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ABSTRACT 

 
 The recent boom in microbiome research, made possible by advances in sequencing 
technology, has revealed that the gut microbiome plays an important role in human health. A 
relatively stable community, gut microbes are essential in humans for the development of the 
immune system and processing of nutrients, such as vitamins. Changes to these communities 
have been observed in disease states, such as: inflammatory bowel disease, diabetes, obesity, 
colon cancer and even atherosclerosis. Factors such as antibiotic use and diet can alter the gut 
communities, and the microbiome has become a target of therapeutic interest for certain chronic 
inflammatory diseases.  

Here, we further examine factors affecting the gut microbiome, namely exercise, food 
supplements and probiotics. We have used deep sequencing methods to focus on the bacterial 
communities across three studies. Taxonomy was assigned to sequences and compared across 
samples using a bioinformatics approach.  

The first study examines the impact of exercise on the murine gut microbiome. Using a 
machine learning model, we identify moderate but measurable changes in gut bacteria as a result 
of moderate exercise. We identify previously associated and novel taxa associated with exercise. 
The second study examines the impact of fruit-derived antioxidants on the gut microbiome in a 
model of lung cancer. Anthocyanin-rich haskap berry extracts have a strong impact on gut 
bacteria and warrant further investigation as a dietary supplement to prevent lung cancer 
relapses. Lastly, we analyzed microbial succession in the production of a dairy-free, coconut 
kefir product. Kefir is made by fermenting coconut milk using traditional kefir grains containing 
bacteria and yeasts. We find that coconut kefir contains many of the same beneficial bacterial as 
traditional dairy kefir.  

The results illustrate that factors like exercise and dietary supplements have an impact on 
gut microbes in healthy subjects. While the effects of haskap extract were also seen in a model of 
murine lung cancer, these factors should be further examined in disease models. As research 
continues to unravel how the microbiome is related to various diseases, understanding how to 
shape the microbial community through exercise, diet and probiotics will become increasingly 
important. The research here provides a first glance at many of these systems using primarily 
murine animal models. Further studies in humans will extend these results further to better 
leverage the use of the microbiome to aid in human health.  
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CHAPTER 1:  INTRODUCTION 
 

1.1 HUMAN GUT MICROBIOME  

 

Although it is only recently that sequencing technologies have advanced enough to allow 

us a deeper look into microbial communities, the term ‘microbiome’ has been around for almost 

40 years. In 1988, in his book Mycoparasitism and plant disease control, John M Whipps stated 

that “A convenient ecological framework in which to examine the biocontrol systems is that of 

the microbiome. This may be defined as a characteristic microbial community occupying a 

reasonably well-defined habitat which has distinct physio-chemical properties”. With the 

invention of next-generation sequencing platforms such as 454 sequencing and Illumina, the 

term evolved to refer to all the microbes and their functions present in a community.  

Recently, there has been a large flourish of research on the human microbiome, which 

encompasses all of the microbes (mainly bacteria, eukaryotes and viruses) present in and on the 

human host. There is particular interest in the microbial communities of the gut and the role they 

play in human health, with some scientists referring to the gut microbiome as a “forgotten organ” 

(O’Hara & Shanahan, 2006). Like an organ, the microbiome contributes significant metabolic 

capacity to the body, as well as mechanisms that help maintain physiological homeostasis, 

especially in the mucosal immune system. In this thesis, the term microbiome will refer to 

bacteria in the gut, unless otherwise stated. 

 
 
 
 



 2 

1.1.1 HUMAN MICROBIOME IN HEALTH AND DISEASE 

 

Changes in the gut microbiome have been linked to obesity, diabetes, cardiovascular 

disease, inflammatory bowel disease (IBD), and colon cancer (Ettinger et al., 2014; Serino et al., 

2014; Everard et al., 2013; Qin et al., 2012; Sha et al., 2012; Scanlan et al., 2008; Turnbaugh et 

al., 2006) and it is fast becoming a target of therapeutic interest.  

Many early studies in microbiome research looked at the impact of gut bacteria on 

obesity. Mice raised in sterile environments that are uncolonized by microbes (germ-free mice) 

are resistant to diet-induced obesity (Fiebiger et al., 2016). On the other hand, the obese 

microbiome increases capacity in the host to harvest energy for the body and the overweight 

phenotype can be transferred to germ-free mice by giving them microbes from obese mice 

(Turnbaugh et al., 2006). Overall, several studies have shown that an increase in bacteria in the 

Firmicutes phylum with a lower abundance of those in the Bacteroidetes phylum are associated 

with obesity (Turnbaugh et al., 2006, Louis et al., 2016). It is also reported that the bacteria 

Akkermansia muciniphila inversely correlates with weight (Everard et al., 2013; Louis et al., 

2016).  

The microbiome is highly studied in inflammatory bowel disease, since gut bacteria 

influence mucosal immunity. There are two main forms of IBD; ulcerative colitis (UC), 

characterized by continuous inflammation of the mucosa in the distal colon and Crohn’s disease; 

characterized by intermittent inflammation of deeper tissue layers, often patchy anywhere along 

the intestines (Abraham & Cho, 2009; Khor et al., 2011). UC is often treated by surgical 

resection of the colon, and studies often focus on Crohn’s disease, which is prone to relapse 

despite drug therapies and even despite surgical removal of actively diseased segments. It is 
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hypothesized that this inflammation is driven by both genetics and microbial gut antigens. While 

over 200 genetic risk loci have been identified for IBD, they only explain 8% and 13% of disease 

heritability for UC and Crohn’s (Liu et al. 2015). Dysbiosis in the gut microbiome has been 

detected in IBD, in the form of overall lower species diversity, and a noteworthy increase in 

certain Gammaproteobacteria and a decrease in certain taxa in the Firmmicutes phylum (Sha et 

al., 2012; Kostic et al., 2014).  

As the fourth leading cause of cancer related death worldwide, causative factors of 

colorectal cancer (CRC) are being increasingly investigated. Short-chain fatty acids (SCFAs) are 

reported to help regulate the growth of intestinal stem cells, which undergo rapid turnover and 

are a common starting point for colon cancer (Woo & Alenghart, 2017; Oke & Martin, 2017). 

Dysbiotic shifts in the microbiome also have the potential to contribute to inflammation in the 

gut and the development of cancer (Oke & Martin, 2017).  

Type II diabetes (T2D), a growing problem in the western world, is a metabolic disease 

mainly caused by obesity-linked insulin resistance. Two studies have shown that changes occur 

to gut microbiome in T2D in humans. The first, by Lersen et al. (2010) shows that it is associated 

with lower levels of Firmicutes and Clostridia and slightly higher levels of Bacteroidetes and 

Proteobacteria. The second, by Qin et al. (2012) found higher levels of opportunistic pathogens 

and lower levels of butyrate-producing bacteria (known to be beneficial). Overall, it is 

hypothesized that there is some microbial dysbiosis that occurs in T2D and leads to an increase 

in potentially harmful, Gram (-) bacteria (Lersen et al., 2010).   

 Cardiovascular disease (CVD) is extremely prevalent in western societies and often 

coincides with other chronic inflammatory diseases such as obesity and type II diabetes. While 

there is not a lot of research on the microbiome and cardiovascular disease, a couple notable 
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studies have surfaced in recent years. Diets high in fats and simple sugars lead to risk of 

metabolic syndrome, as well as promote bacteria that have an increased capacity for energy 

intake. Metabolic syndrome defines a number of risk factors for CVD that include obesity, 

hypertension, high blood lipids and insulin resistance (Lavie et al., 2014). It is proposed that 

adding more plant-based fibers and fresh, unprocessed foods can help return the gut microbiome 

to a healthier state and reduce metabolic burden (Ettinger et al., 2014).  

 A ground-breaking study by Wang et al. (2015), actually demonstrated the ability to drug 

the gut microbiome to reduce atherosclerosis. Choline is converted to Trimethylamine (TMA), a 

precursor for Trimethylamine N-oxide (TMAO), a metabolite associated with atherosclerosis 

formation, in the gut by microbes. The bacterial enzyme responsible for this conversion was 

identified and inhibited by a small molecule drug, successfully reducing circulation TMAO 

levels in mice. While studies looking at a direct microbial target are rare, they are crucial for the 

development of therapies for future clinical practice.  

 

1.1.2 HOST-MICROBE INTERACTIONS 

 

The intestinal microbiome has been shown to be an important contributor to normal host 

physiology, including immune development and the metabolism of energy and drugs (Kinross et 

al., 2011; Cani et al., 2009). Changes to the host environment, such as selective pressures 

brought about by antibiotic use (Ramond et al., 2015) or inflammation due to bacterial infection 

(Sekirov et al., 2010) can disrupt the normal community. In healthy individuals, the microbes are 

generally able to reestablish their functional niches thereafter (Raymond et al., 2015; Sekirov et 

al., 2010; Dethlefsen et al., 2008). It has also been shown that factors, such as diet and exercise 
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contribute to changes in an individual’s gut microbiome throughout their lifetime (Allen et al., 

2015; David et al., 2013).  

Age and sex are two factors that also have an influence on the microbiome. Aging in 

mice is associated with increased Rikenellaceae, Lachnospiraceae, Ruminococcaceae and 

Clostridiaceae species (Langille et al., 2014) and these trends are also observed in humans (Biagi 

et al., 2010). It has been shown that gut microbial diversity is lower in juvenile rodents (Mika et 

al., 2015). Humans and mice exhibit both physiological and behavioural differences between 

sexes, and this extends to the microbiome. In mice, the microbiome of females and males 

diverges starting in puberty and continuing on into adult life (Jašarević et al., 2015). Transfer of 

gut microbes from one sex to the other has been associated with changes in hormone levels 

consistent with the donor sex. Little research has been done on sex-based differences in the 

human microbiome, although it is known that pregnant women undergo distinctive shifts in their 

gut microbiomes (Jašarević et al., 2015).  

 

1.1.2.1 DEVELOPMENT OF IMMUNITY 

 

While our gut microbes benefit from the nutrients we consume, we benefit from them in a 

number of ways. Mammals have co-evolved with their bacterial communities, and the 

microbiome plays a key role in early life in the development of mucosal immunity, as well as the 

metabolism of indigestible nutrients and production of certain essential vitamins (Sommer & 

Bäckhed, 2013; Round & Mazmanian, 2009). It is vital that the immune system develops 

tolerance to the body’s own bacteria – improper development of this cooperation is believed to 

lead to local and systemic inflammation (Round & Mazmanian, 2009). While being non-
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responsive to healthy bacteria, the mucosal immune system must protect the body from invading 

pathogen, and microbial composition has been shown to influence mucosal properties, lymphoid 

structure and development of immune cell differentiation and response (Sommer & Bäckhed).  

Bacteria both produce beneficial metabolites and induce the immune system to produce 

important molecules. Upon encountering microbial structures, immune receptors in the mucosa 

signal for the production of IgA and antimicrobial peptide secretion by epithelial cells, crucial 

mediators in balancing the relationship with commensals and overt invasive bacterial infection. 

A number of bacterial species produce SCFAs from the fermentation of dietary fibers, which to 

date are the most important known microbial metabolite (Kinross et al., 2011). As well as 

facilitating the resolution of inflammation through toll-like receptors (TLRs), SCFAs (e.g. 

butyrate) regulate the differentiation of intestinal stem cells, reducing risk of colon cancer (Woo 

et al., 2017).  

 

1.2 MODIFYING THE MICROBIOME 

 

1.2.1 DIET 

 

 Our gut microbes are heavily influenced by diet and respond very rapidly when diet is 

altered. For example, David et al. (2013), demonstrated that within 2 days, consumption of 

animal- or plant-based diets containing substantially different macronutrients significantly 

shifted specific taxa in the gut. Despite daily fluctuations (David et al., 2014), not all individuals 

are affected the same way by specific dietary changes and long term dietary trends shape the 

major compositional features of a microbiome. For example, carnivorous versus herbivorous 
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diets increase levels of different bacteria to break down the different major macronutrients 

(David et al., 2013). 

 

1.2.2 EXERCISE 

 

Changes in the microbiome have been observed in diseases such as obesity, diabetes, 

cardiovascular disease, inflammatory bowel disease and colon cancer (Ettinger et al., 2014; 

Serino et al., 2014; Everard et al., 2013, Qin et al., 2012; Sha et al., 2012, Scanlan et al., 2008, 

Turbaugh et al., 2006). Exercise has been shown to have beneficial effects on these diseases 

states (Hagg et al., 2005; Peters et al., 2001), in part through the modulation of levels of 

inflammation (Pedersen et al., 2000). Furthermore, exercise has been shown to have both acute 

and chronic effects and it is these chronic effects that have positive outcomes on disease states 

(Chen et al., 2014). However, what remains unclear is whether the chronic effects of exercise on 

inflammation alter the intestinal microbiome.  

The impact of exercise with both age and nutrition has been studied in rodents (Queipo-

Ortuño et al., 2013; Zhang et al., 2013; Mika et al., 2015). Mika et al. (2015) showed in rats that 

age affects the impact of exercise on the microbiome. Young rats (three weeks old) were more 

susceptible than adult rats (ten weeks old) to changes in microbial diversity as a result of 

exercise. Queipo-Ortuno et al. (2013), fed 6-week old male rats either restrictively or ad libitum, 

with and without free access to an exercise wheel, and found that exercise increased gut bacterial 

diversity when rats had unlimited food access. This study was only performed over a six day 

period and limited by the use of PCR-DGGE (denaturing gradient gel electrophoresis), an 

insensitive method for microbial composition analysis.  In contrast, a study examining the effects 
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of both calorie restriction and voluntary exercise on the gut microbiome, also using six-week old 

male rats, found that exercise alone had no significant effects on microbial composition (Zhang 

et al., 2013). Conclusions were, however, largely focused on the diet component of the 

experiment and fecal sampling did not start until 62 weeks into the study. A study by Cook et al. 

(2013), demonstrated that voluntary wheel running attenuated, while forced treadmill running 

exacerbated disease progression in a colitis mouse model. When they compared the effects of 

voluntary and forced exercise on gut microbial diversity in healthy mice, they found both to have 

distinct and significant effects on community structure (Allen et al., 2015). In humans, 

significant differences in the microbiome of elite athletes undergoing high volume, high intensity 

exercise were identified, but could not be clearly separated from diet differences (Clarke et al., 

2014).   

 

1.2.3 DRUGS 

  

Given the metabolizing potential of microbes (Haiser & Turnbaugh, 2013), the gut 

microbiome can be altered by drugs and also can also alter the effect of drugs on the body 

through first pass metabolism. A well-known example of this phenomenon occurs with the 

cardiovascular drug Digoxin. Digoxin increases contractility of the heart by inhibition of Na/K-

ATPase membrane pumps and is used to treat heart failure and arrhythmias (Haiser et al., 2014; 

Gheorghiade, 2006). It was discovered that in about 10% of patients, a bacteria Eggerthella lenta 

was reducing the drug to its inactive form, therefore decreasing the efficacy of Digoxin before 

absorption in these patients. A diet rich in arginine is able to suppress the bacterial genes 

responsible for this phenomenon and allow the effects of Digoxin to take place in these patients.  
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Gut bacteria can also prevent drugs from being excreted. Many drugs are metabolized 

and conjugated in the liver, and when they are excreted into the intestine in the bile they are not 

able to be reabsorbed and exit the body with other waste products. However bacterial enzymes 

such as ß-glucoronidases are able to deconjugate drugs and allow their reabsorption from the 

intestinal lumen and the bloodstream. This can be dangerous when toxic drugs are being 

administered, such as irinotecan, a frontline therapeutic in the treatment of colon cancer (Haiser 

& Turnbaugh, 2013). The bacterial enzymes allow prolonged exposure of the drug in the body 

and causes severe diarrhea, weight loss and anorexia. While antibiotic treatments suppress these 

harmful effects, they leave patients susceptible to pathogens such as C. difficile (Haiser & 

Turnbaugh, 2013).  

Lastly, it has also been shown that gut bacteria affect the expression of drug metabolizing 

genes. Germ-free mice (mice that lack microbes), have higher levels of important drug 

metabolizing genes. This has the potential to cause harm by inactivating beneficial drugs or by 

rapidly converting prodrugs into their more toxic active forms (Bjorkholm et al., 2009).  

 

1.2.3.1 ANTIBIOTICS 

  

 One of the biggest drivers of microbial changes in the gut are antibiotics. While very 

effective at reducing the mortality and morbidity caused by pathogenic bacteria, they also target 

beneficial organisms (Blaser & Cox, 2015). Blaser and Cox have shown that antibiotics reduce 

the diversity of microbes that develop in the gut when administered to young mice and also that 

these mice become overweight. Disruption of the microbiome by antibiotics can allow 

succession by pathogenic bacteria such as C. difficile as well as promote the development of 
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antibiotic resistance (Langdon et al., 2016). The use of antibiotics has been linked to the 

development of a number of immune-related diseases such as asthma and allergies (Langdon et 

al., 2016).  

  

1.2.3.2 PROBIOTICS AND PREBIOTICS 

 

 The mechanisms by which the gut microbiome affects health have not yet been 

uncovered. The gut microbiome can differ extensively between individuals, and researchers have 

uncovered several links between certain bacterial species and important functions. Some of these 

key commensal organisms and their roles were discussed above, and some of them are discussed 

in further detail below. 

 Probiotics describe microbes, mainly bacteria, but also some yeast, that can be consumed 

for health benefits. For example, it has been shown that the consumption of Lactobacillus sp. can 

alleviate symptoms of lactose intolerance (Rosa et al., 2017). While a number of bacterial 

species thought to be beneficial have been sold as probiotics, not many have been objectively 

studied. Many fermented foods are also considered probiotics. Cheese and dairy milk have been 

praised for their potential for appetite control and weight loss, in part because of microbes and 

microbial metabolites (Montel et al., 2014).    

 Kefir is a fermented dairy product made using microbial ‘grains’, held together by a 

polysaccharide matrix (Nielsen et al., 2014). Containing mostly lactobacillus bacteria and yeast, 

the health benefits of kefir have been described since it originated in Russia over 4000 years ago 

(Rosa et al., 2017). Recently, as probiotics have become an area of increasing interest in health, 

several scientific studies have examined the health benefits of fermented dairy products. For 
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example, bacteria found in kefir have been shown to be protective against a number of Gram (+) 

pathogens, mediate asthma and inflammation and even have anti-tumour activity through 

increased immune response (Rosa et al., 2017; De LeBlanc et al., 2007).  

Even though kefir has been touted for its probiotic health benefits the microbes within 

kefir grains and kefir fermented products have been studied very little. One recent study used 

high-throughput sequencing and metabolomics to examine the relationship between flavour 

production and microbes in dairy kefir (Walsh et al., 2016). They identified that earlier stages of 

fermentation were associated with Lactobacillus kefiranofaciens being the dominant bacteria and 

‘cheesy’ and ‘fruity’ being the dominant flavours, and a shift to Leuconostoc mesenteroides in 

later stages was associated with a more ‘buttery’ flavour.  

 One of the described benefits of fermented dairy products such as yoghurt and kefir is the 

reduction of lactose intolerance (Marlin, 2003). Unfortunately, some individuals are still 

sensitive to lactose levels within these fermented products. A local Halifax business owner has 

succeeded in producing a coconut kefir product which is completely free of dairy, made by 

fermenting coconut milk with traditional kefir grains. 

 Microbes require certain nutrients to survive and thrive. Prebiotics are consumable 

products that will promote healthy bacteria. For example, the consumption of indigestible fibers 

such as inulin have been shown to promote the beneficial Bifidobacterium species. To date, even 

less research exists on prebiotics than probiotics, but they could prove to be a simple and safe 

method of improving the gut microbiome and overall health.  

Plant-derived polyphenols, such as blackberry anthocyanins, are known to have 

antioxidant and anticancer properties. More recently, these compounds have also been shown to 

modulate lipid metabolism and obesity. A study by Eposito et al (2015) showed that not only 
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could blackberry anthocyanins attenuate weight gain and improve glucose metabolism in mice 

but also demonstrated that these benefits are dependent on the gut microbiome. Administration 

of antibiotics abolished the metabolic improvements otherwise seen in mice given anthocyanins, 

indicating that gut microbes play an important role in the metabolism of these compounds. 

However, the microbiome was not profiled during this study, limiting our knowledge on how 

anthocyanins alter the microbial community composition. Other studies have demonstrated the 

capacity of gut microbiome to metabolize anthocyanins and other plant phenols such as ellagic 

acid, quercetin and a variety of hydroxycinnamic acids (Faria et al., 2014; Rechner et al., 2002; 

Saha et al., 2016).  

 

1.2.3.3 FECAL TRANSPLANTS 

 

 The microbiome is a relatively stable community, which can shift as a result of 

inflammation from infection or a course of antibiotics. This is commonly what happens in 

patients who acquire persistent C. difficile infections (Crow et al., 2015). Hospital patients who 

are immunocompromised or who are on antibiotics are susceptible to acquiring the pathogen, 

which can wreak havoc on the normal microbiome. In some individuals, even after treatment 

with antibiotics, a healthy microbial community is not able to re-establish and the infection 

persists, cause severe diarrhea and pain (Culligan & Sleator, 2016). Early clinical trials found 

that following a fecal transplant from a healthy microbiome donor, these patients had success 

rates ranging from 83-100% (Chapman et al., 2016). Microbes are isolated from the feces of a 

healthy person and administered either orally or intestinally through an enema to the patient, who 

has been given a round of antibiotics. While it is difficult to permanently introduce a handful of 
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species to your gut, it appears that a complete intestinal community introduced together has the 

established interactions to be successful. Fecal transplants are not yet considered standard 

practice, though are being considered as more common place and being tested for the treatment 

of other diseases, such as IBD (de Groot et al., 2017).  

 

1.3 ANALYSING THE MICROBIOME  

 

1.3.1 MOUSE MODELS 

 

 Even though our interest lies in studying human health, there are limitations to studies 

conducted on humans. It is difficult to standardize a human’s daily environment and control for 

factors that could be influencing their microbiome such as diet, exercise, chemicals and stress. 

Murine models allow finer control and more flexibility in treatment protocols and easier sample 

collection. The anatomy and physiology of the mouse gut is similar to that of the human gut and 

their microbiome are both dominated by two major phyla, Bacteroidetes and Firmicutes (Nguyen 

et al., 2015).  

 One way to study the gut microbiome in mice is to treat them with antibiotics. Usually 

this is a broad spectrum cocktail used to knock down the largest number of microbes (Langdon et 

al., 2016). The advantage to this method is that it can be applied at any point during the lifetime, 

to a variety of different disease models. The disadvantage is mainly that antibiotics can interact 

with other drugs being administered, or have their own physiological effects on parameters, such 

as weight (Langdon et al., 2016).  
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Another method is to use germ-free mice. These are mice raised in a sterile environment, 

completely uncolonized by bacteria. This allows the experimental comparison to conventionally 

raised mice that have bacteria, without drugs like antibiotics and enzyme inhibitors as 

confounding factors. However, an important consideration when using germ-free mice is that 

normal physiological development has been shown to be altered in these individuals. Altered 

immunity and organ function are common differences in germ-free mice (Fiebiger et al., 2016).   

 Similar to germ-free mice, gnotobiotic mice are colonized by known species, added 

intentionally by researchers. The biggest asset to gnotobiotic models is the ability to “humanize” 

the microbiome, that is, to colonize mice with microbes from the human gut. Key studies in 

microbiome research have been made using this technique, including the work by Turnbaugh et 

al. (2006) showing that lean mice colonized with microbes from overweight humans became 

overweight despite having similar calories available as control mice had in their food.    

 

1.3.2 SEQUENCING 

 

 Since the development of nucleic acid sequencing techniques in the 1960’s, these 

technologies have seen great improvements, especially in the past two decades (Reis-Filho, 

2009). The advent of next-generation sequencing technologies has allowed a plethera of new 

microbiome research due to the high-throughput capabilities and continually decreasing time and 

cost constraints (Arnold et al., 2016). Early sequencing technologies, such as Sanger sequencing, 

were only able to process one cultured species at a time. There are thousands of bacterial species 

in the gut, and it is estimated that the vast majority of them are unculturable in the lab (Eckburg 

et al., 2005). We have only able to get a small snapshot of the true diversity in microbial 
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communities (Morgan & Huttenhower, 2012). Since Sanger sequencing was taken over by 

pyrosequencing and then Illumina technologies, we are now able to characterize whole microbial 

communities, including eukaryotes and viruses as well as bacteria. Sanger sequencing involves 

the selection incorporation of chain-terminating nucleotides during DNA replication, followed 

by separation of the strands by size using gel electroporation. Pyrosequencing removed the need 

for electroporation using sequencing by synthesis. Nucleotides are selectively added to the 

reaction and upon incorporation into the growing strand, the release of pyrophosphate is detected 

using a luciferase-catalyzed reaction (França et al., 2002).  

 Illumina technologies also use sequencing by synthesis and simultaneous amplification of 

single-strands of DNA in separate clusters on a flow cell. The fragment is tagged with adaptor 

regions of DNA that bind to complementary DNA adaptors on the flow cell. The complementary 

DNA strand is made using the original as a template. The double stranded DNA is denatured and 

the original DNA strand is washed away, leaving the complementary strand now bound to the 

flow cell. The strand folds over, so that the DNA adaptor on the other end binds to its 

complementary adaptor on the flow cell. The complementary strand is then synthesized using 

this template, and the strands are denatured, leaving two single-strands of DNA attached to the 

flow cell. The process, known as “bridge-amplification” is repeated many times until a cluster of 

the forward and reverse DNA fragments is formed. The reverse strands are cleaved and washed 

away so that only the forward strand is sequenced. Sequencing then begins by attaching a primer 

to the single strand. Fluorescent primers are added to this primer and the complementary strand 

grows. Every time a correct nucleotide is added, a fluorescent signal is emitted, which is detected 

by the sequencer. Each nucleotide has its own signature light signal. Once the strand is 

synthesized, bridge-amplification occurs once again to allow the reverse strand to be sequenced 
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(Illumina Inc., 2014). When there is overlap between the forward and reverse reads, they are 

aligned after sequencing to allow better identification from reference databases.  

 DNA barcodes can be added to the adaptor sequences, allowing pooling of samples, 

called ‘multiplexing’. Also, despite the number of steps involved in sequencing by synthesis it 

happens simultaneously in millions of clusters on the flow cells and so that the process happens 

very rapidly.  

 When analyzing which microbes are present in a community, it is easiest to sequence a 

singular gene common to all organisms, the 16S ribosomal RNA gene in bacteria and the internal 

transcribed spacer 2 (ITS2) in fungi. The 16S gene codes for part of the small ribosomal subunit 

in bacteria and contains both well-conserved and variable regions (de la Custa-Zuluaga & 

Escobar, 2016). The ITS2 region in a non-transcribed gene spacer that is excised when the small 

ribosomal subunit of the rRNA matures and is widely variable among species (Ji et al., 2017). 

Primers are designed to span one or two variable regions, which have enough genetic separation 

to allow grouping into species. Sequences that are 97% identical are grouped into what are 

known as operational taxonomic units (OTUs), and this is the threshold for species assignment.  

 In order to determine microbial functions present in a community, metagenomics 

sequencing is performed using Illumina technologies. In this case all of the DNA in a sample is 

sequenced, and then sequenced DNA reads are compared to a reference database in order to 

determine which genes are present.  
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1.3.3 BIOINFORMATIC APPROACHES & REFERENCE DATABASES 

 

 Reference sequence databases are an important part of sequencing analysis. They allow 

the annotation of relevant information to the millions of base pairs of DNA that have been 

obtained. Both metagenomic and 16S sequencing analyses use databases to assign information to 

sequencing data. In microbiome data, taxonomy is the classification assigned to each organism 

found in the sample, generally at the species level where possible. 

 With metagenomic data both taxonomy and function can be assigned to sequence reads. 

For example, a common method of assigning functions to metagenomic data is to use the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) database (Kanehisa & Goto, 1999) at the level of 

gene ortholog groups, modules, or pathways. To assign taxonomy to metagenomic data, a tool 

known as MetaPhlAn compares sequencing reads to a number of reference genomes using clade 

specific genes (Truong et al., 2015).  

 One of the most popular databases in this research is the Greengenes 16S OTUs database 

which provides a vast catalog of full length 16S sequences from previously cultured and 

environmentally sampled microbes. Similarly, the ITS UNITE database was used to assign 

fungal reads to ITS2 sequencing data (Abarenkov et al., 2010). While it is useful to assign OTUs 

using a reference database that has species annotation, no microbial database is by any means 

complete. Assigning taxonomy using only a reference database is known as “closed-reference 

OTU picking”. To avoid losing information from reads that do not map to an OTU in the 

reference database, the remaining sequences are assigned to OTUs “de novo”, meaning they are 

clustered in groups of 97% sequence identify and assigned a novel identification number. This is 

known as “open-reference OTU picking”.  It is also possible to assign all OTUs completely de 
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novo, known as “de novo OTU picking”, which can be useful for datasets with many unknown 

species.   

 The OTU assignments are output into a biome formatted table. The information given in 

the table is the number of times each OTU is observed in each sample. It is important to note that 

the abundances of the OTUs are relative, since some of the raw sequences were filtered for 

quality. Singletons, OTUs that are only observed once, are also filtered out of the final table to 

reduce the computational burden in later analyses as well as to remove some noise from the data 

(McDonald et al., 2012).  

 There are two measures of diversity used to analyze the taxonomic data. The first is alpha 

diversity, which is a measure of species richness in each sample. There are a number of methods 

to measure alpha diversity but the simplest is to count the number of different OTUs observed in 

a sample. The sample with the highest number of different OTUs is considered to have high 

alpha diversity, or species richness. The second is beta diversity, which is a measure of the 

compositional diversity between samples.  Even if two samples have the same number of 

bacterial species, if the taxa are different or the overlapping taxa are present at very different 

levels then the samples are dissimilar. Beta diversity is calculated in a matrix, where the levels of 

each OTU is compared across all samples. Taxa can also be weighted by phylogenetic distance.   

 

1.4 OBJECTIVES  

  

 The main objectives of the studies presented in this thesis are to confirm factors that 

affect the gut microbiome. While it has been shown that diet plays an important role in shaping 
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these communities, our studies focus on the impacts of exercise, food supplements and 

probiotics.  

The first objective was to understand the microbial communities in the mouse gut as a 

result of moderate exercise. The second objective, was to analyze the impact of fruit-derived 

antioxidants on the gut microbiome in a model of lung cancer. The third objective was to study 

microbial succession in the production of a dairy-free, coconut kefir product.  

We hypothesized that since exercise has beneficial physiological effects on inflammation, 

which is related to changes in the gut microbiome, that we would see shifts in the gut 

microbiome as a result of the exercise regimens. The gut microbiome has been shown to play a 

role in the metabolism of antioxidant compounds such as anthocyanins, and so we also proposed 

that the haskap anthocyanins would also influence the bacterial communities. While coconut 

kefir is made with traditional kefir bacteria and yeasts, we were unsure what kind of ecological 

succession we would see in the microbial community of this dairy-free version of the fermented 

beverage.  
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CHAPTER 2:  MATERIALS AND METHODS 
 

2.1 ANIMAL WORK 

 

2.1.1 EXERCISE STUDY 

Forty-two 6-10 week old C57BL6 mice (eleven male, thirty-one female) were obtained 

from Charles River Laboratory (Canada). All mice were housed individually on a 12-h light/dark 

cycle in the University Animal Care facility for the duration of the experiment. Mice were 

assigned to either a voluntary exercise group (n=10), a forced exercise group (n=11) or a non-

exercise control group (n=21), and were caged singularly during the exercise period. All 

protocols were conducted in accordance with the Canadian Council on Animal Care guidelines 

and approved by the Dalhousie University Committee on Laboratory Animals.  

 

2.1.1.1 VOLUNTARY EXERCISE PROTOCOL 

Twenty female mice were used for the eight-week voluntary exercise portion of the 

study. Female mice were chosen as it has been reported that they perform higher levels of 

voluntary physical activity than male mice (Lightfoot et al., 2004) and we wanted to maximize 

exercise volume to maximize the microbiome effects observed. Mice were acclimatized to 

individual housing for one week and then were randomly assigned to a voluntary wheel running 

(VE) group (n = 10), or a sedentary control (VC) group (n = 10). Mice in the VE group were 

housed individually in cages that contained running wheels giving the mice 24 hour access to the 

running wheel. Each running wheel was connected to a data-logger, which counted the number 

of wheel revolutions per day for the 55 day exercise protocol. Using the diameter (d) of the 
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wheel, total number of running wheel revolutions were converted to metres travelled per day 

(d).  

 

2.1.1.2 FORCED EXERCISE PROTOCOL 

 

Eleven mice (five female, six male) were randomly assigned to a forced treadmill running 

(FE) group. Both male and female mice were chosen to compare sex differences in the effects of 

exercise on the microbiome. While Allen et al. (2015), reported microbiome differences due to 

voluntary exercise in male mice, our observations on voluntary exercise in female mice did not 

reveal any microbiome shifts. Mice were acclimatized to individual housing for one week, and 

then FE mice acclimatized to the treadmill for five days prior to starting the training protocol. 

Following acclimation to the treadmill, a forced running protocol was administered for six 

weeks. Five days a week, FE mice were run for 40 minutes, starting at a speed of 15 m/min for 

weeks one and two, and increasing by 2.5 m/min every two weeks, so that by weeks five and six 

mice were running at a speed of 20 m/min. Benito et al. (2011), have previously defined 60 

minutes of treadmill running at 36 m/min as vigorous exercise for rats, and we therefore defined 

our forced treadmill running protocol (40 minutes at 15-20 m/min) as moderate exercise in mice. 

Control (FC) mice were placed in a clean, empty cage for a comparable amount of time to mimic 

handling stress. Mice were trained on the LE8700 Single Lane Treadmill equipped with a rest 

platform and an electronic control unit (Panlab Harvard Apparatus). When mice stopped running 

they were gently nudged off the rest platform and back onto the treadmill belt. 
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2.1.1.3 DIET AND BODY MASS COMPOSITION 

 

All exercising and control animals had ad libitum food (Prolab RMH 3000, LabDiet, 

Brentwood, MO) and water. Food was weighed and distributed to each mouse’s cage every 

seven days, and uneaten food from the previous seven days was weighed to determine how much 

food had been consumed. 

To assess body composition mice were weighed every two weeks. Dual-energy X-ray 

absorptiometry (DEXA) was also used to assess body mass composition of the mice. In brief, 

mice were anesthetized with isofluorane and placed in a prostrate position. They were scanned 

using a Lunar PIXImus2 (GE Medical Systems) DEXA machine. Whole-body scans, minus the 

head, were taken and bone marrow density (g/cm2), bone marrow content (g), body area (cm2), 

lean mass (g) and fat mass (g) were determined. DEXA scans were taken at week-6 of both 

exercise protocols.  

 

2.1.1.4 FECAL AND MUCOSAL SAMPLE COLLECTION 

 

Starting on day zero of the experimental timeline, fecal samples were collected on a bi-

weekly basis by placing each mouse in a separate clean cage, waiting until they passed fecal 

pellets, and then transferring these to autoclaved microfuge tubes using sterile forceps. Fecal 

samples were stored at -80ºC until they were prepared for analysis. 

At the end time point of both experimental protocols mice were sacrificed by cervical 

dislocation while under isofluorane anesthesia. The terminal half of the colon was removed from 

the animals and any fecal contents were flushed out with cold PBS using a rat feeding tube. An 
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incision was then made longitudinally along the colon and mucosal contents were scraped off 

using a glass coverslip and deposited into a microfuge tube. All fecal and mucosal samples were 

frozen immediately using liquid nitrogen and stored at -80°C.   

 

2.1.2 HASKAP ANTHOCYANIN STUDY 

 

Fifty 4-week old female A/J mice were obtained from Charles River Laboratory 

(Canada). A/J mice are a strain that is genetically susceptible to developing tumours when 

exposed to carcinogens. Tobacco smoke, as well as its isolated carcinogens, have been 

administered to A/J mice, which subsequently develop lung tumours (Ge et al., 2015; Witschi, 

2004). All mice were housed individually on a 12-h light/dark cycle in the Carleton Animal Care 

facility for the duration of the experiment. There was a one week adaptation period to the single 

housing before the experimental treatments were started.  

 

2.1.2.1 HASKAP STUDY TIMELINE  

 

Mice were assigned to one of six treatment groups for the 25-week duration of the study. 

Regular mouse chow was abundantly available to all treatment groups throughout the 

experimental period. Two were control groups: (A) Fed regular mouse diet for the duration of the 

study, injected with saline as a sham and (B) Fed haskap berry extract (0.2 g/mouse) daily for the 

duration of the study, with saline injected as a sham. Four were experimental groups, all injected 

with a single dose (100mg/1kg body weight) of nicotine-derived nitrosamine (NNK) 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone after three weeks of the study: (C) Fed normal 
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mouse food for the duration of the study (D) Fed haskap berry extract for three weeks and fed 

normal mouse diet for the following 22 weeks, (E) Fed haskap berry extract for the duration of 

the study and (F) Fed normal mouse food for three weeks and fed haskap berry extract for the 

following 22 weeks. Tobacco smoke contains thousands of chemicals and its unrefined 

administration to mice dilutes the tumour producing effect of some of its more potent 

carcinogens. Toxicology of many of these compounds has been assessed and NNK has been 

found to be a potent activator of tumorigenesis in the mouse lung (Witschi, 2004). Increased 

levels of NNK metabolites in the urine have also been associated with increased risk of lung 

cancer in humans (Peterson, 2016).  

 Three weeks into the study, mice were injected intraperitoneally with either saline or 

100mg/kg body weight NNK (2mg in 0.1ml saline), as described in the study timeline. Haskap 

berry extracts were administered by mixing with powdered regular chow, in the form of a jelly 

cube. During the adaptation period prior to the experimental time period, all mice were given 

daily placebo jelly cubes to prepare them for the dietary supplementation. Ethical endpoints were 

administered to mice who showed serious signs of acute toxicity in response to the NNK, 

including severe difficulty in breathing, immobility and abnormal vocalization.  

 

2.1.2.2 FECAL SAMPLE COLLECTION 

 

At the experimental endpoint, fecal samples were collected from each mouse’s cage and 

stored in 15 ml sterile Falcon tubes at -20ºC until they were required for analysis. 
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2.2 COCONUT KEFIR STUDY 

 

2.2.1 COCONUT KEFIR PRODUCTION 

 

 Coconut kefir is made using a method very similar to traditional dairy kefir. First, the 

kefir grains, which are kept in dairy milk at 4°C, are removed from the fridge and left to rest 

until they come to room temperature (about 1 hour). Then, the grains incubate for another hour in 

coconut milk, to prime them for overnight fermentation. Finally, grains are transferred to fresh 

coconut milk and left to ferment overnight. The product is bottled and sealed and stored at 4°C.  

 

2.2.2 KEFIR SAMPLES 

 

A schematic of the sampling timeline outlining collection at four different stages is 

illustrated in Figure 18. Grains were sampled: 1) after incubating in dairy milk, 2) after 

incubating in coconut milk and 3) after the overnight fermentation. Milk samples were also taken 

at these time points, with the addition of a sample of fresh coconut milk. Samples were taken in 

triplicate at all time points for initial 16S sequencing. Eleven samples were then taken of the 

final product for metagenomic sequencing. All samples were stored at -80°C until analysis.  

 

2.3 DNA ISOLATION, LIBRARY PREPARATION AND SEQUENCING 

 

DNA was isolated from fecal and mucosal samples using the PowerFecalTM DNA 

Isolation Kit (MO BIO Laboratories, Catalog #: 12830-50), and from kefir milk and grain 
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samples using the PowerFoodTM DNA Isolation Kit (MO BIO Laboratories, Catalog #: 21000-

50). In brief, a tube containing garnet or glass beads and lysis buffer, samples are heated and then 

homogenized by bead-beating (Disruptor-Genie). After centrifugation, non-DNA organic and 

inorganic cell contents are precipitated from the supernatant. A high-concentration salt solution 

is then added to the supernatant to allow DNA to selectively bind the silica membrane of a spin-

filter column. After being bound to the column and washed, purified DNA is eluted in low-salt 

conditions. 

Variable regions V6-V8 of bacterial 16S ribosomal RNA genes were amplified from all 

purified DNA using the PCR conditions and primers from Comeau et al. (2011), modified for 

use on the Illumina MiSeq. The V4-V5 region was also amplified for the exercise study samples 

using primers and conditions from Walters et al. (2015). Finally, in the kefir study the internal 

transcribed spacer region 2 (ITS2) was also amplified from samples using the primers and 

conditions from Walters et al. (2015). The forward and reverse primers used Nextera Illumina 

index tags and sequencing adapters fused to the 16S and ITS2-specific sequences. Each sample 

was amplified with a different combination of index tags to allow for sample identification after 

multiplex sequencing. Following amplification, paired-end 300+300 bp V3 sequencing was 

performed for all samples on the Illumina MiSeq. 

Metagenomic DNA libraries were also prepared from the final coconut kefir milk 

samples using the Illumina Nextera XT kit. Briefly, samples are "tagmented" (enzymatically 

"sheared" and tagged with adaptors), PCR amplified while adding barcodes, purified using 

columns or beads, normalized using Illumina beads or manually, then pooled for loading onto the 

NextSeq. 

 



 27 

2.4 SEQUENCING ANNOTATION 

 

2.4.1 16S RIBOSOMAL RNA GENE ANNOTATION  

 

Analysis of 16S sequencing data was done on a Linux virtual machine, using the 

Microbiome Helper workflow, specific to 16S analysis, obtained from GitHub 

(https://github.com/mlangill/microbiome_helper/wiki/16S-standard-operating-procedure). 

Paired-end reads were stitched together using PEAR (Zhang et al., 2014) and then low quality 

reads that are less than 400 base pairs long and have less than 90% of their bases at a quality 

score of 30 or more and were filtered. Chimeras were removed using VSEARCH 

(https://github.com/torognes/vsearch). OTUs were generated within QIIME (Caporaso et al., 

2010) through the open-reference OTU picking protocol (Rideout et al, 2014) at 97% identity 

against the GreenGenes database v13_5 (McDonald et al., 2012). Open-reference picking assigns 

OTUs by first mapping sequence reads first to a reference genome database using SortMeRNA 

(Kopylova et al., 2012). Any sequences that fail to align with known sequences are aligned de 

novo, meaning that they are clustered with each other based on similarity using SumaClust 

(https://git.metabarcoding.org/obitools/sumaclust/wikis/home). OTUs with low counts (based on 

a dynamic cutoff of 0.1% of the total number of sequences per sample) were removed, which has 

been previously shown to ensure that the number of OTUs is accurately represented (Comeau et 

al., 2017). The graphical software package STAMP (Parks et al., 2014) was also used to 

determine whether levels of individual taxa were significantly altered using unpaired t-test with 

Benjamini-Hochberg FDR and a p-value cutoff of 0.05 
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Functions of genes and biochemical pathways can also be inferred using PICRUSt 

software (Langille et al., 2013). Taxonomy identified using QIIME (Kuczynski et al., 2011) is 

searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) 

and known functions are retrieved and assigned. Comparison of functional pathways can then be 

visualized in STAMP (Parks et al., 2014).  

 

2.4.2 INTERNAL TRANSCRIBED SPACER ANNOTATION  

  

Analysis of ITS2 sequencing data was done on a Linux virtual machine, using the 

Microbiome Helper workflow, specific to ITS2 analysis, obtained from GitHub 

(https://github.com/mlangill/microbiome_helper/wiki/ ITS2-Fungi-Standard-Operating-

Procedure). The taxonomic analysis was similar to that of the 16S data, except that the ITS 

UNITE (Abarenkov et al., 2010) database was used instead of GreenGenes. No functional 

analysis was done on the fungal data. 

 

2.4.3 METAGENOMIC ANNOTATION 

 

Analysis of metagenomic sequencing data was done on a Linux virtual machine, using 

the Microbiome Helper workflow, specific to metagenomic analysis, obtained from GitHub 

(https://github.com/mlangill/microbiome_helper/wiki/Metagenomic-standard-operating-

procedure). Paired-end reads were stitched together using PEAR (Zhang et al., 2014) and 

Bowtie2 (Langmead & Salzberg, 2012) was run to screen out contaminant sequences, in this case 

reads that map to PhiX viral and human genomes. Then low quality reads that are less than 400 
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base pairs long and have less than 90% of their bases at a quality score of 30 or more and were 

filtered using Trimmomatic (Bolger et al., 2014). Taxonomy of sequences was identified using 

MetaPhlAn2 (Truong et al., 2015) and functional assignment was given using HUMAnN 

(Abubucker et al., 2012). Taxonomic and functional information was examined using STAMP 

(Parks et al., 2014).   

 

2.5 STATISTICAL METHODS 

 

For all analyses, the p-value cutoff is 0.05, and standard error is reported. Once 16S and 

ITS2 data has been generated, sample composition can be visualized in one of two ways. The 

simplest method is to summarize the taxa in stacked barplots using the designated QIIME script. 

Barplots allows visualization of the proportions of microbial species in a sample or pooled 

samples at any taxonomic level (phyla down to species). To test for differences in individual taxa 

between samples, statistical evaluation can be performed in STAMP. To compare two samples, a 

Welch’s two-sided t-test can be performed with Benjamin-Hochberg false discovery rate (FDR) 

correction in STAMP. To compare individual taxa across multiple experimental groups, and 

ANOVA test can also be performed in STAMP, with Benjamin-Hochberg FDR.  

 

2.5.1 ALPHA DIVERSITY (SPECIES RICHNESS) 

  

Species richness of each sample was calculated by counting the number of observed 

OTUs. Bar plots were used to illustrate the observed OTUs in each treatment group, comparisons 

of the alpha diversity in different groups were done using two sample t-tests.  



 30 

 

2.5.2 BETA DIVERSITY (COMMUNITY STRUCTURE) 

 

In order to look at the overall variation between samples, UniFrac principal coordinate 

axis plots were generated using information from the OTU table to illustrate microbial diversity 

between treatment and control samples in each study (Lozupone & Knight, 2005). Linear 

equations were fitted to the data, so that each equation explained the most amount of variation 

possible (principal components). The three largest principal components (PCs) were then 

assigned to the X-, Y- and Z-axes of a three-dimensional plot. Each sample is assigned a value 

based on its PC and plotted, with relative proximity to other samples in three-dimensional space 

correlating to sample similarity. The distance between each sample can be weighted to take into 

account phylogenetic relationships between the microbes. This is known as weighted UniFrac. 

Unweighted UniFrac only takes into account the counts of each different species of microbe. 

These PCs can then be visualized in a program called Emperor. Samples are plotted in 3D space 

along the top three PC axes, which explain the most amount of variation in the data.  

In order to test for statistical significance of the distance matrix, QIIME uses a script that 

performs an Adonis test (Caporaso et al., 2010). Adonis is a non-parametric multivariate analysis 

of variance which in this case compares the abundance of each bacteria in a sample to its 

abundance in other samples. It tests the null hypothesis that the bacterial composition of the 

samples is the same in control and exercise groups. The R2 value is the effect size and indicates 

the percent variation that can be explained by the tested variable (Anderson, 2001). 
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2.5.3 MACHINE LEARNING 

 

In the exercise study, in order to examine subtle changes in community structure, we 

employed a form of machine learning, known as supervised learning, where features (in this case 

OTUs present in the samples) are used to predict the class (experimental condition) to which a 

sample belongs. Fecal OTU data from the two exercise cohorts was input into the python 

software Scikit-Learn (Pedregosa et al., 2011) to build separate random forests (RF) models. 

Using a leave-one-out cross-validation method, the models were trained to classify samples from 

both cohorts as either exercise or control, based on their OTU profile. A parameter search from 1 

to 30 trees was tested to determine the highest accuracy. Accuracy was reported as the mean of 

100 iterations of modeling and testing.  Importance of features as output by Random Forests 

were averaged across the iterations and were used to determine the taxa with the highest 

contribution to classification model.   

The random forests model was run with the OTU data 100 times, for both the voluntary 

and forced cohorts. The average weights for each OTU were computed and the top 30 OTUs for 

each cohort were selected. The model was run again 100 times using only the selected OTUs and 

the average classification accuracy for samples at each time point was calculated using both true 

and randomized sample labels.  

 

2.6 INFLAMMATORY CYTOKINE ANALYSIS 

 

At the end time point of both experimental protocols mice were sacrificed by cervical 

dislocation while under isofluorane anesthesia. The chest cavity was then rapidly opened, the 
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aorta was cut and blood was collected from the chest cavity and placed in a 2 ml microfuge tube. 

The blood sample was allowed to sit at room temperature for 15 minutes and then spun at 

10,000g for 15 minutes at 4°C. The serum was then removed and stored at -80°C until required 

for analysis.  

Inflammatory marker serum concentrations (IL-1, KC, IL-10, TNF) were measured in 

blood samples collected two days post-exercise-endpoint using a custom mouse multiplex assay 

(Biorad, Catalog #: 12002231). The assay was prepared according to manufacturer’s instructions 

and read using a MagPix multiplex reader (Biorad). Initial serum samples were diluted by a 

factor of four. A one-way ANOVA was used to determine if any differences existed between 

groups for the cytokines.  
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CHAPTER 3: MODERATE EXERCISE HAS LIMITED BUT DISTINGUISHABLE 
EFFECTS ON THE MOUSE MICROBIOME 

 

3.1 EXERCISE AND THE MICROBIOME 

 

In this study, we investigate the direct effects of exercise on the gut microbiome using 

both voluntary and moderate forced exercise models in 6-10 week old C57BL6 mice, while 

controlling for diet and measuring changes in food intake, body mass composition, and host 

immunological expression. In the voluntary cohort, one of the exercise mice had to be euthanized 

after coming in contact with potentially contaminated facility floors, leaving 10 control mice and 

9 exercise mice for analysis. In the forced cohort, one of the exercise mice did not regain 

consciousness after being anaesthetized for a routine blood draw, leaving 11 control mice (6 

female, 5 male) and 10 exercise mice (5 female, 5 male) for analysis.  

 

3.2 VOLUNTARY BUT NOT FORCED EXERCISE RESULTS IN HIGHER FOOD 

INTAKE AND LEAN MASS IN MICE 

 

In the voluntary wheel running cohort, each voluntary exercise (VE) mouse had access to 

a running wheel at all times. The cumulative distance (metres) travelled by each VE mouse was 

totaled for the eight weeks. Mean total distance for the group was calculated at 138,565 m, with 

the mice running an average of 2.5 ± 0.7 km a day. In the forced treadmill running group, each 

exercise mouse ran for 40 minutes, five days a week. The cumulative distance (metres) travelled 

by each forced exercise (FE) mouse was 21 km. The distance run per day was 600 m in weeks 

one and two, 700 m in weeks three and four and 800 m in weeks five and six. Food intake was 
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measured per mouse on a weekly basis for the duration of the experiments (seven weeks for the 

voluntary cohort, starting at week 1, and six weeks for the forced cohort, starting at week 0). A 

schematic of the experimental timeline is shown in Figure 1. Cumulative food intake was 

averaged for each week (Figure 2). Two-sample t-tests for equal means were done to compare 

mean cumulative food intake between exercise and control mice at each time point. Mice in the 

voluntary control (VC) group ate significantly less food overall than their voluntary exercise 

(VE) counterparts, starting at week two (p < 0.05). Mice in the forced exercise (FE) group had 

comparable food intake to the forced controls (FC) at each time point (p > 0.5).  
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Figure 1 Experimental timeline for voluntary and forced exercise cohorts. Voluntary wheel 

running took place over 8 weeks, while forced treadmill running was performed over 6 weeks. 

Fecal and weight samples were taken every two weeks, while blood and mucosal samples were 

taken at the experimental endpoint. DEXA scans for body mass composition were performed at 

Week 6 of both studies. Number of mice in each cohort: Voluntary exercise: n = 9; Voluntary 

control: n = 10; Forced exercise: n = 10; Forced control: n = 11.  
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Figure 2 Voluntary but not forced exercise alters food consumption in mice. Box plots 

depict average weekly food intake (grams) of exercise and control mice for A) voluntary exercise 

and B) for the forced exercise cohorts. Comparisons were conducted using two sample t-tests 

with a significance cut off of p < 0.05. Significant differences at time points are indicated with an 

asterisk. Number of mice in each cohort: VE: n = 9; VC: n = 10; FE: n = 10; FC: n = 11. 
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         Body mass measurements for all mice, in grams, were taken every two weeks (starting at 

week two for the voluntary cohort and week zero for the forced cohort) of the experimental 

timeline (Figure 3A-B). Two-sample t-tests for equal means were done to compare mean body 

weight between exercise and control mice at each time point. Body mass was not statistically 

different between control and exercised mice in either cohort at any time point (p > 0.5). DEXA 

scans showed that lean body mass (calculated as a percentage of total body mass; Figure 3C-D) 

was significantly different between voluntary exercise mice and controls (VE = 83.6 ± 1.2%, VC 

= 80.8 ± 0.5%, p= 0.046), but did not differ between forced exercisers and controls (p > 0.1). 

When the forced exercise cohort was divided into male and female, there was no significant 

difference between exercisers and controls.  
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Figure 3 Voluntary but not forced exercise promotes lean body mass in mice. Box plots 

depict average biweekly body mass measurements of exercise and control mice for (A) voluntary 

exercise and (B) forced exercise cohorts. Bar graphs (2C-D) illustrate percent lean body mass for 

voluntary (p = 0.046) and forced (p = 0.124) cohorts, respectively. Comparisons were conducted 

using two sample t-tests with a significance cut off of p < 0.05. Significant differences at time 

points are indicated with an asterisk. Number of mice in each cohort: VE: n = 9; VC: n = 10; FE: 

n = 10; FC: n = 11. 
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3.3 VOLUNTARY AND FORCED EXERCISE HAVE NO MEASURABLE EFFECT ON 

BACTERIAL DIVERSITY IN THE MOUSE MICROBIOME 

 

Post-filtering, the average sequence coverage for fecal and mucosal samples, 

respectively, was 23558 and 28865 seqs/sample. For comparison of microbial communities 

across experimental groups, fecal and mucosal samples were normalized to a depth of 8585 and 

7081 reads/sample, respectively. Four fecal samples and two mucosal samples were excluded 

due to low coverage. 

Fecal samples were taken every two weeks in both cohorts, while mucosal samples were 

taken at the experimental endpoint. There was no significant difference in alpha diversity 

(species richness) between exercise and control mice at week 8 in the voluntary (p = 0.180) or at 

week 6 in the forced (p = 0.227) cohorts (Figure 4A-B). Species richness for mucosal samples 

was calculated in the same fashion (Figure 4C-D) and was also not found to be different in 

either cohort (voluntary: p = 0.337, mucosal: p = 0.289). Taxonomic data from fecal samples was 

also used to generate weighted UniFrac beta-diversity principal coordinate axis plots for each 

time point using weighted (Figure 5) and unweighted UniFrac beta-diversity measurements 

(Figure 6). An Adonis test did not reveal a significant difference in community structure 

between the fecal samples at each time point for the voluntary (W0: R2 = 0.0476, p = 0.493; W2: 

R2 = 0.0751, p = 0.257; W4: R2 = 0.0746, p = 0.203; W6: R2 = 0.0226, p = 0.933; W8: R2 = 

0.0836, p = 0.146) or forced cohorts (W0: R2 = 0.0370, p = 0.775; W2: R2 = 0.0399, p = 0.634; 

W4: R2 = 0.0576, p = 0.386; W6: R2 = 0.0496, p = 0.414) when using weighted UniFrac. 

Weighted (Appendix – Figure 26) and unweighted (Appendix – Figure 27) UniFrac beta-

diversity plots were also generated using the mucosal data collected in the final week of each 
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study. An Adonis test did not reveal a significant difference in community structure between the 

mucosal samples at each time point for the voluntary (weighted: W8: R2 = 0.0941, p = 0.16; 

unweighted: W8: R2 = 0.0746, p =0.081) or forced cohorts (weighted: W6: R2 = 0.0392, p 

=0.756; unweighted: W6: R2 = 0.0535, p = 0.682). Altering the beta-diversity measurement to 

unweighted UniFrac or Bray-Curtis (at different taxonomic levels) did not result in statistical 

significance (data not shown). Statistical comparisons of relative abundances of individual taxa 

did not reveal any significant differences at any taxonomic level after multiple test correction.  

A comparison of sex differences in the forced cohort was also performed using an Adonis 

test. At the final week of the experiment, no differences in microbial beta-diversity from the 

fecal samples was found between the male and female mice in either the control (W6: R2 = 

0.1126, p = 0.453) or exercise group (W6: R2 = 0.1246, p =0.185). This data is plotted in 

Appendix - Figure 28. 

A comparison of the fecal microbiomes all mice from both cohorts at the beginning of 

each experiment was performed using an Adonis test. Mice microbiomes were significantly 

different between cohorts in both weighted (W0: R2 = 0.7858, p =0.001) and unweighted (W0: 

R2 = 3868, p =0.001) UniFrac beta-diversity plots as illustrated in Appendix – Figure 29.  
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Figure 4 Voluntary and forced exercise do not affect species richness in the mouse gut. The 

number of OTUs from each final week (week 8 for VE and week 6 for FE) fecal and mucosal 

sample were counted and counts per sample were averaged for each experimental group. Box 

plots illustrate average species richness of control and exercise groups for both voluntary fecal 

(3A, p = 0.180) and mucosal (3C, p = 0.337) samples and forced fecal (3B, p = 0.227) and 

mucosal (3D, p = 0.289) samples. Comparisons were done using students t-tests. Number of 

mice in each cohort: VE: n = 9; VC: n = 10; FE: n = 10; FC: n = 11. 
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Figure 5 Weighted gut microbial diversity of voluntary and forced exercise mice. Weighted 

UniFrac principal coordinate axis plots compare gut microbial diversity of exercise and control 

mice from (A) voluntary (W0: R2 = 0.0476, p = 0.493; W2: R2 = 0.0751, p = 0.257; W4: R2 = 

0.0746, p = 0.203; W6: R2 = 0.0226, p = 933; W8: R2 = 0.0836, p = 0.146) and (B) forced (W0: 

R2 = 0.0370, p = 0.775; W2: R2 = 0.0399, p = 0.634; W4: R2 = 0.0576, p = 0.386; W6: R2 = 

0.0496, p = 0.414) exercise cohorts. Beta-diversity of fecal samples was compared using an 

Adonis test with a significance cutoff of p < 0.05. Number of mice in each cohort: VE: n = 9; 

VC: n = 10; FE: n = 10; FC: n = 11. 
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Figure 6 Unweighted gut microbial diversity of voluntary and forced exercise mice. 

Unweighted UniFrac principal coordinate axis plots compare gut microbial diversity of exercise 

and control mice from (A) voluntary (W0: R2 = 0.0590, p = 0.289; W2: R2 = 0.0574, p = 0.467; 

W4: R2 = 0.0583, p = 0.289; W6: R2 = 0.0539, p = 480; W8: R2 = 0.0537, p = 0.512) and (B) 

forced (W0: R2 = 0.0462, p = 0.955; W2: R2 = 0.0499, p = 0.437; W4: R2 = 0.0572, p = 0.363; 

W6: R2 = 0.0434, p = 0.800) exercise cohorts. Beta-diversity of fecal samples was compared 

using an Adonis test with a significance cutoff of p < 0.05. Number of mice in each cohort: VE: 

n = 9; VC: n = 10; FE: n = 10; FC: n = 11. 
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3.4 MODERATE EXERCISE DOES NOT ALTER EXPRESSION OF INFLAMMATORY 

MARKERS 

 

The results showed that serum levels of IL-1, IL-6, TNF did not differ significantly 

between the voluntary and forced exercise groups nor did the concentrations differ between 

either exercise group and the controls. The only marker found to have significantly different 

expression was KC, a neutrophil marker, homologous to CXCL-8 in humans (Table 1). KC was 

increased by almost 45% in voluntary exercisers alone (p << 0.001). 
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Table 1 Inflammatory cytokine profiles of control and exercise mice 

 

a Significantly different as compared to control group 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group IL-1 (pg/ml) IL-6 (pg/ml) TNF (pg/ml) KC (pg/ml) 

Controls 212.79 ± 16.32 3.76 ± 0.40 155.68 ± 23.78 26.77 ± 1.45 

Voluntary 
Exercisers 227.10 ± 13.32 3.87 ± 0.45 173.02 ± 30.63 38.52 ± 1.52a 

Forced 
Exercisers 238.90 ± 11.07 4.96 ± 0.95 229.47 ± 60.37 27.85 ±1.93 
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3.5 MACHINE LEARNING IDENTIFIES SHIFTS IN THE MOUSE GUT 

MICROBIOME IN RESPONSE TO EXERCISE 

 

Using Scikit-Learn [25], a machine learning classification method known as Random 

Forests, was trained and tested using a leave one out approach on the OTU tables. In comparison 

to statistical comparisons of single taxa, machine learning can identifying shifts in community 

structure that involves multiple taxa. Machine learning was able to distinguish between the 

microbiomes of VE and VC mice with 97% accuracy at week eight, and between FE and FC 

mice with 86% accuracy at week six (Figure 7). Compared to a randomized model (where 

sample labels are randomized), the exercise microbiome could be accurately classified after six 

weeks of forced exercise and eight weeks of voluntary exercise (Figure 7).  
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Figure 7 Accuracy of random forests model in classifying exercise versus control samples. 

Sample OTU tables from exercise and control fecal samples for (A) the voluntary and (B) the 

forced exercise experiments was used to train a random forests classifier. Accuracy of the model 

using true category labels is plotted over time for both voluntary (97% at week 8) and forced 

(86% at week 6) cohorts. Accuracy using randomized category labels is also plotted over time 

for the voluntary (58% at week 8) and forced (58% at week 6) cohorts. 
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 The most important features/OTUs for classification as determined by the Random 

Forests model were inspected (Table 2, 3). We observed that in the voluntary exercise cohort, 

out of the top 30 taxa, 23 belong to the phylum Bacteroidetes, four to Firmicutes, two to 

Proteobacteria and one to Actinobacteria. Of the 23 taxa in the Bacteroides phylum, 18 are part 

of the S24-7 family, four are Bacteroidaceae and one is Rikenellaceae. The four Firmicutes fall 

under the order Clostridiales (Table 2). In the forced exercise cohort, 24 out of the top 30 taxa 

were from the Firmicutes phylum, while six were Bacteroidetes. Out of the 24 taxa in the 

Firmicutes phylum, 19 are in the order Clostridiales, four are in Lactobacillales and one did not 

have an assigned order. Five out of the six taxa in the Bacteroidetes phylum have the 

Bacteroides genus, and the other is a Parabacteroides (Table 3). 
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Table 2 Top 30 OTUs important in classifying control versus voluntary exercise samples 

OTU ID Phylum Order Family Genus Weight 
213896 Firmicutes Clostridiales   0.13141 
332364 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.09947 
259111 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.0786 
184484 Firmicutes Clostridiales Lactobacillaceae  0.06421 
259372 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.05582 
186871 Firmicutes Clostridiales   0.05352 
New. ReferenceOTU231 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.04629 
2740953 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.04055 
4417335 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.03515 
New.ReferenceOTU3155 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.03174 
347496 Firmicutes Clostridiales   0.02939 
274380 Firmicutes Clostridiales   0.02882 
New.ReferenceOTU7685 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.02678 
344527 Firmicutes Clostridiales Ruminococaceae Ruminococcus 0.02443 
230268 Firmicutes Clostridiales Ruminococaceae Ruminococcus 0.02365 
New.Cleanup.ReferenceOTU10206 Firmicutes Lactobacillales Lactobacillaceae Lactobacillus 0.02333 
316428 Firmicutes Clostridiales Ruminococaceae Oscillospira 0.02314 
192111 Bacteroidetes Bacteroidales Porphyromonadaceae Parabacteroides 0.02216 
New.CleanUp.ReferenceOTU6362 Firmicutes Clostridiales Mogibacteriaceae  0.02062 
534498 Firmicutes    0.02026 
New.ReferenceOTU1251 Firmicutes Clostridiales   0.01929 
New.CleanUp.ReferenceOTU2315 Firmicutes Clostridiales   0.01335 
4402077 Firmicutes Clostridiales   0.01333 
New.ReferenceOTU15378 Firmicutes Clostridiales   0.01333 
210073 Firmicutes Clostridiales   0.01191 
New.ReferenceOTU10920 Firmicutes Clostridiales Ruminococaceae Ruminococcus 0.0116 
258969 Firmicutes Clostridiales Lachnospiraceae  0.01128 
New.CleanUp.ReferenceOTU28 Firmicutes Clostridiales   0.01076 
258283 Firmicutes Clostridiales Lachnospiraceae  0.0097 
New.ReferenceOTU15157 Firmicutes Clostridiales Ruminococaceae Oscillospira 0.00602 
Green indicates taxa that increased with exercise and red indicates taxa that decreased with 

exercise. 
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Table 3 Top 30 OTUs important in classifying control versus forced exercise samples  

OTU ID Phylum Order Family Genus Weight 
New.CleanUp.ReferenceOTU352 Bacteroidetes Bacteroidales S24-7  0.09377 
348680 Proteobacteria Enterobacteriales Enterobacteriaceae  0.07741 
568410 Bacteriodetes Bacteroidales S24-7  0.0549 
New.ReferenceOTU52 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.05477 
New.ReferenceOTU71 Bacteriodetes Bacteroidales S24-7  0.05009 
New.ReferenceOTU193 Bacteriodetes Bacteroidales S24-7  0.04908 
258910 Bacteroidetes Bacteroidales S24-7  0.04517 
266203 Firmicutes Clostridiales   0.04439 
New.ReferenceOTU393 Bacteroidetes Bacteroidales S24-7  0.0421 
New.ReferenceOTU19449 Bacteroidetes Bacteroidales S24-7  0.0399 
New.ReferenceOTU10 Bacteriodetes Bacteroidales S24-7  0.03804 
New.ReferenceOTU83 Bacteriodetes Bacteroidales S24-7  0.03677 
348821 Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 0.03671 
264325 Bacteriodetes Bacteroidales Rikenellaceae  0.03401 
336676 Bacteriodetes Bacteroidales S24-7  0.03109 
New.ReferenceOTU542 Bacteriodetes Bacteroidales S24-7  0.03093 
177435 Bacteriodetes Bacteroidales S24-7  0.02969 
162639 Bacteroidetes Bacteroidales S24-7  0.02783 
New.ReferenceOTU1066 Actinobacteria Coriobacteriales Coriobacteriaceae Adlercreutzia 0.02718 
307416 Firmicutes Clostridiales   0.02566 
311482 Bacteriodetes Bacteroidales Bacteroidaceae Bacteroides 0.02298 
214159 Bacteriodetes Bacteroidales S24-7  0.02174 
New.ReferenceOTU31060 Bacteriodetes Bacteroidales S24-7  0.01995 
549837 Proteobacteria Pseudomonadales   0.0151 
215214 Bacteriodetes Bacteroidales S24-7  0.01309 
New.ReferenceOTU505 Bacteriodetes Bacteroidales Bacteroidaceae Bacteroides 0.0128 
180555 Firmicutes Clostridiales Lachnospiraceae Coprococcus 0.01198 
349175 Bacteriodetes Bacteroidales S24-7  0.00691 
New.CleanUp.ReferenceOTU14118 Firmicutes Clostridiales   0.00402 
New.ReferenceOTU25958 Bacteriodetes Bacteroidales S24-7  0.00197 
Green indicates taxa that increased with exercise and red indicates taxa that decreased with 

exercise. 
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3.6 SUMMARY 

 

Contrary to previous studies (Cook et al., 2013; Allen et al., 2015), our initial 

observations of bacterial diversity indicate limited alterations to the microbiome in response to 

moderate exercise. Inflammatory profiles were also not found to be altered from this exercise. It 

is important to note that cytokines in the peripheral blood as well as muscle tissue could reveal 

changes that were not observed using blood collected from the chest cavity upon sacrifice. 

However, a supervised Random Forest trained model was able to classify mice as sedentary or 

exercising based on their microbiome with 97% accuracy for voluntary exercise modality and 

86% for forced exercise modality. Our results illustrate that exercise has a moderate but 

measurable effect on gut microbial communities in mice. Compared to other known 

environmental drivers such as diet, moderate exercise may play a more limited role in shaping 

the gut microbiome. These methods can be used to provide important insight into other factors 

affecting the microbiome and our health. Our results are from healthy, young, non-obese mice, 

and more study is needed to understand the dynamics and interplay between exercise and these 

other important factors on the human microbiome.    
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CHAPTER 4:  EFFECTS OF HASKAP POLYPHENOLS ON THE MOUSE 
MICROBIOME IN EXPERIMENTAL MODELS OF LUNG CANCER 

 

4.1 ANTHOCYANINS 

 

 Haskap berries, originating in Japan and Russia, are extremely rich in polyphenols, 

including anthocyanins. A study being conducted at Dalhousie University to examine the 

antitumour potential of haskap berry extracts in in a mouse lung cancer model. We took this 

opportunity to examine impact that haskap berry extracts affect the gut microbiome in this 

model.  

 

4.2 NNK BUT NOT HASKAP REDUCES SPECIES RICHNESS IN MICE 

 

As defined in the methods, mice were assigned to one of the following groups: (A) Fed 

regular mouse diet for the duration of the study, injected with saline as a sham (B) Fed haskap 

berry extract daily for the duration of the study, with saline injected as a sham. (C) Fed normal 

mouse food for the duration of the study and injected with NNK after three weeks of the study 

(D) Fed haskap berry extract for three weeks, injected with NNK and fed normal mouse diet for 

the following 22 weeks, (E) Fed haskap berry extract for the duration of the study and injected 

with NNK after three weeks (F) Fed normal mouse food for three weeks, injected with NNK and 

fed haskap berry extract for the following 22 weeks. To simplify the analyses, groups D, E and 

F, which all had exposure to both NNK and haskap extract were combined. Although there were 

originally 50 mice in the study, it was not possible to obtain fecal samples from all mice due to 
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ethical endpoints and time constraints. An outline of the experimental timeline is shown in 

Figure 8.  
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Figure 8 Experimental timeline for haskap administration in a mouse model of lung 

carcinoma. Regular mouse diet was available to all the treatment groups throughout the 

experimental period. Apart from their regular chow, haskap berry extracts were fed (0.2 g/ 

mouse) by mixing it with powdered regular chow for the treatment groups as presented in Figure 

1 (Normal diet + haskap). A placebo, their normal diet was fed accordingly (normal diet). Saline 

was injected to groups A and B as a sham, and NNK was injected (single dose of 100 mg/ 1kg 

body weight ip.) to the mice in groups C, D, E, and F. 
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After taxonomic assignment of sequences, observed OTUs were counted for each group 

and compared via t-test. Species richness in the microbiome of the control group fed a normal 

diet was compared to that of the control group administered haskap extract. A two-sample t-test 

revealed that there was no difference in the number of observed OTUs between the two control 

groups (p = 0.507), as shown in Figure 9. Species richness in the microbiome of the 

experimental NNK group fed a normal diet was compared to that of the NNK group 

administered haskap extract. A two-sample t-test revealed that there was no difference in the 

number of observed OTUs between the two experimental groups (p = 0.953), as shown in Figure 

9. Species richness in the microbiome of the control mice was compared to that of the mice that 

received NNK. A two-sample t-test revealed more OTUs in the control group, compared to the 

mice receiving NNK (p = 0.018), as shown in Figure 9. 
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Figure 9 NNK carcinogen but not haskap anthocyanins reduce species richness in the 

mouse gut. The number of OTUs from each sample were counted and averaged for each 

experimental group. Box plots illustrate average species richness of control and NNK groups for 

both normal and haskap diet. Comparisons were done using paired t-tests. There was no 

difference in species richness between haskap and normal diet for either controls (p = 0.507) or 

NNK (p = 0.953). When average species richness of all control samples was compared to that of 

all the NNK samples, it was found that NNK samples has lower species richness (p = 0.018).  
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4.3 HASKAP AND NNK ALTER MICROBIAL DIVERSITY IN MICE 

 

 Taxonomic data from fecal samples was used to generate weighted UniFrac beta-

diversity principal coordinate axis plots for all samples using weighted UniFrac beta-diversity 

measurements (Figure 10). An Adonis test revealed a significant difference in community 

structure between the fecal samples when comparing all groups using weighted UniFrac (R2 = 

0.1478, p = 0.005). However, statistical comparisons of relative abundances of individual taxa 

did not reveal any significant differences at any taxonomic level after multiple test correction.  

When the weighted UniFrac beta-diversity of fecal samples from control mice were 

compared with an Adonis test, it was found that mice who consumed haskap extract had 

significantly (R2 = 2505, p =  0.046) different community structure (Figure 11). When fecal 

samples from the NNK treated mice were compared, it was found that mice who consumed 

haskap extract also had significantly (R2 = 0.1170, p =  0.003) different community structure 

(Figure 12).  

When the weighted UniFrac beta-diversity of fecal samples from mice that consumed 

regular mouse diet were compared with an Adonis test, it was found that mice who had received 

NNK had significantly (R2 = 0.1921, p =  0.024) different community structure from those who 

had not (Figure 13). It was also found that using multiple group comparison with Benjamin-

Hochberg FDR multiple test correction in STAMP, that Bacteroides acidifaciens was 

significantly different across all experimental groups (p = 0.040). Both NNK groups had higher 

levels of B. acidifaciens compared to control groups (Figure 14). Mice who received both NNK 

and normal diet had higher levels than those who received both NNK and haskap. 
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Figure 10 Comparison of microbial diversity in mice treated with or without NNK and 

receiving either normal or haskap diet. Weighted UniFrac principal coordinate axis plots 

compare gut microbial diversity of all experimental cohorts. An Adonis test revealed a 

significant correlation between treatment group and microbial diversity (R2 = 0.1478, p = 0.005).  
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Figure 11 Haskap diet alters gut microbial diversity in healthy mice. Weighted UniFrac 

principal coordinate axis plots compare gut microbial diversity of control mice receiving normal 

and haskap diets. An Adonis test revealed a significant correlation between diet type and 

microbial diversity (R2 = 0.2505, p = 0.046). 
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Figure 12 Haskap alters gut microbial diversity in a mouse model of lung carcinoma. 

Weighted UniFrac principal coordinate axis plots compare gut microbial diversity of NNK 

treated mice receiving normal and haskap diets An Adonis test revealed a significant correlation 

between diet type and microbial diversity (R2 = 0.1170, p = 0.003). 
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Figure 13 NNK alter microbial diversity in the mouse gut. Weighted UniFrac principal 

coordinate axis plots compare gut microbial diversity of mice receiving normal diets treated with 

or without NNK. An Adonis test revealed a significant correlation between treatment type and 

microbial diversity (R2 = 0.1921, p = 0.024). 
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Figure 14 NNK increases levels of B. acidifaciens in the gut of mice receiving haskap or 

normal diet. Multiple group comparison using Benjamin-Hochberg FDR reveals that a 

significant difference in the levels of Bacteroides acidifaciens across treatment groups (p = 

0.040).  
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When fecal samples from the haskap treated mice were compared, it was found that mice 

who had received NNK did not have significantly (R2 = 0.0505, p = 0.159) different community 

structure from those who did not (Figure 15). A two-group t-test comparison with Benjamin 

Hochberg FDR correction in STAMP revealed one significant difference in individual taxa; an 

unidentified Bilophila species was slightly higher in NNK-treated haskap mice than control 

haskap mice (p = 0.048, Figure 16).  
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Figure 15 Microbial diversity is not altered by NNK when haskap diet is administered. 

Weighted UniFrac principal coordinate axis plots compare gut microbial diversity of mice 

receiving haskap diets treated with or without NNK. An Adonis test revealed no difference in 

overall microbial diversity (R2 = 0.0505, p = 0.159).  
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Figure 16 NNK increases levels of Bilophila in the gut of mice receiving haskap diet. Two 

group comparison using Benjamin-Hochberg FDR reveals that a significant difference in the 

levels of Bilophila between mice administered haskap with and without NNK (p = 0.048).  
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4.5 SUMMARY 

  

 Our results show that in both healthy mice and mice with lung carcinoma, a diet 

supplemented with anthocyanin-rich haskap extracts alters the bacterial communities in the gut 

microbiome. While levels of only a few taxa are significantly altered, beta diversity analysis 

indicates that the overall relationships between community members are altered, as well as 

certain functions. The NNK carcinogen itself alters the bacterial community of the gut, and 

reduces species diversity. It is important to note that food consumption was not measured in this 

experiment. It has been shown that exposure to NNK causes weight loss in mice, which can in 

turn indirectly alter the microbiome.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 69 

CHAPTER 5:  KEFIR MICROBIAL COMPOSITION 
 

5.1 KEFIR 

 In our study, we examine the microbial succession over the production of a coconut kefir 

product.   

 

5.2 SUCCESSION OF MICROBES IN COCONUT KEFIR PRODUCTION  

 

 Milk and grain samples were taken from coconut kefir at the following points in 

production: 1) after grains rested in dairy milk, 2) after grains rested in coconut milk 3) after the 

final fermentation. A sample of fresh coconut milk was also taken. An outline of coconut kefir 

production timeline and sampling is shown in Figure 17. Both the 16S and ITS2 region were 

sequenced to analyze both bacterial and fungal content.  
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Figure 17 Outline of coconut kefir production timeline and sampling. Grain and milk 

samples were taken after the grains: (1) rested in dairy milk (2) rested in coconut milk and (4) 

fermented in coconut milk. Milk samples were taken from the fresh coconut milk prior to the 

fermentation (3).  
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5.2.1 KEFIR GRAINS ARE COMPRISED OF A LOW COMPLEXITY, STABLE 

MICROBIAL COMMUNITY 

 

 Species richness was determined by counting the number of bacterial and fungal OTUs in 

each grain sample. The grain OTU counts are depicted in bar plots (Figure 18). The number of 

observed bacterial OTUs in Post Dairy Milk grains, Post Coconut Milk grains and Post 

Fermentation grains ranged between 56-62 (Figure 18A). The number of fungal OTUs in each 

was lower, ranging from 2-6 (Figure 18B). Stacked bar plots (Figure 19A) show that the main 

bacterial genera present in the grains across samples are Lactobacillus (87.1%), Lactococcus 

(8.7%), Leuconostoc (1.2%) and other species in the Lactobacillaceae family (2.9%). 

Saccharomyces was the only of fungal genus found in the grains (Figure 20A).   
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Figure 18. Bacterial and fungal species richness of kefir grain samples. (A) Kefir grain 

samples have between (A) 56 and 62 bacterial OTUs and (B) 2 and 6 fungal OTUs. (C) Kefir 

milk samples have between 39 and 58 bacterial OTUs and (D) 4 and 29 fungal OTUs. 
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Figure 19. Bacterial taxonomic composition of kefir grain and milk samples. Colours in bar 

plots correspond to Taxonomy Legend. (A) Bar plots of bacteria identified in kefir grains at 

different sample time points. (B) Bar plots of bacteria identified in kefir milk samples at different 

time points.  
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Figure 20. Fungal taxonomic composition of kefir grain and milk samples. Colours in bar 

plots correspond to Taxonomy Legend. (A) Bar plots of fungi identified in kefir grains at 

different sample time points. (B) Bar plots of fungi identified in kefir milk samples at different 

time points. 
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 Comparison of bacterial diversity of the grains was examined using Principal Coordinate 

Analysis (PCoA) plots and tested for significance using an Adonis test. The kefir grains did not 

show any consistent changes in their bacterial diversity across production steps (R2 = 0.0445, p = 

0.923) (Figure 21A) but did show some variation from the three different batches (R2 = 0.8587, 

p = 0.001) (Figure 21B).  
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Figure 21 Kefir grain bacterial diversity by sample type and week. (A) Correlation between 

sample time point and bacterial diversity. (B) Correlation between batch week and bacterial 

diversity.  
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5.2.2 MICROBIAL SUCCESSION IN COCONUT KEFIR MILK OVER THE COURSE OF 

PRODUCTION  

 

Species richness was determined by counting the number of bacterial and fungal OTUs in 

each liquid sample. The counts are depicted in bar plots (Figure 18C-D). The number of 

observed bacterial OTUs in resting dairy milk, resting coconut milk, fresh coconut milk and the 

final coconut kefir product range between 35-58 OTUs. The number of fungal OTUs ranging 

from 4-29, with the highest richness found in the fresh coconut milk. Stacked bar plots (Figure 

19B) show that the main bacterial genera present in the Resting Dairy Milk samples are 

Lactobacillus (57.4%), Lactococcus (24.0%), Leuconostoc (1.5%) and other Lactobacillaceae 

species (1.2%). The Resting Coconut Milk contained mainly Lactobacillus (76.5%), Lactococcus 

(5.1%), with Streptophyta chloroplast DNA also being identified (16.3%), likely from the 

coconut plant itself (Figure 19B). The Fresh Coconut Milk contained mostly Lactobacillus 

(5.1%) and Bacillus (5.1%), with Streptophyta chloroplast (81.5%) and Proteobacteria 

mitochondria (4.3% - again likely from the coconut plant) also being identified (Figure 19B). 

The Final Product contained mainly Leuconostoc (44.8%) and Lactococcus (43.1%), as well as 

Streptophyta chloroplast (9.3%) (Figure 19B). Saccharomyces was the main fungal taxonomy 

present in the Resting Dairy Milk (98.0%), Resting Coconut Milk (95.1%) and Final Product 

(96.7%). The fresh coconut milk contained mainly fungi of the Botryosphaeriaceae (30.5%) and 

Trichosporonaceae (23.4%) families, as well other species in the Saccharomycetales (1.2%) 

order (Figure 20B). 
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Comparison of bacterial diversity of the milk samples using PCoA and Adonis revealed 

that there are distinct microbial communities at each production stage (R2 = 0.8536, p = 0.001) 

(Figure 22A), but not between batches (R2 = 0.2309, p = 0.102) (Figure 22B). 
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Figure 22 Kefir milk bacterial diversity by sample type and week. Correlation between 

bacterial diversity and (A) production steps (B) batch week.  
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Analysis of metagenomics sequencing on the Final Product using MetaPlAn allowed us 

to identify some previously categorized strains of bacteria and yeast (Table 4). We were able to 

identify the top 10 most abundant bacteria in the Final Product samples at the species level, 

shown in Figure 23. The average of the top 10 most abundance bacteria in the Final Products 

shown in Figure 24. The metagenomic taxonomy is consistent with the 16S classifications, with 

Leuconostoc (%) and Lactobacillus (%) species being the most abundant genera in the final 

coconut kefir product. 
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Table 4 Average microbial proportions found in coconut kefir as determined by 

metagenomic taxonomy 

 
Kingdom Phylum Family Genus Species Strain Proportion 

Bacteria Firmicutes Leuconostocaceae Leuconostoc Leuconostoc lactis unclassified 48.0029 

Bacteria Firmicutes Leuconostocaceae Leuconostoc unclassified unclassified 21.42568636 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
casei paracasei unclassified 11.17808364 

Bacteria Firmicutes Streptococcaceae Lactococcus Lactococcus lactis unclassified 7.184455455 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
fermentum unclassified 4.361814545 

Bacteria Firmicutes Leuconostocaceae Leuconostoc 
Leuconostoc 
citreum unclassified 3.576504545 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
plantarum unclassified 3.350859091 

Bacteria Firmicutes Lactobacillaceae Pediococcus unclassified unclassified 0.376388182 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
kefiranofaciens GCF_000214785 0.116597273 

Bacteria Proteobacteria Gallionellaceae unclassified unclassified unclassified 0.094120909 

Bacteria Firmicutes Leuconostocaceae Weissella unclassified unclassified 0.061115455 

Bacteria Firmicutes Streptococcaceae Streptococcus 
Streptococcus 
infantarius unclassified 0.03665 

Bacteria Proteobacteria Bartonellaceae Bartonella unclassified unclassified 0.02518 

Bacteria Firmicutes Bacillaceae Bacillus Bacillus smithii GCF_000238675 0.023888182 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
buchneri unclassified 0.021059091 

Bacteria Firmicutes Bacillaceae Bacillus 
Bacillus cereus 
thuringiensis unclassified 0.016557273 

Bacteria Firmicutes Lactobacillaceae Lactobacillus Lactobacillus vini GCF_000255495 0.014016364 

Bacteria Proteobacteria Enterobacteriaceae Cronobacter 
Cronobacter 
sakazakii unclassified 0.011921818 

Bacteria Proteobacteria Moraxellaceae Acinetobacter unclassified unclassified 0.010394545 

Bacteria Firmicutes Bacillaceae Bacillus 
Bacillus 
cytotoxicus GCF_000017425 0.009671818 

Bacteria Proteobacteria Enterobacteriaceae Enterobacter 
Enterobacter 
cloacae unclassified 0.00777 

Bacteria Firmicutes Bacillaceae Geobacillus unclassified unclassified 0.007170909 

Bacteria Firmicutes Leuconostocaceae Leuconostoc 

Leuconostoc 
pseudomesentero
ides unclassified 0.005641818 

Bacteria Proteobacteria Enterobacteriaceae Cronobacter 
Cronobacter 
malonaticus unclassified 0.005528182 

Bacteria Proteobacteria Halomonadaceae Halomonas unclassified unclassified 0.005130909 

Bacteria Actinobacteria Propionibacteriaceae unclassified unclassified unclassified 0.005053636 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
otakiensis GCF_000415925 0.004652727 

Bacteria Firmicutes Veillonellaceae Megasphaera unclassified unclassified 0.004611818 

Bacteria Proteobacteria Moraxellaceae Acinetobacter Acinetobacter unclassified 0.004391818 
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pittii 
calcoaceticus 
nosocomialis 

Bacteria Spirochaetes Spirochaetaceae Borrelia 
Borrelia 
recurrentis GCF_000019705 0.003730909 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
amylovorus unclassified 0.003618182 

Bacteria Firmicutes Bacillaceae Bacillus Bacillus subtilis unclassified 0.00342 

Bacteria Proteobacteria Enterobacteriaceae Escherichia unclassified unclassified 0.003200909 

Bacteria Firmicutes Lactobacillaceae Lactobacillus Lactobacillus zeae GCF_000260435 0.00309 

Bacteria Tenericutes Acholeplasmataceae 
Candidatus 
Phytoplasma unclassified unclassified 0.002792727 

Bacteria Proteobacteria Enterobacteriaceae Pantoea unclassified unclassified 0.002780909 

Bacteria Firmicutes Lachnospiraceae Butyrivibrio unclassified unclassified 0.002737273 

Bacteria Firmicutes Staphylococcaceae Macrococcus 
Macrococcus 
caseolyticus GCF_000010585 0.002729091 

Bacteria Firmicutes Bacillaceae Bacillus 
Bacillus 
licheniformis unclassified 0.002563636 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
rhamnosus unclassified 0.002383636 

Bacteria Firmicutes Leuconostocaceae Leuconostoc 
Leuconostoc 
carnosum unclassified 0.001818182 

Bacteria Firmicutes Enterococcaceae Enterococcus 
Enterococcus 
casseliflavus unclassified 0.00164 

Bacteria Proteobacteria Enterobacteriaceae Klebsiella unclassified unclassified 0.001610909 

Bacteria Firmicutes Bacillaceae Bacillus Bacillus coagulans unclassified 0.001420909 

Bacteria Proteobacteria Enterobacteriaceae Klebsiella 
Klebsiella 
pneumoniae unclassified 0.001403636 

Eukaryota Ascomycota Saccharomycetaceae Saccharomyces 
Saccharomyces 
cerevisiae GCA_000146045 0.001360909 

Bacteria Firmicutes Bacillaceae Geobacillus 
Geobacillus 
kaustophilus unclassified 0.001093636 

Bacteria Firmicutes Leuconostocaceae Leuconostoc 
Leuconostoc 
mesenteroides unclassified 0.000714545 

Bacteria Proteobacteria Enterobacteriaceae Cronobacter 
Cronobacter 
turicensis unclassified 0.000522727 

Bacteria Proteobacteria Enterobacteriaceae Cronobacter unclassified unclassified 0.000441818 

Bacteria Firmicutes Streptococcaceae Lactococcus 
Lactococcus 
garvieae unclassified 0.000383636 

Bacteria Firmicutes Ruminococcaceae Subdoligranulum unclassified unclassified 0.000316364 

Bacteria Firmicutes Sporolactobacillaceae Sporolactobacillus unclassified unclassified 0.000169091 

Bacteria Firmicutes Lactobacillaceae Lactobacillus 
Lactobacillus 
pentosus GCF_000271445 0.000155455 

Bacteria Firmicutes Streptococcaceae Streptococcus 
Streptococcus 
lutetiensis GCF_000441535 0.00008 

Bacteria Firmicutes Leuconostocaceae Leuconostoc 
Leuconostoc 
kimchii GCF_000092505 3.73E-05 
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Table 4 displays the microbes present in 11 different coconut kefir samples and their 

average proportion in samples. Taxonomy was obtained using MetaPhlAn analysis of NextSeq 

shotgun metagenomic sequencing. All microbes shown in the table were bacteria, except one, 

which was classified as a strain of the Eukaryote Saccharomyces cerevisiae.  Some previously 

catalogued strains of bacteria were identified, however little is known about them. The 

metagenomic taxonomy is consistent with the 16S classifications, with Leuconostoc and 

Lactobacillus the most abundant species in the final coconut kefir product.  
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Figure 23 Stacked bar chart depicting proportions of top 10 most abundant bacterial 

species across 11 coconut kefir samples. Metagenomic sequencing was performed on DNA 

samples from 11 separately packaged bottles of coconut kefir. MetaPhlAn analysis reveals 

relatively stable proportions of the most abundant bacteria in the samples. Taxonomy is shown at 

the species level. 
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Figure 24 Stacked bar chart depicting average proportion of top 10 most abundant 

bacteria in 11 coconut kefir samples. Metagenomic sequencing was performed on DNA 

samples from 11 separately packaged bottles of coconut kefir. MetaPhlAn analysis was 

performed to classify taxonomy.  Proportions of each of the top species was averaged across 

samples and shown here.  
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5.3 SUMMARY 

In this analysis, we identified and compared the bacterial and fungal communities from 

several stages of kefir production. We found that the kefir grains had a consistent microbiome 

composition during production with some slight changes from batch to batch. These kefir grains 

are dominated by 1-3 species of Saccharomyces and ~60 species from the genera Lactobacillus, 

Lactococcus, and Leuconostoc. The coconut milk goes through significant changes during both 

resting phases and during fermentation to the final product resulting in a final product containing 

40-45 species primarily from the genera Leuconostoc and Lactococcus. 
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CHAPTER 6:  DISCUSSION 
 

6.1  MODERATE EXERCISE HAS LIMITED BUT DISTINGUISHABLE EFFECTS 

ON THE MOUSE MICROBIOME  

 

The relationship between exercise and human health has been extensively studied, and it 

has been found that exercise makes a number of positive contributions to our health (Dangardt et 

al., 2013). Diet has also been shown to have a strong influence on our health and has been 

directly implicated in alteration of the gut microbiome (Sonnenburg & Bäckhed, 2016). 

Environmental factors that influence gut flora are of great interest, as recent research 

demonstrates that these microbes are important for normal host physiology. The effect that 

exercise has on gut microbial composition is an emerging field of interest, though to date, only a 

handful of studies have been done. Links between exercise, the gut microbiome, and disease 

have been observed through an increase in protective short chain fatty acids (Matsumoto et al., 

2008; Perrin et al., 2001) and a decrease in bacteria associated with colorectal cancer and obesity 

(Choi et al., 2013; Turnbaugh et al., 2008). These studies have not provided consistent 

conclusions, and so this study therefore aimed to characterize the impact that moderate exercise 

has on gut microbial diversity in a well-controlled setting. Controlled conditions included 

identical housing and food type, as well as longitudinal measurements of food intake, body mass 

and exercise levels. 

Differences in body-mass composition and food intake between control and exercise 

mice in the voluntary study demonstrates that this exercise protocol was indeed having a tangible 

physiological effect on its subjects. Voluntary exercised mice not only had significantly less fat 

body mass and higher lean body mass than control mice, but also maintained a higher level of 
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food intake throughout the study. However, this effect was not seen in the forced exercise study, 

suggesting that this program did not induce the same stress in the mice as the voluntary one. This 

idea is supported in the inflammation data, as KC (CXCL-8 in humans), an exercise-induced 

cytokine, was higher in the voluntary, but not forced cohort. Evidence suggests that CXCL-8, a 

chemokine, is released from contracting muscles and exerts a local effect to induce angiogenesis 

in muscles following exercise (Nielsen & Pedersen, 2007). Several studies have linked changes 

in inflammation to different forms of exercise, in various populations (Allen et al., 2015; Bilski 

et al., 2016; Cook et al., 2016; Crimi et al., 2009). Contrary to our results, some of this research 

has shown that both voluntary and forced exercise act to reduce pro-inflammatory cytokines. In 

our study there was no change in either cohort in cytokines IL-1β, IL-6 and TNFα, which are 

also commonly induced by strenuous exercise (Donovan et al., 2007; Nielsen & Pedersen, 2007; 

Pedersen, 2000). This suggests that there was no chronic effect of exercise on serum levels of 

inflammatory markers, however it is possible that changes were not detected due to high levels 

of cytokines in the control mice, due to the stress of being singly-housed.  

Initial analyses of species richness and sample diversity show that neither exercise 

program appears to make a contribution to obvious microbiome changes. These observations 

contrast previous studies that did report significant differences in the microbiome of both animal 

models (Queipo-Ortuño et al., 2013; Zhang et al., 2013; Cook et al., 2013; Allen et al., 2015) and 

humans (Clarke et al., 2014) in response to exercise. There are several reasons for these 

observational differences, which we attempted to address further. Initially, we used female mice 

for the voluntary wheel running cohort because it had been reported that female mice run more 

than male mice (Bartling et al., 2017; Konhilas et al., 2004; McMullan et al., 2016). During the 

course of our voluntary exercise study, Allen et al. 2015 found microbiome differences due to 
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voluntary wheel running in male mice. We also noted that Allen et al. 2015 sequenced the V4 

region of the 16S rRNA gene, while we had initially sequenced the V6-V8 region. Sequencing of 

different hypervariable regions of the 16S rRNA gene do not identify consistent taxonomy 

within datasets (Huse et al., 2008; Kim et al., 2011; Kumar et al., 2011). Therefore, we 

conducted additional sequencing of the V4 region using the same primers as Allen et al. 2015, 

but still found no significant differences in the microbiome in response to exercise (Appendix – 

Figure 25). Lastly, we ran the same bioinformatic pipeline as described by Allen et al. 2015 with 

our data and found no significant differences, but when the data from their study was analyzed 

with the bioinformatics pipeline from this study we replicated their published significant 

findings.  It could be that other factors within previous studies including diet differences (Zhang 

et al., 2013; Mika et al., 2015), cage effects (Queipo-Ortuño et al., 2013), age of mice (Langille 

et al., 2014), or slight differences in housing could be contributing to some of the previously 

published observations. Despite the lack of major observable differences in the microbiome, it 

was notable that more complex methods that take into account microbial interactions like 

machine learning were able to distinguish subtle shifts in the mouse microbiome in response to 

exercise.  

For both exercise cohorts, several known and novel associations with exercise were 

identified.  The Firmicutes and Bacteroidetes phyla dominated the top 30 taxa important in 

differentiating between exercise and control treatments. Several other studies have linked these 

two phyla with response to exercise (Queipo-Ortuñoet al., 2013; Mika et al., 2015; Clarke et al., 

2014), along with the other two important phyla found in the voluntary cohort, Proteobacteria 

and Actinobacteria. Taxa of the Bacteroidales and Clostridiales order have been shown to 

produce short-chain fatty acids (Baothman et al., 2016) that protect against obesity and colon 
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cancer (Moeinian et al., 2014; Lin et al., 2012). Within the Bacteroidetes phylum, at the genus 

level, Bacteroides remains an important taxon in both exercise cohorts, while the S24-7 family is 

relevant in the voluntary cohort. Out of 18 S24-7 OTUs, 16 increased with voluntary exercise. 

Within the Firmicutes phylum, taxa of the order Clostridiales are found to be important in 

differentiating between exercise and control groups in both cohorts, while Lactobacillus is found 

to be a relevant genus in the forced exercise cohort, along with the Ruminococcaceae and 

Mogibacteriaceae families. All five of the Lactobacillus OTUs and all three of the 

Ruminococcus OTUs decreased with forced exercise. Lactobacillus species produce short chain 

fatty acids such as butyrate and have been shown to be protective against pathogens (Queipo-

Ortuño et al., 2013). Lactobacillus species are also implicated in fat storage; some increase fat 

storage, while others decrease it (Armougom et al., 2010; Aronsson et al., 2010; Million & 

Raoult, 2013). The bacterial families Ruminococceae and Mogibacteriaceae are associated with 

leanness (Ziętak et al., 2016). 

All of these taxa have previously been described in the literature in association with 

exercise (Queipo-Ortuñoet al., 2013; Mika et al., 2015; Clarke et al., 2014). Rikenellaceae, a 

family under the Clostridiales order, was identified as a novel association within the voluntary 

exercise cohort, while Lachnospiraceae, a family under the Bacteroidales order was a novel 

association found in both cohorts. Rikenellaceae is associated with leanness and 

Lachnospiraceae species produce butyrate and are associated with protection against colon 

cancer (Clarke et al., 2013; Meehan & Beiko et al., 2014). Several studies have also described 

changes in the levels of Bifidobacterium, Prevotella and Erysipelotrichaceae species as a result 

of exercise in mice and humans (Queipo-Ortuño et al., 2013; Mika et al., 2015; Allen et al., 

2015; Clarke et al., 2014). A genus of Actinobacteria, Bifidobacteria has been shown to be 
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effective in raising mood in CFS and IBS. It plays and important role in weight and appetite 

regulation and has been shown to increase with exercise (Queipo-Ortuño et al., 2013). It is 

associated with anti-inflammatory states (Cani et al., 2009; Round et al., 2014). Prevotella 

strains are linked with chronic inflammation and the consumption of simple carbohydrates 

(Larsen, 2017; Queipo-Ortuño et al., 2013) and have been shown to decrease with exercise 

(Clarke et al., 2014). Not much is known about the role of Erysipelotrichaceae species in the gut 

microbiome. The higher classification accuracy results within the voluntary versus forced 

exercise mice again support that the voluntary exercise model was more vigorous overall and 

that there exists a relationship between exercise and the gut microbiome.  

Since the forced and voluntary exercise studies were not performed together, it is difficult 

to compare microbiome data from both. Appendix – Figure 29, comparing the controls from 

both cohorts in week 0, illustrates how even the same strain of mice, close in age and obtained 

from the same breeding facility can have extremely different microbiomes. These differences 

could be due to factors such as exposure to different microbes from their parents, human 

handlers, other animals, food or even environmental surfaces. This is an excellent example of the 

difficulties in standardizing microbiomes studies. Comparison to other studies that appear to 

have used very similar methods, such as the study by Allen et al. (2015) are often not feasible.  

 

6.2 HASKAP MODULATES THE EFFECTS OF NNK ON MICROBIAL 

COMMUNITY STRUCTURE IN MICE  

 

 Since its been shown that diet has a large influence on the gut microbiome (Sonnenburg 

& Bäckhed, 2016), food supplements have become an area of keen interest for therapeutic 
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modulation. It is known that plant polyphenol compounds such anthocyanins have anticancer and 

anti-inflammatory properties when consumed and that the microbiome plays a role in their 

metabolism (Faria et al., 2014). This study analyzed the shifts in the microbiome of healthy mice 

that had their diet supplemented with anthocyanin rich haskap berry extract. Secondly, 

microbiome changes were also examined in mice treated with a lung carcinogen (NNK) that also 

consumed a haskap-supplemented diet.  

Some anthocyanins have been shown to have important benefits on metabolism. It was 

found that blackberry anthocyanin supplements reduced weight gain and insulin resistance in 

mice on a high-fat diet (Esposito et al., 2015). However, there had been no microbiome profiling 

done in the context of this anthocyanin-supplemented diet. Our research provides a closer look 

into the microbiome shifts that occur as a result of dietary polyphenol supplementation in the 

context of both health and disease.  

Species richness was not altered by haskap supplements in either healthy or lung cancer 

mouse models. While we were not able to identify any single taxa that were present in 

significantly altered levels between either haskap and normal diet groups after multiple test 

correction, the Adonis tests based on beta-diversity differences between samples indicated that 

the haskap diet was a significant factor in explaining some of the variation in the community. It 

is important to note that these statistical tests do take into account the relationships and 

interactions between microbes in a community. Other methods of analysis such as machine 

learning as applied to the exercise study and network building based on co-occurrences may be 

more successful in identifying key bacteria that shift as a result of haskap administration. It is 

also possible that there are many species affected by the dietary supplement, especially if many 

common species have the ability to metabolize these compounds. In this experiment, we only 
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conducted 16S profiling, but future studies that used metagenomic sequencing may identify 

differences in microbial gene content that is linked to anthocyanin-metabolizing genes.  

The second important finding of this study was that haskap consumption modulates changes in 

the mouse gut as a result of NNK administration. Not surprisingly, mice who were injected with 

the NNK carcinogen had slightly lower species diversity. It has been demonstrated that NNK 

acts to induce damage in host cells through a number of mechanisms, including DNA damage, 

and therefore could be toxic to bacterial cells as well (Ge et al., 2015). Although, there were 

community differences identified between control and NNK mice when a normal diet was 

administered, there were no longer significant differences between control and NNK mice when 

a haskap diet was administered. While it is known that phenolic compounds such as 

anthocyanins are metabolized by colonic bacteria, further studies are needed to further elucidate 

the mechanisms by which haskap alters gut bacteria (Rechner et al., 2002; Saha et al., 2016).  

 

6.3 MICROBIAL SUCCESSION IN COCONUT KEFIR PRODUCTION IS 

COMPARABLE TO MICROBIAL SUCCESSION IN DAIRY MILK KEFIR 

 
 Fermented probiotics provide beneficial microbes that mediate allergies, asthma, 

inflammation and infection. It is thought that these bacteria and yeasts provide their health 

benefits through both direct interaction with the host as well as through the production of 

metabolites (Rosa et al., 2017, Marco et al., 2017). This study examined the succession of both 

bacteria and yeasts that occurred over the course of the production of coconut kefir.  

 Firstly, this study demonstrates that it is possible for coconut milk to sustain lactic acid 

fermenting microbial communities long enough to produce a fermented probiotic. Although 

lactose is the preferred food source for these bacteria, our results indicated that they are capable 
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of metabolizing the sugars in coconut milk. This is consistent with previous research that showed 

that lactic acid bacteria are capable of fermenting a variety of plant sugars to make sugary, 

instead of milk kefir (Fiorda et al., 2017).  

 Secondly, microbial succession in coconut kefir is comparable to that in traditional dairy 

milk kefir. The consistency of microbial composition of kefir grains across the fermentation 

process indicates that this community is very stable. This is consistent with published literature, 

which reports that kefir grains contain largely lactic acid producing bacteria and Saccharomyces 

yeasts (Marco et al., 2017). Examination of our liquid samples over the course of coconut kefir 

production shows that Lactobacillus was more prevalent early in fermentation and that the final 

product contained higher levels of Leuconostoc. This succession trend is consistent with that 

reported in a recent study analyzing the production of dairy milk kefir (Walsh et al., 2016). 

While metabolomics experiments would be necessary to confirm that the metabolites present in 

coconut kefir are the same as those in dairy kefir, the presence of these beneficial bacteria are a 

good indication that coconut kefir would have similar health benefits as lactose-containing 

fermented products. 

Part of the Firmicutes phylum, Lactobacillus species, are found in a number of fermented 

dairy products, are abundant in the gut, and have a number of beneficial effects on the host. They 

are able to make intestinal tight junctions less permeable to keep potential pathogens out 

(Lutgendorff et al., 2008). They are known to produce butyrate, protecting against obesity and 

colon cancer (Moeinian et al., 2014; Lin et al. 2012). While some species are implicated in 

increasing fat storage, others are implicated in decreasing it (Armougom et al., 2010; Aronsson 

et al., 2010; Million & Raoult, 2013). In chronic fatigue syndrome (CFS) and inflammatory 
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bowel syndrome (IBS) clinical trials, Lactobacillus improves mood and reduces anxiety (Rao et 

al., 2009). 

 

6.4 LIMITATIONS & FUTURE WORK 

 

The majority of microbiome profiling conducted within this thesis, was performed by 

sequencing a ~450bp region of the 16S rRNA gene. There are several well-known limitations to 

this approach. Unfortunately this region only targets bacteria, and so there is no information 

gained about other microbes such as archaea, eukaryotes and viruses. To identify fungi in the 

coconut kefir study we had to perform a second sequencing run using the ITS2 marker region. 

Metagenomic techniques allow scientists to sequence all of the DNA present in samples, 

including other types of microbes. Secondly, the variable region and primer choice can bias 

amplification of particular microbes (Huse et al., 2008; Kim et al., 2010; Kumar et al., 2011). For 

example, it has been shown that primers for the V7-V9 region amplify higher levels of 

Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and 

Selenomonas, compared to other primer regions (Kumar et al., 2011).  

The Microbiome Helper pipeline uses QIIME scripts for quality filtering of 16S 

sequencing errors and then clusters the sequences into operational taxonomic units (OTUs) if 

they share 97% or more sequence similarity. This is a strict cutoff and does not always allow for 

resolution down to the species level and definitely not the strain level. Strain identification can 

be biologically relevant and other bioinformatic analyses packages such as DADA2 have 

attempted to correct for higher resolution and cluster sequences at 100% identity (Callahan et al., 
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2016). Higher resolution analyses can be leveraged in future studies, especially in probiotics 

research.  

 Taxonomic assignment is limited by the database used, and there are many from which to 

choose. While the database used in this study, Greengenes, links multiple curated sequence 

sources together, the number of “de novo” clustered OTUs identified across the studies is an 

example of how microbial databases are far from being complete (DeSantis et al., 2006). 

Furthermore, while functional predictions can be made using PICRUSt, these inferences are 

limited to previously annotated sequences and do not inform directly on the genes present in the 

sample.  

A marker gene sequencing represents a snapshot of a community. It tells you who is there 

at that moment but does not indicate the activity of cells and whether or not they are alive. New 

tools such as those developed by Brown et al. (2016) are able to use metagenomics, but not 

targeted marker gene sequencing, to get a sense of how fast bacteria are replicating. It is 

important to remember that this data also represents relative abundances of microbes. 

Proportions can be altered based on filtering and quality-check methods (Lovell et al., 2015; 

Gloor et al., 2016). New tools examining raw OTU counts are being developed to circumvent 

this problem.  

 While we are able to identify trends in microbial communities, correlations of microbial 

shifts do not demonstrate causation. Determining the mechanisms of action of interactions will 

be required to definitively show that factors directly impact the gut microbiome. Much more 

detailed studies are required in the future, and the development of methods to examine the 

dynamic interactions of these microbes with their hosts. 
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6.4.1 COMPLEX ANALYSES TO IDENTFY RELEVANT MICROBES AND 

INTERACTIONS 

 

Since sequencing methods have allowed further investigation in the microbiome, human 

health studies have been looking for bacteria that perform key functions. While some have been 

identified and termed ‘probiotics’, healthy individuals have been shown to have wide taxonomic 

variation (Shafquat et al., 2014). Although conserved functions can be identified in the healthy 

human microbiome, there still exists a therapeutic challenge as to which microbes to promote.  

Human microbiome communities are complex and it is not always easy to identify trends 

by examining levels of individual taxa. Methods are need that can account for the relationships 

that exist between microbes. Recently, more complex analyses using machine learning and 

network building help to address this. Our lab hopes to shed light on the effectiveness of 

machine learning and network analyses on human microbiome analysis.  

 

6.4.2 HUMAN STUDIES 

  

 While mammalian models of the gut microbiome share many physiological traits, 

experimental models of disease cannot completely capture disease progression as it would occur 

in humans, limiting the clinical relevance of studies done in rodents. Secondly, while mice share 

the same major bacterial phyla as humans, at a species level their gut microbiomes have limited 

overlap (Nguyen et al., 2015).  

In order to demonstrate the therapeutic potential of factors such as exercise, prebiotics 

and probiotics, it is necessary to administer these regimens in healthy humans to study their full 
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effects. While metadata such as weight and diet can be obtained from both humans and animals, 

it is easier to evaluate effects on quality of life in human studies, through interviews and 

questionnaires.  

There are also several pertinent limitations to note on mouse models. Several of our 

experiments rely on the single housing of mice, which is contrary to their social nature and 

causes stress (Gonder & Laber, 2007). This stress could impact gut physiology and therefore 

microbiome data. Secondly, one of our studies involves measuring the amount of food consumed 

by mice, based on the weight of the food added to the cage, and the weight of the food left at the 

end of the week. We acknowledge that this measurement may be slightly inaccurate due to food 

lost to the cage, however we assume that this volume is consistent for each mouse. Lastly, 

coprophagy (the consumption of one’s own feces) is a behaviour performed by mice, which 

could also influence the composition of the gut microbiome through the ingestion of large 

amounts of colonic bacteria (Groen et al., 2006).  

 

6.4.3 MECHANISTIC STUDIES 

 

While human studies are vital, they can be time consuming and environmental factors are 

difficult to control for. It is therefore important to identify which microbiome factors hold the 

most clinical promise. Mechanistic studies evaluating the interactions of bacteria with the host on 

a molecular level are scarce, but crucial. For example, it was reported that a bacterial lyase found 

in the gut was capable of converting choline into trimethylamine, a precursor to 

trimethylamineoxidase, a potent promotor of atherosclerosis. By identifying the bacterial source 
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of the enzyme and performing a large-scale drug screen, researchers were able to identify a small 

molecule inhibitor of the lyase (Wang et al., 2015).  

This brings up a second point, which is determining whether it is through the direct 

interactions of microbes with host cells or indirectly through their metabolic products that 

microbes influence host physiology. While short-chain fatty acids to date are the best-known 

example of important microbial metabolites, it is known that gut bacteria have the ability to 

produce a number of compounds, including phenolic acids and Vitamin K (Rechner et al., 2002; 

LeBlanc et al., 2013). Metabolomics is becoming a popular, albeit expensive method of studying 

microbial processes that happen in the gut, through the evaluation of metabolites. In the future 

we can combine metabolomics with the methods used in this study to develop a more complete 

model of host-microbial interactions.  

 

6.6 CONCLUSIONS 

 

The human microbiome is critical in human health. While microbiome research is a 

relatively young field, it is clear that factors influencing these gut communities is essential in 

uncovering their potential as a therapeutic target. In these studies, we have explored several of 

these factors and their connection to shifts in the microbiome. Our examination of microbial 

composition has illuminated shifts that occur as a result of exercise and the consumption of a 

prebiotic. In addition, we have revealed the succession of microbes in an alternative probiotic.  

There is still much research needed to uncover mechanisms by which microbes affect our health 

and to be able to translate this knowledge into clinical application to treat human diseases.  
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Figure 25 Weighted gut microbial diversity of voluntary and forced exercise mice using V4 

Weighted UniFrac principal coordinate axis plots compare gut microbial diversity of exercise 

and control mice from (A) voluntary (W8: R2 = 0.05246, p = 0.381 and (B) forced (W6: R2 = 

0.06351, p = 0.252) exercise cohorts. Beta-diversity of fecal samples was compared using an 

Adonis test with a significance cutoff of p < 0.05. VE: n = 9; VC: n = 10; FE: n = 9; FC: n = 10.  



 118 

 

 
 

 

 

 

 

 

 

Figure 26 Weighted gut microbial diversity of mucosal samples in voluntary and forced 

exercise mice. Weighted UniFrac principal coordinate axis plots compare the colonic mucosal 

gut microbial diversity of exercise and control mice from (A) voluntary (W8: R2 = 0.0941, p = 

0.16 and (B) forced (W6: R2 = 0.0392, p = 0.756) exercise cohorts. Beta-diversity of fecal 

samples was compared using an Adonis test with a significance cutoff of p < 0.05. Number of 

mice in each cohort: VE: n = 8; VC: n = 10; FE: n = 7; FC: n = 11. 
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Figure 27 Unweighted gut microbial diversity of mucosal samples in voluntary and forced 

exercise mice. Unweighted UniFrac principal coordinate axis plots compare the colonic mucosal 

gut microbial diversity of exercise and control mice from (A) voluntary (W8: R2 = 0.0746, p = 

0.081) and (B) forced (W6: R2 = 0.0535, p = 0.682) exercise cohorts. Beta-diversity of fecal 

samples was compared using an Adonis test with a significance cutoff of p < 0.05. Number of 

mice in each cohort: VE: n = 8; VC: n = 10; FE: n = 7; FC: n = 11. 
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Figure 28 Comparison of male and female gut microbial diversity in forced exercise mice. 

Fecal gut microbial diversity male and female mice from the forced exercise cohort is compared 

at week 6 by (A) weighted UniFrac principal coordinate axis plot (R2 = 0.1126, p = 0.453) and 

(B) unweighted UniFrac principal coordinate axis plot (R2 = 0.1246, p = 0.185). Beta-diversity 

of fecal samples was compared using an Adonis test with a significance cutoff of p < 0.05. 

Number of mice in each cohort: male: n = 5; female: n = 5.  
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Figure 29 Comparison of gut microbial diversity in voluntary and forced exercise controls. 

Fecal gut microbial diversity control mice from the voluntary and forced exercise cohort is 

compared at week 0 by (A) weighted UniFrac principal coordinate axis plot (R2 = 0.7858, p = 

0.001) and (B) unweighted UniFrac principal coordinate axis plot (R2 = 0.3868, p = 0.001). Beta-

diversity of fecal samples was compared using an Adonis test with a significance cutoff of p < 

0.05. Number of mice in each cohort: voluntary wheel running: n = 19; forced treadmill running: 

n = 19. 
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