

Interactive Navigation and Control of Neurosurgical Robotic

Systems

by

 Meftah Mohamed

 Submitted in partial fulfillment of the requirements

 for the degree of Doctor of Philosophy

at

Dalhousie University

Halifax, Nova Scotia

August 2017

© Copyright by Meftah Mohamed, 2017

ii

To my family

iii

TABLE OF CONTENTS

TABLE OF CONTENTS ... iii

LIST OF TABLES ... viii

LIST OF FIGURES .. x

ABSTRACT .. xv

LIST OF ABBREVIATIONS AND SYMBOLS USED ... xvi

ACKNOWLEDGEMENTS ... xix

Chapter 1 INTRODUCTION .. 1

1.1 Statement of Problem .. 1

1.2 Motivation for the Study ... 1

1.3 Thesis Objectives .. 4

1.4 Contributions ... 4

1.5 Research Challenges ... 6

1.6 Overview of the Thesis ... 6

Chapter 2 BACKGROUND AND RELATED WORK.. 8

2.1 Review of Bone Drilling ... 8

2.2 State-of-the-Art Neurosurgical Robotics .. 10

2.3 Basic Requirments of Neurosurgical Operations .. 15

2.4 Design Selection of the robotic manipulators ... 16

2.5 Teleoperation of Robotic Manipulators .. 17

2.6 Skull Drilling Parameters .. 17

2.7 Architecture of the proposed system ... 19

2.8 Architecture of the proposed Interactive Navigation and Controller 20

Chapter 3 MODELING OF THE ROBOTIC MANIPULATOR ... 22

iv

3.1 Introduction ... 22

3.2 The Mitsubishi PA10-7C Robotic Manipulator .. 23

3.3 Denavit Hardenberg Method ... 25

3.4 Forward Kinematic of robotic manipulators ... 27

3.5 Jacobian Matrix ... 31

3.6 Inverses Kinematic of Robotic Manipulator ... 33

3.7 Dynamics of PA10 Robot ... 33

3.8 Summary ... 38

Chapter 4 MOTION PLANNING AND ROBOT CONTROL SCHEMES 39

4.1 Robotic Arm Controller .. 39

4.1.1 Motion Control of the PA10-7c robot .. 39

4.1.2 Drilling Orientation Control ... 41

4.1.3 Drilling Depth Control.. 41

4.1.4 Drilling-Depth and Velocity Controller ... 42

4.1.5 Drilling Force Controller .. 42

4.2 Trajectory Generation and Control ... 43

4.2.1 Feedforward Trajectory planning ... 44

4.2.2 PID Controller for Skull Drilling.. 49

4.2.3 Fuzzy PID Controller for Skull Drilling ... 51

4.2.4 Nonlinear Fuzzy PID Controller ... 52

4.2.5 Application of LQR in Skull Drilling Controller ... 53

4.2.6 Verification of Trajectory Tracking ... 56

4.3 Summary ... 57

Chapter 5 FORCE SENSING AND CONTROL.. 58

v

5.1 Linear Model of the Skull under Drilling ... 58

5.2 Experimental Model of Skull under Drilling .. 60

5.3 Skull Drilling State Detection ... 64

5.3.1 Neural Network State Classifier ... 66

5.3.2 Detection of Bone Layer using ANN ... 71

5.3.1 Detection of Drilling State using ANN .. 72

5.4 Interaction Control .. 74

5.4.1 Force Control of PA10 Robot Tooltip .. 74

5.4.2 Direct Force Control ... 75

5.4.3 Indirect Force Control .. 76

5.5 Summary ... 76

Chapter 6 SIMULATIONS AND EXPERIMENTS .. 77

6.1 PA10-7c robot simulator ... 77

6.1.1 Simulator of PA10 robot using Matalb... 77

6.1.2 PA10 robot Mechanical Modelling using SimScape .. 79

6.1.3 Dynamic Simulation of the PA10 robot by using V-REP .. 83

6.2 Experiments of Neurosurgical Robotic system ... 85

6.2.1 Components of PA10 Robotic Manipulator ... 85

6.2.2 ARCHITECTURE of the Neurosurgical MOTION SYSTEM 86

6.2.3 Motion Control of the Neurosurgical Robotic System ... 88

6.2.4 Neurosurgical Skull Drilling Force Controller ... 88

6.2.5 Motion Controller of the Neurosurgical Robotic Manipulator 91

6.2.6 Force Sensor Calibration .. 93

6.2.7 Block Diagram of the proposed Motion Controller .. 94

vi

6.3 Human-robot interaction in Neurosurgical interventions.. 95

6.3.2 Medical Image Analysis and Visualization Tools .. 97

6.3.3 Image Visualization and Navigation using 3D Slicer .. 98

6.3.4 Cooperative Pose registration for Neurosurgical Robotic Systems 100

6.4 Interactive Control of Neurosurgical Robotic Arm ... 101

6.4.1 Speech Controlled Robotic System .. 106

6.4.2 Pose Registration in Neurosurgical Interventions .. 108

6.4.3 Evaluation of Robot Positioning Accuracy .. 110

6.4.4 A Virtual Reality Training System for Robot-Assisted Neurosurgery 111

6.5 Summary ... 113

Chapter 7 CONCLUSIONS .. 115

7.1 Conclusion ... 115

7.2 Future Work .. 116

APPENDICES .. 131

Appendix 1. Individual Parameters of PA10 robot Jacobian Matrix 131

Appendix 2. Dynamic Model of PA10 robot .. 133

Appendix 3. Matlab Code for modelling PA107c Robotic Arm... 134

Appendix 4. Matlab Code for calculating the inverse kinematics of the PA10 robot 138

Appendix 5. VB Code for PA10 robot data logging to the Database 141

Appendix 6. Matlab Code for data logging to Matlab .. 143

Appendix 7. Sample of LUA Code written to simulate PA10 robot in V-REP 145

Appendix 8. Matlab Code for Calculating the Forward Kinematics of PA10 robot 151

Appendix 9. Matlab Code for interfacing between Matlab and 3D Slicer 152

Appendix 10. Matlab Code for voice recognition using Correlation Technique 153

vii

Appendix 11. Sample of Matlab Code for Connecting Matlab with V-REP 155

Appendix 12. Matlab Code used to Generate trajectory ... 157

Appendix 13. Matlab Code for Force Data Fitting ... 159

Appendix 14. Matlab Code for retrieving depth data using Kinetic sensor 161

viii

LIST OF TABLES

Table 2.1 Examples of Neurosurgical Robotic Systems 15

Table 2.2 Basic Design Requirements of the neurosurgical robotic System 16

Table 3.1 Table 3.1 The specifications of PA-107C robot [119] 23

Table 3.2 Joint description and physical Limits of PA10 robot manipulator 24

Table 3.3 Mitsubishi PA10-7C Denavit-Hartenberg Parameters 25

Table 3.4 Joint description and dynamic Limits of PA10 Robotic Manipulator 34

Table 3.5 Mass parameters of the PA10 robot model [123][134] 35

Table 4.1 Values of PID controller 49

Table 4.2 Comparison of Transient Response Characteristics 57

Table 5.1 Design Parameters of the Skull Drilling Model 59

Table 5.2 Coefficients values with 95% confidence bounds 62

Table 5.3 Goodness of fit 62

Table 5.4 Skull Drilling Trajectory Profile 63

Table 5.5 Force Sensor Specifications 65

Table 5.6 Ranking Training Algorithms of FFN with 10 hidden layers 67

Table 5.7 Network Performance in case of using 10 hidden layers 68

Table 5.8 Topology Performance in case of using 10 hidden layers 69

Table 5.9 Drilling State recognition using Neural Networks 72

Table 5.10 robot State recognition using Neural Networks 73

Table 6.1 Comparison between Dynamic Simulation using Matlab and V-REP 85

Table 6.2 Settings of Initial Conditions and Cartesian Space 93

Table 6.3 Data streams retrieved from Kinect device 97

ix

Table 6.4 List of Open Source Medical Image Analysis Software’s 97

Table 6.5 Experimental results for measuring the Gravity Effect 101

Table 6.6 Experimental results for measuring the robot end-effector joints 102

Table 6.7 User spoken directives and the output control signals 107

Table 6.8 Pose Registration in 3D Slicer 110

x

LIST OF FIGURES

Figure 2.1 Structure of the Cranial Bones [18] .. 8

Figure 2.2 ‘Minerva’ neurosurgery robot in position [61] .. 12

Figure 2.3 Renishaw-Mayfield NeuroMate [64] .. 12

Figure 2.4 Clinical testing of MODICAS assistance robot [72] ... 13

Figure 2.5 Photographs showing NeuroArm in use [68] .. 14

Figure 2.6 Architecture of the proposed system ... 20

Figure 2.7 The Architecture of the Robotic Assisted neurosurgical system 21

Figure 3.1 Coordinate systems of the Mitsubishi PA10-7CE robot [123] 24

Figure 3.2 Figure 2.2 Denavit-Hartenberg frame assignments [126] ... 26

Figure 3.3 Direct and Inverse Kinematics .. 27

Figure 4.1 Block Diagram Model of the Robot Arm Control ... 39

Figure 4.2 Existing PA10-7C Robot Control .. 40

Figure 4.3 Orientation Control for Skull Drilling System .. 41

Figure 4.4 Depth Control for Skull Drilling System... 41

Figure 4.5 The structure of the Drilling-Depth and Velocity Controller 42

Figure 4.6 One degree of Feedforward Control of Skull Drilling .. 45

Figure 4.7 One degree of Feedforward Control of Skull Drilling .. 45

Figure 4.8 Design Parameters of Motion Planners ... 46

Figure 4.9 Second Order Trajectory Determination ... 46

Figure 4.10 Jerk Trajectory for Third Order Motion Planner ... 47

Figure 4.11 Third Order Feedforward Control of Skull Drilling” Jerk limited Trajectory 47

Figure 4.12 Double mass rigid body analysis ... 48

file:///C:/Users/right/Desktop/PhD/Thesis.docx%23_Toc488056692

xi

Figure 4.13 Fourth Order Feedforward Motion Planner ... 48

Figure 4.14 Block diagram of PID controller ... 49

Figure 4.15 Response of PID controller for Skull Drilling ... 50

Figure 4.16 MATLAB Simulation of PID controller for Skull Drilling....................................... 50

Figure 4.17 Response of PID controller using several types of trajectory planner 50

Figure 4.18 Structure of Fuzzy PID controller for Skull Drilling... 51

Figure 4.19 Control Surface plot of Fuzzy PID Controller .. 51

Figure 4.20 Response of Fuzzy PID controller using different types of trajectory planner 52

Figure 4.21 Matlab Simulation of Nonlinear Fuzzy PID controller for Skull Drilling 52

Figure 4.22 Control Surface plot of Nonlinear Fuzzy PID Controller ... 53

Figure 4.23 Response to Non-Linear Fuzzy PID Controller .. 53

Figure 4.24 Block diagram of LQR added to the control system ... 54

Figure 4.25 Setpoint tracking and disturbance rejection .. 56

Figure 4.26 End Effector Trajectory Tracking Experiment .. 56

Figure 5.1 Simplified Model of the Skull Drilling Mechanism .. 58

Figure 5.2 SimMechanics Model of the Skull Drilling Mechanism ... 59

Figure 5.3 Response of Force Modelling .. 60

Figure 5.4 Drilling Depth in Skull .. 60

Figure 5.5 Thrust Force (Fz) Response of skull under Drilling .. 61

Figure 5.6 Residuals of the Thrust Force .. 61

Figure 5.7 Drilling Force along x-axis .. 62

Figure 5.8 Drilling Force along y-axis .. 63

Figure 5.9 Matlab Simulation of Skull Drilling .. 64

Figure 5.10 Force Sensor JR3 ... 65

xii

Figure 5.11 The three bone layers of the cranial vault. [141] ... 66

Figure 5.12 Thrust Force (Fz) Response of skull under Drilling .. 66

Figure 5.13 Serial Topology of ANN ... 68

Figure 5.14 Training state of Serial ANN Topology .. 68

Figure 5.15 Evaluation of Serial ANN connection ... 69

Figure 5.16 Parallel Topology of ANN .. 69

Figure 5.17 Evaluation of Parallel ANN Topology .. 70

Figure 5.18 Regression Analysis of the Parallel ANN Topology ... 70

Figure 5.19 Block Diagram of Neural Networks Classifier ... 71

Figure 5.20 Neural Networks Training Performance ... 72

Figure 5.21 Drilling Tests on Human Skull using PA10 Robotic Manipulator............................ 73

Figure 5.22 The structure of the position based direct force controller .. 75

Figure 5.23 Indirect force control approach ... 76

Figure 6.1 Matlab Simulation of PA10 Robotic Manipulator .. 77

Figure 6.2 3D Simulator of the PA107c Robotic Manipulator ... 78

Figure 6.3 Trajectory movement for PA 10 joints .. 79

Figure 6.4 End Effector Trajectory for each direction .. 79

Figure 6.5 Steps of modeling mechanical system response .. 80

Figure 6.6 Steps for Modeling Mechanical Systems [146]... 81

Figure 6.7 Mechanism of Building Dynamic Model using MATLAB Simscape 81

Figure 6.8 Steps for generating Mechanical Model of Motion Platform 82

Figure 6.9 PA107c Dynamic Modeling using Matlab SimMechanics ... 82

Figure 6.10 Workflow to create a dynamic model ... 83

Figure 6.11 Simulation of Skull Drilling by using VREP .. 83

file:///C:/Users/right/Desktop/PhD/Thesis.docx%23_Toc488056731

xiii

Figure 6.12 Simulation of Skull Drilling by using VREP .. 84

Figure 6.13 Components of PA10 Robotic Manipulator .. 86

Figure 6.14 Flowchart of Mitsubishi PA-10 Four-layer control architecture 87

Figure 6.15 Architecture of the Neurosurgical Robotic System ... 87

Figure 6.16 End Effector Trajectory ... 87

Figure 6.17 Existing PA10-7C Robot Control .. 88

Figure 6.18 Force Control for Skull Drilling System ... 89

Figure 6.19 robot Steering Force in X, Y,Z directions ... 89

Figure 6.20 Robot End Effector Trajectory in the X, Y, Z Direction ... 90

Figure 6.21 Implementation of Force Steering for PA107c Robotic Manipulator 90

Figure 6.22 Matlab Interfacing with PA107c Robotic Manipulator ... 91

Figure 6.23 Skull Drilling Trajectory Profile ... 92

Figure 6.24 Plot of all the components of force/torque sensor readings. 93

Figure 6.25 Block Diagram of the proposed Control System ... 94

Figure 6.26 The Neurosurgical Robotic Drilling System ... 95

Figure 6.27 Overview of the proposed Human-robot Interaction... 96

Figure 6.28 Structure of Kinect Sensor... 96

Figure 6.29 Visualization of Medical Images using 3D Slicer ... 98

Figure 6.30 Image Visualization and Navigation using 3D Slicer ... 98

Figure 6.31 Tracking Skull Drilling using 3D Slicer .. 99

Figure 6.32 Description of (RAS) and (IJK) coordinate systems ... 100

Figure 6.33 End Effector Force Measurement without Gravity Compensation 102

Figure 6.34 Steering Force Signal Conditioning using Dead zone and Saturation limit 105

Figure 6.35 Architecture of the proposed speech controlled robotic system 106

file:///C:/Users/right/Desktop/PhD/Thesis.docx%23_Toc488056769

xiv

Figure 6.36 Profile of the end-effector of PA 107c. ... 107

Figure 6.37 Pose Registration in 3D Slicer ... 108

Figure 6.38 Pose Registration in 3D Slicer ... 109

Figure 6.39 Robot Positioning Accuracy .. 111

Figure 6.40 Robot Repeatability Accuracy ... 111

Figure 6.41 Virtual Reality Smartphone Headset ... 112

Figure 6.42 Simulation of neurosurgery by using VREP ... 113

xv

ABSTRACT

Trauma and head injury are an important cause of overall mortality and morbidity. Millions of

people around the world suffer from neurological and functional disorders, but there are only a

limited number of neurosurgeons and neurologists to help them. Due to the complex distribution

of blood vessels and nerves under the skull, neurosurgical procedures are risky and require

surgeons to have expertise and excellent coordination to avoid injury to the dura and to achieve

safety, efficiency, and accuracy. Neurosurgical procedures are usually performed manually by a

surgeon using drilling or milling devices. Most of the tools currently used in surgery depend only

on the surgeon's manual skills to stop the penetration when drilling a hole or removing cranial

bone to access the brain.

This work presents the control theory of a robotic neurosurgical system. The aim is to build a

reliable neurosurgical control system featuring intelligent control, force-feedback control,

dexterity, and flexibility, along with human-robot interaction. A modular neurosurgical robotic

system is developed to validate the control algorithms in a safe manner. The proposed robotic

system could be used as a training platform to help students acquire the skills needed to perform

surgeries on real patients and practice their technical skills without any risk to patients. This work

introduces the interactive navigation of the surgical planning and control of robot movement in

order to increase a surgeon’s integration in the control of a robotic system. Safety can be potentially

increased due to faster surgeon reactions during the process, while drilling process parameters

could be controlled automatically.

xvi

LIST OF ABBREVIATIONS AND SYMBOLS USED

ABI Acquired Brain Injury

TBI Traumatic Brain Injury

VRML Virtual Reality Modeling Language

V-REP Virtual Robot Experimentation Platform

ROS Robot Operating System

MRI Magnetic Resonance Imaging

CT Computed Tomography

BRW Brown-Roberts-Wells

FDA Food and Drug Administration

MODICAS Modular Interactive Computer Assisted Surgery

MKM Mehrkoordinaten Manipulator

API Application Program Interface

DOF Degree of Freedom

MHI Mitsubishi Heavy Industries

D-H Denavit Hardenberg

ci Cos Θi

si Sin Θi

J Jacobian Matrix

Q Joint Angular Position

M Inertia Matrix

G Gravitational Force

t Input Torque Vector

Fr Friction

xvii

PID Proportional–Integral–Derivative

LQR Linear Quadratic Regulator

n Rotating Speed

V Linear Velocity

D Diameter

RMSE Relative Mean Squared Error

CC Cross-Correlation

MAE Mean Absolute Error

NN Neural Networks

CAD Computer-Aided Design

XML Extensible Markup Language

MCS Motion Control Section

OCS Operation Control Section

VTK Visualization Toolkit

ITK Insight Segmentation, Registration Toolkit

FSL FMRIB Software Library

SPM Statistical Parametric Mapping

MIA Medical Image Analysis

MITK Medical Imaging Interaction Toolkit

URTC Unified Real-Time Communications

ICS Image Coordinate System

PCS Patient Coordinate System

RAS Right Anterior Superior

OR Operation Room

xviii

SAPI Speech Application Programming Interfaces

TTS Text into Speech

VR Virtual Reality

ANN Artificial Neural Network

xix

ACKNOWLEDGEMENTS

First of all I want to thank God for his help and his mercy to complete this thesis. In many ways, I

am deeply indebted to all the people, who contributed to this work. Especially, I would like to

express my sincere appreciation to my supervisor, Dr. Jason Gu. Without his unlimited support,

kindness, patience, guidance, and advice, this work would have not been possible. Not only has he

provided me with academic guidance, he has also given constant caring and encouragement in the

pursing of my Ph.D. studies.

I am also thankful to Dr. William Phillips and Dr. Mohamed E. El-Hawary for their kindness in

serving as committee members and for their help and support. I am also grateful to the External

Examiner Dr. Rickey Dubay, for spending his valuable time reading and evaluating my thesis.

I want to emphasize my special thank Libyan Ministry of Higher Education and CBIE for

providing financial assistance in forms of scholarships. I want to thank all other people, who have

followed and contributed to this work, which I cannot name all individually here.

Special thanks are due to my mother, sisters, and brothers for supporting me emotionally and

spiritually in the writing of this thesis and in my life in general. I cannot thank you enough for

encouraging me, and I know that your prayers helped sustain me throughout this journey. My

greatest thanks my lovely wife Abeer Almuhalhil, for her unremitting encouragement, approvals,

acknowledgments and her love.

1

CHAPTER 1 INTRODUCTION

1.1 STATEMENT OF PROBLEM

Applying robotics to neurosurgical procedures is considered to be promising, yet challenging.

Interactive navigation and control theory has been developed for the proposed neurosurgical

robotic manipulator. Simulations and experiments have further verified the proposed approach.

1.2 MOTIVATION FOR THE STUDY

Trauma and head injury are an important cause of overall mortality and morbidity worldwide [1]

[2], following cardiovascular disease and cancer. Approximately 90 million people suffer from

neurological and functional disorders [3]. However there is a limited number of neurosurgeons

and neurologists [4]. Head trauma treatment may necessitate relieving pressure in the patient’s

skull by drilling into it [5]. This risky surgery is further complicated when it is performed remotely

[6]. Usually, there is increased risk when patients have to travel longer distances that may

aggravate their condition [7]. In Canada, there are over 165,000 brain injuries per year, associated

with more than 11,000 deaths each year[8]. Head injuries contribute to around 30% of all injury

deaths in the United States [9].

An acquired brain injury (ABI) can involve traumatic or non-traumatic events. A traumatic brain

injury (TBI) is an injury caused by an external force, such as a sports injury, a motor vehicle crash,

a fall, an assault, or a gunshot wound. In contrast, a non-traumatic brain injury is an internal injury

which can result from a stroke, a loss of oxygen to the brain, or meningitis [8]. The impact of an

ABI is felt by the survivor, the family, and caregivers. ABI is the leading cause of death and

disability for Canadians under the age of 40 [1]. The combined economic burden of acquired brain

injuries and treatment has been estimated to be greater than $12.7 billion per year [10]. Each year,

TBI contributes to a substantial number of deaths and cases of permanent disability in Canada and

the United States. An estimated 1.7 million people sustain a TBI annually in the United States. Of

this number, on average 52,000 people die, 275,000 are hospitalized, and 1.365 million are treated

and released from an emergency department [11]. TBI is a contributing factor in 30.5% of all

2

injury-related deaths in the United States, where direct medical costs and indirect costs of TBI,

such as lost productivity, have been estimated to total $60 billion [12].

The few hours immediately after a brain injury has occurred are the most critical. There are three

stages of treatment: Initial treatment, acute treatment, and surgical treatment. In initial treatment,

a medical doctor aims to stabilize the brain injury and swelling of the brain. Monitoring devices

and drainage devices are used to help regulate the pressure on the brain. Healthcare staff works

together to resuscitate the patient and stabilize the vital signs. Acute treatment aims to assist

breathing, restore the healthy circulation of oxygen to the blood, and remove blood clots. The last

stage is surgical treatment, which aims to reduce swelling, as well as pressure on the brain and

skull. Pressure on the brain occurs when the brain tissue swells and is compressed against the skull.

Because the skull cannot expand, blood is prevented from circulating, and the brain cells become

permanently damaged [13].

Neurosurgery focuses on the nervous system. The discipline of neurosurgery arose as a result of

an increasing need for specialized expertise in the surgical and non-surgical treatment of the

nervous system through physical examination and surgery. Based on the Royal College and

Pathway Evaluation Program profile for neurosurgery, in Canada, there are only 314 registered

neurosurgeons. This is a small number in comparison with the number of patients who have had

an incident of TBI [14].Therefore, there is a need to develop technologies that minimize the

waiting time for TBI treatment and improve the overall results. The 2015 Waiting Your Turn

survey indicates that, in general, the total waiting time for elective medical care across Canada is

slightly longer than in 2014, and that it remains at a historically high level. In 2015, among the

various specialties, the shortest total waits for neurosurgery were 12 weeks [15]. This survey

reveals that wait times in Canada are longer than the periods which physicians consider to be

clinically reasonable.

Head injuries themselves remain the number one killer in major trauma and place an enormous

burden on the healthcare system. Injury levels, the geographic situation and the distribution of

healthcare facilities do not allow every patient to have access to the appropriate medical treatment.

Most patients should be transferred to primary trauma centers within one hour. This fast response

time is very critical and is usually impossible in many situations, even with the aid of air transport.

As a result, some people die as a result of the traumatic event before reaching the acute care stage.

3

All of these factors point to the need for an efficient method of providing treatment quickly,

reliably, accurately, and in a cost-effective manner. This problem could be partially solved through

the use of robotics.

Medical science has become one of the largest industries in the civilized world. There are many

possible ways in which robots might be used for biomedical applications such as surgical robotics.

Precision and miniaturization are the major potential advantages of robotic surgery, together with

the possibility of three-dimensional magnification and articulation exceeding normal

manipulation. Robotic surgery could be used in a wide range of procedures because it provides

improved vision, dexterity, and precision. The main drawback of robotic surgery is the high initial

capital investment for the robot system. In addition to the cost, robotic systems present many

challenges such as the lack of tactile feedback, and operating field limitations that must be

overcome before they can be fully integrated into the existing healthcare system.

Technological advances have made many neurosurgical procedures achievable today that only a

few years ago were considered risky. Biomedical robotic systems include the Da Vinci, Aesop,

and Hermes systems. Trends in the surgical robot industry indicate that it could be a dominant tool

in complex procedures such as cardiac surgery, gynecology, neurosurgery, orthopedics,

gastrointestinal surgery, pediatrics, urology, etc. In the past twenty years, researchers have aimed

to make robots more autonomous and to enhance the control of robots by surgeons. Surgical robots

can be used as training tools to extend the surgical skills of a new surgeon.

In future, surgeons may use robotic manipulators to perform a series of surgical applications

[16].For example, surgical robots could be integrated with real-time imaging techniques and could

have tactile feedback. The systems may become smaller and even less invasive. More

improvements in size, tactile sensation, and cost are expected for the future. Over the last decade,

new equipment and techniques have been designed to assist humans in the field of surgery. There

are many challenges facing doctors which point to the use and development of surgical robots,

such as the lack of availability of physicians in times of emergency, and the absence of state-of-

the-art medical facilities in smaller cities and towns. This has motivated researchers to consider

how to design robotic arm controllers to be more efficient, with centralized and supervisory control

systems; and how to optimize the sophisticated human-robot interaction to simplify data

acquisition and monitoring techniques.

4

Neurosurgical robotics could be used to perform difficult tasks in head surgery, such as drilling a

hole in the skull of a patient to relieve the pressure associated with head trauma, and addressing

chronic conditions, so as to save time and costs associated with transport. Neurosurgical robotics

could thus be used to improve health services by increasing cost-effectiveness, reducing care

delivery time, and enabling surgeons to perform interventions more precisely, flexibly, and safely,

from greater distances.

1.3 THESIS OBJECTIVES

The aim is to build a reliable neurosurgical robotic manipulator which can be used in biomedical

applications such as head trauma surgical treatments. The proposed system has three main parts:

A “planner”, guided by a map of the robot workspace environment; a Mitsubishi PA10 robotic

manipulator, which performs the surgery; and sensing devices, which perform position, orientation

and force measurements to keep the arm on course. Artificial intelligence algorithms are used to

improve overall system performance. Modeling of the robotic manipulator makes it possible to

study force feedback control, kinematic control, and interactive navigation.

 Control algorithms are developed for the surgical manipulator, and simulations and experiments

are performed to verify the proposed approach. Moreover, the design helps to determine accuracy

and improve reliability. An efficient real-time control algorithm is proposed to control the robotic

arm. The proposed robotic neurosurgical control system features force feedback control, dexterity,

and flexibility. The challenging problems associated with the system include a differential

kinematic control for the robot, force-related processing, real-time tissue identification, skull

breakthrough detection, and optimized trajectory planning.

1.4 CONTRIBUTIONS

This research aims to solve the control problems related to the proposed robotic neurosurgical

system through:

• Modular design of an open architecture neurosurgical robotic system featuring intelligent

control, force feedback control, and human-robot interaction. The proposed robotic system

could be used as a training and evaluation platform to allow testing of the skills needed to

5

perform surgery on real patients, and to reduce the time restrictions of training under senior

supervision.

• Design of interactive navigation and control of the neurosurgical robotic system, featuring

surgical planning using medical images, pose registration using force steering, and virtual

reality surgery simulation. The proposed architecture could increase the integration of the

surgeon’s role and improve safety during the process.

• Development of a trajectory planner for the neurosurgical robot, and design of a trajectory

controller incorporating force limit constraints on the robot arm. Implementation of a force

sensor at the end effector and development of a signal processing algorithm to minimize

the effect of vibration and to compensate for noise effects by applying a reliable sensor

fusion technique. Artificial neural networks (ANN) are used to design a drilling state

classifier. An ANN-based force state classification is proposed to determine the robot state

when performing tasks such as rotation, waiting, starting and stopping of drilling, and

retrieval. In the proposed approach, an ANN is constructed and trained to classify various

states via the force data.

• Semi-automatic control. To permit safe use of the proposed system, the system can be

switched from an automatic to a manual control state. Task planning is proposed to enable

the surgeon to define the area of interest and safety margins.

• Control theory concerning the proposed neurosurgical robotic system is presented in this

thesis, which focuses on the modeling and control of the Mitsubishi PA10-7C robotic

manipulator, LQR controllers, ANN drilling state detection, human-robot interactions for

neurosurgical manipulators, 3D simulation of the operating room, and a semi-automatic

control architecture that makes the proposed system work in a stable, reliable, safe and

efficient manner.

• Systematic modeling and control of the Mitsubishi PA10-7C robot manipulator are

presented. The Mitsubishi PA10-7C robot arm is modeled systematically, with the aid of

kinematic models and the Jacobian matrix. General set-point control and trajectory tracking

control use a feedforward controller to move the perforator smoothly.

6

1.5 RESEARCH CHALLENGES

• Because neurosurgical robotics is an interdisciplinary research area, an open architecture

design is necessary to permit the integration of different system components.

• The neurosurgical robotic manipulator is difficult for neurosurgeons to use. Human-robot

interactions should be designed carefully to facilitate the training of unskilled doctors.

• The neurosurgical robotic manipulator should be able to overcome poor decision-making,

thus improving safety measures for different scenarios to build an expert system.

• The challenging problems associated with the system are; differential kinematic control for

the robot, force data processing, real-time tissue identification, skull breakthrough

detection, and optimized trajectory planner.

1.6 OVERVIEW OF THE THESIS

Chapter one provides a detailed presentation of the problem. Analysis of specific objectives and

specifications forms the basis of implementation. Moreover, challenges associated with the

proposed system are explained.

Chapter two describes state-of-the-art neurosurgical robotics by analyzing the current situation and

future trends. The architecture of the proposed system is constructed, and problems associated with

the system are stated.

Chapter three presents kinematic and dynamic models for serial manipulators, and serves as a

foundation and reference for the remainder of this work. Kinematic modeling of the Mitsubishi

PA10-7C robot arm is developed in Section 3.1. Section 3.2 presents the Jacobian matrix

computation. Section 3.3 describes the dynamics of serial robots, and the final section summarizes

the chapter.

Chapter four reviews the operation of the robotic control system. Part of this evaluation and

associated conclusions give information about aspects of the functioning of the arm itself, in order

to assist future operators.

Chapter five presents force information processing and drilling state detection methodology based

on neural networks. Force information from the JR3 force sensor is analyzed first. Robot state

detection is used to distinguish the main states, including rotation, waiting, starting and stopping

of drilling, and retrieval.

7

Chapter six presents simulation and experimental results of manipulator control algorithms. In the

simulation part, the mechanism for building a modular design of a neurosurgical robotic

manipulator is implemented by using multiple simulation tools such as VRML, MATLAB, and V-

REP. This approach provides a unified framework for fast, cost-effective testing of control

algorithms. A remote controller is implemented in the MATLAB/Simulink environment.

Moreover, the system physical environment is modeled on the virtual robotics experimentation

platform (V-REP). The MATLAB/Simulink controller is synchronized with V-REP via the ROS

interface.

Chapter seven concludes the thesis with a discussion of the results, and suggests future research

directions.

8

CHAPTER 2 BACKGROUND AND RELATED WORK

Robotics is used in many biomedical applications, such as robotic surgery. Robotic surgery could

be used for a wide range of procedures, because it provides better vision, dexterity, and precision

than is possible with standard minimally invasive surgery. This chapter presents the state-of-the-

art of neurosurgical robotics, with an analysis of the current situation and future trends. The

proposed system architecture is constructed, and problems associated with the proposed system

are stated.

2.1 REVIEW OF BONE DRILLING

The skull is a bony structure comprised of two parts, the neurocranium and the facial skeleton

[17]. The neurocranium is the protective cranial cavity that houses the brain and brainstem, and

supports of the face. There are typically 22 bones in the human skull [18]. Cranial bones are

illustrated in Fig 2.1.

Figure 2.1 Structure of the Cranial Bones [18]

Injuries to the brain can be life-threatening, causing significant brain damage due to increased

intracranial pressure. This necessitates the performance of an urgent procedure to relieve the

pressure [19]. A subdural hematoma is a type of hematoma usually associated with traumatic brain

injury, where blood collects between the brain and the dura mater; this causes an increase in

intracranial pressure and damage to the brain tissue [20]. Subdural hematomas are often life-

threatening. Their treatment depends upon the size and rate of growth, and can be managed via a

catheter or a craniotomy, where a hole is drilled through the skull to remove the hematoma [21].

Surgical robotics could be used to improve health services by enabling surgeons to perform

9

interventions more precisely, flexibly [22], and safely, and from greater distances [23]. It could

thus be used to improve health services and to minimize healthcare delivery times [24].

Skull drilling with the aid of an automated industrial robot is a very challenging task, because it is

necessary to maintain the force applied so as to achieve high-quality drilling, with a minimally

invasive procedure. Keeping the drilling force low minimizes the risk of overshooting or position

sliding when the robot is in contact with the skull. Sliding during drilling can cause the hole not to

be orthogonal to the skull, resulting in poor hole quality, and possibly damaging the cutting tool

due to tangential forces that act on the cutting tool. The key aspects of skull drilling are positioning

accuracy, accessibility, cycle time, and the quality of the hole. Although half a century has elapsed

since initial investigations of bone drilling were carried out [25], there is still no general agreement

on the parameters of bone drill design [26]. Most of the drilling tools currently used in surgery

depend only upon the surgeon's manual skill to stop penetration when completing a hole. During

skull drilling, a drill makes a hole in the skull [27]. Numerous studies of bone drilling have been

performed to establish optimum drilling conditions and drill geometry for skull drilling. Many

preliminary applications of surgical drilling systems have been demonstrated to be clinically useful

[28].

The first recorded medical application of a robot, by Sakaguchi, occurred in 1985 [29]. There has

been a steady increase in robotic systems and technologies applicable to surgical procedures [30].

Glauser designed a stereotactic neurosurgical robot, which is used to insert a probe with a diameter

of 2 to 3 mm through a hole drilled in the skull [31]. A motor-driven drilling tool is used to

perforate the bone [32]. A mechatronic drilling tool is presented for precise drilling of soft bone

tissues during ear surgery. By using force and torque sensor data, the designed system can

complete the breakthrough with minimum drill bit protrusion. Kaburlasos developed a two-level

fuzzy controller for estimating the thickness of a bone with the aid of a force/torque pair of drilling

profiles [33]. For drilling into long bones, Bouazza described a reliable, repeatable method of

breakthrough detection, based on a modified Kalman filter. This manipulator allows a drill bit

guide to be automatically aligned with the planned drilling trajectory [10]. The surgeon can then

perform manual completion of the drilling stage. The force sensor is used as a safety enhancement.

Shen developed a telerobotic skull drill for neurosurgical applications; the controller design

realizes three phases during operation. A wave variable-based approach is applied to ensure the

10

stability of the system. Drilling depth is controlled, and the target joint angles of the robot are

adjusted to place the payload in the desired position. This is based on knowledge of deflections in

the arm derived from the mathematical model interpretation of the disturbance caused by the

payload [34].The robot should provide enough force to counterbalance the skull reaction force. A

certain amount of force is required for drilling and cutting tasks performed on the patient’s skull.

A craniectomy is a neurosurgical procedure for removing cranial bone, to allow the surgeon to

access the brain to treat brain tumors, cerebrovascular disease, and brain injuries. A craniotomy

may be small or large, depending upon the problem. Craniotomy procedures are risky due to the

complex distribution of blood vessels and nerves under the skull. A craniotomy requires a high

level of expertise and coordination on the part of the surgeon, to protect the dura from injury, and

to ensure safety, efficiency, and accuracy [35].

The primary challenges for a craniotomy still apply, because it is a time-consuming and laborious

procedure. A craniotomy can be performed with a variety of tools for bone removal, including a

drill cutter, an artificial stop cranial drill, wire saw tools, and milling tools. The surgeon directly

controls only basic tool parameters such as spindle speed, and the result depends entirely on the

skill of the surgeon. A bone flap procedure is common in neurosurgery; it is performed by drilling

several holes in the skull [36], and linking the holes so that a complete piece can be removed from

the skull. This procedure takes more than 30 minutes, subjecting the surgeon to pressure and

fatigue, and possibly reducing the effectiveness of subsequent surgery. Safety and stability are the

main design considerations for craniotomy devices [37]; Specifications should be determined in

accordance with medical ethics, to protect the internal structures of the cranium. The intervention

of the surgeon is required in the case of hardware failures, software errors, and non-planned

situations, where the surgeon should be able to take control of the procedure and continue with the

surgery.

 2.2 STATE-OF-THE-ART NEUROSURGICAL ROBOTICS

Neurosurgical robotics is a branch of surgical robotics. A surgical robot is a controlled manipulator

with artificial sensing, that can be reprogrammed to carry out a range of surgical tasks. Surgical

robotics is a promising and challenging field [38]. It could be used to improve health services by

saving money and ensuring the timely delivery of care [24]; and could enable surgeons to perform

surgery more precisely, flexibly, and safely, from greater distances [39]. In future, surgeons may

11

use robotic manipulators to perform a series of surgical applications such as skull drilling and

milling [40]. Surgical manipulators have many advantages, including a high level of accuracy,

stability, reliability, and flexibility [41]; Since the beginning of the 1960s, robots have been

available with more accurate positioning systems and high interface stiffness [42], By the 1980s,

surgical robots became increasingly attractive. In accordance with the targeted anatomy, or

surgical tasks, surgical robots can be classified as orthopedic, microsurgical, urology, cardiac,

laparoscopy, percutaneous, or neurosurgical robots.

Neurosurgery was one of the first surgical fields where robotic surgery was introduced [43].

Neurosurgical robots are among the most technologically advanced devices in the modern

operating room [44]. They have extended the dexterity and stamina of neuro surgeons, enabling

them to achieve an unprecedented precision of tool manipulation [45] and to work with greater

accuracy at the microscopic level [46]. Neurosurgery procedures are usually very complex,

requiring an experienced surgeon with highly developed skills [47]. Many preliminary applications

of neurosurgical robotic systems have been demonstrated to be clinically useful. Following the

pioneering medical application of Sakaguchi's robot in 1985 [48], there has been a steady increase

in robotic systems and technologies for applications in critical surgical procedures. Sakaguchi’s

robot was designed to perform a percutaneous nephrostomy. Localization was carried out by

establishing the trajectory from an entry point on the skin to a target point in the dilated renal

pelvis. The neurosurgical robot could be used to accomplish several tasks; for example, it could

be used as a retractor holder, as an endoscope holder, as a holder for insertion of a biopsy cannula

or electrode [49], or even as a surgical microscope [50].

Neurosurgical robotic manipulators are usually image-guided manipulators [51]; where the images

can include magnetic resonance imaging (MRI) or computed tomography (CT) images [52]. In

1985, a PUMA robot was proposed to control a biopsy needle inserted into the human brain. A CT

scanner was used to examine a 52-year-old man. The robot pushed a biopsy needle toward a

suspected area of the brain, in accordance with CT images of the target [48]. The tissue biopsy was

sucked out with a syringe and sent directly to the pathology lab. In 1987, a robot was used to

perform stereotactic targeting [53]; Benabid was the first neurosurgeon to report using a robotic

manipulator with six degrees of freedom (DOF), linked to a stereotactic frame. The main practical

use of this robot was in image-guided robotic endoscopy. The robotic manipulator was used to

12

control the movement of a probe to reach a target calculated from x-rays and angiograms. By 1992,

this methodology had been used in 140 cases. Benabid established the potential use of robots in

endoscopic neurosurgery.

Figure 2.2 ‘Minerva’ neurosurgery robot in position [54]

The Minerva robot was one of the earliest neurosurgical robots. It was used for two operations on

patients in September 1993, at the CHUV Hospital in Switzerland [55]. The Minerva system is

designed for precise stereotactic brain biopsy procedures [56], and is dedicated to inserting a

needle according to a CT scan map, under the supervision of a commanding surgeon. A real-time

CT scan ensures high precision and increases the reliability of the procedure.

Figure 2.3 Renishaw-Mayfield NeuroMate [57]

13

Figure 2.2 shows a Minerva neurosurgical robot in position, with the patient adjacent to a CT

scanner [64]. A Minerva system has a structure with five degrees of freedom, and a Brown-

Roberts-Wells (BRW) reference frame. The robot is attached to a robot gantry, which is a

horizontal carrier that moves on rails [58]. There is a stereotactic frame, coupled to a motorized

CT table by two ball and socket joints arranged in series. The NeuroMate, a neurosurgical robot

approved by the FDA, was the first commercially available robot with six degrees of freedom [59];

It was invented by Benabid, Lavallee and colleagues at Grenoble University Hospital in France

[60]. More than 1600 procedures have been performed by NeuroMate robots since 1989, including

a range of neurosurgical procedures such as tumor biopsies [61],mid-line stereotactic neurosurgery

[62], functional neurosurgery of the basal ganglia, and stereo-electro-encephalographic

investigations of patients with epilepsy [63]. Preoperative 3D imaging is used for navigation and

manipulator localization[64].

Figure 2.4 Clinical testing of MODICAS assistance robot [65]

Figure 2.4 shows the MODICAS (Modular Interactive Computer-Assisted Surgery) robotic system

which is an integrated solution for the software-based combination of a surgical planning,

localization device and a haptic sensor with a robotic manipulator to support surgical interventions.

MODICAS introduced by Castillo Cruces [66] which combine PA10 robot manipulator with a

common surgical navigation to one integral unit. Minimally invasive neurosurgery procedures are

an important field [67]. A development in the field of robot-assisted neurosurgery took place in

14

China in 1995 [68], The neurosurgical robot was used to locate a tumor target in the brain, making

it possible to avoid radiotherapy exposure while injecting dangerous radioisotopes via remote

control. This system consists of three components: An image-guided surgical planning and support

system, marker-based registration with some measurement tools, and a robot with six degrees of

freedom and a custom-designed surgical device. The Zeiss Mehrkoordinaten Manipulator (MKM)

is a guided microscope which was developed in the late 1990s [69]. The MKM is designed for

frameless stereotactic procedures. It superimposes a definition of the target on the view of the

surgical field. This is similar to but more accurate than the BRW stereotactic frame, which was

one of the first image-guided surgery devices.

The application of telerobotics to neurosurgery is a promising research area. There has been

considerable interest in telecontrolled surgical robotics [70]. Since the 1990s. In addition to design

issues associated with local surgery, the primary limitation of all of these systems is the effect of

communication delays [71] and possible interruptions on the overall performance. On May 12,

2008, the NeuroArm robotic system made history when it was used to operate on a human patient

at the Faculty of Medicine at the University of Calgary [72]. This landmark operation marked the

first time that a robot was used to perform image-guided neurosurgery [73]. A brain tumor was

removed from a 21-year-old patient.

Figure 2.5 Photographs showing NeuroArm in use [61]

Figure 2.5 shows the NeuroArm in use. The main image depicts the workstation for the OR. The

surgeon controls the workstation haptic hand, and the assistant surgeon is stationed opposite the

NeuroArm. The introduction of robotic surgery could significantly improve the quality of many

15

surgical procedures (e.g.,[74] [75] [76]). In the past two decades, many methods for designing

image-guided surgical robotic systems have been developed. In 2016, real-time navigation of

breast cancer surgery was performed at Queen's University, and succeeded in reducing the positive

margin rate [77]. Position sensors were applied to the tumor localization needle, and 3D navigation

views were generated by using real-time tracking information. Xia et al. [78] combined a

NeuroMate robot with a 3D slicer to provide mechanical assistance for a human skull base drilling

system. Tauscher [79] developed an interface for integrating a robot into an image-guided therapy

system. Simplified integration was achieved by using only a single programming context for the

implementation of the state machine, the interfaces, and the robot control. PA10 robots are used

in teleoperation neurosurgical applications [80],[81][82][83].

Table 2.1 Examples of Neurosurgical Robotic Systems

System Studies Institution/company Country

Minerva Commercial use Univ. of Lausanne Switzerland

NeuroMate Commercial use Grenoble Univ. Hospital USA

MRI compatible Tissue samples Univ. of Tokyo Japan

Minerva human CHUV Hospital Switzerland

NeuroArm/SYMBIS Experimental Setup IMRIS, Winnipeg Canada

Rosa Commercial use Medtech French

Neurobot Experimental Setup Dalhousie University Canada

Neurobot is a neurosurgical robotic system developed by using multiple simulation and hardware

tools such as VRML, Matlab, and V-REP. Neurobot based on PA107c robot and features a unified

framework for quick and cost-effective testing of control algorithms [84]. Remote Controller

implemented in the Matlab/Simulink environment. Moreover, the System physical environment

has been modeled on Virtual Robotics Experimentation Platform (V-REP). Matlab / Simulink

controller synchronized with the V-REP by using ROS interface. In this brief overview, it has not

been possible to cover all aspects of the rapidly developing area of neurosurgical robotic systems;

however, Table 2.1 summarizes some examples of these systems.

2.3 BASIC REQUIRMENTS OF NEUROSURGICAL OPERATIONS

Several criteria need to be fulfilled to make a robotic system attractive for neurosurgery clinical

applications [85]. The robotic system should be accurate, image-guided, and cost-effective [86];

16

and should permit faster results than can be achieved by a neurosurgeon using an operating

microscope [87]. Such a system should be semi-autonomous, allowing the surgeon to exercise

direct control in real time, even in telerobotic surgery. An increasing number of locations have

few neurosurgeons available. The selection of a robotic manipulator depends upon the design

requirements of the neurosurgical applications. Important factors include the capability of handling

the drilling tool, ease of assembly, the strength and durability of the parts, light weight and high

joint stiffness, and the ability to eliminate backlash.

Table 2.2 Basic Design Requirements of the neurosurgical robotic System

Property Value

Motion Precision 1 mm

Repeatability 1mm

IP code ≥ 57

Load weight ≥ 6 𝐾𝑔

End Effector

Force
≥ 60 𝑁

robot total length ≥ 90 𝑐𝑚

Table 2.2 presents the basic design requirements of robotic neurosurgical systems. The

combination of all of these factors significantly influenced the design choices made in the selection

of the type of robotic manipulator and the kind of controller. Because the designed system might

be used in rural areas, the neurosurgical robotic manipulator should permit less specialized doctors

to perform more operational tasks in a user-friendly environment, by applying human-robot

interaction techniques. The use of MRI, CT scans, and x-rays in the operating room should be

minimized to suit the needs of clinics and hospitals in the least developed countries. The navigation

and planning algorithm should be adaptable to patient variations, and able to overcome poor

decision making. Different scenarios should be discussed in detail to build an expert neurosurgical

robotic system.

2.4 DESIGN SELECTION OF THE ROBOTIC MANIPULATORS

There are many design selection criteria for robotic manipulators, most of which depend upon

previous experience, and on customer requests or requirements [88]. These considerations

influence the shape, and choice of materials for the fabrication of the robotic arm. Other factors to

be taken into account when selecting robotic manipulators include design cost, fabrication time,

17

the ease of manufacturing the parts and the method of manufacturing, the simplicity of assembly,

and the strength and durability of the parts. The combination of these factors has significantly

influenced all choices made in the design selection of the robotic arm. The principal requirements

for robot power transmission depend upon the correct selection of design parameters such as:

• Low energy losses and friction for improved responsiveness of the control system

• Small size, and low weight and moment of inertia

• High effective stiffness, and elimination of backlash

• Accurate and constant transmission ratio

2.5 TELEOPERATION OF ROBOTIC MANIPULATORS

The teleoperation of robotic systems is an important research topic. In bilateral systems,

information flows in two directions between the operator and the robot [89]. Remotely controlled

robotic manipulators are required when robot self-decisions are difficult or in cases where human

presence at the robot site is undesirable or difficult [90]. In many instances when complex

operations have to be performed in the event of an emergency, surgeons may be unable to be in

time to operate, possibly resulting in fatalities. In order to overcome such problems, a solution is

to use teleoperated robots controlled by surgeons, via a network where the patient and the surgeon

are geographically separated [41]. There are many advantages of using teleoperated robot

manipulators in the biomedical field. It could increase the accuracy of doctors and save their time,

save money and effort in sending patients to the doctor, strengthen medical staff experience, and

reduce the shortage of skilled surgeons. There are many challenges involved in the use of remotely

operated robotic manipulators, starting with the communication link, where usually there can be

no guarantee concerning transmission times [91]; Therefore, many interface designs are not

suitable for time-critical interactions, such as remote assembly with force feedback. Multitask

robot manipulators also present difficulties, because the commands are accommodated in parallel.

2.6 SKULL DRILLING PARAMETERS

Drilling of the skull is a common procedure in neurosurgical operations. The development of

automated skull drilling systems aims to minimize human error. Skull Drilling parameters can be

classified as drill specifications and drilling parameters. Drill specifications include the drill point,

18

drill diameter, cutting face, rake angle, clearance angle, and drill wear; while drilling parameters

include drilling speed, feed rate, drilling energy, cooling, drilling depth, pre-drilling and drilling

time [25].

Thermal damage is a key factor in skull drilling. The increase in temperature during such a

procedure increases the chances of a thermal invasion of the bone, which can cause thermal

osteonecrosis, resulting in increased healing time. Therefore, drilling of the bone with a minimum

temperature is a major challenge in bone drilling. Osteonecrosis is a disease arising from reduced

blood supply to the bone [92]; Due to thermal damage, bone drilling can also cause microdamage

to the bone. An average temperature of 47 °C for one minute is used as a threshold [93], above

which it is considered likely that necrosis of the human bone will take place.

Skull drilling speed is related to friction and temperature. There is no universally accepted standard

for drilling speed [25]; most previous research done on bone drilling has found that with increased

drilling speed, the heat generated increases [94]. Another important parameter is the effect of

applied force combined with drill speeds, which should be restricted to less than 20 N for safety

reasons [95]. Increasing either the speed or the loading force causes an increase in temperature in

the bone structure. However, increasing both the speed and the load together has been found to

allow for more efficient cutting with no significant increase in temperature [96]. Skull thickness

estimation is critical in neurosurgery, to minimize error in skull drilling. Skull thickness cannot be

measured during the surgery because the skull is not regarded as a uniform layer. Estimated

thickness should be incorporated into realistic geometric head models to improve resolution in

skull drilling procedures. Many studies of thickness of the human skull have been performed by

using physical measurements of thickness [97], and qualitative analyses of photographs and CT

scans of the skull [98]. There are a variety of thickness estimation algorithms that incorporate

physical properties of the human skull [99]. Some researchers have used a finite element approach.

Skull localization and mapping are required to define the thickness of each part of the cranial

section.

 There are many methods which can be used, such as international 10-20 system EEG electrode

placement, which is increasingly applied in cognitive neuroscience and psychiatric treatment

studies [100]. Many researchers have developed models which represent the scalp, skull, and brain

as separate layers; however, they have assumed the thickness of the layers to be uniform [101].

19

This assumption is not realistic, because there are local variations in skull thickness for each part

of the cranial section. Moreover, various human races have physical differences in skull thickness

measurements. The use of realistic human skull models could make it possible to reduce the

probability of neurosurgical complications. In measuring skull thicknesses, Law [102] found that

the mean width and standard deviation was 5.2 ±.8 mm. Craniometry parameters are directly

related to race and sex. Such parameters are also widely used in modern forensic anthropology to

determine racial affinity from human crania [103].

Based on research done by Nawrocki [104], skull thickness is measured and related to

anthropological markers and international 10-20 markers. The sample size for each landmark was

76, including American black and white males and females in approximately equal proportions,

who died between approximately 1900 and 1950. Adeloye [100] measured the thickness of the

cranium at four different points in the sagittal plane, for a population of 300 black Americans and

200 white Americans. Adeloye concluded that there is a rapid increase in skull thickness during

the first two decades of life, followed by a small uniform increase, reaching a peak in the fifth and

sixth decades.

2.7 ARCHITECTURE OF THE PROPOSED SYSTEM

The objective of this research is to develop an interactive navigation and control system for a

neurosurgical robot, and to design a real-time trajectory controller incorporating constraints on the

robot arm such as force limits. A force sensor at the end effecter is to be designed and implemented,

and signal processing algorithms are to be applied to minimize the effect of vibration and to

compensate for noise effects by implementing a reliable sensor fusion technique. The proposed

system could be used as a training platform to train surgeons and to verify control strategies. The

following are the main components of the robotic neurosurgical robotic system.

• Mitsubishi PA10-7C robotic arm: Industrial robotic manipulator with seven degrees of

freedom, manufactured by Mitsubishi Heavy Industries, Ltd.

• Joystick: Force feedback joystick produced by Logitech, Ltd.

• Force sensor: Force sensor produced by JR3, Inc., used to measure forces and torques

exerted by the patient.

20

• Optical tracking system: Optical tracking device, i.e., kinetic sensor, produced by

Microsoft, Inc.

• Client/server control architecture, used to monitor the neurosurgical robot system through

the Internet by using the Winsock API.

• PC-based control and graphic user interface built by using Visual Basic.

• 3D model made by using VREP.

Figure 2.6 Architecture of the proposed system

 The control system structure is based on server/client topology. The server program has two main

functions. First, it must receive commands from the client and send feedback. Second, it must

interpret the commands and execute them. The client part accepts user input and transmits user

requests, and provides a user-friendly interface for remote users. The desired drilling position is

input into the robot motion planner, and the drilling trajectory is calculated, taking the safety rules

into account. Inverse kinematics is used to derive the joint control angles; these data are sent from

the master computer to the client computer. Drilling depth and orientation controllers are used for

controlling the robotic arm, and force and torque data are employed in the force controller.

2.8 ARCHITECTURE OF THE PROPOSED INTERACTIVE NAVIGATION AND

CONTROLLER

The structure of the robot-assisted neurosurgical system is shown in Fig. 2.7. This demonstrates a

prototype surgical robot system that uses widely available software and hardware: A 3D slicer as

the planning interface, a PA107c manipulator as the robot hardware, MATLAB as the robot control

21

software, and VREP as a simulation environment. Figure 2.7 shows the architecture of the robot-

assisted neurosurgical system. The following tasks are performed by each component:

1. The 3D slicer is used for medical image display, segmentation, procedure planning, pre- and

intra-image registration, and tracker support.

2. OpenIGTLink is used as a transformation manager, while MATLAB-IGTL-Bridge is used to

convert MATLAB topics to OpenIGTLink.

3. MATLAB is used to implement robot control algorithms, path planning, image libraries, sensor

integration, and simulations.

Figure 2.7 The Architecture of the Robotic Assisted neurosurgical system

The Mitsubishi PA10-7C robot arm has seven degrees of freedom, allowing it to make complex

movements. The benefits of a redundant robot are its movement flexibility and dexterity, and the

capability of adding additional constraints to avoid obstacles and joint limits. Figure 2.7 shows the

experimental setup of the robot-assisted neurosurgical system. The robot arm moves the drill to

the appropriate point on the patient’s head, angles the drill perpendicular to the tangent of the skull

arc, guides the drill through the skull along trajectories, and stops when the drill has perforated the

skull.

22

CHAPTER 3 MODELING OF THE ROBOTIC MANIPULATOR

A mathematical model of a manipulator is an essential step in describing its motion and dynamic

response when excited. Accurate modeling of a robot manipulator is critical in controlling tasks.

Through careful modeling, the controller could be designed for the robotic manipulator to follow

a desired skull drilling trajectory accurately. This chapter covers kinematic and dynamic model for

serial manipulators that will serve as a foundation and a reference for the remainder of this work.

The kinematic modeling of the Mitsubishi PA10-7C robot arm developed in section 3.1. Section

3.2 presents the Jacobian matrix computation. Section 3.3 describes the dynamics of serial robots.

Finally, this chapter is summarized in section 3.5.

3.1 INTRODUCTION

A robot is an electromechanical device which performs automated tasks, either according to direct

human supervision, a pre-defined program [105] or, a set of general guidelines, using artificial

intelligence techniques. The robot is a combination of various physical and computational parts.

A manipulator consists of a robot arm, and the gripper or end effector at the end of the arm [106];

A robot arm is known, manipulator. It is composed of a set of joints separated in space by the arm

links. The joints are where the motion in the arm occurs. Basically, a robot arm consists of the

parts: base, joints, links, and a gripper. The base is the basic part of the arm; it may be fixed or

moving. Robots have been designed to serve various functions, and they, therefore, appear in a

variety of forms. So as robotic systems grow in number and complexity, they are more widely used

in many applications such as repetitive tasks, handling different types of loads, and the control

applications.

Robots are used to perform repetitive tasks. Also; robot systems could be operated for long periods

without any rest or need to take time off; for that reason; Many robots are being used in surgery

systems because they are more accurate in the long term compared with human hands[107]. Also;

robots can be used to handle much larger and complicated tasks than a human can such as heavy

weights or dealing with tiny pieces. Robots are useful in Tele control applications; robots in many

cases are reliable and more accurate than Human can do; when comparing them in an extended

period. Robotic systems consist of two main parts: hardware part and software part. The hardware

23

part contains locomotion system, sensing system and communication system [108]. Software part

contains control algorithms and reasoning methodology. In other words; these parts enable the

robotic system to operate automatically with humanlike skill.

3.2 THE MITSUBISHI PA10-7C ROBOTIC MANIPULATOR

The PA10-7c robotic arm is an open kinematic structured chain with 7-Degrees of Freedom of

Rigid links connected by revolute joints [109], made by Mitsubishi Heavy Industries, Ltd.(MHI),

widely used for industry, research. The PA-10 is a redundant manipulator; The manipulator that

has the joint degree of freedom more than the degree of freedom necessary for the aimed work is

called a redundant manipulator [110]. When the degree of freedom of the robot increases, it comes

to be able to do more complex work. PA10 robot is ideal for precise manipulation tasks due to the

back drivability, accurate positioning capability, and zero backlash[111].

Table 3.1 The specifications of PA-107C robot [112]

Available weight of tip 10 kg

Arm body weight 35 kg

Controller weight 25 kg

Number of joints(DOF) 7 joints

Tip total speed 1550 mm/s

Arm length 950 mm

Position repeating accuracy ±0.1 mm

Operating Speed (degree/S) Base axis (28.5); Elbow axis (57); Wrist axis (180)

Structure Dust-proof, drip-proof Structure Dust-proof, drip-proof

System configuration Layered-type open architecture

The challenge of modeling the robot due to that PA10 robot is a commercial product offering

limited access to the low-level subsystems. The PA10 robot has four rotation axes and three pivot

axes as illustrated in Fig. 3.1. The coordinate systems of the PA10-7C robot arm can be obtained

and shown in Fig 3.1. The key specifications of the PA10 manipulator are that the full length of

the manipulator is 1.345 m [113], the weight of the manipulator is 40 kg [114] while the payload

weight is 10 kg, and the output torque of the end effector is 9.8 N.m. The maximum combined

speed with all axes is 1.55 m/s [115]. It possesses seven degrees of freedom; thus, a so-called

shoulder, elbow, and wrist are present. All joint encoder resolutions for the Mitsubishi robot are

0.05 degrees.

24

Figure 3.1 Coordinate systems of the Mitsubishi PA10-7CE robot [116]

PA-10 can transport up to 10 kg in weight and has about 1 m reach, as for industrial robots on the

market. All sensors (resolvers), gears (harmonic drives) and electric brakes are mounted directly

on motor shafts, and thus we can omit waste structural parts like coupling to miniaturize the PA-

10 successfully. The servo drivers could be controlled via the serial communication (ARCNET).

Indicated are the limits of the joint rotations and the maximum joint velocities as shown in Table

3.2.

Table 3.2 Joint description and physical Limits of PA10 robot manipulator

Joint Axis

Mechanical

 limit

(degree)

Servo

limit

(degree)

Software

 Limits

(degree)

Joint Velocity

Limits

 (degree/second)

1 Shoulder 1 Rotating ±180 ±178 ±177 ±57

2 Shoulder 2 Pivoting ± 97 ±95 ±94 ±57

3 Shoulder 3 Rotating ± 180 ±175 ±174 ±114

4 Elbow 1 Pivoting ± 143 ±138 ±137 ±114

5 Elbow 2 Rotating ± 270 ±256 ±255 ±360

6 Wrist 1 Pivoting ± 180 ±166 ±165 ±360

7 Wrist 2 Rotating ± 270 ±256 ±255 ±360

25

3.3 DENAVIT HARDENBERG METHOD

Denavit Hardenberg (D-H) model parameters are used to describe the relationship between two

consecutive frames of joints; Then the Kinematic model is derived to describe the robot motion on

a fixed reference Cartesian frame by ignoring the forces and moments that cause movement of the

structure. The basic idea behind DH convention is that it systematically assigns coordinate frames

to the joint of each link; the main advantage of this method that it needs calculating four parameters

for each joint which is better than calculating the six parameters like the geometric method.

Table 3.3 Mitsubishi PA10-7C Denavit-Hartenberg Parameters

Link 𝒂𝒊(𝒎) 𝒅𝒊(𝒎) ∝𝒊 (𝒓𝒂𝒅) 𝒒𝒊(𝒓𝒂𝒅)

Link 1 0 0.317 −𝜋 2⁄ 𝑞1

Link 2 0 0 𝜋
2⁄ 𝑞2

Link 3 0 0.45 −𝜋 2⁄ 𝑞3

Link 4 0 0 𝜋
2⁄ 𝑞4

Link 5 0 0.480 −𝜋 2⁄ 𝑞5

Link 6 0 0 𝜋
2⁄ 𝑞6

Link 7 0 0.070 −𝜋 2⁄ 𝑞7

Tooltip 0 0.2 0 0

The two common types of joints used in robot manipulators are revolute and prismatic joints. For

a revolute joint, Qi is the angle of rotation (i), while for a prismatic joint, Qi is the joint

displacement (di). There are two forms of Denavit-Hartenberg representation for Manipulator

Kinematics as follows:

• Classical DH parameters: widely used since introduced in 1955 and used in textbooks such

as Spong and Vidyasagar [117].

• Modified DH parameters: used in many textbooks such as Craig book [118]. These

parameters are ai - link length, αi - link twist, di – link offset, and θi – joint angles shown

in Table 3.3. The DH parameters solution steps:

The first thing that is necessary when using DH convention is first to assign the coordinate frames.

After appropriately assigning the coordinate frames the next step is to define your DH parameters.

26

The third step is calculating the transformation matrix for each joint with respect the previous joint.

Next, a detailed D-H algorithm step by step explanation is presented:

Algorithm. 1 Denavit-Hartenberg Algorithm

1. Numerate links beginning with 1 and Start from the bottom of link's chain and ending with

n (Tooltip link). Where fixed base reference coordinate system will be numbered as link 0.

2. Find the type of each axis. Where prismatic joint will have an axis along which the

displacement takes place. While revolving joint will have an axis turn around its own.

3. For n+1 of link 0 to 7; locate Zn+1 axis on the axis of articulation n.

4. Place the origin of the base reference coordinate system in any point of z0 axis. Axes z0

and y0 will be located so that they form a right-handed system with z0.

Figure 3.2 Denavit-Hartenberg Frame Assignments [119]

Table 3.3 shows DH parameter for the Mitsubishi robot. The notation is based on the "Introduction

to Robotics, Mechanics, and Controls” book by John Craig. All units are SI. There are three types

of twisting angles:

• Roll angle which is the rotation around Z-axis of the base coordinate

• Pitch angle which is the rotation around Y-axis of the base coordinate

• Yaw angle which is the rotation around X-axis of the base coordinate.

On the other hand; there are three types of Joint Coordinates:

• Roll coordinate: the same as the base coordinate.

• Pitch coordinate: 90 degrees diverted around X-axis of the base coordinate.

• Yaw coordinate: 90 degrees rotated around Y axis of the pitch coordinates

27

The homogeneous transformation matrix from Frame i to Frame (i -1) is denoted by 𝐴𝑖
𝑖−1(𝑞𝑖)

using classical DH parameters given by:

 𝐴𝑖
𝑖−1(𝑞𝑖) = [

cos (𝑞𝑖) −𝑠𝑖𝑛(𝑞𝑖). 𝑐𝑜𝑠(𝛼𝑖) 𝑠𝑖𝑛(𝑞𝑖). 𝑠𝑖𝑛(𝛼𝑖) 𝑎𝑖𝑐𝑜𝑠(𝑞𝑖)

𝑠𝑖𝑛(𝑞𝑖) 𝑐𝑜𝑠(𝑞𝑖). 𝑐𝑜𝑠(𝛼𝑖) −𝑐𝑜𝑠(𝑞𝑖). 𝑐𝑜𝑠(𝛼𝑖) 𝑎𝑖𝑠𝑖𝑛(𝑞𝑖)

0 𝑠𝑖𝑛(𝛼𝑖) 𝑐𝑜𝑠(𝛼𝑖) 𝑑𝑖
0 0 0 1

] (3.3.1)

3.4 FORWARD KINEMATIC OF ROBOTIC MANIPULATORS

Robot kinematics is the study of the motion or kinematics of robots. In a kinematic analysis, the

position, velocity, and acceleration of all the links are calculated without considering the forces

that cause this motion. The relationship between motion and the associated forces and torques is

studied in robot dynamics. In the kinematic analysis of manipulator position, there are two separate

problems to solve: direct kinematics, and inverse kinematics. Direct kinematics involves solving

the forward transformation equation to find the location of the hand regarding the angles and

displacements between the links.

Figure 3.3 Direct and Inverse Kinematics

In forward kinematics, the length of each link and the angle of each joint is given, and the position

of any point in the work volume of the robot is calculated. There are two ways for calculating the

forwarded kinematics which is Analytic Geometric Method and Denavit Hardenberg Method.

Analytic Geometric Method used for calculating the six parameters of each joint which is the joint

angles and translation displacement. The forward kinematic analysis solved by using simple

homogeneous matrices. D-H model parameters are used to describe the relationship between two

consecutive frames of joints; Then the Kinematic model is derived to describe the robot motion on

a fixed reference Cartesian frame by ignoring the forces and moments that cause movement of the

structure. The end effector frame is transferred to the base frame as follows:

28

 𝑓𝑓𝑘: 𝜃 → 𝑋, 𝜃 ∈ ℜ 7, 𝑋 ∈ ℜ 6 (3.4.1)

The Forward geometric model of the robot PA107CE described by the equation:

 𝑇8
0(𝑞) = 𝐴1

0. 𝐴2
1 . 𝐴3

2. 𝐴4
3. 𝐴5

4. 𝐴6
5. 𝐴7

6. 𝐴8
7 (3.4.2)

 𝑇8
0(𝑞) = [

𝑛 𝑠 𝑎 𝑝
0 0 0 1

] (3.4.3)

The homogeneous transformation matrix 𝑇8
0, specifies the position and orientation of the end-

effector with respect to the base coordinate system, 𝑇8
0 is the chain product of successive

coordinate transformation matrices. where n ∈ R3 is the normal vector of the end-effector in the

base coordinate system, s ∈ R3 is the sliding vector of the end-effector, a ∈ R3 is the approach

vector of the end-effector, and 𝑝 = [𝑥, 𝑦, 𝑧] 𝑇 is the position vector of the end-effector.

𝐴1
0(𝑞𝑖) = [

𝑐1 0 −𝑠1 0
𝑠1 0 𝑐1 0
0 −1 0 𝑑1
0 0 0 1

] (3.4.4)

𝐴2
1(𝑞𝑖) = [

𝑐2 0 𝑠2 0
𝑠2 0 −𝑐2 0
0 1 0 0
0 0 0 1

] (3.4.5)

𝐴3
2(𝑞𝑖) = [

𝑐3 0 −𝑠3 0
𝑠3 0 𝑐3 0
0 −1 0 𝑑3
0 0 0 1

] (3.4.6)

𝐴4
3(𝑞𝑖) = [

𝑐4 0 𝑠4 0
𝑠4 0 −𝑐4 0
0 1 0 0
0 0 0 1

] (3.4.7)

𝐴5
4(𝑞𝑖) = [

𝑐5 0 −𝑠5 0
𝑠5 0 𝑐5 0
0 −1 0 𝑑5
0 0 0 1

] (3.4.7)

𝐴6
5(𝑞𝑖) = [

𝑐6 0 𝑠6 0
𝑠6 0 −𝑐6 0
0 1 0 0
0 0 0 1

] (3.4.8)

𝐴7
6(𝑞𝑖) = [

𝑐7 −𝑠7 0 0
𝑠7 𝑐7 0 0
0 0 1 𝑑7
0 0 0 1

] (3.4.9)

29

𝐴8
7(𝑞𝑖) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑8
0 0 0 1

] (3.4.10)

Where ci = cos θi , and si = sin θi. The end effecter frame is transferred to the base frame by

applying same procedure. The end effector translation can be expressed as following:

 𝑋 = [−([(𝑐1𝑐2𝑐3 − 𝑠1𝑠3)𝑐4 − 𝑐1𝑠2𝑠4]𝑐5 − [−(−𝑐1𝑐2𝑠3 − 𝑠1𝑐3)]𝑠5)𝑠6

+ ([𝑐1𝑐2𝑐3 − 𝑠1𝑠3]𝑠4 − 𝑐1𝑠2𝑐4)𝑐6]𝑑7

+ (−[𝑐1𝑐2𝑐3 − 𝑠1𝑠3]𝑠4 − 𝑐1𝑠2𝑐4]𝑑5 − 𝑐1𝑠2𝑑3

+ (−[𝑐1𝑐2𝑐3 − 𝑠1𝑠3]𝑠4 − 𝑐1𝑠2𝑐4]𝑑5 − 𝑐1𝑠2𝑑3

(3.4.11)

 Y=[−([𝑠1𝑐2𝑐3 + 𝑐1𝑠3)𝑐4 − 𝑠1𝑠2𝑠4]𝑐5 − (−(−𝑠1𝑐2𝑠3 + 𝑐1𝑐3))𝑠5)𝑠6

+(−[𝑠1𝑐2𝑐3 + 𝑐1𝑠3]𝑠4 − 𝑠1𝑠2𝑐4)𝑐6]𝑑7 +[−(𝑠1𝑐2𝑐3 + 𝑐1𝑠3)𝑠4 −

𝑠1𝑠2𝑐4]𝑑5 − 𝑠1𝑠2𝑑3

(3.4.12)

 𝑍 = [−([𝑠2𝑐3𝑐4 + 𝑐2𝑠4]𝑐5- 𝑠2𝑠3𝑠5)𝑠6 + (−𝑠2𝑐3𝑠4 + 𝑐2𝑐4)𝑐6]𝑑7 +

[−𝑠2𝑐3𝑠4 + 𝑐2𝑐4]𝑑5 + 𝑐2𝑑3

The end effector rotation can be expressed as following:

(3.4.13)

 𝛼 = 𝑎𝑡𝑎𝑛2(𝑏, 𝑎) (3.4.14)

 𝛽 = 𝑎𝑡𝑎𝑛2(−𝑐,
𝑎

cos (𝛼)
) (3.4.15)

 𝛾 = 𝑎𝑡𝑎𝑛2(𝑑, 𝑒) (3..4.16)

Where:

 𝑎 = [([(𝑐1𝑐2𝑐3 − 𝑠1𝑠3)𝑐4 − 𝑐1𝑠2𝑠4]𝑐5 + [−𝑐1𝑐2𝑠3 − 𝑠1𝑐3]𝑠5)𝑐6

−(−[−(𝑐1𝑐2𝑐3 − 𝑠1𝑠3)𝑠4 − 𝑐1𝑠2𝑐4])𝑠6]𝑐7

+[([(𝑠1𝑐2𝑐3 + 𝑠1𝑠3)𝑐4 − 𝑐1𝑠2𝑠4)𝑠5 + (−𝑐1𝑐2𝑠3 − 𝑠1𝑐3)𝑐5]𝑠7

(3.4.17)

 𝑏 = [([(𝑠1𝑠2𝑠4]𝑐5 + [−𝑠1𝑐2𝑠3 + 𝑐1𝑐3]𝑠5)𝑐6 −(−(−(𝑠1𝑐2𝑐3 + 𝑐1𝑠3)𝑠4 −

𝑠1𝑠2𝑐4))𝑠6]𝑐7 +[−([𝑠1𝑐2𝑐3 + 𝑐1𝑠3]𝑐4 − 𝑠1𝑠2𝑠4)𝑠5 + (−𝑠1𝑐2𝑠3 +

𝑐1𝑐3)𝑐5]𝑠7

(3.4.18)

 𝑐 = [([−𝑠2𝑐3𝑐4 − 𝑐2𝑠4]𝑐5 + 𝑠2𝑠3𝑠5)𝑐6 − (−[𝑠2𝑐3𝑠4 − 𝑐2𝑐4])𝑠6]𝑐7

+[−(−𝑠2𝑐3𝑐4 − 𝑐2𝑠4)𝑠5 + 𝑠2𝑠3𝑐5]𝑠7

(3.4.19)

 𝑑 = −[([−𝑠2𝑐3𝑐4 − 𝑐2𝑠4]𝑐5 + 𝑠2𝑠3𝑠5)𝑐6 − (−[𝑠2𝑐3𝑠4 − 𝑐2𝑐4])𝑠6]𝑠7

+[−(−𝑠2𝑐3𝑐4 − 𝑐2𝑠4)𝑠5 + 𝑠2𝑠3𝑐5]𝑐7

(3.4.20)

 𝑒 = −[−([−𝑠2𝑐3𝑐4 − 𝑐2𝑠4]𝑐5 + 𝑠2𝑠3𝑠5)𝑠6 − (−[𝑠2𝑐3𝑠4 − 𝑐2𝑐4])𝑐6] (3.4.21)

30

The kinematic model of a robot, can be represented by another homogeneous transformation

matrices based on a calculation of the Modified D-H parameters.

 𝑇𝑛
𝑛−1 = [

cos 𝜃𝑛 −sin 𝜃𝑛 0 𝑎𝑛−1
sin 𝜃𝑛cos 𝛼𝑛−1 cos 𝜃𝑛cos 𝛼𝑛−1 −sin 𝛼𝑛−1 −𝑑𝑛sin 𝛼𝑛−1
sin 𝜃𝑛sin 𝛼𝑛−1 cos 𝜃𝑛sin 𝛼𝑛−1 cos 𝛼𝑛−1 𝑑𝑛cos 𝛼𝑛−1

0 0 0 1

] (3.4.22)

The resulted homogeneous transformations are:

𝐴1
0(𝑞𝑖) = [

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 0
0 0 0 1

] (3.4.23)

𝐴2
1(𝑞𝑖) = [

𝑐2 −𝑠2 0 0
0 0 1 0
−𝑠2 −𝑐2 0 0
0 0 0 1

] (3.4.24)

𝐴3
2(𝑞𝑖) = [

𝑐3 −𝑠3 0 0
0 0 −1 −𝑑3
𝑠3 𝑐3 0 0
0 0 0 1

] (3.4.25)

𝐴4
3(𝑞𝑖) = [

𝑐4 −𝑠4 0 0
0 0 1 0
−𝑠4 −𝑐4 0 0
0 0 0 1

] (3.4.26)

𝐴5
4(𝑞𝑖) = [

𝑐5 −𝑠5 0 0
0 0 −1 −𝑑5
𝑠5 𝑐5 0 0
0 0 0 1

] (3.4.27)

𝐴6
5(𝑞𝑖) = [

𝑐6 −𝑠6 0 0
0 0 1 0
−𝑠6 −𝑐6 0 0
0 0 0 1

] (3.4.28)

𝐴7
6(𝑞𝑖) = [

𝑐7 −𝑠7 0 0
0 0 −1 −𝑑7
𝑠7 𝑐7 0 0
0 0 0 1

] (3.4.29)

31

𝐴8
7(𝑞𝑖) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

] (3.4.30)

3.5 JACOBIAN MATRIX

Jacobian matrix is a matrix quantity used for velocity analysis; it consists all the first-order partial

derivatives of a vector- or scalar-valued function on another vector. A Jacobian matrix specifies

the mapping of angular velocities in joint space to velocities in Cartesian space. It also provides

the joint torques needed for desired contact force and moment.

𝐽 =

[

𝐽11 𝐽12 𝐽13 𝐽14 𝐽15 𝐽16 𝐽17
𝐽21 𝐽22 𝐽23 𝐽24 𝐽25 𝐽26 𝐽27
𝐽31 𝐽32 𝐽33 𝐽34 𝐽35 𝐽36 𝐽37
𝐽41 𝐽42 𝐽43 𝐽44 𝐽45 𝐽46 𝐽47
𝐽51 𝐽52 𝐽53 𝐽54 𝐽55 𝐽56 𝐽57
𝐽61 𝐽62 𝐽63 𝐽64 𝐽65 𝐽66 𝐽67]

 (3.5.1)

The Jacobian matrix relates the joint velocity to end-effector velocity expressed in the end-effector

reference frame. A differential motion can be represented by using a six-element vector with the

following elements [dx dy dz drx dry drz]; where the [dx dy dz] are the differential translation,

and the last three elements [drx dry drz] are a differential rotation. The order becomes unimportant

when dealing with infinitesimal rotations, and the differential motion could be written as a

combination of compounded transforms and rotation. Many control schemes require the inverse

of the Jacobian. The Jacobian might have a singularity problem which should be tested. The

manipulator's Jacobian matrix relates differential joint coordinate motion to differential Cartesian

motion; for any number of joint manipulator, we could calculate the manipulator Jacobian matrix

which is used in many manipulator control schemes. The Jacobian of the PA10 manipulator [120]

can be expressed as shown in Equation 3.5.2. Please refer to Appendix 1. for individual

parameters.

𝐽 =

[

−𝑠1𝑞114 − 𝑐1𝑞234 𝑐1𝑝23 𝑠1𝑠2𝑝33 − 𝑐2𝑝32
 𝑐1𝑞114 − 𝑠1𝑞234 𝑠1𝑝23 𝑐2𝑝31 − 𝑐1𝑠2𝑝33

0 −𝑠1𝑝22 − 𝑐1𝑝21 𝑐1𝑠2𝑝32 − 𝑠1𝑠2𝑝31
0 −𝑠1 𝐶1𝐶2
0 𝑐1 𝑆1𝑆2
1 0 𝑐2

+

32

+

𝑞423𝑝43 − 𝑞433𝑝42 −𝑞422𝑝53 + 𝑞432𝑝52
𝑞433𝑝41 − 𝑞413𝑝43 −𝑞432𝑝51 + 𝑞412𝑝53
𝑞413𝑝42 − 𝑞423𝑝41 −𝑞412𝑝52 + 𝑞422𝑝51

−𝑐1𝑐2𝑐3 − 𝑠1𝑐3 (𝑐1𝑐2𝑐3 − 𝑠1𝑠3)𝑠4 + 𝑐1𝑠2𝑐4
−𝑠1𝑐2𝑠3 + 𝑐1𝑐3 −(𝑠1𝑐2𝑐3 + 𝑐1𝑠3)𝑠4 − 𝑠1𝑠2𝑐4,

𝑠2𝑠3 −𝑠2𝑐3𝑠4 − 𝑐2𝑐4

 +

𝑞522𝑝63 − 𝑞532𝑝62 𝑞522𝑝63 − 𝑞532𝑝62 0

𝑞522𝑝63 − 𝑞532𝑝62 𝑞522𝑝63 − 𝑞532𝑝62 0
𝑞512𝑝62 − 𝑞522𝑝61 𝑞512𝑝62 − 𝑞522𝑝61 0
−𝑞411𝑠5 + 𝑞413𝑐5 −𝑞411𝑠5 + 𝑞413𝑐5 −𝑞612
−𝑞421𝑠5 + 𝑞423𝑐5 −𝑞421𝑠5 + 𝑞423𝑐5 −𝑞622
−𝑞421𝑠5 + 𝑞423𝑐5 −𝑞431𝑠5 + 𝑞433𝑐5 −𝑞632]

(3.5.2)

Whitney method [121] is an alternative strategy to computing a Cartesian trajectory and solving

the inverse kinematics. Whitney method is used to resolve the rate of motion where dX/dt is the

desired Cartesian velocity, and dQ/dt is the required joint velocity to achieve this. However, this

makes a problem when dealing with difficulty at a manipulator singularity where the Jacobian is

singular. When two of the robot manipulators wrist joints area aligned this resulting in the loss of

one degree of freedom and this called singularity problem; where at a manipulator singularity or

degeneracy the Jacobian becomes singular. The singularity is revealed by the ranking of the

Jacobian matrix. In the case of robotic manipulators which have six degrees of freedom or more

with redundant manipulators, the redundancy increases the flexibility and the generality of work

and minimize the singularity problem effect. However, on the other hand; six degrees of freedom

makes the computing of the joint motion for the robotic manipulator to be not straightforward.

Many approaches have been suggested based on the pseudo-inverse of the Jacobian which in this

case is not square or singular value decomposition of the Jacobian. Singularity calculation leads to

understanding more about the manipulability of the robotic manipulator; which describes how

`well-conditioned' the manipulator is for making certain motions and is referred to as

`manipulability.' So, when there is no singularity in the robotic arm, we could say that the

manipulability of the robot is higher. There are many scalar manipulability measures have been

proposed such as Yoshikawa method which is based purely on kinematic parameters of the

manipulator [122]. Moreover, there is another by Asada [123] takes into account the inertia of the

manipulator which affects the acceleration achievable in different directions. This measure varies

33

from 0 to 1, where 1 indicates uniformity of acceleration in all directions. Both measures would

show that this particular pose is not well conditioned.

3.6 INVERSES KINEMATIC OF ROBOTIC MANIPULATOR

Inverse kinematics involves solving the inverse transformation equation to find the relationships

between the links of the manipulator from the location of the hand in space [124]. In inverse

kinematics, the length of each link and position of the point in work volume is given, and then the

angle of each joint is calculated. The inverse kinematics is so hard to solve, and it will be harder if

we increase the degrees of freedom. There is a different method to solve the inverse kinematics.

The analytic method and Jacobian method are well-known [125]. This problem is much more

complex than forwarding kinematics. Two popular approaches are used which are Inverse

Kinematic solving by Algebraic Method (Closed Form Solution), and Inverse Kinematic solving

by Geometric Method. The motion of the edge of the robot arm is used as a reference to a controller

that can calculate the link angles to achieve the reference motion of the edge. Therefore, inverse

kinematics is important to derive the unknown link motions from the known edge motion. Closed

Form Solution is a numerical solution, and the spatial geometry of manipulator is broken down

into several plane problems which are easily solvable with using iterative process and requires

more processing power [126].

 Inverse Kinematic solving by Algebraic Method is an analytical solution and requires solving a

set of non-linear equations derived from frame transformations. This returns all possible solutions,

and according to Pieper's Theorem [127], there is existence for a solution for any 6 degrees of

freedom robot with a spherical wrist. The closed form solutions are preferable than the numerical

solutions because inverse kinematic equations must be solved at a rapid rate. However; the inverse

kinematic equations, in general, have multiple solutions. So when the solution is derived faster;

this allows developing rules for choosing a particular solution among several solutions.

Please refer to Appendix 4. for Matlab code for calculating the inverse kinematics of the PA10

robot.

3.7 DYNAMICS OF PA10 ROBOT

Robot Dynamics is the mathematical modeling of robot motion in with the associated forces and

torques. The dynamic equations of manipulator motion are a set of equations describing the

34

dynamic behavior of the robotic manipulator. There are various methods to formulate robot

dynamics, such as the Lagrange-Euler, the Newton-Euler, the recursive Lagrange-Euler.

Table 3.4 Joint description and dynamic Limits of PA10 Robotic Manipulator

Joint

Nominal

 Torque

(N-m)

Max Torque

(N-M)

Torque Limit

(N-M)

Centers of Mass

Joint Limit

(degree)

X (m) Y (m) Z (m) Lower Upper

S 1 4.64 232 158 0 0 -0.01 -180 180

S 2 4.64 232 158 0 -0.2 0.0 -97 97

S 3 2 100 68 0 0 -0.035 -180 180

E 1 2 100 68 0 -0.115 0.0 -143 143

E 2 0.29 14.5 17 0 0 -0.084 -270 270

W 1 0.29 14.5 17 0 -0.042 0.0 -180 180

W 2 0.29 14.5 17 0 0 0.022 -270 270

Forward and Inverse Dynamics are solved using manipulator dynamics. Direct dynamics in which

the equations of motion are integrated to determine the generalized coordinate response to applied

generalized forces. While Inverse dynamics in which the manipulator’s equations of motion are

solved for given motion to determine the generalized forces. In order to determine the Euler-

Lagrange equations in a specific situation, one has to form the Lagrangian of the system, which is

the difference between the kinetic energy and the potential energy. When PA10 robot is performing

drilling; it only uses the last three degrees of freedom. Matlab code is written for calculating the

torques of the last three DOF and used to control the position of three degrees of freedom robotic

manipulator, and it is used to find the torques of three joints for movement of the robotic

manipulator end-effector from the start location to the goal location.

 The position control system contains a PID controller where the PID controller is used to control

the torque and enhance the movement of the robotic manipulator; where the cubic function is used

as velocity trajectory for the robotic manipulator. The resulted dynamic model is used for

simulation robot dynamics, the design of robot controller. Table 3.4 describes the kinematic,

dynamic, and compliance properties as well as constraints of the PA10 robotic manipulator. Table

3.5 shows the link Center of gravity for the Mitsubishi robot. Each row specifies the coordinates

of the C.G. of the link (in its local frame) and its mass. It is necessary to know the mass parameters

35

of each link of the PA10 robot; to model correctly the dynamic; Parameters are Link mass; Inertia

matrix; Center of gravity; Joint friction coefficient.

Table 3.5 Mass parameters of the PA10 robot model [116][112][128]

Link
Mass

(Kg)

Center of

Mass (m)
 Inertia Matrix

Center

of gravity

Offset

Distance

(m)

1 9.78 0

0.110697 0.000005 0.000345

0.000005 0.084268 0.000518

0.000345 0.000518 0.054080

0.0

0.0

-0.166

0.115

2 8.41 0.06325

0.177079 0.000257 0.000000

0.000257 0.018440 0.000000

0.000000 0.000000 0.173903

0.0

-0.0632

0.0

0

3 3.51 0.08944

0.032979 0.000000 0.000002

0.000000 0.017031 0.000027

0.000002 0.000027 0.022417

0.0

0.0

-0.112

0.45

4 4.31 0.04609

0.051762 -0.000577 0.000000

-0.000577 0.006329 0.000000

0.000000 0.000000 0.051407

0.0

-0.046

0.0

0

5 3.45 0.1647

0.076687 0.000000 0.000960

0.000000 0.077392 0.000000

0.000960 0.000000 0.003233

0.0

-0.0632

0.0

0.5

6 1.46 -0.03

0.012500 0.000000 0.000000

0.000000 0.001431 0.000000

0.000000 0.000000 0.012500

0.0

0.003

0.0

0

7 1.46 -0.029

0.001575 0.000000 0.000000

0.000000 0.001575 0.000000

0.000000 0.000000 0.000131

0.0

0.0

0.0

0.08

Link Inertia is shown in Table 3.5. Each three rows specify the inertia tensor of a link. The first

three rows are for link 1, the second three rows for link 2, etc. All units are SI. Equation 3.7.1

shows joint compliance matrix 𝑄𝑗 for the Mitsubishi robot [129]. The units are rad/(N-m).

𝑄𝑗 =

[

0 0 0 0 0 0 0
0 0.000037 0 0 0 0 0
0 0 0.0000588 0 0 0 0
0 0 0 0.0000909 0 0 0
0 0 0 0 0.000227 0 0
0 0 0 0 0 0.0005 0
0 0 0 0 0 0 0.000556]

 (3.7.1)

36

The knowledge of the full dynamic model of the robot is very important to be used as a part of

control system simulation and algorithm development. The PA107c robotic manipulator is

composed of 7 joints. The dynamic equation can be described by:

 𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇) + 𝐺(𝑞) + 𝐹(𝑞, 𝑞̇) (3.7.2)

Where:

 𝑞 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7]
𝑇 , 𝑞̇ =

𝑑𝑞

𝑑𝑡
, 𝑞̈ =

𝑑2𝑞

𝑑𝑡2
 (3.7.3)

The variable 𝑞𝑖(𝑡) ∈ 𝑅
𝑚 denotes the joint angular position, 𝑀𝑖(𝑞𝑖) ∈ 𝑅

𝑚×𝑚 is inertia matrix,

𝐺𝑖(𝑞𝑖) ∈ 𝑅
𝑚 is the gravitational force vector, 𝜏𝑖(𝑞𝑖) ∈ 𝑅

𝑚 denotes the input torque vector,

𝐹(𝑞, 𝑞̇)represent Friction terms. The Inertia matrix 𝑀𝑖(𝑞𝑖) is symmetric and uniformly positive

definite for all 𝑞𝑖(𝑡) ∈ 𝑅
𝑚, The resultant equations of the dynamic model are a set of second order,

coupled nonlinear differential equations. So; based on [130] method; PA10 robot dynamics can

be described as following:

𝑑

𝑑𝑡

𝜕𝐿

 𝜕𝑞𝑖̇
−

𝜕𝐿

 𝜕𝑞𝑖
= 𝜏𝑖 , 𝑖 = 1, … ,7 (3.7.4)

Where 𝑞𝑖 is the joint angles, 𝑞̇𝑖 is the joint velocities, 𝜏𝑖 is the joint torques and L is defined by

Lagrangian mechanics as following:

 𝐿 = 𝑇 − 𝑈 = ∑𝑇𝑖

7

𝑖=1

− ∑𝑈𝑖

7

𝑖=1

 (3.7.5)

Where 𝑇𝑖 is the kinetic energy and 𝑈𝑖 is the potential energy of link 𝑖. The kinetic energy is

described as following:

𝑇𝑖 =
1

2
𝑚𝑖𝒑̇𝑖

𝑖𝑇𝒑̇𝑖
𝑖 + 𝒑̇𝑖

𝑖𝑇𝑆(𝑤𝑖
𝑖)𝑚𝑖𝒓𝑖,𝐶𝑖

𝑖 , +
1

2
𝑤𝑖
𝑖𝑇𝑰̂𝑖

𝑖𝒘𝑖
𝑖 +

𝑘𝑟,𝑖+1𝑞̇𝑖+1𝐼𝑚𝑖+1
𝑍𝑚𝑖+1

𝑖𝑇 𝑤𝑖
𝑖+

1

2
𝑘2𝑟,𝑖+1𝑞̇

2
𝑖+1
𝐼𝑚𝑖+1

(3.7.6)

The Lagrangian equation could be represented as following

𝐿 = ∑
1

2
𝑚𝑖𝒑̇𝑖

𝑖𝑇𝒑̇𝑖
𝑖 + 𝒑̇𝑖

𝑖𝑇𝑆(𝑤𝑖
𝑖)𝑚𝑖𝒓𝑖,𝐶𝑖

𝑖 , +
1

2
𝑤𝑖
𝑖𝑇𝑰̂𝑖

𝑖𝒘𝑖
𝑖 + 𝑘𝑟,𝑖+1𝑞̇𝑖+1𝐼𝑚𝑖+1

𝑍𝑚𝑖+1

𝑖𝑇 𝑤𝑖
𝑖

7

𝑖=1

+
1

2
𝑘2𝑟,𝑖+1𝑞̇

2
𝑖+1
𝐼𝑚𝑖+1

− ∑−𝑔0
𝑖𝑇(𝑚𝑖𝑝𝑖

𝑖 +𝑚𝑖𝑟𝑖,𝐶𝑖
𝑖)

7

𝑖=1

(3.7.7)

Where:

𝑚𝑖: is the overall mass of the desired link 𝑖

37

𝒑𝑖
𝑖 : is the position vector of the link 𝑖 referred to frame 𝑖

𝒑̇𝑖
𝑖 : is the linear velocity of the link 𝑖 referred to frame 𝑖

𝑔0
𝑖 : is the gravity acceleration vector of the link 𝑖 with respect to frame 𝑖

𝑤𝑖
𝑖: is the angular velocity of the link 𝑖 with respect to frame 𝑖

𝑟𝑖,𝐶𝑖
𝑖 : is the vector with start the reference frame 𝑖 and the center of mass of the augmented link 𝑖 ,

refereed to frame 𝑖

 𝑟𝑖,𝐶𝑖
𝑖 = [𝑙𝑐𝑖𝑥 𝑙𝑐𝑖𝑦 𝑙𝑐𝑖𝑧]

𝑇 (3.7.8)

𝑘𝑟,𝑖+1: is the gear reduction ratio of motor 𝑖 + 1

𝐼𝑚𝑖+1
: is the inertia tensor of the rotor 𝑖 + 1 relative to its center of mass

𝑍𝑚𝑖+1

𝑖 : is the unit vector along the rotor axis 𝑖 + 1 refereed to frame 𝑖

𝑆(.) : is a matrix operator defined for a vector 𝑟 = [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇

 𝑆(𝑟) = [

0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

] (3.7.9)

𝐼𝑖
𝑖̂: is the inertia tensor of the link 𝑖 relative to the origin 𝑖

 𝐼𝑖
𝑖̂ = [

𝐼𝑖𝑥𝑥 −𝐼𝑖𝑥𝑦 −𝐼𝑖𝑥𝑧

−𝐼𝑖𝑥𝑦 𝐼𝑖𝑦𝑦 −𝐼𝑖𝑦𝑧

−𝐼𝑖𝑥𝑧 −𝐼𝑖𝑦𝑧 𝐼𝑖𝑧𝑧

] (3.7.10)

The Lagrange equation of the PA107c robotic manipulator could be represented as follows:

𝐿 = ∑(𝛽𝑇𝑖
𝑇

7

𝑖=1

− 𝛽𝑈𝑖
𝑇)𝜋𝑖

(3.7.11)

Where 𝛽𝑇𝑖
𝑇 , 𝛽𝑈𝑖

𝑇 are variables dependent on joint positions and joint velocities. 𝜋 is 11×1 vector

of dynamic parameters defined by:

𝜋𝑖 = [𝑚𝑖 𝑚𝑖𝑙𝑐𝑖𝑥 𝑚𝑖𝑙𝑐𝑖𝑦 𝑚𝑖𝑙𝑐𝑖𝑧 𝐼𝑖𝑥𝑥 𝐼𝑖𝑥𝑦 𝐼𝑖𝑥𝑧 𝐼𝑖𝑦𝑦 𝐼𝑖𝑦𝑧 𝐼𝑖𝑧𝑧 𝐼𝑚𝑖+1
]
𝑇
 (3.7.12)

Where 𝜋𝑖 is a p×1 vector of constant parameters. Please refer to Appendix 2. for complete

modelling parameters. Inverse dynamics is used to calculate the required velocity and acceleration

of the joints in the robotic manipulators. There are many mathematical methods to calculate the

inverse dynamics such as the recursive Newton-Euler formulation which is an efficient matrix

oriented Algorithm. The inverse dynamics calculations require identifying the kinematic

parameters and the inertial and mass parameters of each link.

38

3.8 SUMMARY

Kinematic modeling of PA10-7C robot arm involves forward kinematics and inverse kinematics.

Forward kinematics is a mapping from the joint space to the operational space; while Inverse

kinematics is a mapping from the operational space to the joint space. In this chapter, the forward

kinematics of PA10-7C robot arm is calculated efficiently based on the D-H model. D-H model

parameters are used to describe the relationship between two consecutive frames of joints; Then

the Kinematic model is derived to describe the robot motion on a fixed reference Cartesian frame

by ignoring the forces and moments that cause motion of the structure. Jacobian matrix for PA10-

7C robot arm is derived to describe the relationship between joint angular velocities in the joint

space and the end effector's velocities in Cartesian space.

39

CHAPTER 4 MOTION PLANNING AND ROBOT CONTROL SCHEMES

Robot control is the spine of robotics. It consists of studying how to make a robot manipulator do

what it is desired to do automatically; hence, it includes in designing robot controllers. Typically,

these take the form of an equation or an algorithm which is realized via specialized computer

programs. Then, controllers form part of the so-called robot control system which is physically

constituted of a computer, a data acquisition unit, actuators, in this chapter; different types of

motion planning algorithms studied. Various control theory for neurosurgical manipulators

reviewed in this chapter.

4.1 ROBOTIC ARM CONTROLLER

A block diagram model of the robot arm control is shown in Fig 4.1. The feedback sensors are

located on the robot joints which send feedback information to the controller on the robot’s

position.

Figure 4.1 Block Diagram Model of the Robot Arm Control

Robot position control is achieved by linear control and non-linear control systems which get

feedback from position and velocity sensors. Robot force control is required to create sufficient

torque in the joints for a desired amount of force. In many cases; reaction forces are not present in

all directions so that some directions will have position control, and others will have force control

which results in hybrid control.

4.1.1 MOTION CONTROL OF THE PA10-7C ROBOT

The position and orientation of the rigid body are defined easily when using the Cartesian space

trajectory generation. The user specifies the desired end-effector path, the traveling time, and tool

orientations along the path. Cartesian space deals easily when there is an obstacle in the path, but

it is much more complex than joint space technique. Some common techniques for Cartesian space

40

trajectory planning such as a parametric description of a path; straight-line path; a circular path;

position planning and orientation planning technique. Optimizing the control of drilling depth

while drilling skull is extremely hard, and there is a chance of brain damage due to the over drilling.

However; in many cases; even after completing the drilling work, it is very difficult to measure

the depth; especially for thin holes. Therefore, an automatic skull drilling system is needed to

perform the function of drilling. In the first phase, the drill will follow the desired trajectory from

its initial position to a certain position under position control without any interactions with the

environment; Inverse kinematics is used to calculate the proper joint angles taken into account the

obstacle avoidance, and robot constraints such as singularity and joint limits.

Figure 4.2 Existing PA10-7C Robot Control

Position control involves only controlling the motion (position, velocity, and acceleration) of a

manipulator, i.e. determining a set of command signals that will move the robotic manipulator

along the desired motion drilling trajectory. Before the techniques are discussed, it is important to

understand the control inputs and outputs. The PA107c robot controller responds to position and

velocity commands. The target set points are X, Y, and Z positions in the robot’s base frame

calculated using the joint angles. The robot controller calculates velocities from rates of change

of positions and sends torque motor commands to servo-controllers that move the robot joints as

shown in Fig. 4.2.

There are two types of motion controllers based on joint space and end-effector Cartesian space;

The joint space motion algorithms are not implemented because it is not suitable for the

neurosurgical tasks. Cartesian-Based Control applies the desired trajectory to the robot end

effector regarding time histories of positions, velocities, and accelerations. Joint- based control

schemes use these desired trajectories to the joint inputs. The inverse kinematics performs the

41

trajectory conversion. The errors in Cartesian space calculated as follows.

 ex (t)= xd (t) - x(t) (4.1.1.1)

Where: xd (t) is the desired Cartesian trajectory and x(t) is the actual robot end effector Cartesian

space. The procedure of the operation of the proposed neurosurgical system consists of multiple

controlled variables which are: Drilling Orientation Controller; Drilling Depth Controller; Drilling

Velocity Controller; and Drilling Force Controller.

4.1.2 DRILLING ORIENTATION CONTROL

In the second phase, the drill will be angled along the normal to the tangent of the skull, that is,

under orientation control without any interactions with the environment. Perpendicular drilling

aims to have most of the drilling force in Z direction

Figure 4.3 Orientation Control for Skull Drilling System

Fig 4.3 shows the block diagram for Orientation Control used for Skull Drilling System to make

robot tooltip perpendicular with the skull surface. Angle interpolation done for the target direction

and the velocity command interpolated to form a letter “S” shape.

4.1.3 DRILLING DEPTH CONTROL

In the third phase, drilling depth control will be applied to monitor the drill to move toward the

skull along the normal to the tangent of the skull. The control of the drill’s position and orientation

is combined Orientation and Depth controller. The control block diagram for the first phase and

the second step are shown in Fig. 4.3 and Fig. 4.4 respectively.

Figure 4.4 Depth Control for Skull Drilling System

42

4.1.4 DRILLING-DEPTH AND VELOCITY CONTROLLER

The robot system runs a cascaded controller for controlling skull drilling depth and velocity by

implementing two loops; the inner loop is velocity loop while the outer loop is Drilling depth

controller as shown in Figure 4.5. The velocity signal used in the velocity loop is the position

signal differentiated and low-pass filtered.

Figure 4.5 The structure of the Drilling-Depth and Velocity Controller

4.1.5 DRILLING FORCE CONTROLLER

Force signal is analyzed to determine the stage of operation. When the drill is contacted with the

object initially, the changing of force is large, and the drill is activated. During drilling, the force

will be maintained at a certain value by Force Controller as shown in Fig 4.6. The drill

automatically stops when the drilling is finished. Otherwise, the brain will be damaged. The drill

moves forward or backward according to the force signal applied to the drilling tool. However,

for safety consideration when the force exceeds force threshold; the robot will not move the drill

forward again.

Figure 4.6 Force Control for Skull Drilling System

Inner Velocity Control Loop

Outer Position Control Loop

r

y
u

Velocity Control (PID)

u
q

qdot

Robot Joint

r

y
u

Position Control (PID)

2

Velocity ref

1

Position ref

43

Figure 4.7 Step response of system output

Fig 4.7 shows the simulation of skull drilling depth represented by step response; where reference

setpoint is selected to be 0.065 meter and drilling process is done in 47 seconds. However; Drilling

force is not linear due to the nonlinear structure of skull layers.

4.2 TRAJECTORY GENERATION AND CONTROL

The trajectory is the path followed by the manipulator while moving from point A to B. The joint

angles can describe it as a function of time. To smoothen this motion through the via points, Spline

curves are utilized, and position and its first two derivatives must be continuous. Cubic

polynomials satisfy this condition. Higher order polynomials and linear functions with parabolic

blends are also compliant. Trajectory generation is done by defining the type of motion or

trajectory; selecting the trajectory technique and computing the trajectory. Time sequence values

are attained by the functions generated from the trajectory planning technique are calculated at a

particular path update or sampling rate. Path update rate in real time lies between 20Hz to 200Hz

in typical industrial manipulator systems. There are two types of trajectories used in robotic

manipulators which are point-to-point motion and Continuous path motion. Point to point-to-point

motion used in pick and place operation, the task is specified as initial and final end-effector

location. There is no particular specification about the intermediate locations of end-effector.

Continuous path motion used to describe a specific path between points is required to be traced by

the end effector in Cartesian space. However; in particular cases; more than two points of the path

are specified, this is done to ensure a better monitoring of executed trajectory in the event of

application similar to the point-to-point motion. Joint space techniques are employed in which

motion planning is done at the joint level. The Joint space planning scheme generates a time-

dependent function of all joint variable and their first two derivatives to describe their motion of

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Step Response

Time (seconds)

A
m

p
lit

u
d
e

44

manipulator. The next step is to find smooth function q(t) for each n-joints of an n-DOF

manipulator. For that, we need traveling time, initial and final locations. Usually; cubic polynomial

and linear function with parabolic blend are used in joint space trajectories. A cubic polynomial

in which cubic connects the points of each joint smoothly. While linear function with the parabolic

blend in which each segment between two successive points contains a linear function with

parabolic bends near the path points. Cartesian space techniques are used for an application

requiring continuous path motion; The Cartesian space planning scheme provides a time history

of the location, velocity, acceleration of the end-effector on the base. The corresponding joint

variables and their derivatives are computed, using inverse kinematics. The generated trajectory

has a constant acceleration up to certain time and then constant velocity for the period and then

the trajectory goes to a constant retardation to make velocity from v to zero. There will be a

trapezoidal velocity profile. The triangular velocity profile could be used for the small value of the

joint parameter. The travel time in parabolic blends is chosen and the total time of motion is fixed

to calculate the value of acceleration; else if the value of acceleration is fixed, then the value of

acceleration can be calculated. To make a robot perform a drilling task, the motion planner is

designed to generate a smooth motion, as described in detail in [131]. A path is a geometric

representation, initially in Cartesian space, that is then converted to joint space by using inverse

kinematics, as described in [84].

4.2.1 FEEDFORWARD TRAJECTORY PLANNING

Feedforward control can be used very successfully to improve a control loop’s response to

disturbances without having to wait for a deviation in the process variable. This enables a

feedforward controller to quickly and directly cancel out the effect of a disturbance. To do this, a

feedforward controller produces its control action based on a measurement of the disturbance. In

a feed-forward system, the control variable adjustment relies on knowledge about the process and

knowledge about or measurements of the disturbances. Feedforward and feedback control is often

combined with cascade control, to ensure that their control actions manipulate the physical process

linearly, eliminating control valve nonlinearities and mechanical problems. Feedforward

Controllers are based on system knowledge; basically, a mathematical model of the system is

required, and Feedforward controller is combined with feedback control to optimize performance.

Feedforward Motion Control is an algorithm for calculating point to point trajectory. These

45

trajectories are time-optimal in the most relevant cases. Based on Lambrechts’s technique [132]

different types of feedforward trajectory planner are implemented; which are:

• First Order Feedforward Control of Skull Drilling “Speed limited Trajectory.”

• Second Order Feedforward Control of Skull Drilling “Acceleration limited Trajectory.”

• Third Order Feedforward Control of Skull Drilling” Jerk limited Trajectory.”

• Fourth Order Feedforward Control of Skull Drilling “Snap Limited Trajectory Control

Velocity is bounded in the first order feedforward motion planner; while acceleration is bounded

in the second order feedforward motion planner; The specifics of motion planning based on simple

rigid-body analysis as shown in Fig. 4.6 where x is the position, m is equivalent mass or inertia, b

is viscous damping, F is actuator force, and F is feedforward force.

 𝑚𝑥̈ + 𝑏𝑥̇ = 𝐹𝑓𝑓 (4.2.1.1)

 𝐹𝑓𝑓 = 𝑚𝑎 + 𝑏𝑣 (4.2.1.2)

𝐹𝑓𝑓 is the feedforward force; 𝑥̈ represent the acceleration 𝑎 component; and 𝑥̇ represent the

velocity 𝑣 component. The shortest time path for the desired displacement distance (x) can be

calculated as:

 𝑥 = 𝑎𝑡2 ⟹ 𝑡𝑎 = √

𝑥

𝑎
 ⇒ 𝑡𝑥 = 2𝑡𝑎

(4.2.1.3)

Where 𝑡𝑎 and 𝑡𝑥 are time for acceleration and position respectively. Maximum velocity could be

calculated as following:

 𝑣 = 𝑎. 𝑡𝑎 (4.2.1.4)

Figure 4.7 One degree of Feedforward Control of Skull Drilling

Figure 4.6 One degree of Feedforward Control of Skull Drilling

46

The resulted trajectory is visible and optimized in execution time. Trajectory ends at the desired

end position. A derivative of acceleration signal (Jerk signal) is limited in the third order

feedforward motion planner; where trajectory planned over a distance at bounded velocity,

acceleration, and jerk; The bound on jerk is related to ‘rise time’ of the system which implemented

within the robot electromechanical capabilities.

Figure 4.8 Design Parameters of Motion Planners

Figure 4.9 Second Order Trajectory Determination

 There are eight-time instances at which the jerk could be constructed as shown in Fig 4.10.

 𝑡𝑗̅ = 𝑡1 − 𝑡0 = 𝑡3 − 𝑡2 = 𝑡5 − 𝑡4 = 𝑡7 − 𝑡6 (4.2.1.5)

 𝑡𝑎̅ = 𝑡2 − 𝑡1 = 𝑡6 − 𝑡5 (4.2.1.6)

 𝑡𝑣̅ = 𝑡4 − 𝑡3 (4.2.1.7)

 𝑎(𝑡) = 𝑗0𝑡 + 𝑎0 (4.2.1.8)

 𝑣(𝑡) =
1

2
 𝑗0𝑡

2 + 𝑎0𝑡 + 𝑣0 (4.2.1.9)

0 2 4 6 8 10 12 14 16
-1

-0.5

0

0.5

1

Time (seconds)

T
ra

je
c
to

ri
e

s
 (

N
o
rm

a
liz

e
d
)

Position

Velocity

Acceleration

47

 𝑥(𝑡) =
1

6
 𝑗0𝑡

3 +
1

2
 𝑎0𝑡

2 + 𝑣0𝑡 + 𝑥0 (4.2.1.10)

The third-order motion trajectories for acceleration, velocity, and position can be expressed as

follows:

 𝑎(𝑡2) = 𝑎(𝑡1) = 𝑗𝑡̅𝑗̅ (4.2.1.11)

𝑣(𝑡2) = 𝑣(𝑡1) =

1

2
𝑗𝑡̅𝑗̅

2
(4.2.1.12)

𝑥(𝑡2) = 𝑥(𝑡1) =

1

6
𝑗𝑡̅𝑗̅

3
(4.2.1.13)

Bounds on acceleration and velocity are not violated. In the second part of the jerk profile; 𝑗̅ = 𝑆

which represent snap signal and can be expressed as following:

 𝑎(𝑡4) = 𝑎(𝑡3) = −𝑗𝑡̅𝑗̅ + 𝑎(𝑡2) (4.2.1.14)

𝑣(𝑡4) = 𝑣(𝑡3) = −

1

2
𝑗𝑡̅2𝑗̅ + 𝑎(𝑡2)𝑡𝑗̅ + 𝑣(𝑡2)

(4.2.1.15)

𝑥(𝑡4) = 𝑥(𝑡3) = −

1

6
𝑗𝑡̅3𝑗̅ + 𝑎(𝑡2)𝑡

2
𝑗̅ + 𝑣(𝑡2)𝑡𝑗̅ + 𝑥(𝑡2)

(4.2.1.16)

Figure 4.10 Jerk Trajectory for Third Order Motion Planner

Figure 4.11 Third Order Feedforward Control of Skull Drilling” Jerk limited Trajectory

0 1 2 3 4 5 6 7 8
0

1

2

P
o
s
iti

o
n

[m
]

0 1 2 3 4 5 6 7 8
0

1

2

V
e
lo

ci
ty

 [
m

/s
]

0 1 2 3 4 5 6 7 8
-1

0

1

2

A
cc

e
le

ra
tio

n

 [
m

/s
2
]

0 1 2 3 4 5 6 7 8
-1

0

1

2

J
e
rk

 [
m

/s
3
]

Time [s]

48

A derivative of the jerk signal (snap signal) is bounded in the fourth order feedforward motion

planner; The specifics of motion planning based on rigid-body analysis of the double mass system

as shown in Fig. 4.11 where x is the position, m is equivalent mass or inertia, b is viscous damping,

F is actuator force, and F is feedforward force.

 𝑚1𝑥1̈ = −𝐾1𝑥1̇ − 𝑐(𝑥1 − 𝑥2) − 𝑘12(𝑥̇1 − 𝑥̇2) + 𝐹 (4.2.1.17)

 𝑚2𝑥2̈ = −𝐾2𝑥2̇ + 𝑐(𝑥1 − 𝑥2) + 𝑘12(𝑥̇1 − 𝑥̇2) (4.2.1.18)

Figure 4.12 Double mass rigid body analysis

 𝐹 =

𝑞1𝑠
4 + 𝑞2𝑠

3 + 𝑞3𝑠
2 + 𝑞4𝑠

𝑘12𝑠 + 𝑐
. 𝑥2

(4.2.1.19)

 𝑞1 = 𝑚1𝑚2 (4.2.1.20)

 𝑞2 = (𝑚1 + 𝑚2)𝑘12 + 𝑚1𝑘2 + 𝑚2𝑘1 (4.2.1.21)

 𝑞3 = (𝑚1 + 𝑚2)𝑐 + 𝑘1𝑘2 + (𝑘1 + 𝑘2)𝑘12 (4.2.1.22)

 𝑞4 = (𝑘1 + 𝑘2)𝑐 (4.2.1.23)

𝐹 =

1

𝑘12𝑠 + 𝑐
. {𝑞1𝑑 + 𝑞2𝑗 + 𝑞3𝑎 + 𝑞4𝑣}

(4.2.1.24)

Figure 4.13 Fourth Order Feedforward Motion Planner

-0.5

0

0.5

-5

0

5
x 10

-3

Jerk

-1

0

1

2
x 10

-4

Acceleration

-5

0

5

10
x 10

-4

Velocity

0 1 2 3 4 5 6 7 8
0

5

x 10
-3

Time [s]

Position

49

Fig. 4.13 shows the resulted Fourth Order Feedforward Motion Planner” where the deceleration

of the mechanical system shutdown is bounded by the limit of Snap signal.

4.2.2 PID CONTROLLER FOR SKULL DRILLING

A Proportional–Integral–Derivative Controller (PID controller) is a generic control loop feedback

mechanism (controller) widely used in industrial control systems. A PID controller attempts to

correct the error between a measured process variable and the desired setpoint by calculating and

then outputting a corrective action that can adjust the process accordingly and rapidly, to keep the

error minimal [133]. PID controller is used to controlling the manipulator action, and suitable

values of controller gains are chosen to avoid the oscillations in robotic manipulator and

successfully removal of errors and make the movements as the desired movements.

Figure 4.14 Block diagram of PID controller

PID controller is used to controlling the skull drilling. Parallel PID structure implemented in a

discrete time with Backward Euler numerical integration method. The transfer Function of discrete

time PID controller can be expressed as follows:

𝐾𝑝 + 𝐾𝑖 ∗

𝑇𝑠. 𝑧

𝑧 − 1
+ 𝐾𝑑 ∗

𝑧 − 1

𝑇𝑠 ∗ 𝑧

(4.2.2.1)

Table 4.1 Values of PID controller

Proportional Gain ‘Kp’ Integral Gain ‘Ki’ Derivative Gain ‘Kd’ Sample Time

2.8114 0.2484 1.1913 0.005 second

PID tuning and loop optimization techniques are used for offline tuning. Skull model developed

using Matlab system identification toolbox, and optimal tuning values are calculated based on

transient response parameters. Phase margin is selected to be 60 degrees, and overshoot to be zero.

The PID controller calculation (algorithm) involves three separate parameters; the proportional,

the integral and derivative values. The proportional value determines the reaction to the current

error, the integral value determines the reaction based on the sum of recent errors, and the

derivative value determines the reaction based on the rate at which the error has been changing.

50

Figure 4.15 Response of PID controller for Skull Drilling

Figure 4.15 shows the time response of Drilling Depth Controller used for skull Drilling; Y axis

represents the drilling Depth in meters; drilling done is 26 seconds for 6 mm. Table 4.1 shows the

selected values for designed PID Controller.

Figure 4.16 MATLAB Simulation of PID controller for Skull Drilling

Fig 4.17 shows the response of PID controller using different types of trajectory planner; fourth

order feeds forward trajectory shows the best steady-state response when compared with the first,

second, third order feedforward trajectories. Setpoint for skull drilling thickness is required to be

6mm.

Figure 4.17 Response of PID controller using several types of trajectory planner

0 20 40 60
0

0.002

0.004

0.006

0.008

0.01

Time (seconds)

D
ril

lin
g

 D
ep

th
 (

m
)

51

4.2.3 FUZZY PID CONTROLLER FOR SKULL DRILLING

A fuzzy model is developed for controlling the thrust force applied to the skull surface during

drilling as a function of the drilling process parameters. A fuzzy controller analyzes the force

sensor data measured by the Force sensor mounted on the robotic drill.

Figure 4.18 Structure of Fuzzy PID controller for Skull Drilling

Fig 4.18 shows the structure of Fuzzy PID controller used for Skull Drilling. When break-through

is detected, the drilling controller automatically will stop drilling to prevent excessive protrusion

of the drill bit.

Figure 4.19 Control Surface plot of Fuzzy PID Controller

There will be no unexpected failure, and the desired overshoot of drilling limited to less than 1

mm. Fig 4.19 shows Matlab Simulation of Nonlinear Fuzzy PID controller for Skull Drilling. Fig

4.20 shows the response of Fuzzy PID controller using different types of trajectory planner; fourth

order feed forward trajectory shows the best steady-state response when compared with the first,

second, third order feedforward trajectories.

-10
-5

0
5

10

-10

0

10
-20

-10

0

10

20

ECE

u

52

Figure 4.20 Response of Fuzzy PID controller using different types of trajectory planner

4.2.4 NONLINEAR FUZZY PID CONTROLLER

Nonlinear fuzzy PID controller is designed for a skull drilling Controller. Drilling Trajectory

approximated by a single-input-single-output system in discrete time and our design goal is simply

to achieve good reference tracking performance. The change of output is used to smooth the

response of the derivative action. Nonlinear control surfaces can often be approximated by lookup

tables to simplify the generated code and improve execution speed. Two gain blocks, GCE and

GCU in the feed-forward path from r to u, are used to ensure that the error signal e is used in

proportional action when the fuzzy PID controller is linear.

Figure 4.21 Matlab Simulation of Nonlinear Fuzzy PID controller for Skull Drilling

A fuzzy inference system (FIS) maps given inputs to outputs using fuzzy logic. Figure 4.22. Shows

control surface plot which describes the mapping of a two-input one-output fuzzy controller in a

3-D plot.

53

Figure 4.22 Control Surface plot of Nonlinear Fuzzy PID Controller

Fig 4.23 shows the response of nonlinear fuzzy PID controller using different types of trajectory

planner; fourth order feeds forward trajectory shows the best steady-state response when compared

with the first, second, third order feedforward trajectories.

Figure 4.23 Response to Non-Linear Fuzzy PID Controller

4.2.5 APPLICATION OF LQR IN SKULL DRILLING CONTROLLER

Optimal control deals with finding a certain optimality criterion to be achieved. Optimization

techniques divided into three categories: analytical and numerical procedures, and nonlinear

programming [134]. The Linear quadratic regulator is a technique based on a state feedback to

minimize the cost function within prescribed constraint boundaries. The main advantage of LQR

is that the optimal input signal u (t) derived from full state feedback; the feedback matrix K is

-10
-8

-6
-4

-2
0

2
4

6
8

10

-10

-5

0

5

10

-15

-10

-5

0

5

10

15

Error
Change of Error

u

54

obtained by solving the Ricatti equation. The Objective of the Cost function is to minimize the

total energy of the closed loop system.

Figure 4.24 Block diagram of LQR added to the control system

Neurosurgical robotic skull drilling system aims to drill a hole in the human skull by using robotic

arm holding rotating drill; where LQR is used in the state-space design approach, which is well

suited to the control of multiple outputs as we have here. Disturbance rejection is a critical factor

in skull drilling system to minimize the chance of brain damage due to the over drilling. So, an

automatic skull drilling system with excellent noise rejection is needed to perform the function of

drilling. A state-space model of the Skull drilling controller is constructed with two inputs

(Thickness_ set point, Force) and one output (Thickness); System response improved by adding a

linear quadratic regulator (LQR) for the feedback structure shown in Fig. 4.25. The LQR algorithm

is a state-feedback controller. LQR technique uses the state vector x to synthesize the drilling

thickness set point. In addition to the integral of error, the resulting thickness output is of the form:

 Dp = K1 ∗ w + K2 ∗ w/s + K3 ∗ I (4.2.5.1)

For better disturbance rejection, a cost function used to penalize large integral error. The LQR

gives better disturbance rejection compared with the feed forward controller. Continuous-time

LQR defined on 𝑡 ∈ [𝑡0, 𝑡1] can be described by

 𝑥
˙
= 𝐴𝑥 + 𝐵𝑢 (4.2.5.2)

with a quadratic cost function 𝑄𝑐 defined as

𝑄𝑐 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + 2𝑥𝑇𝑁𝑢)𝑑𝑡

∞

0

(4.2.5.3)

𝑄𝑐 = ∫ (40𝑞(𝑡)2 +

∞

0

𝑤(𝑡)2 + 4𝐷𝑝(𝑡)2)𝑑𝑡

(4.2.5.4)

For a discrete-time state-space model:

55

 𝐽 = ∑(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + 2𝑥𝑇𝑁𝑢)

∞

𝑛=0

(4.2.5.5)

The state-feedback law u[n] = –Kx[n] minimizes the quadratic cost function. The pair (A, B) is

stabilizable before applying LQR algorithm; otherwise, LQR is not applicable; The associated

Riccati equation of and Optimal gain matrix K is calculated.

 ATS + SA − (SB + N)R − 1(BTS + NT) + Q = 0 (4.2.5.6)

 K=R− (BTS + NT) (4.2.5.7)

J = ∑(xTQx + uTRu + 2xTNu)

∞

n=0

(4.2.5.8)

For a discrete-time linear system described by

 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 (4.2.5.9)

with a performance index defined as

𝐽 = 𝑥𝑁
𝑇𝑄𝑥𝑁 +∑(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘 + 2𝑥𝑘

𝑇𝑁𝑢𝑘)

𝑁−1

𝑘=0

(4.2.5.10)

The optimal control sequence minimizing the performance index is given by

 𝑢𝑘 = −(𝑅 + 𝐵
𝑇𝑃𝑘+1𝐵)

−1(𝐵𝑇𝑃𝑘+1𝐴 + 𝑁
𝑇)𝑥𝑘 (4.2.5.11)

𝑃𝑘 is found iteratively backwards in time by the dynamic Riccati equation

 𝑃𝑘−1 = 𝐴𝑇𝑃𝑘𝐴 − (𝐴
𝑇𝑃𝑘𝐵 + 𝑁)(𝑅 + 𝐵

𝑇𝑃𝑘𝐵)
−1(𝐵𝑇𝑃𝑘𝐴 + 𝑁

𝑇) + 𝑄 (4.2.5.12)

LQR has better set point tracking and disturbance rejection compared with feedforward controller;

and Integral feedback controller. However; filters should be used to reduce unwanted behavior like

known or measured disturbances and non-linearity.

56

Figure 4.25 Setpoint tracking and disturbance rejection

4.2.6 VERIFICATION OF TRAJECTORY TRACKING

The end-effector trajectory is tracked with respect the required drilling trajectory to verify the

performance of the proposed controller for the Mitsubishi PA-107c robotic manipulator. The

chosen trajectory was a lemniscate in the y-z plane of the robot base coordinate system. This

trajectory is chosen because it is smooth and easy to generate. The mathematical expression for

lemniscate trajectory is given by:

𝑥 = 0.15, 𝑦 = 0.2

𝑐𝑜𝑠(𝑡
2
)

(1 + 𝑠𝑖𝑛 (
𝑡
2)

2

)

(4.2.6.1)

𝑧 = 0.1 + 0.4

𝑠𝑖𝑛 (𝑡
2
)𝑐𝑜𝑠 (𝑡

2
)

(1 + 𝑠𝑖𝑛 (
𝑡
2)
2)

(4.2.6.2)

Figure 4.26 End Effector Trajectory Tracking Experiment

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
o:

 w

Setpoint tracking and disturbance rejection

Time (seconds)

A
m

pl
it

ud
e

feedforward

feedback (rlocus)

feedback (LQR)

-0.2 -0.1 0 0.1 0.2
-0.4

-0.2

0

0.2

0.4

 Y axis

 Z
 a

x
is

Commanded

Actual

57

Fig 4.28 shows End- Effector Trajectory Tracking Experiment; to verify end effector trajectory

tracking; the following discrete time trajectory is selected, and T is sampling time in millisecond.

 𝑆1(𝑘) =
𝜋

2
(1 − 𝑒0.001𝑘𝑇

3
)𝑠𝑖𝑛(0.285𝐾𝑇)

(4.2.6.3)

 𝑆2(𝑘) =
𝜋

3
(1 − 𝑒0.001𝑘𝑇

3
)𝑠𝑖𝑛(0.453𝐾𝑇)

(4.2.6.4)

 𝑆3(𝑘) =
𝜋

2
(1 − 𝑒0.01𝑘𝑇

3
) sin(0.285𝐾𝑇)

(4.2.6.5)

 𝐸1(𝑘) =
𝜋

3
(1 − 𝑒0.01𝑘𝑇

3
)𝑆𝑖𝑛(0.555𝐾𝑇)

(4.2.6.6)

 𝐸2(𝑘) =
𝜋

2
(1 − 𝑒0.01𝑘𝑇

3
)𝑆𝑖𝑛(0.345𝐾𝑇)

(4.2.6.7)

 𝑊1(𝑘) =
𝜋

3
(1 − 𝑒0.01𝑘𝑇

3
)𝑆𝑖𝑛(0.615𝐾𝑇)

(4.2.6.8)

 𝑊2(𝑘) =
𝜋

2
(1 − 𝑒0.01𝑘𝑇

3
)𝑆𝑖𝑛(0.465𝐾𝑇)

(4.2.6.9)

4.3 SUMMARY

Feedforward trajectory planner designed for optimizing the performance of neurosurgical robotic

manipulator used for human skull drilling; The required trajectory planned with constrained

dynamics for the robot end effector drilling system. Drilling trajectory is a point to point motion

with optimal time required to minimize the friction effect

Table 4.2 Comparison of Transient Response Characteristics

Controller Rise Time Overshoot Settling time Steady-state error

Feedback 16 s 0.05mm 28 s 0.001mm

PID 14 s 0.025mm 23 s 0.0001mm

Fuzzy PID 13.2s 0.0125mm 22.5 s 0.0001mm

Non-linear Fuzzy PID 13.2s 0.0125mm 22.5 s 0.0001mm

 A nonlinear fuzzy PID controller is used and compared with fuzzy inference system and PID

controller. As shown in Table 4.2; A Nonlinear fuzzy controller deployed with improved execution

speed. Simulation results show the smooth trajectory of fourth order feedforward planner in

comparison with rigid-body feedforward trajectory planner.

58

CHAPTER 5 FORCE SENSING AND CONTROL

Force estimation is a critical parameter in neurosurgery; the main advantage is to minimize the

error in skull drilling and could be used to optimize the skull drilling planner. This chapter presents

the proposed force detection and Control algorithms. The organization of the chapter is as follows.

Skull under drilling is modeled using linear and experimental model; A simplified model of the

human skull under drilling by using Matlab SimMechanics toolbox presented in section 5.1.

Section 5.2 describes the skull thickness measurement and estimation technique. Section 5.3

presents the Neural networks classifier for detecting of bone layers and Drilling state. Direct and

indirect force control presented in section 5.6 and 5.7.

5.1 LINEAR MODEL OF THE SKULL UNDER DRILLING

To accomplish a systematic study of robotic skull-drill a model of the skull-drilling interaction

forces is needed to create a mathematical model to simulate the dynamics of the drilling system.

In the literature, there is little information on methods for applying such a force to a dynamic

manipulator simulation. Drilling mechanism is the interaction between the robot tooltip drill and

the skull; which could be modeled by the double suspended mass-spring-damper system. This

simplified model could be used to analysis force and vibration acting on the drill. Two suspended

masses linked by springs and dampers demonstrating basic PA10 tooltip modeling by using

SimMechanics Toolbox.

Figure 5.1 Simplified Model of the Skull Drilling Mechanism

Since the equations of the system cannot be solved easily in mathematical form. So; SimMechanics

model developed with a schematic in Matlab Simulink that allows analyzing the behavior of the

drilling transit response.

59

Table 5.1 Design Parameters of the Skull Drilling Model

Part Name Variable Value

Mass of Drill tool M1 1 Kg

Damper of Drill tool B1 2 Kg/sec

Spring of the Drill tool K1 20 N/m

Mass of Skull M2 1 Kg

Damper of Skull B2 2 Kg/sec

Spring of the Skull K2 20 N/m

The system is shown in Fig. 5.1 is a representation of the Skull Drilling Mechanism where m1 is

the mass of robot drilling head, while m2 is the mass of the human skull, K1 & K2 are the stiffness

coefficient of the robot drilling head and table stiffness coefficient. Suspension. B1 - is the

damping coefficient of the suspension of the drilling head, b2 is the damping coefficient of the

table which the head mounted on it. X2 is the vertical displacement of drilling.

Figure 5.2 SimMechanics Model of the Skull Drilling Mechanism

60

Fig. 5.2 shows the SimMechanics Model of the skull drilling mechanism. This model used for both

forward dynamics and inverse dynamics analysis. This model demonstrates how to specify the

position, velocity, and acceleration of the drill mounted on the robot end-effector and measure the

force necessary to generate drilling motion. Only mass movements on the vertical axis will be

considered in this model. The response of Force modeling is shown in Fig. 5.3.

Figure 5.3 Response of Force Modelling

The displacement x1 & x2 will demonstrate the behavior of the drilling tool. This model applies

a motion at the extremity of a double mass-spring-damper system; it measures the forces

generating the motion which is the forces between masses. Force applied by the spring Measure

the force required to produce the motion specified by the Joint actuator in motion mode. The

resulted displacement in Fig.5.4 represents the drilling depth.

Figure 5.4 Drilling Depth in Skull

5.2 EXPERIMENTAL MODEL OF SKULL UNDER DRILLING

Due to the safety requirements of the robotic neurosurgical drill, a prediction model for the force

applied on skull under drilling is proposed. Experimental data is used to derive the transfer function

of the human skull under drilling.

61

Figure 5.5 Thrust Force (Fz) Response of skull under Drilling

Matlab system identification toolbox is used to approximate the transfer function. Drilling

experiments were done on the human skull by using PA107c robotic manipulator. The thrust force

is measured using a JR3 sensor which mounted on the robot tooltip. The resulted force is shown

in Fig.5.5.

Figure 5.6 Residuals of the Thrust Force

Linear Polynomial function with 9 degrees; LAR robust algorithm is used to improve system

identification; the resulted Transfer function is:

 𝑓(𝑡) = 𝑃1 ∗ 𝑥
9 + 𝑃2 ∗ 𝑥

8 + 𝑃3 ∗ 𝑥
7 + 𝑃4 ∗ 𝑥

6 + 𝑃5 ∗ 𝑥
5 + 𝑃6 ∗ 𝑥

4

+ 𝑃7 ∗ 𝑥
3 + 𝑃8 ∗ 𝑥

2 + 𝑃9 ∗ 𝑥 + 𝑃10

(5.2.1)

0 1000 2000 3000 4000 5000 6000

1

2

3

4

5

6

ZTime

Z
F

o
r
c
e

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

1.5

ZTime

Z
F

o
rc

e

62

Table 5.2 Coefficients values with 95% confidence bounds

Coefficients Value 95% confidence bounds

p1 6.696e-30 (5.323e-30, 8.068e-30)

p2 -1.718e-25 (-2.081e-25, -1.355e-25)

p3 1.843e-21 (1.44e-21, 2.247e-21)

p4 -1.078e-17 (-1.322e-17, -8.336e-18)

p5 3.761e-14 (2.89e-14, 4.632e-14)

p6 -8.081e-11 (-9.943e-11, -6.218e-11)

p7 1.061e-07 (8.305e-08, 1.292e-07)

p8 -8.136e-05 (-9.649e-05, -6.622e-05)

p9 0.03269 (0.02826, 0.03713)

p10 0.2055 (-0.1893, 0.6003)

Goodness-of-fit for the drilling force parametric model evaluated by calculating: The sum of

squares due to error (SSE); R-square; Adjusted R-square; and Root mean squared error (RMSE).

The resulted transfer function has a good fit as shown in Table 5.2.

Table 5.3 Goodness of fit

SSE: R-square: Adjusted R-square: RMSE:

34.58 0.9378 0.9353 0.392

Figure 5.7 Drilling Force along x-axis

0 1000 2000 3000 4000 5000 6000 7000
-3

-2

-1

0

1

2

3

4

5

6

t

XF
or

ce

Drilling Force along X axis

63

Fig. 5.7 and Fig. 5.8 show Drilling force along X-axis and Y-axis. Force difference between Fx

and Fz used in obtaining a perpendicular drilling by calculating the force difference between Fx

and Fy.

Figure 5.8 Drilling Force along y-axis

The desired prescribed drilling path is specified in the Cartesian space, as this is where the drilling

specifications easily described. Then, given a table of desired points, the end effector should have

the robot pass through. Finally; the inverse kinematics used to convert points from Cartesian space

to joint space. The rotary speed of the Skull drilling tool is a major factor that affects the drilling

efficiency. Drill bit breaks skull with light bit pressure mainly by grinding, the faster the rotating

speed is, the faster the drilling speed.

Table 5.4 Skull Drilling Trajectory Profile

Drilling Depth (mm) 6

Federate (mm·s−1) 0.27

Acceleration (mm.s−2) 0.01

Jerk (mm·s−3) 0.05

Snap (mm·s−4) 0.05

Table 5.4 shows the reference parameters for the generated drilling trajectory of the skull. The

recommended drill speed is less than 6000 rpm. The maximum recommended cutting speed is 0.27

mm/sec. The maximum recommended acceleration is 0.01 mm/sec^2.

0 1000 2000 3000 4000 5000 6000
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

YF
or

ce

Drilling Force along Y axis

64

Figure 5.9 Matlab Simulation of Skull Drilling

The maximum recommended drill force 20 N. The rotating speed of bit ‘n’ can be calculated by:

 n = (60v)/ (πD) (5.2.2)

Where ‘v’ is the cutting linear velocity of the drilling tool, 'D' is the diameter of the bit. Because

of small in bit pressure and shallow depth in the drilling of the skull drill, high rotating speed can

be adopted to obtain higher drilling speed.

5.3 SKULL DRILLING STATE DETECTION

 Thrust is a reaction force described quantitatively by Newton's second and third laws. When a

robot accelerates drilling tooltip mass in one direction, the accelerated drilling tooltip mass will

cause a force of equal magnitude but opposite direction on that system. Thrust force applied on a

skull surface in a direction perpendicular or normal to the skull surface. A force sensor is used to

measure the contact force “thrust force” between the robot tooltip and human skull; Force control

is needed due to the need of an accurate movement in contact with the skull under neurosurgical

operation. Without the sensor interaction, the process may damage skull. Strategies that handles

this drilling task make a larger scope of use and a higher safety possibility and improves drilling

performance. There are two practical implementations of force/torque sensors using equilibrium

65

condition between two forces, being one known and working as a reference to obtain the other.

The second method is the determination of motion parameters imposed on a known mass by the

unknown force. This approach used in the JR3 force/torque sensor.

Table 5.5 Force Sensor Specifications

Parameter Force Torque

Range in X, Y ±100𝑁 ±6.3

Range in Z ±200 N ±6.3

Accuracy 0.009N 0.01

Resolution in x, y 0.025 N 0.0016

Resolution in Z 0.05N 0.0016

The force sensor mounted on the drilling tooltip of the PA10-7c robotic manipulator; the

force/torque sensor measures near the point where the robot control. An orientation transformation

used for mapping force between joint coordinates and Cartesian coordinates. In the presented

system, a force/torque sensor from JR3 Ltd. used as a wrist sensor on the end effector.

Figure 5.10 Force Sensor JR3

This sensor is very stiff and will therefore not affect the position accuracy of the robot system.

The JR3 Force/ Torque sensor used is of type 100M40A. It is mounted on the tool tip of the robotic

manipulator; JR3 instrumented with strain gauges can measure forces in the x-, y- and Z-directions

as well as the corresponding torques. It is DSP-based board and has a sample rate of 8 kHz. It can

measure forces up to 400N and torques up to 40Nm.

66

Figure 5.11 The three bone layers of the cranial vault. [135]

The skull is composed of two layers of cortical bone, the inner and outer “tables”- separated by a

cancellous bone [136]. Cortical bone, synonymous with compact bone, is one of the two types of

osseous tissue that form bones as shown in Fig 5.11. Each layer has different structure; that is

why each layer reacts differently when robotic arm is applying drilling on the skull.

5.3.1 NEURAL NETWORK STATE CLASSIFIER

Neural Networks widely used in many applications, such as prediction, pattern recognition, and

classification. Neural networks provide an alternative to algorithmic methods when logical rules

do not exist or are difficult to determine; especially when the input data may be incomplete or

distorted. A force sensor is mounted on the drilling tool tip to detect the sharp drop in thrust when

the drill crosses the interfaces between hard and soft tissues of the bone.

Figure 5.12 Thrust Force (Fz) Response of skull under Drilling

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

Time steps

Z
F

o
rc

e

Cortical Bone Cortical Bone Cancellous Bone

67

A neural network pattern recognition algorithm analyzes the force and torque data received from

the JR3 sensor. Force data is pre-filtered using the built in JR3 filters, and force data are used in

the determination of skull drilling state by using Neural Networks. Force data is represented as a

force with time series as shown in Figure 5.8; skull bones consist of internal and external layers of

compact bone, separated by diploë [137].

Identifying robot working States during drilling is necessary. Moreover, To determine if the

perforator has perforated the hole in the skull, the robot needs to know current stopping-drilling

state to avoid stressing both the robot and the patient. Many training algorithms could applied to

train ANN such as Levenberg-Marquardt algorithm (LM) which is one of the fastest algorithms

and works perfectly with small neural networks; but it is not suitable for very large neural networks

due to the memory and computation overhead. Quasi-Newton algorithm is based on the Newton's

method, which computes the update of approximated Hessian matrix as a function of the gradient.

Generally, it converges in a few iterations. Nevertheless, it is not suitable for very large networks

because of its computation and memory overhead. However, it is very efficient for small size

networks. Gradient descent algorithm “GD” updates the weights and biases in the direction of the

negative gradient of the performance function. It is slow and usually trapped in local minima of

the error surface. Gradient descent by momentum algorithm “GDM” is similar to Gradient descent

algorithm; but it improves the gradient by using momentum during the training. It could overcome

the local minimum problem and has faster convergence than the Gradient Descent algorithm.

Table 5.6 Ranking Training Algorithms of FFN with 10 hidden layers

Algorithm Training Time Operation Time MSE Regression MAPE

1 LM 27.74 0.0704 1.17 ∗ 10−7 1 0.0000056

2 BFG 9.1 0.0155 10.55 0.9938 0.432

3 RP 0.499 0.0159 8.75 0.9949 0.3375

4 SCG 0.416 0.0169 1.17 ∗ 10−7 1 0.0000056

5 GDM 0.254 0.0169 10.55 0.9938 0.423

6 OSS 0.901 0.0172 8.75 0.9949 0.3375

7 GDX 0.47 0.0166 1.17 ∗ 10−7 1 0.0000054

There are many training algorithms used with Feed Forward neural networks; these algorithms are

trained with the experimental force data; and evaluation criteria is applied on networks result based

68

on: Training Time; Execution Time; Error; MSE; MAPE and regression analysis. The performance

of the network measured in terms of its response as shown in Table 5.6.

Table 5.7 Network Performance in case of using 10 hidden layers

Network Regression MAPE Processing Time MSE

Net 1 0.9983 0.2726 0.0736 2.95

Net 2 0.9965 0.3375 0.0155 5.98

Net 3 1 0.000025 0.0154 2.5 ∗ 10−8

After the training process, the performance of the trained network evaluated by applying testing

data and evaluate the fit between inputs and outputs. So; based on the performance specification

priorities; three algorithms chosen as following: RP, BFG, LM. All of them are fast in training;

operation time; and have low regression value which is required to be law in case of improving

the performance by using different network topologies. Table 5.7 shows the performance of three

different ANN in case of using 10 hidden layers using different training techniques;

Figure 5.13 Serial Topology of ANN

Neural Networks; could be connected in many connection topologies; such as: serial topology

and parallel topology. Cascade connection topology can be constructed by connecting the output

of the first network to the input for the second network as shown in Fig 5.13 where Net 1 trained

with ‘x’ input value and ‘t’ target value; while Net 2 will be trained with the output of Net 1 “y1”

as an input to it with respect to “t” target value.

Figure 5.14 Training state of Serial ANN Topology

10
-5

10
0

10
5

g
ra

d
ie

n
t

Gradient = 0.00022953, at epoch 1000

10
-6

10
-4

10
-2

m
u

Mu = 1e-05, at epoch 1000

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

v
a
l
fa

il

1000 Epochs

Validation Checks = 0, at epoch 1000

69

Connection order is very important factor in serial topology; accurate ANN should be in first stage

to minimize the overall fitting error and to increase the overall performance. Fig. 5.13 shows serial

connection topology of three ANN; training state and the performance of the aggregated ANN is

shown in Fig. 5.14 and Fig. 5.15 respectively.

Figure 5.15 Evaluation of Serial ANN connection

Fig. 5.16 shows the Parallel topology of ANN; in the Parallel ANN Topology; same input is

applied to all networks; and then the output of all networks is aggregated to single Output neuron.

Different weight is assigned to each network where the best network is chosen to have higher

weight.

Figure 5.16 Parallel Topology of ANN

By connecting neural networks in parallel; there is no difference in connection sequence because

all networks are in parallel; and the final output is improved compared with the output of each

network due to the averaging mechanism in the parallel topology. Better results could be obtained

by adding higher weight to the best network performance.

Table 5.8 Topology Performance in case of using 10 hidden layers

Topology Regression MAPE Processing Time

Serial Ys 0.9965 0.2855 0.0157

Parallel Yp 0.9978 0.2684 0.0152

0 100 200 300 400 500 600 700 800 900 1000

10
-6

10
-4

10
-2

10
0

10
2

10
4

Best Validation Performance is 2.7505e-07 at epoch 1000

M
ea

n
Sq

ua
re

d
Er

ro
r

(m
se

)

1000 Epochs

Train

Validation

Test

Best

70

Figure 5.17 Evaluation of Parallel ANN Topology

Parallel topology is doing averaging for the output error; which mostly improve the performance

in the systems with low data distribution; On the other hand; Serial topology is accumulating error

from each training stage; which mostly improve the overall performance in the systems with high

data distribution. Table 5.8 shows the comparison between serial and parallel topologies in case

of using 10 hidden layers.

Figure 5.18 Regression Analysis of the Parallel ANN Topology

Fig. 5.18 shows performance evaluation of parallel topology; After analyzing each topology

performance; it could be concluded that; If there is only one stage in the topology; then

performance of parallel topology is better than the performance of serial topology.

0

20

40

60

80

100

120

140

160

Error Histogram with 20 Bins

In
s

ta
n

c
e

s

Errors = Targets - Outputs

-0
.0

0
6
8
8

-0
.0

0
6
3
6

-0
.0

0
5
8
4

-0
.0

0
5
3
2

-0
.0

0
4
8

-0
.0

0
4
2
8

-0
.0

0
3
7
6

-0
.0

0
3
2
4

-0
.0

0
2
7
2

-0
.0

0
2
2

-0
.0

0
1
6
8

-0
.0

0
1
1
6

-0
.0

0
0
6
4

-0
.0

0
0
1
2

0
.0

0
0
4
0
2

0
.0

0
0
9
2
2

0
.0

0
1
4
4
2

0
.0

0
1
9
6
2

0
.0

0
2
4
8
2

0
.0

0
3
0
0
2

Training

Validation

Test

Zero Error

-80 -60 -40 -20 0 20

-80

-60

-40

-20

0

20

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 -
3

.5
e

-0
6

Training: R=1

Data

Fit

Y = T

-80 -60 -40 -20 0 20

-80

-60

-40

-20

0

20

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.0

0
0

1
8

Validation: R=1

Data

Fit

Y = T

-80 -60 -40 -20 0 20

-80

-60

-40

-20

0

20

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 0
.0

0
0

1
5

Test: R=1

Data

Fit

Y = T

-80 -60 -40 -20 0 20

-80

-60

-40

-20

0

20

Target

O
u

tp
u

t
~

=
 1

*T
a

rg
e

t
+

 4
.9

e
-0

5

All: R=1

Data

Fit

Y = T

71

5.3.2 DETECTION OF BONE LAYER USING ANN

The procedure of the classification based on the force signals using neural networks with 5-level

decomposition as shown in Fig 5.19. Signal Thresholds defined for each drilling stage using Force

signal in the Z direction. These levels are further applied to the Neural Network to classify drilling

state, such as rotation without drilling, Start drilling in the first layer of skull bone; Start of drilling

in the second layer; Start of drilling in the third layer; End of drilling the third layer and the

detection of breakthrough. The force data comes from the JR3 force sensor. First, we collect a

complete set of force data during the whole drilling process including the drilling in the three layers

of the skull; 919 force samples used with neural networks; where data divided into three parts:

70% training; 15% validation and 15% testing.

Following the procedure mentioned above, the force prediction experiment conducted, and the

data processed offline. 641 samples used as training data and another two sets of 137 samples used

in testing and validation respectively. The numbers of input and output layers in the neural

Detection of Skull Layer

Detection of Drilling State Layer
No Drilling

Start Drilling

Stop Drilling

Skull Breakthrough

Retrieving

F
o
rc

e
D

at
a

No Drilling

Start of Layer One

Start of layer Two

Start of Layer Three

End of Layer Three

Figure 5.19 Block Diagram of Neural Networks Classifier

72

networks model are set to be 20 and 5, respectively. After training, we use other complete sets of

force data to test the proposed classifier.

Table 5.9 Drilling State recognition using Neural Networks

Stage

Case One

(919 Sample)

Case Two

(6000 sample) Force

(N) Start

Sample

End

Sample

Start

Sample

End Sample

Time

No Drilling

(Rotating)
0 14 0 96 1.853

Start of Layer One 14 349 96 2695 3.2158

Start of Layer Two 349 596 2695 4263 5.364

Start of Layer Three 596 846 4263 5159 1.8535

End of Layer Three 846 846 5159 5159 5.235

Breakthrough 846 919 5159 6000 3.158

Table 5.9 shows the Drilling state recognition using Neural Networks; based on the selected

thresholds; each drilling state is classified using experimental data as shown in Fig. 5.20; LM

training algorithm is used in training ANN; parallel topology is used in connecting the layers of

ANN to improve the overall performance.

Figure 5.20 Neural Networks Training Performance

5.3.1 DETECTION OF DRILLING STATE USING ANN

Force data represented as Force with time series; Drilling experiments were done on the Human

skull, and Force data is logged using Matlab routine. Force data used in Feature Extraction; when

0 5 10 15 20

10
-2

10
-1

10
0

Best Validation Performance is 0.014007 at epoch 16

C
ro

s
s

-E
n

tr
o

p
y

 (
cr

o
s

s
e

n
tr

o
p

y)

22 Epochs

Train

Validation

Test

Best

73

the robot performs the drilling task, each drilling stage is defined, and the threshold is defined for

five drilling stages as shown in Table 5.10.

Table 5.10 Robot State recognition using Neural Networks

Stage
Case One (919 Sample)

Force (N)
Start Sample End Sample

No Drilling (Rotating) 0 14 1.853

waiting 14 349 1.41

Starting-drilling 349 596 5.364

Stopping drilling 846 846 1.8535

Retrieving 846 919 5.235

This classifier added to improve the overall design; where five outputs represent five states which

are: rotation, waiting, starting-drilling, stopping drilling, and retrieving, the features for one

complete set of force data as shown in Table 5.10. Force data used as training examples to train

the NN model.

Figure 5.21 Drilling Tests on Human Skull using PA10 Robotic Manipulator

Skull thickness estimation is critical in neurosurgery; the main advantage is to minimize the error

in skull drilling and could be used to optimize the skull drilling planner. Skull Drilling State

Detection is a part of Neurosurgical Robotic System; the overall system has There is no golden

standard for skull drilling. However, by performing drilling tests on the human skull; The

maximum drilling torque is about 20 N·m; in the pressure of 20 N and rotating speed of 6000 rpm,

74

and the system power could satisfy the demand for drilling. Drilling pressure is one of the critical

technical parameters of the skull drill. The bit pressure is 5 N/m. Robotic manipulator moves to

the desired drilling position, then begin to drill the hole. When a hole completed, the robot

automatically stops by using the neural networks drilling state recognition algorithm. After the

data has been acquired from the first experiment, The Artificial neural network model constructed

and the parameters threshold was applied. Three different criteria were chosen to evaluate the

performance of the state detection, namely: relative mean squared error (RMSE), cross-correlation

(CC), mean absolute error (MAE). The feed rate was fixed at 0.1mm/s and tested. In the

experimental drilling tests, there was no unexpected failure, and the overshoots of all tests were

well less than 1 mm. The proposed NN recognition algorithm gives the ability to perform partial

Drilling tasks which could be useful in some orthopedic procedures.

5.4 INTERACTION CONTROL

Skull Drilling using an industrial robot requires keeping the contact force in such way that an

excellent quality of the hole achieved and that the hole is in right position. Keeping the contact

forces low will minimize the risk of having a position sliding when the robot is in contact with the

skull. A sliding causing the hole to get oval and may damage the cutting tool because of the

tangential forces that occur in the cutting tool. The goal of work is to set up the requirements of

skull drilling task where high requirements for the drilling application exist in positioning

accuracy, accessibility, cycle time and quality of the hole. The focus will be on the positioning and

the contact forces, which are the most important requirements for neurosurgery system. The whole

drilling process should be considered and be optimized.

5.4.1 FORCE CONTROL OF PA10 ROBOT TOOLTIP

Managing the interaction of a neurosurgical robot with the skull done by adopting motion control

strategy with force control to allow the surgeon to guide the robot by leading its tool to the desired

position. Force control algorithms can be roughly divided into direct methods and indirect

methods. In the Direct control; The forces measured at the end-effector are used to directly

calculate joint torques by using the transpose Jacobian of the robot arm. A proportional or integral

term is used as a basic control law with this control methods. In the Indirect control; a position-

75

based control loop used to drive the robot joints based on both position error and force error; where

force error is converted into a position error by using a mass-spring-damper representation; the

resulting response causes the robot end effector to respond to forces in a manner like a mass-

spring-damper system. In other words; The designed interaction control scheme could be one of

the following:

• The control system should be able to control the robot position along the direction of the

task space and the environment imposes natural force constraints

• The control system should be able to control the robot force along the direction of the task

space and the environment imposes natural position constraints. In both cases; A force

feedback system for a robotic neurosurgical system should be developed to fulfill the

drilling requirements in skull structures and to minimize errors and uncertainties which

may cause to an unstable behavior during the interaction.

5.4.2 DIRECT FORCE CONTROL

The direct force control scheme is the simplest form of force control where the controller acts on

the error between the measured contact force and the desired force. The force loop is acting on the

force error as shown in Fig 5. 22.

Figure 5.22 The structure of the position based direct force controller

The force controller will calculate the feedback distance error which used in the closed loop of the

trajectory in Cartesian space. Inverse kinematics is used to convert the resulted Cartesian space to

joint space and fed to the position controlled the robot. The force loop parameters selected to

dominate over the position loop so that the force error goes to zero at the expense of the position

error.

76

5.4.3 INDIRECT FORCE CONTROL

The force control law generated to accommodate position commands to the inner position

controller. The controller input variables are the force/torque error e(k) and error variation de(k):

 𝑒(𝑘) = 𝑓𝑎(𝑘) − 𝑓𝑑(𝑘) (5.4.3.1)

 𝑑𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) (5.4.3.2)

Figure 5.23 Indirect force control approach

Where fa(k) is the actual thrust force applied to the skull; and fd (k) is the desired Force which

within the safety margin. The controller output is the position/orientation accommodation,

assumed to be small.

5.5 SUMMARY

This chapter presents an optimized detection technique for human skull drilling system. The skull

drilling device modeled by using SimMechanics Matlab toolbox; the proposed model is simulated

to test the performance of skull drilling device. Neural network classifier is used for robot state

recognition to optimize the performance of skull drilling control system and proofs that the system

has good disturbance rejection. A neural network classifier presented which used to detect of bone

layers; this technique improves the overall performance of the skull drilling and could be used in

partial bone drilling.

77

CHAPTER 6 SIMULATIONS AND EXPERIMENTS

This chapter presents the simulation and experimental results of manipulator control algorithms:

In the simulation part; The mechanism of building a modular design of a neurosurgical robotic

manipulator is implemented by using multiple simulation tools such VRML, Matlab, and V-REP.

This approach provides a unified framework for quick and cost-effective testing of control

algorithms. A remote controller implemented in the Matlab/Simulink environment. Moreover, the

System physical environment has been modeled on Virtual Robotics Experimentation Platform

(V-REP). Matlab / Simulink controller synchronized with the V-REP by using ROS interface.

6.1 PA10-7C ROBOT SIMULATOR

Simulation has been recognized as an important research tool robotics. Different tools used for the

analysis of kinematics and dynamics of robotic manipulators. Before we apply our ideas to a

suitable control concept to the actual robot, a simulation should be done to avoid risky robot

motions and perform a ground truth evaluation.

6.1.1 SIMULATOR OF PA10 ROBOT USING MATALB

A simulator is built for the PA107c robot to help in controller design. Robotic arm represented by

a mathematical model using Matlab robot toolbox which helps in minimizing the number of

modeling steps. The matrices obtained using robot kinematics allow to calculate the relative link's

position for the PA10 robot structure and build a kinematics simulator. Fig. 6.1 shows the

trajectory movement of the PA10 joints; smooth trajectory is chosen for each joint.

Figure 6.1 Matlab Simulation of PA10 Robotic Manipulator

Some useful functions added to the simulator such as joint limits; speed limit; acceleration limit

and force modeling. This simulator is very helpful for both offline and online programming of the

78

robot which implemented on the real robot. This program also was able to output the signals to the

PA107c robot, thus allows to prove in real time the drilling routine. The 3D simulator has many

advantages such as:

• Debugging control code, simulating real robot movements

• Immersive virtual scenario for patients

• Fast development of neurosurgical training systems

• Integration of a redundant measuring system verify

• The actual position and increase the safety level

PA10-7C model is developed to define the kinematic and dynamic characteristics of a Mitsubishi

PA10-7C 7 DOFs manipulator by using standard DH conventions.

Figure 6.2 3D Simulator of the PA107c Robotic Manipulator

Kinematics provides a means to connect the operational space and joint space; where the position

and orientation of the end effector are conveniently described in the operational space; while the

robotic manipulator controlled in the joint space.

79

Figure 6.3 Trajectory movement for PA 10 joints

Inverse kinematics is a mapping from the operational space to the joint space; Jacobian matrix for

PA10-7C robot arm is derived to describe the relationship between joint angular velocities in the

joint space and the end effector's velocities in Cartesian space. Matlab model of PA10-7C built for

simulating the motion behavior of the manipulator.

Figure 6.4 End Effector Trajectory for each direction

6.1.2 PA10 ROBOT MECHANICAL MODELLING USING SIMSCAPE

Classical control system analysis involves the use of differential equations to describe a physical

system. To get the response of the system, we use the steps shown in Fig 6.5 to derive the

mathematical model. Most physical systems include some combination of mechanical, electrical,

and hydraulic components. Mathematical models used to predict system performance with

considerable accuracy and adequate quality control of the materials used. Once differential

equations describe the control system, it is desired to solve them for some control variable (output)

0 2 4 6 8 10 12 14
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (Seconds)

T
ra

je
ct

o
ry

 (
m

)

Trajectory in x direction

Trajectory in Y direction

Trajectory in Z direction

80

in response to the desired input function such as a step input, ramp input, or other function. Also,

the control system may have some initial conditions. With the advent of total computer control, it

is possible to use iterative techniques for the solution of control systems described by Laplace

transforms.

Figure 6.5 Steps of modeling mechanical system response

The physical model built using Matlab Simscape toolbox which used to get the response of the

system without the need of deriving the mathematical model because the mathematical model for

each physical component in the system is pre-calculated and derived, and it is easy to suit most of

the real environmental conditions and restrictions such as change in initial conditions and operating

conditions and fault cases [138]. The components of this library depends on using incremental

model approach which is used for multi-input- multi-output system; When building a robotic

model by using Simscape; two types of variables must be mentioned; [139] which are cross

variables and through variables. Across variables such as angular velocity which directly

connected with one another continue to share the same across variables. While through variable

such as flow rate or torque are transferred along the Physical connection line is divided among the

multiple components connected by the branches. For each through variable, the sum of all its

values flowing into a branch point equals the sum of all its values flowing out.

81

Figure 6.6 Steps for Modeling Mechanical Systems [140]

Steps needed to build and run a model representation of a robot shown in Fig 6.6 which start with

building the physical Model and specifying body inertial properties, degrees of freedom, and

constraints, along with coordinate systems attached to bodies to measure motions and forces.

Sensors and actuators added to the system and solver mode for forces ; torques and initial

conditions are chosen. Solver mode could be one forward or inverse dynamics model. The three-

dimensional model of the robot is visualized and animated. The dynamics of the Mitsubishi PA-

107c robotic manipulator is defined, and all unknown system parameters identified which used in

the obtained dynamic model. Simscape Toolbox and Control Toolbox are used to test the robotic

arm.

Figure 6.7 Mechanism of Building Dynamic Model using MATLAB Simscape

After drawing the mechanical model of motion platform by using computer aided design tools

such as SolidWorks or AutoCAD; CAD translation tool could be used to transform geometric

CAD assemblies into Simulink block diagram model. The CAD translation tool first exports the

Assembly model from CAD platform into physical modeling file with XML extension. The

82

physical modeling file is then imported into Simulink, creating a SimMechanics model. Figure 6.8

shows the simplified Steps for generating Mechanical Model of the robot in CAD platform and

model after it is converted into SimMechanics.

Figure 6.8 Steps for generating Mechanical Model of Motion Platform

The SimMechanics model is incorporated with inverse kinematics model for actuation control.

The inverse kinematic model controls the actuators to extend and retract relatively to one another.

The complete model allows the motion of the platform cues to be visualized. This also helps to

test and validate the performance of inverse kinematics model. Fig 6.9 shows the construction of

PA10-7c Dynamic Modeling using Matlab SimMechanics.

Figure 6.9 PA107c Dynamic Modeling using Matlab SimMechanics

C
S

1
C

G

C
S

2

l ink7

CG

CS1
CS3

link5

CG

CS1
CS4

link4

CG

CS1
CS2

link3

C
G

C
S

1
C

S
4

link2

C
G

C
S

1
C

S
4

link1

Env
Machine

Environment

Joint Sensor_5

Joint Sensor_4_2

Joint Sensor_4_1

Joint Sensor_4

Joint Sensor_3

Joint Sensor_2

Joint Sensor_1

Joint Actuator_5

Joint Actuator_4_2

Joint Actuator_4_1

Joint Actuator_4

Joint Actuator_3

Joint Actuator_2

Joint Actuator_1

S_2

P1

L3

L1

P5

S_3

S_1

L4

P4

S_4

P3

P2L2

S_5
S_6

P6

L6

P7R7

S_7

L5

A_5

A_2

A_7

A_6

A_4

A_1

A_3

C
S

1
C

G

End Effector

B
F

DOF7

B
F

DOF6

BF

DOF5

BF

DOF4

B
F

DOF3

B
F

DOF2

B
F

DOF1

p [
R

]Body Sensor_w

p

[R]

Body Sensor_f_2

p [
R

] Body Sensor_f_1

p

[R]

Body Sensor_f1

p

[R]

Body Sensor_f

p [
R

]

Body Sensor_2

p [
R

]Body Sensor_1

Base

83

6.1.3 DYNAMIC SIMULATION OF THE PA10 ROBOT BY USING V-REP

The software Virtual Robot Experimentation Platform (V-REP) is an open source 3D robot

simulator utilizes a distributed control architecture either in threaded or non-threaded fashion [141]

which makes V-REP perfect for multi-robot applications. VREP makes it possible to create 3D

simulations imported from CAD design tools. V-REP have a physical engine implemented which

can simulate physical properties like gravity and collision forces

Figure 6.10 Workflow to create a dynamic model

The physics engine allows dynamic interaction between the robot and with the simulated

environment and effect as friction and gravity are added to the simulation. V-REP offers a remote

API allowing to control a simulation from an external application such as from Matlab [142]. In

our experiment; the Remote controller is developed in Matlab Simulink while the actuation and

physical interaction part created in V-REP. The general scheme of the developed simulator can be

seen in Figure.6.9.

Figure 6.11 Simulation of Skull Drilling by using VREP

84

In the Simulink part; controller read feedback signals and send the control signals based on the

required set point which sent back to V-rep. Matlab interact with V-REP via communication socket

in a way that reduces lag and network load. Matlab code sends the drilling depth set point to V-

REP and gets state data from it. LUA script in V-REP used to interact with Matlab and sends these

values to appropriate child scripts. The visualization of processed data is done both in Matlab and

V-REP application. The simulation model is controlled via LUA scripting language. Figure. 6.10

Shows the 3D representation of the PA10 robotic manipulator used in Skull Drilling procedure;

Kinematic and dynamic model is interfaced with the 3D visualization model. Two major types of

embedded scripts are written for PA10 robotic manipulator: Main simulation script and child

scripts, child scripts handle low-level dynamic motor controllers. Matlab is an excellent tool

developing and testing control algorithms, but Matlab lacks an easy to use 3D physical simulation

engine. In this point, V-REP is one of the alternatives for 3D modeling and physical environment

interaction testing. The interface of Matlab/Simulink with V-REP using ROS as communication

middleware.

Figure 6.12 Simulation of Skull Drilling by using VREP

V-REP used to make robot simulation of the PA10 robotic arm to be used for skull drilling. In V-

REP the movements are written in LUA code. In the development process of the control system,

late modifications are costly and time-consuming. Virtual models could be used to find errors in

the design before implementing it to the hardware. The dynamic model is used to predict the

movements of the PA10 robot. To build a dynamic model of the neurosurgical drill; static CAD

model exported to V-REP. by comparing the performance of both dynamic models; it could be

85

concluded that V-REP gives easier; faster and better visualization when compared with Matlab

Simulink.

Table 6.1 Comparison between Dynamic Simulation using Matlab and V-REP

Feature Matlab V-REP

Dynamic Model Design Good Good

3D Model Design Good Very Good

Ability to Integrate with External Devices Very Good Good

Data Logging and Analysis Excellent Good

Learning Curve Fast Slow

Simulation Speed Slow Fast

6.2 EXPERIMENTS OF NEUROSURGICAL ROBOTIC SYSTEM

The objectives of the proposed Neurosurgical System are open source based; an easy user

interface; embedded with safety algorithms; improve precision; enhance dexterity; enables work

in confined spaces; enable remote participation, and eliminates hand tremor. Separated

Monitoring and Control loops are used in the control architecture of the PA107c robot. The

Objective of working on a Separated Monitoring and Control procedures is to minimize the

sampling rate by using direct executable Matlab interface with PA107c robot implemented with

separated Monitoring and Control procedures.

Matlab is connected with logging Database and sampling rate is 118m seconds; So it is better to

use direct executable interfacing between Matlab and VB6; and try to read the current joint angles

S1, S2, S3, W1, W2, E1, E2. Moreover, use that data in Simulink to move the 3D model of the

PA10 robot. The desired prescribed drilling path is specified in the Cartesian space, as this is where

the drilling specifications are easily described about the PA10 robotic manipulator environment

and the skull. Then, given a table of desired points, the end effector should pass through the inverse

kinematics stage to convert points from Cartesian space to joint space.

6.2.1 COMPONENTS OF PA10 ROBOTIC MANIPULATOR

 The Mitsubishi PA10-7C robot arm has 7-Degree of Freedom (DOF). That can make complex

movements. The benefits of a redundant robot are its flexibility and dexterity to move around, and

capability of adding additional constraints to avoid obstacles and joint limits. However, to

successfully, reliably, safely, and precisely control the robot, modeling and simulation are

86

necessary to find control strategies for the proposed system. To successfully execute tasks, the

robot has to be controlled precisely, stable, and safely, either in free space or the Interactive

environment. Consequently, modeling and control are the foundations of the Mitsubishi PA10-7C

robot arm. Modeling and control deal with kinematic and dynamic modeling, Jacobian matrix

derivation, and control of set-point and trajectory tracking.

 Figure 6.13 shows the relation existing among each of the mentioned components; where the parts

of PA10 are as follows:

• Level 1: robot manipulator mechanical system.

• Level 2: Servo drives to control the servo motors of each joint.

• Level 3: Motion control section (MCS); formed by the motion control and optical boards.

• Level 4: Operation control section (OCS); formed by the PC and the teaching pendant.

Figure 6.13 Components of PA10 Robotic Manipulator [49]

6.2.2 ARCHITECTURE OF THE NEUROSURGICAL MOTION SYSTEM

A flow chart for the implemented control system is shown in Fig 6.14. The host computer runs the

Windows XP operating system, and we have been able to achieve communication rates of up to

200 Hz with the robot servo driver through the ARCNET LAN protocol.

87

Figure 6.14 Flowchart of Mitsubishi PA-10 Four-layer control architecture

Visual Basic IDE is used for building the graphic user interface for the control system while Matlab

is used for data analysis. TCP/IP protocol is used to communicate between Matlab, Visual Basic,

3D Slicer; and V-REP. The PA10 system is composed of four sections or levels, which conform a

hierarchical structure. PA10-7C have 7 degrees of freedom industrial robotic manipulator

manufactured by Mitsubishi by Mitsubishi Heavy Industries.

Figure 6.15 Architecture of the Neurosurgical Robotic System

The architecture of the robotic skull drill system is shown in Fig.6.15. It consists of the Mitsubishi

PA-107C robotic manipulator, the robotic arm control box, master Computer; Client Computer;

a JR3 force sensor; and joystick.

Figure 6.16 End Effector Trajectory

88

6.2.3 MOTION CONTROL OF THE NEUROSURGICAL ROBOTIC SYSTEM

The PA10-7c robotic arm controlled in three distinct phases. In the first step; the drill will follow

the desired trajectory from its initial position to a particular position under position control

without any interactions with the environment; Inverse kinematics is used to calculate the proper

joint angles taken into account the robot constraints such as singularity and joint limits. In the

Second step; Force steering is used to control the robot end effector to the drilling location; In

the third step; Cartesian-based control apply the desired trajectory to the robot end effector

regarding time histories of positions, velocities, and accelerations. Joint- based control schemes

use these desired trajectories to the Joint inputs.

Figure 6.17 Existing PA10-7C Robot Control

The inverse kinematics performs the trajectory conversion. The errors in Cartesian space

calculated as follows:

 ex (t) = xd (t) - x(t) (6.2.3.1)

Where: xd (t) is the desired Cartesian trajectory and x(t) is the actual robot end-effector Cartesian

space. The velocity command interpolated to form a letter “S” shape adjusting to the default speed.

6.2.4 NEUROSURGICAL SKULL DRILLING FORCE CONTROLLER

Skull Drilling using an industrial robot requires keeping the contact force in such way that an

excellent quality of the hole achieved and that the hole is in right position. Keeping the contact

forces low will minimize the risk of having a position sliding when the robot is in contact with the

skull. A sliding causing the hole to get oval and may damage the cutting tool because of the

tangential forces that occur in the cutting tool.

Force control algorithms can be roughly divided into direct methods and indirect methods. In the

Direct control; The forces measured at the end-effector are used to directly calculate joint torques

89

by using the transpose Jacobian of the robot arm. A proportional or integral term used as a basic

control law with this control methods.

Figure 6.18 Force Control for Skull Drilling System

In the Indirect control; a position-based control loop used to drive the robot joints based on both

position error and force error; where force error converted into a position error by using a mass-

spring-damper representation; the resulting response causes the robot end effector to respond to

forces in a manner like a mass-spring-damper system. Force signal is analyzed to determine the

stage of operation. When the drill is contacted with the object initially, the changing of force is

large, and the drill is activated. During drilling, the force will be maintained at a particular value

by Force Controller. The drill automatically stops when the drilling finished. Otherwise, the brain

will be damaged.

Figure 6.19 Robot Steering Force in X, Y,Z directions

Force control algorithms could also be divided into passive and active Force control. Passive

force control is used when there is no force sensor. This force control needs special purpose

compliant end-effectors for the desired task and can only cope with small misalignments [143].

90

Active force control is based on force measurements which are fed back to the controller.

Impedance control or compliance control is the most common active force control approaches.

Figure 6.20 Robot End Effector Trajectory in the X, Y, Z Direction

Force controller reads the robot steering Force in X, Y, and Z directions as shown in Fig.6.19 and

calculates the feedback distance error which used in the closed loop of the trajectory in Cartesian

space. Inverse kinematics is used to convert the resulted Cartesian space to joint space and fed to

the position controlled the robot. The force loop parameters selected to dominate over the position

loop so that the force error goes to zero at the expense of the position error. The resulted robot end

effector trajectory is shown in Fig. 6.20.

Figure 6.21 Implementation of Force Steering for PA107c Robotic Manipulator

91

Separated Monitoring and Control loops are used in the control architecture of the PA107c robot.

The Objective of working on a Separated Monitoring and Control procedures is to minimize the

sampling rate by using direct executable Matlab interface with PA107c robot implemented with

separated Monitoring and Control procedures. The resulted sampling rate is 118m seconds; When

Matlab connected with logging Database; So Direct interfacing between Matlab and VB6 is used

to improve the system integration and overall performance; Sampling rate is minimized to 15 m

seconds; Figure 6.22 shows the data monitoring and logging of PA107c Robotic Manipulator

using Matlab.

Figure 6.22 Matlab Interfacing with PA107c Robotic Manipulator

The software routines are written to synchronize the data obtained in the real robot with the

simulation technique, so the simulator reads the data at the correct time. For safety consideration;

the drill moves forward or backward according to the force signal applied to the drilling tool. When

the force exceeds force threshold; the robot will not move the drill forward again. Different joint

trajectories have been used on the real robot, and the joint positions and velocities were logged

and compared with the results of robot simulator in real time.

6.2.5 MOTION CONTROLLER OF THE NEUROSURGICAL ROBOTIC MANIPULATOR

The aim of the motion controller is the determination of an allowable trajectory for all degrees of

freedom of the robotic manipulator, where the desired trajectory is constrained with the design

92

requirement and mechanical system behavior. However; skull has three layers; So the force

measured during drilling is not linear; which should be compensated to minimize the effect of the

non-linearity.

Figure 6.23 Skull Drilling Trajectory Profile

Feedforward Controller used to minimize the effect of systematic non-linearity; while the

Feedback Controller used to compensate for unknown disturbances or unmodelled parameters; by

using measurement to calculate the desired control signal. Drilling depth is controlled, and the

target joint angles of the robot are adjusted to place the payload in the desired position based on

knowing the deflections in the arm from the mathematical model’s interpretation of the disturbance

caused by the payload. The system is divided into the following parts:

• Drilling Task Planner: the Fuzzy logic algorithm is used to determine the allowable drilling

thickness based on age; sex; race and other variables used to calculate an allowable drilling

trajectory.

• Feedforward control: feedforward controller is used in defining the motion parameters

which are: jerk; acceleration; velocity and position signal.

• System Compensation: filters are used to reduce unwanted behavior like known or

measured disturbances and non-linearitys.

In the classical ‘rigid-body feedforward controllers’ the trajectory planning and feedforward

control are usually done for each part separately, relying on system compensation and feedback

0 2 4 6 8 10 12 14 16 18
0

2

4

6
x 10

-3

P
o
s
i
t
io

n

[
m

]

0 2 4 6 8 10 12 14 16 18
-5

0

5

10
x 10

-4

V
e
lo

c
it
y

[
m

/
s
]

0 2 4 6 8 10 12 14 16 18
-2

0

2
x 10

-4

A
c
c
e
le

r
a
t
i
o
n

[
m

/
s

2
]

Time [s]

93

control to deal with interactions and non-linearity. However, the disadvantage of this approach is

that position error is very large which is not safe for skull drilling; and the settling time is large

which is not safe due to temperature effect on skull cells; and to overcome that many approaches

could be used such as: using a more detailed model; Feedback control optimization; and Trajectory

smoothing algorithms. Angle interpolation method is used to control the selected axis to the target

angle; this method interpolates the velocity profile to form a letter “S” shape. The motion velocity

is interpolated adjusting to the default velocity. Table 6.1 shows an example of robot movement

in from initial conditions to reach the target position in Cartesian Space

Table 6.2 Settings of Initial Conditions and Cartesian Space

Robot Joint Space (degree) Target position in Cartesian Space

𝑞0(0) =0 𝑋𝑑=23.2 mm

𝑞1(0) = 32 𝑌𝑑 = −10.51 mm

𝑞2(0)=0 𝑍𝑑=730.34 mm

𝑞3(0) = 50 𝑅𝑜𝑙𝑙 = 0 degree

𝑞4(0) = 0 𝑃𝑖𝑡𝑐ℎ=0 degree

𝑞5(0) = 45 𝑌𝑎𝑤 = 0 degree

𝑞6(0)=90

6.2.6 FORCE SENSOR CALIBRATION

The force sensor is calibrated by using defined weights to derive the relationship between the

sensor's reading and the weight. The original reading from the JR3 force sensor calibrated with

experiment using the weight of a water bottle mounted on top of the robot, then water added

gradually to the bottle, water volume measured, and finally; the average sensor's reading is

calculated with respect to the corresponding water weight.

Figure 6.24 Plot of all the components of force/torque sensor readings.

94

After the above processing, the following result is concluded:

 1000 in sensor's reading = 3.3581 lbs = 1.5234kg (6.2.6.1)

Different joint trajectories have been used on the real robot, and the joint positions and velocities

were logged and compared with the results of robot simulator in real time. The software routines

are written to synchronize the data obtained in the real robot with the simulation technique, so the

simulator reads the data at the correct time.

6.2.7 BLOCK DIAGRAM OF THE PROPOSED MOTION CONTROLLER

Fig. 6.16 shows the experimental setup of the robotic neurosurgical system. The robot arm moves

the drill to the appropriate point on the patient’s head, angles the drill perpendicular to the tangent

of the skulls arc, moves the drill through the skull along the trajectories, and stops when the drill

has perforated the skull. To make a robot do drilling task; Motion Planner is designed to generate

the motion to be smooth.

Figure 6.25 Block Diagram of the proposed Control System

A path is a geometric representation is started in Cartesian space and then converted to joint space

by using inverse kinematics. During drilling, the linear velocity and acceleration of the drill have

95

to stay within certain limits. At the same time, the drill should be completed in the minimum

possible time which is about 47 seconds to avoid temperature effect.

Figure 6.26 The Neurosurgical Robotic Drilling System

Drilling Task planner is used to determine the proper drilling trajectory. Where this is used in

defining the motion parameters which are: jerk; acceleration; velocity and position signal. The

goal of this work is to set up the requirements of skull drilling task where high requirements for

the drilling application exist in positioning accuracy, accessibility, cycle time and quality of the

hole.

6.3 HUMAN-ROBOT INTERACTION IN NEUROSURGICAL INTERVENTIONS

Human-robot interaction is defined as the study of humans, robots, and the ways they influence

each other [144]. In the case of neurosurgical robotics; there are many considerations must be

taken into account when developing human-robot interaction [57] such as Multimodality,

Adaptivity, Level of autonomy, and Cooperativeness. Multimodality is the ability to allow

switching seamlessly between voice to force steering, according to the changes in context. While

adaptivity is the ability to perform distinct levels of human-robot interactions based on surgeon

preference. Level of autonomy should be matched with health care policies and requirements;

High-level perception and task planning should be developed to correct user misconceptions or

reject user’s request in the cause of error detection. Cooperativeness should be implemented in

high-level task planner of the robotic manipulator; So, the robot can cooperate with the surgeon to

achieve system goals. Reactive and Proactive control features should be added to the robot; So,

96

the robot can realize the safety boundaries and its capabilities to stop operation in safely way in

case of unplanned situations. Figure 6.27 shows an Overview of the designed interaction system.

Figure 6.27 Overview of the proposed Human-robot Interaction

Kinect is a motion sensing input device by Microsoft for video game consoles. Kinect motion

sensor provides researchers with a facility to do 2D and 3D motion and gesture detection and

skeleton motion tracking. Kinect sensor is used to recognize the gesture to improve the human-

robot interaction. Depth data is retrieved using software development kit provided by Microsoft.

Figure 6.28 Structure of Kinect Sensor

Data is analysis using Matlab to define depth measurement of the area of interest in the workspace

and comparing that with safety measures defined by experimental setup. The Kinect device returns

data streams shown in Table 6.3. The image stream returns color image data; raw YUV format is

selected which has resolution of 640 x 480 pixels and frame rate of 15 frames per second. The

depth stream returns the depth map measured in millimeters from the camera plane. The tracking

ranges are a default range of 50 cm to 400 cm. Intel(R) CS431 camera mounted on the side of

robot tooltip to improve the reliability of the neurosurgical system and gives the ability to visually

track the robot workspace.

97

Table 6.3 Data streams retrieved from Kinect device

Data streams Return Data Data Format Sampling

Image stream by the color sensor RawYUV_640x480 15 frames per second

Depth stream by the depth sensor Resolution of 640 x 480 30 frames per second

Skeletal stream by the depth sensor the position of the skeleton 15 frames per second

Audio stream by the audio sensor 16-bit sampling size 44100 Hz sampling rate

6.3.2 MEDICAL IMAGE ANALYSIS AND VISUALIZATION TOOLS

Medical robots are increasingly popular in surgical procedures. Collaboration between the robot-

assisted interventions and surgical planning software require a full range of tools and methods

developed in robotics and medical image computing fields.

Table 6.4 List of Open Source Medical Image Analysis Software’s

Name Image Types Usage

Visualization Toolkit (VTK) [145] biomedical image
Image processing,

visualization

Insight Segmentation, Registration Toolkit (ITK) biomedical image
Registering and

segmenting

FMRIB Software Library (FSL) [146]
FMRI, MRI, and DTI

 brain imaging
Brain Imaging

Statistical Parametric Mapping (SPM) [147]

fMRI, PET, SPECT,

EEG and MEG
functional brain imaging

Graphical Interface for Medical Image Analysis

and Simulation (GIMIAS) [148]
biomedical image

automatic segmentation,

 visualization,

3D Slicer [148]

biomedical image

Visualization and image

analysis

Medical Image Analysis (MIA) [149] biomedical image
gray scale medical image

analysis

The Medical Imaging Interaction Toolkit (MITK)

[150]
medical imaging

Visualization, image

analysis

Image-guided neurosurgical robotics allow surgeons to improve accuracy; Enables new

minimally-invasive procedures, increases the speed of surgical procedures, shortens hospital stays,

decreases long-term costs. Table 6.3. Summarize the open source Medical Image Analysis

software.

98

6.3.3 IMAGE VISUALIZATION AND NAVIGATION USING 3D SLICER

The goal of neurosurgical planning is to integrate image information from multiple sources, define

the properties of the structure, and determine the best surgical approach. Medical Imaging such as

CT scan, MRI, ultrasound, X-ray, fluoroscope usually used in the preoperative diagnostic imaging

and the intraoperative planning.

Figure 6.29 Visualization of Medical Images using 3D Slicer

Several types of MRI could be used in the preoperative diagnostic imaging such as 3D SPGR MRI,

FLAIR MRI, language and motor functional MRI (fMRI) imaging, and diffusion tensor imaging

(DTI). However; Ultrasound imaging mostly used in the inter-operative planning.

Figure 6.30 Image Visualization and Navigation using 3D Slicer

99

3D Slicer is a comprehensive open-source platform for Multimodality medical imaging including,

MRI, CT, US, nuclear medicine, and microscopy. 3D Slicer built on top of VTK, ITK, CTK, Qt,

Tcl/Tk, Teem, Python, DCMTK, JQPlot. 3D Slicer has extensive support for Image Guided

Therapy including Visualization, Registration, Segmentation, Model making, Diffusion Tensor

Imaging, Quantification, Filtering, and Interfacing to imaging devices. Fig 6.30. Shows the

visualization of the medical images using 3D Slicer.

Figure 6.31 Tracking Skull Drilling using 3D Slicer

Patient MRI images data set imported to 3D Slicer for visualization and pre-planning; Fig 630

shows the three pre-computed MRML scenes Tracking data imported to the 3D Slicer software

using Open-IGT Link which is an open-source network communication interface designed to

provide a unified real-time communications (URTC) for sensors, surgical robots, and computers.

Control commands send to the robotic manipulator using the TCP/IP protocol.

3D Slicer is used in both Pre-Surgical Planning and Intraoperative Planning which done by

exploration of biomedical images to define the target selection, cutting plane; safety requirements

and setting these points in the image coordinate system. Surgical Registration techniques used to

transform the surgical planning from the image coordinate system (ICS) into the patient coordinate

system (PCS) as shown in equation 6.3.3.1.

 𝑃𝐶𝑆3×1 = 𝑅3×3 ∙ 𝐼𝐶𝑆3×1 + 𝑡3×1 (6.3.3.1)

100

 [

𝑃𝐶𝑆𝑥
𝑃𝐶𝑆𝑦
𝑃𝐶𝑆𝑧
1

] = [

𝑅11 𝑅12 𝑅13 𝑡𝑥
𝑅21 𝑅22 𝑅23 𝑡𝑦
𝑅31 𝑅32 𝑅33 𝑡𝑧
0 0 0 1

] [

𝐼𝐶𝑆𝑥
𝐼𝐶𝑆𝑦
𝐼𝐶𝑆𝑧
1

] (6.3.3.2)

3D Slicer uses Right Anterior Superior (RAS) coordinate system; while VTK image is in IJK

coordinate system. This registration should define on the robot coordination system (RCS) by

calculating the rotation and transformation between each coordinate system with respect an

absolute coordination system calibrated at the Operation room (OR).

 [

𝑥1
𝑥2
𝑥3
1

] = [

𝐴11 𝐴12 𝐴13 𝑡1
𝐴21 𝐴22 𝐴23 𝑡2
𝐴31 𝐴32 𝐴33 𝑡3
0 0 0 1

] [

𝑖
𝑗
𝑘
1

] (6.3.3.3)

Figure 6.32 Description of (RAS) and (IJK) coordinate systems

6.3.4 COOPERATIVE POSE REGISTRATION FOR NEUROSURGICAL ROBOTIC

SYSTEMS

Point-based registration approach used in this system. Human-robot interaction technique to the

image coordinate system. Iterative Closest Points approach is used to determine transfer is used to

automatically select the corresponding points in the patient coordinate system with respect motion

matrix that related PCS with ICS. A brain atlas and image registration used in predicting the

locations of brain structures. 3D Slicer used for Image Segmentation and Navigation; Navigation

is an essential component of the interactive surgery control system. 3D Slicer provides

visualization to the surgeon during the procedure. Operation Tracking consists of two parts;

Localization and mapping which aim to track surgical tools and anatomical structures during the

neurosurgical procedures; Camera i mounted on the tool-tip of the robotic arm. Communication

Interface and synchronization needed to enable data exchange between different tools; Matlab

integrated with 3D Slicer using OpenIGTLink which developed by Perk Lab. at Queen’s

101

University. The imaging device could be used to track surgeon’s movement during the surgery

and could be used as constraints to the robot obstacle avoidance algorithm. Localization and

mapping of linear surgical instruments commonly applied in multiple of medical interventions.

Many surgical applications require location registration to define the targeted area of interest while

minimizing damage to adjacent structures. A coordinate measuring Machines (CMM) used for

measuring the physical geometrical characteristics of an object in six degrees of freedom.

Basically; location registration is a method to the link between a preoperative surgical plan on the

real surgical space. There are multiple registration methods used in surgical interventions; One is

fiducial point-based registration method, and the other is the anatomical landmark combined with

surface-based method. A position marker and pointer tools are used in almost every medical

navigation systems; There are several types of position marker such as an electromagnetic sensor,

or optical marker. The pointer tip is localized relative to the pointer marker. Transformation

matrices used to relate between point pairs.

6.4 INTERACTIVE CONTROL OF NEUROSURGICAL ROBOTIC ARM

Force steering would be precious to the operator at the Operation Room which helps in obtaining

easier environmental perception and eliminate the need for using haptic devices. The force sensor

can be utilized in human-robot coordination, teleoperation, and collaborative robots. Human-robot

interaction mediated by a force sensor which is the primary control input for the operator.

Table 6.5 Experimental results for measuring the Gravity Effect

Case

End Effecter

Position (mm)

End Effector

Rotation (degree)

 Force

Measurement (N)

X Y Z Yaw Pitch Roll 𝑭𝒙 𝑭𝒚 𝑭𝒛

1 -0.024 0 1317 0 0 0 -0.017 0.04 0

2 382.7 267.9 927.8 180 0 -145 0 0 2.8

3 -104.7 -70.6 814.3 34 -90 0 -0.22 -3.55 1.5

4 -395.6 -229.5 934.9 -176.5 -1.1 -145.2 0.13 -0.189 2.85

5 -437.2 -257.9 957.2 -174.9 -47 -148.9 0.055 -2.75 2.45

6 -467.4 -0.9 927.4 -180 0 -179.9 0.07 0.25 2.83

102

Table 6.6 Experimental results for measuring the robot end-effector joints

Case

PA107c Robot Joints

S1 S2 S3 E1 E2 W1 W2

1 0 0 0 0 0 0 0

2 21.8 -6.278 15.795 -54.833 -1.954 -119.024 1.532

3 28.3 53.964 0.82 -114.97 12.04 -29.5 -9.853

4 16.825 -5.311 14.857 -54.903 2.499 -119.039 -1.971

5 16.966 -5.298 14.705 -54.9 3.984 -73.085 -1.8505

6 0.07 -6.076 0.05 -54.9 0 -118.975 -0.004

The force sensor mounted at the robot end effector; Force/Position Control algorithm is developed

to guide the robot using the force measurement in the X direction, Y direction, and Z direction to

create straightforward and efficient human- robot interaction. Figure 6.33 shows the End Effector

Force Measurement without Gravity Compensation; which is measured without any interaction or

steering with the robot.

Figure 6.33 End Effector Force Measurement without Gravity Compensation

 𝐹 = 𝑓 + 𝑛 + 𝐺 (6.4.1)

103

Where 𝐹 is the total measured steering force which combined of human force 𝑓, with Gaussian

noise 𝑛 and non-linear offset due to the gravity effect 𝐺 as an influence of changing the end effector

pose as verified and listed in table 3. Multi-axis force sensor used to measure all six axes (three

forces and three torques). Force sensor is mounted on the end-effecter of the PA107c robotic

manipulator.

[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = [

𝑓𝑥 𝑛𝑥 𝐺𝑥
𝑓𝑦 𝑛𝑦 𝐺𝑦
𝑓𝑧 𝑛𝑧 𝐺𝑧

]

(6.4.2)

Where 𝐹𝑥 , 𝐹𝑦, and 𝐹𝑧 are the measured human steering force on x axis, y axis, and z axis

respectively. 𝑛𝑥, 𝑛𝑦, and 𝑛𝑧 are the noise component in each direction. 𝐺𝑥, 𝐺𝑦 and 𝐺𝑧 are the

estimated gravity component in each direction. Gravity effect is compensated by measuring the

value of the initial force in real time and remove that as following

[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = [

𝑓𝑥 𝑛𝑥 𝐺𝑥−𝑓𝑥(𝑖𝑛𝑖𝑡𝑎𝑙)
𝑓𝑦 𝑛𝑦 𝐺𝑦 − 𝑓𝑦(𝑖𝑛𝑖𝑡𝑎𝑙)
𝑓𝑧 𝑛𝑧 𝐺𝑧 − 𝑓𝑧(𝑖𝑛𝑖𝑡𝑎𝑙)

]

(6.4.3)

The gravity compensation is a calibration variable used to minimize the dynamic error which

required to be eliminated in force steering. Moving average technique is used to calculate the

gravity compensation 𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) in x, y, and z direction to ensure that variations in the force mean

are aligned with the variations in the data rather than being shifted in time; the experiment used

average data of every 10 samples from every channel.

𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) =

𝑓𝑀 + 𝑓𝑀−1 +⋯+ 𝑓𝑀−(𝑗−1)

𝑛

(6.4.4)

𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) =

1

𝑗
∑𝑓𝑀−𝑖

𝑗−1

𝑖=0

(6.4.5)

Where 𝑓𝑀 , 𝑓𝑀−1, … , 𝑓𝑀−(𝑗−1) are the force measurement in sequence. The force value is used to

define the distance ∆ between the current position of the manipulator’s end-effecter and the target

position. The resulted robot displacement could be calculated as following

 ∆= 𝐷 ∗ 𝐶 ∗ 𝐹 (6.4.6)

104

Where ∆ is the resulted displacement, 𝐷 is the displacement direction matrix, C is the Compliance

Factor depends on the required velocity. The displacement direction is generated according to the

input steering force direction and speed to target point by the operator command as following

𝐷 = {

𝐷𝑥 = 1, 𝑖𝑓 |𝐹𝑥| > |𝐹𝑦| AND |𝐹𝑥| > |𝐹𝑧|

𝐷𝑦 = 1, 𝑖𝑓 |𝐹𝑦| > |𝐹𝑥| AND |𝐹𝑦| > |𝐹𝑧|

𝐷𝑧 = 1, 𝑖𝑓 |𝐹𝑧| > |𝐹𝑥| AND |𝐹𝑧| > |𝐹𝑦|

(6.4.7)

The displacement direction matrix D is 3*3 diagonal matrix used to improve the steering accuracy

by restricting the robot end effector movement in only one direction in every cycle; this simple

restriction improved the overall all system performance and minimized the unwanted side force

components and increased system stability.

𝐷 = [

𝐷𝑥 0 0
0 𝐷𝑦 0

0 0 𝐷𝑧

]

(6.4.8)

Humans and robots in shared work areas must meet high safety standards to eliminate any risk of

human injury. Safety of the human-robot interaction without protective barriers is secured by

determining the dynamic allowable interaction force range and represented by Compliance Factor

C matrix. The maximum value of 𝐶𝑥, 𝐶𝑦, and 𝐶𝑧 depends on working conditions and determined

by consulting the safety standards and designed for robots and assistance systems. There is a trade

off between steering speed and accuracy; Gain Scheduling is added to change values of 𝐶𝑥, 𝐶𝑦, and

𝐶𝑧 to maximize the steering speed and maintain accuracy.

[

∆𝑥
∆𝑦
∆𝑧

] = [

𝐷𝑥 0 0
0 𝐷𝑦 0

0 0 𝐷𝑧

] ∗ [

𝐶𝑥 0 0
0 𝐶𝑦 0

0 0 𝐶𝑧

] ∗ [

𝑓𝑥 𝑛𝑥 𝐺𝑥−𝑓𝑥(𝑖𝑛𝑖𝑡𝑎𝑙)
𝑓𝑦 𝑛𝑦 𝐺𝑦 − 𝑓𝑦(𝑖𝑛𝑖𝑡𝑎𝑙)
𝑓𝑧 𝑛𝑧 𝐺𝑧 − 𝑓𝑧(𝑖𝑛𝑖𝑡𝑎𝑙)

]

(6.4.9)

Measurement noise 𝑛 is represented by Gaussian probability density function by

𝑛(𝑘) =

1

𝜎√2𝜋
𝑒
−
(𝑘−𝜇)2

2𝜎2
(6.4.10)

Where 𝑘 represents the grey level, 𝜇 the mean value and 𝜎 the standard deviation. Due to real-

time response requirements; simple noise filter is implemented using a dead zone with saturation

limiter in which output becomes zero when the input crosses certain limiting value.

105

Algorithm. 1 Algorithm for Force/Position Control for Human/Robot Interaction

Input 𝐹𝑥 , 𝐹𝑦, and 𝐹𝑧

Output ∆𝑥, ∆𝑦, and ∆𝑧

1. Read Steering Force Measurement 𝐹𝑥 , 𝐹𝑦, and 𝐹𝑧

2. Calculate the Gravity effect using Moving Average technique for the last ten samples

𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) =
𝑓𝑀 + 𝑓𝑀−1 +⋯+ 𝑓𝑀−(𝑗−1)

𝑛
=
1

𝑗
∑𝑓𝑀−𝑖

𝑗−1

𝑖=0

3. Calculate Gravity compensation by subtracting 𝑓(𝑖𝑛𝑖𝑡𝑖𝑎𝑙) from Force Measurement 𝐹𝑥 , 𝐹𝑦,

and 𝐹𝑧 as following:

[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = [

𝐺𝑥−𝑓𝑥(𝑖𝑛𝑖𝑡𝑎𝑙)
𝐺𝑦 − 𝑓𝑦(𝑖𝑛𝑖𝑡𝑎𝑙)
𝐺𝑧 − 𝑓𝑧(𝑖𝑛𝑖𝑡𝑎𝑙)

]

4. Apply Noise Filtering for Force measurement using Dead zone

{

 𝐹𝑥 = 0, 𝑖𝑓 |𝐹𝑥| < 𝑛(𝑘) ∗ |𝑓𝑥(𝑖𝑛𝑖𝑡𝑎𝑙)| else 𝐹𝑥 = 𝐹𝑥

𝐹𝑦 = 0, 𝑖𝑓 |𝐹𝑦| < 𝑛(𝑘) ∗ |𝑓𝑦(𝑖𝑛𝑖𝑡𝑎𝑙)| else 𝐹𝑦 = 𝐹𝑦

𝐹𝑧 = 0, 𝑖𝑓 |𝐹𝑧| < 𝑛(𝑘) ∗ |𝑓𝑧(𝑖𝑛𝑖𝑡𝑎𝑙)| else 𝐹𝑧 = 𝐹𝑧

Where: 𝑛(𝑘) =
1

𝜎√2𝜋
𝑒
−
(𝑘−𝜇)2

2𝜎2 ≤ 0.1

5. Determine the displacement direction 𝐷 using the following condition

𝐷 = {

𝐷𝑥 = 1, 𝑖𝑓 |𝐹𝑥| > |𝐹𝑦| AND |𝐹𝑥| > |𝐹𝑧|

𝐷𝑦 = 1, 𝑖𝑓 |𝐹𝑦| > |𝐹𝑥| AND |𝐹𝑦| > |𝐹𝑧|

𝐷𝑧 = 1, 𝑖𝑓 |𝐹𝑧| > |𝐹𝑥| AND |𝐹𝑧| > |𝐹𝑦|

dead-zone

δ

-

δ

w

x

Figure 6.34 Steering Force Signal Conditioning using Dead zone

and Saturation limit

106

6. Calculate Compliance factor 𝐶𝑥, 𝐶𝑦, and 𝐶𝑧 using Gain Scheduling and saturation to

improve system response and increase safety level

7. Calculate the required robot Displacement ∆ based on steering force as following

∆= 𝐷 ∗ 𝐶 ∗ 𝐹

[

∆𝑥
∆𝑦
∆𝑧

] = [

𝐷𝑥 0 0
0 𝐷𝑦 0

0 0 𝐷𝑧

] ∗ [

𝐶𝑥 0 0
0 𝐶𝑦 0

0 0 𝐶𝑧

] ∗ [

𝑓𝑥 𝑛𝑥 𝐺𝑥−𝑓𝑥(𝑖𝑛𝑖𝑡𝑎𝑙)
𝑓𝑦 𝑛𝑦 𝐺𝑦 − 𝑓𝑦(𝑖𝑖𝑡𝑎𝑙)
𝑓𝑧 𝑛𝑧 𝐺𝑧 − 𝑓𝑧(𝑖𝑛𝑖𝑡𝑎𝑙)

]

8. Calculate the new end effector position of the robotic manipulator

[
𝑋
𝑌
𝑍
] = [

𝑋 + ∆𝑥
𝑌 + ∆𝑦
𝑍 + ∆𝑧

]

9. Return to Step 1 Move robot

6.4.1 SPEECH CONTROLLED ROBOTIC SYSTEM

A speech recognition module is added to the system to make PA107c robotic manipulator function

more naturally and can be considered as partners for the neurosurgeon not just as mere tools. To

achieve this goal, Speech engine is configured and integrated into the robotic neurosurgical system.

Speech engine contains a speech synthesizer, a speech recognizer, and grammatical knowledge

base. Speech engine enables the PA107c robotic manipulator to recognize and speak in the English

language. Windows Speech Application Programming Interfaces (SAPI) used to convert text into

speech (TTS) with high flexibility to change the voice command speed. SAPI is a speaker-

dependent tool which trained and used in Automatic Speech Recognition. SAPI allows the user to

train any word(s) in any language to control the robotic manipulator.

Figure 6.35 Architecture of the proposed speech controlled robotic system

107

An experimental study was undertaken using robotic manipulator and voice-controlled guidance

allowing the surgeon to move the robotic arm in operating space. The operation surgeon registered

12 distinct voice commands using voice trainer. SAPI is employed to accurately output the crisp

control signals for the robot systems, based on linguistic spoken language commands, issued by a

user; a powerful speech control system is developed to control the PA107c robotic manipulator

using voice commands.

Table 6.7 User spoken directives and the output control signals

User Directive Control Output of the SAPI classifier

Forward movement in X Positive Direction

Backward movement in X Negative Direction

Left movement in Y Positive Direction

Right movement in Y Negative Direction

Up movement in Z Positive Direction

Down movement in Z Negative Direction

Stop Stop PA107c robot

slow Change Speed to 0.1 mm/s

fast Change Speed to 1 mm/s

Select point A Register End Effector Position and Rotation

Select point B Register End Effector Position and Rotation

Select Point C Register End Effector Position and Rotation

The proposed speech controlled robotic system is shown in Fig. 6.35. The system is composed of

the microphone; a speech recognizer; Task Identification; PA107c robotic manipulator; Text to

Speech converter; and interactive controller used to define the system response with respect each

action.

Figure 6.36 Profile of the end-effector of PA 107c.

108

The input to the system appears in the form of spoken commands from the neurosurgeon. The

voice commands recognized and converted to a crisp desired action for the robotic manipulator.

Fig. 6.36 shows the end effector trajectory resulted from voice commands. The movements of the

robotic manipulator performed in the three-dimensional operational space, namely, up, down,

forward, backward, left, and right directions.

6.4.2 POSE REGISTRATION IN NEUROSURGICAL INTERVENTIONS

Robotic systems are involved in the operating room to solve such problem to minimize the risk of

damage to critical structures. The human skull has complex 3D anatomy and traversing critical

structures such as nerves and vessels. So; Registration Points or fiducials used to define the

landmarks on the skull and used in inter-operative registration; The selected registration technique

in neurosurgical procedures should be reliable; precise, convenient; and fast to obtain an optimal

result. Manual registration is time-consuming and limited by human dexterity. There are a variety

of registration methods, including paired points and surface matching concepts, pose registration

introducing a marker-based pattern, which is placed on the patient table. The registered markers

form a pattern, allowing to deduce the robot pose and Skull pose by use of the projective invariant

cross-ratio. Thus, the physician's view is optimized, and localization of the robot tooltip at the

correct position is facilitated.

Figure 6.37 Pose Registration in 3D Slicer

109

At least 3-point pairs are needed for registration; more points increase accuracy. Realistically, the

accuracy requirement for location’s registration of skull surface should be around 0.5 mm

accuracy. Therefore, applying industrial robots with a coordinate measurement technique for skull

metrology is practical and feasible. For example; robot-Assisted neurosurgery could improve

safety and efficiency of skull drilling by defining “drilling zone, and dynamic safety boundaries to

prevent excursion outside the safe zone and respond to surgeon’s commands. The safety

boundaries have anticipated benefits such as Less trauma, faster recovery, fewer complications.

The PA107c robotic manipulator has seven-jointed Degree of freedom, and its geometry

constraints have resulted in several measuring trajectories and strategies. When there is direct

contact between the robot with the skull; system reads the X, Y, and Z coordinates of each of

points to determine position and orientation of the points on the skull surface. Also; Joystick is

used in the proposed system as one of the command control inputs. Fig. 6.37 shows the Pose

registration in 3D Slicer. The overall workflow of the neurosurgical navigation system starts with

scan imaging when the patient arrives, the acquired images of the patient are automatically

transferred to the to 3D Slicer software either in real-time or offline using OpenIGT protocol. The

images segmented and the 3D surface model reconstructed to simplify the Preoperative planning

by defining the area of interest and defining target and entry point and creating a trajectory

connecting these two points.

Figure 6.38 Pose Registration in 3D Slicer

110

The created trajectory sent to the robot controller and safety margins set up on Matlab. Calibration

is done by aligning the patient position and robot position using real and virtual fiducials to

determine the spatial relationship between the surgical instruments and the reference frames. The

calibration matrices are registered to synchronize the preoperative virtual and real fiducials. The

last step is starting skull drilling using semi-Automatic control. The feasibility of the navigation

system was validated through a phantom experiment in which a point of interest is defined on the

Human skull. Pose calibration of the surgical drill was conducted using three physical fiducial

landmarks which placed on a human skull. These points were selected in the images as the fiducials

and registered on reference coordinate system (RCS) to registration transformation matrix was

generated. Then, The PA107c robot robotic manipulator commanded to reach the defined point

and perform the planned drilling trajectory.

Table 6.8 Pose Registration in 3D Slicer

Registered Point Right, Anterior Superior

F-1 -9.375 -17.306 76.196

F-2 -29.163 -9.509 67.489

F-3 8.27 3.092 72.633

The movement of the surgical drill was rendered in the preoperative image coordinate system in

real time. Also, the 3D Slicer software used for visualization where the volumetric image of the

skull resliced with the plane of the surgical tool and the sectional image visualized on the 2D and

3D viewers as shown in Fig. 6.38. The movement of the robotic manipulator navigated on the

computer screen in real time and synchronized with the preoperatively planned drill trajectory.

Measurements are taken by this contact method being logged into a computer using voice

commands. Operators no longer had to touch the keyboard to register points physically. A camera

is mounted on the robot tooltip and connected to All-in-one computer and used for intraoperative

motion tracking. Registration points are tracked, and visualization software is running at the same

time. The all-in-one computer has Celeron processor, 1GB RAM, and it runs under the Windows

XP operating system.

6.4.3 EVALUATION OF ROBOT POSITIONING ACCURACY

The industrial robot needs to be calibrated before it can be used in metrology. Robot repeatability

can normally reach 1 mm which is not acceptable in surface calibration techniques used in surgery.

111

However; accuracy calibration appears to be the major issue for a robotic-assisted neurosurgery

system.

Figure 6.39 Robot Positioning Accuracy

According to the robot calibration standard ISO 9238, the PA107c robot needs to move repeatedly

to five explicitly defined testing points where the robot should be moved from position P1 to P5

for five times surround the measuring workspace and to measure the deviation of positioning

accuracy and repeatability errors in each point. The calibration results is shown on Fig 6.40.

Figure 6.40 Robot Repeatability Accuracy

The maximum standard deviation of repeatability is 0.6 mm, and the maximum positioning

inaccuracy is 0.5 mm A calibration sheet was designed and implemented in this study. Force

Steering used to move the robot end effector; fiducials are logged via voice commands and the

offset values calculated on the tipping point of the instrument. Experiments show that the robot

pose estimation is reliable and accurate for translations inside an area of 50 cm x 50 cm. Mean

error values are 0.33 mm in 3D space and 0.1 mm in the 2D plane. High success rates of 90% and

fully satisfying execution times below 4 seconds could be achieved.

6.4.4 A VIRTUAL REALITY TRAINING SYSTEM FOR ROBOT-ASSISTED

NEUROSURGERY

Neurosurgical procedures emphasis on the experience and training of the surgeons. Many surgical

112

practices involve the cutting or drilling of bone which can be learned only through repetitious

practice using different methods such as mock surgeries on animals, dissection of cadavers, and

the operating on live patients. However, there are many ethical and accessibility issues with the

classical training techniques. Neurosurgical training systems based on virtual reality offer a cost-

effective and efficient training tools for surgeons. The training system allows students to acquire

the skills needed to perform surgeries on real patients and practice their technical skills without

any risk to patients. The training system consists of the task of building the 3D virtual operation

room and the interfacing techniques with the surgical robot.

Figure 6.41 Virtual Reality Smartphone Headset

The 3D model of the patient’s brain is visualized using 3D Slicer software. The user can control

the movement of the robotic manipulator and interact with the virtual tool inserted into the virtual

brain. The interactive control increases the immersion and telepresence. The created training

environment can mimic the real surgical procedure and might used for medical staff training and

evaluation. Virtual reality (VR) environment enable surgeons to perform motivating surgery-like

scenarios. The proposed prototype allows users to navigate naturally within and interact with the

Robot to perform neurosurgical procedures and establish a robot-assisted surgical training demo

system oriented clinical application for a risk-free training environment. VR headset provides

virtual reality for the wearer and comprises a stereoscopic head-mounted display, stereo sound,

and gyroscope sensor. Head motion tracking sensors allow the wearer to view the surroundings,

with the perspective moving as his head moves, giving a deep sense of immersion. Virtual Reality

Smartphone Headset manufactured by Dream Vision which is compatible with most smartphone

devices up to 6" wide; it has an integrated headband and Microphone as shown in Fig 6.41.

113

A smartphone can be inserted into VR headset. VR content is viewed from the screen of the device

itself through lenses acting as a stereoscope, the virtual Operation room is constructed on VREP

simulation platform, and video is streamed from Computer to phone for virtual reality training.

The interactive navigation is tested on Both Android and iOS devices with minimal lag, and head

tracking. The tools needed to connect the VREP, VR, and smartphone are either a micro USB

cable for Android phones or a high-speed WI-FI connection and the Pc server streaming software

such as TRINUS VR software.

Figure 6.42 Simulation of neurosurgery by using VREP

6.5 SUMMARY

This chapter presents the design of a robotic neurosurgical system; A software-hardware

integration of an image guided biomedical robotics system is introduced. The proposed

architecture will ensure the seamless data flow among those components and enable a closed-loop

process of planning and control. The proposed system could be integrated with an intraoperative

image guidance using MRI and medical image visualization software. 3D Slicer used in image

processing and visualization for surgical planning, and Matlab used in implementing control

114

algorithms and synchronization between the different components. Force steering algorithm is

implemented and tested for different scenarios. The simulations and experiments have further

verified the proposed approach. Software architecture was also developed which uses the concept

of device drivers to achieve modularity in a real-time subsystem environment. The proposed

Torque /position control approach has been simulated on the dynamic model of PA10-7C. Path

planning control algorithm will be developed for the manipulator. Location registration is the most

critical issue that must be addressed before a robot can position a tool on a patient accurately in

neurosurgical procedures. Pose registration is simplified by using Human-robot interaction. The

preoperatively planned space-related to intraoperative operating space to improve navigation.

Experiments were carried out on a human skull, and the performance was evaluated. The proposed

algorithm is very efficient and could be used for robot teaching mode. More points slightly increase

the RMSE (root mean square error) and increase accuracy because random errors cancel each other

out; RMSE is an unknown mix of precision and accuracy. This navigation system has been

validated by multiple experiments, and the existing layout could be integrated into a clinical

environment within only 30 minutes setup time. The registration time is less than 2 minutes. A

three-dimensional force sensor is employed in direction detection and collision avoidance. As a

result, collision-free poses of the PA10-7c robotic manipulator is reached with more safety and

flexibility. Experiment results have shown successful pose registration and emulation of the actual

command force. The robot movement controlled using the 3D force feedback signal which

considered as an orienting vector controlling the direction of the robot end effector displacement

in the Cartesian space. Common software architecture is proposed and implemented to facilitate

any future integration between the developed modules. The use of voice-controlled robotic

manipulator as a substitute for the joystick is feasible and more convenient and minimize the

number of Sterilized tools in the operation room. Performance evaluation of pose registration and

calibration system is introduced and presented. The intuitive graphical user interface is developed

using Open-source environment. Average error 0.5 mm and maximum pose error is about 1 mm.

Experiments demonstrated that Navigation system enables the user to align the real and virtual

markers to obtain an optimized registration of the desired target.

115

CHAPTER 7 CONCLUSIONS
7.1 CONCLUSION

A control theory for the proposed neurosurgical robotic system was presented in this thesis. It

included the modeling and control of the Mitsubishi PA10-7C robotic manipulator; the modular

design of neurosurgical robotic systems; an LQR controller; an ANN drilling state detection;

human-robot interaction for neurosurgical manipulators; a 3D simulator of an operating room; and

a semi-automatic control architecture that makes the proposed system stable, reliable, safe, and

efficient. The main contribution of this thesis is to develop a reliable and convenient neurosurgical

robotic system. The interrelated issues that the proposed approach solved are as follows:

1. The approach uses systematic modeling and control of the Mitsubishi PA10-7C robot

manipulator. The Mitsubishi PA10-7C robot arm is modeled systematically, includes kinematic

and dynamic models, and uses a Jacobian matrix. It also incorporates general set-point control and

trajectory tracking control utilizing a feedforward controller to move the perforator smoothly.

2. The ANN-based force information analysis and process applies force sampling by the JR3

sensor, which contains noise from the sensor itself and mechanic vibration when drilling. An

ANN-based force state classification is proposed in order to know the state of the robot when

performing tasks such as rotation, waiting, drilling starting, drilling stops, and retrieving. In the

proposed approach, ANN is constructed and trained to classify various states by the force data.

3. The approach features semi-automatic control. To safely use the proposed system, the user

switches from an automatic to a manual control state. Task-planning is proposed to enable the

surgeon to define the area of interest and safety margins.

4. The proposed system architecture could be used as a testing and development platform for

various surgical applications, such as image-guided percutaneous needle interventions, tumor

biopsy, tissue ablations, and neurological pain management,

5. The designed system could be used as a training platform for surgeons to reduce the time and

limitations of training under senior supervision.

6. An image-guided cooperatively controlled robot is designed to assist with neurosurgery

procedures, while skull surface position registration is performed using human-robot interaction

techniques. The kinetic sensor is used for position-tracking and is combined with an Augmented

and Virtual Reality display.

116

7. Software architecture is presented for the integration of a 3D Slicer and VREP to provide access

to resources developed in two communities. This integration allows quick prototyping of surgical

robot systems, enabling the system to be scaled up easily without changing the system architecture.

The introduced interface will hopefully foster research collaboration and incremental results

toward more effective treatment in a large patient population. Since the presented method is not

limited to neurosurgery brain tumors, future studies should be conducted to explore its full

potentials in other surgical procedures.

7.2 FUTURE WORK

The control theory discussed and developed in this thesis has successfully solved the control

problems for the proposed telerobotic neurosurgical system. However, there are still many tasks

to be done to improve the current system, as follows.

1. A dedicated robot arm design is needed to make it compact, reliable, highly-loaded, and

thus suitable for future medical robot applications.

2. Adding dynamic obstacle avoidance detection would help the system detect surgeons,

nurses, and devices in the operation room and improve safety.

3. The proposed system needs to be tested further on a cadaver in a medical lab.

4. Enhanced 3D simulator should be added to simulate the operation room and the robot to

verify the control strategies and for training surgeons

5. If the neurosurgical robotic manipulator will be used in rural areas, a low bandwidth

communication channel should be integrated into the controller design to optimize the

overall system performance.

117

Bibliography

[1] V. Chan, J. D. Pole, R. E. Mann, and A. Colantonio, “A population based perspective on

children and youth with brain tumours,” BMC Cancer, vol. 15, no. 1, p. 1007, Dec. 2015.

[2] T. Litman, “Transportation and Public Health,” Annu. Rev. Public Health, vol. 34, no. 1,

pp. 217–233, Mar. 2013.

[3] D. Hastings, “Trauma prevention and intervention around the world.,” in International

Trauma and Emergency Medicine Conference, 2002, pp. 13–16.

[4] N. Agarwal, I. O. Smith, K. L. Tomei, C. J. Prestigiacomo, C. D. Gandhi, and , A,

“Norrmén- & Improving Medical Student Recruitment into Neurological Surgery:

Institution’s Experience.,” World Neurosurg., vol. 80, no. 6, pp. 745–750, 2013.

[5] P. K. Dempsey, P. K. Dempsey, and S. W. Hwang, “Management of Closed Head Injury,”

in Surgical Intensive Care Medicine, Boston, MA: Springer US, 2010, pp. 129–136.

[6] Jongseong Jang and Young Soo Kim, “Safety management algorithm for telesurgical robot

system for brain tumor surgery,” in IEEE ISR 2013, 2013, pp. 1–2.

[7] S. Au, K. Ko, J. Tsang, and Y. C. Chan, “Robotic endovascular surgery,” Asian Cardiovasc.

Thorac. Ann., vol. 22, no. 1, pp. 110–114, Jan. 2014.

[8] “Brain Injury Statistics | Northern British Columbia | Prince George,” Northern Brain Injury

Association | British Columbia, 2017. [Online]. Available: http://nbia.ca/brain-injury-

statistics/. [Accessed: 31-Mar-2017].

[9] M. Faul, L. Xu, M. M. Wald, and V. G. Coronado, “Traumatic brain injury in the United

States: emergency department visits, hospitalizations, and deaths,” Centers Dis. Control

Prev. Natl. Cent. Inj. Prev. Control, pp. 891–904, 2010.

[10] Brain Trust Canada, “The Facts about Brain Injury,” 2017. [Online]. Available:

http://www.vistacentre.ca/_files/statistics.pdf. [Accessed: 31-Mar-2017].

118

[11] V. G. C. Mark Faul, Likang Xu, Marlena M. Wald, “Traumatic Brain Injury in The United

States, Emergency Department Visits, Hospitalizations and Deaths 2002–2006,” U .S .

Department of Health and Human Services, 2017. [Online]. Available:

https://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf.

[12] M. M. Dinh, K. Bein, S. Roncal, C. M. Byrne, J. Petchell, and J. Brennan, “Redefining the

golden hour for severe head injury in an urban setting : The effect of prehospital arrival

times on patient outcomes,” Injury, vol. 44, no. 5, pp. 606–610, 2013.

[13] CMA Member Dialogue, “A Canadian Approach to Assisted Dying: A CMA Member

Dialogue Summary Report,” 2016. [Online]. Available: https://www.cma.ca/Assets/assets-

library/document/en/advocacy/Canadian-Approach-Assisted-Dying-e.pdf.

[14] S. I. Woodrow, C. O. Kelly, S. J. Hamstra, and M. C. Wallace, “Unemployment in an

Underserviced Specialty ?: The Need for Co-ordinated Workforce Planning in Canadian

Neurosurgery,” Can. J. Neurol., pp. 170–174, 2006.

[15] B. Barua and F. Ren, “Waiting Your Turn: Wait Times for Health Care in Canada, 2016

report,” Fraser Institute, 2016. [Online]. Available:

https://www.fraserinstitute.org/sites/default/files/waiting-your-turn-wait-times-for-health-

care-in-canada-2016.pdf. [Accessed: 20-Jul-2006].

[16] B. Morris, “Robotic surgery: applications, limitations, and impact on surgical education.,”

MedGenMed, vol. 7, no. 3, p. 72, Sep. 2005.

[17] T. D. White D, M. T. Black, and P. A. Folkens, Human osteology, 3rd ed. Benicia,

California: Elsevier/Academic Press, 2012.

[18] L. Aiello, C. Dean, and J. Cameron, An introduction to human evolutionary anatomy, 2nd

ed. London, UK: Academic Press, 2002.

[19] J. E. Risdall, D. K. Menon, and B. London, “Traumatic brain injury.,” Philos. Trans. R. Soc.

Biol. Sci. Ruby Prem. Press, vol. 366, no. 1562, pp. 241–250, 2011.

[20] K. U. Schmitt, M. H. Muser, and F. Walz, “Trauma Biomechanics: Introduction to

accidental injury.,” in Springer Science Business Media, 1st ed., Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, p. 173.

119

[21] G. M. Giles and J. Clark-Wilson, Brain Injury Rehabilitation, 1st ed. Boston, MA: Springer

US, 1993.

[22] P. Gambadauro, “Torrejón, R. . The ‘tele’ factor in surgery today and tomorrow:

implications for surgical training and education.,” Surg. Today, vol. 43, no. 2, pp. 115–122,

2013.

[23] J. Arata et al., “Surgical bedside master console for neurosurgical robotic system,” Int. J.

Comput. Assist. Radiol. Surg., vol. 8, no. 1, pp. 75–86, Jan. 2013.

[24] H. Marcus, D. Nandi, A. Darzi, and Guang-Zhong Yang, “Surgical Robotics Through a

Keyhole: From Today’s Translational Barriers to Tomorrow’s Disappearing Robots,” IEEE

Trans. Biomed. Eng., vol. 60, no. 3, pp. 674–681, Mar. 2013.

[25] R. K. Pandey and S. S. Panda, “Drilling of bone: A comprehensive review,” J. Clin. Orthop.

Trauma, vol. 4, no. 1, pp. 15–30, 2013.

[26] W. W. Bertollo N, N. Bertollo, and W. R. Walsh, “Biomechanics in Applications,”

Biomech. Appl., pp. 249–274, 2011.

[27] T. W. Vogel, B. J. Dlouhy, and M. A. Howard, “Don’t take the plunge: avoiding adverse

events with cranial perforators,” J. Neurosurg., vol. 115, no. 3, pp. 570–575, Sep. 2011.

[28] J. Brodie and S. Eljamel, “Evaluation of a neurosurgical robotic system to make accurate

burr holes,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 7, no. 1, pp. 101–106, Mar.

2011.

[29] Dong-Soo Kwon et al., “The mechanism and registration method of a surgical robot for hip

arthroplasty,” in IEEE International Conference on Robotics and Automation, 2002, vol. 2,

pp. 1889–1894.

[30] G. Dogangil, B. L. Davies, and F. Rodriguez y Baena, “A review of medical robotics for

minimally invasive soft tissue surgery,” Proc. Inst. Mech. Eng. Part H J. Eng. Med., vol.

224, no. 5, pp. 653–679, May 2010.

[31] D. Glauser, P. Flury, N. Villotte, and C. W. Burckhardt, “Conception of a robot dedicated

to neurosurgical operations,” in Fifth International Conference on Advanced Robotics

’Robots in Unstructured Environments, 1991, pp. 899–904 vol.1.

120

[32] D. Baker, P. N. Brett, M. V. Griffiths, and L. Reyes, “A mechatronic drilling tool for ear

surgery: A case study of some design characteristics,” Mechatronics, vol. 6, no. 4, pp. 461–

477, Jun. 1996.

[33] V. G. Kaburlasos, V. Petridis, P. Brett, and D. Baker, “Learning a linear association of

drilling profiles in stapedotomy surgery,” in Proceedings. 1998 IEEE International

Conference on Robotics and Automation, 1998, vol. 1, pp. 705–710.

[34] Weimin Shen and J. Gu, “Multi-criteria kinematics control for the PA10-7C robot arm with

robust singularities,” in 2007 IEEE International Conference on Robotics and Biomimetics,

2007, pp. 1242–1248.

[35] J. A. Smith, J. Jivraj, R. Wong, and V. Yang, “30 Years of Neurosurgical Robots: Review

and Trends for Manipulators and Associated Navigational Systems,” Ann. Biomed. Eng.,

vol. 44, no. 4, pp. 836–846, 2016.

[36] R. Kapoor, C. Hoffman, I. Hussain, and P. Stieg, “Basic Neurosurgical Procedures,” in

Comprehensive Guide to Neurosurgical Conditions, 1st ed., Cham: Springer International

Publishing, 2015, pp. 59–71.

[37] T. Essomba, C.-T. Wu, S.-T. Lee, and C.-H. Kuo, “Mechanical Design of a Craniotomy

Robotic Manipulator Based on Optimal Kinematic and Force Performance,” Springer,

Cham, 2016, pp. 191–198.

[38] J. Arata et al., “Surgical bedside master console for neurosurgical robotic system,” Int. J.

Comput. Assist. Radiol. Surg., vol. 8, no. 1, pp. 75–86, Jan. 2013.

[39] P. Gambadauro and R. Torrejo, “The ‘“ tele ”’ factor in surgery today and tomorrow :

implications for surgical training and education,” Surg. Today, pp. 115–122, 2013.

[40] B. Morris, “Robotic surgery: applications, limitations, and impact on surgical education.,”

MedGenMed, vol. 7, no. 3, p. 72, Sep. 2005.

[41] T. A. Mattei, A. H. Rodriguez, D. Sambhara, and E. Mendel, “Current state-of-the-art and

future perspectives of robotic technology in neurosurgery,” Neurosurg. Rev., vol. 37, no. 3,

pp. 357–366, 2014.

[42] M. B. Popovic, Biomechanics and Robotics, 1st ed. boca Raton, Fl: Pan Stanford, 2013.

121

[43] W. Walz, Experimental Neurosurgery in Animal Models, 1st ed., vol. 116. New York, NY:

Springer New York, 2016.

[44] E. M. Bogen, K. M. Augestad, H. R. H. Patel, and R. Lindsetmo, “Telementoring in

education of laparoscopic surgeons : An emerging technology,” World J Gastrointest

Endosc., vol. 6, no. 5, pp. 148–155, 2014.

[45] S. Najarian, M. Fallahnezhad, and E. Afshari, “Advances in medical robotic systems with

specific applications in surgery--a review.,” J. Med. Eng. Technol., vol. 35, no. 1, pp. 19–

33, 2011.

[46] J. P. Cullen and M. A. Talamini, “General Surgery : Current Trends and Recent

Innovations,” in General Surgery: Current Trends and Recent Innovations, 2010, pp. 781–

791.

[47] P. Gélinas-Phaneuf, Nicholas MD; Del Maestro, Rolando F. MD, “Surgical Expertise in

Neurosurgery: Integrating Theory Into Practice ´,” Neurosurgery, vol. 73, no. 4, pp. 30–38,

2013.

[48] T. Sakaguchi, “Percutaneous puncture with a robot,” Hinyokika Kiyo., vol. 31, no. 7, pp.

1265–8, Jul. 1985.

[49] W. Shen, “Control theory on tele-robotics with neurosurgical applications,” Doctoral

dissertation, Dalhousie University, Halifax, NS, 2009.

[50] P. L. Gildenberg, “Robotic Neurosurgery,” in Textbook of Stereotactic and Functional

Neurosurgery, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 583–597.

[51] J. Zhang, “Design of Steerable Electrode Arrays and Optimal Insertion Path Planning for

Robot-Assisted Cochlear Implant Surgery,” Doctoral dissertation, Columbia University,

2010.

[52] K. Cleary and T. M. Peters, “Image-guided interventions: technology review and clinical

applications,” Annu Rev Biomed Eng, vol. 12, pp. 119–142, 2010.

[53] A. Benabid, P. Cinquin, S. Lavallee, J. Le Bas, J. Demongeot, and J. de Rougemont,

“Computer-Driven Robot for Stereotactic Surgery Connected to CT Scan and Magnetic

Resonance Imaging,” Meet. Am. Soc. Stereotact. Funct. Neurosurg., pp. 153–154, 1987.

122

[54] B. Davies, “A review of robotics in surgery.,” Proc. Inst. Mech. Eng. H., vol. 214, no. 1, pp.

129–140, 2000.

[55] D. Glauser, H. Fankhauser, M. Epitaux, J. Hefti, and A. Jaccottet, “Neurosurgical robot

Minerva: First results and current developments,” J. Image Guid. Surg., vol. 1, no. 5, pp.

266–272, 1995.

[56] C. W. Burckhardt, P. Flury, and D. Glauser, “Stereotactic brain surgery,” IEEE Eng. Med.

Biol. Mag., vol. 14, no. 3, pp. 314–317, 1995.

[57] C. Faria, W. Erlhagen, M. Rito, E. De Momi, G. Ferrigno, and E. Bicho, “Review of robotic

technology for stereotactic neurosurgery,” IEEE Rev. Biomed. Eng., vol. 8, pp. 125–137,

2015.

[58] G. Savuc, D. Forna, and N. C. Forna, “The Contribution of Medical Robots to Clinical

Performance: Up-To-Date,” vol. 4, no. 4, pp. 67–75, 2012.

[59] A. Gasparetto and V. Zanotto, “Toward an optimal performance index for neurosurgical

robot’s design,” Robotica, vol. 28, no. 2, p. 279, 2010.

[60] S. Lavalldet, J. Troccazt, L. Gaboriti, P. Cinquint, A. L. Benabid, and D. Hoffmannt, “Image

guided operating robot: a clinical application in stereotactic neurosurgery,” 1992 IEEE Int.

Conf. Robot. Autom., no. 2, pp. 618–624, 1992.

[61] G. R. Sutherland, S. Lama, L. S. Gan, S. Wolfsberger, and K. Zareinia, “Merging machines

with microsurgery: clinical experience with neuroArm,” J. Neurosurg., vol. 118, no. 3, pp.

521–529, Mar. 2013.

[62] A. R. Asthagiri, N. Pouratian, J. Sherman, G. Ahmed, and M. E. Shaffrey, “Advances in

Brain Tumor Surgery,” neurlogic Clin., vol. 25, pp. 975–1003, 2007.

[63] K. Cleary and C. Nguyen, “State of the art in surgical robotics: Clinical applications and

technology challenges,” Comput. Aided Surg., vol. 6, no. 6, pp. 312–328, 2001.

[64] Y.-C. Chung, “Path Control for NeuroMate Robot in a Skull Drilling System,” J. Korean

Soc. Manuf. Technol. Eng., vol. 22, no. 2, pp. 256–262, Apr. 2013.

[65] H.-C. Schneider and J. Wahrburg, “Simulation Model for the Dynamics Analysis of a

Surgical Assistance Robot,” in Robot Surgery, 1st ed., InTech, 2010.

123

[66] S. K. Nandi, A. Mahato, B. Kundu, and P. Mukherjee, “Doped Bioactive Glass Materials in

Bone Regeneration,” in Advanced Techniques in Bone Regeneration, 1st ed., Vanja

Bozovic, Ed. InTech, 2016.

[67] D. Liu and T. Wang, “A Workflow for Robot Assisted Neurosurgery,” in 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2006, pp. 2870–2875.

[68] T. W. Da Liu, “Study On Robot -Assisted Minimally Invasive Neurosugery,” in Study On

Robot -Assisted Minimally Invasive Neurosugery, 2001.

[69] P. W. A. Willems, H. J. Noordmans, J. W. B. van der Sprenkel, M. A. Viergever, and C. A.

F. Tulleken, “An MKM-mounted instrument holder for frameless point-stereotactic

procedures: a phantom-based accuracy evaluation,” J. Neurosurg., vol. 95, no. 6, pp. 1067–

1074, Dec. 2001.

[70] A. Masih, W. Building, and P. Road, “Towards Requirements Engineering for a Tumour

Removing Robot : Work-practice Observation of Surgical Teams Performing Brain Tumour

Surgery,” in Proceedings of the ACM 2011 conference on Computer supported cooperative

work., pp. 677–680.

[71] D. LaRose et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng. Med.

Biol. Mag., vol. 14, no. 3, pp. 279–288, 1995.

[72] G. R. Sutherland, P. B. Mcbeth, and D. F. Louw, “NeuroArm : an MR compatible robot for

microsurgery,” Int. Congr. Ser., vol. 1256, pp. 504–508, 2003.

[73] H. Lang, Y. Wang, and C. W. de Silva, “Visual servoing with LQR control for mobile

robots,” Control Autom. (ICCA), 2010 8th IEEE Int. Conf., pp. 317–321, 2010.

[74] R. Muradore et al., “Development of a Cognitive Robotic System for Simple Surgical

Tasks,” Int. J. Adv. Robot. Syst., vol. 12, no. 4, p. 37, Apr. 2015.

[75] P. Gomes, “Surgical robotics: Reviewing the past, analysing the present, imagining the

future,” Robot. Comput. Integr. Manuf., vol. 27, pp. 261–266, 2010.

[76] C. Bergeles and G. Z. Yang, “From passive tool holders to microsurgeons: Safer, smaller,

smarter surgical robots,” IEEE Trans. Biomed. Eng., vol. 61, no. 5, pp. 1565–1576, 2014.

124

[77] T. Ungi et al., “Navigated Breast Tumor Excision Using Electromagnetically Tracked

Ultrasound and Surgical Instruments,” IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 600–

606, Mar. 2016.

[78] T. Xia et al., “An integrated system for planning, navigation and robotic assistance for skull

base surgery,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 4, no. 4, pp. 321–330, Dec.

2008.

[79] S. Tauscher, J. Tokuda, G. Schreiber, T. Neff, N. Hata, and T. Ortmaier, “OpenIGTLink

interface for state control and visualisation of a robot for image-guided therapy systems,”

Int. J. Comput. Assist. Radiol. Surg., vol. 10, no. 3, pp. 285–292, Mar. 2015.

[80] W. Shen, J. Gu, and Y. Shen, “Trajectory planning for tele-robotic skull drill system,” Proc.

IEEE ICIA 2006 - 2006 IEEE Int. Conf. Inf. Acquis., pp. 1497–1501, 2006.

[81] W. Shen, J. Gu, and E. Milios, “Robotic neurosurgery and clinical applications,” in

International Conference on Intelligent Mechatronics and Automation 2004 Proceedings,

2004, no. August, pp. 114–119.

[82] W. Shen, J. Gu, and Y. Shen, “Using Tele-robotic Skull Drill for Neurosurgical

Applications,” in 2006 International Conference on Mechatronics and Automation, 2006,

pp. 334–338.

[83] W. Shen, J. Gu, and Zuren Feng, “A Stable tele-robotic neurosurgical system based on

SMC,” in 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO),

2007, pp. 150–155.

[84] M. M. Mohamed and J. Gu, “Modular Design of Neurosurgical Robotic System,” Int. J.

Robot. Autom., 2017.

[85] B. Davies, “Robotic Surgery – A Personal View of the Past, Present and Future,” Int. J.

Adv. Robot. Syst., vol. 12, no. 5, p. 54, May 2015.

[86] P. L. Gildenberg, “Robotic Neurosurgery,” in Textbook of Stereotactic and Functional

Neurosurgery, R. R. T. Andres M. Lozano, Philip L. Gildenberg, Ed. 2009, pp. 583–597.

[87] D. F. Louw et al., “Surgical robotics: A review and neurosurgical prototype development,”

Neurosurgery, vol. 54, no. 3, pp. 525–537, 2004.

125

[88] R. J. Hendrick, C. R. Mitchell, S. D. Herrell, and R. J. Webster, “Hand-held transendoscopic

robotic manipulators: A transurethral laser prostate surgery case study,” Int. J. Rob. Res.,

vol. 34, no. 13, pp. 1559–1572, 2015.

[89] G. Niemeyer, C. Preusche, S. Stramigioli, and D. Lee, “Telerobotics,” in Springer

Handbook of Robotics, 1st ed., Cham: Springer International Publishing, 2016, pp. 1085–

1108.

[90] Y. Deng, P.-P. J. Beaujean, E. An, and E. Carlson, “Task Allocation and Path Planning for

Collaborative Autonomous Underwater Vehicles Operating through an Underwater

Acoustic Network,” J. Robot., vol. 2013, pp. 1–15, 2013.

[91] R. Wirz et al., “An experimental feasibility study on robotic endonasal telesurgery.,”

Neurosurgery, vol. 76, no. 4, p. 479–84; discussion 484, Apr. 2015.

[92] W. Shen, J. Gu, and E. E. Milios, “Self-configuration fuzzy system for inverse kinematics

of robot manipulators,” Annu. Conf. North Am. Fuzzy Inf. Process. Soc. - NAFIPS, pp. 41–

45, 2006.

[93] O. Maizza Neto, “Modal analysis and control of flexible manipulator arms.,” Doctoral

dissertation, Massachusetts Institute of Technology, 1975.

[94] G. Augustin et al., “Cortical bone drilling and thermal osteonecrosis,” Clin. Biomech., vol.

27, no. 4, pp. 313–325, May 2012.

[95] B. Noble, “Bone microdamage and cell apoptosis.,” Eur. Cell. Mater., vol. 6, p. 46–55;

discusssion 55, Dec. 2003.

[96] R. Baron, W. C. Horne, F. Bronner, M. C. Farach-Carson, and J. Rubin, Bone resorption.,

1st ed. London, UK: London Springer, 2005.

[97] I. Clabaugh, “An evaluation of thermal changes during insertion of self-drilling miniscrew

implants as measured by infrared thermography,” Doctoral dissertation, Saint Louis

University, 2013.

[98] N. M. da Silva, V. E. Rozanski, and J. P. S. Cunha, “A 3D multimodal approach to precisely

locate DBS electrodes in the basal ganglia brain region,” in 2015 7th International

IEEE/EMBS Conference on Neural Engineering (NER), 2015, pp. 292–295.

126

[99] B. B. G. M. Franssen, P. J. van Diest, A. H. Schuurman, and M. Kon, “Drilling k-wires,

what about the osteocytes? An experimental study in rabbits,” Arch. Orthop. Trauma Surg.,

vol. 128, no. 1, pp. 83–87, Jan. 2008.

[100] A. Adeloye, K. R. Kattan, and F. N. Silverman, “Thickness of the normal skull in the

American blacks and whites,” Am. J. Phys. Anthropol., vol. 43, no. 1, pp. 23–30, Jul. 1975.

[101] G. Kuhn, R. Evison, and M. Schultz, “Diagnostic value of micro‐CT in comparison with

histology in the qualitative assessment of historical human skull bone pathologies.,” Am. J.

Phys. Anthropol., vol. 133, no. 4, pp. 1099–1111, 2007.

[102] S. K. Law, “Thickness and resistivity variations over the upper surface of the human skull.,”

Brain Topogr., vol. 6, no. 2, pp. 99–109, 1993.

[103] M. Okamoto et al., “Three-dimensional probabilistic anatomical cranio-cerebral correlation

via the international 10-20 system oriented for transcranial functional brain mapping.,”

Neuroimage, vol. 21, no. 1, pp. 99–111, Jan. 2004.

[104] B. N. Cuffin et al., “Tests of EEG localization accuracy using implanted sources in the

human brain.,” Ann Neurol, vol. 29, pp. 132–138, 1991.

[105] R. Kiran and V. V. P. Babu, “Design and Implementation of Portable Pick and Place

Robotic,” Int. J. Mag. Eng. Technol. Manag. Res., vol. 4, pp. 435–439, 2017.

[106] L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators, 1st ed.

London, UK: Springer London, 2000.

[107] D. B. Camarillo, T. M. Krummel, and J. K. Salisbury, “Robotic technology in surgery: Past,

present, and future,” Am. J. Surg., vol. 188, no. 4, pp. 2–15, Oct. 2004.

[108] M. Patil, T. Abukhalil, and T. Sobh, “Hardware Architecture Review of Swarm Robotics

System: Self-Reconfigurability, Self-Reassembly, and Self-Replication,” ISRN Robot., vol.

2013, pp. 1–11, 2013.

[109] R. Campa, C. Ramírez, and K. Camarillo, “Motion Control of Industrial Robots in

Operational Space: Analysis and Experiments with the PA10 Arm,” Intechopen.Com, pp.

417–443, 2010.

127

[110] K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “An example of a seven joint

manipulator optimized for kinematic fault tolerance,” in 2014 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), 2014, vol. 2014–Janua, no. January,

pp. 802–807.

[111] F. Wang, “Design and Control of Robotic Systems for Upper Extremity Rehabilitation

Following Stroke,” Doctoral dissertation, Vanderbilt University, 2011.

[112] Mitsubishi Heavy Industry, “General Purpose Robot PA10 Series , Operating Manual,”

Mitsubishi Heavy Industry, Tokyo, 2001.

[113] K. Oonishi, N. Oonishi, and K. Shimoyama, “Producing and the latest development

programs of the portable general purpose intelligent arm ‘Mitsubishi PA-10,’” Adv. Robot.,

vol. 15, no. 3, pp. 333–337, 2001.

[114] K. Oonishi, N. Oonishi, and K. Shimoyama, “Producing and the latest development

programs of the portable general purpose intelligent arm ‘Mitsubishi PA-10,’” Adv. Robot.,

vol. 15, no. 3, pp. 333–337, Jan. 2001.

[115] Y. Zhang and Z. Zhang, “PA10 Examples,” in Repetitive Motion Planning and Control of

Redundant Robot Manipulators, 1st ed., Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 137–148.

[116] C. Kapoor, “Task-Based Decision Making and Control of Robotic Manipulators,” Doctoral

dissertation, The University of Texas at Austin, 2004.

[117] M. Spong and M. Vidyasagar, Robot dynamics and control, 2nd ed. New York, NY: John

Wiley & Sons, 1989.

[118] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed., vol. 1, no. 3. Upper

Saddle River: Pearson Education International, 2004.

[119] M. Toz and S. Kucuk, “Dynamics simulation toolbox for industrial robot manipulators,”

Comput. Appl. Eng. Educ., vol. 18, no. 2, pp. 319–330, 2009.

[120] Y. Zhang and Z. Zhang, Repetitive motion planning and control of redundant robot

manipulators, 1st ed. Springer Science & Business Media, 2014.

128

[121] D. Whitney, “Resolved Motion Rate Control of Manipulators and Human Prostheses,”

IEEE Trans. Man Mach. Syst., vol. 10, no. 2, pp. 47–53, Jun. 1969.

[122] L. Jin, S. Li, H. M. La, and X. Luo, “Manipulability Optimization of Redundant

Manipulators Using Dynamic Neural Networks,” IEEE Trans. Ind. Electron., vol. 64, no. 6,

pp. 1–1, 2017.

[123] M. Katayama, K. Asada, X.-Z. Zheng, M. Yamakita, and K. Ito, “Self-Organization of a

Task Oriented Visuo-Motor map for a Redundant arm,” in The 5th International Conference

on Emerging Technologies and Factory Automation, 1996, pp. 302–308.

[124] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic Manipulation, 1st

ed., vol. 29. Boca Raton, Florida: CRC press, 1994.

[125] F. L. Lewis, D. M. Dawson, and C. T. Abdallah, Manipulator Control Theory and Practice,

2nd ed. New York, NY: Marcel Dekker, 2004.

[126] P. H. Chang, “A Closed-Form Solution for Inverse Kinematics of Robot Manipulators with

Redundancy,” IEEE J. Robot. Autom., vol. 3, no. 5, pp. 393–403, 1987.

[127] K. Deshmukh, J. L. Rickli, and A. Djuric, “Kinematic Modeling of an Automated Laser

Line Point Cloud Scanning System,” Procedia Manuf., vol. 5, pp. 1075–1091, 2016.

[128] Mitsubishi Heavy Industry, “General Purpose Robot PA10 Series Programming Manual,”

Tokyo, 2001.

[129] T. Tsumugiwa, R. Yokogawa, and K. Hara, “Measurement method for compliance of

vertical-multi-articulated robot application to 7-DOF robot PA-10,” Robot. Autom. 2003.

Proceedings. ICRA ’03. IEEE Int. Conf., vol. 2, pp. 2741–2746 vol.2, 2003.

[130] N. A. Bompos, P. K. Artemiadis, A. S. Oikonomopoulos, and K. J. Kyriakopoulos,

“Modeling, full identification and control of the mitsubishi PA-10 robot arm,” in 2007

IEEE/ASME international conference on advanced intelligent mechatronics, 2007, pp. 1–6.

[131] M. M. Mohamed, J. Gu, and J. Luo, “LQR controller for robotic skull drilling system,” in

2017 29th Chinese Control And Decision Conference (CCDC), 2017, pp. 7533–7538.

129

[132] P. Lambrechts, M. Boerlage, and M. Steinbuch, “Trajectory planning and feedforward

design for electromechanical motion systems,” Control Eng. Pract., vol. 13, no. 2, pp. 145–

157, Feb. 2005.

[133] M. M. Mohamed and J. Gu, “CMOS based single active element PID controllers,” in 2015

IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), 2015,

vol. 2015–June, no. June, pp. 932–936.

[134] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming Theory and

Algorithms, 1st ed. Hoboken, New Jersey: John Wiley & Sons, 2013.

[135] N. Lynnerup, J. G. Astrup, and B. Sejrsen, “Thickness of the human cranial diploe in

relation to age, sex and general body build,” Head Face Med., vol. 1, no. 1, p. 13, Dec. 2005.

[136] J. A. Motherway, P. Verschueren, G. Van der Perre, J. Vander Sloten, and M. D. Gilchrist,

“The mechanical properties of cranial bone: The effect of loading rate and cranial sampling

position,” J. Biomech., vol. 42, no. 13, pp. 2129–2135, Sep. 2009.

[137] C. Gunn, Bones and joints : a guide for students, 6th ed. Elsevier, 2012.

[138] M. M. Mohamed and J. Gu, “PLC controller for hydraulic pressing machine,” in

Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, 2015.

[139] M. M. Mohamed and M. A. Hamdan, “Development of control system for two degree of

freedom hydraulic motion base,” in 2010 2nd International Conference on Mechanical and

Electronics Engineering, 2010, vol. 2, no. Icmee, pp. V2-166-V2-170.

[140] Mathworks, “User’s Guide for Matlab Simscape.” MathWorks, Natick, MA, 2017.

[141] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and scalable robot

simulation framework,” in IEEE International Conference on Intelligent Robots and

Systems, 2013, pp. 1321–1326.

[142] J. KHALILOV, “Interfacing Simulinkmatlab With V-Rep for Analysis and Control

Synthesis of a Quadrotor,” Doctoral dissertation,Middle East Technical University, 2016.

[143] M. Prats, Á. P. del Pobil, and P. J. Sanz, Robot Physical Interaction through the combination

of Vision, Tactile and Force Feedback, vol. 84. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013.

130

[144] B. Siciliano and O. Khatib, Springer handbook of robotics, 1st ed. New York, NY: Springer,

2016.

[145] S. Pieper, B. Lorensen, W. Schroeder, and R. Kikinis, “The NA-MIC Kit: ITK, VTK,

Pipelines, Grids and 3D Slicer as An Open Platform for the Medical Image Computing

Community,” 3rd IEEE Int. Symp. Biomed. Imaging Macro to Nano, 2006., pp. 698–701,

2006.

[146] G. FAGIOLO, A. WALDMAN, and J. V HAJNAL, “A simple procedure to improve

FMRIb Software Library Brain Extraction Tool performance,” Br. J. Radiol., vol. 81, no.

963, pp. 250–251, Mar. 2008.

[147] F. Kurth, C. Gaser, and E. Luders, “A 12-step user guide for analyzing voxel-wise gray

matter asymmetries in statistical parametric mapping (SPM),” Nat. Protoc., vol. 10, no. 2,

pp. 293–304, Jan. 2015.

[148] M. Nolden et al., “The medical imaging interaction toolkit: Challenges and advances: 10

years of open-source development,” Int. J. Comput. Assist. Radiol. Surg., vol. 8, no. 4, pp.

607–620, 2013.

[149] G. Wollny, P. Kellman, M.-J. Ledesma-Carbayo, M. M. Skinner, J.-J. Hublin, and T. Hierl,

“MIA - A free and open source software for gray scale medical image analysis,” Source

Code Biol. Med., vol. 8, no. 1, p. 20, 2013.

[150] I. Wolf et al., “The Medical Imaging Interaction Toolkit,” Med. Image Anal., vol. 9, no. 6,

pp. 594–604, Dec. 2005.

131

APPENDICES

APPENDIX 1. INDIVIDUAL PARAMETERS OF PA10 ROBOT JACOBIAN MATRIX

q414 = c5s6d7 (3.5.3)

q424 = −c6d7 − d5 (3.5.4)

q434 = s5s6d7 (3.5.5)

q314 = c4q414 − s4q424, (3.5.6)

q324 = q434 (3.5.7)

q334 = −s4q414 − c4q424 (3.5.8)

q214 = c3q314 − s3q434 (3.5.9)

q224 = −q334 − d3 (3.5.10)

q234 = s3q314 + c3q434, (3.5.11)

q114 = c2q214 − s2q224, (3.5.12)

q134 = −s2q214 − c2q224, (3.5.13)

q411 = (c1c2c3 − s1s3)c4 − c1s2s4, (3.5.14)

q412 = −(c1c2c3 − s1s3)s4 − c1s2c4, (3.5.15)

q413 = −c1c2c3 − s1c3, (3.5.16)

q421 = (s1c2c3 + c1s3)c4 − s1s2s4, (3.5.17)

q422 = −(s1c2c3 + c1s3)s4 − s1s2c4, (3.5.18)

q423 = −s1c2s3 + c1c3, (3.5.19)

q431 = −s2c3c4 − c2s4, (3.5.20)

q432 = s2c3s4 − c2c4, (3.5.21)

q433 = s2s3, (3.5.22)

q511 = q411c5 + q413s5, (3.5.23)

132

q512 = −q411s5 + q413c5, (3.5.24)

q513 = −q412, (3.5.25)

q521 = q421c5 + q423s5, (3.5.26)

q522 = −q421s5 + q423c5, (3.5.27)

q523 = −q422, (3.5.28)

q531 = q431c5 + q433s5, (3.5.29)

q532 = −q431s5 + q433c5, (3.5.30)

q533 = −q432, (3.5.31)

q612 = −q511s6 + q412c6, (3.5.32)

q622 = −q521s6 + q422c6, (3.5.33)

q632 = −q531s6 + q432c6, (3.5.34)

p21 = c1c2q214 − c1s2q224 − s1q234, (3.5.35)

p22 = s1c2q214 − c1s2q224 + c1q234, (3.5.36)

p23 = −s2q214 − c2q224, (3.5.37)

p31 = (c1c2c3 − s1s3)q314 − (c1c2c3 + s1c3)q434 + c1s2q334, (3.5.38)

p32 = (s1c2c3 + c1s3)q314 + (−s1c2s3 + c1c3)q434 + s1s2q334, (3.5.39)

p33 = −s2c3q314 + s2s3q434 + c2q334, (3.5.40)

p41 = q411q414 + q412q424 + q413q434, (3.5.41)

p42 = q421q414 + q422q424 + q423q434, (3.5.42)

p43 = q431q414 + q432q424 + q433q434, (3.5.43)

p51 = q511s6d7 + q513c6d7, (3.5.44)

p52 = q521s6d7 + q523c6d7, (3.5.45)

p53 = q531s6d7 + q533c6d7, (3.5.46)

p61 = −q612d7, (3.5.47)

p62 = −q622d7, (3.5.48)

133

p63 = −q632d7. (3.5.49)

APPENDIX 2. DYNAMIC MODEL OF PA10 ROBOT

From equation 3.7.11 ; The mathematical model of PA10 robot could be simplified as

following:

 𝜏 = 𝑌(𝑞, 𝑞̇, 𝑞) 𝜋 (3.7.13)

where 𝜏 a 7×1 vector of joint torques, Y a 7×p matrix which is a function of joint positions,

velocities and accelerations.

𝑙𝑐1𝑥 = 𝑙𝑐1𝑦 = 𝑙𝑐2𝑥 = 𝑙𝑐2𝑧 = 𝑙𝑐3𝑥 = 𝑙𝑐3𝑦 = 𝑙𝑐4𝑥 = 𝑙𝑐4𝑧 = 𝑙𝑐5𝑥 = 𝑙𝑐5𝑦 = 𝑙𝑐6𝑥

= 𝑙𝑐6𝑧 = 0
(3.7.14)

The following simplifications made to minimize system complicity.

𝐼1𝑥𝑧 = 𝐼1𝑥𝑦 = 𝐼1𝑦𝑧 = 𝐼2𝑥𝑦 = 𝐼2𝑥𝑧 = 𝐼3𝑥𝑧 = 𝐼3𝑥𝑦 = 𝐼3𝑦𝑧 = 𝐼4𝑥𝑦 = 𝐼4𝑥𝑧 = 𝐼5𝑥𝑧

= 𝐼5𝑥𝑦 = 𝐼5𝑦𝑧 = 𝐼6𝑥𝑧 = 𝐼6𝑥𝑦 = 𝐼6𝑦𝑧 = 0
(3.7.15)

 𝐼𝑗𝑥𝑥𝑅 = 𝐼𝑗𝑥𝑥 = 𝐼𝑗𝑦𝑦 (3.7.16)

 𝐼(𝑗−1)𝑥𝑥𝑅 = 𝐼(𝑗−1)𝑥𝑥 + 𝐼𝑗𝑦𝑦 + 2𝑑𝑗𝑀𝑗𝑧 + 𝑑
2
𝑗𝑀𝑗 (3.7.17)

 𝐼(𝑗−1)𝑥𝑦𝑅 = 𝐼(𝑗−1)𝑥𝑦 + 𝑎𝑗−1𝑆𝛼𝑗−1𝑀𝑗𝑧 + 𝑎𝑗−1𝑑𝑗𝑆𝛼𝑗−1𝑀𝑗 (3.7.18)

 𝐼(𝑗−1)𝑥𝑧𝑅 = 𝐼(𝑗−1)𝑥𝑧 − 𝑎𝑗−1𝐶𝛼𝑗−1𝑀𝑗𝑧 − 𝑎𝑗−1𝑑𝑗𝐶𝛼𝑗−1𝑀𝑗 (3.7.19)

 𝐼(𝑗−1)𝑦𝑦𝑅 = 𝐼(𝑗−1)𝑦𝑦 + 𝐶𝐶𝛼𝑗−1𝐼𝑗𝑦𝑦 + 2𝑑𝑗𝐶𝐶𝛼𝑗−1𝑀𝑗𝑧 + (𝑎
2
𝑗−1

+ 𝑑2𝑗𝐶𝐶𝛼𝑗−1)𝑀𝑗
(3.7.20)

 𝐼(𝑗−1)𝑦𝑧𝑅 = 𝐼(𝑗−1)𝑦𝑧 + 𝐶𝑆𝛼𝑗−1𝐼𝑗𝑦𝑦 + 2𝑑𝑗𝐶𝑆𝛼𝑗−1𝑀𝑗𝑧
+ 𝑑2𝑗𝐶𝑆𝛼𝑗−1𝑀𝑗

(3.7.21)

𝐼(𝑗−1)𝑧𝑧𝑅 = 𝐼(𝑗−1)𝑧𝑧 + 𝑆𝑆𝛼𝑗−1𝐼𝑗𝑦𝑦 + 2𝑑𝑗𝑆𝑆𝛼𝑗−1𝑀𝑗𝑧 + (𝑎

2
𝑗−1

+ 𝑑2𝑗𝑆𝑆𝛼𝑗−1)𝑀𝑗
(3.7.22)

 𝑀(𝑗−1)𝑥𝑅 = 𝑀(𝑗−1)𝑥 + 𝑎𝑗−1𝑀𝑗 (3.7.23)

 𝑀(𝑗−1)𝑦𝑅 = 𝑀(𝑗−1)𝑦 − 𝑆𝛼𝑗−1𝑀𝑗𝑧 − 𝑑𝑗𝑆𝛼𝑗𝑀𝑗 (3.7.24)

 𝑀(𝑗−1)𝑧𝑅 = 𝑀(𝑗−1)𝑧 + 𝐶𝛼𝑗−1𝑁𝑗𝑧 + 𝑑𝑗𝐶𝛼𝑗−1𝑀𝑗 (3.7.25)

𝑀(𝑗−1)𝑅 = 𝑀(𝑗−1) +𝑀𝑗

(3.7.26)

 𝜋 = [

𝐼1𝑧𝑧𝑅 𝑀2𝑦𝑅 𝐼2𝑥𝑥𝑅 𝐼2𝑦𝑧𝑅 𝐼2𝑧𝑧𝑅 𝐼𝑚3
𝐼3𝑥𝑥𝑅

𝐼3𝑧𝑧𝑅 𝐼𝑚4
𝑀4𝑦𝑅 𝐼4𝑥𝑥𝑅 𝐼4𝑦𝑧𝑅 𝐼4𝑧𝑧𝑅 𝐼𝑚5

𝐼5𝑥𝑥𝑅 𝐼5𝑧𝑧𝑅 𝐼𝑚6
𝑀6𝑦𝑅 𝐼6𝑥𝑥𝑅 𝐼6𝑧𝑧𝑅 𝐼𝑚7

]

𝑇

 (3.7.27)

134

 𝜋1 = 𝐼1𝑧𝑧𝑅 = 𝐼1𝑧𝑧 + 𝐼2𝑦𝑦 + 𝐾𝑟
2𝐼𝑟𝑛𝑖 = 6.3376𝑔𝑚2 (3.7.28)

 𝜋2 = 𝑀2𝑦𝑅 = 𝐿𝐶2𝑦𝑚2
− 𝐿𝐶3𝑧𝑚3 − 𝑑3(𝑚3 +𝑚4 +𝑚5 +𝑚6)

= −7.3424 𝐾𝑔𝑚

(3.7.29)

 𝜋3 = 𝐼2𝑥𝑥𝑅 = 𝐼2𝑥𝑥 + 𝐼3𝑦𝑦 + 2𝑑3𝐿𝑐3𝑧𝑚3

+ 𝑑3
2(𝑚3 +𝑚4 +𝑚5 +𝑚6) − 𝐼2𝑦𝑦

= 2.9419 𝐾𝑔𝑚2

(3.7.30)

 𝜋4 = 𝐼2𝑦𝑧𝑅 = 𝐼2𝑦𝑧 = 3.7152 𝑘𝑔.𝑚
2 (3.7.31)

 𝜋5 = 𝐼2𝑧𝑧𝑅 = 𝐼2𝑧𝑧 + 𝐼3𝑦𝑦 + 2𝑑3𝑙𝐶3𝑧𝑚3

+ 𝑑3
2(𝑚3 +𝑚4 +𝑚5 +𝑚6) + 𝐾𝑟

2𝐼𝑟𝑛2
= 4.2823 𝑘𝑔.𝑚2

(3.7.32)

 𝜋6 = 𝐼𝑟𝑛3 = 4.7890. 10
−4 𝑘𝑔.𝑚2 (3.7.33)

 𝜋7 = 𝐼3𝑥𝑥𝑅 = 𝐼3𝑥𝑥 + 𝐼4𝑦𝑦 − 𝐼3𝑦𝑦 = −1.5248 𝑘𝑔.𝑚
2 (3.7.34)

 𝜋8 = 𝐼3𝑧𝑧𝑅 = 𝐼3𝑧𝑧 + 𝐼4𝑦𝑦 = 3.8092 𝑘𝑔.𝑚2 (3.7.35)

 𝜋9 = 𝐼𝑚4
= 2.0595. 10−4 𝑘𝑔.𝑚2 (3.7.36)

 𝜋10 = 𝑀4𝑦𝑅 = 𝑙𝐶4𝑦𝑚4 − 𝑙𝐶5𝑧𝑚5 − 𝑑5(𝑚5 +𝑚6)

= −3.2317 𝑘𝑔.𝑚2

(3.7.37)

 𝜋8 = 𝐼4𝑥𝑥𝑅 = 𝐼4𝑥𝑥 + 𝐼5𝑦𝑦 + 2𝑑5𝑙𝐶5𝑧𝑚5 + 𝑑5
2(𝑚5 +𝑚6) − 𝐼4𝑦𝑦

= 0.7116 𝑘𝑔.𝑚2

(3.7.38)

 𝜋12 = 𝐼4𝑦𝑧𝑅 = 𝐼4𝑦𝑧 = 0.4189 𝑘𝑔.𝑚2 (3.7.39)

 𝜋13 = 𝐼4𝑧𝑧𝑅 = 𝐼4𝑧𝑧 + 𝐼5𝑦𝑦 + 2𝑑5𝑙𝐶5𝑧𝑚5 + 𝑑5
2(𝑚5 +𝑚6)

= 0.4961 𝑘𝑔.𝑚2

(3.7.40)

 𝜋14 = 𝐼𝑚5
= 3.2303. 10−4 𝑘𝑔.𝑚2 (3.7.41)

 𝜋15 = 𝐼4𝑥𝑧𝑅 = 𝐼5𝑥𝑥 + 𝐼5𝑦𝑦 = 0.2917𝑘𝑔.𝑚2 (3.7.42)

 𝜋16 = 𝐼5𝑧𝑧𝑅 = 𝐼5𝑧𝑧 + 𝐼6𝑦𝑦 = 0.1309𝑘𝑔.𝑚
2 (3.7.43)

 𝜋17 = 𝐼𝑚6
= 2.5371. 10−4𝑘𝑔.𝑚2 (3.7.44)

 𝜋18 = 𝑀6𝑦𝑅 = 𝑙𝐶6𝑦𝑚6 = 0.05377𝑘𝑔.𝑚2 (3.7.45)

 𝜋19 = 𝐼6𝑥𝑧𝑅 = 𝐼6𝑥𝑥 − 𝐼6𝑦𝑦 = 0.1861 𝑘𝑔.𝑚2 (3.7.46)

 𝜋20 = 𝐼6𝑧𝑧𝑅 = 𝐼6𝑧𝑧 = 0.0747 𝑘𝑔.𝑚
2 (3.7.47)

 𝜋21 = 𝐼𝑚7
= 9.2458. 10−6𝑘𝑔.𝑚2 (3.7.48)

APPENDIX 3. MATLAB CODE FOR MODELLING PA107C ROBOTIC ARM

clear all

close all

clc

clear L

% Here, SI unit of length is meter (m)

% D-H parameters

% L1 = Link('d', 0, 'a', 1, 'alpha', pi/2)

L1 = Link('d', 0.317, 'a', 0, 'alpha', -pi/2)

%L{1} = Link([-pi/2 0 0 .317], 'standard');

L2 = Link('d', 0, 'a', 0, 'alpha', pi/2)

135

%L{2} = Link([pi/2 0 0 0], 'standard');

%L{3} = Link([-pi/2 0 0 .450], 'standard');

L3 = Link('d', 0.450, 'a', 0, 'alpha', -pi/2)

%L{4} = Link([pi/2 0 0 0], 'standard');

L4 = Link('d', 0, 'a', 0, 'alpha', pi/2)

%L{5} = Link([-pi/2 0 0 .480], 'standard');

L5 = Link('d', 0.480, 'a', 0, 'alpha', -pi/2)

%L{6} = Link([pi/2 0 0 0], 'standard');

L6 = Link('d', 0, 'a', 0, 'alpha', pi/2)

L{7} = Link([0 0 0 .215], 'standard');

L7 = Link('d', 0.215, 'a', 0, 'alpha', 0)

% Mass is kilogram kg

%L{1}.m = 9.78;

L1.m = 9.78;

%L{2}.m = 8.41;

L2.m = 8.41;

%L{3}.m = 3.51;

L3.m = 3.51;

%L{4}.m = 4.31;

L4.m = 4.31;

%L{5}.m = 3.45;

L5.m = 3.45;

%L{6}.m = 1.46;

L6.m = 1.46;

%L{7}.m = 0.24;

L7.m = 0.24;

%###

% not sure

%L{1}.r = [0 0 0];

%L{2}.r = [-.3638 .006 .2275];

%L{3}.r = [-.0203 -.0141 .070];

% L{4}.r = [0 .019 0];

% L{5}.r = [0 0 0];

% L{6}.r = [0 0 .032];

% L{7}.r = [0 0 .032];

L1.r = [0 0 0];

L2.r = [-.3638 .006 .2275];

L3.r = [-.0203 -.0141 .070];

L4.r = [0 .019 0];

L5.r = [0 0 0];

L6.r = [0 0 .032];

L7.r = [0 0 .032];

% L{1}.I = [0 0.35 0 0 0 0];

% L{2}.I = [.13 .524 .539 0 0 0];

% L{3}.I = [.066 .086 .0125 0 0 0];

% L{4}.I = [1.8e-3 1.3e-3 1.8e-3 0 0 0];

136

% L{5}.I = [.3e-3 .4e-3 .3e-3 0 0 0];

% L{6}.I = [.15e-3 .15e-3 .04e-3 0 0 0];

% L{7}.I = [.15e-3 .15e-3 .04e-3 0 0 0];

L1.I = [0 0.35 0 0 0 0];

L2.I = [.13 .524 .539 0 0 0];

L3.I = [.066 .086 .0125 0 0 0];

L4.I = [1.8e-3 1.3e-3 1.8e-3 0 0 0];

L5.I = [.3e-3 .4e-3 .3e-3 0 0 0];

L6.I = [.15e-3 .15e-3 .04e-3 0 0 0];

L7.I = [.15e-3 .15e-3 .04e-3 0 0 0];

% L{1}.Jm = 200e-6;

% L{2}.Jm = 200e-6;

% L{3}.Jm = 200e-6;

% L{4}.Jm = 33e-6;

% L{5}.Jm = 33e-6;

% L{6}.Jm = 33e-6;

% L{7}.Jm = 33e-6;

L1.Jm = 200e-6;

L2.Jm = 200e-6;

L3.Jm = 200e-6;

L4.Jm = 33e-6;

L5.Jm = 33e-6;

L6.Jm = 33e-6;

L7.Jm = 33e-6;

% L{1}.G = -62.6111;

% L{2}.G = 107.815;

% L{3}.G = -53.7063;

% L{4}.G = 76.0364;

% L{5}.G = 71.923;

% L{6}.G = 76.686;

% L{7}.G = 76.686;

L1.G = -62.6111;

L2.G = 107.815;

L3.G = -53.7063;

L4.G = 76.0364;

L5.G = 71.923;

L6.G = 76.686;

L7.G = 76.686;

% viscous friction (motor referenced)

% L{1}.B = 1.48e-3;

% L{2}.B = .817e-3;

% L{3}.B = 1.38e-3;

% L{4}.B = 71.2e-6;

% L{5}.B = 82.6e-6;

% L{6}.B = 36.7e-6;

% L{7}.B = 36.7e-6;

137

L1.B = 1.48e-3;

L2.B = .817e-3;

L3.B = 1.38e-3;

L4.B = 71.2e-6;

L5.B = 82.6e-6;

L6.B = 36.7e-6;

L7.B = 36.7e-6;

% Coulomb friction (motor referenced)

% L{1}.Tc = [.395 -.435];

% L{2}.Tc = [.126 -.071];

% L{3}.Tc = [.132 -.105];

% L{4}.Tc = [11.2e-3 -16.9e-3];

% L{5}.Tc = [9.26e-3 -14.5e-3];

% L{6}.Tc = [3.96e-3 -10.5e-3];

% L{7}.Tc = [3.96e-3 -10.5e-3];

L1.Tc = [.395 -.435];

L2.Tc = [.126 -.071];

L3.Tc = [.132 -.105];

L4.Tc = [11.2e-3 -16.9e-3];

L5.Tc = [9.26e-3 -14.5e-3];

L6.Tc = [3.96e-3 -10.5e-3];

L7.Tc = [3.96e-3 -10.5e-3];

Q0=[0 0 0 0 0 0 0]

%##

%

% some useful poses

%

global qesc qhome qsafe

qesc = [0 pi/4 0 pi/2 0 pi/4 0]; % Escape angles for PA10-7C, arm up

qhome = [0 0 0 0 0 0 0]; % Home angles for PA10-7C,

qsafe = [0 pi/4 0 pi/2 0 -pi/4 0]; % Safety position,

%bot = SerialLink([L1 L2], 'name', 'my robot')

% pa107c = robot(L, 'PA10-7C', 'Mitsubishi', '');

%bot = SerialLink(L, 'PA10-7C', 'Mitsubishi', 'my robot');

% global pa10_7c

pa10_7c = SerialLink([L1 L2 L3 L4 L5 L6 L7])

Qinitial2.signals.values= [0 0 0 0 0 0 0]

Qinitial.signals.values= [0 0 0 0 0 0 0]

X=0

Y=0

Z=0

%% Extra ===============

% clear L1 L2 L3 L4 L5 L6 L7

% pa10_7c.plot([0 0 0 0 1 0.3 0.5])

% pause(3)a

% pa10_7c.plot(qsafe)

138

% pause(3)

% pa10_7c.plot(qhome)

%

% %t = fkinepa10(robot, q)

pa10_7c =

noname (7 axis, RRRRRRR, stdDH, fastRNE)

+---+-----------+-----------+-----------+-----------+-----------+

| j | theta | d | a | alpha | offset |

+---+-----------+-----------+-----------+-----------+-----------+

| 1| q1| 0.317| 0| -1.571| 0|

| 2| q2| 0| 0| 1.571| 0|

| 3| q3| 0.45| 0| -1.571| 0|

| 4| q4| 0| 0| 1.571| 0|

| 5| q5| 0.48| 0| -1.571| 0|

| 6| q6| 0| 0| 1.571| 0|

| 7| q7| 0.215| 0| 0| 0|

+---+-----------+-----------+-----------+-----------+-----------+

 grav = 0 base = 1 0 0 0 tool = 1 0 0 0

 0 0 1 0 0 0 1 0 0

 9.81 0 0 1 0 0 0 1 0

 0 0 0 1 0 0 0 1

 qesc = [0 pi/4 0 pi/2 0 pi/4 0]

>> pa10_7c.fkine(qesc)

ans =

 -1.0000 -0.0000 0.0000 0.6576

 0.0000 1.0000 0.0000 0.0000

 -0.0000 0.0000 -1.0000 0.0808

 0 0 0 1.0000

APPENDIX 4. MATLAB CODE FOR CALCULATING THE INVERSE KINEMATICS

OF THE PA10 ROBOT

% %Inverse kinematics development to the robot PA - 10

Clear all ; clc

syms teheta1 teheta2 teheta3 teheta4 teheta5 teheta6 L1 L2 L3 L4 nx ny nz ox oy oz ax ay az px

py pz

%The following are the DH parameters obtained from the robot shown in

dh = [teheta1+(pi/2) L1 0 pi/2 ;

teheta2+(pi/2) 0 L2 0 ;

teheta3-(pi/2) 0 0 -pi/2 ;

teheta4 L3 0 pi/2 ;

teheta5 0 0 -pi/2 ;

teheta6 L4 0 0 ;]

TO6 = simple(T01*T12*T23*T34*T45*T56)

139

T03 = [sin(teheta1)*sin(teheta2)*sin(teheta3)-sin(teheta1)*cos(teheta2)*cos(teheta3), -

cos(teheta1), sin(teheta1)*sin(teheta2)*cos(teheta3)+sin(teheta1)*cos(teheta2)*sin(teheta3),

sin(teheta1)*L2*sin(teheta2)]

[-cos(teheta1)*sin(teheta2)*sin(teheta3)+cos(teheta1)*cos(teheta2)*cos(teheta3), -sin(teheta1), -

cos(teheta1)*sin(teheta2)*cos(teheta3)-cos(teheta1)*cos(teheta2)*sin(teheta3), -

cos(teheta1)*L2*sin(teheta2)]

[cos(teheta2)*sin(teheta3)+sin(teheta2)*cos(teheta3), 0, cos(teheta2)*cos(teheta3)-

sin(teheta2)*sin(teheta3), L2*cos(teheta2)+L1]

[0, 0, 0, 1]

%Where the rotation matrix is:

R03 = [sin(teheta1)*sin(teheta2)*sin(teheta3)-sin(teheta1)*cos(teheta2)*cos(teheta3) -

cos(teheta1) sin(teheta1)*sin(teheta2)*cos(teheta3)+sin(teheta1)*cos(teheta2)*sin(teheta3)

cos(teheta1)*sin(teheta2)*sin(teheta3)+cos(teheta1)*cos(teheta2)*cos(teheta3) -sin(teheta1) -

cos(teheta1)*sin(teheta2)*cos(teheta3)-cos(teheta1)*cos(teheta2)*sin(teheta3)

cos(teheta2)*sin(teheta3)+sin(teheta2)*cos(teheta3) 0 cos(teheta2)*cos(teheta3)-

sin(teheta2)*sin(teheta3)]

% Now we determine the inverse of this rotation matrix:

R03i = simple(inv(R03))

T36 = [cos(teheta4)*cos(teheta5)*cos(teheta6)-sin(teheta4)*sin(teheta6), -

cos(teheta4)*cos(teheta5)*sin(teheta6)-sin(teheta4)*cos(teheta6), -cos(teheta4)*sin(teheta5), -

cos(teheta4)*sin(teheta5)*L4]

[sin(teheta4)*cos(teheta5)*cos(teheta6)+cos(teheta4)*sin(teheta6), -

sin(teheta4)*cos(teheta5)*sin(teheta6)+cos(teheta4)*cos(teheta6), -sin(teheta4)*sin(teheta5), -

sin(teheta4)*sin(teheta5)*L4]

[sin(teheta5)*cos(teheta6), -sin(teheta5)*sin(teheta6), cos(teheta5), cos(teheta5)*L4+L3]

[0, 0, 0, 1]

% Where the rotation matrix is:

R36 = [cos(teheta4)*cos(teheta5)*cos(teheta6)-sin(teheta4)*sin(teheta6) -

cos(teheta4)*cos(teheta5)*sin(teheta6)-sin(teheta4)*cos(teheta6) -cos(teheta4)*sin(teheta5);

sin(teheta4)*cos(teheta5)*cos(teheta6)+cos(teheta4)*sin(teheta6) -

sin(teheta4)*cos(teheta5)*sin(teheta6)+cos(teheta4)*cos(teheta6) -sin(teheta4)*sin(teheta5);

sin(teheta5)*cos(teheta6) -sin(teheta5)*sin(teheta6) cos(teheta5);]

% The rotation matrix from base to tip is the following

R06 = [nx ox ax; nyoy ay; nzozaz;]

% R03i*R06= R36

R03i_R06 = R03i*R06

% Getting the following result

% Of Equalization, the third row element third column, we obtain

teheta5 = solve('(1/2*cos(teheta1-teheta2-teheta3)-1/2*cos(teheta1+teheta2+teheta3))*ax+(-

1/2*sin(teheta1+teheta2+teheta3)+1/2*sin(teheta1-teheta2-

teheta3))*ay+cos(teheta2+teheta3)*az=cos(teheta5)',teheta5);

teheta5 = simple(teheta5)

teheta4 = solve('-cos(teheta1)*ax-sin(teheta1)*ay = -sin(teheta4)*sin(teheta5)',teheta4);

teheta4 = simple(teheta4)

% Now we will calculate teheta6, with the element of the third row first column

teheta6 = solve('(1/2*cos(teheta1-teheta2-teheta3)-1/2*cos(teheta1+teheta2+teheta3))*nx+(-

140

cos(teheta2).*sin(teheta3)+sin(teheta2).*cos(teheta3)).*cos(teheta4).*sin(teheta5)+(cos(teheta2).

*cos(teheta3)-sin(teheta2).*sin(teheta3)).*cos(teheta5)).*L4+(cos(teheta2).*cos(teheta3)-

sin(teheta2).*sin(teheta3)).*L3+L2.*cos(teheta2)+L1

1/2*sin(teheta1+teheta2+teheta3)+1/2*sin(teheta1-teheta2-

teheta3))*ny+cos(teheta2+teheta3)*nz = sin(teheta5)*cos(teheta6)',teheta6);

teheta6 = simple(teheta6)

% Now to obtain the given path knowing that:

L1 = 317; L2 = 450; L3 = 480; L4 = 70;

Px=-400:10:400; Py=400*ones(1,101);

Px1 = 400*ones(1,41); Py1 = 400:-10:100;

Px2 = 400:-10:-400; Py2 = 100*ones(1,101);

Px3 = -400*ones(1,41); Py3 = 0:10:400;

px=[Px Px1 Px2 Px3]; py=[Py Py1 Py2 Py3];

pz=200*ones(1,284); q0 = zeros(1,284);

nx=1; ny=0; nz=0; ox=0; oy=1; oz=0; ax=0; ay=0; az=1;

Pmx = px - (ax*L4)

Pmy = py - (ay*L4)

Pmz = pz - (az*L4)

teheta1 = atan(-Pmx./Pmy);

teheta3 = -acos((Pmx.^2+Pmy.^2+(Pmz-L1).^2-L3.^2-L2.^2)./(2.*L2.*L3));

teheta2 = -acos(((Pmz-L1).*(L3.*cos(teheta3)+L2)+(sin(teheta1).*Pmx-

cos(teheta1).*Pmy).*(L3.*sin(teheta3)))./((sin(teheta1).*Pmx-cos(teheta1).*Pmy).^2+(Pmz-

L1).^2));

teheta5 =acos(1/2.*ax.*cos(teheta1-teheta2-teheta3)-1/2.*ax.*cos(teheta1+teheta2+teheta3)-

1/2.*ay.*sin(teheta1+teheta2+teheta3)+1/2.*ay.*sin(teheta1-teheta2-

teheta3)+cos(teheta2+teheta3).*az)

teheta4 =asin((cos(teheta1).*ax+sin(teheta1).*ay)./sin(teheta5))

teheta6 =-acos(1/2.*(nx.*cos(teheta1-teheta2-teheta3)-nx.*cos(teheta1+teheta2+teheta3)-

ny.*sin(teheta1+teheta2+teheta3)+ny.*sin(teheta1-teheta2-

teheta3)+2.*cos(teheta2+teheta3).*nz)./sin(teheta5))

x = (-((sin(teheta1).*sin(teheta2).*sin(teheta3)-

sin(teheta1).*cos(teheta2).*cos(teheta3)).*cos(teheta4)-

cos(teheta1).*sin(teheta4)).*sin(teheta5)+(sin(teheta1).*sin(teheta2).*cos(teheta3)+sin(teheta1).*

cos(teheta2).*sin(teheta3)).*cos(teheta5)).*L4+(sin(teheta1).*sin(teheta2).*cos(teheta3)+sin(tehe

ta1).*cos(teheta2).*sin(teheta3)).*L3+sin(teheta1).*L2.*sin(teheta2)

y = (-((cos(teheta1).*cos(teheta2).*cos(teheta3)-

cos(teheta1).*sin(teheta2).*sin(teheta3)).*cos(teheta4)-

sin(teheta1).*sin(teheta4)).*sin(teheta5)+(-cos(teheta1).*sin(teheta2).*cos(teheta3)-

cos(teheta1).*cos(teheta2).*sin(teheta3)).*cos(teheta5)).*L4+(-

cos(teheta1).*sin(teheta2).*cos(teheta3)-cos(teheta1).*cos(teheta2).*sin(teheta3)).*L3-

cos(teheta1).*L2.*sin(teheta2)

%% Matlab code for generating the cubic trajectories

function q = q_cubic_fn(qs, qg, t)

a=qs; c=3*(qg-qs)/(t*t);d=-2*(qg-qs)/(t*t*t);tt= ceil(20*t);

for i=1:tt

q(i)=(a+(c*i*i/200)+(d*i*i*i/4000)); end

141

function qd = qd_cubic_fn(qs, qg, t)

a=qs; c=3*(qg-qs)/(t*t); d=-2*(qg-qs)/(t^3); tt= ceil(20*t);

for i=1:tt qd(i)=((2*c*i/20)+(3*d*i*i/200)); end

function qdd = qdd_cubic_fn(qs, qg, t)

a=qs; c=3*(qg-qs)/(t*t); d=-2*(qg-qs)/(t*t*t); tt= ceil(20*t);

for i=1:tt qdd(i)=(2*c)+(6*d*i/20); end

APPENDIX 5. VB CODE FOR PA10 ROBOT DATA LOGGING TO THE DATABASE

==================================Data Base Recording========

Data1.Recordset.AddNew

Data1.Recordset.Fields("S1c") = Me.Label2(0).Caption

Data1.Recordset.Fields("S2c") = Label2(1)

Data1.Recordset.Fields("S3c") = Label2(2)

Data1.Recordset.Fields("E1c") = Label2(3)

Data1.Recordset.Fields("E2c") = Label2(4)

Data1.Recordset.Fields("W1c") = Label2(5)

Data1.Recordset.Fields("W2c") = Label2(6)

'========

Data1.Recordset.Fields("S1t") = Label4(0).Caption

Data1.Recordset.Fields("S2t") = Label4(1).Caption

Data1.Recordset.Fields("S3t") = Label4(2).Caption

Data1.Recordset.Fields("E1t") = Label4(3).Caption

Data1.Recordset.Fields("E2t") = Label4(4).Caption

Data1.Recordset.Fields("W1t") = Label4(5).Caption

Data1.Recordset.Fields("W2t") = Label4(6).Caption

'=========

Data1.Recordset.Fields("Xc") = 1

Data1.Recordset.Fields("Yc") = 2

Data1.Recordset.Fields("Zc") = Label8(2)

Data1.Recordset.Fields("length") = Label8(3)

Data1.Recordset.Fields("Yawc") = Label8(4)

Data1.Recordset.Fields("Pitchc") = Label8(5)

Data1.Recordset.Fields("Rollc") = Label8(6)

Data1.Recordset.Fields("Xt") = Label9(0)

Data1.Recordset.Fields("Yt") = Label9(1)

Data1.Recordset.Fields("Zt") = Label9(2)

Data1.Recordset.Fields("Yawt") = Label9(4)

Data1.Recordset.Fields("Pitcht") = Label9(5)

Data1.Recordset.Fields("Rollt") = Label9(6)

Data1.Recordset.Update

Private Sub Command1_Click()

'Dim Matlab As Object

Dim server_version As String

'Matlab = CreateObject("matlab.application")

server_version = Matlab.Execute("version")

Text1.Text = server_version

142

'Dim h As Object

'h = GetObject(, "MLApp.MLApp")

' Handle h should be valid now. Test it by calling Execute.

'h.Execute ("plot([0 18], [7 23])")

End Sub

Private Sub Command2_Click()

result = Matlab.Execute("cd ('C:\Program Files\MATLAB\R2006a\Work\2015')")

End Sub

Private Sub Form_Load()

Dim result As String

Set Matlab = New MLApp.MLApp

result = Matlab.Execute("cd ('C:\Program Files\MATLAB\R2006a\Work\2015')")

End Sub

Private Sub Matlab_hallo_Click()

Dim result As String

'result = Matlab.Execute("strcat", 1, "hello", " world")

'result = Matlab.Execute("5*2")

'result = Matlab.PutCharArray("str", "He jests at scars that never felt a wound.")

Text1.Text = 1

Dim XReal(4, 4) As Double

Dim XImag(4, 4) As Double

Dim ZReal(4, 4) As Double

Dim ZImag(4, 4) As Double

Dim i, j As Integer

For i = 0 To 4

 For j = 0 To 4

 XReal(i, j) = Rnd() * 6

 XImag(i, j) = 0

 Next j

Next i

'result = Matlab.PutFullMatrix("M", "base", XReal, XImag)

Text1.Text = result

End Sub

Private Sub RunFile_Click()

Dim result As String

result = Matlab.Execute("cd ('C:\Program Files\MATLAB\R2006a\Work\2015')")

'result = Matlab.Execute("5+5")

'Text1.Text = result

result = Matlab.Execute("plotSinwave")

End Sub

Private Sub StartMatlab_Click()

Dim result As String

result = Matlab.Execute("cd ('C:\Program Files\MATLAB\R2011b\Work')")

result = Matlab.Execute("5*2")

Text1.Text = result

143

'result = Matlab.PutWorkspaceData('A', 'base', rand(6))

End Sub

Dim MatLab As New MLApp.MLApp

Dim Result As String

Result = MatLab.Execute("cd ('C:\Program Files\MATLAB\R2006a\Work\2015')")

'result = Matlab.Execute("5+5")

'Text1.Text = result

Result = MatLab.Execute("plotSinwave")

APPENDIX 6. MATLAB CODE FOR DATA LOGGING TO MATLAB

%Database2

% Program Written by Meftah Mohamed to draw database data in graph and

% logg data in Matalb array

clear all

close all

clc

% Define the data base connection

setdbprefs({'DataReturnFormat','ErrorHandling','NullNumberRead','NullNumberWrite','NullStri

ngRead','NullStringWrite','JDBCDataSourceFile'},{'cellarray','store','NaN','NaN','null','null',''});

conn = database('PA10dataBase','','');

delay = .01; % make sure sample faster than resolution

time = 0;

data = 0;

count = 0;

disp('Close Plot to End Session');

a=1;

tic

while (a>0)

e = exec(conn,'SELECT LAST (S2t) FROM ANGLE');

e = fetch(e);

dat=e.data;

count = count + 1;

time(count) = toc; %Extract Elapsed Time

data(count) =cell2mat(e.data);% dat(1); %Extract 1st Data Element

pause(delay);

end

disp('Session Terminated...');

%===

%Database3

% Program Written by Meftah Mohamed to draw database data in graph and

% logg data in Matalb array

clear all

close all

clc

% Define the data base connection

144

setdbprefs({'DataReturnFormat','ErrorHandling','NullNumberRead','NullNumberWrite','NullStri

ngRead','NullStringWrite','JDBCDataSourceFile'},{'cellarray','store','NaN','NaN','null','null',''});

conn = database('PA10dataBase','','');

% prompt = {'Enter joint name:'};

% dlg_title = 'Input';

% num_lines = 1;

% defaultans = {'Sc1'};

% DBvariable= inputdlg(prompt,dlg_title,num_lines,defaultans)

prompt = 'What is the joint you want plot ? ';

DBvariable = input(prompt,'s')

% Graph parameters

plotTitle = 'Robot joint Data Log'; % plot title

xLabel = 'Elapsed Time (s)'; % x-axis label

yLabel = 'Data'; % y-axis label

plotGrid = 'on'; % 'off' to turn off grid

min = -1.5; % set y-min

max = 1.5; % set y-max

scrollWidth = 10; % display period in plot, plot entire data log if <= 0

delay = .01; % make sure sample faster than resolution

%Define Function Variables

time = 0;

data = 0;

count = 0;

 %Set up Plot

plotGraph = plot(time,data,'-mo',...

 'LineWidth',1,...

 'MarkerEdgeColor','k',...

 'MarkerFaceColor',[.49 1 .63],...

 'MarkerSize',2);

title(plotTitle,'FontSize',25);

xlabel(xLabel,'FontSize',15);

ylabel(yLabel,'FontSize',15);

axis([0 10 min max]);

grid(plotGrid);

%Open Database

disp('Close Plot to End Session');

a=1;

tic

 while ishandle(plotGraph) %Loop when Plot is Active

 % Read the last value in the record

e = exec(conn,'SELECT LAST (DBvariable) FROM ANGLE');

e = fetch(e);

%dat=e.data;

%dat=1.5;

145

%dat = fscanf(s,'%f'); %Read Data from Serial as Float

 %if(~isempty(dat) && isfloat(dat)) %Make sure Data Type is Correct

 count = count + 1;

 time(count) = toc; %Extract Elapsed Time

 data(count) = e.data %cell2mat(e.data); %Extract 1st Data Element

 %Set Axis according to Scroll Width

 if(scrollWidth > 0)

 set(plotGraph,'XData',time(time > time(count)-scrollWidth),'YData',data(time >

time(count)-scrollWidth));

 axis([time(count)-scrollWidth time(count) min max]);

 else

 set(plotGraph,'XData',time,'YData',data);

 axis([0 time(count) min max]);

 end

 %Allow MATLAB to Update Plot

 pause(delay);

 %end %% end of if check

end

 %Close Serial COM Port and Delete useless Variables

clear count dat delay max min plotGraph plotGrid plotTitle s ...

 scrollWidth xLabel yLabel;

 close(e)

close(conn)

disp('Session Terminated...');

APPENDIX 7. SAMPLE OF LUA CODE WRITTEN TO SIMULATE PA10 ROBOT IN

V-REP

if (sim_call_type==sim_childscriptcall_initialization) then

simExtRemoteApiStart(19999)

simSetScriptAttribute(sim_handle_self,sim_childscriptattribute_automaticcascadingcalls,false)

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_sensing) then

 simHandleChildScripts(sim_call_type)

end

 jHandles={-1,-1,-1,-1,-1,-1,-1}

 jHandles[1]=simGetObjectHandle("Joint0")

 jHandles[2]=simGetObjectHandle("Joint1")

 jHandles[3]=simGetObjectHandle("Joint2")

 jHandles[4]=simGetObjectHandle("Joint3")

 jHandles[5]=simGetObjectHandle("Joint4")

 jHandles[6]=simGetObjectHandle("Joint5")

 jHandles[7]=simGetObjectHandle("Joint6")

146

 gripperJ=simGetObjectHandle("gripper_joint")

 fingerJ=simGetObjectHandle("finger_joint")

 target=simGetObjectHandle("M_target")

 tip=simGetObjectHandle("M_tip")

 ui=simGetUIHandle("manipulatorUi")

 ik1=simGetIkGroupHandle("M_IK_Group")

 ik2=simGetIkGroupHandle("M_IK_Group2")

 ik3=simGetIkGroupHandle("M_IK_Group3")

 selfColl=simGetCollisionHandle("SelfCollision")

 environmentColl=simGetCollisionHandle("CollisionWithEnvironment")

 selfCollReportHandle=-1

 envCollReportHandle=-1

 ikPosAndOrientReportHandle=-1

 ikOrientReportHandle=-1

 ikPosAndOrientReportHandle=-1

 robotBase=simGetObjectHandle("RedundantManipulator")

 desiredJ={0,0,0,math.pi/2,0,-math.pi/2,0} -- when in FK mode

 for i=1,7,1 do

 simSetJointPosition(jHandles[i],desiredJ[i]) -- Make sure we start in the default

configuration

 end

if ikMode then

 -- We are in IK mode

 maxVariationAllowed=maxPosVelocity*simGetSimulationTimeStep()

 deltaX={0,0,0,0,0,0}

 -- position:

 for i=1,3,1 do

 delta=desiredPos[i]-currentPos[i]

 if (math.abs(delta)>maxVariationAllowed) then

 delta=maxVariationAllowed*delta/math.abs(delta) -- we limit the variation to the

maximum allowed

 end

 deltaX[i]=delta

 end

 -- orientation:

 maxVariationAllowed=maxOrVelocity*simGetSimulationTimeStep()

 delta=desiredPos[4]-currentPos[4]

 -- Normalized delta to be between -pi and +pi:

 delta=math.fmod(delta,math.pi*2)

 if (delta<-math.pi) then

 delta=delta+math.pi*2

 else

 if (delta>math.pi) then

 delta=delta-math.pi*2

147

 end

 end

 if (math.abs(delta)>maxVariationAllowed) then

 delta=maxVariationAllowed*delta/math.abs(delta) -- we limit the variation to the

maximum allowed

 end

 deltaX[4]=delta

 delta=desiredPos[5]-currentPos[5]

 -- Normalized delta to be between -pi/2 and +pi/2:

 delta=math.fmod(delta,math.pi)

 if (delta<-math.pi/2) then

 delta=delta+math.pi

 else

 if (delta>math.pi/2) then

 delta=delta-math.pi

 end

 end

 if (math.abs(delta)>maxVariationAllowed) then

 delta=maxVariationAllowed*delta/math.abs(delta) -- we limit the variation to the

maximum allowed

 end

 deltaX[5]=delta

 delta=desiredPos[6]-currentPos[6]

 -- Normalized delta to be between -pi and +pi:

 delta=math.fmod(delta,math.pi*2)

 if (delta<-math.pi) then

 delta=delta+math.pi*2

 else

 if (delta>math.pi) then

 delta=delta-math.pi*2

 end

 end

 if (math.abs(delta)>maxVariationAllowed) then

 delta=maxVariationAllowed*delta/math.abs(delta) -- we limit the variation to the

maximum allowed

 end

 deltaX[6]=delta

currentPos={currentPos[1]+deltaX[1],currentPos[2]+deltaX[2],currentPos[3]+deltaX[3],currentP

os[4]+deltaX[4],currentPos[5]+deltaX[5],currentPos[6]+deltaX[6]}

148

 -- Normalize the orientation part to display normalized values:

 for i=1,3,1 do

 f=1

 if i==2 then f=0.5 end

 currentPos[3+i]=math.fmod(currentPos[3+i],math.pi*2*f)

 if (currentPos[3+i]<-math.pi*f) then

 currentPos[3+i]=currentPos[3+i]+math.pi*2*f

 else

 if (currentPos[3+i]>math.pi*f) then

 currentPos[3+i]=currentPos[3+i]-math.pi*2*f

 end

 end

 end

pos={initialTipPosRelative[1]+currentPos[1],initialTipPosRelative[2]+currentPos[2],initialTipP

osRelative[3]+currentPos[3]}

orient={initialTipOrRelative[1]+currentPos[4],initialTipOrRelative[2]+currentPos[5],initialTipO

rRelative[3]+currentPos[6]}

 -- We set the desired position and orientation

 simSetObjectPosition(target,robotBase,pos)

 simSetObjectOrientation(target,robotBase,orient)

 if (simHandleIkGroup(ik1)==sim_ikresult_fail) then

 -- the position AND orientation could not be reached.

 -- We try to reach just the position:

 if (simHandleIkGroup(ik2)==sim_ikresult_fail) then

 simHandleIkGroup(ik3) -- Even the position could not be reached!

 if (ikOrientReportHandle>=0) then

 simEndDialog(ikOrientReportHandle) -- We close any report message about IK

failure in orientaion

 ikOrientReportHandle=-1

 end

 if (ikPosAndOrientReportHandle==-1) then -- We display a IK failure (in pos and

orientation) report message

 ikPosAndOrientReportHandle,elementHandle=simDisplayDialog("IK failure

report","IK solver failed for position AND

orientation.",sim_dlgstyle_message,false,"",nil,{0.8,0,0,0,0,0})

 ep=simGetUIPosition(elementHandle)

 ep[2]=ep[2]+100 -- we shift the dialog down by 100 pixels

 simSetUIPosition(elementHandle,ep)

 end

 else

 if (ikPosAndOrientReportHandle>=0) then

149

 simEndDialog(ikPosAndOrientReportHandle) -- We close any report message about

IK failure in orientaion AND position

 ikPosAndOrientReportHandle=-1

 end

 if (ikOrientReportHandle==-1) then -- We display a IK failure (in orientation only)

report message

 ikOrientReportHandle,elementHandle=simDisplayDialog("IK failure report","IK

solver failed for orientation only.",sim_dlgstyle_message,false,"",nil,{1,0.7,0,0,0,0})

 ep=simGetUIPosition(elementHandle)

 ep[2]=ep[2]+100 -- we shift the dialog down by 100 pixels

 simSetUIPosition(elementHandle,ep)

 end

 end

 else

 if (ikPosAndOrientReportHandle>=0) then

 simEndDialog(ikPosAndOrientReportHandle) -- We close any report message about IK

failure in position and orientaion

 ikPosAndOrientReportHandle=-1

 end

 if (ikOrientReportHandle>=0) then

 simEndDialog(ikOrientReportHandle) -- We close any report message about IK failure

in orientaion

 ikOrientReportHandle=-1

 end

 end

 -- Now update the desiredJ in case we switch back to FK mode:

 for i=1,7,1 do

 desiredJ[i]=simGetJointPosition(jHandles[i])

 end

 else

 -- We are in FK mode

 currentJ={0,0,0,0,0,0,0}

 for i=1,7,1 do

 currentJ[i]=simGetJointPosition(jHandles[i])

 end

 maxVariationAllowed=maxJointVelocity*simGetSimulationTimeStep()

 for i=1,7,1 do

 delta=desiredJ[i]-currentJ[i]

 if (math.abs(delta)>maxVariationAllowed) then

 delta=maxVariationAllowed*delta/math.abs(delta) -- we limit the variation to the

maximum allowed

 end

 simSetJointPosition(jHandles[i],currentJ[i]+delta)

 end

 -- Now make sure that everything is ok if we switch to IK mode:

150

 simSetObjectPosition(target,-1,simGetObjectPosition(tip,-1))

 simSetObjectOrientation(target,-1,simGetObjectOrientation(tip,-1))

 mbase=simGetObjectMatrix(robotBase,-1)

 m=simGetObjectMatrix(target,-1)

 m=simMultiplyMatrices(simGetInvertedMatrix(mbase),m)

 -- m is now the tip position relative to the base.

 -- We now want m to be the tip position relative to the initial position:

 m=simMultiplyMatrices(simGetInvertedMatrix(initialTipMatrixRelative),m)

 orient=simGetEulerAnglesFromMatrix(m)

 desiredPos={m[4],m[8],m[12],orient[1],orient[2],orient[3]}

 for i=1,6,1 do

 currentPos[i]=desiredPos[i]

 end

 -- Close any IK warning dialogs:

 if (ikPosAndOrientReportHandle>=0) then

 simEndDialog(ikPosAndOrientReportHandle) -- We close any report message about IK

failure in position and orientaion

 ikPosAndOrientReportHandle=-1

 end

 if (ikOrientReportHandle>=0) then

 simEndDialog(ikOrientReportHandle) -- We close any report message about IK failure in

orientaion

 ikOrientReportHandle=-1

 end

 end

 -- Check for robot self-collisions:

 if (simReadCollision(selfColl)~=0) then

 if (selfCollReportHandle==-1) then -- We display a collision report message

 selfCollReportHandle,elementHandle=simDisplayDialog("Collision report","Robot self-

collision detected.",sim_dlgstyle_message,false,"",nil,{0.8,0,0,0,0,0})

 ep=simGetUIPosition(elementHandle)

 end

 else

 if (selfCollReportHandle>=0) then

 simEndDialog(selfCollReportHandle) -- We close the report message about collision

 selfCollReportHandle=-1

 end

 end

 -- Check for robot-environment collisions:

 if (simReadCollision(environmentColl)~=0) then

 if (envCollReportHandle==-1) then -- We display a collision report message

 envCollReportHandle,elementHandle=simDisplayDialog("Collision report","Robot-

environment collision detected.",sim_dlgstyle_message,false,"",nil,{0.8,0,0,0,0,0})

 ep=simGetUIPosition(elementHandle)

 ep[2]=ep[2]-100 -- we shift the dialog up by 100 pixels

151

 simSetUIPosition(elementHandle,ep)

 end

 else

 if (envCollReportHandle>=0) then

 simEndDialog(envCollReportHandle) -- We close the report message about collision

 envCollReportHandle=-1

 end

 end

APPENDIX 8. MATLAB CODE FOR CALCULATING THE FORWARD KINEMATICS

OF PA10 ROBOT

Clear all ; clc

Syms q1 q2 q3 q4 q5 q6 L1 L2 L3 L4 nx ny nz ox oy oz ax ay az px py pz

%The following are the DH parameters obtained from the robot: dh =

[q1+(pi/2) L1 0 pi/2 ;

q2+(pi/2) 0 L2 0 ;

q3-(pi/2) 0 0 -pi/2 ;

q4 L3 0 pi/2 ;

q5 0 0 -pi/2 ;

q6 L4 0 0 ;]

T01 = [-sin(q1), 0, cos(q1), 0]

[cos(q1), 0, sin(q1), 0]

[0, 1, 0, L1]

[0, 0, 0, 1]

T12 = [-sin(q2), -cos(q2), 0, -L2*sin(q2)]

[cos(q2), -sin(q2), 0, L2*cos(q2)]

[0, 0, 1, 0]

[0, 0, 0,]

T23 = [sin(q3), 0, cos(q3), 0]

[-cos(q3), 0, sin(q3), 0]

[0, -1, 0, 0]

[0, 0, 0, 1]

T34 = [cos(q4), 0, sin(q4), 0]

[sin(q4), 0, -cos(q4), 0]

[0, 1, 0, L3]

[0, 0, 0, 1]

T45 = [cos(q5), 0, -sin(q5), 0]

[sin(q5), 0, cos(q5), 0]

[0, -1, 0, 0]

[0, 0, 0, 1]

T56 = [cos(q6), -sin(q6), 0, 0]

[sin(q6), cos(q6), 0, 0]

[0, 0, 1, L4]

[0, 0, 0, 1]

% The forward Kinematic of the PA10 robot

TO6 = simple(T01*T12*T23*T34*T45*T56)

152

X=T06(1,4)

Y=T06(2,4)

Z=(T06(3,4)

% Finally we plot the movement of the robot with the line

Figure

plot3(px,py,pz)

grid

APPENDIX 9. MATLAB CODE FOR INTERFACING BETWEEN MATLAB AND 3D

SLICER

% Draw profile

% 3 translations ; X, Y fixed ; Z is variable

open('slicer_Example1')

%https://www.mathworks.com/help/simulink/slref/get_param.html

%open('vdp')

%BlockParameterValue = get_param('vdp/Fcn','Expression')

%Z = get_param('slicer_Example1/Constant','value')

%Z=str2double(Z)

%%

%x = get_param('slicer_Example1/x_value','value')

%x=str2double(x)

%y = get_param('slicer_Example1/y_value','value')

%y=str2double(y)

%z = get_param('slicer_Example1/z_value','value')

%z=str2double(z)

Z=7;

igtlConnection = igtlConnect('127.0.0.1',18944);

transform.name = 'NeedleToTracker';

startTime = igtlTimestampNow();

for t=1:10000

 t=igtlTimestampNow()-startTime;

 %transform.matrix = [1 0 0 12; 0 1 0 -5; 0 0 1 30*sin(t*0.5); 0 0 0 1];

x = get_param('slicer_Example1/x_value','value')

x=str2double(x)

y = get_param('slicer_Example1/y_value','value')

y=str2double(y)

z = get_param('slicer_Example1/z_value','value')

z=str2double(z)

 transform.matrix = [1 0 0 x; 0 1 0 y; 0 0 1 z; 0 0 0 1];

transform.timestamp = igtlTimestampNow();

 transform

 igtlSendTransform(igtlConnection, transform);

 pause(0.1)

end

 igtlDisconnect(igtlConnection);

153

APPENDIX 10. MATLAB CODE FOR VOICE RECOGNITION USING

CORRELATION TECHNIQUE

%Voice04

% Tested on Matlab 2017a

clc

clear all

close all

%Speech Recognition Using Correlation Method

%Write Following Command On Command Window

%speechrecognition('test.wav');

%[voice,Fs] = audioread('test.wav');

%x=voice;

x = audioread('test2.wav');

x=x';

x=x(1,:);

x=x';

y1=audioread('one.wav');

y1=y1';

y1=y1(1,:);

y1=y1';

z1=xcorr(x,y1);

m1=max(z1);

l1=length(z1);

t1=-((l1-1)/2):1:((l1-1)/2);

t1=t1';

%subplot(3,2,1);

%plot(t1,z1);

y2=audioread('two.wav');

y2=y2';

y2=y2(1,:);

y2=y2';

z2=xcorr(x,y2);

m2=max(z2);

l2=length(z2);

t2=-((l2-1)/2):1:((l2-1)/2);

t2=t2';

%subplot(3,2,2);

%figure

%plot(t2,z2);

y3=audioread('three.wav');

y3=y3';

y3=y3(1,:);

y3=y3';

z3=xcorr(x,y3);

m3=max(z3);

l3=length(z3);

154

t3=-((l3-1)/2):1:((l3-1)/2);

t3=t3';

%subplot(3,2,3);

%figure

%plot(t3,z3);

y4=audioread('four.wav');

y4=y4';

y4=y4(1,:);

y4=y4';

z4=xcorr(x,y4);

m4=max(z4);

l4=length(z4);

t4=-((l4-1)/2):1:((l4-1)/2);

t4=t4';

%subplot(3,2,4);

%figure

%plot(t4,z4);

y5=audioread('five.wav');

y5=y5';

y5=y5(1,:);

y5=y5';

z5=xcorr(x,y5);

m5=max(z5);

l5=length(z5);

t5=-((l5-1)/2):1:((l5-1)/2);

t5=t5';

%subplot(3,2,5);

%figure

%plot(t5,z5);

m6=300;

a=[m1 m2 m3 m4 m5 m6];

m=max(a);

h=audioread('allow.wav');

if m<=m1

 soundsc(audioread('one.wav'),50000)

 soundsc(h,50000)

elseif m<=m2

 soundsc(audioread('two.wav'),50000)

 soundsc(h,50000)

elseif m<=m3

 soundsc(audioread('three.wav'),50000)

 soundsc(h,50000)

elseif m<=m4

 soundsc(audioread('four.wav'),50000)

 soundsc(h,50000)

elseif m<m5

155

 soundsc(audioread('five.wav'),50000)

 soundsc(h,50000)

else

 {soundsc(audioread('denied.wav'),50000)}

end

APPENDIX 11. SAMPLE OF MATLAB CODE FOR CONNECTING MATLAB WITH

V-REP

% Last Test: June 17 2017

% Author: Meftah Mohamed

% Objectives: This file connects Matlab with VREP V3.4.0 rev. 1 on April 5th 2017

% Make sure to have the server side running in V-REP:

% in a child script of a V-REP scene, add following command

% to be executed just once, at simulation start:

% simExtRemoteApiStart(19999)

% then start simulation, and run this program.

% please check website for more commands

% http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm

clear all

close all

clc

vrep=remApi('remoteApi');

vrep.simxFinish(-1);

clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5);

% Now send some data to V-REP in a non-blocking fashion:

vrep.simxAddStatusbarMessage(clientID,'Start Comunication between Matlab and

VREP',vrep.simx_opmode_oneshot);

 %%

 pause(2);

 if (clientID>-1)

disp('Connected to remote API server');

 % Now try to retrieve data in a blocking fashion (i.e. a service call):

[res,objs]=vrep.simxGetObjects(clientID,vrep.sim_handle_all,vrep.simx_opmode_blocking);

 if (res==vrep.simx_return_ok)

 fprintf('Number of objects in the scene: %d\n',length(objs));

 else

 fprintf('Remote API function call returned with error code: %d\n',res);

 end

%%

[returnCode,target]=vrep.simxGetObjectHandle(clientID,'redundantRob_manipSphere',vrep.sim

x_opmode_blocking);

 [returnCode,array_position]=vrep.simxGetObjectPosition(clientID,target,-

1,vrep.simx_opmode_oneshot_wait)

 array_position=array_position-0.1

156

 [returnCode]=vrep.simxSetObjectPosition(clientID,target,-

1,array_position,vrep.simx_opmode_oneshot)

[returnCode,array_Orientation]=vrep.simxGetObjectOrientation(clientID,target,-

1,vrep.simx_opmode_oneshot_wait)

disp('array_Orientation')

array_Orientation=array_Orientation*180/pi

array_Orientation= array_Orientation-0.1

 [returnCode]=vrep.simxSetObjectOrientation(clientID,target,-

1,array_position,vrep.simx_opmode_oneshot)

%[returnCode,joint1]=vrep.simxGetObjectHandle(clientID,'redundantRob_joint1',vrep.simx_op

mode_blocking);

%[returnCode]=vrep.simxSetJointPosition(clientID,joint1,1,vrep.simx_opmode_oneshot)

%%

% Now retrieve streaming data (i.e. in a non-blocking fashion):

% t=clock;

% startTime=t(6);

% currentTime=t(6);

%

vrep.simxGetIntegerParameter(clientID,vrep.sim_intparam_mouse_x,vrep.simx_opmode_stream

ing); % Initialize streaming

% while (currentTime-startTime < 60)

%

[returnCode,data]=vrep.simxGetIntegerParameter(clientID,vrep.sim_intparam_mouse_x,vrep.si

mx_opmode_buffer); % Try to retrieve the streamed data

% if (returnCode==vrep.simx_return_ok) % After initialization of streaming, it will take

a few ms before the first value arrives, so check the return code

% fprintf('Mouse position x: %d\n',data); % Mouse position x is actualized when the

cursor is over V-REP's window

% end

% t=clock;

% currentTime=t(6);

% end

 % Before closing the connection to V-REP, make sure that the last command sent out had time

to arrive. You can guarantee this with (for example):

vrep.simxGetPingTime(clientID);

% Now close the connection to V-REP:

vrep.simxFinish(clientID);

%%

else

fprintf('Remote API function call returned with error code: %d\n',res);

 end

vrep.delete(); % call the destructor!

disp('Program ended');

%plot(x(:,1),x(:,2))

157

APPENDIX 12. MATLAB CODE USED TO GENERATE TRAJECTORY
function [Y,T]=GenTraj(A,V,P,Tj,Ts)

%GenTraj Trajectory generation for point to point motion with

velocity,

% acceleration, jerk and snap (second time derivative of

acceleration)

% constraints

% Example:[Y,T]=GenTraj(A,V,P,Tj,Ts) returns the position,

velocity

% and acceleration profiles for a snap controlled law from the

specified

% constraints on maximum velocity V, maximum acceleration A,

desired

% travelling distance P, Jerk time Tj and Snap time Ts.

% Y is a 3 row matrix containing the position, velocity and

acceleration

% profile associated to the time vector T.

%

% If Tj and Ts are not given, Tj=Ts=0 is assumed. The resulting

mouvement is

% acceleration limited. If Ts is not given, Ts=0 and P contains

the points

% of the corresponding jerk limited law

%%--

if nargin<3

 error('At Least Three Input Arguments are Required.')

end

if nargin==3

 type=0;

 Tj=0;

 Ts=0;

elseif nargin==4

 type=1;

 Ts=0;

elseif nargin==5

 type=2;

end

Te=1e-4; % interpolation time

% Verification of the acceleration and velocity constraints

Ta=V/A; % Acceleration time

Tv=(P-A*Ta^2)/(V); % Constant velocity time

if P<=Ta*V % Triangular velocity profile

 Tv=0;Ta=sqrt(P/A);

end

Tf=2*Ta+Tv+Tj+Ts; % Mouvement time

158

 % Elaboration of the limited acceleration profile

T=0:Te:Tf;

t(1)=0;t(2)=Ta;t(3)=Ta+Tv;t(4)=2*Ta+Tv;

s(1)=1;s(2)=-1;s(3)=-1;s(4)=1;

P=zeros(3,length(T));

% Ech=zeros(4);

for k=1:3

 u=zeros(1,k+1);u(1,1)=1;

for i=1:4

 Ech = tf(1, u,'inputdelay',t(i));

 law(i,:)=impulse(s(i)*A*(Ech),T);

end

Y(k,:)=sum(law);

end

if (type==1 || type==2)

% Average Filter for Jerk limitation

a = 1; % Filter coefficients

b = (1/(Tj/Te))*ones(1,(Tj/Te)); % Filter duration equal to jerk

time

Y(3,:)= filter(b,a,Y(3,:));

Y(2,1:length(T)-1)=diff(Y(3,:),1)/Te;

Y(1,1:length(T)-1)=diff(Y(2,:),1)/Te;

if type==2

% Average Filter for snap limitation

a = 1; % Filter coefficients

b = (1/(Ts/Te))*ones(1,(Ts/Te)); % Filter duration equal to snap

time

Y(3,:)= filter(b,a,Y(3,:));

Y(2,1:length(T)-1)=diff(Y(3,:),1)/Te;

Y(1,1:length(T)-1)=diff(Y(2,:),1)/Te;

end

end

%%%%%%%%%%%%%%%

figure;

sp(1)=subplot(3,1,1);plot(T,Y(3,:))

grid

sp(2)=subplot(3,1,2);plot(T,Y(2,:))

grid

sp(3)=subplot(3,1,3);plot(T,Y(1,:))

grid

linkaxes(sp,'x');

ylabel(sp(1),'Position [m]');ylabel(sp(2),'Velocity

[m/s]');ylabel(sp(3),'Acceleration [m/s^2]');xlabel(sp(3),'Time

[s]')

end

159

APPENDIX 13. MATLAB CODE FOR FORCE DATA FITTING

%file name: Modeling_Force

clear all

close all

clc

%% Force data obtained from experiments

Array=csvread('Force_data.csv');

Time = Array(:, 1);

Voltage = Array(:, 2);

plot(Time, Voltage)

grid

title('Voltage vs. Time')

Force = 20/1.5*Array(:, 2); % convert voltage to force

Thickness=Time/(max(Time)-min(Time))/1.667 % convert drilling time to skull thickness depth

plot(Time, Force)

grid

xlabel('Time seconds')

ylabel('y-axis')

title('Force vs. Time')

plot(Time, Thickness)

grid

plot(Thickness, Force)

grid

title('Force vs. Thickness')

 cftool

%%

%Coefficients (with 95% confidence bounds):

 x=Thickness(1)

 x=0.3

 fx = p1*x^9 + p2*x^8 + p3*x^7 + p4*x^6 +p5*x^5 + p6*x^4 + p7*x^3 + p8*x^2 + p9*x +

p10

Drilling = iddata(Force,Time,0.1880);

Drilling

get(Drilling)

Drilling.InputName = 'Time ';

Drilling.OutputName = 'Force ';

Drilling.TimeUnit = 'seconds';

dry.InputUnit = 'Time';

dry.OutputUnit = 'N';

%Now that we have the data set ready, we choose the first 300 data points for model estimation.

ze = Drilling

plot(ze);

ze1 = ze;

%The same data set after it has been detrended:

plot(ze1) %show samples from 200 to 300 of detrended data

160

%Now that the dataset has been detrended and there are no obvious outliers, let us first estimate

the impulse response of the system by correlation analysis to get some idea of time constants and

the like:

clf

mi = impulseest(ze); % non-parametric (FIR) model

showConfidence(impulseplot(mi),3); %impulse response with 3 standard

 %deviations confidence region

%The simplest way to get started on a parametric estimation routine is to build a state-space

model where the model-order is automatically determined, using a prediction error method. Let

us estimate a model using the ssest estimation technique:

m1 = ssest(ze);

%m1 is a continuous-time identified state-space model, represented by an idss object. The

estimation algorithm chooses 3 as the optimal order of the model. To inspect the properties of the

estimated model, just enter the model name at the command window:

m1

get(m1)

[A,B,C,D,K,~,dA,dB,dC,dD,dK] = idssdata(m1)

%Analyzing the Estimated Model

h = bodeplot(m1);

%Right-click on the plot and pick Characteristics->Confidence Region. Or, use the

showConfidence command to view the variance of the response.

showConfidence(h,3) % 3 std (99.7%) confidence region

showConfidence(stepplot(m1,'b',mi,'r',3),3)

%We can also consider the Nyquist plot, and mark uncertainty regions at certain frequencies

with ellipses, corresponding to 3 standard deviations:

Opt = nyquistoptions;

Opt.ShowFullContour = 'off';

showConfidence(nyquistplot(m1,Opt),3)

%The response plots show that the estimated model m1 is quite reliable.

%% Estimating Models with a Prescribed Structure

%%System Identification Toolbox can also be used to obtain a model with a prescribed

structure. For example, a difference equation model with 2 poles, 1 zero and 3 sample delays can

be obtained using the arx function as shown below:

%m2 = arx(ze,[2 2 3]);

m2 = nlarx(ze,[4 4 1]) % na=nb=4 and nk=1

m2

%A continuous time transfer function with 2 poles, one zero and 0.2 second transport delay can

be estimated using the tfest command:

m3 = tfest(ze, 2, 1, 0.2)

%Validating the Estimated Model to Experimental Output

zv = Drilling; % select an independent data set for validation

zv = detrend(zv); % preprocess the validation data

set(gcf,'DefaultLegendLocation','best')

compare(zv,m1); % perform comparison of simulated output

%Comparing Estimated Models

compare(zv,m1,'b',m2,'r',m3,'c');

161

%The pole-zero plots for the models can be obtained using iopzplot:

h = iopzplot(m1,'b',m2,'r',m3,'c');

showConfidence(h,3);

%The frequency functions above that are obtained from the models can be compared with one

that is obtained using a non-parametric spectral analysis method (spa):

gs = spa(ze);

%The spa command produces an IDFRD model. The bode function can again be used for a

comparison with the transfer functions of the models obtained.

w = linspace(0.4,pi/m2.Ts,200);

opt = bodeoptions; opt.PhaseMatching = 'on';

bodeplot(m1,'b',m2,'r',m3,'c',gs,'g',w,opt);

legend('m1','m2','m3','gs')

%Also, a Nyquist plot can be analyzed with the uncertainty regions marked at certain

frequencies:

showConfidence(nyquistplot(m1,'b',m2,'r',m3,'c',gs,'g'),3)

APPENDIX 14. MATLAB CODE FOR RETRIEVING DEPTH DATA USING KINETIC

SENSOR

% Depth Sensor

clear all

close all

clc

% vid2 = videoinput('kinect', 2);

vid2 = videoinput('kinect',2,'Depth_640x480');

%Look at the device-specific properties

src2 = getselectedsource(vid2);

src2

src2.SkeletonsToTrack = [1]

src2.TrackingMode = 'Skeleton'

src2

%Access body tracking data as metadata on the depth stream using getdata.

% Get the data on the object.

preview(vid2);

%Start the second video input object (the depth stream).

start(vid2);

[frame2, ts2, metaData2] = getdata(vid2);

% Look at the metadata to see the parameters in the body data.

metaData2.IsSkeletonTracked

a =metaData2(1).JointWorldCoordinates(:,:,1)

closepreview(vid2);

%Look at any individual property by drilling into the metadata.

getselectedsource(vid2)

% View the segmentation data as an image.

imagesc(metaData2(1).JointWorldCoordinates(:,:,1));

% Set the color map to jet to color code the people detected.

colormap(jet);

162

src.BacklightCompensation = 'LowLightsPriority';

preview(vid);

closepreview(vid);

vid2 = videoinput('kinect',2,'Depth_640x480');

src = getselectedsource(vid2);

src

start(vid2);

% Get the data on the object.

[frame, ts, metaData] = getdata(vid2);

metaData

metaData.IsSkeletonTracked

%Get the joint locations for the first person in world coordinates using the

JointWorldCoordinates property. Since this is the person in position 1, the index uses 1.

metaData.JointWorldCoordinates(:,:,1)

% View the segmentation data as an image.

imagesc(metaDataDepth.SegmentationData);

% Set the color map to jet to color code the people detected.

colormap(jet);

