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ABSTRACT 

While both observational and modelling approaches can improve our understanding 

of ocean ecology, each type of approach has intrinsic limitations. Direct observations 

have limited temporal/spatial coverage and many quantities are not easily measured. 

Models rely on assumptions and parameters that are not always based on direct 

observation. My thesis research systematically combines observations and models 

through the use of parameter optimization, and further investigates model behavior 

with the help of sensitivity analyses and hypothesis-oriented experiments. I apply the 

optimization formalism in three case studies that revisit paradigms in biological 

oceanography including drivers of the phytoplankton spring bloom, the importance of 

trophic interactions in determining rates of primary production, and the 

biogeochemical role of nitrogen fixing organisms. The first case study juxtaposes 

bottom-up and top-down hypotheses to explain the initiation of the phytoplankton 

spring bloom. Realistic and idealized model simulations reveal that the conceptual 

bases of both hypotheses are ecological truisms. A spring bloom can develop in the 

absence of mixed layer fluctuations, and both its magnitude and timing are strongly 

dependent on nutrient and light availability. Changes in zooplankton grazing 

modulate phytoplankton biomass, but do not produce significant shifts to explain 

bloom initiation. In the second case study I compare ecosystem models of different 

trophic complexity. I found that models of low complexity can accurately respond to 

bottom-up drivers of phytoplankton phenology; however, aspects like the spring 

bloom termination, accurate simulation of primary production, and partitioning of 

nitrogen cycling pathways require a higher degree of complexity that is insufficiently 

constrained by presently available observations. In the third case study, I demonstrate 

that the inclusion of specific planktonic traits, such as heterotrophic diazotrophy, is 

necessary to explain biogeochemical characteristics at certain geographical locations. 

Despite the regional scope of these study cases, my conclusions provide insights that 

can be extrapolated to large-scale applications.   
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CHAPTER 1: 

INTRODUCTION 

Marine biogeochemical models are widely used numerical tools that allow us to 

sumarize information about ecosystem functioning. Models serve as flexible frameworks 

to perform experiments that are unfeasible in reality; therefore helping to test, and 

generate hypotheses. Ecosystem models can also be used to quantify ocean 

biogeochemical cycles (e.g., Moore, Doney, and Lindsay 2004; Bopp et al. 2005; Le 

Quéré et al. 2005) and to assess the ecosystem response under changing environmental 

conditions (e.g., Sarmiento et al. 1998; Joos et al. 1999; Orr et al. 2005; Bopp et al. 2013). 

However, several uncertainties surround the process of modelling. These include the form 

of the governing equations, the pathways that drive the ecosystem’s interactions, the level 

of ecosystem complexity that models need to properly represent a system’s responses, 

and the values of many biological and chemical rates of change (Anderson 2005; 

Anderson, Gentleman, and Sinha 2010; Dowd, Jones, and Parslow 2014; Friedrichs et al. 

2007; Ward et al. 2010). In this thesis, I explore these concepts using a numerical 

methodology, known as parameter optimization, to objectively inform models of the 

available observational data. The focus is on analyzing ecological problems while 

systematically taking into account the uncertainties found in the observations, the 

ecosystem models themselves, and the conceptual assumptions they are built upon. The 

approaches and methodologies I used emphasize the fundamental connection between 

improvements of ecosystem models and observation networks:  models can help to 
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identify critical gaps in observations, but high-resolution observational datasets are 

required for the constraint of model parameters and subsequent model validation. 

Biogeochemical models depend on mathematical formulations, which in general 

include many poorly known or unconstrained parameters (Anderson 2005; Franks 2009).  

For instance, more than 90% of a sample of 153 models published between 1990 and 

2002 reported subjective tunning of the parameters within the literature range 

(Arhonditsis and Brett 2004). This approach can increase the risk of overlooking 

structural inadequacies in the models and can become complicated by the number of 

parameters in play and their co-dependencies. This limitation can be better addressed by 

using parameter optimization techniques (Bagniewski et al. 2011; Fennel et al. 2001; 

Ward et al. 2010). In general, parameter optimization refers to any quantitative method by 

which parameters are estimated to provide the best possible fit to a given dataset, under 

considerations of computational efficiency, the model implicit constraints, and the 

uncertainties in both the model and the observations. Parameter optimization 

methodologies represent a comprehensive approach to bridging the knowledge gap in 

marine ecosystem dynamics, with the combined use of models, and both traditional and 

novel observations at different scales and resolutions. 

From the observational perspective, undersampling of the biogeochemical 

properties of the ocean is still one of the main impediments to a complete understanding 

and quantification of biogeochemical cycles. Technological constraints impede the direct 

measurement of key variables and fluxes of ecological interest. Moreover, traditional 

sampling methods are limited to small spatial and temporal scales and/or resolutions. 

Ship-based datasets are limited to a few weeks due to logistic and economic reasons, and 
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there exist only a few long-term monitoring stations in the world, and even fewer of these 

measure biogeochemical variables regularly. Starting in the late 1970’s with a proof-of-

concept mission of the Coastal Zone Color Scanner (CZCS), and more extensively since 

the 1990’s, satellite measurements of ocean color represented a significant boost for 

biological oceanography. Using mathematical algorithms, these remotely sensed ocean 

color measurements are transformed into bio-optical properties and provide high 

frequency, quasi-synoptic estimates of the surface chlorophyll concentration. These have 

been widely used in conjunction with modeling studies (e.g., Fennel et al., 2006; Gregg, 

2008; Previdi et al., 2009).  Nevertheless, remotely sensed chlorophyll products only 

measure the upper limit of the euphotic zone, missing important processes in the ocean 

interior (Joint and Groom 2000). Furthermore, they are mathematically derived quantities, 

and in situ data are still required to validate them (Cota, Wang, and Comiso 2004; 

O’Reilly et al. 2001, 1998).  

Throughout this thesis, I implement a parameter optimization method in a suite of 

models, and use different observational datasets, including both in situ and satellite-based 

measurements. I analyze open paradigms in biological oceanography, exemplified in 

three regional case studies. As the available observational data differs in each case, 

specific model and optimization designs are required. The limitations of each 

observational data set are addressed in the specific details of the optimization procedure, 

as well as in the discussion of the results of each case study.   
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1.1 OBJECTIVES 

The general objectives of this thesis are threefold: i) Implementing an assimilative 

model framework that can be applied to traditional and novel observational datasets; ii) 

Optimizing biogeochemical models within the framework with the aim of improving the 

models’ skill and potentially its parameterizations; and iii) Analyzing the optimization 

and optimized models’ results (i.e., resulting parameters, state variables and fluxes) to 

evaluate biogeochemical processes with an emphasis on improving the understanding of 

ecosystem functioning. 

1.2 CASE STUDIES AND RESEARCH QUESTIONS 

1.2.1 SUBPOLAR NORTH ATLANTIC OPEN WATERS 

This case study is intended to evaluate the mechanistic process that annually 

initiates the North Atlantic phytoplankton spring bloom. The event is key to 

understanding and forecasting climate feedbacks and trophic interactions, as it constitutes 

the largest and most predictable accumulation of phytoplankton biomass during the year. 

The dynamics of its onset are a long-discussed question in biological oceanography. In 

this case study I optimize a one-dimensional (1D) ecosystem model to represent satellite-

based phytoplankton biomass of the Subpolar North Atlantic Ocean. The optimized 

model acts as a control run to perform model experiments on the phytoplankton spring 

bloom initiation.  The experiments’ design is based on two competing hypotheses and 

aims to determine the processes controlling the initiation of the spring bloom on a 

seasonal scale, and whether these processes follow a bottom-up or top-down nature. 
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1.2.2 NORTHWEST NORTH ATLANTIC CONTINENTAL SHELF 

This geographic region is dynamically complex and considered the most 

oceanographically variable area of both the North Atlantic and Pacific Oceans (Townsend 

et al., 2004). In this case study I evaluate the role of ecosystem model complexity in 

determining spatial and temporal patterns of chlorophyll and primary production with a 

three-dimensional (3D) regional model. Determining the appropriate level of ecosystem 

model complexity is an unresolved question in ecology, due to the number of 

uncertainties related to the comparison of models with varying degrees of complexity. 

Here, I use the optimization method to obtain standard simulations of ecosystem models 

with different ecological complexities. Optimizing parameters in a 3D environment is 

computationally expensive and inefficient in terms of time. For this reason, the 

optimization is performed using a mechanistic surrogate composed of 1D models for the 

locations where in situ data is available. The use of statistical emulators or – as in this 

case – reduced-order model surrogates is a promising method to improve computational 

efficiency when optimizing complex numerical models (Leeds et al. 2012; Prieß, Koziel, 

and Slawig 2013; Prieß et al. 2013). Optimization experiments within this reduced-order 

setting explore spatial patterns in optimized model parameters, as well as model 

geographical portability.  

1.2.3 GULF OF AQABA, RED SEA  

This case study aims to quantify the importance of nitrogen fixation in the Gulf of 

Aqaba, as well as to demonstrate relative importance of different autotrophic and 

heterotrophic nitrogen fixing organisms in determining the chemical characteristics of the 
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Gulf of Aqaba.  The Gulf of Aqaba is an oligotrophic extension of the Red Sea, where 

autotrophic and heterotrophic nitrogen fixing organisms have been reported. Nitrogen 

fixation is a microbially mediated process that refers to the uptake of dinitrogen gas (N2), 

and its conversion into bioavailable forms of nitrogen for other marine organisms. Supply 

of “new” nitrogen, such as that resulting from N2 fixation, regulates the amount of “new” 

primary production, which is assumed to be equal to the quantity of organic matter 

exported to deep regions of the ocean (Eppley and Peterson 1979). Consequently, 

understanding N2 fixation has the potential to improve quantitative estimates of 

biogeochemical cycles and climate feedbacks. In particular, heterotrophic organisms may 

exhibit significant N2 fixation activity in aphotic environments, challenging previous 

assumptions about the limited distribution of N2 fixation to well-lighted surface areas of 

the ocean.  

1.3 ASSIMILATIVE FRAMEWORK 

The assimilative framework used throughout this thesis is a heuristic method to 

determine model parameters. As mentioned before, this is referred as parameter 

optimization and consists of systematically adjusting the parameters, in order to minimize 

a cost function that measures the mismatch between observations and their model 

counterparts. Parameter optimization is therefore a special case of data assimilation for 

the iterative calibration of models, in which the goals of the model are clearly defined in 

the cost function, and model parameters are chosen systematically to fulfill such goals. 

The parameter optimization method I use is known as an evolutionary algorithm, as it 

borrows ideas from ecological evolutionary theory. The algorithm is used for the 
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calibration of a suite of marine biogeochemical models intended to evaluate the lower 

trophic level ecosystem interactions within my three case studies. The algorithm is 

flexible to allow the use of the diverse observational information available for each case 

study. The selection of which and how many parameters to optimize depends on the 

specific case analyzed, and is described for each of the case studies in their corresponding 

chapters.   

In general, the cost function 𝐹(𝑝) of the algorithm takes the generic form of a 

model-data difference, such as a weighted root-mean-square-error (RMSE):   

𝐹(𝑝⃗) =  √
∑ 𝑤𝑖 (𝜒̂𝑖(𝑝⃗)− 𝜒𝑖)2𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

+ ∑ 𝑓𝑗
𝑚
𝑗=1 , 

( 1.1 ) 

where 𝜒 represents the n number of records for an observed variable (or set of variables), 

and 𝜒̂(𝑝⃗)   are the corresponding simulated results obtained using the a 𝑝⃗ parameter set 

vector.  The weight w allows the cost function to account for the uncertainties of the 

different observed variables, at different magnitude ranges or to give emphasis to specific 

subsets of the results (e.g., certain times of the year or depths in the water column). Note 

that if a set of variables is compared, instead of a single variable, 𝜒, 𝜒̂(𝑝⃗) and w are 

vectors. Optionally, a number (m) of penalty functions f can be added to the right-hand-

side of the equation to set additional rules that help to shape the behavior of variables 

unconstrained by the observational data or represent a priori knowledge.   

In order to search for optimal values within the parametric space, the evolutionary 

algorithm simulates a process of natural selection by imposing a “survival of the fittest” 

strategy (Houck et al., 1995) on a population composed of predefined number different 
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vector parameter sets 𝑝⃗. Each vector 𝑝⃗  represents an individual within the population and 

the initial parameter population can be selected from a priori knowledge or randomly 

generated within a range of minimum and maximum parameter values based on the 

literature. Every iteration of the algorithm represents a generation of the parameter 

population, where a predefined number of the top parameter sets with the smallest cost 

function values are allowed to survive and become parents of the next generation. Parent 

parameter sets reproduce and create an offspring by a crossover mechanism: each 

parameter in a new offspring parameter set is randomly drawn from either one of two 

randomly chosen parents. Offspring are produced until the population is replenished to its 

full size. Additionally, the offspring parameter sets are subjected to random mutations in 

a subset of their parameter values.  

1.4 THESIS OUTLINE 

This thesis is presented as a series of chapters analyzing each of the case studies. 

Chapter 2 is based on Kuhn et al., (2015), and describes in more detail the motivation, 

methodology, results and conclusions of the Subpolar North Atlantic Open Waters case 

study.  

The Northwest North Atlantic Continental Shelf case study is divided into two 

chapters. Chapter 3 concerns the development of the mechanistic surrogate-based 

optimization method, sensitivity analyses and optimization experiments performed to 

systematically minimize the differences between the biogeochemical models evaluated. In 

Chapter 4,  the optimized parameters are applied in a three-dimensional application of the 

Regional Ocean Modelling System (ROMS) for the northwest North Atlantic Ocean. 
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Model estimates are evaluated against satellite-based surface chlorophyll and primary 

production. The causes of differences among simple and complex models are discussed in 

the context of simulated standing stocks, rates and fluxes. 

The Gulf of Aqaba case study is presented in Chapter 5, where I compare results 

from different ecosystem model versions in terms of their simulated vertical distribution 

of inorganic nitrogen and phosphate, as well as chlorophyll and dissolved oxygen. I 

present estimates of primary productivity and nitrogen fixation rates, and discuss them in 

the context of local, regional, and global previous estimates in the literature.  

In Chapter 6, I finalize this thesis with an overarching summary of the conclusions 

of all study cases, and their relevance for understanding the effects of physical 

dimensionality, temporal scales and ecological complexity in plankton ecosystem models. 
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CHAPTER 2:  

MODEL INVESTIGATIONS OF THE NORTH ATLANTIC 

SPRING BLOOM INITIATION1
 

 

2.1 INTRODUCTION 

The annually occurring massive growth of phytoplankton during winter-spring in 

mid and high latitudes, referred to as the spring bloom, is recognized as key to better 

understand the uncertainties concerning the oceanic carbon cycle and its consequent 

climate feedbacks under global warming scenarios (Joos et al., 1999; Maier-Reimer et al., 

1996; Sarmiento et al., 1998). However, the mechanisms that determine when and how 

the spring bloom initiates are not yet agreed upon. The traditional model for bloom 

initiation is based on the concept that there exists a critical depth at which vertically 

integrated phytoplankton production equals phytoplankton losses. According to this 

conceptual model, the spring bloom can occur only when the depth of the mixed layer is 

smaller than this critical depth, allowing phytoplankton production to exceed losses by 

spending enough time in the euphotic zone (Sverdrup, 1953). Under the assumptions of a 

constant phytoplankton photosynthetic efficiency, constant loss rates, and a thoroughly 

mixed layer, Sverdrup estimated that this condition is not met during periods of deep 

mixing in winter, before thermal stratification establishes in spring.   

                                                      

1 Kuhn, A.M., Fennel, K., Mattern, J.P., 2015. Model investigations of the North Atlantic 

spring bloom initiation. Prog. Oceanogr. 176–193. 
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The bottom-up control of bloom dynamics implied by Sverdrup’s critical depth 

model has been a cornerstone of marine ecology for more than half a century. 

Nevertheless, it has been criticized for its inability to explain observations of 

phytoplankton growth before the onset of stable stratification (Garside & Garside, 1993; 

Townsend et al., 1992; Behrenfeld 2010). Several studies diverge only nominally from 

the original critical depth model, suggesting that weak or temporary stratification can be 

sufficient to initiate blooms in winter (Colebrook, 1979; Townsend et al., 1992; 

Wasmund et al., 1998).  Along that same line of thought, Huisman et al. (1999a, 1999b, 

2002) argued that there exists a critical turbulence level, below which phytoplankton 

growth can occur in winter. Attention has also been called to the difference between 

mixed layer and the mixing or turbulent layer (Brainerd and Gregg, 1995) suggesting that 

after the mixed layer reaches its maximum depth, the bloom can be triggered by a 

shutdown of turbulent convection (Fennel, 1999; Taylor and Ferrari, 2011a) or by mixing 

occurring only in surface layers (Chiswell, 2011).  Others have argued that strong winter 

convection actually enhances the chances of sinking phytoplankton to be transported back 

into the euphotic zone and receive light (Backhaus et al., 2003; Lande and Wood, 1987). 

The latter idea is consistent with theoretical and observational considerations about the 

annual succession of phytoplankton species, which postulate that non-motile diatoms 

benefit from turbulent, high-nutrient conditions while motile cells dominate during 

stratified, low-nutrient periods (Margalef, 1978; Ward and Waniek, 2007). 

The discussion about the causes of spring bloom initiation was reinvigorated by 

analyses that departed from assuming a bottom-up system controlled by vertical mixing 

and light, as portrayed in the classical critical-depth model. Top-down control by 
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zooplankton (e.g., Banse, 1994) regained interest with the formulation of the dilution-

recoupling hypothesis (Behrenfeld, 2010; Boss and Behrenfeld, 2010; Mariani et al., 

2013), which suggests that mixed layer deepening plays a dominant role in bloom 

initiation by forcing the dilution of phytoplankton and zooplankton during winter.  As is 

known from incubation experiments (e.g., Landry and Hassett, 1982), such dilution 

negatively affects grazing success and may reduce phytoplankton losses enough for 

positive net phytoplankton growth to occur in the open ocean in winter (Behrenfeld, 

2010). The dilution-recoupling hypothesis has since broadened, recognizing that the 

decoupling of planktonic feedbacks through dilution is one of many physical and 

ecological disturbances that continuously act together to determine the initiation, 

development rate and climax of blooms (Behrenfeld et al., 2013).  

The specific objective of this chapter is to assess which of the assumptions 

inherent to the bottom-up and top-down theoretical approaches are met inside a typical 

numerical ecosystem model or, in other words, whether and under what conditions the 

different mechanisms of spring bloom initiation occur. The model’s low computational 

cost and flexibility allows us to perform a set of idealized experiments designed to isolate 

the effects of mixed layer depth fluctuations and zooplankton grazing on bloom initiation. 

In this chapter, I use a vertically resolved Nutrient – Phytoplankton – Zooplankton – 

Detritus (NPZD) model, resembling those used in early studies on model behavior (Evans 

and Parslow, 1985; Franks et al., 1986; Steele and Henderson, 1992). NPZD models also 

form the base for functional-type ecosystem models (e.g., Fasham et al., 1990; Fennel et 

al., 2006) now widely used in coupled physical-biological climate models (Bopp et al., 

2005; Doney et al., 1996; Franks et al., 2013). Even the simplest of these models rely on a 



 13 

number of parameters with values that are either poorly known or exhibit a large range in 

the experimental and field literature due to taxonomical differences, date and location of 

sampling or methodological constraints (e.g., Fahnenstiel et al., 1995; Putland, 2000; 

Sarthou et al., 2005). For that reason, model optimization techniques are increasingly 

used to define model parameters objectively (Bagniewski et al., 2011; Fennel et al., 2001; 

Friedrichs et al., 2007; Schartau et al., 2001; Ward et al., 2010).  Here I follow this 

approach and apply an evolutionary algorithm for model optimization based on 

climatological values of observed surface chlorophyll in the Subpolar North Atlantic. I 

further investigate the sensitivity of the model using a second-order Taylor series 

decomposition to identify the variables that influence the simulated phytoplankton annual 

cycle most strongly.  

My results are in line with the view of the spring bloom as the climax of a 

continuous process in which bottom-up and top-down forcings act simultaneously (Riley, 

1965; Strom, 2002; Behrenfeld et al., 2013), and different processes dominate at different 

points in time to shape the annual cycle of phytoplankton biomass. The conceptual bases 

of both the critical-depth and the dilution–recoupling hypotheses are shown to be true 

within my modelling framework; however, neither of their bloom initiation mechanisms 

fully applies in the experiments.  

The mechanisms through which a simple model like the one I examine here 

develops a spring bloom could differ from those at play in reality. Rather than providing a 

new explanation for the spring bloom initiation, this analysis is aimed at emphasizing the 

processes that require further testing in more realistic models and using observational data 

sets. The remainder of this chapter is organized as follows: section 2.2 describes the 
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methods used in the study, including the configuration of the base model; section 2.3 

describes the optimized model results and their sensitivity to parameters and variables; in 

section 2.4 I describe the idealized experiments’ configuration and results. Discussion and 

final conclusions are presented in sections 2.5 and 2.6.  

2.2 METHODS 

2.2.1 DATA SETS 

The study region in this chapter is the North Atlantic Ocean, between 40ºN – 50ºN 

and 45ºW – 15ºW (Figure 2.1). I analyze models for six of the twelve 5˚ latitude by 10˚ 

longitude bins presented in Behrenfeld (2010), using satellite-based phytoplankton 

biomass (mg C m
-3

) observations and mixed layer depth (m) climatologies from the same 

study. The analysis includes the lower latitude bins (NA1 to NA3) located at the 

transition zone from subtropical to subpolar bloom regimes (Henson et al., 2009); and the 

subpolar region characterized by higher chlorophyll in bins NA4 to NA6.  The bins north 

of 50˚ N are not used because chlorophyll observations in winter are missing.  

The satellite-based phytoplankton biomass climatology (𝑃𝑜𝑏𝑠) is used to optimize 

the biological parameters of the base model described in section 2.2, whereas the mixed 

layer depth climatology (𝐻𝑀𝐿𝐷) is used as a model forcing variable to impose time- and 

depth-varying diffusivities. For details on these climatologies I refer the reader to 

Behrenfeld (2010) and http://www.science.oregonstate.edu/ocean.productivity/.  In 

general, the 𝑃𝑜𝑏𝑠 climatology is based on eight-day Sea-viewing Wide Field-of-view 

(SeaWiFS) satellite chlorophyll values from January 1998 to December 2006, spatially 

averaged for each bin. From there, phytoplankton carbon concentrations were derived by 
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Behrenfeld (2010) using the Garver-Siegel-Maritorena algorithm for particulate 

backscattering coefficients (Garver and Siegel, 1997; Maritorena et al., 2002; Behrenfeld 

et al., 2005). I transformed the phytoplankton carbon concentrations into nitrogen units 

(mmol N m
-3

) using the Redfield ratio (106C:16N) as an average approximation, and 

linearly interpolated the eight-day data to daily resolution for comparison with the model 

output.  

 

Figure 2.1: (A) Location of the study bins showing, as a reference, the mean annual 

surface chlorophyll concentration (Chl-a, mg m
-3

) calculated from eight-day 

resolution SeaWiFS satellite data from January 1998 to December 2006. The 

northern bins exhibit higher mean annual chlorophyll than the southern bins. 

Subplots (B) to (G) correspond to bin NA5. (B) Simulated average daily 

photosynthetic active radiation (IPAR, W m
-2

).  This subplot is restricted to the top 

100 m of the water column, and shows the depth of the euphotic zone defined as 

the depth at which light limitation is lower than 1% (LimI ≤ 10
−2, solid line). (C) 

Climatological WOA temperature (T, 
o
C). Optimized NPZD model daily averaged 

concentrations of (D) nutrients, (E) phytoplankton, (F) zooplankton, and (G) 
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detritus in mmol N m
-3

. The black solid lines in panels (C) to (G) show the 

climatological mixed layer depth. 

 

Although phytoplankton carbon biomass estimates derived from scattering 

properties may be influenced by the particle size distribution (Dall’Olmo et al., 2009), 

they have been shown to represent phytoplankton biomass well (Behrenfeld and Boss, 

2006, 2003; Siegel et al., 2005; Westberry et al., 2008). Comparing the model results 

against such estimates, instead of satellite chlorophyll, also avoids further model 

assumptions about the Chl:C ratio, as chlorophyll concentrations may vary independently 

from biomass due to physiological changes driven by light and nutrient availability 

(Geider, 1987; Geider et al., 1998; Wang et al., 2009). 

I also use the corresponding mixed layer depth climatology for each bin, which 

was constructed using output from the Simple Ocean Data Assimilation (SODA) model 

(1998 to 2004) and the Fleet Numerical Meteorology and Oceanography Center 

(FNMOC) model (2005 to 2006) (see Behrenfeld, 2010 and citations therein). Both 

models are data-assimilative (i.e., they incorporate available observations to attain the 

best possible representation of the ocean state), and the resulting mixed layer depth 

climatology agrees well with climatological values derived from available high vertical 

resolution temperature and salinity profiles from 1941 to 2002 (de Boyer Montégut et al., 

2004). In addition, sea temperature profiles from the World Ocean Atlas 2009 (WOA) 

climatology provide physical forcing to the model, and WOA nitrate profiles (Garcia et 

al., 2010) are used to restore nutrient concentrations at depth. 
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2.2.2 BASE MODEL DESCRIPTION 

I use a vertically resolved, nitrogen-based NPZD model to replicate the 

climatological annual cycles of satellite-based phytoplankton biomass in my study bins. 

While more complex models (i.e., those that simulate more state variables and pathways) 

may be more realistic than this simple NPZD model, the increased complexity adds more 

parameterizations and more poorly known parameters (Denman, 2003; Anderson, 2005). 

Choosing a simple model makes it easier to constrain the model dynamics with limited 

observations, and allows for easier exploration and interpretation of the effects of 

perturbing isolated variables. 

The model simulates the top 300 m of the ocean with a vertical resolution of 5 m. 

The vertical grid is divided into two distinct layers: a turbulent surface mixed layer (layer 

1) and a quiescent layer below (layer 2). The annual cycle of mixed layer depth (HMLD in 

m) is imposed and determines how many grid cells are in each layer at a given point in 

time.  A high diffusivity is assigned to all grid cells above the prescribed 𝐻𝑀𝐿𝐷 

(representing the active layer 1) and ensures complete mixing within the mixed layer on a 

time scale of 1 day (kD1 = HMLD
2
; m

2
 d

-1
). A low diffusivity (kD2 = kD1 × 10

-3
; m

2
 d

-1
) is 

assigned to all grid cells below (representing the quiescent layer 2). All biological 

parameters along with their units, and other symbols used throughout the text are listed in 

Table 2.1. 

Phytoplankton (P; mmol N m
-3

) and zooplankton (Z; mmol N m
-3

)  prey-predator 

dynamics are represented as follows:  
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𝜕𝑃

𝜕𝑡
=  𝜇𝑚𝑎𝑥𝐿𝑖𝑚𝑁𝐿𝑖𝑚𝐼𝑃 − 𝑔𝑍 − 𝑙𝑃𝑁 𝑃 − 𝑙𝑃𝐷 𝑃 − 𝑤𝑃

𝜕𝑃

𝜕𝑧
+ 

𝜕

𝜕𝑧
(𝑘𝐷

𝜕𝑃

𝜕𝑧
)  (2.1) 

𝜕𝑍

𝜕𝑡
= 𝛽𝑔𝑍 – 𝑙𝑍𝑁 𝑍 − 𝑙𝑍𝐷 𝑍

2  +  
𝜕

𝜕𝑧
(𝑘𝐷

𝜕𝑍

𝜕𝑧
), (2.2) 

where the phytoplankton maximum growth rate (μmax; d
-1

) is modulated by nutrient 

limitation (LimN) and light limitation (LimI) factors, both dimensionless.  Nutrient 

limitation follows 𝐿𝑖𝑚𝑁 = 
𝑁

𝑘𝑁+𝑁
, where 𝑘𝑁 (mmol N m

-3
) is the half-saturation constant 

for nutrient uptake. Light limitation is formulated as 𝐿𝑖𝑚𝐼 = 
𝛼𝐼𝑃𝐴𝑅

√𝜇𝑚𝑎𝑥
2 + 𝛼2𝐼𝑃𝐴𝑅

2
 (Evans and 

Parslow, 1985; Smith, 1936), where the photosynthetically active radiation (IPAR, W m
-2

) 

is a fraction equal to 43% of the total solar radiation. IPAR decreases exponentially with 

depth (z; m) according to 𝐼𝑃𝐴𝑅(𝑧) =  0.43𝐼0
−𝑧 𝑘𝐼 , where kI =0.1 m

-1 
is the light attenuation 

coefficient. 𝐼0 is the total incoming solar radiation below the sea surface; it is simulated 

using the astronomical formula (Brock, 1981), allowing for diel variations and assuming a 

40% attenuation by the atmosphere and a solar constant of 1366.1 W m
-2

.  Temperature 

dependency of the maximum growth rate of phytoplankton is included by a Q10 

formulation according to 𝜇𝑚𝑎𝑥 = 𝜇0 1.88
𝑇
10𝑜𝐶⁄  (d-1

; Eppley, 1972), where μ0 is the 

maximum growth rate at 0℃, and T is the local temperature. The parameters lPN, lPD (d
-1

) 

are the metabolic loss and mortality rates of phytoplankton, and depend on temperature 

according to the same Q10 formulation as 𝜇𝑚𝑎𝑥. Phytoplankton metabolic losses feed into 

the nutrient pool, while mortality losses feed into the detritus pool.  The last two terms of 

equation 2.1 represent phytoplankton sinking at a speed 𝑤𝑃 and vertical mixing. 
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In Equation 2.2, zooplankton grazing follows a sigmoidal functional form 

𝑔 =  𝑔𝑚𝑎𝑥
𝑃2

𝑘𝑃
2+𝑃2

, where 𝑔𝑚𝑎𝑥 (d
-1

) is the maximum grazing rate and 𝑘𝑃 (mmol N m
-3

) is 

the half-saturation for phytoplankton ingestion. Zooplankton assimilates only a 

dimensionless fraction 𝛽 of the total consumed phytoplankton; the rest enters the detritus 

pool. The parameters 𝑙𝑍𝑁  (d
-1

) and 𝑙𝑍𝐷  (d
-1

 (mmol N m
-3

)
-1

) represent zooplankton 

excretion and mortality rates, which feed into the nutrient and detritus pools, respectively. 

They also depend on temperature according to the Q10 formulation described above. The 

equations for detritus and nutrients are:  

𝜕𝐷

𝜕𝑡
= ((1 −  𝛽)𝑔 + 𝑙𝑍𝐷 𝑍)𝑍 + 𝑙𝑃𝐷 𝑃 − 𝑟𝐷𝑁 𝐷 –𝑤𝐷

𝜕𝐷

𝜕𝑧
+

𝜕

𝜕𝑧
(𝑘𝐷

𝜕𝐷

𝜕𝑧
)  (2.3) 

  

𝜕𝑁

𝜕𝑡
= −𝜇𝑚𝑎𝑥 𝐿𝑖𝑚𝑁𝐿𝑖𝑚𝐼𝑃 + 𝑙𝑃𝑁 𝑃 + 𝑙𝑍𝑁 𝑍 + 𝑟𝐷𝑁 𝐷 +

𝜕

𝜕𝑧
(𝑘𝐷

𝜕𝑁

𝜕𝑧
) +

 𝛾(𝑁𝑊𝑂𝐴 −𝑁). 

(2.4) 

Sources of the detrital pool are phytoplankton mortality (lPD P), zooplankton 

mortality (lZD Z
2
) and the fraction of unassimilated ingestion ((1 - β) g Z), which 

represents sloppy feeding and egested fecal pellets. Detritus is remineralized back to the 

nutrient pool at the rate 𝑟𝐷𝑁 and sinks at a velocity of 𝑤𝐷 (m d
-1

; Equation 2.3). Taking 

into account the limitations of my one-dimensional model, simulated subsurface nutrient 

concentrations are weakly nudged to the WOA nitrate climatology with the term 

𝛾(𝑁𝑊𝑂𝐴 −𝑁) in Equation 2.4, where 𝛾 is the nudging strength (d
-1

). The highest nudging 

strength is applied to the bottom grid cells, lower nudging strength to the mid-water grid 

cells and no nudging to the surface according to: 



 20 

𝛾 =  

{
 

 

 
0 , 𝑓𝑜𝑟 𝑧 < min(𝐻𝑀𝐿𝐷)                                               
1

90 𝑑
 , 𝑓𝑜𝑟min(𝐻𝑀𝐿𝐷) ≤ 𝑧 < max(𝐻𝑀𝐿𝐷)                  

1

30 𝑑
 , 𝑓𝑜𝑟 𝑧 ≤ max(𝐻𝑀𝐿𝐷)                                            

, 

(2.5) 

where min(𝐻𝑀𝐿𝐷) and max(𝐻𝑀𝐿𝐷) are the minimum and maximum depth of the mixed 

layer during the annual cycle.  

2.2.3 COST FUNCTION DESIGN 

The model is optimized for each of the 6 bins shown in Figure 2.1A, such that the 

simulated annual cycles of surface phytoplankton best reproduce the available 

observations. As stated in Chapter 1, parameter optimization consists of systematically 

adjusting the model parameters, in order to minimize a cost function that measures the 

mismatch between observations and their model counterparts. The model spins up for 7 

years to reach dynamical steady state and, once it has reached equilibrium, an additional 

year of model output is used to calculate the cost function (F(p)), which is defined as: 

𝐹(𝑝⃗) =  ∑𝑤𝑖  (𝑃𝑖
𝑜𝑏𝑠 − 𝑃 𝑖

𝑠𝑖𝑚(𝑝⃗))
2

𝑛

𝑖=1

 
(2.6) 

where 𝑝⃗ is a vector that contains the 13 unknown biological parameters described in 

Table 2.1; 𝑛 = 365 is the number of days in the annual cycle; 𝑃𝑜𝑏𝑠 is Behrenfeld (2010)’s 

satellite-based phytoplankton carbon biomass climatology transformed into units of 

nitrogen; and 𝑃𝑠𝑖𝑚  are daily averages of the surface phytoplankton concentrations 

simulated using each 𝑝⃗. To emphasize the initiation of the spring bloom, the first 150 

days i=1,…,150 have a higher weight wi =3 (m
3
(mmol N)

-1
)
2
, while 

wi = 1(m3(mmolN)-1)2 , i=151,…,365 is used for the rest of the year.  
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The optimization is implemented using an evolutionary algorithm described in 

chapter 1. In this chapter, the algorithm runs with a total of 30 parameter sets (𝑝⃗). The 

initial parameter population is randomly generated within a range of minimum and 

maximum parameter values based on observational and modelling literature shown in 

Table 2.1. In addition to the algorithm crossover mechanism, parameter sets are subjected 

to random mutations in 6 of their 13 parameter values by adding normally distributed 

random values with zero mean and a standard deviation of 5% of the respective 

parameter’s range.  

As the model is compared only to phytoplankton surface observations, it is 

difficult to effectively constrain the complete set of parameters. Ward et al. (2010) 

concluded that there is not a perfect solution to deal with the problem of under-

determination of model parameters: if only a subset of parameters is optimized and the 

unconstrained parameters are fixed to precise values, the model cost is strongly affected 

by these default values. As parameters may co-vary during their evolution (e.g., Schartau 

and Oschlies, 2003), fixing some parameters will also affect the optimized parameter 

values. For these reasons, specifying the possible range of parameter values becomes 

important (Fennel et al., 2001; Schartau et al., 2001; Schartau and Oschlies, 2003). 

Within the algorithm, the minimum and maximum range is enforced after the mutation 

step to avoid unrealistic parameter values; when a parameter value is outside of its range, 

it is replaced by the corresponding minimum or maximum limit, plus or minus a 

uniformly distributed random value multiplied by 1% of the parameter range. In 

comparison to gradient descent methods, the algorithm allows a free random exploration 
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of the whole parameter space defined by the possible range of parameter values, and is 

less prone to finding local optima (Ward et al. 2010). 

I individually ran three replicate optimizations of 200 generations of the algorithm 

for each spatial bin (parameter sets NA1p to NA6p). An additional optimization was 

performed jointly for all bins (∑NA), using a joint cost function that is the sum of the 

individual cost functions F(𝑝⃗) for each bin. In all cases, the algorithm rapidly minimizes 

differences between the observations and model output within approximately 10 

generations and the variance in the cost values of the parent population decreases 

significantly after 20 generations. For example, in bin NA5 the variance in the cost values 

of the parent population decreases from σ
2
 = 85.91 (mmol N m

-3
)
2
 to σ

2
 = 0.06 (mmol N 

m
-3

)
2
 after 20 generations. At the end of the algorithm, the individual optimizations show 

an average cost reduction of 87.8±10%, while the joint optimization reduces the cost 

function by 86%.  

2.2.4 BASE MODEL SENSITIVITY 

I estimated the sensitivity of the model results to the biological parameters 

qualitatively by doubling and halving each optimal parameter value and rerunning the 

model (section 2.3.2). I also analyzed the model sensitivity to perturbations in forcing and 

state variables using a second-order Taylor series expansions of the system of equations 

(section 2.3.3).  

Taylor series expansions have been used to evaluate non-linear radiative 

feedbacks in atmospheric models (Colman et al., 1997) and interannual variability in air-

sea CO2 flux in a biogeochemical ocean model (Previdi et al., 2009).  For this analysis, 
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the model is denoted as 
𝜕𝑥⃗

𝜕𝑡
= 𝜑(𝑥⃗) where 𝑥⃗ is the vector of forcing and state variables 

including N, P, Z, D, PAR, T and HMLD. A small perturbation of the model state, 𝛿𝑥⃗, will 

produce a change 𝛿𝜑 in the model dynamics, that can be approximated by the first two 

terms of the Taylor Series:  

𝛿𝜑(𝑥⃗)  ≈  ∑
𝜕𝜑(𝑥⃗)

𝜕𝑥𝑖
𝛿𝑥𝑖

𝑛

𝑖=1

+
1

2
∑∑

𝜕2𝜑(𝑥⃗)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑛

𝑗=1

𝛿𝑥𝑖𝛿𝑥𝑗

𝑛

𝑖=1

 
(2.7) 

The first-order partial derivatives provide estimates of the model’s sensitivity to a 

change in each individual variable; the second-order derivatives provide an indication of 

how the model’s sensitivity to changes in 𝑥𝑖 depends on 𝑥𝑗 and vice versa. I perturb each 

variable individually by +10% of its annual range (for HMLD) or its range at the surface 

(for the vertically resolved variables). The perturbations are imposed over the optimized 

steady cycle solution throughout the whole year and at all depths (for the vertically 

resolved variables). 

2.2.5 SPRING BLOOM INITIATION METRICS 

In my analysis of spring bloom initiation I use two timing metrics, which have 

been previously used in the literature: 1) the day when a surface phytoplankton 

concentration threshold is exceeded (Day
P*

) and 2) the day when the net phytoplankton 

accumulation rate becomes positive (Day
r*

). Defining when the spring bloom effectively 

starts or which of these two metrics should be used to define it is not an objective of this 

study and left to other investigators (e.g., Brody et al., 2013). The metrics are intended to 

evaluate the effects of different processes on spring bloom initiation. 
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The concentration threshold is a commonly used metric defining bloom initiation 

as the first day that concentrations rise more than 5% above the median of the annual 

cycle (Henson et al., 2009, 2006; Platt et al., 2009; Siegel et al., 2002). A drawback of 

this method is that the amplitude and duration of the bloom affect the threshold value and 

thus can compromise the ability of this method to identify timing dissimilarities between 

individual annual cycles, as illustrated by Brody et al. (2013). While this is not a problem 

when comparing observations and optimized model results, which have similar threshold 

values, the experimental simulations discussed in section 2.4 exhibit a large range of 

annual amplitudes and bloom characteristics. In order to use the same threshold metric for 

both optimized and experimental simulations, I define the bloom onset, Day
P*

, after 

normalizing the simulated surface phytoplankton annual cycles according to: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑃 =  
𝑃 − min (𝑃)

max(𝑃) − min (𝑃)
 

(2.8) 

The threshold for bloom onset is then defined as 5% above the median of the 

normalized annual cycle.  

The second metric of bloom timing, Day
r*

, identifies the date when the transition 

from a decreasing to an increasing phytoplankton inventory occurs. It is based on the 

phytoplankton inventory accumulation rate (r
*
), which is defined as the rate of change of 

vertically integrated phytoplankton. While this inventory value can be calculated from 

model output, satellite observations do not provide information of the phytoplankton 

vertical structure. Thus I approximate 𝑟∗ as in Behrenfeld (2010) and Behrenfeld et al. 

(2013). The time-varying depth of the euphotic zone required for this calculation is 
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defined as the depth at which LimI ≤ 10
-2 

(Figure 2.1B). High frequency variability in 𝑟∗ is 

smoothed by applying a 90-day boxcar averaging, and Day
r*

 is then defined as the first 

day (in between one spring bloom and the next) when 𝑟∗ becomes positive (Figure 2.3).  

Table 2.1: Ecosystem model parameters and symbols used throughout the text. For 

parameters that were optimized the allowed range during the optimization is 

shown.   Sources: 
a
Fennel et al. (2006); 

b
Schartau and Oschlies (2003); 

c
Sarthou et 

al. (2005); 
d
Fahnenstiel et al. (1995); 

e
Veldhuis et al. (2005); 

f
Bagniewski et al. 

(2011), 
g
Smayda ( 1974); 

h
Bienfang (1981); 

i
Smayda and Bienfang (1983); 

j
Walsby and Holland (2006); 

k
Gifford et al. ( 1995); 

l
Netjstgaard et al. ( 2001, 

1997); 
m

Landry et al. (1984); 
n
Tande and Slagstad (1985); 

o
Evans and Parslow 

(1985); 
p
Behrenfeld (2010) 

Parameter 

 

Description Range or 

value 

Units 

Phytoplankton (P) parameters 

𝛼 Initial photosynthetic slope 0.02 – 0.25
a, b 

(Wm
-2

)
-1

 d
-1

 

𝜇0 Maximum growth rate at T = 0°C 0.02 – 2.0
 c, d, e 

 d
-1 

𝑘𝑁 Half-saturation coefficient of nutrient uptake 0.05 – 3.5
c
 mmol N m

-3  
𝑙𝑃𝑁 Phytoplankton respiration rate at T = 0°C 0.005 – 0.25

c
 d

-1
 

𝑙𝑃𝐷 Phytoplankton mortality rate at T = 0°C 0.01 – 0.25  d
-1

 

𝑤𝑃 Sinking rate of phytoplankton 0.025 – 2.5
 c, g, h, 

i, j 
 

m d
-1

 

Zooplankton (Z) parameters 

𝑔𝑚𝑎𝑥 Maximum grazing rate 0.2 – 3.0
c, d, k, l,  

  d
-1

 

𝑘𝑃 Half-saturation coefficient of grazing 0.5 – 5.0
a
  mmol N m

-3
 

𝛽 Zooplankton assimilation efficiency 0.25 – 0.95
m, n 

 non-dimensional 

𝑙𝑍𝑁 Zooplankton excretion rate at T = 0°C 0.01 – 0.25
a
 d

-1
 

𝑙𝑍𝐷 Zooplankton mortality rate at T = 0°C 0.02 – 0.35
a, b

  d
-1

 

Detritus (D) parameters 

𝑟𝐷𝑁 Remineralization rate 0.015 – 0.15
b
  d

-1
 

𝑤𝐷 Sinking rate of detritus 0.05 – 25
a
  m d

-1
 

Additional symbols and non-optimized parameters 

𝑃𝑜𝑏𝑠 Phytoplankton biomass climatology from 

satellite 

- mmol N m
-3

 

T WOA Temperature climatology - ℃ 

𝑁𝑊𝑂𝐴 WOA NO3 climatology - mmol N m
-3

 

𝐻𝑀𝐿𝐷 SODA & FNMOC mixed layer depth 

climatology 

- m 

𝐼0 Total incoming solar radiation at the ocean’s 

surface 

- W m
-2

 

IPAR Photosynthetic active radiation - W m
-2

 

LimI Light limitation factor for phytoplankton 

growth 

- non-dimensional 
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Parameter 

 

Description Range or 

value 

Units 

LimN Nutrient limitation factor for phytoplankton 

growth 

- non-dimensional 

𝑘𝐷1 Diffusivity coefficient above the mixed layer 

depth 

- m
2
 d

-1 

𝑘𝐷2 Diffusivity coefficient below the mixed layer 

depth 

- m
2
 d

-1
 

𝑘𝐼 Light attenuation coefficient 0.1
o 

m
-1

 

𝛾 Nudging strength Eq. 2.5 d
-1

 

R Vertically integrated phytoplankton growth 

minus vertically integrated phytoplankton 

losses 

Eq. 2.9 mmol N m
-2

 

𝐻𝑐𝑟 Critical-depth, defined as where R = 0 - m 

𝐻𝑒𝑢𝑝ℎ Depth of the euphotic zone, defined as the 

depth at which LimI < 1% 

- m
 

Optimization 

𝑝 Parameter set (P, Z, and D parameters in this 

table) 

- - 

𝐹(𝑝) Cost value of parameter set p Eq. 2.6 - 

𝑃𝑠𝑖𝑚 Simulated surface phytoplankton in the cost 

function 

- mmol N m
-3

 

w Weight in the cost function - (m
3
 (mmol N)

-1
)

2
  

NA#𝑝 Individually optimized parameter set - - 

∑𝑁𝐴𝑝 Jointly optimized parameter set - - 

Sensitivity analyses 

𝛥max (𝑃) Change in maximum annual surface 

phytoplankton concentrations 

- mmol N m
-3

 

𝛥max (𝑟∗) Change in maximum annual phytoplankton 

inventory accumulation rates 

- d
-1

 

𝛥𝐷𝑎𝑦𝑃∗ Change in the date of bloom initiation 

according to 𝐷𝑎𝑦𝑃∗ 
- d 

𝛥𝐷𝑎𝑦𝑟∗ Change in the date of bloom initiation 

according to 𝐷𝑎𝑦𝑟∗ 
- d 

𝜑 System state in the Taylor decomposition 

analysis 

- - 

𝑥⃗ Vector of the model’s variables in the Taylor 

decomposition analysis 

- - 

Bloom timing metrics 

normalized 

P 

Normalized annual cycle of surface 

phytoplankton biomass used to define 𝐷𝑎𝑦𝑃∗ 
Eq. 2.7 non-dimensional 

𝑟∗ Phytoplankton inventory accumulation rate
p
, 

shortly referred as accumulation rate, used to 

define 𝐷𝑎𝑦𝑟∗  

-  d
-1

 

𝐷𝑎𝑦𝑃∗ Date of bloom initiation, biomass-based 

metric 

- Day of Year 

𝐷𝑎𝑦𝑟∗ Date of bloom initiation, phytoplankton 

inventory accumulation rate metric 

- Day of Year 

Experimental simulations 
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Parameter 

 

Description Range or 

value 

Units 

𝜉 Zooplankton accumulation term or 

entrainment  

Exp. I mmol N m−3d−1  

𝜉

𝑍 𝛽𝑔
 

Zooplankton entrainment over grazing Exp. I non-dimensional 

𝑍𝑡𝑜𝑡𝑎𝑙 Total zooplankton biomass in the mixed 

layer 

Exp. III mmol N m−2 

𝐻𝑀𝐿𝐷
∗  Idealized mixed layer depth  Exp. III m 

 

2.2.6 EXPERIMENTAL SIMULATIONS 

Using the optimized models as a base, I proceed to perform three experiments 

aimed to examine whether and under what conditions the bloom initiation mechanisms 

portrayed in the critical-depth and dilution-recoupling hypotheses occur in the system. 

The experiments are summarized in Table 2.4, and changes made to the model 

configurations in order to run each experiment are explained along the experiments’ 

results in section 2.4. Experiment I tests the addition of a mechanism that concentrates 

zooplankton in response to a shoaling mixed layer. Experiment II evaluates the system’s 

response in the absence of mixed layer fluctuations. The final Experiment III further 

focuses on the effects of direct and physically driven changes in zooplankton biomass, 

forcing them to be completely decoupled from changes in food availability.  Results of 

the experiments are here exemplified using bin NA5 and are consistent over all bins 

(Appendix A). 

2.3 OPTIMIZED SIMULATION RESULTS 

2.3.1 PLANKTON ANNUAL CYCLES  

In general, the optimized simulations represent the observed surface 

phytoplankton well (Figure 2.2), especially during the spring bloom initiation. The 
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solutions also show low bias and root-mean-square errors, and are highly correlated with 

the observations (Table 2.2), accomplishing the purpose of the optimization algorithm. 

The model tends to underestimate phytoplankton during the bloom peak, and produces a 

delayed fall bloom in the northern bins. A fall bloom, which is not present in the 

observations, is also simulated in the southern bins. Aside from differences in the fall 

concentrations, the development of the spring bloom and the annual cycle of 

phytoplankton are captured remarkably well in the individually and jointly optimized 

models, especially when considering the model’s simplicity. The model also captures 

other aspects of real plankton communities such a subsurface phytoplankton biomass 

maximum during summer (Figure 2.1E) and the spatial increase in average phytoplankton 

concentrations from southern to northern bins (Figure 2.2, Appendix A).  

 
Figure 2.2: Comparison between satellite-based phytoplankton biomass (P

obs
) and daily 

averaged simulated phytoplankton using jointly (∑NA𝑝) and individually (NA#𝑝) 

optimized parameters. The solid vertical lines mark the day of bloom initiation 



 29 

according to the biomass based metric DayP
∗
 in the observations (thick line with 

inverted triangle on top) and individually optimized simulations (thin line).  

 

Simulated zooplankton concentrations are very low in winter, start increasing 

rapidly in April and peak about the same time as phytoplankton, matching or exceeding 

phytoplankton concentrations. Zooplankton then decrease in parallel with phytoplankton 

from June to October and remain low throughout winter. Unfortunately no observations 

specific to the area can be directly used to validate or constrain parameters of the 

zooplankton functional group in my model (i.e., a combination of micro- and 

mesozooplankton). Because they are limited to larger species, zooplankton estimates from 

Continuous Plankton Recorder observations are better used to qualitatively validate 

models with a separate mesozooplankton group (e.g., Lewis et al., 2006). Nonetheless, 

the simulated zooplankton cycles agree qualitatively with the annual cycle of copepod 

abundances in the area (Colebrook, 1979). 

The individually optimized models replicate the observed Day
P*

accurately with an 

average bias of 7.8 days (Table 2.3, Figure 2.2); that is, according to the biomass 

threshold method, the simulated bloom initiation precedes the observed by about a week. 

The second metric Day
r* 

is also accurate, exhibiting an average bias of 4.3 days. In my 

simulations, positive accumulation rates occur during winter as in the observations 

(Figure 2.3, 2. 3), which is a key criticism of the critical depth hypothesis. In comparison 

to the individually optimized results, slightly larger misfits are observed using the jointly 

optimized parameters, especially with respect to Day
P*

 and Day
r* 

(Table 2.3). For that 
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reason I choose to use the individually optimized parameters throughout the remainder of 

the manuscript. 

 

Figure 2.3: Phytoplankton inventory net accumulation rates, r*, estimated from the 

phytoplankton biomass observations (black line) and from the simulations using 

jointly (∑NA𝑝, thick pink line) and individually (NA#𝑝, thin purple line) 

optimized parameters. The solid vertical lines mark the day of bloom initiation 

according to the accumulation rate metric (Dayr
∗
) in the observations (thick line 

with inverted triangle on top) and individually optimized simulations (thin line). 

In the bottom panels the thick and thin vertical lines coincide. 

 

2.3.2 OPTIMAL PARAMETER VALUES 

The individually optimized parameters show spatial differentiation between 

northern and southern bins (Figure 2.4), mainly driven by the parameter values of detrital 

sinking (wD), grazing rate (μmax), the nutrient uptake half-saturation (kN), and the 

phytoplankton growth parameter (μ0). The first and second principal components (PC1 
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and PC2) explain 87% and 6.4% of the variance among parameter sets. The parameter wD 

explains 98% of PC1 and 15% of PC2 (85% of total variance); μmax gmaxexplains 11% of 

PC1 and 75% of PC2 (7% of total variance); kN explains 9% of PC1 and 62% of PC2 

(6.8% of total variance); and μ0 explains 6% of PC1 and 15% of PC2 (0.6% of total 

variance). The parameter wD is higher in the southern bins, whereas gmax andwP μ0 are 

higher in the northern bins. kN does not vary consistently with latitude. As northern and 

southern bins are different in terms of light, mixed layer depth, nutrient and chlorophyll 

regimes (Henson et al., 2009), the differences in parameter values reflect these features 

(Appendix B.). It is important to reiterate that despite the small spatial differences in these 

parameters, model solutions using the jointly optimized parameter set ∑NAp are very 

similar to the individually optimized ones (Table 2.2, 2.3; Figure 2.2, 2.3). 

Table 2.2: Optimal parameters resulting from individual and jointly optimizations. The 

variance (σ2) of optimal parameters with respect to all bins and the joint 

optimization is shown as a reference of spatial differences in parameter values. 

The cost value (F), root mean square error (RMSE) and goodness of fit (r
2
) are 

shown as metrics comparing the performance of simulated surface phytoplankton 

with respect to satellite-based phytoplankton biomass.  

 NA1 NA2 NA3 NA4 NA5 NA6 ∑𝐍𝐀 𝝈𝟐 

𝛼 0.1149 0.1472 0.1115 0.1835 0.2099 0.1249 0.1953 0.0017 

𝜇0 0.9174 0.9280 0.9918 0.5976 0.7894 0.6548 0.6989 0.0232 

𝑘𝑁 2.4856 2.0795 1.7406 2.1135 3.4151 2.3549 2.3868 0.2754 

𝑔𝑚𝑎𝑥  3.4191 2.6684 2.4796 2.1533 2.0811 1.8010 2.1522 0.2832 

𝑘𝑃
2 0.8048 0.5208 0.5012 0.5109 0.5373 0.5470 0.5573 0.0113 

𝛽 0.9108 0.9178 0.9169 0.8038 0.8781 0.9463 0.9116 0.0021 

𝑙𝑃𝑁 0.0065 0.0061 0.0094 0.0052 0.0062 0.0088 0.0066 0.0000 

𝑙𝑃𝐷 0.0116 0.0124 0.0124 0.0102 0.0109 0.0109 0.0101 0.0000 

𝑙𝑍𝑁 0.0191 0.0109 0.0102 0.0193 0.0133 0.0102 0.0102 0.0000 

𝑙𝑍𝐷 0.2757 0.3948 0.3984 0.3693 0.3998 0.3954 0.3395 0.0021 

𝑟𝐷𝑁 0.1217 0.1490 0.1218 0.1402 0.1401 0.1455 0.1213 0.0001 
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 NA1 NA2 NA3 NA4 NA5 NA6 ∑𝐍𝐀 𝝈𝟐 

𝑤𝐷 4.3870 2.7667 2.2903 6.9805 5.0400 6.3737 2.7489 3.4671 

𝑤𝑃 0.1260 0.1279 0.1115 0.1330 0.1117 0.1118 0.2551 0.0027 

𝐹 0.4095 0.3800 0.5840 0.8760 0.5475 0.8395 5.3290 - 

RMSE 

(NA#𝑝) 
0.0313 0.0308 0.0334 0.0446 0.0354 0.0405 - - 

RMSE 

(∑NA𝑝) 
0.0409 0.0406 0.0429 0.0406 0.0383 0.0455 - - 

r
2(NA#𝑝) 0.75 0.84 0.84 0.83 0.90 0.85 - - 

r
2(∑NA

𝑝
) 0.75 0.80 0.78 0.85 0.88 0.89 - - 

 

Overall, the algorithm favored optimal values of μ0 between 0.6 d
-1

 and 1 d
-1

. 

Accounting for the effect of temperature dependency on phytoplankton growth, realized 

maximum growth rates (μmax), are within the range of observed values (Fahnenstiel et al., 

1995b; Sarthou et al., 2005). For example, in bin N5 μmax ranges between 1.48 d
-1 

and 

2.46 d
-1

 given temperatures between 10ºC and 18ºC. The phytoplankton metabolic loss 

and mortality rates consistently show a tendency toward the lower limit imposed in the 

optimization. The excretion rate of zooplankton also tends toward low values, whereas 

the zooplankton mortality rates and assimilation efficiency tend toward values at the 

upper limit (Table 2.2). Although these estimates are close to those applied in other 

ecosystem models, the algorithm’s behaviour may be influenced by the limited 

availability of observations (Schartau and Oschlies, 2003). A detailed discussion of these 

tendencies is outside the scope of this manuscript and may distract from the objectives of 

this analysis. Nevertheless, as experimental results may be influenced by the choice of 

parameter values, it is important to estimate how they affect the model response.  
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Figure 2.4: Results of the principal component analysis of optimized parameters, showing 

the scaled arrangement of optimized parameter sets projected onto the first and 

second principal component (PC1, PC2). Solid black symbols represent parameter 

sets for the southern bins (∑NAp NA1p to NA3p), empty symbols are for the 

northern bins (NA4p to NA6p), and the gray diamond corresponds to the jointly 

optimized parameter set (∑NA). The distance between their symbols is 

representative of how different the parameter sets are. The location of the symbols 

𝑤𝐷 , 𝑔𝑚𝑎𝑥, 𝑘𝑁, 𝜇0 represents the scaled contribution of these parameters to the 

variance explained by PC1 and PC2.  

 

By analyzing the model sensitivity to doubling and halving each optimized 

parameter value (Figure 2.5), I observe that 𝑤𝐷 has a negligible impact on the 

phytoplankton annual cycle, which explains why ΣNAp parameters are able to fit all 

observed cycles despite differences in this parameter (Figure 2.4). Most interestingly, I 

find that parameters that primarily affect the phytoplankton formulation (α, μ0, kN, wP, lPN, 

lPD) modify the shape of the climatological annual cycle, and affect the slope of bloom 

development and thus timing of the bloom. In particular, the model is highly sensitive to 

changes in μ0; doubling its value produces an earlier increase in phytoplankton, while 

halving it produces a delayed and more abrupt bloom.  
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Figure 2.5: Sensitivity of the simulated surface phytoplankton biomass (P) and inventory 

accumulation rate (r∗) to halving (empty symbols) and doubling (filled symbols) 

optimal parameter values, exemplified by results in bin NA5. (A) and (B) show 

the change in the date of bloom initiation according to the biomass-based metric 

(𝛥𝐷𝑎𝑦𝑃∗) and the accumulation rate metric (𝛥𝐷𝑎𝑦𝑟∗), as well as the change in 

maximum phytoplankton biomass and accumulation rates (𝛥max (𝑃) and 

𝛥max (𝑟∗), respectively). Different symbols are used to represent the biological 

variable each parameter primarily modifies (i.e., phytoplankton (P, green circles), 

zooplankton (Z, blue triangles) or detritus (D, purple squares)). These values were 

obtained by comparing the optimized results against the sensitivity tests (i.e., test 

minus optimized simulation). Subplots (C) to (F) show how the temporal 

evolution of phytoplankton biomass and net phytoplankton accumulation rate 

responds to variations in parameters μ0 and gmax. As a reference, the inverted 

triangles on top of the x-axes show the date of bloom initiation in the observations 

according to the biomass-based metric (black, (C) and (D)) and the metric based 

on the accumulation rate (white, (E) and (F)). 

 

The opposite effect is observed when modifying the loss rates lPN and lPD. 

Parameters that directly affect grazing (gmax, kP, β, lZN, lZD) modify the average 
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phytoplankton concentrations throughout the year, but mostly preserve the shape of the 

phytoplankton annual cycle. Phytoplankton is not sensitive to changes in zooplankton 

excretion (lZN), and only sensitive to zooplankton mortality (lZD) during summer.  

Table 2.3: Spring bloom initiation metrics estimated using the satellite-based 

phytoplankton biomass (𝑃𝑜𝑏𝑠), and simulated surface phytoplankton using 

individually optimized parameters  (NA#𝑝) for each bin, and jointly optimized 

parameters (∑𝑁𝐴𝑝) for all bins. 𝐷𝑎𝑦𝑃∗ is the biomass-based metric and 𝐷𝑎𝑦𝑟∗ is 

the metric based on the phytoplankton inventory accumulation rate.  

 𝑫𝒂𝒚𝑷∗ 𝑫𝒂𝒚𝒓∗ 

 𝑷𝒐𝒃𝒔 𝐍𝐀#𝒑 ∑𝑵𝑨𝒑  𝑷𝒐𝒃𝒔 𝐍𝐀#𝒑 ∑𝑵𝑨𝒑  

NA1 52 57 51 290 289 293 

NA2 74 60 57 286 284 290 

NA3 75 62 52 286 283 292 

NA4 97 95 93 294 284 286 

NA5 93 96 75 298 283 286 

NA6 82 68 61 319 294 296 

 

2.3.3 MODEL SENSITIVITY TO VARIABLES  

Results of the analysis of model sensitivity to perturbations in physical and 

biological variables (Figure 2.6) show that independent perturbations (i.e., 1
st
 derivative) 

of light, zooplankton and temperature result in the strongest effects on phytoplankton 

surface concentrations in spring, when increases in light and temperature lead to increases 

in phytoplankton, while increases in zooplankton lead to a decrease. Perturbations in light 

and temperature affect predominantly the surface, while zooplankton perturbations affect 

the entire water column. As nutrients are abundant during winter and spring, perturbing N 

only affects phytoplankton in summer and fall. Locally, changes produced by perturbing 

HMLD can be up to two orders of magnitude greater than those that result from perturbing 
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the other variables, but they only act to redistribute concentrations within the water 

column. The vertically integrated change in phytoplankton produced by perturbing the 

mixed layer is negligible (<10
-10

 mmol N m
-2

) when compared against vertically 

integrated changes produced by perturbations in all other variables (Figure 2.6F).  

 
Figure 2.6: Phytoplankton sensitivity to small perturbations in physical and biological 

variables, using a 2
nd

 order Taylor approximation. The surface subplots show the 

first order phytoplankton response to perturbations in (A) photosynthetic active 

radiation; (B) temperature; (C) mixed layer depth; (D) nutrient; and (E) 

zooplankton.  Subplot (F) shows the absolute vertically integrated 1
st
 (dashed) and 

1
st
 + 2

nd
 (solid) order terms of the Taylor approximations. The vertically 

integrated effect of perturbations to the mixed layer is negligible, as changes 

above and below the mixed layer offset each other. As a reference, the inverted 

triangles on top of the x-axes show the date of bloom initiation in the observations 

according to the biomass-based metric (black) and the metric based on the 

accumulation rate (white). 
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When comparing the absolute vertically integrated values, I notice that for the 

given set of optimized parameters the model is most sensitive to light and zooplankton, 

where the model’s sensitivity to light is the larger of the two terms for most of the year. 

When the second derivative terms are added (solid lines in Figure 2.6F), the overall effect 

of light is slightly decreased, but is still significantly higher than the effect of zooplankton 

during winter. The effect of perturbing zooplankton is equivalent in magnitude to the 

effect of perturbing light during April, at the time when the shoaling of the HMLD and the 

highest phytoplankton accumulation rates occur. 

Table 2.4: Brief description of the idealized experiment configurations and main 

conclusions.  

Experiment Treatment Conclusions 

Exp. I.  Zooplankton 

accumulation mechanism (i.e., 

entrainment): 

- Modified Eq. 4 

- Section 4.1  

- Figure 7 

Accumulation mechanism term 

added to Equation 4. 

Effects of zooplankton entrainment 

over phytoplankton are small. 

Zooplankton response is dominated 

by food availability.  

Exp. II. 

Constant mixed layer depth: 

- No seasonal fluctuations of 

mixed layer 

- 10 years experimental 

conditions 

- Section 4.2 

- Figure 8 

a. Constant HMLD = max (HMLD)  

b. Constant HMLD > max 

(Euphotic depth)  

c. Constant HMLD > min 

(Euphotic depth)  

d. Constant HMLD = min (HMLD) 

Shoaling of the mixed layer 

enhances phytoplankton growth by 

improving light conditions; as long 

as the shoaling does not 

compromise nutrient availability or 

phytoplankton residence time 

within the mixed layer.  

Zooplankton response is dominated 

by food availability. 

 

Exp. III. Part 1: Constant 

zooplankton biomass, varying 

total zooplankton 

concentrations: 

- Disrupted P to  Z feedback 

- Climatological 𝐻𝑀𝐿𝐷 

- 10 years experimental 

conditions 

- Section 4.3 

- Figure 9A-E 

a. Low zooplankton biomass 

(Ztotal = 5 mmol N m
-2

)
 

b. High zooplankton biomass 

(Ztotal = 10 mmol N m
-2 

)
 

 

Lower zooplankton biomass 

produces higher phytoplankton 

biomass overall. 

Changes in bloom initiation are 

small because the same nutrient 

level is available. 
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Experiment Treatment Conclusions 

Exp III. Part 2:  Constant 

zooplankton biomass, varying 

winter zooplankton dilution 

levels by changing winter 

mixed layer depth: 

- Disrupted P to  Z feedback 

- Idealized 𝐻𝑀𝐿𝐷
∗ with 

varying maximum winter 

depths 

- 10 years experimental 

conditions 

- Section 4.3 

- Figure 9F-J 

a. Low zooplankton biomass 

(max (𝐻𝑀𝐿𝐷
∗ ) = max (𝐻𝑀𝐿𝐷)) 

b. High zooplankton biomass 

(max (𝐻𝑀𝐿𝐷
∗ )  = 25 m)  

 

Shallow winter mixed layers 

produce increased winter 

phytoplankton biomass and 

accumulation rates despite high 

grazing rate and decreased nutrient 

availability. 

Shallow winter mixed layers 

enhance phytoplankton growth by 

improving light conditions. 

 

2.4 EXPERIMENTAL SIMULATIONS 

2.4.1 EXPERIMENT I: ZOOPLANKTON RESPONSE TO A SHOALING MIXED LAYER 

Early experiments with an idealized 0D model by Evans and Parslow (1985) 

examined how simulated phytoplankton annual cycles were influenced by seasonal 

fluctuations of the mixed layer. When conceptualizing their model, they postulated that 

phytoplankton and zooplankton respond asymmetrically to the shoaling of the mixed 

layer assuming that a deepening mixed layer equally dilutes both types of organisms, but 

that a shoaling of the mixed layer would affect motile zooplankton by concentrating them 

in the mixed layer while a fraction of the relatively motionless phytoplankton would 

remain below the mixed layer. This asymmetric response to a shoaling mixed layer is in 

line with the dilution-recoupling hypothesis, in the sense that the physically driven 

accumulation of zooplankton contributes to the recoupling of the planktonic prey-predator 

relationship (Behrenfeld, 2010). However, Evans and Parslow also showed that spring 

blooms can occur in the absence of mixed layer fluctuations (see section 2.4.2), which 

argues against the shoaling of the mixed layer as a mechanism for spring bloom initiation, 
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and indirectly dismisses the asymmetric response as a process involved in seasonal bloom 

dynamics. Furthermore, motile zooplankton may stay below the mixed layer to follow 

their prey, instead of tracking the mixed layer shoaling, because non-motile 

phytoplankton are not concentrated during the shoaling. 

In order to verify whether the hypothetical accumulation of zooplankton in 

response to a shoaling mixed layer has any effect on phytoplankton annual cycles in my 

model, I followed Evans and Parslow’s formulation of the mechanism by introducing the 

zooplankton accumulation term 𝜉 =  −
1

𝐻𝑀𝐿𝐷

𝑑𝐻𝑀𝐿𝐷

𝑑𝑡
 𝑍 on the right hand side of Equation 

2.2, and allowing it to take effect only when the mixed layer shoals, i.e., 
𝑑𝐻𝑀𝐿𝐷

𝑑𝑡
< 0. I 

expect a noticeable direct effect on zooplankton concentrations in the surface mixed layer 

and an indirect one on phytoplankton only if the term 𝜉 is significant in comparison to the 

zooplankton growth rate (i.e., the first term in Equation 2.2). The ratio of these two terms, 

the non-dimensional number 
𝜉

𝑍 𝛽𝑔
, is plotted in Figure 2.7A for a preliminary inspection of 

the potential effects of the zooplankton concentrating mechanism. High values of this 

number would indicate that the accumulation of zooplankton driven by the mixed layer 

shoaling contributes significantly to total biomass changes in the mixed layer, a condition 

that can only occur at low 𝛽𝑔 (i.e., low phytoplankton concentrations) and high 
𝜉

𝑍 
 (i.e., 

small HMLD and a rapidly shoaling mixed layer). The black dots in Figure 2.7A show that 

high values of 
𝜉

𝑍 𝛽𝑔
 do not occur at any time throughout year (

𝜉

𝑍 𝛽𝑔
 is always smaller than 

0.3). 
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Figure 2.7: (A) Relative contribution of the accumulation of zooplankton biomass due to 

a shoaling mixed layer (ξZ−1) over changes in zooplankton biomass due to 

assimilated grazing (βg) in bin NA5. Black dots show actual values of the non-

dimensional number 
ξ

Z βg
 from the optimized annual cycles, subsampled every 4 

days. (B) Annual cycle of changes in the mixed layer (
ΔHMLD

Δt
, black line) and 

percentual change in simulated surface phytoplankton (green line) and 

zooplankton (blue line) concentrations caused by the application of an explicit 

zooplankton response to the mixed layer shoaling. 

 

 

When the zooplankton accumulation mechanism is added to the model, only small 

differences in phytoplankton and zooplankton concentrations are observed. For instance, 

the metrics of bloom initiation change only by up to 2 days. Percentage changes in 

phytoplankton and zooplankton (Figure 2.7B) were evaluated by comparing model results 
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with and without the additional term in the zooplankton equation (
Experiment−Optimized

Optimized
 ×

 100). The mechanism produces a 10% increase in zooplankton concentrations between 

March and April; however, as zooplankton concentrations are very low during these 

months, the change in zooplankton concentration translates into a ~7% decrease in 

surface phytoplankton during the peak of the spring bloom and a 3% increase of fall 

concentrations. This suggests that although the active zooplankton response to a shoaling 

mixed layer is plausible and does affect phytoplankton biomass and accumulation rates, it 

is not a major contributor to changes in the community phenology of the Subpolar North 

Atlantic as portrayed in my model.  

2.4.2 EXPERIMENT II: SYSTEM RESPONSE IN THE ABSENCE OF MIXED LAYER FLUCTUATIONS 

I address another of Evans and Parslow’s considerations, which had implications 

for the critical-depth paradigm: the development of blooms in the absence of mixed layer 

fluctuations, Specifically, I present results obtained by setting the mixed layer depth as 

constant year-round at its minimum and maximum climatological values (e.g., 16 m and 

249 m for NA5). I also use two intermediate constant mixed layers (50 and 25 m), which 

are shallower than the annual maximum but deeper than the maximum and minimum 

euphotic zone depth, respectively. The euphotic zone depth is defined as the depth at 

which light limitation for phytoplankton growth is lower than 1% (LimI < 1%).  For the 

experiments, the model is initialized with the distribution of state variables resulting from 

the optimized simulations and forced with a constant HMLD for 10 years.  Nutrient nudging 

(𝛾 = 1 30⁄ ) is limited to the bottom 15 m, as it would otherwise introduce dynamics 

similar to a time varying mixed layer. 
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When analyzing the resulting spring bloom initiation according to both metrics 

(Figure 2.8A-B), the constant mixed layers which were shallower than the minimum 

euphotic zone (25 and 16 m) produced delayed blooms in comparison with the one 

obtained with a very deep mixed layer. In contrast, the treatment with a mixed layer of 

100 m produced the earliest of the blooms (Figure 2.8A-B). These patterns can be better 

understood when observing the conditions during the initial years of the experimental 

runs (Figure 2.8C-E). When experimental conditions are first enforced, all simulations 

have non-limiting nutrient conditions. All experimental mixed layers shallower than the 

maximum produce an immediate abrupt increase in phytoplankton concentrations 

followed by an increase in zooplankton. This abrupt increase in biomass can be explained 

by improved light conditions. Over time, the shallower mixed layer depths (i.e. 100, 25 

and 16 m) inhibit an effective injection of nutrients to the surface, resulting in year-round 

low-nutrient concentrations within the mixed layer (Figure 2.8E). Phytoplankton growth 

can still occur below these shallow mixed layers, where nutrients and light are available, 

but the stagnant bottom layer allows phytoplankton to sink rapidly (Lande and Wood, 

1987). The combined effect of surface nutrient depletion and aggravated sinking losses 

diminishes phytoplankton surface concentrations and delays the bloom initiation 

according to both Day
P* 

and Day
r* 

metrics in the 25 m and 16 m mixed layer cases. 

Nonetheless, the constant 100 m mixed layer is able to improve phytoplankton exposure 

to light, without significantly increasing its sinking losses and thus, over time, it 

maintains higher biomass than the deepest mixed layer case. 
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Figure 2.8: Results of Experiment II in bin NA5: model runs during 10 years using constant 

mixed layer depths equal to a.249m (maximum time varying 𝐻𝑀𝐿𝐷), b.50m (below 

maximum euphotic depth), c.25m (below minimum euphotic depth), and d.16m 

(minimum time varying 𝐻𝑀𝐿𝐷. (A) Normalized satellite-based phytoplankton biomass 

(“observations”) and simulated surface phytoplankton of the last experimental cycle, used 

to determine the date of bloom initiation according to the biomass based metric (DayP
∗
). 

(B) Net phytoplankton accumulation rate estimated from “observations” and experimental 

simulations of the last experimental cycle, used to determine the date of bloom initiation 

according to the rate metric (Dayr
∗
). Vertical lines in (A) and (B) respectively mark 
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DayP
∗
and Dayr

∗
 in each experiment, while the inverted triangles at the top x-axes mark 

DayP
∗
and Dayr

∗
 in the observations as a reference. (C), (D) and (E), show the 

corresponding surface phytoplankton, zooplankton and nutrient optimal cycles and the 

first 3 annual cycles of experimental conditions. 

 

I can therefore generalize that a shoaling of the mixed layer enhances 

phytoplankton growth by improving light conditions; this may result in an increase in 

phytoplankton biomass and accumulation rates, as long as the shoaling does not 

compromise nutrient availability or phytoplankton residence time within the mixed layer. 

2.4.3 EXPERIMENT III: EFFECTS OF ZOOPLANKTON DILUTION AND CONCENTRATION 

Results of experiments I and II demonstrate that food availability dominates the 

zooplankton response in the model (Figure 2.6, 2.7D). To avoid that dominant response, 

in this experiment I intentionally disrupted the bottom-up feedback from phytoplankton to 

zooplankton by directly prescribing different zooplankton biomasses in the mixed layer. 

Therefore, this experiment goes a step further than the zooplankton concentrating 

experiment (experiment I) in terms of testing the dilution-recoupling mechanism. It is 

possible that in experiment I winter zooplankton concentration is lower than in reality and 

thus the effect of dilution/recoupling is not as strong as it should be. By artificially 

imposing zooplankton, here we circumvent this issue and directly test whether a 

deepening/shoaling of the mixed layer creates large enough changes in grazing pressure 

to significantly affect phytoplankton concentrations. By prescribing a constant, vertically 

integrated zooplankton biomass (Ztotal in mmol N m
-2

) in the mixed layer, HMLD effectively 

dilutes and concentrates zooplankton (Z in mmol N m
-3

) in these simulations (see 

schematic of the experiment in Figure 2.10A). I aim to answer whether and how these 
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physically driven changes in zooplankton concentrations affect the timing of the 

phytoplankton spring bloom according to my two timing metrics. Again all experiments 

were run for 10 years.  

The resulting cycles illustrate that the amount of zooplankton diluted in the mixed 

layer influences phytoplankton concentrations (Figure 2.9A,C) and accumulation rates 

(Figure 2.9B) in a similar fashion as modifying zooplankton parameters did (Figure 2.5): 

the main change is in the magnitude of the bloom, with small shifts in timing. When low 

Ztotal is present in the mixed layer, the phytoplankton bloom peak is larger than in the case 

with high Ztotal. In both cases, the peak is significantly larger than in the observations, and 

a Ztotal as large as 20 mmol N m
-2

 would be needed to produce a bloom peak of similar 

magnitude as the observations. In the scenario with high Ztotal, zooplankton concentrations 

effectively keep the growth of phytoplankton in check, resulting in lower winter 

phytoplankton, a smaller bloom peak, and a shorter bloom. 

The bloom initiation metrics have opposite patterns in this experiment. Low Ztotal 

produces an earlier Day
P*

 than high Ztotal, but a delayed Day
r*

. That is, the biomass-based 

bloom initiation metric pattern agrees with the dilution-recoupling hypothesis (i.e., lower 

zooplankton = earlier bloom); but the metric based on the accumulation rate, which was 

used to develop the hypothesis, does not. Somewhat counter-intuitively, high zooplankton 

biomass during summer not only decreases phytoplankton biomass through heavy 

grazing, but also increases phytoplankton growth rates by providing recycled nutrients 

through excretion. The change in Day
P* 

by doubling Ztotal from 5 to 10 mmol N m
-2 

is 

only 8 days in bin NA5 (6.3 days on average for all bins). There are larger differences in 

the bloom initiation date according to Day
r*

 (16 days in bin NA5, and 13.6 days on 
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average for all bins), but given that it behaves opposite to what was envisioned by the 

dilution-recoupling hypothesis, I consider that neither of the bloom timing metrics 

supports the idea that an increase in winter zooplankton biomass, decoupled from 

ecosystem feedbacks, can significantly delay the spring bloom; i.e., more zooplankton 

does not necessarily produce a delayed bloom, but a smaller one. As seen in Figure 2.5D, 

F, phytoplankton biomass in the model appears to be more sensitive to changes in 

zooplankton parameters than the accumulation rates.  

As the dilution-recoupling hypothesis discusses variations in grazing forced by the 

mixed layer deepening, in a new set of experiments I use equal values of constant 

zooplankton biomass to evaluate the effect of different winter dilution levels 

independently (Figure 2.9F-J). In these experiments, I configure Ztotal = 10 mmol N m
-2

 as 

constant within the mixed layer and vary the maximum depth of the mixed layer annual 

cycle (249m and 25m, in Figure 2.9). For this purpose, I define an idealized 

climatological evolution of the mixed layer depth, 𝐻𝑀𝐿𝐷
∗ , that allows us to control 

maximum depth values while preserving the minimum summer values in all cases, such 

that zooplankton concentrations are equal during summer, but diluted to different 

concentrations as the mixed layer deepens .  𝐻𝑀𝐿𝐷
∗  is similar to that of Evans and Parslow 

(1985) and replicates the timing of deepening and shoaling of the climatological mixed 

layer depth used in the optimized simulations (Figure 2.9A).  
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Figure 2.9: Results of Experiment III in bin NA5: constant zooplankton biomass 

experiments in bin NA5 after 10 years of experimental conditions. Subplots (A) to 

(E) use the prescribed mixed layer annual cycle in HMLD, but prescribe the total 

amount of zooplankton in the mixed layer such that: a.“low Z” refers to Ztotal = 5 

mmol N m
-2

 and b.“high Z” to Ztotal = 10 mmol N m
-2

. Subplots (F) to (J) use 

Ztotal = 10 mmol N m
-2

 and the idealized mixed layer annual cycle  HMLD
∗  to 

compare results with different winter mixed layer depths, as a proxy to impose 

different winter dilution levels to zooplankton: a.“low Z” is achieved with 

max (HMLD
∗ ) = 249 m and b.“high Z” uses max (HMLD

∗ ) = 25m. (A) and (F) 

Normalized phytoplankton satellite-based biomass (“observations”) and simulated 

surface phytoplankton of the last experimental cycle, used to determine the date of 

bloom initiation according to the biomass based metric (DayP
∗
). (B) and (G) Net 
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phytoplankton accumulation rate estimated from “observations” and experimental 

simulations of the last experimental cycle, used to determine the date of bloom 

initiation according to the rate metric (Dayr
∗
). Vertical lines in the normalized P 

and r* subplots mark the date of bloom initiation according to the biomass and 

rate based metrics (Day
P*

 and Day
r*,

 respectively) in the experiments. The 

inverted triangles at the top x-axes mark DayP
∗
and Dayr

∗
 in the observations, as a 

reference. (C) and (H) show the corresponding phytoplankton satellite-based 

biomass (“observations”) and simulated surface phytoplankton of the last 

experimental cycle. (D), (I) and (E), (J) show the corresponding surface 

zooplankton and nutrient annual cycles, respectively. 

 

Based on the dilution-recoupling hypothesis, deeper winter mixing would be 

expected to produce early positive accumulation rates that translate into an early spring 

bloom. The bloom initiation metric based on accumulation rate, Day
r*,

 supports this 

theoretical behavior. The first positive accumulation rates for shallow winter mixing 

occur later than for deep winter mixing (Day
r*

 = 358 and 278, respectively); but rates in 

the shallow winter mixing case are consistently increasing from October onward and 

exceed those obtained in winter for the case with deep winter mixing (Figure 2.9G). In 

terms of phytoplankton biomass (Figure 2.9F, H), the bloom appears to initiate earlier 

when the winter mixed layer is shallow (Day
P*

 = 15 for a winter mixed layer of 25 m, 

compared to Day
P*

 = 120 when using 249 m). This occurs as the intermediate mixed 

layer depth of 25 m maintains phytoplankton in the upper ocean layers and exposes them 

to better light conditions during winter, allowing high positive growth rates despite low 

incoming light and high grazing. In coherence with the results of the constant mixed layer 

experiment, here the shallow winter mixed layer hinders annual nutrient replenishment 

(Figure 2.9J) and determines the upper limit of phytoplankton concentrations. 
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Figure 2.10: (A) Scheme of Experiment III: shows a constant zooplankton biomass 

Ztotal = 10 mmol N m−2 prescribed in the mixed layer, being diluted and 

concentrated by the climatological mixed layer depth HMLD (black).  Zooplankton 

concentrations below the mixed layer are 0 mmol m−3. White lines show 

examples of the idealized mixed layer, HMLD
∗ , with two different winter values: 

100 m and 225 m. (B) Date of bloom initiation according to the biomass-based 

metric DayP∗, in Julian days. (C) Date of bloom initiation according to the 

accumulation rate-based metric Dayr∗, in Julian days. The symbol “+” in (B) and 

(C) marks Ztotal versus the max (HMLD
∗ ) conditions used in Figure 2.9. Winter 

mixed layers shallower than the climatological minimum were not tested (gray 

background). 

 

I tested 450 combinations of winter 𝐻𝑀𝐿𝐷
∗  and 𝑍𝑡𝑜𝑡𝑎𝑙 and compare the results in 

terms of 𝐷𝑎𝑦𝑃∗ and 𝐷𝑎𝑦𝑟∗ (Figure 2.10B, C).  The response is non-linear; however, it 

reproduces the same conclusions derived from Figure 2.9: when the bloom initiation is 

estimated using the biomass-based metric (Day
P*

), deep winter dilution produces a late 
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bloom initiation, shallow dilution an early one (Figure 2.9B). This is opposite to what one 

would expect if physical decoupling of phytoplankton growth and grazing had a major 

effect on the spring bloom onset. When the phytoplankton inventory accumulation rates 

are considered (Day
r*

), the changes in bloom initiation due to changes in winter mixed 

layer depth are coherent with the dilution–recoupling mechanism; however, shifts in 

timing are only significant when the winter mixed layer is shallow (winter  𝐻𝑀𝐿𝐷
∗  < 100 

m) and when zooplankton biomass is very low (Ztotal  =  5 mmol N m
-2

).  

This agrees with the results of experiment I (section 2.4.1) and suggests that a 

different regime exists where physical dilution of zooplankton is a significant factor 

determining the bloom initiation.  This different regime may be exemplified by 

subtropical areas and High-Nutrient-Low-Chlorophyll areas with little deep mixing. 

These areas are characterized by small phytoplankton sizes, and low and rather constant 

biomass, where grazing is recognized as an important control (Fasham et al., 1990; Miller 

et al., 1991; Steele and Henderson, 1992). 

2.5 DISCUSSION 

2.5.1 IS THE OPTIMIZED MODEL CONSISTENT WITH THE CRITICAL-DEPTH HYPOTHESIS? 

My optimized model results replicate observations with positive phytoplankton 

inventory accumulation rates starting in late autumn and throughout winter (Table 2.3, 

Figure 2.3); the inability of the critical-depth hypothesis to explain positive net 

accumulation is one of its most frequently reiterated criticisms. In discussing my results, I 

distinguish two key aspects of the critical-depth hypothesis: 1. the bloom initiation 

criterion, and 2. the critical-depth model. 
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The bloom initiation criterion simply states that “blooming can occur only if the 

depth of the mixed layer is less than the critical value” (Sverdrup, 1953). This critical 

depth value has been calculated with the help of analytical models (e.g., Siegel et al., 

2002; Sverdrup, 1953; Platt et al., 1991) as the depth where the vertically integrated 

phytoplankton production is matched by the vertically integrated phytoplankton 

“destruction” by respiration. If the term “destruction”, used by Sverdrup (1953), is 

assumed to include all community losses, mixing and sinking, rather than only 

phytoplankton metabolism (Smetacek and Passow, 1990), the critical depth (Hcr) at any 

point in time can be found directly from the vertically resolved model output as the depth 

at which depth-integrated growth equals depth-integrated losses, or: 

𝑅(𝑧, 𝑡) =  [∫ (𝜇𝑚𝑎𝑥𝐿𝑖𝑚𝑁𝐿𝑖𝑚𝐼𝑃)𝑑𝑧
0

–𝑧

]

− [∫ (𝑔𝑍 + 𝑙𝑃𝑁𝑃 + 𝑙𝑃𝐷𝑃 +
𝜕

𝜕𝑧
(𝑘𝐷

𝜕𝑃

𝜕𝑧
)) 𝑑𝑧

0

−𝑧

+ 𝑤𝑃
𝜕𝑃

𝜕𝑧
|
−𝑧
] = 0 

(2.9) 

That is, Hcr = z, when R(z,t) = 0. The values of R(z,t) are plotted in Figure 2.11 

and show that my estimates of 𝐻𝑐𝑟 differ significantly from previous analytical 

calculations: Hcr is very deep during the phytoplankton accumulation phase (positive r*), 

hence the critical depth criterion (Hcr > HMLD) holds for all simulations. In my model, the 

critical depth dramatically deepens in winter (Figure 2.11) as a combined result of 

sufficient nutrient supply, low winter grazing rates and small increases in light. This 

occurs because my model breaks an initial assumption of the critical depth model: the 

relationship between phytoplankton growth and loss rates is not constant in time as 

Sverdrup had assumed (see Sverdrup (1953) assumption 7 and equation 6).  
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Figure 2.11: Vertically integrated phytoplankton growth minus vertically integrated 

phytoplankton losses as function of integration depth calculated downward from 

the surface (i.e., R(z,t) in equation 2.9), for bin NA5. The critical depth (Hcr) is 

found where R(z,t) = 0, which lies deeper than the mixed layer depth (HMLD) 

prior to the spring and fall blooms. The critical-depth criterion for bloom initiation 

(Hcr > HMLD) is therefore satisfied. Red + symbols denote periods when the 

critical depth is deeper than the model domain. Heuph marks the depth of the 

euphotic zone as a reference. 

 

This inadequate assumption affected Sverdrup’s critical-depth values and led him 

to assume the mixed layer shoaling as being key to bloom initiation. My experimental 

results about the role of the mixed layer are consistent with considerations in Evans and 

Parslow (1985): spring blooms develop in the absence of mixed layer fluctuations, and 

large early blooms are produced when the mixed layer is constantly deep while small 

delayed ones occur when it is constantly shallow. Nonetheless, the small and delayed 

blooms simulated with shallow constant mixed layers do not contradict Sverdrup’s view 

of an enhanced phytoplankton growth due to the mixed layer shoaling. In both, Evans and 
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Parslow’s and my experiments, experimental conditions were maintained for several 

years producing low surface nutrient concentrations and small phytoplankton winter seed 

populations; hence, they violate Sverdrup’s assumptions and are not testing the effects of 

shoaling per se. The immediate effect of imposing shallow mixed layers under non-

limiting nutrient conditions is indeed an abrupt increase in phytoplankton biomass (see 

experiment II). 

The main effects of the mixed layer fluctuations in my experimental results are the 

modification of nutrient availability in the euphotic zone, and the control of 

phytoplankton losses below the mixed layer, which is thought to act as a driver for 

phytoplankton species succession (Margalef, 1978). Deep mixed layers not only supply 

the amount of nutrients that determines bloom magnitude, but may also allow fast-sinking 

species, such as diatoms, to return to the euphotic zone (Lande and Wood, 1987) and 

become part of the seed population that dominates early stages of the spring bloom. On 

the other hand, the shallowing of the mixed layer plays an important role in nutrient 

depletion and selection of slow-sinking species, which are characteristic of the fall and 

winter phytoplankton composition.  

An enhancement of phytoplankton growth due to improved light exposure is also 

observed in the zooplankton dilution experiment (experiment III) where, despite high 

grazing and low winter nutrient availability, a shallow winter mixed layer produces 

higher winter phytoplankton biomass and inventory accumulation rates than those 

obtained using a deep winter mixed layer. Therefore, my results show that the critical-

depth criterion is always satisfied when the system achieves positive net phytoplankton 

accumulation rates and that improvement in light availability due to mixed layer 
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shallowing as envisioned by Sverdrup occurs in my model, however it is not a strictly 

required process for the spring bloom initiation. 

2.5.2 IS THE OPTIMIZED MODEL CONSISTENT WITH THE DILUTION-RECOUPLING HYPOTHESIS? 

The simulated zooplankton annual cycles (Figure 2.1F; Figure 2.2) are consistent 

with top-down control, as proposed by Behrenfeld (2010), in that the deepening of the 

mixed layer, which in the forcing data begins in August, may contribute to phytoplankton 

survival during winter by relieving grazing pressure. Moreover, the results of my 

experiments with zooplankton dilution agree with incubation experiments (e.g., Landry, 

1993; Putland, 2000) in the sense that high maximum accumulation rates are achieved 

when zooplankton biomass is low (Figure 2.9B), and when winter dilution is increased 

(Figure 2.9G). Similar to my discussion about the critical-depth hypothesis, in discussing 

the dilution-recoupling hypothesis I distinguish its two main statements: 1. The spring 

bloom starts as the consequence of a decoupling between total phytoplankton growth and 

losses; 2. The main reason for this decoupling is a decrease in zooplankton grazing 

caused by dilution when the mixed layer deepens. 

In Figure 2.12, I show that the optimized model meets the first statement. 

Phytoplankton losses (i.e., grazing + mortality + respiration) vertically integrated over the 

entire model domain closely match phytoplankton growth throughout the year. Slight 

imbalances (i.e., a “decoupling”) between total growth and losses occur prior to both the 

spring and fall blooms, the spring bloom being the larger and roughly starting in January. 

Following Behrenfeld (2010)’s methodology (i.e., r* and Day
r*

), the imbalances can 

occur as early as October of the year preceding the spring bloom. Regardless of whether I 

integrate the entire vertical water column or use Behrenfeld (2010)’s methodology, the 
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imbalance leading to spring bloom development occurs prior to the shoaling of the mixed 

layer. 

 

Figure 2.12: Phytoplankton growth and loss (grazing, mortality, respiration) rates, 

vertically integrated over the model domain (total flux in mmol m
-2

 d
-1

). Small 

imbalances of “decoupling” between total growth and losses determine the bloom 

initiation and termination. 

 

My results do not support the second statement. Under a realistic model 

configuration, represented by the optimized model, the effects of changes in grazing 

parameters on initiation of positive accumulation rates (Day
r*

) are negligible (< 6 days); 

however the grazing parameters affect maximum phytoplankton concentrations. Even 

when the shoaling of the mixed layer is assumed to actively stimulate zooplankton 

accumulation (experiment I), the overall effect on phytoplankton is small (the dominant 

effects are feedbacks via the zooplankton response); such that the depth to which 

zooplankton are diluted is not as important as whether there are sufficient food resources 
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(e.g., experiment II). Behrenfeld et al., (2013) also already acknowledged the dominance 

of food availability over the zooplankton response, leading them to restate the dilution-

recoupling hypothesis as disturbance-recovery hypothesis. Under this broader concept, 

the decoupling between phytoplankton growth and losses can be caused by any 

disturbance of ecological or physical nature. For instance, when experimentally imposing 

changes in zooplankton concentrations that are independent of changes in food 

availability, significant shifts in bloom initiation can occur (Figure 2.10).  

In summary, simulated zooplankton populations do strongly modulate 

phytoplankton biomass throughout the year, and thus an appropriate low grazing (i.e., 

“decoupling” of growth and grazing rates) is a required condition for phytoplankton to 

achieve positive growth during winter. As discussed by Strom (2002), systems where 

growth and grazing are more tightly coupled throughout the entire year will be more 

stable and less reactive to perturbations (Pimm, 1984), such as events that change the 

light or nutrient availability.  

2.5.3 LIMITATIONS 

As in all modelling studies, the results of my experiments are tied to the model’s 

assumptions and limitations, which I discuss here in order to highlight processes that 

require further investigation to discern between competing hypotheses for the bloom 

initiation.  

My model represents a system that is highly sensitive to light, zooplankton and 

nutrients; where parameters involved in phytoplankton growth have the ability of 

modifying both the shape and maximum magnitude of the phytoplankton biomass annual 
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cycle. Parameters involved in zooplankton grazing mainly determine the average annual 

phytoplankton biomass, by modifying phytoplankton concentrations throughout the year 

without changing the temporal pattern of the annual cycle. My model also replicates a 

decoupling between phytoplankton growth and grazing prior to the bloom initiation. This 

model behavior is probably caused by the inherent lag between phytoplankton and 

zooplankton that results from the grazing functional form. The sigmoidal grazing function 

used here produces a slower slope of increase in grazing when phytoplankton 

concentrations are low, implying a type of threshold feeding behavior. Threshold feeding 

is originally based on empirical evidence of mesozooplankton feeding (e.g., Frost, 1975; 

Gismervik and Andersen, 1997; Wickham, 1995) and has been also show to apply to 

microherbivory (Lessard and Murrell, 1998). Such thresholds may correspond to 

nutritional inadequacy of phytoplankton, zooplankton physiology or changes in feeding 

strategies. Representing grazing in this form for a natural community may also account 

for phytoplankton evolutionary strategies to prevent grazing, such as morphological and 

chemical defenses (Strom, 2002). Different grazing functional forms, as well as higher 

predation functional forms (i.e., zooplankton mortality) can significantly affect the 

behavior of simple and more complex ecosystem models (Anderson et al., 2010; Edwards 

and Yool, 2000; Steele and Henderson, 1992). For instance, Mariani et al. (2013) 

concluded that an increase in biomass, observed on idealized 0D simulations with 

adaptive grazing, was driven by changes in predation rather than increases in nutrients or 

light. Furthermore, other processes not resolved by simple models may also affect the 

zooplankton phenology independently from phytoplankton biomass, such as horizontal 

advection, changes in zooplankton composition and zooplankton migration patterns (Aita 

et al., 2003; Ji et al., 2010). Grazing rates at low prey concentrations and on natural 
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plankton assemblages remain a key uncertainty in the understanding of phytoplankton net 

growth during winter (Strom et al., 2000); in this sense, models depend on field and 

laboratory observations to properly define their assumptions about prey-predator 

relationships.  

Another limitation of my approach is the analysis of spatially averaged 

climatologies. The approach is used to gain understanding about the cyclical conditions 

that lead to an annually recurring bloom development (Evans and Parslow, 1985). 

Nonetheless, understanding spatial and intraseasonal variations is necessary to better 

predict regional interannual variability of phytoplankton biomass. Franks (2014) warns 

about the possibility of representing misleading plankton dynamics with the analysis of 

spatially averaged climatological properties, because of the highly non-linear behavior of 

quantities such as phytoplankton growth and turbulence. The seasonal deepening of the 

mixed layer plays a key role in my simulations to replenish nutrients in the euphotic zone; 

but the model environment used in this chapter cannot test the role of other factors that 

can determine bloom initiation by affecting nutrient availability, such as ocean fronts and 

eddies (Taylor and Ferrari, 2011b; Mahadevan et al., 2012). Moreover, imposed 

diffusivities effectively redistribute planktonic organisms in the climatological mixed 

layer in the model, such that more intense high-frequency mixing events may produce 

different phytoplankton and zooplankton dynamics.  

Also concerning my use of the mixed layer depth forcing, large uncertainty exists 

on the differentiation between the actively mixed layer (i.e., turbulent layer) and mixed 

layer diagnosed from density profiles (Brainerd and Gregg, 1995; Franks, 2014). For 

instance, the appearance of spring blooms in unstratified water columns has been 
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explained by weak turbulence (Colebrook, 1979; Townsend et al., 1992; Wasmund et al., 

1998; Chiswell, 2011; Huisman et al., 1999a, 1999b) or by the cessation of convective 

mixing (Fennel, 1999; Taylor and Ferrari, 2011a). In order to fulfill the critical-depth 

model assumption of a thoroughly mixed top layer, I assumed that the mixing and mixed 

layer depths are identical in the model. The imposed mixed/mixing depth thus defines a 

simplified vertical structure for turbulence, which is in reality a highly variable property 

(Franks, 2014). The vertical structure of turbulence may play a key role in determining 

the residence time of phytoplankton cells within the euphotic zone (Backhaus et al., 2003; 

Huisman et al., 2002; Lande and Wood, 1987; Ward and Waniek, 2007). I can argue that 

the optimized parameters in my model represent a type of phytoplankton community that 

benefits from intermediate to deep mixing, such that sinking cells are able to recirculate 

within the euphotic zone. When the constant HMLD is shallow, a large amount of sinking 

phytoplankton is lost below the mixed layer, resulting in a delayed bloom of lower 

magnitude. In a more realistic scenario, species succession may determine the dominance 

of small, slow-sinking cells during summer months (Margalef, 1978). Further 

investigation, combining observations and models, is required to discern whether 

simplified climatological forcing is indeed representative of the processes leading to the 

spring bloom development in nature. In particular, it is important to define how the 

planktonic community as a whole, as well as individual functional groups, react to high-

frequency fluctuations in turbulence and the turbulence vertical structure.  

Given these limitations, my results support the general idea that under sufficient 

nutrient supply, improved light conditions in combination with low zooplankton 

populations allow “turbulence-adapted” cells to initiate the spring bloom.  
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2.6 CONCLUSION 

My optimized and experimental results suggest that the spring bloom initiation 

cannot be seen as a purely bottom-up or top-down process. The conceptual bases of both, 

the critical-depth and the dilution-recoupling hypotheses, are shown to be true within my 

modelling framework and cannot be considered in absolute isolation under realistic 

simulations. It has to be pointed out that the fundamental ideas of both hypotheses are 

ecological truisms: a) positive net growth of phytoplankton occurs when the critical depth 

is greater than the mixed layer depth (Sverdrup, 1953), and b) low zooplankton 

concentrations during winter allow phytoplankton growth to exceed its losses 

(Behrenfeld, 2010). Under realistic and idealized configurations, both conditions occur in 

my model prior to a bloom development; however, neither the critical-depth nor the 

dilution-recoupling hypothesis fully applies during bloom initiation in my experiments. 

The bottom-up and top-down approaches mainly diverge on their view of the role 

that the mixed layer plays in regulating plankton populations. The critical depth model 

postulates that the shoaling of the mixed layer at the beginning of spring triggers the 

bloom by enhancing available light for phytoplankton. More specifically, the model 

predicts that the bloom starts when the mixed layer depth becomes shallower than the 

critical depth. This implies that the critical depth is shallower than the mixed layer depth 

in winter – a condition that is not met in my model simulations and also likely not met in 

reality. Sverdrup’s conclusions about the critical depth and the role of stratification onset 

were probably affected by his assumption of a constant ratio between phytoplankton 

growth and losses.  As noted already by Smetacek and Passow (1990) and Behrenfeld 

(2010), this assumption is incorrect and also is not met in my model, where a profound 
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critical depth is present during winter when positive phytoplankton accumulation rates 

occur. However, maximum phytoplankton accumulation rates and bloom onset do indeed 

coincide with the time when the mixed layer becomes shallower than the critical depth.  

An imbalance or “decoupling” of growth and grazing rates occurs prior to bloom 

development, but it occurs as result of ecological feedbacks rather than physical forcings 

as had been postulated in the dilution-recoupling hypothesis. Nonetheless, appropriate 

low grazing should be seen as a required condition for bloom development to the same 

extend that phytoplankton light and nutrient requirements have to be satisfied. In this 

sense, there might not exist a unique “trigger” for the spring bloom initiation but it will 

depend on the system’s base line conditions at the end of the preceding year, and the 

bloom development may closely track the last of these “bloom-forming conditions” that 

remains unsatisfied. Overall, caution should be used when extrapolating experimental 

conclusions to reality. 
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CHAPTER 3:  

EVALUATING ECOSYSTEM MODEL COMPLEXITY IN THE NORTHWEST NORTH 

ATLANTIC, PART I: SURROGATE-BASED OPTIMIZATION 

 

3.1 INTRODUCTION  

Since the emergence of numerical marine ecology, models have diversified from 

describing simple prey predator relationships (e.g., Riley, 1965) to representing multiple 

plankton functional groups and chemical variables, with dependencies on the 

characteristics of the physical environment (e.g., Kishi et al., 2007; Follows and 

Dutkiewicz, 2011).  To date there is no consensus on the most appropriate level of 

ecosystem complexity, model structure, and parameterizations of functional relationships. 

Both simple and complex models have advantages and disadvantages. As demonstrated in 

Chapter 2, the use of simple marine ecosystem models under idealized conditions has 

proven to be valuable in identifying and understanding underlying mechanisms (e.g., 

Evans and Parslow, 1985; Fasham et al., 1990; Kuhn et al., 2015). However, it has been 

argued that more realistic representations of the plankton community composition and the 

interrelationships of marine food webs are required to improve forecasting capabilities in 

regional and global models (Le Quéré, 2006). 

Regardless of its complexity, any model depends on many parameters that 

describe biological and chemical rates of change such as growth, mortality, and 

degradation rates, including maximum rates and half-saturation concentrations in nutrient 

uptake and predation formulations. As models are developed for specific regions or 
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periods, their parameters are typically calibrated to fit observations for those specific 

regions or time periods. This may lead to overfitting, a loss of model forecasting skill and 

of portability to different geographic locations. In general, the number of parameters 

increases with the number of state variables in a model (Denman, 2003); thus, complex 

models are at a higher risk of overfitting. Moreover, most of these parameters are poorly 

known with wide ranges reported in the literature. Studies using systematic calibration 

methods, known as parameter optimization, have shown that typically available 

observational sets are often not sufficient to determine more than a few of these 

parameters (Fennel et al. 2001, Friedrichs et al., 2007; Ward et al., 2010). Parameter 

values may also change depending on the plankton community composition, and thus it is 

possible that models need to consider parameter variations with geography (Losa et al., 

2004) or time (Mattern et al., 2012).  

Following the principle of parsimony, the simplest model able to fit the 

observations should be favoured over more complex ones. Failure of a model to replicate 

observations suggests that the model structure may be missing key components of the 

system’s behaviour. Conversely, the ability of a model to replicate a given set of 

observations does not unequivocally mean that all processes are properly represented. 

When models differ not only in their level of ecological complexity, but also in the degree 

to which they were calibrated and in the model pathways that were affected during 

calibration, it is tenuous to argue that differences in model performance are due to 

structural complexity (Friedrichs et al., 2007; Kriest et al., 2010). To better discern the 

effects of increased ecosystem complexity from differences in a model’s response due to 
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its parameter values, it is necessary to calibrate the model versions to comparable levels 

of performance and through comparable pathways.  

During the 90’s, the calibration of marine ecosystem models to a specific study 

region was predominantly subjective (Arhonditsis and Brett, 2004). As previously 

mentioned, this approach is inefficient, increases the risk of overlooking structural 

inadequacies in the models, and is complicated by the number of parameters in play and 

their co-dependencies. Parameter optimization provides a more objective framework for 

comparing models with different degrees of trophic complexity, but optimization 

experiments require a large number of model runs and thus, their direct application to 

computationally expensive 3D models is difficult.  

An alternative, which I choose here, is to perform the optimization using a 

simplified faster model that replicates the results of the computationally more expensive 

3D model. The computationally efficient model is referred to as a model surrogate or 

emulator. The surrogate can be a statistical model, a coarser resolution model, or a 

reduced order model that allows one to perform a large number of simulations required 

for parameter sensitivity analyses and model calibration. Different techniques for the 

construction of statistical emulators of 3D biogeochemical models have been tested in 

recent years (Hooten et al., 2011; Leeds et al., 2012; Mattern et al., 2012). Other tested 

approaches include reduced temporal resolution (Prieß et al., 2013a, 2013b), and reduced 

physical dimensionality (Hemmings and Challenor 2012, Hemmings et al. 2015). My 

methodology resembles the latter reduced dimensionality studies in that my model 

surrogate is a mechanistic emulator constructed with an ensemble of 1D models, located 

at points where in situ chlorophyll-a and nitrate profiles are available. The surrogate (1D 
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models) and the target model (3D model) share the same ecosystem model. Therefore, in 

comparison with statistical and reduced process-resolution surrogates, the reduced 

dimensionality approach provides insight into the ecosystem responses most affected by 

the physical dynamics. Features that are well replicated in 1D are likely controlled by the 

ecosystem model itself (structure, equations and parameter values), whereas biases 

between 1D and 3D are likely a consequence of the simplified physical framework.  

In this case study, the application of the surrogate-based parameter optimization 

aims to compare three different ecosystem models in a 3D ocean model of the northwest 

North Atlantic continental shelf. The overarching goal is to better understand the 

variability of phytoplankton and primary production in the region, while addressing the 

unresolved question of how much ecological complexity is needed. In this chapter, I 

focus on the methodology used to bring models with different ecological structures to a 

comparable level of calibration by analyzing model results from several optimization 

experiments.  I specifically aim to answer three questions: 1. Does the ecosystem model 

structure affect the surrogate-based optimization performance? 2. Is the optimization 

affected by the number of observed variables compared, or by the number of parameters 

optimized? 3. Which of the optimized models is geographically most portable? I 

demonstrate that, despite its simplicity, the surrogate approach is effective as a calibration 

tool. An in-depth comparison of chlorophyll and primary production patterns is presented 

in Chapter 4, as Part II of this case study.  
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3.2 STUDY AREA: THE NORTHWEST NORTH ATLANTIC 

My model domain covers the continental shelf and adjacent open ocean waters of 

the northwest North Atlantic Ocean, including the Newfoundland Shelf, the Grand Banks, 

the Gulf of St. Lawrence, the Scotian Shelf, and the Gulf of Maine (Figure 3.1). The 

region is at the confluence of the two major North Atlantic current systems, the 

equatorward flowing Labrador Current and the northeast flowing Gulf Stream, and is 

influenced by their adjoining Shelf and Slope Water currents (Loder et al., 1998). This 

leads to complicated dynamics, including both cold and warm sub-regions originating 

from the North Atlantic subpolar and subtropical gyres (Townsend et al., 2004).  

3.3 MODEL DESCRIPTIONS 

3.3.1 PHYSICAL CONFIGURATION 

The 3D physical framework uses the Regional Ocean Modeling System (ROMS, 

version 3.5, http://myroms.org, Haidvogel et al. (2008)). The model is nested within the 

regional ocean-ice model of the northwest North Atlantic of Urrego-Blanco and Sheng 

(2012). Brennan et al. (2016) describe the physical model implementation, and detailed 

sensitivity analyses and validation of the simulated physical variables of this model 

application. Similar to the biogeochemical application by Bianucci et al. (2015), ocean 

temperature and salinity are weakly nudged (time scale of 140 days) to climatological 

fields from Geshelin et al. (1999).  

http://myroms.org/
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Figure 3.1: Map of the study area showing the domain of the 3D ocean model, sampling 

locations along transects of the Atlantic Zone Monitoring Program (AZMP) as 

white circles with transect acronyms are given in capital letters, and locations of 

the surrogate 1D models as orange circles. The background color scale depicts the 

bathymetry of the area.  

 

3.3.2 ECOSYSTEM MODELS  

I compare three nitrogen-based ecosystem model versions, which are shown 

schematically in Figure 3.2 and referred to as M1, M2 and M3 in increasing order of 

complexity. M1 has previously been used in the Mid-Atlantic Bight, a region south of my 

model domain (Fennel et al., 2006). M3 is based on the North Pacific Ecosystem Model 

for Understanding Regional Oceanography (NEMURO) structure (Kishi et al., 2007). An 

optimized version of NEMURO has been shown to outperform simple models in the 

California Current area (Mattern et al., 2016). M2 represents an intermediate step 

between M1 and M3.  
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 M1 and M2 have 7 compartments tracking nitrate, ammonium, phytoplankton, 

chlorophyll, zooplankton, and two detritus size classes. In M1, only phytoplankton 

growth depends on temperature (Eppley, 1972). In M2, I introduce temperature 

dependency in other biological rates (i.e., phytoplankton mortality, zooplankton grazing, 

excretion and mortality). In M3, I further increase ecological complexity by adding 

plankton functional groups. M3 has 11 compartments that include 2 nutrient and 2 

detritus pools similar to M1 and M2, 2 phytoplankton groups (representing small and 

large phytoplankton), and 3 zooplankton groups (small, large, and predatory 

zooplankton). While the trophic structure of M3 (i.e., the interactions among planktonic 

groups) is based on NEMURO, it utilizes the same functional forms as my M1 and M2 

model versions (e.g., Holling III grazing, as in Fennel et al. (2006), instead of the Ivlev 

equation used in NEMURO) for sake of better comparability.  

 

Figure 3.2: Schematic depictions of the ecosystem models used in the study. A.) M1 and 

M2 both have the same 7 state variables, but in M2 more parameterizations are 

temperature-dependent. B.) M3 has 11 state variables. The gray shading indicates 

fluxes related to grazing. 
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In summary, the three model versions I compare introduce additional ecological 

complexity in a step-wise fashion. In this way, I aim to tease apart the effects of 

increasing the dependency of the system on environmental factors, such as temperature, 

and increasing the trophic complexity itself. The equations for the three model versions 

are included in Appendix C.  

Boundary and initial conditions for NO3 are based on a monthly climatology 

constructed using in situ observations (see section 3.4.1) and World Ocean Atlas monthly 

averages (Garcia et al., 2010). Initial and boundary conditions for all other biological 

variables are set to 0.1 mmol N m
-3

 as in Fennel et al. (2006, 2008). These variables 

adjust on short time scales (days); hence, the system has no memory of the initial values 

after a short spin-up phase. A phytoplankton-to-chlorophyll ratio of 0.76 mmol N (mg 

Chl)
-1

 is assumed for the chlorophyll initial and boundary conditions (Bianucci et al., 

2015).  

3.3.3 SURROGATE MODEL  

I apply the simple 1D framework, described in Chapter 2, to 22 locations on the 

continental shelf (Figure 3.1), which are referred to as the “1D models” from now on. In 

general, the 1D models solve a vertical diffusion term 𝑘𝐷
𝜕2𝐶

 
𝜕𝑧2

 using the Crank-Nicholson 

scheme, where 𝑘𝐷  is the diffusivity, z is depth, and C refers to the biological state 

variables. The vertical resolution is 5 m, and the vertical grid is divided into two distinct 

layers with respect to mixing: a turbulent surface mixed layer (layer 1) and a quiescent 

layer below (layer 2). The interface between both layers is determined by the time-

varying mixed layer depth, which is estimated using a criterion for the maximum density 
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gradient. For this purpose, the density field is obtained from a base run of the 3D model. 

In 1D, a high diffusivity is assigned to all grid cells above the prescribed mixed layer 

depth ensuring complete mixing within the mixed layer (HMLD) on a time scale of 1 day 

with a minimum diffusivity of 100 m
2
 d

-1
 imposed (kD1 = max[𝐻𝑀𝐿𝐷

2 d
-1

, 100]). A lower 

diffusivity (kD2 = kD1 × 10
-2

) is assigned to all grid cells below the mixed layer depth. 

This 1D framework has been previously used (Lagman et al., 2014; Kuhn et al., 2015). 

The 1D models also require shortwave radiation and temperature as inputs. The 

shortwave radiation is the same as in the 3D model and comes from the European Centre 

for Medium-range Weather Forecasts (ECMWF) global atmospheric reanalysis (ERA-

Interim) (Dee et al., 2011). Temperature is taken from the 3D model base simulation. As 

1D models do not include horizontal advection, NO3 below the mixed layer depth is 

nudged to the 3D results from the 3D base simulation with a nudging time scale of 60 

days. It is assumed that biological activity has the strongest effect on nitrate in the photic 

surface layers; therefore, there is no conflict between the nudging treatment and the 

optimization (i.e., deep nitrate does not change with changes in the parameter values on 

the timescales considered here). Total depth in the 1D models is equal to the depth in the 

3D model or truncated at 50 m below their maximum mixed layer depth, whichever is 

shallower. This treatment further reduces the surrogate computational time, without 

affecting its performance. Acronyms, geographical coordinates, depths, mean 

temperature, chlorophyll-a, and nitrate values for each location are presented in Table 3.2. 
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Figure 3.3: Two-dimensional histograms showing the performance of the model 

surrogates with respect to surface chlorophyll for the three ecosystem model 

versions. The color indicates the number of data points per bin.  

 

Despite its simplicity, the mechanistic emulator replicates the results of the full 

3D model well for all three biogeochemical models. Figure 3.3 shows 2D histograms 

comparing 5-day averages of surface chlorophyll simulated by the 3D (ROMS) and the 

1D models for the initial parameter guess and the optimized parameters. The target model 

(ROMS) and surrogate surface chlorophyll results are significantly correlated (p<0.01), 

with correlation coefficients of 0.77, 0.84 and 0.60, for M1, M2, and M3, respectively. If 

bins with only 1 data point in the 2D histograms are excluded from the calculations, the 

correlation coefficients increase to 0.83, 0.90 and 0.76. This reduced regression involves 

63% to 71% of the data-points. Nevertheless, the surrogate of M3 is challenged to 

replicate low chlorophyll values and tends to overestimate them. Differences in 

chlorophyll (1D minus 3D) before the optimization are shown for two locations, BON 

(49.21º N 51.48º W, location 4) and HAL (43.46º N 62.43º W, location 11) in Figure 3.4. 

All model versions exhibit discrepancies at the beginning and end of the mixed layer-

shoaling period. Biases in the position of the deep-chlorophyll maximum occur during 
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summer stratification, with the 1D models predicting a shallower position than the 3D 

model.  

 

Figure 3.4 Surrogate-target chlorophyll biases (1D minus 3D results) at two locations, 

using the three model versions. Note that the color scales changes in the subplots. 

The black line shows an estimate of mixed layer depth using a fixed threshold 

criterion. 

 

3.4 OPTIMIZATION PROCEDURE AND SENSITIVITY ANALYSIS 

The optimization is implemented using an evolutionary algorithm and applied for 

3 years (January 1999 - December 2001). Details of the evolutionary algorithm used here 

are described in Chapter 2. I optimized subsets of the complete parameter sets required by 

each model version (Table 3.4), which were selected based on the sensitivity analysis 

described in section 3.4.2. 
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Table 3.1 Correlation between satellite chlorophyll and surface in situ chlorophyll (1-m 

and 3-m depth averages). Acronyms refer to the Atlantic Zone Monitoring 

Program (AZMP) transect lines depicted in Figure 3.1.  * denotes statistically 

significant relationships (p<0.01). 

1m  N RMSE BIAS Slope  Intercept  R 

SeaWiFs vs. in situ (1 m averages) 

ANT* 32 5.347 2.590 1.719 1.282 0.471 

BBA* 34 0.659 0.457 0.895 0.513 0.535 

IMA* 45 0.798 0.466 0.784 0.660 0.445 

MLO 36 4.918 2.455 0.500 3.026 0.232 

STL 31 12.56 5.695 -0.170 13.069 -0.103 

Gulf of St. Lawrence* 178 6.144 2.159 0.727 2.701 0.386 

BON 0 - - - - - 

CAB* 50 2.879 -1.083 0.152 0.933 0.687 

FLC 0 - - - - - 

HAL 31 1.257 0.001 0.349 0.615 0.274 

LOU* 69 4.183 -2.228 0.232 0.754 0.791 

SAB* 24 0.897 -0.545 0.328 0.529 0.703 

SEG 0 - - - - - 

SIL 0 - - - - - 

outside the Gulf* 174 3.117 -1.269 0.218 0.773 0.708 

SeaWiFs vs. in situ (3 m averages) 

ANT* 50 4.429 1.871 0.948 1.978 0.396 

BBA* 58 0.800 0.511 0.662 0.677 0.316 

IMA* 91 0.836 0.422 0.761 0.655 0.466 

MLO 83 6.053 2.314 0.312 3.383 0.129 

STL 49 13.070 6.597 0.170 10.334 0.083 

Gulf of St. Lawrence* 331 6.144 2.045 0.783 2.418 0.344 

BON 0 - - - - - 

CAB* 94 3.006 -0.947 0.106 0.925 0.519 

FLC 0 - - - - - 

HAL* 51 1.509 -0.264 0.199 0.633 0.308 

LOU* 76 4.571 -2.620 0.198 0.791 0.707 

SAB* 30 1.317 -0.692 0.200 0.702 0.624 

SEG 0 - - - - - 

SIL 0 - - - - - 

outside the Gulf* 251 3.222 -1.284 0.175 0.785 0.628 
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Table 3.2 List of 1D model locations used in the optimization experiments. Surface in situ NO3, in situ Chl-a and satellite Chl-a are 

observed mean surface concentrations between 1999 and 2001. The 3D model depth differs from the 1D model depth when the 

bottom is deeper than the maximum mixed layer depth plus 50 m. Station numbers and transect acronyms are as in Figure 3.1. 

Station number 

and transect 

acronym 

Lat. Lon. 3D 

model 

depth 

1D model 

depth 

Max 

MLD 

Min 

MLD 

in situ NO3 

(surface) 

in situ Chl-a 

(surface) 

satellite Chl-a 

1 ANT 49.44 -64.61 315 92 42.4 2.5 5.59±3.14 0.98±1.57 1.02±0.8 

2 BBA 49.69 -59.25 214 117 68.0 9.5 5.27±4.41 0.66±1.17 0.38±0.29 

3 BON 48.89 -52.47 276 276 247.9 9.1 6.76±6.45 1.49±2.84 0.87±1.00 

4 BON 49.21 -51.48 295 171 121.8 10.0 5.45±4.38 1.25±2.34 0.78±1.03 

5 BON 49.52 -50.50 308 172 122.3 2.1 5.50±4.43 1.17±2.14 0.78±0.81 

6 CAB 47.27 -59.77 421 128 79.0 4.5 4.89±3.88 1.36±2.46 1.24±2.24 

7 FLC 47.00 -49.50 77 77 68.5 13.0 3.93±3.49 1.75±3.07 1.26±2.93 

8 FLC 47.00 -50.83 127 127 89.0 10.0 4.79±3.68 1.52±2.83 0.63±0.76 

9 FLC 47.00 -52.17 128 128 85.0 9.0 4.78±4.13 1.47±2.72 0.57±0.32 

10 HAL 42.83 -61.74 1180 116 66.9 9.0 4.79±4.11 1.39±2.64 0.67±0.67 

11 HAL 43.46 -62.43 83 83 71.0 10.0 4.05±3.70 1.49±2.68 0.72±0.50 

12 HAL 44.09 -63.13 162 103 53.5 9.0 4.48±3.94 1.33±2.51 0.92±0.61 

13 IMA 47.31 -62.63 63 63 61.0 8.5 3.26±3.21 1.59±2.73 0.68±0.89 

14 LOU 43.86 -57.89 2443 125 75.9 5.1 4.71±4.10 1.29±2.47 0.67±0.49 

15 LOU 44.65 -58.69 81 81 56.0 2.1 3.93±3.59 1.50±2.71 0.87±0.63 

16 LOU 45.44 -59.48 107 107 62.5 7.6 4.59±3.96 1.42±2.74 1.24±1.00 

17 SAB 42.09 -65.35 1110 118 69.0 3.0 4.62±3.94 1.39±2.69 0.71±0.42 

18 SAB 42.56 -65.41 105 105 82.9 2.0 4.62±3.93 1.36±2.63 0.84±0.65 

19 SAB 43.02 -65.47 104 104 64.0 3.0 4.65±3.91 1.34±2.58 0.97±0.75 

20 SEG 43.76 -50.63 62 62 59.5 5.2 3.04±3.03 1.69±2.84 0.65±0.57 

21 SEG 44.89 -51.55 62 62 61.5 2.0 2.94±3.00 1.71±2.83 1.09±2.19 

22 SEG 46.02 -52.47 83 83 82.0 9.5 3.63±3.46 1.54±2.69 0.79±1.03 

7
4
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3.4.1 OBSERVATIONAL DATASETS FOR CALIBRATION 

In situ and satellite observations were used to calibrate the models. Surface 

chlorophyll satellite observations come from the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFs) 8-day averages with 9-km resolution. In situ observations were obtained from 

the Atlantic Zone Monitoring Program (AZMP, http://www.meds-sdmm.dfo-

mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html), which performs biannual monitoring 

along the 13 transect lines shown in Figure 3.1. The AZMP dataset includes quality 

controlled CTD measurements of temperature and salinity (Mitchell et al., 2002) from 

which density was calculated using the Gibbs SeaWater TEOS-10 oceanographic toolbox. 

Bottle measurements used in this study include in situ chlorophyll-a and nitrate, as these 

are variables with direct counterparts in the model. The standardized chlorophyll-a 

analysis method is Turner fluorometry and the nitrate analysis is colorimetric on a 

Technicon AutoAnalyzer II (AA II) segmented flow analyzer (Mitchell et al., 2002).  

Satellite observations were validated against the in situ chlorophyll-a observations 

from the top 3 m after identifying all matching records between 1997 and 2010 (i.e., the 

duration of the SeaWiFs record). Using vertical averages over the top 3 meters increased 

the number of match-ups and did not significantly affect the regression, compared to 

using only the top 1 meter (Table 3.1). Matching satellite records were searched within a 

0.1-degree radius of each corresponding in situ measurement and averaged. Additionally, 

the same cross-validation matchup analysis was performed using GlobColour 

(http://hermes.acri.fr/; a combined MODIS and SeaWiFS product), and non-standard 

AZMP measurements of HPLC (High Performance Liquid Chromatography) chlorophyll-

a in situ; the results of these analyses (Appendix D) reveal the same patterns of satellite 
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performance as the SeaWiFs vs. standard measurements in Table 3.1 and Figure 3.5A. 

The comparison shows systematic biases at certain locations. To correct the most 

pronouced bias, satellite time series inside the Gulf of St. Lawrence were debiased by 

subtracting  𝑒𝐺𝑜𝑆𝐿 = 0.01 + 0.19 𝑥1.42  from the observations, where 𝑥  is the log-

transform SeaWiFs satellite observation and 𝑒𝐺𝑜𝑆𝐿  is the bias (Figure 3.5A). 

 

Figure 3.5 Information used in the design of the cost function: A. De-biasing function for 

satellite chlorophyll, used for locations inside the Gulf of St. Lawrence.  The 

function is based on systematic biases between in situ and satellite surface 

chlorophyll.  B. Fractions of chlorophyll corresponding to small (pico- and nano-) 

and large (micro-) phytoplankton from satellite chlorophyll, following Hirata et al. 

(2011).  Dots plotted on top of the lines correspond to calculation of fractionated 

chlorophyll using SeaWiFsobservations in the study area.   

 

In order to provide observed counterparts to both small and large phytoplankton 

groups in M3, I estimated the chlorophyll-a fractions from small and large phytoplankton 

in the satellite observations using the empirical relationships of Hirata et al. (2011). This 

study provides a set of equations and coefficients to estimate the chlorophyll 

concentration of various phytoplankton size classes and functional groups based on a 

global classification of HPLC pigment data into phytoplankton size classes. Here, I 
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specifically used their equation to estimate the fraction Ψ of chlorophyll corresponding to 

microphytoplankton: 

Ψ =  [𝜓0 + exp(𝜓1𝑥 + 𝜓2)]−1, (3.1) 

where 𝑥 is the log-transform SeaWiFs satellite observation, and the coefficient values are 

𝜓0 = 0.9117, 𝜓1= -0.27330, and 𝜓2= 0.4003. I regard this fraction of chlorophyll as an 

observational counterpart of the large phytoplankton chlorophyll component in M3; the 

remaining fraction (nano- and picophytoplankton) is considered the counterpart of small 

phytoplankton chlorophyll (Figure 3.5B). Since Hirata et al.’s (2011) relationship was 

designed with SeaWiFs observations, I cannot apply the same formula to in-situ 

measurements with any confidence. 

3.4.2 SENSITIVITY ANALYSIS 

In order to identify the most sensitive parameters and reduce the parameter space 

to be searched during optimization, the 1D models were rerun after perturbing each 

parameter one at a time. A reduced parameter space is desirable because parameters that 

are insensitive to the observations used in the optimization cannot be estimated. The 

sensitivity of the models to each of their parameter values is estimated as:  

𝑄(𝑌, 𝑝) =  ∑ ∑
|𝑌𝑡𝑒𝑠𝑡−𝑌𝑏𝑎𝑠𝑒|

𝑌𝑏𝑎𝑠𝑒

𝑛
𝑗=1

𝑚
𝑖=1 , (3.2) 

which is the sum of the normalized absolute differences in the model state variables (Y), 

between the results of a base simulation (Ybase) and a test simulation (Ytest), where n is the 

total number of values compared. Q is calculated by varying each parameter p in m = 5 
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different tests. The tests change each of the base simulation parameter values to the 

minimum, 25%, 50%, 75% and maximum values of their corresponding ranges shown in 

Table 3.3. These minimum and maximum parameter values are based on the literature 

and also imposed in the optimization algorithm as bounds to avoid unrealistic values 

(Kuhn et al., 2015; Ward et al., 2010). The base simulations using the initial guess 

parameter values are also shown in Table 3.3.  

Table 3.3 A priori model parameter estimates and ranges. For M1, a priori parameter 

values are from Fennel et al. (2008). For M2, I assume that the fixed biological 

rates are reference values at the average surface temperature in the domain 

(approximately T = 10 ºC), and back-calculated the corresponding reference value 

at T = 0 ºC. M3 uses the M2 parameters, except for zooplankton grazing rates. 

Zooplankton grazing rates for different preys were scaled following Kishi et al. 

(2007). Parameters in bold font were optimized in at least one of the optimization 

exercises. 

Parameters M1 M2 M3 Range Units 

Reference phytoplankton 

maximum growth rate at 

T = 0ºC (generic, small 

and large, respectively)  

𝝁𝟎 0.69 0.69 - 0.1 – 3.5 d
-1 

𝝁𝟎𝑷𝑺
 - - 0.69 0.1 – 3.5 d

-1
 

𝝁𝟎𝑷𝑳
 - - 0.69 0.1 – 3.5 d

-1
 

Phytoplankton NO3 

uptake half-saturation 

(generic, small and 

large, respectively) 

𝑘𝑁𝑂3 0.5 0.5 - 0.2 - 2 mmol  m
-3

 

𝑘𝑁𝑂3𝑃𝑆
 - - 0.5 0.2 - 2 mmol  m

-3
 

𝑘𝑁𝑂3𝑃𝐿
 - - 0.5 0.2 - 2 mmol  m

-3
 

Phytoplankton NH4 

uptake half-saturation 

(generic, small and 

large, respectively) 

𝑘𝑁𝐻4 0.5 0.5 - 0.2 - 2 mmol  m
-3

 

𝑘𝑁𝐻4𝑃𝑆
 - - 0.5 0.2 - 2 mmol  m

-3
 

𝑘𝑁𝐻4𝑃𝐿
 - - 0.5 0.2 - 2 mmol  m

-3
 

Phytoplankton, initial 

slope of photosynthetic 

response 

𝜶  0.125 0.125 - 0.007 – 0.13  mg C (mg 

Chl Watts 

m
-2

 day) 

𝜶𝑷𝑺
 - - 0.125 0.007 – 0.13 mg C (mg 

Chl Watts 

m
-2

 day) 

𝜶𝑷𝑳
 - - 0.125 0.007 – 0.13 mg C (mg 

Chl Watts 

m
-2

 day) 

Phytoplankton mortality 

rate 
𝒎𝑷 0.15 - - 0.01 – 0.25  d

-1
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Parameters M1 M2 M3 Range Units 

Reference phytoplankton 

mortality rate at T = 0 ºC 

(generic, small and 

large, respectively) 

𝒎𝑷𝟎 - 0.13 - 0.01 – 0.25 d
-1

 

𝒎𝑷𝑺𝟎 - - 0.13 0.01 – 0.25 d
-1

 

𝒎𝑷𝑳𝟎 - - 0.13 0.01 – 0.25 d
-1

 

Zooplankton maximum 

grazing rate 
𝒈𝒎𝒂𝒙 0.6 - - 0.2 - 4 d

-1
 

Reference zooplankton 

maximum grazing rate at 

T = 0 ºC (generic, small, 

large, and predatory on 

each of their preys) 

𝒈𝟎 - 0.54 - 0.2 - 4 d
-1

 

𝒈𝟎𝒁𝑺𝑷𝑺
 - - 0.54 0.2 - 4 d

-1
 

𝒈𝟎𝒁𝑳𝑷𝑺
 - - 0.13 0.05 - 4 d

-1
 

𝒈𝟎𝒁𝑳𝑷𝑳
 - - 0.54 0.2 - 4 d

-1
 

𝒈𝟎𝒁𝑳𝒁𝑺
 - - 0.54 0.2 - 4 d

-1
 

𝒈𝟎𝒁𝑷𝑷𝑳
 - - 0.27 0.1 - 4 d

-1
 

𝒈𝟎𝒁𝑷𝒁𝑺
 - - 0.27 0.1 - 4 d

-1
 

𝒈𝟎𝒁𝑷𝒁𝑳
 - - 0.27 0.1 - 4 d

-1
 

Square zooplankton 

grazing half-saturation 

(generic, small, large, 

and predatory on each of 

their preys) 

𝑘𝑃 2 2 - 0.5 - 5 (mmol m
-

3
)

2
 

𝑘𝑍𝑆𝑃𝑆
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

𝑘𝑍𝐿𝑃𝑆
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

𝑘𝑍𝐿𝑃𝐿
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

𝑘𝑍𝐿𝑍𝑆
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

𝑘𝑍𝑃𝑃𝐿
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

𝑘𝑍𝑃𝑍𝑆
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

𝑘𝑍𝑃𝑍𝐿
 - - 2 0.5 - 5 (mmol m

-

3
)

2
 

Zooplankton base 

metabolic rate 
𝑙𝐵𝑀 0.1 - - 0.01 – 0.35  d

-1
 

Reference zooplankton 

base metabolic rate at T 

= 0 ºC (generic, small, 

large, and predatory) 

𝑙𝐵𝑀0 - 0.09 - 0.01 – 0.35 d
-1

 

𝑙𝐵𝑀0𝑍𝑆
 - - 0.09 0.01 – 0.35 d

-1
 

𝑙𝐵𝑀0𝑍𝐿
 - - 0.09 0.01 – 0.35 d

-1
 

𝑙𝐵𝑀0𝑍𝑃
 - - 0.09 0.01 – 0.35 d

-1
 

Zooplankton excretion 

rate 
𝑙𝐸 0.1 - - 0.02 – 0.35 d

-1
 

Reference zooplankton 

excretion rate at T = 0 ºC 

(generic, small, large, 

and predatory) 

𝑙𝐸0 - 0.09 - 0.02 – 0.35 d
-1

 

𝑙𝐸𝑍𝑆
 - - 0.09 0.02 – 0.35 d

-1
 

𝑙𝐸𝑍𝐿
 - - 0.09 0.02 – 0.35 d

-1
 

𝑙𝐸𝑍𝑃
 - - 0.09 0.02 – 0.35 d

-1
 

Zooplankton mortality 

rate 
𝑚𝑍 0.025 - - 0.02 - 0.35 d

-1
 

Reference zooplankton 

mortality rate at T = 0 ºC 

(generic, small, large, 

and predatory) 

𝑚𝑍0 - 0.022  0.02 - 0.35 d
-1

 

𝑚0𝑍𝑆
 - - 0.022 0.02 - 0.35 d

-1
 

𝑚0𝑍𝐿
 - - 0.022 0.02 - 0.35 d

-1
 

𝑚0𝑍𝑃
 - - 0.022 0.02 - 0.35 d

-1
 

Phytoplankton and small 

detritus aggregation rate 
𝝉 0.01 0.01 - 0.001 - 1 d

-1
 

Large phytoplankton and 𝝉𝑷𝑳
 - - 0.01 0.001 - 1 d

-1
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Parameters M1 M2 M3 Range Units 

small detritus 

aggregation rate 

Maximum chlorophyll to 

carbon ratio (generic, 

small and large) 

𝜽𝒎𝒂𝒙 0.053 0.053 - 0.005 – 0.15 mg Chl 

(mg C)
-1

 

𝜽𝒎𝒂𝒙𝑷𝑺
 - - 0.053 0.005 – 0.15 mg Chl 

(mg C)
-1

 

𝜽𝒎𝒂𝒙𝑷𝑳
 - - 0.053 0.005 – 0.15 mg Chl 

(mg C)
-1

 

Zooplankton 

assimilation efficiency 

(generic, small, large, 

and predatory) 

𝛽 0.75 0.75 - 0.25 – 0.95 non-dim. 

𝛽𝑍𝑆
 - - 0.75 0.25 – 0.95 non-dim. 

𝛽𝑍𝐿
 - - 0.75 0.25 – 0.95 non-dim. 

𝛽𝑍𝑃
 - - 0.75 0.25 – 0.95 non-dim. 

Small detritus 

remineralization rate 
𝑟𝑆𝐷 0.4 0.4 0.4 0.005 – 0.6 d

-1
 

Large detritus 

remineralization rate 
𝑟𝐿𝐷 0.1 0.1 0.1 0.005 – 0.1 d

-1
 

Nitrification rate 𝑛𝑚𝑎𝑥 0.2 0.2 0.2 0.01 – 0.5 d
-1

 

Half-saturation radiation 

for nitrification 

inhibition 

𝑘𝐼 0.1 0.1 0.1 0.05 – 0.15   Wm
2
 

Radiation threshold for 

nitrification inhibition 
𝐼0 0.0095 0.0095 0.0095 0.008 - 0.015  Wm

2
 

Vertical sinking velocity 

for phytoplankton 

(generic, small, and 

large) 

𝑤𝑃 0.1 0.1 - 0.05 – 1.5  md
-1

 

𝑤𝑃𝑆
 - - 0.1 0.05 – 1.5 md

-1
 

𝑤𝑃𝐿
 - - 0.1 0.05 – 1 md

-1
 

Vertical sinking velocity 

for small detritus 
𝑤𝑆𝐷 0.1 0.1 0.1 0.05 – 1.5  [m/day] 

Vertical sinking velocity 

for large detritus 
𝑤𝐿𝐷 5 5 5 0.5 - 10  [m/day], 

Eppley temperature 

coefficient 
𝜙 1.066 1.066 1.066 1.05 – 1.08 non-dim. 

 

Results of this sensitivity analysis are shown in Figure 3.6. Each stacked bar 

shows the contribution of all model variables to the total sensitivity. In order to select the 

parameters most sensitive to the available observations, the parameters were ranked with 

respect to the chlorophyll and nitrate contributions to Q. In models M1 and M2 equivalent 

parameters have similar rankings: the 3 most sensitive parameters are the maximum 

phytoplankton growth (μ0), the mortality (mP, mP0), and the coagulation rate (τ). The 

initial photosynthetic slope (α) and grazing rate (gmax, g0) have different ranks in M1 and 
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M2, but are among the six most sensitive parameters. In addition to being important for 

the estimation of chlorophyll, this subset of parameters also has a significant effect on 

zooplankton and detritus. M1 and M2 are also sensitive to the zooplankton base metabolic 

rate (lBM, lBM0) and the remineralization of small detritus (rSD); however, these parameters 

dominantly affect zooplankton and detritus, which are not part of the observation data 

used in the optimization. 

In M3, parameters related to small phytoplankton are more sensitive than those 

related to large phytoplankton, e.g., the most sensitive parameter is the reference 

maximum growth rate of small phytoplankton (μ0Ps). There are some similarities in 

parameter ranking with the rankings of M1 and M2, e.g., the small phytoplankton 

mortality rate (μ0PS), the grazing rate of small zooplankton on small phytoplankton 

(gmaxZsPs), and the coagulation rate (τ) are among the most sensitive. The most sensitive 

parameters of M3 are similar to those reported for NEMURO (Yoshie et al., 2007).   

The parameter rankings in Figure 3.6 guided the selection of parameters to be 

optimized, as detailed in the next section and in Table 3.4. 
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Figure 3.6 Parameter sensitivities for M1, M2 and M3. Each stacked bar represents the 

total sensitivity of the model to a specific parameter, and is composed of the 

contribution of each model variable to the total. Parameters in bold black font are 

included in the main optimization exercise.  In M3, parameters in italics are 

grazing rates that were indirectly optimized (i.e., the ratio between all grazing 

rates was maintained constant). 
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3.4.3 OPTIMIZATION EXPERIMENTS 

I performed five common optimization experiments for each model (E1 to E5) and 

two additional experiments for M3 (E4b and E5b). Each optimization experiment (E) 

utilizes a different cost function JE, depending on its objective. Table 3.4 summarizes the 

optimization experiments, describing the number of parameters, locations, and observed 

variables used in each. Due to the different cost functions of the experiments, the function 

F is used as a unifying metric to evaluate differences between optimized models: 

𝐹(𝑝⃗) =
1

𝐿
∑

1

𝜔𝑙

𝐿
𝑙=1  (𝑅𝑐ℎ𝑙1 + 𝑅𝑐ℎ𝑙2 + 𝑅𝑁𝑂3), (3.3) 

where 𝑝⃗ refers to parameter vector, and L = 22 is the total number of 1D model locations 

(l). The location weighting factor 𝜔𝑙 =
1

𝐿
∑

𝑦𝑣
2

𝜎𝑣
2

𝑉
𝑣=1  uses the mean ( 𝑦 ) and standard 

deviation (𝜎) of the observed variables (𝑣) to avoid biasing the cost towards locations 

with lower variability. Rv is the weighted root mean square difference between the 

simulated (𝑦̂) and observed (𝑦) values of satellite chlorophyll (Rchl1), in situ chlorophyll 

(Rchl2) and in situ nitrate (RNO3), according to: 

𝑅𝑣 =  
𝑤𝑣

2

𝑁
∑(𝑦̂𝑙,𝑛 − 𝑦𝑙,𝑛)

2
𝑁

𝑛=1

 

(3.4) 

where  N  is the number of observed values, and the weight 𝑤𝑣 =  𝜙𝑣/𝜎𝑣 of each variable 

at each location is inversly proportional to the standard deviation of its observations. 

Based on preliminary tests and due to the large variability in its values, higher weight was 

assigned to satellite chlorophyll by setting the weight coefficients 𝜙𝑣 = 3 for satellite 
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chlorophyll and  𝜙𝑣 = 1  for the other two data types. In the case of M3, Rchl1 was 

modified to compare both the small and large phytoplankton chlorophyll fractions against 

corresponding satellite-derived fractions estimated using the Hirata et al. (2011) 

algorithm (see section 3.4.1).  

Experiments E1 and E2 (using cost functions J1 and J2, respectively) optimize a 

reduced number of observed variables in the cost function: 

𝐽1(𝑝⃗) =
1

𝐿
∑

1

𝜔𝑙
 𝑅𝑐ℎ𝑙1

𝐿

𝑙=1

 

(3.5) 

𝐽2(𝑝⃗) =
1

𝐿
∑

1

𝜔𝑙
 (𝑅𝑐ℎ𝑙1 + 𝑅𝑐ℎ𝑙2)

𝐿

𝑙=1

 

(3.6) 

All other experiments compare the three available observed variables.  The cost 

functions in experiments E4, E5, E4b and E5b are equal to F  

(𝐽4 = 𝐽5 =  𝐽4𝑏 =  𝐽5𝑏 =  𝐹), thus they evaluate optimizations for all compared variables, 

at all compared locations. Comparing results of E1, E2 and E4 aims to evaluate 

differences between “single-objective” and “multiple-objective” optimizations. 

The experiments described above are performed as “joint” optimizations where all 

22 locations are included. In contrast, experiment E3 (Eq. 3.7) corresponds to “single-

site” optimizations (i.e., the optimization algorithm runs independently for each 1D model 

location). Note that the location-specific weight is not needed in this cost function: 

𝐽3(𝑝⃗, 𝑙) = (𝑅𝑐ℎ𝑙1 + 𝑅𝑐ℎ𝑙2 + 𝑅𝑁𝑂3) (3.7) 
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Comparison between the results of E3 and E4 evaluates the compromise required 

when fitting all observed variables at all locations using one common set of parameters 

(section 3.5.2). The results of E3 were used to assess spatial patterns in the optimized 

parameters in a principal component analysis. I also compared the portability of my three 

model versions by running the 1D models of each location with parameters optimized for 

the rest of them.  

As described in Table 3.4, the cost function of experiment E5 includes all 

observed variables at all locations, but differs from E4 in the number of parameters 

optimized. Results from the sensitivity analysis (section 3.4.2) show that the 6 most 

sensitive parameters in M1 and M2 are either the same or equivalent (Figure 3.6). 

Experiments E1 to E4 aimed to optimize these top 6 most sensitive parameters in M1 and 

M2, or their equivalents in M3. For example, the M3 equivalents of the phytoplankton 

reference growth rate μ0, used in the single phytoplankton models (M1 and M2), are both 

the small and large phytoplankton reference growth rates μ0Ps and μ0Pl. Due to lack of 

observational constraints for zooplankton, only one of the grazing rates is optimized 

(gmaxZsPs), keeping the ratio to other grazing rates constant. In Experiment E5, I optimized 

only the top 3 most sensitive parameters of M1 and M2, or their equivalents in M3. Thus, 

the comparison between E4 and E5 evaluates how the number of optimized parameters 

affects the results (section 3.5.3). In preliminary tests, optimizing more that 6 parameters 

in M1 or M2 did not result in significant improvements. 
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Table 3.4 Summary of optimization experiments, detailing observed variables included in 

the cost function, and the number of parameters optimized.  

   M1 & M2  M3 

Exp. Stations 

included 

 Observations  

in cost function 

Optimized 

parameters 

 Observations in 

cost function 

Optimized 

parameters 

E1 All  Satellite chl-a  

 

𝜇0, 

𝑚𝑃 (or 𝑚𝑃0), 𝜏, 

𝛼, 𝜃𝑚𝑎𝑥, 

𝑔𝑚𝑎𝑥 (or 𝑔0)  

 

 

 Size fractionated 

satellite chl-a 
𝜇0𝑃𝑆

, 𝜇0𝑃𝐿
, 

𝑚𝑃𝑆0 , 𝑚𝑃𝐿0 , 

𝜏𝑃𝐿 , 𝛼𝑃𝑆 , 

𝛼𝑃𝐿, 𝜃𝑚𝑎𝑥𝑃𝑆, 

𝜃𝑚𝑎𝑥𝑃𝐿 , 

𝑔𝑚𝑎𝑥𝑍𝑠𝑃𝑠  

E2 All  Satellite + in situ 

chl-a  

Like E1 

 

 Size fractionated 

satellite chl-a + in 

situ chl-a 

Like E1 

E3 Single  Satellite + in situ 

chl-a + in situ 

NO3 

Like E1 

 

 Size fractionated 

satellite chl-a + in 

situ chl-a + in situ 

NO3 

Like E1 

E4 All  Satellite + in situ 

chl-a + in situ 

NO3 

Like E1  Size fractionated 

satellite chl-a + in 

situ chl-a + in situ 

NO3 

Like E1 

E4b All  (Performed for M3 only)  Like E4  𝜇0𝑃𝑆
, 𝑘𝑃𝑠𝑍𝑠 , 

𝑚𝑃𝑆0 , 

𝑔𝑚𝑎𝑥𝑍𝑠𝑃𝑠 , 

𝛽𝑍𝑆
, 𝛼𝑃𝐿  

E5 All  Satellite + in situ 

chl-a + in situ 

NO3 

𝜇0 , 

𝑚𝑃 (or 𝑚𝑃0), 𝜏 

 Size fractionated 

satellite chl-a + in 

situ chl-a + in situ 

NO3 

𝜇0𝑃𝑆
, 𝜇0𝑃𝐿

, 

𝑚𝑃𝑆0 , 𝑚𝑃𝐿0 , 

𝜏𝑃𝐿 

E5b All  (Performed for M3 only)  Like E5  𝜇0𝑃𝑆
, 𝑘𝑃𝑠𝑍𝑠 , 

𝑚𝑃𝑆0 

 

By optimizing equivalent parameters I aim to ensure an objective comparison. For 

instance, it has been theorized and shown that different models can produce similar fits to 

observations despite portraying different dynamics (Friedrichs et al., 2007; Quine, 1975). 

However, due to this parameter selection procedure, the number of optimized parameters 

in experiments E1 to E5 is higher for M3 than for M1 and M2. It could be argued that a 
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better performance of M3 may be a consequence of more degrees of freedom. In order to 

address this issue, the additional experiments E4b and E5b, which were performed only 

for M3, replicate experiments E4 and E5, but using the same number of optimized 

parameters as for M1 and M2 (i.e. the 6 and 3 most sensitive parameters, respectively). In 

all cases, parameters not included in the optimization subsets are kept fixed at their initial 

guess value (Table 3.3). 

3.5 RESULTS 

Figure 3.7 summarizes the results of the optimization experiments (Table 3.4) in 

terms of the cost metric F (Eq. 3.3) of each model version in 1D. 3D simulations were 

performed only with parameters obtained in experiment E4 and their corresponding costs 

are also shown. Overall, model M3 presents lower costs than M1 and M2 in experiments 

E1 to E4, as well as in experiment E5b. However, in experiments E5 and E4b model M3 

presents large model-data differences with respect to satellite chlorophyll. I describe and 

discuss these results in more detail in the following sections. 
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Figure 3.7 Final cost metrics of the optimization experiments (see Table 3.4). Optimized 

three-dimensional models were only run for the parameters obtained in E4.  
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Figure 3.8 A. Mean surface SeaWiFS satellite and in situ chlorophyll (top), compared to 

surface chlorophyll simulated by the three model versions (M1, M2, M3) with 

optimal parameters from experiment E4. Shading and errorbars represent the 

standard deviation between locations. B. Percentage of gaps in the satellite record 

per month. 

 

3.5.1 SINGLE VS. MULTIPLE OBSERVED VARIABLES 

Comparison of experiments E1, E2 and E4 illustrates the effects of optimizing the 

models against satellite chlorophyll alone, i.e., using the most commonly available 

biological observation, versus including information about the vertical structure of 

chlorophyll and nitrate. The inclusion of chlorophyll profiles in the optimization (E2, Eq. 

3.6) degrades the performance of M1 with respect to satellite chlorophyll, but has no 

significant effect on the performance of M2 and M3. The inclusion of both chlorophyll 

and nitrate profiles (E4) results in lower model costs with respect to nitrate, but higher 

costs with respect to both satellite and in situ chlorophyll. Figure 3.8A shows the 
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optimized results of E4 in comparison to surface chlorophyll; large discrepancies between 

satellite and in situ surface chlorophyll are observed between October and January. These 

months have the largest gaps in the satellite records (Figure 3.8B).  

3.5.2 SINGLE VS. MULTIPLE LOCATIONS 

In experiment E3, optimized parameters were found for each location individually 

using Eq. 3.7, but the F in Figure 3.7 was calculated using all individually optimized 

results as in Eq. 3.3. Allowing different optimal parameters for the different locations 

makes it easier to fit the individual patterns of variability, and thus a lower total cost is 

achieved. The results of experiment E3 are used to analyze whether spatial patterns in the 

biological parameters emerge (section 3.5.2.1) and to evaluate model portability from one 

location to another (section 3.5.2.2). 
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Figure 3.9 Analysis of spatial patterns in optimal parameters for individual locations: 

Subplots A. to C. show the principal components analysis for the three model 

versions in the study. Numbers refer to the locations as depicted in Figure 3.1. 

Some locations tended to consistently arrange themselves along PC1. Locations in 

blue are in the negative side for all three model versions, whereas locations in 

orange are always on the positive side. All other locations are shown in grey. 

Subplots D. to I. show the spatial distribution of the optimized parameters that 

dominated the variability on PC1 (reference zooplankton grazing rates), and PC2 

(reference phytoplankton maximum growth rates). Circles of the locations with 

consistent behavior on the PC analysis have thick edges. 
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3.5.2.1 Spatial Patterns in Parameters 

The analysis of the individually optimized parameters may reveal spatial patterns 

with dominance of specific plankton groups in different areas.  A principal component 

analysis was performed on the optimal parameter sets obtained for each model version 

(Figure 3.9). In all model versions, the variability among locations is dominated by 

differences in the zooplankton grazing rates (PC1) and phytoplankton growth rates (PC2). 

Clearly defined clusters of locations are not identified by the analysis; however, some 

locations consistently arrange themselves along PC2 in all model versions. That is, some 

locations are consistently characterized by either high or low grazing rates. Spatial 

patterns in the grazing rates are, however, difficult to discern.  

 

3.5.2.2 Model Portability 

Model portability experiments were performed in the 1D environment, by 

iteratively applying the optimized parameters from one location (“optimized model”) to 

the rest of them (“test models”). Results are summarized in Figure 3.10, where the cost of 

the test models is normalized by the corresponding optimized model cost. M2 has the 

largest percentage of test models with cost equal to or lower than the optimized model 

(M1: 23.3%, M2: 32.9%, M3: 17.4%). The highest percentage of tests with cost larger 

than the optimized run occur in M3 (M1: 76.7%, M2: 67.1%, M3: 82.6%); however, M1 

presented the highest percentage of tests with cost larger than twice the optimized run 

(M1: 32.3%, M2: 25.5%, M3: 26.7%). According to these results, M2 is the most portable 

of the three model versions, whereas M3 appears as the least portable. 
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Figure 3.10 Results of the portability experiments. On the left panels, the color scale 

represents the cost of running the 1D model at locations on the y-axis (test 

models), using parameters optimized for locations on the x-axis (optimized 

models). Cost (F) values have been normalized to the corresponding optimal cost, 

such that all optimized models have a cost equal to one (bins along the diagonal). 

On the right panels, bars summarize the results in four cost categories.  

 

Figure 3.11 shows an example of the portability experiments for two locations: 

location 4 (BON 49.21º N – 51.48º W) and location 11 (HAL 43.46º N – 62.43º W). The 

satellite observations at the BON location have a distinct spring bloom peak, which is 

well replicated by M2 using either parameters optimized for this location (Figure 3.11A) 
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or for the HAL location (Figure 3.11C).  However, M3 can only replicate the annual peak 

when using the locally optimized set of parameters. The magnitude of the spring bloom at 

the HAL location is lower than at BON, the peak occurs earlier in the year, and other 

peaks of equal magnitude can occur at different times of the year. Due to this more 

irregular variability, both models are challenged to replicate the HAL location even when 

using locally optimized parameters. When locally optimized, both models appear 

calibrated to appropriately capturing the timing of maximum surface chlorophyll 

concentrations, such that large discrepancies with observations occur when the fall bloom 

is larger than the spring bloom, as in 1999. Locally optimized M2 favors maximum 

concentrations, and produces lower-than-observed summer to fall concentrations. In 

contrast, M3 favors average concentrations, better capturing summer to fall 

concentrations but underestimating the spring bloom maxima. The HAL test run of M2 

maintains the spring bloom peak timing, but overall increases concentrations with 

emphasis on the fall. M3 generates a well-defined spring bloom of shorter duration.  
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Figure 3.11 Example of the portability experiments, showing satellite, in situ, and 

simulated surface chlorophyll at locations BON and HAL. Subplots A. to D. 

correspond to results of M2, whereas subplots E. to H. correspond to results of 

M3. Subplots A., D., E., and H. show results of models optimized for their 

corresponding location. Subplots B., C., F., and G. are model results using 

parameters optimized for a different location. 

 

3.5.3 NUMBER OF OPTIMIZED PARAMETERS 

Experiments E4, E5, E4b and E5b aim to evaluate the effect of increasing or 

decreasing the number of optimized parameters on the optimization success. The cost 

metric results (Figure 3.7) show that the number of optimized parameters does not 

significantly affect the costs of M1 and M2. This is consistent with the results from the 

parameter sensitivity analysis, where the top 3 most sensitive parameters in M1 and M2 

present a dominant effect on the model results in comparison with the rest of parameters 
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(Figure 3.6 A, B). In contrast, M3 was more evenly sensitive to all parameters (Figure 

3.6C), and thus the number and choice of parameters to include in the optimization 

significantly affects the model results. For example, in experiment E4 a total of 16 

parameters were optimized for M3. Those included sensitive parameters for all of the 

phytoplankton and zooplankton groups, while the subset of 6 parameters optimized in 

E4b only included one of the large phytoplankton parameters (αPl). The optimization 

results of E4b successfully replicate the average small phytoplankton background 

concentrations, but fail to replicate the blooming of the large phytoplankton group (Figure 

3.12). In other words, calibrating the initial photosynthetic slope of large phytoplankton 

was insufficient to obtain an adequately large phytoplankton response.    

The cost of M3 in experiments E5 (5 optimized parameters) and E5b (3 optimized 

parameters) is within the range of those for M1 and M2, but the parameters obtained by 

these experiments generate unintended trophic dynamics where some functional groups 

become extinct in the model. The diagrams in Figure 3.12B summarize these emergent 

structures. In E4b, predatory zooplankton (ZP) disappear due to a combination of low prey 

biomass and low grazing rates. As large phytoplankton were not properly replicated, large 

zooplankton growth became inhibited by low prey densities, and both low large 

phytoplankton and low large zooplankton biomass affected predatory zooplankton. In E5, 

grazing rates were not part of the optimized parameters and did not scale with increasing 

phytoplankton growth rates. This resulted in the functional extinction of small 

zooplankton, while the model attempted to match zooplankton losses by increasing 

mortalities and coagulation rates. The negligible biomass of small zooplankton cascaded 

to the total extinction of large and predatory zooplankton. In experiment E5b, M3 
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essentially becomes a P-Z model similar to M1 and M2, due to the extinction of large and 

predatory zooplankton and the low concentrations of large phytoplankton. 

 

Figure 3.12 A. Comparison of satellite-derived size-fractionated mean surface 

chlorophyll, and their model counterparts in M3 from optimization exercises E4 

and E4b. B. Diagrams depicting the  trophic model structures of M3 resulting 

from different optimization exercises. The line thickness of the circles’ edges is 

proportional to the plankton group mean biomass, whereas the thickness of 

connecting lines is proportional to the fluxes between them. Dashed lines depict 

groups that have negligible biomass, but that are still part of the model dynamics 

by receiving a small but not negligible flux of nitrogen (i.e., functionally extinct 

plankton groups). Groups with negligible biomass and fluxes are removed from 

the diagram. 
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3.5.4 FLUXES 

The choice of parameters of M3 in experiments E1 to E5 was intended to optimize 

comparable fluxes among all model versions. Nonetheless, differences in the resulting 

gross fluxes between variables are present between the 7-variable models and the 11-

variable model. Figure 3.13 shows vertically integrated zooplankton grazing, 

phytoplankton growth (new and regenerated production), mortality and coagulation fluxes 

obtained for the models using parameters from E4. Differences in the new production 

fluxes are negligible between M1 and M2, but M1 presents a slightly higher annual peak 

in the regenerated production and grazing. The effect of temperature dependency on the 

phytoplankton mortality rates is noticeable during fall and winter, where M2 has lower 

rates than M1. In contrast to M1 and M2, M3 has more defined peaks in new production 

and more extended periods with high regenerated production. Grazing by small 

zooplankton is lowest in M3.  Peaks in grazing by large and predatory zooplankton 

exceed the grazing rates in M1 and M2 by approximately 2 mmol m
-2

 d
-1

 on average. 

Mortality of large phytoplankton during spring and summer is twice as high as the small 

phytoplankton mortality, but has approximately the same magnitude during winter. 

Mortality of large phytoplankton is twice the phytoplankton mortality flux in M1 and M2 

during spring and summer, but the same as M2 during winter. The coagulation flux of 

large phytoplankton is negligible. 
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Figure 3.13 Vertically integrated phytoplankton new and regenerated growth, 

zooplankton grazing, and other phytoplankton sinks (mortality and coagulation). 

Subplots A. to C. show the fluxes in the 7-compartment models (M1 and M2).  

Subplots D. to F. show the fluxes in M3 for all plankton groups.  

 

3.6 DISCUSSION 

3.6.1 SURROGATES AND SURROGATE-BASED OPTIMIZATION 

Simplified models allow us to avoid the computational expense of 3D models when 

performing sensitivity tests and calibrations. Here, a simplified 1D physical framework was 

shown to replicate the results of a 3D regional application at selected locations, using three 

different ecosystem model versions (Figure 3.3, 3.4). After optimization, the model-data misfit 

was reduced in both 1D and 3D applications for each of the three model versions (Figure 3.7, 

Appendix E).  Similar types of site-based or test-bed calibrations of marine ecosystem models 

using 1D models have previously been shown to improve the predictive skill of 3D models 

(Oschlies and Schartau, 2005; Kane et al., 2011; McDonald et al., 2012). In most cases, the 1D 

models are built to represent averaged conditions at a climatological scale or over a relatively 

large spatial area (Dadou et al., 2004; Losa et al., 2004; Matear, 1995; Schartau and Oschlies, 
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2003a). This is intended to reduce the effect of phase biases that result from noise in both the 

observations and models, and the inability of models to replicate as much variability as is 

displayed in the observations (Hemmings et al., 2015; Leeds et al., 2012; Schartau and Oschlies, 

2003a). I did not use climatological or spatial averaging; that is, surrogate-target and model-data 

comparisons were done on a site-by-site and date-by-date basis. Although this can be considered 

more challenging, the surrogates were able to capture between 36% and 70% of the variance in 

surface chlorophyll estimates of the 3D model sample (Figure 3.3).  

The surrogate-based optimization was successful in improving the performance of the 

three ecosystem model versions. However, there are some systematic differences between 1D and 

3D models in terms of the position of the deep chlorophyll maxima in summer. Overall, the deep 

chlorophyll maxima are shallower in the 1D models than in the 3D model (Figure 3.4), probably a 

consequence of the simplified two-layer vertical structure of turbulence in 1D. Similar 

discrepancies in the position and extend of the deep chlorophyll maximum have been previously 

noted in 1D models (Doney et al., 1996; Fasham et al., 1993), including 1D calibration studies 

(Schartau and Oschlies, 2003b). In the latter, the vertical diffusivities in the 1D model were 

directly taken from the target model. This suggests that biases in the deep chlorophyll maxima 

may be inherent to 1D models, and are not entirely due to the oversimplification of the diffusive 

component. Using diffusivities from the 3D output for site-base calibration (Hemmings et al., 

2015; Schartau and Oschlies, 2003a) can increase the risk of introducing model-data misfits due 

to misplaced eddies or systematic mesoscale errors.   

The mechanistic surrogate approach allowed us to identify features in the variables of 

interest that are likely dominated by the biological module from those controlled by the physics. 

In my case, the timing of the peak of the spring bloom was overall well captured by the 1D 

models (Figure 3.8, 3.11). This indicates that this phytoplankton phenological characteristic is 

well constrained by the observations used during the optimization, and sensitive to the choice of 
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parameters optimized. In Chapter 2 I established that the estimate of the winter mixed layer was 

key to determining an appropriate level of annual nutrient replenishment in my 1D framework 

(Kuhn et al., 2015). However, this may be insufficient for locations where other processes, such 

as advective fluxes or high frequency changes in stratification, contribute to changes in nitrate 

concentrations.  

3.6.2 DECIDING ON A COMPLEXITY LEVEL  

In my results, the more complex (11-compartment) model M3 was able to 

generate the lowest model-data misfits in all optimization experiments where the intended 

model structure was preserved. In particular, M3 exhibits reduced differences against the 

observed chlorophyll and nitrate vertical distributions. The simpler (7-compartment) 

model structures have a higher cost, but are also able to capture the averaged seasonal 

variations in surface chlorophyll. Therefore, if the objective of a modeling study is to 

characterize the overall seasonality in surface chlorophyll, a simple model may suffice. 

Complex models have obvious utility in the study of trophic interactions and may also be 

better able to capture vertical distributions. 

Some of the earliest attempts to assess the most appropriate level of ecosystem 

complexity in models were inconclusive (e.g., Dadou et al., 2004; Matear, 1995); while 

others recognized that the differences found were likely related to the parameter selection 

and functional equations, rather than the model structure itself (e.g., Sailley et al., 2013). 

In fact, the optimization experiments of Kriest et al. (2010) demonstrated that increasing 

complexity of unoptimized models does not necessarily improve model performance. 

Among the studies unable to identify the best level of complexity, Matear (1995) 

investigated three different optimized ecosystem configurations and concluded that the 
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data from the study site were insufficient to justify the use of more complex models over 

the commonly used nutrient-phytoplankton-zooplankton-detritus (NPZD) model.  

Similarly, Dadou et al. (2004) compared three alternative optimized model configurations 

with similar complexity at an oligotrophic study site in the Eastern North Atlantic, and 

were not able to objectively discriminate between the designs. The comparison of 

Bagniewski et al. (2011) concluded none of the model variants could be rejected based on 

their misfit against constraining observations; however, they generated significantly 

different estimates of export carbon fluxes.   

Based on poor model-data fits obtained after applying parameter optimization, 

Rückelt et al. (2010) argued that the structure of NPZD models is too simple and not 

suitable to reproduce observations from the Bermuda Atlantic Time Series station. 

However, other optimization studies using NPZD models and observational climatologies 

from the North Atlantic have been able to significantly reduce model-data differences 

(Kuhn et al., 2015; Schartau and Oschlies, 2003a). Moreover, it has also been shown that 

systematically removing some of the unconstrained aspects of an ecosystem model does 

not significantly increase the value of the cost metric (Ward et al., 2013). One of the most 

comprehensive comparisons of optimized marine ecosystem models is found in Friedrichs 

et al. (2007).  They compared 12 individually optimized ecosystem models and showed 

that, when optimized for an individual location, models with only one phytoplankton and 

one limiting nutrient could reproduce observations as well as the more complex models. 

However, models with multiple phytoplankton groups outperformed the single 

phytoplankton group models in geographical portability experiments. My results agree 

with this study in the first aspect, but differ in the conclusions from portability 
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experiments. When applied to a different location than the one it was calibrated for, my 

model with multiple phytoplankton groups tended to maintain chlorophyll magnitude 

characteristics from its original location. 

When optimizing models with multiple phytoplankton groups the value of a cost 

function based on total chlorophyll could be misleading. Hence, I decided to use an 

estimate of size-fractionated surface chlorophyll. The independent constraining of small 

and large phytoplankton makes the more complex model less portable when calibrated for 

individual locations (Figure 3.10, 3.11), as it tends to benefit one phytoplankton group 

over the other depending on the chlorophyll abundance of specific locations. Lower 

predictive ability in complex models has been posited to occur when the model becomes 

over-fitted to noise in the data (e.g. Friedrichs et al., 2006). If community composition 

information were available to compare against all simulated plankton groups, a model 

with more groups could become too specific to its training data set.  

The most portable model in my experiments was M2, which had 7 compartments 

and temperature-dependent biological rates.  This suggests that improving mechanistic 

interactions, rather than introducing unconstrained diversity, has the potential to increase 

the global applicability of an ecosystem model. Temperature dependent grazing and 

mortality rates have been previously noted to improve the performance of global models 

(Behrenfeld et al. 2013), and this clearly also applies to dynamically complicated regions 

like the northwest North Atlantic. Therefore, to benefit from the higher performance of a 

site-based calibrated complex model, such calibration requires including samples from all 

biogeographical provinces to be simulated. 
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I also showed that the performance of M3 could significantly degrade depending 

on the choice of parameters to be optimized, as biological parameter values have the 

ability to effectively modify the intended trophic interactions in a model (Cropp and 

Norbury, 2009; Sailley et al., 2013). In my optimization experiments, these unintended 

behaviors included the functional and/or total extinction of plankton groups. Similar 

extinctions occur when no scaling weights are assigned to different locations in the cost 

function, as the optimization becomes biased towards locations with higher biomass, and 

generates extinct functional groups at the locations with lower biomass (e.g., Schartau 

and Oschlies, 2003a). Due to the non-linear nature of ecosystem models, the extinction of 

one component can have unforeseen, however logical, consequences.  For example, 

Cropp and Norbury (2009) showed that removing the predator of a given prey does not 

only allow such prey population to increase, but can also lead to the extinction of 

competing prey and their predators, and ultimately generate the system’s collapse. In a 

subsequent study, they concluded that it is rare to find parameters that maintain the 

intended structure of plankton functional type models, and that delicately balanced 

parameter sets are required in models with multiple preys and predators (Cropp and 

Norbury, 2010).  

3.6.3 UNCERTAINTIES 

The main uncertainty in the use of mechanistic surrogate-based calibrations with 

1D models is in neglecting horizontal advection fluxes. In addition, there are two main 

issues with the use of optimized simulations for analyzing the effects of ecosystem model 

complexity: 1) the cost function is not an entirely objective measure, thus its design can 
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affect the outcome of the optimization, and 2) the selection of parameters to optimize is 

subjective as well, and can have a dramatic effect as I have shown.    

I neglected horizontal advection, as is typically done in 1D models, assuming that 

horizontal divergence terms are small relative to vertical mixing and to the biological 

sources and sinks. This treatment allowed us to have an estimate of how much a 3D 

application of an oceanographically complex region, the northwest North Atlantic, can be 

improved with the use of reduced-order models. Nonetheless, this assumption may impact 

the surrogate performance. Hemmings and Challenor (2015) explicitly examined the 

effect of introducing horizontal advective flux in a mechanistic emulator composed of 1D 

models representing the ocean conditions of twelve 5-degree latitudinal bands at 20º W in 

the North Atlantic. Their results showed that the addition of horizontal fluxes improved 

the correlation coefficient between 1D and 3D surface chlorophyll. The addition of 

horizontal advective fluxes in the surrogates is only recommended if the velocities of the 

target 3D model are accurate; otherwise, the biological parameters may tend to 

compensate biases introduced by an erroneous physical forcing. Advective fluxes can be 

of particular importance in certain locations. Friedrichs et al. (2007) neglected horizontal 

advection in the Arabian Sea, but included the horizontal advective divergence of nitrate 

in the Equatorial Pacific. The decision was based on a scaling study that showed that the 

horizontal advection of nitrate has first order effects on the biogeochemistry of that region 

(Friedrichs and Hofmann, 2001). In my study, some effects of neglecting advective fluxes 

are compensated by nudging deep nitrate in the surrogates. 

The design of the cost function can partly compensate the absence of horizontal 

transport, as in the weak constraint approach of Losa et al. (2004), as can the use of 
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relaxation (like the nudging term applied here to nitrate) and correction terms to all 

biological variables (Hemmings and Challenor, 2012; Prieß et al., 2013a). Correction 

terms can also account for other systematic or random errors in the surrogate; however, as 

suggested in section 3.4.1, the more the 1D model is forced to behave like the 3D model, 

the less useful it becomes in identifying the sources of deficiencies in either the physical 

or the biological components of the model. A consideration in the use of correction terms 

is that the distribution of errors in the 1D and 3D models is not necessarily the same 

during the optimization. Hemmings and Challenor (2015) discussed this aspect in detail, 

and found that a statistical error term appeared more robust than a parameter-dependent 

error term.  

Another issue of importance in the design of the optimization cost function is the 

selection of weights to balance the contributions of different variables and/or locations. In 

multi-objective optimizations, optimal parameters become a compromise between 

different biogeochemical conditions and sources of data. Hence, the optimization results 

are quite sensitive to the scaling approach. The lack of any explicit treatment of biases, 

and the weighing scheme used in the cost function are consistent with previous studies 

(e.g., Friedrichs et al., 2007; Ward et al., 2010). However, I emphasize the importance of 

correcting biases between observational data sets of the same simulated variable, as I did 

in the case of surface chlorophyll. 

A novel inclusion in the design of the cost function was the use of fractionated 

chlorophyll to compare against the small and large phytoplankton groups, which 

influenced the results of my portability experiments. It can be expected that 

advancements in our understanding of how complex ecosystem models behave can be 
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made with the use of other empirical sources of information for the optimization of 

unconstrained variables. For example, zooplankton abundances from Continuous 

Plankton Recorder measurements cannot be directly compared to model results, but could 

provide estimates of seasonal variability (Lewis et al. 2009) that can be scaled to the 

corresponding zooplankton functional groups in optimization experiments. This might be 

particularly useful, since phytoplankton losses are among the least constrained 

parameters, even for simple NPZD models (e.g., Bagniewski et al., 2011, Fennel et al. 

2001).  

Poorly constrained parameters can be set to arbitrary values during the 

optimization without significantly affecting the model cost (Ward et al., 2010) or 

otherwise tend to hit their a priori distribution limits (e.g. Schartau and Oschlies, 2003). 

When unconstrained parameters are fixed to their a priori best estimates, the level of 

previous tuning to the original model domain can skew the results of geographical 

portability experiments (Ward et al. 2010). Previous portability experiments (Friedrichs et 

al. 2006, 2007) had shown that an increasing number of optimized parameters reduced the 

ability of complex models to simulate unassimilated observations. Nevertheless, my 

results comparing the effects of the number of optimized parameters showed the opposite 

tendency (Figure 3.12). I presume this occurred due to two aspects of my experimental 

design. First, the use of fractionated chlorophyll in the cost function limited the ability of 

the parameters of one phytoplankton group to compensate for uncalibrated parameters in 

the other group. Second, my most complex model had not been previously calibrated. 

Under this scenario, increasing the number of parameters included in the optimization 
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turned out to be beneficial. This confirms that the selection of parameters to be optimized 

should be done with consideration of the level of previous model tuning.  

3.7 CONCLUSION  

Parameter optimization methods offer a systematic approach to reduce subjective 

model tuning and quantitatively compare ecosystem models with different complexities; 

however, optimization is not an entirely objective methodology with a unique solution. I 

have illustrated that, in addition to the uncertainties of the physical environment, 

conclusions about the accuracy and portability of a model can differ depending on 

decisions about the design of the cost function, the selection of parameters to be 

optimized, and the level of preliminary calibration of each model.  Due to the limitations 

of applying parameter optimization in 3D coupled physical-biogeochemical models, 1D 

surrogates represent an efficient alternative for the exploration of the parameter space and 

for geographical portability experiments. In an extensive application of this concept, I 

used ensembles of 1D models that behave as their regional 3D model application 

counterparts, and used them to compare the performance of three ecosystem model 

versions. Processes unresolved by the 1D physical models and the level of ecosystem 

model complexity did affect the accuracy of the surrogates; however, successful 

surrogate-based model calibrations were possible and generated similar model-data 

misfits when applied in the 1D and 3D environments. 

When an appropriate set of parameters was optimized, the model with multiple 

phytoplankton and zooplankton groups was better able to replicate assimilated 

observations than the single phytoplankton and zooplankton models. Nonetheless, the 
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simpler models were also able to replicate the observed averaged seasonal variations in 

surface chlorophyll well. These results are consistent with previous studies and suggest 

that more complex trophic structures in models can better capture the observed temporal 

variability and spatial distribution of biogeochemical variables at multiple locations. In an 

additional analysis, geographical portability experiments provided an indication of how 

each model structure behaves with respect to unassimilated information. In this case, the 

most complex model was found to be the least portable, as the parameters optimized at 

some locations tended to favor either small or large phytoplankton. I used satellite-

derived estimates of fractionated surface chlorophyll as observational counterparts to 

compare against the simulated chlorophyll concentrations of small and large 

phytoplankton groups. This was likely to reduce model portability when calibrated for 

specific locations, as the model became overspecialized. While this result is opposed to 

portability experiments previously performed in other ocean regions, it is consistent with 

early theoretical notions about the expected behavior of complex models. Moreover, 

when I varied the selection of optimization parameters in the complex model, it was 

prone to unsatisfactory results and unintended model behaviors. Attempting to optimize 

an improper selection of parameters resulted in the extinction of certain plankton groups, 

thus modifying the intended structure of trophic relationships in the model. Hence, my 

results highlight that a guided selection of the parameters to be optimized is necessary, 

especially when – as in this case – little or no prior model tuning has been performed. 

My results also highlight that in order to benefit from the improved ecosystem 

representation that a complex model provides, such model needs to be trained with 

observations from diverse geographical locations. Research is required on efficient 
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sampling methodologies to calibrate global surrogates, allowing us to determine the 

number of locations that would be sufficient, and ensuring that the most representative 

locations are being selected.   

Finally, I also observed an improvement in my simplest model version when all 

biological fluxes were configured to depend on temperature. Therefore, I can conclude 

that improving the mechanistic relationships, rather than adding unconstrained diversity, 

can lead to more robust globally applicable models. Here I base this statement on the 

results of the model including temperature dependency in all biological rates, but the 

same argument may apply to the use of allometric or otherwise scaled models. In the next 

chapter, I analyze how these optimized model versions perform when applied to the 3D 

environment: Does complexity affect conclusions about the drivers underlying 

phenology? How does complexity affect estimates of primary production? The answers to 

these questions are key when making decisions about which level of complexity should 

be used for the northwestern North Atlantic. 
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CHAPTER 4:  

EVALUATING ECOSYSTEM COMPLEXITY IN THE NORTHWEST NORTH ATLANTIC, 

PART II: SURFACE CHLOROPHYLL VARIABILITY, PRIMARY PRODUCTION AND 

ECOSYSTEM DYNAMICS 

 

4.1 INTRODUCTION  

The northwest North Atlantic continental shelf is a dynamically complex area that 

lies at the confluence of two large-scale western boundary current systems: the Labrador 

Current and the Gulf Stream (Loder et al., 1998). The region has long been recognized for 

its high biological productivity from a fisheries perspective (Mills and Fournier, 1979), 

but primary production estimates are relatively scarce (Townsend et al., 2004). Previous 

studies have focused on specific locations within this region, with the Gulf of Maine and 

the Scotian Shelf being among the best documented (Fournier et al., 1977; Fournier et al., 

1979; Song et al., 2001; Zhai et al. 2001). The region is confronted with several 

contemporary and future challenges due to natural climate variability and anthropogenic 

pressures, which led to a dramatic decline of commercial fisheries landings on the Scotian 

Shelf since the 70’s (Zwanenburg et al., 2002).  

In order to better manage fish stocks, for example using integrated bio-economic 

models  (Carozza et al., 2017), an accurate view of the magnitude and patterns of primary 

production in the region is necessary. Different phytoplankton functional groups with 

their specific physiological traits have varying potential to transfer energy from primary 

producers to higher trophic levels (Litchman et al., 2007; Litchman and Klausmeier, 
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2008; Strom, 2008) . This is due to their different responses and adaptations to 

environmental processes (Boyd et al., 2010), as well as their different nutritional values 

and strategies to escape predation (Strom, 2002). On the Scotian Shelf, it has been 

suggested that different trophic pathways, including small and large plankton size 

fractions, sustain the year-round production of fish-larvae in the region (Mosseau et al., 

1998).  

Nevertheless, the effects of increased trophic complexity in regional ecosystem 

models have not yet been fully determined (Denman, 2003; Anderson, 2005; Van Nes 

and Scheffer, 2005; Le Quéré, 2006; Friedrichs et al., 2007). Models with few state 

variables, pathways, and parameters (i.e., “simple models”) are powerful tools for 

hypothesis testing because they are easy to interpret (e.g., Evans and Parslow, 1985; 

Fasham et al., 1990; Kuhn et al., 2015). These models can be limited in their generality, 

which may hamper their use at a global scale or in oceanographically complex regions 

like the northwest North Atlantic. In contrast, the “complex models” attempt to represent 

a more realistic ecological structure, by adding more state variables for planktonic 

functional groups or size classes, nutrient and organic matter pools, etc. Determining how 

these differences in structure affect model behavior quickly becomes complicated by the 

proportional increase of model parameters and pathways (Denman, 2003). Accurate 

simulation of multiple plankton groups would improve our understanding of species 

succession, the microbial loop, secondary and export production; however, observational 

evidence of predation rates and predator-prey interactions is scarce, limiting the ability to 

constrain and evaluate complex models. One recent analysis of prey-predator interactions 
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in global models has shown that the actual food webs represented in these complex 

models are different to those intended or expected (Sailley et al., 2013).  

In Chapter 3, I applied an evolutionary algorithm to optimize three biological 

models of increasing complexity that served as surrogates for three-dimensional models 

of the northwest North Atlantic. In these optimization experiments, the complex model 

achieved lower model-data misfits than the simpler models, as expected. This result is 

consistent with previous studies suggesting that more complex trophic structures in 

models can better capture the observed temporal variability and spatial distribution of 

biogeochemical variables at multiple locations (Friedrichs et al., 2007). However, the 

complex model was prone to generating unintended trophic relations depending on the 

selection of optimization parameters, and exhibited reduced portability when optimized 

for specific locations. These results highlight the trade-off between the pursuit of 

ecological realism, and the danger of overfitting as the number of parameters that cannot 

be effectively constrained by the available observational data grows (Flynn, 2005; Ward 

et al., 2013, 2010). 

Here I apply the optimal parameters obtained from the one-dimensional surrogates 

in a three-dimensional Regional Ocean Modelling System (ROMS) application for the 

northwest North Atlantic, in order to provide an overarching view of whether and how 

trophic structure could affect key ecosystem variables and primary production estimates. I 

aim to tease apart the effects of temperature dependence of metabolic rates from those of 

increased trophic complexity.  Model estimates are evaluated against satellite-derived 

surface chlorophyll and vertically integrated primary production. The ROMS model 

domain includes areas that were not represented by the one-dimensional model surrogates 
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in the parameter optimization, therefore providing additional insights into the 

performance of models with respect to unassimilated data. The goal of this study is to 

determine the most appropriate level of complexity for the northwest North Atlantic 3D 

application, while aiming to answer i) how complexity affects our understanding of 

bottom-up and top-down drivers underlying phenology, and ii) how complexity affects 

estimates of primary production.  

4.2 OCEANOGRAPHIC CHARACTERISTICS AND SUB-REGIONS IN THE NORTHWEST NORTH 

ATLANTIC 

The study area is the same briefly described in Chapter 3 (see Figure 4.1), and 

comprises coastal, slope and open waters of the northwest North Atlantic Ocean, 

including the Gulf of Maine and the eastern Canadian coast. The bathymetry of the region 

is characterized by broad continental shelves that are widest off Newfoundland and Nova 

Scotia. Two major current systems converge in the area: the equator-ward flowing 

Labrador Current, and the northeast flowing Gulf Stream, with their adjoining Shelf and 

Slope Water currents (Townsend et al., 2004). The Labrador Current is a cold, relatively 

fresh, buoyancy driven coastal current (Csanady and Hamilton, 1988; Chapman and 

Beardsley, 1989) that extends across isobaths and transports Labrador Slope Water 

(LSW). LSW is characterized by temperatures of 4 - 8 ºC and salinities of 34.3 – 35 

(Gatien 1976). In contrast, Warm Slope Waters adjacent to the Scotian Shelf are a 

mixture of Gulf Stream water and Labrador Current water, and have temperatures of 8 – 

12 ºC and salinity of 34.7 – 35.5 (Gatien, 1976). Lateral density fronts are present 

throughout the region (Loder and Greenberg, 1986; Townsend et al., 2004). In particular, 

the shelf-break front separates the relatively cool and fresh shelf waters from warmer 
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more saline slope waters. The shelf break front is present throughout the year but its 

structure varies seasonally (Frantantoni et al., 2000; Lozier and Gawarkiewicz, 2001).  

 

Figure 4.1: A. Model domain bathymetry, major ocean circulation characteristics based 

on Townsend et al., (2004), and geographical locations mentioned in the text. B. 

Study area sub-regions, location of the Atlantic Zone Monitoring Program 

(AZMP) transects (black lines), and location of the one-dimensional models used 

for the surrogate-based optimization (white circles).   

 

For the evaluation of model results I divided the domain into 6 sub-regions 

(Figure 4.1B). The one-dimensional models used in Chapter 3 are predominantly located 

on the Scotian Shelf, in Gulf of St. Lawrence and on the Grand Banks, with few locations 

on the Newfoundland Shelf. No observations were assimilated in the sub-regions 

containing Open and Slope Waters (sub-region 1), and the Gulf of Maine (sub-region 2), 

hence observations for these regions can serve as independent validation of model 

performance.  
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4.3 OBSERVATIONAL DATASETS 

Satellite-based chlorophyll estimates come from the Sea-viewing Wide Field-of-

view Sensor (SeaWiFs) 8-day averages with a 9-km resolution 

(https://oceandata.sci.gsfc.nasa.gov/SeaWiFS/).  I performed a regression analysis 

between satellite chlorophyll estimates and matching available records of in situ 

chlorophyll from 1997 (beginning of SeaWiFs record) to 2010 (end of SeaWiFs record). 

In situ chlorophyll comes from the Atlantic Zone Monitoring Program (AZMP, 

http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html) 

measurements. The comparison between satellite-derived and in situ surface chlorophyll 

(Figure 4.2) shows that SeaWiFs systematically overestimates chlorophyll inside the Gulf 

of St. Lawrence.  The largest biases are observed at the mouth of the estuary (STL) where 

the satellite estimates exhibit a narrower range than the observed values. Satellite and in 

situ observations in the Gulf coincide in the maximum values observed at each of the 

monitoring lines, showing a decrease in maximum values from the innermost locations 

(STL, MLO, ANT) toward locations farther from the estuary mouth (IMA, BBA). At 

locations outside the Gulf of St. Lawrence, SeaWiFs tends to overestimate low 

chlorophyll values and underestimate high chlorophyll values. The overall bias is much 

smaller than in the Gulf. The bias in the Gulf was removed to correct satellite chlorophyll 

values prior to the parameter optimization (Chapter 3). De-biasing satellite chlorophyll 

concentrations in the Gulf of St. Lawrence results in concentrations between 1.5 and 3 mg 

Chl-a m
-3

 along the estuary (STL) and Iles de la Madelaine (IMA) transects, and lower 

than 0.5 mg Chl-a m
-3

 near Bonne Bay (BBA).  

http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/index-eng.html
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Figure 4.2: Regressions of in situ and SeaWiFs satellite chl-a inside (A) and outside (B) 

the Gulf of St. Lawrence. The black and red dashed lines are regressions lines 

between chlorophyll values (yblack), and log-transformed chlorophyll values (yred), 

respectively. C. and D. show satellite chl-a in the Gulf before and after removing 

the bias estimated from A.   

 

Satellite-derived monthly estimates of primary production come from two 

different algorithms: the Vertically Generalized Production Model (VGPM), and the 

Carbon-based Productivity Model (CbPM), both available at 

http://www.science.oregonstate.edu/oceanproductivity/index.php.  The VGPM is a 

chlorophyll-based, light-dependent, depth-resolved algorithm (Behrenfeld and Falkowski, 

http://www.science.oregonstate.edu/oceanproductivity/index.php
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1997), commonly used to estimate regional and global primary production. For 

consistency with the satellite chlorophyll used here, I use the VGPM results based on 

SeaWiFs chlorophyll and photosynthetically active radiation products. The CbPM 

estimates (Westberry et al., 2008) are based on the photosynthetically active radiation 

SeaWiFs product, and the particulate backscatter and phytoplankton absorption 

coefficients estimated with the GSM spectral matching algorithm (Garver and Siegel, 

1997; Maritorena et al., 2002; Siegel et al., 2002b). 

4.4 MODEL DESCRIPTION 

4.4.1 PHYSICAL MODEL 

I use a three-dimensional physical circulation model based on the Regional Ocean 

Modelling System (ROMS, version 3.5), a terrain-following, free-surface, primitive 

equation ocean model (Haidvogel et al., 2008). The model has a 240-by-120 horizontal 

grid cells (~10 km horizontal resolution) and 30 vertical levels, with a minimum water 

depth of 10 m. The model is nested within the regional ocean-ice model of the northwest 

North Atlantic from Urrego-Blanco and Sheng (2012) and is forced with atmospheric 

fields (winds, specific humidity, air temperature, precipitation, and short and long-wave 

radiation) from the European Centre for Medium-range Weather Forecasts (ECMWF) 

global reanalysis (ERA-Interim) (Dee et al., 2011). Simulated temperature, density and 

mixed layer depths are in good agreement with their observational counterparts obtained 

from the AZMP measurements (Figure 4.3). A detailed model validation and sensitivity 

analyses of different physical forcing configurations can be found in Brennan et al. 

(2015).  
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Figure 4.3: Comparison of simulated (ROMS) and observed (AZMP) temperature and 

mixed layer depths (A and B). Symbols for each transect line follow the same 

legend as Figure 4.2. The mixed layer depth is estimated with a density threshold 

criterion of ∆𝜎𝜃 = 0.025 𝑘𝑔 𝑚−3  from the surface density reference. C. 

Simulated and observed density (𝜎𝜃). Observed density profiles are overlaid on 
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top of model results using the same color scale, dates of each profile are marked 

by a gray dashed vertical line. The solid black line represents the depth of the 

mixed layer (m) estimated from model output, and the black circles represent the 

same estimate using observed profiles. 

4.4.2 BIOGEOCHEMICAL MODELS 

My three ecosystem models, referred to as M1, M2 and M3, were implemented 

and optimized using an evolutionary algorithm implemented with a surrogate-based 

method (see Chapter 3). M1 is the simplest model. It has 7 model compartments and only 

the phytoplankton maximum growth rate depends on temperature. Model version M2 has 

the same number of variables and the same structure as M1, but all the biological rates 

depend on temperature. M3 uses the same functional forms as M2, but has a total of 11 

model state variables following the structure of the North Pacific Ecosystem Model for 

Understanding Regional Oceanography (NEMURO; Kishi et al., 2007). M3 includes two 

phytoplankton and chlorophyll size classes (small and large), and three zooplankton 

groups (small, large and predatory). The biological model parameters used here are those 

obtained in optimization experiment E4 in Chapter 3. In E4, I optimized the 6 most 

sensitive model parameters of M1 and their equivalents for M2 and M3. The rest of the 

parameters are from the previous configuration in Fennel et al. (2006, 2009). The 

optimized parameters are a compromise between satellite chlorophyll, in situ chlorophyll, 

and in situ nitrate, in all 1D surrogate locations shown in Figure 4.1. According to the 

cost metric in Chapter 3, optimized M3 presented the best model skill when calibrated for 

all locations; however, geographical portability experiments suggested that M2 could 

replicate unassimilated data the best when calibrated only for specific locations.  
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4.5 RESULTS 

4.5.1 SURFACE CHLOROPHYLL SEASONAL VARIABILITY 

Simulated and satellite surface chlorophyll annual cycles for all six sub-regions 

are presented in Figure 4.4. The annual cycles of surface chlorophyll obtained by the 

three models are similar to each other in terms of the development of a well-defined 

phytoplankton spring bloom from March to May in all model domain sub-regions. The 

largest divergence between model responses, except for the Gulf of Maine, is from May 

to September, i.e., the spring bloom termination and the summer surface chlorophyll 

minima. In sub-regions 1, 3, 4 and 6, M3 produces the lowest chlorophyll values in 

summer, and the best agreement with the satellite estimates. During winter, all models 

underestimate the observations, except in Sub-region 1. 

The Open and Slope Waters (Sub-region 1), have the lowest observed chlorophyll 

concentrations of all sub-regions, with maximum values around 1.2 mg Chl-a m
-3

 and low 

interannual standard deviations. Compared to other sub-regions, sub-region 1 has an 

extended period of low chlorophyll conditions in summer, and only a small fall bloom 

similar in magnitude to winter chlorophyll concentrations. Summer chlorophyll minima 

are the lowest of all sub-regions, with concentrations below 0.4 mg Chl-a m
-3

. The three 

models overestimate chlorophyll concentrations during the bloom development phase, but 

agree in the timing of its peak. M1 diverges the most from satellite estimates. It 

overestimates the spring bloom magnitude and develops a pronounced fall bloom similar 

in magnitude to the spring bloom. M2 and M3 agree with the satellite estimates in terms 

of the spring bloom peak and late fall chlorophyll concentrations. M3 simulates the 
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lowest summer chlorophyll concentrations and thus agrees the best with the observed 

annual cycle.  

 

Figure 4.4: Climatological satellite and simulated surface chlorophyll annual cycles in the 6 

sub-regions of our model domain.   

 

In the Gulf of Maine (Sub-region 2) observed chlorophyll concentrations are 

higher than 1 mg Chl-a m
-3

 year-round. Maximum observed concentrations exceed the 2.5 

mg Chl-a m
-3

, and interannual standard deviations are second largest of the six sub-

regions. The models underestimate chlorophyll most markedly during winter. Chlorophyll 

underestimation persists in M1 throughout the spring and throughout spring and fall in 

M2. M3 best captures the spring bloom maximum and its termination, as well as the 

development of a fall bloom.  
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Observed chlorophyll on the Scotian Shelf (Sub-region 3) has an abrupt spring 

bloom initiation and termination followed by low summer chlorophyll. The summer 

minimum is ~36% lower than winter chlorophyll concentrations – the largest difference 

between the two low chlorophyll seasons in all sub-regions. Chlorophyll concentrations 

are underestimated from November to April in M1, from November to February in M2, 

and from November to January in M3. In M1, chlorophyll underestimation during spring 

bloom initiation leads to a temporal phase difference and a delayed bloom peak compared 

to M2, M3 and the observations. M2 agrees best with the spring bloom development and 

early stages of termination, but underestimates the spring bloom peak and overestimates 

summer concentrations. In contrast, M3 overestimates chlorophyll during spring bloom 

development and termination, but agrees best with the spring maxima and summer 

minima.  

The Grand Banks region (Sub-region 4) has similar characteristics as the Scotian 

Shelf. However, chlorophyll concentrations are lower than in the Scotian Shelf during 

most of the year. The three models also exhibit similar behaviors as in Sub-region 3. 

However, in this sub-region M1 agrees best with the slope of the spring bloom 

development, while M2 and M3 overestimate chlorophyll concentrations during this 

period. The three models agree on the chlorophyll magnitudes during bloom termination 

until May, when M1 and M2 reach concentrations close to their summer minima and 

flatten out. As in other sub-regions, M3 continues to decrease until reaching values 

similar to the observed summer minima, and develops a fall bloom afterwards. 

In the northeast of Newfoundland (Sub-region 5), observed concentrations from 

November to March are the lowest among all sub-regions. Average observed chlorophyll 
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reaches a maximum of ~2 mg Chl-a m
-3

, and this concentration stays nearly constant 

between April and June. All models underestimate the winter minimum values and 

significantly overestimate the spring bloom maximum. As on the Scotian Shelf, M1 

underestimates concentrations during the spring bloom development, M2 captures this 

period the best, and M3 slightly overestimates it. M3 produces the largest overall 

deviations from the satellite values, overestimating chlorophyll during spring bloom 

onset, maximum and termination, as well as in summer and fall; however, its seasonal 

cycle is similar to that from the satellite.  

Finally, the de-biased satellite chlorophyll estimates in the Gulf of St. Lawrence 

(Sub-region 6) are characterized by large interannual standard deviations, the largest of 

all sub-regions. All models exceed the satellite-based spring bloom and fall maxima. M1 

underestimates winter concentrations the most. M3 presents the largest deviations with 

respect to observed values during most of the year, but agrees best with the summer 

minima. 

Differences between the observed and simulated chlorophyll annual cycles are 

summarized in Table 4.1. Despite the differences described here, the simulated 

chlorophyll annual cycles are overall statistically similar to each other and to the satellite 

observations (see analysis of variance in Appendix F). In general, M2 has the lowest root-

mean-square-deviations in most regions, but M3 outperforms M2 in regions without 

information assimilated during the optimization (i.e., Sub-regions 1 and 2). Nevertheless, 

M3 has the highest correlation (r
2
) with the observations in all sub-regions, except the 

Gulf of St. Lawrence. The timing of the summer minima is best replicated by M3, but all 

three models estimate the timing of the spring bloom peak well, with an average 
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difference of 1.5 ± 12 days against the satellite estimate. Considering that satellite 

observations for the comparison come from 8-day averages, these are minor deviations.  

Figure 4.5 shows the spatial distribution of the spring bloom peak timing. In early 

March, the spring bloom peaks simultaneously on the Gulf of Maine, the southwest of the 

Scotian Shelf, and the slope water along the shelf-break (Figure 4.5B). This is followed 

by the mid-March spring bloom peaks of the northeastern Scotian Shelf, the Gulf of St. 

Lawrence (except near-shore STL and IMA), the Grand Banks, and waters adjacent to the 

slope waters. Around April, the spring bloom peaks on the Newfoundland Shelf, and the 

latest spring bloom peak corresponds to the off-shelf open waters. Spring bloom peak 

timing has a moderate but significant correlation with the maximum mixed layer depth 

during winter (rM1 = 0.49; rM2 = 0.61; rM3 = 0.50; p<0.01; Figure 4.5A) Areas with 

shallow maximum mixed layers depths during winter coincide with the earliest spring 

bloom peaks, whereas late spring bloom peaks correspond to areas of deep maximum 

mixed layer depths.  

 

Figure 4.5: A. Maximum mixed layer depth, and B. Simulated spring bloom peak date 

(M2) in Days-of-Year (DOY). The dashed line is the 1000 m isobath.  
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Table 4.1: Metrics comparing satellite-based and simulated surface chlorophyll annual 

cycles. Duration of the spring bloom is defined as the time between the winter and 

the summer minima. The best model estimate compared to SeaWiFs is marked in 

bold. 

  Sub-regions 

Metric Satellite/Model 1 2 3 4 5 6 

 

SeaWiFs 0 0 0 0 0 0 

RMSE 

M1 0.61 0.36 0.58 0.43 0.43 0.5 

M2 0.36 0.58 0.34 0.32 0.32 0.36 

M3 0.27 0.36 0.43 0.38 0.67 0.63 

 
SeaWiFs 1 1 1 1 1 1 

r
2
 

M1 0.18 0.46 0.09 0.29 0.41 0.53 

M2 0.13 0.4 0.47 0.57 0.72 0.56 

M3 0.56 0.6 0.49 0.58 0.85 0.36 

Spring max Chl-a (mg m
-3

) 

SeaWiFs 1.15 2.62 2.52 2.13 1.77 1.49 

M1 1.62 2.33 2.28 2 2.38 2.29 

M2 1.21 2.11 2.16 1.98 2.45 2.26 

M3 1.28 2.52 2.51 2.13 3.71 2.49 

Summer min Chl-a (mg m
-3

) 

SeaWiFs 0.3 1.49 0.58 0.37 0.43 0.55 

M1 0.84 1.26 1.02 0.74 0.13 0.31 

M2 0.69 1.09 0.93 0.8 0.41 0.95 

M3 0.5 1.22 0.55 0.49 0.84 0.83 

Winter min Chl-a (mg m
-3

) 

SeaWiFs 0.46 1.23 0.91 0.54 0.35 0.28 

M1 0.48 0.64 0.44 0.25 0.05 0.18 

M2 0.27 0.4 0.41 0.27 0.12 0.29 

M3 0.39 0.61 0.67 0.43 0.13 0.44 

Date of spring bloom peak 

(day-of-year) 

SeaWiFs 98 98 91 91 114 98 

M1 91 91 106 114 121 114 

M2 84 84 91 106 114 98 

M3 84 84 84 106 128 98 

Date of winter Chl-a minimum 

(day-of-year) 

SeaWiFs 338 24 24 31 24 346 

M1 1 1 24 24 24 24 

M2 1 1 1 1 24 1 

M3 346 1 1 1 24 8 

Date of summer Chl-a minimum 

(day-of-year) 

SeaWiFs 181 174 174 166 181 181 

M1 166 136 144 166 166 166 

M2 166 151 151 166 174 144 

M3 174 174 174 166 181 174 

Spring bloom duration 

(day-of-year) 

SeaWiFs 203 150 150 135 157 195 

M1 165 135 120 142 142 142 

M2 165 150 150 165 150 143 

M3 188 173 173 165 157 166 
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4.5.2 SURFACE CHLOROPHYLL SPATIAL PATTERNS 

The satellite-derived chlorophyll climatology in the northwest North Atlantic 

region has distinct spatial patterns that all three models are challenged to reproduce 

(Figure 4.6). Satellite chlorophyll is persistently high on Georges Bank, in the Gulf of 

Maine, and around Sable Island on the Scotian Shelf.  During spring, chlorophyll 

concentrations above 1 mg Chl-a m
-3

 occur on the shallow areas of the Scotian Shelf and 

extend up to the shelf break and to areas of the Grand Banks. During fall, high 

chlorophyll concentrations are restricted to coastal areas and shallow banks.  

 

Figure 4.6: Average satellite (SeaWiFS) and simulated surface chlorophyll during spring 

(Feb-Mar-Apr) and fall (Aug-Sep-Oct) from 1999 to 2003.  

 

M1 simulates the contrast between high chlorophyll on the Scotian Shelf and 

Grand Banks areas, and low chlorophyll on the northeast Newfoundland shelf. M3 agrees 
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with maximum satellite chlorophyll concentrations on the Scotian Shelf; however, as seen 

in Figure 4.4, it overestimates chlorophyll in the northeast Newfoundland shelf and the 

Gulf of St. Lawrence. During fall, M1 simulates higher-than-observed chlorophyll 

concentrations, and overestimates chlorophyll in the Open and Slope Waters region. 

Model M2 better captures fall chlorophyll concentrations; however, near-shore 

concentrations are lower than the satellite estimate. Detailed patterns of high chlorophyll 

associated with near-shore and shallow areas during fall are best simulated with M3.  

4.5.3 PRIMARY PRODUCTION 

Estimates of primary production from satellite are different depending on the 

underlying algorithm (Figure 4.7).  According to the VGPM, total annual primary 

production in the sub-regions ranges between ~170 g C yr
-1

 in the northeast 

Newfoundland Shelf (region 5) to higher than 400 g C yr
-1

 in the Gulf of Maine and Gulf 

of St. Lawrence (regions 2 and 6).  The CbPM algorithm agrees with the VGPM 

estimates in the northeast Newfoundland Shelf, but estimates lower primary productivity 

than VGPM everywhere else (and the lowest values of ~160 g C yr
-1

 in the Open and 

Slope Waters region). According to CbPM, the highest primary productivity between 250 

– 300 g C yr
-1

 occurs in the Gulf of Maine and Gulf of St. Lawrence, but is much lower 

than the VGPM estimates.  

Model M3 produces estimates similar to those of the CbPM algorithm, while M1 

and M2 present magnitudes of about half of the same algorithm estimates in all regions. 

Based on its agreement with the satellite-based estimates, M3 represents regional primary 

production the best.  According to M3, the open waters have the lowest total primary 
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production of all regions (~158.4 g C m
-2

 yr
-1

). Total production of the Gulf of St. 

Lawrence (175.7 g C m
-2

 yr
-1

), the Scotian Shelf (196 g C m
-2

 yr
-1

), and the Grand Banks 

(167.2 g C m
-2

 yr
-1

) are closely similar. The Gulf of Maine and the Labrador Sea are the 

most productive regions according to M3 (275.7 and 209 g C m
-2

 yr
-1

, respectively).  

 

Figure 4.7: Satellite-based (CbPM and VGPM) and simulated vertically integrated 

primary production in the six sub-regions (indicated by number in each panel; 

see Figure 1). Black error bars are the spatial standard deviation within the 

region, and red error bars are the interannual standard deviation.   

 

In Figure 4.8, I include seasonal average spatial distributions of primary 

production estimated from the satellite-based algorithms and the models. Despite the 

differences in magnitudes, described here, all estimates have similar spatial and seasonal 

patterns. 
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Figure 4.8: Seasonal average vertically integrated primary production for satellite-based 

estimates (CbPM and VGPM) and M1, M2, and M3 models in the northwest 

North Atlantic.  

 

4.5.4 STANDING STOCKS 

In Figure 4.9 I show nitrate, ammonium, phytoplankton and zooplankton annual 

cycles simulated by the three models. Annual cycles obtained with M1 and M2 are very 

similar, but differ from those simulated with M3. The NO3 annual cycles have similar 
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seasonal amplitude in all models, but M3 has a more severe drawdown of NO3 than M1 

and M2 in summer. A large difference between minimum surface NO3 in M1, M2 and 

M3 is evident on the Scotian Shelf. Maximum NO3 concentrations are below 5 mmol m
-3

 

in the Open and Slope waters, but higher than that in all other regions.  

 

Figure 4.9: Annual cycles of nitrate, ammonium, phytoplankton and zooplankton surface 

concentrations simulated by M1, M2 and M3. P and Z refer to total phytoplankton 

and zooplankton biomass, respectively. For M3, P is the sum of small 

phytoplankton (PS) and large phytoplankton (PL). Z is the sum of small, large and 

predatory zooplankton (ZS, ZL, and ZP).  

 

In addition to differences in magnitude, surface NH4 cycles obtained with M1, M2 
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and M3 also exhibit phase differences in seasonal variability. In M1 and M2, NH4 reaches 

a maximum of 0.55 ± 0.09 mmol N m
-3 

during summer. In contrast, NH4 concentrations 

in M3 have two maxima, one during spring and one during fall, and the fall peak tends to 

be higher than the spring one in all regions. During summer, M1 and M2 simulate high 

NH4, but M3 exhibits a valley in the NH4 concentrations.  

Despite simulating similar chlorophyll annual cycles, M3 total phytoplankton 

biomass is higher than that of M1 and M2, due to differences in the optimized maximum 

chlorophyll-to-carbon ratio parameter (M1: θmax = 0.081 mg Chl (mg C)
-1

; M2: θmax = 

0.066 mg Chl (mg C)
-1

; M3: θmaxPs = 0.033 mg Chl (mg C)
-1

, θmaxPl = 0.035 mg Chl (mg 

C)
-1

. M3 zooplankton biomass is dominated by predatory zooplankton, with 

approximately equal contributions of small and large zooplankton at ratios of 1 ZS : 1.14 

ZL : 7.14 ZP. In general, the zooplankton annual cycle in M3 tracks changes in 

phytoplankton biomass more closely than M1 and M2, exhibiting maximum zooplankton 

biomass only a month after the phytoplankton peak. M1 and M2 also exhibit a phase 

difference in the delay between maximum phytoplankton biomass and maximum 

zooplankton biomass. M1 zooplankton peaks between July and August, approximately 

three months after the phytoplankton biomass peak. Zooplankton in M2 peaks in July, a 

month before M1’s.  

4.5.5 PHYTOPLANKTON SPECIFIC GROWTH AND LOSS RATES 

Figure 4.10 shows the realized specific phytoplankton growth and mortality rates 

and grazing rates. Phytoplankton growth rates in M1 and M2 are approximately equal, 

and are highest during summer, due to increased temperatures. As phytoplankton 
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maximum growth rates are temperature dependent in both models, this is an expected 

behavior. In M3, the magnitudes of small and large phytoplankton growth rates are 

similar to each other, and similar to the phytoplankton growth rates of M1 and M2. The 

similarity in growth rates of M3’s small and large phytoplankton is due to similar 

parameter values for both groups found in the optimization. Nevertheless, seasonal 

patterns in M3’s phytoplankton growth are different than in M1 and M2. For instance, the 

difference between phytoplankton growth and nitrate-limited phytoplankton growth 

shows that NH4 has a higher contribution to the growth rates during summer, in all 

models. In M1 and M2, it is the result of increased ammonium concentrations, while in 

M3 it is a consequence of the severe depletion of NO3.  

The three model versions differ significantly in their realized loss rates. M1 and 

M2 have a peak in grazing rates between March and April, driven by prey density. In M1 

grazing rates decline abruptly afterwards and remain low for the rest of the year. In M2, 

the temperature dependence of both the phytoplankton mortality rate and the grazing rate 

produces a secondary increase from summer to fall in these rates. In M3, small 

phytoplankton grazing and mortality rates are higher than those of M1 and M2. Although 

all biological rates are temperature dependent, the effect of temperature is only noticeable 

on the small phytoplankton mortality rates, as grazing rates are strongly influenced by 

prey density effects. Large phytoplankton mortality and grazing rates are lower than those 

of small phytoplankton, and both reflect a temperature increase in summer. 
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Figure 4.10: Specific phytoplankton growth, grazing, and mortality rates in models M1, 

M2 and M3 for sub-regions 1, 3, 4 and 5. Note that the mortality rate in M1 is 

constant, but varies in time in the other models due to its temperature dependence. 

The phytoplankton growth rate varies in time because of its dependence on 

nutrient and light supply. The grazing rate varies because of its dependence on 

phytoplankton availability (M1, M2 and M3) and temperature (M2 and M3). 

 

4.5.6 ECOSYSTEM FLUXES 

Vertically integrated ecosystem fluxes (i.e., top layer realized rates multiplied by 

the corresponding standing stock) are presented for the Scotian Shelf in Figure 4.11. In 

general, M3’s fluxes are larger than in the other two models, while differences between 

M1 and M2 are insignificant. In terms of average annual fluxes (Figure 4.11), M2’s 

phytoplankton growth is only slightly lower than in M1, and M2’s phytoplankton 

mortality (PD flux) and grazing losses (PZ flux) are larger.  Also, M2’s temperature 

dependency of the zooplankton excretion and metabolic rates also results in a somewhat 
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higher contribution of zooplankton to the dissolved inorganic pool (DIN; ZN flux). In 

the case of M3, the phytoplankton growth flux is four times as high as those of M1/M2, 

and phytoplankton mortality and grazing are approximately doubled. M3’s zooplankton 

flux to detritus and DIN, as well as the detritus flux to DIN are also increased.  

 

 
Figure 4.11: Scotian Shelf vertically integrated average annual fluxes in nitrogen units 

simulated by M1, M2, and M3. The ecosystem structure is simplified to nutrients, 

phytoplankton, zooplankton and detritus (NPZD) components for sake of 

simplicity. The solid line flux from detritus to nutrients represents the fast-

remineralizing small detritus flux, and the dashed line is for the slow-

remineralizing large detritus flux. The thickness of the arrows is related to the 

magnitude of the fluxes. 

 

To gain more insight into the role that temperature-dependent phytoplankton loss 

rates play in increasing mortality fluxes, Figure 4.12 shows the spatial distribution of 

phytoplankton average surface mortality fluxes in M1 and M2 during winter and summer. 

The effects of temperature on phytoplankton mortalities are relatively easy to interpret 

because they directly depend only on phytoplankton biomass and the mortality rates. In 

M1 the mortality rate is constant, so fluxes are controlled by spatial and seasonal 

differences in phytoplankton biomass. In M2, fluxes represent the interplay between 

changes in biomass and the effect of temperature on the realized mortality rates.  
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During winter and summer, M1 and M2 phytoplankton surface concentrations are 

nearly equal throughout the entire domain (Figure 4.9, Appendix F). However, in winter 

M2’s mortality fluxes are lower than M1’s because at temperatures below 10
o
C its 

mortality rates are lower than the constant rate in M1 (Figure 4.12B-C). In the region 

influenced by the Gulf Stream (Sub-region 1), winter temperatures above 10
o
C do not 

have a significant positive effect on M2’s mortality fluxes because winter phytoplankton 

biomass in this sub-region is very low compared to the rest of the domain (Figure 4.12A-

C). M2’s low phytoplankton mortality leads to a higher phytoplankton standing stock 

than in M1 at the end of winter and into spring (Figure 4.9). This is also reflected in M2’s 

high chlorophyll concentrations during the latter season, noticeable inside the Gulf of St. 

Lawrence and in the northeast of Newfoundland (Figure 4.6).  

 
Figure 4.12: Spatial distributions of average sea surface temperature (A. and D.) and 

phytoplankton mortality fluxes during Feb-Mar-Apr and May-Jun-Jul for models 

M1 (constant mortality rate; B. and E.) and M2 (temperature dependent rate; C. 

and F.).  
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Spatial differences in temperature affect M2’s phytoplankton mortalities more 

clearly during summer (Figure 4.12D-F). As previously mentioned, spring phytoplankton 

biomass in M2 is slightly higher than in M1, except in Sub-region 1 (Figure 4.6, Figure 

4.9, Appendix F). In summer, the coldest temperatures in the domain are in Gulf of St. 

Lawrence and in the northeast of Newfoundland (Figure 4.12D-F).  M2’s temperature 

dependent spring-to-summer mortality fluxes for these regions become lower than in M1 

due to low temperatures, and despite M2’s high phytoplankton biomass in these regions. 

In Sub-region 1, phytoplankton biomass at the end of spring is low in comparison with 

the rest of the domain, but higher than during winter (Figure 4.6, Figure 4.9 and 

Appendix F). Due to this seasonally increased biomass, the effect of the Gulf Stream’s 

warm temperatures over mortality fluxes is more noticeable during summer (Figure 

4.12F). M2’s increased mortalities in the open waters lead to reduced phytoplankton 

biomass and chlorophyll in this area in the fall, when compared to M1’s results (Figure 

4.6). Overall, temperature effects on mortality rates during summer result in summer 

phytoplankton biomass becoming very similar among models and homogeneous among 

regions.  

4.5.7 EFFECT OF MULTIPLE GRAZERS ON NUTRIENTS 

Return fluxes form zooplankton to the dissolved inorganic nitrogen pool (in the 

form of NH4) and small detritus exhibit different temporal behaviors in M1/M2 and M3 

(Figure 4.13). In M1/M2, these fluxes peak during August, when grazing fluxes and 

zooplankton biomass are high. In M3, they peaking during March and flatten out for the 
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rest of the year. Also in M3, the flux from large and predatory zooplankton to large 

detritus, exclusive of this model version, accounts for a larger fraction of zooplankton 

losses than the excretion to dissolved inorganic nitrogen.  

 

Figure 4.13: Simulated average zooplankton loss fluxes to detritus in model domain sub-

regions 1, 3, 4 and 5. Note that fluxes to large detritus are only present in model 

M3. 

 

To better understand how the dynamics of multiple predators affect the dissolved 

inorganic nitrogen (DIN) seasonal cycle, I performed a series of sensitivity experiments 

varying the values of the reference maximum grazing rate of each zooplankton group. For 

computational efficiency, these experiments were performed in the one-dimensional 

model used for model optimization. Figure 4.14A shows a summary of these experiments 

in terms of the percentage change in surface DIN and phytoplankton concentrations. 

Independently increasing or decreasing the reference grazing rates generates significant 

changes in DIN concentrations only between April and November. Effects on large 

phytoplankton are also limited to the summer and fall period. Modifying grazing rates 
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only affects the magnitude of phytoplankton biomass, but has negligible effects on the 

timing of the spring and fall blooms. A delay in bloom timing would be characterized by 

negative changes in phytoplankton biomass followed by positive changes, whereas an 

earlier bloom would produce positive changes followed by negative changes. Neither of 

these behaviors occurs.  

 

Figure 4.14: Sensitivity experiments varying the reference maximum zooplankton grazing 

rate parameters (g0) one-at-a-time. A. Percentage change in surface dissolved 

inorganic nitrogen (DIN = NO3 + NH4), small phytoplankton, and large 

phytoplankton annual cycles. B. Small, large, and predatory annual cycles 

obtained by a sub-set of the experiments in A. In the legend, grazing parameters 

are denoted with the predator symbol followed by its prey (predator  prey). ZP: 

predatory zooplankton, ZL: large zooplankton, ZS: small zooplankton, PL: large 

phytoplankton, and PS: small phytoplankton. 

In general, modifying the grazing rates of one predator may have unexpected 

responses in the biomass of other predators (Figure 4.14B). For example, increasing the 

large zooplankton grazing rate on small zooplankton produces lower small zooplankton 
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concentrations from March to October, accompanied by higher large zooplankton 

concentrations. Interestingly, this produces an indirect effect of decreasing predatory 

zooplankton concentrations.  The same zooplankton behavior occurs for all other cases at 

varying levels.  

4.6 DISCUSSION 

In terms of chlorophyll magnitudes and seasonality, the three model versions simulate 

seasonal cycles that capture some aspects of satellite chlorophyll, but fail to capture 

others. The three models are also similar in terms of primary production spatial and 

seasonal patterns. Nevertheless, the three model versions differ on their ability to 

reproduce details of chlorophyll seasonality in specific sub-regions, and obtain 

significantly different primary production magnitudes.  

Models agree with observed values of chlorophyll during specific seasons (Figure 4.4, 

4.6), as well as with in situ measurements of temperature, density, and estimates of mixed 

layer depth (Figure 4.3). For instance, in each sub-region models exhibit the expected 

spring bloom maxima followed by a summer decline in chlorophyll. Models also agree in 

simulating high chlorophyll concentrations extending from the coast to the shelf break 

during spring. The development of enhanced chlorophyll concentrations on the shelf has 

been previously discussed in observational and model studies with focus on the Scotian 

Shelf and the Gulf of Maine (Fournier, 1978; Ryan et al., 1999; Zhai et al., 2011).  

Among the aspects where the models differ, M1 and M2 tend to simulate higher summer 

chlorophyll than M3 in several sub-regions; and M1 shows significant overestimation of 

fall chlorophyll in the Gulf Stream, slope and open waters. Differences among models 
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can be explained by three main aspects of the regional ecosystem dynamics controlling 

chlorophyll seasonal variability: i) the sequential nature of bottom-up and top-down 

drivers during the annual cycle; ii) regional primary production; and iii) the role of 

temperature-dependent phytoplankton loss rates.  

4.6.1 SPRING BLOOM BOTTOM-UP DRIVERS 

Chlorophyll time series of the three model versions broadly agree during the 

spring bloom period, but disagree during summer and fall. This seasonal difference 

between models suggests that the processes controlling ecosystem dynamics during 

different periods of the annual cycle have a distinct nature. Model similarities during the 

spring bloom peak and initial stages of bloom decline, suggest that their drivers are not 

affected by the ecosystem complexity of the models, and that observational data used in 

the optimization was sufficient to calibrate the parameters involved in determining these 

features. Model versions also agree in the characterization of a pattern of early spring 

bloom initiation in areas with shallow winter mixed layer depths (Figure 4.5). This spatial 

pattern of spring bloom timing agrees with spatial differences in timing found on the 

Scotian Shelf by Zhai et al. (2011). They fitted a Gaussian model to satellite chlorophyll 

from the Scotian Shelf (40ºN – 46 ºN; -66ºE – -58ºE), and showed an early spring bloom 

initiation on the shallow banks of Sable Island and along the shelf break, in comparison to 

off-shelf waters.  

Areas with shallow maximum mixed layer depths during winter are 

geographically related to the shelfbreak front. The association of the shelfbreak front with 

elevated phytoplankton biomass has long been recognized (Fournier, 1978). In the Mid-
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Atlantic and New York Bights, observational evidence suggests that increased vertical 

stability due to sloping isopycnals at the shelf break frontal zone generates a region of 

high light availability (Malone et al., 1983; Marra et al., 1990; Linder and Gawarkiewicz, 

1998). Here, I show that during winter a region of strong stratification is present along the 

shelf break of the northwest North Atlantic, demonstrated by shallow winter mixed layer 

depths (Figure 4.5A). The mixed-layer depth affects the nutrient and light availability in 

opposite directions: shallow mixed layers inhibit vertical nutrient replenishment, but 

improve the light conditions that phytoplankton experience by concentrating cells in the 

photic zone. Surface nutrient conditions prior to the spring bloom are favourable in all 

regions of the domain (Figure 4.9), but low winter irradiance in February limits 

phytoplankton growth at high latitudes of the northern hemisphere (Siegel et al., 2002a). 

Therefore, it is expected that the initialization of the phytoplankton bloom in this region 

would be particularly sensitive to the winter mixing effects on the light field. My results 

support the idea that regions of shallow mixed layer depths contribute to an earlier spring 

bloom initiation and peak timing in certain locations. These regions modify the expected 

latitudinal progression of the bloom caused by seasonal changes in irradiance. For 

instance, areas of the Gulf of St. Lawrence and the northeast Newfoundland Shelf are at 

the same latitude, but the spring bloom peaks first in the Gulf of St. Lawrence, and later 

in the Newfoundland Shelf (Figure 4.5). In the less stratified waters of the northern 

Newfoundland Shelf, deep winter mixed layers impose unfavorable light conditions and 

favorable surface nutrient replenishment causing nitrate to remain unconsumed until late 

spring, resulting in a late spring bloom peak. In very shallow areas, bloom timing may be 

directly linked to seasonal light intensity, rather than stratification, as suggested by results 

of a two-dimensional model of Georges Bank (Ji et al., 2006). In summary, my three 
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models support a canonical bottom-up perspective to explain the spring bloom process. In 

the absence of nutrient limitation, shallow mixed layers favour earlier spring booms due 

to an enhanced light field (Sverdrup, 1953), while the magnitude and duration of the 

event may be modified by the winter nutrient carrying capacity (Ji et al., 2006; Kuhn et 

al., 2015). A similar mechanism may also explain interannual variability in spring bloom 

timing (Schartau and Oschlies, 2003a). 

In any numerical model, the response of phytoplankton to variations in 

temperature, light and nutrient regimes is largely determined by model parameters. Proper 

emergent patterns of behaviour are a consequence of the calibration of phytoplankton 

parameters to the predefined environmental conditions, under the implicit assumption that 

the physics of the model are correct (Hemmings and Challenor 2012), which is supported 

for my model (Figure 4.3; Brennan et al. 2016). In preliminary simulations I noticed that 

phytoplankton parameters, in particular the reference maximum growth rate and the initial 

photosynthetic slope, affect the timing of the spring bloom peak in the three models. The 

offset in timing between model results and satellite chlorophyll was one of the main 

corrections achieved during the optimization in Chapter 3. The effect of phytoplankton 

growth parameters on the spring bloom timing has been previously discussed in other 1D 

model studies for the North Atlantic Ocean (Schartau and Oschlies, 2003b; Kuhn et al., 

2015) and a 3D model study for the Baltic Sea (Neumann, 2000). Therefore, this model 

behaviour appears to be independent of model complexity and physical dimensionality, at 

least in northern mid-latitude regions.  
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4.6.2 SUMMER MINIMA TOP-DOWN DRIVERS 

There are noticeable differences between the models’ chlorophyll and other state 

variables during summer and the fall. After the spring bloom peak, chlorophyll 

concentrations start declining in all models and in the satellite observations, but minimum 

magnitudes in summer differ. Models M1 and M2 reach their summer minima before the 

observed minimum occurs, and overestimate its magnitude. M3 best simulates the 

observed patterns in summer. The termination of the spring bloom is canonically 

attributed to multiple factors including nutrient depletion (Waite et al., 1992), as well as 

increased predation (Banse, 1994) and viral lysis (Bratbak et al., 1993). The differences 

between the models at the end of the spring bloom and in summer suggest that trophic 

complexity may play an important role in simulating the minimum chlorophyll 

concentrations in summer. 

Comparison of the three optimized models and the sensitivity experiments related 

to grazing rates in M3 show that differences in the treatment of predators can modify 

summer/fall phytoplankton concentrations. This model effectively modifies the nitrogen 

return fluxes from phytoplankton, zooplankton and dead organic matter (small and large 

detritus) to the inorganic nitrogen pools. The first type of return fluxes include 

metabolism and excretion fluxes, which can be interpreted as an effect of modifying the 

representation of the microbial loop by introducing trophic complexity. Previous 

modelling studies have posited that the microbial loop has an important role in controlling 

the rate of organic nutrient return to the inorganic pool (Fasham et al., 1993; Doney et al., 

1996; Schartau et al., 2001; Schartau and Oschlies, 2003a). The model structure of M3 
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also modifies the pathways that organic matter follows after being ingested by 

zooplankton. In M3 the pathways from large and predatory zooplankton to large detritus 

increases the fraction of organic matter that becomes part of large detritus (Figure 4.10). 

Large detritus sinks more rapidly than small detritus and has a slower remineralization 

rate. Therefore, zooplankton excretion and mortality pathways in M3 modify the 

composition of dead organic matter, which affects the depth and velocity at which it 

decomposes. (Lampitt et al., 1990; Lenz et al., 1993; Armstrong et al., 2001; Klaas and 

Archer, 2002; Christina and Passow, 2007). In other words, this model comparison 

demonstrates that different assumptions about the fate of dead phytoplankton are 

important to determining export estimates and nitrogen cycling.  

Zooplankton metabolism and mortality, as well as remineralization fluxes are 

largely unconstrained by the datasets available for validation.  The significant impact of 

predator interactions on trophic dynamics during the summer/fall period (Figure 4.14) is 

also in agreement with zero-dimensional idealized model results that suggest that 

adaptive zooplankton grazing behaviour (i.e., switching preys) drives the seasonal 

succession of phytoplankton species (Mariani et al., 2013). There is a significant gap in 

knowledge of rates of plankton predator-prey interactions, and several model studies 

acknowledge that it is difficult to estimate zooplankton parameters with reliability 

(Fennel et al., 2001; Schartau and Oschlies, 2003b; Bagniewski et al., 2011). Many of the 

grazing and mortality parameters are difficult to elucidate from in situ observations. 

Targeted laboratory and mesocosm experiments together with analogous model 

representations of these controlled systems may be used to bring our understanding of 
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predator-prey feedbacks and zooplankton export mediation to a similar level to that of the 

bottom-up drivers.  

4.6.3 MAGNITUDE DIFFERENCES IN PRIMARY PRODUCTION 

I obtained significant differences between models in the simulated primary 

production rates. M3, the model with increased complexity, provides the best estimates of 

primary production with respect to satellite-based estimates from the VGPM and CbPM 

algorithms. The latter range between 160 and 480 g C m
-2

 yr
-1

 and are similar to 1979’s 

estimates of 154 and 431 g C m
-2

 yr
-1

 derived from the Coastal Zone Color Scanner 

(CZCS) ocean color imagery for the whole northwest North Atlantic region 

(Sathyendranath et al., 1995). On the Grand Banks, Coastal Zone Color Scanner estimates 

are specifically in the order of 200 g C m
-2

 yr
-1

 (Prasad and Haedrich, 1993). Later 

SeaWiFs satellite-based estimates in the Gulf of Maine region by O’Reilly et al. (1998) 

report primary production between 260 and 455 g C m
-2

 yr
-1

. Satellite and M3’s estimate 

grossly agree with C
14

 measurements on the Scotian Shelf between 1991 and 1992 

reporting an annual primary production average of about 179.4 g C m
-2

 yr
-1

 (Mosseau et 

al., 1998).  

Model versions M1 and M2 estimate annual rates about half the VGPM and 

CbPM satellite estimates compared here. However, M1 and M2 estimates are close to the 

in situ estimates reported by Fournier et al. (1977) on the Scotian Shelf. They estimated 

an annually averaged primary production of 96 g C m
2
 yr

-1
 measured using C

14
 

incubations; but their measurements missed the spring bloom period, resulting in a 

probable underestimation of primary production.  These low estimates also agree with 
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model results from Song et al., (2001). They analyzed interannual variability using 1D 

models of a location at the Gulf of Maine and one in the Scotian Shelf, finding averages 

of total primary production in the euphotic zone of 138 ± 6.5 g C m
2
 yr

-1
 and 123 ± 6.5 g 

C m
-2

 yr
-1

, respectively. 

4.6.4 ROLE OF TEMPERATURE 

Temperature dependence of loss rates appears to play only a minor role in 

determining the seasonal variability of chlorophyll and phytoplankton stocks; more 

important is its modulation of summer and fall rates. Similarly, observations of 

phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions 

have demonstrated that resource supply plays a stronger role in the variability of 

phytoplankton growth (Marañón et al., 2014).  

However, noticeable improvements occur in the ability of the simple ecosystem 

model structure to replicate chlorophyll in the open waters, a region where no 

observations were assimilated during the parameter optimization process. This shows that 

increased complexity in the form of mechanistic relationships with environmental 

variables can be effective in improving model generality and geographical portability. 

The positive effect of temperature-dependent grazing and mortality rates has also been 

reported to improve other North Atlantic model applications, such as the Biogeochemical 

Element Cycling-Community Climate System Model (BEC-CCSM) (Doney et al., 2009; 

Behrenfeld et al., 2013). Given the scarcity of observational information, this dependency 

is commonly characterized with a single temperature relationship and the same Q10 value 

for all processes. However, neither individual processes, nor plankton groups necessarily 
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follow the same temperature relationships (Eppley, 1972; Rhee and Gotham, 1981). Also, 

it has been shown that the temperature optima of different phytoplankton groups 

contribute to seasonal succession (Litchman and Klausmeier, 2008) and that there exist 

large-scale patterns in thermal traits (Thomas et al., 2012).  

Spatial differences achieved with temperature dependence in both the 

phytoplankton growth and loss rates may also be important to understanding interannual 

variations in the planktonic community. For example, lower abundances of the copepod 

Calanus finmarchicus were found in Continuous Plankton Recorder data from the Gulf of 

Maine during the cold years of the 1960s, when the North Atlantic Oscillation index was 

low. This phenomenon has been interpreted both from trophic and physical advection 

perspectives (Jossie and Goulet, 1993; Conversi et al., 2001; Greene and Pershing, 2003). 

Understanding biological and chemical processes mediated by temperature will be 

increasingly important under a changing climate with sustained increasing trends in 

temperatures. 

4.6.5 SUCCESSION OF SMALL AND LARGE PHYTOPLANKTON IN M3 

The optimization of M3 assigned similar growth parameter values to both 

phytoplankton groups (Figure 4.9), such that differences among them are actually 

enforced by natural mortality and the predefined trophic relations of their predators. 

However, laboratory experiments show that different phytoplankton taxa have specific 

maximum growth rates (Miller and Wheeler, 2012), as well as initial photosynthetic slope 

parameters and Chl:C ratios (MacIntyre et al., 2002). Moreover, cytometric 

measurements within my study area have revealed that different phytoplankton size 



 149 

classes relate to total chlorophyll concentrations with a defined pattern (Li, 2002).  At low 

chlorophyll concentrations, picoplankton (<2 μm) dominates, but its fraction decreases as 

chlorophyll and large nanoplankton (10-20 μm) concentrations increase (Li, 2002). M3 

simulates larger biomass of large phytoplankton relative to small phytoplankton during 

the spring bloom, but summer biomass is composed by approximately equal 

concentrations of both groups. Both groups also follow similar temporal variability.  

My optimization design allowed small and large phytoplankton parameters to vary 

without predetermined constraints on each based only on satellite-derived size-

fractionated chlorophyll estimates (Chapter 3). This approach, therefore, is not sufficient 

to constrain differences in growth rates of individual functional groups to environmental 

conditions.  

It is not uncommon that models with multiple plankton groups are limited in their 

ability to replicate the succession of functional groups (e.g., Lewis et al., 2006; Ciavatta 

et al., 2016). For instance, NEMURO exhibits similar decadal variability and amplitude in 

both phytoplankton groups when used in a basin-wide three-dimensional application for 

the sub-polar North Pacific (Aita et al., 2007). In order to better simulate the seasonal 

succession of different functional groups, models may require a priori theoretical 

constrains during the optimization. NEMURO applications have achieved geographical 

differences in seasonal phytoplankton community composition by modifying the 

reference growth rates of phytoplankton, to which the model nutrient, phytoplankton, and 

zooplankton variables are highly sensitive (Yoshie et al., 2007). At a Station in the 

western sub-polar North Pacific, the growth rate of large phytoplankton was configured 

as larger than that of small phytoplankton, but a larger rate for small than for large 
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phytoplankton was needed at Station P in eastern sub-polar North Pacific (Fujii et al., 

2007). It is also possible that the addition of silicate, a variable included in NEMURO, 

would further constrain the annual cycle of large phytoplankton, if considering the group 

as composed of diatoms. It has been demonstrated that depletion of silicate is highly 

correlated with the change in composition of the phytoplankton community (Conley and 

Malone, 1992). 

4.6.6 SIMPLE VS. COMPLEX MODELS 

The largest difference between the models considered in this study was that, 

despite achieving similar chlorophyll magnitudes and variability, M3, the most complex 

model, simulated larger phytoplankton and zooplankton standing stocks, as well as larger 

primary production values. This reflects early theoretical understanding of model 

construction, which posits that many different and conflicting models could be 

constructed to fit a set of observations equally well (Quine 1975), despite portraying quite 

different dynamics. M3’s primary production agreed the best with unassimilated satellite-

based estimates. M3 also outperforms the simple models in terms of chlorophyll in sub-

regions that were not considered during the optimizations, especially, the slope and open 

waters region. These results agree with previous studies that show high variability in 

model skill and primary production estimates from different models (Friedrichs et al., 

2007; Friedrichs et al., 2009; Bagniewski et al., 2011). On the one hand, this study 

reiterates that, in terms of surface chlorophyll, models with very simplified trophic 

dynamics have limitations to fit the characteristics of unassimilated geographical 

locations. On the other hand, the high primary production estimates obtained with a 
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model with multiple preys and predators is likely to be due to model structural 

differences. For instance, in the model comparison of Friedrichs et al. (2007), models 

with single phytoplankton groups also exhibited larger misfits against observed primary 

production, even though primary production was assimilated during the optimization of 

all models.  

As discussed in Chapter 3, the model with fewer state variables and no 

temperature dependence (M1) is also limited in its ability to simultaneously fit the 

observations at multiple locations. This is a consequence of the compromise required to 

fit all variables and locations, which leads the optimization algorithm to select a different 

parameters than the ones that would be fitted for individual locations (Schartau and 

Oschlies 2003; Friedrichs et al 2007).  In that sense, M3 allows more flexibility when 

calibrated with sufficient information about different regimes in the area. These results 

support the idea that processes unresolved within simple models may reduce their 

generality and applicability to different conditions than the ones they were calibrated for 

(Doney et al 2002; Riley et al. 1949), including global applications, and predicting the 

responses to environmental change. In Part I of this study (Chapter 3), I demonstrated this 

is also true for complex models when these become overfitted to a single location.  

The environmental heterogeneity of the northwest North Atlantic may require at 

least a moderate level of model ecosystem complexity to better capture spatial and 

temporal phytoplankton variability. The effect of introducing temperature dependence in 

all biological rates was small, but it improved model performance at thermal extremes in 

the domain. That is, improvement were obtained in cold conditions during winter in the 

Gulf of St. Lawrence and warm conditions in the area of influence of the Gulf Stream 
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(Figure 4.12). During portability experiments performed in a one-dimensional 

environment, this model (M2) was also best suitable when applied to a different location 

than the one it was calibrated for (Chapter 3).  Previous model comparisons have also 

demonstrated that the relevance of certain processes is likely to vary between the different 

environments, and the addition of specific processes to models of certain sites may be 

required to simultaneously fit observations at different locations. This was the case in the 

optimization experiments of Hurtt and Armstrong (1999) and Friedrichs et al. (2007). In 

the first study, an iron parameterization was required at the Bermuda site, but not at the 

northern North Atlantic OWS-INDIA station. In the second one, iron was needed to 

simulate conditions in the North Pacific, but not in the Arabian Sea. Previous conclusions 

about the most appropriate level of model complexity in other geographical regions are 

conflicting. In their analysis of non-optimized results from global models, Kriest et al. 

2010 concluded that increasing the model complexity beyond the simplest formulations 

did not demonstrably improve model performance; however, they acknowledged that 

optimization may have allowed better model performance among the more complex 

models. Both Hurtt and Armstrong (1996) and McDonald and Urban (2010) concluded 

that the most appropriate ecosystem models were simpler than expected a priori for the 

Bermuda area, and a freshwater ecosystem, respectively. As a last example, Ward et al. 

(2013) used an optimization method to remove unconstrained parameters from a model, 

thus systematically reducing model complexity. These parameter reductions demonstrated 

that a large number of model parameters could be removed to fit specific geographical 

locations without significantly affecting model’s performance. However, not even the 

original un-reduced model was able to fully reproduce the observed behavior 

simultaneously at the two locations tested.  
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All models here analyzed may maintain a certain dependence on the parameters 

that were not optimized, but fixed to their a priori guesses (Chapter 3). In other words, it 

is possible that some of the deficiencies in the simpler models (M1 and M2) can be 

attributed to these un-calibrated parameters, which are unconstrained by the available 

observations.  

4.7 CONCLUSIONS 

Understanding the drivers behind differences in the system dynamics simulated by 

models of different complexities is challenging due to their dependencies on many 

adjustable parameters. I tried to overcome this limitation by controlling the number of 

calibrated parameters and standardizing the pathways to be optimized. These efforts were 

intended to elucidate the effects of additional complexity, rather than evaluating the 

success of the optimizations. 

My results show that patterns of spring bloom development and peak can be 

simulated equally well by the simple and complex models. Thus, complexity may not be 

necessary to address questions related to the bottom-up drivers of these periods. For 

instance, even the simplest models can be successfully fitted to replicate the spring bloom 

onset, serving as efficient tools to study it (e.g., Chapter 2). However, trophic complexity 

appears to play a role during the last stages of bloom termination, to set the summer 

chlorophyll minima, and to replicate levels of primary production close to the satellite 

estimates. Assumptions followed by complex models modify the pathways of nitrogen 

return from the organic to the inorganic pools. Complexity might be, therefore, required 

to fully understand the spring bloom termination and the transfer of energy to higher 
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trophic levels in the northwest North Atlantic.  Overall, my results illustrate that the 

selection of an appropriate level of ecosystem model complexity is tied to the research 

questions to be addressed.  

I also notice that bottom-up processes leading to the initiation of the spring bloom 

and controlling its peak appear better constrained by the available observations. This 

suggests that aspects of the system’s dynamics that are well constrained by the 

observations can be similarly replicated by different models, independent of model 

complexity. On the contrary, no information about predators was included in my  

optimization experiments. The comparison of optimized models, and sensitivity 

experiments on the model with multiple predators, demonstrate that model trophic 

complexity affects biogeochemical annual cycles most strongly during summer and fall. 

Trophic complexity introduces changes in the pathways of plankton mortality and 

predation, which affect the velocity and phase of nitrogen return from the organic pool to 

inorganic forms. Also during the summer and fall period, the effect of temperature 

dependence on phytoplankton losses is evident, being important to define chlorophyll 

spatial patterns, but having little effect on plankton standing stocks and primary 

production estimates.  

I highlight that the scarce availability of observations places significant limitations 

on the ability to mechanistically comprehend the effects of ecological feedbacks. Data 

limitations also affect the ability to conclusively compare model complexity. For this 

reason, decisions about an appropriate level of model complexity for a specific 

geographical area may also vary depending on the observational datasets available for 

model calibration, validation and the metrics used to evaluate model skill (Chapter 3). 
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Under current data limitations, unguided parameter optimization is an imperfect method 

for identifying optimal parameters, especially in the high-dimensional parameter space of 

complex models. For example, the model with two phytoplankton groups (M3) does not 

follow the expected ecological spring-to-summer succession from large to small 

phytoplankton. Moreover, computational power still sets some limitations for the use of 

complex biological models in basin-wide, global, and/or long-term simulations of coupled 

ocean circulation models. Considering this, and following parsimony principles, models 

with simple trophic dynamics can be as suitable as more complex models for diagnosing 

biogeochemical cycles at single locations or areas with homogenous environmental 

conditions.  

A focus shift towards better understanding pathways of plankton metabolism and 

mortality is necessary to address model construction uncertainties with respect to trophic 

structure. Potential future modelling research directions may include the use of 

optimization experiments to replicate controlled laboratory and mesocosm experiments, 

and twin experiments assimilating all state variables using synthetic model data. These 

types of optimization experiments can help identify patterns of common behavior among 

models, and the development of improved dynamical parameterizations of trophic 

complexity in simple models without increasing the number of unconstrained variables to 

be solved. Nevertheless, real progress in both modelling and ecological research can only 

be achieved to the extent that we obtain more comprehensive observational datasets. 
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CHAPTER 5:  

HETEROTROPHIC AND AUTOTROPHIC N2 FIXATION IN A BIOGEOCHEMICAL 

MODEL OF THE GULF OF AQABA (ISRAEL), RED SEA 

 

5.1 INTRODUCTION  

Nitrogen fixation refers to the conversion of dinitrogen gas (N2) into bioavailable 

forms of nitrogen by diazotrophs, a specialized group of microbial organisms, via 

reduction to ammonium (NH4). On geological timescales, the size of the oceanic reservoir 

of bioavailable nitrogen, and thus the ocean’s capacity for exporting carbon, is controlled 

by the balance between removal of fixed nitrogen by denitrification and input by N2 

fixation (Falkowski, 1997; Haug et al., 1998; Deutsch et al., 2007; Gruber and Galloway, 

2008; Fennel et al., 2009). The amount of organic matter exported from the surface to the 

deep ocean (i.e., export production) depends on allochthonous inputs of nitrogen (i.e., 

“new nitrogen”) into the euphotic zone (Eppley and Peterson, 1979). These new nitrogen 

inputs determine the amount of “new production”, which is directly related to the 

exported fraction. Locally the supply of new nitrogen can occur through several 

mechanisms, including microbially mediated N2 fixation, upwelling, diapycnal mixing 

injecting deep nitrate (NO3) into the surface, lateral transport and riverine input. While 

the injection of deep NO3 is often regarded as the dominant source of new nitrogen for the 

ocean and controlling the seasonal cycle of marine primary production, there is 

significant interest in better understanding the importance and quantifying the 
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contribution of N2 fixation to primary production, particularly in oligotrophic areas 

(Capone et al., 2005; Karl, 2002; Zehr and Ward, 2002).  

Diazotrophs are able to produce nitrogenase enzymes, the catalyst for N2 

reduction, which are encoded by nif genes.  Trichodesmium spp., a group of non-

heterocystous cyanobacteria that forms large colonies, was long considered the most 

ubiquitous marine N2 fixing organism, and the main contributor to N2 fixation in the 

ocean (Carpenter and McCarthy, 1975; Capone et al., 2005). Increased sampling efforts 

and methodological improvements subsequently led to the discovery of a variety of other 

diazotroph groups including heterocystous endosymbiotic cyanobacteria (Carpenter et al., 

1999; Zehr et al., 1998) and free-living unicellular cyanobacteria (Moisander et al., 2010; 

Montoya, 2004; Zehr et al., 2001), and a number of cyanobacterial symbiotic 

relationships (Zehr et al., 2000). Most recently, genetic techniques have allowed the 

detection of nif genes in a number of anaerobic and heterotrophic phylotypes (Zehr et al., 

2008; Zehr, 2011; Rahav et al., 2013, 2015). The abundance of nif genes does not 

necessarily imply that these organisms are actively fixing N2 (Zehr et al., 2000); however, 

the correlation between bacterial productivity and N2 fixation rates suggests that 

significant aphotic N2 fixation may occur in the Red Sea (Rahav et al., 2013, 2015). The 

differences in size and physiology of these diverse diazotrophic organisms suggest that 

they occupy distinct niches, and thus may affect primary productivity and export 

production differently (Moisander et al., 2010).  
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Figure 5.1: Hierarchical cluster tree depicting differences and similitudes of published 

biogeochemical models including N2 fixation. The cluster analysis was performed 

by assigning numerical values to 23 characteristics identified for these models, 

focusing on assumptions about diazotrophy. Limiting growth factors refer only to 

the diazotrophic functional groups. “Single” and “Multiple” refer to the number of 

diazotrophic functional groups. The method to compute distance between models 

was an unweighted average distance.    

 

Most biogeochemical models treat N2 fixation as a purely light-dependent, 

autotrophic process (see Figure 5.1). These models either use mechanistic formulations of 

light limitation for the diazotrophic groups (e.g., Fennel et al., 2002; Moore, et al., 2004; 

Gregg, 2008; Dutkiewicz et al., 2012), or include theoretical considerations to introduce 

an empirical N2 fixation flux in the model (e.g., Bisset et al., 1999). Some approaches 

neglect light limitation on diazotrophy and instead infer global N2 fixation patterns from 
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the distribution of dissolved inorganic nitrogen and phosphorus, and estimates of ocean 

circulation (e.g., Deutsch et al., 2007). In mechanistic models, diazotrophs are usually 

accounted for by a single functional group, with biological parameters intended to 

represent either Trichodesmium spp. or unicellular cyanobacteria, or a generic autotrophic 

diazotroph. Only a few modelling studies have evaluated multiple autotrophic diazotrophs 

groups simultaneously, by considering separate groups for Trichodesmium spp., 

unicellular cyanobacteria and diatom-cyanobacterial associations (e.g., Monteiro et al., 

2010; Duckiewicz et al., 2012). To my knowledge, heterotrophic N2 fixation has not been 

yet explicitly considered in biogeochemical models. 

Understanding the ecological dynamics of different types of diazotrophs should 

significantly improve predictive capabilities in biogeochemical models, and lead to more 

accurate estimates of global N2 fixation rates. It has been suggested that N2 fixation rates 

are underestimated globally due to limited knowledge about the distribution and 

characteristics of N2 fixing organisms (Montoya, 2004; Zehr, 2011). It is also assumed 

that marine N2 fixation may increase globally, as a result of ocean warming and higher 

concentrations of dissolved CO2 in sea water (Hutchins et al., 2007; Levitan et al., 2007).  

In this chapter, I explore the biogeochemical signatures that result from different 

assumptions about the ecological niches occupied by diazotrophs. I aim to answer the 

following two questions: i) How important is N2 fixation as a source of new nitrogen in 

the Gulf of Aqaba, part of the Red Sea? ii) How important is heterotrophic, light-

independent N2 fixation? To address these questions, I implemented a one-dimensional 

model at a monitoring station for which monthly measurements of physical and 

biogeochemical variables are available from 2004 to the present. I then systematically 
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tested different model assumptions about diazotrophy and calibrated selected model 

parameters to facilitate an objective comparison between different biogeochemical model 

versions.  The different assumptions about diazotrophy consider the characteristics of 

organisms identified in the Gulf of Aqaba, including heterotrophic N-fixing bacteria α 

and γ (Rahav et al., 2013), unicellular cyanobacteria and Trichodesmium spp. (Foster et 

al., 2009; Post et al., 2002). My most important conclusion is that aphotic N2 fixation is 

necessary to reproduce the observed excess nitrogen in deep waters of the Gulf, while 

maintaining surface N2 fixation rates similar to those locally observed. Estimates of 

annual N2 fixation rates from my best performing model are in overall agreement with 

local and large-scale estimates, and concur with some of the highest observational 

estimates in the literature. 

5.2 STUDY AREA: THE GULF OF AQABA 

The Gulf of Aqaba is a quasi-rectangular, 200-km long, 20-km wide, semi-

enclosed basin in the northeast region of the Red Sea (Figure 5.2).  The Gulf’s average 

depth is 800 m, its deepest point approximately 1800 m, and it is surrounded by arid 

mountains that steer the dominantly northerly winds (Berman et al., 2003). Two shallow 

sills, the Bab el Mandeb (~140 m) and the Strait of Tiran (~240 m), inhibit the entrance of 

cold and dense deep waters from Indian Ocean waters in the deeper layers of the Red Sea. 

Since inflow is restricted to warm surface waters, the Gulf does not have permanent 

vertical stratification. Another important consequence of the restricted deep-water 

exchange is that the Gulf’s deep water masses (>300 m) are locally formed (Wolf-Vecht 
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et al., 1992; Biton et al., 2008) and have negligible horizontal velocities towards the 

exterior (Klinker et al., 1976; Manasrah et al., 2006).  

 

Figure 5.2: Map of study area showing the location of monitoring stations and 

geographical references.  

 

The annual hydrographical cycle exhibits a well-defined seasonality where 

vertical temperature and salinity distributions are dominantly affected by surface heat 

fluxes and modified by surface advective fluxes (Carlson et al., 2014). During winter 

(September to March), convective vertical mixing usually extends to depths >300 m 

(Labiosa et al. 2003), and even reaches the bottom in some extreme years (Figure 5.3 and 

5.4). From April to September the water column is thermally stratified, and inflowing 

warm surface waters from outside the Gulf occupy the layer above the thermocline 

(Genin and Paldor, 1998; Berman et al., 2000; Biton and Gildor 2011). At the end of 



162 

 

September, surface cooling and high evaporation rates erode the seasonal stratification 

and re-establish a well-mixed water column (Berman et al., 2003; Monismith and Genin, 

2004). The Gulf experiences a net evaporation of approximately 1.6 m yr
-1

 (Ben-Sasson 

et al., 2009) due to negligible precipitation and run-off (Wolf-Vecht et al., 1992).  

The Gulf is oligotrophic, with surface NO3 and phosphate (PO4) concentrations 

usually close to their detection limits during summer stratification (Fuller et al. 2005; 

Mackey et al. 2009; Meeder et al. 2012). Deep winter mixing supplies inorganic nutrients 

to the surface, and NO3 and PO4 reach ~0.1 µM and ~2 µM, respectively (Figure 5.3; 

Lindell and Post 1995; Lazar et al. 2008). Dust from the desert provides a sufficient 

atmospheric source of soluble iron (Fe), so that dissolved Fe exceeds the requirements for 

microbial growth in the Gulf (Chase et al., 2006; Chen et al., 2007). Interannual 

variability in the depth of winter convective mixing results in periods of accumulation of 

nutrients in the deep-waters (Figure 5.3 and 5.4; Wolf-Vecht et al., 2002; Lazar et al., 

2008; Carlson et al., 2012) followed by a re-set during extreme winter mixing events 

approximately every four years (Silverman and Gildor, 2007). The periodicity of these 

extreme mixing events has been associated with regional weather patterns that modify the 

Red Sea temperatures (Silverman and Gildor, 2007). 

5.3 METHODS 

I analyze the role of autotrophic and heterotrophic N2-fixing organisms in 

determining biogeochemical patterns at Station A by testing four alternative ecosystem 

model versions. The ecosystem models are evaluated in terms of their ability to replicate 

observations of oxygen (O2), NO3, phosphate (PO4), and chlorophyll. In this section I first 
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describe the available observations, then the models, and finally the systematic model 

calibration method. 

5.3.1 OBSERVATIONS 

Meteorological and oceanographic observations come from the database of the 

Inter-University Institute (IUI) for Marine Sciences in Eilat, Israel (http://www.iui-

eilat.ac.il/Research/ NMPMeteoData.aspx). Meteorological observations are used to 

calculate surface heat and momentum fluxes for the physical model and incoming light 

for the biological models. Observed meteorological variables include wind speed, air 

temperature, air humidity, air pressure, irradiance and cloud cover. This data is collected 

continuously and automatically at 10 min intervals by the meteorological instrumental 

array at the end of the IUI pier since 2006.  

Monthly CTD and bio-chemical profiles at Station A (29.5° N, 34.9° E) were 

collected during monthly surveys of the National Monitoring Program (NMP) from 2004 

to 2014. CTD profiles are used to nudge temperature and salinity in the physical model 

(see section 5.4.2.1). Bio-chemical profiles, including nitrate (NO3), nitrite (NO2), 

ammonium (NH4), phosphate (PO4), dissolved oxygen (O2) and chlorophyll-a (Chl-a), are 

used for biogeochemical model calibration, and in the assessment of model performance 

against assimilated data. Nutrients are measured using spectrophotometry (QuickChem 

8000 flow injection), O2 was determined by Winkler titrations, and Chl-a concentrations 

are estimated using fluorometry (Turner Designs 10-AU). 



164 

 

5.3.2 MODEL DESCRIPTIONS 

The ecosystem models are implemented within the General Ocean Turbulence 

Model (GOTM), a one-dimensional physical model that computes solutions to differential 

equations for the vertical transport of momentum, salt and heat using state-of-the-art 

numerical schemes (Burchard et al., 1999).  GOTM is implemented for the 700-m deep 

Station A with a vertical resolution of 3 m, and forced with hourly-averaged 

meteorological observations from the IUI pier. Temperature and salinity are nudged to 

observed CTD profiles from Station A with a nudging time scale of 30 days. This is done 

to account for the influence of horizontal advection of heat and salt in the one-

dimensional model, and ensures a realistic representation of density stratification. The 

effect of temperature and salinity nudging on the results is analyzed (section 5.4.2.1). As 

model calibration is computationally expensive, model simulations run only from January 

2005 to September 2010. The first year of each simulation is considered model spin-up 

and excluded from further analysis (climatologically meteorological forcing is used for 

the first year, as this database starts in 2006).   

Four main ecosystem model versions of increasing complexity (referred to as H0, 

H1, H2 and H3) are treated as alternative hypotheses of how biological processes, 

especially diazotrophy, control the vertical distribution and temporal variability of 

dissolved inorganic nutrients and oxygen. H0 is the base model without explicit N2 

fixation (i.e., no diazotrophic plankton groups are included) and follows the model 

equations described in Fennel et al., (2006, 2013). I test this model with and without 

explicit inclusion of a sediment denitrification flux, denoted as H0 and H0’, respectively.  
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Thus, H0 fully neglects N2 fixation, while H0’ implicitly assumes that inputs from N2 

fixation and losses of fixed nitrogen due to denitrification are balanced.  

H1, H2 and H3 are modified versions of H0, in which different groups of 

diazotrophic organisms are added sequentially. H1 introduces a generic autotrophic 

diazotroph; H2 replaces H1’s generic diazotroph with two autotrophic diazotrophs 

representing unicellular and colonial (e.g., Trichodesmium spp.) cyanobacteria. A 

minimum temperature limit for the growth of Trichodesmium spp. is implemented in the 

model by setting the maximum growth rate to 0 when temperature drops below 20
o
C, 

based on the inability to culture this type of organism below this temperature (Breitbarth 

et al., 2007). However, temperatures below 20.5
o
C have not been recorded in Gulf of 

Aqaba. The unicellular diazotroph group overall follows the same formulation as the 

generic diazotroph, except that no coagulation term is included in this equation as they 

represent free-living picoplanktonic cells that do not form large colonies. Instead, this 

group is grazed by zooplankton similar to grazing on non-fixing phytoplankton. This 

difference between colonial and unicellular groups is consistent with studies suggesting 

that colonies represent an evolutionary adaptation to decrease grazing pressure (Nielsen 

2006). Aside from their size, Trichodesmium spp. colonies may be less palatable and 

harder to digest due to toxins; grazing is not a major fate of this group (O’Neil and 

Roman, 1994).  

The last model version, H3, adds a heterotrophic diazotroph group to the model 

structure of H2. This group of organisms is not limited by light availability, and grows by 

consuming both dissolved inorganic and organic phosphorus from detritus. In a 

subsequent set of four experiments (H3a, H3b, H3c, and H3d), I remove complexity from 
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H3. The heterotrophic group remains, but I sequentially test the autotrophic diazotrophs 

groups one-at-a-time: first the colonial cyanobacteria (H3a), then the unicellular 

cyanobacteria (H3b), then the generic autotrophic diazotroph (H3c), and finally I remove 

all autotrophic diazotrophs (H3d). A summary of all model versions is included in Table 

5.1, and a description of state variables and full model equations are given in Appendix I. 

Table 5.1: Summary of model versions characteristics and different assumptions about 

each diazotrophs group. N = no diazotrophs; A = autotrophic diazotrophs; H = 

heterotrophic diazotrophs. Checkmarks (✓) represent presence of a model 

characteristic / functional diazotrophic group in the model; dashes represent their 

absence. 

Model 

Version 

Characteristics / 

Diazotrophs  

Groups 

Denitrification 
Generic 

(A) 

Unicellular 

(A) 

Colonial 

(A) 

Heterotrophic 

(H) 

H0 N ✓ - - - - 

H0’ N - - - - - 

H1 A ✓ ✓ - - - 

H2 A ✓ - ✓ ✓ - 

H3 A H ✓ - ✓ ✓ ✓ 

H3a A H ✓ - - ✓ ✓ 

H3b A H ✓ - ✓ - ✓ 

H3c A H ✓ ✓ - - ✓ 

H3d H ✓ - - - ✓ 

 Diazotrophs characteristics:     

 Inorganic phosphorus uptake ✓ ✓ ✓ ✓ 

 Organic phosphorus uptake - - - ✓ 

 Light growth limitation ✓ ✓ ✓ - 

 Temperature dependent 

maximum growth rate 
✓ ✓ ✓ ✓ 

 Minimum temperature limit for 

growth (20
o
C) 

- - ✓ - 

 Predation - ✓ - - 
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5.3.3 MODEL PARAMETERS 

5.3.3.1 Cost Function Design 

For this study case, the optimization algorithm starts with a randomly generated 

population of 30 parameter sets {𝑝⃗}. During each generation of the population, the cost 

𝐹(𝑝⃗) of the model running with a set of parameters 𝑝⃗ is calculated as: 

𝐹(𝑝⃗) =
1

𝑉
∑

𝑤𝑣

𝑁
∑ (𝑦̂𝑣,𝑖 − 𝑦𝑣,𝑖)

2𝑁
𝑖=1

𝑉
𝑣=1 , 

where 𝑦̂ represents a model estimate and 𝑦 the corresponding observation. N is the 

number of observations included for each variable 𝑣. Here the number of variables V is 5 

and includes nitrate + nitrite, ammonium, phosphate, chlorophyll-a, and oxygen measured 

as profiles at Station A between 2006 and 2010. Model-data misfits are weighted by a 

factor 𝑤𝑣 = 1/𝜎𝑣 , i.e, the inverse standard deviation of each variable. Half of the 

parameter sets with the lowest F values “survive” to the next generation. The other half of 

the population is generated from new parameter sets obtained by recombination of two 

random “parent” sets the better performing half. Parameters also randomly “mutate”, i.e. 

random noise is added, for additional variability in the parameter space. An allowable 

range of values is set for each parameter based on the literature (Table 5.2).  
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Table 5.2: Parameters used in the base biogeochemical model (H0), including minimum 

and maximum parameters ranges based on the literature.  Parameters values 

followed by * were obtained by the optimization. 

Parameters Value Range Description Units References 

𝜇𝑃ℎ𝑦
0  0.76* 0.1 – 3 Reference phytoplankton 

maximum growth rate at   

T = 0ºC  

d
-1

 a, b, c  

𝑘𝑃ℎ𝑦
𝑁𝑂3 0.05 0.01 – 0.5  Phytoplankton NO3 uptake 

half-saturation  

mmol  m
-3

 d, e 

𝑘𝑃ℎ𝑦
𝑁𝐻4 0.1* 0.01 – 0.5  Phytoplankton NH4 uptake 

half-saturation  

mmol  m
-3

 d, e 

𝑘𝑃ℎ𝑦
𝐷𝐼𝑃  0.004* 0.001 – 0.5 Phytoplankton DIP uptake 

half-saturation 

mmol  m
-3

 a, f, g 

𝛼𝑃ℎ𝑦  0.1* 0.01 – 0.125 Phytoplankton, initial slope 

of photosynthetic response 

 molC gChl
-1

 

(W m
-2

)
-1 

d
-1 

d, h 

𝑚𝑃ℎ𝑦 0.1 0.01 – 0.2 Phytoplankton mortality 

rate 

 d
-1

 d 

𝑔𝑃ℎ𝑦
𝑚𝑎𝑥 1.16* 0.1 - 4 Zooplankton maximum 

grazing rate 

d
-1

 b, i 

𝑘𝑍𝑜𝑜
𝑃ℎ𝑦

 0.5* 0.01 – 0.5 Square zooplankton 

grazing half-saturation  

(mmol m
-3

)
2
 d, e 

𝑙𝐵𝑀 0.011* 0.01 – 0.15 Zooplankton base 

metabolic rate 

 d
-1

 d 

𝑙𝐸 0.1 0.05 – 0.35 Zooplankton excretion rate d
-1

 d 

𝑚𝑍 0.35* 0.02 - 0.35 Zooplankton mortality rate d
-1

 d 

𝜏 0.1 0.01 - 25 Small detritus aggregation 

rate 

d
-1

 d, e 

𝜃𝑃ℎ𝑦
𝑚𝑎𝑥 0.142* 0.015 – 0.15 Maximum chlorophyll to 

carbon ratio 

mg Chl (mg 

C)
-1

 

h 

𝛽 0.74* 0.25 – 0.75 Zooplankton assimilation 

efficiency 

non-dim. j, k 

𝑟𝐷𝑂𝑀 0.2 0.05 – 0.5 DOM remineralization rate d
-1

 l 

𝑟𝐷 0.01 0.005 – 0.15 Detritus remineralization 

rate 

d
-1

 l, m 

𝑛𝑚𝑎𝑥 0.3* 0.01 – 0.35 Nitrification rate d
-1

 d, e 

𝑘𝐼 0.1 0.01 – 0.5  Half-saturation radiation 

for nitrification inhibition 

Wm
-2

 d 

𝐼𝑡ℎ 0.0095 0.005 – 0.01 Radiation threshold for 

nitrification inhibition 

Wm
-2

 d 

𝑤𝑃ℎ𝑦 0.1 0.01 – 1 Vertical sinking velocity 

for non-fixing 

phytoplankton  

 md
-1

 n 

𝑤𝐷𝐿 -4.44* 0.01 – 25  Vertical sinking velocity 

for large detritus 

 md
-1

 d 

a. Fennel et al. (2002) b. Fahnenstiel et al. (1995) c. Veldhuis et al. (2005) d. Fennel et al. (2006) 

e. (Lima and Doney (2004) f. Ward et al. (2013) g. Moore, et al.(2002) h. Geider et al. (1997) i. 

Gifford et al. (1995) j. Landry et al. (1984) k. Tande and Slagstad (1985) l. Amon and Benner 

(1996) m. Enríquez et al. (1993) n. Smayda and Bienfang (1983) 
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5.3.3.2 Optimized Parameters 

There are certain limitations for the use of parameter optimization. In general, the 

optimization cannot estimate with confidence parameters that are unconstrained by the 

observations (Schartau and Oschlies, 2003; Ward et al., 2010). In order to avoid 

attempting to optimize parameters that cannot be constrained by the observations, a 

subset of H0’s most sensitive parameters was selected for optimization trough a 

preliminary sensitivity analysis (Appendix I). Optimized and fixed parameters for H0 are 

identified in Table 5.1 along with the obtained optimized values. This subset of 

parameters was optimized by running 10 optimization replicates over 100 generations 

using the algorithm described in section 5.3.3.1. Thus, I tested an approximate total of 

15000 different parameter sets. Non-optimized parameters are fixed to a priori estimates 

based on Fennel et al. (2006; 2013).  

For each model version with diazotrophs (H1, H2 and H3), some of the previously 

optimized parameters required re-calibration to properly accommodate the changes in 

system dynamics. Re-calibrated parameters for each model version are presented in Table 

5.3. No re-calibration was performed for model sub-versions (H0’ and H3a-d), as they are 

aimed to test the relative importance of individual components on their corresponding 

model version results. 
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Table 5.3: Diazotrophs parameters and re-calibrated non-fixing phytoplankton parameters 

for each model version. H0 = no N2 fixers; H1 = generic autotrophic diazotrophs; 

H2 = unicellular and colonial cyanobacteria; H3 = heterotrophs, unicellular and 

colonial cyanobacteria.  

Model 

version: 
H0 H1 H2 H3 Units Description 

𝜇𝑃ℎ𝑦
0  0.76 2.20 1.5 1.5 d

-1
 Reference phytoplankton maximum 

growth rate at   T = 0ºC 

𝜃𝑃ℎ𝑦
𝑚𝑎𝑥 0.022 0.076 0.076 0.05 mg Chl (mg 

C)
-1

 

Maximum chlorophyll to carbon 

ratio – non fixing phytoplankton 

𝑘𝑃ℎ𝑦
𝑁𝐻4 0.076 0.076 0.076 0.076 mmol  m

-3
 Phytoplankton NH4 uptake half-

saturation 

𝑘𝑃ℎ𝑦
𝐷𝐼𝑃  0.001 0.015 0.015 0.015 mmol  m

-3
 Phytoplankton DIP uptake half-

saturation 

𝑚𝑃ℎ𝑦 0.1 0.06 0.06 0.06 d
-1

 Phytoplankton mortality rate 

𝑔𝑃ℎ𝑦
𝑚𝑎𝑥 1.16 4.0 1.95 1.95 d

-1
 Zooplankton maximum grazing rate 

𝛽 0.36 0.7 0.7 0.7 non-dim. Zooplankton assimilation efficiency 

𝜇𝐺𝐹

0  - 0.25 - - d
-1

 Reference generic diazotrophs 

maximum growth rate at   T = 0ºC 

𝑘𝐺𝐹

𝐷𝐼𝑃 - 0.001 - - mmol  m
-3

 Generic diazotrophs DIP uptake 

half-saturation 

𝜃𝐹
𝑚𝑎𝑥 - 0.053 - - mg Chl (mg 

C)
-1

 

Maximum chlorophyll to carbon 

ratio – generic diazotrophs 

𝛼𝐺𝐹
  - 0.01 - - molC gChl

-1
 

(W m
-2

)
-1 

d
-1

 

Generic diazotrophs, initial slope of 

photosynthetic response 

𝑚𝐺𝐹
 - 0.18 - - d

-1
 Generic diazotrophs mortality rate 

𝑙𝐺𝐹
 - 0.05 - - d

-1
 Generic diazotrophs respiration rate 

𝜇𝑈𝐹

0  - - 0.25 0.25 d
-1

 Reference unicellular cyanobacteria 

maximum growth rate at   T = 0ºC 

𝑘𝑈𝐹

𝐷𝐼𝑃 - - 0.004 0.004 mmol  m
-3

 Unicellular cyanobacteria DIP 

uptake half-saturation 

𝜃𝑈𝐹

𝑚𝑎𝑥 - - 0.053 0.053 mg Chl (mg 

C)
-1

 

Maximum chlorophyll to carbon 

ratio – unicellular cyanobacteria 

𝛼𝑈𝐹
  - - 0.05 0.05 molC gChl

-1
 

(W m
-2

)
-1 

d
-1

 

Unicellular cyanobacteria, initial 

slope of photosynthetic response 

𝑚𝑈𝐹
 - - 0.20 0.2 d

-1
 Unicellular cyanobacteria mortality 

rate 

𝑙𝑈𝐹
 - - 0.05 0.05 d

-1
 Unicellular cyanobacteria 

respiration rate 
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Model 

version: 
H0 H1 H2 H3 Units Description 

𝑔𝑈𝐹

𝑚𝑎𝑥 - - 0.2 0.2 d
-1

 Zooplankton maximum grazing rate 

on unicellular cyanobacteria 

𝑘𝑍𝑜𝑜
𝑈𝐹  - - 0.001 0.001 (mmol m

-3
)

2
 Square zooplankton grazing half-

saturation on unicellular 

cyanobacteria 

𝜇𝐶𝐹

0  - - 0.25 0.25 d
-1

 Reference colonial cyanobacteria 

maximum growth rate at   T = 0ºC 

𝑘𝐶𝐹

𝐷𝐼𝑃 - - 0.004 0.004 mmol  m
-3

 Colonial cyanobacteria DIP uptake 

half-saturation 

𝜃𝐶𝐹

𝑚𝑎𝑥 - - 0.053 0.053 mg Chl (mg 

C)
-1

 

Maximum chlorophyll to carbon 

ratio – colonial cyanobacteria 

𝛼𝐶𝐹
  - - 0.05 0.05 molC gChl

-1
 

(W m
-2

)
-1 

d
-1

 

Colonial cyanobacteria, initial slope 

of photosynthetic response 

𝑚𝐶𝐹
 - - 0.18 0.05 d

-1
 Colonial cyanobacteria mortality 

rate 

𝑙𝐶𝐹
 - - 0.05 0.18 d

-1
 Colonial cyanobacteria respiration 

rate 

𝜇𝐻𝐹

0  - - - 0.2 d
-1

 Reference heterotrophs maximum 

growth rate at   T = 0ºC 

𝑘𝐻𝐹

𝐷𝐼𝑃 - - - 0.001 mmol  m
-3

 Heterotrophs DIP uptake half-

saturation 

𝑘𝐻𝐹

𝐷𝑆 - - - 0.001 mmol  m
-3

 Heterotrophs organic phosphorus 

uptake half-saturation 

𝑚𝐻𝐹
 - - - 0.2 d

-1
 Heterotrophs mortality rate 

𝑙𝐻𝐹
 - - - 0.05 d

-1
 Heterotrophs respiration rate 

 

5.3.3.3 Diazotrophs Parameters 

None of the parameters directly related to the diazotroph groups are constrained 

by the available observations. That is, there is no measure of the amount of chlorophyll 

corresponding to cyanobacteria only, or of the amount of PO4 consumed by these 

organisms. Moreover, to date there are only few reported N2 fixation measurements in the 
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Gulf of Aqaba, which are reserved for model validation. Therefore, I predefined the 

parameters of the diazotrophic groups introduced in H1, H2 and H3, based on values 

found in the observational and modelling literature (Table 5.3).  

For example, previous modelling studies have used maximum generic N2 fixers 

growth rates ranging from 0.4 d
-1

 (Moore, et al., 2004) to 1.25 d
-1

 (Ward et al., 2013); 

whereas when the diazotrophs are assumed to represent Trichodesmium spp. values range 

between 0.17 d
-1

 (Hood et al., 2001) to 0.3 d
-1

 (Fennel et al., 2002). From the 

observational literature, Cyanothece (unicellular cyanobacteria) and Trichodesmium spp. 

cultured under various combinations of Fe and light availability exhibit maximum rates 

around 0.3 ± 0.05 d
-1

 (Berman-Frank et al., 2001; Capone et al., 1997; Hutchins et al., 

2007).
 
For all photosynthetic diazotrophs, I chose a standard maximum growth rate value 

of 0.25 d
-1

, such that differences between the model versions are largely dependent on the 

different assumptions about the losses of each organism (e.g., predation of unicellular 

cyanobacteria vs. sinking of large aggregates). Based on growth rates measured for 

cultured heterotrophic bacteria, I chose a value of 0.2 d
-1 

for the heterotrophic diazotrophs 

(Pomeroy and Wiebe, 2001). Observational and modelling studies were also considered 

to set the photosynthetic initial slope of photosynthetic diazotrophs (Geider et al., 1997; 

Hutchins et al., 2007; Moore, et al., 2004). Other parameters are based on Fennel et al. 

(2002).  
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5.4 RESULTS 

5.4.1 OBSERVED NO3 AND PO4 PATTERNS 

In order to provide context for the evaluation of my model simulations, I first 

describe observed NO3 and PO4 interannual and seasonal variability for the complete time 

series (i.e. 2004 to 2014) at Station A (Figure 5.3).   

 
Figure 5.3: Nitrate and phosphate vertical distributions at Station A from 2004 to 2014, 

showing seasonal and interannual variability. Ticks are placed on April 1
st
 of 

every year. 

 

Seasonally, from May to January vertical distributions of NO3 and PO4 are 

depleted in the euphotic zone and characterized by a nutricline between 100 and 200 m. 
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Between February and April, nutrient concentrations decrease in the deep waters (>200 

m) and increase in the surface as result of vertical mixing. Multi-year periods of 

accumulation of nutrients in the deep-waters are observed from: i) the beginning of the 

series to the end of 2006, ii) after the winter of 2008 until February 2012, and iii) after the 

winter of 2013 until the end of the series. These periods are bookended by winters with 

extremely deep mixing events in 2007, 2008, 2012 and 2013 that nearly homogenize 

nutrient concentrations in the entire water column. Two prolonged periods of these 

vertically homogenous conditions were observed in 2007 and 2008, lasting two to three 

months.  

My model simulations are from 2006 to 2010, allowing us to analyze two years 

with deep winter mixing (2007 and 2008) and two years with moderate winter mixing 

(2009 and 2010). Figure 5.4 shows the linear metric N* (N*=DIN-16DIP) for my 

simulation period which allows us to quantify excess and deficit of observed nitrogen 

relative to phosphorus with respect to the canonical Redfield ratio (N:P=16:1). This 

metric allows diagnosing patterns of net nitrogen addition, i.e. the balance of N2 fixation 

and denitrification, on global and local scales (e.g., Gruber and Sarmiento, 1997; Fennel 

et al., 2009). Using the Redfield ratio as a reference, N* is insensitive to changes in the 

nutrient concentrations that result from nutrient uptake by non-fixing phytoplankton and 

remineralization organic matter, assuming these processes occur in Redfield 

stoichiometry. Negative N* values reflect an excess of phosphate (DIP) and can be 

interpreted as a signature of denitrification. Positive N* reflects an excess of nitrogen 

(DIN) and can be interpreted as a signature of N2 fixation.  
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Figure 5.4: N* calculated from NO3 and PO4 profiles at Station A from 2007 to 2010. The 

black line shows estimated mixed layer depth using a maximum density gradient 

criterion.   

 

N* values presented in Figure 5.4 are calculated using the observations in Figure 

5.3. N* values shows that excess nitrogen (between +0.20 and +1.06 mmol N m
-3

) 

dominates throughout most of the water column, except at the surface during stratified 

summer conditions, when nutrients are depleted and surface waters exhibit an excess of 

phosphate (-0.35± 0.25 mmol N m
-3

). Waters with excess nitrate are brought to the 

surface during winter; however, N* values rapidly return to negative at the surface. The 

magnitude and duration of occurrence of positive surface N* values appear to be related 

to the depth of winter mixing. As previously mentioned, winter mixing in 2007 and 2008 

was stronger than in 2009 and 2010. In the surface, maximum positive N* values reach 
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0.95 mmol N m
-3

 during the first two years, but only reach 0.59 mmol N m
-3

 in the latter 

two years. Below the mixed layer depth, N* positive deviations on the order of 0.69 ± 

0.37 mmol N m
-3

 occur between 2009 and 2010 due to accumulation of NO3 in deep 

waters during years with moderate winter mixing. 

5.4.2 MODEL RESULTS 

5.4.2.1 Sensitivity to Physical Nudging 

Figure 5.5 shows the temperature and density differences between model runs 

with and without temperature and salinity nudging towards observations.  Temperature 

and salinity nudging has a negligible effect below 200 m, indicating that horizontal 

advection does not modify the lower part of the water column in a significant way. Above 

200 m, differences in temperature and density are observed during summer, when the 

water column is stratified. Here nudging is correcting model errors in representing 

vertical mixing and errors in surface forcing. The average magnitude of the differences 

due to nudging in the top 200 m is 0.20±0.45 ºC and 0.5±0.16 kg m
-3

. Overall, since its 

effects are small and limited to the surface, I conclude that neither the nudging nor the 

neglect of horizontal advection affects my conclusions about the importance of 

heterotrophic N2 fixation.  
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Figure 5.5: Effect of physical nudging on temperature and density fields estimated from a 

model run with nudging minus a model run without nudging. The dashed vertical 

line marks the simulation period used as a model spin-up. 

 

5.4.2.2 Optimized Model Without N2 Fixation 

Panels a) – c) in Figure 5.6 show the mean and standard deviation of simulated 

surface chlorophyll, NO3 and PO4 obtained by H0 and H0’ when using the best fitting 

parameters obtained in the 10 replicate optimizations. From visual inspection, simulated 

surface chlorophyll fits the observations well, with root-mean-square errors between 

0.0132 and 0.0217 mg Chl-a m
-3

, and a small spread among the individual optimizations. 

Model results have larger deviations in NO3 and PO4 surface values. H0’ better represents 

maximum surface nutrient concentrations in winter than H0. Both models are challenged 

to replicate surface PO4 observations between May and July, with simulated PO4 being 

too low in all optimized results except for 2007.  
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Figure 5.6: Results from model version H0 and sub-version H0’ neglecting N2 fixation. 

Left panels show observed and simulated surface Chl-a, NO3 and PO4. The mean 

and standard deviation refer to the model results using the best parameters 

obtained in 15 optimization exercises. Right panels show N* at three depth levels. 

Horizontal axes start after spin-up period. 

 

Panels d) – f) show simulated N* values at three depth levels (0, 100 and 500 m). 

Both models reproduce average observed surface and mid-water N* values, but do not 

capture the negative deviations at 0 and 100 m during summer. Simulated surface N* 

values remain close to zero with positive deviations in winter. H0 exhibits the largest 

model-data deviations in deep waters, where simulated N* values decline steadily 

towards negative values during the study period, while observed values are positive. In 

the absence of sediment denitrification, H0’ produces higher deep-water N* values; 

however it does not reproduce the observed positive anomalies.   
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5.4.2.3 Effects of N2 Fixation on NO3 and PO4 

Figure 5.7 shows simulated NO3 and PO4 concentrations from models H0, H1, H2 

and H3, along with the corresponding measurements at Station A. Observed NO3 and PO4 

concentrations exhibit a defined increase in deep-water after the strong winter of 2008. 

Weaker winter mixing after 2008 produces deep-nutrient accumulation. This 

accumulation is stronger in the NO3 profiles than in PO4.  

 
Figure 5.7: Observed (coloured circles) and simulated  (background) NO3 and PO4 using 

model versions H0 (no nitrogen fixers), H1 (generic autotrophic fixer), H2 

(unicellular and colonial autotrophic fixers), H3 (heterotrophic, and unicellular 

and colonial autotrophic fixers). Horizontal axes start after spin-up period. 
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Model H0 underestimates inorganic nutrients by up to 3 mmol N m
-3

 and 0.1 

mmol P m
-3

. Model H1, where N2 fixation was introduced via a generic autotrophic, 

generates only small changes in the vertical distribution of nutrients. In model H2 the 

representation of NO3 below the nutricline is slightly improved; however, 

underestimation of mid-water NO3 and PO4 is still noticeable. Model H3 further improves 

the pattern of deep NO3 accumulation. 

These model differences are more clearly summarized in Figure 5.8a, which 

shows the total (i.e., vertically integrated) simulated and observed NO3 and PO4 in surface 

and deep waters. From the observations I estimate that deep NO3 accumulation between 

2007 and 2010 occurs at a rate of 0.59 ± 0.08 mmol m
-2 

d
-1

, whereas deep PO4 

accumulates at 0.015 ± 0.009 mmol m
-2 

d
-1

. That is, during this accumulating period 

approximately 36 mmol NO3 per mmol PO4 are returned to the deep waters. All five 

model versions compared simulate similar temporal variability of PO4 and resemblance of 

the observations. However, NO3, in particular total NO3 below 100 m, diverges over time. 

H0 has the largest deviations with approximately constant deep NO3 after 2007. H0’, the 

version without denitrification, produces a rate of increase in deep NO3 similar to that of 

model version H2.  Nonetheless, H3 has the highest accumulation rate of deep NO3, 

matching the observed slope the best.  In Figure 5.8b, I show total particulate organic 

nitrogen and phosphorus (PON and POP), defined as the sum of plankton and detritus 

groups. During the summer, models with N2 fixation have higher PON than H0.  
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Figure 5.8: a) Observed and simulated vertically integrated NO3 and PO4 between 0 – 

100 m and between 100 – 600 m using model versions H0 (no nitrogen fixers), 

H0’ (no sediment denitrification – no fixers), H1 (generic autotrophic fixer), H2 

(unicellular and colonial autotrophic fixers), H3 (heterotrophic, and unicellular 

and colonial autotrophic fixers). b) Contributions of different processes to changes 

in the simulated dissolved inorganic nitrogen (NO3 + NH4): uptake by autotrophic 

non-fixing phytoplankton, vertical mixing, zooplankton base metabolism and 

excretion, small and large detritus remineralization, and excretion by diazotrophs. 

 

The PO4 versus NO3 plots of Figure 5.9 visualize these results in terms of N* 

values. For reference, observed N* values above 200 m depth tend to remain close to 

zero, with positive deviations at intermediate NO3 and PO4 concentrations, and negative 
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deviations at low concentrations (Figure 5.9a). In waters below 200 m depth, maximum 

PO4 and NO3 concentrations reach 0.45 and 7 mmol m
-3

, respectively. Observed N* 

values in deep waters are overall positive. This observed pattern in the distribution of 

nutrients and N* values is not replicated by models H0 to H2, where maximum DIP and 

DIN concentrations only reach to 0.25 and 3.87 mmol m
-3

, respectively. In model H0, 

simulated N* values are skewed towards negative deviations from zero. In model H1, 

negative N* deviations are found at the surface, and both positive and negative N* 

deviations occur in waters below 200 m. N* results from model H2 are mostly centered at 

zero, with few deviations towards negative values. Model H3, where heterotrophic 

diazotrophs co-exist with colonial and unicellular autotrophic diazotrophs, is the model 

version best able to replicate the range of NO3 and PO4 concentrations. Simulated N* in 

this model presents excess nitrogen in waters below 200 m, as in the observations; 

however, deviations are lower than observed at high nutrient concentrations. 

Figure 5.9f-h shows results from the three of the four additional model versions 

based on H3 (H3a, H3c and H3d), in which autotrophic diazotrophs were sequentially 

removed from the model. In addition to heterotrophic diazotrophs, model H3a includes 

only the colonial autotrophic diazotrophs group and its results are closest to model H3, 

but show lower maximum nutrient concentrations. Inorganic nutrient results from the 

model with heterotrophic and generic autotrophic diazotrophs (H3c) are remarkably 

similar to those of model H2, while results in total absence of autotrophic diazotrophs 

(H3d) exhibit the narrowest nutrient concentrations range and become skewed towards 

positive N* deviations.  Results from H3b are similar to H3d due to low total nitrogen 

fixation rates, and are not shown in the plot.  
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Figure 5.9: Observed and simulated N* range in biogeochemical model versions tested. 

H3b (unicellular autotrophic and heterotrophic) behaves similarly to H3d, and is 

excluded from the figure for visual purposes. The dashed black diagonal line 

marks the N* = 0, or N:P = 16 line. 

 

5.4.2.4 Effects of N2 Fixation on Chlorophyll and O2 

Figure 5.10 shows simulated and observed chlorophyll and dissolved oxygen 

values in the Gulf of Aqaba. The seasonal variability of total chlorophyll concentrations is 

reproduced well by all model variations, with increased chlorophyll values occurring 

between November and April. During these months, simulated chlorophyll concentrations 

are homogeneous up to 200 m.  In 2007 and 2008, chlorophyll concentrations of ~0.13 

mg m
-3

 are observed in the measurements reaching as deep as 500 m.  This feature is also 

captured well by my models, as is the location of the deep chlorophyll maximum (DCM) 

at ~80 m between March and October. However, some discrepancies between model 

results and observations can be highlighted. The models overestimate spring bloom peak 
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concentrations in 2007 and peak timing is offset by two months in 2008.  Model H0 tends 

to underestimate chlorophyll concentrations from the surface to the DCM during summer 

months. As chlorophyll concentrations are extremely low during this time of the year, 

these model-data differences are on the order of 0.05 to 0.1 mg m
-3

. Nonetheless, the 

discrepancies during summer months are corrected in the models with N2 fixation. 

 
Figure 5.10: Observed (coloured circles) and simulated  (background) Chl-a and O2 using model 

versions H0 (no nitrogen fixers), H1 (generic autotrophic fixer), H2 (unicellular and 

colonial autotrophic fixers), H3 (heterotrophic, and unicellular and colonial autotrophic 

fixers). Vertical scale in the Chl-a subplots is logarithmic to exaggerate the surface. 

Horizontal axes start after spin-up period.  
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Simulated oxygen concentrations exhibit larger differences between models and 

observations, in particular at mid- and deep waters, where air-sea fluxes do not directly 

affect oxygen concentrations.  

 

Figure 5.11: Observed (circles) and simulated (lines) total nitrate in the surface and deep-

waters during the model validation period from 2010 to 2014.  

 

5.4.2.5 Long-term validation 

Observational data from 2010 to 2014 was used to validate the models 

independently from the information assimilated during the optimization. Table 5.4 shows 

that, in terms of chlorophyll, PO4 and surface O2, all model versions behave similarly and 

achieve similar RMSE values against both assimilated and independent observations.  As 

demonstrated in the previous sections, the model versions mainly diverge in their 

behaviour with respect to NO3. Between 0 and 200 m, model version H3 has the largest 
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RMSE values against NO3 observations. Nevertheless, below 200 m, model version H3 

has the lowest RMSE values, particularly against unassimilated NO3. This model 

behaviour is exemplified in Figure 5.10, which shows observed and simulated total NO3 

at 0 – 200 m and below 200 m for the unassimilated data period. Figure 5.11 shows that, 

in comparison with the rest of model versions, model version H3 increasingly 

overestimates surface NO3 over time. High deep total NO3 is represented the best by H3, 

but the minimum annual winter values are not well captured. By the end of the 

observational series, between 2013 and 2014, H3 starts to also overestimate deep NO3.   

Table 5.4: Root-mean-square-errors between observations and corresponding simulated 

variables. Observations between 2005 and 2010 were used during model 

calibrations (i.e., assimilated). Observations between 2011 and 2014 are used for 

independent model validations (non-assimilated)  

Surface   

 2005 – 2010 (assimilated) 2011 – 2014 (non-assimilated) 

 NO3 PO4 CHL O2 NO3 PO4 CHL O2 

H0 0.71 0.04 0.15 7.57 0.60 0.04 0.16 6.39 

H1 0.77 0.04 0.14 6.99 0.66 0.04 0.15 7.08 

H2 0.78 0.04 0.14 6.96 0.75 0.04 0.14 6.66 

H3 1.04 0.05 0.14 7.35 1.50 0.05 0.13 6.22 

H3a 1.04 0.06 0.12 7.10 1.41 0.09 0.14 6.47 

H3b 1.91 0.05 0.14 7.94 2.15 0.05 0.16 8.13 

H3c 1.01 0.06 0.12 7.05 1.06 0.08 0.14 6.55 

H3d 1.60 0.05 0.19 7.91 1.78 0.05 0.19 8.21 

Deep         

 NO3 PO4 CHL O2 NO3 PO4 CHL O2 

H0 1.53 0.05 0.08 15.54 2.26 0.06 0.06 17.34 

H1 1.43 0.05 0.07 15.09 2.02 0.05 0.06 21.70 

H2 1.29 0.05 0.07 14.17 1.56 0.04 0.06 17.57 

H3 1.05 0.05 0.07 13.28 0.89 0.05 0.06 10.03 

H3a 1.12 0.05 0.07 13.42 0.93 0.07 0.06 11.98 

H3b 1.26 0.10 0.07 18.29 1.51 0.14 0.06 29.99 

H3c 1.14 0.05 0.07 14.37 1.18 0.05 0.06 16.16 

H3d 1.41 0.11 0.14 18.39 1.85 0.14 0.13 30.38 
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5.4.2.6 Primary Production and N2 Fixation Rates 

In order to compare my estimates of primary production with those reported for 

the Gulf of Aqaba by Rahav et al. (2015), Figure 5.11 shows the average simulated 

primary production at the same three depth levels used in that study: the DCM, and 

averages above and below DCM. The depth-resolved discrete in situ primary production 

rates reported by Iluz et al. (2009) were also averaged at these three levels for 

comparison.  

Simulated primary production above the DCM ranges from 0.02 to 0.85 mmol N 

m
-3

 d
-1

, and exhibits an annual cycle with peaks of productivity in October and April. A 

prolonged period of low primary production extends from April to September. Model 

versions H3 and H3a produce higher primary production rates than other versions, while 

maintaining the same temporal variability.   The exceptions to this model behaviour are 

model versions H3b and H3d, which maintain rates twice as large as the rest of the 

models during the summer/fall period.   

At the DCM and below, simulated primary production rates range from 0 to 0.5 

mmol N m
-3

 d
-1

.  The lowest simulated primary production rates are the ones obtained by 

version H2, while the base model H0 presents the highest rates during certain periods. 

Differences between all other models are negligible, and my model rates agree with those 

measured by Iluz et al. (2009) and Rahav et al. (2015). 
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Figure 5.12: Comparison of previously reported in situ measurements and model results 

of primary production (a) and N2 fixation rates (b), averaged at three depth levels. 

Depth levels are from the surface to the Deep Chlorophyll Maximum, at the DCM 

and below it. (c) DCM estimated from observed Chl-a profiles at station A. I09, 

F09 and R15 refer to Iluz et al., (2009), Foster et al., (2009), and Rahav et al., 

(2015), respectively. 

 

I report simulated N2 fixation rates in a similar fashion as the primary production 

rates (Figure 5.11b). Above the DCM, models H1, H2, H3 and H3a show a well-defined 

N2 fixation peak during summer months (i.e., after the peak in primary production). 

Maximum rates in these models range between 0.001 to 0.1 mmol N m-3 d-1. The lowest 

maximum values are obtained with model H2, whereas the highest values are from 

models H3 and H3a.  Model version H3c only presents peaks in 2007 and 2008, being 

earlier and of smaller magnitude than the rest of the models. Simulated N2 fixation rates 

are low during winter and spring months.  The lowest minimum is obtained with model 

H1 followed by models H3a, H2 and H3. Model versions where autotrophic diazotrophs 

contribution was minimal or neglected (i.e., H3b and H3d) have nearly constant rates in 

time. The winter minimum N2 fixation rates of H3 and H3b have the same magnitude as 



189 

 

the nearly constant rates obtained by model H3b.   Similar temporal patterns and 

differences between model versions occur at the DCM and below it. Peaks in N2 fixation 

at these depth levels are delayed from the surface peak, and have a shorter duration and 

smaller amplitude.  

 
Figure 5.13: Simulated new, regenerated, and total primary production (a) and N2 fixation 

rates (b). A summary of previous estimates of N2 rates in observational and model 

studies is included in (b). 

 

5.5 DISCUSSION 

5.5.1 IS N2 FIXATION RELEVANT IN THE GULF OF AQABA? 

In this study I tested models with different assumptions about N2 fixation in the 

Gulf of Aqaba, ranging from neglecting the process to assuming that heterotrophic N2 
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fixation can occur in the entire water column (i.e., independent of light availability). 

Despite the fact that the models I tested had very similar abilities to replicate chlorophyll-

a, phosphate and oxygen observations, I found significant differences in their success to 

reproduce the observed pattern of deep-nitrate accumulation. The models’ level of 

performance at replicating vertical nitrate distributions also affected their performance 

measured against the N* metric. When I neglect N2 fixation, excess phosphate tends to 

dominate the whole water column because nitrate is underestimated. Explicitly 

accounting for N2 fixation (H1, H2, H3) improves the model’s ability to replicate N* 

variability and vertical structure. The best model performance was obtained with two 

groups of autotrophic organisms and a group of heterotrophic organisms (H3). A model 

without explicit N2 fixation, but in the absence of bottom denitrification, also increases 

the accumulation of deep NO3 in a similar fashion as version H2. This suggests that N2 

fixation rates at least as high as in H2 are necessary to compensate the effects of bottom 

denitrification. In my results, the average realized denitrification flux at the bottom is 0.25 

± 0.46 mmol N m
-2 

d
-1

, with a maximum value of 3.01 mmol N m
-2 

d
-1

. These values at 

are the lower end of sediment denitrification rates in the literature, which have a mean of 

2.2 mmol N m
-2 

d
-1

 and maximum values exceeding 10 mmol N m
-2 

d
-1

 (Fennel et al., 

2009). 

The excess nitrogen observed in the Gulf of Aqaba appears to contrast exterior 

waters from the Arabian Sea and Indian Ocean, which are considered low oxygen, net 

nitrogen sink regions (Gruber and Sarmiento, 1997). It has been hypothesized that limited 

deep-water exchange at Bab-el-Mandeb allows waters of the Red Sea outside of the Gulf 

of Aqaba to acquire characteristics different from the Arabian Sea inflowing waters 
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(Naqvi et al 1986). My model results support this hypothesis and suggest that N2 fixation 

is key for the formation of the distinct chemical characteristics of Gulf of Aqaba waters, 

which retain only a negligible resemblance to the reported patterns of the exterior waters.  

There are only few reported dissolved inorganic nitrogen-to-phosphorus ratios for 

the Red Sea region from Bab-el-Mandeb to the Strait of Tiran to provide a complete idea 

of the spatial distribution of N*; however the available information supports my 

conclusions. Naqvi et al. (1986) data shows excess nitrogen in the order of N* = +2.5 

mmol m
-3

 in sub-surface waters outflowing at the Bab-el-Mandeb towards the Arabian 

Sea (reported as N:P ratios of ~20). These studies posited that N2 fixation is a process 

required to account for the anomalies in the nitrogen budget between incoming and 

outgoing waters at Bab-el-Mandeb. The Red Sea N* values are significantly higher than 

those of the Arabian Sea and Indian Ocean, where a strong deficit of nitrogen develops as 

losses due to denitrification exceed the input of newly fixed nitrogen (Gruber and 

Sarmiento, 1997; Morrison et al 1998, 1999; Naqvi, 1994; Burkill et al., 1993). Close to 

the entrance of the Persian Gulf, N* values are below -5 mmol m
-3

 at all depths and 

seasons reported, with minimum excess phosphate values in the order of N* = -8 mmol 

m
-3

 (Gruber and Sarmiento, 1997).  

The lowest negative N* values observed in surface waters in the Gulf of Aqaba 

during summer are not fully captured by any of my model versions; however this is not a 

source of large data-model discrepancies. In the context of a one-dimensional framework, 

I cannot reject the possibility that these minimum N* values are a remnant signal of 

denitrification in the distant Arabian Sea. During their passage through the Red Sea, N2 

fixation may be responsible of transforming waters with significant excess phosphorus 
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into these summer surface waters with small negative N* deviations. If we consider the 

global average correction to N* values of +2.89 µmol kg
-1

 used by Gruber and Sarmiento 

(1997), N* values in the Gulf of Aqaba hold a permanent excess of nitrate with respect to 

other geographical regions. Similarly, the overestimation of surface NO3 obtained with 

the model that performs the best for deep NO3 suggests that the Gulf has potential to 

export newly fixed nitrogen to the outside waters through horizontal advection in the 

surface to mid-water layers. This was not tested within our one-dimensional model.  

Based on my model results in the context of the regional characteristics, I consider that N2 

fixation is a necessary input of new nitrogen to explain positive N* values in the Gulf of 

Aqaba, and the interannual accumulation of deep nitrate during years with weak 

convection. 

5.5.2 HOW DOES N2 FIXATION CONTRIBUTE TO PRIMARY PRODUCTION? 

In this section I discuss the contribution of N2 fixation to primary production in 

the Gulf of Aqaba, and my quantitative estimates of N2 fixation with respect to previously 

published global rates (Figures 5.12 and 5.13). My estimates of surface primary 

productivity agree with those reported by Iluz et al. (2009) for March-April of 2008. 

However, my models overestimate surface primary productivity values in 2010, 

compared to those reported by Rahav et al. (2015). On average, model versions that 

perform the best in terms of nutrient distributions estimated annual primary production 

rates of 304±56.9 g C m
-2

 yr
-1

 (H3) and 277±82.5 g C m
-2

 yr
-1

 (H3a). These rates are 

higher than previously published observational annual averages, which range from 80 g C 

m
-2

 y
-1

 (Levanon-Spanier et al. 1979; Iluz 1991) to 170 g C m
-2

 y
-1

 (Lazar et al. 2008). 
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The proportion of new production to total primary production (i.e., the f-ratio) in my 

experiments suggests that new production contributes from 15% to 80% of total 

production.  Maximum f-ratios are estimated for winter months of January and February 

due to significant contributions from deep NO3, whereas minimum f-ratios occurred 

during stratified conditions (June – August). My best performing model version, H3, 

estimates a summer minimum f-ratio 0.22. That is, about 22% of the primary production 

during summer is sustained by external sources of nitrogen. On average for all scenarios, 

I estimate that new production represents about 47% of the total annual production in the 

Gulf of Aqaba. This agrees with published estimates for the Gulf, which report that 

during the stratified period new production contributes about 50% of total production, as 

determined from a nitrate-diffusion model yielding an f-ratio of 0.5 (Badran et al. 2005).  

Annual N2 fixation rate estimates from my best performing model versions (H3 

and H3a) are skewed towards the highest estimates reported in the literature (Capone and 

Carpenter, 1982; Michaels et al., 1996; Lee et al., 2002), while those obtained by the rest 

of experiments agree with the complete range of values reported.  Based on the best 

performing model version (H3) I estimate that 10% to 14% of the total primary 

production is related to N2 fixation.  

5.5.3 ARE DIFFERENT DIAZOTROPHIC GROUPS IMPORTANT? 

Colonial diazotroph blooms are responsible for the highest N2 fixation rates in my 

models, and thus are an important aspect of the model behaviour necessary to achieve 

resemblance with the observed N* patterns. This result agrees with the conclusion that 

extensive blooms of Trichodesmium spp. are dominantly responsible for the high N2 
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fixation rates observed in the Arabian Sea and Red Sea (Capone et al., 1998; Post et al., 

2002; Foster et al., 2009). Blooms of T. erythraeum and T. thiebautii have also been 

documented specifically in the Gulf of Aqaba, near the coast of Eilat (Kimor and 

Golandsky, 1977; Gordon et al., 1994; Post et al., 2002). At a global scale, it has been 

estimated that the latitudinal pattern of N2 fixation overall coincides with the observed 

biogeography of Trichodesmium spp. (Deutsch et al., 2007).   

My results, thus, agree with previous conclusions that Trichodesmium is one of 

the main contributors to global marine N2 fixation. Surface N2 fixation rates during the 

simulated colonial diazotrophs blooms are as high as 0.1 mmol N m
-3

 d
-1

, which exceeds 

the maximum documented rates in the Gulf of Aqaba. Within my study period, studies 

using the 
15

N2 assimilation technique reported rates ranging from undetectable to a 

maximum of 1.9 nmol N L
-1

 d
-1

 (1.9 x 10
-3

 mmol N m
-3

 d
-1

; Foster et al., 2009; Rahav et 

al., 2013b). My models also estimate transient N2 fixation rates higher than 1x10
-3

 mmol 

N m
-3

 d
-1

 at 100 m, associated with the surface blooms. This agrees with reports of 

abundance of puff-shaped colonies and free trichomes up to 100 m (Post et al., 2002).   

Here, the generic diazotroph group (introduced in H2) also exhibits blooming 

behaviour; however, N2 fixation increases earlier in the year, and the maximum 

magnitudes are lower than those of the colonial group. Differences between H2 and H3 

are related to resource competition of colonial and unicellular diazotrophs in the latter as 

well as to different assumptions about mortality pathways (see Appendix II). Minimum 

N2 fixation rates are also the lowest among all models when only a generic diazotroph 

group is considered. In model version H2, unicellular diazotrophs set the minimum N2 

fixation rates. Grazers rapidly match unicellular growth, causing the low biomass of this 
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group; consequently, this group does not account for large contributions to the total N2 

fixation rates in my simulations.  

In my approach, I assigned the same growth parameters to both the colonial and 

unicellular autotrophic diazotroph groups. This was decided to test mechanistic 

assumptions, rather than obtaining differences between groups due to parameter selection. 

It is possible that changes in the parameters of unicellular organisms may render a higher 

contribution of this group to total fixed nitrogen. In situ measurements of N2 fixation by 

the small planktonic size fraction (<10 µm) in the Pacific Ocean range from measurable 

but low (Dore et al., 2002; Falcón et al., 2004) to high rates comparable to those of 

Trichodesmium spp. (Montoya et al., 2004). Unicellular diazotrophic organisms have 

different thermal ranges than those of Trichodesmium spp. (Moisander et al., 2010), and 

thus including both of these autotrophic groups or calibrating the generic autotrophic 

group in such a way that represents unicellular and colonial cyanobacteria simultaneously 

should be considered at global scale.  

My model version H3 relaxes the assumption of light dependency for diazotrophy, 

through the inclusion of heterotrophic diazotrophs in addition to two groups of 

autotrophic diazotrophs. This model simulates the closest estimates of dissolved inorganic 

nutrients and oxygen compared to the observations. A good estimate can also be obtained 

in the absence of unicellular organisms (H3a). All model versions with heterotrophic 

organisms (H3a – H3d) are also able to match the order of magnitude of observational 

estimates of N2 fixation in deep waters of the Gulf of Aqaba. Without heterotrophic N2 

fixation, N2 fixation rates below the DCM are underestimated. Light independence 

contrasts with assumptions previously followed by models including diazotrophic 
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organisms (e.g., Hood et al., 2001; Fennel et al., 2002; Monteiro et al., 2010; Moore et al., 

2004). This has been generally based on culture experiments showing that marine 

diazotrophs have high light requirements, and inhibited activity at low light level, 

therefore suggesting an adaptation to high light environments (Carpenter and Roenneberg 

1995, Masotti et al 2007; Goebel et al 2008). Heterotrophic N2 fixation previously 

remained elusive because measurements of N2 fixation activity in the small plankton 

fraction cannot differentiate the contributions of unicellular autotrophs and 

bacterioplankton (Zehr et al. 2001; Montoya et al. 2004). Nevertheless, nocturnal 

N2 fixation has been reported for this small plankton fraction (Montoya, 2004). 

Diazotrophy independence from light has also been suggested to explain the similarity of 

15
N2 fixation rates measured in parallel light and dark in situ incubations, as well as N2 

fixation rates in the absence of detectable chlorophyll in the South Pacific Gyre (Halm et 

al 2011). My results also agree with genetic evidence from the Gulf of Aqaba reporting 

the existence of heterotrophic proteobacteria α and γ (Rahav et al., 2013; 2015), and the 

correlation of bacterial productivity rates with N2 fixation rates (Rahav et al., 2013).  

My different model versions provide insights in the effect of competition among 

diazotrophic organisms, although results are not completely intuitive. For instance, when 

there are fewer competitors for the phosphorus resources, N* becomes skewed towards 

excess of nitrogen, but neither NO3 nor PO4 reach their maximum concentrations (Figure 

5.9). This is a result of abundant nitrate and ammonium in mid-waters, and depleted 

phosphate throughout the whole water column.  In general, my results suggest that 

including at least one autotrophic and one heterotrophic diazotroph group is necessary to 
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allow for sufficient model flexibility to capture surface and deep-water biochemical 

variations. 

5.5.4 LIMITATIONS AND UNCERTAINTIES 

The one-dimensional nature of my physical setting, which neglects horizontal 

advection contributions to the vertical structure of simulated tracers, can be considered a 

limitation of this study. This simplification is, however, necessary to perform model 

calibration and testing multiple model structures at low computational expense. One-

dimensional models are frequently used for plankton models, as it is assumed that the 

temporal scale of biological processes is faster than that of horizontal advection. As I 

applied temperature and salinity nudging to improve the representation of the density 

structure, I support my results by analyzing such structure with and without nudging. 

Results of this experiment show that correcting the temperature and salinity fields has 

negligible effect on deep waters, where the effect of N2 is the most relevant. This result 

agrees with the literature about circulation of the Gulf of Aqaba. As mentioned in the 

description of the study region, geomorphology and bathymetry limit water flux exchange 

between the Gulf of Aqaba and the Red Sea to the upper 300 m. Wolf-Vect et al., (1992) 

explains that the inflow at the Strait of Tiran has minimal effect on the thermal structure, 

possibly warming the upper layer a few weeks earlier in the summer. It this, therefore, 

unlikely that horizontal transport could explain the observed accumulation in deep NO3. 

Nitrogen inputs from run-off are also unlikely, as evaporation rates are high (Ben-Sasson 

et al 2009). 
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In terms of the biological models themselves, an intrinsic limitation of all 

functional type numerical models is the uncertainty associated with parameter values 

(Denman et al., 2003). In my approach, I reduced this uncertainty with the use of 

parameter optimization. My methodology allowed for a more systematic selection of 

model parameter values and more objective comparison of different model structures, 

thus being preferable to subjective tuning. Nonetheless, parameters related to diazotrophic 

organisms are unconstrained by the observations. I followed observational and laboratory 

literature to assign these parameter values. It has to be highlighted that specific growth 

rates and other parameters estimated for individual species in isolation, or at selected 

locations and/or seasons, will not necessarily apply to in situ communities or to the 

aggregated functional groups that model simulate. Model assumptions about diazotrophs 

limitations and their parameter values likely influence the resulting behaviour of each 

group. Given these uncertainties, I opted for teasing apart the effects of mechanistic 

assumptions rather than modifying diazotrophs behaviour through the parameter values. 

The latter can certainly affect the contribution of each group to total N2 fixation rates; 

however it does not affect my conclusions with respect to the amount of N2 fixation 

necessary to better replicate chemical characteristics of deep waters at Station A.  For 

example, as Trichodesmium spp. dominated N2 fixation in the euphotic zone, its 

parameters could be changed to decrease maximum surface values closer to the 

observational estimates. After this modification, an increase in the model N2 fixation rates 

by heterotrophic organisms may be required in order to match the deep dissolved 

inorganic nutrients. Depth-resolved, high temporal resolution in situ N2 fixation and 

primary production rates are necessary to better validate the behaviour of these different 

diazotrophic groups, by providing information to differentiate patterns of photic and 
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aphotic N2 fixation. Contributions of other complex symbiosis to N2 fixation remain 

uncertain, including diatom-diazotrophs associations, and aphotic N2 fixation by bacteria 

living on and inside of organisms such as copepods and benthic invertebrates (Braun et 

al., 1999; Harris, 1993; Zehr et al., 2000, 1998; Zehr and Capone, 1996). Pico- and 

nanophytoplankton dominate the Gulf of Aqaba primary producers throughout the year 

(Post et al., 2002; Foster et al., 2009), thus I did not test diatom-diazotrophs associations.  

5.6 CONCLUSIONS 

My model results demonstrate the importance of N2 fixation in determining deep 

NO3 inventories. In the Gulf of Aqaba, N2 fixation allows its waters to develop a 

signature deep excess of nitrate. A model without a N2 fixation flux is challenged to 

replicate the observed vertical structure of inorganic nitrogen and phosphorus. Models 

that include diazotrophic organisms have the ability to significantly modify these 

variables. New nitrogen inputs from N2 fixation increase the fraction of remineralized 

nitrogen from organic matter decomposition, and are thus a plausible mechanism to 

explain biochemical characteristics at this location, and their contrast with exterior waters 

that show excess phosphate.   

The simulated amount of N2 fixation required to replicate the observations in the 

Gulf of Aqaba is in line with the highest observational estimates of this flux. While 

aphotic N2 fixation rates are low, considering heterotrophic organisms allows more 

flexibility in replicating rates observed at depth, without an unrealistic increase in light-

dependent N2 fixation. Overall, my results add to the body of evidence suggesting that the 

importance of N2 fixation may be globally underestimated (Karl et al., 2002). 
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The scarcity of measurements hinders model validation abilities, in particular to 

differentiate the contributions of autotrophic and heterotrophic diazotrophs. It is possible 

that observations have overlooked many diazotrophs as a result of the methodological and 

technical limitations of detecting low-abundance organisms and complex symbioses in 

oligotrophic waters (Zehr et al., 2000). Given the present observational and modelling 

limitations, the interpretation of these models results should be refined as new 

observational information becomes available. 
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CHAPTER 6: 

CONCLUSIONS 

My thesis was motivated by the need to revise key ecological paradigms that impact the 

estimates of marine primary production, taking into account the uncertainties related to 

observational and modelling data. Primary production estimates have important implications for 

short- and long-term predictions of higher trophic level production affecting commercial fisheries, 

as well as species of ecological and conservational interest. Moreover, the effects of marine 

primary production on long-term climate feedbacks are still under scrutiny. I carried out three 

case studies aimed at gaining insights about ecosystem processes that remain uncertain, mainly 

due to paucity of observational data. In particular, I investigated drivers of phytoplankton 

phenology in the North Atlantic Ocean, the effect of model complexity on regional estimates of 

primary production in northwest North Atlantic shelf seas, and the importance of different 

planktonic diazotroph traits in determining seawater chemical characteristics and sustaining 

primary production in the Gulf of Aqaba. In the context of these research topics, I outlined 

different approaches to use optimized biogeochemical models as hypothesis-testing tools aimed at 

improving our understanding of ecosystem functioning. My work included the development, 

calibration, and analysis of multiple marine biogeochemical models of low and intermediate 

complexity, in 1D and 3D ocean applications. I performed systematic model calibrations using an 

evolutionary algorithm with cost functions tailored to data availability and scientific objectives of 

each research topic. I also designed and tested idealized model experiments, model geographical 

portability experiments, and parameter sensitivity analyses. In the analysis of observations, 

optimized parameters and optimized model results, I used statistical techniques including 

correlation analysis, principal component analysis, Taylor series expansions, hierarchical 

clustering, and common statistical error metrics.  
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The outcomes of this work fall in three categories: i) model development, ii) insights into 

ecosystem modelling philosophy, and iii) insights into marine ecology. The model development 

category refers to the most basic outcome, which is the refinement of biogeochemical models to 

better fit available observations from the Subpolar North Atlantic Ocean, the coastal northwest 

North Atlantic, and the Gulf of Aqaba. The other two outcomes categories directly concern the 

results presented in chapters 2 to 5. I expand on the conclusions from these studies in the 

followings sub-sections.  

6.1 INSIGHTS INTO ECOSYSTEM MODELLING PHILOSOPHY  

Throughout this thesis, I illustrated how parameter optimization methods offer a 

systematic approach for reducing subjective model tuning. This approach allows for testing of 

hypotheses about ecosystem functioning by quantitatively comparing ecosystem models under 

different assumptions (i.e., idealized experiments and/or additional levels of complexity). My 

results highlight that subjectivity is involved in parameter optimization, and demonstrate that the 

design of the optimization cost function, the selection of parameters to be optimized, the degree of 

preliminary calibration of a model, and the forcing environmental conditions all affect the 

conclusions about a model’s accuracy and geographical portability. 

I followed two main approaches in using parameter optimization for ecological 

hypothesis testing. The first approach is the comparison of an optimized model against un-

optimized experimental tests. This type of approach implicitly assumes that the optimized model 

is an accurate representation of the natural environment, and behaves like it under perturbed 

conditions. This is the approach used when performing post-optimization sensitivity analyses, 

idealized experiments and geographical portability experiments (Chapter 2, Chapter 3 and 

Chapter 5). This approach is useful for determining whether or not the simulated system is 
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sensitive to certain parameters, variables and/or additional processes introducing changes to the 

model dynamics. However, it does not provide information about whether a different and/or 

improved model solution, with respect to the observations, could be reached under such perturbed 

conditions or new model dynamics. 

The second approach attempts to perform objective comparisons between models with 

different structures, by applying the same optimization procedures to reduce model-observation 

misfits (Chapter 3 and Chapter 4). This approach is useful for identifying processes that are 

strongly influenced by differences in model structures, or model aspects that are unconstrained 

during the optimization. Finally, I used a combination of both of these approaches in Chapter 5, 

by optimizing a large number of parameters in the simplest of the model structures tested, and re-

calibrating only a few highly sensitive and well-constrained parameters after adding additional 

processes to the model. This combined approach provides insight into how well a simple model 

can replicate observations, and tests how far model performance can be improved when adding 

complexity.  

My results highlight that a guided selection of the parameters to be optimized is essential, 

especially when little or no prior model tuning has been performed. This is particularly important 

for models with a high number of variables and with parameters that are unconstrained by the 

observations, as demonstrated in Chapters 3 and 4. Attempting to optimize an unfortunate 

selection of parameters can result in the extinction of certain plankton groups, thus generating 

unintended prey-predator relationships in models with high trophic complexity. The novel use of 

satellite-derived estimates of size-fractionated surface chlorophyll, as observational counterparts 

of the simulated chlorophyll concentrations in a model with multiple phytoplankton groups, was 

not sufficient to obtain traditionally known patterns of phytoplankton community seasonal 

succession. In fact, the optimization estimated similar phytoplankton growth parameter values for 
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the two autotrophic planktonic groups in this model, and differences among groups were mostly 

determined by their predefined interactions with grazers.  

My use of satellite-derived models of size-fractionated surface chlorophyll for the 

optimization also impacted conclusions about the multiple preys and predators model’s 

geographical portability.  When calibrated for multiple geographical locations, this model was the 

best performing model when compared against assimilated and unassimilated observations, but it 

was prone to becoming overspecialized when calibrated for specific locations. This occurred 

because the parameters optimized at some locations tended to favor either small or large 

phytoplankton. This result is consistent with early theoretical notions about the expected behavior 

of complex models, however opposed to portability experiments previously performed in other 

ocean regions. Therefore, my results suggest that in order to benefit from the improved ecosystem 

representation that an optimized complex model provides, such model needs to be trained with 

observations from diverse geographical locations, and include theoretical a priori considerations 

to scale the parameters of multiple plankton groups. My results also show that the spatial 

representations of surface chlorophyll in regional models can benefit from simple additional 

mechanistic relationships, such as configuring all biological fluxes to depend on temperature. 

Based on this result, and taking into account parsimony principles, I suggest that improving the 

mechanistic relationships, rather than adding unconstrained diversity, can lead to more robust 

globally applicable models. These mechanistic relationships may include relationships between 

environmental variables and plankton growth, dynamic parameterizations of grazing, as well as 

allometric relationships. Nevertheless, in the absence of such improved relationships, certain 

regional models require additional processes in order to fully capture the observed 

biogeochemical variability. This was illustrated in Chapters 3 and 4, where a model with multiple 

planktonic prey and predator groups provided the best chlorophyll concentrations and annual 

primary production estimates in the oceanographically complex northwest North Atlantic. It was 
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also the case in Chapter 5, where specialized planktonic groups where needed to replicate deep 

inorganic nitrogen in the Gulf of Aqaba. 

I also documented that there are common characteristics of model behavior that are 

independent from the model’s ecological complexity and physical dimensionality. For example, 

phytoplankton growth parameters are involved in determining the timing of the spring bloom 

peak. This was reiterated in the results from the simple NPZD model used in the Subpolar North 

Atlantic case study, as well as in the intermediate complexity models used in the coastal 

northwest North Atlantic case study. In the latter, this behavior was evidenced in both the 1D and 

3D model applications. Principal component analyzes of the parameters optimized at specific 

geographical locations for these two North Atlantic case studies also revealed multi-dimensional 

correlations between the parameters selected for certain locations. In the Subpolar North Atlantic 

case, the spatial patterns show a clear differentiation between northern and southern areas. Spatial 

patterns in optimized parameters are not as clear in the coastal northwest North Atlantic, but a 

number of locations tended to select either high or low grazing values consistently, and 

independently of model complexity. 

6.2 INSIGHTS INTO MARINE ECOLOGY  

My optimized and experimental results demonstrate that phytoplankton phenology in 

mid-latitude regions, such as the North Atlantic Ocean, is a continuum of bottom-up and top-

down process dominating during different periods of the annual cycle. When contrasting a 

bottom-up and a top-down hypothesis for the spring bloom initiation (i.e., the critical-depth and 

the dilution-recoupling hypotheses, respectively), my results demonstrated that the conceptual 

basis of each is an ecological truism that cannot be considered in absolute isolation under realistic 

simulations. Idealized experiments with a simple model, and the comparison of models with 
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different trophic complexity show that the development, peak and early stages of the termination 

of the phytoplankton spring bloom are dominantly driven by bottom-up factors.  

My results also show that a model’s trophic complexity can strongly affect simulated 

biogeochemical fluxes during summer and fall. In a model with multiple prey and predator 

groups, the flexibility of the phytoplankton natural mortality and predation rates plays a role in 

modifying the velocity and time phase of nitrogen return from the organic to the inorganic pool. 

My results suggest that the pathways of zooplankton losses act as an important dynamic driver 

during low phytoplankton biomass periods. These periods coincide with elevated sea temperatures 

in summer; therefore the effect of thermal dependency on phytoplankton losses becomes 

important in defining chlorophyll spatial patterns. Nevertheless, temperature-dependent 

phytoplankton losses have only a limited effect on plankton standing stocks and primary 

production estimates.  

Therefore, bottom-up and top-down ecological drivers control the imbalances between 

phytoplankton growth and its loss rates, which lead to the phenological characteristics observed in 

a given geographical region. My experimental results highlight that the variability in what triggers 

the spring bloom initiation depends on the system’s baseline conditions at the end of the 

preceding year. In different regions or years, bloom development may closely track the last of any 

necessary conditions for bloom initiation that remains unsatisfied, including appropriate levels of 

nutrient or light availability and of grazing pressure. In the case of the North Atlantic, nutrients 

are abundant and predators’ biomass is low at the end of winter. Hence, seasonal changes in the 

light environment are the main driver of the spring bloom initiation in this area. Spatial 

differences in winter vertical stratification can be associated with differences in spring bloom 

timing, as demonstrated by the areas of early spring blooms and shallow mixed layer depths in the 

northwest North Atlantic. This spatial pattern agrees with the canonical bottom-up effect of a 
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shallowing mixed layer on light conditions that phytoplankton experience, by concentrating them 

in well-lighted zones of the ocean.  

Adequate representations of temperature, vertical stratification and deep-water nutrient 

concentrations are essential to avoid using the optimization to compensate for physical 

deficiencies in the model. In the North Atlantic case studies, deep nutrient concentrations were 

configured based on global climatologies. Due to the geomorphological and bathymetric 

characteristics of the Gulf of Aqaba, which limit deep-water exchange with the exterior, this 

location offered unique conditions for evaluating the importance of microbially mediated nitrogen 

fixation in the determination of deep-water nutrients.  

My results suggest that nitrogen fixation allows waters of this northern extension of the 

Red Sea to develop a signature of nitrogen excess at depth, which contrasts with the exterior 

excess phosphate waters. Models that include diazotrophic organisms have the ability to 

significantly modify the vertical distribution of inorganic nitrogen, but it is important to highlight 

that a model without nitrogen fixation still can replicate chlorophyll variability with similar 

accuracy as the models with nitrogen fixation. 

 Nitrogen fixation activity increases the fraction of remineralized nitrogen from organic 

matter decomposition, and is thus a plausible mechanism to explain biochemical characteristics in 

the Gulf of Aqaba. I estimated that nitrogen fixation rates required to replicate the deep-water 

nitrate observations at this location are relatively high compared to previous observational 

estimates. My results agree with studies suggesting that the importance of N2 fixation may be 

globally underestimated. I also estimated that considering aphotic nitrogen fixation was important 

to increase the flexibility of a model, and allow it to replicate nitrogen fixation rates observed at 

depth, without unrealistically increasing light-dependent surface nitrogen fixation.  
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6.3 SUMMARY 

The main findings of this thesis can be summarized as follows: 

 The selection of an appropriate level of ecosystem model complexity and 

design of the model calibration is tied to the research questions to be addressed.  

 Components of the ecosystem dynamics that are well constrained by the 

observations during model calibration can be similarly replicated by models with 

different complexities.  

 Simplified trophic dynamics can be as suitable as more complex models 

for diagnosing some biogeochemical cycles at single locations, at seasonal scales or 

in areas with homogenous environmental conditions.  

 Bottom-up drivers, such as light and nutrient availability, control the 

onset, peak and early stages of the phytoplankton spring bloom. The variability of 

vertical stratification is important to set light and nutrient conditions both at temporal 

and spatial scales. Top-down drivers control summer and fall phytoplankton 

concentrations, and impact nutrient cycling and export production. 

 The inclusion of planktonic diversity and/or specific planktonic traits is 

necessary to explain biogeochemical characteristics at certain geographical locations. 

This is the case in the oceanographically complex northwest North Atlantic, where 

observed summer to fall chlorophyll concentrations and annual primary production is 

replicated the best by a model with multiple phytoplankton and zooplankton groups.  

It is also the case in the Gulf of Aqaba, where nitrogen fixation throughout the entire 

water column is important in determining deep-water nitrate concentrations. 

 There is a significant gap of knowledge with respect to phytoplankton 

metabolism, natural mortality and predation. This hinders the understanding of 
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feedback effects from predator-prey relationships over biogeochemical interannual 

variability and regime changes, as well as definitive conclusions about the 

importance of complexity in ecosystem models. 

 There is also a significant gap of knowledge about the contributions of 

autotrophic and heterotrophic diazotrophs to total rates of nitrogen fixation, both 

locally and globally.  

 Due to data limitations, un-guided parameter optimization is not an 

infallible method for identifying the best parameters in the high-dimensional 

parameter space of complex models. 

Despite the regional scope of the case studies I carried out, my conclusions provide 

insights that can be extrapolated to large-scale applications. My work also suggests potential 

future research directions, including the assessment of efficient sampling methodologies for 

calibrating global model surrogates, the evaluation of twin experiments assimilating all state 

variables using synthetic model data, and the use of optimization experiments to replicate 

controlled laboratory and mesocosm experiments. Finding common patterns of behavior in simple 

and complex models, which can reach similar conclusions about the ecosystem dynamics, is 

fundamental to reduce the uncertainties of future predictions. 
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APPENDIX A 

OPTIMIZED NPZD MODEL RESULTS FOR ALL SPATIALLY AVERAGED BINS IN THE 

SUBPOLAR NORTH ATLANTIC CASE STUDY1 

 

 

 

                                                           

1 Bin NA5 is omitted, see Figure 2.1. 
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APPENDIX B 

PRINCIPAL COMPONENT ANALYSIS OF THE MODEL INPUT VARIABLES IN THE 

SUBPOLAR NORTH ATLANTIC CASE STUDY 

 

The analysis was performed using normalized forcing variables for all bins, which 

include: annual mean mixed layer depth, from the SODA & FNMOC mixed layer depth 

climatology, annual mean satellite-based phytoplankton biomass, annual mean WOA 

nitrate surface concentrations, WOA annual mean surface temperature, and annual mean 

surface photosynthetic radiation (PAR). Results of the principal component analysis of 

optimized parameters, showing the scaled arrangement of optimized parameter sets 

projected onto the first and second principal component (PC1, PC2). Solid black symbols 

represent the southern bins (NA1 to NA3), and the empty symbols are for the northern 

bins (NA4 to NA6).  The distance between their symbols is representative of how 

different the bins are with respect to their averaged properties. The location of the 

variables symbols 𝑯𝑴𝑳𝑫 , 𝑷𝒐𝒃𝒔, 𝑵𝑾𝑶𝑨, 𝑻, PAR represents the scaled contribution of these 

variables to the variance among bins explained by PC1 and PC2.  

 

 



 

APPENDIX C  

 

NORTHWEST NORTH ATLANTIC MODELS (M1, M2 AND M3) EQUATIONS 
 
 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Phytoplankton 

P = growth – grazing – mortality – coagulation – sinking  Small P = growth – grazing (by small Z & 

large Z) – mortality – sinking  

Large P = growth – grazing (by large Z & 

predatory Z) – mortality – coagulation – 

sinking  

𝜕𝑃

𝜕𝑡
= 𝜇𝑃 − 𝑔𝑍 − 𝑚𝑃𝑃 − 𝜏(𝐷𝑆 + 𝑃)𝑃

− 𝑤𝑃

𝜕𝑃

𝜕𝑧
 

𝜕𝑃

𝜕𝑡
= 𝜇𝑃 − 𝑔𝑍 − 𝑚𝑃𝑃 − 𝜏(𝐷𝑆 + 𝑃)𝑃

− 𝑤𝑃

𝜕𝑃

𝜕𝑧
 

𝜕𝑃𝑆

𝜕𝑡
= 𝜇𝑃𝑆

𝑃𝑆 − 𝑔𝑍𝑆𝑃𝑆
𝑍𝑆 −  𝑔𝑍𝐿𝑃𝑆

𝑍𝐿 − 𝑚𝑃𝑆
𝑃𝑆  

− 𝑤𝑃𝑆

𝜕𝑃𝑆

𝜕𝑧
 

 

𝜕𝑃𝐿

𝜕𝑡
= 𝜇𝑃𝐿

𝑃𝐿 − 𝑔𝑍𝐿𝑃𝐿
𝑍𝐿 −  𝑔𝑍𝑃𝑃𝐿

𝑍𝑃 − 𝑚𝑃𝐿
𝑃𝐿

− 𝜏(𝐷𝑆 + 𝑃𝐿)𝑃𝐿 − 𝑤𝑃𝐿

𝜕𝑃𝐿

𝜕𝑧
 

2
3

5
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Phytoplankton growth rate 

𝜇 =  𝜇𝑚𝑎𝑥  𝐿𝐼(𝐿𝑁𝑂3 + 𝐿𝑁𝐻4) 𝜇 =  𝜇𝑚𝑎𝑥  𝐿𝐼(𝐿𝑁𝑂3 + 𝐿𝑁𝐻4) 𝜇𝑃𝑆
=  𝜇𝑚𝑎𝑥

𝑃𝑆  𝐿𝐼𝑃𝑆
(𝐿𝑁𝑂3𝑃𝑆

+ 𝐿𝑁𝐻4𝑃𝑆
) 

𝜇𝑃𝐿
=  𝜇𝑚𝑎𝑥

𝑃𝐿  𝐿𝐼𝑃𝐿
(𝐿𝑁𝑂3𝑃𝐿

+ 𝐿𝑁𝐻4𝑃𝐿
) 

Temperature dependent phytoplankton maximum growth rate 

𝜇𝑚𝑎𝑥 =  𝜇0𝜙𝑇  𝜇𝑚𝑎𝑥 =  𝜇0𝜙𝑇 𝜇𝑚𝑎𝑥
𝑃𝑆 =  𝜇0𝑃𝑆

𝜙𝑇 

𝜇𝑚𝑎𝑥
𝑃𝐿 = 𝜇0𝑃𝐿

𝜙𝑇 

Light limitation for phytoplankton growth 

𝐿𝐼 =   
𝛼𝐼 

√𝜇max
2 + 𝛼2𝐼2

 𝐿𝐼 =   
𝛼𝐼 

√𝜇max
2 + 𝛼2𝐼2

 𝐿𝐼𝑃𝑆
=   

𝛼𝑃𝑆
𝐼 

√(𝜇𝑚𝑎𝑥
𝑃𝑆 )

2
+ (𝛼𝑃𝑆

𝐼)
2

 

𝐿𝐼𝑃𝐿
=   

𝛼𝑃𝐿
𝐼 

√(𝜇𝑚𝑎𝑥
𝑃𝐿 )

2
+ (𝛼𝑃𝐿

𝐼)
2

 

 

 

 

2
3

6
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Light attenuation with depth  

𝐼 = 𝐼(𝑧) =  𝐼0𝑃𝐴𝑅𝑓𝑟𝑎𝑐 exp {−𝑧 [𝐾𝑤

+ 𝐾𝑐ℎ𝑙 ∫ 𝐶ℎ𝑙(𝜁)𝑑𝜁
0

𝑧

]} 

𝐼 = 𝐼(𝑧)

=  𝐼0𝑃𝐴𝑅𝑓𝑟𝑎𝑐 exp {−𝑧 [𝐾𝑤

+ 𝐾𝑐ℎ𝑙 ∫ 𝐶ℎ𝑙(𝜁)𝑑𝜁
0

𝑧

]} 

𝐼 = 𝐼(𝑧) =  𝐼0𝑃𝐴𝑅𝑓𝑟𝑎𝑐 exp {−𝑧 [𝐾𝑤

+ 𝑘𝑐ℎ𝑙 ∫ (𝐶ℎ𝑙𝑃𝑆
(𝜁)

0

𝑧

+ 𝐶ℎ𝑙𝑃𝐿
(𝜁))𝑑𝜁]} 

Nutrient limitation for phytoplankton growth 

𝐿𝑁𝑂3 =  
𝑁𝑂3

𝑘𝑁𝑂3 + 𝑁𝑂3

1

1 +  𝑁𝐻4
𝑘_𝑁𝐻4⁄

 
𝐿𝑁𝑂3

=  
𝑁𝑂3

𝑘𝑁𝑂3 + 𝑁𝑂3

1

1 + 𝑁𝐻4
𝑘_𝑁𝐻4⁄

 
𝐿𝑁𝑂3𝑃𝑆

=  
𝑁𝑂3

𝑘𝑁𝑂3𝑃𝑆
+ 𝑁𝑂3

[
1

1 +  𝑁𝐻4
𝑘𝑁𝐻4𝑃𝑆

⁄
] 

𝐿𝑁𝑂3𝑃𝐿
=  

𝑁𝑂3

𝑘𝑃𝐿
+ 𝑁𝑂3

[
1

1 +  𝑁𝐻4
𝑘𝑁𝐻4𝑃𝐿

⁄
] 

𝐿𝑁𝐻4 =  
𝑁𝐻4

𝑘𝑁𝐻4 + 𝑁𝐻4
 𝐿𝑁𝐻4 =  

𝑁𝐻4

𝑘𝑁𝐻4 + 𝑁𝐻4
 𝐿𝑁𝐻4𝑃𝑆

=  
𝑁𝐻4

𝑘𝑁𝐻4𝑃𝑆
+ 𝑁𝐻4

 

𝐿𝑁𝐻4𝑃𝐿
=  

𝑁𝐻4

𝑘𝑁𝐻4𝑃𝐿
+ 𝑁𝐻4

 

 

2
3

7
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Zooplankton grazing rates 

𝑔 =  𝑔𝑚𝑎𝑥
𝑃2

𝑘𝑃+𝑃2 𝑔 =  𝑔𝑚𝑎𝑥

𝑃2

𝑘𝑃 + 𝑃2
 𝑔𝑍𝑆𝑃𝑆

=  𝑔𝑚𝑎𝑥
𝑍𝑆𝑃𝑆

𝑃𝑆
2

𝑘𝑍𝑆𝑃𝑆
+ 𝑃𝑆

2 

𝑔𝑍𝐿𝑃𝑆
=  𝑔𝑚𝑎𝑥

𝑍𝐿𝑃𝑆
𝑃𝑆

2

𝑘𝑍𝐿𝑃𝑆
+ 𝑃𝑆

2 

𝑔𝑍𝐿𝑃𝐿
=  𝑔𝑚𝑎𝑥

𝑍𝐿𝑃𝐿
𝑃𝐿

2

𝑘𝑍𝐿𝑃𝐿
+ 𝑃𝐿

2 

𝑔𝑍𝐿𝑍𝑆
=  𝑔𝑚𝑎𝑥

𝑍𝐿𝑍𝑆
𝑍𝑆

2

𝑘𝑍𝐿𝑍𝑆
+ 𝑍𝑆

2 

𝑔𝑍𝑃𝑃𝐿
=  𝑔𝑚𝑎𝑥

𝑍𝑃𝑃𝐿
𝑃𝐿

2

𝑘𝑍𝑃𝑃𝐿
+ 𝑃𝐿

2 𝑒−𝜓𝑃𝐿
(𝑍𝑆+𝑍𝐿) 

𝑔𝑍𝑃𝑍𝑆
=  𝑔𝑚𝑎𝑥

𝑍𝑃𝑍𝑆
𝑍𝑆

2

𝑘𝑍𝑃𝑍𝑆
+ 𝑍𝑆

2 𝑒−𝜓𝑍𝑆
(𝑍𝐿) 

𝑔𝑍𝑃𝑍𝐿
=  𝑔𝑚𝑎𝑥

𝑍𝑃𝑍𝐿
𝑍𝐿

2

𝑘𝑍𝑃𝑍𝐿
+ 𝑍𝐿

2 
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M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Temperature dependent maximum grazing rates 

- 𝑔𝑚𝑎𝑥 = 𝑔0𝜙𝑇 𝑔𝑚𝑎𝑥
𝑍𝑆𝑃𝑆 =  𝑔0𝑍𝑆𝑃𝑆

𝜙𝑇 

𝑔𝑚𝑎𝑥
𝑍𝐿𝑃𝑆 =  𝑔0𝑍𝐿𝑃𝑆

𝜙𝑇 

𝑔𝑚𝑎𝑥
𝑍𝐿𝑃𝐿 =  𝑔0𝑍𝐿𝑃𝐿

𝜙𝑇 

𝑔𝑚𝑎𝑥
𝑍𝐿𝑍𝑆 =  𝑔0𝑍𝐿𝑍𝑆

𝜙𝑇 

𝑔𝑚𝑎𝑥
𝑍𝑃𝑃𝐿 =  𝑔0𝑍𝑃𝑃𝐿

𝜙𝑇 

𝑔𝑚𝑎𝑥
𝑍𝑃𝑍𝑆 =  𝑔0𝑍𝑃𝑍𝑆

𝜙𝑇 

𝑔𝑚𝑎𝑥
𝑍𝑃𝑍𝐿 =  𝑔0𝑍𝑃𝑍𝐿

𝜙𝑇 

Temperature dependent phytoplankton mortality rates 

- 𝑚𝑃 =  𝑚0𝑃𝜙𝑇 𝑚𝑃𝑆
=  𝑚0𝑃𝑠

𝜙𝑇 

𝑚𝑃𝐿
=  𝑚0𝑃𝐿

𝜙𝑇 

 

 

 

2
3
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M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Zooplankton 

Z = assimilated grazing – base metabolism – excretion – mortality  Small Z = assimilated grazing (on small P) – 

grazing (by large Z  & predatory Z) – base 

metabolism – excretion – mortality  

Large Z = assimilated grazing (on small P, 

large P & small Z) – grazing (by predatory Z) 

– base metabolism – excretion – mortality  

Predatory Z = assimilated grazing  (on large 

P, small Z & large Z) – base metabolism – 

excretion – mortality  

Zooplankton growth 

𝜕𝑍

𝜕𝑡
= 𝑔𝛽𝑍 − 𝑙𝐵𝑀𝑍 − 𝑙𝐸

𝑃2

𝑘𝑃 + 𝑃2
𝛽𝑍

− 𝑚𝑍𝑍2 

𝜕𝑍

𝜕𝑡
= 𝑔𝛽𝑍 − 𝑙𝐵𝑀𝑍 − 𝑙𝐸

𝑃2

𝑘𝑃 + 𝑃2
𝛽𝑍

− 𝑚𝑍𝑍2 

𝜕𝑍𝑆

𝜕𝑡
= 𝑔𝑍𝑆𝑃𝑆

𝛽𝑍𝑆
𝑍𝑆 −  𝑔𝑍𝐿𝑍𝑆

𝑍𝐿

− 𝑔𝑍𝑃𝑍𝑆
𝑍𝑃 – 𝑙𝐵𝑀𝑍𝑆

𝑍𝑆

− 𝑙𝐸𝑍𝑆

𝑔𝑍𝑆𝑃𝑆

𝑔𝑚𝑎𝑥
𝑍𝑆𝑃𝑆

𝛽𝑍𝑆
𝑍𝑆 − 𝑚𝑍𝑆

𝑍𝑆
2 

2
4

0
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

𝜕𝑍𝐿

𝜕𝑡
= (𝑔𝑍𝐿𝑃𝑆

+ 𝑔𝑍𝐿𝑃𝐿
+ 𝑔𝑍𝐿𝑍𝑆

)𝛽𝑍𝐿
𝑍𝐿

−  𝑔𝑍𝑃𝑍𝐿
𝑍𝑃 – 𝑙𝐵𝑀𝑍𝐿

𝑍𝐿

− 𝑙𝐸𝑍𝐿
(

𝑔𝑍𝐿𝑃𝑆

𝑔𝑚𝑎𝑥
𝑍𝐿𝑃𝑆

+
𝑔𝑍𝐿𝑃𝐿

𝑔𝑚𝑎𝑥
𝑍𝐿𝑃𝐿

+  
𝑔𝑍𝐿𝑍𝑆

𝑔𝑚𝑎𝑥
𝑍𝐿𝑍𝑆

) 𝛽𝑍𝐿
𝑍𝐿 − 𝑚𝑍𝐿

𝑍𝐿
2   

𝜕𝑍𝑃

𝜕𝑡
= (𝑔𝑍𝑃𝑃𝐿

+ 𝑔𝑍𝑃𝑍𝑆
+ 𝑔𝑍𝑃𝑍𝐿

)𝛽𝑍𝑃
𝑍𝑃 −

𝑙𝐵𝑀𝑍𝑃
𝑍𝑃 − 𝑙𝐸𝑍𝑃

(
𝑔𝑍𝑃𝑃𝐿

𝑔𝑚𝑎𝑥
𝑍𝑃𝑃𝐿

+  
𝑔𝑍𝑃𝑍𝑆

𝑔𝑚𝑎𝑥
𝑍𝑃𝑍𝑆

+  
𝑔𝑍𝑃𝑍𝐿

𝑔𝑚𝑎𝑥
𝑍𝑃𝑍𝐿

) 𝛽𝑍𝑃
𝑍𝑃 −

𝑚𝑍𝑃
𝑍𝑃

2 

Temperature dependent zooplankton base metabolic rates 

- 𝑙𝐵𝑀 =  𝑙𝐵𝑀0𝜙𝑇 

 

 

 

 

𝑙𝐵𝑀𝑍𝑆
=  𝑙𝐵𝑀0𝑍𝑆

𝜙𝑇 

𝑙𝐵𝑀𝑍𝐿
=  𝑙𝐵𝑀0𝑍𝐿

𝜙𝑇 

𝑙𝐵𝑀𝑍𝑃
=  𝑙𝐵𝑀0𝑍𝑃

𝜙𝑇 

2
4

1
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

Temperature dependent zooplankton base metabolic rates 

- 𝑙𝐸 =  𝑙𝐸0𝜙𝑇 𝑙𝐸𝑍𝑆
=  𝑙𝐸0𝑍𝑆

𝜙𝑇 

𝑙𝐸𝑍𝐿
=  𝑙𝐸0𝑍𝐿

𝜙𝑇 

𝑙𝐸𝑍𝑃
=  𝑙𝐸0𝑍𝑃

𝜙𝑇 

Temperature dependent zooplankton mortality rates 

- 𝑚𝑍 =  𝑚0𝑍𝜙𝑇 𝑚𝑍𝑆
=  𝑚0𝑍𝑆

𝜙𝑇 

𝑚𝑍𝐿
=  𝑚0𝑍𝐿

𝜙𝑇 

𝑚𝑍𝑃
=  𝑚0𝑍𝑃

𝜙𝑇 

Nutrient 

NO3 = - NO3 uptake + nitrification NO3 = - NO3 uptake (by small P & large P) + 

nitrification 

NH4 = - NH4 uptake – nitrification + Z base metabolism + Z excretion + 

decomposition (of small D & large D) 

NH4 = - NH4 uptake (by small P & large P) – 

nitrification + base metabolism (of small Z, 

large  & predatory Z) + excretion (of small Z, 

large Z and predatory Z) + decomposition (of 

small D & large D)  

2
4

2
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

𝜕𝑁𝑂3

𝜕𝑡
= −𝜇𝑚𝑎𝑥 𝑓(𝐼)𝐿𝑁𝑂3𝑃 + 𝑛𝑁𝐻4 𝜕𝑁𝑂3

𝜕𝑡
= −𝜇𝑚𝑎𝑥 𝑓(𝐼)𝐿𝑁𝑂3𝑃 + 𝑛𝑁𝐻4 

𝜕𝑁𝑂3

𝜕𝑡
= −𝜇𝑚𝑎𝑥

𝑃𝑆  𝐿𝐼𝑃𝑆
𝐿𝑁𝑂3𝑃𝑆

− 𝜇𝑚𝑎𝑥
𝑃𝐿  𝐿𝐼𝑃𝐿

𝐿𝑁𝑂3𝑃𝐿

+ 𝑛𝑁𝐻4 

2
4

3
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

𝜕𝑁𝐻4

𝜕𝑡
= −𝜇𝑚𝑎𝑥 𝑓(𝐼)𝐿𝑁𝐻4𝑃 − 𝑛𝑁𝐻4 +

𝑙𝐵𝑀𝑍 + 𝑙𝐸
𝑃2

𝑘𝑃+𝑃2 𝛽𝑍 + 𝑟𝐷𝑆
𝐷𝑆 + 𝑟𝐷𝐿

𝐷𝐿 

𝜕𝑁𝐻4

𝜕𝑡
= −𝜇𝑚𝑎𝑥 𝑓(𝐼)𝐿𝑁𝐻4𝑃 − 𝑛𝑁𝐻4

+ 𝑙𝐵𝑀𝑍

+ 𝑙𝐸

𝑃2

𝑘𝑃 + 𝑃2
𝛽𝑍

+ 𝑟𝐷𝑆
𝐷𝑆 + 𝑟𝐷𝐿

𝐷𝐿 

𝜕𝑁𝐻4

𝜕𝑡
= −𝜇𝑚𝑎𝑥

𝑃𝑆  𝐿𝐼𝑃𝑆
𝐿𝑁𝐻4𝑃𝑆

− 𝜇𝑚𝑎𝑥
𝑃𝐿  𝐿𝐼𝑃𝐿

𝐿𝑁𝐻4𝑃𝐿
 – 𝑛𝑁𝐻4

+ 𝑟𝑃𝑆
𝑃𝑆 + 𝑟𝑃𝐿

𝑃𝐿

+ [𝑙𝐵𝑀𝑍𝑆
+  𝑙𝐸𝑍𝑆

𝑔𝑍𝑆𝑃𝑆

𝑔𝑚𝑎𝑥
𝑍𝑆𝑃𝑆

𝛽𝑍𝑆
] 𝑍𝑆

+ [𝑙𝐵𝑀𝑍𝐿

+  𝑙𝐸𝑍𝐿
(

𝑔𝑍𝐿𝑃𝑆

𝑔𝑚𝑎𝑥
𝑍𝐿𝑃𝑆

+
𝑔𝑍𝐿𝑃𝐿

𝑔𝑚𝑎𝑥
𝑍𝐿𝑃𝐿

+  
𝑔𝑍𝐿𝑍𝑆

𝑔𝑚𝑎𝑥
𝑍𝐿𝑍𝑆

) 𝛽𝑍𝐿
] 𝑍𝐿

+ [𝑙𝐵𝑀𝑍𝑃

+ 𝑙𝐸𝑍𝑃
(

𝑔𝑍𝑃𝑃𝐿

𝑔𝑚𝑎𝑥
𝑍𝑃𝑃𝐿

+ 
𝑔𝑍𝑃𝑍𝑆

𝑔𝑚𝑎𝑥
𝑍𝑃𝑍𝑆

+  
𝑔𝑍𝑃𝑍𝐿

𝑔𝑚𝑎𝑥
𝑍𝑃𝑍𝐿

) 𝛽𝑍𝑃
] 𝑍𝑃 + 𝑟𝐷𝑆

𝐷𝑆

+ 𝑟𝐷𝐿
𝐷𝐿 

2
4

4
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

0Light inhibited nitrification rate 

𝑛 = 𝑛𝑚𝑎𝑥 (1 − max [0,
𝐼 − 𝐼0

𝑘𝐼 + 𝐼 − 𝐼0
]) 𝑛 = 𝑛𝑚𝑎𝑥 (1 − max [0,

𝐼 − 𝐼0

𝑘𝐼 + 𝐼 − 𝐼0
]) 𝑛 = 𝑛𝑚𝑎𝑥 (1 − max [0,

𝐼 − 𝐼0

𝑘𝐼 + 𝐼 − 𝐼0
]) 

Detritus 

Small D= Z egestion + Z mortality+ P mortality – Coagulation (Small D + P) 

– decomposition - sinking 

Large D= Coagulation  - decomposition - sinking 

Small D= mortality (of small P, large P, small 

Z,  and large Z) + egestion (by small Z, and 

large Z) – coagulation (of small D and small 

P) – decomposition – sinking  

Large D= mortality (of predatory Z) + 

egestion (by predatory Z)+ coagulation – 

decomposition – sinking  

𝜕𝐷𝑆

𝜕𝑡
= 𝑔(1 − 𝛽)𝑍 + 𝑚𝑍𝑍2 +  𝑚𝑃𝑃

− 𝜏(𝐷𝑆 + 𝑃)𝐷𝑆  

− 𝑟𝐷𝑆
𝐷𝑆− 𝑤𝐷𝑆

𝜕𝐷𝑆

𝜕𝑧
 

𝜕𝐷𝑆

𝜕𝑡
= 𝑔(1 − 𝛽)𝑍 + 𝑚𝑍𝑍2 +  𝑚𝑃𝑃2

− 𝜏(𝐷𝑆 + 𝑃)𝐷𝑆  

− 𝑟𝐷𝑆
𝐷𝑆− 𝑤𝐷𝑆

𝜕𝐷𝑆

𝜕𝑧
 

𝜕𝐷𝑆

𝜕𝑡
= 𝜀𝑍𝑆

𝑍𝑆 + 𝜀𝑍𝐿
𝑍𝐿 + 𝑚𝑃𝑆

𝑃𝑆
2 +  𝑚𝑃𝐿

𝑃𝐿
2

+ 𝑚𝑍𝑆
𝑍𝑆

2 +  𝑚𝑍𝐿
𝑍𝐿

2

− 𝜏(𝐷𝑆 + 𝑃𝐿)𝐷𝑆  

− 𝑟𝐷𝑆
𝐷𝑆− 𝑤𝐷𝑆

𝜕𝐷𝑆

𝜕𝑧
 

2
4

5
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

𝜕𝐷𝐿

𝜕𝑡
= 𝜏(𝐷𝑆 + 𝑃)2  − 𝑟𝐷𝐿

𝐷𝐿− 𝑤𝐷𝐿

𝜕𝐷𝐿

𝜕𝑧
 

𝜕𝐷𝐿

𝜕𝑡
= 𝜏(𝐷𝑆 + 𝑃)2  

− 𝑟𝐷𝐿
𝐷𝐿− 𝑤𝐷𝐿

𝜕𝐷𝐿

𝜕𝑧
 

𝜕𝐷𝐿

𝜕𝑡
= 𝜀𝑍𝑃

𝑍𝑃  + 𝑚𝑃𝑍𝑃
2 + 𝜏(𝐷𝑆 + 𝑃𝐿)2  

− 𝑟𝐷𝐿
𝐷𝐿− 𝑤𝐷𝐿

𝜕𝐷𝐿

𝜕𝑧
 

Chlorophyll 

𝜕𝐶ℎ𝑙

𝜕𝑡
= 𝜌𝐶ℎ𝑙𝜇𝑃 − 𝑔𝑍

𝐶ℎ𝑙

𝑃
− 𝑚𝑃𝐶ℎ𝑙 −

𝜏(𝐷𝑆 + 𝑃)𝐶ℎ𝑙 

𝜕𝐶ℎ𝑙

𝜕𝑡
= 𝜌𝐶ℎ𝑙𝜇𝑃 − 𝑔𝑍

𝐶ℎ𝑙

𝑃
− 𝑚𝑃𝐶ℎ𝑙

− 𝜏(𝐷𝑆 + 𝑃)𝐶ℎ𝑙 

𝜕𝐶ℎ𝑙𝑆

𝜕𝑡
= 𝜌𝐶ℎ𝑙𝑆

𝜇𝑃𝑆
𝑃𝑆 − 𝑔𝑍𝑆𝑃𝑆

𝐶ℎ𝑙𝑆

𝑃𝑆
𝑍𝑆

−  𝑔𝑍𝐿𝑃𝑆

𝐶ℎ𝑙𝑆

𝑃𝑆
𝑍𝐿

−  𝑟𝑃𝑆
𝐶ℎ𝑙𝑆 − 𝑚𝑃𝑆

𝐶ℎ𝑙𝑆
2 

𝜕𝐶ℎ𝑙𝐿

𝜕𝑡
= 𝜌𝐶ℎ𝑙𝐿

𝜇𝑃𝐿
𝑃𝐿 − 𝑔𝑍𝐿𝑃𝐿

𝐶ℎ𝑙𝐿

𝑃𝐿
𝑍𝐿

−  𝑔𝑍𝑃𝑃𝐿

𝐶ℎ𝑙𝐿

𝑃𝐿
𝑍𝑃

− 𝑟𝑃𝐿
𝐶ℎ𝑙𝐿 − 𝑚𝑃𝐿

𝐶ℎ𝑙𝐿
2

−  𝜏(𝐷𝑆 + 𝑃𝐿)𝐶ℎ𝑙𝐿 

Chlorophyll to phytoplankton ratio 

2
4

6
 



 

M1 (base model, Fennel et al. 2006) M2 (base model with 

temperature dependent 

biological rates) 

M3 (model with increased trophic 

complexity based on Kishi et al. 2007) 

𝜌𝐶ℎ𝑙 =  
𝜃𝑚𝑎𝑥𝜇𝑃

𝛼𝐼𝐶ℎ𝑙
 𝜌𝐶ℎ𝑙 =  

𝜃𝑚𝑎𝑥𝜇𝑃

𝛼𝐼𝐶ℎ𝑙
 𝜌𝐶ℎ𝑙𝑆

=  
𝜃𝑚𝑎𝑥𝑃𝑆

𝜇𝑃𝑆
𝑃𝑆

𝛼𝑃𝑆
𝐼𝐶ℎ𝑙𝑆

 

𝜌𝐶ℎ𝑙𝐿
=  

𝜃𝑚𝑎𝑥𝑃𝐿
𝜇𝑃𝐿

𝑃𝐿

𝛼𝑃𝐿
𝐼𝐶ℎ𝑙𝐿

 

 

2
4

7
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APPENDIX D 

NORTHWEST NORTH ATLANTIC IN SITU VERSUS SATELLITE SURFACE CHLOROPHYLL 

REGRESIONS  

 

 Standard AZMP refers to Turner fluorometry chlorophyll measurements available on-

line at http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/hydro/index-

eng.html  

 High Performance Liquid Chromatography (HPLC) measurements come from 

additional field studies, and ships of opportunity (C. Johnson & A. Cogswell, pers. 

comm.). The dataset does not include measurements inside the Gulf of St. Lawrence. 

 SeaWiFS: Chl-a from Sea-Viewing Wide Field-of-View Sensor 1997-2010.  

 GlobCol GSM: Chl-a from GlobColour merged with GSM model based on Maritorena 

and Siegel (2005, Remote Sensing of Environment). 

 GlobCol AVW: Chl-a from GlobColour merged using weighted averaging method 

(AVW), with weightings based on the sensor/product characterisation 

 

 

Figure C1: Standard AZMP chl-a vs. SeaWiFs, top 1 m in situ observations and daily (+- 1 day) 

satellite observations (0.1 x 0.1 degrees around in situ measurement). Left: Measurements inside 

the Gulf of St. Lawrence. Right: Measurements outside the Gulf of St. Lawrence. 

http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/hydro/index-eng.html
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/hydro/index-eng.html
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Figure C2: Standard AZMP chl-a vs. GlobCol GSM, details as in Figure C1. 

 

 

Figure C3: Standard AZMP chl-a vs. GlobCol AVW, details as in Figure C2. 

 

 

Figure C4: HPLC chl-a vs. SeaWiFs and GlobColour satellite chlorophyll 1999 – 2010. Notice 

similitude with results from Standard AZMP outside the Gulf of St. Lawrence, as the HPLC 

dataset does not include measurements inside the gulf. 
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APPENDIX E 

CONTRIBUTION OF VARIABLES AND SURROGATE LOCATIONS TO THE TOTAL MODEL 

COST VALUES PRIOR TO OPTIMIZATION 

 

 

M1 M2 M3 

L
o

ca
ti

o
n

 

Sat. 

chl-a 

in situ 

chl-a 

in situ 

NO3 

Sat. 

chl-a 

in situ 

chl-a 

in 

situ 

NO3 

Sat.  

chl-a 

Pico-

Nano 

Sat.  

chl-a 

Micro 

in 

situ 

chl-a 

in situ 

NO3 

1 72.37 9.74 5.85 68.92 10.93 7.30 41.94 30.32 4.70 4.87 

2 255.35 5.59 23.07 607.53 4.32 28.98 380.61 997.97 43.41 4.33 

3 88.97 7.54 10.51 66.56 7.51 8.87 187.58 17.62 1.68 1.98 

4 69.90 6.34 8.43 59.74 6.52 7.03 194.57 24.12 2.46 2.35 

5 54.64 5.91 8.12 37.39 6.00 8.11 228.32 13.21 5.55 1.72 

6 94.17 9.11 10.03 88.15 7.53 8.19 92.15 10.76 0.79 0.72 

7 165.82 2.96 5.49 290.80 3.16 4.90 180.62 150.69 1.51 1.14 

8 115.73 7.87 13.51 111.47 8.32 11.22 209.70 23.27 2.08 1.82 

9 88.90 3.46 6.28 152.46 3.73 4.66 148.31 81.14 1.83 1.54 

10 52.72 4.15 21.34 54.70 4.38 25.83 115.81 30.36 29.32 0.87 

11 114.39 5.24 22.15 154.98 4.86 24.23 118.82 69.10 26.04 1.79 

12 73.76 2.33 13.30 77.69 2.06 15.06 66.97 19.51 8.00 0.47 

13 62.04 0.92 6.58 75.08 0.91 6.64 88.53 26.89 1.98 0.82 

14 137.88 7.25 6.43 197.06 6.26 6.16 148.91 54.33 1.46 2.34 

15 84.79 8.89 6.18 98.21 7.27 5.92 81.95 21.71 1.23 2.06 

16 89.10 6.97 6.96 77.01 5.13 6.46 64.22 7.18 0.65 0.85 

17 47.17 2.82 9.03 70.82 2.39 11.97 72.88 34.55 10.34 0.84 

18 55.43 4.04 10.59 67.66 3.42 13.22 58.88 10.90 6.98 0.72 

19 56.67 3.72 6.60 66.01 3.06 8.94 62.06 10.52 4.97 0.47 

20 69.58 21.25 8.15 69.76 19.88 8.50 90.79 20.27 2.57 7.20 

21 96.97 14.72 10.66 89.51 11.71 9.95 108.95 22.03 1.95 4.19 

22 109.21 17.68 8.52 139.84 14.47 7.19 161.94 33.14 1.69 4.62 

 

685.19 52.84 75.92 907.12 47.94 79.78 968.17 569.86 53.73 15.90 

F
(p

) 

813.95 1034.83 1607.67 
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APPENDIX F 

ANALYSIS OF VARIANCE AMONG SATELLITE AND SIMULATED SURFACE 

CHLOROPHYLL ANNUAL CYCLES IN THE NORTHWEST NORTH ATLANTIC 

 

Boxplots for each sub-region show the medians (red lines inside the boxes) of the 

observed and simulated chlorophyll annual cycles. Overlap between the median notches of each 

box shows the similitude/difference among medians at 95% confidence. The lower and upper 

edges of the boxes are the 25th and 75th percentiles. The whiskers extend to the most extreme 

data points that are not considered outliers. The outliers are plotted individually as red dots. 

Additionally, the grey shadow shows similitude/difference between the observed mean and the 

simulated values at a 99% confidence. Asterisks (*) at the bottom of each box represent model 

means that are significantly similar to the observational mean. Letters at the top of each box 

represent the significance of similitudes among models. Models sharing equal letters are 

significantly similar to each other.     
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APPENDIX G 

NORTHWEST NORTH ATLANTIC SEASONAL SURFACE PHYTOPLANKTON BIOMASS 
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APPENDIX I 

GULF OF AQABA MODEL EQUATIONS 

i. Hypothesis 0: Neglecting N2 fixation 

As a starting hypothesis, we test whether a model without nitrogen fixing can reproduce the 

observed distribution of inorganic nutrients. We test this model with and without allowing a 

sediment denitrification flux, denoted as H0 and H0’, respectively.  Therefore, H0 fully neglects 

N2 fixation, while H0’ implicitly assumes that N2 fixation inputs and N2 denitrification are 

balanced.  

This model (H0) tracks the changes of 8 state-variables: nitrate (NO3), ammonium (NH4), 

dissolved inorganic phosphorus (DIP), non-fixing phytoplankton (Phy), zooplankton (Zoo), 

“small” detritus (DS), “large” detritus (DL), and oxygen (O2). Model equations correspond to those 

described in Fennel et al., 2006 and 2013. Changes in phytoplankton and zooplankton biomass are 

measured in nitrogen units only, which implies a constant N:P ratio for these functional groups. 

The stoichiometry of non-fixing phytoplankton and zooplankton is set to the Redfield ratio 

(𝑅𝑁:𝑃
𝑛𝑓

=16), and their biomass changes according to: 

𝜕𝑃ℎ𝑦

𝜕𝑡
= 𝜇𝑃ℎ𝑦𝑃ℎ𝑦 − 𝑔𝑍𝑜𝑜 − 𝑚𝑃ℎ𝑦𝑃ℎ𝑦 − 𝑤𝑃ℎ𝑦

𝜕𝑃ℎ𝑦

𝜕𝑧
 

(1) 

𝜕𝑍𝑜𝑜

𝜕𝑡
= 𝑔𝛽𝑍𝑜𝑜 − 𝑙𝐵𝑀𝑍𝑜𝑜 − 𝑙𝐸

𝑃ℎ𝑦2

𝑘𝑃ℎ𝑦 + 𝑃ℎ𝑦2
𝛽𝑍𝑜𝑜 − 𝑚𝑍𝑜𝑜𝑍𝑜𝑜2 

(2) 

Phytoplankton growth (equ. 1) depends on light and nutrient supply according to: 𝜇𝑃ℎ𝑦 =

𝜇𝑃ℎ𝑦
𝑚𝑎𝑥  𝑓(𝐼)min (𝐿𝑁𝑂3

+ 𝐿𝑁𝐻4
, 𝐿𝐷𝐼𝑃). This formulation assumes that growth is limited by light and 

nutrient availability using a multiplicative effect. In terms of nutrient limitation, it follows 

Liebig’s Law of the minimum, as growth is limited by the scarcest nutrient resource of either 

nitrogen or phosphorus. The maximum non-fixing phytoplankton growth rate, 𝜇𝑃ℎ𝑦
𝑚𝑎𝑥, varies with 

temperature using a Q10 formulation according to 𝜇𝑃ℎ𝑦
𝑚𝑎𝑥  (𝑇) =  𝜇𝑃ℎ𝑦

0 1.88
𝑇

10𝑜𝐶⁄  (Eppley, 1972), 

where 𝜇𝑃ℎ𝑦
0   is the assumed maximum growth rate at T = 0℃. The light limitation function is 

equal to 𝑓(𝐼) =  
𝛼𝑃ℎ𝑦𝐼 

√(𝜇𝑃ℎ𝑦
𝑚𝑎𝑥)

2
+𝛼𝑃ℎ𝑦

2 𝐼2

 (Smith, 1936), where 𝐼 is the depth varying photosynthetically 

active radiation, and 𝛼𝑃ℎ𝑦 is the initial slope of the photosynthetic reaction. The value of 𝐼 
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decreases exponentially with depth (z) according to 𝐼(𝑧) =  𝐼0(1 −  𝜙)𝑒−𝑧 𝑘𝑤−∫ 𝑘𝑐ℎ𝑙𝐶ℎ𝑙𝑃ℎ𝑦𝑑𝑧
𝑧

0 , 

where the coefficients 𝜙=0.62 and 𝑘𝑤 = 0.05 m−1 are set for oceanic clear waters according to 

Jerlov’s type IA (Paulson and Simpson, 1977), and the coefficient 𝑘𝑐ℎ𝑙 = 0.04 𝑚−1 represents 

light attenuation due to chlorophyll concentrations (Chl).  𝐼0 is the surface solar radiation recorded 

at the IUI station.  

Non-fixing phytoplankton is grazed by zooplankton at a density dependent rate 

𝑔 = 𝑔𝑃ℎ𝑦
𝑚𝑎𝑥 𝑃ℎ𝑦2

𝑘𝑍𝑜𝑜
𝑃ℎ𝑦

+𝑃ℎ𝑦2
, with only a fraction 𝛽 being assimilated into zooplankton growth. The last 

two terms in equation 1 represent non-fixing phytoplankton mortality and sinking, which occur at 

a rate of 𝑚𝑃ℎ𝑦 and a speed of 𝑤𝑃ℎ𝑦, respectively. In equation 2, 𝑙𝐵𝑀, 𝑙𝐸, and 𝑚𝑍 represent the 

zooplankton base metabolic, excretion and mortality rates.  

Changes in nutrient concentrations are defined by the following set of equations: 

𝜕𝑁𝑂3

𝜕𝑡
= −𝜇𝑃ℎ𝑦

𝑚𝑎𝑥 𝑓(𝐼)𝐿𝑁𝑂3
𝑃ℎ𝑦 + 𝑛𝑁𝐻4 

(3) 

𝜕𝑁𝐻4

𝜕𝑡
= −𝜇𝑃ℎ𝑦

𝑚𝑎𝑥 𝑓(𝐼)𝐿𝑁𝐻4
𝑃ℎ𝑦 + 𝑙𝐵𝑀𝑍𝑜𝑜 + 𝑙𝐸

𝑃ℎ𝑦2

𝑘𝑃 + 𝑃ℎ𝑦2
𝛽𝑍𝑜𝑜 + 𝑟𝐷𝑆

𝐷𝑆(𝑁) + 𝑟𝐷𝐿
𝐷𝐿(𝑁)

− 𝑛𝑁𝐻4 

(4) 

𝜕𝐷𝐼𝑃

𝜕𝑡
=

1

𝑅𝑁:𝑃
𝑛𝑓

 (−𝜇𝑃ℎ𝑦
𝑚𝑎𝑥 𝑓(𝐼)𝐿𝐷𝐼𝑃𝑃ℎ𝑦 +  𝑙𝐵𝑀𝑍𝑜𝑜 + 𝑙𝐸

𝑃ℎ𝑦2

𝑘𝑃 + 𝑃ℎ𝑦2
𝛽𝑍𝑜𝑜) + 𝑟𝐷𝑆(𝑃)

𝐷𝑆(𝑃)

+ 𝑟𝐷𝐿
𝐷𝐿(𝑃) 

(5) 

Equations 3, 4, and 5 represent the changes in nitrate, ammonium, and dissolved inorganic 

phosphorus, respectively. In these equations, nutrient uptake by non-fixing phytoplankton is 

modulated by the maximum non-fixing phytoplankton growth rate 𝜇𝑃ℎ𝑦
𝑚𝑎𝑥, the light limitation 

function 𝑓(𝐼), and the corresponding nutrient limitation factor (𝐿𝑁𝑂3
, 𝐿𝑁𝐻4

, or 𝐿𝐷𝐼𝑃). The nutrient 

limitation factors for ammonium and dissolved inorganic phosphorus in the form of phosphate are 

Michaelis-Menten (1913) functions: 

𝐿𝑁𝐻4
=

𝑁𝐻4

𝑘𝑃ℎ𝑦
𝑁𝐻4 + 𝑁𝐻4

 

 

(6) 
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𝐿𝐷𝐼𝑃 =
𝐷𝐼𝑃

𝑘𝑃ℎ𝑦
𝐷𝐼𝑃 + 𝐷𝐼𝑃

 
(7) 

The nitrate limitation factor is also a Michaelis – Menten (1913) function, but is modified by the 

availability of NH4, which inhibits NO3 uptake: 

𝐿𝑁𝑂3
=

𝑁𝑂3

𝑘𝑃ℎ𝑦
𝑁𝑂3 + 𝑁𝑂3

 
1

(1 + 𝑁𝐻4/𝑘𝑃ℎ𝑦
𝑁𝐻4)

 (8) 

Both NH4 and DIP receive contributions from zooplankton metabolic and excretion losses, and 

from the degradation of small and large detritus. The parameters 𝑙𝐵𝑀, 𝑙𝐸  are the metabolic loss 

and mortality rates of zooplankton. Degradation rates for small and large detritus are represented 

by 𝑟𝐷𝑆
 and 𝑟𝐷𝐿

, respectively. Both the nitrogen and phosphorus fractions of the two detritus 

groups are tracked, for which we use the subscripts “(N)” and “(P)” correspondingly. The last 

terms in equations 3 and 4 represent the transformation of NH4 into NO3 via nitrification at rate 𝑛.  

The model also estimates non-fixing phytoplankton chlorophyll content (ChlPhy): 

𝜕𝐶ℎ𝑙𝑃ℎ𝑦

𝜕𝑡
= 𝜌𝐶ℎ𝑙𝑃ℎ𝑦

𝜇𝑃ℎ𝑦𝑃ℎ𝑦 −  𝑔𝑍𝑜𝑜
𝐶ℎ𝑙𝑃ℎ𝑦

𝑃ℎ𝑦
− 𝑚𝑃ℎ𝑦𝐶ℎ𝑙𝑃ℎ𝑦 − 𝑤𝑃ℎ𝑦

𝜕𝐶ℎ𝑙𝑃ℎ𝑦

𝜕𝑧
                                                                                                                        (9) 

where the factor ρChlPhy
 represents a variable chlorophyll-to-biomass ratio. This factor accounts 

for the photoacclimation effect of increased chlorophyll production under low light conditions and 

is determined following Geider et al., (1997): 

ρChlPhy
=  

𝜃𝑃ℎ𝑦
𝑚𝑎𝑥𝜇𝑃ℎ𝑦𝑃ℎ𝑦

𝛼𝑃ℎ𝑦𝐼𝐶ℎ𝑙𝑃ℎ𝑦
 

(10) 

The two fractions of detritus aim to represent small-suspended particles of non-living organic 

matter (𝐷𝑆) that can aggregate to form larger sinking particles (𝐷𝐿). “Small” detritus (eq. 11) is 

formed from the unassimilated fraction of zooplankton grazing (i.e., sloppy feeding), and from 

dead phytoplankton and zooplankton. The small detritus pool suffers losses from coagulation and 

degradation. “Large” detritus (eq. 12) is produced trough the coagulation DS, and is removed by 

degradation and sinking at a 𝑤𝐷𝐿
 speed. The sinking speed of large detritus is assumed to be faster 

than for non-fixing phytoplankton (𝑤𝑃ℎ𝑦).  
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𝜕𝐷𝑆

𝜕𝑡
= 𝑔(1 − 𝛽)𝑍𝑜𝑜 + 𝑚𝑍𝑍𝑜𝑜2 +  𝑚𝑃ℎ𝑦𝑃ℎ𝑦 − 𝑟𝐷𝑆

𝐷𝑆 
(11) 

𝜕𝐷𝐿

𝜕𝑡
= 𝜏𝐷𝑆

2  − 𝑟𝐷𝐿
𝐷𝐿− 𝑤𝐷𝐿

𝜕𝐷𝐿

𝜕𝑧
 

(12) 

Oxygen (eq. 13) is produced during photosynthesis and consumed by zooplankton metabolism, 

and the degradation of dissolved organic matter and detritus, as in Fennel et al. (2013): 

𝜕𝑂2

𝜕𝑡
= 𝜇𝑃ℎ𝑦

𝑚𝑎𝑥𝑓(𝐼)(𝐿𝑁𝑂3
𝑅𝑂2:𝑁𝑂3

+ 𝐿𝑁𝐻4
𝑅𝑂2:𝑁𝐻4

)𝑃ℎ𝑦 − 2 𝑛𝑁𝐻4

−  𝑅𝑂2:𝑁𝐻4
(𝑙𝐵𝑀𝑍𝑜𝑜 + 𝑟𝐷𝑆

𝐷𝑆 − 𝑟𝐷𝐿
𝐷𝐿) 

 

(13) 

where 𝑅𝑂2:𝑁𝑂3 =
138

16

𝑚𝑜𝑙 𝑂2

𝑚𝑜𝑙 𝑁𝑂3
 and 𝑅𝑂2:𝑁𝐻3 =

106

16

𝑚𝑜𝑙 𝑂2

𝑚𝑜𝑙 𝑁𝐻3
  represent stoichiometric ratios 

corresponding to the oxygen produced during photosynthesis per mole of nitrate and ammonium 

consumed.  

At the ocean surface, oxygen concentrations are modified by the air-sea gas exchange Fair-sea: 

𝐹𝑎𝑖𝑟−𝑠𝑒𝑎 =
𝑣𝑘𝑂2

∆𝑧
(𝑂𝑠𝑎𝑡 − 𝑂2) 

(14) 

such that a flux of oxygen into the top layer of thickness ∆z occurs when its oxygen concentration 

is lower than the oxygen saturation value (Osat), and a flux into the atmosphere occurs if it is 

higher. The formulation of Osat is based on García and Gordon (1992), and the gas exchange 

coefficient for oxygen, vkO2
, is parameterized following Wanninkhof et al., (2011) as: 

vkO2
= 0.28 u10

2
√

660

SCO2

, 
(15) 

where u10 is the wind speed 10 m above the sea surface, and SCO2
 is the Schmidt number. 

We assume that organic matter reaching the bottom is instantaneously remineralized into 

ammonium. Sediment oxygen consumption is represented as in Fennel et al. (2013). This model 

was tested with and without allowing a denitrification flux (H0 and H0’, respectively). When 

present, the denitrification flux follows Fennel et al. (2013) with a loss fraction 6 mol N2 per mol 

of organic matter remineralized. 
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ii. Hypothesis 1: Generic autotrophic N2 fixers 

In model version H1, we introduce the state variable GF, which represents a group of generic 

autotrophic N2 fixers: 

𝜕𝐺𝐹

𝜕𝑡
= 𝜇𝐹𝐺𝐹 − 𝑚𝐹𝐺𝐹 − 𝑙𝐹𝐺𝐹 − 𝜏(𝐷𝑆 + 𝐺𝐹)𝐺𝐹 

(16) 

The growth of the fixing organisms is limited by light and DIP only (i.e., an obligate autotrophic 

diazotroph). The parameters 𝑚𝐹, 𝑙𝐹, 𝜏 represent a mortality rate, an excretion rate, and the 

coagulation rate, respectively. An accompanying chlorophyll equation is also introduced, and total 

chlorophyll becomes the sum of the non-fixing and fixing autotrophic organisms: 𝐶ℎ𝑙 =

𝐶ℎ𝑙𝑃ℎ𝑦 + 𝐶ℎ𝑙𝐺𝐹
. All other state variable equations are modified accordingly. That is, uptake of 

DIP by GF is included as a sink in the DIP equation (Eq. 5), GF
 
excretion becomes an additional 

source of ammonium in Eq. 4, GF mortality becomes a source of DS in Eq. 11, and GF coagulated 

aggregates become a source of DL in Eq. 12. The stoichiometry of diazotrophs is set to 𝑅𝑁:𝑃
𝑓

=

45(Fennel et al., 2002; Letelier and Karl, 1996).  

iii. Hypothesis 2: Unicellular and colonial N2 fixers 

In model version H2, we replace the generic autotrophic diazotroph group with two different 

groups that represent colonial and unicellular cyanobacteria: 

𝜕𝑈𝐹

𝜕𝑡
= 𝜇𝑈𝐹

𝑈𝐹 − 𝑚𝑈𝐹
𝑈𝐹 −  𝑙𝑈𝐹

𝑈𝐹 − 𝑔𝑈𝐹
𝑍𝑜𝑜 

(17) 

𝜕𝐶𝐹

𝜕𝑡
= 𝜇𝐶𝐹

𝐶𝐹 − 𝑚𝐶𝐹
𝐶𝐹 − 𝑙𝐶𝐹

𝐶𝐹 − 𝜏(𝐷𝑆 + 𝐶𝐹)𝐶𝐹 
(18) 

The group of colonial N2 fixers, 𝐶𝐹, represents Trichodesmium spp. A minimum temperature limit 

for the growth of Trichodesmium spp. is imposed by setting the maximum growth rate to 0 when 

temperature is below 20
o
C, based on the inability to culture this type of organism below this 

temperature (Breitbarth et al., 2007). The unicellular cyanobacteria group, UF, overall follows the 

same formulation as the generic diazotroph, except that no coagulation term is included in this 

equation as they represent picoplanktonic free-living cells that do not form large colonies. Instead, 

this group is grazed by zooplankton similar to grazing on non-fixing phytoplankton. This is based 

on evidence that Trichodesmium spp. colonies may be less palatable and harder to digest due to 

toxins and that grazing is not a major fate of this group (O’Neil and Roman, 1994). Moreover, it 
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has been suggested that colonies represent an evolutionary adaptation that allows a decreased 

grazing pressure (Nielsen 2006). As in the previous model version, other equations are modified 

where necessary. 

iv. Hypothesis 3: Heterotrophic N2 fixers 

In model version H3 we introduce an additional heterotrophic diazotroph group 𝐻𝐹, so that this 

ecosystem model includes three types of N2 fixers. The formulation of 𝐻𝐹 follows: 

𝜕𝐻𝐹

𝜕𝑡
= 𝜇𝐻𝐹

𝐻𝐹 − 𝑚𝐻𝐹
𝐻𝐹 −  𝑙𝐻𝐹

𝐻𝐹 
(18) 

These organisms are not limited by light availability and grow by consuming both dissolved 

inorganic and organic phosphorus from DS, following 𝜇𝐻𝐹
= 𝜓𝐷𝐼𝑃

𝐷𝐼𝑃

𝑘𝐻𝐹
𝐷𝐼𝑃+𝐷𝐼𝑃

+ 𝜓𝐷𝑆

𝐷𝑆(𝑃)

𝑘𝐻𝐹

𝐷𝑆 +𝐷𝑆(𝑃)

. The 

coefficients 𝜓𝐷𝐼𝑃 and 𝜓𝐷𝑆
 represent preferences, which are set as equal (𝜓𝐷𝐼𝑃 =  𝜓𝐷𝑆

= 0.5). 
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APPENDIX J 

COPYRIGHT 

An edited version of Chapter 2 was published by Elsevier Ltd. Copyright © 2015 Elsevier Ltd. It 

is reproduced here by permission of Elsevier Ltd: 
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