in [19] has a relatively large filling fraction which makes the fabrication

process of the PCF difficult.

In our previous work on liquid-filled hollow-core PCFs [20], we demonstrated the

possibility of design of a liquid-filled PCF with huge nonlinearity, moderate loss and

high stimulated Brillouin scatterig (SBS) threshold. In this paper, we first design a

highly nonlinear CS2-PCF and show how the desired flat dispersion characteristics

can be engineered. We then use the optimized PCF structure to design a wavelength

converter based on FWM and obtain conversion efficiency and bandwidth.

8.3 Fiber design

PCFs are usually designed and fabricated with a solid pure silica core, surrounded

by periodic air holes that serve as a cladding [7, 21]. The air holes make-up in the

cladding region of the PCF leads to tailored optical properties, such as flattened

dispersion and low confinement loss. Furthermore, one can adjust the PCF core area

to control the fiber nonlinearity [21]. First, we use silica with the linear refractive

index of n=1.446 at 1550nm as the cladding material for our proposed CS2-PCF.

Our proposed PCF has a hexagonal lattice with five rings of air holes, surrounding
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a CS2-filled-core in the center of the fiber. Therefore, the design parameters of the

CS2-PCF are the hole diameter d, hole pitch Λ, and core diameter D. The cross

section of the proposed CS2-PCF is shown in Fig. 8.1.

Figure 8.1: Cross section of the CS2-PCF with holes dimension (d), holes pitch (Λ)
and core diameter (D).

Our analysis is restricted to mode confinement through multiple total internal re-

flections (MTIR). Using a finite difference time domain (FDTD) analysis [21-23],

we theoretically study the effective mode area, nonlinear coefficient and dispersion

properties of the CS2-PCFs. One of the most important characteristics of a highly

nonlinear fiber is its nonlinear coefficient. The nonlinear coefficient γ is defined as

[21-23]

γ =
2πn2

λAeff

, (8.1)

where n2 is a nonlinear refractive index and Aeff is an effective area of the fundamental

fiber mode, defined as [21-23]

Aeff =

∫ ∫
(|E|2dA)2∫ ∫
(|E|4dA) . (8.2)

Like any other broadening processes, FWM relies on the optical nonlinearities which
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act on the femtosecond and picosecond scales. The fastest of such nonlinearities is

a regular electronic Kerr-type nonlinearity. For certain materials, especially highly

nonlinear liquids, reorientational nonlinearity comes into play [24-26]. The mecha-

nism for this type of nonlinearity is a reorientation of the liquid molecules each of

which having a significant dipole moment caused by an applied external electric field

[24, 25]. Therefore this nonlinearity can be described as slow, since the modification

of the refractive index depends not only on the intensity at the given moment but

also on its past history [24, 25].

CS2 exhibits a strong non-instantaneous third-order response, arising from motions

of the molecules. In fact, the nonlinear optical response of CS2 varies by more than

1 order of magnitude in pulsed experiments. Previous studies show that n2 of CS2

will dramatically increases as the pulse duration increases from 110 fs to 75 ns dra-

matically (from 3 ×10−15cm2/W to 4×10−14cm2/W ) [24]. However, the effect of

the reorientational nonlinearity remains small for short pulses (below 50 fs) since the

response does not have sufficient time to accumulate [24, 25]. On the other hand,

due to a high refractive index contrast between silica and air, the PCFs offer a much

tighter mode confinement and thereby a lower effective mode area than do conven-

tional optical fibers.

In our case, this index contrast is even higher due to a large refractive index of CS2

(nCS2=1.59). The dependence of the nonlinear coefficient on the core diameter D is

shown on in Fig. 8.2 for d/Λ=0.7 and Λ=1.2μm, as the core filling fraction D/Λ varies

from 0.4 to 0.8 in steps of 0.2. It is obvious that by decreasing the core diameter,

the nonlinear coefficient increases dramatically due to tight mode confinement in a

reduced size core. Also, the value of nonlinear coefficient decreases gradually with

the wavelength. The amount of confinement loss in the proposed fiber design for CS2

is really low (in order of 10−3 dB/km). However, the total fiber loss will be likely

dominated by absorption and scattering losses in the liquid. Fortunately, CS2 boasts

a nearly absorption free transmission spectrum in the spectral range extending from

the visible to the midinfrared [19]. Therefore, we can expect overall loss lower than
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Figure 8.2: Nonlinear coefficient of the CS2-PCF with d/Λ=0.7 and Λ=1.2μm and
different core diameters as a function of wavelength.

0.3 dB/m for our CS2-filled fiber [19, 20].

Fiber dispersion is another important parameter. The total dispersion is calculated

as the sum of waveguide and material dispersion. In our calculations, the mate-

rial dispersion, quantitatively described by Sellmeyer’s formula, has been taken into

account. Due to large material dispersion of CS2, we should compensate material

dispersion using waveguide dispersion of the PCF. The waveguide dispersion in PCFs

can be easily controlled by varying the air hole diameter, shape, number and pitch.

In our CS2-PCF, we can control dispersion not only by adjusting the hole dimensions

in the cladding, but also by adjusting core dimensions or changing the background

material. In order to achieve large waveguide dispersion –with the opposite sign to

material dispersion– we need to increase either the core size or air hole dimensions.

There is a threshold for a filling fraction in the PCF design. Specifically, the fab-

rication of large filling fraction PCFs (d/Λ larger than 0.8) is known to be quite

challenging because of potential fiber core or air hole deformations. If the d/Λ value

is larger than 0.9 (filling fraction being larger than 90%), the fabrication of the PCF

is almost impossible with the current fabrication technology. Thus, we should keep

our d/Λ and D/Λ sufficiently small (no larger than 0.8). The GVD parameter of a

fiber is usually calculated in terms of the dispersion parameter Di, defined as [5, 13]

Di = −λ

c

d2neff

dλ2
. (8.3)
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The dispersion parameter Di and GVD parameter β2 are related to each other as [13]

Di = −2πc

λ2
β2. (8.4)

In Fig. 8.3, we show dispersion as a function of the hole diameter d for different

operation wavelengths, ranging from 1.4μm to 1.6μm in steps of 0.05μm. It can be

Figure 8.3: Dispersion of the liquid-filled PCF with fixed hole pitch Λ=1.2μm and
D/Λ=0.8 as a function of the wavelength.

seen from Fig. 8.3 that the proposed PCF has a negative dispersion slope in the

wavelength range around 1.55μm. Upon increasing the filling fraction from 0.75 to

0.83, the amount of dispersion increases and a zero dispersion wavelength (ZDW) of

the fiber will shift slightly to the right. Next, fixing d/Λ=0.7 and Λ=1.2μm, while

varying the core filling fraction D/Λ, we further analyze the dependence of dispersion

on the wavelength. It is manifest in Fig. 8.4 that three dispersion curves have

nearly the same shape in a spectral region around 1.55μm. In this neighbourhood,

dispersion increases with D, as we vary D/Λ from 0.76 to 0.81. Moreover, dispersion

decreases gradually with the wavelength over the telecommunication band. Thus, the

core diameter adjustment can affect dispersion (mostly its magnitude) while the hole

diameter controls both the dispersion magnitude and dispersion curve shape. We

infer that liquid-filled PCF dispersion strongly depends on the core as well as hole

diameters. We can find an optimized value for the near zero flattened dispersion curve

but the problem is the magnitudes of d/Λ and D/Λ are relatively large (filling fraction

is near 80%) which makes the fabrication process rather formidable. The proposed
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Figure 8.4: Dispersion of the liquid-filled PCF with d/Λ=0.7 and Λ=1.2μm as a
function of wavelength.

CS2-filled PCF of Poletti et al. [19] has a relatively large filling fraction as well

(d/Λ=0.75 in one case and D/Λ=0.9 in the other case). To overcome the fabrication

challenge, we propose to replace the background material with an optical soft glass.

We inspected a range of commercial borosilicate glasses from Schott Company for this

purpose [27]. We use BK10, BK7 and BAK2 which have the following linear refractive

indices at 1550 nm: 1.482, 1.500 and 1.523 respectively [27]. We display the CS2-

filled soft-glass PCF dispersion analysis in the Fig. 8.5. Using BK10 soft glass we

can achieve a nearly-zero ultra-flattened dispersion (ultra small dispersion slope or

S0) near 1550 nm wavelength. By optimized design of PCF with d/Λ=0.7, D/Λ=0.58

and Λ=1.2μm, we obtain ultra-flattened dispersion with a variation between ± 0.005

ps/(nm.km) over a 60 nm wavelengths range (1530-1590 nm). This dispersion is also

easily adjustable by adjusting hole dimensions. We obtain γ=7740 , Di=7×10−5

ps/(nm km) and S0 = ∂Di/∂λ=1.8×10−6 ps/(nm2km) at 1550 nm. The proposed

PCF with a high nonlinearity and low dispersion at 1550 nm will result in a wideband

wavelength conversion. The conversion efficiency of FWM depends on the nonlinear

coefficient, dispersion slope, loss and a fiber length. Table 1 summarizes the optical

parameters of the proposed CS2-PCF, Bi-PCF in [3] and common highly nonlinear

silica fibers. We further study the tolerance of the design to variations in geometry

due to fabrication imperfections. To this end, we investigate the change in dispersion

curve as a function of wavelength when fiber filling fraction (d/Λ) is varied from 0.68

to 0.74 (which is a possible range of variation due to fabrication imperfections in
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Table 8.1: Optical properties of different fibers near λ = 1.55μm for Wavelength
conversion based on FWM.

Property common HNLF Bi-PCF[3] CS2-PCF

Di[ps/(nm km)] 1.7 -9.9 0.00007

α(dB/m) 0.2 × 10 −3 1.9 ∼0.3

n 1.44 2.02 1.59

Aeff (μm2) 11 3.71 1.8

γ (W−1km−1) 15.5 580 7740

Figure 8.5: Dispersion of the liquid-filled hollow-core PCF with d/Λ=0.7, D/Λ=0.6
and Λ=1.2μm and different background materials as a function of wavelength.

fabrication process of PCFs). It can be seen from Fig. 8.6 that the small changes

due to fabrication imperfections does not have a significant effect on the dispersion

characteristics of the proposed PCF near 1.55 μm. It can be inferred from Fig.

8.6 that the proposed PCF has a good tolerance to variation in geometry due to

fabrication imperfections. The reduction of stimulated Brillouin scattering (SBS)

effects is one of the main concerns in wavelength conversion systems. To this end,

we propose to increase the SBS pump power threshold in our fiber to suppress SBS-

induced pump power loss. To do this, we first need to estimate the exponential

gain threshold (Gth) of the fiber. For bulk media it has been shown that Gth is

approximately constant [28]. For CS2 bulk material, Gth is measured to be 22.8 at

1060nm [28]. In optical fibers, Gth depends on the experimental parameters such
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Figure 8.6: Dispersion of the liquid-filled hollow-core PCF with D/Λ=0.6 and
Λ=1.2μm and different d/Λ, as a function of wavelength.

as input pulse, material, length and numerical aperture (NA) of the fiber [28, 29].

However, it can be shown that in a very short fiber with a moderate numerical

aperture, Gth tends to its value in the bulk material [28]. In our case, we utilize a

very short fiber with NA=0.5, thus we can expect Gth to be around 20-28, depending

on the experimental parameters. Moreover, Gth is generally taken to be equal to 21

in optical fibers [28, 29]. Therefore, we may estimate the pump power threshold as

[29]

Pth =
GthKBAeff

gBLeff

, (8.5)

where KB is a constant depending on the polarization property of the fiber which is

equal to 1 if the fiber is polarization maintaining and 1.5 otherwise [29] and Leff is

an effective fiber length, Leff = 1− eαL/α. Considering Gth=21 and gB=1.5 m/GW,

we obtain Pth=27 mW for the proposed fiber.

8.4 Wavelength conversion

An ideal wavelength converter should be tunable over a broad wavelength range, have

a high conversion efficientcy and the linewidth of the converted wave should be narrow

[2, 3]. The conversion tunability of a wavelength converter is limited by the finite
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phase mismatch Δk = β2Ω
2 caused by the fiber GVD, where β2 is the GVD parameter

at the pump wavelength and Ω is the optical frequency shift between signal and pump

waves [3]. The conversion range is limited by the Ω and dispersion slope of fiber S0 [2].

Therefore, a smaller S0 will result in a wider frequency range at which we can obtain

efficient wavelength conversion [2]. The dispersion slope of the proposed CS2-PCF is

about 0.0000018 ps/(nm2km). This dispersion slope is much smaller than that of the

conventional dispersion shifted fiber, which is about 0.07 ps/(nm2km). When β2 is

small, we must take into account the fourth-order term in the expansion of Δk since

the odd terms (such as β3) exactly cancel out due to opposite detuning [29]. Thus

the finite phase mismatch parameter becomes Δk = β2Ω
2 + (β4/12)Ω

4, where β4 is

the fourth order dispersion defined as β4 = d4β/dω4 [29]. The conversion efficiency

can be expressed as [3]:

η (L) =

[
γPavL

sin(ΔkL/2)

ΔkL/2

]2
, (8.6)

where Pav is the path average pump power

Pav =
P [1− exp(−αL)]

αL
. (8.7)

Here α is the linear fiber loss rate and P is the input pump power. When the signal

and pump wavelengths are close enough (near zero-dispersion wavelength) we can

neglect the effect of phase mismatch and the peak conversion efficiency follow from

Eq. (8.6):

η (L) = (γPavL)
2 . (8.8)

It follows from Eq. (8.8) that the peak conversion efficiency is calculated as -10.6 dB,

which is consistent with our simulation results. The peak conversion efficiency in Ref

[3] is -20.9 dB. In Ref [2], a -16 dB peak conversion efficiency is obtained when the

pump power is as high as 22.5 dBm and the fiber length there was 20 m. Note that

in our case, the pump power is only 14 dBm,the input signal power is 0 dBm and the

fiber length is only 2 m. In our simulations, the signal wavelength is varied near the

zero-dispersion wavelength in order to obtain a tunable converted wavelength while

the pump wavelength is fixed. We can determine the conversion efficiency over a
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given spectral range from Eq. (6). The conversion efficiency spectrum obtained from

analytical calculations and also from simulation results using Optisystem commer-

cial software [30] are shown in Fig. 8.7. Note that in our simulations we take the

higher order dispersions into account. The wavelength of the converted signal can

be varied from 1510 to 1618 nm by adjusting the signal wavelength accordingly. The

conversion efficiency drops by 3 dB from its maximum value within 108 nm and thus,

the 3 dB tunable bandwidth corresponds to about 108 nm. The usual bandwidth

of HNLFs is about 8 nm [6]. The 3-dB bandwidth of the Bi-PCF in Ref [3] is 35

nm due to their dispersion engineered fiber design. In Ref [2], the authors used an

ultra-flattened dispersion fiber with S0=0.0004 ps/(nm2km) which is larger than our

design with S0=0.0000018. Therefore, the 3-dB bandwidth of their fiber is about 100

nm [2] which is smaller than ours (108 nm). In the conventional optical fibers, the

pump frequency spectrum is required to be broadened to increase the threshold of

SBS. This broadening of pump source will result in broadened signals at the output

which degrade the overall system performance. In our case, the SBS threshold of

the proposed fiber is 27mW. Therefore, no stimulated Brillouin backscattering ex-

ists when the pump power is as high as 14 dBm (25mW). Thus, we have no need

to use broadened pump sources or any other SBS suppression scheme. Emphasizing

Figure 8.7: Conversion efficiency versus converted signal wavelength.

the potential of the proposed fiber design, it should also be noted that the ability to

control the dispersion properties of the fibers makes it possible to design new fibers
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with other phase matching properties. The freedom to move the ZDWs can be used

to make the zones of high tunability coincide with available pump sources. Due to

the fast response time of the fiber Kerr nonlinearity, it should be possible to use this

wavelength converter at high speeds (bit rates) using ultra short pulses (below 50

fs)and an appropriate choice of pump power.

8.5 Conclusion

We have theoretically demonstrated widely tunable wavelength conversion based on

four-wave mixing using a carbon-disulfide-filled photonic crystal fiber (CS-PCF). We

designed a CS2-PCF with a nonlinear coefficient of 7740 W−1km−1, nearly-zero dis-

persion of 0.00007 ps/(nm km) and a dispersion slope of 0.0000018 near 1550 nm. We

show that the proposed PCF has a good tolerance to fabrication imperfections near

1550 nm. A 2-meter-long CS2-PCF is used as the nonlinear medium for all-optical

wavelength conversion with feasibility of high bit rates. A 3-dB tunable wavelength

conversion bandwidth is about 108 nm and the conversion efficiency is about −10.6

dB when the pump power is only 14 dBm.
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Chapter 9

Discussion

9.1 Conclusions

In this thesis, our aim was to focus on the optical rogue wave (ORW) formation and

nonlinear effects inside hollow-core photonic crystal fibers (HCPCFs). In the first

several chapters, the effects of input pulse parameters such as coherence time, noise

model and power on the dynamics of ORW were studied based on optical coherence

theory. Moreover, analytical and numerical propagation methods were applied to

explore evolutions of stochastic pulses in the vicinity of optical resonance in stimulated

Raman scattering (SRS) inside a gas-filled PCF. In the subsequent chapters, we

studied different design parameters of liquid-filled PCFs and showed the possibility of

designing a highly nonlinear PCF for different nonlinear applications. Our studies on

ORW and nonlinear effects are divided into five distinct phases. A general description

of each project and its main results are given in the following.

Project 1: ORW formation in SRS in the case of noisy Stokes pulses inside HCPCF.

In this project, we have studied the role of coherence time and source noise in the

formation of a long-tailed probability density function (PDF) as a signature of ORW.

ORW formation in the noisy Stokes case is mainly affected by two factors: coherence

time and pump power. Our main objective of this phase was to show that when

the initial Stokes pulse is noisy and the pump pulse is fully coherent, the coherence

time of Stokes pulses has a major role in formation of non-Gaussian statistics in the

output. To study the impact of statistical properties of the source pulses on output

upon propagation, three types of partially coherent pulses with different levels of

coherence—fully coherent, partially coherent and nearly incoherent—were considered.

We showed that in the case of a nearly incoherent source, the PDF has a longer tail
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than in the partially coherent and fully coherent cases. PDF tail length dependence on

the source coherence time can be justified using the concept of statistical granularity.

If we have a nearly incoherent source, it means the number of uncorrelated modes or

statistical granules is enormous. Therefore, the generated Stokes pulse is very noisy.

The uncorrelated modes will compete for the energy supply from the pump. This will

lead to selective amplification which causes the formation of ORWs.

Project 2: The formation of ORWs in near-resonance SRS with noisy pump pulses.

In this project, we have explored the role of coherence memory and source noise in

the SRS process and also presented the differences between this case and noisy Stokes

case. Gaussian Schell Model (GSM) pulses were employed as a generic model to sim-

ulate stochastic pulses at the source. We have demonstrated the crucial role that

coherence memory plays in triggering heavy tailed statistics of the system in the sit-

uations when the input Stokes or pump pulses are noisy. However, the non-Gaussian

statistics emergence has fundamentally different physical origins in the two cases. In

our extensive simulations, we discovered that as the coherence memory increases, the

probability of having an extreme value in the output increases dramatically. We also

showed here that the non-Gaussian statistics and ORW excitation in SRS with noisy

pump can be attributed to noise transfer from the pump to initially coherent Stokes

pulses. We have developed the analytical theory of such noise transfer in the system

in the initial stage of SRS, well described within the undepleted pump approximation

(UPA). We also discussed the parameter regime in which the emergent extreme events

can be quantitatively described under UPA.

Project 3: The formation of ORWs in self-similar regime of SRS with different source

models.

In this project, we have demonstrated that RWs can be excited in a self-similar

asymptotic regime of integrable turbulence and they appear as giant fluctuations

away from the average (self-similar) evolution of the system. Although our results

are based on numerical simulations of SRS in the transient regime, the conclusions

are model independent; we can expect qualitatively similar findings in the TLA case.

Indeed, the TLA and SRS in the integrable regime can be shown to be governed by the
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same set of evolution equations with an appropriate choice of variables. Our results

hold irrespective of a specific source correlation model, suggesting the universality of

the proposed scenario.

Project 4: Liquid-filled PCFs and their nonlinear characteristics for slow light gener-

ation via stimulated Brillouin scattering (SBS).

In this project, slow light generation using stimulated Brillouin scattering (SBS) in a

short highly nonlinear liquid-filled photonic crystal fiber (PCF) has been investigated.

We designed a highly nonlinear carbon-disulfide-filled PCF with an effective area of

1.8 μm2, nonlinear coefficient of more than 7700 W−1km−1 and a total loss lower than

0.3 dB/m over the C−band. Using the proposed PCF, we showed the possibility of

slowing down group velocity of light to c/50 with a required power of only 25 mW via

the SBS process. Relative to standard single mode fibers, the proposed fiber reduces

a power × fiber length requirement for a given gain (delay) by nearly three orders of

magnitude (830 times). We show that our PCF is about 7 times more efficient than

the previously reported fiber designs.

Project 5: Possible dispersion engineering methods in a CS2-PCF and wavelength

conversion based on four-wave mixing (FWM).

In this project, we have analytically and numerically demonstrated widely tunable

wavelength conversion based on four-wave mixing using a carbon-disulfide-filled pho-

tonic crystal fiber (CS-PCF). We designed a CS2-PCF with a nonlinear coefficient

of 7740 W−1km−1, nearly-zero dispersion of 0.00007 ps/(nm km) and a dispersion

slope of 0.0000018 near 1550 nm. We have also showed that the proposed PCF has a

good tolerance to fabrication imperfections near 1550 nm. A 2-meter-long CS2-PCF

is used as the nonlinear medium for all-optical wavelength conversion with a feasibil-

ity of high bit rates. A 3-dB tunable wavelength conversion bandwidth is about 108

nm and the conversion efficiency is about −10.6 dB when the pump power is only 14

dBm.
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9.2 Future work

In this thesis, a comprehensive study of stochastic pulse propagation in SRS has been

carried out with the aid of analytical and numerical methods to show the possibil-

ity of formation of ORWs. Furthermore, we show the possibility of designing highly

nonlinear liquid-filled PCFs for different nonlinear applications, including slow light

generation and wavelength conversion. The experimental tests of the our theoretical

insights will be valuable as a future research step. Moreover, exploring alternative

pulse propagation models such as backward propagation in SRS and also RW for-

mation in TLA in the self-similar regime will be highly beneficial as future research

directions.
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Appendix A - Numerical Codes

Numerical codes for simulating propagation of noisy Stokes / noisy pump pulses in

SRS:

%====================================================

%Rogue waves formation in SRS inside a Gas -filled PCF

%===================================================

%Initializing

clear

clc

tic

NN =0:100; %-- number of modes

IssV =0;

IPpV =0;

%constants

hbar =6.626e-34; %Planck constant

reff =1.55e -041; % Raman transition matrix element

epsilon0 =8.854e-12;

C=3e+08; % speed of light in vaccum

np=1;

Aeff =30e-12; % Effective area of the PCF

Rs =354; %Raman shift of H2

wp1 =2*pi *299.7e+12; %Pump wavelength

ws1 =2*pi *2.6437e+14; %Stokes wavelength

Pen =100e-06; %Energy of the pump pulse

Wp=Pen;

k=1; %Hydrogen k

t0=10e-09; % pulse duration of pump and stokes
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tp=t0;

ts=t0;

Gammarelax =5e-09; % Relaxation time of H_2

Nh2 =1.82e+026; % Numbe density of H_2 molecule

Ps =100; % Stokes power = 100 W

Pp=Wp/tp

gammaPp =0.01* Pp;

Ws=0.1e-06; % Energy of Stokes pulse

Is00=Ps/Aeff;

%---------------------------------------------

%time setup

dt =0.0025; %--time step

T=( -20:dt:20) ';%(-5:dt:5) '; %-- dimensionless time vector

t=T;

nt=length(T)

%-----------------------------------------

%Space setup

z=10;

nz =500;

dz=z/nz; %--space step size

zz=0:dz:z; %-- dimensionless space vector

nplot =10; %-- number of plots in Z

n1=round(nz/nplot)

%--------------------------------------------



118

%Simulation parameters

L=1000; %--number of random realizations

zv=(0: nplot)*(z/nplot);

%-----------------------------------------

%--initializing variables

Ut=zeros(length(t),length(zv));

Vt=zeros(length(t),length(zv));

Wt=zeros(length(t),length(zv));

Wwt=zeros(length(t),length(zv));

Gt=zeros(length(t),length(t),length(zv));

Asn=zeros(length(t),length(NN));

% ------------------------------------------%

%Initial conditions

phi =((pi)*rand(L,length(NN))) -(pi/2); %-- random phase

generation

%phi =((2* pi*rand(L,length(NN)))-pi); %-- random phase

generation

%Is0av=Ps/(sqrt(pi)*Aeff); %<i_S0 >

%Is0=exprnd(Is0av); % i_S0

ns=np;

Lsrs =(2* epsilon0*C)/(Nh2*reff*(sqrt(wp1*ws1))); % L_SRS

%As0n=sqrt((np*Is0)/(ns*Ip0)); % Amplitude of Stokes

T0=(reff*Pen)/(2* epsilon0*C*np*Aeff*hbar*sqrt(pi)); %-- T0

Tc=10*T0;

Tp=T0;

Ts=T0;

%Ap0=(exp((-T.^2) /(2*(( T0).^2)))); % initial Pump pulse
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%As0avgs=zeros(size(Ap0));

%Isavgs=zeros(size(Ap0));

As0const0 =(np*Ps)/(ns*Pp)

As0const=sqrt(As0const0)

As0=( As0const .*( exp((-T.^2) /(2*(( Ts).^2)))));

AREAs00=abs(sum(As0)*dt)

%figure (1)

%plot (T, As0)

%hold on

%fp=sqrt ((1/( tp^2))+ (2/(tc^2)));

%fc=(tc*fp)/tp;

a=1/(2* Tp^2); %--modal weight coefficients

b=1/(2* Tc^2);

d=sqrt(a^2+2*a*b);

const2=gammaPp/Pp;

N=0:50;

H=hermx(t*(sqrt (2*d)),N);%--generating hermit function

for jn=1: length(NN)

n=NN(jn);

lambda =(sqrt(pi)*Tp*const2)*((a+d)*(b^n))/((a+b+d)^(n+1))

;%-- modal weight generation

AAA =1; %-- initial pulse coefficient

Sai= AAA*(inv(sqrt ((2^n)*( factorial(n)))))* ((2*d/pi)^0.25

)*H(:,jn).*exp(-d*(t.^2));

%Depending on the source noise profile we can define

different noises.

%Here as an example I just use a noise -free source.

Apn(:,jn)=0;

end

%-----------------------------------------

% Monte Carlo method

for jL=1:L
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jL

Ap0=zeros(length(t) ,1);

Apn;

phi;

for jN=1: length(NN)%-- generating the pump noisy pulses

Ap0=Ap0+(Apn(:,jN)*exp(1i*phi(jL ,jN)));

end

Ap0 =(( Ap0))+(( exp((-T.^2) /(2*(( Tp).^2)))));

area_Ap0=abs(sum(Ap0)*dt);%-- pulse area at the source

Ip0=Pen/(sqrt(pi)*tp*Aeff) % I_P0

Tsrs =(2* hbar*epsilon0*C*np)/(reff*Ip0) % T_SRS

Trelative=t0/Tsrs;

Gammax=Tsrs *(1/ Gammarelax); % Gamma = T_SRS * gamma^-1

%Gammax =0;

diffconst =(1/C)*(Lsrs/Tsrs);

%plot(T,As0)

%hold on

%title('Input Stokes Pulse ')

%xlabel('T')

%ylabel('Amplitude ')

%sigma0=zeros(length(t) ,1); % [ 0 0 0 0 ] zero matrix =

sigma0

sigma=zeros(length(t),length(zv));%-- random pulse

Gamma=zeros(length(t),length(t),length(zv)); %-- mutual

coherence

Ap=zeros(length(t),length(zv));

As=zeros(length(t),length(zv));

Ap1=zeros(length(t),length(zv));

As1=zeros(length(t),length(zv));

Is=zeros(length(t),length(zv));

derivAs=zeros(length(t),length(zv));

derivAp=zeros(length(t),length(zv));



121

Iz1=zeros(size(As(:,1)));

Iz10=zeros(size(As(: ,10)));

%-- setting initial conditions

sigma0 =0;

sigma (1,:)=sigma0;

Ap(:,1)=Ap0;

As(:,1)=As0;

%Gamma (:,:,1)=As0*(As0 ');

derivAp (:,1)=[diff(Ap0);0];

derivAs (:,1)=[diff(As0);0];

%blockf Function

y1=blc(sigma (:,1),Ap(:,1),zv ,dz ,dt ,nt ,Gammax ,As(:,1),n1);

sigma (:,1)=y1(:,1);

%derivAp (1,:)=y1(:,3);

%derivAs (1,:)=y1(:,4);

%-- transmitting pulse realizations through SRS medium

for ii=1: nplot

ii;

y2=m4x(sigma(:,ii),zv ,dz ,Ap(:,ii),As(:,ii),n1 ,nt ,dt ,

Gammax ,derivAp(:,ii),derivAs(:,ii));

sigma(:,ii+1)=y2(:,1);

Ap(:,ii+1)=y2(:,2);

As(:,ii+1)=y2(:,3);

Gamma(:,:,ii+1)=As(:,ii+1)*(As(:,ii+1) ');

end

%figure (2)

%plot(T,As(: ,10))

%hold on

%title('Input Stokes Pulse ')

%xlabel('T')

%ylabel('Amplitude ')
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%As0avgs =( As0avgs+As0);

Iss0=(As.^2);

Iss=abs(real(Iss0));

Iz1=Iz1+Iss(:,1);

Iz10=Iz10+Iss (: ,10);

IPp=abs(Ap.^2);

IssV=(IssV+Iss);

IPpV=(IPpV+IPp);

%plot (T ,100.* Iss(:,2) ,'color ','r')

%hold on

%plot (T,IPp(:,2) ,'color ','b')

%hold on

%figure (2) % plot input pump and stokes pulses over T

%areaas0=abs(sum(As0)*dt)

%plot (T,Iss(:,1), 'color ','b')

%hold on

%plot(T, Iss (: ,10), 'color ','r')

%hold on

%plot(T,Ap(:,1), 'color ','y')

%areas=abs(sum(As(: ,10))*dt)

%plot (T,Iss(:,1), 'color ', 'b')

%hold on

%plot(T,Iss (: ,10))

%hold on

%plot (T,As(: ,10))

%hold on

%plot(T,Iss (: ,10) ,'color ','r')

%hold on

%figure (2)

%subplot (2,1,1)

%hff=histogram(Iss(:,1) ,'Normalization ','probability ','

facecolor ','r','facealpha ' ,0.2)
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%hold on

%subplot (2,1,2)

%hff2=histogram(Iss (: ,10) ,'Normalization ','probability ','

facecolor ','b','facealpha ' ,0.2)

%hold on

%figure (2)

%subplot (2,1,1)

%hff=histogram(areaas0 ,'Normalization ','probability ','

facecolor ','r','facealpha ' ,0.2)

%hold on

%subplot (2,1,2)

%hff2=histogram(areas ,'Normalization ','probability ','

facecolor ','b','facealpha ' ,0.2)

%hold on

end

%--performing ensemble averaging

%As0avgs=As0avgs .*(1/L);

%Iavg1 =(1/L)*Iz1;

%Iavg10 =(1/L)*Iz10;

%Iss=cdfplot(Iss0 (800 ,:))

%pd=fitdist(Iss ,'Normal ');

%PDFIss=pdf(pd ,zv)

%PDFIss=histogram(Iss)

%Fin=exppdf(Iss ,2);

%----------------------------------

%y3=zeros(length(t),length(zv));

%for kji =1: length(zv)

%y3(:,kji) = pdf('Normal ',zv ,As)

%end

%Output%

%figure (3)
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%plot(T,As0avgs)

%figure (4)

%subplot (2,1,1)

%plot(T,Asfavg)

Ivagh=Iss.*Ip0;

Pvagh=Ivagh .*Aeff;

Pnorm=Pvagh /100;

Ivpump=IPp.*Ip0;

Pvpump=Ivpump .*Aeff;

Ppumpnorm=Pvpump /100;

Pnorm2 =10.* Pnorm;

Pnorm3 =0.15.* Pnorm;

%plot (T,Pnorm (: ,10))

%figure (1)

%plot(T,Iss(:,1))

%hold on

%plot (T,Pnorm2 (:,1),T,Pnorm (: ,10))

%hold on

IssA=IssV/L;

IPpA=IPpV/L;

%figure (1)

%subplot (2,1,1)

%plot (T,Pnorm (: ,10),T,Pnorm (:,1))

%figure (2)

%subplot (2,1,2)

plot (T,IPp (: ,10),T,Iss (: ,10))

%figure (2)

%subplot (4,1,1)

%plot (T,IssA (:,1) ,'color ','r')
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%hold on

%plot (T,IPpA (:,1) ,'color ','b')

%subplot (4,1,2)

%plot (T,IssA (:,3) ,'color ','r')

%hold on

%plot (T,IPpA (:,3) ,'color ','b')

%subplot (4,1,3)

%plot (T,IssA (:,5) ,'color ','r')

%hold on

%plot (T,IPpA (:,5) ,'color ','b')

%subplot (4,1,4)

%plot (T,IssA (: ,10) ,'color ','r')

%hold on

%plot (T,IPpA (: ,10) ,'color ','b')

%AREAp0=abs(sum(Ap0)*dt)

%AREAs0=abs(sum(As0)*dt)

AREAs=abs(sum(As(: ,10))*dt)

AREAs=abs(sum(As(:,1))*dt)

%plot (T,Iss (: ,10),T,IPp (: ,10))

%hff=histogram(AREAs ,'Normalization ','probability ','

facecolor ','r','facealpha ' ,0.2)

%figure (2) %-- plot the pulse intensity over Z

%mesh(zv ,T,abs(As), ...

% 'MeshStyle ', 'col ', 'EdgeColor ', 'black ');

%set(gca ,'YDir ','reverse ');

%hidden off;

%title('(a)','fontsize ',24)

%xlabel ('Z','fontsize ',20);

%ylabel('T','fontsize ',20)

%zlabel ('Es(Z,T)','fontsize ',20)

%figure (2)

%plot (T,10* Pnorm (:,1),T ,1.2* Pnorm (: ,10))
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figure (3) %-- plot the pulse intensity over Z

mesh(zv ,T,Pnorm , ...

'MeshStyle ', 'col', 'EdgeColor ', 'black ');

set(gca ,'YDir','reverse ');

hidden off;

%figure (4) %-- plot the pulse intensity over Z

%mesh(zv ,T,Ppumpnorm , ...

% 'MeshStyle ', 'col ', 'EdgeColor ', 'black ');

%set(gca ,'YDir ','reverse ');

%hidden off;

%title('(a)','fontsize ',24)

%xlabel ('z (m)','fontsize ',20);

%ylabel('t (ns)','fontsize ',20)

%zlabel ('P / <P>','fontsize ',20)

%figure (1)

%hff=histogram(Iavg1 ,'Normalization ','probability ','

facecolor ','r','facealpha ',1)

%hold on

%hff2=histogram(Iavg10 ,'Normalization ','probability ','

facecolor ','b','facealpha ' ,0.3)

%hold on

%figure (7)

%plot (zv ,max(Pnorm))

%============================

% Solving Maxwell equations

%===========================

function y=m4x(sigma ,zv ,dz ,Ap ,As ,n1 ,nt ,dt ,Gammax ,derivAp ,

derivAs)

y=zeros(length(sigma) ,5);

nt=length(sigma);
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r1=dz/1;

b1const =3.4e-03;

for iz=1:n1

dy1=(Ap)+(r1.*1i.* sigma .*As);

dy2=(As)+(r1.*1i.*conj(sigma).*Ap);

Ap=dy1;

As=dy2;

y1=blc(sigma ,Ap ,zv ,dz ,dt ,nt ,Gammax ,As ,n1);

sigma=y1(:,1);

end

y(:,1)=sigma;

y(:,2)=Ap;

y(:,3)=As;

%========================

%Solving Bloch equation

%========================

function y=blc(sigma ,Ap ,zv ,dz ,dt ,nt ,Gammax ,As ,n1)

y=zeros(length(sigma) ,1);

sigma (1) =0;

y(1,1)=sigma (1);

for i=1:nt -1 %-- numerical Runge Kutta method

k1=diffx(sigma(i),Ap(i),As(i),Gammax);

sigma1=sigma(i)+dt*k1/2;

k2=diffx(sigma1 ,Ap(i),As(i),Gammax);

sigma1=sigma(i)+dt*k2/2;
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k3=diffx(sigma1 ,Ap(i),As(i),Gammax);

sigma1=sigma(i)+dt*k3;

k4=diffx(sigma1 ,Ap(i),As(i),Gammax);

nextstep =(dt*(k1+(2*k2)+(2*k3)+k4))/6;

sigma(i+1)=sigma(i)+nextstep;

end

y(:,1)=sigma;

%===========================================

%evaluating the Hermit function for each mode

%===========================================

function HH=hermx(t,N)

HH = zeros ( length(t), length(N) );

HH(:,1) = 1.0; %--for N=0

HH(:,2) = 2.0 *t; %--for N=1

for jh = 2 : (length(N) -1)

HH(:,jh+1) = 2.0 *t.* HH(:,jh) - 2.0 * ( jh - 1 ) * HH

(:,jh -1);

end
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Appendix B - Statistical Ensemble Formulation for GSM and FBWN

Sources

Gaussian correlated source

We first consider a pump source with a random component having an average Gaus-

sian profile and Gaussian spectral correlations. This is the celebrated Gaussian Schell-

model source that we employed in Ref. [1]. We briefly present it here for completeness.

The corresponding mutual intensity, defined as

Γ(T1, T2, 0) ≡ 〈ΔE∗p (T1, 0)ΔEp(T2, 0)〉, (1)

where the angle brackets denote ensemble averaging, can then be written as

Γ(T1, T2, 0) =

(
ΔP

P0

)
exp

[
−(T1 − T0)

2 + (T2 − T0)
2

2T 2∗

]

× exp

[
−(T1 − T2)

2

2T 2
c

]
. (2)

Here ΔP/P0 can be interpreted as a ratio of an average peak power of the random

component to the coherent component peak power of the pump pulse at the source

and Tc is a coherence time of the random component. It follows from Eq. (2) that

the GSM source correlation spectrum is also Gaussian.

We can now represent the random component of the source using the Karhunen-Loève

expansion [231, 120]

ΔEp(T, 0) = 2−1/2
(∑

n

cnψn(T ) + c. c.

)
, (3)

where c. c., stands for a complex conjugate. Note that Eq. (3) in this form guarantees

that ΔEp(T, 0) is real which is the case for chirpless source pulses tuned to exact two-

photon resonance to maximize the SRS efficiency. The random complex coefficients

{cn} are statistically uncorrelated (orthogonal) such that

〈c∗ncm〉 = λnδmn, (4)
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and the coherent modes are orthonormal, implying that

∫ ∞

−∞
dT ψ∗n(T )ψm(T ) = δmn. (5)

The mutual coherence function is then represented as a Mercer-type series in coherent

modes as [232]

Γ(T1, T2, 0) =
∑
n

λnψ
∗
n(T1)ψn(T2). (6)

The coherent modes {ψn} are determined by solving the following Fredholm integral

equation ∫ ∞

−∞
dT1 Γ(T1, T2, 0)ψn(T1) = λnψn(T2). (7)

In the GSM case, Eq. (7) can be analytically solved and all modes and the eigenvalues

{λn} determined such that [232]

ψn(T )=

(
2ξ

π

)1/4 (
1

2nn!

)1/2

Hn[
√

2ξ(T − T0)]e
−ξ(T−T0)2 , (8)

where Hn(x) is a Hermite polynomial of the order n, and in our case,

λn =
√
πT∗

(
ΔP

P0

)
(α + ξ)βn

(α + β + ξ)n+1
. (9)

Here we introduced the notations

α =
1

2T 2∗
, β =

1

2T 2
c

, (10)

and

ξ =
√

α2 + 2αβ. (11)

We note that the mode powers, Eq. (9), are normalized so that they add up to the

total power of the random component (relative to the coherent component power).

To complete the ensemble description, we must specify the random amplitude statis-

tics to any order such that it is consistent with Eq. (4). We stipulate that the complex
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amplitudes be independent Gaussian random variables. Expressing the complex ran-

dom amplitudes {cn} in the polar form as

cn =
√
ine

iφn , (12)

the powers in obey an exponential distribution,

P(in) =
1

λn

e−in/λn , in ≥ 0, (13)

and the phases are uniformly distributed in the interval −π ≤ φn ≤ π. The overall

field at the source is a superposition of uncorrelated mode fields. As each mode obeys

Gaussian statistics, the overall source PDF is guaranteed to be Gaussian (thermal-

like) for any source coherence time Tc. We stress that the central limit theorem alone

is insufficient to guarantee Gaussian statistics because for sufficiently long Tc, there

are only a few coherent modes effectively contributing to the expansion in Eq. (3)

and the central limit theorem cannot be applied.

Band-limited white-light correlated source

We now consider a random component of the pulsed source that has uniform spectral

correlations over a finite bandwidth B. We introduce the correlation time, tc =

B−1. To construct the corresponding statistical ensemble, it will prove convenient to

introduce the time and frequency scaled to the source coherence time tc as

t = t/tc, ω = ωtc. (14)

Let us look at an auxiliary statistically stationary source, band-limited white light

with a flat spectrum, S(ω) ∝ rect(ω). By virtue of the Wiener-Khintchine theo-

rem [231], the source is sinc-correlated in time. Our pulsed source can be generated

by amplitude modulating (time chopping) the band-limited white light. Assuming

an optical modulator produces a pulse of intensity profile I(t), we can express a field
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realization of the resulting pulsed statistical source as

ΔEp(t, 0) =
√

I(t)U(t). (15)

Here the white light field U(t) has the mutual intensity

ΓU(t1 − t2) = 〈U∗(t1)U(t2)〉 = sinc(t1 − t2). (16)

The mutual intensity of the pulse source can then be written as

ΓΔE(t1, t2, 0) =
√

I(t1)I(t2)ΓU(t1 − t2). (17)

We note that the required amplitude modulation can be realized for nanosecond

pulses of interest using the standard electro-optical modulators based on linear [6] or

quadratic [7] electro-optical effects.

Unfortunately, it doesn’t seem possible to analytically solve the Fredholm integral

equation (7) for the mutual intensity ΓΔE to explicitly determine coherent modes. We

can however find non-orthogonal pseudo-modes. To this end, we use the following

sinc-function representation [234]

sinc(x− y)= π√
xy

∑∞
n=0(n+ 1/2)Jn+1/2(x)Jn+1/2(y), (18)

where Jn+1/2(x) is a Bessel function of the first kind of a half-integer order. It follows

from Eqs. (16) through (18) that the source mutual intensity can be expressed as

ΓΔE(t1, t2, 0) =
∞∑
n=0

(n+ 1/2)Φ∗n(t1)Φn(t2), (19)

where we introduced the mode functions

Φn(x) =
√
πI(x)/x Jn+1/2(x). (20)

These mode functions are neither orthogonal nor normalized, implying that the above
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expansion is a pseudo-mode representation in the spirit of [235, 236]. One can intro-

duce normalized pseudo-modes, though, viz.,

Ψn(t) ≡
√

Nn(t)I(t)/t Jn+1/2(t), (21)

so that ∫ ∞

0

dt |Ψn(t)|2 = 1. (22)

The normalization factor Nn is defined as

Nn(t) =

[∫ ∞

0

dt J2
n+1/2(t)I(t)/t

]−1
. (23)

In terms of the normalized modes, the pseudo-mode representation reads

ΓΔE(t1, t2, 0) =
∞∑
n=0

λnΨ
∗
n(t1)Ψn(t2), (24)

where the physical eigenvalues, corresponding to the power carried by a given mode,

can be expressed as

λn = π(n+ 1/2)

∫ ∞

0

dt J2
n+1/2(t)I(t)/t. (25)

The sought ensemble representation, which yields Eq. (24) subject to (4), is then

given by

ΔEp(t, 0) = 2−1/2
(∑

n

cnΨn(t) + c. c.

)
. (26)

Finally, the random coefficients are governed by Eqs. (12) and (13) which completes

the analytical description of the FBWN ensemble.
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