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Abstract 

Habitat loss and fragmentation have precipitated a mass extinction. Therefore, 

maintaining a functionally connected habitat network is an effective response to 

biodiversity loss. However, climate change poses challenges for conservation planning, 

as areas that are protected for unique biodiversity values may not retain those values in 

the face of shifting temperature and precipitation regimes. Furthermore, range shift 

predictions can be notoriously uncertain, and planning efforts that seek to achieve broad 

species representation are unlikely to confer sufficient protection to individual species. In 

this thesis, I addressed 2 key limitations that challenge single-species conservation 

planning: variable reliability of presence-only species distribution models (SDMs) and 

uncertainty of conservation plans developed for an era of climate change. Specifically, I 

performed 3 studies that investigated (1) parameterization choices in Maximum Entropy 

(Maxent) presence-only modeling, (2) the use of resilient topographic features as 

covariates in models, and (3) strategies to reduce uncertainty in conservation planning. 

 

In the first paper, I investigated the unresolved issues of sample bias and choice of 

environmental covariate subset in Maxent, the most popular presence-only SDM 

algorithm, in order to improve the reliability of model predictions. I found that spatially 

filtering species occurrence data (a sample bias correction strategy) reduced model 

complexity when environmental covariates were selected using reverse stepwise 

elimination; however, changing the bias correction strategy had a limited effect on model 

results overall. Conversely, using alternative subsets of environmental covariates led to 

non-trivial differences in model outputs. 

 

In the second paper, I developed landscape-scale Maxent models for 3 at-risk migratory 

forest landbirds in the province of Nova Scotia, Canada: the Rusty Blackbird (Euphagus 

carolinus), the Olive-sided Flycatcher (Contopus cooperi), and the Canada Warbler 

(Cardellina canadensis). One objective of this research was to investigate whether 

topographic covariates, which may be considered more resilient to the effects of climate 

change, can be used alongside forest covariates to predict bird occurrence. Topographic 

covariates were found to have moderate to strong predictive power in all bird models. As 

topography (1) should be relatively unaffected by a changing climate and (2) helps 

regulate the structure and composition of forest habitat, I posited that topographic 

covariates may be useful in identifing areas that are more likely to support the persistence 

of species over the long term as climate changes. 

 

In the third paper, I proposed a novel approach to single-species conservation planning 

that (1) targets individual species which may be missed by more general planning 

strategies, while also (2) contributing towards the maintenance of overall biodiversity in 

an era of climate change. Specifically, the proposed approach combines elements of 

predictive modeling and an existing resilience-based conservation planning strategy 

known as “conserving nature’s stage” (CNS) to delineate climate-resilient refugial habitat 

and reduce uncertainty in conservation plans.
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CHAPTER 1: INTRODUCTION 

 

Life on Earth is the product of 3.5 billion years of natural selection (Taylor et al, 2009), a 

period which gave rise to a spectacular array of biodiversity. However, the 21st century 

world is much changed from that which fostered life’s humble beginnings. Today, 

humans are the evolutionary force that dominates the landscape (Wagler, 2011). Indeed, 

half of the planet’s surface has been modified by human activities; less than 25% of ice-

free land can be considered wild (Sanderson et al, 2002; Hooke & Martin-Duque, 2012); 

and between 20-40% of potential primary production has been appropriated by humans 

(Hooke & Martin-Duque, 2012). Geologists call this state of affairs the “age of the 

anthropocene” (Zalasiewicz et al., 2011), and it is an age in which industrial societies are 

monopolizing biotic energy flow, use over half of all accessible fresh water, and move 

more soil and sediment than all natural processes combined (McDaniel & Borton, 2002; 

Cruzen, 2002; Lewis, 2006, Wagler, 2011). 

 

There is much agreement among ecologists that the collective impact of human activities 

has pushed the planet towards a sixth mass extinction (Thomas et al., 2004; Ceballos et 

al., 2015), on par with previous cataclysmic events such as that which killed the 

dinosaurs. While estimates about the overall severity of the current event are varied, 

recent publications report that the background extinction rate has accelerated between 

100 and 1000 times over the past few centuries and predict that future rates could exceed 

pre-human levels 10,000 fold (Millennium Ecosystem Assessment MEA, 2005; Wagler, 

2011; Ceballos, 2015). The causes of biodiversity loss are varied, although in terrestrial 

systems the primary driver is habitat fragmentation and destruction (Sala et al., 2000; 

Wagler, 2011), the negative effects of which are exacerbated by climate change. 

Therefore, unless significant action is taken to connect, protect, and/or restore large tracts 

of resilient habitat, the accelerated rate of species loss is expected to continue, which will 

lead to concurrent declines in ecosystem services that species provide (Luck et al., 2003; 

Dobson et al., 2006). 

 

1.1 Conservation planning in an era of climate change 
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Given the critical importance of habitat availability to biodiversity conservation, 

maintaining a functionally connected network of high quality habitat reserves has been 

cited as one of the most effective responses to species loss (Rubio & Saura, 2012). As a 

signatory to the Convention on Biological Diversity, Canada has committed to protecting 

17% of terrestrial land and freshwater by 2020 (Environment and Climate Change 

Canada, 2016). However, this target was primarily based on political (not scientific) 

rationale, and more recent scientifically-based reports have estimated that at least 50% of 

land should be set aside to ensure that biodiversity conservation efforts are effective 

(Noss and Cooperrider, 1994; Boreal Leadership Council, 2003; Locke, 2014). Achieving 

ambitious habitat protection targets is clearly challenged by accelerating human 

population growth and the need to satisfy the competing interests of many stakeholders. 

Indeed, by the end of 2015, only 10.6% of Canada’s terrestrial land-base had been 

granted protected status (Environment and Climate Change Canada, 2016). Furthermore, 

large protected areas (which confer the greatest benefits to biodiversity conservation) are 

not evenly distributed; they are mostly found in the northern parts of the country (where 

ecological productivity is limited) due to the lack of land-use conflicts that typically 

characterizes high latitudes (Andrew et al., 2011; Environment and Climate Change 

Canada, 2016).  

  

Traditionally, systematic conservation planning efforts, including in Canada, have often 

sought to prioritize areas with high endemic species richness or sets of areas with broad 

species representation. However, these strategies assume that ecosystems are stationary 

and that habitat which is suitable today will remain so in the future (Lawler et al., 2015). 

In an era of climate change, altered temperature and precipitation regimes are predicted to 

cause species’ distributional ranges to shift and/or contract in geographic space (Beier & 

Brost, 2009; Anderson & Ferree, 2010); indeed, for some species, significant range shifts 

have already been observed, and more extensive shifts are expected to occur over the 

next century (Schloss et al., 2011; McClure et al., 2012; Lawler et al., 2015). 
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In recent decades, ecologists and planners have recognized that more robust strategies for 

conservation system design are needed, and new approaches that address climate change 

are now being actively developed, refined, and applied. Conservation planning efforts 

typically fall into 2 broad categories: (1) fine-filter, which target individual rare and at-

risk species as well as specific hotspots of diversity; and (2) coarse-filter, which target 

representative examples of communities and ecosystems and seek to protect tracts of 

habitat that are large enough to support viable populations of suites of species (Noss, 

1987; Hunter et al., 1988; Beier et al., 2015). In attempting to mitigate the effects of 

climate change on biodiversity, fine-filter strategies typically employ climate-envelope 

modeling for the species of interest (Beier et al., 2015), whereby habitat models created 

using current climatic conditions are projected onto predictions of future climatic 

conditions (e.g. based on global circulation models and potential emissions scenarios) to 

better understand how the location and extent of habitat will change over time (Stralberg 

et al., 2015). Habitat models are in turn derived from species distribution models 

(SDMs), which use a correlative approach to quantify the niche of a species and develop 

spatial predictions of species’ distributions under a given set of environmental conditions. 

 

Conversely, a coarse-filter strategy that has been proposed as a way to account for 

climate change is known as “conserving nature’s stage” (CNS). This strategy was 

developed according to scientific understanding of the biotic response to rapid warming 

that occurred at the start of the Holocene (Hunter et al., 1988; Anderson et al., 2012). 

During this period, relatively few extinctions occurred (Gill et al., 2015), likely due to (1) 

micro-refugias that retained pockets of suitable climate (i.e. areas where the in situ 

climate state experienced on the ground differed from the regional average; Dobrowski, 

2010), which allowed small populations to persist in place (Keppler et al., 2012) and (2) a 

lack of dispersal barriers, which allowed species to move in response to climatic shifts. In 

brief, CNS seeks to represent a diverse but connected array of resilient abiotic features, 

such as landforms and geological types, which will not be affected by altered temperature 

and precipitation regimes and are thus said to comprise the “stage” upon which 

ecological and evolutionary processes take place (Beier et al., 2015; Gill et al., 2015). 

CNS also encourages a focus on topographically diverse areas (e.g. comprising different 
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elevations and aspects), which tend to feature more diverse microclimates and thereby 

provide greater opportunities for refugial populations of species to persist as climate 

changes (Anderson et al., 2012).  

 

However, both the aforementioned fine-filter and coarse-filter strategies have 

weaknesses. For example, both the SDMs and future climate predictions that underlie 

fine-filter climate envelope models suffer from uncertainty, which can be severe in many 

cases, leading some to question whether the noise exceeds the signal when this strategy is 

used (Stralberg et al., 2015). Furthermore, comprehensive absence data, which can only 

be obtained through rigorous, systematic field sampling, is lacking for many species, 

especially for depleted, rare, and/or cryptic species that tend to need conservation 

attention the most (Elith et al., 2011). A lack of absence data necessitates the use of 

“presence-only” datasets in the creation of SDMs. Unfortunately, presence-only datasets 

(e.g. museum records, herbarium records, observations from citizen science projects such 

as breeding bird surveys, etc.) almost invariably comprise undesigned, opportunistic, or 

purposive observations obtained from multiple sources of varying integrity. Therefore, 

these datasets tend to be severely impacted by sample bias, which can significantly 

confound model results. 

 

Conversely, CNS was primarily developed to promote the maintenance of general 

biodiversity, not to protect specific species, communities, or ecosystems (Anderson et al., 

2012); thus, the ability of CNS to conserve individual taxa is limited. Indeed, the strength 

of the relationship between abiotic features and species’ distributions varies greatly 

(Beier et al., 2015) and, for mobile vertebrate species especially, biotic (i.e. floristic) 

factors tend to predict habitat suitability more directly (Franklin, 2009). Therefore, even 

proponents of CNS suggest that it should be complemented by fine-filter strategies which 

target species that are likely to be missed in a coarse-filter approach (Lawler et al., 2015). 

 

1.2. Research goals and objectives 
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In this thesis, I sought to address some of the limitations in current fine-filter approaches 

to landscape-scale conservation planning in a context of climate change. Specifically, I 

sought to refine, improve, and extend habitat delineation and prioritization strategies for 

individual at-risk species that might not receive sufficient protection under conservation 

strategies that target biodiversity more generally. To achieve this objective, I performed 

numerous modeling and conservation planning exercises with the goals of (1) improving 

the reliability of presence-only SDMs, both in terms of parameterization choices (chapter 

2) and predictions of future habitat (chapter 3); and (2) reducing the risk associated with 

the implementation of SDM results (i.e. habitat maps) in real-world conservation plans 

(chapter 4).  

 

The research performed herein focused on specific taxa from a vulnerable species group, 

migratory forest landbirds. Specifically, I targeted the Rusty Blackbird (Euphagus 

carolinus), the Olive-sided Flycatcher (Contopus cooperi), and the Canada Warbler 

(Wilsonia canadensis). Therefore, a secondary goal of this thesis was to contribute spatial 

information to conservation planning for these at-risk landbirds in Nova Scotia. 

 

1.3. Conservation significance of study species and study 

area 

 
Between 1970 and 2010, migratory bird populations declined by 12% in Canada and by 

13% in the Canadian Maritimes (Bird Studies Canada, 2012). Nova Scotia (45° N, 63° 

W) is a Maritime province of southeastern Canada that contains key sites along the 

Atlantic Flyway, including the easternmost extent of breeding habitat for the Rusty 

Blackbird, Olive-sided Flycatcher, and Canada Warbler. On the breeding range, ongoing, 

spatially extensive changes to forest habitat comprise the most serious threats to 

migratory landbirds (Westwood et al., 2015). However, climate change compounds these 

threats by further reducing available habitat (e.g. through sea-level rise or wetland 

drying); by affecting the timing and route of migrations, thereby causing a phenology 

mismatch between the time when birds arrive on the breeding grounds and peak resource 

availability (Marra et al., 2005; Visser & Both, 2005); and by increasing competition with 
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resident birds for the breeding resources that remain (Ahola et al., 2007; Kirby et al., 

2008). 

 

The Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler are listed under 

Canada’s Species at Risk Act (9S. C. 2002, c. 29) and the Nova Scotia Endangered 

Species Act (S. N. S. 1998, c. 11). Since the 1960s, all 3 of these birds have suffered 

steep population declines, particularly in Canadian Maritime provinces. Nonetheless, in 

recent years, research interest and conservation concern surrounding these species have 

increased, and international research and conservation consortiums have been founded to 

protect them (e.g. the Rusty Blackbird Working Group, the Canada Warbler Conservation 

Initiative). There have also been greater efforts by both governmental and non-

governmental organizations to target the Rusty Blackbird, Olive-sided Flycatcher, and 

Canada Warbler in conservation planning and management initiatives (Westwood, 2015). 

 

1.4. Summary of research chapters and their contributions 

 

Chapters 2, 3, and 4 are stand-alone research papers that include independent sub-goals 

and self-contained introduction, methods, results, and discussion sections (summarized in 

greater detail below). However, note that because these chapters were written to be stand-

alone, there is some redundancy in the information they present (e.g. in descriptions of 

the study area and study species). A final concluding chapter (5) presents a synthesis 

discussion, which pays particular attention to the implications of the research findings in 

the context of conservation planning in an era of climate change.  

 

Chapter 2 comprises a methods study in which I explored ways to optimize maximum 

entropy (Maxent) modeling, the most widely used presence-only modeling technique. 

Here, the specific objectives were to (1) investigate the effects that 2 unresolved 

modeling issues, sample bias and choice of covariate subset, have on Maxent model 

outputs; and (2) determine which parameterization choices best address these issues to 

yield more accurate and reliable model results. Results from this work were used to guide 

the parameterization of landbird SDMs in chapter 3. 
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Chapter 3 comprises a Maxent modeling study in which landscape-scale SDMs were 

developed for the Rusty Blackbird, the Olive-sided Flycatcher, and the Canada Warbler 

in Nova Scotia. The objectives of this chapter were to (1) investigate whether topographic 

features, which are considered more resilient to the effects of climate change, can be used 

alongside biotic features to predict bird occurrence; (2) elucidate landscape-scale habitat 

requirements for the birds of interest at the easternmost extent of their breeding range; 

and (3) identify the most valuable conservation areas for these birds in the province of 

Nova Scotia. 

 

Finally, chapter 4 presents a novel single-species (fine-filter) conservation planning 

strategy that targets specific at-risk species while also benefitting more general (coarse-

filter) conservation goals. Specifically, the proposed strategy aims to (1) reduce the 

uncertainty associated with the delineation of core conservation habitat for the target 

species by combining the results of multiple SDMs produced using different techniques 

and at different scales; and (2) increase the climatic resilience of the overall landscape to 

support general biodiversity. The application of the proposed strategy was demonstrated 

through a conservation planning exercise in which high value conservation habitat for the 

Olive-sided Flycatcher was identified in the province of Nova Scotia. These habitat 

patches were then prioritized according to landscape resilience scores, which were in turn 

defined according to permeability and topographic complexity (using methods adapted 

from Anderson et al., 2012). 

 

The research performed in this thesis should be of practical and theoretical interest to 2 

fields: species distribution modeling and conservation planning. Findings from the 

methods study (chapter 2) provide practical, user-friendly suggestions that can be applied 

to improve the reliability of Maxent SDMs. Results of chapter 2 also contribute to the 

ongoing discussion about what constitutes best practices in presence-only species 

distribution modeling, a topic that currently remains controversial. Conversely, the SDMs 

developed in chapter 3 help elucidate landscape-scale habitat requirements for the Rusty 

Blackbird, Olive-sided Flycatcher, and Canada Warbler in the easternmost extent of their 
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breeding range and also delineate key conservation sites for these vulnerable species in 

Nova Scotia. Moreover, the SDM results of chapter 3 highlight the potential utility of 

topographic covariates in predicting species occurrence, which may help conservation 

planners identify habitat patches that are characterized by greater resilience against 

climate change. Finally, the novel conservation planning strategy proposed in chapter 4 

can be applied to benefit specific at-risk species while also increasing the resilience of the 

overall landscape. In this way, the proposed strategy, while fine-filter in nature, should 

also support coarse-filter conservation goals in the face of climate change.  

 

In an era of climate change, it is impossible to guarantee the indefinite persistence of any 

specific species. Nonetheless, it is my hope that the research conducted in this thesis will 

be useful in helping migratory forest landbirds and other irreplaceable elements of 

biodiversity survive the age of the anthropocene a little bit longer. 
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Abstract 

Presence-only species distribution models (SDMs) have become widely used tools in 

environmental research and conservation management. Of all presence-only SDMs, 

maximum entropy (Maxent) is the most popular. However, over the past decade, rapid 

growth in the application of these tools has greatly outpaced corresponding 

methodological refinements to guide and standardize their use. As a result, many 

previously published empirical Maxent models have been criticized as unreliable or 

erroneous. In recent years, however, researchers have begun to address the need for a 

stronger set of best practices to improve presence-only modeling applications in earnest. 

We sought to contribute to this conversation by investigating the unresolved issues of 

sample bias and choice of environmental covariate subset in Maxent. Specifically, we 

used data from 1 virtual species (sampled at 2 bias intensities) and 1 real species (the 

Canada Warbler, Cardellina canadensis) to compare the efficacy of several commonly 

applied sample bias correction strategies: (1) spatial filtering (SF), (2) single species 

background manipulation (BM), (3) a combination of SF and BM (SF+BM), (4) modified 

target group background manipulation (TG), and (5) a combination of SF and TG 

(SF+TG), under a variety of conditions. For this, we ran multiple series of trials in which 

covariates were selected using either reverse stepwise elimination or a priori knowledge. 

Taken together, our findings suggest that, when reverse stepwise elimination is used, 

datasets should (at a minimum) be spatially filtered, as this tends to result in the selection 

of fewer covariates, thereby reducing model complexity. The combination SF+BM 

strategy may provide further marginal improvements in model results when the overall 

distribution of presence-points is sufficiently dense or exhibits severe spatial clustering. 

However, choice of bias correction strategy appears to be less important when covariates 

are selected according to a priori knowledge alone. Indeed, differences across all bias 

correction strategies were small and relatively inconsequential when the same covariates 

were used to train models. In contrast, using a less appropriate covariate to train 
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presence-only SDMs led to pronounced effects in model outputs, which could lead to 

significant consequences for conservation and environmental management. 

 

Keywords: Species distribution modeling, sample bias, covariate selection, reverse 

stepwise elimination 

 

2.1 Introduction 

 

Species distribution models (SDMs) seek to elucidate relationships between species’ 

occurrence or abundance at known locations and the environmental or spatial attributes 

that characterize those locations. These tools have greatly increased in prominence since 

the 1980s, when parallel advances in statistics, physical geography, and geographic 

information systems (GIS) allowed for more sophisticated and realistic models to be built 

(Elith & Leathwick, 2009). Today, SDMs are considered standard tools in the 

conservationist’s toolbox and are applied to support a variety of ecological goals, 

including to help guide reserve design, predict the effects of climate change on 

biodiversity, and test biogeographical hypotheses about species’ responses to their 

environment (Franklin, 2009a). 

Of the many SDM algorithms that have been applied by researchers and conservationists, 

maximum entropy modeling (Maxent) is among the most widely used. Indeed, the 

seminal paper which first introduced Maxent to the field of ecology (Phillips et al., 2006) 

was cited more than 3000 times in the ensuing decade. Maxent compares environmental 

conditions at point locations where a focal species has been observed to those of 

background locations (where presence is unknown). The resulting model is generated by 

calculating the probability distribution of environmental covariates which most closely 

matches that of the overall landscape while still meeting data moment constraints 

imposed by the species’ occurrence locations themselves (Elith et al., 2010; Merow et al., 

2013). (In other words, the mean, variance, covariance, etc., of environmental covariates 

at predicted presence locations must match those of observed species locations.) Notably, 

Maxent is a ‘presence-only’ technique, meaning that absence data are not required to 

generate predictions (Phillips et al., 2006). The popularity of Maxent can be attributed to 

(1) an algorithm which is fairly robust to small sample sizes and modest locational errors, 

(2) strong predictive performance compared with other presence-only techniques, and (3) 
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a freely available software package that is particularly easy to use (Elith et al., 2010; 

Merow et al., 2013).  

On the one hand, the advent of presence-only techniques such as Maxent has been a boon 

for ecology and conservation, creating opportunities for previously existing data, such as 

that from museums, government databases, or citizen science projects (e.g. breeding bird 

atlases), to be used in new and scientifically meaningful ways. In so doing, presence-only 

methods can preclude the need for rigorous and time-consuming field studies, which can 

be prohibitively expensive, particularly for rare and/or cryptic species that tend to need 

conservation work the most (Elith et al., 2011). On the other hand, presence-only SDMs 

are typically considered less robust than their presence-absence counterparts, partly 

because the exponential growth in the application of these tools has rapidly outpaced the 

development of standardized methodologies to guide their use. Maxent SDMs, which 

have frequently been criticized for adopting default software parameters with little or no 

justification (Merow et al., 2013), are particularly notorious in this regard.  

 

Of outstanding methodological questions challenging Maxent and other presence-only 

SDMs, sample bias is among the most commonly cited concerns (e.g. Kramer-Schadt et 

al., 2013; Yackulic et al., 2013; Boria et al., 2014). This is because presence-only datasets 

almost invariably comprise a collection of undesigned, opportunistic, or purposive 

observations obtained from multiple sources of varying integrity (Franklin, 2009b). 

Indeed, Yackulic et al. (2013) reported that 87% of all empirical Maxent models 

published between 2008 and 2012 were likely to suffer from sample bias. Furthermore, in 

the vast majority of Maxent models examined by Westwood (2016), sample bias was 

either unreported or incorrectly characterized.   

 

Another outstanding challenge in presence-only modeling involves choosing the most 

appropriate set of environmental covariates with which to build the model. This issue is 

non-trivial, as the true set of ecological factors influencing a species’ distribution is rarely 

known (Synes & Osborne, 2011), and as the choice of covariates can greatly influence 

the predictive performance of SDMs. For example, Synes & Osborne (2011) generated 

competing models to forecast the future distribution of a threatened bird species under the 
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influence of climate change. They found that using alternative sets of environmental 

covariates led to much greater uncertainty in model predictions than did applying 

different climate change or emissions (e.g. environmentally conscious world versus status 

quo) scenarios. 

 

Fortunately, however, findings such as those of Synes & Osborne (2011) and Yackulic et 

al. (2013) have highlighted the need for a stronger set of best practices to guide presence-

only modeling applications, and many researchers are now actively working to 

standardize modeling methodologies (see Guisan et al., 2013; Westwood, 2016). We 

sought to contribute to this conversation by performing experiments to investigate the 

outstanding issues of sample bias and choice of covariate subset in Maxent. In so doing, 

we had 3objectives. The first was to compare several commonly used bias correction 

strategies to determine which yields the most accurate spatial predictions (i.e. maps of 

relative habitat suitability) under a variety of conditions. Specifically, the bias correction 

strategies we considered were (1) spatial filtering (SF), (2) manipulating background data 

so that it contains the same spatial bias as the species occurrence dataset (i.e. background 

manipulation; BM), (3) using a ‘target group’ (TG) to select background data, (4) a 

combination of SF and BM (SF+BM), and (5) a combination of SF and TG (SF+TG). 

Our second objective was to determine whether any of the 6 bias correction strategies is 

able to improve covariate selection when a reverse stepwise elimination process is used. 

The third and final objective was to determine which has a greater impact on model 

outputs: sample bias correction strategy or choice of covariate subset.  

 

To address these research objectives, we applied the various bias correction strategies in 

4 series of trials, in which Maxent models were trained using (1) occurrence points from 

either virtual species datasets (sampled at 2 bias weightings) or a real Canada Warbler 

(Cardellina canadensis) dataset as well as (2) covariates that had been selected according 

to a priori knowledge or a reverse stepwise elimination process. Virtual species SDMs 

were assessed by AUC, by comparing the predicted suitability surface to the ‘true’ 

suitability surface, and by examining the accuracy of selected covariates and response 



 13 

curves. Real species (Canada Warbler) SDMs were evaluated using variants of AUC and 

by considering the ecological realism of models. 

 

To the best of our knowledge, this is the first study to examine the interplay between 

sample bias correction strategy and covariate selection. Insights from this study should 

help researchers and conservation practitioners who use Maxent in their work make more 

appropriate methodological and parametrization choices, thereby improving the 

reliability of SDM predictions. Findings from the current study should also interest the 

growing number of researchers working to refine and optimize a methodological 

framework to guide presence-only modeling efforts. 

 

2.2 Methods 

 

2.1.1 Study area 

 

Our study area was Nova Scotia (45° N, 63° W; Figure 2.1), a Maritime province in 

southeastern Canada that is characterized by a modified continental climate and exhibits a 

wide (though not extreme) temperature range, ample precipitation (particularly in winter 

and fall), and great variability in daily weather conditions (Nova Scotia Museum of 

Natural History, 1996a). With a total area of 52,939 km2 (Statistics Canada, 2014), Nova 

Scotia contains a diverse array of landscapes and an abundance of wetlands, lakes, and 

rivers (Nova Scotia Museum of Natural History, 1996b). The province is characterized by 

gently rolling topography, and elevation ranges from 0 - 520 m above sea level, with the 

highest elevations found in Cape Breton. Nova Scotia belongs to the Acadian Forest 

Ecozone and has a mixed-forest species composition, though conifers dominate in many 

areas, particularly where drainage is impeded (Rowe, 1972; Neily et al., 2005). Recently, 

efforts to model habitat for songbirds (including the Canada Warbler) (e.g. chapter 3 of 

this thesis; Westwood, 2016) and other at risk species (Snaith & Beazley, 2004; Cameron 

et al., 2013) have been focused in Nova Scotia. 

 

2.2.2 Data and workflow 
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The workflow and analytical framework employed to address our 3research objectives 

was modified from Fourcade et al. (2014) and involved 4 series of Maxent modeling 

trials (Table 2.1, Figure 2.2). Trial series 1 and 2 were conducted to address our first 

research objective: compare commonly used bias correction strategies and determine 

whether any of them yields more accurate mapped predictions of habitat suitability. 

Specifically, trial series 1 involved training Maxent models with virtual species datasets 

(sampled at 2 bias weightings) and the 4 “true” environmental covariates that were used 

to synthesize them. In trial series 2, models were trained using real species data and pre-

defined sets of either 5 (i.e. ‘depth to water-table’ (‘D2W’), ‘distance to wetland’, 

‘distance to coniferous stand’, ‘distance to deciduous stand’, and ‘distance to stand with 

dead material) or 6 (i.e. all of these as well as ‘distance to clear-cut) covariates, chosen 

according to a literature review and findings of a previous landscape-scale modeling 

study conducted for the Canada Warbler in Nova Scotia (Westwood et al., 2015). 

 

Trial series 3 and 4 were conducted in support of our second research objective: 

determine whether any of the bias correction strategies shows a superior ability to 

facilitate accurate covariate selection when reverse stepwise elimination is employed. For 

this, in trial series 3, Maxent models were trained using virtual species data (sampled at 2 

bias weightings) and sets of covariates that were selected using a reverse stepwise 

elimination process (described in section 2.2.4). In trial series 4, covariates were also 

selected through reverse stepwise elimination, but real species (Canada Warbler) data 

was used.  

 

Our third and final research objective − determine whether sample bias correction 

strategy or environmental covariates used in model training have a greater impact on 

SDM results − was also addressed using models that were generated in trial series 2 (i.e. 

real species data + pre-defined sets of 5 or 6 covariates). 

  

Over subsequent sections, the following is described: (1) preparation of environmental 

covariates and species’ occurrence datasets (2) sample bias correction strategies 
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evaluated in comparative analyses, (3) reverse stepwise elimination, and (4) model 

evaluation. 

 

2.2.3 Dataset preparation 

 

Environmental covariate data. Environmental covariates used to train Maxent models 

included 4 themes: topography, characteristics of forest vegetation, access to water, and 

anthropogenic disturbance (base layers were obtained from the Nova Scotia Department 

of Natural Resources; NSDNR); however, the subsets of covariates employed in each of 

the 4 trial series varied slightly (Table 2.2). All data preparation was performed using 

tools in ArcGIS 10.2.2 software (Environmental Systems Research Institute [ESRI], 

2014). Environmental covariates were prepared as a stack of ASCII files with the same 

projection (NAD 1983 UTM Zone 20), spatial extent, and cell size (i.e. resolution; 

150m2). Following this, Spearman correlation coefficients were calculated for each pair 

of covariate data layers using SPSS 21 (IBM Corp, 2013). When the Spearman’s r value 

was ≥|0.6|, 1 of the covariates in the pair was dropped from further analysis. After 

removing highly correlated layers, 14 environmental covariates were available for input 

into Maxent (Table 2.1; See Appendix A for a more detailed description of GIS layers 

and their preparation). 

 

Synthesis and biased sampling of virtual species data. Trial series 1 and 3 employed 

virtual species data, which was synthesized using the niche synthesis method developed 

by Hirzel et al. (2001). Specifically, we generated a series of ‘niche response functions’ 

(i.e. the species’ responses to a set of ecogeographical or environmental features) for 4 

covariates: ‘distance to coniferous stand’, ‘% crown closure’, ‘topographic position 

index’ (‘TPI’), and ‘distance to agriculture’. These response functions were then 

weighted and combined according to Eq. 1 to synthesize a virtual habitat suitability 

surface:  

 

(1) H =
1

Σ𝑖=1
𝑛 𝑊𝑖

∑ 𝑤𝑖𝐻𝑖
𝑛
𝑖=1 + 𝜀 , 
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where H is the overall suitability score of a raster cell; Hi is the partial suitability score of 

the ith niche coefficient; wi is the weight assigned to that partial suitability score; and ε is 

a random error term between -0.05 and 0.05 (Hirzel et al., 2001). The virtual habitat 

suitability surface (truth map, hereafter) represents the “true” intrinsic preferences of the 

virtual species and was used to evaluate the quality of our predictive Maxent models. The 

covariates and associated response functions that were used to create the truth map are 

listed in Table 2.3. 

 

To generate virtual presence points from the truth map, a virtual distribution map was 

synthesized by (1) adding a random value between -0.2 and 0.2 to each cell of the truth 

map to introduce stochasticity to the data; and (2) selecting a presence threshold to 

convert the continuous values of this stochastic truth map into a binary presence/absence 

map (distribution map, hereafter) (Hirzel et al., 2001). We used a threshold of 0.9 in order 

to yield a distribution map in which approximately 25% of cells were classified as 

‘suitable’. Following this, we randomly generated 5000 virtual presence points in suitable 

cells (i.e. cells where H ≥ 0.9). 

 

To simulate roadside bias, which commonly affects presence-only datasets (Fourcade et 

al., 2014), we weighted virtual species presence points in such a way that points closer to 

roads were more likely to be sampled than points farther away. We then subsampled 25% 

and 5% of the 5000 weighted virtual presence points to generate datasets with low 

roadside weight (LRW; 1250 presence points) and high roadside weight (HRW; 250 

presence points), respectively (Figure 2.3) (Fourcade et al., 2014). The subsampling 

procedure was repeated 5 times (at each roadside weight) in order to obtain 5 replicates 

of both HRW and LRW datasets. 

 

Real species data. For trial series 2 and 4, we constructed real species presence-only 

models using occurrence data for the Canada Warbler (Cardellina canadensis), a 

neotropical passerine migrant of conservation concern that breeds in Nova Scotia and 

shows a facultative preference for forested wetlands, but is also common in wet, shrubby 

forests in the eastern part of its range (Reitsma et al., 2010). The Canada Warbler selects 
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nest sites on or near the ground that are concealed by thick understory and forages for 

insects in shrubs or the lower branches of both coniferous and deciduous trees (Goodnow 

and Reitsma, 2011). 

 

Presence points for the Canada Warbler were obtained from the Atlantic Canada 

Conservation Data Center (ACCDC, 2014), and primarily comprised records from the 

Maritime Breeding Bird Atlas (MBBA) database (2006-2010 surveys), but also included 

observations made by other individuals or research groups. We removed duplicate points 

and low-resolution data (i.e. observations where birds were not guaranteed to be less than 

150 m away from the recorded coordinates), which left 412 presence points available for 

input into Maxent modeling software (Figure 2.4). 

 

2.2.4 Sample bias correction strategies 

 

As controlling for sample bias is critical in building a robust SDM, we compared the 

efficacy of the different bias correction strategies under a variety of conditions, 

represented by the 4 series of Maxent modeling trials. Specifically, the bias correction 

strategies we considered were: spatial filtering (SF), background manipulation (BM), a 

combination of both SF and BM (SF+BM), a modified target group (TG) strategy, and a 

combination of both SF and TG (SF+TG). The SF, BM, and SF+BM correction strategies 

were applied on both virtual and real species (i.e. Canada Warbler) datasets, and the TG 

and SF+TG strategies were applied on Canada Warbler data alone, due to the lack of a 

suitable target group for virtual species data. The application of bias correction strategies 

are described in greater detail over the following sections. 

 

Spatial filtering (SF). One of the most common and simple sample bias correction 

strategies is SF, a technique which attempts to reduce or remove the spatial structure of 

occurrence data by imposing a minimum distance between presence points (Franklin, 

2009b). We used a threshold of 1 km and, when the distance between a pair (or set) of 

points fell below this threshold, the point(s) nearer to a road was removed (Mahon et al. 

2014). SF reduced the Canada Warbler dataset to 312 presence points, LRW datasets to 
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between 1188 and 1199 presence points, and HRW datasets to between 244 and 249 

presence points. (Note that the number of presence points among spatially filtered LRW 

and HRW datasets varied slightly because the number of points that were within 1 km of 

each other in the unfiltered 5 LRW and 5 HRW datasets also varied.) 

  

Background manipulation (BM). Manipulating background data can be an effective way 

to distinguish real ecological signals from noise (Phillips et al., 2009). Recall that Maxent 

generates predictions by comparing the distributions of environmental covariates at 

observed species locations with those of the overall landscape. The landscape is in-turn 

defined by covariates at 10,000 “background points” (Phillips & Dudik, 2008). Under 

default settings these points are collected at random; however, more recent versions of 

Maxent software allow the user to provide specifications dictating where and how 

frequently background points are selected for model training through the use of a “bias 

grid” (i.e. a GIS layer which defines the relative sampling frequency of background 

points throughout the entire study area). In this way, the landscape can be characterized 

with similar spatial bias as that exhibited by presence points, thereby factoring out the 

sample bias in occurrence data (Phillips & Dudik, 2008; Phillips et al., 2009).  

 

To create such a bias grid, we generated a kernel density map of presence points for each 

occurrence dataset using the ‘Kernel Density with barriers’ tool in the ‘Homerange tools’ 

extension for ArcGIS (Beyer, 2004). For this, we applied a kernel radius of 10 km, and 

raw bias grid values were normalized between 1 and 20 (Elith et al., 2010; Fourcade et 

al., 2014), wherein areas located near higher densities of presence points had a higher 

probability of being used to characterize the background landscape. 

 

Target Group Background Manipulation. For trial series 2 and 4, which used Canada 

Warbler data, we also created a second bias grid using occurrence points from a target 

group (TG). The target group is a large group of related taxa of which the focal species is 

a part (i.e. all birds in this case). Therefore, for the TG bias correction strategy, rather 

than use presence points from the focal species alone, the bias grid was created using 
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presence points from all passerine bird observations in Nova Scotia contained in ACCDC 

and MBBA databases. 

 

2.2.5 Reverse stepwise elimination 

 

In trial series 3 and 4, to compare the ability of the various bias correction strategies to 

facilitate accurate covariate selection, we generated models using covariates selected 

through a reverse stepwise elimination process. For this, an initial model was first trained 

using the full set of candidate covariates (Table 2.2), which comprised 14 covariates for 

the Canada Warbler and 13 covariates for the virtual species. (We did not include 

‘distance to deciduous stand’ in reverse stepwise elimination for the virtual species as our 

virtual species was designed to nest in coniferous trees, and this habitat preference would 

likely be known in a real world conservation application. All other covariates considered 

for the Canada Warbler and the virtual species were the same.) After running an initial 

model, the covariate that contributed the least to predictive power (according to 

permutation importance score; Yost, 2008; Baldwin, 2009) was removed from 

subsequent model iterations. This procedure was repeated until a single variable 

remained, yielding a set of ‘n’ candidate models, where n = the number of covariates 

included in the initial run. Of these, the most parsimonious model was identified using 

Akaike’s Information Criterion (corrected for small sample sizes; AICc), which was 

calculated using a Perl-script developed for Maxent by Warren and Seifert (2011). 

 

2.2.6 Model evaluation  

 

The accuracy and reliability of models created in each of the 4 trial series were evaluated 

and compared. Specifically, for trial series 1 and 3 (i.e. trials that employed virtual 

species data), our comparison included 1 uncorrected model (i.e. with no bias correction 

strategy applied) and 3 corrected models (i.e. using SF, BM, or SF+BM) for each of the 5 

LRW and 5 HRW datasets: a total of 4 models x 10 virtual species datasets (i.e. 20 LRW 

and 20 HRW models) per trial series. For trial series 2 and 4 (i.e. trials that employed real 

Canada Warbler data), this included 1 uncorrected model and 5 corrected models (i.e. 
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using SF, BM, SF+BM, TG, or SF+TG): a total of 6 real species models per trial series 

(Table 2.1). 

 

Virtual species models were evaluated in 3ways. First, we assessed the accuracy of 

covariate selection. Specifically, for both trial series 1 and trial series 3, we compared the 

shape of predicted response curves to the true response curve shapes. For trial series 3 (in 

which covariates were selected using reverse stepwise elimination) we also examined 

how closely the selected covariate subsets matched the set of 4 true covariates that were 

used to synthesize the virtual species. 

 

Second, we assessed the accuracy of spatial predictions output by each of the virtual 

species models by calculating Schoener’s D, a measure of niche overlap (Schoener, 

1968). In other words, we used Schoener’s D scores to determine how closely each of the 

predicted suitability surfaces resembled the truth map. Schoener’s D calculates the 

similarity between a pair of surfaces by comparing normalized habitat suitability scores 

of all intersecting cells across the entire study area (Eq. 2) (Warren et al., 2010). The 

Schoener’s D index ranges from 0 (no overlap) to 1 (identical models) and was calculated 

using the ENMTools extension for Maxent (Warren et al., 2008; Warren et al., 2010):  

 

(2) 𝐷(𝑝𝑥,𝑝𝑦) = 1 −
1

2
∑ |𝑖 𝑝𝑥,𝑖 − 𝑝𝑦,𝑖| , 

 

where px,i and py,i are normalized suitability scores for grid cell i on surfaces X and Y. 

 

Similarly, the ΔD indicator (Eq. 3) is used to standardize and describe the difference in 

Schoener’s D scores between uncorrected and corrected models (Fourcade et al., 2014). 

We used ΔD values to compare the ability of each correction strategy to reduce the 

effects of sample bias and improve spatial predictions of habitat suitability: 

 

(3) ΔD = (Dcorrected – Duncorrected) / (1- Duncorrected) . 
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Finally, we evaluated the discriminatory power of models by calculating the probability 

that a randomly selected presence point has a higher suitability score than a randomly 

selected absence point using AUC (Elith et al., 2006; Fourcade et al., 2014), which was 

calculated in SPSS. AUC scores also range from 0 (no power to discriminate between 

presence and absence/background) to 1 (perfect discriminatory power). A score of 0.5 

indicates that model predictions are no better than random. 

 

To determine the AUC of virtual species models, we generated 10,000 absence points in 

cells on the virtual distribution map where H < 0.9. We also calculated the ΔAUC 

indicator (Fourcade et al., 2014) to quantify improvements in AUC score conferred by 

each bias correction strategy. As with ΔD, the ΔAUC measure standardizes differences 

between control and corrected models: 

 

(4) ΔAUC = (AUCcorrected – AUCuncorrected) / (AUCunbiased – AUCuncorrected) , 

 

where AUCunbiased is the AUC score calculated for the truth map.  

  

For real species (Canada Warbler) trials (trial series 2 and 4), we evaluated the ecological 

realism of models by assessing how well covariates and their response curves reflected 

known habitat preferences of the species, determined according to a literature review and 

a previously published model (Westwood et al., 2015). To assess Canada Warbler models 

quantitatively, we used variants of AUC (calculated in Maxent using random background 

points). (Note that using Schoener’s D to evaluate the quality of Canada Warbler models 

would not be reasonable as the ‘true’ habitat suitability surface cannot be known for real 

species presence-only datasets.) Specifically, to evaluate model fit, we calculated the 

difference between AUCtrain and AUCtest scores (AUCdiff hereafter). (Overfit models tend 

to predict training data well and test data poorly; Warren & Seifert, 2011.) Both AUCtrain 

and AUCtest scores are reported as the average across 10 cross-validated model runs.  

 

To evaluate the discriminatory power of real species models, we used AUCtest scores 

calibrated using a null geographic model (calibrated AUC; cAUC, see Supplementary 
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Material), as proposed by Hijmans (2012). Models were calibrated in this way to account 

for residual spatial auto-correlation among presence points, which can artificially inflate 

AUC scores when absence data is unavailable (Lobo et al., 2008; Veloz, 2009; Jiminez-

Valverde, 2011). Finally, for trial series 2, to determine whether changing bias correction 

strategy or covariate set had a greater impact on model outputs for the Canada Warbler, 

we used Schoener’s D to assess the similarity of predicted habitat suitability surfaces 

generated using different covariate sets and different bias correction strategies. 

 

2.3. Results 

 

In this study, we used data from 1 virtual species and 1 real species to investigate the 

issues of sample bias and choice of covariate subset in Maxent. Over subsequent 

paragraphs, we first discuss the characterization of sample bias in virtual species 

occurrence datasets and then discuss the results of Maxent modeling trials as they pertain 

to the research objectives of this study: (1) the ability of the various bias correction 

strategies to yield accurate, mapped predictions of habitat suitability , (2) the ability of 

the various bias correction strategies to facilitate accurate covariate selection when 

reverse stepwise elimination is used, and (3) the influence of bias correction strategy 

versus covariate subset on model outputs. 

 

2.3.1 Characterization of sample bias in virtual species 

occurrence datasets 

 

All uncorrected virtual species models showed a decrease in AUC score compared to the 

unbiased model (i.e. AUC of truth map: 0.895), with HRW data causing a larger decrease 

than LRW data (Figure 2.5). Furthermore, when trained using the same occurrence 

dataset, uncorrected models in trial series 3 (i.e. models trained using covariates selected 

by reverse stepwise elimination) always had a lower AUC score than their counterparts in 

trial series 1 (i.e. models trained using the 4 “true” covariates). Nonetheless, reductions in 

AUC score were similar in magnitude for all uncorrected models. Schoener’s D values 

confirmed that habitat suitability surfaces predicted by uncorrected models always 
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deviated from the truth map; however, as with AUC, deviations were similar in 

magnitude (Figure 2.5).  

 

2.3.2 Ability of bias correction strategy to yield accurate, mapped 

predictions of habitat suitability (trial series 1 and 2) 

 

Trial series 1, virtual species data. While quantitative metrics were similar for all 

uncorrected and corrected models in trial series 1 (i.e. models trained using the 4 “true” 

covariates), some patterns did emerge, and these were particularly evident when 

examining ∆D values (Figure 2.6, Table 2.4). Specifically, when LRW data was used, the 

SF+BM strategy yielded the most accurate spatial predictions (i.e. the predicted 

suitability surface was most similar to the truth map) for 4/5 models (Appendix B). 

Results for HRW datasets were less conclusive; however, when considering average 

scores across 5 replicate datasets, SF yielded the greatest improvement in Schoener’s D 

in trial series 3. Results for AUC, which describe models’ discriminatory power, were 

more variable and often contradicted results obtained for Schoener’s D (Figure 2.6, Table 

2.4). For models that were generated using both LRW and HRW data, on average, the 

BM strategy yielded the greatest improvement in AUC score (i.e. ∆AUC). However, 

according to the ∆D metric, the BM strategy actually reduced the accuracy of mapped 

habitat suitability predictions compared to the uncorrected model. 

 

Trial series 2, real species data. In trial series 2, which used Canada Warbler data and 

pre-defined sets of covariates, the TG strategy yielded the highest AUCtest and lowest 

AUCdiff scores for both the 5 (i.e. ‘distance to stand with dead material’, ‘distance to 

coniferous stand’, ‘distance to deciduous stand’, ‘distance to wetland’, and ‘D2W’) and 6 

(also including ‘distance to clear-cut’) covariate models, and the BM strategy yielded the 

2nd highest and 2nd lowest such scores, respectively (Figure 2.7, Table 2.5). However, 

according to the cAUC metric, for both the 5 and 6 covariate models, the SF strategy 

provided the best results, and SF+BM provided the 2nd best results (Figure 2.7, Table 

2.5). 
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2.3.3 Ability of bias correction strategy to facilitate accurate 

covariate selection when reverse stepwise elimination is 

used (trial series 3 and 4) 

 

Trial Series 3, virtual species data. For LRW datasets, the choice of bias correction 

strategy did not seem to greatly affect the accuracy of covariate selection, as covariates 

included in uncorrected, SF, BM, and SF+BM models were similar. In brief, the 4 

environmental covariates that were truly important to the virtual species (‘distance to 

coniferous stand’, ‘% crown closure’, ‘distance to agriculture’, and ‘TPI’) were selected 

in all 20 models that employed LRW data and reverse stepwise elimination (i.e. 3 

corrected models & 1 uncorrected model x 5 replicate LRW datasets) (Appendix B).  

 

Although all 20 LRW models in trial series 3 correctly identified the 4 true variables, 

many of these LRW models selected erroneous covariates as well (i.e. covariates which 

were not used to synthesize the virtual species), and some erroneous covariates were 

selected more frequently than others. Specifically, 15/20 models trained using an LRW 

dataset contained erroneous covariates. Of these, the 2 that were selected most frequently 

were ‘distance to clear-cut’ (present in 12 models) and ‘distance to scrubland’ (present in 

7 models). Conversely, some covariates were never selected erroneously (Appendix B). 

 

Furthermore, for models trained using HRW data in trial series 3, the number of 

covariates that were selected when spatially filtered data was used (models in which the 

SF or SF+BM bias correction strategy was applied) was always equal to or less than the 

number of covariates included in counterpart models that used unfiltered data (i.e. 

uncorrected and BM models), and additional covariates were always erroneous. 

Uncorrected models as well as models built using the SF, BM, and SF+BM bias 

correction strategies each failed to select ‘TPI’ for 2/5 HRW datasets; however, the other 

3 true environmental covariates were always correctly selected. (Appendix B).  

 

As with the LRW models developed in trial series 3, many HRW models contained 

erroneous covariates, and certain erroneous covariates were included more often than 
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others. For example, ‘distance to clear-cut’ and ‘distance to stand with dead material’ 

were both present in 4/9 HRW models that contained erroneous covariates. Interestingly, 

for both LRW and HRW virtual species datasets, in all but 2 cases, whenever a covariate 

showed a permutation importance score of <5%, it was erroneous (data not shown). 

 

Finally, for all models in trial series 3 (and also in trial series 1), response curves for 3 of 

the 4 covariates that were actually important to the species (‘TPI’, ‘distance to coniferous 

forest’, and ‘% crown closure’) were similar to the expected shape (Figure 2.8). 

However, the shape of the response curve for ‘distance to agriculture’ did not match 

expectations. Specifically, the truth map was synthesized in such a way that habitat 

suitability improved as distance from an agricultural area increased from 0 m to 1500 m 

and remained constant thereafter. While modeled response curves for this covariate 

correctly showed an improvement in habitat suitability as distance from agriculture 

increased to 1500 m, when the distance exceeded this threshold, habitat suitability began 

to decrease once again. This trend was observed in all virtual species trials, but was 

especially pronounced when models were trained using HRW datasets (Figure 2.8). 

 

Trial Series 2, Real Species data. In trial series 4 (which employed reverse stepwise 

elimination), using unfiltered Canada Warbler data always led to more covariates being 

selected than when spatially filtered data was used. In other words, uncorrected models or 

models in which the BM or TG bias correction strategies were applied always included 

more covariates than models in which the SF, SF+BM, or SF+TG strategies were 

applied. However, all Canada Warbler models in trial series 4 included: ‘distance to 

deciduous stand’, ‘distance to coniferous stand’, ‘distance to clear-cut’, ‘distance to 

wetland’, and ‘depth to water-table’ (‘D2W’). Furthermore, ‘D2W’ and ‘distance to 

clear-cut’ were ranked as the 1st and 2nd most important covariates (i.e. according to 

permutation importance score), respectively, in all cases except the SF+TG strategy 

(where ‘distance to clear-cut’ was 2nd and ‘D2W’ was 3rd). Summaries of Canada 

Warbler models generated using reverse stepwise elimination are provided in Table 2.6. 

The full results of Canada Warbler reverse stepwise elimination trials are provided in 

Appendix C. 
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For Canada Warbler models, while response curves for most of the frequently selected 

covariates matched known habitat preferences of the species, the response-curve for 

‘distance to clear-cut’ was somewhat suspect (Figure 2.9). Specifically, this response 

curve indicates that habitat within or at the edge of clear-cuts is highly suitable, but 

suitability rapidly decreases outside of these areas and continues to decrease, albeit at a 

slower rate, thereafter. A similar pattern was also observed in virtual species’ response 

curves when ‘distance to clear-cut’ was erroneously included in models (Figure 2.10).  

 

2.3.4 Influence of bias correction strategy versus covariate subset 

on model outputs (trial series 2) 

 

Comparing Schoener’s D scores across models built using different covariate subsets as 

well as different bias correction strategies would produce uninterpretable results. 

Therefore, to address our third research objective, we instead compared Canada Warbler 

models generated in trial series 2 that were (1) built using the same set of 5 covariate 

(‘D2W’, ‘Distance to wetland’, ‘Distance to coniferous stand’, ‘Distance to coniferous 

stand’, and ‘Distance to stand with dead material’) or 6 covariate (all of these and also 

‘Distance to clear-cut’) subsets but different bias correction strategies, or (2) built using 

the same bias correction strategy but different sets of covariates (i.e. the pre-defined sets 

of 5 or 6 covariates listed above). Results of these evaluations are presented in Table 2.7. 

 

Across all of these pairwise comparisons, Schoener’s D scores were never lower than 

0.8988. Nonetheless, models produced using competing sets of covariates but the same 

bias correction strategy were almost always less similar than models produced using the 

same covariate set but a different bias correction strategy (Table 2.7). The only 

exceptions to this trend involved SF+BM models. Specifically, the Schoener’s D score 

between the SF+BM model built using 5 covariates and the SF+BM model built using 6 

covariates was 0.9402, which was higher than the Schoener’s D score between SF+BM 

and TG models built using 6 covariates (0.9236), SF+BM and TG models built using 5 

covariates (0. 9358), and SF+BM and uncorrected models built using 5 covariates 
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(0.9308). (Schoener’s D scores were higher than 0.9402 for all other pairwise 

combinations involving SF+BM models.) 

 

However, although all Schoener’s D scores were relatively high in trial series 2 (Table 

2.7), a visual examination of habitat suitability surfaces output by Canada Warbler 

models built using alternative subsets of 5 or 6 covariates (i.e. with or without ‘distance 

to clear-cut’) revealed several obvious qualitative discrepancies in large areas of suitable 

and unsuitable habitat. Conversely, areas of discrepancy were much less clear when 

comparing models built using the same covariate subset but different bias correction 

strategies (Figure 2.11).  

 

Specifically, a visual examination of predicted habitat suitability surfaces in trial series 4 

revealed that models which included ‘distance to clear-cut’ classified a large area in 

southern Nova Scotia as unsuitable habitat for the Canada Warbler (Figures 2.11 and 

2.12). This same area was predicted to be suitable by models that did not include 

‘distance to clear-cut’. Similarly, models that included ‘distance to clear-cut’ classified a 

much greater proportion of northwestern Nova Scotia as unsuitable than models that did 

not include ‘distance to clear-cut’. 

 

2.4. Discussion 

 

In this study, we used data from 1 real and 1 virtual species (sampled at 2 bias 

weightings) to investigate how bias correction strategy and choice of covariate subset 

impact accuracy and uncertainty in Maxent SDMs. A virtual species approach allows 

model outputs to be compared with a known “truth”, making it easier to distinguish the 

effects of subjective decisions made by the modeler from those of data-related factors 

(Miller, 2014). However, because the virtual reality is much less complex than a real-

world ecosystem, we opted to strengthen our analysis by conducting trials with a real 

Canada Warbler presence-only dataset as well. In addition, though SDM accuracy can be 

affected by a variety of bias types, we simulated roadside bias as this is the type to most 

commonly affect presence-only datasets (Kadmon et al., 2004). Indeed, most of the 
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Canada Warbler data used in the current study had been obtained along roadside point 

counts. Furthermore, of the 4 bias types studied by Fourcade et al. (2014), roadside bias 

was found to be most difficult to rectify. 

 

2.4.1 Uncertainty associated with model evaluation metric 

 

Though it is the most commonly used evaluation metric in SDM studies, AUC has been 

widely criticized as, among other things, it tends to reward models that have been over-fit 

(Lobo et al., 2008). When calculated using background data instead of absence data, 

AUC becomes even less reliable (Veloz, 2009; Jimenez-Valverde, 2012). Indeed, the 

well-documented pitfalls of AUC were evident in the results of the current study, 

whereby the most complex models (i.e. models trained using the largest number of 

environmental covariates) consistently received the highest AUCtrain and AUCtest scores 

(Table 2.6, Appendix B). Therefore, when analyzing results of this current study, we 

chose to rely on alternative evaluation metrics as much as possible. Specifically, for 

virtual species trials, we focused on Schoener’s D results, and for Canada Warbler trials 

we focused on cAUC and AUCdiff scores. For both virtual and real species, we considered 

the accuracy of covariate selection, response curve shape, and the ecological realism of 

habitat suitability surfaces output by Maxent. 

 

2.4.2 Ability of bias correction strategy to yield accurate, mapped 

predictions of habitat suitability (trial series 1 and 2) 

 

For all trial series, quantitative metrics were calculated to evaluate the quality of models 

produced when each of the various bias correction strategies was applied. However, in 

determining which bias correction strategy showed a superior ability to yield accurate, 

mapped predictions of habitat suitability (i.e. research objective 1), we primarily 

considered results from trials series 1 and 2 (i.e. models trained using the same subset of 

covariates selected according to a priori knowledge). In trial series 3 and 4, the effects of 

different bias correction strategies would be difficult to disentangle from the effects of 

different covariate subsets. 
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For virtual species models in trial series 1, ΔD scores suggest that, on average, SF+BM 

and SF alone produced the most accurate spatial predictions (i.e. produced a habitat 

suitability surface that most closely matched the truth map) for LRW and HRW data, 

respectively (Table 2.4; Figure 2.6). For Canada Warbler models in trial series 2 (which 

involved pre-defined sets of covariates chosen according to a priori knowledge) SF and 

SF+BM achieved the highest and 2nd highest cAUC scores, respectively, for both the 5 

and 6 covariate models; however, these same strategies showed the worst AUCdiff scores 

(Table 2.5; Figure 2.7). 

 

Findings from trial series 1 and 2 provide some limited evidence to indicate that, when 

the covariate subset used to train competing models is the same, applying the SF or 

SF+BM bias correction strategy can slightly improve the accuracy of mapped predictions 

of habitat suitability. Nonetheless, for most of the 40 virtual species models (20 LRW and 

20 HRW models), the improvements in Schoener’s D and cAUC scores conferred by the 

use of SF and SF+BM were minor. Furthermore, other quantitative metrics (e.g. AUCdiff 

in trial series 2) suggested that alternative bias correction strategies (e.g. the TG strategy) 

can generate more accurate mapped predictions of habitat suitability, thereby 

contradicting results of Schoener’s D and cAUC. Based on these conflicting findings, we 

cannot definitively recommend one bias correction strategy over another. Rather, the 

optimal bias correction strategy likely varies according to data-related factors (e.g. 

density and/or distribution of occurrence points, etc.). Even so, all else being equal, the 

choice of bias correction strategy does not appear to greatly influence mapped model 

results. 

 

2.4.3 Ability of bias correction strategy to facilitate accurate 

covariate selection when reverse stepwise elimination is 

used (trial series 3 and 4) 

 
Several important conclusions can be drawn regarding the efficacy of bias correction 

strategies when reverse stepwise elimination is applied. Firstly, no single bias correction 
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strategy showed an especially superior ability to accurately identify important 

environmental covariates (i.e. the 4 true covariates were selected in all LRW models and 

in most HRW models, regardless of the bias correction strategy that was applied; and, for 

Canada Warbler models, the same covariates were assigned high importance scores 

across bias correction strategies). However, in trial series 4, Canada Warbler models built 

using spatially filtered data (SF, SF+BM, and SF+TG models) always included fewer 

covariates than counterpart models built using unfiltered data (i.e. uncorrected, BM, and 

TG models) (Table 2.6). In trial series 3, HRW models built using spatially filtered data 

never included more covariates than counterpart models built using unfiltered data, and 

when unfiltered HRW models included a greater number of covariates than their spatially 

filtered counterparts, the additional covariates were always erroneous (Appendix B). 

Clearly, spatially filtering data (with or without the application of an additional correction 

strategy) prior to performing reverse stepwise elimination led to a reduction in model 

complexity when sample bias was more severe. However, in terms of response curve 

shape, although all LRW and HRW models that employed reverse stepwise elimination 

correctly included ‘distance to agriculture’, no bias correction strategy was able to 

recover the true response curve shape. This distortion was especially severe in HRW 

datasets (Figure 2.8). 

 

Therefore, when reverse stepwise elimination was used, there was a clear trend in which 

spatially filtering occurrence data (with or without the use of an additional bias correction 

strategy) tended to improve model quality by reducing the number of covariates used to 

train models and thereby reducing model complexity.  

 

Secondly, our study provides some limited evidence to suggest that, when the density of 

presence points across the study area is high (i.e. LRW datasets, Figure 2.3, center panel), 

the accuracy of reverse stepwise elimination may be further improved by manipulating 

the selection of background data so that the probability of including an area in the 

background sample is defined according to the density of surrounding presence points 

after spatial filtering is performed (i.e. the SF+BM strategy). Indeed, considering all bias 

correction strategies, SF+BM came closest to identifying the true subset of covariates in 
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4/5 LRW datasets, and for 2 of these datasets, SF+BM led to perfect covariate selection 

(i.e. only the 4 true covariates were selected; no erroneous covariates were included). 

Although for the 5th LRW dataset the SF+BM model included the greatest number of 

erroneous covariates, all 5 SF+BM models created using LRW data nonetheless yielded 

the highest Schoener’s D scores, regardless of the number of covariates that were used to 

train them. SF+BM may also be useful if the species dataset is relatively sparse but 

contains clusters of occurrence points that are significantly more dense in some areas 

than others, as was the case for the Canada Warbler dataset (Figure 2.4). However, given 

the conflicting results between AUCdiff and cAUC scores in trial series 4, evidence to 

support the application of SF+BM on this type of data is less strong. 

 

In the case of the HRW virtual species dataset (Figure 2.3, right panel), in which points 

suffered from roadside bias but did not exhibit much clustering, applying the BM strategy 

in addition to SF was less useful, even reducing model accuracy compared to when SF 

alone was used. Note that, as this dataset contained a low point density across the entire 

study area, applying a 1 km spatial filter on HRW datasets only resulted in a loss of 1 to 6 

points. However, all bias grids used for the BM strategy caused areas near the highest 

density of presence-points to be selected as background data 20 times more frequently 

than areas near the lowest density of presence-points, regardless of whether the true range 

of density values was small or large. Therefore, applying the SF+BM strategy on the 

HRW dataset likely assigned more importance to some background areas than was 

warranted. It is possible that less extreme differences in sampling probability weights 

would have provided different results. 

 

2.4.4 Influence of bias correction strategy versus covariate subset 

on model outputs (trial series 2) 

 

Though results from the current study suggest that, under certain conditions, some sample 

bias correction strategies are more effective than others, in trial series 1, 3, and 4, 

uncorrected, SF, BM, and SF+BM models (as well as TG and TG+BM models for the 

Canada Warbler) all yielded similar habitat suitability surfaces and showed similar 
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quantitative scores. Conversely, evidence from Canada Warbler models in trial series 2 

(i.e. models built with and without ‘distance to clear-cut’) suggests that the choice of 

environmental covariates can have more pronounced and consequential effects on model 

results than the choice of bias correction strategy (Figure 2.11, Table 2.7). For these 

models, Schoener’s D overlap scores were almost always higher in pairwise comparisons 

between models built using the same covariates but different bias correction strategies 

than they were in pairwise comparisons between models built using different covariates 

but the same bias correction strategy (Table 2.7). The critical importance of training 

models with covariates that are appropriate and reliable has been noted by others as well 

(Araujo & Guisan, 2006; Williams et al., 2012). 

 

Additionally, though all models achieved relatively high Schoener’s D overlap scores 

(range: 0.8988 – 0.9815), a visual assessment of predicted habitat suitability surfaces 

revealed that training a model with poorly chosen covariates can lead to spatial patterns 

in modeled results which have consequences for conservation planning that are more 

severe than quantitative evaluation metrics suggest. As shown in Figures 2.11 and 2.12, 

alternative models built using 6 or 5 covariates (i.e. generated with or without ‘distance to 

clear-cut, respectively) yielded substantially different predictions in the southern and 

northwestern parts of Nova Scotia. 

 

 Indeed, our results demonstrate that not all environmental covariates have equally 

impactful consequences on model predictions. Rather, the degree to which sample bias 

confounds model results depends on the spatial distribution of covariate values (Varela et 

al., 2013). The especially strong confounding effects of ‘distance to clear-cut’ can likely 

be explained by the fact that all datasets used in this study exhibited roadside bias, and 

clear-cuts are typically located near logging roads (many of which are contained in the 

provincial ‘Roads and Rails Network’ file; Nova Scotia Geomatics Center, n.d.). 

Conversely, covariates that do not correlate with distance to roads should not seriously 

confound results output by models created in this study. Recall that, in trial series 3 

(which employed virtual species data and reverse stepwise elimination), certain erroneous 

covariates were selected more frequently than others (with ‘distance to clear-cut’ being 
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selected most often among these), while other covariates were never selected 

erroneously. Furthermore, although Canada Warbler models in trial series 4 were trained 

using different subsets of covariates (but nonetheless all contained ‘D2W’, ‘distance to 

wetland’, ‘distance to clear-cut’, ‘distance to coniferous stand’, and ‘distance to 

deciduous stand’), there were no obvious discrepancies in the habitat suitability surfaces 

they output. 

 

While the true habitat suitability surface cannot be known for real species presence-only 

SDMs, we suspect that, in trial series 3 (i.e. models trained using real Canada Warbler 

data and the same pre-defined set of either 5 or 6 covariates), spatial predictions were 

more accurate when the covariate ‘distance to clear-cut’ was not included in model 

training. We acknowledge that some previous research has reported a slight, positive 

correlation between Canada Warbler density and timber-harvested areas (Westwood et 

al., 2015), likely due to the bird’s preference for a dense shrub layer and early seral 

habitat. Therefore, the results of models that included ‘distance to clear-cut’ are unlikely 

to be completely erroneous. However, there is evidence to suggest that the importance of 

this covariate as well as the Canada Warbler response to it has been greatly exaggerated 

in our study. Firstly, the shape of the response curve for ‘distance to clear-cut’ indicates 

that relative habitat suitability is highest at 0 m from clear-cuts, rapidly decreases with 

distance, and remains constant thereafter (Figure 2.9, 2nd panel from left). When response 

curves for this same covariate were modeled using LRW and HRW virtual species data, 

similar trends were observed (Figure 2.10), even though this covariate was not used to 

synthesize the virtual species. Secondly, a qualitative visual assessment revealed that our 

mapped results were more similar to those of Westwood et al. (2015) (who developed 

SDMs using a high quality presence-absence dataset) when ‘distance to clear-cut’ was 

not included in model training (data not shown). Finally, the areas in southern and 

northwestern Nova Scotia that were classified as unsuitable for the Canada Warbler when 

‘distance to clear-cut’ was included in model training fall within ‘tier 1 matrix forest 

blocks’ (defined by The Nature Conservancy), which delineate contiguous, resilient 

forest ecosystems that are large enough to support a variety of biota (including 
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neotropical migratory birds such as the Canada Warbler) and ecological processes 

(Figure 2.12).  

 

2.5. Recommendations and conclusions 

 

After being relatively ignored for years, methodological challenges in presence-only 

species distribution modeling have begun to receive serious attention in the SDM 

literature (Guisan et al., 2013; Fourcade et al., 2015; Westwood, 2016). However, no two 

studies have approached the same challenge in exactly the same way (e.g. different areas 

of interest, study species, parameterization choices, data resolutions, etc.) and, as a result, 

findings have often been contradictory. The lack of consensus is not surprising. Even 

within the current research, different conclusions can be drawn depending on which 

evaluation metric is considered. Inconsistency among evaluation metrics has been 

observed in previous work as well (e.g. Synes & Osborne, 2011; Fourcade et al., 2014) 

and highlights yet another source of uncertainty for presence-only SDMs. Despite this, by 

considering multiple types of evidence in tandem (i.e. habitat suitability maps, response 

curve shapes, and trends in quantitative results), the current comparative study can still 

provide valuable recommendations for researchers and conservation practitioners who 

apply presence-only SDMs in their work. 

 

Firstly, our findings highlight the fact that quantitative metrics cannot substitute a well-

reasoned qualitative assessment of modeled relationships and suitability surfaces, as was 

noted by Austin (2007) and others (Elith & Leathwick, 2009). This is especially true 

when absence data is unavailable. For example, as mentioned, results in trial series 2 

(Canada Warbler data + pre-defined sets of covariates) varied depending on whether 

AUCdiff or cAUC was considered. Furthermore, no quantitative evaluation metric used in 

this study provided an indication that the Canada Warbler models created in trial series 4 

(using reverse stepwise elimination), all of which included ‘distance to clear-cut’ as the 

second most important covariate (Table 2.6), could be a cause for concern. Only by 

considering the ecological realism of Maxent outputs (i.e. response curves and relative 

habitat suitability surfaces) did the errors in models become clear. As Yackulic et al. 
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(2014) pointed out, the user friendly nature of Maxent software has sometimes allowed 

well-intentioned conservationists to build models without the requisite biological and/or 

statistical understanding of assumptions underlying them. Had Canada Warbler models 

from trial series 4 that included ‘distance to clear-cut’ been used to inform management 

decisions, there could have been negative consequences for bird conservation. 

 

Secondly, while bias correction strategies did tend to yield marginal improvements in 

prediction accuracy compared to uncorrected models, no correction strategy was 

universally superior, and no correction strategy was able to adequately address the 

problem of sample bias when inappropriate environmental covariates were used. 

Conversely, when models were trained with identical covariates, changes in predicted 

suitability surfaces were highly comparable across correction strategies, a phenomenon 

which was reported by Verbruggen et al. (2013) and Fourcade et al. (2014) as well. These 

findings are not overly surprising, as multiple researchers (e.g. Anderson & Gonzalez Jr., 

2011; Fourcade et al., 2014) have presented evidence to suggest that (1) there is unlikely 

to be a “silver bullet solution” for the problem of sample bias, and (2) no single 

correction strategy can consistently provide superior results across all datasets and bias 

types.  

 

Nonetheless, although consensus has not yet been reached, some patterns are emerging. 

Namely, results of several studies have suggested that, at a minimum, presence-only 

datasets should be spatially filtered (e.g. Kramer-Schadt et al., 2013; Boria et al., 2014; 

Fourcade et al., 2014.), The current study also recommends spatial filtering, especially 

when reverse stepwise elimination is employed to select covariates. In addition to SF, we 

found limited evidence to suggest that, if the spatial distribution of presence-points is 

sufficiently dense or highly clustered, manipulating background data so that areas located 

near higher densities of presence points have a greater likelihood of being included in the 

background sample may further improve model results (i.e., the SF+BM strategy). 

However, because evidence to support the application of this strategy was less strong, 

modelers should carefully consider whether SF+BM is warranted, even if the spatial 

distribution of presence points in a species occurrence dataset is dense or exhibits 
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clustering. Both SF and SF+BM offer practical advantages to modelers in that they can 

be easily and generally applied in a GIS without any additional knowledge of sampling 

method or effort distribution (Boria et al., 2014). Nonetheless, if time constraints are not 

limiting, we suggest that best practices in SDM research should include employing 

multiple bias correction strategies (i.e. including and in addition to SF and SF+BM) and 

comparing the alternative results they produce. The model that shows the greatest 

ecological realism and/or the strongest predictive power can then be retained to guide 

conservation planning initiatives or other applications.  

 

The third conclusion to arise from this study is that altering the subset of environmental 

covariates used to train the model usually led to more pronounced and consequential 

differences in model outputs than did changing the bias correction strategy. This finding 

is alarming in light of the fact that no bias correction strategy was able to reduce the 

importance of ‘distance to clear-cut’ in real species reverse stepwise elimination trials, 

which caused Canada Warbler models to predict that forests that were deemed to be of 

high ecological quality (by the Nature Conservancy) were very unsuitable for this bird. 

Nonetheless, despite the fact that training a model with an inappropriate environmental 

covariate appears to have graver consequences for real-world ecological applications than 

does applying a sub-optimal bias correction strategy, covariate selection has received less 

attention in the modeling literature than other methodological challenges which affect 

presence-only SDMs. 

 

In the field of species distribution modeling, there are longstanding disagreements about 

the relative importance and utility of using statistical methods versus expert selection to 

choose model covariates. Austin (2007) provided general guidelines, stating that the most 

optimal covariate subset will have direct ecological relevance to the species of interest 

but will have also been reduced through some sort of statistical analysis. However, 

explicit information about ecological factors that directly affect species’ distributions in a 

given area is typically unavailable, and equally plausible subsets of environmental 

covariates often exist (Synes & Osborne, 2011). In addition to reverse stepwise 

elimination, there are many ways that a modeler can attempt to identify the most robust 
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set of environmental predictors (e.g. see Synes & Osborne, 2011), including forward 

stepwise selection, principal component analysis, or informed (but subjective) decision 

making based mostly on a priori knowledge of species’ ecology. Just as there is unlikely 

to be a single “silver bullet” solution for the problem of sample bias, there may be no 

single best method of choosing environmental covariates. Nonetheless, it is possible that 

some approaches consistently outperform others, and studies that succeed in identifying 

the most promising approaches could fill a research gap and greatly benefit the field of 

presence-only species distribution modeling. 

 

For many years, the rapid growth of presence-only SDMs outpaced corresponding 

refinements in methodology. While some improvements have now been achieved, 

particularly in terms of sample bias, further progress remains to be made. Nonetheless, 

when modeling habitat and investigating species’ distributions in geographic and 

environmental space, the most important things a modeler can do to ensure the quality of 

their SDM is to ground parameterization choices in ecological theory as much as possible 

and ensure that model outputs have strong ecological realism. This practice will remain 

important regardless of future progress towards more standardized methodologies to 

guide model parameterization and workflow.
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2.6 Tables and figures 

 
Table 2.1: Summary of the 4 species distribution modeling trial series, including their 

associated research objective(s), the species datasets and covariate subsets 

that they used, and the number of models that were generated and 

compared in subsequent evaluations. 

 

Trial 

series 

Relevant objective Species 

occurrence dataset 

Covariate 

subset 

Number of 

models generated 

1 Investigate which bias 

correction strategy can 

yield the best mapped 

predictions of relative 

habitat suitability 

(Objective #1) 

Virtual species (5 

LRW & 5 HRW 

datasets) 

Pre-defined 

set of 4 

“true” 

covariates 

40 models, as 

follows: 

1 uncorrected 

model + 3 

corrected models 

for each of the 5 

LRW and 5 HRW 

datasets  

2 Investigate which bias 

correction strategy can 

yield the best mapped 

predictions of relative 

habitat suitability 

(Objective #1) 

 

Investigate whether bias 

correction strategy or 

covariate subset has a 

greater impact on model 

outputs (Objective #3) 

Real species 

(Canada Warbler 

dataset) 

Pre-defined 

sets of 5 and 

6 covariates 

6 models, as 

follows: 

1 uncorrected 

model + 5 

corrected models  

3 Determine whether a 

given bias correction 

strategy better facilitates 

reverse stepwise 

elimination (Objective 

#2) 

Virtual Species (5 

LRW & 5  HRW 

datasets) 

Selected 

using reverse 

stepwise 

elimination 

40 models, as 

follows: 

1 uncorrected 

model + 3 

corrected models 

for each of the 5 

LRW and 5 HRW 

datasets 

4 Determine whether a 

given bias correction 

strategy better facilitates 

reverse stepwise 

elimination (Objective 

#2) 

Real Species 

(Canada Warbler 

dataset) 

Selected 

using reverse 

stepwise 

elimination 

6 models, as 

follows: 

1 uncorrected 

model + 5 

corrected models 
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Table 2.2: Environmental covariates used in model training. All covariates were 

considered in reverse stepwise elimination trials for the Canada Warbler. 

Conversely, the virtual species synthesized for this study only makes use 

of coniferous trees, and this habitat preference would typically be known 

to field ecologists. Therefore ‘distance to deciduous stand’ was not 

considered in virtual species reverse stepwise elimination trials. 

 

Topographic 

covariates 

Covariates representing 

characteristics of forest 

vegetation 

Covariates 

representing 

access to water 

Covariates 

representing 

anthropogenic 

disturbance 

Topographic 

position index† 

2nd story height Distance to 

wetland 

Distance to 

clear-cut‡ 

Depth to water-

table‡ 

% crown closure† Distance to 

river or lake 

Distance to 

agriculture† 

Solar insolation Distance to coniferous stand†‡ 
  

 
Distance to deciduous stand‡ 

(**considered in real species 

trials only) 

  

 Distance to all-height stand   

 
Distance to scrubland 

  

 
Distance to stand with dead 

material‡ 

  

† This covariate was also 1 of the 4 “true” covariates used to train virtual species models 

in trial series 3. 

‡ This covariate was also 1 of the 5 or 6 covariates (chosen according to a priori 

knowledge) used to train real species models trial series 4. 
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Table 2.3: Environmental covariates as well as associated weights and response 

function types used to synthesize the virtual species. A qualitative 

description of virtual species habitat preferences is also provided. 

 
 

Table 2.4: Average change in virtual species model performance (according to ∆D 

and ∆AUC scores) associated with each sample bias correction strategy in 

trial series 1 and 3. Values were calculated against uncorrected models and 

represent the mean of 5 replicate runs. Largest improvements are 

highlighted in bold. Note that some combinations of bias weighting and 

bias correction strategy resulted in a performance decrease compared with 

uncorrected models. 

              
SF BM SF+BM 

∆ D 
   

Trial series 1: LRW data  0.0054 0.0098 0.0154 

Trial series 1: HRW data 0.0047 -0.0042 0.0010 

Trial series 3: LRW data 0.0037 0.0026 0.0103 

Trial series 3: HRW data 0.0192 0.0028 0.0082 

∆ AUCtest 
   

Trial series 1: LRW data -0.0270 0.027 0.000 

Trial series 1: HRW data -0.0128 0.0556 0.0256 

Trial series 3: LRW data -0.0272 0.0544 0.0204 

Trial series 3: HRW data 0.1469 0.0781 0.0406 
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Table 2.5: Performance of real species models in trial series 2 according to various 

AUC-based metrics. (Upper) Results from models trained using 5 

covariates and (lower) results from models trained using 6 covariates. 

Results are reported as the mean of 10 cross-validated runs. 

 

Bias 

Correction 

Strategy 

AUCtrain AUCtest AUCdiff cAUC 

Uncorrected 0.7408 +/- 0.004 0.7139 +/- 0.0293 0.0269 0.4831 

SF 0.7244 +/- 0.0059 0.6927 +/- 0.0527 0.0317 0.5649 

BM 0.7414 +/- 0.005 0.7169 +/- 0.0387 0.0245 0.04886 

TG 0.7438 +/- 0.0043 0.7194 +/- 0.0407 0.0244 0.4886 

SF+BM 0.7267 +/- 0.0059 0.6864 +/- 0.0512 0.0403 0.5585 

SF+TG 0.7237 +/- 0.0069 0.6937 +/- 0.0603 0.03 0.5535 

 

Bias 

Correction 

Strategy 

AUCtrain AUCtest AUCdiff cAUC 

Uncorrected 0.7667 +/- 0.0027 0.738 +/- 0.0163 0.0287 0.5072 

SF 0.7463 +/- 0.0055 0.7126 +/- 0.0535 0.0337 0.5848 

BM 0.7645 +/- 0.0037 0.736 +/- 0.313 0.0285 0.5059 

TG 0.7677 +/- 0.0047 0.7398 +/- 0.0426 0.0279 0.509 

SF+BM 0.745 +/- 0.0056 0.7017 +/- 0.0521 0.0433 0.5738 

SF+TG 0.7434 +/- 0.0063 0.71 +/- 0.0562 0.0334 0.5698 
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Table 2.6: Performance of real species models in trial series 4 according to various AUC-based metrics. Covariates 

included in each model (selected using reverse stepwise elimination) are also listed in order of greatest to 

least importance (according to permutation importance score). Quantitative results are reported as the mean 

of 10 cross-validated runs. 

 

Bias 

Correction 

Strategy 

AUCtrain AUCtest AUCdiff cAUC Covariates included in model 

Uncorrected 0.7879 +/- 

0.0033 

0.7506 +/- 

0.0289 

0.0373 0.5198 (1) Distance to wetland, (2) Distance to clear-cut, (3) 

Depth to water-table, (4) Distance to agriculture, (5) 

Distance to scrubland), (6) Distance to deciduous 

stand, (7) Distance to stand with dead material, (8) 

Percent crown closure, (9) Distance to coniferous 

stand 

SF 0.7533 +/- 

0.0047 

0.7076 +/- 

0.051 

0.0457 0.5798 (1) Depth to water-table, (2) Distance to clear-cut, (3) 

Distance to coniferous stand, (4) Distance to wetland, 

(5) Distance to deciduous stand, (6) Percent crown 

closure, (7) Distance to scrubland 

BM 0.7869 +/- 

0.0031 

0.7448 +/- 

0.0284 

0.0421 0.5147 (1) Depth to water-table, (2) Distance to clear-cut, (3) 

Distance to wetland, (4) Distance to coniferous stand, 

(5) Distance to deciduous stand, (6) Distance to 

agriculture, (7) Distance to scrubland, (8) Distance to 

stand with dead material 

TG 0.7914 +/- 

0.004 

0.7475 +/- 

0.0313 

0.0439 0.5167 (1) Depth to water-table, (2) Distance to clear-cut, (3) 

Distance to wetland, (4) Distance to agriculture, (5) 

Distance to scrubland, (6) Distance to coniferous 

stand, (7) Distance to deciduous stand, (8) Distance to 

stand with dead material, (9) Percent crown closure, 

(10) Distance to all height stand 

 

4
2
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Bias 

Correction 

Strategy 

AUCtrain AUCtest AUCdiff cAUC Covariates included in model 

SF+BM 0.7362 +/- 

0.0063 

0.7021 +/- 

0.0635 

0.0341 0.5742 (1) Depth to water-table, (2) Distance to clear-cut, (3) 

Distance to wetland, (4) Distance to coniferous stand, 

(5) Distance to deciduous stand 

SF+TG 0.7504 +/- 

0.0058 

0.7073 +/- 

0.0422 

0.0431 0.5671 (1) Distance to wetland, (2) Distance to clear-cut, (3) 

Depth to water-table, (4) Distance to coniferous stand, 

(5) Distance to deciduous stand, (6) Distance to stand 

with dead material, (7) % crown closure 

 

 

4
3

3
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Table 2.7: Schoener’s D overlap between real species models built using (A) the 

same set of 5 covariates (‘distance to stand with dead material’, ‘distance 

to coniferous stand’, ‘distance to deciduous stand’, ‘distance to wetland’, 

and ‘depth to watertable’) but different bias correction strategies; (B) the 

same set of 6 covariates (as above, but with ‘distance to clear-cut’ added) 

but different bias correction strategies; and (C) the same bias correction 

strategy but competing covariate sets (i.e. the sets of 5 and 6 covariates 

listed above). 
 

(A) Bias 

correction 

strategy used in 5 

covariate Canada 

Warbler model 

Uncorrected SF BM TG SF+BM SF+TG 

Uncorrected 1 0.9471 0.9742 0.9774 0.9446 0.9521 

SF x 1 0.9565 0.935 0.9815 0.979 

BM x x 1 0.9667 0.9602 0.964 

TG x x x 1 0.9358 0.946 

SF+BM x x x x 1 0.9798 

SF+TG x x x x x 1 

   

(B) Bias 

correction 

strategy used in 5 

covariate Canada 

Warbler model 

Uncorrected SF BM TG SF+BM SF+TG 

Uncorrected 1 0.9402 0.9628 0.9705 0.9308 0.9392 

SF x 1 0.959 0.9277 0.9779 0.9727 

BM x x 1 0.9544 0.9584 0.9585 

TG x x x 1 0.9236 0.9386 

SF+BM x x x x 1 0.9733 

SF+TG x x x x x 1 

  

(C) Canada 

Warbler model 

type (built with 5 

and 6 variables) 

Control SF BM TG SF+BM SF+TG 

Schoener's D 0.8988 0.9303 0.9206 0.9033 0.9402 0.9345 
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Figure 2.1: Nova Scotia (main map), a maritime province of Canada (upper left inset). 
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Figure 2.2: Workflow applied in comparative analysis to address outstanding 

methodological challenges in presence-only species distribution modeling. 

To determine whether a given bias correction strategy is able to yield more 

accurate mapped predictions of habitat suitability (objective #1), models 

were trained using environmental covariates chosen according to a priori 

knowledge + either virtual species data (trial series 1) or real species data 

(trial series 2). To determine whether a given bias correction strategies has 

a superior ability to facilitate accurate covariate selection when reverse 

stepwise elimination is employed (objective #2), models were trained 

using sets of covariates that were selected using a reverse stepwise 

elimination process + either virtual species data (trial series 3) or real 

species data (trial series 4). To determine whether sample bias correction 

strategy or environmental covariates used in model training have a greater 

impact on SDM results (objective #3), we again compared models created 

in trial series 2. Note that virtual species trials were performed on 5 

replicate datasets sampled at a low roadside weighting (LRW) and on 5 

replicate datasets sampled at a high roadside weighting (HRW). We also 

produced control models using uncorrected data (not shown). Model 

quality and accuracy were evaluated according to a qualitative assessment 

of ecological realism and with quantitative metrics based on AUC and 

Schoener’s D statistics. AUCtrain refers to the AUC score associated with 

training data; AUCtest refers to the AUC score associated with test data. 
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Figure 2.3: Virtual occurrence datasets generated using the niche synthesis method 

(Hirzel et al., 2001). (Left) All 5000 virtual species points; (center) virtual 

species points sampled at a low-bias weighting (LRW data); (right) virtual 

species points sampled at a high-bias weighting (HRW data). On the base 

map, darker areas denote higher road density and lighter areas denote 

lower road density (as calculated from the NSTDB ‘Roads and Rails’ 

network file; Nova Scotia Geomatics Center, n.d.); blue areas are lakes. 

 

 
 

Figure 2.4: Relative density of presence points in the Canada Warbler dataset used by 

this study. The minimum convex polygon that encloses all points is also 

shown (black outline on map). Actual occurrence locations are not 

displayed due to the sensitive nature of data for at-risk species.  
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Figure 2.5: Effects of low- and high-bias weightings on uncorrected virtual  

 species models according to quantitative metrics. (Left) Percent reduction 

in AUC score between biased models and the truth map (AUC of truth 

map: 0.895); error bars delineate full range of values. (Right) Schoener’s 

D overlap between truth map and habitat suitability surfaces output by 

biased models; error bars denote standard deviation. In both graphs, each 

column summarizes results from 5 replicate runs. 

 

 
 
Figure 2.6: Average rank ± standard deviation of uncorrected (control), SF, BM, and 

SF+BM virtual species models in trial series 1 and 3 according to 

Schoener’s D (left) and AUC (right) metrics. For both LRW and HRW 

data, results represent the average ranking of models generated using 5 

replicate datasets. 
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Figure 2.7: Boxplot showing AUCtest and cAUC scores for real species models created 

using uncorrected data and the SF, BM, TG, SF+BM, and SF+TG bias 

correction strategies in trial series 2. Covariates used to train each model 

were identified using reverse stepwise elimination. Results represent the 

average of 10 cross-validated runs; error bars are standard deviation 

 

 
 
Figure 2.8: Example of response curves generated by virtual species models. (Upper 

row) Model generated using LRW data and the SF+BM correction 

strategy; (lower row) model generated using HRW data and the SF 

correction strategy. Note that the shapes of response curves generated by 

all virtual species models (in both trial series 1 and trial series 3) were 

similar to the ones shown in this figure. Numeric values on x-axes are all 

reported in meters 

  



 50 

 
 

Figure 2.9: Example of response curve functions generated by Canada Warbler 

models. Response curves shown are for covariates selected by reverse 

stepwise elimination when the SF+BM correction strategy was applied. 

Note that these 5 covariates were selected regardless of which bias 

correction strategy was applied, and that their response curves were 

similar in all Canada Warbler models. Numeric values on x-axes are all 

reported in meters. 

 

 

 
 

Figure 2.10: Example of response curve functions for the ‘distance to clear-cut’ 

covariate, output from models built using (left) spatially filtered LRW data 

and (right) spatially filtered HRW data. Note that the models that 

generated the above response curves had been trained using not only 

‘distance to clear-cut’, but the 4 ‘true’ covariates that were actually 

important to the virtual species as well.
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Figure 2.11: Relative habitat suitability surfaces generated by uncorrected and corrected 

(using the SF and BM strategies) real species (Canada Warbler) models 

produced using (upper row) 5 covariates (excluding ‘Distance to clear-

cuts’) and (lower row) 6 covariates (including ‘Distance to clear-cuts). 

Note that much larger discrepancies exist between models generated using 

the same bias correction strategy but different covariate subsets than 

between models generated using a different bias correction strategy but the 

same covariate subset. 
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Figure 2.12: Habitat suitability surfaces for the Canada Warbler in northern and 

southern NS. (Left) habitat suitability surfaces output from the uncorrected 

real species models built in trial series 2 using the pre-defined set of 5 

covariates (i.e. did not include ‘distance to clear-cut’), and (right) habitat 

suitability surfaces output from the uncorrected real species model built 

using the pre-defined set of 6 covariates (included ‘distance to clear-cut’). 
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Abstract 

Biodiversity is currently being lost at a rate that is unprecedented in modern history, and 

this challenge requires urgent conservation action. Maintaining a functionally connected 

network of high-quality habitat is considered one of the most effective responses to 

species declines; however, as a result of climate change, habitat patches which are 

currently suitable may not remain so in the future. Indeed, some taxa, such as migratory 

forest landbirds, are already undergoing climate-driven range shifts. Therefore, climate 

resilient habitat (i.e. habitat which is more likely to retain characteristic structures and 

functions in the face of changing temperature and precipitation regimes) is especially 

valuable from a conservation perspective. In this study, we performed maximum entropy 

(Maxent) modeling to delineate suitable breeding habitat in Nova Scotia, Canada, for 3 

migratory forest landbirds: the Rusty Blackbird (Euphagus carolinus), the Olive-sided 

Flycatcher (Contopus cooperi), and the Canada Warbler (Wilsonia canadensis). In so 

doing, we employed a reverse stepwise elimination technique to help identify covariates 

that influence habitat suitability for the target species at the landscape-scale. This analysis 

considered both biotic covariates related to forest characteristics and abiotic covariates 

related to topographic control of landscape-scale moisture and nutrient accumulation. 

While previous modelers have sometimes frowned upon the inclusion of abiotic features 

in models, we posited that, as topography (1) should be relatively unaffected by a 

changing climate and (2) helps regulate the structure and composition of forest habitat, 

certain topographic features may be able to help identify areas that are more likely to 

support bird persistence over the long-term. Results of reverse stepwise elimination 

supported this assertion, as both forest and topographic covariates were identified as 

important predictors of relative habitat suitability for all birds. (However, the specific 

combination of covariates included in each model differed.) Our models also indicated 

that, for all 3birds, wet lowlands comprise particularly valuable habitat, and that this is 

especially true for the Rusty Blackbird and Canada Warbler. Finally, we found that, at 
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present, suitable breeding bird habitat appears to be relatively abundant and well 

distributed in Nova Scotia, providing good opportunities for conservation. 

 

Keywords: Species distribution modeling, Rusty Blackbird, Olive-sided Flycatcher, 

Canada warbler, topography, climate change, ecological resilience 

 

3.1. Introduction 

 

The earth is currently undergoing a human-induced mass extinction event in which 

species are disappearing at a rate not seen since the age of the dinosaurs (Wagler, 2011). 

Though a multitude of factors have contributed to this, habitat modification, 

fragmentation, and destruction are the most significant proximal causes (Millennium 

Ecosystem Assessment, 2005; Wagler, 2011). Accordingly, maintaining and restoring 

functionally-connected networks of high-quality habitat is considered one of the most 

effective responses to species loss (Noss, 1983; Rubio & Saura, 2012). However, due to 

increasing human population growth and the competing interests of many stakeholders, 

there are limits to the number of natural areas that can be restored and/or conserved. 

Therefore, identifying, prioritizing, and protecting habitat that can yield the greatest 

conservation benefit is critically important. Unfortunately, climate change renders the 

identification of optimal conservation lands more difficult, as changing temperature and 

precipitation regimes are likely to cause many habitat areas to become unsuitable for 

species that currently utilize them (Beier and Brost, 2010; Anderson and Ferree, 2010). 

Indeed, increased wetland drying, insect-induced tree mortality, and climate-driven range 

shifts have already been observed in the boreal region (Stralberg et al., 2015). Range 

shifts are especially problematic for conservation planning, as critical habitat and 

protected area designations are typically granted on a permanent basis. Therefore, from a 

land acquisition perspective, climate resilient habitat (i.e. climate refugia), which has a 

stronger likelihood of remaining suitable regardless of future climatic conditions, has 

especially high conservation value. 

 

Though many taxa are under threat from anthropogenic activities, migratory birds face 

unique risks due to a dependence on habitat that spans multiple continents and the 

significant biological stresses associated with migration itself (Weisendaul, 2000). On the 
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breeding range, spatially-extensive changes to forest habitat are believed to pose the 

greatest threat to migratory forest birds (Westwood et al., 2015). In addition, multiple 

studies have reported that this taxonomic group has already begun to undergo 

distributional shifts as a result of climate change (McClure et al., 2012; Nogués-Bravo et 

al., 2012).  

Species Distribution Models (SDMs) use spatial occurrence data (i.e., point locations 

delineating where a species has been observed) to generate mathematical representations 

of species’ distributions in environmental space (i.e., how species respond to 

environmental covariates), and these are in-turn used to predict species’ distributions in 

geographic space (i.e., maps of relative habitat suitability) (Elith & Leathwick, 2009). 

SDM outputs typically include (1) response curve graphs which can provide ecological 

insight into species’ habitat preferences and (2) maps delineating species’ occurrence or 

abundance on a landscape. Over the past few decades, advances in the fields of statistics 

and geographic information systems (GIS) have allowed SDMs to emerge as useful tools 

for the delineation of high value habitat (Elith & Leathwick, 2009). Indeed, SDM 

techniques are now widely applied to guide conservation system design and identify 

suitable areas for ecological restoration. 

 

The current study applied maximum entropy (i.e. using Maxent 3.3 software; Phillips et 

al., 2006) modeling and a reverse-stepwise elimination technique to build predictive, 

spatially-explicit models of breeding habitat in Nova Scotia, Canada, for 3 at-risk 

migratory forest landbirds: the Rusty Blackbird (Euphagus carolinus), the Olive-sided 

Flycatcher (Contopus cooperi), and the Canada Warbler (Cardellina canadensis). These 

species have suffered steep population declines, particularly in the eastern portion of their 

range (Environment Canada, 2014), and climate-driven range shifts have also been 

observed or predicted for each of these birds (McClure et al., 2012; National Audubon 

Society, 2014). Indeed, all 3 birds have been designated as at-risk under Nova Scotia’s 

Endangered Species Act (S. N. S. 1998, c. 11) and are also listed under Canada’s Species 

at Risk Act (S. C. 2002, c. 29). Nonetheless, although threats to these species have been 

recognized, efforts to develop regional predictive habitat models have thus far been very 

limited (but see Westwood et al., 2015). 
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In building the SDMs for the target bird species, we recognized that we were working in 

a context of climate change. Previous studies which have examined species distributions 

through a climate change lens have typically done so by predicting which areas will 

contain suitable habitat under some future climate scenario (or a range of future climate 

scenarios), wherein models created using current climatic conditions are projected onto 

predictions of future climatic conditions (e.g. based on global circulation models and 

potential emissions scenarios) (Franklin, 2009a; Stralberg et al., 2015). However, the 

uncertainty associated with this approach can be severe in some cases, leading some to 

question whether the noise exceeds the signal when such a strategy is used (Stralberg et 

al., 2015). 

 

Therefore, rather than attempt to predict future range shifts, we sought to identify habitat  

patches that may be more resilient to the effects of climate change. Specifically, we 

attempted to identify potential climate refugia by building models using covariates which 

represent environmental processes and features operating at 2 levels of the ecological 

resilience hierarchy originally proposed by C. S. Holling (1986). Briefly, Holling’s 

theory posits that ecosystem structures and functions are regulated by a limited number of 

biotic and abiotic environmental conditions hierarchically nested in space and time. In 

1992, Holling extended this theory to describe the intersection between scale-dependent 

environmental processes and behavioural decisions made by a species in choosing 

habitat, noting that habitat selection strategies also vary according to spatial grain. 

Mackay and Lindenmayer (2001) further advanced Holling’s work by defining critical 

structuring scales according to natural breaks in the distribution and availability of 

primary environmental resources that control biological productivity: heat, light, water, 

and mineral nutrients. Specifically, these structural scales are defined at global-, meso-, 

topo-, micro-, and nano-levels, and represent ever-finer spatial and temporal variation in 

the delivery of water and energy (Mackay and Lindenmayer, 2001). In line with this 

theory, the types of covariates that are scale appropriate for province-wide, landscape-

scale SDM research are those that operate at the topo- (e.g., that describe regional 

topography) and micro- (e.g., that describe characteristics of forest stands) levels. 
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To date, SDM researchers have tended to frown upon the inclusion of abiotic topography 

in models, as the influence of such features over species distributions tends to be indirect, 

especially for mobile vertebrate taxa (Franklin, 2009b; Beier et al., 2015). Although 

topographic features have nonetheless been used to help predict species distributions in 

previous studies, such features have generally been employed as surrogates when mapped 

data representing important biotic features were unavailable. Nonetheless, the utility of 

abiotic topography in identifying climate resilient habitat has been noted as these features 

(1) have the ability to promote ‘ecological memory’, whereby ecosystems retain similar 

structures and functions following disturbance (Holling, 1992; Larkin et al., 2006) and 

(2) will generally not be affected by changing temperature and precipitation regimes 

(Anderson et al., 2012). Therefore, in building SDMs for the current study, we posited 

that a better understanding of how birds respond to hierarchically organized topo- and 

micro-level covariates can help identify habitat patches which are more likely to be 

resilient against the effects of climate change.  

 

The SDMs developed herein are directly relevant to landscape-scale conservation 

planning in Nova Scotia and can be used to prioritize resilient bird habitat for land 

acquisition and/or conservation easement initiatives. Moreover, the reverse stepwise 

elimination process we employed helps elucidate important landscape-scale ecological 

associations that exist between these birds and their environment at the easternmost 

extent of breeding habitat. Therefore, our findings should also interest ornithologists 

working to develop a comprehensive understanding of habitat preferences for these 

species across the full extent of their range. Finally, our models highlight the ability of 

topographic covariates to help predict the relative suitability of breeding bird habitat, and 

theoretical evidence suggests that habitat located in areas which contain both favorable 

topography and favorable forest characteristics may be more climate resilient (Holling, 

1986; Dobrowski, 2010). Therefore, while we acknowledge that it is impossible to 

guarantee the indefinite persistence of any species, we posit that the resilience-based 

approach to species distribution modeling presented here may be able to help promote the 
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long-term persistence of a variety of terrestrial taxa, not just the landbirds considered in 

the current study. 

 

3.2. Methods 

 

3.2.1 Study area 

 

Nova Scotia (~45° N, ~63° W; Figure 2.1), a maritime province of southeastern Canada, 

lies on the Atlantic migratory flyway and contains the easternmost breeding habitat of the 

Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler. The province is 

characterized by a modified continental climate and exhibits a wide (though not extreme) 

temperature range, ample precipitation (particularly in winter and fall), and great 

variability in daily weather conditions (Nova Scotia Museum of Natural History, 1996a). 

With a total area of 52,939 km2 (Statistics Canada, 2014), Nova Scotia contains a diverse 

array of landscapes and an abundance of wetlands, lakes, and rivers (Nova Scotia 

Museum of Natural History, 1996b). Land-use/land cover is mixed, and includes 

agriculture, intact and fragmented forests, coastal barrens, 2 cities (Halifax and Sydney), 

and a number of scattered towns (Agriculture and Agri-food Canada, 2015; Statistics 

Canada, 2016). The province is further characterized by gently rolling topography and 

elevations that range from 0 to 520 m above sea level, with the highest elevations 

occurring in the northeast of the province. Finally, Nova Scotia is situated within the 

Acadian Forest Ecozone and is characterized by a mixed-forest species composition, 

although conifers dominate in many areas, particularly where drainage is impeded 

(Rowe, 1972; Neily et al., 2005). 

 

3.2.2 Study species 

 

Three at-risk migratory forest landbirds were considered in this study: the Rusty 

Blackbird, the Olive-sided Flycatcher, and the Canada Warbler. Two of these species (the 

Olive-sided Flycatcher and Canada Warbler) are Neotropical migrants, and the third (the 

Rusty Blackbird) overwinters in the southeastern United States. All 3 species breed in 

Nova Scotia’s forests (Bird Studies Canada, 2015). The Olive-sided Flycatcher often 
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occurs adjacent to wetlands, likely taking advantage of edge habitat associated with these 

areas (Altman & Sallabanks, 2000; Committee on the Status of Endangered Wildlife in 

Canada [COSEWIC], 2007). The Canada Warbler shows a facultative preference for 

forested wetlands (Becker et al., 2012) and is also common in wet, shrubby mixed-wood 

forests (in the eastern part of its range; Environment Canada, 2015). Conversely, the 

Rusty Blackbird is a wetland obligate (Matsuoka et al., 2010). In terms of nesting, the 

Olive-sided Flycatcher prefers the mid-to-upper limbs of tall coniferous trees (Dixon, 

1920); the Canada Warbler selects sites on or near the ground, concealed by thick 

understory (Goodnow and Reitsma, 2011); and the Rusty Blackbird often nests in dense 

patches of stunted conifers surrounded by a matrix of sparse canopy closure (Powell et 

al., 2010).  

 

All 3 focal birds are insectivorous on their breeding grounds, although they make use of 

different foraging niches. Specifically, the Olive-sided Flycatcher hunts from elevated 

perches of trees or snags (COSEWIC, 2007); and the Canada Warbler forages on the 

ground, in shrubs, or in the lower branches of both coniferous and deciduous trees 

(Goodnow and Reitsma, 2011). Conversely, the Rusty Blackbird wades in shallow water, 

foraging primarily for aquatic macroinvertebrates (Matsuoka et al., 2010). 

 

To develop Maximum Entropy (Maxent) SDMs for the 3 landbirds of interest, we 

prepared GIS layers comprising (1) species occurrence data (i.e., the response covariate, 

input as point locations of bird observations) and (2) environmental data (i.e., predictor 

covariates, input as raster layers which describe abiotic and biotic environmental 

conditions) in ArcMap 10.2.2 (Environmental Systems Research Institute [ESRI], 2014). 

Dataset preparation is briefly outlined in subsequent sections (and described in more 

detail in Appendix A). 

 

3.2.3. Species occurrence data 

 

Point observations for the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler 

were obtained from the Atlantic Canada Conservation Data Center (ACCDC), a 
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NatureServe Canada organization that maintains spatially accurate occurrence datasets 

for species of conservation concern (ACCDC, 2014). Data points primarily comprised 

records from the Maritime Breeding Bird Atlas (MBBA) database (2006-2010 surveys) 

but also included observations made by individuals and research groups. The ACCDC 

dataset contained observations made between 2005-2013 for the Olive-sided Flycatcher, 

between 2006-2013 for the Canada Warbler, and between 2006-2012 (as well as single 

sightings made in 1998 and 2001) for the Rusty Blackbird. The resolution of occurrence 

points in the ACCDC dataset varied from 3 m to 10 km. However, we removed points 

with a resolution >150 m (i.e. points where the bird was not guaranteed to be less than 

150 m away from recorded coordinates), as these were considered too coarse for 

meaningful analysis. To reduce spatial autocorrelation among occurrence points, we 

applied a spatial filter with a distance threshold of 1 km (Franklin and Miller, 2009). 

When the distance between points was below this threshold, the point closest to a road 

was removed. After filtering, 136 Rusty Blackbird observations, 502 Olive-sided 

Flycatcher observations, and 312 Canada Warbler observations were available for 

modeling (Figure 3.1). 

 

3.2.4. Environmental data 

 

We created GIS layers to represent environmental processes and features operating at 2 

levels of the ecological resilience hierarchy proposed by C. S. Holling (1986) and 

Mackay and Lidenmayer (2001): topo (i.e. covariates describing regional topography) 

and micro (i.e. covariates describing forest stand conditions). These are listed in Table 

3.1 and summarized over subsequent paragraphs. The creation of these layers is described 

in detail in Appendix A (with the exception of the ‘landscape complexity’ layer, whose 

creation is described in chapter 4). The initial list of candidate covariates (Table 3.1) was 

established to reflect known ecological preferences of the target bird species. 

Specifically, candidate covariates were chosen through a literature review, personal 

communications with key experts (C. Staicer and C. Ferrari), the field experience of A. 

Westwood, and multiple tuning experiments (data not shown). Many of the candidate 

covariates we considered were also found to have predictive value for the target birds in 
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nation-wide research by the Boreal Avian Modeling Project (Haché et al., 2014) and in 

research conducted by Westwood et al. (2015) in provincial parks of Nova Scotia and 

New Brunswick. 

 

Environmental covariate layers were prepared as a stack of ASCII rasters with the same 

projection (NAD 1983 UTM Zone 20), spatial extent, and cell size (i.e., 150 m, to match 

the coarsest resolution of species occurrence data). To reduce the confounding effects of 

multi-collinearity on model outputs, Spearman correlation coefficients were calculated 

for each pair of covariates using SPSS 21 (IBM Corp, 2013), wherein a conservative 

threshold of |0.6| was adopted. When the Spearman’s r value fell below this threshold, 1 

of the covariates in the pair was dropped from further analysis. After removing correlated 

layers, 12 covariates were available for input into Maxent. 

 

Topo-level covariates. Regional topography creates microclimates with variable 

temperature and moisture regimes (Anderson et al., 2012) and regulates the accumulation 

of water and soil nutrients on the landscape. These phenomena in-turn influence 

ecosystem vegetation (Mackay & Lindenmayer, 2001) and the ecological resilience of an 

area (Anderson et al., 2012). In this study, we used the Enhanced Digital Elevation Model 

(DEM) of Nova Scotia (Nova Scotia Department of Natural Resources [NSDNR], 2006), 

either alone or in conjunction with other base-layers, to derive a regional topographic 

position index (TPI) and a landscape complexity index. Conversely, the influence of 

topography on moisture availability was represented by the depth-to-watertable (D2W) 

layer (NSDNR, 2007a).  

 

The TPI classifies landform position relative to the surrounding ‘neighborhood’ (i.e. local 

topographic position). Topographic position affects many biophysical processes, such as 

soil erosion and deposition, wind exposure, cold air drainage, and hydrological balance 

(Weiss, 2001). We created a TPI that distinguished among 5 different topographic 

positions (i.e., valleys, low-slopes, mid-slopes, up-slopes, and ridges) using methodology 

that was developed by Weiss (2001) and modified by Cooley (2014). (See Appendix A.) 
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Conversely, landscape complexity was defined according to Anderson et al. (2012) as the 

number of microclimates present in an area, which is in turn a function of landform 

variety, wetland density, and elevation range. More complex landscapes typically support 

greater biodiversity levels and promote climate resilience (Anderson et al., 2012). For 

this study, we built a 150 m2 index delineating relative landscape complexity across Nova 

Scotia using methodology adapted from Anderson et al. (2012) and datasets provided by 

NSDNR (i.e. the provincial DEM [NSDNR, 2006] and the provincial wetland inventory 

[NSDNR, n.d.]). (See chapter 4.) 

 

Finally, the ‘D2W’ layer describes where water is likely to flow and/or accumulate on a 

landscape and was found to be a strong predictor of focal bird habitat in research by 

Westwood et al. (2015). This layer was created by researchers at the University of New 

Brunswick using a digital elevation model (DEM) and mapped hydrographic data 

(NSDNR, 2007b). 

 

Micro-level covariates. Micro-level covariates are believed to have a more direct 

influence on the suitability of songbird habitat and on the diversity of songbird 

communities than does topography (Franklin, 2009b). In this study, micro-level 

covariates were created to represent forest stand characteristics, including the vertical and 

horizontal distribution of canopy elements or patch types. Forestry data was obtained 

from the province-wide Forest Inventory Database (FID), which is distributed by 

NSDNR as a vector polygon layer. The FID is continually updated through aerial-

photograph interpretation and describes land-use as well as the structure and composition 

of vegetation (NSDNR, n.d.). The full range of data collection years for the FID data 

used in the current study was 1988 to 2012, with most of the data collected between 2003 

and 2012. 

 

Specifically, we created layers which characterized mean canopy height and mean 

canopy density in each raster cell by averaging relevant polygon values (i.e. 1st story 

height and % crown closure) within 150 m*150 m areas. We then created 2 

corresponding layers to characterize the heterogeneity of canopy height and canopy 
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density by calculating the standard deviation of relevant polygon values within the same 

150 m*150 m areas. To delineate the availability and distribution of cover types in the 

province, we measured the distance to coniferous and deciduous stands, respectively, 

using the ‘Euclidean Distance’ tool in ArcMap. Finally, to delineate the availability and 

distribution of key patch types, we measured the distance to all-height stands and the 

distance to stands with dead material.  

 

3.2.5. Maximum entropy modeling 

 

We used Maxent 3.3 software (Phillips et al., 2006) to model relative habitat suitability 

for the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler in Nova Scotia. 

Maxent is a widely used machine-learning SDM method that estimates the relative 

probability of species presence by comparing environmental conditions at occurrence 

points to those at 10,000 background points (i.e. locations where the species was not 

observed) (Elith et al., 2010a; Merow et al., 2013). In brief, Maxent predictions are 

generated by calculating the probability distributions of environmental covariates at 

species’ locations which are most similar to those of the overall landscape (i.e. the 

maximum entropy distribution, as defined by the 10,000 background points) while still 

meeting constraints derived from the occurrence dataset itself. (In other words, the mean, 

variance, covariance, etc., of environmental covariates at predicted presence locations 

must match those of observed species locations.) (For a full theoretical and statistical 

explanation of Maxent, see Phillips et al. (2006), Edith et al. (2010a), or Merow et al. 

(2013).)  

 

The maximum entropy approach was chosen because, due to the nature of the ACCDC 

dataset, presence/absence methods were not available to us, and Maxent has typically 

ranked among the top performing presence-only models (Elith et al., 2006). Maxent also 

has the additional advantages of being easy to use and relatively robust to small sample 

sizes and/or spatial errors in occurrence data (Elith et al., 2006; Merow et al., 2013). In 

developing Maxent models, we applied a regularization penalty (used to reduce over-

fitting in machine-learning applications) of 1.5, as we noted that some covariate response 
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curves were unrealistically complex and did not make ecological sense when the default 

regularization penalty of 1 was used. All other parameter settings were assigned default 

values. 

 

3.2.6. Correcting for sample bias 

 

Bias in sampling effort, wherein environmental covariates are assigned importance 

because they are typical of intensely surveyed areas, not because they represent a real 

biological relationship (Phillips et al., 2009; Baldwin, 2009), can greatly reduce model 

accuracy if not accounted for. Sample bias is particularly problematic for presence-only 

models such as Maxent, as presence-only datasets almost invariably comprise a collection 

of undesigned, opportunistic, or purposive observations obtained from multiple sources 

of varying integrity (Franklin, 2009b). Therefore, to compensate for sample bias in bird 

datasets, in addition to spatially-filtering presence points, we also created ‘bias grids’, 

which modify the location and frequency of background data collection. The goal of 

applying a bias grid is to characterize the 10,000 point background sample with similar 

spatial bias as that exhibited by presence points, thereby factoring out the sample bias in 

occurrence data (Phillips & Dudik, 2008). 

 

In this study, bias masks were created by generating a kernel density map of presence 

points for each bird using the ‘Kernel Density with barriers’ tool included in the Hawth’s 

tools extension for ArcMap (Beyer, 2004). In creating bias grids, we adopted a kernel 

radius of 10 km and normalized output kernel density values between 1 and 20 (following 

Elith et al., 2010b and Fourcade et al., 2014). Normalized kernel density maps were used 

as sampling probability surfaces for the selection of background points in all subsequent 

Maxent model runs (Figure 3.1). 

 

3.2.7. Reverse stepwise elimination 

 

The initial list of candidate covariates used in this study was established after performing 

extensive tuning experiments (data not shown). This list included 10 candidate covariates 
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for the Rusty Blackbird and the Olive-sided Flycatcher and 11 candidate covariates for 

the Canada Warbler (Table 3.1). Candidate covariates were the same for each bird with 

the exception of covariates representing forest cover type. Specifically, we did not 

include ‘distance to deciduous stand’ in reverse stepwise elimination for the Rusty 

Blackbird and Olive-sided Flycatcher in order to match known habitat requirements of 

these species. Conversely, both ‘distance to deciduous stand’ and ‘distance to coniferous 

stand’ were considered for the Canada Warbler, as this species is associated with 

mixedwood forests.  

 

We applied a reverse stepwise elimination technique to identify the most parsimonious 

subsets of covariates from the initial list and thereby establish final ‘best’ models. 

Specifically, for each bird, we first ran a Maxent model that included the complete list of 

candidate covariates shown in Table 3.1. The covariate that contributed the least to 

predictive power (according to permutation importance score; Yost, 2008; Baldwin, 

2009) was identified, and a new model was run without this covariate. This procedure 

was repeated until a single covariate remained, yielding a set of ‘n’ candidate models, 

where n = the number of covariates included in the initial run. Of these, the most 

parsimonious model was identified using Akaike’s Information Criterion (AICc) 

(corrected for small sample sizes), which was calculated using a Perl-script developed for 

Maxent by Warren and Seifert (2010). 

 

3.2.8. Model evaluation 

 

Upon identifying the most parsimonious model according to AICc score, we evaluated 

model fit using Area under the Receiver Operating Curve (AUC) statistics and by 

comparing expected versus observed omission rates. AUC is a ranked approach that 

provides a measure of the likelihood that a randomly selected presence point has a higher 

suitability score than a randomly selected absence or, in a Maxent context, background 

point (Elith et al., 2006; Fourcade et al., 2014). AUC scores range from 0 (no power to 

discriminate between presence and absence/background) to 1 (perfect discriminatory 

power). A score of 0.5 indicates that model predictions are no better than random. 
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After final models for each bird were identified via AICc, mean AUC values were 

determined over 10 cross-validated runs. For each of these runs, 90% of occurrence data 

were used to train the model and 10% of data were set aside for testing. Therefore, 2 

AUC values were generated for each final model, 1 based on training data (AUCtrain) and 

1 based on test data (AUCtest). However, although AUC is the most widely used 

evaluation measure in SDM studies, this metric has been widely criticized for tending to 

reward models that have been over-fit (Lobo et al., 2008). Therefore, in evaluating the 

reliability of final models, we placed special emphasis on the difference between AUCtrain 

and AUCtest scores (AUCdiff hereafter), as over-fit models tend to predict training data 

well and test data poorly (Warren & Seifert, 2011). 

 

In comparing expected and observed omission rates, we adopted 2 thresholds: the lowest 

presence threshold (i.e. LPT) and the 10% presence threshold (10PT). LPT refers to the 

maximum suitability score for which no presence locations were incorrectly classified as 

‘background’, and 10PT refers to the suitability score at which 10% of presence locations 

were incorrectly classified as background. For each bird, we calculated the LPT and 

10PT of training data (i.e. expected omission rates) and determined how many points 

were excluded when these thresholds were applied on test data (i.e. observed omission 

rates). Observed omission rates that are close to 0% (for LPT) and 10% (for 10PT) 

indicate that the model is well calibrated.  

 

3.3. Results 

 

Final habitat models included 4 or 6 covariates, which comprised both topo- and micro-

level features, although specific subsets differed among birds. For example, ‘D2W’ was 

identified as having the most important influence on relative habitat suitability for the 

Canada Warbler and the Rusty Blackbird, but this covariate was not selected in the Olive-

sided Flycatcher model. Additionally, while forest canopy and forest patch characteristics 

were important determinants of relative habitat suitability for all birds, no model included 
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the same subset of forest covariates. (However, ‘1st story height STD’ was selected in all 

models.)  

 

For all birds, while AUCtrain and AUCtest values were fairly low (0.6850 to 0.7246 for 

AUCtrain and 0.6541 to 0.692 for AUCtest), AUCdiff values were also low (between 0.0176 

and 0.0428) (Table 3.2), and observed omission rates were 0.29% to 3.2% higher than 

expected for LPT and 1.39% to 4.23% higher than expected for 10PT (Table 3.2). Both 

of these metrics indicate that over-fitting did not significantly confound our SDM results.  

 

For all birds, maps of relative habitat suitability indicated that, at the landscape-scale, 

suitable habitat remains fairly abundant and well distributed across the province of Nova 

Scotia (Figure 3.2). Furthermore, when the maximum training sensitivity plus specificity 

(MaxSS) threshold was applied to create a binary surface delineating suitable and 

unsuitable habitat (Figure 3.3), the models predicted that 43% of the Nova Scotia 

landmass is suitable for the Rusty Blackbird, 49% is suitable for the Olive-sided 

Flycatcher, and 35% is suitable for the Canada Warbler. (The MaxSS value is determined 

by optimizing sensitivity and specificity values and was identified as the most robust 

threshold by Liu et al. [2013]). 

 

Response curves, percent contribution (i.e. to training gain), and permutation importance 

(calculated according to the drop in AUC that occurs if the variable is excluded from the 

model; Phillips, 2006) scores for each covariate included in final models for each bird are 

shown in Table 3.3. Species-specific final model results are described over subsequent 

sections. 

 

3.3.1. Rusty Blackbird  

 

Across 10 cross-validated runs, the most parsimonious model (i.e. the model which 

yielded the lowest AICc score during reverse stepwise selection) for the Rusty Blackbird 

showed mean AUCtrain and AUCtest scores of 0.6969 and 0.6541, respectively, and an 

AUCdiff score of 0.0428. Over these same runs, observed omission rates were 3.2% 
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higher than expected for LPT and 4.23% higher than expected for 10PT (Table 3.2); 

however, the model predicted that 43% of Nova Scotia nonetheless contains suitable 

Rusty Blackbird habitat. Note that both AUC and omission rate-based metrics showed 

lower scores for the Rusty Blackbird than for the other birds considered in this study. 

 

The final Rusty Blackbird model contained 4 covariates (listed from greatest to least 

importance), as follows: ‘D2W’, ‘1st story height MEAN’, ‘1st story height STD’, and 

‘distance to coniferous stand’ (Table 3.3a). Model results indicate that, at the landscape 

scale, ‘D2W’ had a greater influence on relative habitat suitability for this bird than any 

other covariate. Specifically, this covariate had a permutation importance score of 43% 

and a response curve that showed relative habitat suitability steeply declining as the 

distance between the water-table and the soil surface increased. Conversely, the next 2 

covariates included in the Rusty Blackbird model, ‘1st story height MEAN’ and ‘1st story 

STD’ (with importance scores of 30% and 18.2%, respectively), describe forest structure. 

Response curves for these covariates were linear and indicate that areas characterized by 

lower mean canopy height but greater canopy heterogeneity tended to be more suitable 

for this bird. The final covariate in the Rusty Blackbird model was ‘distance to coniferous 

stand’ (importance score of 8.7%), and its response curve showed that habitat became 

less suitable away from conifer-dominated areas (Table 3.3a). 

 

3.3.2. Olive-sided Flycatcher 

 

The most parsimonious model for the Olive-sided Flycatcher showed mean AUCtrain and 

AUCtest scores of 0.6850 and 0.6674, respectively, and an AUCdiff score of 0.0176 across 

10 cross-validated runs. Observed omission rates were 0.39% higher than expected for 

LPT and 1.98% higher than expected for 10PT (Table 3.2). This model showed the best 

fit and also indicated that more suitable breeding habitat remains in Nova Scotia (49% of 

the provincial landmass) for the Olive-sided Flycatcher than for the other bird species 

considered by this study (Figure 3.3). These results are consistent with those of 

Westwood et al. (2015), who found that provincial parks in Nova Scotia and New 
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Brunswick retained a greater proportion of suitable habitat for the Olive-sided Flycatcher 

than for the Rusty Blackbird and Canada Warbler. 

 

Five covariates were included in the Olive-sided Flycatcher model, as follows (listed 

from greatest to least importance): ‘1st story height MEAN’, ‘1st story height STD’, 

‘distance to coniferous stand’, ‘TPI’, and ‘distance to stand with dead material’ (Table 

3.3b). Covariates related to forest structure showed the highest importance scores (28.7% 

and 25.9% for ‘1st story height MEAN’ and ‘1st story height STD’, respectively) and, 

similar to the Rusty Blackbird, relative habitat suitability improved as heterogeneity in 

canopy height increased but mean canopy height decreased. ‘Distance to coniferous 

stand’ showed moderate importance (21.3%), with relative habitat suitability rapidly 

decreasing away from conifer-dominated areas (Table 3.3b). Results for ‘TPI’, which 

also received a moderate importance score (19.3%), indicate that the Olive-sided 

Flycatcher was more likely to occur in valleys and low-slope areas. Finally, relative 

habitat suitability also decreased away from stands that contained dead material, although 

this covariate had the lowest importance score (4.8%) in the model. 

 

3.3.3. Canada Warbler  

 

The most parsimonious Canada Warbler model showed mean AUCtrain and AUCtest scores 

of 0.7246 and 0.6920, respectively, and an AUCdiff score of 0.0326 across 10 cross-

validated runs (Table 3.2). Observed omission rates were 0.64% higher than expected for 

LPT and 1.39% higher than expected for 10PT (Table 3.2). Our results indicate that, in 

Nova Scotia, the amount of potentially suitable breeding habitat available for the Canada 

Warbler is 35% (when the MaxSS threshold is applied) (Figure 3.3). 

 

The Canada Warbler model contained 6 covariates (listed from greatest to least 

importance), as follows: ‘D2W’, ‘distance to coniferous stand’, ‘1st story height STD’, 

‘distance to deciduous stand’, ‘distance to stand with dead material’, and ‘landscape 

complexity’ (Table 3.3c). As with the Rusty Blackbird, ‘D2W’ (importance score of 

36.8%) had a greater influence on the relative suitability of Canada Warbler habitat than 
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any other covariate, wherein suitability scores decreased as ‘D2W’ values increased. 

Indeed, the permutation importance score for ‘D2W’ in the Canada Warbler model was 

more than twice as high as that of the 2nd most important covariate. However, the 

decrease in habitat suitability as distance between the water table and the soil surface 

increased was slightly less striking for the Canada Warbler than for the Rusty Blackbird.  

 

The 2nd most important covariate in the Canada Warbler model was ‘distance to 

coniferous stand’ (importance score of 17.1%). The Canada Warbler showed a similar 

response to this covariate as did the Rusty Blackbird and the Olive-sided Flycatcher, 

wherein relative habitat suitability decreased away from conifer-dominated areas. ‘1st 

story height STD’, ‘distance to deciduous stand’, and ‘distance to stand with dead 

material’ all showed moderate importance (~10-15%) in the Canada Warbler model, and 

response curves for these covariates indicate that relative habitat suitability increased in 

areas characterized by greater variation in canopy height but decreased away from areas 

dominated by deciduous trees and woody detritus. The response curve for ‘landscape 

complexity’, which was the last covariate in the Canada Warbler model (importance 

score of 8.7%), indicates that areas of complex topography provided superior Canada 

Warbler habitat than did areas without complex topography (Table 3.3c). 

 

3.4. Discussion 

 

This is the first study to develop province-wide models for the Olive-sided Flycatcher, 

Canada Warbler, and Rusty Blackbird in Nova Scotia. At first glance, the AUCtrain 

(0.6850 to 0.7246) and AUCtest (0.6541 to 0.6920) scores associated with our SDMs 

appear to suggest that their predictive power was only marginally better than random. 

However, although AUC is among the most widely used model evaluation metrics, many 

previous researchers have reported that it is a poor evaluator of SDMs (Lobo et al., 2007, 

Gonzales et al., 2011), and this is especially true for presence-only models (Van Proosdij 

et al., 2015). For example, using background points to calculate AUC scores inevitably 

increases the number of false absences, confounding the accuracy of this metric (Lobo et 

al., 2007). Furthermore, while AUC helps evaluate a model’s discriminatory power, it 
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provides no indication of goodness-of-fit and tends to reward overly complex models. 

Finally, multiple factors are known to artificially inflate AUC scores, including species 

prevalence across the study landscape, the number of observation points in occurrence 

datasets, and sample bias (Lobo et al., 2007, Van Proosdij et al., 2015). Indeed, in chapter 

2 of this thesis, we found that the models which yielded the highest AUC scores were 

those that employed species datasets that were most severely affected by sample bias. In 

the current study, presence points were well distributed across the study area, and we 

took extra care to account for sample bias. Therefore, we suspect that the AUC scores 

associated with our models likely underestimate their overall quality, at least for 2 of the 

3 study species. 

 

Conversely, AUCdiff and a comparison of expected versus observed omission rates 

indicate that Olive-sided Flycatcher and Canada Warbler models are reasonably well fit. 

The Rusty Blackbird model had the highest AUCdiff score, and the observed omission 

rates showed the largest deviation from expected omission rates for this bird. Therefore, 

among the 3 study species, the Rusty Blackbird model had the poorest fit, which was also 

the case in modeling work conducted by Westwood et al. (2015). (Note that in both that 

study and the current one, the number of observation points available to model Rusty 

Blackbird habitat was considerably lower than the number of observation points available 

to model Olive-sided Flycatcher and Canada Warbler habitat.) 

 

We therefore suspect that our model overestimated the amount of suitable Rusty 

Blackbird habitat in Nova Scotia, likely due to its generality (4 covariates versus 5 for the 

Olive-sided Flycatcher and 6 for the Canada Warbler). Specifically, this SDM predicted 

that 43% of the province contains suitable Rusty Blackbird habitat. In contrast, recent 

MBBA surveys (conducted between 2006 and 2010) only found evidence of Rusty 

Blackbird breeding activity in 19% of atlas squares (each of which measured 10km2) 

(Bird Studies Canada, 2012). Nonetheless, given the low detectability of Rusty 

Blackbirds (Powell et al., 2014; McNulty et al., 2016), the overestimation of suitable 

habitat may not be as severe as a comparison with the MBBA data suggests. (Note that 

results were more comparable between this study and MBBA data for the Olive-sided 
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Flycatcher and the Canada Warbler. Specifically, our model predicted that 49% of Nova 

Scotia contains suitable Olive-sided Flycatcher habitat, and breeding evidence was found 

in 57% of atlas squares for this bird. For the Canada Warbler, our model predicted that 

35% of the province is suitable, and breeding evidence was found in 40% of atlas 

squares.) 

  

Nonetheless, for all bird models, covariates selected through reverse stepwise elimination 

generally correspond well with known habitat preferences of assessed species; therefore, 

all SDMs show good ecological realism. The covariates that reverse stepwise elimination 

identified as important for each bird are discussed over subsequent sections.  

 

3.4.1. Rusty Blackbird 

 

The Rusty Blackbird is a wetland obligate that is dependent on shallow-water habitat to 

meet its foraging needs (Powell et al., 2010, 2014). This well-recognized habitat 

requirement likely explains why ‘D2W’ was assigned the highest permutation importance 

score in the model, and why relative habitat suitability was found to rapidly decrease as 

‘D2W’ values increased. Rusty Blackbird nesting preferences (i.e. dense patches of 

stunted conifers surrounded by sparse canopy closure; Matsuoka et al., 2010) were also 

reflected in model results. Specifically, the patchy nature of Rusty Blackbird habitat was 

illustrated through the response curves for ‘1st story height MEAN’ and ‘1st story height 

STD’, which showed increases in habitat suitability as (1) mean canopy height increased 

and (2) variation in canopy height decreased, respectively. The importance of coniferous 

trees to this species was confirmed by the response curve for ‘distance to coniferous 

stand’, in which relative habitat suitability decreased away from conifer-dominated areas. 

 

3.4.2. Olive-sided Flycatcher 

 

The Olive-sided Flycatcher is known to defend large territories (10-45 ha; COSEWIC, 

2007), and our model suggests that, in Nova Scotia, these territories contain both open 

and treed areas. We also found that the most suitable Olive-sided Flycatcher habitat is 
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characterized by patchy vegetation dominated by coniferous trees, which has been noted 

in other parts of this species’ range as well (e.g. in Oregon, McGarigal & McComb, 

1995; in California, Brandy, 2001). In the current study, the importance of conifers was 

demonstrated by the response curve for ‘Distance to coniferous stand’ (the third most 

important covariate), in which habitat suitability rapidly decreases away from these areas. 

The importance of patchy vegetation was emphasized by response curves for the 2 

covariates with the highest permutation importance scores in the Olive-sided Flycatcher 

model (i.e. ‘1st story height MEAN’ and ‘1st story height STD’), which showed that the 

most suitable habitat was located in areas where (1) average canopy height was low but 

(2) overall, canopy height was highly variable, similar to the Rusty Blackbird. The Olive-

sided Flycatcher is well-recognized as an edge specialist (McGarigal and McComb, 

1995), commonly nesting in emergent trees along forest edges, which improves visibility 

for foraging (Meehan & George, 2003). Therefore, areas of high quality habitat are also 

likely to be characterized by a high proportion of forest edges; however, this can only be 

inferred indirectly from the canopy covariates in our model. 

 

‘D2W’ was not selected in the Olive-sided Flycatcher model; however, moisture regime 

is less important to nest-site selection for this bird than for the Canada Warbler and Rusty 

Blackbird. Therefore, we suspect that the influence of this covariate, which describes 

access to water, was masked by covariates describing forest canopy conditions. 

Nonetheless, the fourth most important covariate in the Olive-sided Flycatcher model was 

‘TPI’, which revealed that, in Nova Scotia, habitat quality tends to be superior in valleys 

and on low-slopes. These areas favor the formation of hydrological landforms, such as 

wetlands and watercourses (Mackay & Lindenmayer, 2001), that are often associated 

with the natural edge habitat that the bird prefers. The final covariate included in the 

Olive-sided Flycatcher model was ‘distance to stand with dead material’, which may also 

reflect the bird’s status as an edge specialist and its preference for post-disturbance, early-

seral habitat with higher snag densities (Robertson & Hutto, 2007). 

 

3.4.3. Canada Warbler 
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Previous studies on Canada Warbler habitat have identified the presence of vegetated 

wetlands and moist forests as being critical to bird occurrence (e.g., Lambert and Faccio, 

2005; Goodnow and Reitsma, 2011; Westwood, 2015). Our findings are consistent with 

these earlier works, wherein ‘D2W’ was identified as the most important covariate in the 

Canada Warbler model, and the response curve for this covariate showed a decrease in 

relative habitat suitability as the distance between the water-table and the soil surface 

increased. The inclusion of ‘landscape complexity’ in the Canada Warbler model was 

also likely due to the bird’s facultative preference for wet habitat. Specifically, the 

algorithm used to create the landscape complexity index assigns higher complexity scores 

to areas with greater wetland density (Anderson et al., 2012), and complex landscapes 

were found to improve habitat suitability for the Canada Warbler. 

 

Other key features of Canada Warbler habitat that have been noted in previous research 

include a vertically complex forest structure (Reitsma et al., 2008) with a dense 

understory layer. Indeed, the Canada warbler is a ground nester, and numerous studies 

have identified dense understory growth as the single most important determinant of 

Canada Warbler habitat (Goodnow & Reitsma, 2011; Becker et al., 2012). In our Canada 

Warbler model, this habitat preference was captured by ‘distance to stand with dead 

material’, which had a response curve that showed a linear decrease in relative habitat 

suitability as distance to stands with woody debris increased. Conversely, the Canada 

Warbler preference for forest patches characterized by high vertical complexity was 

evident from the response curve for ‘1st story height STD’. Specifically, areas with high 

variation in canopy height were associated with the best relative habitat suitability scores, 

a trend that was also observed for the Rusty Blackbird and Olive-sided Flycatcher.  

 

Previous studies have noted that the Canada Warbler will nest in a wide range of 

deciduous and coniferous forests but is slightly more common in mixed stands (Becker et 

al., 2012; Reitsma et al., 2008). Our model results correspond with those earlier findings, 

wherein relative habitat suitability for the Canada Warbler decreased away from both 

coniferous and deciduous stands. However, that ‘distance to coniferous stand’ showed a 

higher permutation importance score than ‘distance to deciduous stand’ may reflect the 
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predominance of this cover type in the province of Nova Scotia, rather than a real 

ecological preference for cover type. 

 

3.4.4. Benefits of using topographic covariates in landscape-scale 

SDM research 

 

While micro-level environmental features (e.g. covariates related to forest cover) are 

typically considered to have a more direct influence over species distributions, our 

models, all of which included topo-level covariates, demonstrate that topographic 

features can have predictive value in landscape-scale SDM research as well. Topography 

may also offer practical advantages to this type of work, as characteristics of forest 

vegetation often change (e.g., through silviculture practices or the natural processes of 

disturbance and succession) more quickly than GIS layers representing them can be 

updated, which can put the reliability of forest data in question. Conversely, changes in 

topography occur at geologic timescales, and topographic GIS layers can therefore be 

expected to remain relatively accurate over the long-term, as long as the underlying 

mapping methods are sound. 

  

The stability of topography is especially important in an era of climate change, as shifts 

in temperature and precipitation regimes are expected to significantly alter North 

American forest ecosystems (Stralberg et al., 2015). As noted, topographic processes help 

regulate micro-level forest characteristics, and topography should not be affected by a 

changing climate, unlike micro-scale forest features (Holling, 1986; Mackay & 

Lindenmayer, 2001). In developing forest landbird SDMs, we adopted the assumption 

that complementing the use of micro-level features with suitable topo-level features can 

help SDMs identify more climate-resilient habitat (i.e. habitat patches which are more 

likely to retain similar structures, processes, and feedbacks over the long-term as climate 

changes).  

 

In this study, not only did reverse stepwise elimination identify both topo-level and 

micro-level covariates as being important to relative habitat suitability for all 3 birds, at 
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the landscape-scale that we considered, topographic covariates showed stronger 

explanatory power than did covariates describing characteristics of forest stands in many 

cases. In both the Rusty Blackbird and Canada Warbler model, the covariate with the 

highest permutation importance score was ‘D2W’ (43% and 36.8%, respectively), and in 

the Canada Warbler model, this covariate was more than twice as important than the 

covariate with the 2nd highest permutation importance score (‘distance to coniferous 

stand: 17.1%). ‘Landscape complexity’ increased predictive power for the Canada 

Warbler model as well, although the importance score of this covariate was 

comparatively low (8.7%). For the Olive-sided Flycatcher, 3 covariates with the highest 

permutation scores were related to micro-level forest characteristics; however, ‘TPI’ (a 

topo-level covariate) nonetheless received a permutation importance score of 19.3%. That 

topo-level covariates showed stronger predictive power in Rusty Blackbird and Canada 

Warbler models than in the Olive-sided Flycatcher is not surprising, as the importance of 

topography to habitat suitability for our study species is very likely related to its control 

over local moisture regimes, and the Rusty Blackbird and Canada Warbler have much 

stronger associations with wet habitat than does the Olive-sided Flycatcher.  

 

Indeed, the utility of individual topographic features to landscape-scale SDM research is 

likely to vary across both study species and study regions. We also note that, although 

there is theoretical and modeled evidence to suggest abiotic topography can be used to 

help identify climate-resilient habitat, the utility of our resilience-based approach to 

species distribution modeling in an era of climate change must be confirmed through 

field testing and long-term empirical studies. 

 

3.4.5. Implications for conservation and forest management 

 

Currently, 80% of Nova Scotia is covered by forest (NSDNR, 2008). Results from this 

research suggest that (1) Nova Scotian forests retain a high proportion of breeding habitat 

for the bird species considered in this study and that (2) this habitat is well distributed 

throughout the province, providing opportunities for conservation (Figures 3.2 and 3.3). 

Our results further suggest that the Rusty Blackbird, Olive-sided Flycatcher, and Canada 
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Warbler prefer the same moisture-rich ecosites, and thus have the potential to be 

managed as a suite, which corroborates findings from previous work by Westwood et al. 

(2015). When binary habitat suitability surfaces were compared in an overlay, we found 

that approximately 22% of the Nova Scotia land-base was characterized as suitable for all 

3 birds (Figure 3.4). We suggest that these areas could be prioritized in a conservation 

plan as a means to help attenuate their declines, both now and in the future as climate 

changes.  

 

Unlike forest vegetation, topography will remain largely unaffected by changing climatic 

regimes. We therefore posit that conservation plans which target topographic features can 

reduce the uncertainty associated with other approaches to species distribution modeling 

and conservation planning in an era of climate change. Topographic control over 

hydrological conditions causes moisture to accumulate in low-slope and low-elevation 

areas in response to gravitational potential energy gradients (Mackay and Lindenmayer, 

2001; Murphy et al., 2009). The critical importance of a wet moisture regime to the 

Canada Warbler and the Rusty Blackbird was demonstrated in this study through 

response curves for ‘D2W’ (the most important variable in both models), which was itself 

developed using topographic data (i.e. slope and distance to nearest hydrographic feature) 

(Murphy et al., 2007). While ‘D2W’ was not included in our Olive-sided Flycatcher 

model, ‘TPI’ was, and lowland topographic positions showed better suitability than 

upland ones. Furthermore, previous modeling conducted by Westwood et al. (2015) 

found higher Olive-sided Flycatcher densities in territories that included a greater 

proportion of wet areas. Earlier studies have observed greater productivity and passerine 

richness in lowlands as well, and hypothesized that this correlation can be explained by 

(1) increased moisture and nutrient accumulation (Neave et al., 1996) and (2) increased 

vertical complexity due to the juxtaposition of multiple habitats in riparian forest 

ecotones (LaRue et al., 1995). Indeed, work by LaRue et al. (1995) demonstrated that 

many birds which typically prefer drier environments can also be found in lowland 

riparian sites, but the same could not be said for birds that prefer wetter habitat (LaRue et 

al., 1995). Given the critical importance of wetness to these birds (especially the Rusty 

Blackbird and Canada Warbler), habitat conservation sites established for their benefit 
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should include wet habitat under both current and future climate regimes. Our results 

show that the topo-level covariates of ‘D2W’ and ‘TPI’ are effective at identifying 

currently suitable habitat, and theoretical evidence suggests that these topo-level features 

can promote the persistence of wet moisture regimes over time (see Table 3.4).  

 

Nonetheless, preserving suitable topography alone is insufficient to promote the 

conservation of these species in Nova Scotia; favorable forest conditions are critical as 

well. Habitat alteration and loss due to silviculture practices on breeding grounds are 

believed to have significantly contributed to the decline of the forest landbirds considered 

in this study (COSEWIC, 2007, 2008). Given the crucial importance of wet forest habitat 

to these species in Nova Scotia, like Westwood et al. (2015), we recommend that the 

maintenance or restoration of these areas be a key priority of forest management. We 

further posit that, to mitigate the effects of silviculture harvesting on the species of 

interest in Nova Scotia, maintaining buffers of a sufficient width around wetlands and 

watercourses is likely more important than preserving residual forest patches (Westwood 

et al., 2015) Currently, provincial regulations require that silviculture activities maintain a 

buffer measuring between 20 m and 60 m around wetlands and watercourses (Province of 

Nova Scotia, 2002). However, this size is unlikely to be sufficient for the species of 

interest. From a wildlife conservation perspective, larger buffers are widely understood to 

be more effective than smaller ones (e.g. The Nature Conservancy 2015, Ives et al. 2005). 

Similar to Westwood et al. (2015), we recommend that, ideally, the width of wetland and 

watercourse buffers should be increased to 225 m in order to be large enough to minimize 

edge effects, offer protection from upland predators, and contain at least 1 complete 

territory for each of the species of interest. In addition, when harvesting timber outside 

buffer areas, practices that promote increased vertical complexity such as ‘structural 

complexity enhancement’ (Gottesman & Keeton, 2017) could benefit the Canada 

Warbler. Conversely, the Olive-sided Flycatcher should benefit from residual snags left 

in harvest areas. 

 

Nonetheless, the large amount of suitable habitat that was identified in this study suggests 

that, in Nova Scotia, decreases in bird populations may not be primarily related to the 
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loss of landscape-scale breeding habitat (even if the amount of suitable habitat was over-

estimated in the Rusty Blackbird model). Indeed, factors affecting other geographic areas 

or scales that have been cited as potential causes of Rusty Blackbird, Olive-sided 

Flycatcher, and Canada Warbler declines include the loss of wintering habitat (Greenberg 

et al., 2011), mercury contamination (Edmonds et al., 2010), predation (Savard et al., 

2011), and parasite infections (Bernard et al., 2010). It is important to note that the 

effectiveness of landscape-scale conservation measures applied to protect breeding 

habitat may be limited if bird declines are being primarily driven by phenomena that 

occur at a different scale or location along the Atlantic flyway. 

 

3.5. Limitations 

 

It is possible that the reliability of our results were affected by classification errors in 

underlying datasets, which may be considerable in some parts of the FID at the 

landscape-scale (Westwood, 2015). To minimize the confounding effects of these 

classification errors, we defined cover-types generally (i.e. coniferous or deciduous, 

rather than by dominant tree species). While we did not make similar adjustments for ‘1st 

story height’ and ‘% canopy closure’, response curves for these variables make 

ecological sense, and we therefore consider them to be reasonably reliable. Nonetheless, 

as with all SDMs, results should be treated with caution until adequate ground-truthing is 

conducted. 

 

Secondly, while we represented 1st story canopy height according to mean and standard 

deviation, in-line with other bird modeling studies (e.g. Lesak et al. 2011, Eldegard et al 

2014, Westwood et al. 2015), it is possible that, given the nature of FID data in Nova 

Scotia, a different representation of canopy height (e.g. defined according to the majority 

rule) could have stronger predictive power and/or increase model accuracy. Nonetheless, 

as noted above, we consider the bird responses that were modeled for canopy height 

covariates to be reasonable in this study. 
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Thirdly, it is possible that the temporal disconnect between FID data and species 

occurrence points may also have affected our results. However, the ACCDC dataset 

contained observations of target species which were made between 2005-2013 (Olive-

sided Flycatcher), 2006-2013 (Canada Warbler), and 2006-2012 (as well as single 

sightings made in 1998 and 2001; Rusty Blackbird). The FID is partially updated every 

year, and though some data came from aerial photos taken in 1988, most of the data is 

from 2003-2012. Therefore, the temporal disconnect is not expected to be overly severe 

in the current study. 

 

3.6. Conclusions 

 

As human demands upon a limited land and water base continue to increase, identifying, 

prioritizing, and protecting key habitats will become ever more important to biodiversity 

conservation goals. In a context of climate change, the ability to identify suitable habitat 

that is also resilient to changing temperature and moisture regimes is especially critical. 

In this study, we used Maxent modeling techniques and an intersection of topo-level 

(covariates describing regional topography) and micro-level (i.e. covariates describing 

forest characteristics) features to develop predictive, spatially explicit habitat models for 

the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler. In so doing, our goal 

was to identify areas of habitat that are not only suitable currently, but may be more 

resilient against the effects of climate change as well. The migratory landbird habitat 

identified herein can directly support conservation, land acquisition, and biodiversity 

conservation initiatives in Nova Scotia. Moreover, if confirmed through longer-term 

monitoring and field studies, our resilience-based approach to species distribution 

modeling could potentially be applied to benefit the conservation of other terrestrial 

vertebrate species as well. While we acknowledge that it is impossible to guarantee the 

persistence of any specific species in an era of climate change, protecting key areas of 

climate-resilient habitat is a strong first step towards attenuating species loss  
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3.7 Tables and figures 

 

Table 3.1 List of covariates included in reverse stepwise elimination for the 3 study 

species. DEM = Digital elevation model; RUBL = Rusty Blackbird; OSFL 

= Olive-sided Flycatcher; CAWA = Canada Warbler. All base datasets 

were obtained from the Nova Scotia Department of Natural Resources. 

 
Covariate name Base dataset(s) Considered for birds 

Topographic position index 

(TPI) 

DEM RUBL, OSFL, CAWA 

Landscape complexity 

index 

DEM; wetland inventory RUBL, OSFL, CAWA 

Depth to water-table 

(D2W) 

D2W RUBL, CAWA 

1st story height MEAN FID RUBL, OSFL, CAWA 

1st story height STD FID RUBL, OSFL, CAWA 

% crown closure MEAN FID RUBL, OSFL, CAWA 

% crown closure STD FID RUBL, OSFL, CAWA 

Distance to coniferous 

stand 

FID RUBL, OSFL, CAWA 

Distance to deciduous 

stand 

FID CAWA 

Distance to all-height stand FID RUBL, OSFL, CAWA 

Distance to stand with dead 

material 

FID RUBL, OSFL, CAWA 

 

Table 3.2: Evaluation metrics for Rusty Blackbird, Olive-sided Flycatcher, and 

Canada Warbler models. Note that, for the lowest presence threshold 

(LPT) omission rate, values closer to 0% indicate a better calibrated model 

and, for the 10% presence threshold (10PT) omission rate, values closer to 

10% indicate a better calibrated model. AUC = Area under the curve. 

 
Bird AUCtrain AUCtest AUCdiff Observed  

LPT omission  

rate 

Observed 10PT  

omission rate 

Rusty 

blackbird 

0.6969 0.6541 0.0428 3.2% 14.23% 

Olive-sided 

Flycatcher 

0.6850 0.6674 0.0176 0.39% 11.98% 

Canada 

Warbler 

0.7246 0.6920 0.0326 0.64% 11.39% 
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Table 3.3: Covariates included in final “best” models as well as associated percent 

(%) contribution scores, permutation importance scores, and response 

curves for (A) the Rusty Blackbird, (B) the Olive-sided Flycatcher, and 

(C) the Canada Warbler. Note that, the y axis of all response all curves 

represents relative habitat suitability, wherein suitability increases from the 

bottom to the top of the axis. The x axis of all response curves except TPI 

begins at 0 (left side of figure), and values (e.g. height, distance) increase 

towards the right. For TPI 1 = valley, 2 = low-slope, 3 = mid-slope, 4 = 

upper-slope, and 5 = ridgetop. 

 
A. Rusty Blackbird 

Covariate % Contribution Permutation 

Importance 

Response Curve 

D2W 62.4% 43% 

 
1st story height 

MEAN 

19.2% 30% 

 
1st story height 

STD 

12.5% 18.2% 

 
Distance to 

coniferous stand 

7.1% 8.7% 

 
 

B. Olive-sided Flycatcher 

Covariate % Contribution Permutation 

Importance 

Response Curve 

1st story height 

MEAN 

24.2% 28.7% 

 
1st story height 

STD 

29.5% 25.9% 

 
Distance to 

coniferous stand 

19.5% 21.3% 

 
TPI 20.9% 19.3% 

 
Distance to stand 

with dead material 

6% 4.8% 
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C. Canada Warbler 

Covariate % Contribution Permutation 

Importance 

Response Curve 

D2W 36.5% 36.8% 

 
Distance to 

coniferous stand 

18.7% 17.1% 

 
1st story height 

STD 

18.2% 14.6% 

 
Distance to 

deciduous stand 

8% 12.2% 

 
Distance to stand 

with dead material 

11.2% 10.6% 

 
Landscape 

complexity 

7.3% 8.7% 

 
 
Table 3.4 Percentages of (1) habitat that was identified as being suitable for all birds  

  and (2) the entire province of Nova Scotia that were classified as  

  valley or valley/lowslope by the ‘TPI’ and as wet by the ‘D2W’. 

 

 % classified as 

valley by ‘TPI’ 

% classified as 

valley or low-slope 

by ‘TPI’ 

% classified as wet 

area by ‘D2W’ 

Habitat identified 

as suitable for all 

birds 

43% 66% 49% 

All of NS 7% 34% 8% 
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Figure 3.1: Kernel density maps illustrating the relative density of presence points in the (left) Rusty Blackbird, (center) Olive-

sided Flycatcher, and (right) Canada Warbler datasets used in this study, where darker areas denote higher point 

densities. The minimum convex polygons that enclose all points are also shown (black outlines on maps). In training 

Maxent models, kernel density maps were used as bias grids to help account for spatial autocorrelation in species 

occurrence data. Actual occurrence locations are not displayed due to the sensitive nature of species at-risk data.
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Figure 3.2: Heat maps (output by Maxent software) delineating relative habitat suitability for (left) the Rusty Blackbird, (center) 

the Olive-sided Flycatcher, and (right) the Canada Warbler.  
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Figure 3.3: Binary habitat suitability maps created by applying the MaxSS threshold for (left) the Rusty Blackbird, (center) the 

Olive-sided Flycatcher, and (right) the Canada Warbler, where green denotes areas of suitable habitat and grey 

denotes areas of unsuitable habitat.
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Figure 3.4: Map showing areas in Nova Scotia that contain suitable habitat for all 3 

birds considered in this study. These areas were delineated by overlaying 

the binary suitability surfaces created for each individual bird and 

identifying the intersecting areas of suitable habitat. 
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CHAPTER 4: BUILDING AN ARC IN THE ANTHROPOCENE1 -- 

APPLYING PRINCIPLES OF ECOLOGICAL RESILIENCE TO 

DELINEATE CLIMATE RESILIENT HABITAT FOR THE OLIVE-

SIDED FLYCATCHER IN NOVA SCOTIA 

 

Shannon Bale1, Karen Beazley1, Peter Bush2 

 

1School of Resource and Environmental Studies, Dalhousie University, Nova Scotia, Canada 

2Nova Scotia Department of Natural Resources, Nova Scotia, Canada 

Abstract 
Climate change is causing the ranges of many species to shift or contract in geographic 

space, which challenges landscape-scale conservation planning efforts (e.g. protected 

area delineation and reserve design), as areas which are set aside for their unique 

biodiversity values may not retain those values in the future. To account for the effects of 

climate change, conservation planning that targets specific at-risk species often prioritizes 

areas that have been predicted to fall within future range shift boundaries. Conversely, a 

conservation planning strategy known as the “Conserving Nature’s Stage (CNS)” 

approach does not target any single species, but aims to maintain overall levels of 

biodiversity by prioritizing areas according to their resilience against the effects of 

climate change. However, both of these methods have limitations, as predictions of future 

range shifts can be highly uncertain, and the CNS approach alone is unlikely to be 

sufficient to protect all individual vulnerable species. To address these gaps, we present a 

novel, resilience-based approach to single-species conservation planning that (1) targets 

individual species which may be missed by more general conservation planning strategies 

and (2) also contributes towards the maintenance of overall biodiversity in an era of 

climate change. Specifically, our proposed approach combines the results of predictive 

modeling with elements of CNS to delineate climate resilient refugia and reduce 

uncertainty in conservation plans. The application of the proposed approach was 

illustrated through an analysis of Olive-sided Flycatcher (Contopus cooperi) habitat in 

the province of Nova Scotia, Canada, and involves 3 stages. First, patches of habitat that 

are currently suitable for the target species are identified using a species distribution 

model that has been trained using a suite of topographic (topo-scale) and forest (micro-

scale) covariates. Second, the identified habitat patches are prioritized according to their 

landscape resilience score (calculated using methods adapted from the CNS approach). 

Finally, these results are overlain onto a range shift model in order to identify resilient 

habitat patches that also coincide with future range shift boundaries. Due to their high 

resilience scores, protecting prioritized patches should not only increase the likelihood 

                                                        
1 The title for this chapter was taken from a September 27th, 2014 New York Times column, entitled 

“Building an Arc for the Anthropocene”. Permission to use this title was kindly granted by author Jim 

Robbins. 
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that the target species persists over the longer-term, but should support the maintenance 

of general biodiversity as well. Nonetheless, the approach presented here cannot 

efficiently meet biodiversity conservation goals on its own; therefore, it is intended to 

complement, not replace, existing conservation planning strategies that seek to protect 

representative arrays of species, natural land cover types, and enduring topographic and 

landscape features.  

 

Keywords: Resilience, climate change, climate refugia, resilient habitat, Olive-sided 

Flycatcher 

 

4.1. Introduction 

 

Three and a half billion years of natural selection generated an enormous diversity of life 

on planet Earth (Taylor et al., 2009), but today, the synergistic effects of human activities 

are driving a mass extinction, whereby species are being lost between 1,000 and 10,000 

times faster than the natural background extinction rate (Chivian & Bernstein, 2008). 

Vertebrate species declined 52% between 1970 and 2010 (World Wildlife Federation 

[WWF], 2014), and it has been predicted that up to 50% of all species could be extinct or 

near extinct by mid-century if climate-change-induced warming is severe (Thomas et al., 

2004).  

 

Although multiple causes are contributing to species’ plummeting populations, the most 

significant threat to biodiversity is habitat modification, fragmentation, and destruction 

(Wagler, 2011; WWF, 2014). Maintaining a functionally connected network of high 

quality habitat sites has thus been cited as one of the most effective responses to species 

loss (Rubio & Saura, 2012). Traditionally, systematic conservation planning efforts have 

prioritized areas with high endemic species richness or sets of areas with broad species 

representation. However, these strategies assume that ecosystems are stationary and that 

habitat which is suitable today will remain so in the future (Lawler et al., 2015). In an era 

of climate change, altered temperature and precipitation regimes are predicted to cause 

species’ distributional ranges to shift and/or contract in geographic space (Beier & Brost, 

2009; Anderson & Ferree, 2010). Indeed, for some species, significant range shifts have 

already been observed, and more extensive shifts are predicted over the next century 

(Schloss et al., 2011; McClure et al., 2012; Lawler et al., 2015). 
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In recent years, ecologists have recognized that a more robust strategy for conservation 

planning is needed, and new approaches to address climate change have begun to emerge. 

One example is a species-by-species (i.e. “fine-filter”) approach which involves 

projecting habitat models created using current climatic conditions onto predictions of 

future climatic conditions (e.g. based on global circulation models and potential 

emissions scenarios) to improve understanding of how habitat location and extent will 

change over time (Stralberg et al., 2015). Habitat models are in-turn derived from species 

distribution models (SDMs), which use a correlative approach to quantify the niche of a 

species and map spatial predictions of species’ distributions under a given set of 

environmental conditions. However, both SDMs and climate models suffer from 

uncertainty, which can be severe in many cases, leading some to question whether the 

noise exceeds the signal when this strategy is used (Stralberg et al., 2015). 

 

Conversely, the “conserving nature’s stage” (CNS) strategy is a coarse-filter approach 

that seeks to protect a diverse set of enduring abiotic conditions (e.g. geology, 

topography), which are considered the “stage” upon which ecological processes take 

place. This approach posits that, as abiotic conditions shape not only ecological processes 

but the biological responses of organisms as well, areas of high abiotic diversity should 

support high biotic diversity, even if the specific species and communities inhabiting 

these areas vary over time (Hunter et al., 1988; Lawler et al., 2015). The CNS approach is 

increasingly seen as particularly useful in an era of climate change, as many of the abiotic 

features targeted by CNS will not be affected by altered temperature and precipitation 

regimes (Gill et al., 2015). Furthermore, topographically diverse areas offer more options 

for species to adapt to climate change, such as the opportunity to move up or down slope 

or to different aspects (Anderson et al., 2012). Conservation plans that leverage this 

approach may therefore be less uncertain than plans derived from SDMs and future 

climate projections alone. However, the ability of CNS to conserve specific species and 

ecosystems is likely to be limited, as the strength of the relationship between abiotic 

features and species’ distributions varies greatly between taxa (Beier et al., 2015) and, for 

mobile vertebrate species especially, biotic (i.e. floristic) factors tend to be more 

proximate predictors of habitat suitability (Franklin, 2009). Indeed, findings from Schloss 
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et al. (2011) indicated that conservation sites selected solely to conserve abiotic features 

protected specific types of rare taxa poorly. Therefore, even proponents of CNS suggest 

that this approach should be complemented by strategies that focus on species themselves 

(Lawler et al., 2015). 

 

In this chapter, we propose a novel approach to single-species conservation planning for 

an era of climate change. The proposed approach combines predictive-modeling with 

elements of CNS to delineate climate resilient refugia habitat for vulnerable species that 

may be missed by coarse-filter strategies. Refugia are defined as areas that enjoy some 

degree of buffering against climate change; thus, in such areas, the in situ climate state 

experienced on the ground deviates from regional trends (Dobrowski, 2010; Keppel et al, 

2015; Morelli et al, 2017). Habitat that occurs within these resilient refugia sites can be 

expected to remain suitable over longer time periods than habitat which occurs in non-

resilient areas. Consequently, resilient habitat sites represent good candidates for new 

protected core protected areas or mixed-use forest management strategies. We illustrate 

the application of our approach through an analysis to identify the most resilient Olive-

sided Flycatcher (Contopus cooperi) habitat in the province of Nova Scotia, Canada.  

 

In brief, our approach involves 3 stages: (1) modeling patches of currently suitable 

habitat for the target species using an SDM that has been trained using a suite of 

topographic and forest covariates (this was done for the Olive-sided Flycatcher in chapter 

3 of this thesis); (2) prioritizing suitable habitat patches according to landscape resilience 

scores (calculated using methods adapted from Anderson et al., 2012); and (3) overlaying 

these results onto a range shift model in order to identify resilient habitat that also 

coincides with current  future range boundaries. Patches which meet all 3 criteria are 

considered to be areas of high priority “core” habitat, as greater confidence can be placed 

in the accuracy and stability of areas that are predicted to be suitable by multiple models 

using multiple definitions of resilience. Patches that meet the first 2 criteria may be 

considered patches of ‘stepping stone’ habitat, which can be important in maintaining 

functional connectivity in the shorter term and can facilitate northward migrations as 

ranges begin to shift. These areas may also be considered as potential cores in cases 
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where the area and/or configuration of patches that meet all 3 criteria are insufficient to 

satisfy conservation goals (e.g. protecting a sufficient amount of habitat to support 

population viability), or when sociopolitical and/or economic factors make it impossible 

to protect patches that meet all 3 criteria. 

 

The first 2 stages of our strategy each focus on a separate (but related) aspect of 

‘resilience’. The first stage considers the cross-scale organization of ecological systems, 

which was originally theorized by Holling (1986). The phenomenon of cross-scale 

organization relates to resilience in that it regulates the ability of an ecosystem to support 

the same ecological structures and functions following disturbance. The second stage 

considers aspects of resilience which are a cornerstone of the CNS approach: i.e., 

topographic complexity and permeability. For the sake of clarity, in this chapter, we refer 

to resilience sensu Holling as “disturbance resilience” and to resilience sensu CNS as 

“landscape resilience”. However, note that we are both of these concepts relate to the 

ability of an area to provide a buffer against the effects of climate change. 

 

While we acknowledge that it is not possible to guarantee the indefinite persistence of 

any specific, individual taxa, there is theoretical and historical evidence to suggest that 

securing the most resilient habitat patches on a landscape can increase both the likelihood 

and duration that a species persists in a region (e.g. Keppel et al., 2012; Gill et al., 2015). 

Nonetheless, our proposed strategy is not intended to replace existing conservation 

planning techniques that focus on protecting representative arrays of species and natural 

land cover types. Rather, the methods presented here aim to complement existing 

approaches by identifying critical refugia that can benefit key species by helping them 

persist in the midst of large-scale, long-term climate change (Keppel et al (2015) while 

simultaneously advancing broader (i.e. coarse-filter) conservation goals that benefit 

multiple species and ecosystems. Moreover, such resilient sites, or refugia, can also help 

maintain critical spatial and temporal connectivity as species undergo northward 

migrations in the face of changing temperature and precipitation regimes. We hope that 

the work presented here will help further the discussion about which conservation 

planning strategies will be the most effective in an era of climate change. 
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4.1.1 Scientific underpinnings of the proposed approach to 

refugia delineation 

 

The scientific underpinnings of the current chapter are rooted in the works of C. S. 

Holling (1986), MacKay & Lindenmayer (2001), Hunter et al. (1988), and Anderson et 

al. (2012). The conceptual relationship between these earlier publications and our 

proposed approach to refugia delineation is discussed in greater detail over subsequent 

paragraphs.  

 

Applying the concept of cross-scale ecosystem organization to species distribution 

modeling. According to Holling (1986) and Mackay & Lindenmayer (2001), the structure 

and function of ecosystems are regulated by a limited number of critical organizational 

scales, which correspond to natural breaks in the distribution and availability of primary 

environmental resources that control biological productivity: heat, light, water, and 

mineral nutrients. These scales are defined at the global-, meso-, topo-, micro-, and nano-

levels, and they represent ever-finer spatial and temporal variation in the delivery of 

water and energy (Holling, 1986; Mackay & Lindenmayer, 2001). 

 

In brief, at the global-level, latitude, cloud cover, and levels of atmospheric CO2 control 

solar energy inputs to climate and weather patterns. At the meso-level, interactions 

between prevailing weather systems and coarse-grain topographic elevation in-turn 

control long-term precipitation and radiation regimes, and geological substrates influence 

soil chemistry (Mackay & Lindenmayer, 2001). At the topo-level, slope, aspect, and 

topographic shading regulate the availability of meso-level precipitation, temperature, 

light, and nutrient inputs. In addition, the influence of surface morphology over 

catchment hydrology occurs at the topo-level, and this interaction has important 

consequences over where moisture and nutrients accumulate on the landscape. In a 

micro-level forest context, vegetation canopy has a critical influence over light, heat, 

water, and mineral nutrient availability for understory plants and animals. Finally, the 

nano-level describes sub-canopy conditions and processes, such as the composition (i.e. 
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living vs. dead) of woody biomass or nutrient cycling performed by soil microorganisms 

(Mackay & Lindenmayer, 2001). 

 

Although Mackay & Lindenmayer (2001) did not address the implications of their 

theories on resilience, a key concept to emerge from Holling’s framework is that the 

hierarchical structuring of environmental processes can be used to identify the most 

resilient ecosystems in a landscape (i.e. those least likely to be irreversibly impacted by 

disturbance; Holling, 1986). This is possible because large-scale conservative structures 

maintained at higher levels of the environmental hierarchy stabilize and conserve 

successful ecosystem configurations, and thus, following disturbance, they encourage a 

natural system to reorganize with the same key structures, processes, and feedbacks 

(Holling & Gunderson, 2002).  

 

In the previous chapter, we delineated disturbance-resilient (sensu Holling, 1986), 

landscape-scale breeding habitat for the Olive-sided Flycatcher in Nova Scotia, Canada, 

by developing a maximum entropy (Maxent) model using both topo- and micro-level 

covariates. (Note that, from a CNS perspective, topo- and micro-level covariates can be 

considered abiotic and biotic features of the environment, respectively.) Global-, meso-, 

and nano-level covariates were not considered as they affect scales that are not relevant to 

provincial SDMs. 

 

Prioritizing habitat patches according to landscape resilience scores. The CNS 

approach was first proposed by Hunter et al. (1988) (then named the coarse-filter 

approach), who summarized paleoecological evidence to show that communities are not 

internally-regulated natural systems resulting from millions of years of co-evolution. 

Rather, they are relatively ephemeral entities that comprise transitory assemblages of 

species whose abundances, distributions, and associations change in response to large-

scale climatic shifts. Like Holling et al. (1986), those researchers cited the influence of 

geophysical factors over species’ distributions and further noted that, during previous 

periods of global climate change, diverse geophysical environments were able to support 

diverse arrays of species. Hunter et al. (1988) therefore proposed that a coarse-filter 
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approach which protects a comprehensive representation of geophysical environments 

(e.g. as defined by topography, soils, and climate) should be more effective at 

maximizing the long-term persistence of biodiversity than a coarse-filter approach which 

seeks to protect a comprehensive representation of ecological communities (the dominant 

conservation planning strategy of that time). 

 

The potential utility of the CNS approach was corroborated by Anderson & Ferree 

(2010), who provided empirical evidence to confirm that geophysical diversity was 

highly correlated with species diversity, and by Gill et al. (2015), who used 2.6 million 

years of paleoecological data to demonstrate how, although previous periods of large-

scale climate change caused many local extirpations, global extinctions were relatively 

rare. This was likely because (1) geophysical settings were diverse enough that refugial 

populations of species were able to persist in place (Keppel et al., 2012), and (2) a lack of 

dispersal barriers allowed species range shifts’ to keep pace with shifting climate 

envelopes (Prentice et al., 1991).  

 

In 2012, Anderson et al., working for The Nature Conservancy, applied the CNS 

approach in a conservation planning exercise across the northeast coast of the US and the 

Maritime provinces of Canada. For that, researchers first classified 1000-acre (404.7-ha) 

sites according to geophysical setting (which was in-turn defined by elevation zone, 

geology class, and landform type). Then, sites that (1) belonged to the same geophysical 

setting and (2) fell within the same ecoregion were prioritized using landscape resilience 

scores. Landscape resilience scores were themselves defined according to landscape 

complexity (i.e. the number of micro-climates present in a single site; a function of 

landform variety, elevation range, and wetland density) and landscape permeability (i.e. 

the degree to which a landscape supports species’ movement and sustains ecological 

processes). 

 

In this current study, we used methods modified from Anderson et al. (2012) to calculate 

landscape resilience across the province of Nova Scotia. We then used these scores to 
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prioritize the patches of disturbance resilient Olive-sided Flycatcher habitat that had been 

identified in chapter 3. 

 

4.2. Methods 
 
4.2.1 Study area and study species 

 

Our study area was Nova Scotia (45° N, 63° W, Figure 2.1), a Maritime province of 

southeastern Canada that lies on the Atlantic migratory flyway and contains the 

easternmost breeding habitat of the Olive-sided Flycatcher. A description of the 

demographics, topography, and land-use/land-cover that characterize the province is 

provided in chapters 2 and 3 of this thesis. 

 

The Olive-sided Flycatcher (Contopus cooperi) is a neotropical migrant with widespread 

breeding habitat in Acadian and Boreal forests. Although both Nova Scotia and Canada 

appear to contain an abundance of suitable breeding habitat at first glance, this bird has 

shown widespread and persistent population declines across the breeding range, 54% of 

which is found in Canada (i.e. the bird declined by 79% between 1968 and 2006, and by 

29% between 1996 and 2006; COSEWIC, 2007.) These losses have resulted in the Olive-

sided Flycatcher being designated as “threatened” in the Canadian federal species at risk 

registry (COSEWIC, 2007). A more detailed description of habitat preferences exhibited 

by the Olive-sided Flycatcher is available in chapter 3 of this thesis.  

 

4.2.2 Delineation of disturbance resilient patches of Olive-sided 

Flycatcher habitat in Nova Scotia 

 

Suitable patches of disturbance-resilience Olive-sided Flycatcher habitat were delineated 

using the provincial Maxent model that was developed in chapter 3. In brief, that model 

was created using a reverse stepwise elimination process, whereby Akaike’s Information 

Criterion (corrected for small sample sizes; AICc) was used to identify the forest (micro-

level) and topographic (topo-level) covariates (out of 10 possible candidates) that most 

strongly influence the distribution of Olive-sided Flycatcher habitat in Nova Scotia at the 
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landscape-scale. The final Olive-sided Flycatcher model contained 5 covariates, 

including (listed in order of importance): mean canopy height in a 2.25 ha area, standard 

deviation of canopy height (which describes variability in canopy height) in a 2.25 ha 

area; distance to coniferous stand; topographic position; and distance to stand with dead 

material. 

 

In the current chapter, we converted the continuous habitat suitability surface predicted 

by the aforementioned Maxent model into a binary surface delineating the presence and 

absence of suitable Olive-sided Flycatcher habitat using the ‘Equal Sensitivity and 

Specificity’ threshold, which was the most conservative threshold among those suggested 

by Maxent software. Then, as the Olive-sided Flycatcher is known to have a fairly large 

territory size (i.e., between 10 – 20 ha; Altman and Sallabanks, 2012), and as larger 

patches tend to be more resilient than smaller ones, we rejected patches that measured 

less than 20 ha as unsuitable, even if these areas had a suitability score that was above the 

Equal Sensitivity and Specificity threshold. 

 

4.2.3. Creation of a landscape resilience index for Nova Scotia 

 

We generated a landscape resilience index for Nova Scotia using methods adapted from 

Anderson et al. (2012). The generation of this index involved 2 phases: (1) creating a 

layer to delineate landscape complexity; and, (2) creating a layer to delineate landscape 

permeability. (Note that, while the original work by Anderson et al. also included Nova 

Scotia, our analysis was performed at a finer-resolution.) These layers were then 

combined to determine overall landscape resilience scores. All analyses were performed 

using ArcMap 10.2.2 software and tools contained therein (Environmental Systems 

Research Institute (ESRI), 2014). All datasets used in the creation of these layers were 

provided by the Nova Scotia Department of Natural Resources (NSDNR). 

 

Our study area (55,284 km2) was much smaller than the 13 state and 3 province region 

considered by Anderson et al. (2012). Therefore, to address landscape resilience at a 

finer-resolution than those researchers, we employed smaller cell (analytical unit) and 
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neighbourhood sizes. Down-scaling had practical advantages as well. Specifically, the 

digital elevation model (DEM) produced by NSDNR (2006), which is the base layer we 

used in the determination of landscape complexity, had a smaller cell size than that of the 

smallest analytical unit used by Anderson et al. (2012) (i.e. 20 m versus 30 m).  

 

4.2.3.1 Delineating landscape complexity 
 

We derived landscape complexity scores from 3 indices: (1) landform variety, (2) 

elevation range, and (3) wetland density. Landforms describe natural surface features that 

are created by the topographic shape of the landscape (e.g. cliffs, valleys, slopes, coves, 

etc.) (Anderson et al., 2012). These features express local solar radiation and, even when 

climate is not considered, regulate species distributions edaphically through their control 

over erosion and deposition rates, soil texture and depth, and nutrient and moisture 

availability. A greater variety of landforms not only increases the likelihood of species’ 

persistence by providing a larger number of micro-climates in an area, but also serves as 

a buffer against the effects of climate change (Anderson et al., 2012; Dobrowski, 2010). 

 

Landform variety. To delineate landform variety, we used a 20 m topographic position 

index (TPI). This layer had been created for our previous SDM study (in chapter 3) and 

was derived from the 20 m Nova Scotia DEM (NSDNR, 2006). Originally, this index 

distinguished among 5 topographic positions: valleys, low-slopes, mid-slopes, up-slopes, 

and ridgetops. However, the TPI employed by Anderson et al. (2012) (called a land 

position class index by those researchers) only distinguished among 4 topographic 

positions. Therefore, for the current research, we combined the up-slopes and ridgetops 

from our original index into a single class. We opted to combine the top 2 topographic 

positions (i.e. as opposed to valleys and low-slopes) because Nova Scotia is mostly flat 

and because a visual examination of the modified TPI overlaid on a hillshade DEM 

revealed that combining the higher topographic positions generally yielded a more 

accurate index than did combining the lower ones. 
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We then used the DEM to create a 20 m slope map over Nova Scotia and combined this 

with the TPI to delineate 10 landform types, in accordance with Anderson et al. (2012). 

Specifically, these were: cliff or steep slope (any area with a slope between 24-90°), slope 

crest (ridgetop/up-slope with a slope between 6-24°), flat ridgetop (ridgetop/up-slope 

with a slope between 0-6°), rounded ridge (mid-slope with a slope between 6-24°), gentle 

hill (mid-slope with a slope between 2-6°), hilltop (mid-slope with a slope between 0-2°), 

lower sideslope (low-slope with a slope between 6-24°), toe slope (low-slope with a slope 

of 2-6°), flats (low-slope with a slope of 0-2°), and cove or slope-bottom (valley with a 

slope between 0-35°). Slopes were then further sub-divided according to aspect (i.e. 

northeast or southwest), and flats were further subdivided by flow accumulation (i.e. wet 

or dry), for a total of 12 landforms (Figure 4.1). We subsequently performed a focal 

variety analysis to determine the number of landforms within a 27 ha circular 

neighbourhood. (This number was selected so that the ratio of cell size to neighbourhood 

size matched that used by Anderson et al. (2012)). 

 

Elevation range. As climate changes, species ranges may shift, increase, or decrease in 

concert with elevation. This is particularly true in mountainous or hilly landscapes, where 

slopes can magnify the effects of a changing climate (Anderson et al., 2012). To 

determine local elevation ranges within Nova Scotia, we performed a focal range analysis 

on the same 27 ha circular neighbourhood as that used in the aforementioned landform 

variety analysis. As elevation range values were highly skewed towards zero, we log 

transformed this data prior to further analysis. 

 

Wetland density. A large portion of Nova Scotia is wet and flat as a result of past 

glaciations. In flat areas, Anderson et al. (2012) suggest that using landform variety and 

elevation range alone is insufficient to delineate landscape complexity. They therefore 

recommend that wetland density be used to infer micro-scale topographic diversity and 

freshwater accumulation patterns, positing that areas of high wetland density should have 

higher levels of topographic variation, and that small, isolated wetlands are at greater risk 

of shrinkage or disappearance. To create a wetland density index, we calculated the 

density of wetlands within 27 ha and 270 ha neighbourhoods (with this size again 
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selected to match the ratios used by Anderson et al., 2012) using the provincial wetland 

inventory (NSDNR, n.d.). We then combined these fine- and coarse-scale wetland 

density values to obtain a single wetland density index, whereby the fine-scale values 

were given twice the weight of the coarse-scale values. 

 

Finally, the landform variety, elevation range, and wetland density indices were 

normalized by Z-score and combined (using the equation shown below) to obtain a final 

landscape complexity index (Anderson et al., 2012). However, in creating this index, note 

that wetland density values were only applied to relatively flat landforms (i.e. landforms 

with a slope between 0-6°: flats, flat hilltops, and flat ridgetops), where wetlands could 

reasonably be expected to occur. 

 

Landscape complexity: 

Flat areas = (2*Landform variety + 1*elevation range + 1*wetland density)/4 

Incline areas = (2*Landform variety + 1*elevation range)/3 

 

4.2.3.2 Delineating landscape permeability 

 

In this study, landscape permeability was defined as the degree to which the landscape is 

able to support species movement and sustain ecological processes (Meiklejohn et al., 

2010; Anderson et al., 2012). Landscape permeability is a measure of landscape structure, 

and describes the hardness of barriers and the connectedness of natural cover. Due to 

time and data constraints we performed a relatively simple landscape permeability 

analysis in this study. Specifically, we calculated road density in the same 27 ha 

neighbourhood used in the calculation of landform variety and elevation range. Road 

density values were then normalized by Z-score. A visual overlay revealed that our road 

density layer had good similarity with the landscape permeability layer that Anderson et 

al. (2012) produced using a more complex analysis (Figure 4.2). 

 

4.2.4. Delineating overall landscape resilience 
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To delineate overall landscape resilience in the province of Nova Scotia, we combined 

scores from the landscape complexity and road density (i.e. landscape permeability) 

indices. As high landscape complexity scores were considered ‘good’ and high road 

density scores were considered ‘bad’, the overall landscape resilience index was 

calculated by subtracting road density scores from landscape complexity scores. Finally, 

the overall landscape resilience index was again normalized according to Z-Score. 

 

4.2.5. Prioritization of Olive-sided Flycatcher patches and 

delineation of climate refugia 

 

To prioritize suitable patches of Olive-sided Flycatcher habitat in Nova Scotia, we first 

determined the extent to which each patch contributes to the resilience of the overall 

landscape. This was achieved by calculating mean landscape resilience scores; i.e., by 

averaging the landscape resilience scores of all cells in a given patch. Following this, 

patches were binned into 7 categories by comparing the landscape resilience score of 

each patch to that of the overall landscape (using standard deviation; STD): far below 

average (<-2 STD), below average (-1 to -2 STD), slightly below average (-0.5 to -1 

STD), average (-0.5 to 0.5 STD), slightly above average (0.5 to 1 STD), above average (1 

to 2 STD), and far above average (>2 STD).  

 

The categorized patches were then overlain onto range-shift models that predicted Olive-

sided Flycatcher range boundaries for the years 2020, 2050, and 2080 under 3 IPCC 

emissions scenarios (i.e., A1B, A2, and B2; Table 4.1). These range shift models were 

generated by the National Audubon Society (2014) at a 10 km resolution (i.e. the 

analytical unit size) using boosted regression trees, bird data (collected between 1999 and 

2008) from the Audubon Christmas Bird Count and the North American Breeding Bird 

Survey, and temporally matched data for 17 biologically relevant climate variables (for a 

complete description of modeling processes used in that work, see National Audubon 

Society 2013, 2014).  To ensure the highest confidence in modeled range boundary 

predictions, for the years 2020 and 2050, we only considered areas that were predicted to 

remain within the bird’s climatically suitable range under all emissions scenarios. By the 
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year 2080, only scenario B2 predicted that climatically suitable areas would remain in 

Nova Scotia, and so we did not consider the other 2 emissions scenarios. 

 

Upon completing this overlay, we identified habitat patches that could be considered 

potential core areas and highest priority climate refugia for the Olive-sided Flycatcher. 

Specifically, these were patches that (1) had landscape resilience scores that were in the 

‘above average’ or ‘far above average’ categories, and (2) fell within the range 

boundaries agreed upon by all Audubon models (i.e. models produced for the A1B, A2, 

and B2 scenarios) through at least 2050 or by the Audubon model for scenario B2 

through 2080.  

 

4.3. Results 

 

4.3.1. Resilient landscapes in Nova Scotia 

 

The landscape resilience index that we produced for this study showed a normal 

distribution and was qualitatively similar to the coarser-scale index produced by 

Anderson et al. (2012) (Figure 4.3). Both resilience indices reveal that large contiguous 

areas with high landscape resilience scores (i.e. in the ‘far above average’ or ‘very far 

above average’ categories) occur in the northern part of Cape Breton Island, which is 

itself the northernmost part of Nova Scotia (Figures 4.4a and 4.4b). Indeed, according to 

our index, of the 10 largest contiguous highly resilient areas, 5 occur in northern Cape 

Breton, including the 3 largest such areas (Figure 4.4b). In addition, 9 of the 10 largest 

contiguous highly resilient areas occur within and adjacent to existing protected 

conservation lands. The only large, highly-resilient area that is completely isolated from 

existing protected land is an irregularly shaped patch in Port Bickerton (the 4th largest 

resilient area), located in the northeastern Nova Scotia mainland (Figure 4.4a).  

 

Like Anderson et al. (2012), we also found that the areas with the lowest landscape 

resilience scores occurred around (1) major urban centers (Halifax - the provincial 
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capital, Dartmouth, and Sydney) and (2) major highways (highways 101, 102, and 103), 

which run through the center of the province and the Annapolis valley (Figure 4.3).  

 

4.3.2. Resilient Olive-sided Flycatcher habitat patches 

 

According to the Maxent model developed in chapter 3 of this thesis, Olive-sided 

Flycatcher habitat is well distributed in Nova Scotia, covering approximately 49% of the 

provincial landmass (Figure 4.5a). However, only around 1% of the provincial landmass 

contains Olive-sided Flycatcher patches with landscape resilience scores that are far 

above or very far above average (highly resilient patches, hereafter) (Figures 4.5b and 

4.6a). Unsurprisingly, large, highly resilient Olive-sided Flycatcher patches tend to occur 

in and adjacent to existing conservation lands in northern Cape Breton Island (Figure 

4.6b). Indeed, of the top 10 largest resilient patches, 7 are found in Cape Breton, with the 

3 largest patches occurring within the federally protected crown land of Cape Breton 

Highlands National Park and the 4th largest patch occurring in the provincially protected 

Polletts Cove—Aspy Fault Wilderness Area directly to the north. The 5th largest patch is 

located on unprotected land that connects Cape Breton Highlands National Park with the 

Jim Campbell Barrens Wilderness Area and the Margaree River Wilderness Area. The 

7th largest patch is located next to the French River Wilderness Area, also in Cape Breton 

(Figure 4.6b).  

 

The 3 large, highly resilient Olive-sided Flycatcher patches that occur on the Nova Scotia 

mainland are also found on existing protected conservation land, located near the 

northeastern coastline. In the interior of the province, Olive-sided Flycatcher habitat 

tends to be characterized by lower landscape resilience scores; however, small isolated 

patches with landscape resilience scores that are far above or very far above average do 

exist (Figure 4.6a). The number and average size of resilient Olive-sided Flycatcher 

patches in various parts of the province are summarized in Table 4.2. 

 

4.3.3. Overlay of highly resilient habitat with range shift models 
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Range shift models produced by the National Audubon Society (2014) under all 3 

emissions scenarios (A1B, A2, and B2) predict that, through 2020, fairly large areas will 

remain climatically suitable for the Olive-sided Flycatcher in the southernmost and 

northernmost parts of Nova Scotia, including Cape Breton Island (Figure 4.7a), and that a 

smaller area will persist in the Terence Bay Provincial Wilderness Area (located around 

the eastern coastline). By 2050, all 3 of the Audubon range shift models predict that 

Olive-sided Flycatcher habitat will have contracted to Cape Breton in northern Nova 

Scotia and completely disappeared in both southern Nova Scotia and in the Terence Bay 

Provincial Wilderness Area (Figure 4.7b). Only 1 range shift model (i.e. that created for 

emissions scenario B2) predicts that areas which are climatically suitable for the Olive-

sided Flycatcher will persist in Nova Scotia through the year 2080, specifically: 2 areas 

measuring 100 km2 in Cape Breton (i.e. the analytical unit size of the Audubon study) 

(Figure 4.7c). 

 

Areas that were predicted by Audubon models to be climatically suitable for the Olive-

sided Flycatcher through 2020 and 2050 under all 3 emissions scenarios intersect the 7 

large, contiguous, highly resilient habitat patches in Cape Breton that were identified in 

the previous section (i.e. Figure 4.8). None of these habitat patches intersect the range 

areas predicted for the Olive-sided Flycatcher in 2080 under emissions scenario B2. 

However, 8 smaller resilient patches occur in 1 of those range areas, and 3 of these occur 

within Cape Breton Highlands National Park (Figure 4.8). 

 

4.4. Discussion 

 

In this study, we developed a novel resilience-based approach to single-species 

conservation planning that can be used to identify critical climate refugia for a target 

species while also benefitting coarse-filter conservation goals. We applied our approach 

in a conservation planning exercise that focused on identifying highly resilient habitat for 

the Olive-sided Flycatcher in the province of Nova Scotia. Over the following, we 

discuss (1) the spatial distribution of resilient areas and habitat patches, (2) implications 

for Olive-sided Flycatcher conservation and core area prioritization, and (3) the potential 
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importance of resilient areas outside predicted range boundaries, and (4) the strengths and 

limitations of our proposed approach. 

 

4.4.1. Spatial distribution of resilient areas and habitat patches in 

Nova Scotia 

 

As noted in the Results section, nearly all large, contiguous resilient areas in Nova Scotia 

occur on land that has already been granted some form of protection status (Table 4.2, 

Figure 4.4). The coarser-scaled analysis by Anderson et al. (2012) reported similar 

findings, both in Nova Scotia and throughout their entire study area. An examination of 

the underlying layers that were used to derive our finer-scale resilience index (i.e. 

landform variety, elevation range, wetland density, and road density) revealed that the 

far-above and very-far-above average scores which occur on existing protected lands 

largely result from the low road densities that characterize these areas. This is not 

surprising, as securing land from development tends to maintain or even improve 

landscape permeability (Anderson et al., 2012). Protected lands also tend to be 

characterized by above average wetland density scores due to the recognized ecological 

importance of these areas as well as the difficulties and expenses associated with 

infrastructure development and silviculture harvesting on water-logged soils (Beazley, 

personal comm.).  

 

According to our analysis and that of Anderson et al. (2012), the highest landscape 

resilience scores in Nova Scotia are found within and adjacent to protected conservation 

land in the northern part of Cape Breton Island: Cape Breton Highlands National Park, 

Polletts Cove—Aspy Fault Wilderness Area, and the French River Wilderness Area 

(Figure 4.4b). Indeed, of the 1% of Nova Scotia land that contains highly resilient Olive-

sided Flycatcher habitat, approximately 63% is found in northern Cape Breton Island 

(Figures 4.5b, 4.6a, and 4.6b). The fact that these areas received higher resilience scores 

than protected land in other parts of Nova Scotia can primarily be explained by the larger 

elevation ranges that distinguish Cape Breton Island from the rest of the province. 

Mountains, such as those found in the Cape Breton highlands, support over 25% of 
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terrestrial biodiversity worldwide and often contain patchy habitat and steep climatic 

gradients. Indeed, the high topographic and elevation diversity that characterizes Cape 

Breton (and regions like it) serves to parse regional climate patterns into variable local-

scale microclimates, providing species with numerous opportunities to move as climate 

changes (Dobrowski et al., 2012). Protecting areas with large elevation ranges makes 

strong pragmatic sense as well, as such areas are more expensive to develop and are not 

conducive to road construction, silviculture harvesting, and other resource extraction 

applications (Beazley, pers. comm.). 

 

Furthermore, in complex, mountainous landscapes, the phenomenon of cold air pooling is 

common and widespread (Dobrowski et al., 2012), whereby cold air pools in low 

topographic positions. (Note that the Maxent model presented in chapter 3 indicated that 

Olive-sided Flycatchers tend to occur in valleys or along slope bottoms). Cold air pooling 

can shelter affected areas from regional advective influences and lower minimum 

temperatures (which have increased almost twice as fast as maximum temperatures over 

the past century; IPCC, 2007). These effects act to decouple the local in situ climate from 

the regional climate, thereby providing a buffer against climate change and making low 

topographic positions in complex landscapes particularly probable candidates for the 

persistence of refugia (Dobrowski et al., 2012).  

 

4.4.2. Implications for Olive-sided Flycatcher conservation 

planning 

 

Areas of Olive-sided Flycatcher habitat that are currently suitable, highly resilient, and 

also predicted to overlap future range boundaries comprise key conservation areas for this 

species in a context of climate change. These climate refugia should help support refugial 

populations that have the potential to expand and colonize newly formed habitat patches 

should climatic conditions once again become suitable (Keppel et al., 2015). Indeed, this 

process is predicted to have occurred at the end of the last ice age, and has been proposed 

as a partial explanation as to why so few extinctions occurred during the most recent 

historical period of rapid climate change (Keppel et al., 2012; Gill et al., 2015). Such 
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areas can also enhance functional connectivity by providing ‘stepping-stone habitat’ at 

the continental scale, which should facilitate spatial movements.  

 

Based on this rationale, we recommend that the areas of Nova Scotia which were found 

to meet all conservation criteria (i.e. suitable, resilient, and part of both the current and 

future Olive-sided Flycatcher range) be targeted as conservation priorities. Specifically, 

we recommend targeting the following areas as core Olive-sided Flycatcher habitat: (i) 

the highly resilient Olive-sided Flycatcher patch that connects Cape Breton Highlands 

National Park with the Jim Campbells Barren Wilderness Area, (ii) the highly resilient 

Olive-sided Flycatcher patch that occurs to the southeast of the French River Wilderness 

Area, and (iii) the land that lies south of the central-southern border of Cape Breton 

Highlands National Park and includes the 2 small, highly resilient Olive-sided Flycatcher 

patches (Figure 4.9). All priority areas occur within the 2000, 2020 & 2050 Olive-sided 

Flycatcher range boundaries predicted under all emission scenarios, and the area to the 

south of the central-southern border of Cape Breton Highlands National Park is also 

spatially coincident with the 2080 Olive-sided Flycatcher range boundary predicted under 

emissions scenario B2 (National Audubon Society, 2014). Note that, because these areas 

were characterized by high landscape resilience scores, protecting them should benefit 

not just Olive-sided Flycatchers but other endemic species as well. 

 

4.4.3 Potential importance of resilient areas outside of predicted 

future range boundaries 

 

The stability (i.e. buffering capacity) of a refugial site is dependent on a variety of 

factors, including local climate (Keppel et al., 2015). While resilient habitat that exists 

outside of future range boundaries are not likely to persist as long as resilient habitat 

within future range boundaries, such areas are nonetheless likely to serve as refugia over 

the shorter term. Shorter-term refugia are important to conservation. Firstly, such areas 

enhance functional connectivity by providing ‘stepping-stone habitat’ at the continental 

scale, which can help facilitate spatial movements from southern to northern latitudes and 

help provide connectivity across time as climate conditions change. 
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Note that, for our specific species in our specific study area, additional “stepping-stone” 

habitat may not be required, as species with long dispersal distances do not typically 

depend on intermediate stepping stones to reach other core areas (Saura and Rubio, 2010; 

Gil-Tena et al., 2012). Although the maximum dispersal distance travelled by Olive-sided 

Flycatchers is not known (Altman and Sallabanks, 2012), the bird’s status as a 

neotropical migrant with a large territory size suggests that it is likely to be substantial 

(Paradis et al., 1998). Therefore, we suspect that preserving stepping-stone patches is less 

critical to Olive-sided Flycatcher conservation in a study area the size of Nova Scotia. 

Furthermore, given that most of the existing protected areas on the Nova Scotia mainland 

already contain resilient Olive-sided Flycatcher habitat (Figure 4.6), investing funds to 

maintain additional “stepping-stone” patches may not represent the most efficient use of 

limited financial resources. 

 

Nonetheless, landscape connectivity is a species specific phenomenon, wherein the same 

landscape can be perceived as connected or disconnected by different species with 

different life history traits (Rubio & Saura, 2012). Even within future range boundaries, 

the effectiveness of refugial habitat largely depends on accessibility (Keppel et al., 2015). 

Therefore, while functional connectivity for the Olive-sided Flycatcher may not require 

that smaller patches of evenly distributed residual habitat remain well distributed along 

the entire north-south plane of the province, other species do undoubtedly need such 

areas to successfully reach and colonize more northerly habitat. For example, in a study 

by Saura et al. (2014), stepping-stone habitat greatly increased the maximum distance 

that an endangered bird species in Spain was able to traverse in colonizing a new area, 

provided that the patches of stepping-stone habitat were of sufficient quality and size. 

Indeed, for species with poorer dispersal abilities, resilient stepping-stone patches (or 

continuous corridors) are likely to be essential in facilitating migration across highly 

fragmented landscapes (Saura et al., 2014) and therefore in promoting their long-term 

persistence. 
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Secondly, while numerous large areas of resilient Olive-sided Flycatcher habitat fell 

within both current and future range boundaries in Nova Scotia, this will not be the case 

for all species in all study areas. In instances where (1) the amount and/or spatial 

configuration of habitat patches which meet all 4 conservation criteria are insufficient to 

meet species’ survival and movement requirements or (2) if other stakeholder concerns 

make the conservation of highest priority areas impossible, resilient patches outside of 

predicted range shift boundaries should also be considered as potential core habitat areas. 

 

4.4.4. Advantages of proposed approach 

 

A key advantage of the refugia delineation method introduced in this chapter is that it 

reduces the uncertainty associated with single-species conservation planning in an era of 

climate-change. By prioritizing patches that have been identified as suitable by multiple 

models under multiple definitions of resilience, the likelihood that protected core areas 

will retain suitable habitat for the target species amidst long-term climate change 

increases. For example, Austin & Van Niel (2011) found that SDMs which had been 

generated using climate covariates alone were often unable to identify potential refugia 

and tended to under-predict the amount of suitable future habitat. Moreover, in both that 

study and another by Luoto & Heikkinen (2008), models generated using both climate 

and topographic covariates were found to be more reliable and have greater explanatory 

power than models generated using climatic covariates alone. Furthermore, due to 

inevitable deficiencies in GIS data and the increasing complexity of modeling methods, 

both SDMs and range shift models tend to suffer from uncertainty and error, and these 

issues can be severe in some cases (Hunter & Goodchild, 1997; Yackulic et al., 2013; 

Stralberg et al., 2015). Indeed, there are often discrepancies in habitat areas predicted by 

models that have been conceptualized or parameterized differently.  

 

In the current study, most of the highly resilient Olive-sided Flycatcher patches that we 

delineated on the Nova Scotia mainland fell outside the range boundaries predicted by the 

National Audubon Society (for all years); however, many (349 out of 581) Olive-sided 

Flycatcher observation points contained in the ACCDC dataset also fell outside predicted 
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range boundaries for all years (including the years 2000 and 2020, the interval in which 

bird observations were made). We suspect that these errors are related to the coarse 

resolution of the Audubon models and the fact that these models only included climatic 

covariates; they did not consider covariates related to habitat and resource availability. It 

is therefore plausible to expect that, due to their high landscape resilience scores, some 

patches which were identified by our model but fell outside range boundaries predicted 

by Audubon could nonetheless remain suitable over the long-term. However, due to their 

smaller size, these highly resilient patches are likely only relevant when a finer resolution 

is considered than the 10 km cells employed by Audubon. Nonetheless, by combining 

results from multiple models that employed different definitions of future habitat 

suitability (i.e. based on range shift modeling and climate resilience, respectively), 

different scales, and different parameters, we were able to identify resilient Olive-sided 

Flycatcher habitat common to both current and future climate contexts, thereby reducing 

uncertainty and representing a more reliable conservation bet than habitat patches 

highlighted by a single model. 

 

A second key advantage of our proposed method is that, by integrating fine-filter 

approaches to single-species conservation planning with the coarse-filter CNS approach 

of Anderson et al. (2012), the prioritized areas should help create opportunities for not 

only the target species, but for other taxa as well. Therefore, our approach allows 

conservationists to target individual at-risk species while hedging conservation bets in an 

uncertain future characterized by climate change. For example, even if the areas of Cape 

Breton that we proposed for protection (Figure 4.9) do not end up being suitable for the 

Olive-sided Flycatcher in 2050 and/or 2080, the high landscape resilience scores these 

areas received suggest that they can still contribute to the maintenance of overall 

biodiversity in Nova Scotia. 

 

Thirdly, most of the resilient areas identified in this study and in that of Anderson et al. 

(2012) occur within or adjacent to existing protected areas (Figure 4.4). As land that has 

been secured against development tends to be characterized by good permeability and 

high complexity (Anderson et al. 2012), we expect that this trend will be present in other 
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parts of the world as well. Moreover, several of the characteristics which confer good 

climate resilience (i.e. large elevation range, high wetland density) naturally discourage 

development and resource extraction, as logging, mining, and erecting human 

infrastructure tends to be more challenging on steep slopes and in waterlogged areas. 

Therefore, our proposed strategy should provide a relatively low-cost way to complement 

or justify existing conservation plans and can also help inform regional-scale connectivity 

planning by identifying important areas which (1) expand the spatial extent of currently 

protected land or (2) link multiple protected lands. 

 

4.5. Limitations 

 

As noted in chapter 3, some of the environmental data layers used to train our Olive-sided 

Flycatcher SDM contained errors. Although we took steps to minimize these errors, they 

could not be completely eliminated, which may have reduced the spatial accuracy of the 

Olive-sided Flycatcher patches that were delineated in the current work. Furthermore, the 

landscape resilience layer that was created for this study may have been similarly 

affected by errors in the Nova Scotia wetland inventory (Westwood et al., 2015). 

Nonetheless, nearly all spatial datasets suffer from some level of uncertainty or error 

(Chrisman, 1991), and by combining results of multiple modeling techniques, our refugia 

delineation strategy seeks to hedge against these inaccuracies. 

 

In addition, while theoretical and historical evidence exists to support the utility of our 

proposed approach to conservation planning in an era of climate change, currently, 

empirical evidence does not. As noted by Beier et al. (2015), rigorously testing climate 

change adaptation strategies such as ours could require 50 to 100 years of repeated field 

observations, which is too slow and risky to be considered feasible. However, this 

research gap is not limited to the work presented here. Indeed, studies on climate change 

and biodiversity have thus far tended to be strongly focused around impact and 

vulnerability assessments, while investigations pertaining to the utility and feasibility of 

adaptation strategies have been minimal. Like Beier et al. (2015), we suggest that climate 

change research which compares and evaluates alternative adaptation strategies (e.g. in 
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terms of cost, practicality, theoretical underpinnings, and likely outcomes) should greatly 

benefit the field of conservation planning. 

 

4.6. Conclusions 

 

Habitat loss and climate driven range shifts have precipitated a mass-extinction on a 

global scale. As human population growth and infrastructure development continues to 

exert pressure on remaining natural landscapes, more effective approaches to 

conservation planning and the delineation of conservation areas will be needed. Our 

proposed strategy leverages strengths of both fine- and coarse-filter techniques to identify 

climate refugia and promote connectivity over space and time while minimizing 

uncertainty and meeting multiple conservation goals. We posit that the areas identified 

through our strategy should support the maintenance of biodiversity in general while also 

promoting the persistence of species, in this case Olive-sided Flycatcher, that may not be 

adequately protected when a coarse-filter approach alone is used. However, we also 

recognize that, given the complex nature of both climate change and ecological systems, 

diverse and flexible conservation planning strategies are needed. Therefore, our proposed 

strategy is intended to reduce risk and uncertainty, and to complement, not replace, 

existing conservation planning techniques in a context of climate change.
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4.7 Tables and figures 

 

Table 4.1 Description of emissions scenarios (created by the Intergovernmental  

  Panel on Climate Change; IPCC) that were adopted by the National  

  Audubon Society in generating range shift predictions for North American 

  birds. Descriptions were obtained from IPCC (2001). 

 
IPCC Climate Change 

Scenario 

Description 

A1B World characterized by rapid economic growth, 

increasingly efficient technologies that include both 

fossil and non-fossil based-energy sources, and a 

global population that peaks around 2050. 

A2 Heterogenous world characterized by increased self-

reliance, the preservation of local identities, regionally 

oriented economic development, slower technological 

change, and a continually increasing global population. 

B2 World that emphasizes local solutions to economic, 

social, and environmental sustainability and is 

characterized by intermediate economic development, 

technological change that is less rapid but more diverse 

than that of scenario A1, and a global population that 

is continually increasing, albeit at a slower rate than 

that of scenario A2 

 
Table 4.2 Number and average size of resilient Olive-sided Flycatcher patches in 

various parts of Nova Scotia. 

 
Categorization of resilient Olive-

sided Flycatcher patch 

Number of resilient 

patches 

Average patch size 

(ha) +/- STD 

All resilient patches 586 92.0 +/- 368.5  

Resilient patches, Cape Breton only 253 134.2 +/- 546.7 

Resilient patches, mainland only 332 60.0 +/- 97.7 

Resilient patches within all protected 

areas of Nova Scotia 

211 166.0 +/- 601.4 

Resilient patches outside all protected 

areas of Nova Scotia 

375 50.3 +/- 62.1 

Resilient patches in protected areas of 

Cape Breton only 

126 212.3 +/- 762.0 

Resilient patches outside protected 

areas of Cape Breton only 

127 56.6 +/- 85.5 

Resilient patches in protected areas of 

the mainland 

85 97.4 +/- 171.4 

Resilient patches outside protected 

areas of the mainland 

247 47.1 +/- 45.5 
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Figure 4.1 Landforms in Nova Scotia, delineated using methods from Anderson et al. 

(2012). Note that lakes are shown on this map for illustrative purposes 

only; they were not included in the landscape complexity analysis. 
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Figure 4.2: Landscape permeability defined according to (A) provincial road density 

and (B) an analysis of local connectedness by Anderson et al. (2012). 
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Figure 4.3: Landscape resilience analyses (A) conducted for the current study at a 

provincial (finer) scale and (B) conducted by Anderson et al. (2012) at a 

regional (coarser) scale. 
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Figure 4.4: Areas in (A) Nova Scotia and (B) Cape Breton that received landscape 

resilience scores which were far above average (1-2 STD) or very far 

above average (>2 STD) in the provincial-scale resilience analysis. 
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Figure 4.5: (A) Olive-sided Flycatcher patches delineated using a Maxent model 

(see chapter 3) and the equal sensitivity and specificity threshold; (B) 

Olive-sided Flycatcher patches by mean landscape resilience class. 
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Figure 4.6: Olive-sided Flycatcher patches with landscape resilience scores that are 

above average (0.5-1STD), far above average (1-2 STD) or very far 

above average (>2 STD) in (A) Nova Scotia and (B) Cape Breton, in 

relation to boundaries of existing protected areas. Note that only those 

patches which with far above or very far above average resilience scores 

were considered in the delineation of high priority core Olive-sided 

Flycatcher habitat  
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Figure 4.7: Olive-sided Flycatcher range boundaries predicted by National Audubon 

Society models (2014) for (A) 2000 (created using climate data for the 

years 1999-2008); (B) 2020 under all emissions scenarios (i.e. common 

to all emissions scenarios); (C) 2050 under all emissions scenarios; and 

(D) 2080 under emissions scenario B2. (The other 2 scenarios indicate 

that there will be no climatically suitable areas remaining for the Olive-

sided Flycatcher in Nova Scotia.)  
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Figure 4.8: Highly resilient Olive-sided Flycatcher patches overlain 

onto predicted range shift boundaries for 2050 (under 

all emissions scenarios) and 2080 (under emissions 

scenario B2) (National Audubon Society, 2014). 
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Figure 4.9: Priority conservation areas of core Olive-side Flycatcher 

habitat in Cape Breton.  
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 CHAPTER 5: CONCLUSION 

 

Habitat is being lost and fragmented at higher rates than ever before, which is driving 

mass extinction on a global scale. Indeed, since the dawn of the agricultural era, more 

than one third of the world’s natural forest cover has been lost, and only 23% of what 

remains can be considered intact (i.e. minimum area of 500 km2 and not near human 

activity) (Potapov et al., 2008; Haddad et al., 2015). Rates of fragmentation are expected 

to further accelerate as human population growth places increasingly greater demands on 

land-use and natural systems (Crooks et al., 2011). The United Nations predicts that the 

global human population will reach 9.7 billion in the year 2050 and 11.2 billion in the 

year 2100 (United Nations Department of Economic and Social Affairs, 2015).  

 

The challenges of maintaining biodiversity in the face of habitat fragmentation and loss 

are further compounded by climate change. Changes in temperature and precipitation 

regimes cause concomitant changes in the structure and function of ecosystems, thereby 

placing many species at greater risk of extinction (IPCC, 2007a). Over the past few 

decades, unequivocal warming has been observed (IPCC, 2007b), and the 

Intergovernmental Panel on Climate Change (IPCC) predicts that the average global 

temperature will increase by an additional 1.4 – 5.8°C between 2000 and 2100 (2007a). 

In Nova Scotia, temperature is predicted to increase by 3.5°C between 1980 and 2080 

(Province of Nova Scotia, 2014).  

 

Although the earth experienced rapid warming in the past, such as at the start of the 

Holocene period (11,700 years ago), the number of extinctions associated with those 

events is believed to have been minimal (Gill et al., 2015), partly because the pre-human 

landscape exhibited high connectivity, which made it possible for species to track shifting 

climate envelopes (Prentice et al., 1991). This is in stark contrast with the modern 

landscape; therefore, identifying, protecting, and connecting the areas which confer the 

greatest benefits to biodiversity is critically important to attenuating species loss. 

However, what constitutes optimal conservation land is not always obvious and can vary 

according to conservation goals, target species, stakeholder priorities, and planning 
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strategies (Beier et al., 2011). Furthermore, when predictive modeling is used to inform 

conservation planning (i.e. by elucidating future range shifts of species), applying 

different parameter settings can affect model results, increasing uncertainty and causing 

competing areas to be identified as top conservation priorities (Elith et al., 2011).  

 

5.1. Revisiting research goals and objectives 

 

In this thesis, I sought to improve and refine single species approaches to core area 

delineation and landscape-scale conservation planning in an era of climate change. To 

achieve this objective, I performed numerous modeling and conservation planning studies 

with the specific goals of (1) reducing the uncertainty associated with presence-only 

species distribution modeling, both in terms of parameterization choices (chapter 2) and 

predictions of future habitat (chapter 3), thereby improving the reliability of model 

results; and (2) reducing the risk and uncertainty associated with the implementation of 

species distribution model (SDM) results (i.e. habitat maps) in real-world conservation 

plans (chapter 4).  

 

The 3 research studies each investigated specific research questions. Chapter 2 addressed 

the uncertainty associated with sample bias and choice of training covariates in maximum 

entropy (Maxent) modeling, the most popular presence-only species distribution 

modeling algorithm. Chapter 3 investigated whether resilient topographic features that 

have been applied in coarse-filter conservation can also be useful in predicting individual 

species habitat. In chapter 4, a novel single-species conservation strategy was developed 

that can also benefit coarse-filter conservation goals given the challenges of climate 

change. 

 

The modeling and conservation planning studies presented in chapters 2 through 4 

targeted 3 vulnerable migratory forest landbirds: the Rusty Blackbird (Euphagus 

carolinus), the Olive-sided Flycatcher (Contopus cooperi), and the Canada Warbler 

(Wilsonia canadensis). Therefore, a secondary thesis objective was to contribute 

information for conservation planning for these birds in Nova Scotia. 
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5.2. Practical and theoretical contributions in support of 

research goals 

 

In working towards thesis goals and objectives, the research performed herein made 

contributions with both practical and theoretical relevance to multiple disciplines. The 

nature and relevance of these contributions are described in relation to (1) 

methodological practices in presence-only species distribution modeling, (2) species 

distribution modeling strategies in an era of uncertain climate change, (3) Rusty 

Blackbird, Olive-sided Flycatcher, and Canada Warbler core area delineation and 

conservation in Nova Scotia, and (4) conservation planning in an era of climate 

change. 

 

5.2.1. Methodological contributions towards the refinement of 

best practices in presence-only species distribution 

modeling 

 

Species distribution modeling has become increasingly important in supporting a wide 

range of conservation applications, including reserve design, protected area delineation, 

and range shift prediction under varying climate change scenarios (Franklin, 2009). 

However, when absence data (i.e. geographic coordinates delineating locations where the 

species has been observed not to be found) are lacking, as is the case for many rare and 

cryptic species, “presence-only” modeling algorithms must be used (Elith et al., 2011). 

Unfortunately, the credibility of results generated by presence-only models has often 

been called into question, partly because the application of these models has rapidly 

outpaced requisite methodological refinements to guide their use (Merow et al., 2013; 

Yackulic et al., 2013). In this thesis, I joined the ongoing discussion about what 

constitutes “best practices” for Maxent, the most popular presence-only SDM, by 

investigating one of the most commonly cited methodological concerns in presence-only 
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modeling: how to best address sample bias in species occurrence datasets (e.g. Kramer-

Schadt et al., 2013; Yackulic et al., 2013; Boria et al., 2014).  

 

By conducting comparative analyses using both real and virtual species data, I 

demonstrated that spatially filtering presence points prior to reverse stepwise elimination 

consistently resulted in the production of Maxent models with greater parsimony and 

ecological realism. (In other words, spatially filtering presence points resulted in the 

selection of fewer covariates compared to when unfiltered datasets were used.)  I also 

determined that (1) none of the bias correction strategies considered (i.e. spatial filtering, 

background manipulation based on the distribution of the species of interest alone, 

background manipulation based on the distribution of a target group of species, and a 

combination of spatial filtering and background manipulation) was particularly or 

universally superior at correcting prediction errors or improving quantitative metrics; and 

(2) mapped predictions were much more sensitive to changes in the subset of 

environmental covariates used to train the model than to bias correction strategy. 

 

There is no reason to expect that the use of presence-only SDMs in conservation will 

decline any time soon. Therefore, developing a set of more standardized methodologies 

that can reliably generate trustworthy results has become an active and critical area of 

study (Rodasavlijevic & Anderson, 2013; Crist et al., 2014; Morales et al., 2017). 

Findings of the comparative analysis performed in chapter 2 of this thesis help fill 

important research gaps by providing practical and easily applicable suggestions to 

researchers and conservation practitioners who employ Maxent in their work.  

 

5.2.2. Conceptual contributions towards species distribution 

modeling in an era of uncertain climate change 

 

In developing landbird SDMs, a reverse stepwise elimination process revealed that 

abiotic, topo-level, topographic features (which have shown utility in coarse-filter 

conservation plans) can be used alongside biotic, micro-level, floristic features to produce 

credible fine-filter SDMs. The predictive power of topography can likely be explained by 
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its role in helping to regulate local micro-climates and in controlling nutrient and 

moisture accumulation (Mackay and Lindenmayer, 2001; Anderson et al., 2012). 

Previous researchers have tended to frown upon the inclusion of abiotic features in 

models, only using them as surrogates when mapped data delineating the spatial 

distribution of biotic features were unavailable (Beier et al., 2015). However, I found 

that, not only were both biotic micro-level features and abiotic topo-level features 

important to the landscape-scale distribution of breeding habitat for the Rusty Blackbird, 

Olive-sided Flycatcher, and Canada Warbler, most of the selected topographic covariates 

showed strong predictive power as well. Indeed, in many cases, topographic covariates 

were better predictors than biotic ones. While specific habitat preferences can vary 

greatly among different species and even geographic regions (Laurent et al., 2010), the 

theoretical rationale underlying my inclusion of abiotic topography should be broadly 

applicable. Namely, in considering topographic features, I assumed they: (1) have the 

ability to promote ‘ecological memory’ (Holling, 1992), whereby ecosystems retain 

similar structures and functions following disturbance (Holling, 1992; Larkin et al., 2006) 

and (2) will generally not be affected by changing temperature and precipitation regimes 

(Anderson et al., 2012). Therefore, topographic features should comprise more reliable 

targets for conservation planning in an era of climate change compared to other 

commonly used targets (i.e. areas predicted to be suitable according to future climate 

models, which can be notoriously uncertain; Murphy et al., 2004; Stralberg et al., 2015). 

Topographic features offer pragmatic benefits to modelers as well, as topographic data 

tends to be more readily mapped and thus more readily available than biotic data (Barry 

& Elith, 2006). Moreover, as topography tends to change much more slowly than biotic 

data, such as forest characteristics, topographic data tends to remain more accurate and 

reliable over a longer period. 

 

 

The theoretical (e.g., Holling, 1986; Hunter et al., 1988) and modeled evidence cited in 

chapters 3 and 4 also leads me to posit that, when developing an SDM, complementing 

biotic micro-level covariates with abiotic topo-level ones may help in the delineation of 

habitat patches that are not only suitable currently, but are more likely to remain suitable 
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over the long-term as climate changes and other disturbances occur. Although the validity 

of including topographic features in SDMs will need to be further confirmed through 

field investigations and research involving other species, findings presented both here and 

in previous research (e.g. Holling, 1992; Dobrowski, 2010; Gill et al., 2015) suggest that 

the ability of a properly chosen combination of topo-level (abiotic) and micro-level 

(biotic) covariates to predict more climatically resilient habitat is at least worthy of 

further investigation. 

 

5.2.3. Practical contributions towards Rusty Blackbird, Olive-

sided Flycatcher, and Canada Warbler core area delineation 

and conservation in Nova Scotia 

 

The Rusty blackbird, Olive-sided Flycatcher, and Canada warbler have all suffered steep 

population declines in recent decades and are designated as at-risk by both federal and 

provincial governments (Environment Canada, 2014). For this thesis, I used covariates 

(selected through a reverse stepwise elimination process) representing (1) biotic, micro-

level features related to forest characteristics and (2) abiotic, topo-level features related to 

regional topography to develop landscape-scale SDMs which predict the distribution of 

suitable bird breeding habitat in the province of Nova Scotia, Canada. By including topo-

level covariates in model development, I sought to produce mapped outputs which 

delineate key areas of climate-resilient habitat that can be targeted for protection, 

restoration or compatible mixed-use forest management, thereby contributing to the 

provincial conservation of these birds. For the Olive-sided Flycatcher, I took this analysis 

a step further, prioritizing suitable habitat according to landscape resilience score (using 

methods adapted from Anderson et al. (2012)). 

  

The SDMs developed in chapter 3 also revealed landscape-scale ecological associations 

that exist between the landbirds of interest and key topographic and forest features at the 

eastern-most extent of current breeding habitat. These findings should contribute to a 

more comprehensive understanding of landscape-scale habitat selection strategies 

exhibited by the Rusty Blackbird, Olive-sided Flycatcher, and Canada Warbler across the 
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full extent of their range, knowledge of which has previously been lacking (but see 

Westwood, 2015). In particular, the SDM results presented in this thesis highlight the 

importance of topographic features that help regulate local hydrologic conditions to bird 

distributions. 

 

5.2.4. Conceptual contributions towards conservation planning in 

an era of climate change 

 

Although SDMs are important fine-filter conservation tools, conserving biodiversity one 

species at a time is not practical or even possible. Conversely, coarse-filter strategies that 

target a wider range of taxa are likely to miss certain unique, rare, or sensitive species 

that need conservation attention the most (Noss, 1987; Darwall et al. 2011; Jenkins et al. 

2015; Runge et al. 2015). Therefore, the final contribution of this thesis was to propose a 

novel approach to conservation planning that (1) targets specific at-risk species, (2) 

simultaneously benefits coarse-filter conservation goals, and (3) increases the likelihood 

that the expenditure of limited conservation resources will be a worthwhile long-term 

investment. My proposed approach delineates high-value conservation habitat by 

combining elements of multiple modeling strategies (i.e. species distribution modeling, 

range shift modeling, and landscape resilience modeling) in a series of stages. The first 

stage is to overlay the results of multiple SDMs generated using different techniques and 

at different resolutions and different scales (e.g. a continental-scale range shift model 

trained using climatic covariates and a landscape-scale model trained using covariates 

that represent regional topography (topo-level covariates) and characteristics of forest 

habitat (micro-level covariates). Habitat patches identified as suitable by multiple models 

yield greater confidence that they are good choices for conservation areas. In this way, 

risks are minimized that limited conservation resources could be wasted protecting 

habitat that is (1) unsuitable for the target species (e.g. that was delineated using a poorly 

specified model) or (2) will only be suitable over the short term (e.g. due to climate-

driven changes to ecosystems). In the second stage, high priority areas of core habitat are 

identified according to landscape resilience score (determined using methods adapted 

from Anderson et al. (2012)), as theoretical evidence suggests that areas with high 
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resilience are more likely to remain suitable in the face of a changing climate are selected 

for conservation attention.  

 

Highly resilient areas are expected to serve as climate refugia and/or improve 

connectivity between lower and higher latitudes, thereby facilitating range shifts as 

climate changes (Dobrowski, 2010; Morelli et al., 2016). Therefore, although the 

prioritized areas should be especially valuable to the species of interest, they should also 

increase the overall resilience of the entire landscape, thereby benefitting a broader range 

of species as well.  

 

5.3. Limitations and directions for future research 

 

The SDM results presented in chapter 3 suggest that certain topographic features have a 

strong ability to predict the occurrence of certain migratory forest landbirds at the 

landscape-scale. As landscape-scale topography helps to regulate local micro-climates, 

nutrient accumulation, and moisture accumulation (Mackay and Lindenmayer, 2001; 

Anderson et al., 2012), and as species-specific physiological constraints are often related 

to temperature, moisture, and nutrient regimes (Diez and Pulliam, 2007), I suspect that 

topography should prove useful in predicting the occurrence of at-least some other taxa 

as well. However, species with different habitat preferences and life histories will likely 

exhibit different relationships with different topographic features and, for some species, 

no topo-level feature may prove overly useful. For example, in this thesis, topographic 

features that help regulate local hydrologic conditions were found to be important to 

Olive-sided Flycatcher occurrence and very important to Rusty blackbird and Canada 

Warbler occurrence. However, these species have all shown strong associations with wet 

habitat in the eastern part of their range. For taxa that do not prefer wet habitat, features 

that represent topographic control over hydrology may be less useful. In addition, for 

species that show different habitat preferences across their range, as do the forest 

landbirds considered in this thesis, the importance of specific topo-level features may 

even vary across study areas.  
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Future research could nonetheless benefit conservation by working to better elucidate 

general correlations between various types of topographic features and specific species 

groups (e.g. classified according to habitat preferences or evolutionary relationships). 

Nonetheless, as shown in chapter 2 of this thesis and elsewhere (e.g. Synes and Osborne, 

2011), mapped results of SDMs are highly sensitive to the environmental covariates used 

to train them, wherein including inappropriate covariates can lead to a poorly specified 

model. Furthermore, when data limitations require that presence-only datasets be used, 

modelers should be aware that sample bias in occurrence data can cause spurious 

correlations to be erroneously identified. Therefore, I caution that modelers should take 

extra care to ensure that the topographic covariates used to train SDMs are at the very 

least grounded in ecological theory, and ideally field tested. If possible, confirming the 

utility of covariates through statistical testing can further increase the robustness and 

reliability of model results. 

 

While there is considerable theoretical, paleoecological, and modeled evidence to support 

the use of abiotic, topo-level features in the delineation of climate resilient habitat, 

empirical data that confirms the ability of abiotic features to delineate climate-resilient 

habitat is severely lacking. Indeed, as noted by Beier et al. (2015), thus far, most research 

that has investigated associations between biodiversity and climate change has focused 

on impact and vulnerability assessments. Indeed, in research published in both academic 

literature and technical reports by governments and environmental NGOs, very little 

attention has been paid to developing and evaluating adaptation strategies. This is at least 

partly due to practical reasons, as rigorous empirical studies would require that species 

responses to adaptive measures be monitored for 50-100 years (Beier et al., 2015). 

Nonetheless, as climate change adaptation strategies cannot be implemented without the 

expenditure of limited conservation resources, greater justification is needed when 

selecting the most appropriate strategy to use. Shorter-term empirical studies may not be 

conclusive on their own, but can none-the-less provide useful data that can inform the 

discussion about which mitigation strategies are potentially effective and which are not. 
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Similar to Beier et al. (2015), I posit that comparative studies which analyze the 

theoretical foundations, costs, risks, practicality, and likely benefits of competing 

adaptation strategies, including those based on the conservation of resilient topographic 

features, should not require a large commitment of time or financial resources and can 

therefore help to bridge an important research gap. If the approach to refugia delineation 

presented in chapter 4 were to be considered in such a comparative analysis, I suspect 

that the following characteristics would allow it to perform well relative to other 

strategies. First, it is a low-risk approach to fine-filter conservation. Even if priority areas 

fail to retain suitable habitat for the target species (i.e. due to erroneous SDM and/or 

range shift predictions), these areas should still benefit coarse-filter conservation goals 

because of the high landscape resilience scores that characterize them. Second, it is 

relatively low cost. In both my research and that of Anderson et al. (2012), the largest 

areas of contiguous and highly resilient habitat occurred within or adjacent to existing 

protected areas. Therefore, my proposed approach can also be used to help justify and 

extend existing conservation plans. Third, the approach is flexible and can be adapted 

according to data availability. For example, habitat patches can be delineated using many 

or few range shift models and/or landscape-scale SDMs. Alternatively, if researchers 

and/or managers are uncomfortable with the high degree of uncertainty that tends to 

characterize range shift predictions, range shift models can be foregone completely, and 

habitat patches can be delineated and prioritized according to landscape-based measures 

of climate-resilience alone. 

 

5.4. Concluding thoughts  

 

Climate change poses unique challenges to reserve delineation and conservation system 

design, as altered temperature and precipitation regimes cause areas of suitable habitat to 

shift in geographic space over time (Beier and Brost, 2009; Anderson & Ferree, 2010; 

Lawler et al., 2015). Thus far, most single-species (“fine-filter”) conservation planning 

strategies which have sought to account for these challenges have tended to rely on 

predictions of range shift models and global emissions scenarios, both of which are 

typically characterized by a high degree of uncertainty (Murphy et al., 2004; Stralberg et 
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al., 2015). Landscape-scale strategies which seek to circumvent the use of uncertain 

model predictions (e.g. by relying on topographic-based measures of climate resilience) 

have thus far been coarse-filter in nature. 

 

Together, the findings derived from each of the research studies performed for this thesis 

achieve the primary thesis objective: to improve and refine approaches used in single 

species (“fine-filter”) conservation planning so that they are better able to meet the 

challenges posed by climate change. In addition to providing parameterization guidance 

that can increase the reliability of Maxent model results (which are often used to help 

delineate conservation areas) and demonstrating the predictive power of topography in 

SDMs, I also attempted to improve the utility of conservation planning strategies that 

target specific at-risk species by combining uncertainty-reducing elements of the 

“Conserving Nature’s Stage” (CNS) (Anderson et al., 2012) strategy with results of 

multiple predictive models to delineate core areas of highly resilient habitat. While it is 

impossible to empirically gauge the effectiveness of my proposed approach (i.e. 

presented in chapter 4) in the absence of repeated, long-term field studies, theoretical and 

modelled evidence suggests that it has strong potential to identify those habitat patches 

which are likely to remain suitable for the longest periods of time. Indeed, an increasing 

number of research studies are recognizing both (1) the potential role of resilient refugial 

habitat in helping to maintain biodiversity in an era of climate change and (2) the ability 

of topographic features to promote resiliency (e.g. Luoto & Heikkinen, 2008; Austin & 

Van Neil, 2010; Keppel et al., 2015).  

 

When applied in tandem, the SDM and conservation planning strategies presented in this 

thesis constitute an integrated approach that can be used to increase the likelihood that 

individual at-risk species (which are likely to be missed by conservation planning 

strategies that target biodiversity more generally; e.g. Schloss et al., 2011) persist over 

the long-term as climate changes. Nonetheless, even as conservation planning techniques 

continue to advance, it is impossible to guarantee the indefinite persistence of all species. 

Despite this, with comprehensive scientific understanding about the challenges of habitat 

loss and climate change and sufficient political will to address them, the most severe 
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biodiversity losses can be avoided. It is my hope that the findings of this thesis research 

will be of tangible use to conservation researchers and planners as they attempt to stave 

off a worsening mass extinction and promote species recoveries in the Age of the 

Anthropocene. 
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APPENDIX A: SPEARMAN CORRELATION COEFFICIENTS OF 

COVARIATES CONSIDERED IN PRE-

MODELING TUNING EXPERIMENTS 
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Correlation co-efficients with a Spearman’s R value > 0.55 are highlighted in yellow. 

‘Suitable CAWA patch’ included polygons in the FID with a primary species 

classification of Red Maple, Red Spruce, Black Spruce, Balsam Fir, Red & Black Spruce, 

Eastern Cedar, Other Softwood, or Tolerant Hardwood. ‘Suitable RUBL patch’ included 

polygons in the FID that were classified as softwood and had an average height of <6m. 

‘Suitable RUBL wetland’ included polygons in the provincial wetland inventory with a 

primary vegetation code of low shrub, tall shrub, tree, or sphagnum.  
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APPENDIX B: CREATION OF GIS LAYERS USED IN 

RESEARCH CHAPTERS 

 
 

Topographic Position Index. A topographic position index (TPI) that distinguished 

among 5 topographic positions (valleys, low-slopes, mid-slopes, up-slopes, and ridges) 

was included as a candidate covariate in the development of Maxent models (chapters 2 

and 3) and was also used in the creation of the landscape complexity index (chapter 3) 

and the landscape resilience index (chapter 4). This TPI was created according to a 

methodology developed by Weiss (2001) and modified by Cooley (2014) and used the 20 

m provincial digital elevation model (DEM) (Nova Scotia Department of Natural 

Resources [NSDNR], 2006) as a base layer.  

 

In brief, to create the TPI, I ran the ‘Focal Statistics’ tool on the provincial DEM 3 times 

to generate layers delineating the minimum elevation (DEMmin), maximum elevation 

(DEMmax), and mean elevation (DEMmean), respectively, in a 420 m2 neighbourhood. A 

continuous TPI was then calculated by inputting the following equation into the ‘Raster 

Calculator’ tool: (DEMmean - DEMmin) / (DEMmax – DEMmin) 

 

Next, I increased the cell size of the continuous TPI from 20 m to 150 m (using the 

‘Resample’ tool) so that the resolution of the TPI was consistent with that of other 

environmental data layers. Finally, I used the ‘Reclassify’ tool to convert the continuous 

(150 m) index into a categorical one, For this, classes were defined according to standard 

deviation (STD), as follows: valleys (< -1 STD), low-slopes (-1 STD to -0.5 STD), mid-

slopes (-0.5 STD to 0.5 STD), up-slope (0.5 STD to 1 STD), and ridges (>1 STD). 

 

Depth to water-table index. A continuous index delineating the distance between the 

water-table and the soil surface was obtained from the Dalhousie University GIS Center, 

who in-turn received it from NSDNR (NSDNR, 2007a). (Note that this layer was 

originally created by researchers at the University of New Brunswick using a proprietary 

method (NSDNR, 2007b.) To ensure that the resolution of environmental data layers 
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remained consistent, I increased the cell size of the depth to water-table (D2W) index 

from 10 m to 150 m using the ‘Reclassify’ tool. The 150 m D2W index was included as a 

candidate covariate in the development of Maxent models in chapters 2 and 3. 

 

Solar insolation index. A solar insolation index was created using the provincial DEM 

(NSDNR, 2006) and included as a candidate covariate in Maxent models developed in 

chapter 2. To create this index, I first divided the DEM into 9 tiles (to increase 

computation efficiency) and ran the ‘Area Solar Radiation’ tool on each tile (with a 

multiday time configuration: days 105 – 288, to approximate the bird breeding season; all 

other parameters were left at default). The resultant output tiles were then combined into 

a single layer using the ‘Mosaic’ tool, and values were normalized between 0 and 1. The 

cell size of the final solar insolation index raster was increased from 20 m to 150 m to 

ensure that the resolutions of environmental data layers were consistent. 

 

Layers describing forest canopy characteristics. To create GIS layers describing the 

general characteristics of forest canopy, I converted the vector provincial forest inventory 

database (FID) (NSDNR, n.d.) into 2 raster files which defined 2nd story height and 

percent crown closure, respectively. For this, I used the ‘Polygon to Raster’ tool with the 

‘MAXIMUM AREA’ operator and an output cell size of 150 m. The resultant output 

layers (i.e. ‘2nd story height’ and ‘% crown closure’) were used as candidate covariates in 

the Maxent models developed in chapter 2). 

 

To create GIS layers which characterized forest canopy characteristics according to 

various statistical values, I again converted the provincial FID (NSDNR, n.d.) from a 

vector file into 2 raster files which defined 1st story height and percent crown closure, 

respectively, at a 10 m cell size. I then ran the ‘Focal Statistics’ tool 4 times to create 4 

layers delineating mean canopy height (‘1st story height MEAN’), mean canopy closure 

(‘% crown closure MEAN’), heterogeneity of canopy height (‘1st story height STD’), and 

heterogeneity of canopy closure (‘% crown closure STD’) in a 150 m2 area. The cell sizes 

of all layers output by the ‘Focal Statistics’ tool were increased to 150 m. The layers ‘1st 

story height MEAN’ and ‘% crown closure MEAN’ were included as candidate 
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covariates in the development of Maxent models in chapters 2 and 3; ‘1st story height 

STD’ and ‘% crown closure STD’ were only included as candidate covariates in the 

Maxent models developed in chapter 3. 

 

Distance-based layers. Multiple layers were created to delineate distance from various 

types of forest stands, anthropogenic disturbance sites, and waterbodies. To delineate 

distance from forest stand types and anthropogenic disturbances, I first created 7 vector 

layers by extracting polygons representing (1) coniferous stands, (2) deciduous stands, 

(3) all-height stands, (4) brushland, (5) stands with dead material, (6) clear-cut areas, and 

(7) agricultural areas, respectively, from the provincial FID. The ‘Euclidean Distance’ 

tool was then run on each of these polygon layers to generate raster files (with a cell size 

of 150 m) delineating ‘distance to coniferous stand’, ‘distance to deciduous stand’, 

‘distance to all-height stand’, ‘distance to brushland’, ‘distance to stand with dead 

material’, ‘distance to clear-cut’, and ‘distance to agriculture’, respectively. 

 

We also created 2 layers which delineated distance from waterbodies: ‘distance to 

wetland’ and ‘distance to river or lake’. To delineate distance from wetlands, we simply 

ran the ‘Euclidean Distance’ tool on all mapped wetlands contained in the provincial 

wetland inventory (NSDNR, n.d.), selecting 150 m as the output cell size. To delineate 

the distance to rivers and lakes, we converted 2 vector files (NSTDB, n.d.), respectively 

representing rivers and lakes, into 2 raster files and then merged them together. We 

subsequently ran the ‘Euclidean Distance’ tool on the merged raster file, again selecting 

an output cell size of 150 m. 

 

The layers ‘distance to coniferous stand’, ‘distance to deciduous stand’, ‘distance to all-

height stand’, ‘distance to stand with dead material’ were included as candidate 

covariates in the Maxent models developed in chapters 2 and 3. ‘Distance to wetland’ 

was included as a candidate covariate for the Maxent models developed in chapter 2 and 

also in the creation of the landscape complexity index (chapter 3) and the landscape 

resilience index (chapter 4). ‘Distance to brushland’, ‘distance to clear-cut’, and ‘distance 
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to agriculture’ were only included as candidate covariates in the Maxent models 

developed in chapter 2. 

 

Virtual species datasets with high- and low-roadside bias weightings. After synthesizing 

5000 virtual presence points (according to methods described in section 2.2.2), I created 5 

virtual species datasets with low roadside weight (LRW) and 5 virtual species datasets 

with high roadside weight (HRW). For this, I first calculated the distance of each virtual 

presence point to the nearest road contained in the ‘Roads and Rails’ network file 

(NSTDB, n.d.) using the ‘Near’ tool. Distance values were then normalized between 0 

and 1 and reversed (using the ‘Field Calculator’ tool) to generate road distance scores, 

wherein points near roads received a road distance score that was closer to 1 and points 

far from roads received a road distance score that was closer to 0. Road distance scores 

were stored in an attribute table field. Next, I again used the ‘Field Calculator’ to 

generate and assign a random number between 0 and 1 to each of the 5000 virtual 

presence points, and these numbers (i.e. random scores) were also stored in an attribute 

table field. Following this, I used the ‘Field Calculator’ a final time to assign “sampling 

scores” by multiplying road distance scores with random scores. Finally, to create an 

LRW virtual species dataset, I extracted the 25% of points with the highest sampling 

scores (i.e. 1250 points); to create an HRW virtual species dataset, I extracted the 5% of 

points with the highest sampling scores (i.e. 250 points). This process was repeated 5 

times in order to create 5 replicate LRW datasets and 5 replicate HRW datasets.
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APPENDIX C: RESULTS OF VIRTUAL SPECIES REVERSE 

STEPWISE ELIMINATION TRIALS (TRIAL 

SERIES 1)2 

LRW replicate dataset 1 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4036 0.7497 35392.44 Distance to all height stand 

Run 2 0.4036 0.7498 35392.33 Distance to stand with dead material 

Run 3 0.4021 0.7484 35385.33 Distance to waterbody 

Run 4 0.4016 0.7477 35388.1 Solar insolation 

Run 5 0.3881 0.7421 35368.75 2nd story height 

Run 6 0.3818 0.7401 35380.43 Distance to wetland 

Run 7 0.3813 0.7392 35366.6 D2W 

Run 8 0.3782 0.7354 35387.26 Distance to scrubland 

Run 9 0.3765 0.7337 35379.57 Distance to clear-cut 

Run 10 0.3791 0.7328 35383.11 TPI 

Run 11 0.3894 0.7339 35459.24 Distance to agriculture 

Run 12 0.4016 0.7266 35574.03 Distance to coniferous stand 

Run 13 0.346 0.7078 35719.32 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4056 0.7514 33861.07 Distance to all height stand 

Run 2 0.4056 0.7513 33852.05 Distance to waterbodies 

Run 3 0.4051 0.7506 33842.47 Solar insolation 

Run 4 0.4307 0.7449 33845.69 2nd story height 

Run 5 0.3864 0.7436 33845.46 D2W 

Run 6 0.3836 0.7398 33858.71 Distance to wetland 

Run 7 0.3827 0.7385 33864.26 Distance to stand with dead material 

Run 8 0.3799 0.7363 33849.92 Distance to scrubland 

Run 9 0.3773 0.7342 33842.57 Distance to clear-cut 

Run 10 0.3798 0.7334 33858.37 TPI 

Run 11 0.3902 0.7345 33922.68 Distance to coniferous stand 

Run 12 0.3597 0.7246 34046.75 Distance to agriculture 

Run 13 0.3469 0.708 34160.99 ** % crown closure 

 

 

  

                                                        
2 For all virtual species reverse stepwise elimination summaries, the final “best” model (as selected 

according to AICc score) as well as the covariates it contained are shown in italics. 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3722 0.7501 35398.15 Distance to all height stand 

Run 2 0.3721 0.75 35387.66 Distance to waterbody 

Run 3 0.3712 0.7489 35379.94 Solar insolation 

Run 4 0.3635 0.7427 35394.6 2nd story height 

Run 5 0.3693 0.745 35376.84 D2W 

Run 6 0.3792 0.7476 35376.65 Distance to stand with dead material 

Run 7 0.3786 0.7468 35377.19 Distance to wetland 

Run 8 0.3779 0.7462 35373.99 Distance to scrubland 

Run 9 0.3753 0.7426 35370.8 Distance to clear-cut 

Run 10 0.3707 0.739 35386.43 TPI 

Run 11 0.3371 0.7219 35476.61 Distance to agriculture 

Run 12 0.305 0.7006 35577 Distance to coniferous stand 

Run 13 0.2595 0.6801 35722.38 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3752 0.7511 33854 Distance to all height stand 

Run 2 0.3752 0.7512 33844.44 Distance to waterbody 

Run 3 0.3743 0.75 33841.46 Solar insolation 

Run 4 0.3668 0.7445 33840.77 2nd story height 

Run 5 0.3728 0.7466 33833.75 D2W 

Run 6 0.3824 0.7493 33845.24 Distance to wetland 

Run 7 0.3816 0.7482 33852.74 Distance to stand with dead material 

Run 8 0.3805 0.7474 33859.03 Distance to scrubland 

Run 9 0.3766 0.7432 33839.16 Distance to clear-cut 

Run 10 0.3721 0.7398 33855.98 TPI 

Run 11 0.3388 0.7232 33928.48 Distance to agriculture 

Run 12 0.3071 0.7015 34033.84 Distance to coniferous stand 

Run 13 0.262 0.6817 34167.52 ** % crown closure 
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LRW replicate dataset 2 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4277 0.7563 35220.38 Distance to all height stand 

Run 2 0.4276 0.7562 35217.32 Distance to composite wetland 

Run 3 0.4273 0.7553 35223.82 Distance to stand with dead material 

Run 4 0.4266 0.7547 35203.95 2nd story height 

Run 5 0.4143 0.7512 35197.58 Distance to fine-scale waterbody 

Run 6 0.4127 0.7502 35200.92 Depth to watertable 

Run 7 0.4192 0.7503 35195.58 Solar insolation 

Run 8 0.4037 0.7448 35200.66 Distance to scrubland 

Run 9 0.4021 0.7434 35189.07 Distance to clear-cut 

Run 10 0.4078 0.743 35191.14 TPI 

Run 11 0.4125 0.7422 35298.58 Distance to agriculture 

Run 12 0.4225 0.7374 35430.83 Distance to coniferous stand 

Run 13 0.3693 0.719 35567.33 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4245 0.7556 33807.65 Distance to wetland 

Run 2 0.4244 0.7551 33813.87 Distance to all height stand 

Run 3 0.4241 0.7546 33798.55 Distance to stand with dead material 

Run 4 0.4232 0.7538 33803.19 Distance to waterbody 

Run 5 0.4213 0.7528 33809.95 2nd story height 

Run 6 0.4092 0.7497 33806.94 Solar insolation 

Run 7 0.4039 0.747 33800.13 D2W 

Run 8 0.4002 0.744 33811.04 Distance to clear-cut 

Run 9 0.3987 0.7423 33801.55 Distance to scrubland 

Run 10 0.4046 0.7425 33801.01 TPI 

Run 11 0.4083 0.7417 33891.93 Distance to agriculture 

Run 12 0.4188 0.7379 34010.99 Distance to coniferous stand 

Run 13 0.3665 0.7201 34139.48 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3926 0.754 35220.38 Distance to wetland 

Run 2 0.3924 0.7538 35217.32 Distance to all height stand 

Run 3 0.3924 0.7535 35223.82 Solar insolation 

Run 4 0.3837 0.7494 35203.95 D2W 

Run 5 0.3905 0.751 35197.58 Distance to waterbody 

Run 6 0.3897 0.7506 35200.92 Distance to clear-cut 

Run 7 0.3886 0.7496 35195.58 2nd story height 

Run 8 0.4014 0.7538 35200.66 Distance to stand with dead material 

Run 9 0.4006 0.7525 35189.07 Distance to scrubland 

Run 10 0.3981 0.7504 35191.14 TPI 

Run 11 0.3543 0.7289 35298.58 Distance to agriculture 

Run 12 0.3172 0.7076 35430.83 Distance to coniferous stand 

Run 13 0.2738 0.6898 35567.33 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3906 0.7541 33834.22 Distance to wetland 

Run 2 0.3905 0.7539 33828.1 Distance to all height stand 

Run 3 0.3905 0.7535 33823.19 Distance to stand with dead material 

Run 4 0.3892 0.7521 33817.12 Solar insolation 

Run 5 0.3806 0.7486 33796.3 2nd story height 

Run 6 0.3854 0.7478 33788.47 Distance to waterbody 

Run 7 0.3845 0.7469 33814.17 D2W 

Run 8 0.4007 0.7531 33797.62 Distance to clear-cut 

Run 9 0.3988 0.7519 33788.22 Distance to scrubland 

Run 10 0.3964 0.7501 33787.01 TPI 

Run 11 0.3517 0.7288 33912.37 Distance to agriculture 

Run 12 0.3168 0.7093 34020.55 Distance to coniferous stand 

Run 13 0.2735 0.6918 34152.99 **Percent crown closure 
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LRW replicate dataset 3 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4148 0.7496 35172.63 Distance to all height stand 

Run 2 0.4148 0.7496 35165.31 Distance to stand with dead material 

Run 3 0.4141 0.7488 35152.66 Solar insolation 

Run 4 0.3985 0.742 35163.2 D2W 

Run 5 0.393 0.7401 35156.73 Distance to waterbody 

Run 6 0.3929 0.74 35157.3 2nd story height 

Run 7 0.3911 0.7379 35155.79 Distance to scrubland 

Run 8 0.3901 0.7367 35152.26 Distance to wetland 

Run 9 0.389 0.7347 35161.77 Distance to clear-cut 

Run 10 0.3933 0.7341 35176.78 TPI 

Run 11 0.4061 0.7408 35247.32 Distance to agriculture 

Run 12 0.4128 0.7348 35378.43 Distance to coniferous stand 

Run 13 0.3499 0.7144 35533.04 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4127 0.7484 33762.52 Distance to all height stand 

Run 2 0.4127 0.7485 33783.04 Distance to waterbody 

Run 3 0.4124 0.748 33758.5 2nd story height 

Run 4 0.404 0.748 33752.35 D2W 

Run 5 0.4072 0.7446 33769.7 Solar insolation 

Run 6 0.3913 0.7391 33761.44 Distance to scrubland 

Run 7 0.3902 0.7382 33760.79 Distance to stand with dead material 

Run 8 0.4157 0.736 33752.04 Distance to wetland 

Run 9 0.3865 0.7336 33753.02 Distance to clear-cut 

Run 10 0.3911 0.7331 33766.77 TPI 

Run 11 0.4275 0.7389 33830.84 Distance to agriculture 

Run 12 0.4108 0.7339 33949.15 Distance to coniferous stand 

Run 13 0.3485 0.7134 34101.43 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3774 0.745 35192.89 Distance to all height stand 

Run 2 0.3774 0.745 35193.33 Distance to scrubland 

Run 3 0.3768 0.7441 35187.11 Distance to waterbody 

Run 4 0.3765 0.7439 35186.46 Solar insolation 

Run 5 0.3688 0.7391 35167.3 D2W 

Run 6 0.3825 0.7457 35173.36 2nd story height 

Run 7 0.392 0.7478 35161.53 Distance to stand with dead material 

Run 8 0.3917 0.7475 35151.78 Distance to wetland 

Run 9 0.3893 0.7455 35161.65 Distance to clear-cut 

Run 10 0.3863 0.7426 35169.12 TPI 

Run 11 0.3478 0.7265 35255.41 Distance to agriculture 

Run 12 0.3121 0.7056 35372.76 Distance to coniferous stand 

Run 13 0.2615 0.686 35531.32 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3767 0.7447 33781.68 

Distance to waterbody & Distance to 

all height stand 

Run 2 n/a n/a n/a n/a 

Run 3 0.3764 0.7444 33775.22 2nd story height 

Run 4 0.3827 0.7449 33782.51 Solar insolation 

Run 5 0.3769 0.7426 33779.92 D2W 

Run 6 0.3918 0.7485 33751 Distance to stand with dead material 

Run 7 0.3914 0.748 33783.69 Distance to wetland 

Run 8 0.3885 0.7455 33766.35 Distance to scrubland 

Run 9 0.3872 0.7442 33747.42 Distance to clear-cut 

Run 10 0.3847 0.7417 33763.77 TPI 

Run 11 0.3464 0.7255 33835.86 Distance to agriculture 

Run 12 0.3131 0.7052 33946.16 Distance to coniferous stand 

Run 13 0.2626 0.6859 34096.93 ** % crown closure 
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LRW replicate dataset 4 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4174 0.7521 35356.99 2nd story height 

Run 2 0.4061 0.7487 35374.29 Distance to waterbody 

Run 3 0.4055 0.7483 35383.82 D2W 

Run 4 0.4088 0.7453 35364.03 Distance to scrubland 

Run 5 0.4085 0.7449 35348.74 Distance to clear-cut 

Run 6 0.4079 0.7444 35358.45 Distance to wetland 

Run 7 0.4074 0.7433 35345.78 Distance to all height stand 

Run 8 0.4066 0.7426 35346.36 Solar insolation 

Run 9 0.3926 0.7364 35345.13 Distance to stand with dead material 

Run 10 0.3976 0.7372 35335.38 TPI 

Run 11 0.4028 0.737 35424.84 Distance to agriculture 

Run 12 0.4183 0.7329 35531.39 Distance to coniferous stand 

Run 13 0.3629 0.7144 35669.18 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4133 0.7511 33619.85 Distance to clear-cut 

Run 2 0.4116 0.7497 33612.62 D2W 

Run 3 0.4049 0.745 33613.16 Distance to scrubland 

Run 4 0.4048 0.745 33600.66 2nd story height 

Run 5 0.4055 0.7439 33626.17 Solar insolation 

Run 6 0.3911 0.7387 33605.82 Distance to all height stand 

Run 7 0.3898 0.7378 33603.15 Distance to waterbody 

Run 8 0.389 0.737 33602.7 Distance to stand with dead material 

Run 9 0.3875 0.7359 33595.46 Distance to wetland 

Run 10 0.3929 0.7357 33594.19 TPI 

Run 11 0.3998 0.7355 33669.85 Distance to agriculture 

Run 12 0.414 0.7323 33773.95 Distance to coniferous stand 

Run 13 0.3571 0.7119 33902.68 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3959 0.7492 35346.32 Distance to all height stand 

Run 2 0.3957 0.7488 35275.12 Distance to scrubland 

Run 3 0.3955 0.7488 35265.14 D2W 

Run 4 0.4086 0.7505 35256.74 Distance to waterbody 

Run 5 0.4079 0.749 35242.88 Distance to wetland 

Run 6 0.407 0.7478 35223.4 2nd story height 

Run 7 0.3903 0.7408 35233.42 Solar insolation 

Run 8 0.3892 0.7411 35214.75 Distance to clear-cut 

Run 9 0.3886 0.7406 35214.06 Distance to stand with dead material 

Run 10 0.3873 0.7386 35189.16 TPI 

Run 11 0.3758 0.7306 35272.16 Distance to agriculture 

Run 12 0.3414 0.7103 35387.77 Distance to coniferous stand 

Run 13 0.2995 0.6928 35537.51 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3927 0.7481 33621 Distance to all height stand 

Run 2 0.3925 0.7478 33618.61 Distance to scrubland 

Run 3 0.3922 0.7477 33607.05 D2W 

Run 4 0.405 0.7488 33603.65 Distance to clear-cut 

Run 5 0.4037 0.747 33606.66 Distance to wetland 

Run 6 0.4026 0.7454 33609.87 Solar insolation 

Run 7 0.3743 0.7353 33604.4 2nd story height 

Run 8 0.386 0.7402 33600.19 Distance to waterbody 

Run 9 0.3853 0.7393 33601.77 Distance to stand with dead material 

Run 10 0.384 0.7374 33580.92 TPI 

Run 11 0.3743 0.7299 33675.57 Distance to agriculture 

Run 12 0.3412 0.7101 33770.86 Distance to coniferous stand 

Run 13 0.2974 0.6921 33906.29 ** % crown closure 

 

  



 171 

LRW replicate dataset 5 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4111 0.7526 35327.21 Distance to waterbody 

Run 2 0.411 0.7523 35322.38 Distance to all height stand 

Run 3 0.4105 0.7517 35314.82 Distance to scrubland 

Run 4 0.4092 0.7502 35301.8 Distance to wetland 

Run 5 0.4087 0.7496 35287.33 2nd story height 

Run 6 0.3975 0.7474 35273.43 D2W 

Run 7 0.4036 0.7469 35283.89 Distance to stand with dead material 

Run 8 0.402 0.746 35275.17 Solar insolation 

Run 9 0.3861 0.7387 35272.34 Distance to clear-cut 

Run 10 0.3903 0.7386 35292.89 TPI 

Run 11 0.3967 0.7399 35363.46 Distance to agriculture 

Run 12 0.4118 0.7366 35494.74 Distance to coniferous stand 

Run 13 0.3551 0.7162 35630.54 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4109 0.7529 33616.99 Distance to waterbody 

Run 2 0.4106 0.7526 33617.22 Distance to stand with dead material 

Run 3 0.4098 0.7517 33603.34 Distance to all height stand 

Run 4 0.4093 0.7509 33601.12 Distance to wetland 

Run 5 0.4088 0.7504 33587.87 D2W 

Run 6 0.4037 0.7477 33584.46 2nd story height 

Run 7 0.4037 0.748 33578.56 Distance to scrubland 

Run 8 0.4014 0.7464 33581.65 Solar insolation 

Run 9 0.3843 0.7383 33587.34 Distance to clear-cut 

Run 10 0.3882 0.738 33590.23 TPI 

Run 11 0.3937 0.7389 33663.91 Distance to agriculture 

Run 12 0.4088 0.7351 33780.89 Distance to coniferous stand 

Run 13 0.3519 0.715 33912.36 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.404 0.7475 35330.95 Distance to all height stand 

Run 2 0.3676 0.7469 35325.42 D2W 

Run 3 0.3904 0.7541 35276.89 Distance to wetland 

Run 4 0.3901 0.7533 35275.41 Distance to waterbody 

Run 5 0.3899 0.7529 35270.06 2nd story height 

Run 6 0.3719 0.7548 35311.14 Distance to stand with dead material 

Run 7 0.371 0.7449 35303.36 Solar insolation 

Run 8 0.3709 0.7444 35275.72 Distance to clear-cut 

Run 9 0.3693 0.7434 35266.93 Distance to scrubland 

Run 10 0.3668 0.7413 35277.37 TPI 

Run 11 0.3572 0.7327 35367.51 Distance to agriculture 

Run 12 0.3522 0.7145 35490.13 Distance to coniferous stand 

Run 13 0.2832 0.6953 35632.45 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3689 0.7483 33625.68 Distance to waterbody 

Run 2 0.3684 0.7479 33622.08 Distance to all height stand 

Run 3 0.368 0.7474 33606.93 D2W 

Run 4 0.392 0.7546 33580.54 Distance to wetland 

Run 5 0.3915 0.7539 33580.84 2nd story height 

Run 6 0.3724 0.7462 33597.97 Distance to stand with dead material 

Run 7 0.3714 0.7452 33602.33 Solar insolation 

Run 8 0.3711 0.7445 33568.63 Distance to clear-cut 

Run 9 0.3695 0.7431 33567.31 Distance to scrubland 

Run 10 0.3664 0.7409 33588.68 TPI 

Run 11 0.3563 0.7319 33683.85 Distance to agriculture 

Run 12 0.3265 0.7146 33781.24 Distance to coniferous stand 

Run 13 0.2837 0.6953 33917.48 ** % crown closure 
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HRW replicate dataset 1 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5124 0.8092 7316.00 Distance to-all height stand 

Run 2 0.5124 0.8093 7288.49 Distance to river or lake 

Run 3 0.5104 0.8076 7247.82 Solar insolation 

Run 4 0.4947 0.8022 7210.08 2nd story height 

Run 5 0.49 0.7987 7172.10 D2W 

Run 6 0.4712 0.7923 7180.20 Distance to wetland 

Run 7 0.4639 0.7873 7155.31 Distance to clear-cut 

Run 8 0.4497 0.7816 7153.97 TPI 

Run 9 0.4438 0.7779 7176.63 Distance to stand with dead material 

Run 10 0.4326 0.771 7140.93 Distance to scrubland 

Run 11 0.4174 0.7589 7128.64 Distance to agriculture 

Run 12 0.3948 0.7353 7138.12 Distance to coniferous stand 

Run 13 0.3288 0.7086 7170.67 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5051 0.8078 7120.91 Distance to all height stand 

Run 2 0.5048 0.8076 7096.06 Distance to river or lake 

Run 3 0.5029 0.8054 7076.74 D2W 

Run 4 0.4861 0.8003 7030.47 TPI 

Run 5 0.4967 0.802 7060.75 Solar insolation 

Run 6 0.4569 0.7881 7025.24 Distance to wetland 

Run 7 0.4465 0.7813 7009.76 2nd story height 

Run 8 0.4543 0.7813 7005.18 Distance to stand with dead material 

Run 9 0.4445 0.7752 6984.78 Distance to clear-cut 

Run 10 0.4266 0.7673 6975.59 Distance to scrubland 

Run 11 0.4113 0.7557 6962.08 Distance to coniferous stand 

Run 12 0.3532 0.7333 6998.81 Distance to agriculture 

Run 13 0.3237 0.7062 7002.79 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4913 0.8069 7266.28 Distance to all height stand 

Run 2 0.4907 0.8059 7262.92 D2W 

Run 3 0.5036 0.8068 7236.10 Solar insolation 

Run 4 0.4716 0.795 7204.79 Distance to waterbody 

Run 5 0.469 0.793 7179.16 2nd story height 

Run 6 0.468 0.7917 7175.16 Distance to wetland 

Run 7 0.4597 0.7865 7164.36 Distance to stand with dead material 

Run 8 0.4477 0.7808 7135.72 TPI 

Run 9 0.4447 0.777 7131.53 Distance to scrubland 

Run 10 0.4321 0.7704 7129.14 Distance to clear-cut 

Run 11 0.4166 0.761 7133.12 Distance to agriculture 

Run 12 0.3831 0.7347 7137.60 Distance to coniferous stand 

Run 13 0.3197 0.7081 7167.70 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4842 0.8076 7094.15 Distance to waterbody 

Run 2 0.4804 0.804 7076.04 Distance to all height stand 

Run 3 0.48 0.8034 7063.43 Solar insolation 

Run 4 0.473 0.7969 7065.85 TPI 

Run 5 0.4891 0.8017 7043.73 2nd story height 

Run 6 0.476 0.7961 7028.24 Distance to wetland 

Run 7 0.4659 0.7904 7006.70 D2W 

Run 8 0.4508 0.7833 6991.94 Distance to stand with dead material 

Run 9 0.4399 0.7755 6962.46 Distance to scrubland 

Run 10 0.4276 0.7694 6956.57 Distance to clear-cut 

Run 11 0.411 0.7594 6967.43 Distance to agriculture 

Run 12 0.3776 0.7314 6969.03 Distance to coniferous stand 

Run 13 0.315 0.7063 6999.89 ** % crown closure 
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HRW replicate dataset 2 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.629 0.831 7051.34 Distance to waterbody 

Run 2 0.6199 0.8283 7056.33 Distance to scrubland 

Run 3 0.6151 0.825 7041.78 Distance to wetland 

Run 4 0.6123 0.8229 7011.66 Solar insolation 

Run 5 0.591 0.8171 7006.32 D2W 

Run 6 0.5716 0.8092 7020.37 Distance to all-height stand 

Run 7 0.5642 0.8042 7030.13 2nd story height 

Run 8 0.5503 0.7981 6999.79 Distance to clear-cut 

Run 9 0.5385 0.7936 6990.62 Distance to stand with dead material 

Run 10 0.5169 0.7849 6986.36 Distance to coniferous stand 

Run 11 0.4722 0.7672 7013.02 Distance to agriculture 

Run 12 0.451 0.756 7018.13 TPI 

Run 13 0.4026 0.7213 7046.42 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.6312 0.8314 6987.57 Distance to composite wetland 

Run 2 0.6289 0.8297 6973.97 Solar insolation 

Run 3 0.6092 0.8266 6990.87 Distance to waterbody 

Run 4 0.6005 0.8229 6978.48 2nd story height 

Run 5 0.5808 0.8152 6989.38 Distance to scrubland 

Run 6 0.5715 0.81 6954.09 Distance to all-height stand 

Run 7 0.5702 0.8082 6941.46 Depth to watertable 

Run 8 0.5496 0.798 6944.55 Distance to clearcut 

Run 9 0.5381 0.7935 6932.31 Distance to stand with dead material 

Run 10 0.5166 0.7853 6932.72 Distance to coniferous stand 

Run 11 0.4721 0.7674 6963.37 Distance to agriculture 

Run 12 0.4503 0.7555 6959.42 TPI 

Run 13 0.4015 0.7201 6991.87 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.6021 0.8326 7111.21 Distance to wetland 

Run 2 0.5977 0.8298 7089.75 Solar insolation 

Run 3 0.585 0.8223 7058.22 Distance to waterbody 

Run 4 0.5743 0.8174 7038.65 Distance to scrubland 

Run 5 0.5664 0.8137 7002.74 Distance to all height stand 

Run 6 0.5601 0.8085 6993.57 2nd story height 

Run 7 0.5409 0.8016 6994.30 Distance to clear-cut 

Run 8 0.5269 0.7971 6995.23 D2W 

Run 9 0.5333 0.7978 6997.22 Distance to stand with dead material 

Run 10 0.5163 0.7871 6996.74 Distance to coniferous stand 

Run 11 0.4632 0.7667 7018.82 Distance to agriculture 

Run 12 0.4238 0.7485 7014.95 TPI 

Run 13 0.3874 0.7181 7050.78 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.6022 0.8328 7042.03 Distance to scrubland 

Run 2 0.5965 0.8294 7011.08 Solar insolation 

Run 3 0.5824 0.821 6968.5 Distance to wetland 

Run 4 0.5791 0.8198 6954.88 Distance to waterbody 

Run 5 0.5673 0.8139 6948.03 Distance to all height stand 

Run 6 0.5612 0.8089 6944.53 2nd story height 

Run 7 0.5402 0.801 6934 Distance to clear-cut 

Run 8 0.527 0.7965 6940.01 Distance to stand with dead material 

Run 9 0.5127 0.7885 6929.72 D2W 

Run 10 0.5159 0.7872 6937.99 Distance to agriculture 

Run 11 0.4746 0.7731 6938.49 Distance to coniferous stand 

Run 12 0.4233 0.7488 6960.7 TPI 

Run 13 0.3867 0.718 6992.04 ** % crown closure 
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HRW replicate dataset 3 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5806 0.8217 7163.23 Distance to all height stand 

Run 2 0.5788 0.8206 7140.73 Distance to waterbody 

Run 3 0.5741 0.8185 7113.49 2nd story height 

Run 4 0.5616 0.8176 7103.10 Distance to scrubland 

Run 5 0.5567 0.815 7089.31 Solar insolation 

Run 6 0.544 0.8101 7066.51 D2W 

Run 7 0.5279 0.7974 7084.09 Distance to wetland 

Run 8 0.5148 0.7892 7084.83 Distance to stand with dead material 

Run 9 0.4892 0.7788 7068.75 TPI 

Run 10 0.4765 0.7772 7086.35 Distance to clear-cut 

Run 11 0.4677 0.7666 7088.83 Distance to agriculture 

Run 12 0.4336 0.7365 7099.80 Distance to coniferous stand 

Run 13 0.375 0.7076 7125.83 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5051 0.8078 7137.75 Distance to all height stand 

Run 2 0.5756 0.8202 7110.85 Solar insolation 

Run 3 0.5576 0.8153 7104.81 2nd story height 

Run 4 0.5471 0.814 7085.33 Distance to scrubland 

Run 5 0.5417 0.811 7044.88 Distance to waterbody 

Run 6 0.5399 0.8093 7038.23 D2W 

Run 7 0.5244 0.7969 7048.65 Distance to clear-cut 

Run 8 0.5092 0.7894 7049.46 Distance to stand with dead material 

Run 9 0.4857 0.7787 7037.98 Distance to wetland 

Run 10 0.475 0.7673 7031.43 TPI 

Run 11 0.4671 0.7665 7060.50 Distance to coniferous stand 

Run 12 0.4133 0.7478 7090.88 Distance to agriculture 

Run 13 0.3744 0.7073 7097.23 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5612 0.8195 7165.61 Distance to all height stand 

Run 2 0.5566 0.818 7173.85 Distance to waterbody 

Run 3 0.5518 0.816 7147.32 Distance to scrubland 

Run 4 0.547 0.8135 7126.73 Solar insolation 

Run 5 0.5367 0.8102 7097.83 2nd story height 

Run 6 0.5238 0.8035 7101.76 D2W 

Run 7 0.5292 0.8025 7083.15 Distance to wetland 

Run 8 0.5136 0.7936 7073.08 Distance to stand with dead material 

Run 9 0.4966 0.7834 7074.54 Distance to clear-cut 

Run 10 0.4839 0.7756 7068.31 TPI 

Run 11 0.4657 0.7654 7087.86 Distance to agriculture 

Run 12 0.4223 0.7386 7101.06 Distance to coniferous stand 

Run 13 0.365 0.7061 7125.12 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5581 0.8193 7126.26 Distance to all height stand 

Run 2 0.5534 0.8179 7147.81 2nd story height 

Run 3 0.5549 0.8177 7070.60 Solar insolation 

Run 4 0.5264 0.8075 7092.32 Distance to waterbody 

Run 5 0.5245 0.806 7098.44 Distance to scrubland 

Run 6 0.52 0.8029 7076.37 Distance to clear-cut 

Run 7 0.5039 0.7956 7065.84 D2W 

Run 8 0.5133 0.795 7044.75 Distance to stand with dead material 

Run 9 0.4971 0.7865 7039.74 Distance to composite wetland 

Run 10 0.4818 0.7751 7040.80 Distance to agriculture 

Run 11 0.4358 0.7516 7051.75 Distance to coniferous stand 

Run 12 0.3734 0.7237 7081.54 TPI 

Run 13 0.0607 0.582 7248.81 ** % crown closure 
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HRW replicate dataset 4 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5044 0.8151 7247.57 2nd story height 

Run 2 0.4884 0.8104 7163.31 Distance to all height stand 

Run 3 0.4856 0.8087 7158.43 Distance to waterbody 

Run 4 0.4815 0.8065 7137.78 Distance to wetland 

Run 5 0.4719 0.8008 7114.32 Distance to scrubland 

Run 6 0.4617 0.7936 7079.41 Solar insolation 

Run 7 0.4414 0.7834 7081.70 Distance to stand with dead material 

Run 8 0.4227 0.7749 7069.76 D2W 

Run 9 0.4131 0.7683 7049.72 Distance to clear-cut 

Run 10 0.4013 0.7617 7057.77 TPI 

Run 11 0.3913 0.7584 7079.28 Distance to coniferous stand 

Run 12 0.3648 0.7511 7088.26 Distance to agriculture 

Run 13 0.3125 0.713 7095.22 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5053 0.8153 7169.02 Distance to all height stand 

Run 2 0.5028 0.814 7134.64 Distance to waterbody 

Run 3 0.4976 0.8126 7121.76 2nd story height 

Run 4 0.4815 0.8064 7090.39 Solar insolation 

Run 5 0.4616 0.7989 7057.47 Distance to wetland 

Run 6 0.4551 0.7921 7041.93 D2W 

Run 7 0.443 0.7865 7011.75 Distance to clear-cut 

Run 8 0.4291 0.7808 7005.90 Distance to scrubland 

Run 9 0.4195 0.7705 6994.88 Distance to stand with dead material 

Run 10 0.4002 0.7611 6996.95 Distance to coniferous stand 

Run 11 0.3679 0.7495 7009.61 TPI 

Run 12 0.3621 0.7498 7030.71 Distance to agriculture 

Run 13 0.3108 0.7127 7038.35 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5018 0.8176 7149.62 2nd story height 

Run 2 0.4988 0.8183 7192.61 Distance to wetland 

Run 3 0.4886 0.8125 7168.24 Distance to waterbody 

Run 4 0.4827 0.8092 7126.47 Distance to all height stand 

Run 5 0.4765 0.8071 7127.02 D2W 

Run 6 0.4511 0.7915 7079.46 Solar insolation 

Run 7 0.4337 0.7848 7064.98 Distance to scrubland 

Run 8 0.4251 0.7757 7049.62 Distance to clear-cut 

Run 9 0.4119 0.7697 7050.78 Distance to stand with dead material 

Run 10 0.3982 0.7603 7056.43 TPI 

Run 11 0.3925 0.758 7073.31 Distance to coniferous stand 

Run 12 0.3654 0.7494 7080.09 Distance to agriculture 

Run 13 0.3034 0.7107 7092.49 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5035 0.8182 7079.33 Distance to all height stand 

Run 2 0.4974 0.8156 7075.45 Distance to waterbody 

Run 3 0.4897 0.8135 7057.46 Distance to wetland 

Run 4 0.4806 0.8088 7043.30 Solar insolation 

Run 5 0.4592 0.8001 7044.69 2nd story height 

Run 6 0.4424 0.7902 7041.18 D2W 

Run 7 0.4335 0.7856 7004.87 Distance to stand with dead material 

Run 8 0.4205 0.7783 7010.05 Distance to scrubland 

Run 9 0.4096 0.7664 6998.78 Distance to clear-cut 

Run 10 0.3996 0.7598 7003.23 TPI 

Run 11 0.39 0.7569 7013.15 Distance to coniferous stand 

Run 12 0.3634 0.7483 7019.86 Distance to agriculture 

Run 13 0.3018 0.7102 7035.65 ** % crown closure 
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HRW replicate dataset 5 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4963 0.8048 7328.00 Distance to waterbody 

Run 2 0.4902 0.8031 7272.27 Distance to all height stand 

Run 3 0.4862 0.8004 7275.27 2nd story height 

Run 4 0.465 0.7949 7225.93 Distance to stand with dead material 

Run 5 0.456 0.7904 7184.53 Distance to wetland 

Run 6 0.4496 0.7846 7170.53 Distance to clear-cut 

Run 7 0.4394 0.7804 7165.11 Distance to scrubland 

Run 8 0.431 0.7734 7146.96 Solar insolation 

Run 9 0.4201 0.767 7167.18 TPI 

Run 10 0.427 0.7677 7159.59 D2W 

Run 11 0.4196 0.7575 7143.00 Distance to coniferous stand 

Run 12 0.3754 0.7443 7154.03 Distance to agriculture 

Run 13 0.3238 0.7085 7173.86 ** % crown closure 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4941 0.8046 7221.79 Distance to waterbody 

Run 2 0.4884 0.802 7205.08 2nd story height 

Run 3 0.4568 0.7946 7175.38 Distance to all height stand 

Run 4 0.4629 0.7945 7167.07 Distance to scrubland 

Run 5 0.4545 0.7906 7146.41 Distance to wetland 

Run 6 0.4475 0.7837 7129.89 Solar insolation 

Run 7 0.4344 0.7757 7144.51 Distance to stand with dead material 

Run 8 0.4221 0.7719 7118.15 Distance to clear-cut 

Run 9 0.4186 0.7666 7096.81 TPI 

Run 10 0.4253 0.7673 7109.02 D2W 

Run 11 0.4128 0.7573 7083.95 Distance to coniferous stand 

Run 12 0.3744 0.7455 7099.25 Distance to agriculture 

Run 13 0.3218 0.7102 7119.35 ** % crown closure 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4745 0.8035 7276.17 Distance to clear-cut 

Run 2 0.4671 0.7993 7245.09 Distance to wetland 

Run 3 0.4635 0.7974 7240.63 2nd story height 

Run 4 0.4691 0.7951 7215.03 Distance to all height stand 

Run 5 0.4613 0.7926 7177.46 TPI 

Run 6 0.436 0.7859 7202.62 Distance to waterbody 

Run 7 0.4296 0.7865 7193.56 D2W 

Run 8 0.4305 0.7778 7175.90 Solar insolation 

Run 9 0.4316 0.7739 7157.52 Distance to stand with dead material 

Run 10 0.4234 0.7667 7145.16 Distance to scrubland 

Run 11 0.4134 0.7541 7135.10 Distance to coniferous stand 

Run 12 0.3705 0.7403 7152.07 Distance to agriculture 

Run 13 0.3117 0.7102 7174.00 ** % crown closure 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4725 0.8032 7227.59 Distance to wetland 

Run 2 0.4681 0.8003 7200.49 Distance to waterbody 

Run 3 0.4575 0.7955 7165.69 2nd story height 

Run 4 0.4638 0.7938 7147.28 Distance to all height stand 

Run 5 0.4595 0.7939 7145.86 Distance to stand with dead material 

Run 6 0.4528 0.7911 7119.38 Distance to clear-cut 

Run 7 0.4459 0.788 7117.34 TPI 

Run 8 0.4178 0.7793 7116.24 Solar insolation 

Run 9 0.4239 0.7748 7117.23 D2W 

Run 10 0.4219 0.7669 7083.84 Distance to scrubland 

Run 11 0.4122 0.7545 7081.21 Distance to coniferous stand 

Run 12 0.3698 0.7424 7097.43 Distance to agriculture 

Run 13 0.3326 0.7083 7121.51 ** % crown closure 
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APPENDIX D: RESULTS OF REAL SPECIES (CANADA 

WARBLER) REVERSE STEPWISE 

ELIMINATION TRIALS (TRIAL SERIES 2)3 

Canada Warbler Models 

Uncorrected 

model run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.4865 0.7994 12335.66 Distance to all height stand 

Run 2 0.4821 0.7988 12372.96 TPI 

Run 3 0.4734 0.7942 12315.39 Distance to waterbody 

Run 4 0.4685 0.7926 12302.19 2nd story height 

Run 5 0.4459 0.7878 12323.46 Solar insolation 

Run 6 0.4551 0.7853 12273.26 Distance to coniferous stand 

Run 7 0.4375 0.7793 12286.94 % crown closure 

Run 8 0.4215 0.7785 12293.05 Distance to stand with dead material 

Run 9 0.4013 0.7664 12296.54 Distance to deciduous stand 

Run 10 0.3792 0.7599 12311.23 Distance to scrubland 

Run 11 0.3316 0.7491 12339.64 Distance to agriculture 

Run 12 0.3026 0.7372 12360.65 D2W 

Run 13 0.2417 0.7115 12428.71 Distance to clear-cut 

Run 14 0.116 0.6423 12525.42 **Distance to wetland 

 

Spatial Filter 

(SF) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3648 0.7819 9158.32 Distance to all height stand 

Run 2 0.364 0.7807 9170.31 Distance to agriculture 

Run 3 0.358 0.7761 9116.08 Distance to waterbody 

Run 4 0.35 0.7717 9110.09 2nd story height 

Run 5 0.3528 0.769 9123.00 TPI 

Run 6 0.3227 0.7598 9078.39 Solar insolation 

Run 7 0.3293 0.7559 9084.43 Distance to stand with dead material 

Run 8 0.3088 0.7493 9071.19 Distance to scrubland 

Run 9 0.2892 0.7414 9080.39 % Crown closure 

Run 10 0.2702 0.7339 9083.30 Distance to deciduous stand 

Run 11 0.2514 0.7248 9088.73 Distance to wetland 

Run 12 0.1983 0.7031 9073.31 Distance to coniferous stand 

Run 13 0.1611 0.6825 9096.11 Distance to clear-cut 

Run 14 0.1095 0.6398 9160.79 **D2W 

 

 

  

                                                        
3 For all Canada Warbler reverse stepwise elimination summaries, the final “best” model (as selected 

according to AICc score) as well as the covariates it contained are shown in italics. 
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Background 

Manipulation 

(BM) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3755 0.8007 12355.27 Distance to waterbody 

Run 2 0.375 0.8002 12347.14 Distance to all height stand 

Run 3 0.3725 0.7986 12342.82 TPI 

Run 4 0.38 0.801 12370.13 2nd story height 

Run 5 0.371 0.7952 12323.78 Solar insolation 

Run 6 0.3446 0.7858 12356.17 % crown closure 

Run 7 0.3349 0.7841 12288.16 Distance to stand with dead material 

Run 8 0.3189 0.7754 12309.40 Distance to scrubland 

Run 9 0.2971 0.7643 12330.94 Distance to agriculture 

Run 10 0.2837 0.755 12360.26 Distance to deciduous stand 

Run 11 0.2605 0.745 12372.17 Distance to coniferous stand 

Run 12 0.2344 0.7314 12390.55 Distance to wetland 

Run 13 0.1803 0.2172 12443.63 Distance to clear-cut 

Run 14   12525.20 **D2W 

 

SF+BM model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.348 0.7818 9120.42 Distance to all height stand 

Run 2 0.3471 0.781 9121.98 Distance to waterbody 

Run 3 0.3466 0.7798 9095.11 Distance to agriculture 

Run 4 0.3421 0.7746 9072.54 TPI 

Run 5 0.3459 0.7755 9130.85 Solar insolation 

Run 6 0.3157 0.7604 9065.46 Distance to stand with dead material 

Run 7 0.2956 0.7544 9065.00 2nd story height 

Run 8 0.2857 0.7486 9071.71 % crown closure 

Run 9 0.268 0.742 9064.70 Distance to scrubland 

Run 10 0.2476 0.7344 9046.86 Distance to deciduous stand 

Run 11 0.2227 0.7219 9054.25 Distance to coniferous stand 

Run 12 0.1892 0.7033 9091.20 Distance to wetland 

Run 13 0.1444 0.6786 9123.10 Distance to clear-cut 

Run 14 0.0963 0.6347 9153.36 **D2W 
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Target Group 

(TG) model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.5063 0.7993 12341.05 TPI 

Run 2 0.5014 0.7972 12302.94 2nd story height 

Run 3 0.4821 0.7926 12304.29 Distance to waterbody 

Run 4 0.4745 0.7896 12308.47 Solar insolation 

Run 5 0.4679 0.789 12235.15 Distance to all height stand 

Run 6 0.4584 0.7875 12254.23 % crown closure 

Run 7 0.4597 0.7807 12255.34 Distance to stand with dead material 

Run 8 0.4406 0.7732 12261.16 Distance to deciduous stand 

Run 9 0.4091 0.7663 12281.99 Distance to coniferous stand 

Run 10 0.3847 0.7582 12287.84 Distance to scrubland 

Run 11 0.335 0.7491 12333.83 Distance to agriculture 

Run 12 0.3005 0.7359 12379.34 Distance to wetland 

Run 13 0.2319 0.7084 12435.10 Distance to clear-cut 

Run 14 0.1385 0.6525 12530.19 **D2W 

 

SF+TG model 

run # 

Training 

gain 

AUC 

score 

AICc 

score 

Covariate removed 

Run 1 0.3793 0.7792 9158.16 Distance to all height stand 

Run 2 0.3782 0.778 9128.75 TPI 

Run 3 0.3652 0.7733 9127.66 2nd story height 

Run 4 0.3455 0.7679 9147.11 Distance to waterbody 

Run 5 0.34 0.7634 9153.62 Distance to agriculture 

Run 6 0.3318 0.7561 9133.71 Solar insolation 

Run 7 0.3277 0.754 9066.88 Distance to scrubland 

Run 8 0.3102 0.747 9057.85 % Crown closure 

Run 9 0.2999 0.7413 9073.89 Distance to stand with dead material 

Run 10 0.2782 0.734 9085.80 Distance to deciduous stand 

Run 11 0.2499 0.7225 9091.65 Distance to coniferous stand 

Run 12 0.2146 0.7062 9079.26 D2W 

Run 13 0.1638 0.68 9100.41 Distance to clear-cut 

Run 14   9144.08 Distance to wetland 
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APPENDIX E: COPYRIGHT PERMISSION LETTER  

The following is a copy of the e-mail with New York Times writer Jim Robbins, who 

kindly granted permission for use of the phrase “Building an Arc in the Anthropocene” as 

the title to chapter 4 and of the thesis itself. This phrase was originally used as the title to 

an article published in the New York Times on September 27th, 2014. 

  

 

 


