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Abstract

Injuries to soft tissues such as tendons affect millions of people annually. Injuries pro-
duced by in vitro mechanical overload result in damage to constituent collagen. Using
bovine models, it has been found that overload results in serial kink formation within
collagen fibrils in low-load tendons — a mechanism called discrete plasticity.

Despite the prevalence of injury and our aging population, the exact mechanism be-
hind the failure of collagen in aging human tendons has not been investigated until
now. In this study, fresh contralateral human sartorius tendons from donors aged 20
to 60 were used to assess potential age-related changes in failure mechanics. Ther-
mal stability of tendon collagen was examined and was expected to increase with age
due to increased crosslinking. Damage motifs were investigated following tendon rup-
ture using scanning electron microscopy. It was thought that discrete plasticity kinks
would form following rupture in younger samples, but that the mechanism would
dissipate with age.

The thermal stability results suggest that there is a high density of mature crosslinks
present. The exact relationship between crosslinking and age remains inconclusive.
Despite these structural changes, the mechanical properties did not change with age.
Discrete plasticity was not found in any tendon sample, likely due to heavy crosslink-
ing. Individual fibrils displayed sites of local damage with exposed substructure, and
kinks/turns that propagated across fibrils. These failure motifs along with the ther-
mal stability test results support the notion that discrete plasticity is a feature of
tendons that are sparsely crosslinked.

This study was the first to examine how the nanoscaled, structuro-mechanical features
of overload failure in human tendons varies with age. As we increase our understanding
of the effect of tendon type and age on damage motifs, we will also better understand
how injury occurs on the nanoscale and how healing is mediated in the body.
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Chapter 1

Introduction

1.1 Tendon Structure

Tendons are soft-tissues that connect muscle to bone, transferring forces uniaxially
between muscle and bone!. The primary component of tendons is collagen, which is
the most abundant mammalian protein?. Many different tendons are present within
the human body and they can be classified into two major categories — positional and

energy-storing tendons.

1.1.1 Hierarchy & Assembly

The hierarchical structure within tendons is shown in Figure 1.1. Tendons are made
up of fascicles (50-300 pm) that are composed of many fibres. These fibres are made
up of fibrils (50-500 nm) which are composed of subfibrils, structures that are made
up of collagen molecules®. Collagen crimp is a waveform pattern visible at the level of
the fascicle. The fascicles of a tendon are surrounded by connective tissue known as
endotenon, while the whole tendon is enveloped by peritenon?. The matrix materials
that hold together fibres/fibrils have a high proteoglycan content, which influence the

mechanical properties of the soft tissues.
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Figure 1.1: Schematic of the various components that make up tendons. Adapted with permis-
sion from?.

Tendons insert into bones at the enthesis, or osteotendinous junction, and it is incred-
ibly important that the collagen is continuous along the length of a tendon®. The en-
thesis is crucial in ensuring proper load transmission from musculature to bones. The
insertion of the tendon into the muscle occurs at an interface known as the myotendi-
nous junction (MTJ). This region is also incredibly important in force transmission,
resisting muscle forces between 1.8 to 3.5 x 100 Nm™2¢. The structure of the MTJ
contains many protein complexes, actin filaments, transmembrane protein complexes
and proteins that link the extracellular matrix to the basement membrane®. The
exact spatial configuration of these components along with the constituents present
changes with exercise” and aging®, something that may have an implication on tendon

biomechanics in vivo.

1.1.2 Components

Besides type I collagen which makes up about 60-85% of the dry mass?, tendons also
contain small amount of cells, other collagen types (111, V, etc.), fibrillin, elastin, and

10 Proteoglycans retain large amounts of water due to the presence

proteoglycans
of negatively charged sulfated glycosaminoglycan chains. The exact amount of pro-

teoglycans depends on the type of tendon, anatomical location within tissues, and



the age of the tissue. This will be expanded on further in Section 1.9. While ten-
dons are largely acellular, tenocytes, which are specialized fibroblasts, make up the
largest proportion of cells present!®. These cells are able to sense changes in mechan-
ics within their environments through mechanotransduction and therefore are able to

repair tendon and maintain homeostasis®.

1.2 Tendon Injury

Musculoskeletal injuries such as injuries to tendons and ligaments affect over 10 mil-
lion people in the United States annually!!. Ligaments are similar in structure to
tendons, but instead connect bone-to-bone and will not be dicussed herein. Tendons
undergo many loading cycles per year and about 30% of visits to the family doctor for
musculoskeletal pain are the result of tendinopathy!2. Injuries can be chronic or acute,
and in some cases, injury can result in complete tendon rupture. While all tendons are
susceptible to injury, the major tendons, which experience greater in vivo mechani-
cal loading, are most frequently affected (e.g. Achilles tendon, rotator cuff, patellar

) 13-18

tendon . There are many different mechanisms of injury that lead to tendon rup-

tures or developement of tendinopathy!®. Despite their prevalence, the mechanisms

that guide healing in tendon injury have not been completely determined.

Tendinopathy is an umbrella term that refers to any type of overuse tendon dis-

13,20-23  Usually degenerative in nature, it often results in pain, tenderness,

13,15,22

order
decreased strength, and limited mobility It can be characterized histologi-
cally by collagen fibril disorganization, increased cellularity and increased proteogly-
can/glycosaminoglycan content!®?%2426 The exact relationship between tendinopa-
thy and complete rupture is unknown but the two are definitely related. Acute tendon
injury usually implies partial or complete rupture of tendon and is usually debilitating.
Both acute and chronic injuries can be caused by excessive, abnormal or repetitive
loading in combination with extrinsic and intrinsic factors?2. Intrinsic factors include

13,27,28

sex, age, diabetes, and obesity . The primary extrinsic factor is abnormal or

repetitive mechanical loading, which can result from sport, exercise, or work envi-



ronment 212°3! . Overloading of tendons may trigger inflammatory responses, tendon

degeneration, or both®?, although this has been a subject of disagreement within the

33 These structures are actively remodelled and repaired; otherwise the

21,22

literature

tendon would eventually rupture

Current treatment options such as topical and/or systemic anti-inflammatory drugs
act to decrease discomfort for patients experiencing tendinopathy. Surgery is also a
treatment option in the event of a partial or complete tear. Some studies have shown
that reinjuring the affected tendon is common, because the scar tissue that forms
weakens the structure, resulting in a tensile strength that is one third of what it was
prior to injury 32426, The above-mentioned treatments are currently the most effec-
tive since we do not fully understand the mechanism involved in the healing and injury
of tendons. The exact role of inflammatory cells such as macrophages, mast cells, T
cells, and neutrophils, in the aetiology of tendinopathy remains unclear!%23:27:33 Tt
is known that following injury, cell proliferation, cell migration, and remodelling oc-
cur 323435 The processes occur in large part due to the release of growth factors and
cytokines following injury. These include interleukins, tumour necrosis factor (TNF),
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF),
TGF-alpha, connective tissue growth factor (CTGF), epidermal growth factors (EGF)
and insulin-like growth factor (IGF)-11%37 (Figure 1.2). There is also an increase in
mRNAs that code for matrix metalloproteases and collagen in human tendinopathic
tendons?®. Additional changes that occur within tendinopathic tendons are losses in

collagen organization and glycosaminoglycan deposition®3.

1.3 Tendon Collagen

1.3.1 Collagen Structure & Assembly

The primary component of tendons is collagen, the most abundant mammalian pro-
tein. If the molecules are arranged uniaxially, as they are in tendon, the collagen

functions as the primary load bearing element along its axis. Collagen molecules
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Figure 1.2: Mechanotransduction in tenocytes. Reprinted with permission13.

themselves are triple helices, that are made up of individual polyproline-II-like helices
called alpha-chains®. These polypeptides (a-chains) have a primary amino acid se-
quence of Glycine-X-Y, where X and Y can be any amino acid but are most commonly
proline and hydroxyproline*2°. Glycine is the smallest amino acid and reduces steric
hindrance within the peptide chains, to permit helix formation. The hydroxylation of
the proline residues to form hydroxyproline is important to maintain stability of the
helical structure through hydrogen bond formation®®. Lysine residues that are present
within the primary structure are also hydroxylated, which has later implications in
terms of crosslinking?®. These post-translational modifications are important and the
degree of modification depends on enzyme concentration, and rates of collagen syn-
thesis and turnover, among many other things**2. While there are more than 20
different types of collagen, type I is the most common and makes up the majority of

the soft connective tissues in our body?°. Type I collagen is a heterotrimeric helix that



N-propeptides C-propeptides

procollagen

Figure 1.3: Collagen is synthesized as a proprotein, and the telopeptide ends are cleaved off
by proteinases. The newly synthesized collagen triple helix self-assembles into a quarter-stagger
structure to form fibrils, that are characterized by 67 nm striations called D-bands. Reprinted
with modifications with permission29.

is made up of three polypeptide chains: two a1 chains and one a2 chain3%**%, Once
the individual « chains are synthesized, a procollagen molecule self-assembles and is
excreted into the extra-cellular matrix. This collagen precursor has a triple helical
structure, with non-helical telopeptide ends. Each alpha-chain is 1300-1700 amino
acids in length, with about 1000 of these within the triple helical region of the procol-
lagen molecule?®. Following assembly and excretion from the cell, the carboxy- and

amino-termini (i.e. the telopeptides) are enzymatically cleaved off by peptidases®.

Collagen structure is stabilized by a wide range of covalent and non-covalent inter-
actions such as: hydrogen bonding, hydrophobic interaction, van der Waal’s forces,
electrostatic interactions, and crosslinking®®. The collagen molecules are 300 nm in
length, 1.5 nm in diameter, and self-assemble to form collagen fibrils*>. This enthalpy-
driven process results in the tight packing of collagen molecules with a quarter stagger,

creating 67.0 nm long striations in the structure, referred to as the D-period, which
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Figure 1.4: Location of collagen crosslinks present in fibres, showing that immature crosslinks
are divalent, and mature ones are trivalent, while glycation-derived crosslinks do not occur

at the ends but rather within the helical portions of collagen molecules??-°°. Reprinted with

permissionzg.

is visible by electron microscopy or atomic force microscopy at the fibril level (Figure
1.3)47. Collagen fibrils are thought to be continuous along the length of a tissue® and
self-assemble to form other hierarchical structures such as fibres®. While the longi-
tudinal arrangement of collagen molecules is well understood and widely accepted,

there is some debate as to what the lateral molecular arrangement within fibrils looks
Jike 10:39.48

1.3.2 Crosslinking

The crosslinking of collagen molecules is critical and contributes to the mechanical
strength of tendons by preventing the slippage of collagen fibres during loading*°.
Both the number and type of inter- and intramolecular crosslinks present between
fibrils determines the stability of the structure and is determined by age and loading
history. There are two mechanisms of crosslink formation (Figure 1.4)°%5!. The first

is driven by the enzyme lysyl oxidase and occurs during development and matura-



STRESS

STRAIN (%)

Figure 1.5: Stress-strain curve of aging RTT. In this particular animal model, maturity is reached
by about 6 months of age, at which point there would be a plateau in the amount of mature

crosslinking present. Any addition increase in crosslinking would be due to glycation (dotted line),

and is responsible for any further increase in mechanical strength. Reprinted with permission®?.

4049 Eventually, there is some density of enzymatic crosslinks that is achieved

tion
in a given mature tissue, and any additional crosslinking is due to glycation. The
second occurs non-enzymatically and adventitously between collagen molecules and
reducing sugars®®. Studies have shown that rat tail tendon (RTT) fibres increase in
mechanical strength with age, these changes attributed to increases in enzymatic and

non-enzymatic crosslinking (Figure 1.5)°1.

Enzymatic Crosslinking

Enzymatic crosslinking occurs following post-translational hydroxylation of lysine.
The types and amount of crosslinks present within tendons depends on the relative
loading experienced, age, and rate of tissue turnover. This enzyme is responsible for

the conversion of lysine and hydroxylysine residues within the C- and N-terminal ends



of procollagen to the corresponding peptidyl aldehyde5%°2. These products can react
with other peptidyl aldehydes to produce the initial divalent inter- and intramolecular
crosslinks®®%3. The exact type of crosslink that is formed is defined by the state of
hydroxylation of telopeptide lysines and by the type of tendon®'. The rate of crosslink-
ing within tissues is regulated by the concentration of the enzyme®’. Intermolecular
crosslinks, such as those produced by the reactions of lysine aldehydes, decrease the

slippage between collagen molecules®°.

Immature tissues have low lysine hydroxylation within the telopeptide residues and
therefore the primary crosslink present is dehydro-hydroxylysinonorleucine (deH-HLNL)

5455 Other immature diva-

formed from the reaction of allysine with hydroxyallysine
lent crosslinks present in tendons result from the interaction of two allysine residues
to form dehydro-lysinonorleucine (deH-LNL) or the reaction of hydroxylysine with
hydroxyallysine to form hydroxylysino-ketonorleucine (HLKNL)®. Both deH-HLNL
and deH-LNL contain acid- and heat-labile Schiff base double bonds and are found
primarily in tendons and skin®. By contrast, HLKNL is stable to both acid and heat,
and is primarily found in bone and cartilage where hydroxylation of lysine residues
occurs more readily?®. The crosslink deH-HLNL can react spontaneously with his-
tidine residues in the collagen molecule to form a mature crosslink called histidino-
hydroxyllysinonorleucine (HHL) (Figure 1.6A)°¢. Moreover, the immature crosslink
HLKNL can react with either an allysine or a hydroxyallysine forming either pyr-
role or hydroxylysino-pyridinoline (Hyl-Pyr), respectively (Figure 1.6B)?*57. These
trivalent, “mature” crosslinks increase the mechanical strength of tendons and their

2

concentration increases with age®?. Low-load tendons contain fewer stable mature

crosslinks than tendons experiencing high in vivo loads®2,

Reducing agents such as sodium borohydride can be used in vitro to stabilize deH-

LNL and deH-HLNL to form LNL and HLNL, respectively, which contain a stable
single bond rather than the Schiff-base double bond*%#3°8, The products of these
reactions are not the same as those that occur normally, but the reaction may be used
semi-quantitatively identify crosslinks present within tissues. Through borohydride

reduction it is possible to compare the stable and total crosslink population within
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Figure 1.6: The reaction of HLNL, an immature crosslink, with histidine results in the formation
of HHL, a mature, trivalent crosslink?®. The reaction of HLKNL, an immature crosslink, with a
hydroxylysine residues results in the formation of Hyl-Pyr while a reaction with an allysine yields
a pyrrole. Both pyrrole and Hyl-Pyr are mature trivalent, heat-stable crosslinks?. Reprinted

with modifications with permission?°.
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samples (in control and NaBH, treated tissues, respectively).

Non-enzymatic Crosslinking

Non-enzymatic crosslinking occurs between collagen molecules adventitiously and
is widespread in human tissues, occurring on a long time scale and affecting long
lived proteins®. These crosslinks are derived from advanced glycation end-products
(AGEs), moieties that are formed through the reaction of a reducing open chain sugar
with amine groups present on proteins, lipids, and nucleic acids?**'42, AGEs form
between collagen molecules and can result in covalent crosslinking between triple he-
lical portions of collagen molecules. Glycation reactions are concentration dependent
and are affected by the type of sugar present. Glucose has the slowest glycation rate,
while other intracellular sugars such as glucose-6-phosphate and fructose incur faster
rates?%%1. Glycation-derived crosslinks are especially important important to consider

in people with type II diabetes, because of their elevated blood glucose levels®°.

The formation of AGEs changes the way that collagenous proteins interact with their
surroundings. A family of receptors for AGEs is expressed on smooth muscle cells,
monocytes, macrophages, endothelial cells, podocytes, astrocytes, and microglia®®6!,
The binding of AGEs to receptors causes downstream signalling that increases the
expression of pro-inflammatory cytokines, along with coagulating and vasoconstrictive
factors. This is thought to upregulate the inflammatory response, while slowing down
healing. AGE effects at the tissue level include peroxidation of lipids, remodeling, and

59,61

thrombosis®”®*. The binding of AGEs to macrophage receptors is thought to be the

primary mechanism for AGE elimination, which occurs via the renal system®°.

Examples of AGE crosslinks include pentosidine and glucosepane, which have been

5263 and increase

shown to increase denaturation temperature®?, decrease solubility
failure stress and stiffness®%°264, Increased stiffness has been seen in both human dia-
betic tendons®, and in RTTs with induced diabetes®. Treatment of tendon fascicles
with an AGE such as methylglyoxal (MGO), resulted in a loss of stress relaxation

response and changes in failure stress and yield behaviour®%¢7. It is possible that
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stiffening occurs as a results of AGE formation, and that lowered collagen content
would result in the opposite effect®"%®. AGEs can also alter the charge profile of
collagen®®, thus affecting fibril-fibril interactions, which may change the force trans-

mission present between fibrils4967,

1.4 Collagen Molecular Stability

1.4.1 Thermal Denaturation and Stability

Native collagen is an ordered triple-helical structure that is stabilized by a variety
of interactions, as mentioned above. It is possible to study the structure and sta-
bility of collagen through thermal denaturation by taking advantage of changes to
the well-known native structure. When collagen is heated in water, there is a struc-
tural transition where the triple helical structure begins to unwind and a random coil
structure is formed, due to water solvation and the rupture of hydrogen bonds — a
69.70 " The driving force for this transition derives from
the change in Gibbs free energy of the system (AG), which is determined by the

change in enthalpy (AH) and entropy (AS).

process termed denaturation

AG = AH — TAS (1.1)

Enthalpy is defined as the total heat content within a sample, but more generally
is interpreted as the internal energy of a system (i.e. in structural changes, AH is
a measure of bonding energy changes in the system). Entropy is a measure of the
number of molecular configurations within a system and is defined by the Boltzmann
equation:

S = kglnW (1.2)

where S is entropy, kp is Boltzmann’s constant (1.381 x 10~2 kJK~'kmol™!), and W
is the number of possible conformations. Simply put, a system with greater disorder
has a higher entropy value, S. The highly-ordered native collagen structure transitions

to a random coil upon heating due to the breakage of hydrogen bonds via thermal
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gyration and collagen molecules begin to solvate in water. This has an unfavourable
AH, but is overshadowed by the favourable increase in S, resulting from the structural
change from helix to coil. Together, these effects result in a negative free energy

change, (AG), which is a favourable reaction.

Collagen molecules in solution begin to unfold at body temperature, and therefore
stabilization of collagen must occur, otherwise newly synthesized molecules would
denature and be removed from the body. The stabilization of collagen molecules is
increased due to a loss in entropy resulting from the embedding of collagen molecules
within fibres. The thermal stability of collagen molecules largely depends on the de-
gree of hydrogen bonding present within the sample, which is related to the amount

of hydroxyproline residues present !

. The amount of proline hydroxylation in turn
depends on two prolyl-hydroxlyase enzymes. Within collagen, there are regions along
the length of the molecule that do not contain the usual Gly-Pro-Hyp sequence but
rather are devoid of hydroxyproline and are called thermally labile domains™. The
largest of these regions is found near the C-terminus of the molecule™ while two oth-
ers are found at the N-terminal end of the molecule and are 26 residues in length™.
All of the thermally labile domains are found within the gap-region of the collagen
molecules, which is thought to create space for steric changes (i.e. increase its insta-

bility) 7274,

Hydrothermal denaturation is thought to initiate in the 65-residue hydroxyproline-

70,7273 Hydrogen bonds begin to rupture, and the

free sequence at the C-terminus
native triple helical structure of collagen begins to transition into an amorphous ran-
dom coil structure. Once initial uncoiling begins within the thermally labile domain,
the entire structure becomes less stable and begins to unzip™. Collagen denaturation
is affected by lateral spacing of molecules within the fibre. Denaturation tempera-
ture will be increased by anything that reduces the free volume available for thermal
gyration, because this will limit the configurational entropy of the thermally labile

domains 2.

The polymer-in-a-box model is commonly used to describe the denaturation process

of collagen™". In this model, the collagen molecules are seen as polymers that are
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constrained in a box created by their neighbouring molecules. Collagen molecules
packed in a fibre (i.e. lattice structure) are more thermally stable than those found
individually in solution, through reduction of molecular motion”>". Anything that
affects the confinement of collagen molecules to a lattice-like structure (i.e. a box) will
affect the configurational entropy and as such affect the activation of the thermally

7277 Endogenous crosslinking, dehydration, and swelling of collagen

labile domain
have been shown to have an effect on the thermal stability of collagen*®. With respect
to crosslinking, it was initially thought that the crosslinking itself increases the thermal
stability, but in fact, it causes dehydration which decreases the size of the ‘box’ and a
subsequent reduction in the configurational entropy. Overall, this mechanism serves

to stabilize the collagen molecule470:72-74.77-80,

1.5 Assessing Structure & Stability of Collagen

1.5.1 Hydrothermal Isometric Tension (HIT) Testing

Hydrothermal isometric tension (HIT) testing is a technique that is able to assess
thermally-induced structural changes in collagenous tissues. Specifically it is able to
capture the mechanical consequences resulting from thermal denaturation, breakage
of thermally unstable crosslinks, and hydrolysis of the the peptide backbone within
collagen. This technique involves mounting a sample between two grips and constrain-
ing the length under isometric tension (Figure 1.7). One end is fixed, while the other
is attached to a load cell, which allows for measurement of tension development in a
sample®!. Following mounting, the samples are submerged in a water bath (Figure
1.7). The temperature of the bath is increased at a rate of approximately 4°C/min
from room temperature to 90°C (Figure 1.8)%"33. After reaching 90°C, the sample is
maintained at this temperature for 5 hours during the isothermal portion (Figure 1.8).

This allows for the assessment of the crosslink profile present within the sample.
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Figure 1.7: Schematic of the custom-built testing apparatus used for hydrothermal isometric
tension (HIT) testing. Figure by Peter Massaro with permission.

Denaturation Temperature

The HIT data captures denaturation, assess the scission of thermally labile immature
crosslinks, and the hydrolysis of the individual chains within the collagen molecule®!.
The main parameters that are determined from the resulting data are the denatu-
ration temperature (7}), the temperature at maximum force (Tgpax) and half-time

of load decay, ti/2 (which will be discussed in the following section) (Figure 1.8).
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The temperature at which there is a marked increase in force during heating is the
denaturation temperature. It is important to note that with HIT, the T, is a mea-
sure of the thermal stability of the load-bearing collagen within the tissue sample®.
As the collagen triple helix denatures, the helicity decreases and the protein struc-

158818586 Because the sample

ture energetically favours transition to a random coi
is constrained isometrically, this denaturation event produces a marked increase in
tension®! (Figure 1.8). The exact value of the loads produced from this rise in tension
is not informative, as they are dependent on the amount of collagen /tissue present be-
tween the grips®®7. After the denaturation temperature is reached, thermally labile
crosslinks begin to break®®%, In some tendons, the tension will reach a maximum as
hydrothermally unstable crosslinks break, and the temperature at which this happens
is known as the T, ,_3*®. The Tf, . can be used a proxy for the number of thermally

stable crosslinks present in the tissue®%%%,

Half-time of Load Decay

Following the isothermal portion of HIT, it is possible to obtain the half-time of
load relaxation, which is dependent on the amount of thermally stable crosslinks
present in the sample®*®. During the isothermal portion of the HIT test, the load
decays as a result of the hydrolytic scission of backbone peptide bonds within the
collagen molecules (Figure 1.8). The rate of isothermal load decay can be measured
by calculating the half-time of load decay, t,/, which is defined as the time it takes for
the load to reach half of the maximum load value. This relaxation is an exponential
decay similar to that of the Maxwell model of stress relaxation, we can write that the

load decay will be given by:
% =M (1.3)

where L(t) is the load at any given time, Lpq, is the maximum load reached in the

isothermal portion, k is the constant of relaxation, and ¢ is time®. When the load is
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Figure 1.8: Schematic explaining hydrothermal isometric tension (HIT) testing. The tempera-
ture (red line) is gradually increased over time until it reaches 90°C, at which point it is held
constant for an extended period of time. This portion of the test is called the isotherm. At
a certain temperature during the ramp to 90°C, the structure of the collagen triple helix be-
gins to transition to a random coil, due to the breakage of hydrogen bonds and chain solvation
(i.e. denaturation). The temperature at which this transition begins to happen is called the
denaturation temperature, and because the sample is being held at a fixed length, this transition
does not occur but it is registered as an increase in load (blue line). Following denaturation,
but prior to the isotherm, thermally labile crosslinks will begin to break which contributes to
pre-isothermal contraction. At 90°C, stress relaxation due to the hydrolysis of peptide bonds will
begin. Sodium borohydride (NaBH4) will convert thermally labile crosslinks into their thermally
stable counterparts, thereby decreasing the amount of load decay that is happening (green line)
as compared to the control, untreated samples (blue line). Adapted with permission from J.
Michael Lee.
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equal to half of the maximum load, the equation becomes:
1
5= e~kt1/2 (1.4)

where k can be determined from the slope of a In(%) versus time plot®. This rela-
tionship was first described by Le Lous and Allain, and they stated that the constant
of relaxation, —k, is proportional to the rate of peptide bond scission and is inversely
related to the number of chains per unit volume that continue to sustain load®. As
mentioned above, the ¢,/; is also related to the amount of thermally stable crosslinks
present within the sample. While the peptide bonds are being hydrolyzed during the
isotherm, tissue integrity can be maintained by the presence of heat-stable crosslinks.
By combining HIT with NaBH, reduction of tissues, which stabilizes thermally labile
crosslinks, it is possible to look at the total crosslinking in a sample by compar-
ing values of t;/,. Both inter- and intramolecular crosslinks increase t¢,/, during the
isothermal portion of HIT, but intermolecular crosslinks leave the T; unaffected 3389,
Intramolecular crosslinks, however, increase the T;%°. This model of load decay works
well for tissues that are largely collagenous, and that are decreasing in load over time
during the isotherm. For tissues that contain elastin® or are heavily crosslinked,
the load will continue to be supported and may not decay. In these samples, such
as glutaraldehyde crosslinked heart valve tissue®', it might be prudent to consider
other models or to use the presence of load decay as a useful piece of information in
itself.

1.5.2 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a another tool used for analyzing the ther-
mal stability of collagen®-2. This method is used to evaluate enthalpic energy changes
that occur within thermal transitions. In this experiment, a sample is placed in a
sealed aluminum DSC pan and heated alongside an (often empty) reference pan. The
heat flow required to keep both samples at the same temperature during a ramp in-
crease is measured, and the differential heat flow is recorded. The DSC heat flow
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signal (%) is measured in g—’; and is determined by the heat capacity (%, in Kig)

and the scanning rate (< in K98,
i 8

dH dH _dT

o dr < d (1.5)

At low temperatures, the rate of denaturation is slow, so DSC does not register the
small changes in heat capacity. Once enough thermal energy is applied, denaturation
occurs at a faster rate, which is now able to be registered by the DSC since there is a
larger increase in heat capacity. Several characteristic features regarding phase tran-
sitions during denaturation can be determined from the resulting endotherm curve
(Figure 1.9) since denaturation affects the %73. These parameters are affected by
structural features within collagen, such as molecular packing, crosslinking, and wa-
ter content. Because thermal transitions involve an increase in heat absorption and
capacity, a peak (usually shown inverted as a valley) on the DSC endotherm plot can
be seen. The onset temperature (Tp,se) is the temperature at which the least ther-
mally stable collagen molecules begin to unravel and denature due do the breaking

9294 During the DSC experiment, the lower

of hydrogen bonds and chain solvation
energy bonds within each sample rupture earlier than higher energy ones, and there-
fore the DSC endotherm can be thought of as a spectra showing the range of thermal
stabilities present within the sample. The peak temperature (Tpeq) is the point at
which there is maximum heat flow%%%. The specific enthalpy of denaturation (Ah)
is defined as the area under the endotherm (1.9) and indicates the amount of energy

needed to denature the molecules capable of this transition 9294,

The parameters that are extracted from the DSC endotherms are important, but the
shape of the curve can also provide some information™. The full width at half max-
imum (FWHM) is a measure of the range of thermal stabilities present within the
sample (1.9)%. While DSC is not able to identify which bonds are broken specifi-
cally®, a broader peak resulting from denaturation would imply that there is a more

heterogeneous bond population within that sample than that of a narrow one®.
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Figure 1.9: Representative DSC endotherm of collagen denaturation with the parameters la-
belled. Adapted with permission®>.

1.5.3 Thermal Studies on Tendon Collagen

There have been many studies on the thermal stability of collagen, dating back to the
early 70s%7. DSC, in particular, has been used to study the denaturation process in
skin and tendon collagen and how this changes with glycation®, age®%  damage®,
or disease19, Tt is known that with age and increased glycation, there is an increase
in the denaturation temperature in RTT collagen as measured by DSC%4% . Miles et
al. showed that there is an increase in thermal stability of collagen that is induced

by dehydration, which occurs as a result of increased crosslinking 4372,

Young and old bovine tail tendons (BTTs) were used to study age-related changes
in DSC and HIT parameters within tendon collagen. The Tonset, Tpeak, and Ty did

not change between the two age groups, while the Ty ___ increased significantly with
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age®. A previous study demonstrated that young BTTs contained primarily HLNL
and HHL crosslinks, and that the amount of thermally stable crosslinking was low,
as none of the young samples survived to 90°C in HIT!°!, Tt has been shown using
DSC and HIT that the density and type of crosslinking present within anatomically
proximate but functionally distinct tendons is different, with common digital extensor
(CDE) tendons having fewer thermally stable crosslinks and a lower total crosslink
density than superficial digital flexor (SDF) tendons!?2.

Other studies have shown that damage to tendon is also detectable by examining
the thermal stability of the constituent collagen. It has demonstrated that damaged
BTTs have reduced Typset and Tpeqr values and an increase in FWHM as compared to
undamaged samples®®. This damage-induced decrease in denaturation temperature
was also seen in HIT (as measured by T,)®¢. This decrease in thermal stability with
mechanical damage was explained by an increase in entropy leading to an increase in
freedom of the thermally labile domain (Figure 1.10)%.

- = -
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Figure 1.10: Schematic of the Effect of Disruption of Lattice Structure on the Thermally Labile

Domain. Modified and reprinted with permission94.
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Thermal Stability of Human Tendon Collagen

While there have been many animal studies on the changes in thermal stabilities of
tendon collagen following mechanical overload, there have not been as many calori-
metric studies on undamaged or damaged human tendon, or systematic aging studies.
Not et al. showed that there is a difference in the structure of collagen in healthy and
diseased human tendons, studying a variety of pathologies such as carpal tunnel syn-
drome, De Quervain tenosynovitis, and Dupuytren disease'%’. Pathologic tendons did
not show any changes in denaturation temperature but did show significant decreases

in the Ah compared to native intact tendons'®.

Another study looked at the effect of damage on the thermal stability of human
tendon. Ruptured Achilles, quadriceps, and patellar tendon had increases in denat-
uration temperature and FWHM, as compared to healthy control samples, while Ah
decreased®. These studies, while somewhat insightful, are limited because the control
samples and ruptured samples did not come from the same patients. Control tissues
came from cadavers who were under 55 years of age at death, while the ruptured
and pathological samples came from patients undergoing surgery with no mention of
patient age?»1%. Aging has been shown to affect collagen structure, so it is possible
that the differences cited in these studies were age-related or related to the variability
in patient population (i.e. a problem of sample size). Additionally, none of the stud-
ies used the same tendon or the same methodology, so it is difficult to compare the
results to one another and draw a conclusion about the effect of damage or disease

on human tendon collagen structure.

1.6 Models Used to Mimic Tendon Injury

Modelling tendon injury using animal models has been done for decades and allows for
the examination of tissues during all stages of tendon injury. Furthermore, mimicked
injuries are repeatable and reproducible whereas clinical human tendons have often

been studied during chronic, end-stage tendinopathy. Frequently-used animal models
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include the murine, rabbit, ovine, canine, bovine, and primate models. The most
studied tendons within these models are the tail, patellar, Achilles, and forelimb
tendons. Many of these are limited in that lab animals are quadrupeds and the
load distribution is different due to differing anatomy and kinematics than that of
humans, but these shortcomings are overshadowed by their ease of extraction and

availability 1%3.

1.7 Visualizing & Assessing Damage in Tendons

Tendons undergo uniaxial tensile forces in vivo, and it is thought that various features
of tendon collagen help to support these loads. The waveform crimp helps with ex-

104,105 " while crosslinking between collagen molecules supports

tensibility at low loads
increased loads at high extensibilities®'. Thankfully, extended fibrils do not undergo
brittle fracture but rather absorb strain energy. Because of this, strains and sprains

are more prevalent than complete rupture.

Damage to tendon is damage to the components within tendons. Initially, it was
unknown which structural features within the tendon hierarchy were affected by me-
chanical overload. While optical microscopy can be used to visualize whole tendons,
collagen crimp, and fascicular structures, finer elements such as fibrils, and subfibrils
can only be seen under higher magnifications. Light microscopy is limited by the

optical resolution, r, which is defined by:

B A
~ 2x NA

r

(1.6)

where A is the wavelength of visible light, and N A is the numerical aperture of the
lens. This limited resolution led to the development of electron microscopy, where
the wavelength of electrons is significantly smaller, allowing for finer details to be

distinguishable.

Early studies showed that mechanical rupture or cyclic overload of wet RT'T's resulted

in the dissociation of collagen fibrils into components that were on the nanoscale %6197,
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In one particular study the D-banding, which is characteristic of properly assembled

collagen fibrils, was absent following tendon fascicle rupture, suggesting that there
107

was slippage of subfibrillar components (Figure 1.11)

Figure 1.11: The shredding of the collagen fibril structure was seen in RTT fascicles follow-
ing rupture, resulting in a loss of D-banding which suggests that there is subfibrillar slippage
occurring. Reprinted with permission197.

Many of the initial studies on tendon damage used an RTT model and found that
the constituent collagen fibrils dissociated into their subfibrillar components following
rupture under transmission electron microscopy (TEM)!%¢111 A study conducted by
Nemetschek et al. found that overload of RTTs resulted in the formation of kinked
structures, or the dissociation of collagen fibrils into their subfibrillar components
(Figure 1.12)'%, This longitudinal disintegration of RTT collagen fibrils was later

confirmed by Knorzer et al., who saw similar damage motifs (Figure 1.13)1%.

In addition to transmission electron microscopy (TEM), X-ray diffraction has been
used to examine fibrils, subfibrils, and individual collagen molecules!?”1%  Using this
technique, one study discovered that damaged RT'T's did not incur damage on the fibril
level due to interfibrillar sliding, as molecular level damage was found prior to the
occurrence of this sliding'%°. More recent studies have used atomic force microscopy
(AFM) to examine collagen fibrils with the added advantage of being able to obtain

mechanical data from the scanned structures!?-116,

24



Figure 1.12: Transmission electron micrograph of overloaded RTT reveals the exposure of sub-
fibrillar structure and kink formation on the fibril level. Reprinted with permission©8.

1.7.1 Discrete Plasticity

Veres et al. confirmed that tendon damage does indeed occur at the level of the
collagen fibrils on a nanoscale®®85-1921177119 " The initial study was done using a BTT
model and involved rupturing tendons and imaging them using scanning electron
microscopy (SEM)%117 The overloaded tendon samples were compared with control
tendons, which remained homogeneous and organized. The loaded tendons showed
kinks along the length of the fibril at discrete sites, leading to the conclusion that
collagen structure may not actually be completely uniform and homogenous (Figure
1.14)''7, This kinking mechanism was termed ‘discrete plasticity’ and is thought to

contribute to the toughness of collagen®:85-117-120,

It was discovered that this motif was present after overload even without rupture.
One subrupture overload cycle refers to loading tendon until the slope of the stress-
strain curve reaches zero, at which point the sample is unloaded. This process can be
repeated for a number of cycles. BTTs were cyclically loaded to subrupture overload
and it was found that the number of kinks increased with the number of overload

cycles, showing an accumulation of damage (Figure 1.15)%.
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Figure 1.13: Transmission electron micrograph of overloaded RTT shows the longitudinal disin-
tegration of fibrils into smaller components. Reprinted with permission1°.

Trypsin, a serine protease that selectively cleaves non-helical portions of collagen, was
used to determine the amount of denatured collagen present®1!7. The enzymatic
digestion, followed by SEM, showed that there was a layer of denatured collagen
present on the surface of the fibrils following overload cycles (Figure 1.16).

Along with contributing to collagen toughness and prevention of brittle fracture, it
was thought that these discrete kink sites could serve as recognition sites to promote
healing following injury. Macrophage-like (U937) cells, which are capable of releasing
enzymes that selectively degrade denatured collagen, were cultured on the surface
of damaged collagen. Following seeding, the cells showed an increased number of
filapodia, which is associated with phagocytosis of damaged tissues, and it appeared
as though a layer of material was removed (Figure 1.17)%:19 These findings suggest
that discrete plasticity may not only serve to toughen collagen, but to help with the

body’s recognition of damage!'°.
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Figure 1.14: Micrographs of undamaged control (A) and ruptured (B) tendon samples. The
ruptured tendons show longitudinal kinking on the fibril level, while D-banding remains intact
between kink sites. Scale bars are 500 nm (20,000X). Reprinted with modifications with per-
mission 117

Another model used to investigate this phenomenon is the bovine forelimb model,
which contains structurally proximate but functionally distinct tendons. The super-
ficial digital flexors (SDF) and common digital extensors (CDE) are energy-storing
and positional tendons, respectively. Mechanical overload and subsequent SEM of the
two revealed that CDEs were stronger and tougher than SDF's, and showed higher
levels of plastic damage on the nanoscale following rupture (Figure 1.18)%2. This
differential damage mechanism between these two tendons was confirmed using AFM
and second harmonic generation, where it was also found that individual flexor ten-
don collagen fibrils did not undergo extensive molecular damage while the matching

d!?!. These studies suggest that the formation of

extensor tendon collagen fibrils di
discrete plasticity kink sites may be dependent on the amount of crosslinking present
in tendon collagen, as flexor tendons are more heavily crosslinked than their extensor

tendon counterparts!®2.

1.8 Biomechanical Properties of Tendons

In order to transmit forces that allow for locomotion and movement, tendons must be

able to transfer energy from musculature to the skeletal system across joints in the
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Figure 1.15: SEM images of ruptured and subrupture overloaded BTT samples (A and B,
respectively). The linear kink density increased with increasing subrupture overload cycles. Scale
bars are 500 nm (20,000X). Reprinted with modifications with permission®.

body. During gait, potential energy is stored in tendons as strain energy. The recoil
of tendons following extension results in the conversion of this potential strain energy
into kinetic energy?®. With aging and disease, the ability to convert between strain
energy and kinetic energy decreases, and with this it is possible to infer changes in
the structure of the ECM in tendon 2%,

Many tissues in our bodies are primarily made up of collagen yet are viscoelastic.
This means that these materials can store some energy elastically while dissipating
some energy to heat. These properties can be attributed in part to the large water
content within tendons. The collagen within tendons is largely arranged in paral-
lel, and therefore tendons are anisotropic materials where the mechanical properties
are greater along their length than their width. As muscles transmit force through
tendons, extension occurs which results in the storage of energy within the tendon.
This is not a 100% transmission of energy, as 10-25% of the energy is dissipated due

to sliding of collagen fibrils?®. The origins of energy storage within tendons can be
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Figure 1.16: SEM images of damaged BTT samples (A) and damaged samples treated with the
protease, trypsin (B). Following enzymatic digestion, some material is missing around the kink
sites, confirming that denatured collagen was removed. Scale bars are 300 nm. Reprinted with
permission 117

attributed to changes of the triple-helical structure of collagen, stretching of fibre
bundles, and straightening of collagen crimp. Because they are viscoelastic, tendons
display hysteresis?®. The mechanical properties of tendons are dependent on strain
rate, where higher strain rates yield higher moduli and slow strain rates result in an

apparent decrease in stiffness. Collagenous tissues also have a high modulus, F, and
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remarkable toughness and strength!'4294%,

The exact shape of stress-strain curves of tendons depends on the nature of the sample,
but all share similar features. The non-linear stress-strain curves of collagenous tissues
have characteristic regions (Figure 1.19). The initial portion is called the toe region,
in which the collagen crimp is straightened out due by low forces?!. It is followed by
the linear region, in which the collagen molecules are aligned, elongated, and are able
to slip past each other. The slope of the linear portion of the stress-strain curve is
referred to as the elastic or tissue modulus, the magnitude of which depends on the
tendon in question and the exact nature of measurement. Once collagen fibrils begin
to fail, there is deviation from linearity and the point at which this happens is known
as the yield point. The portion of the graph after the yield point is known as the yield
region in which the collagen continues to fail until the failure point, which is typically
characterized as a sharp drop in load on the stress-strain curve?!. The stress and
strain at which failure occurs are known as the ultimate tensile strength and failure
strain of the tendon, respectively. Similar to the modulus, these parameters are also

affects by the strain rate.

Specifically, the yield region of the curve can plateau for an extended period of time
before failure denoting that there is significant plastic damage being incurred. Other
tendons may have a shorter yield region prior to the failure point, suggesting that the
sample is more brittle in nature. The shape of the stress-strain curve can therefore
be indicative of the mechanism of failure. For example, a tendon that is comprised
of many individual fascicles or fibres can show numerous small fractures before the
entire structure fails as a whole, which may indicate that some fibres are susceptible
to failure prior to other ones. Conversely, other tendons may not show individual
fractures, but rather fail as one whole unit, denoted by the presence of a single failure

point on the stress-strain curve.

The general class of tendon is important to consider when comparing mechanical
parameters of tendons. While all tendons are viscoelastic, not all tendons are equal in
terms of their mechanical properties!??. Positional tendons such as extensor tendons

in the hands and feet, generally require more speed and precision than energy-storing
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tendons such as the Achilles or patellar tendons, and therefore these ‘low-energy’

tendons are generally stiffer and less extensible!22123,

1.8.1 Measuring Mechanical Properties

Typically, the mechanical properties of tendons are obtained in wvitro by gripping
isolated samples in a tensile materials testing system, and measuring the resulting
load and deformation from which resulting stress (o) and strain (¢) can be calculated.
Ensuring that the sample is properly mounted within the system is important, as any
slippage will result in inaccurate measures of deformation. It is possible to test whole
tendons, however is it also possible to break the tissues down into smaller subsamples
(such as individual fascicles) to combat slippage issues. Along with traditional tensile
tests performed in materials testing systems, AFM can be used to measure mechanical

properties of individual collagen fibrils (lateral indentation stiffness)!!%114.116,

More recent studies of the mechanical properties of tendons have been using in vivo
methods, where an imaging modality (e.g. X-ray or ultrasound) is combined with vol-
untary muscle contraction and joint moments are calculated to determine the applied
load!?4. The forces are calculated from external moments, and it may be difficult to

125 gince it is possible that

determine which moment arms are acting on the tendon
a moment is resulting from the action of more than one tendon or muscle group!?¢.
Ultrasound imaging allows for the real-time tracking of deformation, but is limited
because it relies heavily on tracking anatomical landmarks such as the myotendi-
nous or osteotendinous junctions, which may be difficult to image simultaneously for
long tendons. More recent studies using ultrasound have used speckle tracking as a
new method of measuring tendon deformation, which not only bypasses the need for
anatomical landmarks but also allows for strain measurements within specific parts

of tendons 27128,
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1.9 Age-Related Changes in Structure & Mechanics of Tendon

While age-related changes can pertain to embryonic development, maturation, or pu-
berty, in this thesis aging will be defined as time after maturation, through adulthood,
into near-geriatric life. The rate of aging is not equal between species or even within
species, as it depends on many factors including lifestyle and genetics. There are
many changes that occur slowly over time, and it is important to consider life-span
when studying aging in non-human models. Life-span refers to both the relative and
absolute age of the species. Compared to most animals, humans have a long life span
in terms of absolute age, and as such there are many features that will be more pro-
nounced and evident than in common animal models have shorter absolute life spans
(e.g. mice and rats only live a few years) 1213, For example, the age-related increase
in glycation derived crosslinks is dependent on absolute age, and therefore old humans
will have higher amounts of AGE-crosslinks than old rats, dogs, or cattle!?®. This
difference in absolute life span, combined with differences in rates of aging!?° along
with varying species and tendon types makes it difficult to compare studies, and even
more difficult to draw firm conclusions regarding changes that occur within tendons

during aging.

1.9.1 Changes in Tendon Structure with Aging

Numerous age-related changes in structure have been reported in the literature, how-
ever many of these findings have been contradictory and were found to depend upon
the tendon in question. The relationship between tendon cross-sectional area (CSA)
and age remains unknown. Some studies have found that the CSA of animal and
human tendons increase, decrease, or do not change with age. The collagen con-

tent 68:131,132 133

, cellular content and volume density of cells'** within human and animal
tendons decreases with age. The morphology of fibroblasts and tenocytes change,
yielding elongated cells with higher nucleus-to-cytoplasm ratios'3*. The rates of pro-
tein synthesis within cells decreases, which contributes to the decrease in collagen

turnover rates'®*. The amount of water in tendons decreases from about 80% at birth
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to 30-70% in older populations!3134, It is thought that this dehydration partially
stems from an increase in enzymatic and non-enzymatic crosslinking that occurs with

ageid135,

Perhaps the most marked change in the structure of tendons is the presence of non-
enzymatically derived AGE-crosslinks, which as previously discussed have been shown
to, decrease the solubility of collagen, increase the thermal stability, and may increase

mechanical stiffness?%:51

. In vitro glycation of animal and human tendon has resulted
in increased collagen molecular spacing®%12¢137 further demonstrating that AGEs have
an effect on collagen structure. AGEs are related to both diabetes and aging, however,
their role on tendon collagen structure ¢n vivo remain unclear. In one study on human
toe extensor tendons, there was an age-related increase in collagen molecular spacing

138 Conversely, James et al. found that human

that was not seen in diabetic tendons
diabetic extensor tendons resulted in increased molecular spacing while age did not
play a role'3¢. Gautieri et al. found that human semitendinosus and gracilis tendons
had age-related increases in molecular spacing as measured by small-angle X-ray scat-
tering®?. The exact changes that occur to the structure and composition of tendons
with aging has not fully been elucidated, however the consensus is that aging results

in lower collagen content, decreased cellularity, and increased crosslinking.

1.9.2 Changes in Tendon Mechanics with Aging

The changes in mechanical properties of tendons that occur with aging have been a
topic of debate in the literature as they depend on the nature of the experiment. It is
difficult to compare mechanical overload experiments that were conducted in vivo as
compared to in vitro. Moreover, it is difficult to compare different tendon types (both
within and across species). The structural changes that occur within tendons will cer-
tainly have an impact on the resulting tendon, and there are many confounding results
seen in the literature. Additionally, age-related mechanical changes are difficult to an-
ticipate because the structural changes may counteract one another. In other words,
a lower collagen content and decreased molecular density may result in a decrease

in strength and stiffness, but an increase in enzymatic or non-enzymatic crosslinking
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(and resulting reduced water content) would have the opposite effect !4,

Animal studies have been performed on a variety of aging tendons and there is no

consensus on what changes occur with age. In rodent tendon models, increases!3%141

1427144 in the modulus and strength have been found to occur with

and decreases
age, while others have found no age-related mechanical changes'?:145146 The animal
models are limited with respect to the fact that most animals have a shorter life span
than humans and some of the tendons do not accurately represent a load-bearing

human tendon model.

Experiments using human tendons are often influenced by a variety of factors that
may influence tendon properties. Diet, lifestyle, physical activity, sex, and diabetic
status have all been found to affect the mechanical properties of tendons!?*. Further-
more, there is often missing information regarding the injury history or the preceding
degenerative changes that may be present!4’. I'n vitro human studies have been per-
formed on fresh-frozen cadaveric patellar tendons and some have found a reduction
in modulus with aging!4®, while others have found no changes!®°. Cadaveric hu-
man extensor tendons from the hands and feet also showed that age had no effect on

modulus 0.

Similar to the in wvitro studies, in vivo human studies have found inconclusive in-
formation about age-related mechanical changes in tendon. Studies have found that
the modulus remains unchanged®1°! or decreases with aging. Within aging patel-
lar tendon, there were no age-related differences found in mechanical properties®15!,
which correlates well with the in vitro studies!®!49. Age-related reductions in mod-

2 male

ulus have been found in in vivo studies of female vastus lateralis tendons!®
Achilles tendons!®3, and both male and female calf muscle tendon complexes!®*. The
in vivo studies suggest that any mechanical differences in tendon mechanics may be
due to changes in the force output from musculature that arise with age!®!. In any
case, the variable nature of the experiments in terms of sex and tendon type, makes
it difficult to draw any definitive conclusions regarding age-related changes in tendon

mechanics.
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Figure 1.17: SEM images of (A) unloaded, control BTT; (B) damaged BTT following overload
without cells; (C) damaged BTT cultured with U937 cells. These macrophage-like cells removed
matrix material surrounding damaged fibrils. Reprinted with permission119.
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SElexor.tendon:

11,000x magnification 500 nm

Figure 1.18: SEM images of ruptured bovine forelimb tendons. Extensor tendons show extensive

plastic damage in the form of discrete plasticity kink sites, while flexor tendons do not show the

same damage motifs. Reprinted with permission %2,

36



! . Failure Point
Toe Region ! Linear Region' Yield Region

L

Yield Point

Stress (o)

Strain (€)

Figure 1.19: Schematic of a typical stress-strain curve of a ruptured tendon, with the character-
istic regions labelled accordingly. E: Tissue modulus.
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Chapter 2

Thesis Rationale, Research

Questions & Objectives

2.1 Overview

Soft-tissue injuries are prevalent in our society, in both young and old populations,
yet the underlying failure mechanisms remain elusive. It is known that with age,

155,156 157

there is a steady decline in muscle strength and power, and in our bone mass ™",

all of which impact the ability of elderly people to remain mobile without sustaining

158 Despite understanding other components of the musculoskeletal system

injuries
and how their properties change with age, the changes that occur in human tendon
structure are not yet fully understood and effects of age on tendon mechanical prop-
erties remains inconclusive. While it has been determined that there are changes in
crosslinking which sometimes lead to changes in mechanical properties, the relation-
ship between these factors and features of failure has yet to be fully elucidated in an

aging human tendon model.
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2.2 Experiment I: Thermal Stability Assessment by HIT and
DSC

Rationale: Collagen is the main load-bearing component within tendons, and changes
in crosslinking have an effect on the thermal stability of the constituent collagen. It is
possible that changes in crosslinking will also have an effect on the tendon mechanical
properties and damage motifs present. While is is possible to quantify and identify

61,86 it is also possible to assess

crosslinks present within tendons by chromatography
collagen thermal stability by HIT and DSC, and parameters from theses tests can

serve as a proxy for amount and type of crosslinking present.

Objective: To determine the thermal stability of collagen within aging human sar-

torius tendons and assess the maturity of crosslinking present.

Hypothesis: The level and maturity of crosslinking in the human sartorius tendon
will increase with age in male, non-diabetic samples. This would result in an increase
in the denaturation temperature and the half-time of load decay during the isothermal
portion of HIT. For DSC, it is predicted that older samples will have higher onset and
peak temperatures than will younger ones, due to the increased presence of enzymatic
and non-enzymatic crosslinks. It is also thought that the FWHM will decrease with
age, meaning that the range of molecular stabilities within each sample will narrow
due to decreased remodelling in older tissues and increased crosslinking. The enthalpy
of denaturation is predicted to increase with age, due to the increase in energy needed

to break the thermally stable crosslinks present within the sample.

2.3 Experiment II: Analysis of Nanoscale Damage Motifs

Rationale: It has previously been shown that damage to tendons occurs on the

58,117,118

nanoscale , characterized by serial kinks that have a superficial layer of dena-

tured collagen on them®. These kink sites are potential recognition sites for wound

119

healing cells''?, and could help with triggering remodelling/repair within the body.
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Since discrete plasticity kinks are thought to prevent brittle fracture of tendons it may
disappear after reproductive age, as there would no longer an evolutionary benefit to
promote survival after genetic material has been passed on. To date, this mechanism
has only been looked at in rat and cattle models, but it is unknown whether this
mechanism represents what overload damage looks like within human tendons and

how this may change with age.

Objective: Determine whether the discrete plasticity mechanism works in humans
and if the previous models of tendon injury are predictive of what happens in a

maturing human tendon such as the sartorius tendon.

Hypothesis: The failure mechanism in tendon collagen changes with age - discrete

plasticity works until reproductive age (<40 years of age) and then disappears.

2.4 Experiment III: Mechanical Characterization

Rationale: The mechanical properties of aging tendons have been studied in a va-
riety of animal and human models, and the results are inconclusive. A systematic
study on age-related changes in mechanics within a human tendon model have not
previously been investigated. The rupture experiments proposed for this thesis will
be performed at 0.25%/s, as per the initial discrete plasticity study in bovine tail
tendons!!”. Moreover, the tendons will be ruptured to validate the models that have
previously been used. It has been found that the damage motifs present in low or
high load tendons depend on the degree of crosslinking, which in turn, depends on
the intensity of in vivo loading and age'%?. Furthermore, the amount of crosslinking
is expected to greatly influence the mechanical properties. It is possible that tough,
plastic tendons, with low crosslinking exhibit discrete plasticity damage!®?. There-
fore, it is of interest to compare the mechanical properties of the human sartorius
tendon to our existing animal models, and to previously established models of human
tendon injury (i.e. patellar and Achilles tendon). If the mechanical properties and the
crosslinking profile, and thus in turn the damage motifs, are similar to our previous

models, it would mean that they are a useful representation of damage in this specific
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human tendon. More importantly though, if they are different, this would establish

a new model for tendon injury in humans.

Objective: Characterize the mechanical properties of the sartorius tendon and es-

tablish a loading protocol for damage simulation.

Hypothesis: The mechanical properties of the human sartorius tendon will change
with age, in step with the predicted increase in crosslinking with increasing age. An
increased amount of crosslinking will cause stiffening of the fibres, and result in higher
strength and stiffness in older populations as compared to younger ones. As compared
to other tendons studied in the literature, the sartorius tendon will not be as stiff as
higher loaded tendons such as the Achilles and patellar tendon, but will be stronger

and stiffer than the well-established bovine tail tendons.
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Chapter 3

Materials & Methods

3.1 Tissue Collection

Sartorius tendons were collected from tissue donors at the Capital Health Regional
Tissue Bank. The sartorius muscle forms the lateral border of the femoral triangle
with the adductor longus and the inguinal ligament (Figure 3.1)1°%1%% and is respon-
sible for knee and thigh flexion, and hip abduction. The tendon itself is part of the
pes anserinus, a conjoined tendon that is a highly loaded complex made up of the

)61, The sartorius

tendons of the sartorius, gracilis, and semitendinosus (Figure 3.2
tendon itself is a flat, ribbon-like structure made up of well-defined fascicles'®®. There

is very little information about this tendon reported in the literature.

The tissue harvesting protocol was approved by the Capital Health Research Ethics
Board (CDHA-RS/2015-168 and renewals). The age, sex, and diabetic state of each
donor were recorded, along with the number of tendons (in some situations, only one
tendon from each donor was harvested) (Figure 3.3). Immediately following collection,
the tendons were wrapped in gauze soaked in isotonic phosphate buffered saline (PBS),
pH 7.4, containing a 1% solution of amphotericin B and a penicillin/streptomycin.
No more than 24 hours post-collection, the tendons were stored frozen at -86° C until

use.
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Figure 3.1: Anatomy of Lower Limb from Netter's Clinical Anatomy. Reprinted with modifica-

160

tions with permission

3.2 Tissue Dissection & Handling

For the purpose of this thesis, only male non-diabetic tendons with a matching con-
tralateral pair were used. To study how properties of the sartorius tendon change with
age, the samples were subdivided into young (< 40 years of age) and old (> 40 years of
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Figure 3.2: Anatomy of human pes anserinus where 1, 2, and 3 are the sartorius, gracilis, and
semitendinosus tendons, respectively. Reprinted with modifications with permission 6.

age) age groups. One tendon was used for the thermal analyses while the contralat-
eral one was used for mechanical testing and overload. Each tendon was carefully
dissected following thawing at room temperature and subdivided using microsurgical
scissors and a scalpel into samples for thermal crosslink analysis by DSC and HIT

testing, and for mechanical rupture and structural assessment using SEM.

Aside from variations in tendon morphology due to genetic factors, each tendon varied
with respect to its geometry and amount of other tissues present (i.e. fat, muscle,
cartilage), resulting in a heterogeneous pool of sartorius samples (Figure 3.4). Addi-
tionally, the structure of the sartorius tendon is different than that of most tendons
that have been previously used to study mechanics in our group !¢:101:102.116.117 " Boyine
tail and forelimb tendons are firm and uniform, while the human sartorius tendon is
flat, ribbon-like, and subdivided into many small individual fascicles with muscle fi-
bres often extending well into the belly of the tendon (Figure 3.5). After making an
incision into the connective tissue layer that surrounds the entire tendon, the whole
structure unravelled into smaller components, making it extremely difficult to create

uniform tendon subsamples. Troubleshooting was performed on unpaired male sam-
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Figure 3.3: Sartorius tendons collected from the Regional Tissue Bank, separated into age
groups, paired vs. unpaired tendons, sex, and diabetic state. All of the unpaired and diabetic
donors were male, and only one unpaired tendon was from a diabetic donor.

ples from old donors, since there was a larger population of these tissues and younger
samples were comparatively hard to come by. Fat and muscle were dissected away
to expose the underlying sartorius tendon fascicles, which were then subdivided into

sizes appropriate for each experiment (Figure 3.6).

For HIT, the tendon was cut into 6 mm long pieces (6 per tendon), while ensuring
that the bone and muscle attachments were not included. Each tendon sample was
mapped to keep track of sampling location, as it has been found in the literature that
the collagen within the tendon is not the same at the MTJ as it is at the QT J13:162,163
so it was thought that the two attachment sites may have varying thermal stabilities.
Intermediate thermally labile crosslinks were stabilized in half of the HIT subsamples
using sodium borohydride (NaBH,)4*1647166 (3 procedure which will be described
below). A small portion from the central portion of the tendon was excised and used to

create as many DSC samples (~10 mg each) as allowed by the geometry of the tendon.
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Figure 3.4: Sartorius tendons collected from ten different donors, showing the heterogeneous
nature of the population obtained from the Tissue Bank. Some tendons have a large amount of
fat and muscle present (e.g. bottom left), while others had portions missing following harvest
(e.g. bottom right). The variability in length and width of the tendon is visible even in this
small representative subpopulation.
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Figure 3.5: Sartorius tendon labelled with its respective attachment sites, prior to removal of
fat and muscle tissue.

Tendons that were to be mechanically ruptured were cut into sections that were ~45
mm-long and more or less 1-3 mm in width. The number of subsamples depended on
the tendon geometry, however at least five mechanical subsamples were created from

each tendon, with a central portion of the tendon being used as a control.

3.2.1 Cross-sectional Area Measurements

Following sectioning into longitudinal subsamples, the samples were suspended in
plane with a ruler, and photographs were taken using a camera at 0°, 90°, 180°, and
270° of rotation (Figure 3.6)''7. The photographs of each sample were analyzed with
ImageJ (Version 1.44; National Institutes of Health, Bethesda, MD) to determine
the thinnest diameter of each sample, three times at each rotational angle, and then
averaged (dp, doo, digo, and dazg, respectively). Once these were determined, the
minimum cross-sectional area (CSA) was estimated by using the formula for the

cross-sectional area of an ellipse!!”:

botp doyip -
2 2 '
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Figure 3.6: Sartorius tendon dissection and sectioning protocol. Contralateral tendons were used
for assessment of thermal stability (via HIT and DSC) and nano-scale damage motifs with SEM
following mechanical rupture
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where r is the radius as measured from the photographs from each angle of rota-
tion. This cross-sectional area was used to calculated the stress values from the load

readings following mechanical overload.

3.3 Hydrothermal Isometric Tension (HIT) Testing

HIT testing was performed on male, non-diabetic, and non-overloaded tendon sam-
ples (n=12 donors with six HIT samples per donor) from young and old age groups
(nyoung=6 and nyq=6) to determine the denaturation temperature and maturity of
crosslinking. Testing was done using a custom-made multi-sample apparatus, as pre-
viously described®'. For each donor, the tendon was split up into six subsamples,
three of which were stabilized using NaBH,, while the other three served as control

samples.

3.3.1 Sodium Borohydride (NaBH,) Stabilization

Sodium borohydride was used to reduce crosslinks in tendon subsamples?0:164-166

as per Wells et al.3. Briefly, stabilized samples were placed in 100 ml of borate
buffer (pH 9.0) containing 0.1 mg/mL NaBH, while control samples were placed in
100 ml of borate buffer. Both control and borohydride-treated samples were placed
on a shaker for 15 minutes at 4°C, after which time the solutions were removed,
and replenished with fresh borate buffer (control) and fresh borate buffer containing
NaBH, (treated samples). This washing procedure was repeated for a total of four
times, and was followed by a 15 minute rinse in PBS at 4°C for both the control and

treated samples.

3.3.2 Experimental HIT Protocol

The samples were gripped at a constrained length and hung onto rigid rods attached

to load cells. A preload (60 g) was applied to allow for stress relaxation to occur over a
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15 minute period prior to beginning the test. Load, temperature, and time data were
collected at 5 Hz using a custom-written LabVIEW program (version 7.1, National
Instruments). This apparatus was placed in a distilled and deionized water bath that
was gradually heated (~ 4°C/min) to 75°C. At this temperature, the rate of heating
was decreased (~ 2°C/min) until the temperature reached 90°C. At the Ty, there
is enough energy present within the system to break the hydrogen bonds that hold
the collagen triple helix together. At this temperature, there is an energetic driving
force for the triple helix to transition to a random coil which would cause a shrinkage
of the structure™8%. In HIT, because the samples are isometrically constrained, this
transition is does not occur but is captured as an increase in load. During the ramp to
90°C, thermally labile crosslinks begin to hydrolyze and depending on the maturity of
the crosslinks, the sample may fail #4164, During the isothermal portion of the test,
the peptide backbone of collagen molecules will gradually hydrolyze, resulting in load

69.87.90.,167 = Sodium borohydride treatment stabilizes these thermally

decay over time
labile crosslinks, allowing for an assessment of total crosslinking present in samples by

comparing samples that failed before and after 90°C and comparing t,/, values.

3.3.3 Data Analysis

The load, temperature, and time data were analyzed using Microsoft Excel and
custom-written MATLAB codes (R2017a, MathWorks Inc.). The denaturation tem-
perature (T;) was determined to be the temperature at which there was a measurable
increase in load, corresponding to the helix to coil transition characteristic of collagen

denaturation (Figure 3.7).

Typically during the temperature ramp before denaturation, there is stress relaxation
occurring in the sample and this is seen as a decrease in load prior to the denaturation
temperature on the load versus temperature graph®'. This relaxation did not occur
in all sartorius tendon samples. Rather, some samples showed an increase in load
prior to the onset of denaturation. To quantify this increase in force under isometric
constraint, the fractional change in load before denaturation (F'R;) was calculated as

per Equation 3.1 (where Loadr, is the load at T; and Loadgr is the load at room
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Figure 3.7: Representative load versus temperature plots from HIT testing of old and young
samples. The denaturation temperature, T, is shown as the first temperature where there is a
measurable increase in load.

temperature).

_ Loadr, — Loadpgr

Fhy Loadpr

(3.2)

Following the onset of denaturation, it is expected that the sample with have an
increase in force under isometric constraint as described above 5792, This energetic
driving force towards contraction will result in an increase in load during the ramp
from the Ty to 90°C. This was quantified by calculating the fractional change in load
between the two points (termed F'R,) per Equation 3.2 where Loadgy, is the final
load reading prior to the beginning of the isotherm.

Loadgnq — Loadr,
Loadr,

FRy = (3.3)

Le Lous and Allain initially described the load decay in the isothermal portion of HI'T
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to be a Maxwellian exponential decay resulting from the hydrolysis of the peptide
backbone in collagen (Equations 1.3 and 1.4)%°. The half-time of load decay, t;/5, can
be calculated by:

The value of k was determined by calculating the slope over the linear portion of the
In% versus time plots®%1%8 obtained over the last 6000 s of the HIT isothermal
load data®, where L(t) is the load at any given time, and the L. is the peak load.
While load decay was expected to occur in all collagenous tissues, it was found that
isothermal contraction occurred in some samples. For sartorius tendon samples that
did not display load decay, it was not possible to calculate ¢,/ values. The proportion

of subsamples with and without load decay was determined for each donor.

3.4 Differential Scanning Calorimetry (DSC)

DSC was performed on male, non-diabetic, and non-overloaded tendon samples (n=13
donors with at least five DSC samples from each) from both young and old age groups
(Nyoung=06 and nga=7) to determine the thermal stability of the collagen present.

3.4.1 Testing Protocol

DSC was conducted using a TA Instruments Q-200 differential scanning calorimeter
(TA Instruments, New Castle, DE), as previously described!®!. Calibration of the
system (both temperature and heat flow) was done using an Indium standard. Tissues
were tested following immersion in isotonic PBS and subsequent blotting to remove
excess moisture. They were then weighed and placed in aluminum DSC pans ensuring
maximal contact area with the pan. The DSC pans were hermetically sealed and run
against an empty reference pan. Equilibration was performed at 40°C followed by
scanning at 5°C/min to 90°C (data recorded at 5 Hz)'%'. Following DSC testing, the
aluminum pans were punctured and placed in a vacuum desiccator for 24 hours. The

dry weight was measured and the water content of each sample was calculated.
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3.4.2 Endotherm Analysis

Representative DSC endotherms for three different donors are shown in Figure 3.8.
The endotherms were analyzed between 60°C and 85°C using Universal Analysis 2000
software (version 4.5A, TA Instruments) for onset and peak temperatures (7, and
Tpear; respectively) as measures of thermal stability. In addition, full width at half
maximum (FWHM) (a measure of the distribution of thermal stabilities) and specific
enthalpy of denaturation (Ah) (a measure of amount of energy required for phase
change) were extracted®. The T, is the temperature at which the least thermally
stable collagen molecules begin to denature. On the endotherm, this parameter was
determined as the intersection of the tangent of the endotherm’s downward slope
and the baseline preceding the endotherm. T, is calculated as the temperature
of maximum heat flow. The Ah, or the area contained within the endotherm, was
calculated initially using wet sample weight, and corrected for water content following
drying. The FWHM is a parameter used to describe the distribution of thermal
stabilities of all of the collagen molecules within each sample®®. It was calculated as
the difference between two temperatures on either side of the endotherm, where the

heat flow was halfway between the baseline and the maximum.

In addition to the parameters explained above, the DSC endotherms were also ana-
lyzed using a custom-written MATLAB program (R2017a, MathWorks Inc.) for the
temperature at which the denaturation process begins (i.e. the true onset tempera-
ture). Previously, this has been taken as the extrapolated value of T, however, this
value is often calculated by the software to be higher than the true onset of denatura-
tion®2. As such, the true onset temperature was determined to be the temperature at
which the heat flow (F') begins to deviate from the baseline. This temperature, herein
referred to as the deviation temperature (Tg.,) was determined by taking the first
derivative of the DSC endotherm. Tj., was the first temperature at which dF'/dT <
-0.005. In theory, the HIT T} should not precede Ty, in DSC, so to confirm that this
was not the case, the average T; as determined by HIT was plotted on each endotherm
(Figure 3.9).
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Figure 3.8: DSC endotherms from three different donors aged 20, 40, and 60 shown in red, blue,
and green, respectively.
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Figure 3.9: DSC Endotherm with HIT T; marked and Ty, represented by the dotted line.
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3.5 Mechanical Rupture

Samples (n=12 donors; nyeune=5 and nyq=7) with at least 5 subsamples for each donor
were mounted into a servo-hydraulic materials testing system (458-series, M'T'S; Min-
neapolis, MN) between two diamond-coated waveform grips. The position of the
actuator was measured with an LVDT and the load with an MTS 1-kN load cell.
To ensure no slippage occurred during the test, small pieces of PBS-moistened cloth
were placed between the grips. Following mounting, one actuator was retracted, in-
creasing the distance between the grips until a small force (~0.5 N) was registered.
Then, intergrip length was measured (~15-20 mm) while the sample was under ten-
sion. The sample was periodically moistened with drops of PBS while the test was
occurring. A custom-written LabVIEW program (version 6.1, National Instruments)
controlled the position of the actuator while measuring the resulting load (N), dis-
placement (mm), and time (s). Initially, each sample was pulled to rupture at a
strain rate of either 0.1%/s (to induce as much damage as possible) or 1%/s (previ-
ously reported by %-94191) " Tn order to be consistent with the initial BTT study where
discrete plasticity kinks were seen, a strain rate of 0.25%/s was chosen!”. A video
camera (OEM-Optical HD133DV HD; OEM-Optical, Danville, CA) with a Zoom 7000
macro video lens (Nativar Inc., Rochester, NY) and video capture board (Intensity;
Blackmagic Design, Burbank, CA) was used to monitor each test to confirm complete
fascicle rupture of each sample. Following rupture, each sample was removed from

the grips, and the gripped ends were removed (~10 mm per gripped side).

Calculation of Mechanical Parameters

Microsoft Excel and a MATLAB code (R2017a, MathWorks Inc.) were used to extract
stress, strain, tissue modulus (£, ultimate tensile strength (UT'S), and the strain at
UTS (eyrs) (Figure 3.10). The stress, o (MPa), was calculated using the load (N)

and the cross-sectional areas (mm?) (Equation 3.4).

B Load
- CSA

o

(3.5)
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E = slope

Stress (MPa)
o

0 10 20 30 40
Strain (%)

Figure 3.10: Stress-strain curve of ruptured sartorius tendon with mechanical parameters labelled.

The strain, €, was determined using the initial sample intergrip length ([,) and the

displacement (Al) (Equation 3.5).

€= % (3.6)

The tissue modulus was calculated from the slope of the steepest linear part of the
stress-strain curve and the UTS was calculated to be the maximum load reached by

the sample.

3.6 Scanning Electron Microscopy

3.6.1 Sample Preparation and Imaging

Ruptured samples were fixed in a 2.5% glutaraldehyde (in isotonic PBS, pH 7.4) so-

lution overnight, then bisected longitudinally, to expose the interior!!”. After rinsing
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three times with distilled/deionized water, dehydration of the samples was done in
graded ethanol by performing short rinses in ethanol solutions as follows: 75%, 90%,
95%, and 100%. Once the samples placed in 100% ethanol, they were dried in lig-
uid CO, using a critical point dryer (Leica EM CPD300, Wetzlar, Germany). The
fully dried samples were mounted onto aluminum stubs using carbon tape, ensuring
with a dissecting microscope that the cut surface was facing upwards. The samples
were coated with gold-palladium for 1 minute using a current (I) of 30 mA (Leica
EM ACE200, Wetzlar, Germany). The cut side of each sample was visualized using
magnifications up to 200,000X using an S-4700 SEM (Hitachi, Chula Vista, CA) oper-
ating at an accelerating voltage of 3 kV and a current of 15 pA!'17. To assess damage

present, each sample was visualized a minimum of three times along it’s length (Figure

3.11).

3.7 Statistical Analyses

Statistical analyses were performed using JMP (Version 12.1.0, SAS Institute Inc.,
Cary, NC) with p values < 0.05 considered to be statistically significant. Outliers
were removed if there was a methodological error or if data points fell outside of this
range: (25th + 1.5 X (interquartile range)) to (75th + 1.5 X (interquartile range)).
Values are expressed as averages plus or minus SD. Following removal of outliers, a
Shapiro-Wilk test was performed to test for normality. Two T} outliers were removed,
seven t1/, outliers were found, and a total of 13 DSC runs were omitted from analysis
as the pans were not completely sealed. One donor was considered an outlier in terms
of the Topeer and Tpeqr values. For the mechanical data, one modulus outlier, three

UTS outliers, and two failure strain outliers were removed.

All of the quantitative measures except for Ah values were normally distributed,
as per the Shapiro-Wilk test. For the T; values, t-tests were used to compare the
means of borohydride-treated and control samples. The effect of donor age, sampling
location, and borohydride treatment on the T; as measured by HIT was done using

a three-way ANOVA. Least-squares linear regressions were performed on the effect of
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Figure 3.11: Low magnification overview of an SEM sample with sampling locations indicated.

donor age on the T4, Tonset, Tpeak, Ah, and FWHM, and tested for significance using
a t-test. Differences in the proportion of samples with load decay in the isotherm
between age groups were tested for significance using a y2-squared test. The likelihood
of Ty preceding Tye, was also tested using a y2-squared test. The effect of strain
rate and age on the mechanical parameters (modulus, UTS, and failure strains) were
analyzed using a 2-way ANOVA. The age-dependence of the mechanical parameters

was assessed using a least-squares linear regression.
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Chapter 4

Results

4.1 Sartorius Tendon Anatomy is Heterogeneous and
Mechanical and Thermomechanical Behaviours are

Atypical

The sartorius tendon is flat, ribbon-like and fans out near the attachments on either
side resulting in a non-uniform structure. The tendon is quite fascicular in nature, and
upon incision into the epitenon, the entire structure begins to unravel, suggesting that
there may be more levels of hierarchy than are visible to the naked eye — a feature
perhaps unique to this tendon. There was a great deal of inter-person variability
present within the studied population in terms of tendon length, which was a limiting
factor for number of samples that could be tested using the outlined methodology.
Not only were there variations in length, but also in width, and amount of excess
tissue present. Sartorius muscle tissue often extended along the length of the entire
tendon, which may have had an impact on the properties of the collagen within the
tendon. While it was possible to excise this excess tissue, on occasion it was difficult
to tell where exactly the tendon mid-substance was located, posing a multitude of
dissecting problems and additional variables. Some tendons showed crosshatching of

fascicles over the mid-substance of the tendon, and appeared as a mesh network of

59



fascicles, visible with the naked eye, rather than the uniform longitudinally arranged
tendon structure that has been well characterized in previously used tendon models.
It is possible that this is present because the sartorius muscle is involved in abduction
and some rotation along with flexion. This tendon is involved in many locomotive
motions, and therefore it is possible that uniaxial loading does not fully represent its

in vivo loading environment.

There was a great deal of troubleshooting that went into determining how to best
handle this tendon. It was difficult to create uniform samples for each experiment, in
part due to the unique anatomy of the tendon yielding a heterogeneous population of
samples. Since the sartorius tendon has a variable tendon belly length, but is relatively
short when compared to other tendons, there was little margin for dissection error
either during harvest or experimentation. Additionally, the relatively short tendon
length brought into question whether or not the myotendinous and osteotendinous
junctions impacted the tendon responses during thermal stability tests and mechanical

rupture.

While all tendons are comprised of fascicles, this tendon has very well-defined fascicles
which fail individually bundle by bundle prior to the failure of the entire structure
(discussed further in Section 4.3). The response of this particular tendon following
HIT was also unique (Sections 4.2.1 and 4.2.2). The typical dip in load (isometric
relaxation) prior to denaturation® was absent in most HIT thermograms, regardless
of age. Additionally, the 90°C isothermal portion did not show load decay in all sam-
ples; indeed, many samples showed an increase in load over the five hour isothermal

period.

4.2 Sartorius Tendon Collagen is Heavily Crosslinked

The results from thermal stability analysis by HIT and DSC show that the constituent
collagen within the human sartorius tendon is heavily crosslinked, with all denatura-

tion temperatures (T, Tonset, and Tpeqr) being higher than those previously been seen
in bovine models (Table 4.1 and 4.2). Additionally, from HIT it was found that all
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of the human sartorius tendon samples survived past 90°C, well into the isothermal
portion of the experiment. This is beyond the temperature range where thermally
unstable crosslinks would hydrolyze, and the survival to 90°C suggests that many or
most of the crosslinks present are thermally stable. This was confirmed with NaBH,4
treatment, which had no effect on any of the HIT responses, suggesting that all of
the crosslinks present are thermally stable in nature. While the relationship between
thermal stability and age will be discussed in a later section, some of the other ob-
served results further demonstrate that the crosslinking is quite dense in sartorius

tendon collagen.

Table 4.1: Average values of Ty (°C) calculated from HIT.

Age ‘ Average Ty (°C)
20 68.03 + 0.49
21 68.38 + 0.39
24 66.82 + 0.33
34 66.28 + 0.31
38 66.60 + 0.73
40 66.50 + 0.43
48 65.68 + 0.33
50 65.40 + 0.09
52 66.22 + 0.50
57 65.40 + 0.53
60 65.77 + 0.50
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4.2.1 Rise in Force Under Isometric Constraint Occurs Prior to Denaturation

The shape of the HIT curves revealed an interesting phenomenon. The typical dip in
load that occurs prior to denaturation (that corresponds to stress relaxation within
the sample)®! | is absent in many of the human sartorius thermograms. This indicates
that there is some energetic driving force towards contraction that is happening within
the sample, prior to the denaturation event. The process of denaturation will indeed
result in an increase in load on HIT, however a steady increase in load prior to the
onset of denaturation is puzzling. Changes in load before and after denaturation (F'R;
and F'Rs, respectively) were calculated in an attempt to quantify this phenomenon.
These parameters had a relationship with one another that was nearly significant
(p=0.0556) (Figure 4.1), suggesting that it is possible that if the sample demonstrates
an increase in load before denaturation, it may not have as large an increase in load

post-denaturation.

4.50
4.00
3.50 . . =
3.00

2.50 -

Average FRo

2.00
1.50

0.00
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Average FR:

Figure 4.1: The fractional change in load was used to quantify the rise in force under isometric
constraint present within the sample before and after denaturation. There was no correlation
between the two parameters, suggesting that there is no ‘net’ amount of force that can be
exerted by the sample under isometric constraint.
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4.2.2 Contraction Occurs During Isothermal Portion of HIT

Typically, the isothermal data from HIT is used to calculate the half-time of load
decay. In human sartorius tendon samples, it was found that the load did not decay
in all samples (Figure 4.2), but that in some cases isothermal contraction occurred.
This suggests that, despite hydrolysis of the peptide backbone, there is a network
of dense crosslinking present within these samples. The ¢/, was calculated for the
samples where load decay occurred by measuring the slope of the linear portion of
the En% versus time plot over the last 6000 s of the HIT isotherm. Using a 3-way
ANOVA, it was found that the ¢,/ was unaffected by age, borohydride treatment
and sampling location (p=0.8298, 0.6160, and 0.7843, respectively). The average
t1/2 values can be found in Table 4.3, and while these values alone may not be very
informative, the inability to calculate ¢,/, data for all of the samples is itself a useful

piece of information, as it is not found in previous HIT studies of other tendons.
0.00

~0.02{ 7
-0.04 -

—0.06 -

In “—L-I'I Lmax
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-0.12 A
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0 3000 6000 9000 12000 15000 18000
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Figure 4.2: The slope of the HIT isothermal plot (In% versus time) was calculated over
the last 6000 seconds of the experiment to determine the presence or absence of load decay.
Two representative plots showing positive (blue) and negative (red) slopes are shown above,
corresponding to isothermal contraction and relaxation, respectively.
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Table 4.3: Values of ¢ 5, in hours, calculated where possible for samples where load decay was
present.

Age | Average t,/; (hrs)
20 35 + 24
24 77 + 49
29 61 + 42
34 29 + 28
38 107 £ 145
40 79 + 43
48 35 + 43
50 58 + 65
52 40 + N/A
60 31 £ N/A

4.2.3 Structural Changes in Aging Tendon

While the results mentioned above confirm that the thermal stability of sartorius ten-
don collagen is high in all donor tendon samples (Table 4.1 and 4.2), the relationship
between collagen thermal stability and donor age is unclear. Using a 3-way ANOVA,
it was determined that borohydride treatment and sampling location did not have
an effect on Ty (p=0.1519 and 0.8797, respectively), but the age of the donor had a
significant effect (p<0.0001). Using a least squares linear regression was found that
the T; as measured by HIT decreases with age (p = 0.0004)(Figure 4.3). This may
indicate that the tendon collagen is more constrained against molecular slippage and

uncoiling in young age, as compared to old age.

The thermal stability of the collagen was found to increase with age, as measured by
Tonset (p=0.0251) from DSC (Figure 4.4A). The Tjeqr values had a relationship with
age that was nearly significant (p=0.0653), indicating that the peak heat flow may
have a relationship with age (Figure 4.4C). The shape of the DSC endotherms did

change with increasing age, and was captured with the FWHM parameter, which
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Figure 4.3: HIT testing was used to determine the denaturation temperature, Tg, which was
used as a proxy for determining thermal stability of tendon collagen. The average values of T}y
(°C) from 12 donors were calculated and found to decrease with increasing age (years). This
suggests that older tendon collagen is less constrained against uncoiling of the triple helix, and
molecular slippage than young tendon collagen.

showed that there is a less heterogeneous collagen population present in old age
(p=0.0201)(Figure 4.4B). The specific enthalpy of denaturation did not change sig-
nificantly with age (p=0.4833)(Figure 4.4D).
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Figure 4.4: A variety of parameters were extracted from the endotherm data from DSC. The Tynset Was found to increase
with age, suggesting that the thermal stability increases over the span of four decades. The relationship between FWHM
and age was significant, showing that the range of thermal stabilities of tendon collagen decreases linearly with age. The
relationship between Tpeqr and donor age was nearly significant. The enthalpy of denaturation, Ahgyy, Was not significantly
affected by donor age. A: Tonser (°C) versus age (years); B: FWHM (°C) versus age (years); C: Tpear (°C) versus age (years);
D: Ahgry (J/g) versus age (years).



It is known that increases in crosslinking can increase thermal stability via dehydra-
tion®3. Despite potential increases in denaturation temperature, as seen by DSC, there
was no relationship between the average water content and age (p=0.5909) (Figure

4.5). The average water content within the human sartorius tendon was determined

to be 70.5 + 5.6% (n=12).

80 .
75 .
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65

60

Average Water Content (%)

0 20 30 40 50 60
Age (years)

Figure 4.5: Water content was calculated for each DSC sample. The average water content (%)
did not have a significant relationship with age (years).

In an attempt to further understand the relationship between thermal stability and
age, the true onset temperature (Tjey) from DSC was calculated for all samples and
plotted alongside the corresponding T; from HIT on each endotherm. Interestingly, it
was found that the the likelihood of T; (as determined by HIT) preceding Ty, (from
DSC) was different between the two age groups (p<0.0001) (Figure 4.6). A y?-square
test showed that there is a greater probability of T; preceding Ty, for the old age
group (p=0.0004), implying that there is some age-related structural change within

the tendon collagen molecules that is seemingly detectable by HIT prior to detection
by DSC.

As mentioned above, the sartorius tendon samples did not always exhibit load decay
during the isothermal portion of HIT, suggesting that the tendon is highly crosslinked.
When the phenomenon was initially observed, it was thought that that younger sam-
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Figure 4.6: The true onset of denaturation was determined using DSC by calculating the tem-
perature at which the initial deviation from the heat flow baseline began. This parameter was
defined as Tye, and plotted alongside the corresponding Ty from HIT on each endotherm. The
likelihood of Ty, preceding T,; from HIT was higher in the old age group than the young one,
suggesting that there is some age-related change in the tendon collagen that is detected by HIT
before DSC.

ples (that would be less crosslinked) would exhibit load decay; however it was found
that isothermal contraction was not a feature related to age. The proportion of sam-
ples with and without load decay is shown in Figure 4.7. A 2 test showed that there
was no relationship between age and the presence of load decay (p=0.2554).

The increase in force seen under isometric constraint prior to and after denaturation
was also considered to be something related to crosslinking, which might increase with
age. The two calculated parameters, F'R; and F'R,, also did not vary with increasing
age (p=0.2446 and 0.9314, respectively)(Figure 4.8). Together, these result further

support the notion that sartorius tendon collagen is heavily crosslinked across all ages.

Mechanical Properties of Sartorius Tendon Do Not Change With Age

Interestingly, despite some age-related changes in tendon collagen thermal stability
(i.e. crosslinking and/or packing) that were seen with HIT and DSC, the mechanical
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Figure 4.7: Surprisingly, load decay was not present in all tendon samples. Each HIT experiment
used six samples from a single donor, and the effect of age on the presence or absence of load
decay was determined. The presence and absence of isothermal load decay by donor age are
indicated by white and red blocks, respectively. It was found that there was no relationship
between the age of the donor and the presence of load decay during the isothermal portion of

HIT.

properties of the sartorius tendon did not change with increasing age. Prior to using
the final strain rate of 0.25%/s to rupture the tendons, different strain rates (0.1 and
1.0%/s) were used to rupture the tendons in an attempt to discern differences in the
amount of damage present (which will be discussed in the following section). The
effect of strain rate and age on each of the extracted mechanical parameters was done
using a 2-way ANOVA and it was found that strain rate had an effect on the tissue
modulus and UTS (p=0.0071 and 0.0038, respectively), but no effect on the strain at
the UTS (p=0.6448). Using only the data from samples ruptured at 0.25%/s (n=9
donors) (since the sample size for the other strain rate was small) age was shown to
have no effect on the tissue modulus or the UTS (p=0.4758 and 0.8822, respectively)
(Figure 4.9A and B). Age also did not have an effect on the strain at the UTS (n=11
donors, p=0.0999)(Figure 4.9C).
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Figure 4.8: The fractional change in load was used to quantify the amount of force the samples
could exert under isometric constraint before and after denaturation. These parameters, F'R; and
F'R5, respectively, were found to have no significant relationship with age (A and B, respectively).
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Figure 4.9: The tissue modulus, ultimate tensile strength, and strain at the ultimate tensile strength were obtained from
each mechanical rupture performed at a strain rate of 0.25%/s. Averaged values of tissue modulus (MPa), UTS (MPa), and

strain at UTS (%) were plotted versus age (years) (Panels A, B, and C, respectively). None of the extracted parameters was
found to change with increasing age.



4.3 Failure of Individual Components Occurs Prior to Com-

plete Failure

The fascicular and ribbon-like structure of the sartorius tendon was visible within the
subsamples that were loaded into the MTS for rupture. During the loading to rupture,
the videos that were captured revealed that individual fascicles or fibres were failing
prior to the failure of the entire sample. The rupture of these components occurred
as a series of pops or snaps that were audible during overload, suggesting that the
fracture was an elastic recoil. The videos revealed elastic recoil of the individual

components as they fractured, implying that this was an elastic process.

This serial ‘snapping’ of smaller tendon components was also evident in the corre-
sponding stress-strain curves that were constructed using the load and displacement
data following mechanical rupture. From these stress-strain curves (an example can
be seen in Figure 4.10), it is evident that sartorius tendon samples do not undergo one
fracture event. Instead, the individual fascicles of the tendon sample fail in sequence
as the displacement is increased, until there is no mechanical integrity remaining
within the sample. The notches on the stress-strain curve correlate with the sequen-
tial rupture as seen in the corresponding video, confirming that failure does not occur

as one event, but rather as a cumulative failure.

4.4 Sartorius Tendon Does Not Show Failure via Discrete

Plasticity

One of the main goals of this thesis work were to investigate the possible presence
of discrete plasticity in a model human tendon. Contrary to what was expected,
discrete plasticity kinks did not form in this particular model, regardless of age or
strain rate used. There was no evidence of the documented repeated nanoscale kink-
like structures along the length of collagen fibrils. Initially, two different strain rates

were used (0.1 and 1.0%/s) in an attempt to incur as much tendon damage as possible.
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Figure 4.10: Mechanical rupture of sartorius tendon samples revealed an interesting phenomenon.
Rather than breaking as one large bundle, individual fascicles were rupturing bundle by bundle
prior to the failure of the entire tendon subsample. A representative stress-strain curve of
a ruptured sartorius tendon sample is shown above, demonstrating that all of the fascicles
contribute to the mechanical integrity of the sample. This was further confirmed with a video
capture system that clearly shows individual fascicles snapping in sequence.

After determining that both strain rates did not affect the type or amount of damage
seen, a final strain rate of 0.25%/s was chosen to match the initial discrete plasticity

studies in bovine tendons!!?.

Early on, it was noted under SEM that nanoscale
damage motifs were quite rare, irrespective of strain rate. Moreover, it was noted
that the native structure of non-ruptured sartorius tendons was quite disorganized at

low magnifications, yet contained properly packed and aligned collagen fibrils.

4.4.1 Control Samples Show D-Banding and Tight Packing on Fibril Level

Non-ruptured control samples of human sartorius tendons appeared disordered at low

magnifications, yet contained longitudinally aligned collagen fibrils that were orga-
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nized into individual bundles. D-banding was present in all of the control sample
collagen (n=13), and representative micrographs from control tissue can be seen in
Figures 4.11C and 4.12B and D. The collagen fibrils within these samples also showed
registry of the D-bands with neighbouring fibrils, indicating that there is tight packing
of fibrils bundles present within native sartorius tendon collagen (best seen in Figure
4.12D). The diameters of the fibrils in control samples appeared relatively uniform

and there was no exposure of substructure (i.e. subfibrils) present.

Sartorius tendon collagen at high magnifications clearly shows proper packing and
collagen structure; however, the tendon appears disorganized at low magnifications.
There appear to be many bundles of fibrous material without apparent organization,
laid down as a mesh network or in twisted bundle configurations. Other areas ap-
peared to have matrix components that were not collagenous. These matrix materials
are finer than collagen fibrils, lack D-banding, and appear to connect collagen fibrils

and fibril bundles in certain areas.
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SEM Reveals Failure of Fibre Bundles and Unique Damage Motifs

As mentioned above, the control samples revealed that the ultrastructure of the sar-
torius tendon is comprised of many different components and is heterogeneous in
nature. Following rupture, the disorder within the sample increased, with the matrix
materials being more loosely packed and unraveled. In comparison to age-matched
control samples, there appeared to be an even higher level of disorder and disorgani-
zation (Figure 4.13 and 4.14). The bundles of collagen appeared frayed or unraveled,
and the lateral spacing between fibrous elements was larger. Within some samples,
it appeared that the bundles of collagen fibrils had recoiled following rupture, further
supporting the notion that the rupture of the sartorius tendon fascicles was an elastic
recoil process (Figure 4.14 A and B). Within these areas of disorder, the collagen
fibrils themselves typically still showed D-banding, however there were certain areas

where changes in nanoscale structure were evident.

Nanoscaled damage within human sartorius tendons was visible in the form of kinks
or turns within collagen fibrils. The collagen within the kinks typically did not have
D-banding present, but D-banding was preserved on either side of the kink itself
(Figure 4.15). In some samples, there was propagation of kinks along the length of the
fibril along with propagation widthwise through a bundle of fibrils (Figures 4.15 and
4.16). Despite damage being present, neighbouring fibrils remained in close proximity
with D-banding remaining in registry neighbour-to-neighbour (Figures 4.15 and 4.16).
Both within damaged fibrils and within neighbouring fibrils, there was exposure of
some substructural elements (Figure 4.17D). Examples of this type of damage can be
seen in Figure 4.17D (within kink site) and in Figure 4.16D (along the length of a
fibril). Along with the kinks, other motifs were also visible. Within some samples,
twists were present, accompanying the kink sites. In other samples, there were hairpin
turns, twists, knots, and loops found on the fibrillar level (Figures 4.17A-C, 4.18, and
4.19). Some of these local structural disruptions did propagate through the length of
fibrils, but the density of the damage was not high and did not typically propagate
past 100 microns along the fibril’s length.

Interestingly, there was no evidence of discrete plasticity damage in human sartorius
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tendons. While there were local, discrete sites of damage present on the nanoscale, the
type of damage seen was not the same. There were certain characteristics that were
shared with discrete plasticity, but the amount or density of nanoscale damage was
far lower in the human samples than in the bovine models where the mechanism was
first seen. Similar to discrete plasticity, there was propagation of kinks across neigh-
bouring fibrils and local, discrete sites of damage, with D-banding being preserved

between.

In contrast to what was expected, there was also no change in the type and amount
of damage present with increasing age. It was expected that the discrete plasticity
mechanism would disappear in older populations but that it would be present in
younger populations. There was, however, no evidence of this type of damage. Even
the damage that was present occurred infrequently and the main feature seen in
damaged tendons was the unraveling and disordering of higher scale structures such
as fibril bundles. The damage that was seen on the nanoscale, while interesting, was
scattered, not nearly so widespread as was expected. There was also no single motif

that was characteristic of a certain age group.
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Figure 4.15: Nanoscale damage can clearly be seen above in the micrographs from a ruptured
tendon from a 20-year old donor. There are local sites of damage within collagen fibrils, that
appear to occur at discrete sites, potentially along a plane through a bundle of fibrils (A). The
collagen fibrils have kinks and turns that form while the collagen on either side remains intact,
as indicated by the presence of D-banding. Within the kink sites there appears to be exposure
of some substructure, suggesting that the collagen fibrils may be unwinding locally to expose
subfibrillar structure. The fibrils remain in close proximity with one another, despite the presence
of damage.

82



‘Aem awos ur Suipuimun si 21n3onJ3s ay3l ‘Suipueq-q 12ejul audsep eyl Sunse83ns ‘Yy13us| sy Juoje suoilenIs yim
[uq1y usBe|jod e smoys osje  |pued jo ya| ay ‘(q) Ajoso|2 asow pardadsul usym pafewepun pue payded Alsadoid suiewau
s|dwes ay3 o uoipod adie| e sym ‘(H) 9|qisia si uoneedoid yuiy pue uoneziuediosip ‘uonedyiuSew mo| e 3y ‘(g) e
urewsJ suoipiod Jsylo syl 9jiym padewep Aj1242s1p Ajuo si usBe|[0d 3yl 1eyl JuspiAe si I ‘Buipueq-q €| s|lql paSewep
9591 UIYIIM SHUIY Y3 3|IYAA “|14ql) 9|Buls e ulylim sSewep jo sa1is a|diljnw a.4e 243yl 18yl 3|qISIA os|e SI 11 'y |aued u| ‘uopusl
snuoes plo Jesh-pg painidnt wouy sydesSoidiw 3ssy3 ul uses aq ued sFewep |edo| Fuiededosd jo sued sy QT 24n3i4

Wwu OST

83



"S9A|3SWaY3 SIS YUy 3y utyum Ajjeaiydads ‘q [pued ul umoys s|uqly psSewep syl ulyim 3|qisia
ApeajD SI sjuswiaje Jej|luquyqns Jo aunsodxe sy | ‘||om se s|lqly usSe|jod Jo Sullsim] SWos si 243yl jeyl moys pue ‘ydeiSosoiw
a3 jo auejd ay3 jo 1no pue ul Sulwod aq Aew syuiy 3eyl moys g |pued uiyum aSewep Jo says |ed0| 8y (Q pue g) 98ewep
9|easoueu pue () pue y) suonediyiudew mo| ApAieja. 1e s|uqy uade(|od o Sunjoed 9s00| |BIARS UOPUD] SNLIOLIES P|O JeSA-Of
painidni jo sydei30io1p ‘[|om Sse suopual pade |ppiw woi) so|dwes ul usas 9q Ued 24n3anJ3s Jo uondnisip sy )T 24ndi4

Wu-QGg

84



N

}';500 nm

{

Figure 4.18: Even within older samples (such as the 50-year old ruptured sartorius tendon
sample shown here), nanoscale damage is rare, but kinks sites are found within sections of
loosely organized collagen fibrils (A). Kink sites are also formed in regions where collagen fibrils
are longitudinally aligned and intact, which may suggest that there are invidual fibrils that are
more likely to fail than others (B).
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Figure 4.19: Some samples revealed some unique motifs that were unlike the previously seen
kinks or turns. This samples from a ruptured 55-year old sartorius tendon shows some twisted
fibrils with intact D-banding (A) and a fibril with a hairpin turn present (B). Panel B also shows
fibrils in the top left that have no apparent organization and appear twisted together, suggesting
that damage motifs may come in many forms.
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Chapter 5
Discussion

This is the first study of its kind to systematically investigate the failure mechanisms
present within aging human tendons at the nanoscale. Moreover, this is the first
study to report age-related changes to thermal stability in human tendon collagen
with both HIT and DSC. It was discovered that human sartorius tendon collagen
is thermally stable in young adulthood, and that this stability continues to change
with age. Interestingly, it was found that the mechanical properties of the sartorius
tendon did not change with age, and that the damage motifs present at the nanoscale
differ from previously seen discrete plasticity kinks. The results of this thesis suggest
that the collagen within this particular tendon is heavily crosslinked, inhibiting the
mechanism of kink formation. Instead, there is disruption of larger scale tensile load

bearing units and change in collagen thermal stability with age.

5.1 Age-Related Changes in Thermal Stability

Collagen thermal stability as measured by HI'T and DSC can be used as a proxy for the
amount and type of crosslinking present within soft-tissues. Other factors affecting
thermal stability include molecular packing and tissue hydration, as these would both

impact the activation of thermal denaturation within the thermally labile domain of
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collagen molecules. The results of this thesis work show that thermal stability of
sartorius tendon collagen changes with age, as shown by the HIT and DSC results
presented in Section 4.2. It is interesting, however, that the two techniques show
seemingly different age-related patterns of change with respect to molecular packing
and thermal stability.

5.1.1 Collagen Thermal Stability Increases with Age

From DSC it was found that the denaturation temperature 75, increased with age
suggesting that there is higher thermal stability in older tendons. An increase in
the quantity and/or density of crosslinks may decrease the lateral spacing, thereby
decreasing the size of the ‘box’ as per the polymer in a box theory ™7  This
decreases the amount of energy required to activate the thermally labile domain™.
By reducing the lateral dimensions of the box via crosslinking or dehydration, there
are fewer possible molecular configurations. In turn, this lowers the configurational

entropy and increases the AG of activation.

Maturation and aging will cause an increase in trivalent crosslinking and glycation-
driven AGE formation, which will cause tighter molecular packing as compared to
divalent enzymatic crosslinking®®. All of this together will increase the stability and
in turn, the denaturation temperature. The denaturation temperatures of the human
sartorius tendon as measured by DSC are higher than what has been reported for
bovine forelimb and tail tendons (Table 5.1), suggesting that the human sartorius
tendon samples are more heavily crosslinked than previously studied tendons, even at
ages as young as 20. The denaturation temperatures are also higher than previously
studied human tendons, implying that this tendon may have higher crosslinking or
molecular packing than the Achilles, patellar, and quadriceps tendons®. Without
performing a biochemical crosslink assay, it is not possible to say this with certainty.
Additionally, the study on the thermal properties of human tendons used a different
scanning rate compared to this thesis work (0.3 °C/min versus 5.0 °C/min)“. While
the scanning rate used in the study of the sartorius tendon was relatively low to avoid

superheating, it has been demonstrated by Miles et al. that scanning rates have an
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impact on the DSC response and the extracted parameters™.

Table 5.1: Thermal properties of various soft tissues whose thermal stability has been studied
with DSC and/or HIT

Reference  Source and Tendon Type  Tome ("C) Toea ('C) FWHM ("C)  ah (1/g) Ta(*C)

Bavine; Comman Digital

631+1.0 65407 27205 530+137 62704
Extensor
Herod et al.
(2016)12
Bowine; Superficial Digital g44 07 668+08 17201 4072101 654407
Flexor
Willett et al.
(2007)10 Bovine; Tail Tendon B6.1 £ 1.2 N/A N/A HA 655+ 1.1
Willett et al. - -
(2008 Bovine: Tail Tendon 6440 £ 051 6627 046 42214 65773 N/A
Bovine; Tail Tend -
DV'"e[YDLaI;g}e" " Eg5e17 BL73£042  NJA M/A 624 %15
Willett et al.
(2010}
Baovine; Tail Tendon (Old) 581 £ 1.7 6176 = 0.77 M/A My A 62516
Human: Achilles N/ A 50701 NfA 8502045  N/A
Wiegand et al. .
(2010) Himan: Guadricers /A 63.3 £ 0.1 NfA 6.27 £ 0.3 N/A
Human: Patellar NA L BLT %01 N/A 43602 N/A
Rat; Tail Tendon N/A 5.1 N7A Sa6 N/A
({Control) ! ! : !
Rat: Tail Tendon (MDA} N/A 693 Ny A M/ A N/A
Miles et al.
(2005)3
Rat; Tail Tendon {Glut) M/A 441 M/A M/A RS
Rat; Tail Tendon N/A 74.1 N/A N/A N/A

(HMDC)

The denaturation temperature from DSC (T,,s;) suggested that there is an increase
in enzymatic and/or non-enzymatic crosslinking with age. Crosslinking has been
found to increase thermal stability by dehydration™. The FWHM is an indicator of

the range of molecular stabilities present™ and can also provide information about
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the heterogeneity of molecular packing within the sample®. As reported by Miles et
al. dehydration would cause a reduction in the number of water bridges that could
form within collagen molecules, which would increase the size of the thermally labile
domain and this would be registered as a decrease in the width of the endotherm (i.e.
lower FWHM) 7072169 A narrowing of the endotherm would also be caused by low
rates of collagen turnover. If no new collagen is being laid down, then there would
be a decrease in the amount of immature divalent crosslinks and an accumulation of

mature trivalent and glycation-derived crosslinks®?.

In vitro crosslinking studies correlate well with the findings from the human sarto-
rius tendon, suggesting that the age-related increase in 7,,,..; and decrease in FWHM
may is due to increased crosslinking. Studies have shown that endogenous crosslink-
ing of tail tendons using reducing sugars results in significant increases in collagen

170171 I'n witro glycation crosslinking using ribose or glucose pro-

thermal stability
duce AGEs such as pentosidine and glucosepane, respectively 7. Tissues treated with
these sugars result in increased Tonser and Tpeqr values compared to untreated samples,
indicating a change in the amount of energy required to denature the collagen triple
helix!™. This is likely because the intrahelical glycation-derived crosslinks stabilize
the molecular packing, while also inhibiting the unfolding of the thermally labile do-
main. The presence of crosslinks would also decrease the number of possible molecular

conformations, thus decreasing the configurational entropy within the system.

DSC is a sensitive technique that can be used as a proxy for crosslinking. Together, the
increase T,,q; and decrease in FWHM show that sartorius tendon collagen thermal
stability increases in age. This is likely due to increased crosslinking, which dehydrates
collagen and brings neighbouring molecules closer together thus increasing the amount

of energy needed to activate the thermally labile domain.

Water Content

As mentioned above, it is thought that sartorius tendon collagen increases in thermal

stability due to crosslink-induced dehydration. Interestingly, the amount of water
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present in the human sartorius tendon did not change over the span of four decades.
It has previously been found that the water content within tendons changes from
80-85% at birth to 30-70% in old age!'3*. While this is a rather large variation, other
studies have demonstrated that there is in fact a difference in water content between
different tendons in the body. One study found that there was a significant difference
in the water content between human Achilles and anterior tibialis tendons, and that
this had an effect on the mechanical properties of each!”™. The water content of the
Achilles and tibialis anterior were 69.0 and 56.7%, respectively, and were calculated
using tendons from donors aged 48-84172. This suggests that functionally distinct
tendons may have varying matrix properties, and thus have different water contents.
The water content within human sartorius tendons did lie within the range cited

above, and is similar to that of the Achilles tendon.

It is possible that there is some level of dehydration occurring within the sartorius
tendon samples with age but that this dehydration was not detected in this study. An
increase in crosslinking would cause dehydration on the molecular level™® and while
this may have an impact on the responses via DSC, it is unlikely that it would be

detectable through weighing DSC samples before and after testing.

5.1.2 Sartorius Tendon Collagen is Heavily Crosslinked

The denaturation temperatures of the sartorius tendon, as measured by DSC and
HIT are higher than what has previously been seen in other tendons and soft tissues
(shown in Table 5.1), suggesting that this tissue is significantly more crosslinked. It
was found that the T, decreases linearly with age in sartorius tendon collagen. This
is intriguing because it has been well documented that there is increased enzymatic

49,50,134,150,174  This increase

and non-enzymatic crosslinking of soft-tissues with age
in crosslinking should theoretically increase the denaturation temperature, as the
crosslinks would decrease the entropy thus decreasing the number of possible molecular
configurations, and increasing the energy required for activation of denaturation, as

was seen by DSC.
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Previous aging studies using BTTs, showed no significant differences in T (HIT) in
young and old samples despite statistically significant differences in the percentage of
mature and thermally stable crosslinks®. There were also differences in the tempera-
ture of maximum force (TF,,,.) between the two groups. TF,,.. is thought to increase
with increased crosslink density and thermal stability, suggesting that older BTT's are
more mature and stable than young BTTs®. That particular study did not measure

the presence of AGEs but suggested that the increased Tx___ in older samples could be

mazx

due to glycation. The results presented herein do not support this hypothesis, as the

thermal stability of sartorius tendon collagen was found to increase with age.

The presence of thermally stable crosslinks is confirmed by the fact that all of the
samples survived to the isotherm (i.e. 90°C), regardless of age. This suggests that the
crosslinks present may be HHL, Hyl-Pyr, pyrrole, or glycation-derived crosslinks such

as pentosidine or glucosepane® 55165 The fact that even young tendons survived to

90°C implies that immature crosslinks (e.g. deH-HLNL, deH-LNL, or HLKNL) have
already mostly been converted to their respective trivalent, mature forms by the age
of 20. Typically, NaBH, increases the total amount of thermally stable crosslinks,

increasing the t;/, of load decay'™.

This treatment did not show any differences
in maturity of crosslinks between old and young donors as there was no effect of
treatment on the rate of load decay, further confirming that there is a large amount
of heat-stable, mature crosslinking present even at young ages. Perhaps the most
striking observation within the isothermal data is the absence of load decay, which
is expected to occur following the scission of the peptide backbone. The t,/, values
that were calculated are widely distributed, with some values being comparable to

previously studied tissues while others are significantly higher.

The isothermal data showed that the typical Maxwellian-type decay was not present
in all samples, but rather that the load was increasing over time. It has previously
been found that glutaraldehyde-crosslinked heart valve tissue shows isothermal con-
traction®', which may suggest that this feature is characteristic of tissues that are
heavily crosslinked. Surely the hydrolysis of the peptide backbone is occurring within

collagen molecules, but there must be another mechanism involved that overshadows
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this effect. The absence of load decay did not have a relationship with age, sug-
gesting that sartorius tendons are heavily crosslinked even at young ages. Mature
crosslink concentration has been shown to plateau at a young age in animal mod-
els and any changes in amounts of crosslinking thereafter are typically attributed to

glycation®!.

The presence of these glycation derived crosslinks (either pentosidine or glucosepane)
could also be responsible for not only the isothermal contraction, but also for the rise
in force under isometrics conditions that was seen in HIT before denaturation (the
increase in load after denaturation is because of helix to coil transition). While the
fractional changes in load were not related to age, there was a negative linear corre-
lation between the fractional change in load before and after denaturation that was
marginally significant (p=0.0556). This could mean that the more the load increases
prior to denaturation, the less that occurs after. This may suggest that there is a
net amount of force that can be created under isometric constraint that can happen
within the sample. While it may be possible that isothermal contraction is due to
the presence of some type of chemical reaction, it is more likely that the decay is
absent simply because the material contains a dense network of crosslinks. The load
decay that occurs as a result of peptide bond hydrolysis may be neutralized by dense
crosslinking, which results in a material that is able to sustain load over an extended

period of time.

5.1.3 Age-Related Change in Molecular Spacing May Result in Decrease
in Td

It is difficult to construct a coherent picture about age-related changes in thermal
stability from the data present herein. HIT and DSC showed opposite correlations
between their respective denaturation temperatures and age. It is important to note
that HIT and DSC measure different aspects of denaturation, as mentioned in pre-
vious sections. The denaturation temperature as measured by HIT, Tg, is the tem-
perature at which sufficient thermal energy has been transferred to the system to

overcome the energetic barrier associated with the configurational transition from he-
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lix to coil®®81:8586  The random coil is of a lower energy state, however the sample is
isometrically constrained so full uncoiling of the collagen helix does not occur. The
T} is the temperature at which there is an energetic driving force towards contraction
as denaturation begins. This is registered as a sharp increase in load by the system.
Conversely, DSC measures the amount of thermal energy delivered to the system dur-
ing denaturation, and the T, (calculated as the intersection between the baseline
and the upward slope of the endotherm) is the temperature at which enough ther-
mal energy has been put into the system to activate the thermally labile domain!"®.
This is thought to be the onset of denaturation. The extrapolated T,,.; is often an
overestimate®?, thus the true onset of denaturation should be taken as the calculated
value, Tje,. In theory, the T; should be greater than the T,,,.; because HIT only cap-
tures events that occur after thermal activation of denaturation, an event captured
by DSC. By that same logic, the Ty, should be less than or equal to the HIT Tj.
It is possible that the Tj is higher than both the T,,.; and Ty, because isometric

constraint increases the order of the collagen structure, thus decreasing the molecular

entropy of the system and increasing the Tj.

From DSC, it would appear that collagen thermal stability is increasing with age due
to increased crosslinking. Conversely, HIT indicates that there is a decrease in the
molecular packing and/or crosslinking, with less constraint in older samples as com-
pared to young ones. Based on the T} values from HIT alone, it is tempting to suggest
that a decrease in crosslinking occurs with age. In contrast, the isothermal data and
survival of samples to 90°C confirms the presence of thermally stable crosslinks. There
is no isothermal load decay and enough crosslinks are thermally stable (either mature
trivalent crosslinks or AGE-derived crosslinks). This observation correlates well with
the literature and with the DSC data, where the T,,.; is increasing with age. A
recent study conducted by Gautieri et al. found that the molecular spacing increased
within tendon collagen from semitendinosus and gracilis tendons from donors aged
16-90%2. It was suggested that this increased molecular spacing resulted from diffu-
sion of glucose into the fibrillar structure. This may explain the observed relationship
between HIT T; and age seen in the sartorius tendon. An increase in tendon collagen

molecular spacing with age would result in less molecular constraint and allowing for
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more space for uncoiling of individual molecular and a decrease in Tj in old age. The
relationship between crosslinking, molecular spacing, and aging within human sar-
torius tendons is still unknown. Without biochemical analysis of crosslinking, these

results are speculative and not coherent.

5.2 Mechanical Characterization of Sartorius Tendons

5.2.1 Mechanical Rupture Indicated Elastic Recoil During Fracture of

Individual Fascicles

The stress-strain curves that were obtained from the rupture of human sartorius
tendons showed a response typical of collagenous materials: an increasing modulus
in the toe region of the curve, a linear portion at higher strains, followed by the
yield point, where plastic deformation begins and ultimately leads to failure!®!77,
The initial apparent stiffening is typical of tendons, and occurs following alignment
of collagen fibres. The nonlinearity of the stress-strain curves is typical of many
tendons, but one interesting feature found in the sartorius tendon is the mechanism
of failure. Within the sartorius tendon, there are many individual failures prior to
the failure of the entire structure. The individual components bear load until they
fail individually, after which other fascicles engage. This was confirmed by the videos
captured during rupture, where it was evident that failure occurred as a series of

audible snaps, suggesting an elastic roil of the structure.

5.2.2 Mechanical Properties of Sartorius Tendon

Tendons increase in stiffness during development due to increasing amounts of mature
trivalent crosslinks and during maturation due to increases in tendon cross-section,
collagen content and changes in the arrangement of collagen fibrils!"®17®. While many
properties of the collagen fibrils (e.g. molecular packing, density, etc.) impact how

tendons function, the collagen fibrils define how the tendon will perform mechanically;
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this is impacted by the amount of crosslinking present. Trivalent crosslinks are respon-
sible for stabilizing the fibrillar structure of collagen and contribute to the mechanical
properties of tendons, but the amount of these crosslinks has been found to plateau
following maturation in animal models. Collagen is turned over slowly and any age-
related increase in stiffness has historically been attributed to further crosslinking via
glycation?®, yet the exact relationship between age and tendon mechanical properties
remains unknown. In this thesis work, it was found that age had no effect on the
mechanical properties of the human sartorius tendon. This correlates well with other

68,151

in vivo human studies , which have found that there are no age-related changes

in modulus and strength.

Comparison to Aging Animal Models

Many studies have been conducted in an attempt to discern the correlation between
the type and density of native collagen crosslinking with the mechanical proper-
ties of tendons. The results have been inconsistent ®:148:173,178,180,181  NWhile in vitro
crosslinking of tendons has been used to mimic aging in animal models, there have
also been studies comparing old and young tendons from animals. A recent study also
found that the mechanical properties of three different murine tendons does not change

with age, and that the cellular population does not change significantly 152,

More specifically, in vitro crosslinking has been used as a proxy for mimicking aging
in tendons, as it is known that crosslinking increases with age. The importance of
enzymatic crosslinking in collagen stability and integrity has been demonstrated in
tissues where the activity of lysyl oxidase has been inhibited, resulting in tissues with
lowered strength!®3. The enzyme-derived crosslinks plateau at maturation, but the
stiffness of tendons continues to increase with age®'. It is thought that this is a result
of the formation of AGE-derived crosslinks, which form between a reducing sugar

51, Due to their elevated glucose levels,

184

and amino acid side chains within tendons

diabetics are more susceptible to the formation of these covalent crosslinks
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In order to determine the relationship between AGEs and mechanical properties with-
out taking into consideration age, lifestyle, and/or disease, in vitro studies have found
that incubation of tendon with a reducing sugar results in an increase in tendon stiff-
ness®>135185 hut the correlation of crosslink density with tissue stiffness remains weak.
Studies that use in vitro glycation mention that they are mimicking both aging and
diabetes. This makes it difficult to draw conclusions about specific age-related changes
in stiffness that are due to AGE formation. In vitro glucose-mediated glycation of
rabbit Achilles tendons found that glycated tendons were 21% stronger, 72% stiffer,
and more brittle!®¢. Other studies have been conducted using RTTs that were also en-
dogenously crosslinked using ribose. Following mechanical rupture, it was found that
crosslinked RTT's exhibited a loss in post-yield plastic behaviour as compared to the
control samples, but that there were no significant differences in elastic modulus!®7.
Interestingly, the ultimate stress increased, and the failure strain decreased following
crosslinking. The small-angle X-ray scattering (SAXS) data determined that there
was diminished fibril-fibril sliding following glycation (as previously seen®”), that led

to a change in the mechanism of failure to favour brittle fracture!®.

Brown et al. found that the tensile parameters remained unchanged in ribose-treated
BTTs, but the mechanical energy parameters had changed with ribose crosslinking'"!.
The total amount of strain energy and post-yield energy were larger in control samples
than ribose-crosslinked ones. This suggests that control tendons were able to dissipate
strain energy more effectively through the formation of discrete plasticity kinks, as
compared to the ribose-crosslinked tendons!™. In this thesis work, the tensile proper-
ties of the sartorius tendon did not change with age. Discrete plasticity kinks were not
seen in sartorius tendon samples so there must be another reason that there were no
age-related changes in the mechanical properties. It is likely that the incredibly high
density of enzymatic crosslinking (seen even in early adulthood) masks any increases
in AGE-crosslinks thus preserving the mechanical properties despite any age-related

increases in glycation.
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Comparison to Aging Human Tendon Models

The relationship between mechanical properties and aging suggest that despite changes
in thermal stability /crosslinking, mechanics of the sartorius tendon are preserved. De-
spite differences in absolute age, these findings are consistent with previous in vitro
animal and human studies, and in vivo human studies. It is possible that the in-
ternal tendon structure (i.e. cellularity) is also not changing in the sartorius tendon
and that the effects of crosslinking (either enzymatic or non-enzymatic) are neutral-
ized by decreased collagen content, decreased molecular density, and the presence of

microtraumas.

There have been many studies done on the age related changes in mechanics of ten-
dons and ligaments. Animal studies allow for the control and knowledge of disease,
nutrition, and activity — factors that cannot be controlled in studies of human tissues.
In vitro human studies have found that there are no difference in stiffness, failure
strain or failure load in donors aged 16-44. A study conducted by Hubbard et al.
found that fresh-frozen palmaris longus and extensor hallucis longus harvested from
the tendons of the hands and feet, respectively, did not change with respect to their
tendon moduli in individuals between 16 and 88 years of age!””. They did find that
subject age had an effect on hysteresis and relaxation of the sample, something that
was not evaluated in the presented work. A study on fresh-frozen human patellar
tendons from two age groups (aged 29-50 and 64-93) found no age-related differences
in in modulus, but found a 17% decrease in UTS in the older group'®. While there
was no difference in UTS detected in the older sartorius tendon group, it is important
to note that all donors were below 60 years of age. It is possible that the UTS changes

in older age groups such as the one measured in the study conducted by Johnson et

al. 18,

While the presence of microdamage has not been fully investigated in human ten-
don mechanics studies, it has been suggested instead that mechanics of tendons are
maintained over a life span due to decreases in the amount of collagen and the molec-
ular density of fibrils within aging tendons®®. That same study investigated old (67
+ 3 years) and young (27 + 2 years) male patellar tendons in vivo and found that

98



there were no differences between the two groups with respect to their stiffnesses,
deformations, strains, and Young’s moduli®®. Tendon biopsies were taken from both
age groups and examined for their crosslink population and it was discovered that
young tendons had significantly lower concentrations of HP, LP, and pentosidine but
higher collagen concentrations®®. This is an interesting finding because it would be
expected that these age-related differences in tendon composition would lead to al-
tered mechanical properties®®. This study did not look into fibril length®%1%9  fibril
diameter!®, and changes in PG and GAG contents!5819%:192  which have all been

shown to contribute to the mechanical properties of tendons.

The effect of glycation and formation of AGE-crosslinks on the mechanics of aging
human tendon have been investigated using SAXS-couple mechanical tests'®”. Scraps
of fresh-frozen semitendinosus and gracilis tendons from donors aged 16-89 were used
to determine the level of glycation (by fluorescence analysis) and the mechanical
properties (i.e. elastic modulus, yield stress and strain, failure stress and strain)'®7. Tt
was found that the extracted mechanical parameters were not correlated to donor age,
despite a strong correlation between donor age and pentosidine-related fluorescence'®7.
Using SAXS, it was determined that older human tendons have decreased D-period

lengths and increased molecular distances at rest!®.

Tendon degeneration and changes in tendon structure have previously been associ-
ated with an imbalance in synthesis and degradation of ECM %3, A recent study has
examined the structure and composition of aging tendons that are anatomically prox-
imate to the sartorius tendon. The semitendinosus and gracilis tendons are the other
two tendons of the pes anserinus, the complex from which the sartorius tendons used
in this thesis study were taken®. This study investigated the differences between 10
adult (41.8 4+ 13.3 years) and 6 old (72.7 4+ 7.0 years) tendon samples by analyzing
morphological differences using histology. Interestingly enough, the researchers found
that there was no change in the structure between the two groups, and no change in
the collagen turnover pathways, meaning that aged tendons have the same ability as
young ones in terms of remodelling®. While the presented thesis work did not look

at histological and molecular differences within aging sartorius tendons, the outcome
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clearly shows no difference in mechanical properties, which may be attributed to con-

stant cellular potential to maintain homeostasis or negligible collagen turnover.

5.2.3 Effect of Strain Rate on Mechanical Parameters

It has been well-established that the tensile and viscoelastic properties of soft-tissues
are dependent on strain rate, with higher strain rates producing higher failure strains

148 The relationship between sensitivity to strain rate

and ultimate tensile strengths
and age was studied by Haut, and it was found that the sensitivity of failure properties
of RTTs to strain rate depended on age!?®. More specifically, maturation was found
to cause a drop in strain-rate sensitivity and this was attributed to changes in the
amount of mucopolysaccharides present. Aorta and ligament studies have shown that
there is no relationship between failure strain and strain rate!®*, but Haut found
that there is a dependence on strain rate and the failure strain in his RT'T samples.
The relationship between strain rate and mechanical properties of the human Achilles
tendon was investigated by Wren et al., who demonstrated that there was no difference
in modulus between tendons tested at 10%/s and 1%/s'%°. They did note that there

195 These results

was a 15% increase in failure stress and strain at the higher rate
would support the results from this thesis work, which suggest that there are only
modest changes in mechanics between the strain rates used. It is likely that the

use of quasistatic strain rates resulted in an undetectable difference in modulus and

UTS.

5.3 Damage Motifs in Human Sartorius Tendons

Discrete plasticity, as described previously in the literature, was not found in ruptured
human sartorius tendons. The motifs seen in the sartorius samples most closely
resemble those found in tendons that are known to be more heavily crosslinked, such
as bovine flexors!%? and glycated BTTs!™. It is thought that discrete plasticity kinks

form as a result of the slipping of molecules, resulting in the loss of D-banding —
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a characteristic feature of properly assembled collagen fibrils. Brown et al. found
that the introduction of glycation crosslinks through endogenous ribose crosslinking
resulted in the inhibition of discrete plasticity damage!™. It is known that AGE-
crosslinks form between the helical portions of neighbouring collagen molecules rather
than at the telopeptide ends, where enzymatic crosslinks are formed. The formation of
these helix-to-helix crosslinks may prevent molecules from slipping past one another,
inhibiting the formation of discrete plasticity kinks. Trivalent mature crosslinks may
prevent molecular slippage using the same mechanism, as seen in the bovine flexor
tendons'%2. Similar to both of those studies, it is possible that sartorius tendons are
so heavily crosslinked that the fibrils cannot dissipate excess strain energy into the
formation of discrete plasticity kinks, resulting in fracture with substantial elastic
rebound!™. This is supported in the literature, since it has been found that increased

crosslinking causes stiffening of soft tissues®”57,

The human sartorius samples failed bundle-by-bundle, as seen in the videos taken
during mechanical rupture. It is possible that heavy fibril crosslinking results in the
formation of larger functional units within the tendon, as previously seen in in vitro
ribose crosslinked fibrils where it was found that they function as larger tensile load
bearing units'3>. This may also serve as an additional explanation for the inhibition
of discrete plasticity within human sartorius tendons. Fibrils may remain intact due
to crosslinking, while failure occurs at a higher level within bundles of fibrils. The
nature of the crosslinks are unknown from DSC and HIT testing, however it may be
speculated that they are glycation-crosslinks. Since the AGE-crosslinks are formed
helix-to-helix, fibrils may not be able to slide past each other, while fibril bundles
are capable of doing so. This is supported by studies from Gautieri et al., who have
demonstrated that glycation occurs on the outside of collagen fibrils!®”. This would
result in the crosslinking of neighbouring fibrils, disorganization, and fragmentation on

135

a higher order within tendons'°°, exactly what was seen in sartorius tendons. Repet-

itive loading that causes this higher-order damage could result in the accumulation

of stress concentrations and abnormal loading,.

Future studies using molecular probes or enzymatic digestion to investigate the pres-
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ence of denatured collagen would be interesting and potentially helpful in under-
standing what damage within human tendons look like. Collagen mimetic peptides,
or collagen hybridizing peptides (CHPs) have been used to probe for molecular-level

196198 " These small synthetic peptides mimic the molecular struc-

damage in collagen
ture of native collagen and have the primary amino acid repeating sequence of (Gly-
Pro-Hyp),. These molecular probes have previously been used to study the molecular
folding and structure of collagens!®”. Moreover, CHP has been shown to bind to un-
folded portions of collagen molecules following enzymatic or thermal denaturation!®7.
Most recently, it was found that fluorescently labelled CHP can be used to detect
and localize molecular level damage in mechanically overloaded RTTs!%. This study
supports those of Veres et al., which have shown that there is denaturation of collagen

molecules following mechanical overload®.

Taken together, all of the results of the sartorius tendon model point to the fact that
discrete plasticity may not be physiologically relevant in highly loaded adult human
tendons. Discrete plasticity kinks form readily in overloaded animal tendons that
are less crosslinked than higher load bearing tendons (tail and extensor vs. flexor
tendons). It is possible that human tendons are heavily crosslinked due to higher
loads in vivo. The mechanism of discrete plasticity may only be a feature of low load,
positional tendons that contain fewer crosslinks than load bearing tendons. Similar
to the flexor model and the ribose-treated tail tendons, heavy crosslinking is present
in human sartorius tendons that inhibits molecular slippage and discrete plasticity.
It is possible that the mechanism may indeed be present in low load bearing human
tendons such as the extensors in human hands. It would be interesting to study
how crosslinking develops in a range of human tendons from early childhood into
adulthood, as it was found in other animal models that there is a plateau in the amount
of crosslinking following maturation®. Along with biochemical crosslink assays, this
would be extremely useful in studying the type of crosslinking present over the course

of a human life span.
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5.4 Limitations to Sartorius Tendon Model

The wide array of outcomes regarding mechanics and changes with age suggests that
there are many factors impacting the results, including physiological differences be-
tween species, tissue types, genotypes, and lifestyle factors. While many studies
clearly show that there are changes in enzymatic and non-enzymatic crosslinking
within aging human tendons, it remains difficult to draw a conclusion regarding age-
related changes in mechanics. While human biological variability certainly plays a
role in the heterogeneity of samples and their properties, it is also possible that dis-
section and handling of human tissue impacts mechanics. Animal models are often
used because the geometry of individual tendons favours relatively easy characteriza-
tion. These tendons have typically been RTTs, BTTs, flexors and extensors (bovine
or equine), and these all share the common feature of being uniform, cylindrical, and
not containing much excess fat and muscle tissue. By contrast, human tendons are
typically surrounded by significant amounts of muscle and fat (as seen in the pre-
sented model). The removal of the excess tissues may actually impart some shear
loading on the tendon. Human tendon, however, often needs to be subdivided into
fascicles which are subject to tissue damage. The mechanical samples that are cut
are reproducible geometrically, but may lead to variability in the mechanical testing

of tendons.

The characterization of tendons (e.g. crosslinking profile, failure mechanisms, me-
chanics, to name a few) is difficult to study because tendons from different species
and with different functionalities show variability in their composition and structural
organization. Simplified tendon models such as the BT'T and RTT models are limited
in that they differ widely from clinically relevant human tendons in terms of tendon
type, which influences the amount of crosslinking and the mechanical properties. On
the other hand, tendon models from a wide variety of species have structural hetero-
geneity which impacts the specific properties of the tendon. Adding in other factors
like injury, disease, and age only further complicates the ability to compare tendon

properties both within and among species.
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The specific anatomy of the sartorius tendon does not lend itself easily to handling and
dissection. While morphological differences due to genetic variability surely exist in
other tendons (e.g. Achilles, patellar, semitendinosus, and gracilis tendons), these are
typically uniform along their length and contain fewer distinct fascicles. Additionally,
there are no data in the literature that have previously described any properties
related to the sartorius tendon. Because of this, it is difficult to validate the results
reported herein. The aging trends observed by DSC are supported by the literature
while HIT revealed some new phenomena that have not previously been reported.
Combined, the two show that features of crosslinking present in sartorius tendons
change with age and that there is a potential change in molecular packing that occurs
in old age. The mechanical properties of tendons have no definite relationship with
age, as supported by the literature and previous in vitro glycation work in our lab.
The results of the structural study of damage motifs present in human sartorius
tendons share a number of similarities with heavily crosslinked tissues like bovine
flexors and ribose crosslinked BTTs. This supports the notion that the mechanism
is specific to tendons that are lightly or sparsely crosslinked. The failure mechanism
present is similar to that reported by Bai et al., whereby larger load bearing units
are formed from increased crosslinking and fail as larger bundles, leaving the fibrils

intact13%.

5.5 Summary of Age-Related Changes in Human Sartorius

Tendons

5.5.1 Age-Related Changes in Thermal Stability
DSC

Hypothesis: The peak and onset temperatures and the enthalpy of denaturation will
increase with age, due to increased crosslinking, while the FWHM will decrease due
to a lesser potential for remodelling in older tissues.

Conclusion: The onset temperature did increase with age, and the FWHM decreased,

104



supporting the above hypotheses. The peak temperature and enthalpy of denaturation
did not change with age.

HIT

Hypothesis: The denaturation temperature and half-time of load decay will be higher
in older tendons than younger ones due to an increase in glycation-derived crosslink-
ing.

Conclusion: Surprisingly, the denaturation temperature decreased with age, and was
found to precede the onset temperature (DSC) in older samples. This could mean
that there is a change in molecular spacing with age. The isothermal data revealed

that contraction was occurring, likely due to very high amounts of crosslinking.

5.5.2 Age-Related Changes in Mechanics

Hypothesis: The strength and stiffness of sartorius tendons will increase in old age,
due to the increased presence of crosslinks.

Conclusion: There were no age-related changes in the mechanics of the sartorius
tendon. Any increases in stiffness that may occur as a result of AGE crosslinking are
masked by the high density of enzymatically derived crosslinks that are present even
in early adulthood.

5.5.3 Mechanism of Failure

Objective: Determine the mechanism of failure within human sartorius tendons and
how it compares to discrete plasticity.

Conclusion: The mechanism of failure within the sartorius tendon is different than
that of discrete plasticity. The damage motifs that are seen are most similar to those
found in bovine flexor tendons. The amount of damage present is not as widespread
as discrete plasticity, with a large portion of fibrils appearing undamaged. At low

magnifications, the samples appear to fail as larger fibre bundles that show elastic
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recoil and fraying. The inhibition of discrete plasticity kink formation is supported by
previous work using endogenously ribose-crosslinked BTTs and bovine flexor tendons,

which contain mature, trivalent crosslinks.

Relationship With Age

Hypothesis: Discrete plasticity kinks will form in younger samples, and will disappear
with age, as it would no longer be evolutionarily advantageous to promote survival
past reproductive age.

Conclusion: Discrete plasticity was not found in any samples, and therefore has no
relationship with age. There was also no relationship between age and the relative

amount of damage present within sartorius tendons.
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Chapter 6
Conclusion

The study presented herein has been the first to study age-related changes in the
nanoscale structure of ruptured human tendons. It has also provided the first sys-
tematic look into the changes in thermal stability in fresh human tendons, identifying
that human tissues are heavily crosslinked even at 20 years of age. There may also
be a change in the molecular packing of collagen with age that affects the collagen
thermal stability. The damage motifs present in human sartorius tendons are similar
to heavily crosslinked tissues such as in vitro glycated BTT and bovine flexor ten-
dons, suggesting that the formation of discrete plasticity kink sites as we know them
is inhibited by crosslinking. It is proposed that the failure mechanism of human sar-
torius tendons occurs on a level higher than the fibril, and that bundles of fibrils fail
by brittle fracture leaving the nanoscale structure largely unchanged. Despite all of
the new findings in this thesis, more research is required to elucidate the exact nature
of the crosslinks present, how these may change with age, and whether the sartorius
tendon failure mechanism is true of all human tendons or specific to the presented

model.
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6.1 Future Work

6.1.1 Crosslink Identification and Quantification

Both DSC and HIT serve as proxies for crosslinking. While sodium borohydride
treatment provided valuable information regarding the maturity of the crosslinks, the
exact type and amount of crosslinking present within these tendons is unknown. High
performance liquid chromatography and other biochemical techniques may be used to
investigate the amount of enzymatic and non-enzymatic crosslinks. Knowing the type
and density of crosslinks will help better our understanding of the age-related changes

in in tendon structure and this may help explain the failure mechanisms present.

6.1.2 Histology

The structure of the sartorius tendon was examined extensively using SEM, which
provided valuable information about the nanoscale structural features of damaged
and control tendons. SEM is limited in that it examines the dried metal coated
tendon subsample and relies on the bisection of small samples, while only providing
topological information. Histological examination of these human sartorius tendons
would provide insight on the elastin content, proteoglycan and glycosaminoglycan
content, cellularity, and collagen type among other things. All of these features may
influence the mechanical behaviour of tendons and knowing the potential changes that

occur with aging assist in understanding tendon injury and healing.

6.1.3 Calculation of Energetic Parameters and Subrupture

Other studies have demonstrated that the tensile mechanical parameters of human
tendons does not change with aging but rather that the energetic parameters such as
toughness, total strain energy, and post-yield energy are affected. It is possible that
differences in mechanics of aging tendons are not apparent until after the yield point.

Younger and older tendons may have differences in their ability to resist deformation
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and may dissipate strain energy differently. Subjecting tendons to multiple subrupture
overload cycles may incur more damage to the constituent collagen than the single

pull-to-rupture resulting in an increased density of damage motifs.

6.1.4 Different Tendon Model

The sartorius tendon model used in this thesis study employed fresh tissues from a
wide age range of donors, which allowed for its systematic characterization — something
that has never been done before. A great deal of troubleshooting occurred to optimize
the experimentation and despite this, another tendon model would be interesting to
study. Investigating damage motifs in a different tendon would add to the knowledge
we've gained regarding damage motifs and collagen thermal stability but may also
be easier to handle. A thinner, more cylindrical tendon with a longer midsubstance
may eliminate the issues seen with dissecting away the excess muscle and fat in the
sartorius tendons. Using a tendon that is not ribbon-like and less fascicular would
help in creating more uniform samples for mechanical rupture. Moreover, it would be
of great interest to see whether other human tendons exhibit the same damage motifs
characteristic of high-energy elastic rebound as seen in the sartorius tendons. A low-
load tendon such as the extensor in the hand would be worthwhile to investigate, since

it may contain fewer crosslinks and thereby have a different mechanism of failure.

6.2 Concluding Remarks

This thesis work has furthered our understanding of what damage to tendon collagen
looks like within a human tendon. The sartorius tendon is a heterogeneous tissue
containing well-defined fascicles that snap upon rupture, and the damage motifs seen
reflect this fracture with significant elastic recoil. While the thermal stability of the
constituent collagen was examined, the exact type and amount of crosslinking present
remains a mystery. The model established herein is not without its flaws, but has

certainly laid down the framework for future human tendon studies. Understanding
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what damage to human tendons looks like in different tendon types is crucial in

developing new treatment strategies and improving tendon injury prognoses.
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LIMITED LICENSE
The following terms and conditions apply only to specific license types:
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unless your license was granted for translation rights. If you licensed translation rights you
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clauses are applicable: The web site must be password-protected and made available only to
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You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peer-
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available
version. Please note that Cell Press, The Lancet and some society-owned have different
preprint policies. Information on these policies is available on the journal homepage.
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incorporated changes suggested during submission, peer review and editor-author
communications.

Authors can share their accepted author manuscript:
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o via their non-commercial person homepage or blog
o by updating a preprint in arXiv or RePEc with the accepted manuscript
o via their research institute or institutional repository for internal institutional
uses or as part of an invitation-only research collaboration work-group
o directly by providing copies to their students or to research collaborators for
their personal use
o for private scholarly sharing as part of an invitation-only work group on
commercial sites with which Elsevier has an agreement
e After the embargo period
o via non-commercial hosting platforms such as their institutional repository
o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

e link to the formal publication via its DOI

e bear a CC-BY-NC-ND license - this is easy to do

o if aggregated with other manuscripts, for example in a repository or other site, be
shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value-adding publishing activities including peer review co-ordination, copy-editing,
formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access
articles:

Subscription Articles: If you are an author, please share a link to your article rather than the
full-text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
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Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.

Gold Open Access Articles: May be shared according to the author-selected end-user
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18. For book authors the following clauses are applicable in addition to the above:

Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
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submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
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the complete thesis and include permission for Proquest/UMI to supply single copies, on
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reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
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Elsevier Open Access Terms and Conditions
You can publish open access with Elsevier in hundreds of open access journals or in nearly

2000 established subscription journals that support open access publishing. Permitted third
party re-use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
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done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CCBY
NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

¢ Associating advertising with the full text of the Article
e Charging fees for document delivery or access
e Article aggregation

e Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
20. Other Conditions:
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one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
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(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
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e The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright.

¢ You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license. The
first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

e With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.
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e The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
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e NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
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this Agreement by you.

¢ You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

e INNO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROHITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

¢ Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
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shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (1)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (ii1) CCC's Billing and Payment terms
and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
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Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Comimercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
propetly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library

http://olabout . wiley.com/WileyCDA/Section/id-410895 html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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This Agreement between Miss. Sara Sparavalo ("You") and John Wiley and Sons ("John
Wiley and Sons") consists of your license details and the terms and conditions provided by
John Wiley and Sons and Copyright Clearance Center.
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Licensed Content Author Thomas L. Willett,Rosalind S. Labow,]. Michael Lee
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Expected completion date Nov 2017
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Billing Type Invoice
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Canada

Attn:
Total 0.00 CAD
Terms and Conditions
TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
one of its group companies (each a"Wiley Company") or handled on behalf of a society with
which a Wiley Company has exclusive publishing rights in relation to a particular work
(collectively "WILEY"). By clicking "accept" in connection with completing this licensing
transaction, you agree that the following terms and conditions apply to this transaction
(along with the billing and payment terms and conditions established by the Copyright
Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that
you opened your RightsLink account (these are available at any time at

http://myaccount.copyright.com).
Terms and Conditions

e The materials you have requested permission to reproduce or reuse (the "Wiley
Materials") are protected by copyright.

¢ You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-
alone basis), non-transferable, worldwide, limited license to reproduce the Wiley
Materials for the purpose specified in the licensing process. This license, and any
CONTENT (PDF or image file) purchased as part of your order, is for a one-time
use only and limited to any maximum distribution number specified in the license. The
first instance of republication or reuse granted by this license must be completed
within two years of the date of the grant of this license (although copies prepared
before the end date may be distributed thereafter). The Wiley Materials shall not be
used in any other manner or for any other purpose, beyond what is granted in the
license. Permission is granted subject to an appropriate acknowledgement given to the
author, title of the material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of the Wiley
Material. Permission is also granted on the understanding that nowhere in the text is a
previously published source acknowledged for all or part of this Wiley Material. Any
third party content is expressly excluded from this permission.

e With respect to the Wiley Materials, all rights are reserved. Except as expressly
granted by the terms of the license, no part of the Wiley Materials may be copied,
modified, adapted (except for minor reformatting required by the new Publication),
translated, reproduced, transferred or distributed, in any form or by any means, and no
derivative works may be made based on the Wiley Materials without the prior
permission of the respective copyright owner.For STM Signatory Publishers
clearing permission under the terms of the STM Permissions Guidelines only, the
terms of the license are extended to include subsequent editions and for editions
in other languages, provided such editions are for the work as a whole in situ and
does not involve the separate exploitation of the permitted figures or extracts,
You may not alter, remove or suppress in any manner any copyright, trademark or
other notices displayed by the Wiley Materials. You may not license, rent, sell, loan,
lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone
basis, or any of the rights granted to you hereunder to any other person.
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e The Wiley Materials and all of the intellectual property rights therein shall at all times
remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or
their respective licensors, and your interest therein is only that of having possession of
and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the
continuance of this Agreement. You agree that you own no right, title or interest in or
to the Wiley Materials or any of the intellectual property rights therein. You shall have
no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding
("Marks") of WILEY or its licensors is granted hereunder, and you agree that you
shall not assert any such right, license or interest with respect thereto

e NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS
OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE
MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU.

e WILEY shall have the right to terminate this Agreement immediately upon breach of
this Agreement by you.

¢ You shall indemnify, defend and hold harmless WILEY, its Licensors and their
respective directors, officers, agents and employees, from and against any actual or
threatened claims, demands, causes of action or proceedings arising from any breach
of this Agreement by you.

e INNO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR
USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT,
NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT
LIMITATION, DAMAGES BASED ON LOSS OF PROHITS, DATA, FILES, USE,
BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER
OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY
FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED
HEREIN.

¢ Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
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shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after thirty (30) days
from receipt by the CCC.

These terms and conditions together with CCC's Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
binding upon and inure to the benefit of the parties' successors, legal representatives,
and authorized assigns.

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC's Billing and Payment terms and conditions,
these terms and conditions shall prevail.

WILEY expressly reserves all rights not specifically granted in the combination of (1)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (ii1) CCC's Billing and Payment terms
and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state's conflict of law rules. Any
legal action, suit or proceeding arising out of or relating to these Terms and Conditions
or the breach thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America and each party
hereby consents and submits to the personal jurisdiction of such court, waives any
objection to venue in such court and consents to service of process by registered or
certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
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Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC-BY
license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Comimercial-NoDerivs License (CC-BY-NC-ND)
permits use, distribution and reproduction in any medium, provided the original work is
propetly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library

http://olabout . wiley.com/WileyCDA/Section/id-410895 html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or
+1-978-646-2777.
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