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Abstract

This thesis establishes a mathematical, physical and experimental framework for de-

scription, characterization, and application of semiconductor plasmonic properties.

Plasmonic phenomena in semiconductors are found in the Terahertz and far-infrared

domain, where they have the potential to improve sensors or be the basis of novel de-

vices. III-V semiconductor samples (GaAs, InP, InSb, and InAs) with various doping

were analyzed spectroscopically in broad spectral range. Fourier Transform Infrared

Spectroscopy together with Terahertz time-domain spectroscopy were used for char-

acterization of the free carrier (plasmonic) and lattice (phononic) optical properties

of the samples. The Drude-Lorentz model was used to describe these properties, with

the addition of magneto-optical (MO) effects. High mobility semiconductors (InSb

and InAs) exhibit huge free carrier magneto-optical effect for small external magnetic

field. These measurements were compared to electric Hall effect measurement using

Van der Pauw method.

Based on the spectroscopic and MO characterization of the samples, the appli-

cability of semiconductor as plasmonic materials is discussed. Huge advantage of

semiconductors is the tunability their plasmonic properties. Three methods of con-

trolling the plasmonic behavior of semiconductors were analyzed: Shifting of plasma

frequency to higher frequencies by increasing of n-type doping concentration. Mod-

ification of the material permittivity (conductivity) tensor spectra by the external

magnetic field. Shifting of plasmonic resonance by generation of nanogratings in the

material, either by carrier concentration modulation by interference light illumina-

tion (sinusoidal grating) or by lithography (lamellar grating). The effective medium

approximation of nanogratings was verified using Rigorous Coupled Wave Analysis.

An experimental application of widely tunable THz surface plasmon resonance

sensor on semiconductors is presented. Generation of surface plasmon polariton at the

interface between undoped InSb(InAs) and dielectric is experimentally demonstrated.

This sensor has the added functionality of strong magnetic tuning. The applicability

of this sensor is discussed, along with analysis of different sensor architecture.

xi
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Chapter 1

Introduction

1.1 State of the art

Plasmonics [4–7] has been in research focus for last decades. Its promise, sub-

wavelength confinement of electromagnetic waves below their diffraction limit at

the boundary of negative (conductive) and positive (dielectric) permittivity mate-

rial drove a search for applications that would utilize this behavior. Novel sensors [8],

waveguides [9], transducers [10], couplers [11], lenses [12], nonlinear [13] and quantum

phenomena [14], and improvements to scientific techniques [15] have all been based

on plasmonics.

Utilizing the terahertz range for better and faster communications [2,3,16], sens-

ing [17], medicine [18] and security [19] has created a need for devices, capable of

operating in the desired frequency range of 0.1-30 THz. This range is home to many

interesting phenomena. Organic molecules, aqueous solutions and many other com-

pounds have a distinguishable spectra in the THz range, which together with non-

ionizing properties of the terahertz radiation permits its broad use in biomedicine [20].

Absorbtion spectra from rotational transitions of gaseous analytes can be detected and

analyzed through THz spectroscopy [21]. Moreover, THz spectroscopy has become

indispensable in basic science and materials research, from dielectrics to supercon-

ductors [22]. The use of plasmonics has the potential to improve all of these areas.

Traditional plasmonic materials usable in visible/near infrared range, noble metals,

are unsuitable for uses in the THz regime due to low confinement to the metal; the

wave is weakly bound to the interface, a phenomenon sometimes called the Zenneck

plasmon [23]. Semiconductors with their carrier levels have their metallic proper-

ties shifted to lower frequencies - microwave, terahertz and far infrared. They are

therefore suitable as building blocks for THz devices. Furthermore, they allow for

much needed control of their electromagnetic properties. In the manufacturing the

carrier levels can be adjusted by doping and after the manufacturing the properties
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can be controlled by light [24], temperature [25], electric gating [26] and by external

magnetic field [27].

The use of semiconductors in magneto-plasmonic devices for terahertz range has

been suggested by Bolle et al. [28], while currently there are a number of studies, such

as by Hu et al. [29], dealing with theoretical design of the devices. A correct implemen-

tation of the theoretical models is possible only when we know the exact properties of

the materials used. Spectroscopic, non-destructive magneto-optical techniques give

us the information we need.

The issue of semiconductor plasmonic properties in the far-infrared and terahertz

range have been undertaken by several groups. The work of Palik and Furdyna [30]

provides the necessary theory for optical and magneto-optical behavior of semiconduc-

tors. The experiments of Shubert et al. [31,32] and Hofmann [33] show the potential of

spectroscopic techniques in investigating that behavior, while further works [34–40]

demonstrate the power of terahertz time-domain spectroscopy in determining the

conductive and optical functions of semiconductors.

The measurement of the free carrier magneto-optical effects in semiconductors

has been called the “Optical Hall effect” by Kühne et al. [27] and Shubert et al. [31],

who developed a far infrared and terahertz ellipsometric, full Mueller matrix method

for semiconductor characterization. The potential of the terahertz time-domain spec-

troscopy (THz-TDS) in investigation of semiconductors had been recognized by Mit-

tleman [34], (spatial inhomogeneities in GaAs), Jeon [37] (reflectivity of GaAs and

Si), Grishowski [38] (properties Si, Ge, GaAs) and Ino [39] (MO effect on InAs).

InSb is a viable choice for Terahertz plasmonics, since its low effective mass, 0.015

m0 at Γ point [41], means its electrical and optical properties can be modulated

by a small magnetic fields. The area of spectroscopy of InSb in magnetic field has

been pioneered by Lax et al. [42], while the subsequent theory had been summa-

rized by Palik et al. [30], [43] and in references therein. The works of Spitzer et

al. [44] combines reflectivity and electrical Hall effect characterization to derive effec-

tive mass/concentration data of n-doped InSb. The approach from microwave side of

the spectrum has been established by Brodwin et al. [45] and subsequently by Singh

et al. [46], to characterize polycrystalline and single crystals of InSb at 9GHz, with

temperature and magnetic field dependence. The findings have also been reviewed by
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Pidgeon [47] and Kushwaha [48]. Despite the wide range of semiconductors studied,

the studies in the sixties and seventies were limited to the spectral range outside the

terahertz gap (0.1-3 THz) due to a lack of available sources. Consequently, the au-

thors had to use higher magnetic fields and low temperatures to observe interesting

magneto-plasmonic effects in their spectral ranges, which is inconvenient for practical

applications.

The surface plasmon resonance (SPR) [5] allows highly accurate sensing. This

sensitivity of the properties and changes in the dielectric (analyte) has found its use

primary in biomedical applications [49]. The natural high confinement of surface

plasmons is valuable for investigation of samples with sub-wavelength sizes, when

in THz range the wavelengths are on the order hundreds of micrometers. There is

an ongoing research exploring other materials more applicable to lower frequencies

SPR, with the potential candidates of conducting oxides [50], graphene [51,52], corru-

gated metal [53], and semiconductors [54], This ongoing research has so far remained

theoretical.

The modulation of semiconductor plasmonic properties can also be utilized by

spatially modulating, on subwavelength scale, the carrier concentration. Photoexci-

tation [55–59] of additional carries by light with energy below the band-gap of the

semiconductor is a promising method. This way, arbitrary and temporary permit-

tivity profiles can be created in the semiconductors using spatial light modulators

or interference and holographic patterns. The easiest interference pattern would be

the sinusoidal profile. What more, this profile arises in many other application, since

represents a fundamental physical periodic modulation, which is produced phononic,

magnonic [60], and thermal waves, or by diffusion processes. The sinusoidal gratings

occur in volume holograms [61], liquid crystals, magneto-optic films with magnonic

waves, photorefractive, and nonlinear optical media. Volume holograms in liquid-

crystal polymers exhibit modulation of anisotropic optical properties described by

the permittivity tensor [62]. Another example belongs to magneto-optically induced

anisotropy by space modulation of magnetization, i.e. magnonic waves usualy studied

by Brillouin light scattering and pump-probe time resolved magneto-optical exper-

iments [63]. Similarly mechanic parameters of thin films are studied using genera-

tion of phononic waves [64]. Periodic modulations of mechanic properties opens new
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horizons in the area of phononics [65, 66]. Despite the modelling of grating optical

properties using numerical methods based on Fourier expansion – Rigorous Coupled

Wave Algorithm (RCWA), Fourier Modal Method (FMM) [67], or Finite Difference

Time Domain (FDTD) techniques [68] give precise results in a real computation time,

it is often useful and needed to describe the system response using an approximate

effective medium model. Such approximation can give (i) symbolic relations espe-

cially useful to describe and understand the complex response of anisotropic gratings

and analytical dependence on a particular anisotropy parameter and (ii) for cases of

subwavelength or quasistatic limit Λ ≪ λ, where Λ and λ denote the grating period

and light wavelength, the effective medium approximation (EMA) gives reasonable

and precise results. The EMA is widely used to describe effective optical parameters

from heterogeneous materials, nanostructures [69,70], and also surface roughness [70].

The EMA is usually based on calculation of local field in spherical and ellipsoidal par-

ticles and it was generalized to special anisotropy [71, 72]. Effective parameters were

also derived for lamellar isotropic gratings [73–75] and generalized to anisotropic me-

dia [76,77]. On the other hand, EMA of sinusoidal grating from isotropic media was

derived by Campbell and Kostuk [78], which has been applied to the holographic

gratings [61].

1.2 Original contribution

The main contributions of this thesis to the field of plasmonics in semiconductors are:

1. Spectroscopic characterization of III-V semiconductors. Several sam-

ples of III-V semiconductors have been characterized in wide spectral range -

from UV light to Terahertz range. The spectroscopic data have been modeled

using Drude-Lorentz model and B-spline where appropriate. A metric has been

devised to evaluate the plasmonic properties of semiconductors based on the

level of doping. These findings have been published in Journal of European

Optical Society - Rapid Publication [79] (First author).

2. Magneto-optical free carrier effect in semiconductors. A huge magneto-

optical effect has been observed in the Terahertz range on InSb. The spectro-

scopic characterization of the samples under external magnetic field has been
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compared to the model with good agreement. This effect has been verified by a

electrical Hall effect measurement. The MO effect is discussed as a modulation

of plasmonic properties of semiconductors. The experiment, data analysis and

conclusions have been published in AIP Advances [80] (First author). The data

on n-doped InSb have been used by our colleagues for the design on noreciprocal

Mid-IR Isolator [81] (Third author - supplied material parameters).

3. Experimental demonstration of surface magneto-plasmon on InSb and

InAs in the terahertz range. The magneto-plasmonic properties of semi-

conductors (InSb and InAs) have been utilized in construction of a plasmonic

device - a surface plasmon resonance sensor. High refractive index prism is used

to couple surface plasmon polariton on an interface between semiconductor and

polymer film. A large tuning capability of the sensor has been demonstrated

using external magnetic field. An expression of surface plasmon at anisotropic

interface has also been derived. These results have been submitted to Scientific

Reports [82] (First author).

4. Application of effective medium approximation as a method for mod-

ulation plasmonic properties. The effective medium theory is extended

to subwavelength gratings with harmonic modulation of permittivity - a case

which is attainable is semiconductors by spatially varying the doping levels or

by illuminating the sample with interference pattern. Rigorous coupled wave

analysis is used to confirm the validity of the derived formulas. An example

where the subwavelength gratings are used for tuning of the surface plasmon

resonance is presented [83] (Second author - RCWA calculation of harmonic

gratings, validity calculation, application to semiconductors).

1.3 Thesis Organization

This thesis is divided in 3 main chapters, Introductory chapter and Conclusions and

perspectives chapter. The three main chapters are:

Chapter 2 presents the necessary mathematical tools for describing spectroscopic

data of multilayers and gratings. It starts with the review of electromagnetic waves
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and polarized light. Then the chapter deals with finding eigenmodes in layered struc-

ture using a Berreman 4x4 matrix method and how to calculate experimental observ-

ables. This approach is extended into 1D periodic gratings, also with formulas for

calculation of effective medium anisotropy from subwavelength gratings. This chapter

is not necessary for understanding the key concepts and main results of the thesis.

Chapter 3 outlines the methods for spectroscopic characterization of semicon-

ductors and presents the results of measurement of several samples of III-V semi-

conductors (InP-n, GaAs-n,p, InSb-n,p,undoped, InAs undoped). The methods are

Ellipsometry, Fourier Transform Infrared Spectroscopy and Terahertz Time-Domain

Spectroscopy. The description of optical properties of semiconductors is extended to

the influence of external magnetic field. This effect has been measured and described

in InSb with different levels of doping.

Chapter 4 deals with the application of semiconductors in plasmonics. The gen-

eral framework for understanding surface plasmon polaritons is established both clas-

sically and with the matrix tools derived in Chapter 2. Appropriate figures of merit

are estimated to establish suitable ranges for room temperature semiconductor plas-

monics applications. A surface magneto-plasmon resonance sensor is experimentally

demonstrated and analyzed, along with designs for different sensor architectures. The

effective medium approximation is also applied for a design of SPR sensor covering

broad range of usable frequencies.
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Chapter 2

Polarized light in multilayers and gratings

2.1 Multilayers

2.1.1 Electromagnetic waves

There is no other way of explaining the electromagnetic nature of light than beginning

with the four Maxwell’s equations. First we define all the necessary symbols and

operators: r is the position vector, t is the time, ∇× denotes the curl operator, ∇· is
the divergence operator, H(r, t) is the vector of magnetic intensity and E(r, t) is the

vector of electric intensity. D(r, t) is the vector of electric displacement and B(r, t)

is the magnetic flux density. Vectors P(r, t) and M(r, t) denote the polarization and

magnetization volume density, respectively. µ0 and ε0 are the permeability and the

permittivity of vacuum. Finally, ρ(r, t) is the volume density of free charges and j(r,t)

is the current density. The four Maxwell’s equations are

∇×H(r, t) = j(r, t) +
∂D(r, t)

∂t
, (2.1a)

∇× E(r, t) = −∂B(r, t)

∂t
, (2.1b)

∇ ·D(r, t) = ρ(r, t), (2.1c)

∇ ·B(r, t) = 0. (2.1d)

To these four equations we add the constitution relations for polarization and mag-

netization

D(r, t) = ε0E(r, t) +P(r, t), (2.2a)

B(r, t) = µ0H(r, t) + µ0M(r, t). (2.2b)

Since we will be using only optical frequencies, we can assume that M(r, t) = 0.

Also, we shall not deal with any free charges, therefore ρ(r, t) = 0. For a linear,

homogeneous and non-dispersive medium we can define the polarization density vector
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P using the relative electric susceptibility tensor χ̂

P(r, t) = ε0χ̂E(r, t). (2.3)

The permittivity tensor for the medium can also be expressed using the susceptibility

as

ε̂ = ε0(̂I + χ̂) = ε0ε̂R, (2.4)

where ε̂R denotes the relative permittivity tensor. Now we can substitute relations

(2.3) and (2.4) with the condition of M=0 into (2.2a) and (2.2b), thus yielding

D(r, t) = ε̂E(r, t), (2.5a)

B(r, t) = µ0H(r, t). (2.5b)

Furthermore, we can express the current density vector j using the electric conduc-

tivity tensor σ̂

j(r, t) = σ̂E(r, t) (2.6)

and the Maxwell’s equations can be rewritten in this form:

∇×H(r, t) = ε̂
dE(r, t)

dt
+ σ̂E(r, t), (2.7a)

∇× E(r, t) = −µ0
dH(r, t)

dt
, (2.7b)

∇ · [ε̂E(r, t)] = 0, (2.7c)

∇ ·H(r, t) = 0. (2.7d)

In the following theory and examples we shall deal only with monochromatic waves.

All components of electric and magnetic field are harmonic functions of time with the

same frequency f , or more conveniently with the same angular frequency ω = 2πf .

The electric and magnetic field then takes the form

E(r, t) = E(r) exp(−iωt), (2.8a)

H(r, t) = H(r) exp(−iωt), (2.8b)

where E(r) and H(r) are the complex amplitudes. Now, excluding the time depen-

dence and substituting (2.8a) and (2.8b) into (2.7a) and (2.7b), we shall simplify
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them into

∇×H(r) = −iωε̂E(r) + σ̂E(r), (2.9a)

∇× E(r) = iωµ0H(r). (2.9b)

As we can from (2.9a), there is linear dependency of the curl of the magnetic field on

the electric field. Such dependency implies the existence of the complex permittivity

tensor, a material function describing its interaction with electromagnetic field ε̂′

ε̂′ = ε̂+
i

ω
σ̂. (2.10)

The first two Maxwell’s equations become

∇×H(r) = −iωε̂′E(r) (2.11a)

∇× E(r) = iωµ0H(r) (2.11b)

and with the other equations (2.7c) and (2.7d) can be used in any homogeneous mate-

rial. For simplicity, we won’t distinguish between complex and only real permittivity

and all permittivity tensors will be denoted ε̂. When it is necessary to talk about

real or imaginary part of permittivity, it is so stated in text.

2.1.2 Polarization of light

The spatial orientation of the electric vector of the electromagnetic wave is called its

polarization. The polarization of light is used in large number of physical applications,

such as computer imaging, lasers, photography, and many others. We shall deal with

monochromatic plane wave, which can be described using complex representation of

the field vectors

E(r, t) = E0e exp[i(kr− ωt)], (2.12a)

H(r, t) = H0h exp[i(kr− ωt)], (2.12b)

where k is the wave vector with magnitude k0 = ω/c, c being the speed of light and e

and h are the corresponding polarization state vectors. As we follow these vectors in

plane perpendicular to the propagation direction, we discover their endpoints trace

an ellipse. Such ellipse is defined by two parameters, ϕ and ǫ, the azimuth and the
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Figure 2.1: Schematic of the elliptical path of the real part of the electric polarization
vector

ellipticity, respectively, shown in Figure 2.1. We can define several significant cases

of light polarization. First one being the most general, the elliptical. Then we have

two sets of polarizations: circular (right and left) and linear (s and p). The electric

field component of s-polarized wave (senkrecht from German), or transversal electric

(TE) wave oscillates in the direction perpendicular to the plane of incidence. The

electric field component p-polarized wave (parallel), or transversal magnetic (TM)

wave oscillates parallel to the plane of incidence. Both waves are mutually orthogonal

and so we can derive any linear polarization as a combination of these two.

2.1.3 Permittivity tensor

As mentioned in Section 2.1.1, the permittivity tensor is a material function which

describes how the given material alters reflected, transmitted and propagating light.

It is a tensor with elements, labeled in this way (aka the general permittivity tensor):

ε̂ =







εxx εxy εxz

εyx εyy εyz

εzx εzy εzz






. (2.13)

There are several special cases of the permittivity tensor
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• isotropic medium

Isotropic medium is such a medium, which changes the flow of light irregardless

of the incoming/propagating direction. Mathematically speaking, the tensor

is only diagonal with all elements the same. The refractive index of isotropic

material is defined as n =
√
εxx

ε̂ =







εxx 0 0

0 εxx 0

0 0 εxx






. (2.14)

• uniaxial anisotropic medium

Medium with such anisotropy exhibits different behavior along one axis. In this

case, y-axis. Such anisotropy induces the birefringence effect known from e.g

calcite.

ε̂ =







εxx 0 0

0 εyy 0

0 0 εxx






. (2.15)

• biaxial anisotropic medium

Material with biaxial anisotropy has all diagonal elements different.

ε̂ =







εxx 0 0

0 εyy 0

0 0 εzz






. (2.16)

• rotation The latter two previous tensors are valid only if the axes correspond

with given coordinate system. In case they do not, we must use the rotation

matrix R,

Rx =







1 0 0

0 cos ρ − sin ρ

0 sin ρ cos ρ






Ry =







cos ρ 0 − sin ρ

0 1 0

sin ρ 0 cos ρ






Rz =







cos ρ − sin ρ 0

sin ρ cos ρ 0

0 0 1






,

(2.17)

where the subscript denotes the axis around which the system is rotated and

ρ is the angle of such rotation. The permittivity tensor is then altered in this

fashion:

ε̂rotated = R−1ε̂R (2.18)
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• magneto-optical anisotropy

Another case of permittivity tensor is the magneto-optical anisotropy, where

a permittivity change is induced by the magnetization of the sample. Here

comes in question the orientation of the magnetization in respect to plane of

incidence. There are three cases of magneto-optical anisotropy configurations,

polar, longitudinal and transversal, as depicted in Figure 2.2. The magneto-

optical effect is usually defined through the Voigt parameter Q. Depending on

the configuration, it affects different off-diagonal elements of the permittivity

tensor, always in the ± symmetry.

x
y

z

Polar Longitudinal Transversal

Figure 2.2: Different orientations of the magnetic field. The plane of incidence is in
the y − z plane.

• polar

ε̂ =







εxx iQ 0

−iQ εyy 0

0 0 εzz







(2.19)

• longitudinal

ε̂ =







εxx 0 −iQ

0 εyy 0

iQ 0 εzz







(2.20)

• transversal

ε̂ =







εxx 0 0

0 εyy iQ

0 −iQ εzz







(2.21)
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2.1.4 Berreman approach

We now have from the previous sections the description of polarized light, and the

description of material parameters through permittivity. In this section we will join

them together to analyze optical response of multilayer structures. We will be us-

ing the Berreman 4×4 matrix approach [84]. In the following theory and examples

we shall deal only with monochromatic waves [85]. All components of electric and

magnetic field are harmonic functions of time with the same angular frequency ω, as

shown in (2.8a) and (2.8b). We assume that light is incident on the upper layer in

the form of a plane wave. Numbering of following layers is shown in Figure 2.3, along

with system coordinates.

(0)

(1)

(2)

(N− 1)

(N)

x
y

z

Figure 2.3: Numbering of layers

We start off with normalization of (2.11a) and (2.11b) as derived by Berreman [84].

E′(r) = 4

√

µ−1
0 ε0E(r), (2.22a)

H′(r) =
4

√

µ−1
0 ε0H(r). (2.22b)

Such notion lead to equations in the form of

∇×H′(r) = −ik0ε̂RE
′(r), (2.23a)

∇× E′(r) = ik0H
′(r), (2.23b)

where k0 =
ω
c
denotes the wave vector in free space. The next step is rewriting these

equations in the compact matrix form. From the tensor theory, we can easily deduce

that the curl operator has this matrix form

∇×







H′
x(r)

H′
y(r)

H′
z(r)






=







0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0













H′
x(r)

H′
y(r)

H′
z(r)






. (2.24)
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That allows us to rewrite (2.23a) and (2.23b) with general permittivity tensor, with

all 9 elements, in the form







0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0













H′
x(r)

H′
y(r)

H′
z(r)






= −ik0







εxx εxy εxz

εyx εyy εyz

εzx εzy εzz













E′
x(r)

E′
y(r)

E′
z(r)







(2.25a)







0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0













E′
x(r)

E′
y(r)

E′
z(r)






= ik0







H′
x(r)

H′
y(r)

H′
z(r)






. (2.25b)

Plane wave solution without time dependence can be reduced to in-plane (x- and y-)

direction as

E′(r) = E ′
0e

′ exp[ik0(νxx+ νyy)], (2.26a)

H′(r) = H ′
0h

′ exp[ik0(νxx+ νyy)], (2.26b)

νx and νy being components of normalized wave vector k = k0(νx+νy+νz) and e′ and

h′ are the polarization state unit vectors. This leads to reduced matrix equations,

where E ′
0 and H ′

0 are equal due to normalization conditions and are factored out







0 − ∂
∂z

ik0νy
∂
∂z

0 −ik0νx

−ik0νy ik0νx 0













h′
x(z)

h′
y(z)

h′
z(z)






= −ik0







εxx εxy εxz

εyx εyy εyz

εzx εzy εzz













e′x(z)

e′y(z)

e′z(z)







(2.27a)







0 − ∂
∂z

ik0νy
∂
∂z

0 −ik0νx

−ik0νy ik0νx 0













e′x(z)

e′y(z)

e′z(z)






= ik0







h′
x(z)

h′
y(z)

h′
z(z)






. (2.27b)

We know that tangential components of electric and magnetic field are continuous at

boundaries, so we need to derive them from the reduced equations

[

0 − ∂
∂z

∂
∂z

0

][

h′
x(z)

h′
y(z)

]

+ ik0

[

νyh
′
z(z)

−νxh
′
z(z)

]

= −ik0

[

εxx εxy

εyx εyy

][

e′x(z)

e′y(z)

]

− ik0

[

εxze
′
z(z)

εyze
′
z(z)

]

,

(2.28a)
[

0 − ∂
∂z

∂
∂z

0

][

e′x(z)

e′y(z)

]

+ ik0

[

νye
′
z(z)

−νxe
′
z(z)

]

= ik0

[

h′
x(z)

h′
y(z)

]

. (2.28b)
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Furthermore, from the reduced equation we shall extract the normal field components

(z-direction)

e′z(z) = ε−1
zz [νyh

′
x(z)− νxh

′
y(z)− εzxe

′
x(z)− εzye

′
z(z)], (2.29a)

h′
z(z) = −νye

′
x(z) + νxe

′
y(z) (2.29b)

and the define the vector of tangential field components

f(z) = [e′x(z), h
′
y(z), e

′
y(z), h

′
x(z)]

T . (2.30)

Now we can implement (2.29a)-(2.29b) and vector f(z) into (2.28a) and (2.28b), giving

us series of differential equations, written in matrix form
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














0 − ∂
∂z

0 0

0 0 0 ∂
∂z

0 0 − ∂
∂z

0

∂
∂z

0 0 0










+ ik0










−ν2
y 0 νyνx 0

νxνy 0 −ν2
x 0

−νyε
−1
zz εzx −νyε

−1
zz νx −νyε

−1
zz εzy νyε

−1
zz νy

νxε
−1
zz εzx νxε

−1
zz νx νxε

−1
zz εzy −νxε

−1
zz νy
















f(z) =

ik0
















−εxx 0 −εxy 0

−εyx 0 −εyy 0

0 0 0 1

0 1 0 0










+










εxzε
−1
zz εzx εxzε

−1
zz νx εxzε

−1
zz εzy −εxzε

−1
zz νy

εyzε
−1
zz εzx εyzε

−1
zz νx εyzε

−1
zz εzy −εyzε

−1
zz νy

0 0 0 0

0 0 0 0
















f(z),

(2.31)
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which can be rewritten, with some rearrangements in the simple form

∂

∂z
f(z) = ik0Cf(z). (2.32)

The matrix C includes material tensor and components of the wave vector in the

form

C =










−νxε
−1
zz εzx 1− νxε

−1
zz νx −νxε

−1
zz εzy νxε

−1
zz νy

−ν2
y + εxx − εxzε

−1
zz εzx −εxzε

−1
zz νx νyνx + εxy − εxzε

−1
zz εzy εxzε

−1
zz νy

−νyε
−1
zz εzx −νyε

−1
zz νx −νyε

−1
zz εzy −νyε

−1
zz νy − 1

−νxνy − εyx + εyzε
−1
zz εzx εyzε

−1
zz νx ν2

x − εyy + εyzε
−1
zz εzy −εyzε

−1
zz νy










(2.33)

Equation (2.32) can be solved in number of ways, we use eigenvectors and eigenvalues

solution. We introduce the matrixT, with eigenvectors of the matrixC on its columns

and matrix V with eigenvalues of C on its diagonal. The relation between C, T and

V can be summarized as

(C−V)T = 0. (2.34)

Now we will introduce the vector of amplitudes g(z) related to the eigenmodes satis-

fying

f(z) = Tg(z). (2.35)

Then (2.32) becomes

∂

∂z
g(z) = ik0T

−1CTg(z) = ik0Vg(z), (2.36)

with the expansion using vector A of amplitudes for z = 0

g(z) = exp(ik0zV)A. (2.37)

The eigenvectors in matrix T correspond to the modes propagating through the

medium without the change of polarization. For layered structure, there are 4 of

them, two propagating up and two propagating down, with generally elliptic polar-

ization. To determine optical properties of our system, we need to put up the matrix

C for every layer, including superstrate and substrate, and find its corresponding

matrices V and T.

Numerical calculation of eigenmodes and eigenvectors returns unordered values.

To find measurable quantities, we need to specifically define elements of T and V in
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the top and bottom media - which column corresponds to which mode. We do this by

doing an analytical calculation for isotropic material and choosing the propagating

waves in the top and bottommedia as linearly polarized. For calculation of reflectivity,

only the top layer needs to have known order of modes. Modes inside the structure

need to be organized only based in up-down fashion. This calculation is also extended

to biaxial anisotropic material.

Isotropic case

For the simplified calculation of T and V matrices, we shall use the isotropic permit-

tivity tensor (diagonal). We are also assuming no azimuthal angle, so that νx = 0 and

in our configuration, the component νy is defined as νy =
√
ε0 sin θ, where ε0 is the

permittivity of the isotropic superstrate and θ is the angle of incidence. The matrix

C will take form

C =










0 1 0 0

εxx − ν2
y 0 0 0

0 0 0 νyε
−1
xxνy − 1

0 0 ε−1
xx 0










. (2.38)

The eigenvalue problem is now considerably simpler, we have the eq.

(C− νzI)f = 0, (2.39)

where I is 4 × 4 identity matrix. Determinant of the bracketed expression must be

zero and therefore we arrive at formula

(ν2
z + ν2

y − εxx)
2 = 0, (2.40)

with couple of two identical solutions:

νz,1 = νz,3 =
√

εxx − ν2
y ,

νz,2 = νz,4 = −
√

εxx − ν2
y .

(2.41)

Eigenvectors are derived from (2.39) and for the magnetic components we have the

relations

h′
x = −εxx

νz
e′y, h′

y = νze
′
x. (2.42)
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Normalized polarization vector has the property

‖e′‖ = e′2x + e′2y + e′2z = 1 (2.43)

and first we take e′x = 1 and second e′x = 0 to express the eigenvectors of TE and TM

polarized wave. We arrange them in the matrix T,

Tisotropic =










1 1 0 0
√

εxx − ν2
y −

√
εxx − ν2

y 0 0

0 0 (
√
εxx)

−1
√

εxx − ν2
y (

√
εxx)

−1
√

εxx − ν2
y

0 0 −√
εxx

√
εxx










(2.44)

with ordering TE-down, TE-up, TM-down and TM-up on its columns.

Biaxial case with symmetry axis aligned with coordinate system

Most anisotropic problems are better solved numerically. Analytical solution can

however provide understanding of the problem at hand. Such case might be with

anisotropic biaxial layer, where all diagonal components of the permittivity tensor

are different, as shown in (2.16). In this case, the determinant of the expression

C − νzI is not straightforward. Here we adopt a method from another formalism,

Yeh’s [86], which leads to the same results as the Berreman formalism. Lets start

with the wave equation of an electromagnetic wave

k2
0 ε̂E− k2E+ k[kE] = 0, (2.45)

which, assuming biaxial permittivity can be rewritten in the matrix form as






εxx − ν2
y − ν2

z 0 0

0 εyy − ν2
z νyνz

0 νyνz εzz − ν2
y






=







Ex

Ey

Ez






, (2.46)

where the electric field can be expressed through the eigen-polarization ej, j = x, y, z

as

Ej0 = Ajej, (2.47)

Aj is the amplitude. Magnetic field is then similarly

Hj =
1

ωµ0
kj ×Ej =

√
ε0
µ0

hj . (2.48)
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As with the isotropic case, we need to find the eigenvectors propagating through the

structure. We start with finding the solution for νz. For (2.46) to have non-trivial

solutions, determinant of the matrix must equal zero. The symmetry of the matrix

allows us to divide the solution into two parts. The only non-zero element in the top

row leads to two solutions

νz,1,3 = ±
√

εxx − ν2
y , (2.49)

as with the isotropic case and the solution to the remaining 2 × 2 matrix (its deter-

minant equal zero) is

νz,2,4 = ±

√

εyy(εzz − ν2
y)

εzz
(2.50)

We can again set the desired polarization as s (ex = 1), with results same as in

isotropic case and p (hx = 1). To find the hx elements, we start with last row

νyνzEy + (εzz − ν2
y)Ez = 0. (2.51)

For that equation to be true, we set

νyνz = −Ez

(εzz − ν2
y) = Ey,

(2.52)

so that

E0 =







0

εzz − ν2
y

−νyνz







(2.53)

and thus the magnetic field is

H0 =







νyEz − νzEy

0

0






, (2.54)

with the elements Hx as

Hx = νy(−νyνz)− νz(εzz − ν2
y) = −νzεzz = ±

√

εzzεyy(εyy − ν2
y), (2.55)
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plus for up mode and minus for down mode. The T-matrix of the biaxial layer is

Tbiaxial =










1 1 0 0
√

εxx − ν2
y −

√
εxx − ν2

y 0 0

0 0 εzz − ν2
y εzz − ν2

y

0 0 −
√

εzzεyy(εzz − ν2
y)

√

εzzεyy(εzz − ν2
y)










,

(2.56)

with the same ordering of modes as the isotropic T matrix.

Boundary conditions, M-matrix

Now we obtained the eigenmodes and eigenvalues for each layer of our system and we

need to connect then together. Geometry of our system is shown in Figure 2.4. We

do this by connecting tangential field component vector at boundaries. As we know,

the tangential components must equal at the boundary. The tangential components

vector in the n-th layer is expressed using matrices T, V, and the vector of amplitudes

A:

F(n)(r, t) = T(n) exp
[
ik0znV

(n)
]
A(n) exp [i(k0νxx+ k0νyy − ωt)] . (2.57)

zn

z(n+1)

(n)

(n + 1)

(n + 2)

An

A(n+1)

A(n+2)

y

z

Figure 2.4: Ordering of the layers

Since the tangential components must equal at each boundary, we can write

T(n) exp
[
ik0znV

(n)
]
A(n) = T(n+1) exp

[
ik0znV

(n+1)
]
A(n+1). (2.58)

Expression exp [i(k0νxx+ k0νyy − ωt)] is same throughout the system, therefore is

factored out of the equation. By the same approach, we link any neighboring layers.

Notion for n + 1 layer with n+ 2 layer yields

T(n+1) exp
[
ik0zn+1V

(n+1)
]
A(n+1) = T(n+2) exp

[
ik0zn+1V

(n+2)
]
A(n+2). (2.59)

Expression exp
[
−ik0zn+1V

(n+1)
]
is for simplification labeledP(n+1) and has the mean-

ing as propagation factor through the layer with thickness zn−zn+1. Note the negative
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sign in the exponent, it is because we shall do the inverse of this matrix. And so we

can express A(n+1) as

A(n+1) = P(n+1)
[
T(n+1)

]−1
T(n+2) exp

[
ik0zn+1V

(n+2)
]
A(n+2) (2.60)

and substitute it into (2.58), resulting in

T(n) exp
[
ik0znV

(n+1)
]
A(n) =

T(n+1)P(n+1)
[
T(n+1)

]−1
T(n+2) exp

[
ik0zn+1V

(n+2)
]
A(n+2).

(2.61)

By connecting all the following N layers using N-1 boundary conditions, we shall get

a matrix, describing the whole system of layers, called M-matrix, or total transfer

matrix [87], derived as

A(0) =
[
T(0)

]−1
N−1∏

m=1

(

T(m)P(m)
[
T(m)

]−1
)

T(N)A(N) = MA(N). (2.62)

2.1.5 Experimental observables

Reflection and transmission

In this section, we will be shown how to determine reflection coefficients and re-

flectivity from M-matrix. Elements of matrix M describe the relation between light

amplitudes in the superstrate and substrate. For our case we shall consider light inci-

dent only from the superstrate. Providing the superstrate and substrate are isotropic

and therefore the vectors are ordered, the notation (2.62) has the form










A
(0)
s−down

A
(0)
s−up

A
(0)
p−down

A
(0)
p−up










=










M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



















A
(N)
s−down

0

A
(N)
p−down

0










. (2.63)

Reflection coefficients are complex numbers that denote the ratio between reflected

and incident wave. By the same logic, transmission coefficients are the ratio between

propagated and incident wave, assuming that the amplitude of the other polarization

is 0. They are expressed as

r
(kl)
ij =

A
(k)
j

A
(k)
i

, t
(kl)
ij =

A
(l)
j

A
(k)
i

, (2.64)
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where k, l = {0, N + 1}, i and j can be either s or p, representing the polarization.

We can easily deduce the analytical form of the four reflection coefficients:

rss =
M21M33 −M23M31

M11M33 −M31M31
(2.65a)

rpp =
M41M33 −M43M31

M11M33 −M31M31
(2.65b)

rsp =
M11M23 −M21M13

M11M33 −M31M31
(2.65c)

rps =
M11M43 −M41M13

M11M33 −M31M31
. (2.65d)

However, detected quantity is intensity, not amplitude. Intensity is defined as power

through perpendicular surface and can be defined as

I =
A2

2η
=

ε2

2

√
µ0

ε0
A2. (2.66)

Reflectivity, defined as ratio between reflected intensity and incident intensity has

now this notion

R =
IrSr

IiSi
. (2.67)

Surfaces of incident and reflected light are the same and we are in the same medium,

so therefore

Rij =
Ir
Ii

= |rij|2. (2.68)

Based on the established definitions in optical textbooks, [88] reflectivity is a material

parameter, while reflectance is applied to multilayer systems, where the interference

effects need to be accounted for. Here, they are both calculated using the same

formula, as the absolute value of reflection coefficient squared. There is no distinction

in this thesis between the reflectivity and reflectance.

2.1.6 Jones, Mueller matrices and Stokes vector

For the mathematical description of polarized light and components of optical setup

it is very convenient to use either Jones formalism or Mueller formalism. They are

equivalent for non-depolarizing samples. The Jones formalism uses vectors to describe

the polarized light and matrices to describe optical components. The Jones vector

consists of complex envelopes, as

J =

[

Ax

Ay

]

(2.69)
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Linear polarization occurs, when one of the elements Ax or Ay is zero or their phase

difference is zero or π. Followings relations show the s- and p- representation, respec-

tively.

Js =

[

1

0

]

,Jp =

[

0

1

]

. (2.70)

The intensity of the polarizer light is calculated as the product of Jones vector and

its Hermitian adjoint J+, as

I = JJ+ = A2
x + A2

y. (2.71)

The polarization devices are described as a system that takes input wave J1 and

returns output wave J2,

J2 = TJJ1. (2.72)

Hence TJ is a 2× 2 matrix with components

TJ =

[

T1,1 T1,2

T2,1 T2,2

]

. (2.73)

Frequently, in modern ellipsometry, a Mueller matrix description is needed. Here,

the time-averaged polarized light is described by a 4-element Stokes vector, defined

as

S =










S0

S1

S2

S3










=










I0

Ix − Iy

I45 − I−45

IRCP − ILCP










=










AxA
∗
x + AyA

∗
y

AxA
∗
x − AyA

∗
y

2ℜ(A∗
xAy)

2ℑ(A∗
xAy)










. (2.74)

The meaning of the elements is total intensity, difference between linearly polarized

light in x and y direction, difference between linearly polarized light in 45◦ and −45◦

and difference between right handed circularly polarized light and left handed circu-

larly polarized light.

The Mueller matrix is the system that turns input wave S1 into output S2. It is

therefore a 4× 4 matrix. For non-depolarizing samples it can be calculated from the

Jones matrix, through a coherency matrix TC

TC =










T1,1T
∗
1,1 T1,1T

∗
1,2 T1,2T

∗
1,1 T1,2T

∗
1,2

T1,1T
∗
2,1 T1,1T

∗
2,2 T1,2T

∗
2,1 T1,2T

∗
2,2

T2,1T
∗
1,1 T2,1T

∗
1,2 T2,2T

∗
1,1 T2,2T

∗
1,2

T2,1T
∗
2,1 T2,1T

∗
2,2 T2,2T

∗
2,1 T2,2T

∗
2,2










(2.75)
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and transformation matrix

B =










1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0










(2.76)

as

M = BTCB
−1. (2.77)

An example of Jones formalism in practice used in this work is a configuration

polarizer-sample-analyzer. The polarizer and analyzer are polarization filters, rotated

to desired angles θ1,2, respectively. The sample is described as the Jones matrix

TJS =

[

rss rsp

rps rpp

]

. (2.78)

The whole system is then

J2 =

[

cos2 θ2 cos θ2 sin θ2

cos θ2 sin θ2 sin2 θ2

][

rss rsp

rps rpp

][

cos θ1

sin θ2

]

. (2.79)

The intensity of J2 is the measured and modeled quantity. This approach is used in

Section 3.4.3 dor measurement of anisotropic data.

2.2 Rigorous Coupled Wave Analysis

The method for dealing with layers with periodic modulation of permittivity is called

the Rigorous coupled wave analysis (RCWA). Fourier series are used for the descrip-

tion of lateral dependence of permittivity tensor and basically the algorithm for layers

is repeated with expanded permittivity tensors and according to the Floquet-Bloch

theorem also wave vectors of the gratings. As with layers, we start with Maxwell

equations (2.11a) and (2.11b). This time, however the permittivity tensor will not

have only 9 elements, but will be expanded using the Fourier series. Provided that

permittivity has periodicity in y-direction (our case), Fourier series are in the form

εij(r) =
∞∑

n=−∞
εij,n exp

[

in
2π

Λ
y

]

, (2.80)

where Λ is the period of the profile and εij,n is the n-th Fourier coefficient of the series.

The process is illustrated in Figure 2.5. The electromagnetic field in such media is
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Figure 2.5: Illustration of the idea behind the RCWA. The permittivity profile of
the grating (here rectangular) is expanded using the Fourier series. Fourier series are
infinite, but we can take only finite number of modes. This causes a the ringing on
permittivity profile.

also expanded using Fourier series with the same period. Expansion needs to be done

for all the layers and it will give us all the diffracted modes which arise from this

system. Next steps in the derivation can be simplified for the implementation to the

matrix form. First, let us have the expanded field vectors

E′(r) =

∞∑

n=−∞
en(z) exp[ik0(νxx+ νyy)] exp

[

in
2π

Λ
y

]

, (2.81a)

H′(r) =

∞∑

n=−∞
hn(z) exp[ik0(νxx+ νyy)] exp

[

in
2π

Λ
y

]

. (2.81b)

Using (2.11a) and (2.11b) with the previous eq. yields

∇×
∞∑

n=−∞
hn(z) exp[ik0(νxx+ νyy)] exp

[

in
2π

Λ
y

]

=

= −ik0

∞∑

n=−∞

∞∑

m=−∞
ε̂ij,nem(z) exp[ik0(νxx+ νyy)] exp

[

in
2π

Λ
y

]

, (2.82a)

∇×
∞∑

n=−∞
en(z) exp[ik0(νxx+ νyy)] exp

[

in
2π

Λ
y

]

=

= ik0

∞∑

n=−∞
hn(z) exp[ik0(νxx+ νyy)] exp

[

in
2π

Λ
y

]

(2.82b)

By using the compact matrix notation, we arrive at

∇× {F⌈h(z)⌉ exp[ik0(νxx+ νyy)]} = −ik0F〈ε̂〉⌈e(z)⌉ exp[ik0(νxx+ νyy)] (2.83a)

∇× {F⌈e(z)⌉ exp[ik0(νxx+ νyy)]} = ik0F⌈h(z)⌉ exp[ik0(νxx+ νyy)], (2.83b)

where the matrix F is (2N + 1) × (2N + 1) matrix with Fourier exponents on its

diagonal, N being the number of chosen diffraction orders (total number of orders is

2N+1 - negative, zeroth, and positive), symbol ⌈.⌉ denotes the amplitudes of Fourier
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series expansion and 〈.〉 is the Toeplitz matrix, defined as

〈A〉 =













a0 a−1 a−2 · · · aN

a1 a0 a−1
. . .

...

a2 a1 a0
. . . a−2

...
. . .

. . .
. . . a−1

aN · · · a2 a1 a0













. (2.84)

For clarification, the F matrix can be written using the Kronecker delta

F = δij exp

[(

(i(j −N − 1)n
2π

Λ
y

])

. (2.85)

The rest of the algorithm is basically the same as for layered system, however here

we need to be mindful about order of operation, since nearly all values have matrix

or vector form. Now we evaluate the curl operator and we can easily see, that the F

matrices cancel each other out. This gives us equations






0 − ∂
∂z

ik0q

∂
∂z

0 −ik0p

−ik0q ik0p 0













⌈hx(z)⌉
⌈hy(z)⌉
⌈hz(z)⌉






= −ik0







〈εxx〉 〈εxy〉 〈εxz〉
〈εyx〉 〈εyy〉 〈εyz〉
〈εzx〉 〈εzy〉 〈εzz〉













⌈ex(z)⌉
⌈ey(z)⌉
⌈ez(z)⌉







(2.86a)







0 − ∂
∂z

ik0q

∂
∂z

0 −ik0p

−ik0q ik0p 0













⌈ex(z)⌉
⌈ey(z)⌉
⌈ez(z)⌉






= ik0







⌈hx(z)⌉
⌈hy(z)⌉
⌈hz(z)⌉






, (2.86b)

where the p and q are (2N+1)×(2N+1) matrices represent the tangential components

of the diffracted modes, with elements defined as

pij = δijνx, (2.87a)

qij = δij

[

νy + (j −N − 1)
λ

Λ

]

. (2.87b)

Vector f(z) ((2.30)) is also expanded in the form

⌈f(z)⌉ = [⌈ex(z)⌉, ⌈hy(z)⌉, ⌈ey(z)⌉, ⌈hx(z)⌉]T . (2.88)

With repeating the procedures from the layer algorithm (expression of normal com-

ponents, rearrangement), we obtain similar set of differential equations:

∂

∂z
⌈f(z)⌉ = ik0C⌈f(z)⌉. (2.89)
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C-matrix is now 4(2N+1) × 4(2N+1) large, with νx and νy replaced by p and q

matrices, respectively, and every element of permittivity tensor expanded in the form

of the Toeplitz matrix, resulting in

C = [C1,C2,C4,C4] , (2.90a)

C1 =










−p〈εzz〉−1〈εzx〉
−q2 + 〈εxx〉 − 〈εxz〉〈εzz〉−1〈εzx〉

−q〈εzz〉−1〈εzx〉
−pq− 〈εyx〉+ 〈εyz〉〈εzz〉−1〈εzx〉










, (2.90b)

C2 =










I− p〈εzz〉−1p

−〈εxz〉〈εzz〉−1p

−q〈εzz〉−1p

〈εyz〉〈εzz〉−1p










, (2.90c)

C3 =










−p〈εzz〉−1〈εzy〉
qp+ 〈εxy〉 − 〈εxz〉〈εzz〉−1〈εzy〉

−q〈εzz〉−1〈εzy〉
p2 − 〈εyy〉+ 〈εyz〉〈εzz〉−1〈εzy〉










, (2.90d)

C4 =










p〈εzz〉−1q

〈εxz〉〈εzz〉−1q

−q〈εzz〉−1q− I

−〈εyz〉〈εzz〉−1q










. (2.90e)

Equation (2.89) is solved in the same way as with the layered structure. For each

layer we find T and V matrices by calculating the eigenvalues and eigenvectors of

expanded matrix C. Solution for isotropic layer is not only possible, but necessary.

With knowledge of which vector corresponds to what wave, we are able to calculate

experimental observables. The algorithm is rather robust, so we just need to know

the ordering for superstrate and substrate and solution in the inner layers can be just

ordered in up-down fashion, which easily recognizable from sign convention.
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2.2.1 Scattering matrix algorithm

There is one significant problem with calculating measurable quantities of layers with

gratings. Due to use of higher diffraction orders, the arguments of exponential func-

tion are higher and the algorithm looses its numerical precision. Therefore we use

a different algorithm called the scattering matrix algorithm, or the S-matrix algo-

rithm [89]. The idea behind S-matrix algorithm is to separate up and down modes

and sum or subtract them them in opposite direction, thus modifying the exponential

arguments. It is also convenient to use the S-matrix, because its components have

direct meaning as reflection and transmission coefficients of the system.

S-matrix definition

A(n)

(n+1)

(n+2)

b

bn+1

n

A

A

(n)

(n+1)

(n+2)

up

up

up

A
(n)
down

Adown

Adown

(n+1)

(n+2)

s s S

s

(n) (n)

(n+1)

~

Figure 2.6: S-matrix geometry

S-matrix algorithm can be explained in few steps. Figure 2.6 shows the necessary

geometry. Let us have the T- and V-matrices for our layers/gratings. These matrices

must be rearranged and up and down modes must be separated. Then we can use

the formula for relation between amplitudes

A
(n)
(bn)

= (T(n))−1T(n+1)

︸ ︷︷ ︸

M(n)

A
(n+1)
(bn)

. (2.91)

With separated modes the previous equation is

[

A
(n)
up(bn)

A
(n)
down(bn)

]

=

[

M
(n)
11 M

(n)
12

M
(n)
21 M

(n)
22

][

A
(n+1)
up(bn)

A
(n+1)
down(bn)

]

(2.92)

and we rearrange this relation to satisfy our S-matrix idea of connecting in and out
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amplitudes, as
[

A
(n)
up(bn)

A
(n+1)
down(bn)

]

=

[

s
(n)
11 s

(n)
12

s
(n)
21 s

(n)
22

]

︸ ︷︷ ︸

s(n)

[

A
(n+1)
up(bn)

A
(n)
down(bn)

]

, (2.93)

where the elements of s(n) matrix are easily derived as follows:
[

s
(n)
11 s

(n)
12

s
(n)
21 s

(n)
22

]

=




M

(n)
11 −M

(n)
12 M

(n)
22

−1
M

(n)
21 M

(n)
12 M

(n)
22

−1

−M
(n)
22

−1
M

(n)
21 M

(n)
22

−1



 =

[

T̃ R

R̃ T

]

. (2.94)

Now for a single boundary, relation (2.93) is satisfactory and gives us the necessary

measurable quantities. For layers and gratings, there are two more challenges: includ-

ing the propagation in the layers to the algorithm and tying of consequential layers

together in the s-matrix of the whole system. First, let us look at the propagation

problem. As we now know, propagation in layers is described by matrix P. Here we

repeat the separation of up and down modes and include the propagation matrices

in the algorithm:

A
(n+1)
up(bn)

= P(n+1)
up A

(n+1)
up(bn+1)

(2.95a)

A
(n+1)
down(bn)

= P
(n+1)
down A

(n+1)
down(bn+1)

. (2.95b)

Now we can define matrix s̃ and its elements:
[

A
(n)
up(bn)

A
(n+1)
down(bn+1)

]

=

[

s
(n)
11 P

(n+1)
up s

(n)
12

P
(n+1)
down s

(n)
21 P

(n+1)
up P

(n+1)
down s

(n)
22

]

︸ ︷︷ ︸

s̃(n)

[

A
(n+1)
up(bn+1)

A
(n)
down(bn)

]

. (2.96)

Note that if P
(n+1)
up and P

(n+1)
down were equal, the equation (2.96) would have to have the

P
(n+1)
down matrices inverted. However, for the sake of numerical implementation of this

algorithm and the nature of P-matrices, it is easier to express them in the following

fashion a thus eliminating the necessity of using inversion in our algorithm:

P(n+1)
up = exp(−ik0dn+1Vup), (2.97a)

P
(n+1)
down = exp(ik0dn+1Vdown). (2.97b)

The goal is to link incident and outgoing amplitudes of the whole system. Unlike

M-matrix, here we have to connect all s̃ matrices recurrently. In the equation
[

A
(n)
up(bn)

A
(n+2)
down(bn+1)

]

= S

[

A
(n+2)
up(bn+1)

A
(n)
down(bn)

]

(2.98)
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the elements of the S - matrix are defined:

S11 = s̃
(n)
11 (I− s̃

(n+1)
12 s

(n)
21 )

−1s
(n+1)
11 , (2.99a)

S12 = s̃
(n)
12 + s̃

(n)
11 (I− s̃

(n+1)
12 s

(n)
21 )

−1s
(n+1)
12 s̃

(n)
22 , (2.99b)

S21 = s
(n+1)
22 s̃

(n)
21 (I− s̃

(n+1)
12 s

(n)
21 )

−1s
(n+1)
11 + s

(n+1)
21 , (2.99c)

S22 = s
(n+1)
22 [I+ s̃

(n)
21 (I− s̃

(n+1)
12 s

(n)
21 )

−1s
(n+1)
12 ]s̃

(n)
22 . (2.99d)

In the same fashion as with (2.98) and (2.99), always adding the following s̃ matrix to

the newly calculated S-matrix, we can deduce the complete S-matrix of the system,

that being:
[

A
(0)
up(b0)

A
(N)
down(bN−1)

]

= S

[

A
(N)
up(bN−1)

A
(0)
down(b0)

.

]

(2.100)

Physical meaning of the S-matrix elements

One of the benefits of using S-matrix is the fact that we obtain the direct measurable

quantities. S-matrix can be broken into 4 sectors

[

A
(0)
up(b0)

A
(N)
down(bN−1)

]

=

[

t̃ r

r̃ t

][

A
(N)
up(bN−1)

A
(0)
down(b0)

.

]

. (2.101)

Each sector contains optical coefficients matching its label. The symbol tilde sym-

bol here denotes the backward coefficients, for layer incident on the substrate. The

structure of each sector can be easily deduced from (2.64). For N = 1, sector r is

composed

r =















� � � � � �

r
(−1)
ss r

(0)
ss r

(1)
ss r

(−1)
ps r

(0)
ps r

(1)
ps

� � � � � �

� � � � � �

r
(−1)
sp r

(0)
sp r

(1)
sp r

(−1)
pp r

(0)
pp r

(1)
pp

� � � � � �















. (2.102)

Elements replaced with box have very little physical meaning and are hard to obtain

from experiments. Elements for other sectors are defined in a similar way.



32

2.2.2 Grating profiles

Harmonic modulation

In this subsection we shall look on how the calculation is done for harmonic modu-

lation of dielectric function. First, we need to take a look on the Fourier series, the

hearth of grating solutions. Let‘s have a real valued function f(y) with periodicity

Λ. Its corresponding complex Fourier series is defined as

f(y) =

∞∑

n=−∞
Ane

i(n2πy/Λ). (2.103)

The Fourier component An can be expressed as

An =
1

Λ

∫ Λ
2

−Λ
2

f(y)e−i(n2πy/Λ)dy. (2.104)

For harmonic modulation of permittivity tensor, we can choose either sine or cosine

function. The remaining function can be always calculated using phase shift π
2
. Cosine

function is odd and thereby the integration is somewhat simpler. So let‘s choose

f(y) = a cos

(
2πy

Λ
+ φ

)

+ b, (2.105)

where φ is the phase shift. Integration (2.104) yields only three nonzero amplitudes

A−1 =
1

2
ae−iφ,

A0 = b,

A+1 =
1

2
aeiφ.

(2.106)

However, for numerical accuracy, higher zero modes must be taken into account. The

number of diffraction modes needed in the calculation is determined by a convergence

tests, where we follow a observable quantity with increasing number of diffraction

orders and find a sufficient number of orders, where the value converges. For the

implementation, we need to determine the values of a and b. We set upper εmax and

lower εmin limit, between which the permittivity value should oscillate. That gives us

a =
εmax − εmin

2
,

b =
εmax + εmin

2
.

(2.107)
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The Toeplitz matrix of N = 1 has the form

εij =







εmax+εmin

2
εmax−εmin

4
e−iφ 0

εmax−εmin

4
eiφ εmax+εmin

2
εmax−εmin

4
e−iφ

0 εmax−εmin

4
eiφ εmax+εmin

2






. (2.108)

For higher orders, the rules to follow for Toeplitz matrix elements ai,j, i, j being the

indices in matrix, are

ai=j = A0

ai=j−1 = A−1

aj=i−1 = A+1,

(2.109)

with all other elements zero.

Lamellar grating

Another important (perhaps the defining) example of grating is the 1D lamellar grat-

ing, shown in Figure 2.7. It consist of two lamellas made from materials ε1 and ε2 and

repeated with period Λ. The lamellas have the same thickness d and the respective

widths w1 and w2. The ratio of the widths is called the fill factor f = w2

w1
. The

Toeplitz matrix needed for the calculation of RCWA is derived the same way as for

the harmonic grating. Now the function f(y) in (2.104) is a step function with values

ε1 and ε2

d

y

z

Λ

w1 w2ε1 ε2

Figure 2.7: 1D lamellar grating

The Fourier amplitudes up to order N for the lamellar grating are

A0 = fε1 + (1− f)ε2

An=2:N =
ε1

−2iπn
[exp(−2iπnf)− 1] +

ε2
−2iπn

[exp(−2iπn)− exp(−2iπnf)]

A−n=−2:−N =
ε1

2iπn
[exp(2iπnf)− 1] +

ε2
2iπn

[exp(2iπn)− exp(2iπnf)].

(2.110)
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These elements make up the Toeplitz matrix of the lamellar grating. Li’s Fourier

factorization is used to improve the accuracy of numerical calculations of lamellar

gratings made of conductive materials [90]. The same approach for factorization of

lamellar gratings is used for derivation of effective medium approximation, described

in the next section.

2.2.3 Effective medium approximation

When the period of grating is much smaller then the wavelength, it behaves as an

anisotropic layer without any diffraction - only the specular reflection and transmis-

sion from the grating occur. In this case the optical response of the grating can be

described using the effective medium. The effective anisotropy can be mathematically

described and gives us analytical insight into the behavior of subwavelength gratings

without a need to rely on the complex and demanding numerical computation. This

approach has been established for lamellar gratings, here we extend it to the harmonic

gratings.

Λε̂(1) ε̂(2)

ε̂eff.

εij

y

ε
(2)
ij

ε
(1)
ij

Λ

z

y

x

Figure 2.8: Grating with sinusoidal variation of permittivity tensor by is described
by the effective medium approximation. The coordinate system used in this paper is
shown.

Figure 2.8 shows schematically the main target of this section. The anisotropic

grating with sinusoidal profiles of the permittivity tensor components is described

using the effective permittivity tensor ε̂eff.. Lower subplot shows lateral variation of

the permittivity tensor component εij , which oscillate between the values ε
(1)
ij and ε

(2)
ij .

Calculation of the effective parameters using the rigorous RCWA method is presented

in Sec. 4.3.3 and validity of EMA is discussed.
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Λε̂(1) ε̂(2)

εij

y

ε
(2)
ij

ε
(1)
ij

dy

Figure 2.9: Description of continuously modulated sinusoidal grating using fine lamel-
lar grating.

In this section the procedure to derive analytical forms of the effective medium

tensor components in the quasistatic approximation (Λ ≪ λ) is presented. It is based

on ensuring of the boundary conditions for the field components perpendicular to the

grating gradient. For this purpose we approximate the continuosly modulated grating

using a lamellar grating as schematically shown in Figure 2.9.

Here we generalize the procedure to obtain the effective parameters of lamellar

grating presented by Foldyna et al. [76]. The effective permittivity is calculated as

a weighted average of the permittivity profile including proper Fourier factorization,

which represents the zero-order (quasistatic) approximation of RCWA [76]. The fac-

torization is performed in y-direction, which represents the highest gradient of the

profile. This approach is extandable to any arbitrary modulation of the permittivity

tensor components εij(y).

We perform the calculation in three steps. First, the permittivity tensor is trans-

formed in order to ensure continuity boundary conditions inside the grating. On

layers, we have to tangential components of electric field continuous, but with the ad-

dition of gratings in y direction, the boundary is normal to the field in the y direction.

This leads to discontinuity in the field calculation. We take the material relation of

electric displacement and field






Dx

Dy

Dz






= ε̂







Ex

Ey

Ez







(2.111)

and regroup it into
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





Dx

Dz

Ey






= Ê(y)







Ex

Ez

Dy






, (2.112)

which relates continuous (right) and discontinuous (left) field components. Tensor

Ê(y) is defined as

Ê(y) =







εxx − εxyε
−1
yy εyx εxz − εxyε

−1
yy εyz εxyε

−1
yy

εzx − εzyε
−1
yy εyx εzz − εzyε

−1
yy εyz εzyε

−1
yy

−ε−1
yy εyx −ε−1

yy εyz ε−1
yy






. (2.113)

In the second step its components are averaged using the integral

E eff
ij =

1

Λ

∫ Λ

0

Eij(y) dy (2.114)

and finally we transform the effective components of the tensor E eff back to the

effective permittivity tensor






Dx

Dy

Dz






= ε̂eff







Ex

Ey

Ez







(2.115)

of the grating with modulated optical parameters

ε̂eff =







E eff
11 − E eff

13

[
E eff
33

]−1 E eff
31 E eff

13

[
E eff
33

]−1 E eff
12 − E eff

13

[
E eff
33

]−1 E eff
32

−
[
E eff
33

]−1 E eff
31

[
E eff
33

]−1 −
[
E eff
33

]−1 E eff
32

E eff
21 − E eff

23

[
E eff
33

]−1 E eff
31 E eff

32

[
E eff
33

]−1 E eff
22 − E eff

23

[
E eff
33

]−1 E eff
32






. (2.116)

First we consider the grating with arbitrary modulation of isotropic optical prop-

erties in y-axis direction ε(y) = [n(y)]2. The effective medium exhibits a form uniaxial

anisotropy described according to Eqs. (2.113-2.116) using the ordinary and extraor-

dinary permittivity:

εeffo =
[
neff
o

]2
= εeffxx = εeffzz =

1

Λ

∫ Λ

0

ε(y)dy,
1

εeffe
=

1

[neff
e ]2

=
1

εeffyy
=

1

Λ

∫ Λ

0

dy

ε(y)
.

(2.117)

The procedure can be applied for arbitrary profile of the permittivity tensor in

the y-direction grating. Table 2.1 summarizes ordinary and extraordinary effective
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Table 2.1: Effective medium approximation for various permittivity profiles.
Permittivity profile εeffo – ordinary (εeffxx = εeffzz ) εeffe – extraordinary (εeffyy)

Lamellar

ε(y)

y

ε(2)

ε(1)

Λ

fΛ

εeffo = fε(1) + (1− f)ε(2)
1

εeffe
=

f

ε(1)
+

1− f

ε(2)

Sinusoidal

ε(y)

y

ε(2)

ε(1)

Λ

εeffo =
ε(1) + ε(2)

2
εeffe =

√
ε(1)ε(2)

permittivity for lamellar and sinusoidal modulations of grating optical properties. The

ordinary effective permittivity of the lamellar grating is obtained as weighted sum of

both permittivity, while in the case the extraordinary permittivity (perpendicular to

lamellas) we have to sum the inverse permittivities of lamellas. Those formulas have

been applied to explain the form birefringence [76, 88, 91–94].

The second line of the table shows the effective parameters of the grating with

sinusoidal modulation of optical properties

ε(y) =
ε(1) + ε(2)

2
+

ε(2) − ε(1)

2
sin

2π y

Λ
. (2.118)

The effective permittivity εeffe was obtained with help of the definite integral
∫ 2π

0

dx

a+ b sin x
=

2 π√
a2 − b2

. (2.119)

The effective medium is anisotropic with the geometric mean of the minimal and

maximal permittivity along the modulation gradient (in agreement with [61]), while

the permittivities along x and z-direction are obtained as the arithmetic means.

Case without mode conversion

Here we consider the case, for which the diagonal permitivities can differ, describing a

biaxial crystal in special non-mode conversion geometry (symmetry axes are parallel

to the coordinate ones). This case is described by the diagonal permittivity tensor:

ε̂(y) =







εxx(y) 0 0

0 εyy(y) 0

0 0 εzz(y)






, (2.120)
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where

εii(y) =
ε
(1)
ii + ε

(2)
ii

2
+

ε
(2)
ii − ε

(1)
ii

2
sin

2π y

Λ
(2.121)

Note that an isotropic medium is a special case for εxx(y) = εyy(y) = εzz(y). Using

the procedure described in previous section, the effective properties of the grating are

obtained in the form:

ε̂eff =










ε
(1)
xx + ε

(2)
xx

2
0 0

0

√

ε
(1)
yy ε

(2)
yy 0

0 0
ε
(1)
zz + ε

(2)
zz

2










(2.122)

Mode conversion case – magneto-optical configuration

In special configurations like samples with magnonic waves [60,95], there is combina-

tion of polar and longitudinal mode and the modulation is in those elements only.

ε̂(y) =







εxx εxy(y) −εzx(y)

−εxy(y) εyy 0

εzx(y) 0 εzz(y)






, (2.123)

where

εxy(y) =
ε
(1)
xy + ε

(2)
xy

2
+

ε
(2)
xy − ε

(1)
xy

2
sin

2π y

Λ
, (2.124)

εzx(y) =
ε
(1)
zx + ε

(2)
zx

2
+

ε
(2)
zx − ε

(1)
zx

2
cos

2π y

Λ
(2.125)

The effective permittivity tensor is obtained in the form

ε̂eff =












εxx +

(

ε
(2)
xy − ε

(1)
xy

)2

8εyy

ε
(1)
xy + ε

(2)
xy

2
−ε

(1)
xz + ε

(2)
xz

2

−ε
(1)
xy + ε

(2)
xy

2
εyy 0

ε
(1)
xz + ε

(2)
xz

2
0 εzz












(2.126)

General case

The most general case is where there is modulation between arbitrary anisotropic

materials. The permittivity tensor is



39

ε̂(y) =







εxx(y) εxy(y) εxz(y)

εyx(y) εyy(y) εyz(y)

εzx(y) εzy(y) εzz(y)






, (2.127)

where

εij(y) =
ε
(1)
ij + ε

(2)
ij

2
+

ε
(2)
ij − ε

(1)
ij

2
sin

2π y

Λ
(2.128)

The effective permittivity tensor is obtained in the form
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ε̂eff =







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where A =
(
ε(2)yy − ε(1)yy

)
/2 and B =

√

ε
(1)
yy ε

(2)
yy −

(
ε(1)yy + ε(2)yy

)
/2
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Chapter 3

Magneto-optical characterization of binary III-V

semiconductors

3.1 Energy scale

Before describing the physical properties of semiconductors, it is useful to establish

a bigger picture, to relate the energy and frequency scale to other quantities and

the physical properties of both the measurement techniques and the semiconductor

samples.

We describe light as electromagnetic wave with its certain frequency f (Hz), an-

gular frequency ω (rad/s), wavelength λ (m), wavenumber λ−1(cm−1), energy E (eV)

or equivalent temperature T (K). All these quantities give us the same information

about the electromagnetic wave, but each of them has its established area of use,

based on historical reasons or plain simplicity of its use (i.e. not too big, not too

small numbers).

The angular frequency ω is a 2 π multiplication of the frequency f , as ω =

2πf . The wavelength λ, is the speed of electromagnetic wave (speed of light, c =

299792458 ms−1) divided by frequency, λ = c
f
.

The energy of the electromagnetic wave is the Planck constant h = 6.62607 ·
10−34 Js, or in more used units h = 4.135667662 · 10−15 eVs (1eV = 1.602 · 10−19 J),

times frequency E = hf .

Using another important physical constant, the Boltzman constant kB = 1.38064852·
10−23 J ·K−1, we can express the equivalent temperature T = E

kB
. Lastly, the inverse

of the wavelength expressed in cm, called the wavenumber λ−1 is a frequently used

unit in spectroscopy.

The studied range covers light from near ultraviolet (several eV, thousand tera-

hertz) to gigahertz frequencies. We characterize the samples using three spectroscopic
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techniques, Terahertz time-domain spectroscopy (THz-TDS), Fourier transform in-

frared spectroscopy (FTIR) and Mueller matrix Ellipsometry, and one electric tech-

nique - Van der Pauw’s measurement. Table 3.1 summarizes the energy range with

the corresponding methods and our instruments.

Table 3.1: Energy range, methods and unit conversion

Method Wavelength Wavenumber Energy Temperature Frequency
µm cm−1 eV K Hz

Ellipsometry 0.193 5.18 · 104 6.42 7.45 · 104 1.55 · 1015
1.7 0.59 · 104 0.73 0.85 · 104 0.18 · 1015

FTIR 1.33 7500 0.93 1.08 · 104 2.25 · 1014
200 50 0.0062 71.948 1.5 · 1012

THz-TDS 100 100 0.0124 143.9 3 · 1012
5000 2 2.48 · 10−4 2.88 0.06 · 1012

As it is noticeable from the Table 3.1, it is appropriate to use different units

for each method for simplicity and ease of use. For Ellipsometry, the used units

are nanometers and electronvolts. For FTIR the parameter of choice is wavenum-

ber, which is also used in Terahertz domain. Also, as the name suggests, Terahertz

(1THz = 1012 Hz) is frequently used. To ease orientation between the units, Table

3.2 provides a tool for a quick conversion between wavenumbers used in the Terahertz

and far-infrared domain and other units.

3.2 Physical properties

The physical properties in the studied range are governed by three main processes [96],

band absorptions, lattice vibrations, and free carriers absorptions. The main interest

of this work lies in the properties of free carriers. The lattice vibrations must be

included due to their effects in the studied range. The band absorptions, i.e. optical

transitions from valence band to the conduction band are modeled with an indirect

method (b-spline) and study in their energy range (near IR-vis-UV) is complementary

to the main work.
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Table 3.2: Lookup table for conversion of wavenumbers to different units

Wavenumber Wavelength Frequency Energy
cm−1 µm THz eV

10 1000 0.3 0.00124
20 500 0.6 0.00248
30 333 0.9 0.00372
40 250 1.2 0.00496
50 200 1.5 0.00620
60 167 1.8 0.00744
70 143 2.1 0.00868
80 125 2.4 0.00992
90 111 2.7 0.01120
100 100 3 0.0124
200 50.0 6 0.0248
300 33.0 9 0.0372
400 25.0 12 0.0496
500 20.0 15 0.0620
600 16.7 18 0.0744
700 14.3 21 0.0868
800 12.5 24 0.0992
900 11.1 27 0.1120
1000 10.00 30 0.124
2000 5.00 60 0.248
3000 3.33 90 0.372
4000 2.50 120 0.496
5000 2.00 150 0.620
6000 1.67 180 0.744
7000 1.43 210 0.868
8000 1.25 240 0.992
9000 1.11 270 1.120
10000 1.00 300 1.240
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This section deals with the derivation of permittivity tensor ε̂ from the Drude-

Lorentz model and its relation to other quantities - conductivity, mobility, Hall coef-

ficient.

3.2.1 Drude-Lorentz model in magnetic field

The derivation of both permittivity ε̂ and conductivity σ̂ stems from the motion

equation of free or bound charge carriers in electric and magnetic fields; for electrons

it is

m∗d
2r

dt2
+m∗ω2

0r+m∗γ
dr

dt
+ e

(
dr

dt
×B

)

= −eE , (3.1)

where m∗ is the effective mass of charge carrier, r is its the position, ω0 is the natural

resonant frequency of a bound oscillation, γ is the damping constant (the inverse

of a scattering time), e is the elementary charge, B is the magnetic flux density of

the external field and E is the electric field intensity of the electromagnetic wave.

Assuming the magnetic field in the z direction and E = E0 exp (−iωt), we look for

a solution in the form r = r0 exp (−iωt). Separating the coordinate components we

obtain

−m∗ω2x0 − im∗γωx0 +m∗ω2
0x0 − iωy0Bz = −eE0x , (3.2a)

−m∗ω2y0 − im∗γωy0 +m∗ω2
0y0 + iωx0Bz = −eE0y , (3.2b)

−m∗ω2z0 − im∗γωz0 +m∗ω2
0z0 = −eE0z . (3.2c)

Here we can define an important parameter, the cyclotron frequency

ωc =
eB

m∗ . (3.3)

Substituting Eq. (3.2a) into Eq. (3.2b) and vice versa, and using the cyclotron

frequency (3.3) we obtain

x0 =
e

m∗
−(ω2

0 − ω2 − iγω)E0x − iωcωE0y

(ω2
0 − ω2 − iγω)2 − ω2

cω
2

, (3.4a)

y0 =
e

m∗
−(ω2

0 − ω2 − iγω)E0y + iωcωE0x

(ω2
0 − ω2 − iγω)2 − ω2

cω
2

, (3.4b)

z0 =
e

m∗
−E0z

ω2
0 − ω2 − iγ0ω

. (3.4c)
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The electrical polarization is defined as P = Np = −eNr = ε0χ̂E, where χ̂ is the

susceptibility tensor and ε0 is the vacuum permittivity. The permittivity components

are

εij = δij + χij = δij −
Ne

ε0

∂r0i
∂Ej

, (3.5)

where i, j = x, y, z, r0 = (x0, y0, z0), which with the substitution of the plasma

frequency

ωp =

(
Ne2

ε0m∗

) 1
2

(3.6)

yields the Lorentz term (from bound oscillations) of the permittivity. The vacuum

contribution, δij in Eq. (3.5) is omitted. In later equations this term is moved to the

constant background permittivity. The Lorentz term is then

εL,xx = εL,yy =
ω2
p(ω

2
0 − ω2 − iγω)

(ω2
0 − ω2 − iγω)2 − ω2

cω
2
, (3.7a)

εL,xy = −εL,yx = −i
ω2
pωcω

(ω2
0 − ω2 − iγω)2 − ω2

cω
2
, (3.7b)

εL,zz =
ω2
p

(ω2
0 − ω2 − iγω)

. (3.7c)

The Drude term is easily obtainable by setting the bound oscillation ω0 = 0, final-

izing the tensor of permittivity from free carriers (omitting the vacuum contribution)

in the form of

εD,xx = εD,yy = −
ω2
p(ω

2 + iγpω)

(ω2 + iγpω)2 − ω2
cω

2
, (3.8a)

εD,xy = −εD,yx = −i
ω2
pωcω

(ω2 + iγpω)2 − ω2
cω

2
, (3.8b)

εD,zz = −
ω2
p

ω2 + iγpω
. (3.8c)

3.2.2 Total permittivity

The total permittivity of semiconductor can be expressed as the sum of three terms,

constant (background) permittivity ε̂∞, Drude term ε̂D and Lorentz term ε̂L, as

ε̂r = ε̂∞ + ε̂D + ε̂L . (3.9)

The background permittivity comes from the interband absorptions in higher en-

ergies. The Lorentz term comes from the lattice vibration - phonons. Although the
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derivation shows a magnetic field dependence, it is rarely the case. The carriers in the

lattice vibration are the atoms themselves, which means their effective mass is several

orders greater than that of free electrons and subsequently their cyclotron frequency

is negligible. Experiments confirm this assumption, for example there was no mea-

sured change in phonon in GaAs at external field 8 T [27]. Therefore the contribution

of Lorentz term is deemed isotropic, as the zz-component in Eq. (3.7), with a slight

change. For the Lorentz term, we will denote the natural resonant frequency ω0 = ωL

and express the plasma frequency squared as ω2
p = ALω

2
L, where AL is the amplitude

of the oscillator. The damping is denoted γL, to distinguish the terms. Thus,

εL =
ALω

2
L

(ω2
L − ω2 − iγLω)

. (3.10)

The Drude term is the most crucial for this work. It describes the behavior of

charged carriers - plasma. The carriers can be either electrons or holes, their difference

is the effective mass, caused by the shape of the band structure [97] and the sign of

the electric charge. The derivation has been done for electrons, with minus already

included. The opposite charge for holes is needed for calculations with magneto-optics

only. The III-V semiconductors studied all have direct symmetrical band gap - all

effective masses are isotropic, unlike the case for i.e. Germanium or Silicon. Without

any applied external magnetic field, the Drude terms is isotropic (with the damping

denoted γp), as

εD = −
ω2
p

ω2 + iγpω
. (3.11)

While the derivation in Section 3.2.1 was done assuming the external magnetic field

(flux density) in the z-direction, the derivation holds for all orientations of the mag-

netic field aligned with the coordinate axes. This descriptions distinguishes three

orientations, polar (z), longitudinal (y) and transversal (x), shown in Figure 2.2.

The permittivity tensors changes accordingly. As with the derivation for polar mag-

netic field, we have three components, one diagonal unaffected by the magnetic field

(the one in the direction of the magnetic field), two diagonal, perpendicular to the

magnetic field, and two of-diagonal elements, with opposite elements. The resulting
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tensors are as follows
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
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The components and their relation are listed in Table 3.3.

Table 3.3: Tensor components of the Drude term

Component Expression Polar Longitudinal Transversal

Parallel − ω2
p

ω2+iγpω
εzz εyy εxx

Perpendicular − ω2
p(ω

2+iγpω)

(ω2+iγpω)2−ω2
cω

2 εxx,yy εxx,zz εyy,zz

Of-diagonal −i
ω2
pωcω

(ω2+iγpω)2−ω2
cω

2 εyx = −εxy εxz = −εzx εyz = −εzy

It is also worthwhile to analyze the limit of the permittivity functions when the

frequency goes to zero (a DC limit). The Lorentz oscillator raises the constant (real)

permittivity by the value of its amplitude AL for frequencies below the oscillator

frequency. This is also the origin of the background permittivity that we observe in the

infrared range. The absorbtions in the visible light can all can be understood as bound

oscillators, which in sum of their amplitudes create the background permittivity.

The Drude term around the plasma frequency behaves only lowers the real part of

permittivity and increases absorbtions. It does however have a DC limit, for real parts

of both the classical Drude term and with the addition of the cyclotron frequency.

This also follows from the origin of the Drude term - free carriers, which are the cause

of conductivity, which must have a finite value in DC limit (more in Section 3.2.3).

The limits of Drude terms for real parts (denoted by apostrophe) are

lim
ω→0

ε′D,xx = −
ωp(γ

2
p − ω2

c )

(γ2
p + ω2

c )
2

, (3.13a)

lim
ω→0

ε′D,xy = −
−2ω2

pωcγp

(−γ2 − ω2
c )

2
, (3.13b)

lim
ω→0

ε′D,zz = −
ω2
p

γ2
p

. (3.13c)
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This DC limit can be observed in the Terahertz in metals as shown in [98, 99]. The

influence of the cyclotron frequency becomes important in high mobility semiconduc-

tors, when ω2
c > γ2

p and the negative DC limit changes into positive, turning off the

plasmonic properties (more in Section 3.4)

3.2.3 Hall effect, conductivity, mobility

Similarly to permittivity, which corresponds to the position/displacement of the

charged particle, a complex time-dependent conductivity tensor can be derived, which

pertains to the velocity of the charged particle. The conductivity tensor for magnetic

field in the polar (z) direction is then

σ̂ = (3.14)

σ0

(1− iωτ)2 + ω2
cτ

2







1− iωτ −ωcτ 0

ωcτ 1− iωτ 0

0 0 (1−iωτ)2+ω2
cτ

2

1−iωτ






,

Which can also be calculated using the formula

σ̂ = −i ε0 ω ε̂. (3.15)

The symmetry of both the permittivity and conductivity tensors in a magnetic

field illustrates the likeness of the Hall effect and the magneto-optical effect. In the

Hall effect, an applied voltage in one direction causes a drift of electrons and a charge

build up in the direction perpendicular to the applied voltage and magnetic field. The

charge buildup creates an electric field - the Hall voltage. The magneto-optical effect

works similarly; the incident light sets the carriers in motion, while the magnetic

field causes a precession of their movement perpendicular to the polarization and

the magnetic field, causing a rotation of polarization. This process is illustrated in

Figure 3.1.

The limit of Eq. (3.14) when ω → 0 is the DC magneto-conductivity tensor

σ̂DC = σ0







1
1+ω2

cτ
2 − ωcτ

1+ω2
cτ

2 0

ωcτ
1+ω2

cτ
2

1
1+ω2

cτ
2 0

0 0 1






. (3.16)
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Figure 3.1: Illustration of electric (DC limit) Hall effect and Optical Hall effect

The semiconductor free carrier properties are defined by a set of parameters that

are included in the permittivity/conductivity tensor: the carrier concentration N , the

sign of the carrier charge e, the carrier effective mass m∗, and the carrier mobility

µ(m2/Vs), defined as µ = eτ/m∗. The concentration N(m−3) is determined by the

amount of doping for doped semiconductors, and it is a function of temperature for

intrinsic semiconductors.

The optical measurements of reflectivity allows us to obtain only the plasma fre-

quency and the scattering time, in addition to the constant term and parameters of

the Lorentz oscillator, as per Eq. (3.9). Using the plasma frequency and scattering

time one can calculate the DC conductivity as

σ0 =
Ne2τ

m∗ = ε0 ω
2
p τ . (3.17)

Without further information, one needs to rely on an estimate of the effective mass

[100], or the ratio between the effective mass and concentration, to calculate other

relevant parameters. From a measurement in a magnetic field, one can deduce the

cyclotron frequency, use the Eq. (3.8) and a model of reflectivity from anisotropic

layers to calculate the effective mass

m∗ =
eB

ωc

, (3.18)
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and the concentration

N =
ω2
pε0m

∗

e2
=

ω2
p

ωc

ε0B

e
. (3.19)

Frequently used method for determining the semiconductor properties is through the

measurement of the Hall effect, often by the Van der Pauw (VdP) method [101],

requiring an ohmic contact with the sample. Using this method, and the knowledge

of the sample thickness, one can obtain the Hall coefficient RH(m
3/C) and the con-

ductivity σ0. For a single carrier system with electrons, the Hall coefficient is defined

as

RH = − 1

Ne
= − µ

σ0
= − σDC,xy

(σ2
DC,xx + σ2

DC,xy)Bz
, (3.20)

from which the concentration and the mobility can be calculated.

Knowing the relationship between the conductive and spectral properties allows

one to crosscheck the quality of measurements or to draw conclusions about the

behavior of one from the measurement of the other. This is demonstrated in Sec. 3.4.3,

as a comparison of the semiconductor parameters obtained from the reflectivity fit

and the parameters measured using the VdP method.

3.3 Experimental methods

3.3.1 Ellipsometry

Ellipsometry is an optical technique for characterization of material parameters and

dimensions of structures by measuring the change of polarization state of light re-

flected or transmitted from the sample. The reflected/transmitted light is most often

elliptically polarized, hence the name ellipsometry. Generally, multiple wavelengths

are used, coining the term spectroscopic ellipsometry (SE). Ellipsometry is used in

different wavelength ranges, but it is traditionally used in UV-visible-near infrared

range. Typical ellipsometric system consist of several parts, as illustrated in Figure

3.2. The source (e.g. Xe lamp, or in our case Deuterium lamp and halogen bulb)

shine light thorough the polarizer and compensator to/through the sample and the

light again passes another compensator and polarizer (called analyzer) to the detec-

tor. The compensators can vary in number and principles, it can static waveplate,

rotating waveplate, or modulator; their purpose is to control the polarization state of

light.
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Figure 3.2: Components of an ellipsometric setup

The detected values are the complex ratios of reflective (transmissive) coefficients

of different polarizations, measured through the modulation of the SE setup (photoe-

lastic harmonics, rotating compensators). It the simplest case (isotropic sample), it

is the ratio of p- and s- polarized light as

rpp
rss

= tanΨei∆, (3.21)

where tanΨ is the amplitude of the ratio and ∆ its phase. By measuring the ratio,

rather than absolute values, SE eliminates the need for a reference beam. This make

SE a robust and accurate method for material and structure characterization. For

anisotropic or depolarizing sample, the simple ∆ and Ψ measurement wouldn’t cap-

ture all the information contained in the polarized light. This case needs either more

ellipsometric ratios, with anisotropic coefficients,

rps
rss

= tanΨpse
i∆ps

rsp
rss

= tanΨspe
i∆sp ,

(3.22)

which don’t cover depolarization. A full Mueller matrix acquisition is suited for

acquisition of data from anisotropic and/or depolarizing samples. For details on

Muller matrix see Section 2.1.6. Spectroscopic Ellipsometry is an indirect method,

the measured data must be compared to a model.

Our instrument is the Woolam RC2-Di, where the source is a combination of a

deuterium lamp and halogen bulb, with the spectral range 0.74-6.42 eV (193-1700

nm). The system uses dual rotating compensators for full Mueller matrix measure-

ment [102]. Typical data acquisition consists of calibration of the instrument and
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measuring at several angles of incidence. The sample can be rotated and positioned

automatically if needed. The proprietary software, Complete Ease allows for data

analysis with a pre-built database with optical function of common materials and

models for dielectric functions, such as Drude model, or B-Spline.

3.3.2 Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) is a technique that utilizes con-

trolled interference of two beams of infrared light to extract spectral information

about a measured sample. The control of the interference is done through the move-

ment of mirrors, which changes the path lengths of the beams. Figure 3.3 shows a

simplified schematic of a FTIR using a double pendulum [103]. Two corner cube

retro-reflectors are mounted on a pendulum that swings about its axis. This changes

the path difference and causes interference over the spectral range of the source. This

is detected as change in intensity on the detector, in so called interferogram. The

movement of the pendulum is measured using the interference of monochromatic He-

Ne laser. Two data-sets are measured, one reference without the sample (in reflection

this is with a gold mirror) and then with the sample. A Fourier transform (hence

the name) is used on the detected interferograms, resulting in infrared spectra, as

illustrated in Figure 3.4. The ratio of these spectra is the desired reflectivity or trans-

mittance of the sample. FTIR is so widely used system that it doesn’t really have

a competition in the infrared spectroscopy [104]. Previously used systems employed

grating monochromators, but this severely limited the available intensity.

Our FTIR system is the Bruker Vertex 70v, measuring in the far-infrared range

50-680 cm−1 and mid-infrared range 370-7500 cm−1. All measurements were done

in reflection, at the angle of incidence 11·, which is approximated by a near-normal

incidence. The sample chamber allowed for evacuation and mounting of polyethylene

wire grid polarizer-analyzer tandem for polarization-sensitive measurement.

3.3.3 Terahertz Time-Domain Spectroscopy

Any significant use of the Terahertz range has long been limited by the lack of cheap

and reliable sources, components and detectors. This changed with the advent of

Terahertz time-domain spectroscopy (THz-TDS). This system uses a femtosecond
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Figure 3.3: Component of FTIR setup
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Figure 3.4: FTIR Interferogram and spectrum

pulse laser and some non-linear process, either optical rectification or ultrafast car-

rier scheme on a device called switch [105,106]. Other means of generating terahertz

light, such as solid-state lasers or sprintronic emmitters [107] are currently being re-

searched. Figure 3.5 shows a schematic and illustrates the working principle of THz-

TDS system. The femtosecond pulse excites a semiconductor source switch which

generates a Terahertz pulse (Figure 3.6 left). The Terahertz pulse travels through an

optical system and is reflected/transmitted from the sample. Then it travels to a de-

tector switch. This switch is excited by a delayed femtosecond pulse and the detected
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voltage is recorded. By varying the delay, the THz pulse is sampled, thus recording

the full time dependent shape of the THz pulse signal. Using Fourier Transform,

this signal is converted into both the amplitude and phase spectra (Figure 3.6 right).

Similarly to FTIR, a reference measurement is needed. The ratio of sample and refer-

ence amplitude spectrum is the reflectivity/transmittance. The difference in phase is

the resulting phase. Section 3.4 details the phase correction caused by misalignment

of sample and reference. This provides us with a complex signal comparable to the

model.
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Figure 3.5: Schematic of the Terahertz time-domain setup. Curved mirrors are fre-
quently used as focusing optics.

Our terahertz time-domain spectrometer is the TPS Spectra 3000 from TeraView

Co., measuring in the THz range of 2-100 cm−1 (60 GHz-3 THz). This system

uses femtosecond Er:doped fibre laser (Menlo) and semiconductor photoconductive

switches.
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Figure 3.6: Detected Terahertz time-domain signal and phase an amplitude spectra.

3.4 Measurements and fits

3.4.1 Samples

We have measured seven representative samples of single-crystal III-V semiconduc-

tors. All were polished on one side.

The GaAs samples were 2”, 0.35 mm thick wafers made by AXT, Inc. One n-doped

with Si dopants, with the reported electron concentration of (0.8 − 4) × 1018 cm−3

and the mobility of (1 − 2.5) × 103 cm2/Vs. One p-doped (Zn), with the reported

hole concentration of (0.5− 5)× 1019 cm−3 and the mobility of 50− 120 cm2/Vs.

The InP sample was 2”, 0.35 mm thick wafer also from AXT. It is n-doped with

Sulfur; the manufacturer reports values of N = (0.8 − 8) · 1018cm−3 and µ = (1 −
2.5) · 103cm2/Vs.

Measured samples of InSb are n-doped (Te), p-doped (Ge) and undoped. All

InSb samples were manufactured by MTI Corp as wafers of 2” diameter and a small

10 × 10 mm squares. The small samples were used for the Hall measurements by

a 4-contact van der Pauw method. The thickness of the wafers was 0.5 mm for

the n-doped and 0.45 mm for the undoped and p-doped. The small sample has

thickness of 0.45 mm. The n-doped samples have the manufacturer’s reported carrier

concentration of (0.19−0.50)·1018 cm−3 and the mobility of (3.58−5.60)·104 cm2/Vs,

both at 77 K. The p-doped samples have the following reported parameters: N =

0.5− 5 · 1017 cm−3 and µ = 4− 8.4 · 103 cm2/Vs, again at 77 K.
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The InAs undoped sample was provided by our colleagues at Université Lille 1.
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3.4.2 Results - FTIR+THz-TDS

Figures 3.7 and 3.8 show the reflectivity spectra and the permittivity of the samples

with the resulting parameters listed in Table 3.4.

The sharp minima in reflectivity between 150 and 300 cm−1 correspond to a cross-

ing of the real part of the permittivity with the permittivity of vacuum due to the

lattice vibrations. The fitted value of the Lorentz oscillator frequency is at the max-

imum of the imaginary part of the permittivity, corresponding to the transversal

phonon [97]. The lattice vibrations presented here match the resonances reported by

other authors (InP [108], GaAs [27], InSb [30]).

The InAs sample has two transparency windows in the infrared range, which were

not included in the model. Therefore, the fitted range is smaller.

The plasma edge, a region where the real part of the permittivity crosses zero and

becomes negative for lower frequencies due to the free carries is tied to the concen-

tration and effective mass. Plasma edge is visible in the reflectivity spectra as sharp

increase in reflectivity, For metals described by the Drude term, this would be where

ℜ{εD} = 0. Semiconductors however have a strong background permittivity, which

from Eq. (3.9), places the crossover frequency (reduced plasma freq.) between posi-

tive and negative at ω = ωp/
√
ε∞ and the reflectivity minimum at ω = ωp/

√
ε∞ − 1;

assuming no damping and negligible effect of the phonon. Real cases show effect of

the phonon and damping, i.e. the n-doped GaAs the reflectivity minimum would be

at 545.2 cm−1 but the real one is at 573.6 cm−1. The effect of damping is strongly

present in the p-doped samples, where the short scattering time of the holes makes

the reflectivity spectra much shallower. This effect is apparent in the GaAs sam-

ples, where there is significant difference between both the damping and the plasma

frequency. It is less pronounced in undoped InSb and p-doped InSb due to similar

plasma frequency.
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Table 3.4: Fitted parameters of GaAs, InP, InSb and InAs

GaAs GaAs InP InSb InSb InSb InAs
n-doped p-doped n-doped n-doped p-doped undoped undoped

ωp (1014 rad/s) 3.33 ± 0.01 4.44 ± 0.02 4.70 ± 0.01 2.82 ± 0.01 0.63 ± 0.01 0.57 ± 0.01 0.61 ± 0.17
ωp (cm−1) 1769.2 ± 1.9 2356.4 ± 9.1 2494.1 ± 1.8 1495.2 ± 1.83 332.6 ± 1.49 302.4 ± 0.33 325.3 ± 91.3534
τp (10−1 ps) 0.71 ± 0.01 0.09 ± 0.01 0.71 ± 0.01 2.65 ± 0.04 0.75 ± 0.01 5.16 ± 0.06 1.52 ± 0.06
ωL (1013 rad/s) 5.06 ± 0.01 5.06 ± 0.01 5.73 ± 0.01 3.38 ± 0.01 3.38 ± 0.01 3.38 ± 0.01 4.10 ± 0.01
ωL (cm−1) 268.4 ± 0.1 268.5 ± 0.2 303.9 ± 0.1 179.4 ± 0.13 179.4 ± 0.06 179.5 ± 0.06 217.67 ± 0.28
τL (ps) 2.79 ± 0.27 1.95 ± 0.29 3.01 ± 0.24 1.81 ± 0.13 1.90 ± 0.04 1.99 ± 0.04 3.63 ± 0.44
AL 2.13 ± 0.03 2.15 ± 0.09 2.89 ± 0.04 2.02 ± 0.07 2.00 ± 0.01 2.02 ± 0.01 2.82 ± 0.05
ε∞ 11.58 ± 0.01 11.34 ± 0.02 10.01 ± 0.01 15.68 ± 0.03 15.74 ± 0.01 15.86 ± 0.01 13.57 ± 0.17
σ0 (kS/m) 69.46 ± 0.54 16.54 ± 0.22 139.06 ± 0.77 186.35 ± 2.63 2.51 ± 0.04 14.83 ± 0.17 5.04 ± 0.24
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3.4.3 Magnetooptics

When an external magnetic field is applied to the sample, the Drude term becomes

anisotropic, as it has been shown in Section 3.2.1. This calls for modification of the

measurement setup, we now need to have control over the polarization state of the

incident and detected light. In the Terahertz time domain spectrometer this is done

by a single polarizer, in the path of the near-normal incident beam, as shown in

Figure 3.9. This configuration yields pure linear polarization. The reason for this

configuration is its simplicity and limited space in the measuring cavity.

Sample

Polarizer

THz beam

Mirrors

Figure 3.9: THz beam path for measuring the magneto-optical effect in InSb using a
single polarizer.

For measurements using the FTIR spectrometer, we were able to employ two

polarizers (i.e. polarizer and analyzer), with variable angles of rotation, as shown in

Figure 3.10. We have chosen a fixed analyzer and rotating polarizer at the azimuthal

angles 0◦, 45◦, 90◦, 135◦ with respect to the azimuth of the fixed analyzer. The angle

0 is maximum transmission and the angle 90 means crossed polarizers. This setup has

been described in Section 2.1.6 as (2.79). The detected quantities are summarized in

Table 3.4.3.

Polarizer Analyzer Measured quantity
0◦ 0◦ Rss

45◦ 0◦
√
2(Rsp + rspr

∗
ss + r∗sprss + Rss)/2

90◦ 0◦ Rsp

135◦ 0◦
√
2(Rsp − rspr

∗
ss − r∗sprss + Rss)/2

Table 3.5: FTIR configuration for magneto-optical measurements

First, measurements of InSb samples (n-doped, p-doped and undoped) were done

and an interesting property emerged in the n-doped wafer. The carrier concentration
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Figure 3.10: FTIR for measuring magneto-optical effect in InSb.

at the center of the wafer (N1, shown originally in Figure 3.7 and Table 3.4) was

smaller than at the edge (N2). This is noticeable in the spectra as the different

position of the plasma edge. The spectra are shown in detail in Figure 3.11.
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00

0.2

0.4

0.6

0.8

1
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Reflectivity of all samples

data fit
undoped
N1
N2
p

Figure 3.11: Reflectivity of all InSb samples, TDS and FTIR data joined together.
The data in the small overlapping ranges were averaged, but overall there was a good
match and continuity between the data.

When an external magnetic field is applied, the Drude term becomes anisotropic.

The magnetic field was created by a small permanent magnet placed at the backside

of the sample. Varying magnetic field was created by plastic spacers.

The undoped InSb sample’s plasma edge is present in the terahertz domain, where
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we are able to measure both the reflectivity and phase. The TDS reflectivity and

phase of the undoped InSb in the variable magnetic field are shown in Figure 3.12.

Reflection is modeled as a single interface between vacuum and the semiconductor

with the permittivity εr, along with Jones matrices to apply the effects of the used

polarizers to the model. The phase information in Figure 3.12 comes from three parts,

ϕ = ϕsample − ϕreference − ϕshift. ϕsample is the phase angle of the complex reflection

coefficient of the sample and ϕshift stems from the misalignment d of the sample

and reference, as ϕshift = 4dπ cosαi/λ. The ϕshift is a fitting parameter in the data

treatment (d is on the order of 1-100 µm) and is subtracted from the data for plotting.

The measurements in different magnetic fields and without field were fitted together.

The cyclotron frequency ωc is 23.7 cm−1 for 0.43 T and the resulting effective mass

of electrons in undoped InSb is meff = (eB)/(ωcm0) = 0.0169, which in accordance

to theory [109] is higher than the frequently used value of 0.015. The knowledge of

both the cyclotron frequency and the plasma frequency allows also for the calculation

of the carrier concentration N and the mobility µ = eτp/m
∗ and is necessary for the

correct theoretical prediction of the behavior of magneto-plasmonic devices.
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Figure 3.12: TDS polarized reflectivity and corrected phase of undoped InSb in vari-
able magnetic field

The data from FTIR confirm the magneto-optical behavior of n-doped InSb, when

the plasma frequency is pushed towards higher frequencies. Figure 3.13 shows the
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reflectivity of two n-doped samples when the polarizer is at 45 degrees and the an-

alyzer at zero. When the direction of the magnetic field is reversed, the rotation

of the reflected polarization changes direction, causing a drop/increase in reflected

amplitude. The same effect was obtained at the polarizer angle 135◦, but for opposite

signs of the magnetic field.

Wavenumber cm−1

0

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500 600

N1

N2

0T

+0.43T

-0.43T

Reflectivity

Figure 3.13: Reflectivity of two concentrations of n-doped InSb, polarizer at 45.
Data (symbols) and fit (curves) are compared. The center curve (circles, solid line) is
reflectivity without the magnetic field, the other two are obtained for different signs
of the magnetic field.

The parameters describing all InSb samples are summarized in Table 3.6. The

non-magnetic properties of the undoped InSb match those reported or used by [29,

110,111], but our measurements also allow for calculation of the correct effective mass

and the carrier concentration. The samples have also been measured electrically by

the van der Pauw (VDP) method [101], which is equivalent to ω → 0. The VDP

data obtained are also listed in Table 3.6 and are reasonably close to those obtained

by spectroscopic measurement. The differences in values obtained from electrical and

spectroscopic measurement are due to different sensitivity of the measuring techniques

to different mechanisms, and their systematic errors. Generally, the electric VdP mea-

surement is used with lithographically etched pattern, but if there is a good ohmic

contact (indicated by linearity of the measurement), it is possible to measure without

it by placing the contact probes on to the sample. This measurement, used in our

case, is prone to error due to possible misalignment of the contact probes. Moreover,

the spectral characterization is sensitive only to the carriers with the highest plasma
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frequency, whereas VdP includes the effect of both. These effects combined explain

the differences in obtained values. The n-doped samples exhibit lower cyclotron fre-

quency at the same magnetic field, meaning that the effective mass is higher, which

is again in agreement with the theory [109].
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Table 3.6: Parameters of InSb samples characterized at room temperature, undoped, n-doped with carrier concentrations N1

and N2 and p-doped. Subscript spec. means values obtained from spectroscopic magneto-optical measurement, subscript VPD
means data obtained from Van der Pauw measurement.

Sample ωp/
√
ǫ∞ τp ωL τL AL ωc

(cm−1) 10−13 (s) (cm−1) 10−12 (s) (cm−1)
und. 73.8 ± 0.1 5.53 ± 0.02 179.46 ± 0.05 2.00 ± 0.03 2.00 ± 0.01 23.76 ± 0.09
N1 217.9 ± 0.2 4.00 ± 0.03 179.79 ± 0.03 1.66 ± 0.03 2.14 ± 0.01 11.25 ± 0.11
N2 378.8 ± 0.3 2.01 ± 0.03 179.78 ± 0.03 1.74 ± 0.03 2.15 ± 0.01 13.99 ± 0.12
p 83.8 ± 0.3 0.75 ± 0.01 179.37 ± 0.05 1.89 ± 0.03 2.01 ± 0.01

ε∞ meff Nspec. µspec. NVDP µVDP

1017 (cm−3) 104 (cm/Vs) 1017 (cm−3) 104(cm/Vs)
und. 15.68 ± 0.03 0.0169 ± 0.0001 0.17 ± 0.008 5.76 ± 0.03 0.20 6.66
N1 15.58 ± 0.02 0.0357 ± 0.0003 2.93 ± 0.003 1.97 ± 0.02 2.37 4.12
N2 15.68 ± 0.02 0.0287 ± 0.0002 7.20 ± 0.006 1.23 ± 0.02 - -
p 15.84 ± 0.02 - - - 10.7 0.02
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Figure 3.14 shows the obtained permittivity of all the samples using fitted pa-

rameters listed in Table 3.6. The presence of a cyclotron frequency changes the low

frequency limit of the real part of the diagonal components εxx,yy, which can com-

pletely change sign, if ω2
c > γ2

p , as shown in Section 3.2.2. The magnetic field also

increases absorptions (Landau level absorption) at ωc, noticeable mainly in the un-

doped InSb sample. This effect is usually observed when ωc > ωp and also causes

changes in the effective mass, which is negligible in our case due to low magnetic

field [112]. The off-diagonal elements exhibit a peak around ωc and the quasistatic

limit at low frequency (the classical Hall effect), while the imaginary part goes to

infinity for low-frequencies [97].

Figure 3.15 shows the model of modulated permittivities with parameters ob-

tained from this measurement. The change in the permittivity εxx is very sensitive

to the magnetic field and it is possible to change sign for lower frequencies even using

small field. The εxy components also rapidly change with the strength of the applied

magnetic field and interestingly exhibit maximum for a certain magnetic field.

Using the permittivity tensors we can further obtain the normal incidence polar

Kerr effect [87] which is a good metric to describe the magneto-optical behavior of

materials. The polar magneto-optical Kerr effect is a change of the polarization ellipse

azimuth and ellipticity upon reflection of linearly polarized light from a sample in a

magnetic field perpendicular to the interface. Two eigenmodes having right-handed a

left-handed circular polarizations propagate in this configuration (normal incidence).

They propagate with the effective refractive indices ν± = ckz±/ω, defined as

ν2
± = εxx ± iεxy. (3.23)

For a normal incidence with vacuum (air), the reflection coefficients are in the form

r± =
1− ν±
1 + ν±

(3.24)

and their complex ellipsometric ratio is

χr =
r−
r+

. (3.25)

Knowing the ellipsometric ratio in the basis of circular polarizations, the azimuth



68

Wavenumber cm−1

-200

-500

-1000

-1000

-1500

-2000

0

0

0

0

0

20 40

50

60 80 100

100 150

200

200

400

100

102

105

ℜ{εxx}

ℜ{εxy}

ℑ{εxx}

ℑ{εxy}

und.

und.

und.

N1

N1

N2

N2

p (0T)

(0T)

(0T)

(0T)

(0.29T)

(0.43T)

(0.43T)

(0.43T)

Figure 3.14: Calculated diagonal and off-diagonal complex permittivity components
of all samples of InSb with and without applied magnetic field. Note the different
ranges/scales to highlight important features.

change (Kerr rotation) θ and Kerr ellipticity ǫ are defined as

θ =
1

2
argχr , (3.26a)

tan ǫ =
1− |χr|
1 + |χr|

, (3.26b)
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Figure 3.15: Modeled permittivity of undoped InSb in variable magnetic field in the
terahertz range. Colored curves represent measurement.

where arg denotes the angle between the real axis and the complex number-origin

line. A complete derivation and further discussion can be found in [87]. Figure 3.16

shows the obtained rotation and ellipticity. The Figures 3.14 and 3.16 give us the

idea of the applicability of InSb as a magneto-plasmonic material. The magneto-

optical effects is strongest around sharp changes in the original permittivity, either

around the plasma edge or the lattice vibration. There are regions, where the mate-

rials exhibit a strong Kerr rotation, a small Kerr ellipticity while the ǫzz component

remains plasmonic, for undoped InSb its bellow 50 cm−1 (1.5 THz). The Kerr rota-

tion obtained here, about 20◦ for 0.43 T is huge compared to the millidegrees usually

observed in the visible range. For the n-doped samples, the behavior is similar, only

shifted towards higher frequencies. This means that even though increasing carrier

concentration increases effective mass and therefore lowers the cyclotron frequency, a

strong magneto-plasmonic behavior is still present, allowing for a fine-tuning of the

material and device properties. The p-doped sample didn’t exhibit any measurable

magneto-optical activity, due to very low cyclotron frequency caused by the effective

mass of the heavy holes.
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3.4.4 Results - Ellipsometry

While the important plasmonic properties have been extracted from the FTIR mea-

surement, the spectroscopic ellipsometry serves as a complementary method for a

more complete characterization, along with determining the thicknesses of top oxides

on the wafers. The samples were measured in reflection at the incidence angles from

40◦ to 60◦, with 5◦ step. The governing mechanisms for spectral function of semicon-

ductors in the UV-visible-near IR are the optical transitions of electrons from valence

band to the conduction band. This can be mathematically described as a sum of

oscillators [97]. The dielectric function can also be expressed as a Kramers-Kronig

consistent basis spline function (B-spline) [113]. The data analysis was as follows:

First, the a thickness of a top oxide layer was fitted while the dielectric function of

the semiconductor was taken from the database. Second, the top oxide thickness

was fixed and the semiconductor replaced with a B-spline function with resolution

(knot spacing) 0.075-1 eV. This method allows to compensate for the top oxide layer,

caused by passivation. Fitting the B-spline and the top oxide thickness together would

lead to a highly correlated results. We analyze the influence of doping on different

semiconductors by describing the semiconductors by a B-spline function. Data for

band-gap are taken from [97] used in the fitting procedure to indicate the interband

absorbtion threshold.
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Figure 3.17 shows the fitted permittivity of GaAs n-doped and p-doped. The top

oxide has thickness 1.7 nm (n-) and 1.48 nm (p-). The data show very little change

with respect to doping, only at the start of the band-gap (1.4 eV) and first absorption

peak (3 eV).

0 1 2 3 4 5 6 7

Energy (eV)

-15

-10

-5

0

5

10

15

20

25

30
Permittivity of GaAs

GaAs
n
 real

GaAs
n
 imag

GaAs
p
 real

GaAs
p
 imag

Figure 3.17: Permittivity GaAs, n-doped and p-doped as a B-spline result of fitted
ellipsometric data.

Figure 3.18 shows the fitted permittivity of InP n-doped and InAs undoped. The

top oxide has thickness of 1.79 nm (InP) and 2.58 nm (InAs). While these are different

semiconductors, the dielectric functions offer a highlight and comparison. The band-

gap, 1.35 eV for InP is clearly visible in the dielectric function as a beginning of

absorptions. The band-gap of InAs, 0.36 eV is not visible in the plot but its low value

is the reason for absorption in the near infrared.

Finally, Figure 3.19 provides a comparison of three cases of doping in InSb, n-

doped, p-doped, and undoped. The data for the top oxide were taken from [114] and

the fitted thicknesses were 3.02 nm, 6.06 nm, and 2.58 nm for n-, p- and undoped,

respectively. The band-gap energy in 0.18 eV, so similarly to InAs, it is not visible

in the data. However, the different concentrations and type of majority carriers are

clearly present.

The thicknesses of the top oxides, measured by the spectroscopic ellipsometry

are all on the order of several nanometers. The differences in thicknesses for InSb

samples can be explained with the fact that without a model for surface roughness,

the losses caused by any roughness on the samples will be included in the oxides.
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Figure 3.18: Permittivity InP, n-doped and InAs, undoped as a B-spline result of
fitted ellipsometric data.
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Figure 3.19: Permittivity InSb, n-doped, p-doped and undoped as a B-spline result
of fitted ellipsometric data.
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For smooth crystalline wafer samples, adding both top oxide and roughness would

add too many correlated parameters to the model. In conclusion, the oxides should

have only negligible effect on surface plasmons on the semiconductor wafers in the

Terahertz spectral range.
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Chapter 4

Surface Plasmons and Semiconductors

In this chapter, general information about plasmonics is reviewed. A method for

finding guided modes using matrices derived in Section 2.1.4 is presented, with the

addition of isotropic/anisotropic interface. Data on semiconductor permittivities ob-

tained in the previous chapter are here evaluated in the framework of plasmonics.

An experimental demonstration of Terahertz surface magneto-plasmon resonance on

InSb and InAs for sensor application is presented, with discussions of different sensor

architectures. Effective medium anisotropy is verified and explained as a concept of

modulation of surface plasmon properties of semiconductors.

4.1 General remarks

4.1.1 Simple derivation of surface plasmon polariton

For a simple known derivation [4,5,7] that allows us to illustrate the basic properties

of the surface plasmon, let us assume an interface between two isotropic materials

with permittivities ε1 and ε2. We want to derive an expression for a wave that is

traveling along the interface. Further assuming the electric field is in the y-z plane,

the fields in the media can be described as:

Hj = (Hxj, 0, 0) exp {i(kyy + kz,jz − ωt)}, (4.1a)

Ej = (0, Eyj , Ezj) exp {i(kyy + kz,jz − ωt)}, (4.1b)

where j = 1, 2 is the index of the material. Eq. (2.7c) then yields

(0, ikzHxj,−ikyHxj) = (0,−iωεjEyj ,−iωεjEzj) (4.2)

equating the y-components

kzjHxj = ωεjEyj . (4.3)

Together with the boundary conditions Ey1 = Ey2, Hx1 = Hx2 and ε1Ez1 = ε2Ez2

leads to expressions for components of the wavevector k:
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kz1
ε1

=
kz2
ε2

ky1 = ky2

(4.4)

Given that k2
j = εj(

ω
c
)2 = k2

y + k2
zj inserted into (4.4) finally yields

ky =
ω

c

√
ε1ε2

ε1 + ε2
, (4.5a)

kzj =
ω

c

√

ε2j
ε1 + ε2

, (4.5b)

or as normalized components of the wavevector k = k0(νx, νy, νz)

νy =

√
ε1ε2

ε1 + ε2
, (4.6a)

νzj =

√

ε2j
ε1 + ε2

. (4.6b)

For the wave to be traveling along the interface, following conditions must be

fulfilled. First, the normal component of the wavevector νz must be imaginary, so that

the wave is not radiating from the interface and second. The propagation component

νy must be real, for a propagation in that direction. To achieve this, permittivity of

one of the materials (e.g. ε2) must be negative and in absolute value greater than

ε1. In reality permittivity is usually complex, however the condition for negative real

part remains. The difference between the real a ideal scenario is discussed in the next

section.

The relations (4.4) also have a constant solution at frequency ωop derived by

Cada et al. [115], tied directly to semiconductors. It points to a solution when the

permittivity of the doped semiconductor εDS and the dielectric εD are equal. For

simplicity lets omit absorptions and rewrite the permittivity of the semiconductor as

εDS = εS −
ω2
p

ω2
, (4.7)
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where εS it the total background permittivity, coupling together the constant permit-

tivity and lattice vibrations. The solution ωop is then

εD = εDS (4.8)

ω2
op =

ω2
p

εD − εS
. (4.9)

With the knowledge of εS and εD the plasma frequency can be determined from the

position of the minimum of reflectivity. The value of the minimum in reflectivity

can be used to estimate the damping of the free carriers. [100] If the sample is non-

absorbing, the minimum would be zero. For absorbing samples the the damping can

be calculated as

γp =
ω3
op

ω2
p

4
√

Rmin(1 +Rmin)

(1−Rmin)2
. (4.10)

It is worth pointing out that the plasma frequency can also be extracted from Raman

scattering measurements, where the measured Raman shifts correspond to a coupled

mode consisting of plasma and phonon oscillation.

4.1.2 Note on the terminology

As any scientific and engineering field, plasmonics has its own established terminology,

which should be maintained for clear communication of concepts, ideas, and results.

This section clarifies the use of several terms in plasmonics.

Surface plasmon is a collective oscillation of free carriers at the surface of conduc-

tor. Plasmon is a quasiparticle, a quantum of oscillation.

Surface plasmon polariton is a coupled electromagnetic wave to the free carrier

oscillation at the interface between dielectric and metal. Part of the electromag-

netic energy is stored in the longitudinal collective oscillation (in the direction

of propagation) of the free carriers [5].

Bulk plasmon or a volume plasmon is a collective oscillation of carriers traveling

through the bulk of the material. Rigorous analysis of the local currents and

electric field caused by charge carrier density oscillations point to two solutions

[96]. For ω > ωp, the material can support transversal electromagnetic waves. In

optics terms, this means that the material is dielectric. For frequencies below ωp,
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the electromagnetic waves are reflected. The only propagating modes possible

below the plasma frequency are through the surface plasmon. For the case, when

ω = ωp, i.e. the permittivity equals zero, the system can support longitudinal,

electric modes, independent of wavevector. However electromagnetic wave with

frequency ω cannot excite the mode at ωp, since electromagnetic waves are

transversal and the mode purely longitudinal, except for very thin metallic films

(∼ 10 nm), where the modes produce a standing wave [116]. The usual way to

excite and observe the volume longitudinal plasmons is through the electron loss

spectroscopy, where a high energy electron beam illuminates the sample. The

modes are observed as an energy loss, at quantized plasma frequency (n~ωp, n

being the number of plasmons excited).

4.1.3 Surface plasmon polariton properties

Dispersion Curves

The two interesting cases, where material has negative real permittivity is either

due to plasmonic oscillations (Drude model) or lattice-phononic vibrations (Lorentz

model). For surface waves guided by these mechanism are coined terms surface plas-

mon polariton and surface phonon polariton. Nomenclature notwithstanding, the

physical principle of guiding the surface wave is the same - the electromagnetic wave

can propagate along the surface, in dimensions smaller than the refractive limit be-

cause part of the electrical energy is carried by a different mechanism, oscillations

of the free carriers or the lattice [117]. Since both of these mechanisms are wave-

length dependent, we illustrate them using a dispersion curve, which links together

the propagation component of the wavevector and the wavelength. The normalized

components is sometimes called the propagation constant and can be thought of as

an effective refractive index of a waveguide that is the interface.

Lets illustrate the dispersion curve on a theoretical example. Assume a boundary

between a dielectric material with permittivity ε1 and conductive material ε2, which is

governed by the Drude model 3.2.1 with the plasma frequency ωp and the background

permittivity ε∞ = 1. First without damping, where the Drude term reduces to

ε2 = ε∞ −
ω2
p

ω2
, (4.11)
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and second with damping γp = 0.05 ωp. Figure 4.1 shows the relation between

the propagation constant and the frequency. Technically the calculation is done in

reversed order, frequency →permittivity →propagation constant, but this is the pre-

vailing method of plotting the dispersion curve. The frequency axis is normalized to

the plasma frequency and the propagation constant is normalized to the propagation

constant of a wave with plasma frequency (k0,p = ωp/c).
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Figure 4.1: Dispersion curve of surface plasmon at the interface between Drude metal
and air

For the case without damping, the dispersion curve is divided into three regions:

Region I: ε2 > 0, above ωp means that both νy and νy are real, the curve is on the

right of the light line, meaning this region is radiative. In practice this is the

solution to the Brewster angle. There is no guided wave possible at the interface

of two dielectric isotropic materials.

Region II: ε2 < 0 ∧ |ε2| < ε1 leading to imaginary νy and real νz, this region is

sometimes called quasi-bound. The region is located between ωp and ωp√
ε∞+ε1

(which can be proved from the region’s conditions).

Region III : ε2 < 0 ∧ |ε2| > ε1. This region has real νy (allowing propagation) and

imaginary νz (surface confinement). This is the region of surface plasmon.
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The regions hold true even for the real case with damping, but now the solution of

propagation constant is continuous and has a finite value. The diagonal line is called

the light line, and corresponds to the propagation of an electromagnetic wave in the

dispersionless material ε1, as ky =
√
ε1 ω/c. In the low frequency limit, the propa-

gation of the surface plasmon is similar to the propagation of electromagnetic wave

in dielectric, in a so-called Zenneck regime [23, 118]. In this regime, the propagation

attenuation is small, but the confinement to the conductor is negligible. Section 4.3.1

discusses this topic.

By looking at the full geometry, when the incident light has the propagation

constant νy =
√
ε1 sin θ, where θ is the angle of incidence, it is obvious that the

surface plasmon cannot be excited by varying the angle of incidence only. Either

a three layer system needs to be used, where higher refractive index material acts

as a coupling prism, which changes the incident wavevector so that it matches the

one of the surface plasmon - shown as the intersection of the green light line and

SP in Figure 4.1. Further coupling schemes rely on end-fire coupling [119] use of

gratings [11], where the incident wavevector is influenced by the period of the grating

Λ, as

νy =
√
ε1 +m

λ

Λ
, (4.12)

where m is an integer. The dispersion curves of real materials exhibit disturbances

from the ideal model. For noble metals the Drude term overlaps the interband ab-

sorbtions [4], limiting for example the use of Gold for higher frequencies [120, 121].

For our case of III-V semiconductors, the disturbance comes from lattice vibrations.

Figure 4.2 shows three real cases of surface plasmon/phonon polariton on undoped

InSb and n- and p- doped GaAs, derived from the permittivity measurement in Sec-

tion 3.4. The dielectric material is air. The dispersion curve is plotted as the real

part of the propagation constant of surface wave versus the wavenumber. In this

projection, the light line in air is vertical and any wave with ℜ(νy) > 1 corresponds

to a surface wave. For the case of undoped InSb there are two regions with surface

waves - for lower energies it’s the surface plasmon polariton and for higher energies

it’s the surface phonon polariton. Similar case is for the n-doped GaAs, the difference

being that it’s plasma frequency is higher than its phonon frequency. The possible

surface wave is then a combination of both plasmon and phonon polariton. There
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is one energy stop band around 250 cm−1 when the phonon raises the permittivity

above zero. The p-doped GaAs also has higher plasma frequency, but the SPP is very

damped due to low mobility of the majority carriers - heavy holes.
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Figure 4.2: Dispersion curves for selected cases of semiconductors. For n-doped InSb,
the surface plasmon region is below 500 cm− 1, but broken by the effect of lattice
vibrations around 250 cm− 1. Similar case is for p-doped InSb, but the avalaible
wavevectors are limited due to increased damping in the material. In undoped InSb
the lattice vibrations actually allow for a brief existence of surface phonon, at around
200 cm− 1. The plasmonic region starts around 0 cm− 1.

While the dispersion curves calculated from the simple derivation are a useful

tool to assert the behavior of surface plasmons, they do not cover all the aspects of

SPP properties. More useful metrics can be, depending on the intended purpose the

confinement and propagation length defined in the next section. Furthermore, the

dispersion curves and their analytical derivation can lead to “phantom” solutions,

e.g. the Brewster angle or in other cases such as the existence of leaky modes in

observation of different type of surface waves, the D’yakonov waves [122]. The choice

of a coupling mechanism also influences the properties of the surface plasmon, in prism

configuration there is also interference in the middle layer. This is also observable

on gratings, with the addition of possible cavity modes [123] for metallic gratings. A

guided mode analysis and a field analysis is therefore needed for correct understanding

and prediction of real surface plasmons.
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Propagation and confinement characteristics

From the calculation of the complex wavevector components, we can calculate the

propagation length of the surface plasmon and the penetration into the materials.

There are different ways to define the figure of merit of surface plasmon, each favored

by different authors. First lets look at the physical meaning ofHx, the x component of

the magnetic complex amplitude of the surface plasmon in isotropic materials. It has

its real and imaginary part, responsible for the wave nature (oscillation) of the surface

plasmon. The absolute value of |Hx| is the field amplitude and the field amplitude

squared, |Hx|2, normalized to the initial value is the relative intensity. Both the field

amplitude and the relative intensity can be used to characterize the propagation of

surface plasmon.

For illustration, lets take the real value of the magnetic field

Hx,j = exp [−i(kyy + kz,jz)], j = 1, 2 (4.13)

from our previous example (γp = 0.05ωp) at the frequency ω = ωp/2, where ε2 =

−2.9604 + 0.3960i. The 2D plot of the real part of the complex amplitude is plotted

in Figure 4.3. We see the field oscillation of the surface plasmon polariton along the

propagation path (y-direction) and exponential decay to both materials, stronger to

the conductive one.

Next, Figure 4.4 details the propagation along the y-direction. The real and

imaginary part oscillate as expected, the field amplitude follows the field maxims.

Both the amplitude and the intensity decay with exponential factor. The two main

metrics used in literature to define the propagation length of the SPP, denoted LSPP

are either 1/ℑ(ky), when the field amplitude drops to 1/e and intensity to 1/e2 or

1/[2ℑ(ky)], when the relative intensity decreases to 1/e.
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Figure 4.4: Field and amplitude of surface plasmon propagation with highlighted
metrics for z = 0. The propagation distance is normalized to the free space wave-
length.

Similar principle applies to the metric of confinement, i.e. how much field or how

much intensity is carried on the interface in the respective materials. Again this is

usually defined by the decrease to value of 1/e. For the field the confinement length

it’s Lj = 1/ℑ(kz,j) and for the intensity it’s Lj = 1/2ℑ(kz,j). The field and intensity

profile is plotted in Figure 4.5. Interestingly, the propagation is usually defined via

the intensity 1/[2ℑ(ky)] while the confinement through the field as 1/ℑ(kz).
In this thesis we will use the definition via decay of field amplitude, i.e. 1/ℑ(kz)

for confinement and 1/ℑ(ky) for propagation.

4.2 Guided conditions, special solutions

4.2.1 Waveguiding condition

We use the Berreman and RCWA formalism to calculate, design, and interpret data in

optical measurements, be it in reflection, transmission or ellipsometry. The algorithm

however carries much more information than just the observable quantities [84,86,87].

The focus of this thesis is the surface plasmon polariton - the guided wave along the
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interface. We need to analyze and understand its behavior in multilayers, nanostruc-

tures, and gratings. This chapter shows how it is possible to obtain dispersion curves

and field profiles for guided waves from the formalism. First subsection illustrates

the concept on a single boundary using the M-matrix method and the second part

defines the singular value decomposition, used with the S-matrices.

Illustration on M-matrix for single boundary

Recall equations 2.44 and 2.62. Suppose we have one boundary of two materials, ε1

and ε2. This gives us two T-matrices T(0) and T(1). The formula for the M-matrix

M = [T(0)]−1T(1) (4.14)
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gives

M =












√
ε1−νy2+

√
ε2−νy2

2
√

ε1−νy2

√
ε1−νy2−

√
ε2−νy2

2
√

ε1−νy2
0 0

√
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√
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2
√

ε1−νy2

√
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√
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2
√
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0 0
ε1
√
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√
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√
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√
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ε1
√
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√
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2
√
ε1

√
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√

ε1−νy2

0 0
ε1
√

ε2−νy2−ε2
√

ε1−νy2

2
√
ε1

√
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√

ε1−νy2

ε1
√
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√

ε1−νy2

2
√
ε1

√
ε2
√

ε1−νy2













.

(4.15)

Any guided wave in the structure means in our definition that no field comes in from

the top or bottom, but some can come out. For a TM wave that means the element

M33 → 0. Written out it’s

ε1
√

ε2 − νy2 + ε2
√
ε1 − νy2

2
√
ε1

√
ε2

√
ε1 − νy2

= 0. (4.16)

After a little math we see that for the condition to be satisfied, our normalized

wavevector component νy must be

νy =

√
ε1ε2

ε1 + ε2
, (4.17)

which is exactly the formula for the dispersion of surface plasmon (4.6a). The general

condition for guided wave is

M11M33 −M13M31 = 0, (4.18)

which includes both polarizations and mode conversion, but the analytical formulas

get long and complicated very fast and the use of computer optimization is necessary.

Since we are using the S-matrix formalism for all the calculations (Section 2.2.1),

it is at hand to use it for the waveguiding condition as well. This is done using the

singular value decomposition.

Singular Value Decomposition

The principle in calculation of the waveguiding condition - nothing in, something out,

is the same in S-matrix formalism. The principle is described as

A(out) = SA(in) (4.19)

A(out) = S 0. (4.20)
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It is possible to solve (4.20) with the condition that determinant |S| = ∞ there is

better formalism available [124, 125]. Let us multiply the equation with inverse S

S−1

[

A
(0)
up

A
(N)
down

]

=

[

0

0

]

, (4.21)

and do a singular value decomposition, which is

S = UΣVT ; S−1 = VΣ−1UH (4.22)

Superscript T denotes the transpose, H is the conjugate transpose, U is the matrix of

left singular vectors and Σ is the diagonal matrix of singular values (σmax being the

maximum one) and V is the matrix of right singular vectors. This leads to

S−1U = VΣ−1, (4.23)

which is the solution to our problem. In optimization we seek the minimum value

of 1/σmax. The benefit of the Singular value decomposition is that in addition to

the waveguiding condition, we get VT , which is the vector of amplitudes of outgoing

modes. This allows us to plot and study the field profile of the modes in the structure.

Surface plasmon at anisotropic interface

Studying surface waves/plasmons at the interface of anisotropic and isotropic materi-

als has usually been directed at the case anisotropic (uniaxial, biaxial) dielectric and

isotropic conductor [118, 126, 127], where the orientation of the principal axes of the

anisotropic dielectric influence the surface plasmon properties.

Interesting topic in anistotropic surface waves is the Dyakonov (or D’yakonov)

waves [118, 122, 128, 129]. They are surface waves guided by one isotropic and one

anisotropic dielectric, so they are not surface plasmon (oscillation of free carriers), but

can propagate along interface. This purely dielectric (non-absorbing) property would

be promising, but their guiding condition is not easily attainable. The isotropic

permittivity ε1 must be between the anisotropic ε2,xx > ε1ε2,yy) and the direction

propagation must be at an azimuthal angle to the principal axes.

Other interesting cases geared towards special functionality (non-reciprocal, tun-

ing applications) are based on multilayers of isotropic dielectric, conductor and magneto-

optical material [123, 130].
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Interesting question arises with the observed strength of the magneto-optical effect

in semiconductors for infrared and terahertz frequencies. Two diagonal components

of the permittivity tensor can completely change sign. Which of the diagonal com-

ponents of permittivity of the conductor is responsible for the plasmonic behavior?

Starting with defining the permittivities, one isotropic material with the tensor ε1

and one biaxial with ε̂2, defined as

ε̂1 =







ε1 0 0

0 ε1 0

0 0 ε1






, ε̂2 =







ε2,xx 0 0

0 ε2,yy 0

0 0 ε2,zz






. (4.24)

With the T-matrix defined in Section 2.1.4, we can replicate the same method as in

Eqs. (4.14) to (4.17), giving us the tangential component of the surface plasmon at

an isotropic/biaxial interface

νy =

√

ε1ε2,zz(ε2,yy − ε1)

ε2,yyε2,zz − ε21
. (4.25)

This equation is suitable to describe both isotropic conductor/anisotropic dielectric

and anisotropic conductor/isotropic dielectric. The components from the anisotropic

material that will influence the surface plasmon are ε2,yy and ε2,zz.

For anisotropic dielectrics this means that by rotating the material, we can change

the properties of the surface plasmon [131]. For conductors this gives us guidelines on

choosing the direction of anisotropic modulation for the strongest effect. In subwave-

length gratings, the orientation of lamells along y-direction modulates the plasmonic

components. While (4.25) doesn’t fully describe the magneto-optical configuration, it

allows us to deduce that the transversal configuration (Figure 2.2) is the most suitable

for surface plasmon manipulation - it affects both diagonal plasmon components.

4.3 Plasmonics in Semiconductors

4.3.1 Suitable ranges for SPP generation

An ideal plasmonic material would allow a long propagation length of the SPP along

the interface and sufficient confinement into the metallic (conductive) material; in

other words short extension into the dielectric. When the difference between the
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permittivities ε1 and ε2 is large, the SPP can propagate on the distance of many

wavelengths, but is poorly guided by the interface (a small penetration depth into

the conductor) and most of its energy is carried in the dielectric- this is the Zenneck

regime. The opposite is also valid - a heavily confined wave will have a lot of energy

traveling in the absorbing material, and thus the propagation length is short.

Noble metals such as gold or silver are used for plasmonic applications in the

visible and near-infrared range [4, 7, 50]. By comparing the properties of the SPP

on gold in the visible range and on semiconductors in the THz range, one can es-

timate how suitable the semiconductors are for plasmonic applications in the THz

range. There are other metrics usable for describing the figures of merit of surface

plasmon [132]. We have opted for the comparison of the propagation length (along

the interface) and the penetration (into the conducting material) normalized to the

free space wavelength of light. The results are shown in Figure 4.6.

As Figure 4.6 shows, the properties of semiconductors in the THz are almost iden-

tical to that of gold and silver in the visible range. For longer wavelengths, the trends

on noble metals continue linearly to smaller confinement and longer propagation.

The semiconductors have several advantages. The adjustable doping concentra-

tion can significantly change the behavior of semiconductor, as can be seen from

comparing the three samples of InSb. Even the p-doped sample is shown to be able

of sustaining a surface plasmon for low energies. Therefore, doping can be used to

fine-tune the plasmonic properties of semiconductors. Other techniques, such as opti-

cal pumping, electric gating, or as demonstrated in the next section, magneto-optics

allow for further tuning, switching or modulation of surface plasmons on semicon-

ductors. The gaps in the curves, caused by the phonon, and the rapid change of

behavior around them, lead to a surface phonon polariton (i.e. on the undoped InSb)

or a combination of both, where the electromagnetic energy is stored not just in the

collective oscillation of the free carriers, but also in the vibrations of the lattice.

The bands highlighted in Figure 4.6 correspond to possible communication win-

dows for Terahertz frequencies [2, 3]. Semiconductor plasmonic properties have also

been used in Terahertz detectors [133] or as shown in the next section, for Terahertz

surface plasmon resonance sensor.
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finement (bottom) of SPP on selected semiconductors and noble metals. The gaps
in the curves are caused by either the phonon (semiconductor) or band absorptions
(Au, Ag), where the real part of permittivity is greater than -1. The x-axis is the
logarithmic scale of wavenumber, 104 cm−1 corresponds to wavelength of 1µ m. The
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SPP propagates before decaying to 1/e. Data for Au and Ag were taken from [1].
Highlighted areas w0-w4 show the bands of THz radiation considered for communica-
tions applications due to atmospheric absorbtions [2, 3], compared to the infrared C
band and visible light.
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4.3.2 Tunable Magnetoplasmonic THz SPR sensor

We have seen in Section 3.4 that both the undoped InSb and InAs have their plasma

frequency in the Terahertz domain. This points to a possibility of constructing an

SPR sensor based on these materials. Experimental demonstrations such sensor is still

missing in the Terahertz domain, with only theoretical designs published [51,54,134].

This sensor will be useful for subwavelength probing of materials in the Terahertz

domain with high label-free (without a reporting agent) sensitivity.

The typical configuration of an SPR sensor is based either on the Kretschmann or

Otto architecture, both depicted in Figure 4.7. The high refractive index prism is used

to match the wavevector of the evanescent wave to the surface plasmon polariton at

the interface between the conductor and analyte. In the Kretschmann configuration,

the conductor is deposited as thin film on the prism and the analyte is placed on the

top. In the Otto configuration, the conductive material is pressed towards the prism,

with the dielectric-analyte sandwiched between them.

Conductor

Dielectric
Prism

x y

z
θ

d2

Otto Kretschmann

Figure 4.7: Coordinate system and two discussed configurations for SPR excitation.

Experimental Otto configuration

Thick wafers (500 µm) of InSb and InAs (measured in Section 3.4), and a thick

layer on Au on glass, were used as the conductors, the dielectric was chose as a thin

polymer film (high density polyethylene), about 15 µm thick. They were pressed

together using manual anvil on a Silicon prism (n = 3.4164 [135]) with the angle

of incidence ϕ = 35◦ - originally an attenuated total reflection system (ATR). The

reference was the signal from the empty prism.

The experimental data showing the prism coupled surface plasmon resonance are

presented in Figure 4.3.2. Blackmann-Harris three term apodisation [136] is used
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to smooth the signal. The left plot in Figure 4.3.2 shows the transversal-magnetic

(TM, or p-polarized) reflectivity obtained from the experiment. The sharp decrease

in reflectivity for both the InSb and InAs shows the surface plasmon resonance. The

gold sample acts only as a reflector. A model was fitted to the measured data, denoted

by dashed lines in the plot. Fitted values of the refractive index and the thickness

of the dielectric are n2 = 1.625 and d2 = 23.4 µm (with InSb) and d2 = 15.8 µm

(with InAs), the difference in thickness caused by the strength of the manual pressing

on different samples. Reasonable agreement between the data and the model was

achieved. Using the fitted model, it is possible to calculate the field profiles at the

resonance. For Au and reference, the wavelength was chosen as the same as for

resonance in InSb. The THz field intensity profiles, normalized to the intensity of

the wave in the prism, depicted in Figure 4.3.2 (right subplot) show a clear field

concentration at the interface of the dielectric and InSb and InAs. The field intensity

profiles prove that the observed resonances correspond to surface plasmon polariton.

The empty prism provides only evanescent wave penetration and the Au sample

(permittivity from [99]) has only skin depth wave confinement, without any field

concentration on the interface.

As explained in Section 3.4, the permittivity of semiconductors with low effective

mass is easily tuned by an external magnetic field. Section 4.2.1 and Eq. (4.25) show

that the largest modulation will be achieved using the transversal magneto-optical

configuration, where the magnetic field is along the x-axis, i.e. perpendicular to the

plane of incidence. This configuration changes the diagonal (εyy, εzz) and off-diagonal

(εyz and εzy) components of the permittivity tensor. The diagonal components are

responsible for the plasmonic behavior while the off-diagonal components, which arise

with external magnetic field are responsible for a non-symmetrical (nonreciprocal) re-

sponse with the change of the orientation of the magnetic field. How the permittivity

components change with respect to the magnetic field is described in Section 3.2.1.

The modulation in the permittivity of the conductor elicits a change in the observed

surface plasmon resonance. Figure 4.3.2 shows such change in the observed spectra

with the application of the magnetic flux density Bx = ±0.25 T in transversal di-

rection by small permanent magnets. The magnets were separated by a custom, 3d

printed plastic holder. The semiconductor samples were directly between them. InSb
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Figure 4.8: Left: Measured TM reflectivity of Otto configuration with different ma-
terials and data from a fitted model. The surface plasmon resonance is observed in
InSb and InAs samples as sharp decrease in reflected intensity. Right: Calculated
field profiles using the fitted model. The thickness of the dielectric for InAs is smaller
due to different pressing strength of the manual anvil. The field profiles for semicon-
ductors are calculated at the wavelengths of the resonances. For Au and reference,
the wavelength was chosen as the same as for resonance in InSb.
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and InAs exhibit strong shift in the frequency position of the plasmonic resonance.

The field intensity profiles, calculated at the respective frequencies and normalized to

the mean value in the prism, confirm the shift in SPR coupling. The shift, linearly

proportional to the magnetic field for smaller fluxes (< 0.5 T ), is higher in InSb (160

GHz to each side) than for InAs (100 GHz) due to lower effective mass of carrier of

InSb. The use of magnetic tuning of the surface plasmon resonance broadens the pos-

sible application of semiconductor based SPR THz sensor. First of all, the magnetic

field can be used to fine-tune the resonance frequency. By changing the properties of

the semiconductor with magnetic field we are able to find the strongest coupling of

SPR for selected thickness and refractive index of the dielectric. This also means that

we can scan the frequency based on our available magnetic field range and get a more

complete data set of SPR coupling of different strengths and frequency positions.

Lastly, using a modulated magnetic field would also permit the use of lock-in system,

where the magnetic modulation would serve as a carrier wave. In a lock-in amplifier

the detected signal is modulated by a known carrier wave, which drastically reduces

noise in the system. The detected signal would be the surface plasmon resonance

frequency position and strength, the modulation would be done by an electromagnet

driven by alternating current. This type of sensor should bring enhanced sensitivity

to the problems studied in the Terahertz regime - pharmaceuticals, explosives, bi-

ological samples. The control of the polarization of the surface plasmon resonance

through the can prove very useful for studying samples with specific anisotropy or

chirality.

The position and the strength of the surface plasmon resonance is intrinsically

linked to the refractive index and thickness of the analyte as well as the complex

permittivity of the conductor and the angle of incidence in the prism. Figure 4.3.2

shows the position of the strongest surface plasmon resonance based on the analyte

refractive index for several cases of the angle of incidence and the magnetic field in

InSb. Note that the same effect can be obtained by change of the refractive index

of prism, because the tangential component of the prism propagation constant is

νy = nprism sin θ, nSi = 3.4164. The magnetic tuning offers excitation of SPR over

range of frequencies, with fixed thickness - the strength of the resonance will vary,

but the excitation remained possible as shown in Figure 4.3.2. Changing the angle of
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Figure 4.9: Top Left: Measurement and model of SPR on InSb at various external
magnetic field in the transversal direction. Bottom Left: Calculated field profiles at
respective wavelengths of the InSb SPR for each case, normalized to mean values in
the prism. Top Right: Measurement and model of SPR on InAs at various external
magnetic field in the transversal direction. Bottom Right: Calculated field profiles at
respective wavelengths of the InAs SPR for each case, normalized to mean values in
the prism.
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incidence or the material of the prism can be used to tune the sensitivity to desired

range of refractive index and thickness of the analyte. For example, having angle

of incidence 25◦ confers much higher sensitivity to analyte with a refractive index

around 1.3 than configuration with the angle of incidence of 35◦, because of the

steepest curve of the resonant frequency (Figure 4.3.2 right). The tradeoff is less

sensitivity for samples with a higher refractive index, where the thickness would have

to very high and the plasma resonance weaker. The actual configuration should be

tailored to a need of the sensor.
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Figure 4.10: The calculated position of InSb SPR (TM reflectivity minimum) for dif-
ferent settings of the Otto configuration as a function of the refractive of the dielectric
(analyte). For each refractive index and the angle of incidence, the thickness of the di-
electric and resonance wavenumber are obtained simultaneously. For increasing angle
of incidence (increasing propagation constant) the optimum is found for thinner di-
electric layer (subplot left) and sensitivity to higher refractive indices (subplot right).
For example, the highest sensitivity for analyte with refractive index 1.3-1.4 is with
the angle of incidence of 25◦ and the resonances would be found in the range 45-55
cm−1. Blue, red and green curves correspond to values of our measurement setup.

Theoretical Kretschmann configuration

While we have used the Otto configuration for experimental demonstration, it is

also possible to excite THz SPR in the Kretschmann configuration. This could offer
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more viable solution, similar to commerciall ATR systems. However, it requires the

thickness of semiconductor in the range of several µm. Figure 4.3.2 shows such a case,

with bulk of dielectric (n=1.625) on top of a layer of InSb on a Silicon prism with

the angle of incidence of 35 degrees. The TM Reflectivity sweep of InSb thickness

and wavelength shows an interesting property. Two distinct minima are observed,

corresponding to plasmonic resonance. Their reflectivities are shown on the left and

top right of Figure 4.3.2 with field profiles on the bottom right of Figure 4.3.2. First,

a 1.05 µm thick InSb hold a surface plasmon at 6.2 cm−1 (186 GHz, 1.61 mm) in

Zenneck regime, typical for longer wavelength. The dispersion of this type of surface

plasmon is very close to the dispersion of light in the dielectric analyte. Majority of

the energy is carried in the dielectric, with a very little confinement in the conductor,

as it is shown in the field profile. On the other hand, with the thickness of 6.3 µm, the

configurations holds a classic surface plasmon resonance at 65 cm−1 (1.95 THz, 153.8

µm), with confinement in both media. This shows that Kretschmann configuration

is also valid for THz SPR sensor. The same principles shown for Otto configuration -

tuning by magnetic field and changing sensitivity for different refractive index of the

analyte, are also present here.
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4.3.3 Effective medium approximation as tuning mechanism

Section 3.4 showed that doping can significantly change the optical behavior of semi-

conductors in the far-infrared and terahertz range. So far we have only varied the

doping levels over different samples, but in practice, different doping levels are the

basis of electric and opto-electric semiconductor devices. The p-n junction is the nec-

essary foundation for any diode, transistor, and derived components. This also means,

that we can create gratings made from the single material, but the differentiation is

done through the doping. The variation can be done in multiple ways. Either during

manufacturing, or by photoexcitation [55]. The manufacturing process is straightfor-

ward, we increase or alternate different doping levels to create a permittivity profile

of a desired shape. With photoexcitation, we create a desired pattern by illumination

with light of energy above the bandgap of the semiconductor. Different intensities,

created either with spatial light modulator or by interference pattern produce the

gratings.

These gratings might find it use as diffraction gratings, variable mirrors or cou-

pling elements. Here we discuss an accompanying idea - what happens when the

period of the grating Λ is much smaller that the wavelength λ? This idea is par-

ticularly suited to the long wavelengths of terahertz waves, the interference patterns

and spatial modulation of doping levels can be brought to the hundreds and tens of

nanometers, while the used wavelength are on the order of hundred micrometers. For

these long wavelengths, the subwavelength structure behaves as an effective medium,

not diffractive, but anisotropic material with properties derived from the materials

and geometry of the grating. By utilizing anisotropy instead of bulk modulation, we

can define preferential directions of materials properties. With the knowledge of the

formulas (Section 2.2.3) and by varying the materials and the geometry, we can create

designer materials to suit our needs.

Validity of the quasistatic limit

Before applying the derived formulas of analytical effective media to any applications,

we need to determine their correctness. They were derived in the limit when the period

of the grating goes to zero. This is unattainable, so we need to determine for which

ratio of wavelength and period is the effective medium approximation still valid. This
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section answers that with this following example.

Consider a grating at selected period and calculate the measurable parameters

using RCWA. In our case the measurable parameters are Mueller matrices at different

angles of incidence. Then, using the Mueller matrices and optimization algorithm try

to find an anisotropic tensor ε̂fit that has the same optical response. Finally compare

this tensor with analytically derived ε̂eff . When Λ ≪ λ (the quasistatic limit), the

ε̂fit should equal ε̂eff . This approach has been applied to lamellar gratings [76, 94],

here we extend it to harmonic grating.

The example chosen for a demonstration is a 10 µm thick harmonic grating of

undoped GaAs ε1 = 12.8039 + 0.0049i [137] and n-doped GaAs ε2 = −21.2832 +

31.5749i on n-doped GaAs (ε2) substrate at 2 THz (150 µm). The model is studied

at the angles of incidence from 0◦ to 80◦ with step 5 degrees and at periods from 1

µm to 90 µm with step 10 µm.

The effective medium theory for harmonic gratings predicts the effective medium

tensor components as εxx,eff = εzz,eff = −4.2392 + 15.7899i and εyy,eff = 10.3656 +

19.4961i. Figure 4.3.3 shows the fitted effective permittivity (real and imaginary

parts) with the analytical effective permittivity from (2.122). From the figure, it is

obvious that the limit does hold when the ratio Λ/λ is very small. This is according

to our expectations and it is perfectly within the limits of manufacturing - a grat-

ing with the period of 1 µm is completely feasible. For larger grating periods, the

effective medium theory quickly loses the its validity. The validity for grating made

of alternating conductive and dielectric material is on the order of ones of percent.

This is however the most complicated case, the difference between the permittivities

is large. For gratings made only of dielectric materials, the validity goes roughly to

10 percent. [76] The response of the grating becomes too complicated to be described

by a single tensor. We now know that the effective medium approximation is a valid

model for harmonic semiconductor gratings.

Effective permittivity

In this section we look at how the effective permittivity behaves in different gratings

and in different grating geometries. We will use the materials from the example in the

previous section, undoped GaAs (ε∞ = 10.8, ωp = 3.1584 × 108 rad/s, τ = 3.238 ×
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Figure 4.12: Testing of quasistatic limit using RCWA and EMA.

10−13 s), which behaves as a weakly absorbing dielectric and n-doped GaAs(ε∞ =

10.8, ωp = 1014 rad/s, τ = 0.8592 × 10−13 s). The n-doped is not a characterized

sample, but an practical example. Its plasma frequency lies between our measured

sample and the undoped one.

The main examples demonstrated here are the lamellar grating with various fill

factors (fill factor times 100 is the percentage of material 2 in the grating) and har-

monic grating. We can distinguish between the ordinary permittivity εxx,zz and the

extraordinary permittivity εyy perpendicular to the grating lamells. The ordinary

permittivity is shown in Figures 4.13 and 4.14. Based on the fill factor of dielectric

vs. conductive GaAs, the medium can be either optically conductive (negative real

permittivity) or dielectric in the x or z direction, suggesting a strong possibility of

modulation. The absorbtions, i.e. the imaginary part is high even for low fill factors.

The harmonic gratings behave in the ordinary direction as lamellar one with the fill

factor of 0.5.

The extraordinary part (Figures 4.15 and 4.16) shows an interesting behavior.

Even small ratios of the dielectric materials move real part of permittivity to the
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Figure 4.13: Real part of ordinary permittivity (εxx,zz) for gratings with various fill
factors (legend).
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fill factors (legend). Even small fill factor of highly absorbing material causes strong
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positive values for longer wavelengths, while the plasmonic behavior is limited to a

small frequency bandwidth, which unfortunately is compensated by an increase in

absorbtions, so it doesn’t really permits an effective use as modulation technique.

This behavior can be understood microscopically, as the dielectric lamells restrict

movement of electrons in one direction. This effect is different in the harmonic grating,

since the permittivity perpendicular to the gratings changes continuously.
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Figure 4.15: Real part of extraordinary permittivity (εyy) for gratings with various
fill factors (legend).

To summarize these finding, both lamellar and harmonic effective gratings allow

for a modulation of plasmonic behavior of semiconductors, based on different ge-

ometry for lamellar grating. The modulation using harmonic grating must be done

through a different doping levels, which in the case of photoexcited interference pat-

tern would be through the illumination intensity.

The effective way to modulate the plasmonic properties would be to put the lamells

perpendicular to the x direction, along the y direction, this would make the plasmonic

components εyy and εzz exhibit the same level of modulation. Such example is shown

in the next section.
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SPR at interface with grating media

We have shown both theoretically and experimentally in Section 4.3.2 that it is pos-

sible to excite a terahertz surface plasmon resonance in a tri-layer prism-dielectric-

plasmonic semiconductor structure. We will use the same example to illustrate the

tunability of surface plasmon resonance via subwavelength modulation of dielectric

function.

The structure is the same as in the experimental demonstration. A Silicone prism,

ε1 = 3.41642, the angle of incidence of 35◦, 8 µm thick dielectric film with the permit-

tivity ε2 = 1.6252, and semiconductor grating made of undoped GaAs and n-doped

GaAs with permittivity shown in the previous section. We will use the configuration

with grating perpendicular to the x direction. The resulting TM reflectivity is shown

in Figure 4.17. As with the experimental demonstration, the surface plasmon reso-

nance is clearly present. The strength of the resonance is different for each of the fill

factors/gratings, as it has been shown that the absolute SPR minimum requires dif-

ferent thickness of the dielectric. The frequency position of the SPR is clearly easily

modulated using different fill factors.

Moreover, an interesting phenomena happens for fill factors lower than 0.2. By the
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definition of surface plasmon, we shouldn’t be able to excite a resonance here, since

upon examining Figure 4.13, these configuration are only absorbing dielectric. There

is no SPR visible for the undoped GaAs, but the mixtures of f = 0.1 and f = 0.2

still exhibit some form of resonance. Here, a more thorough analysis is needed.
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Figure 4.17: TM Reflectivity of effective media with various fill factors (legend) in
Otto configuration.

For a surface plasmon resonance, both the field amplitude and the field intensity

should be exponential decreasing from the interface, without any oscillations. To

understand what happens in the structure at the resonances, we plot both the field

(real part of Hx) and the field intensity (|Hx|2). We do this for the case of f = 0.1,

which has the resonance at 30.8 cm−1 and the permittivity is εeff = 6.7924+11.8620i

and the plasmonic case of f = 0.5 (also the harmonic grating), which is at 63.1 cm−1

with the permittivity εeff = −5.2755 + 17.6923i. The resulting field and intensities

are plotted in Figure 4.3.3. The plasmonic case has both the field and the intensity

exponentially decaying from the semiconductor/dielectric interface at z = 8 µm.

The dielectric/dielectric interface also shows a decay in intensity, but the field has

damped oscillating behavior, meaning that this is only a dielectric resonance, a type

of anti-reflection coating. This behavior might finds its use, but it is not a surface

plasmon. A dielectric/dielectric interface can only guide waves in a special anisotropic

configuration of Dyakonov waves, which is not satisfied here.
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Figure 4.18: Field components and intensities for different wavelengths and fill factors.
The field concentration on the interface of the dielectric and effective medium for fill
factor 0.5 points to a surface plasmon polariton solution. For fill factor 0.1 the field
in the effective medium has oscillating character - it is not a surface plasmon.

This example shows two aspects. First, the spatial doping modulation can cre-

ate designer materials with desired properties and the effective medium theory well

describes this behavior. Second any “solution” to a surface plasmon or guided wave

must be carefully analyzed, since the analytic formulae or even observable quanti-

ties might show a viable solution (such as the Brewster angle), but the field analysis

presents the true nature of the waves.
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Chapter 5

Conclusion and Perspectives

In this thesis we have presented a complex picture of semiconductors as plasmonic

materials mainly in the Terahertz range. We have characterized III-V semiconductor

samples in broad spectral range (Section 3.4) to find their plasmonic properties (Sec-

tion 3.2.1). Huge magneto-optical effect was measured and analyzed in InSb of various

doping levels. The magneto-optical findings were confirmed using electric Hall effect

measurement (Section 3.4.3). A spatial modulation of semiconductor properties using

subwavelength gratings was explored (Section 2.2.3). Generation of surface magneto-

plasmon resonance for Terahertz sensor application was experimentally demonstrated

(Section 4.3.2). All these findings were supported by theoretical background in spec-

troscopy and optical properties (Chapter 3) of anisotropic multilayers and gratings

(Chapter 2).

Semiconductors were shown as viable plasmonic materials for Terahertz and far-

infrared applications. Their main advantage lies in easy modulation of plasmonic

properties using doping, nano-patterning, and external magnetic field. Especially the

magneto-optical modulation, joined with the sensor application in surface magneto-

plasmon resonance seems most perspective. Such sensors with magnetic modulation

would be able to scan broad range of Terahertz frequencies with high sensitivity or

be used in a lock-in system, to decrease measurement noise.

I hope this thesis has provided the reader with both the fundamentals and the

advanced topics in the fields of plasmonics, semiconductors, spectroscopy and optical

modelling.
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