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Abstract

An integer-valued polynomial on a subset, S, of the set of integers, Z, is a polynomial

f(x) ∈ Q[x] such that f(S) ⊆ Z. The collection, Int(S,Z), of such integer-valued

polynomials forms a ring with many interesting properties. The concept of p-ordering

and the associated p-sequence due to Bhargava [2] is used for finding integer-valued

polynomials on any subset, S, of Z.

In this thesis, we concentrate on extending the work of Keith Johnson and Kira

Scheibelhut [14] for the case S = L, the Lucas numbers, where they work on integer-

valued polynomials on S = F, Fibonacci numbers. We also study integer-valued

polynomials on the general 3 term recursion sequence, G, of integers for a given pair

of initial values with some interesting properties. The results are well-agreed with

those of [14].
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Chapter 1

Introduction

Let S be a subset of Z, the set of integers. The ring of integer-valued polynomials on

S, is given by

Int(S,Z) = Int(S) = {f(x) ∈ Q[x] : f(S) ⊆ Z}.
This is a subring of Q[x] preserving many interesting properties. The study of the

ring of integer-valued polynomials on the subsets of Z and its generalizations has been

continuing for more than 100 years, as for examples [2] and [20]. The updated results

up to 1997 are in [5].

In this thesis, we are interested in concentrating on the development of the work of

Keith Johnson and Kira Scheibelhut [14] for the case S = L, the Lucas numbers.

In general, for the description of the Z-module, Int(S,Z), we wish to find a regular

Z-basis having polynomials {fk(x) : k = 0, 1, 2, ...} in Int(S,Z) as basis elements such

that fk(x) is a polynomial of degree k. Every element f(x) ∈ Int(S) can be expressed

uniquely as a Z-linear combination of the polynomials {fk(x) : k = 0, 1, 2, ...}.
We may consider certain suitable choices for S to form regular Z-bases.

For example, every element in Int(Z) is a Z-linear combination of the binomial poly-

nomials {fk(x) : k = 0, 1, 2, ...} = {
(
x
k

)
} = {

∏k−1
i=0

x−i
k−i}.

Due to Pascal’s triangle it is easy to show that the polynomials fk are in Int(Z). The

polynomials fk(x) take values 0 at x = 0, 1, 2, ..., k − 1 and 1 at x = k.

A similar result can be observed for S = {i2 : i ∈ Z} due to [2] and S = {p : p ∈ Z
and p is positive prime } due to [6]. But no one has studied this construction for

S = L, the Lucas numbers.

The set L = {Lk : k = 0, 1, 2, ...} of Lucas numbers may be defined by the recurrence

relation Lk+1 = Lk + Lk−1 for k ≥ 1 starting with L0 = 2 and L1 = 1.

We are interested in concentrating on the localization of the structure with respect

to prime numbers and then deducing the general case from the localized structures,

i.e., we require to first study Int(S)(p) = {f(x) ∈ Q[x] : f(S) ⊆ Z(p)},

1
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where Z(p) = {a
b
∈ Q : gcd(p, b) = 1} is the ring of p-local integers, and then to find

the regular Z(p)-basis so that every element of Int(S) can be written as a Z(p)-linear

combination. We want to find the regular Z(p)-basis for all primes, p, with the polyno-

mials of the form fS,p,k(x) = bS,p,k(x)/pαS ,p
(k)

, where bS,p,k(x)’s are monic polynomials

in Z[x] and so fS,p,k(x)’s are in Int(S,Z) and αS, p
(k) is nonzero for fixed k and for

only finitely many primes. As for example, when S = Z, we can see that pαS ,p
(k)

is

exactly the power of p in the prime factorization of k!. In this case, αZ, p
(k) can be

extracted by the well-known formulas

νk(Z, p) =
∑
i≥1

[k/pi] = (k −
∑
i≥0

ki)/(p− 1),

where k is a p-adic integer, i.e., k =
∑

i≥0 kip
i.

For such given regular Z(p)-basis for each prime, p, the Chinese Remainder Theorem

ensures that for each k there exists a Z-linear combination fS,k(x), say, of fS,p,k(x)’s

so that we have fS,k(x) = bS,k(x)/
∏
pαS ,p

(k)
with monic polynomials bS,k(x) in Z[x]

for all primes such that αS, p
(k) is positive. This shows that fS,k(x) ∈ Int(S,Z) and

fS,k(x)’s form regular Z(p)-basis of Int(S,Z) and so form a regular Z-basis.

In our investigation, we get a regular basis for Int(L,Z) as

{1, (x− 2), (x−2)(x−1)
2

, (x−2)(x−1)(x−3)
6

, (x−2)(x−1)(x−3)(x−4)
120

, (x−2)(x−1)(x−3)(x−4)(x−207)
240

, · · ·}.
We investigate a general sequence, G, of integers for any pair (A,B) of integers, in

particular, (A,B) = (0, 1) and (A,B) = (2, 1) give the results of Keith Johnson and

Kira Scheibelhut [14], and the results for Lucas numbers that are consistent. Also,

we find regular Z-basis for Int(G,Z) at (A,B) = (2, 5) given by

{1, (x− 2), (x−2)(x−205)
2

, (x−2)(x−205)(x−1119)
6

, (x−2)(x−205)(x−1119)(x−356)
24

,
(x−2)(x−205)(x−1119)(x−356)(x−1243)

240
, · · ·}.



Chapter 2

Algebraic Background

2.1 Properties of Local Rings

Definition 2.1.1. ([5], Definition I. 1. 8.) A subset S of the quotient field F of a

domain D is said to be a fractional subset of D if there exists a nonzero element d

of D such that dS ⊆ D. In particular, a subset S of Q is a fractional subset of Z if

there exists a nonzero element d of Z such that dS ⊆ Z.

Definition 2.1.2. Let D be a domain that is contained in a field F . A nonempty

subset S of D is said to be a multiplicative subset of D if 0 /∈ S, 1 ∈ S, and s1, s2 ∈ S
implies s1.s2 ∈ S.

Theorem 1. ([5], Theorem I. 2. 1.) Let D be a domain that is contained in a field

F , and let S be a multiplicative subset of D and f(x) ∈ F [X] be a polynomial. Then

S−1 < f(D) >=< f(S−1D) >.

Theorem 2. ([5], Proposition I. 2. 2.) Let S be a multiplicative subset of a domain

D. Then S−1Int(D) ⊆ Int(S−1D).

Theorem 3. ([5], Theorem I. 2. 3.) Let S be a multiplicative subset of a Noetherian

domain D. Then S−1Int(D) = Int(S−1D).

Lemma 1. ([5], Lemma I. 2. 4.) Let S be a multiplicative subset of a domain D and

let E be a subset of the quotient field F of D. Then S−1Int(E,D) ⊆ Int(E, S−1D).

Theorem 4. ([5], Proposition I. 2. 5.) Let R be a subring of a domain D with the

quotient field F of D, and let S be a multiplicative subset of R. Then S−1Int(R,D) ⊆
Int(R, S−1D) = Int(S−1R, S−1D).

In particular, for R = D, we have the following:

Corollary 1. ([5], Corollary I. 2. 6.) If S is a multiplicative subset of a domain D,

then S−1Int(D) ⊆ Int(D,S−1D) = Int(S−1D).

3
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Theorem 5. ([5], Proposition I. 2. 7.)

(i) Let S be a multiplicative subset and, let E be a fractional subset of a Noetherian

domain D. Then S−1Int(E,D) = Int(E, S−1D).

(ii) Let R be a Noetherian subring of a domain D, and let S be a multiplicative

subset of R. Then S−1Int(R,D) = Int(R, S−1D) = Int(S−1R, S−1D).

Definition 2.1.3. A prime ideal of a domain D is said to be a height-one prime ideal

if it is minimal among the nonzero prime ideals of D.

Definition 2.1.4. A domain D is said to be a Krull domain if following conditions

are satisfied:

(i) D = ∩pDp, where (p) runs over the height-one prime ideals of D,

(ii) Dp is a discrete valuation domain for each height-one prime ideal (p) of D,

(iii) for all height-one prime ideals of D, each element of D is invertible in Dp.

Theorem 6. ([5], Proposition I. 2. 8.) Let D be a Krull domain, let (p) be a height-

one prime ideal, and let E be a fractional subset of D. Then Int(E,D)p = Int(E,Dp).

Remark 1. ([5], Remark I. 2. 9.) The ring of integers, Z, is both a Noetherian

and a Krull domain. For any non-trivial multiplicative subset S of Z, S−1Z is not a

fractional subset of Z, and so by ([5], Proposition I. 1. 9), S−1Int(S−1Z,Z) = S−1Z,

and on the other hand, Int(S−1Z, S−1Z) = Int(S−1Z). But in the case of Theorem

5 and Theorem 6, we must consider S−1Z to be a fractional subset of Z.

Theorem 7. ([5], Proposition I. 2. 8.) Let S be a fractional subset of Z. Then for

any fixed prime p, Int(S,Zp) = Int(S,Z)p.

Proof. Due to Lemma 1 ([5], Lemma I. 2. 4.), we have Int(S,Z)p ⊆ Int(S,Zp).
For the reverse part, let f ∈ Int(S,Zp), and let dZ be non-zero element such that

df ∈ Z[X]. Let V be a finite set of essential valuations v of Z with v(d) > 0 and v is

not associated with (p). For any height-one prime ideal (q) such that (p) 6= (q), there

exists an element of (q) that is not in (p). We take a product of such elements to get

an element z ∈ Z with z /∈ (p) such that v(z) ≥ v(d), for each v ∈ V . Thus. for each

height-one prime ideal (q) 6= (p), zf ∈ Zq[X]. Since S is a subset of Z, due to ([5],

Remark I. 1. 11.) zf(S) ⊆ Zq. Again, zf(S) ⊆ Zp because z ∈ Z and f ∈ Int(S,Zp)
by hypothesis. Thus, zf ∈ Int(S,Z) and so f ∈ Int(S,Z)p since z /∈ (p). Thus,

Int(S,Zp) ⊆ Int(S,Z)p. Hence Int(S,Zp) = Int(S,Z)p.
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2.2 Background for the p-adic Integers

Definition 2.2.1. Let p ≥ 2 be any prime. Then we define ordpa to be the highest

power of p dividing a nonzero integer a, i.e., the greatest m for which a ≡ 0 (mod pm).

For example, ord534 = 0, ord728 = 1, and if a = 0, then ordpa = ∞. Note the

multiplicative nature of ordpa is like a logarithm, such as ordpa1a2 = ordpa1 +ordpa2.

Definition 2.2.2. For any prime p ≥ 2, we define a map | |p on Q by

|x|p =


1

pordpx
, if x is not 0

0, if x=0
.

Proposition 1. ([15], Chapter 1, Section 2, Proposition.) | |p is a norm on Q.

Definition 2.2.3. Two metrics md1 and md2 on a set X are equivalent if the sequence

is a Cauchy sequence with respect to the metric md1 if and only if it is a Cauchy

sequence with respect to md2.

Two norms are equivalent if they provide equivalent metrics.

Theorem 8. ([15], Chapter 1, Section 2, Theorem 1(Ostrowski).) Every nontrivial

norm || · || on Q is equivalent to | |p for some prime p or for p =∞.

Definition 2.2.4. Let p 6=∞. Two Cauchy sequences {ak}∞k=1 and {bk}∞k=1 are said

to be equivalent if |ak− bk|p → 0 as k →∞. We define Qp to be the set of equivalence

classes of Cauchy sequences. The elements of Qp are called the p-adic numbers.

Note that Qp is a field and contains Q. Also, each element x ∈ Qp can be written

as a series of the form:

x = a0
pk

+ a1
pk−1 + ...+ ak−1

p
+ ak + ak+1p+ ak+2p

2 + ...,

which is known as the p-adic expansion of x.

Lemma 2. ([15], Section 4, Lemma, P.12.) Let x ∈ Qp with |x|p ≤ 1. Then for any

integer k = 1, 2, 3, ..., there exists an integer z ∈ Z such that |z − x|p ≤ p−k. The

integer z can be taken in the set {0, 1, 2, ..., pk − 1}.

Definition 2.2.5. The set Zp = {x ∈ Qp : |x|p ≤ 1} consists of all elements of Qp

whose p-adic expansion does not contain negative powers of p. An element of Zp is

called a p-adic integer and the set Zp is called the ring of p-adic integers. A p-adic

integer in the set Zp× is called a p-adic unit.
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2.3 Hensel’s Lemma

We state the famous Hensel’s Lemma.

Lemma 3. (Hensel’s Lemma)([15], Section 5, Theorem 3.) Let f(x) ∈ Zp[X] be a

polynomial and let z0 ∈ Zp such that f(z0) ≡ 0 (mod p) and f ′(z0) 6≡ 0 (mod p). Then

there exists a unique element z ∈ Zp such that f(z) = 0 and z ≡ z0 (mod p).

Now we require to state and prove the generalization of Hensel’s Lemma.

Lemma 4. (Generalization of Hensel’s Lemma.) Let f(x) ∈ Zp[X] be a polynomial

and let z0 ∈ Zp such that f ′(z0) ≡ 0 (mod pM) but f ′(z0) 6≡ 0 (mod pM+1), and

f(z0) ≡ 0 (mod p2M+1) for some integer M ≥ 0. Then there exists a unique element

z ∈ Zp such that f(z) = 0 and z ≡ z0 (mod pM+1).

Proof. If M = 0, then we have the Hensel’s Lemma.

Let N ≥ 2M + 1. Then we have f(z0) ≡ 0 (mod pN) with f ′(z0) ≡ 0 (mod pM)

and f ′(z0) 6≡ 0 (mod pM+1). If z = z0 + λpN−M , then f(z) ≡ f(z0) (mod pN) and

pM |f ′(z).

Now,

f(z) = f(z0 + λpN−M)

= f(z0) + λpN−Mf ′(z0) + terms with pN+1

≡f(z0) + λpN−Mf ′(z0) (mod pN+1)

= f(z0) + λpN−Mf ′(z0).

Since f(z0) ≡ 0 (mod PN) and pN−Mf ′(z0) ≡ 0 (mod PN), f(z) ≡ f(z0) ≡
0 (mod PN). Now,

f(z)

pN
≡ f(z0)

pN
+
λpN−Mf ′(z0)

pN
(mod p)

≡ f(z0)

pN
+
λf ′(z0)

pM
(mod p).

Since pM+1 6 |f ′(z0), p 6 |(f
′(z0)
pM

) and so there exists a unique value of λ such that,

taking z = z0 + λpN−M gives f(z)
pN
≡ 0 (mod p).

Also, f ′(z) ≡ f ′(z0) (mod pN−M). Since pM |f ′(z0) but pM+1 6 |f ′(z0), pM+1 6 |f ′(z).
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2.4 P -adic Closures

Definition 2.4.1. Let F be a quotient field of a domain D, and let ν be a (rank-one)

discrete valuation on F . We define a distance d on F by d(x, y) = e−v(x−y). In gen-

eral, if R is a ring and P is an ideal of R satisfying ∩∞k=0P
k = (0), we may define an

arithmetic function w on R by

w(x) =

sup{k : x ∈ P k}, if x is not 0

+∞, if x=0
.

It is important to note that w is not a valuation on R in general. Then employing

the convention e−∞ = 0 and considering |x| = e−w(x) and d(x, y) = |x−y| = e−w(x−y),

we can easily check that d is an ultradistance on R:

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, z) ≤ sup{d(x, y), d(y, z)}.
For, (i) and (ii) are obvious; the third condition (iii) is immediate from the inequality

w(x, y) ≥ inf{w(x), w(y)}.

Definition 2.4.2. The ultradistance d on R defines a topology called the P -adic

topology. The clopen subsets of a topological space are the subsets that are both open

and closed with respect to the corresponding topology.

It is clear that the ideals P k form a fundamental system of clopen neighborhoods

of 0. Due to translation, each point meets a fundamental system of clopen neighbor-

hoods that holds for ultrametric spaces. Finally, the addition and multiplication are

continuous on R.

If F is a quotient field of a domain D, then the ultradistance function can be defined

on F , and so F itself is a topological space and D is a clopen subspace with respect

to the topology. Let D be a discrete valuation domain, then the topology defined by

the valuation on D is clearly the m-adic topology for the maximal ideal m of D.

Definition 2.4.3. Let R be a ring. The completion of R with respect to the metric

associated with the P -adic topology is denoted by R̂ that itself is the ultrametric space

and a topological ring. If D is a discrete valuation ring in terms of valuation v on a
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field F , then D̂ is the valuation ring in terms of the extended valuation v̂ of v to the

completion F̂ to F .

Definition 2.4.4. Let R be a ring, and let P be an ideal of R. The topological closure

of P is denoted by P̂ which is an ideal of the completion R̂ of R.

Remark 2. The ideal P is contained in some maximal ideal of R̂(see [[16], Theorem

8.2]). The closures P̂ k of the ideals P k of R construct a fundamental system of clopen

neighborhoods of 0 in R̂ and R̂/P̂ k ' R/P k (see [[5], III. 1. Exercise3]).

Let P be finitely generated, then P̂ k = P̂ k = P kR̂ (see [[18], (17. 4)]).

If R is a Noetherian ring, then we have the following:

Theorem 9. ([[16], Theorem 8.11], [[1], Theorem 10. 15. 8].) If R is a Noetherian

ring, and P is an ideal of R satisfying ∩∞k=0P
k = (0), and if R̂ is the completion of

R in the P -adic topology, then

(i) R̂ is a Noetherian ring,

(ii) (P̂ )k = ˆ(P k) = P kR̂ for every k,

(iii) the topology of R̂ is the P̂ -adic topology,

(iv) R̂/P̂ k ' R/P k for every k,

(v) if P = m is a maximal ideal of R, then R̂ is local with maximal ideal m̂.

2.5 The Chinese Remainder Theorem

Let d1, d2, ..., dk be pairwise relatively prime integers. Then for any integers

x1, x2, ..., xk, the congruences x ≡ xi (mod di) have a simultaneous solution x ∈ Z.

Moreover, if x is one solution, then the other solutions are the integers of the form

x+md with m ∈ Z and d =
∏
di.

We require to transfer the above statement in terms of ideals.

Note: Two integers m and n are relatively prime if and only if (m,n) = Z, i.e.,

(m) + (n) = Z. Thus, this inspires us to say that two ideals I1 and I2 of a ring R are

relatively prime if I1 + I2 = R.

If m1,m2, ...,mk are integers and m = lcm(m1,m2, ...,mk), then
∏

(mi) ⊂ ∩(mi) and∏
(mi) = ∩(mi) if the integers mi’s are pairwise relatively prime then m =

∏
mi.
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Thus, for ideals I1, I2, ..., Ik, we have

I1 · I2 · · · Ik ⊂ I1 ∩ I2 ∩ · · · ∩ Ik, but the two ideals need not be equal.

In fact, for the ideals I1, I2, ..., Ik of a commutative ring R, I1 ·I2 ···Ik = I1∩I2∩···∩Ik
if and only if TorR1 (R

I1
, R
I2
, · · ·, R

Ik
) = 0.

Regarding to the above discussion, we have

Theorem 10. ([17], Theorem 1. 14.) Let I1, I2, ..., Ik be pairwise relatively prime

ideals of a ring R. Then for any elements x1, x2, ..., xk of R, the congruences

x ≡ xi (mod Ii)

have a simultaneous solution x ∈ R. Moreover, if x is one solution, then the other

solutions are the elements of the form x+ r with r ∈ ∩Ii =
∏
Ii.

In other words, the natural maps provide an exact sequence

0→ I → R→
∏k

i=1R/Ii → 0 with I = ∩Ii =
∏
Ii.

Proof. First suppose that k = 2. Since I1 and I2 are relatively prime, I1 + I2 = R.

Then there exist elements a ∈ I1 and a2 ∈ I2 such that a1 + a2 = 1. So the element

x = a1x1 + a2x2 has the required property.

For each i, we have ai ∈ I1 and bi ∈ Ii such that ai + bi = 1, for all i ≥ 2.

Then
∏

i≥2(ai + bi) = 1 and so 1 ∈ I1 +
∏

i≥2 Ii and thus I1 +
∏

i≥2 Ii = R.

Now, for k = 2, we can apply the theorem to get an element y1 ∈ R such that

y1 ≡ 1 (modI1) and y1 ≡ 0 (mod
∏

i≥2 Ii).

These give that y1 ≡ 1(mod I1) and y1 ≡ 0 (mod Ij), for all j > 1. Thus, there exist

elements y2, y3, ..., yk such that yi ≡ 1 (mod Ii) and yi ≡ 0 (mod Ij), for i 6= j.

Thus, the element x =
∑
xiyi has the required property.

Now, it remains to show that ∩Ii =
∏
Ii. First suppose that k = 2. Let a1 ∈ I1, a2 ∈

I2 such that a1 + a2 = 1. Let c ∈ I1 ∩ I2. Then we have c = a1c + a2c, which shows

that I1∩I2 = I1.I2. By induction suppose that ∩i≥2Ii =
∏

i≥2 Ii. Since I1 and
∏

i≥2 Ii

are relatively prime, I1.
∏

i≥2 Ii = I1 ∩ (
∏

i≥2 Ii) = I1 ∩ (∩i≥2Ii) = ∩iIi.

The above theorem extends to R-modules as follows:

Theorem 11. ([17], Theorem 1.15.) Let I1, I2, ..., Ik be pairwise relatively prime

ideals of a ring R, and let M be an R-module. Then there exists an exact sequence

0→ IM →M →
∏

iM/IiM → 0 with I =
∏
Ii = ∩Ii.
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2.6 Integer-Valued Polynomials

Definition 2.6.1. A polynomial f(x) ∈ Q[X] is said to be an integer-valued polyno-

mial if it gives an integer value while evaluating at an integer.

The set of such integer-valued polynomials is denoted by

Int(Z) = {f(x) ∈ Q[X] : f(Z) ⊆ Z}.

It is clear that any polynomial f(x) ∈ Z[X] is integer-valued. However, the poly-

nomials having rational coefficients may be integer-valued, as for example, f(x) =

x(x − 1)/2 is integer-valued since at any integer x = k ∈ Z, k is even if and only if

(k − 1) is odd and conversely.

Due to Pascal’s triangle, we know that for any non-negative integers m and k,(
m
k

)
is an integer.

From which we have the following:

Lemma 5. The binomial polynomials {fk(x) : k = 0, 1, 2, ...} = {
(
x
k

)
} = {

∏k−1
i=0

x−i
k−i}

belong to Int(Z).

Proof. For k = 0, 1, 2, ....., we have

fk(x) = x(x−1)(x−2)...(x−k+1)
k!

.

Now, for any z ∈ Z such that 0 ≤ z < k, fk(z) = 0 ∈ Z. Again, for any z ∈ Z
such that z ≥ k, we have fk(k + n) = (k+n)(k+n−1)(k+n−2)...(k+n−k+1)

k!
=
(
k+n
k

)
∈ Z with

n = 0, 1, 2, ....

Also, for any z ∈ Z such that z < 0, we have

fk(z) = (−1)k (k−z−1)(k−z−2)(k−z−3)...(k−z−1−k+1)
k!

= (−1)k
(
k−z−1
k

)
∈ Z.

Therefore, fk(Z) ⊆ Z for each k = 0, 1, 2, ... .

We have the following theorem:

Theorem 12. ([5], Proposition I. 1. 1.) Every element in Int(Z) can be written

uniquely as a Z-linear combination of the binomial polynomials

{fk(x) : k = 0, 1, 2, ...} = {
(
x
k

)
} = {

∏k−1
i=0

x−i
k−i}.

Proof. Since for each k = 0, 1, 2, ...,
(
x
k

)
is a polynomial of degree k, obviously {

(
x
k

)
:

k = 0, 1, 2, ...} forms a basis for the Q-vector space Q[X]. Lemma 5 shows that
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{
(
x
k

)
: k = 0, 1, 2, ...} are integer-valued polynomials. Thus, a Z-linear combination of

{
(
x
k

)
: k = 0, 1, 2, ...} is in Int(Z)

Conversely, suppose that f(x) ∈ Int(Z), and let f(x) = α0 +α1x+ ...+αk
(
x
k

)
, where

αi ∈ Q, 0 ≤ i ≤ k.

Now, f(0) = α0 ∈ Z. Suppose by induction on l < k that αi ∈ Z, for i ≤ l. Then

gl(x) = f(x)−
∑n

i=0 αi
(
x
i

)
∈ Int(Z), and gl(x) = αl+1

(
x
l+1

)
+ ...+ αk

(
x
k

)
.

Therefore, αl+1 = gl(l + 1) ∈ Z.

Therefore, f is a Z-linear combination of
(
x
k

)
.

Hence the theorem.

2.7 Background about Integer-Valued Polynomials on a Subset

The ring Int(S,D) is contained in F [X]. In spite of considering F as a quotient

field of the domain D, we may choose a quotient field that contains S and smaller

than F . In particular, if we assume S is a domain, then its quotient field, Q, (say)

would be smaller than F . But the sizes of any two rings of integer-valued polynomials

depend on the sizes of the two subsets of a quotient field with respect to which the

polynomials are integer-valued. We make clear the fact by the following theorem:

Theorem 13. ( [5], Proposition I. 1. 6 .) If C ⊆ D are two domains having a quotient

field F , and S ⊆ T are two subsets of the quotient field F then Int(T,C) ⊆ Int(S,D).

From which, we have the following:

Corollary 2. ( [5], Corollary I. 1. 7 .) If S is a subset of the quotient field F of the

domain D then the following containments are equivalent:

(i) S ⊆ D,

(ii) Int(D) ⊆ Int(S,D),

(iii) D[X] ⊆ Int(S,D).

Proof. Suppose that S is a subset of D. Then by Theorem 1, D[X] ⊆ Int(D) ⊆
Int(S,D). Conversely suppose that D[X] ⊆ Int(S,D). Then since the polynomials

must have to be integer-valued on S, S is a subset of D.
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2.8 Polynomial Closures

For any two distinct subsets S and T of the quotient field F of a domain D, the

condition Int(S,D) = Int(T,D) may hold. In particular, if S is a subset of the

domain D, then the condition Int(S,D) = Int(D) may hold. As for example, if we

consider S = N and D = Z then Int(N,Z) = Int(Z) ( see [5], Corollary I.1.2 ).

It is very important to state the following lemma that points out some necessary

definitions:

Lemma 6. ( [5], Lemma IV.1.1.) Let S be a subset of the quotient field F of a

domain D then S̄ = {x ∈ F : f(x) ∈ D for all f ∈ Int(S,D)} is the largest subset of

F satisfying the condition Int(S,D) = Int(S̄, D).

Definition 2.8.1. (i) ( [5], Definition IV.1.2.) Two subsets S and T of the quotient

field F of a domain D are said to be polynomially D-equivalent or ( simply polyno-

mially equivalent ) if Int(S,D) = Int(T,D).

(ii) Let S be a subset of the quotient field F of a domain D. Then the subset

S̄ = {x ∈ F : f(x) ∈ D for all f ∈ Int(S,D)} of F is said to be the polynomial

D-closure of S.

(iii) A subset S of the quotient field F of a domain D is called polynomially D-closed

if S = S̄, (where Int(S,D) = Int(S̄, D)).

(iv) A subset S of a domain D is said to be a dense subset of D if Int(S,D) = Int(D).

Equivalently, a subset S of D is dense in D if and only if S̄ = D, where S̄ is the

polynomial D-closure of S.

Example 1. ( [5], Example IV.1.3 .) If D is not a field then clearly the finite subsets

of the quotient field F of D are polynomially closed whereas the cofinite subsets of D

are dense in D (see [5], Proposition I.1.5).

Remark 3. ([5], Remark IV.1.4.) Let S ⊆ T ⊆ U be three subsets of the quotient field

F of a domain D. Then Int(S,D) = Int(U,D) if and only if Int(S,D) = Int(T,D)

and Int(T,D) = Int(U,D). However, if T and U are domains then Int(S, U) =

Int(U) but Int(S, T ) 6= Int(T ), i.e., S is polynomially dense in U but not in T .

We mostly require to state the following basic properties of polynomial closure:
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Theorem 14. ([5], Proposition IV. 1. 5.)

(i) For each subset S of the quotient field F of a domain D, ¯̄S = S̄.

(ii) If S and T are two subsets of the quotient field F of a domain D such that S ⊆ T

then S̄ ⊆ T̄ .

(iii) For any family {Sk} of subsets of the quotient field F of a domain D,
⋂
k Sk ⊆⋂

k S̄k and
⋃
k S̄k ⊆

⋃
k Sk.

(iv) For any subset S of F , xS̄ = xS and x+ S̄ = x+ S, for all x ∈ F .

Example 2. Let S1 = (2) and S2 = (3). Then S̄1 = ¯(2) = (2) = S1 because

x/2 ∈ Int((2)), and if k is odd then k/2 /∈ Z. Similarly, S̄2 = ¯(3) = (3) = S2, and so

S̄1 ∪ S̄2 = S1 ∪ S2 6= Z since 7 /∈ S1 ∪ S2 = (2) ∪ (3).

Also, the 2-adic and 3-adic closures of S1 ∪ S2 = (2) ∪ (3) are Z.

We will show in section 2.9 that Int((2) ∪ (3)) = Int(Z).

Also, ([4], Remark 1.3.2), if we let S1 = {z ∈ Z : z ≥ 0} and S2 = {z ∈ Z : z ≤ 0}.
Then the polynomial closures of both S1 and S2 are Z and so their intersection is Z.

But the intersection of S1 and S2 is {0} whose closure is also {0}.

Remark 4. ([5], Remark IV. 1. 6). The inclusions in (iii) are strict in general.

2.9 Relation between Polynomial Closures and P-adic Closures

Definition 2.9.1. Let R be a ring. The intersection of maximal ideals of R is called

the Jacobson radical of R. A Noetherian ring equipped with P -adic topology R is

called a Zariski ring if the ideal P of R is contained in the Jacobson radical of R.

Theorem 15. ([5], Theorem IV. 1. 12.) If D is a Zariski domain, then the topological

closure of a fractional subset S of R in the quotient field F of D is contained in the

polynomial D-closure of S.

Proof. Let S be a subset of D, and let S̄t be the topological closure of S in the P -adic

topology. Let f ∈ Int(S,D), and let x ∈ S̄t. We need to show that f(x) ∈ D. Let

d ∈ D with d 6= 0 satisfying df ∈ D[X]. For every n, we have y ∈ S satisfying x− y ∈
P n. Since (df(x)− df(y)) is divisible by x− y in D, then (df(x)− df(y)) ∈ P n. Now,

since df(y) ∈ dD, clearly df(x) ∈ dD + P n. Thus, df(x) belongs to the topological

closure of the ideal dD, where the topological closure of dD is itself due to D being

a Zariski ring. Therefore, df(x) ∈ dD leaving f(x) ∈ D.
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Corollary 3. ([5], Corollary IV. 1. 13.) Let D be a Zariski domain. Then

(i) Every topological dense subset S of D is also a polynomially dense subset of D.

(ii) Every polynomially closed fractional subset S of D is also topologically closed in

the quotient field F of D.

It is noted that Theorem 15 and Corollary 3 are applied in the case of D to be a

Noetherian local ring with respect to the m-adic topology having m as maximal ideal

of D.

2.10 p-Orderings and the Associated p-Sequences

p-Ordering ([2], section 4.) Let S be an arbitrary subset of Z, and let p be a fixed

prime number. A sequence {ai}∞i=0 of elements of S is said to be a p-ordering of S if

it is constructed by maintaining the following steps:

Step 0: Pick an element a0 ∈ S;

Step 1: Pick any element a1 ∈ S that minimizes the highest power of p dividing

a1 − a0;

Step 2: Pick any element a2 ∈ S that minimizes the highest power of p dividing

(a2 − a0)(a2 − a1);

.

.

.

Step k: Pick the kth element ak ∈ S that minimizes the highest power of p dividing

(ak − a0)(ak − a1)...(ak − ak−1).

It is necessary to note that the p-ordering of elements of S depends on the choices

of initial element a0 of the sequence {ai}∞i=0, i.e., for different choices of a0 the p-

orderings must be different.

The following examples illustrate the truth of the above statement:

Example 3. Let S = {2z : z ∈ Z}. Then at a0 = 2 and a0 = 4 the p-orderings of

S are {2, 0, 4, 6, 8, 10, 12, · · ·} and {4, 2, 0, 6, 8, 10, 12, · · ·} respectively for all primes p

simultaneously.

Example 4. Let S = {2z : z ∈ Z}. Then at a0 = 1 and a0 = 2 the p-orderings of S

are {1, 2, 4, 8, · · ·} and {2, 1, 4, 8, · · ·} respectively for all primes p simultaneously.
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Example 5. Let S = {z2 : z ∈ Z}. Then at a0 = 1 and a0 = 4 the p-orderings of S

are {1, 0, 4, 9, · · ·} and {4, 0, 1, 9, · · ·} respectively for all primes p simultaneously.

Example 6. Let S = F = {1, 2, 3, 5, 8, 13, 21, ...}, the Fibonacci numbers, then at a0 =

3 and a0 = 21 with p = 2, the p-orderings of S are {3, 2, 1, 8, 5, 55, 34, 13, 89, 21, ...}
and {21, 2, 8, 55, 89, 3, 34, 1, 13, 5, ...} respectively.

The Associated p-Sequence([2], section 4.) If {ai}∞i=0 is a p-ordering of an

arbitrary subset S of Z then the monotonically increasing sequence {νk(S, p)}∞k=0 of

powers of p such that the kth element νk(S, p) is the power of p for which ak minimizes

pνk(S,p) dividing (ak − a0)(ak − a1)...(ak − ak−1) in the p-ordering process is known as

the associated p-sequence corresponding to the chosen p-ordering {ai}∞i=0 of S.

We feel more important to note that for any fixed prime p the associated p-sequence

of a subset S is invariant to all p-orderings of S. For verification of this, we need to

state and prove the following theorem:

Theorem 16. (see [2], Theorem 5.) The associated p- sequence of S does not depend

on the choice of p-ordering of S.

Before proving the theorem, we need the following definition and the statements

of some theorems:

Definition 2.10.1. ([2], Definition 7.) If S is a subset of Z, then the factorial

function of S is denoted by K!S and is defined by

k!S =
∏

p νk(S, p).

Definition 2.10.2. Let S be a subset of Z, and let f be a primitive polynomial. Then

the fixed divisor of f over S is denoted by d(S, f), and is defined by

d(S, f) = gcd{f(a) : a ∈ S}.

Theorem 17. ([2], Theorem 9.) If f is a primitive polynomial of degree k, and

d(S, f) is the fixed divisor of f over a subset S of Z, then d(S, f)|k!S.

Theorem 18. ([2], Theorem 10.) If S is a subset of Z, and a0, a1, · · ·, an ∈ S are

any n+ 1 integers, then the product
∏

i<j(ai − aj) is a multiple of 0!S1!S · · · n!S.

Theorem 19. ([2], Theorem 11.) Let S be a subset of Z. Then
∏n−1

k=0
n

gcd(n,k!S)
is the

number of polynomial functions from S to Z/nZ.
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Proof. (Proof of Theorem 16). Since the Theorems 17 - 19 did not mention p-orderings

except generalized factorials, the definition 2.10.1 of factorials can not have depended

on any choices of p-ordering.

Theorem 20. ([2], Proposition 6.) The set {0, 1, 2, 3, ...} of nonnegative integers

forms a p-ordering of the set of integers, Z, for all prime numbers p simultaneously.

Proof. Suppose ak−1 = k − 1 minimizes the highest power of any prime p dividing

(ak−1 − 0)(ak−1 − 1)...(ak−1 − (k − 2)). We want to show that ak = k minimizes

the highest power of any prime p diving (ak − 0)(ak − 1)...(ak − (k − 1)). For, since

E(x) = (x− 0)(x− 1)...(x− (k− 1)) is the product of k consecutive integers, it must

be a multiple of k! by Pascal’s triangle. Also, when x = k, E(k) = k!. Thus, x = k

minimizes the power of p dividing E(k). Therefore, at the kth step we consider ak = k

and the claim follows due to induction.

Corollary 4. The sequence [0, 0, 0, · · ·, p − terms, 1, 1, 1, · · ·, p − terms, 2, 2, 2, · ·
·, p − terms, · · ·] is the associated p-sequence of Z corresponding to the p-ordering

{0, 1, 2, 3, ...}.

Example 7. Let S = {2z : z ∈ Z}. Suppose ak−1 = 2(k − 1) minimizes the highest

power of any prime p dividing (ak−1 − 0)(ak−1 − 2)(ak−1 − 4) · · · (ak−1 − 2(k − 2)).

Let E(x) = (x − 0)(x − 2)(x − 4) · · · (x − 2(k − 1)). We see that E(2k) = (2k −
0)(2k− 2) · · · (2k− 2(k− 1)) = 2kk!, which is a product of k consecutive integers and

so is a multiple of k! by Pascal’s triangle. Thus, x = 2k minimizes the power of p

dividing E(2k). Therefore, {0, 2, 4, 6, ...} is a p-ordering of S and the corresponding

associated p-sequence is for all primes p simultaneously. The corresponding associated

2-sequence of S is {0, 1, 3, 4, 7, 8, 10, · · ·}.

Example 8. Let S = {2z : z ∈ Z}. Suppose ak−1 = 2k−1 minimizes the highest power

of any prime p dividing (ak−1− 1)(ak−1− 2)(ak−1− 4)(ak−1− 8) · · · (ak−1− 2k−2). Let

E(x) = (x− 1)(x− 2)(x− 4)(x− 8) · · · (x− 2k−1). We see that E(2k) = (2k− 1)(2k−
2)(2k − 8) · · · (2k − 2k−1) is a product of k consecutive integers and so is a multiple

of k! by Pascal’s triangle.Thus, x = 2k minimizes the power of p dividing E(2k).

Therefore, {1, 2, 4, 8, ...} is a p-ordering of S for all primes p simultaneously. The

associated p-sequence of S is {0, 0, 0, · · ·(p− 1)terms, 1, 1, 1, · · ·(p− 1)terms, 2, 2, 2, · ·
·(p− 1)terms, · · ·}.
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Example 9. Let S = {z2 : z ∈ Z}. Suppose ak−1 = (k − 1)2 minimizes the highest

power of any prime p dividing (ak−1− 0)(ak−1− 1)(ak−1− 4) · · · (ak−1− (k− 2)2). Let

E(x) = (x− 0)(x− 1)(x− 4) · · · (x− (k − 1)2). We see that E(k2) = (k2 − 0)(k2 −
1)(k2 − 4) · · · (k2 − (k − 1)2), which is a product of k consecutive integers and so is

a multiple of k! by Pascal’s triangle. Thus, x = k2 minimizes the power of p dividing

E(k2). Therefore, {0, 1, 4, 9, ...} is a p-ordering of S for all primes p simultaneously.

The associated 2-sequence of S is {0, 0, 2, 3, 6, 7, 9, 10, 14, · · ·}.

Maplecode 1 provides p-orderings as well as the corresponding associated

p-sequences. As for example, we input the first 30-terms of the sequence of Lucas

numbers, the initial element a0 = 2, and a prime p = 3 as follows:

porder(L, 3, 1); and we get a p-ordering [2, 1, 3, 4, 18, 521, 7, 123, 1364, 11, 76, 843, 199,

5778, 47, 322, 39603, 24476, 64079, 271443, 9349, 167761, 29, 439204, 2207, 15127,

1149851, 3571, 103682, 710647] and the associated p-sequence [0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4,

4, 5, 5, 6, 6, 6, 7, 8, 8, 9, 10, 11, 11, 13, 14, 16, 18, 20, 23].

A reasonable question at this point is how much the p-ordering of the finite sequence,

{Lk}, the first k terms of Lucas numbers, of Lucas numbers agrees with that of L?

Definition 2.10.3. The period of a periodic sequence {An : n ≥ 0} is the smallest k

for which there exists an m such that An+k = An for all n ≥ m.

Lemma 7. If {an} is defined by an+1 = C1 · an + C2 · an−1 + · · · + Ck · an−kmod pl,

then {an} is periodic.

Proof. Consider the set of k-tuples modulo pl. Then the set is finite. So, some k-tuple

must occur twice in the subsequences of length k in {an}. Suppose {an1+1, an1+2, · ·
·an1+k} and {an2+1, an2+2, · · ·an2+k} are the same. Then, since the sequence is defined

by a recurrence of length k, we must have an1+i = an2+i for all i. Thus the sequence

{an} is periodic with period that divides n2 − n1.

Corollary 5. For any prime p and integer k the Lucas sequence modulo pk is periodic.

Proof. For any prime p and integer k, there are p2k possible pairs of Lucas numbers

modulo pk. Then by the pigeonhole principle, after p2k + 1 terms a pair must repeat.

Also, if a pair repeats once, then it must repeat again.

Therefore, the Lucas sequence modulo pk is periodic.
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Lemma 8. Let {Lk} be a sequence of Lucas numbers, and let p be a prime number.

If the sequence {Lk} is periodic modulo p for k ≥ m, then it is periodic modulo p for

all k ≥ 0, and similarly for the Fibonacci numbers.

Proof. Since {Lk} is periodic modulo p for k ≥ m with a period l (say), Lk ≡
Lk+l (mod p) for k ≥ m. Then Lk+1 ≡ Lk+1+l (mod p). By recurrence relation,

we have Lk+1 = Lk + Lk−1. So Lk−1 = Lk+1 − Lk ≡ (Lk+1+l − Lk+l) (mod p) ≡
Lk−1+l (mod p). This shows that if the sequence {Lk} is periodic modulo p for

k ≥ m, then it is also periodic modulo p for k ≥ m− 1. Now, Lk−2 = Lk − Lk−1 ≡
(Lk+l − Lk−1+l) (mod p) ≡ Lk−2+l (mod p), showing {Lk} is periodic modulo p for

k ≥ m− 2. If we proceedm times in this way, then we get Lk−m = Lk−m+2−Lk−m+1 ≡
(Lk−m+2+l−Lk−m+1+l) (mod p) ≡ Lk−m+l (mod p), showing {Lk} is periodic modulo

p for k ≥ 0. The proof for the Fibonacci numbers is similar. Hence this establishes

the lemma.

Lemma 9. Let {Fk} be the sequence of Fibonacci numbers, and let {Lk} be the

sequence of Lucas numbers with integers k ≥ 0. Then Lk = Fk−1 +Fk+1 for all k ≥ 1.

Proof. We know that for all integers k ≥ 1, Fk+1 = Fk+Fk−1 with F0 = 0, F1 = 1. We

will prove the lemma by induction on k. Let k = 1. Then F2 + F0 = 1 + 0 = 1 = L1.

Similarly, for k = 2, F3 + F1 = F2 + 2F1 = 1 + 2 · 1 = 3 = L2.

Suppose Ln = Fn+1 + Fn−1 holds for all n < k. Then Lk = Lk−1 + Lk−2 = (Fk +

Fk−2) + (Fk−1 + Fk−3) = (Fk + Fk−1) + (Fk−2 + Fk−3) = Fk+1 + Fk−1 as required.

Therefore, Lk = Fk+1 + Fk−1 for all k ≥ 1.

Lemma 10. Let {Fk} be the sequence of Fibonacci numbers, and let {Lk} be the

sequence of Lucas numbers with integers k ≥ 0. Then Fk = Lk−1+Lk+1

5
for all k ≥ 1.

Proof. The proof of this lemma is similar to lemma 9.

Lemma 11. Let {Fk} be the sequence of Fibonacci numbers, and let {Lk} be the

sequence of Lucas numbers with integers k ≥ 0. If l is the period of {Lk} mod p, then

it is also the period of {Fk} mod p with any prime p, and conversely.

Proof. Since l is the period of the sequence of Lucas numbers mod p, Ll−1 ≡ L0 (mod p)

and Ll ≡ L1 (mod p). Then Ll+1 = Ll +Ll−1 ≡ (L1 +L0) (mod p) ≡ L2 (mod p) and
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Ll+2 = Ll+1 +Ll ≡ (L2 +L1) (mod p) ≡ L3 (mod p). Due to lemma 10, Fl = Ll−1+Ll+1

5

for all l ≥ 1. Now, Fl = Ll−1+Ll+1

5
≡ (L0+L2

5
) (mod p) ≡ (L2+L0

5
) (mod p) ≡ F1 (mod p)

and Fl+1 = Ll+2+Ll

5
≡ (L3+L1

5
) (mod p) ≡ F2 (mod p). Therefore, l is the period of

{Fk} mod p. The proof of the converse part is straightforward.

Theorem 21. If p is any prime and a ≡ 1 (mod p), then ap
k ≡ 1 (mod pk+1) for any

integer k ≥ 0.

Proof. We will prove this theorem by induction on k. Since a ≡ 1 (mod p), a = 1+zp

for some z ∈ Z. Then ap = (1 + zp)p = 1 + zp2 +
∑p−1

i=2

(
p
i

)
(zp)i ≡ 1 (mod p2) since

p2|(zp)i for 2 ≤ i ≤ p. Thus ap
k ≡ 1 (mod pk+1) holds for k = 1. Suppose this holds for

k = n with any integer n > 1, i.e., ap
n ≡ 1 (mod pn+1). Then ap

n
= 1+z1p

n+1 for some

z1 ∈ Z. Now, ap
n+1

= (ap
n
)p = (1 + z1p

n+1)p = 1 +
(
p
1

)
z1p

n+1 +
∑p

i=2

(
p
i

)
(z1p

n+1)i =

1+z1p
n+2+

∑p
i=2

(
p
i

)
(z1p

n+1)i ≡ 1 (mod pn+2) since pn+2|(z1p
n+1)i for 2 ≤ i ≤ p. Thus

ap
k ≡ 1 (mod pk+1) holds for k = n+ 1. Hence the theorem follows by induction.

Corollary 6. If p is any prime, and l is the period of {Fk}, the sequence of Fibonacci

numbers, mod p, then the sequence is periodic with period dividing lpk−1 modulo pk

for any integer k ≥ 1.

Proof. Since l is the period of {Fk} mod p, Fl ≡ τ l−τ̄ l√
5
≡ F0 ≡ 0 (mod p), and so

τ l ≡ τ̄ l (mod p). Since Fl ≡ F0 (mod p) and Fl+1 ≡ F1 (mod p), Fl−2 ≡ F0 (mod p)

and Fl−1 ≡ F1 (mod p), and so using τ l ≡ τ̄ l (mod p), we have Fl = Fl+1 − Fl−1 =

Fl+1 − F1 = τ l+1−τ̄ l+1
√

5
− τ−τ̄√

5
= τ(τ l−1)−τ̄(τ̄ l−1)√

5
= τ(τ l−1)−τ̄(τ l−1)√

5
= (τ l − 1) (τ−τ̄)√

5
=

(τ l − 1)F1 = (τ l − 1) ≡ 0 (mod p). Similarly, Fl = (τ̄ l − 1) ≡ 0 (mod p). Thus

τ l ≡ τ̄ l ≡ 1 (mod p), and therefore by Theorem 21, τ lp
k−1 ≡ τ̄ lp

k−1 ≡ 1 (mod pk).

Now, Flpk−1 = τ lp
k−1−τ̄ lpk−1

√
5

≡ 0 (mod pk) ≡ F0, and Flpk−1+1 = τ lp
k−1+1−τ̄ lpk−1+1

√
5

=

τ lp
k−1

τ−τ̄ lpk−1
τ+τ̄ lp

k−1
τ−τ̄ lpk−1

τ̄√
5

= (τ lp
k−1−τ̄ lpk−1

)τ√
5

+ τ̄ lp
k−1 τ−τ̄√

5
≡ (0 · τ + 1 ·F1) (mod pk) ≡

F1 (mod pk). Therefore, the period of {Fk} mod pk divides lpk−1.

Theorem 22. Let p be a prime and {Lk} be the sequence of Lucas numbers modulo

p with period l. Then {Lk} is periodic modulo pk with period lpk−1 for k ≥ 1.

Proof. Since l is the period of the sequence of Lucas numbers, {Lk}, mod p, it is also

the period of the sequence of Fibonacci numbers, {Fk}, mod p, by lemma 11. Then

by Corollary 6, Flpk−1−1 ≡ F0 (mod pk) and Flpk−1 ≡ F1 (mod pk). Then Flpk−1+1 =
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Flpk−1 +Flpk−1−1 ≡ F1 +F0 (mod pk) ≡ F2 (mod pk) and Flpk−1+2 = Flpk−1+1 +Flpk−1 ≡
F2 + F1 (mod pk) ≡ F3 (mod pk). But by lemma 9, we have Lk = Fk+1 + Fk−1 for

all k ≥ 1. Then Llpk−1 = Flpk−1+1 + Flpk−1−1 ≡ F2 + F0 (mod pk) ≡ L1 (mod pk) and

Llpk−1+1 = Flpk−1+2 + Flpk−1 ≡ F3 + F1 (mod pk) ≡ L2 (mod pk). Therefore, lpk−1 is

the period of the sequence of Lucas numbers, {Lk}, mod pk.

As for example, using Maplecode 2, we can verify the above Theorem.

Proposition 2. For any k, the Lucas sequence, L, modulo pk is periodic. Let the

length of the period be l(n). If f(x) ∈ Q[x], f = g(x)
pk

with g(x) ∈ Zp[x], and f(x) ∈ Zp
for all Lucas numbers Lm for m ≤ l(n). Then f(L) ⊆ Zp.

Proof. Let x and y be Lucas numbers such that x ≡ y (mod pk), and let f(x) ∈ Zp.
We want to show that f(y) ∈ Zp. Since x ≡ y (mod pk), y = x+ pkz, for some z ∈ Z.

Now, for any n,

yn = (x+ pkz)n

= xn + nxn−1pkz +
n(n− 1)

2!
xn−2p2kz2 +

n(n− 1)(n− 2)

3!
xn−3p3kz3 + · · ·

= xn + pk[nxn−1z +
n(n− 1)

2!
xn−2pkz2 +

n(n− 1)(n− 2)

3!
xn−3p2kz3 + · · ·].

This gives,

g(y) = g(x) + pk[nxn−1z +
n(n− 1)

2!
xn−2pkz2 +

n(n− 1)(n− 2)

3!
xn−3p2kz3 + · · ·],

which implies

g(y)

pk
=
g(x)

pk
+ [nxn−1z +

n(n− 1)

2!
xn−2pkz2 +

n(n− 1)(n− 2)

3!
xn−3p2kz3 + · · ·]

with [nxn−1z + n(n−1)
2!

xn−2pkz2 + n(n−1)(n−2)
3!

xn−3p2kz3 + · · ·] ∈ Z.

Now, since f(y) = g(y)
pk

and f(x) = g(x)
pk

, we have

f(y) = f(x) + [nxn−1z +
n(n− 1)

2!
xn−2pkz2 +

n(n− 1)(n− 2)

3!
xn−3p2kz3 + · · ·]

with [nxn−1z + n(n−1)
2!

xn−2pkz2 + n(n−1)(n−2)
3!

xn−3p2kz3 + · · ·] ∈ Z and so f(y) ∈ Zp.
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Problem 1. Let L(n) be the first n-terms of Lucas numbers L. The associated p-

sequence of L(n) is not necessarily the first n-terms of the associated p-sequence of L,

but the sequence will agree for the first m-terms for some m < n. How is m related

to n?

Our answer is given below:

Remark 5. Given any n, we compute the p-sequence of L(n), say, [a0, a1, · · ·, an].

Then we pick the largest k for which l(k) < n, where l(k) is the period of L modulo

pk. Now, we pick m such that am ≤ k, then the p-sequence [a0, a1, · · ·, am] of L(n)

will agree with the p-sequence of L.

As for example, the associated 5-sequence of L(50) is [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,

4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15,

15, 15, 15, 16, 16, 17, 18], and [Lmod 52] = [2, 1, 3, 4, 7, 11, 18, 4, 22, 1, 23, 24, 22, 21,

18, 14, 7, 21, 3, 24, 2, 1, 3, 4, 7, 11, 18, 4, 22, 1, 23, 24, 22, 21, 18, 14, 7, 21, 3, 24], and

so l(k) = l(2) = 20 < 50. We can pick m = 11 such that a11 ≤ k(= 2). Then the

sequence [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] will agree with the 5-sequence of L.

2.11 Method for Computing p-Orderings and the Associated

p-Sequences by Shuffling

We can employ the following lemma as the method of computing p-sequences and

constructing p-orderings for a commutative ring R:

Lemma 12. ([13], Lemma 5.1.) Let S1 and S2 be two disjoint subsets of a commu-

tative ring R satisfying the property that ν(s1 − s2) = 0 for any s1 ∈ S1 and s2 ∈ S2,

and let {ai} be a p-ordering of S1 ∪ S2. Then the subsequence of the p-ordering of

S1 ∪ S2 consisting of those elements of S1 is a p-ordering of S1 and the similar case

for S2. Conversely, if {bi} and {ci} are p-orderings of S1 and S2 respectively with

their respective associated p-sequences βi and γi, then the shuffle of βi and γi gives

the p-sequence of S1 ∪ S2 into nondecreasing order, and the shuffle of {bi} and {ci}
gives a p-ordering of S1 ∪ S2.

Proof. ([11], Proof of Lemma 3.5(a).) Let {ai}mi=1 be a p-ordering of S1∪S2. Suppose
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that ak ∈ S1 and aj ∈ S2 such that ak− aj 6≡ 0 (mod p). Then ν(ak− aj) = 0, and so

dk = ν(
∏
j<k

(ak − aj))

= ν(
∏

j<k,aj∈S1

(ak − aj)).

Also, if for s ∈ S1 ∪ S2 such that s ∈ S1 then

ν(
∏

j<k,aj∈S1

(s− aj)) = ν(
∏
j<k

(s− aj))

≥ ν(
∏
j<k

(ak − aj))

= ν(
∏

j<k,aj∈S1

(ak − aj)),

and thus ak minimizes ν(
∏

j<k,aj∈S1
(s− aj)) for each s ∈ S1. Therefore, {ai}mi=1 ∩S1

is a p-ordering of S1, and {dk : ak ∈ S1} is the corresponding associated p-sequence

of S1. Similarly for S2.

The nondecreasing order in the p-sequence follows from ([11], Lemma 3.3(b)).

Example 10. Let S1 = {0, 5, 10, 15, 20, 25} and S2 = {1, 6, 11, 16, 21, 26} be two dis-

joint subsets of Z, where s1 − s2 6≡ 0mod 5 with s1 ∈ S1 and s2 ∈ S2.

A 5-orderings of S1 starting with 5 is {5, 0, 10, 15, 20, 25}, and the corresponding as-

sociated 5-sequence of S1 is {0, 1, 2, 3, 4, 6}.
A 5-ordering of S2 starting with 11 is {11, 1, 6, 16, 21, 26}, and the corresponding as-

sociated 5-sequence of S2 is {0, 1, 2, 3, 4, 6}.
Now, the associated 5-sequence of S1 ∪ S2 is {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 6, 6}, whereas

5-ordering of S1 ∪ S2 is {5, 11, 0, 1, 10, 6, 15, 16, 20, 21, 25, 26}.



Chapter 3

Background on Fibonacci Numbers, Lucas Numbers and

Linear Recurrence Sequences

3.1 Golden Ratio

([9]) The Golden ratio is denoted by τ and is defined by τ = (1 +
√

(5))/2 to be an

irrational number having value 1.61803 ... .

Certain irrational numbers can be written in the following form:

rir = (a+
√
b)/c,

from which we can get τ by substituting a = 1, b = 5, and c = 2, and the other

irrational numbers can be obtained by putting the values of a, b, and c. However, the

golden ratio provides a number of interesting and important properties that make it

unique among the set of irrational numbers.

3.2 Fibonacci Numbers

The sequence of Fibonacci numbers satisfies the following linear recurrence relation:

Fk+1 = Fk + Fk−1, (3.1)

where k = 1, 2, 3, ..., and F0 = 0, F1 = 1.

Suppose a solution of (3.1) is of the form A · xk.
Then, using this, we get

x2−x−1 = 0 that yields x = 1±
√

5
2
. We verify that both choices of x do give solutions

of (3.1), and that any linear combination of them does also.

Then the explicit formula for the Fibonacci numbers may be expressed as

Fk = a(
1 +
√

5

2
)k + b(

1−
√

5

2
)k (3.2)

On substitution k = 0, 1 in (3.2) and using F0 = 0, F1 = 1, we have a + b = 0,

a(1+
√

5
2

) + b(1−
√

5
2

) = 1. Solving these, we have a = 1√
5
, b = − 1√

5
, and so

23
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Fk = 1√
5
(1+
√

5
2

)k − 1√
5
(1−
√

5
2

)k.

Let τ1 = 1+
√

5
2

and τ2 = 1−
√

5
2

so that (x− τ1)(x− τ2) = x2 − x− 1. Then τ1τ2 = −1

and so τ = τ1 = −1
τ2
.

Therefore, the Binet’s formula for Fibonacci numbers is of the form

Fk = 1√
5
(τ)k − 1√

5
(−1
τ

)k =


1√
5
τ k − 1√

5
1
τk
, if k is even

1√
5
τ k + 1√

5
1
τk
, if k is odd

=

f+(τ k), if k is even

f−(τ k), if k is odd
,

where f+(z) = 1√
5
(z − 1

z
), f−(z) = 1√

5
(z + 1

z
) and τ = 1+

√
5

2
with z = τ k.

For k = 0, 1, 2, ..., we have that Fk = f(τ k),

where f : U → Zp or f : U0(
√

5)→ Zp such that

f(z) = 1√
5
(z − N(z)

z
),

and the norm N(z) = 1 or −1 if z is a square or not in (U or U0(
√

5)) respectively

whereas U is the set of p-units in Zp and U0(
√

5) = {x+
√

5y ∈ U(
√

5) : x2 − 5y2 =

±1}.

3.3 Lucas Numbers

The sequence of Lucas numbers satisfies the following equation

Lk+1 = Lk + Lk−1, (3.3)

where k = 1, 2, 3, ..., and L0 = 2,L1 = 1.

Suppose a solution of (3.3) is of the form A · xk.
Then, using this, we get

x2 − x − 1 = 0 leaving x = 1±
√

5
2
. We verify that both choices of x do give solutions

of (3.3), and that any linear combination of them does also.

Then the explicit formula for the Lucas numbers may be written as

Lk = a(
1 +
√

5

2
)k + b(

1−
√

5

2
)k (3.4)

Putting k = 0,1 in (3.4) and using L0 = 2, L1 = 1, we have a + b = 2, a(1+
√

5
2

) +

b(1−
√

5
2

) = 1. Solving a + b = 2 and a(1+
√

5
2

) + b(1−
√

5
2

) = 1, we have a = b = 1, and

so Lk = (1+
√

5
2

)k + (1−
√

5
2

)k.

Let τ1 = 1+
√

5
2

and τ2 = 1−
√

5
2

so that (x− τ1)(x− τ2) = x2 − x− 1. Then τ1τ2 = −1
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and so τ = τ1 = −1
τ2
.

Then, Binet’s formula for Lucas numbers can be written as

Lk = (τ)k + (−1
τ

)k =

τ k + 1
τk
, if k is even

τ k − 1
τk
, if k is odd

=

f+(τ k), if k is even

f−(τ k), if k is odd
,

where f+(z) = z + 1
z
, f−(z) = z − 1

z
and τ = 1+

√
5

2
with z = τ k.

For k = 0, 1, 2, ..., we get Lk = f(τ k),

where f : U → Zp or f : U0(
√

5)→ Zp with

f(z) = (z − N(z)
z

),

and the norm N(z) = 1 or −1 depending on whether z is a square or not in (U or

U0(
√

5)) respectively while U is the set of p-units in Zp and U0(
√

5) = {x +
√

5y ∈
U(
√

5) : x2 − 5y2 = ±1}.



Chapter 4

Lucas Numbers as Images of the Maps f+ and f−

4.1 Closures of Images of f+ and f−

The sequence of Lucas numbers can be obtained from Binet’s formula:

Lk =

f+(τ k), if k is even

f−(τ k), if k is odd
,

where f+(z) = z + 1
z
, f−(z) = z − 1

z
and τ = 1+

√
5

2
with z = τ k.

It is noted that < τ >= {τ k : k ∈ Z} is a multiplicative group generated by τ. In

fact, it is a subgroup of Q[
√

5].

Now, if we take the domains Df+ = {τ 0, τ 2, τ 4, ...} and Df− = {τ 1, τ 3, τ 5, ...} for the

functions f+ and f−, respectively, then the union of their images Imf+ and Imf− is

exactly L, the sequence of Lucas numbers, as shown below:

Df+ τ 0 τ 2 τ 4 τ 6 τ 8 · · ·
Imf+ 2 3 7 18 47 · · ·

Df− τ 1 τ 3 τ 5 τ 7 τ 9 · · ·
Imf− 1 4 11 29 76 · · ·

Due to [14], if p is an odd prime such that p ≡ 1,−1 (mod 5), then τ ∈ Zp and

τ generates a dense subgroup in U(Zp), the set of units in Zp (here Zp denotes the

p-adic integers), with conditions that the mod p reduction of τ generates U(Z/(p)),
and τ p−1 6≡ 1 (mod p2), its reduction modulo pk generates U(Z/(pk)) for all k > 0.

Thus, we may extend the maps f+ and f− having their domains squares and non-

squares of U(Zp), respectively. In fact, these domains separate U(Zp) into two dis-

joint open subsets with respect to the p-adic metric and the images of the extended

maps are the closures, L̄, of L with respect to the p-adic metric having the property

L̄/(pk) = L/(pk) for any k.

26
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If p ≡ 2,−2 (mod 5), then τ /∈ Zp and we take a quadratic extension Zp[
√

5] hav-

ing members {x +
√

5y : x, y ∈ Zp} with the usual addition and multiplication and

possessing a norm |x+
√

5y| = x2 − 5y2. With respect to this norm and all elements

of the subgroup generated by τ are of norm ±1. If we denote the subgroup of units in

Zp with norm ±1 by U0(Zp[
√

5]), then the new version of the previous two conditions

are the reduction of τ mod p generates U0(Z[
√

5]/(p)) and τ 2(p+1) 6≡ 1 (mod p2) and

τ generates a dense subgroup of U0(Zp[
√

5]) under these conditions. The squares and

nonsquares in U0(Zp[
√

5]) separate it into two disjoint open subsets with respect to

the p-adic topology.

We describe L̄ and L̄/(pk) by applying Hensel’s lemma (Lemma 3) or the Gener-

alized Hensel’s Lemma (Lemma 4) to the functions f+ and f−.

We restate the Hensel’s Lemma and the Generalized Hensel’s lemma as follows:

Lemma 13. Let f(x) ∈ Zp[x] or Zp[
√

5][x] with formal derivative f ′(x), and z0 is

such that f(z0) ≡ 0 (mod p) and f ′(z0) 6≡ 0 (mod p), then there exists z ∈ Zp or

Zp[
√

5] such that z ≡ z0 (mod p) and f(z) = 0.

Lemma 14. Let f(x) ∈ Zp[x] or Zp[
√

5][x] be a polynomial and let z0 ∈ Zp or Zp[
√

5]

such that f ′(z0) ≡ 0 (mod pM) but f ′(z0) 6≡ 0 (mod pM+1), and f(z0) ≡ 0 (mod p2M+1).

Then there exists a unique element z ∈ Zp or Zp[
√

5] such that z ≡ z0 (mod pM+1)

and f(z) = 0.

We compute f+(z0) and f−(z0) for primes p with Zp by using Maplecode 3.

When p = 7, the length of a period of Lucas numbers modulo p is 16.

2i 0 2 4 6 8 10 12

z0 = τ 2imod 7 1 5 + 4
√

5 5
√

5 2 + 4
√

5 6 2 + 3
√

5 2
√

5

f+(z0) = f+(τ 2i)mod 7 2 3 0 4 5 4 0

f ′+(z0) = f ′+(τ 2i)mod 7 0 1 + 5
√

5 2 1 + 2
√

5 0 1 + 5
√

5 2

2i 14

z0 = τ 2imod 7 5 + 3
√

5

f+(z0) = f+(τ 2i)mod 7 3

f ′+(z0) = f ′+(τ 2i)mod 7 1 + 2
√

5
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Since f+(z0) ≡ 3 (mod 7) and f ′+(z0) 6≡ 0 (mod 7) for z0 = τ 2i with 2i = 2 and

14, by Lemma 13, if w ≡ 3 (mod 7), then there exists z with z ≡ z0 (mod 7)

and f+(z) = w at z0 = τ 2i for 2i = 2 or 14. Similarly, f+(z0) ≡ 0 (mod 7) and

f ′+(z0) 6≡ 0 (mod 7) for z0 = τ 2i with 2i = 4 and 12, so, if w ≡ 0 (mod 7), then

there exists z with z ≡ z0 (mod 7) and f+(z) = w at z0 = τ 2i for 2i = 4 or 12;

f+(z0) ≡ 4 (mod 7) and f ′+(z0) 6≡ 0 (mod 7) for z0 = τ 2i with 2i = 6 and 10, hence,

if w ≡ 4 (mod 7), then there exists z with z ≡ z0 (mod 7) and f+(z) = w at z0 = τ 2i

for 2i = 4 or 10. Therefore, the 7-adic closure of the images of f+ contains the cosets

(3 + 7Z) ∪ (7Z) ∪ (4 + 7Z).

Since f+(z0) ≡ 2 (mod 7) and f ′+(z0) ≡ 0 (mod 7) for z0 = τ 0, the image of f+

will contain part of the coset (2 + 7Z). Similarly, f+(z0) ≡ 5 (mod 7) and f ′+(z0) ≡
0 (mod 7) for z0 = τ 8, the image of f+ will contain part of the coset (5 + 7Z). We

will examine this case more closely later.

2i+ 1 1 3 5 7 9

z0 = τ 2i+1mod 7 4 + 4
√

5 2 +
√

5 2 + 6
√

5 4 + 3
√

5 3 + 3
√

5

f−(z0) = f−(τ 2i+1)mod 7 1 4 4 1 6

f ′−(z0) = f ′−(τ 2i+1)mod 7 6 + 3
√

5 3 + 3
√

5 3 + 4
√

5 6 + 4
√

5 6 + 3
√

5

2i+ 1 11 13 15

z0 = τ 2i+1mod 7 5 + 6
√

5 5 +
√

5 3 + 4
√

5

f−(z0) = f−(τ 2i+1)mod 7 3 3 6

f ′−(z0) = f ′−(τ 2i+1)mod 7 3 + 3
√

5 3 + 4
√

5 6 + 4
√

5

The function f−(z0) takes value 1mod 7 and f ′−(z0) 6≡ 0 (mod 7) for z0 = τ 2i+1

with 2i+ 1 = 1 and 7. Therefore, by lemma 13, if w ≡ 1 (mod 7), then there exists z

such that z ≡ z0 (mod 7) and f−(z) = w at z0 = τ 2i+1 for 2i+ 1 = 1 or 7. Similarly,

f−(z0) ≡ 4 (mod 7) and f ′−(z0) 6≡ 0 (mod 7) for z0 = τ 2i+1 with 2i + 1 = 3 and 5,

so, if w ≡ 4 (mod 7), then there exists z such that z ≡ z0 (mod 7) and f−(z) = w

at z0 = τ 2i+1 for 2i + 1 = 3 or 5; f−(z0) ≡ 6 (mod 7) and f ′−(z0) 6≡ 0 (mod 7)

for z0 = τ 2i+1 with 2i + 1 = 9 and 15, thus, if w ≡ 6 (mod 7), then there exists

z such that z ≡ z0 (mod 7) and f−(z) = w at z0 = τ 2i+1 for 2i + 1 = 9 or 15;

f−(z0) ≡ 3 (mod 7) and f ′−(z0) 6≡ 0 (mod 7) for z0 = τ 2i+1 with 2i + 1 = 11 and 13,

hence, if w ≡ 3 (mod 7), then there exists z such that z ≡ z0 (mod 7) and f−(z) = w
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at z0 = τ 2i+1 for 2i+ 1 = 11 or 13. Therefore, the 7-adic closure of the images of f−

contains the cosets (1 + 7Z) ∪ (4 + 7Z) ∪ (6 + 7Z) ∪ (3 + 7Z).

When p = 11, the length of a period of Lucas numbers modulo p is 10.

2i 0 2 4 6 8

z0 = τ 2imod 11 1 7 + 6
√

5 9 + 7
√

5 9 + 4
√

5 7 + 5
√

5

f+(z0) = f+(τ 2i)mod 11 2 3 7 7 3

f ′+(z0) = f ′+(τ 2i)mod 11 0 3 + 7
√

5 5 + 5
√

5 5 + 6
√

5 3 + 4
√

5

Since f+(z0) ≡ 3 (mod 11) at z0 = τ 2 and τ 8, and f ′+(τ 2), f ′+(τ 8) 6≡ 0 (mod 11),

by Lemma 13, if w ≡ 3 (mod 11), then there exists z with z ≡ τ 2 or τ 8 (mod 11) and

f+(z) = w. Similarly, f+(z0) ≡ 7 (mod 11) for z0 = τ 4 and τ 6, and f ′+(τ 4), f ′+(τ 6) 6≡
0 (mod 11), thus, if w ≡ 7 (mod 11), then there exists z with z ≡ τ 4 or τ 6 (mod 11)

and f+(z) = w. Therefore, the 11-adic closure of the images of f+ contains the cosets

(3 + 11Z) ∪ (7 + 11Z).

Since f+(z0) ≡ 2 (mod 11) and f ′+(z0) ≡ 0 (mod 11) for z0 = τ 0, the image of f+

contains part of the coset (2 + 11Z).

2i+ 1 1 3 5 7 9

z0 = τ 2i+1mod11 6 + 6
√

5 2 +
√

5 8
√

5 9 +
√

5 5 + 6
√

5

f−(z0) = f−(τ 2i+1)mod11 1 4 0 7 10

f ′−(z0) = f ′−(τ 2i+1)mod11 8 + 5
√

5 10 + 7
√

5 2 10 + 4
√

5 8 + 6
√

5

Since f−(z0) ≡ 1 (mod 11) for z0 = τ 1 and f ′−(τ 1) 6≡ 0 (mod 11), by lemma 13,

if w ≡ 1 (mod 11), then there exists z such that z ≡ τ 1 (mod 11) and f−(z) = w.

Similarly, f−(z0) ≡ 4 (mod 11) for z0 = τ 3 and f ′−(τ 3) 6≡ 0 (mod 11), thus, if

w ≡ 4 (mod 11), then there exists z such that z ≡ τ 3 (mod 11) and f−(z) = w;

f−(z0) ≡ 0 (mod 11) for z0 = τ 5 and f ′−(τ 5) 6≡ 0 (mod 11), so, if w ≡ 0 (mod 11),

then there exists z such that z ≡ τ 5 (mod 11) and f−(z) = w; f−(z0) ≡ 7 (mod 11)

for z0 = τ 7 and f ′−(τ 7) 6≡ 0 (mod 11), hence, if w ≡ 7 (mod 11), then there exists

z such that z ≡ τ 7 (mod 11) and f−(z) = w; f−(z0) ≡ 10 (mod 11) for z0 = τ 9

and f ′−(τ 9) 6≡ 0 (mod 11), so, if w ≡ 10 (mod 11), then there exists z such that

z ≡ τ 9 (mod 11) and f−(z) = w. Therefore, the 11-adic closure of the images of f−

contains the cosets (1 + 11Z) ∪ (4 + 11Z) ∪ (11Z) ∪ (7 + 11Z) ∪ (10 + 11Z).

When p = 13, the length of a period of Lucas numbers modulo p is 28.
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2i 0 2 4 6 8

z0 = τ 2imod 13 1 8 + 7
√

5 10 + 8
√

5 9 + 4
√

5 4 + 4
√

5

f+(z0) = f+(τ 2i)mod 13 2 3 7 5 8

f ′+(z0) = f ′+(τ 2i)mod 13 0 4 + 8
√

5 10 + 4
√

5 9 + 7
√

5 9 + 6
√

5

2i 10 12 14 16 18

z0 = τ 2imod 13 3 + 8
√

5 5 + 7
√

5 12 5 + 6
√

5 3 + 5
√

5

f+(z0) = f+(τ 2i)mod 13 6 10 11 10 6

f ′+(z0) = f ′+(τ 2i)mod 13 10 + 9
√

5 4 + 5
√

5 0 4 + 8
√

5 10 + 4
√

5

2i 20 22 24 26

z0 = τ 2imod 13 4 + 9
√

5 9 + 9
√

5 10 + 5
√

5 8 + 6
√

5

f+(z0) = f+(τ 2i)mod 13 8 5 7 3

f ′+(z0) = f ′+(τ 2i)mod 13 9 + 7
√

5 9 + 6
√

5 10 + 9
√

5 4 + 5
√

5

Since f+(z0) ≡ 3 (mod 13) for z0 = τ 2 and τ 26 and f ′+(τ 2), f ′+(τ 26) 6≡ 0 (mod 13),

by Lemma 13, if w ≡ 3 (mod 13), then there exists z such that z ≡ τ 2 or τ 26 (mod 13)

and f+(z) = w. Similarly, f+(z0) ≡ 7 (mod 13) for z0 = τ 4 and τ 24 and f ′+(τ 4),

f ′+(τ 24) 6≡ 0 (mod 13), so, if w ≡ 7 (mod 13), then there exists z such that z ≡ τ 4 or

τ 24 (mod 13) and f+(z) = w; f+(z0) ≡ 5 (mod 13) for z0 = τ 6 and τ 22 and f ′+(τ 6),

f ′+(τ 22) 6≡ 0 (mod 13), thus, if w ≡ 5 (mod 13), then there exists z such that z ≡ τ 6

or τ 22 (mod 13) and f+(z) = w; f+(z0) ≡ 8 (mod 13) for z0 = τ 8 and τ 20 and f ′+(τ 8),

f ′+(τ 20) 6≡ 0 (mod 13), hence, if w ≡ 8 (mod 13), then there exists z such that z ≡ τ 8

or τ 20 (mod 13) and f+(z) = w; f+(z0) ≡ 6 (mod 13) for z0 = τ 10 and τ 18 and f ′+(τ 10),

f ′+(τ 18) 6≡ 0 (mod 13), so, if w ≡ 6(mod 13), then there exists z such that z ≡ τ 10 or

τ 18(mod 13) and f+(z) = w; f+(z0) ≡ 10(mod 13) for z0 = τ 12 and τ 16 and f ′+(τ 12),

f ′+(τ 16) 6≡ 0(mod 13), therefore, if w ≡ 10(mod 13), then there exists z such that

z ≡ τ 12 or τ 16(mod 13) and f+(z) = w. Therefore, the 13-adic closure of the images of

f+ contains the cosets (3+13Z)∪(7+13Z)∪(5+13Z)∪(8+13Z)∪(6+13Z)∪(10+13Z).

Since f+(z0) ≡ 2(mod 13) and f ′+(z0) ≡ 0(mod 13) for z0 = τ 0, the image of f+

contains part of the coset (2 + 13Z). Similarly, f+(z0) ≡ 11(mod 13) and f ′+(z0) ≡
0(mod 13) for z0 = τ 14, the image of f+ contains part of the coset (11 + 13Z).
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2i+ 1 1 3 5 7 9

z0 = τ 2i+1mod 13 7 + 7
√

5 2 +
√

5 12 + 9
√

5 8 12 + 4
√

5

f−(z0) = f−(τ 2i+1)mod 13 1 4 11 3 11

f ′−(z0) = f ′−(τ 2i+1)mod 13 9 + 6
√

5 10 + 9
√

5 4 + 5
√

5 0 4 + 8
√

5

2i+ 1 11 13 15 17

z0 = τ 2i+1mod 13 2 + 12
√

5 7 + 6
√

5 6 + 6
√

5 11 + 12
√

5

f−(z0) = f−(τ 2i+1)mod 13 4 1 12 9

f ′−(z0) = f ′−(τ 2i+1)mod 13 10 + 4
√

5 9 + 7
√

5 9 + 6
√

5 10 + 9
√

5

2i+ 1 19 21 23 25

z0 = τ 2i+1mod 13 1 + 4
√

5 5 1 + 9
√

5 11 +
√

5

f−(z0) = f−(τ 2i+1)mod 13 2 10 2 9

f ′−(z0) = f ′−(τ 2i+1)mod 13 4 + 5
√

5 0 4 + 8
√

5 10 + 4
√

5

2i+ 1 27

z0 = τ 2i+1mod 13 6 + 7
√

5

f−(z0) = f−(τ 2i+1)mod 13 12

f ′−(z0) = f ′−(τ 2i+1)mod 13 9 + 7
√

5

Since f−(z0) ≡ 1(mod 13) for z0 = τ 1 and τ 13 and f ′−(τ 1), f ′−(τ 13) 6≡ 0(mod 13),

by lemma 13, if w ≡ 1(mod 13), then there exists z such that z ≡ τ 1 or τ 13(mod 13)

and f−(z) = w. Similarly, f−(z0) ≡ 4(mod 13) for z0 = τ 3 and τ 11 and f ′−(τ 3),

f ′−(τ 11) 6≡ 0(mod 13), so, if w ≡ 4(mod 13), then there exists z such that z ≡ τ 3 or

τ 11(mod 13) and f−(z) = w; f−(z0) ≡ 11(mod 13) for z0 = τ 5 and τ 9 and f ′−(τ 5),

f ′−(τ 9) 6≡ 0(mod 13), thus, if w ≡ 11(mod 13), then there exists z such that z ≡ τ 5 or

τ 9(mod 13) and f−(z) = w; f−(z0) ≡ 12(mod 13) for z0 = τ 15 and τ 27 and f ′−(τ 15),

f ′−(τ 27) 6≡ 0(mod 13), hence, if w ≡ 12(mod 13), then there exists z such that z ≡ τ 15

or τ 27(mod 13) and f−(z) = w; f−(z0) ≡ 9(mod 13) for z0 = τ 17 and τ 25 and f ′−(τ 17),

f ′−(τ 25) 6≡ 0(mod 13), thus, if w ≡ 9(mod 13), then there exists z such that z ≡ τ 17

or τ 25(mod 13) and f−(z) = w; f−(z0) ≡ 2(mod 13) for z0 = τ 19 and τ 23 and f ′−(τ 19),

f ′−(τ 23) 6≡ 0(mod 13), therefore, if w ≡ 2(mod 13), then there exists z such that

z ≡ τ 19 or τ 23(mod 13) and f−(z) = w. Therefore, the 13-adic closure of the images of

f− contains the cosets (1+13Z)∪(4+13Z)∪(11+13Z)∪(12+13Z)∪(9+13Z)∪(2+13Z).
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Since f−(z0) ≡ 3(mod 13) and f ′−(z0) ≡ 0(mod 13) for z0 = τ 7, the image of f− will

contain part of the coset (3 + 13Z). Similarly, f−(z0) ≡ 10(mod 13) and f ′−(z0) ≡
0(mod 7) for z0 = τ 21, the image of f− contains part of the coset (10 + 13Z).

Now, a question arises what happens if the derivative of the function f+ or f− at

any point is zero? To meet this situation, we use the Generalized Hensel’s lemma 14.

Now, since f ′+(z) ≡ 0(mod p) if and only if z ≡ ±1(mod p), we can consider that

z = 1(mod p), z = −1(mod p), and the respective cases for f− will be the same

because f−(z) ≡ 0(mod p) if and only if z = ±1(mod p). Now, if z ≡ 1(mod pM)

for any integer M > 0, then z = 1 + λpM for some λ ∈ Zp or Zp[
√

5] and so

f+(z) = 1 + λpM + 1
λpM

= 1 + λpM + (1 − λpM + λ2p2M − λ3p3M + · · ·) = 2 +

λ2p2M(1 − λpM + λ2p2M − λ3p3M + · · ·) ≡ 2(µp2M), where µ = λ2 is a unit in Zp or

Zp[
√

5]. Due to the Generalized Hensel’s lemma it can be shown that the converse

holds letting y = 2+µp2M with µ a unit square in Zp or Zp[
√

5] leaving z ≡ 1(mod p)

such that f+(z) = y. For z0 = 1 +λpM with a unit λ such that µ = λ2 the conditions

of Generalized Hensel’s lemma are satisfied. In this situation, not all elements of

the cosets (2 + µp2M) + (p2M+1) are Lucas numbers. We denote the union of the

cosets (2 + µp2M) + (p2M+1) by T1, where M ≥ 0 is any integer and µ is a nonzero

square modulo p. There are two possibilities: that L may contain elements congruent

to 2 modulo p or T1/(p
k) = (L ∩ (2 + (p)))/(pk) for all k. Considering the case

z ≡ −1(mod p), we get the corresponding result for a set T−1 by replacing 2 by -2.

The critical points of z with respect to f− are ±
√
−1(mod p) and the results are

satisfied for the sets T±
√
−1 changing ±2

√
−1 for 2.

Since the sets T±1 and T±
√
−1 are constructed due to different cosets modulo p, the

p-orderings and the associated p-sequences of L, when they happen, are shuffles of

the p-orderings and the associated p-sequences of the T sets. Let the set of nonzero

squares in Z/(p) be Sq with cardinality (p− 1)/2, and let

T ′1 = ∪∞M=2(∪µ∈Sq(2 + µp2M) + (p2M+1)).

Then the set T1 can be written as

T1 = (∪µ∈Sq(2 + µp2) + (p3)) ∪ T ′1.

The sets in the left part of the above union are all cosets of (p3) and so the associated p-

sequence is αZ,p+(3n), whereas the set T ′1 is obtained from p2T1 and thus its associated

p-sequence is αT1,p +(2n). Then the equation αT1,p = ((νn(Z, p)+(n))(p−1)/2∧αT1,p)+
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(2n) holds due to the associated p-sequence of T1 from which αT1 can be obtained

because it expresses αT1,p(n) with respect to αT1,p(m) for m < n and with respect to

known sequences. Also, the sequence is satisfied due to the associated p-sequences of

T−1 and T±
√
−1. Therefore, we get a complete algorithm for computing αL.

We can apply this to p = 7.

Theorem 23. ([14], Proposition 4) The 7-sequence of L can be written as

αL,7 = (νk(Z, 7) + (k))∧5 ∧ (αT1,7)
2

with the satisfing sequence αT1,7 that can be determined by the equation

αT1,7 = ((νk(Z, 7) + (k))∧3 ∧ αT1,7) + (2k).

Proof. The period of Lucas numbers modulo 7 is 16 and one period is given by

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lk 2 1 3 4 0 4 4 1 5 6 4 3 0 3 3 6

Separating these Lucas numbers modulo 7 into even and odd idex we can show

that the image of f+ modulo 7 is {0, 2, 3, 4, 5} and that of f− modulo 7 is {1, 3, 4, 6}.
We have the critical points of f+ and f− by manipulating y2− 4 modulo 7 and y2 + 4

modulo 7, respectively, as follows:

y 0 2 3 4 5

y2 − 4 3 0 5 5 0

and

y 1 3 4 6

y2 + 4 5 6 6 5

Therefore, considering T as the union of the cosets modulo 7 of {0, 1, 2, 3, 4, 5, 6}
together with T1 and T−1 for p = 7, we can reach to the given equation.

Now, how do the results change when U(Z/(p)) (respectively, U0(Z[
√

5]/(p)))

is not generated by τ or the condition τ p−1 ≡ 1(mod p2) (respectively, τ 2(p+1) ≡
1(mod p2)) holds? When the order of τ , u, is strictly smaller than p− 1 or 2(p+ 1),

the group τ generates will meet u of the cosets of U(Z/(p)) or U0(Z[
√

5]/(p)). Under

the condition τu 6≡ 1(mod p2), < τ > is dense in each of the cosets modulo p that
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certainly occurs, and the outcomes remain unaltered when u is even. But, in the case

that of u is odd, for any k the domains of f+ and f− modulo pk will be the whole

of < τ > /(pk) instead of the square and nonsquare elements, respectively, because

τ i ≡ τ i+up
k−1

(mod pk), whereas i and i+ upk−1 are opposite parity. Therefore, the

period of Lucas numbers modulo p will be 2u instead of u for this case, and the images

of f+ and f− can each be formed due to all indices rather than selecting even and odd

ones distinctly. The case τu ≡ 1(mod p2) is very difficult to be found (see page 345,

[14]). If this condition holds, then the said results with U(Z/(p)) or U0(Z[
√

5]/(p))

will be transfered to those with U(Z/(pa)) or U0(Z[
√

5]/(pa)) for the least integer a

such that τu 6≡ 1(mod pa+1).

4.2 Regular Z-basis for L

We are ready to give part of a regular Z-basis for L. Before doing that we set

the following tables obtained from Maplecode 1 whereabouts p-orderings and the

associated p-sequences are consistent with Remark 5:

2-ordering of Z {1,−6,−5,−4,−3,−2,−1, 0,−7, 2, 3, 4, 5, 6, 7}
2-ordering of L {2, 1, 3, 4, 7, 29, 76, 18, 11, 521, 47, 322, 123, 199, 843}
3-ordering of Z {1,−7,−6,−5,−4,−3,−2,−1, 0, 2, 3, 4, 5, 6, 7}
3-ordering of L {2, 1, 3, 4, 18, 521, 7, 123, 11, 76, 843, 47, 199, 322, 29}
5-ordering of Z {1,−7,−6,−5,−3,−4,−2,−1, 0, 2, 3, 4, 5, 6, 7}
5-ordering of L {2, 1, 3, 4, 7, 11, 18, 199, 47, 123, 521, 29, 76, 322, 843}
7-ordering of Z {1,−7,−5,−4,−3,−2,−1,−6, 0, 2, 3, 4, 5, 6, 7}
7-ordering of L {2, 1, 3, 4, 7, 47, 76, 11, 29, 322, 521, 18, 843, 123, 199}
11-ordering of Z {1,−7,−6,−5,−4,−3,−2,−1, 0, 2, 3, 4, 5, 6, 7}
11-ordering of L {2, 1, 3, 4, 7, 11, 76, 18, 47, 199, 521, 29, 123, 322, 843}
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2-sequence of Z {0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11}
2-sequence of L {0, 0, 1, 1, 3, 4, 4, 6, 7, 8, 10, 12, 14, 18, 22}
3-sequence of Z {0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5}
3-sequence of L {0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 8}
5-sequence of Z {0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2}
5-sequence of L {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4}
7-sequence of Z {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2}
7-sequence of L {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4}
11-sequence of Z {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
11-sequence of L {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3}

Now, we manually check the p-orderings and p-sequence of Lucas numbers, and then

we find the regular basis for L, the Lucas numbers.

Lucas numbers mod 2k:

The length of a period of Lucas numbers mod 2 is 3, and the period is [0, 1, 1].

The length of a period of Lucas numbers mod 4 is 6, and the period is [2, 1, 3, 0, 3, 3].

The length of a period of Lucas numbers mod 8 is 12, and the period is

[2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7].

There are no Lucas numbers congruent to 0 or 6 modulo 8, and hence 2, 1, 3, 4, 7, 29,

will be the beginning of a 2-ordering with 2-sequence 0, 0, 1, 1, 3, 4.

The Lucas numbers modulo 8 are contained in (1 + 2Z) ∪ (2 + 8Z) ∪ (4 + 8Z) =

(1 + 2Z) ∪ 2 · ((1 + 4Z) ∪ (2 + 4Z)).

The 2-sequences of 1 + 4Z and 2 + 4Z are

αZ + (2n) = [0, 0, 1, 1, 3, 3, · · ·] + [0, 2, 4, 6, 8, 10, · · ·] = [0, 2, 5, 7, 11, 13, · · ·].
The 2-sequence of 1 + 2Z is

αZ + (n) = [0, 0, 1, 1, 3, 3, · · ·] + [0, 1, 2, 3, 4, 5, · · ·].
The 2-sequence of (1 + 4Z)∪ (2 + 4Z) is the shuffle [0, 0, 2, 2, 5, 5, 7, 7, · · ·], and that of

2·((1+4Z)∪(2+4Z)) is [0, 0, 2, 2, 5, 5, 7, 7, ···]+[0, 1, 2, 3, 4, 5, ···] = [0, 1, 4, 5, 9, 12, ···].
Thus the 2-sequence of (1 + 2Z) ∪ 2 · ((1 + 4Z) ∪ (2 + 4Z)) is the shuffle

[0, 1, 3, 4, 7, 8, · · ·] ∧ [0, 4, 5, 9, 12, · · ·] = [0, 0, 1, 1, 3, 4, 4, 5, 7, 8, · · ·].
The Lucas numbers mod 3k:

The length of a period of Lucas numbers mod 3 is 8, and the period is [2, 1, 0, 1, 1, 2, 0, 2].

The length of a period of Lucas numbers mod 9 is 24, and the period is
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[2, 1, 3, 4, 7, 2, 0, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 0, 7, 7, 5, 3, 8], and all residue classes mod 32

occur in L, and so its 3-sequence will begin with [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, · · ·] with the

first 9 elements of a 3-ordering having representation from all residue classes mod 9

[2, 1, 3, 4, 18, 521, 7, 123, 1364].

The Lucas numbers mod 5k:

The length of a period of Lucas numbers mod 5 is 4, and the period is [2, 1, 3, 4].

Thus, no Lucas number is divisible by 5, and so the 5-sequence of

Lucas numbers must start with [0, 0, 0, 0, 1, 1, 1, 1, · · ·], and a 5-ordering will

start with [2, 1, 3, 4, 7, 11, · · ·].
Thus the p-sequences of L begin:

k 0 1 2 3 4 5

p = 2 0 0 1 1 3 4

p = 3 0 0 0 1 1 1

p = 5 0 0 0 0 1 1

Hence the denominators of a regular basis for Lucas numbers are

k 0 1 2 3

d(k) 20 · 30 · 50 = 1 20 · 30 · 50 = 1 21 · 30 · 50 = 2 21 · 31 · 50 = 6

k 4 5

d(k) 23 · 31 · 51 = 120 24 · 31 · 51 = 240

The regular basis will be of the form

∏k
i=0(x− ai)
d(i)

, where the ai’s are picked using

the Chinese remainder theorem to have the following residues:

a0 a1 a2 a3 a4 a5

mod 23 2 1 3 4 7 5

mod 32 2 1 3 4 0 6

mod 52 2 1 3 4 7 11

2 1 3 4 207 1181

Therefore, the regular Z-basis for Lucas numbers is

{1, (x− 2),
(x− 2)(x− 1)

2
,
(x− 2)(x− 1)(x− 3)

6
,
(x− 2)(x− 1)(x− 3)(x− 4)

120
,

(x− 2)(x− 1)(x− 3)(x− 4)(x− 207)

240
, · · ·}.



Chapter 5

The General Sequences for a Given Pair of Initial Values

The aim of this chapter is to find a general sequence, G = {Gk}, of integers starting

with any pair of integers, (G0,G1) = (A,B). Also, we will find some interesting

properties relating to this sequence.

5.1 Binet’s Formula for the Sequence G

Suppose the sequence, {Gk}, of integers satisfies the equation

Gk+1 = Gk + Gk−1, (5.1)

where k = 1, 2, 3, · · ·, and (G0,G1) = (A,B) with any integers A and B.

Suppose a solution of (5.1) is of the form C ·Xk.

Then using this as in the Fibonacci and Lucas cases, we obtain X2 − X − 1 = 0

leaving X = 1±
√

5
2

. We verify that both choices of X do give solutions of (5.1), and

that any linear combination of them does also.

Then the explicit formula for the general sequence, {Gk}, is

Gk = C1 · (
1 +
√

5

2
)k + C2 · (

1−
√

5

2
)k (5.2)

Putting k = 0, 1 in (5.2), we get

C1 + C2 = A (5.3)

and

C1 ·
1 +
√

5

2
+ C2 ·

1−
√

5

2
= B (5.4)

Now, solving equations (5.3) and (5.4), we have

C1 = 1√
5
[
√

5−1
2
· A+B] and C2 = 1√

5
[1+
√

5
2
· A−B], and so

Gk = 1√
5
[
√

5−1
2
· A+B](1+

√
5

2
)k + 1√

5
[1+
√

5
2
· A−B](1−

√
5

2
)k.
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Let τ1 = 1+
√

5
2

and τ2 = 1−
√

5
2

be such that X2−X − 1 = (X − τ1)(X − τ2). Then

τ1τ2 = −1 and so τ = τ1 = − 1
τ2

.

Therefore, the Binet’s formula for the general sequence can be written as

Gk =

F+(τ k), if k is even

F−(τ k), if k is odd

where F+(τ k) = C1 · (τ)k + C2 · ( 1
τ
)k and F−(τ k) = C1 · (τ)k − C2 · ( 1

τ
)k

with τ = 1+
√

5
2

, C1 = 1√
5
[ 1
τ
· A+B], and C2 = 1√

5
[τ · A−B].

5.2 Closures of Images of F+ and F−

It is important to first note here that < τ > is a multiplicative group generated by

τ , and is also a subgroup of Q[
√

5].

Now, when we take the set of squares and the set of nonsquares in the multiplicative

group < τ > as the domains of F+ and F−, respectively, the union of their images

will be G or, after reduction, G/(pk), as for example, for the pairs (A,B) = (0, 1)

and (A,B) = (2, 1), we see (section 3, [14]) and the corresponding result to the Lucas

numbers in Chapter 4, respectively.

Now, we intend to concentrate on the localization at some prime p considering τ (and

the group it generates) as an algebraic object instead of thinking of them in R.

Due to [14], for any odd prime such that p ≡ 1,−1(mod 5), we have τ ∈ Zp and τ

generates a dense subgroup of U(Zp), the set of units in Zp (here Zp is the p-adic

integers). Under conditions that the mod p reduction of τ generates U(Z/(p)), and

τ p−1 6≡ 1(mod p2), its reduction mod pk generates U(Z/(pk)) for all k > 0. Then we

can extend the maps F+ and F− such that their domains are squares and nonsquares

of U(Zp), respectively. These domains separate U(Zp) into two disjoint open subsets

with respect to the p-adic topology, and their images are the closures, Ḡ, of G with

respect to the same topology with the property Ḡ/(pk) = G/(pk) for any k.

If p is an odd prime such that p ≡ 2,−2(mod 5), then we get the same results as in

(section 3, [14] for (A,B) = (0, 1)), and the corresponding results for (A,B) = (2, 1)

in Chapter 4.
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Now, to compute F+(Z0)mod p, F ′+(Z0)mod p, F−(Z0)mod p, and F ′−(Z0)mod p

for primes p, we use Maplecode 4.

For the pairs (A,B) = (0, 1) and (A,B) = (2, 1), and p = 7, 11, 13, we have the results

in [14], and the results for the Lucas numbers in Chapter 4, respectively.

For finding the closures of images of F+ and F−, we use the Hensel’s lemma and the

generalized Hensel’s lemma for pairs, (A,B), of integers such as (A,B) = (2, 5) for

primes p.

When p = 7, the length of a period of G mod p is 16.

2i 0 2 4 6 8 10

Z0 = τ 2imod 7 1 5 + 4
√

5 5
√

5 2 + 4
√

5 6 2 + 3
√

5

F+(Z0) = F+(τ 2i)mod 7 2 0 5 1 5 0

F ′+(Z0) = F ′+(τ 2i)mod 7 3
√

5 2 + 3
√

5 2 0 3
√

5 2 + 3
√

5

2i 12 14

Z0 = τ 2imod 7 2
√

5 5 + 3
√

5

F+(Z0) = F+(τ 2i)mod 7 2 6

F ′+(Z0) = F ′+(τ 2i)mod 7 2 0

Since F+(Z0) ≡ 2(mod 7) and F ′+(Z0) 6≡ 0(mod 7) for Z0 = τ 0 and τ 12, by lemma

13, if W ≡ 2(mod 7), then there exists Z such that Z ≡ τ 0 or τ 12(mod 7) and

F+(Z) = W . Similarly, F+(Z0) ≡ 0(mod 7) and F ′+(Z0) 6≡ 0(mod 7) for Z0 = τ 2 and

τ 10, so, if W ≡ 0(mod 7), then there exists Z such that Z ≡ τ 2 or τ 10(mod 7) and

F+(Z) = W ; F+(Z0) ≡ 5(mod 7) and F ′+(Z0) 6≡ 0(mod 7) for Z0 = τ 4 and τ 8, so, if

W ≡ 5(mod 7), then there exists Z such that Z ≡ τ 4 or τ 8(mod 7) and F+(Z) = W .

Therefore, the closure of the images of F+ contains the cosets (2+7Z)∪(7Z)∪(5+7Z).

Since F+(Z0) ≡ 1(mod 7) and F ′+(Z0) ≡ 0(mod 7) for Z0 = τ 6, the image of F+

contains part of the coset (1 + 7Z). Similarly, F+(Z0) ≡ 6(mod 7) and F ′+(Z0) ≡
0(mod 7) for Z0 = τ 14, and so the image of F+ contains part of the coset (6 + 7Z).

We examined this type of case on page 37 in Chapter 4 by answering to the question

”what happens if the derivative of a function at any point is zero?”.
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2i+ 1 1 3 5 7 9

Z0 = τ 2i+1mod 7 4 + 4
√

5 2 +
√

5 2 + 6
√

5 4 + 3
√

5 3 + 3
√

5

F−(Z0) = F−(τ 2i+1)mod 7 5 5 3 4 2

F ′−(Z0) = F ′−(τ 2i+1)mod 7 1 + 4
√

5 5 + 5
√

5 1 + 6
√

5 4 + 5
√

5 1 + 4
√

5

2i+ 1 11 13 15

Z0 = τ 2i+1mod 7 5 + 6
√

5 5 +
√

5 3 + 4
√

5

F−(Z0) = F−(τ 2i+1)mod 7 2 4 3

F ′−(Z0) = F ′−(τ 2i+1)mod 7 5 + 5
√

5 1 + 6
√

5 4 + 5
√

5

Since F−(Z0) ≡ 5(mod 7) and F ′−(Z0) 6≡ 0(mod 7) for Z0 = τ 1 and τ 3, by lemma

13, if W ≡ 5(mod 7), then there exists Z such that Z ≡ τ 1 or τ 3(mod 7) and

F−(Z) = W . Similarly, F−(Z0) ≡ 3(mod 7) and F ′−(Z0) 6≡ 0(mod 7) for Z0 = τ 5

and τ 15, so, if W ≡ 3(mod 7), then there exists Z such that Z ≡ τ 5 or τ 15(mod 7)

and F−(Z) = W ; F−(Z0) ≡ 4(mod 7) and F ′−(Z0) 6≡ 0(mod 7) for Z0 = τ 7 and

τ 13, hence, if W ≡ 4(mod 7), then there exists Z such that Z ≡ τ 7 or τ 13(mod 7)

and F−(Z) = W ; F−(Z0) ≡ 2(mod 7) and F ′−(Z0) 6≡ 0(mod 7) for Z0 = τ 9 and

τ 11, thus, if W ≡ 2(mod 7), then there exists Z such that Z ≡ τ 9 or τ 11(mod 7)

and F−(Z) = W . Therefore, the closure of the images of F− contains the cosets

(5 + 7Z) ∪ (3 + 7Z) ∪ (4 + 7Z) ∪ (2 + 7Z).

When p = 11, the length of a period of G modulo p is 10.

2i 0 2 4 6 8

Z0 = τ 2imod 11 1 7 + 6
√

5 9 + 7
√

5 9 + 4
√

5 7 + 5
√

5

F+(Z0) = F+(τ 2i)mod 11 2 7 8 6 10

F ′+(Z0) = F ′+(τ 2i)mod 11 6
√

5 8 + 4
√

5 7 + 7
√

5 3 + 8
√

5 9 +
√

5

Since F+(Z0) ≡ 2(mod 11) and F ′+(Z0) 6≡ 0(mod 11) for Z0 = τ 0, by lemma 13,

if W ≡ 2(mod 11), then there exists Z such that Z ≡ τ 0(mod 11) and F+(Z) =

W . Similarly, F+(Z0) ≡ 7(mod 11) and F ′+(Z0) 6≡ 0(mod 11) for Z0 = τ 2, so, if

W ≡ 7(mod 11), then there exists Z such that Z ≡ τ 2(mod 11) and F+(Z) = W ;

F+(Z0) ≡ 8(mod 11) and F ′+(Z0) 6≡ 0(mod 11) for Z0 = τ 4, thus, if W ≡ 8(mod 11),

then there exists Z such that Z ≡ τ 4(mod 11) and F+(Z) = W ; F+(Z0) ≡ 6(mod 11)

and F ′+(Z0) 6≡ 0(mod 11) for Z0 = τ 6, hence, if W ≡ 6(mod 11), then there exists
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Z such that Z ≡ τ 6(mod 11) and F+(Z) = W ; F+(Z0) ≡ 10(mod 11) and F ′+(Z0) 6≡
0(mod 11) for Z0 = τ 8, therefore, if W ≡ 10(mod 11), then there exists Z such that

Z ≡ τ 8(mod 11) and F+(Z) = W . Therefore, the closure of the images of F+ contains

the cosets (2 + 11Z) ∪ (7 + 11Z) ∪ (8 + 11Z) ∪ (6 + 11Z) ∪ (10 + 11Z).

2i+ 1 1 3 5 7 9

Z0 = τ 2i+1mod 11 6 + 6
√

5 2 +
√

5 8
√

5 9 +
√

5 5 + 6
√

5

F−(Z0) = F−(τ 2i+1)mod 11 5 1 9 4 3

F ′−(Z0) = F ′−(τ 2i+1)mod 11 10 + 9
√

5 4 + 5
√

5 2 5 + 2
√

5 6 + 10
√

5

The function F−(Z0) takes value 5(mod 11) for Z0 = τ 1 and F ′−(Z0) 6≡ 0(mod 11)

for Z0 = τ 0, then by lemma 13, if W ≡ 5(mod 11), then there exists Z such that

Z ≡ τ 1(mod 11) and F−(Z) = W . Similarly, F−(Z0) ≡ 1(mod 11) and F ′−(Z0) 6≡
0(mod 11) for Z0 = τ 3, so, if W ≡ 1(mod 11), then there exists Z such that Z ≡
τ 3(mod 11) and F−(Z) = W ; F−(Z0) ≡ 9(mod 11) and F ′−(Z0) 6≡ 0(mod 11) for

Z0 = τ 5, thus, if W ≡ 9(mod 11), then there exists Z such that Z ≡ τ 5(mod 11)

and F−(Z) = W ; F−(Z0) ≡ 4(mod 11) and F ′−(Z0) 6≡ 0(mod 11) for Z0 = τ 7, then,

if W ≡ 4(mod 11), then there exists Z such that Z ≡ τ 7(mod 11) and F−(Z) = W ;

F−(Z0) ≡ 3(mod 11) and F ′−(Z0) 6≡ 0(mod 11) for Z0 = τ 9, therefore, if W ≡
3(mod 11), then there exists Z such that Z ≡ τ 9(mod 11) and F−(Z) = W . Therefore,

the closure of the images of F− contains the cosets (5 + 11Z)∪ (1 + 11Z)∪ (9 + 11Z)∪
(4 + 11Z) ∪ (3 + 11Z).

When p = 13, the length of a period of G modulo p is 28.

2i 0 2 4 6 8

Z0 = τ 2imod 13 1 8 + 7
√

5 10 + 8
√

5 9 + 4
√

5 4 + 4
√

5

F+(Z0) = F+(τ 2i)mod 13 2 7 6 11 1

F ′+(Z0) = F ′+(τ 2i)mod 13 12
√

5 11 + 9
√

5 7 + 8
√

5 7 + 4
√

5 11 + 3
√

5

2i 10 12 14 16 18

Z0 = τ 2imod 13 3 + 8
√

5 5 + 7
√

5 12 5 + 6
√

5 3 + 5
√

5

F+(Z0) = F+(τ 2i)mod 13 5 1 11 6 7

F ′+(Z0) = F ′+(τ 2i)mod 13 0 10 + 6
√

5 12
√

5 11 + 9
√

5 7 + 8
√

5
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2i 20 22 24 26

Z0 = τ 2imod 13 4 + 9
√

5 9 + 9
√

5 10 + 5
√

5 8 + 6
√

5

F+(Z0) = F+(τ 2i)mod 13 2 12 8 12

F ′+(Z0) = F ′+(τ 2i)mod 13 7 + 4
√

5 11 + 3
√

5 0 10 + 6
√

5

Since F+(Z0) ≡ 2(mod 13) and F ′+(Z0) 6≡ 0(mod 13) for Z0 = τ 0 and τ 20, by

lemma 13, if W ≡ 2(mod 13), then there exists Z such that Z ≡ τ 0 or τ 20(mod 13)

and F+(Z) = W . Similarly, F+(Z0) ≡ 7(mod 13) and F ′+(Z0) 6≡ 0(mod 13) for

Z0 = τ 2 and τ 18, so, if W ≡ 7(mod 13), then there exists Z such that Z ≡ τ 2 or

τ 18(mod 13) and F+(Z) = W ; F+(Z0) ≡ 6(mod 13) and F ′+(Z0) 6≡ 0(mod 13) for

Z0 = τ 4 and τ 16, hence, if W ≡ 6(mod 13), then there exists Z such that Z ≡ τ 4

or τ 16(mod 13) and F+(Z) = W ; F+(Z0) ≡ 11(mod 13) and F ′+(Z0) 6≡ 0(mod 13)

for Z0 = τ 6 and τ 14, so, if W ≡ 11(mod 13), then there exists Z such that Z ≡ τ 6

or τ 14(mod 13) and F+(Z) = W ; F+(Z0) ≡ 1(mod 13) and F ′+(Z0) 6≡ 0(mod 13) for

Z0 = τ 8 and τ 12, hence, if W ≡ 1(mod 13), then there exists Z such that Z ≡ τ 8

or τ 12(mod 13) and F+(Z) = W ; F+(Z0) ≡ 12(mod 13) and F ′+(Z0) 6≡ 0(mod 13)

for Z0 = τ 22 and τ 26, therefore, if W ≡ 12(mod 13), then there exists Z such that

Z ≡ τ 22 or τ 26(mod 13) and F+(Z) = W . Therefore, the closure of the images of F+

contains the cosets (2+13Z)∪(7+13Z)∪(6+13Z)∪(11+13Z)∪(1+13Z)∪(12+13Z).

Since F+(Z0) ≡ 5(mod 13) and F ′+(Z0) ≡ 0(mod 13) for Z0 = τ 10, the image of F+

contains part of the coset (5 + 13Z). Similarly, F+(Z0) ≡ 8(mod 13) and F ′+(Z0) ≡
0(mod 13) for Z0 = τ 24, then the image of F+ contains part of the coset (8 + 7Z).

2i+ 1 1 3 5 7 9

Z0 = τ 2i+1mod 13 7 + 7
√

5 2 +
√

5 12 + 9
√

5 8 12 + 4
√

5

F−(Z0) = F−(τ 2i+1)mod 13 5 12 5 3 4

F ′−(Z0) = F ′−(τ 2i+1)mod 13 11 + 3
√

5 0 10 + 6
√

5 12
√

5 11 + 9
√

5

2i+ 1 11 13 15 17

Z0 = τ 2i+1mod 13 2 + 12
√

5 7 + 6
√

5 6 + 6
√

5 11 + 12
√

5

F−(Z0) = F−(τ 2i+1)mod 13 9 10 8 1

F ′−(Z0) = F ′−(τ 2i+1)mod 13 7 + 8
√

5 7 + 4
√

5 11 + 3
√

5 0
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2i+ 1 19 21 23 25 27

Z0 = τ 2i+1mod 13 1 + 4
√

5 5 1 + 9
√

5 11 +
√

5 6 + 7
√

5

F−(Z0) = F−(τ 2i+1)mod 13 8 10 9 4 3

F ′−(Z0) = F ′−(τ 2i+1)mod 13 10 + 6
√

5 12
√

5 11 + 9
√

5 7 + 8
√

5 7 + 4
√

5

The function F−(Z0) yields value 5(mod 13) and F ′−(Z0) 6≡ 0(mod 13) for Z0 = τ 1

and τ 5, by lemma 13, if W ≡ 5(mod 13), then there exists Z such that Z ≡ τ 1

or τ 5(mod 13) and F−(Z) = W . Similarly, F−(Z0) ≡ 3(mod 13) and F ′−(Z0) 6≡
0(mod 13) for Z0 = τ 7 and τ 27, so, if W ≡ 3(mod 13), then there exists Z such

that Z ≡ τ 7 or τ 27(mod 13) and F−(Z) = W ; F−(Z0) ≡ 4(mod 13) and F ′−(Z0) 6≡
0(mod 13) for Z0 = τ 9 and τ 25, thus, if W ≡ 4(mod 13), then there exists Z such

that Z ≡ τ 9 or τ 25(mod 13) and F−(Z) = W ; F−(Z0) ≡ 9(mod 13) and F ′−(Z0) 6≡
0(mod 13) for Z0 = τ 11 and τ 23, hence, if W ≡ 9(mod 13), then there exists Z

such that Z ≡ τ 11 or τ 23(mod 13) and F−(Z) = W ; F−(Z0) ≡ 10(mod 13) and

F ′−(Z0) 6≡ 0(mod 13) for Z0 = τ 13 and τ 21, so, if W ≡ 10(mod 13), then there exists

Z such that Z ≡ τ 13 or τ 21(mod 13) and F−(Z) = W ; F−(Z0) ≡ 8(mod 13) and

F ′−(Z0) 6≡ 0(mod 13) for Z0 = τ 15 and τ 19, therefore, if W ≡ 8(mod 13), then there

exists Z such that Z ≡ τ 15 or τ 19(mod 13) and F−(Z) = W . Therefore, the closure

of the images of F− contains the cosets (5 + 13Z)∪ (3 + 13Z)∪ (4 + 13Z)∪ (9 + 13Z)∪
(10 + 13Z) ∪ (8 + 13Z).

Since F−(Z0) ≡ 12(mod 13) and F ′−(Z0) ≡ 0(mod 13) for Z0 = τ 3, the image of F−

contains part of the coset (12 + 13Z). Similarly, F−(Z0) ≡ 1(mod 13) and F ′−(Z0) ≡
0(mod 13) for Z0 = τ 17, hence the image of F− contains part of the coset (1 + 13Z).

5.3 Regular Z-basis for G

We study a p-ordering for the general sequence G at any pair, (A,B), of integers.

Theorem 24. Let {Fk} be the sequence of Fibonacci numbers, and let (A,B) be a

pair of any integers. Then the general sequence, {Gk}, of integers can be expressed

as Gk = AFk−1 +BFk for all k ≥ 1.

Proof. The sequence, {Fk}, of Fibonacci numbers can be written as Fk+1 = Fk+Fk−1

for all k ≥ 1 with F0 = 0, F1 = 1. Then Fk = Fk−1 + Fk−2 and Fk−1 = Fk−2 + Fk−3.
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We prove our result by induction on k. If k = 1, 2, then G1 = AF0 + BF1 = B and

G2 = AF1 +BF2 = A+B.

Suppose Gn = AFn−1 + BFn holds for all n < k. Then Gk = Gk−1 + Gk−2 =

AFk−2 +BFk−1 +AFk−3 +BFk−2 = A(Fk−2 +Fk−3) +B(Fk−1 +Fk−2) = AFk−1 +BFk

as required. Hence the lemma.

The following corollary follows from the above theorem.

Corollary 7. Let {Fk} be the sequence of Fibonacci numbers, and let (A,B) be a pair

of any integers. Then a p-ordering of general sequence, {Gk}, of integers is exactly

some p-ordering of the sequence {AFk−1 +BFk}∞k=1, and similarly for the p-sequence.

Now, we need to give a regular Z-basis for G. For this, we need to find some

p-orderings and the associated p-sequences. We replace Maplecode 5 in Maplecode 1

instead of the portion of Lucas numbers for calculating p-orderings and the associated

p-sequences.

It is important to note that we already have the results for Fibonacci numbers and

Lucas numbers since these sequences are obtained at (A,B) = (0, 1) and (A,B) =

(2, 1), respectively.

For (A,B) = (2, 5), p-orderings and the associated p-sequences in the following tables

obtained by using the Maplecode 1 after the Maplecode 5 has been inserted in it are

consistent with Remark 5:

2-ordering of Z {1,−6,−5,−4,−3,−2,−1, 0,−7, 2, 3, 4, 5, 6, 7}
2-ordering of G {2, 5, 7, 12, 19, 81, 212, 50, 31, 1453, 555, 898, 131, 343, 2351}
3-ordering of Z {1,−7,−6,−5,−4,−3,−2,−1, 0, 2, 3, 4, 5, 6, 7}
3-ordering of G {2, 7, 12, 5, 19, 81, 31, 555, 50, 1453, 2351, 343, 131, 898, 212}
5-ordering of Z {1,−7,−6,−5,−3,−4,−2,−1, 0, 2, 3, 4, 5, 6, 7}
5-ordering of G {2, 5, 19, 31, 343, 7, 50, 898, 2351, 12, 1453, 81, 555, 212, 131}
7-ordering of Z {1,−7,−5,−4,−3,−2,−1,−6, 0, 2, 3, 4, 5, 6, 7}
7-ordering of G {2, 5, 7, 31, 50, 81, 2351, 12, 212, 343, 19, 131, 1453, 555, 898}
11-ordering of Z {1,−7,−6,−5,−4,−3,−2,−1, 0, 2, 3, 4, 5, 6, 7}
11-ordering of G {2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351}
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2-sequence of Z {0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11}
2-sequence of G {0, 0, 1, 1, 3, 4, 4, 6, 7, 8, 10, 13, 14, 16, 19}
3-sequence of Z {0, 0, 0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 5, 5, 5}
3-sequence of G {0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 6, 7, 8, 8, 12}
5-sequence of Z {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2}
5-sequence of G {0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5}
7-sequence of Z {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 3, 4, 7}
7-sequence of G {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4}
11-sequence of Z {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
11-sequence of G {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1}

Now, we will check the p-orderings and p-sequence of G manually to get a regular

Z-basis for G.

Gmod 2k:

The length of a period of G mod 2 is 3, and the period is [0, 1, 1].

The length of a period of G mod 4 is 6, and the period is [2, 1, 3, 0, 3, 3].

The length of a period of G mod 8 is 12, and the period is [2, 5, 7, 4, 3, 7, 2, 1, 3, 4, 7, 3].

There are no numbers in G that are congruent to 0 or 6 modulo 8, and hence

2, 5, 7, 12, 19, 81 will be the beginning of a 2-ordering with the associated 2-sequence

[0, 0, 1, 1, 3, 4, 4].

The numbers in G modulo 8 are contained in (1 + 2Z) ∪ (2 + 8Z) ∪ (4 + 8Z) =

(1 + 2Z) ∪ 2 · ((1 + 4Z) ∪ (2 + 4Z)).

The 2-sequences of 1 + 4Z and 2 + 4Z are

αZ + (2n) = [0, 0, 1, 1, 3, 3, · · ·] + [0, 2, 4, 6, 8, 10, · · ·] = [0, 2, 5, 7, 11, 13, · · ·].
The 2-sequence of 1 + 2Z is

αZ + (n) = [0, 0, 1, 1, 3, 3, · · ·] + [0, 1, 2, 3, 4, 5, · · ·].
The 2-sequence of (1 + 4Z) ∪ (2 + 4Z) is the shuffle

[0, 0, 2, 2, 5, 5, 7, 7, · · ·], and that of 2 · ((1 + 4Z)∪ (2 + 4Z)) is [0, 0, 2, 2, 5, 5, 7, 7, · · ·] +

[0, 1, 2, 3, 4, 5, · · ·] = [0, 1, 4, 5, 9, 12, · · ·].
Thus the 2-sequence of (1 + 2Z) ∪ 2 · ((1 + 4Z) ∪ (2 + 4Z)) is the shuffle

[0, 1, 3, 4, 7, 8, · · ·] ∧ [0, 4, 5, 9, 12, · · ·] = [0, 0, 1, 1, 3, 4, 4, 5, 7, 8, · · ·].
Gmod 3k:

The length of a period of G mod 3 is 8, and the period is [2, 2, 1, 0, 1, 1, 2, 0].
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The length of a period of G mod 9 is 24, and the period is

[2, 5, 7, 3, 1, 4, 5, 0, 5, 5, 1, 6, 7, 4, 2, 6, 8, 5, 4, 0, 4, 4, 8, 3], and all residue classes mod 32

occur in G, and so its 3-sequence will begin [0, 0, 0, 1, 1, 1, 2, 2, 2, · · ·] with the first

9 elements of a 3-ordering having representation from all residue classes mod 9

[2, 7, 12, 5, 19, 81, 31, 555, 6155].

G mod 5k:

The length of a period of G mod 5 is 20, and the period is

[2, 0, 2, 2, 4, 1, 0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3].

The length of a period of Gmod 52 is 100, and the period is

[2, 5, 7, 12, 19, 6, 0, 6, 6, 12, 18, 5, 23, 3, 1, 4, 5, 9, 14, 23, 12, 10, 22, 7, 4, 11, 15, 1, 16, 17, 8,

0, 8, 8, 16, 24, 15, 14, 4, 18, 22, 15, 12, 2, 14, 16, 5, 21, 1, 22, 23, 20, 18, 13, 6, 19, 0, 19, 19,

13, 7, 20, 2, 22, 24, 21, 20, 16, 11, 2, 13, 15, 3, 18, 21, 14, 10, 24, 9, 8, 17, 0, 17, 17, 9, 1, 10,

11, 21, 7, 3, 10, 13, 23, 11, 9, 20, 4, 24, 3], and all residue classes modulo 5 and 52 are in

G. The 5-sequence of G must starts with [0, 0, 0, 0, 0, 1, 1, 1, · · ·], and a 5-ordering will

start with [2, 5, 19, 31, 343, 7, · · ·].
Thus the p-sequences of G begin:

k 0 1 2 3 4 5 6

p = 2 0 0 1 1 3 4 4

p = 3 0 0 0 1 1 1 2

p = 5 0 0 0 0 0 1 1

Then, we have the denominators of a regular basis for G as

k 0 1 2 3

d(k) 20 · 30 · 50 = 1 20 · 30 · 50 = 1 21 · 30 · 50 = 2 21 · 31 · 50 = 6

k 4 5 6

d(k) 23 · 31 · 50 = 24 24 · 31 · 51 = 240 24 · 32 · 51 = 720

The regular basis will be of the form

∏k
i=0(x− ai)
d(i)

, where the ai’s are picked using

Chinese remainder theorem to have the following residues:
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a0 a1 a2 a3 a4 a5

mod 23 2 5 7 4 3 1

mod 32 2 7 3 5 1 0

mod 52 2 5 19 6 18 7

2 205 1119 356 1243 657

Therefore, the regular basis for Int(G,Z) is

{1, (x−2),
(x− 2)(x− 205)

2
, (x−2)(x−205)(x−1119)

6
,
(x− 2)(x− 205)(x− 1119)(x− 356)

24
,

(x− 2)(x− 205)(x− 1119)(x− 356)(x− 1243)

240
,

(x− 2)(x− 205)(x− 1119)(x− 356)(x− 1243)(x− 657)

720
, · · ·}.



Chapter 6

Conclusion

By using the method of finding p-orderings and the associated p-sequences of a subset

S of Z due to Bhargava, we develop the results of Keith Johnson and Kira Scheibel-

hut on the Lucas numbers L, and we find the regular basis for Int(L,Z). For doing

this, we find the linear recurrence relation Lk+1 = Lk + Lk−1 for k = 1, 2, 3, · · · with

L0 = 2,L1 = 1 together with Binet’s formula Lk = (τ)k+(− 1
τ
)k with k = 0, 1, 2, ··· for

Lucas numbers having the functions f+ and f− whose domains are positive even and

odd integers, respectively, extending the functions with their domains to squares and

nonsquares of U(Zp), respectively, under conditions that the mod p of reduction of τ

generates U(Zp), and τ p−1 6≡ 1(mod p2), its reduction mod pk generates U(Z/(pk)).
The images of extended maps are the closures, L̄ of L with respect to p-adic topology

under the condition L̄/(pk) = L/(pk) for any k. The closures due to images of f+

and f− are obtained using the Hensel’s lemma for the normal case and the General-

ized Hensel’s lemma when the tangent of the functions are parallel to the x-axis at

some point. We find p-sequences for primes p by applying Maplecodes keeping the

consistency with reality how many terms of them we can calculate to get the denom-

inators d(k) of the regular basis, and then using Chinese remainder theorem to the

integers modulo pk, we get a p-ordering a0, a1, a2, ···, to get the regular basis
∏k

i=0(x−ai)
d(i)

.

We study the general sequence G of integers for any pair (A,B) of integers leaving

linear recurrence relation Gk+1 = Gk +Gk−1 with G0 = A, G1 = B for k = 1, 2, 3, · · ·,
together with Binet’s formula Gk = 1√

5
[
√

5−1
2
·A+B] · (τ)k + 1√

5
[1+
√

5
2
·A−B] · (−1

τ
)k

for k = 0, 1, 2, · · ·. The results for (A,B) = (0, 1), (A,B) = (2, 1) of sequence

{Gk} are consistent with the results of Keith Johnson and Kira Scheibelhut, and the

corresponding results for Lucas numbers. We find the a relation Gk = AFk−1+BFk for

all integers k ≥ 1 that gives general p-orderings and the p-sequences. For justification,

we find regular basis for Int(G,Z) taking other particular pair (A,B) = (2, 5).
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Appendix

Maplecode 1.

with(ListTools):

with(LinearAlgebra):

# The proceedure, "A", calculates the highest power, k, of a prime

# number, p, dividing any number n.

A := proc (n, p) local m, k;

if n = 0 then k := 10000 else

m := n: k := 0:

while irem(m, p) = 0 do

k := k+1: m := m/p end do end if:

k:

end:

# The proceedure, "porder", calculates a p-ordering and the

# corresponding associated p-sequence while inputing a sequence of

# integers, L, a prime, p, and the position, l, of an element in

# L such that L[l] is the initial element of a p-ordering of L.

# It is important to note that L1, M, D2, and P1 in th procedure,

# "porder", have the same number of elements after each execution

# of the while loop.

porder:=proc(L,p,l) local Ord,Seq,L1,D1,D2,M,P1,mp,Ps,pm,a,b;

Ord:=[L[l]];Seq:=[0];a:=L[l];L1:=subsop(l=NULL, L);D1:=1:

while (nops(L1) 6= 0) do

# D2 represents the sequences of differences of element of L1

# and the initial element a0 and the elements al with l ≥ 1 that

# minimize the highest powers of p dividing

# (al − a0)(al − a1) · · · (al − al−1) while finding a p-ordering of L

# until it becomes an empty set.

D2:=[seq(i-a, i=L1)]:
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# M’s represent the sequences of products (al − a0)(al − a1) · · · (al − al−1).

M:=[op(D1*∼ D2)]:

# P1’s represent the sequences of highest powers of prime p dividing

# (al − a0)(al − a1) · · · (al − al−1).

P1:=[seq(A(i, p), i=M)]:

# mp represents the minimal element in P1 together with its position.

mp:=[FindMinimalElement(P1,position)]:

# Ps is the minimal element of P1.

Ps:=op(1, mp);Seq:=[op(Seq),Ps]:

# pm is the position of the minimal element of P1.

pm:=op(2, mp);Ord:=[op(Ord),L1[pm]]:

b:=L1[pm]:

D2:=subsop(pm=NULL, D2): M:=subsop(pm=NULL, M):

# D1 is replaced by M after each execution of the while loop in

# the program.

D1:=M:

# L1’s represent the sequences of all elements of L excluding the

# initial element a0 and the elements al with l ≥ 1 that minimize the

# highest powers of p dividing (al − a0)(al − a1) · · · (al − al−1) while

# finding a p-ordering of L until it becomes an empty set.

L1:=subsop(pm=NULL, L1):

a:=b:

od;

# Seq is the p-sequence and Ord is a p-ordering of L.

[Ord, Seq]:

end:

Maplecode 2.

# p is any prime, k ≥ 1 is any integer.

# The proceedure, "Period", yields a period of the sequence of

# Lucas numbers modulo pk.

Period:=proc(p, k)local L;

# Initialization of the sequence of Lucas numbers modulo pk.
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L := [2, 1, 3]:

# The while loop executes until the period is obtained.

while [L[nops(L)− 1], L[nops(L)]] 6= [2, 1] do

L := [op(L), (L[nops(L)] + L[nops(L)− 1])mod pk] od:

# this L is the period of the sequence of Lucas numbers modulo pk.

L:

# "ifactor(nops(L)− 2)" calculates the length of a period.

ifactor(nops(L)− 2):

end:

Maplecode 3.

with(ListTools):

with(LinearAlgebra):

# The proceedure, "Period", calculates the length of a period of

# Lucas numbers mod p.

Period := proc(p) local Lp, lp;

Lp := [2, 1, 3]:

while [Lp[nops(Lp)− 1], Lp[nops(Lp)]] 6= [2, 1] do

Lp := [op(Lp), (Lp[nops(Lp)] + Lp[nops(Lp)− 1]mod p)] od:

# Lp is a period of Lucas numbers mod p.

Lp:

# lp is the length of Lp.

lp := nops(Lp)-2:

end:

# The proceedure, "LHenfp", calculates images of f+(z0)mod p.

LHenfp := proc (p) local L, i, t;

t := 1/2 + (1/2) ∗ sqrt(5):

L := []: for i from 0 by 2 to Period(p)-1 do

L :=[op(L), (simplify(ti + rationalize(1/ti))mod p)]:

od:

# L is the image of f+(z0)mod p.

L:

end:
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# The proceedure, "LHendfp", calculates images of f ′+(z0)mod p.

LHendfp := proc (p) local L, i, t;

t := 1/2 + (1/2) ∗ sqrt(5):

L := []: for i from 0 by 2 to Period(p)-1 do

L :=[op(L), (simplify(1− rationalize(1/t2∗i))mod p)]:

od:

# L is the image of f ′+(z0)mod p

L:

end:

# The proceedure, "LHenfn", calculates images of f−(z0)mod p.

LHenfn := proc (p) local L, i, t;

t := 1/2 + (1/2) ∗ sqrt(5):

L := []: for i from 1 by 2 to Period(p)-1 do

L := [op(L), (simplify(ti − rationalize(1/ti))mod p)]:

od:

# L is the image of f−(z0)mod p.

L:

end:

# The proceedure, "LHendfn", calculates images of f ′−(z0)mod p.

LHendfn := proc (p) local L, i, t;

t := 1/2 + (1/2) ∗ sqrt(5):

L :=[]; for i from 1 by 2 to Period(p)-1 do

L := [op(L), (simplify(1 + rationalize(1/t2∗i))mod p)]:

od:

# L is the image of f ′−(z0)mod p.

L:

end:

Maplecode 4.

with(ListTools):

with(LinearAlgebra):

# The proceedure, "Period", calculates the length of a period of

# G mod p.
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Period := proc(p) local A, B, Gp, C, Lp;

C := A+B:

Gp := [A, B, C]:

while [Gp[nops(Gp)− 1], Gp[nops(Gp)]] 6= [A,B] do

Gp :=[op(Gp), (Gp[nops(Gp)] +Gp[nops(Gp)− 1])mod p]:

od:

# Gp is a period of Gmod p.

Gp:

# Lp is the length of Gp.

Lp := nops(Gp)-2:

end:

# The proceedure, "GHenFp", calculates the images of F+(Z0) mod p

# for any pair, (A,B), of integers, t = τ, p is any odd prime, and

# C1 and C2 are constants of Binet’s formula due to the General

# sequence.

GHenFp := proc (p, A, B) local G, i, t, C1, C2;

t := 1/2 + (1/2) ∗ sqrt(5):

C1 := (rationalize(1/t) ∗ A+B)/sqrt(5):

C2 := (t ∗ A−B)/sqrt(5):

G := []:

for i from 0 by 2 to Period(p)-1 do

G := [op(G), simplify(C1 ∗ ti + C2 ∗ rationalize(1/ti))mod p]:

od:

# G is the image of F+(Z0) mod p.

G:

end:

# The proceedure, "GHendFp", calculates the images of F ′+(Z0)

# mod p for any pair, (A,B), of integers.

# Other variables bear the same meanings as before.

GHendFp := proc (p, A, B) local G, i, t, C1, C2;

t :=1/2 + (1/2) ∗ sqrt(5):

C1 :=(rationalize(1/t) ∗ A+B)/sqrt(5):
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C2 :=(t ∗ A−B)/sqrt(5):

G := []:

for i from 0 by 2 to Period(p)-1 do

G := [op(G), simplify(C1− C2 ∗ rationalize(1/t2∗i))mod p]:

od:

# G is the image of F ′+(Z0) modp.

G:

end:

# The proceedure, "GHenFn", calculates the images of F−(Z0)

# mod p for any pair, (A,B), of integers.

# Other variables bear the same meanings as before.

GHenFn := proc (p, A, B) local G, i, t, C1, C2;

t := 1/2 + (1/2) ∗ sqrt(5):

C1 := (rationalize(1/t) ∗ A+B)/sqrt(5):

C2 := (t ∗ A−B)/sqrt(5):

G := []:

for i from 1 by 2 to Period(p)-1 do

G := [op(G), simplify(C1 ∗ ti − C2 ∗ rationalize(1/ti))mod p]:

od:

# G is the image of F−(Z0)mod p.

G:

end:

# The proceedure, "GHendFn", calculates the images of F ′−(Z0) mod p

# for any pair, (A,B), of integers.

# Other variables bear the same meanings as before.

GHendFn := proc (p, A, B) local G, i, t, C1, C2;

t :=1/2 + (1/2) ∗ sqrt(5) :

C1 := (rationalize(1/t) ∗ A+B)/sqrt(5):

C2 := (t ∗ A−B)/sqrt(5):

G := []:

for i from 1 by 2 to Period(p)-1 do

G := [op(G), simplify(C1 + C2 ∗ rationalize(1/t2∗i))mod p]:
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od:

# G is the image of F ′−(Z0)mod p.

G:

end:

Maplecode 5.

# The proceedure, ”Fibo”, finds the sequence of Fibonacci numbers

Fibo := proc (n) local F, i;

F := [0, 1]:

for i from 2 to n do

F := [op(F), F[-1]+F[-2]]:

od:

F:

end:

# The proceedure, ”GSeq”, finds the general sequence of integers at

# any pair, (A,B), of integers.

GSeq := proc (m, A, B) local G, i, Fb;

Fb := Fibo(m):

G := [A, B]:

for i from 3 to m do G := [op(G), A*Fb[i-1]+B*Fb[i]]:

od:

G:

end:


