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ABSTRACT 

Wild blueberry crop yields are dependent on heavy agrochemical applications to control 

weeds competing with crop. Goldenrod is a creeping herbaceous perennial weed that occurred in 

more than 90% of wild blueberry fields surveyed in Nova Scotia. The objective of this study was 

to develop and evaluate a graphical user interface based goldenrod detection system using colour 

concurrence matrices as image processing algorithm and machine learning procedures for spot-

application of Callisto® herbicide. The performance of developed goldenrod detection system was 

tested and evaluated in four wild blueberry fields. Results of laboratory evaluation suggested that 

developed colour co-occurrence matrices algorithm with a back-propagation classifier has ability 

to target the goldenrod with an accuracy of 97%. Optimum parameter selection suggested that 

intensity levels of 256 and a unit image size of 128 × 128 pixels can help to minimize the 

processing time without compromising the classification accuracy for real-time applications. 

Results of classifiers development showed that back-propagation artificial neural network 

classifier performed better than statistical quadratic classifier to classify goldenrod for training and 

test datasets. Field evaluation results confirmed the higher accuracy of artificial neural network 

classifier compared to statistical quadratic counterpart. The savings with colour occurrence 

matrices and artificial neural network classifier were in the range of 32% to 65% depending upon 

the goldenrod coverage within selected field tracks. This study can help to apply Callisto® site 

specifically for goldenrod control, thereby allowing the producers to apply agrochemicals in an 

economic and environment friendly fashion.   
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CHAPTER 1: INTRODUCTION 

An escalated increase in human population has pushed the agricultural community and 

scientific think tanks around the globe to replace the current uniform application of agrochemicals 

with innovative solutions for site-specific ones to ensure sustainable agriculture. The rapidly 

fostering trend of competitiveness and increased production also demands for innovative tools to 

manage nutrients and pesticides in an economically and environmentally sustainable fashion. Wild 

blueberry (Vaccinium angustifolium Ait.), a fruit crop native to the northeastern North America 

initially growing in forests, has now been commercially managed and harvested (Jensen and 

Yarborough, 2004). The presence of randomly distributed weeds and bare spot coverage of 30 to 

50% in newly developing area within wild blueberry fields emphasizes the need to develop cost-

effective and reliable systems for spot application of agrochemicals on an as-needed basis (Zaman 

et al., 2011).  

Weeds are one of the major yield limiting factor in wild blueberries that uptake plant 

nutrients, compete with plants, harbor diseases and insects, and hinders the harvesting operation 

(Kinsman, 1993). Among many other weed species found in wild blueberry fields, goldenrod 

(Solidago spp.) is the most common weed, which grows aggressively in the form of dense weed 

patches in more than 90% wild blueberry fields in Nova Scotia, Canada (McCully et al., 1991). It 

was ranked as the fifth most invasive weed by the Wild Blueberry Producers Association of Nova 

Scotia (Boyd and White, 2010). Goldenrod offers severe competition to the crop because of its 

overlying doomed foliage (Kinsman, 1993). Currently, goldenrod is managed by uniform 

application of herbicides, when it is significantly taller than the wild blueberry plants (Boyd and 

White, 2010). 
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The dynamics of field plants, residue, and soil ecosystems are exceptionally complicated, 

but machine vision technology has the potential to systematically unravel and identify the plants 

using optical properties, shape, and texture of leaves (Meyer et al., 1998). Recent studies indicated 

that a mathematical process of characterizing, interpreting, and extracting leaf shape and texture 

based information has a great potential to differentiate the weeds from crop plants (Meyer, 2011). 

Shape based image analysis involves the classification of weeds and crops on the basis of some 

simple features including area, perimeter, circularity, aspect ratio, etc. The plant leaf 

orientation/rotation, canopy overlapping, and differences in the size of weed plant itself impairs 

the efficiency of such weed classification system (Perez et al., 2000). Textural features provide 

some botanical information, such as leaf venation, leaf pubescence, and leaf surface coarseness for 

detecting plant and weed phenotypes, but shadows, bidirectional reflectance of leaf surfaces, and 

background lighting bridged up together to reduce the efficiency of this method (Neto and Meyer, 

2005).  

Chang et al. (2012a) developed a color co-oocurence matrices (CCMs) based texture 

analysis algorithm and extracted eleven textural features to delineate blueberry and weed species. 

They used statistical multivariate linear classifiers to perform weed identification task. This texture 

based algorithm did not perform well for goldenrod discrimination from wild blueberry plants 

(Chang, 2016). Many other researchers have developed innovative solutions for weed and fertilizer 

management in a site-specific manner for wild blueberry cropping system (Zaman et al., 2011; 

Chang et al., 2014; Esau et al., 2014); however, very little research has been conducted on the 

identification of goldenrod for effective management of this weed on an as-needed basis. In order 

to address this challenge of goldenrod sensing and real-time application of agrochemical on this 
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weed, a machine vision based weed detection system for spot application of herbicides is 

considered as a potential solution.  

Therefore, the main goal of this research is to develop a graphical user interface (GUI) 

based goldenrod detection system (GDS) using optimized CCMs as image processing algorithm 

and machine learning techniques in Microsoft Visual® C#. The developed GDS used statistical 

multivariate non-linear and backpropagation artificial neural network classifiers for improved 

goldenrod detection accuracy. The GUI provides on-screen updates of acquired and processed 

images along with controls to adjust spraying configurations. The processed images can then be 

used for the automatic toggling of spray nozzles in the areas where goldenrod is detected.  

1.1 Objectives 

The objectives of this study are: 

1. Development of a graphical user interface based goldenrod detection system with an embedded 

optimized colour co-occurrence matrix algorithm for real-time spot spray, 

2. Development of wild blueberry and goldenrod segmentation classifiers using statistical and 

artificial neural network techniques, and  

3. Performance evaluation of the developed goldenrod detection system for spot-application of 

herbicide in wild blueberry fields.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 Wild Blueberry Cropping System and Weed Management 

Wild blueberry is a unique naturally grown perennial crop that is commercially managed 

in native stands or abandoned farmlands (Eaton and Nams, 2006). Wild blueberries follow a two-

year production cycle with the perennial shoots being pruned in alternate years to fortify floral bud 

initiation and fruit yield (PMRA, 2005). The rhizomatous spread of seedlings forms a clone 

composed of widespread ramets. As a result, wild blueberry fields contain multiple perennial 

clones that have tremendous phenotypic variability, demonstrating variable responses to 

management (Glass and Percival, 2000). 

The “wild nature” of the crop is responsible for the greater variability in terms of weed 

species and their distribution compared to any other cultivated crop that persistently hinders fruit 

productivity (Kennedy et al., 2010). Weeds are one of the most significant yield limiting factors 

(Yarborough and Bhowmik, 1993; Jensen and Yarborough, 2004). Weed flora in blueberry fields 

traditionally consisted of creeping herbaceous perennial weed species; whereas, many of the new 

species invading blueberry fields are common vigorous annual weeds of arable fields. The 

herbaceous perennial weeds produce large number of seeds and require control with herbicides 

(McCully et al., 1991; Jensen and Yarborough, 2004).  

Several species of creeping herbaceous perennial weeds can cause problems in wild 

blueberry fields, but goldenrod is the most common and most difficult to control (PMRA, 2014), 

and offers a severe competition because of its ability to crowd out the fields (Hall et al., 1979). 

Goldenrod occurred in over 90% of wild blueberry fields surveyed in Nova Scotia in the early 

1980’s (McCully et al., 1991). It was ranked as the fifth most invasive weed by the Wild Blueberry 

Producers Association of Nova Scotia (Boyd and White, 2010). Current goldenrod management 
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practices include the uniform application of Callisto® when goldenrod is significantly taller than 

the wild blueberry plants (Boyd and White, 2010). This traditional method of excessive herbicide 

application increases production costs and poses environmental hazards (Zaman et al., 2011). 

Economic and ecological benefits can be achieved by employing new sophisticated methods to 

fine-tune rate and timing of herbicide applications in a spot specific fashion to control goldenrod 

pressure in wild blueberry fields.  

2.2 Digital Image Processing- A Tool for Precision Spraying 

Today, digital images play a vital role in remote sensing, agricultural automation, 

medicine, education, and traffic control for detection of different objects (Gonzalez and Woods, 

2008). Normally, a set of images is investigated to gain insight and to understand the dynamics of 

data they contain, and how it can be used to extract desired information. For example, an 

agronomic digital image may contain information related to object’s colour, shape, and texture and 

can be manipulated for weed-crop recognition (Romeo et al., 2013).  

2.2.1 Colour based Discrimination   

Colour is perceived as a visual attribute of radiation incident on the retina of the human 

eye. Specifically, colour is perceived as a measure by which radiation of similar spectral content 

are grouped together labelling the object as red, green, blue, or yellow (Julesz, 1962). Image 

information related to colour spectra can be utilized to discriminate different plant/weed species 

and soil residues (Woebbecke et al., 1995). Several vegetative indices have been developed for 

weed-crop discrimination by using information available in different spectral channels and their 

combinations (Woebbecke et al. 1995; El-Faki et al., 2000; Lamm et al., 2002; Wang et al., 2003; 

Mao et al., 2003; Yang et al., 2003; Marchant et al., 2004).   
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Colour based vegetative indices accentuate a particular spectral band such as plant 

greenness to provide a better pictorial output for comparison. Woebbecke et al. (1995) used colour 

chromatic coordinates to develop excessive green (EXG) index for distinguishing plant material 

from bare soil, wheat straw, and corn residue. Comparatively, less sensitivity of this index to 

variation in lighting conditions resulted in wide acceptability for the removal of residual 

background (Campbell, 1996). However, disproportionate effects from numerous lighting sources 

may overcast a digital image, resulting in the poor identification of green plants and increased 

background noise (Meyer et al., 2004). 

2.2.2 Shape based Discrimination 

Shape-based features exploit information regarding geometrical orientation and 

representation of an object leading towards high-level image processing including object 

recognition and decision making. Shape features have been used to discern between plant species 

based on leaf or plant canopy geometry. 

Guyer et al. (1986) calculated the geometrical area, perimeter, and width of individual 

leaves to discriminate corn and weed species. Guyer et al. (1993) considered the leaf and overall 

plant canopy shapes and achieved 69% correct identification rate for 40 weeds and soybean crop. 

The authors reported that no single shape feature alone was sufficient to distinguish different plant 

species. Woebbecke et al. (1995) found similar results for shape features and reported that any 

particular shape feature did not work efficiently as a plant classifier, because of greater 

phenological variance among plants of the same species. While leaf shape provides information 

leading to the identification of plant species, it is difficult to delineate a leaf from mixed occluded 

canopies in real-time field conditions leading towards the unpredictable behavior of classification 

systems (Woebbecke et al., 1995).  
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2.2.3 Texture based Discrimination 

Texture is a rich source of visual information about the nature and three-dimensional shape 

of physical objects. Textures are complex visual patterns composed of specific, spatially repetitive 

sub-patterns of surfaces that have characteristic brightness, slope, colour, and size, and can be 

regarded as similarity grouping in an image (Rosenfeld and Kak, 1982). Local sub-pattern 

properties include lightness, uniformity, density, roughness, smoothness, regularity, linearity, 

randomness, and granulation (Levine, 1985).  

Colour and leaf shape features alone may not be sufficient to consistently distinguish 

between young weed and crop species. The colour or tonal detail for texture was first described by 

quantification of co-occurrence of tonal pairs or contrast also known as spatial tonal frequency 

(Haralick et al., 1973). Wavelet analysis and energy have been recently suggested as a frequency 

based textural analysis for segmenting weeds embedded in canopies (Tang et al., 2003).  

2.3 Texture Analysis Methods 

Numerous textural analysis algorithms have emerged over the last few decades to retrieve 

different levels of information from underlying scenes (Haralick, 1979). These methods have been 

widely used and studied in depth; however, there is no general consensus regarding which method 

provides the best information (Haralick, 1979). Classically, texture analysis approaches are 

broadly categorized in; structural, model-based and transform domain descriptors (Tuceryan and 

Jain, 1998), which are briefly discussed in the following sections.  

2.3.1 Structural Descriptors 

Structural approaches utilize well-defined primitives (micro-texture) and organization of 

spatial dependencies (macro-texture) of those primitives to describe textural arrangements 

(Haralick, 1979; Levine, 1985). The textural features were calculated by defining the spatial 
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placement of particular primitive (Blostein and Ahuja, 1989). Carlucci (1972) developed a textural 

extraction model using line segments, open, and closed polygons as primitives with the placement 

rule being defined by tree and subtrees syntactically in a graph like language. 

Zucker (1976) conceived real texture as a distortion of an underlying ideal texture and has 

exploited the isomorphic graph theory of usual tessellation to express the primitive placement rule 

for ideal texture. A mathematical transformation of these ideal graph primitives was distorted for 

inferring actual textural patterns. Binary large objects (Blobs) have ample information contained 

within them to explain the textural associativity of image objects (Voorhees and Poggio, 1988). 

They applied Laplacian-of-Gaussian (LoG) filter at different angular orientations to identify tonal 

variation of geographically distributed image elements to extract the Blobs. Blostein and Ahuja 

(1989) also opted the same technique to locate the spatially occluded or fine scale textured surfaces 

by detecting systematic variability in the area, density, and aspect ratio of image elements. These 

apparent changes in texture element properties can be analyzed to recover information about the 

physical layout of the scene.  

Structural descriptors provide a decent symbolic depiction of the image; however, they are 

more useful for generating the synthetic images than analysis task. Methods based on these 

descriptors have never been proved as promising solutions for natural textures due to the 

substantial variability in both micro and macro-texture and vague boundaries, segregating them in 

natural conditions (Haralick, 1979).  

2.3.2 Model-Based Descriptors 

Model-based texture analysis attempts to interpret an image texture by developing a 

generative image model (Cross and Jain, 1983; Pentland, 1984; Chellappa and Chatterjee, 1985; 

Derin and Elliott, 1987; Manjunath and Chellappa, 1991; Materka and Strzelecki, 1998). The 
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model parameters capturing the essential perceived qualities of texture are calculated, followed by 

image analysis. McCormick and Jayaramamurthy (1974) developed an autoregressive model by 

assuming linear dependence of an image pixel on its neighboring pixels and assigned a weighted 

average tonal value on the basis of linear associativity to synthesize texture. The image 

segmentation was carried out by estimating model parameters using maximum-likelihood 

approaches (Tou and Chang, 1976; Deguchi and Morishita, 1978). Several models have been 

developed on the basis of a Markov random field (MRF) approach; a probabilistic process 

considering all interactions as local. The probability that an image pixel having specific textural 

state is utterly determined by the probabilities of neighboring pixels (Blake and Zisserman, 1987). 

The MRF based models can capture highly detailed local information in an image and have been 

applied to various image processing applications such as texture synthesis (Cross and Jain, 1983), 

texture classification (Chellappa and Chatterjee, 1985), image segmentation (Cohen and Cooper, 

1987), image restoration (Geman and Geman, 1984), and image compression (Chellappa and 

Chatterjee, 1985). 

Geman and Geman (1984) segmented image texture by deploying Markov and Gaussian 

random field-based models together to take full advantage of posterior probability. Hidden Markov 

Models (HMM) out-performed other MRF based methods in texture discrimination as they 

attempted to discern the fundamental structure of image that was not even directly observable with 

the naked eye (Povlow and Dunn, 1995). Panjwani and Healey (1995) developed a new MRF 

model for colour texture segmentation by elaborating maximum pseudo-likelihood scheme for 

estimating model parameters from different textural regions. A set of a large number of parameters 

originating between and within different colour bands exponentially increases the computational 

complexity and cost leading it to non-adaptable approach (Bennett and Khotanzad, 1998). 
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Model based textural analysis techniques are scale and rotation variants that changing scale 

and direction of an image would result in significantly different model parameters leading towards 

misclassification of image segments (Haralick, 1979). Another disadvantage is that the template 

model will always be used to segment the images having properties very similar to the source 

image making them less suitable for real-time image segmentation (Campbell, 1996). Furthermore, 

computational complexity arising in estimating model parameters is of primary concern (Haralick, 

1979).  

2.3.3 Transform Based Descriptors 

The human brain performs highly recursive frequency analysis along with spatial 

information for analyzing the surface texture of any image data (Julesz, 1962; Campbell, 1996). 

In order to mimic this approach, several frequency (times the particular tonal value occurred in an 

image), spatial or joint spatial-frequency domain methods were developed for calculating multi-

scale image-textural features (Cohen, 1989). These descriptors represent an image in a space 

whose coordinate system has an interpretation that is closely related to the characteristics of image 

tonal frequency (Rosenfeld and Kak, 1982). 

The frequency analysis of the textured image is best done in the Fourier domain (Rosenfeld 

and Weszka, 1976). Weszka et al. (1976) used the Fourier transform to classify the aerial 

photographs into five land use classes on the basis of frequency based textural variation with an 

accuracy of 74%. Coggins and Jain (1985) used a set of frequency and orientation-selective filters 

in a multichannel filtering approach to detect and classify synthetic textures. Haralick et al. (1973) 

compared textural features extracted from the Fourier transform and second order statistics. They 

reported that Fourier features performed poorly due to lack of spatial localization.  
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The introduction of spatial dependency in the Fourier transform by using a filter window 

(resolution) function resulted in joint spatial-frequency domain, called Gabor transform (Turner, 

1986). Tang et al. (1999) developed a weed classification system using a Gabor filter to acquire 

joint spatial-frequency characteristics of weed texture images. Gabor based approaches were 

disapproved due to their non-orthogonality resulting in the redundant features at different scale 

and orientation of filter window (Teuner et al., 1995). Moreover, there is no single filter resolution 

at which one can localize a spatial structure in natural features (Daugman, 1985). 

Frequency and spatial localization of image texture can also be achieved by mining the 

image data at multi-resolution scale; called Wavelet transformation (Mallat, 1989). This approach 

treats any image variability as a small wave having a particular frequency for a limited duration 

(Gonzalez and Woods, 2008). The problem with wavelet based techniques, however, is that they 

are not resistant to variation in image caused by the movement of object pixels (Brady and Xie, 

1996).  

2.3.4 Statistical Descriptors 

Describing texture by using statistical measures was initially perceived from experiments 

on human visual pattern discrimination (Julesz, 1962). Julesz’s experiments suggested that the 

human ability to discriminate between different objects can be described by tonal frequency or 

probability measures of two neighboring pixels having specific brightness values. Darling and 

Joseph (1968) extended the idea of statistical measures of image texture by extracting a set of 

features based on classical statistical measures of mean and variance of image gray tones along 

with entropies in horizontal and vertical directions. However, computation of these features 

without performing gray tone normalization generated different results of the same scene. 
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Rosenfeld and Troy (1970) adapted a procedure based on gray tone differences of adjacent 

image elements for measuring textural coarseness. Later, variability in textural coarseness was 

used for boundary detection (Rosenfeld and Thurston, 1971). Haralick et al. (1973) developed 

“spatial gray-tone dependence matrices (SGDMs)” by using probability measures of the spatial 

distribution of neighboring tonal variation at different orientations. They suggested using the set 

of four features extracted from these matrices to classify image objects. Fourteen features extracted 

from these matrices were used for aerial photographs and satellite imagery with accuracies of 82% 

and 83%, respectively (Haralick et al., 1973).   

Shearer and Holmes (1990) introduced the idea of hue-saturation-intensity (HSI) colour 

features to SGDMs and named it as CCMs. They generated three co-occurrence matrices, one for 

each HSI colour plane and extracted the textural features as suggested by Haralick et al. (1973). 

Shearer and Holmes (1990) used a colour co-occurrence approach for classifying the different 

types of nursery stocks with an accuracy of 91%. Burks et al. (2001) developed a weed 

discrimination system based on CCMs followed by statistical discriminant analysis and stated an 

overall accuracy of 93%. Burks et al. (2005) reported an increased weed classification accuracy of 

97% using a similar approach with a back-propagation neural network based classification system. 

Significantly higher weed classification rates by using CCMs with relatively low computational 

time make it a good candidate for real-time goldenrod detection. 

2.4 Machine Learning Techniques for Plant Cover Classification  

The quantitative textural features can be employed to develop a classifying criterion which 

can be utilized to supervise the classification of a new unknown observation into one of the two or 

more classes/groups (Pao, 1989). This classification criterion can learn from externally supplied 

successive real field plant cover instances to make predictions about similar future instances 
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(Marchant and Onyango, 2003) and will be able to adapt to any unforeseen changes in data on the 

basis of the similarity of supplied instances (Pao, 1989). A large number of techniques can be 

utilized to develop these classification criterions on the basis of the dimensional nature of input 

data and output classes. These techniques; however, can be broadly categorized into two basic 

types, statistical and artificial intelligence-based techniques.  

2.4.1 Statistical Classifiers 

The statistical methods for creating the classification rule are developed on basic 

probability theory of calculating the probability of belonging to an individual class. These methods 

were used in a large number of studies to discriminate the weed from crop plants. Gebhardt et al. 

(2006) used maximum-likelihood classification method to discriminate between the broadleaf 

weed species and reported an overall classification accuracy ranging from 71% to 91%. A similar 

approach for identifying the broadleaf weed patches reported the overall accuracy of 91.3% (de 

Castro et al., 2013). 

  Shearer and Holmes (1990) developed a weed classification criterion by modeling the 

textural features extracted from the CCMs through the generalized squared distances based 

discrimination procedure and were able to achieve a maximum classification accuracy of 90.9% 

on the test image dataset with the parametric model. Lee et al. (1999) adopted this approach and 

developed a robotic weed control system for the tomatoes. They were able to correctly classify the 

68.8% and 73.1% of the tomatoes and weeds, respectively.  

Meyer et al. (1998) used the contrast enhancement and gray level co-occurrence matrices 

along with the statistical methods for classifying the two species of grasses, broadleaf weeds, and 

the soil residue. In addition to the Bayesian approach, they used the canonical correlation approach 

to finding the linear combination of only two quantitative variables best modeling the class 
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differences. Chang et al. (2012a) followed the same statistical pattern for classifying the bare spots, 

wild blueberry plants, and weeds. They reported the maximum achievable accuracies of 100.0%, 

98.9% and 93.9% for the bare spots, wild blueberry, and weeds, respectively with linear 

discriminant function. The similar statistical techniques can be utilized to model the CCM features 

for the prediction of the goldenrod in the wild blueberry cropping system and may result in the 

real-time herbicide applications. 

2.4.2 Artificial Neural Network Classifiers 

Artificial neural network (ANN) is an information-processing framework based on the 

structure of the biological neural system which learns the association between the input and output 

variables (Tu, 1996). The key element of this paradigm is the novel structure of the information 

processing system capable of extracting the useful classifying non-linear functional relationships 

(Pao, 1989). Yang et al. (2002) developed the ANN based classifying relationship for the 

identification of crops and weeds in maize fields. The ANN model with the classical vegetative 

index from each pixel was developed to discriminate between maize plants and weeds. The results 

evaluated that the artificial neural networks have the potential for accurate and fast image 

processing and identification. The correct classification rate was found to be 90-100% for corn and 

60-70% for the weeds. 

  Tang et al. (1999) characterized the images into broadleaf and grass categories with 100% 

classification accuracies using the Gabor wavelet based textural analysis algorithm followed by 

the three-layered feedforward, back-propagation ANN classifier. Cho et al. (2002) modeled the 

canopy shape features using the ANN classifier trained with the Log-Sigmoid function for 

delineating the weed plants from radish fields. They achieved approximately 93% accuracy in both 

cases. Burks et al. (2005) compared the performance of four ANN classifiers modeled through the 
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CCM features. The results of their study indicated that back-propagation ANN classifier resulted 

in the highest classification accuracy of 97% along with the low computational requirements.  

Kavdır (2004) applied the ANN classifiers to distinguish between sunflower plants and 

cocklebur weeds. A back-propagation neural network classifier was developed to achieve a 

maximum classification accuracy of 95.3%. The real advantage of using multi-layered ANN 

classifiers is their ability to learn nonlinear decision surfaces (White, 1989) and their ability to 

outperform the statistical classifiers particularly in the case of multiple processing systems (Burks 

et al., 2005). These ANN based classifiers can be developed through the CCM based features for 

the prediction of the goldenrod in the real-time and can be compared with the statistical approaches 

to select the most accurate classifier for practical applications. 

2.5 Graphical User Interfaces for Agricultural Applications 

The development of graphical user interfaces (GUIs) can provide the on-screen updates of 

continuous real-time sensed data, mapped geographical locations and can help in monitoring and 

managing the sensed data for different agricultural applications (Schumann and Zaman, 2005; 

Zaman et al., 2008; Swain et al., 2010; Zaman et al., 2010; Chang et al., 2012b; Farooque et al., 

2013). Schumann and Zaman (2005) devised a 32-bit Windows-based GUI with a sensing mast of 

ultrasonic sensors and differential global positioning system (DGPS) for real-time citrus tree 

canopy volume and tree height estimation. In addition to the real-time updates of acquired data on 

computer display unit, this GUI possesses the functionality of generating Microsoft Access 

database of the graphical location of the individual tree along with its height and canopy cross-

sectional area.  

Ramsey (2015) designed a GUI for providing the real-time dynamically updated value of 

the plant height measurement, bale chamber position, hydraulic pressure to weigh the hay bales, 



16 
 

moisture sensor output, and GPS location. They developed another Windows based GUI to mark 

the current positions of the rounded hay bales on a map along with the direction of travel for 

providing the information to the bales collection unit. Zaman et al. (2010) evaluated a GUI capable 

of communicating with custom made slope sensor. The GUI was capable of displaying the vehicle 

speed data along with the slope information on the main display page and storing the slope 

information along with the GPS co-ordinates in the central database. Farooque et al. (2013) 

configured the multiple sensors to sense the plant height, fruit yield, and topographic features. All 

these sensors connectively integrated with a GUI for providing the real-time sensed data and GPS 

location.  

Chang et al. (2012b) developed an automated wild blueberry yield monitoring system 

consisting of two digital cameras and a real-time kinematics GPS (RTK-GPS) along with a GUI 

for real-time display of acquired images to observe the performance of the cameras. Similarly, a 

GUI for controlling multiple cameras and nozzles with an embedded CCMs based algorithm can 

be developed for wild blueberry fields to target goldenrod site-specifically.  

2.6 Smart Spraying System 

Weeds do not grow uniformly; there is always significant spatial variability in weed plant 

density and weed type across a field (Lamb and Brown, 2001). However, for operational 

effectiveness and conformity, the normal psyche of human-being is to spray the entire field at a 

uniform rate (Stafford and Miller, 1993). 

The core goal of chemical application systems is to apply chemical or biological crop 

protection products to increase crop growth, health, and yield. Many variable rate (VR) spraying 

technologies have been developed to control various weed species (Shearer and Holmes, 1990; 

Franz et al., 1991; Tang et al., 1999; Perez et al., 2000; Burks et al., 2005). Zaman et al. (2011) 
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developed a VR sprayer by using cost-effective ultrasonic sensors in conjunction with a VR 

controller interfaced to a pocket PC to detect any prevailing height difference between wild 

blueberry plants and weeds. Although, the system performed well in real-time applications, but, 

non-detectable height difference due to overlapped canopies proved to be a key element for the 

failure of the product.  

Chang et al. (2014) hypothesized that optical variability of terrain can play a pivotal role 

in weed-crop segmentation systems and developed green ratio algorithm coupled with classical 

approach of thresholding to identify bare spots, green weeds (fescue grasses and sheep sorrel) and 

wild blueberry plants. This algorithm was capable of spraying the newly emerging green weeds, 

fungus and mosses against well contrasting reddish pruned wild blueberry plants (Chang et al., 

2014; Esau et al., 2014) but, due to optical resemblance; green ratio algorithm was not able to 

identify goldenrod leaving behind the problem as unsolved (Chang, 2016).      

Chang et al. (2012a) developed CCMs from six-bit luminance and HSI images and 

extracted a set of eleven textural features to delineate blueberry and weed species. They used 

statistical multivariate linear classifiers to perform weed identification task. This texture based 

algorithm did not perform well for goldenrod discrimination from wild blueberry plants (Chang, 

2016). Percival et al. (2014) retrofitted a commercially available boom sprayer with a commercial 

weed seeker for real time pre-emergent herbicide application. This arrangement did not show 

acceptable goldenrod detection accuracy resulting into a commercially non-viable option.  

To date, little attention has been given to goldenrod, a weed that is very common in wild 

blueberry fields. Advances in sensing technology and VR control systems allowing them to 

respond quickly have offered cost-effective alternatives for weed detection. Furthermore, there is 

great potential for herbicide saving by targeting the goldenrod and varying the application rate to 
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its density; this further emphasizes the need to develop an algorithm to differentiate goldenrod 

from blueberry plants for spot application of herbicide with the sprayer. Spot application of 

herbicide on goldenrod will not only provide better weed control but also ensure economic and 

environmental sustainability. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Mobile Field Imaging System  

3.1.1 Image Acquisition Hardware  

Image acquisition hardware consisted of four μEye CMOS, USB 2.0 colour cameras (UI-

1240-LE, IDS Imaging Development System Inc., Woburn, MA, USA), having a sensor resolution 

of 1280 × 1024 (horizontal × vertical) pixels. The imaging sensor (EV76C560CT, e2v 

Technologies Ltd., Essex, UK) had a depth of 8-bits which resulted in the 256 (28) different 

intensity levels for a single colour channel.  The sensor used nineteen pixels for true black level 

adjustment and six pixels on each side for protecting the active photodiodes resulting in the fill 

factor of 98.09 %. The sensor was covered with a grid pattern of red-green-green-blue (RGGB) 

Bayer filter to generate a colour image and had a dynamic range of 71.12 decibel (dB). The 

quantum efficiency of the sensor can vary between 10% and 45% depending upon the wavelength 

of incident visible light (UI-1240-LE, camera fact sheet, IDS Imaging Development System Inc., 

Woburn, MA, USA).  

The cameras were fitted on a 6.1 m long boom at a spacing of 1.52 m. This boom was fixed 

on the back of utility task vehicle (UTV) Gator™ XUV 825i (Deere and Company, Moline, IL, 

USA) at a height of 1.22 m from ground surface. Camera outputs were routed through 12.2 m long 

USB 2.0 active link extension cables (Sabrent CB-USBXT, Miami, FL, USA) to a 2.70-gigahertz 

(GHz) Intel® Core™ i7 central processing unit (CPU) and 8.00-gigabyte (GB) random access 

memory (RAM) fan-less commercial computer (SP675HP, Unicomp Laboratories Inc., NY, USA) 

installed with 64-bit Windows 7 operating system (Microsoft Corp, Redmond, WA, USA). The 

computer was powered by a 200 W, 12 Volt direct current (DC) to 120 Volt alternating current 

(AC) Eliminator™ inverter (Motomaster Inc., Watford, UK) through cigarette lighter receptacle 
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fixed inside the UTV cabin. A Garmin® GPS 18x receiver (Garmin International Inc., Olathe, KS, 

USA) was also connected to the computer through a RS232 communication cable. 

The wide angle field of view C-mount lenses (LM4NCL, Kowa Optimed Inc., Torrance, 

CA, USA) having a focal length of 3.5 mm were fixed with cameras. The 3.5 mm lenses were 

selected to perfectly match with camera sensor size and to capture more details in a single frame 

because of deeper depth of field. The lenses had manual iris and focus control that helped in 

adjusting the aperture and focus. All the lenses were setup to a fix aperture of f/4.0 to cover both 

very bright and dark images in real-time outdoor illumination conditions. Furthermore, the 

exposure time and digital gain were controlled automatically by auto exposure shutter (AES), auto 

gain control (AGC), and auto white balance (AWB) controls inside the custom made image 

acquisition GUI to adjust for variable outdoor illumination conditions. The focus of the lenses was 

setup to the infinity distance to include 1.22 m (height of camera above ground surface) with 

enough depth of field during the operation of image acquisition system. The ground resolution was 

2.36 m × 1.89 m (horizontal × vertical) on flat ground with this camera-lens arrangement and each 

pixel covered a flat ground area of approximately 0.18 cm × 0.18 cm (horizontal × vertical). 

3.1.2 Image Acquisition Interface 

A custom image acquisition GUI program was developed during this study using C# 

programming language (Microsoft Corp, Redmond, WA, USA) for a 64-bit Windows 7 operating 

system. The GUI continuously acquire, store, and display the images from four different μEye 

cameras in real-time (Figure 3-1). The GUI was developed using a “Form” graphical element from 

the .NET framework library. The GUI merged different objects that displayed the information on 

computer screen and enabled the operator to interact with application via a mouse, keyboard, or 

touch screen. The GUI incorporated setup, configuration, and real time monitoring features, to 



21 
 

select the appropriate computer peripherals, and to diagnose correct operation of GPS and cameras 

individually.  

 

Figure 3-1: Windows based GUI showing different controls and camera images. 

An array of “Camera _ Handler” objects was created inside the GUI for initializing the 

physical cameras using a “for” loop, allocating the memory for a particular image, and initiating 

the image acquisition process (Figure 3-2). The physical identification number (ID) of cameras 

was set from 1 to 4. This ID was utilized as an index number of array along with looping structure 

for initializing driver, memory allocation, and image acquisition procedures for all four cameras 

at a time. All cameras were initialized by using “Init” command which started the μEye camera 

driver and established secure connection between them. The “Allocate” command was utilized to 

allocate the particular section of the computer’s memory heap according to image size and “Set 
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active” command activated the allocated memory to receive the image data in conjunction with 

“Freeze” command for image acquisition.  

 

Figure 3-2: Flowchart showing process from image acquisition to display and storage. 

Each camera was capable of capturing a frame of 1280 × 1024 pixels; however, an area of 

interest (AOI) having a size of 768 × 128 pixels was defined by setting the required width, height, 

and location of the image during memory allocation. The ground resolution of AOI image was 

1.52 m × 0.31 m resulting in exact match of image width to camera spacing. The AOI image was 

located at the coordinates of [200, 200] from top left corner of full frame (Figure 3-3). This location 

for AOI image was selected to reduce the barrel effect on the sides of a full image frame caused 

by the wide angle lens. The AOI was not extracted from the center of the full frame image to allow 

for a greater buffer distance and extra time for CCM and textural analysis of an AOI image. All 

cameras were programmed to acquire 24-bits per pixel (bpp) blue-green-red (BGR) colour images. 

As height of the AOI image was 0.31 m, therefore a new frame was captured after every 0.31 m 

distance. The BGR channel arrangement for image acquisition was selected to perfectly match the 
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Windows graphics device interface (GDI) for later laboratory and real-time image processing 

along with proper on-screen display. TheGUI also had functionality of checking the number of 

cameras attached to computer and allowed the operator to select particular cameras in case 

additional useable cameras (more than 4) were detected. An error report generator was also 

incorporated in program to check for any error associated with cameras and display it on GUI in 

real-time.   

 

Figure 3-3: Diagram showing the AOI image location with reference to the full frame (all 

dimensions are in pixels). Barrel effect can be seen in each corner of the image. 

Four “Picture Box” controls were added to GUI for displaying the acquired AOI images of 

four cameras in real time. As the image acquisition process is completed, an event was raised to 

display the image in each picture box. An event handler named “EventFrame” for “Camera_ 

Handler” objects was declared to define parameters that were passed to a method responsible for 

handling the image display. A delegate referring to particular was first created. This delegate was 

responsible for invoking the display method when the event handler was raised. The image display 
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was set to device independent bitmap mode (DiB) which is compatible with all graphics cards 

resulting in more easily and user friendly transfer of the GUI to other computers. The display 

rendering mode was set to the “Fit to Window” so that all the acquired the AOI images can be 

displayed properly in the picture boxes.  

The GUI featured automatic camera parameters adjustment controls to come up with best 

quality pictures and to minimize the effects caused by varying outdoor illumination conditions. 

These automatic parameters were AES, AGC, and auto AWB. The AES function adjusted the 

exposure time automatically to control the image brightness. However, the motion blur caused by 

the long term exposure under low light condition, was avoided by setting the maximum exposure 

time to 2 milliseconds (ms). The AGC function enhanced the image brightness and contrast by 

controlling the master gain (global gain) value for all the pixels to capture images in cloudy and 

dark conditions. The artifacts caused by high gain settings were controlled by fixing the maximum 

gain to a value of 50. These two automatic controls were prioritized in a way that the AES had the 

highest priority and was set first on the basis of outdoor illumination conditions (bright sunny 

condition, cloudy condition, or dark condition) and then AGC was adjusted accordingly depending 

upon the requirement. The AWB control automatically adjusted the white level of the image to 

reduce the colour casting effect caused by the different colour temperatures of the light. This 

feature utilized the BGR channels gain for white level adjustment. As the variability in colour 

temperatures causes the colour offset to red hue or blue hue therefore; the gain controls were 

adjusted until the red and blue channel brightness matches the average brightness of green channel.  

In order to connect the GPS receiver with the GUI, a “serial port” component was added 

to the GUI with a baud rate, number of data bits, parity, and number of stop bits set by default to 

9600, 8, none, and 1, respectively. A GPS communication control box was also added to GUI for 
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selecting the appropriate RS232 port, changing the baud rate, a text box for displaying the ground 

speed data, and a button control for opening the serial port component. As soon as secure 

connection between serial port and GPS receiver was established, a read-only empty string was 

created for receiving incoming text strings of GPS receiver. The recommended minimum data for 

GPS (RMC) sentence of the National Marine Electronics Association (NMEA-0183) was 

separated from incoming strings, parsed, and saved in single line program array. The ground speed 

(in knots) was parsed from GPS string and converted into the metric unit, using the relationship 

speed (km hr-1) = 1.852 × speed (knots). This converted speed was again parsed back to string data 

type to display it on GUI.  

Two timer interrupt routines were created in GUI by utilizing standard Windows based 

timer. One interrupt was utilized for refreshing the raw NMEA sentence protocols at a rate of 5 Hz 

and another for triggering the cameras to grab new frame after UTV covered a distance of 0.31 m 

in direction of travel. The ground speed data served as source information for calculating the time 

required to cover 0.31 m distance and handed it over to second interrupt routine for updating the 

cameras trigger time. The “Timer.Tick” event was invoked when the time interval defined in 

milliseconds (ms) by “Timer.Interval” property had elapsed. The default timer routine for 

triggering the cameras was set to 200 ms in case of GPS receiver signal outage.  

The GUI also had “Camera” and “Save” button controls for initializing the whole image 

acquisition/display process and saving the images in specified folder. The default directory was 

set to the “C:\\” using “GetFolderPath” method of the “Environment” class. The “Personal” 

enumeration of “SpecialFolder” class was utilized to access the “Desktop” and folder for saving 

the images was named as “uEye_Camera_Images”. The GUI looked for this folder on desktop and 

all images were stored in it. The “CreateDirectory” method of the “Directory” class was utilized 
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to create the “uEye_Camera_Images” in case it was not available on the desktop. The images from 

all the cameras were stored in the Windows bitmap (BMP) file format to prevent any loss of 

information caused by image compressions. This is achieved by applying a “.bmp |*.bmp” filter 

property of “File Dialogue” class. The developed GUI along with image acquisition hardware was 

utilized for acquiring, displaying, and saving images.   

3.1.2.1 Exceptions and Error Handling Capabilities of the Interface 

The usability of image acquisition GUI was enhanced by adding error handling layouts. 

The error handling schemes were divided into two categories, one for handling an exception (non-

frequent error) to a certain predefined rule and another for severe problems. The exceptions were 

handled by using an exception throwing mechanism that enabled the program to continue 

executing as if no problems were encountered. An exception was shown by displaying a dialogue 

box containing information about the error and required actions from user. The severe problems 

were those that caused the program to terminate by notifying the user about error instead of 

continuing normal execution. The severe error handling mechanisms included the camera-driver 

connection, memory allocation, image capturing, camera counting, error report generator, and GPS 

connection checking routines. In addition to the error handler for camera-driver connection, an 

exception handler was also added to notify the user in case any camera was not properly connected 

to computer and initiate image acquisition process with available cameras. This exception handler 

was also responsible for throwing a notification message if any camera connection was lost during 

the real-field operation of image acquisition GUI. Similarly, an exception handler was added for 

camera counter function to inform the user about the additional cameras connected to the 

computer. Almost all the dialogue boxes either used for the severe errors or exceptions were 

designed as modal and required user response before associated program can continue. However, 
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the exception handler associated with camera initialization was designed as modaless thereby 

allowing the program to continue image execution even only one camera is securely connected to 

the computer.   

3.2 Algorithm Development for Goldenrod Detection 

Image data include large amount of information, such as colour, texture, and shape. Images 

of real objects do not have uniform properties, but texture can give information about the image 

through repetition of some specific pattern. It is one of the most important characteristics in 

identifying the objects or regions of interest in the images (Julesz, 1962). CCMs based texture 

analysis method was opted for this study because of its wide spread agricultural applications 

(Shearer and Holmes, 1990; Burks et al., 2001; Pydipati et al., 2005; Roy et al., 2006; Tahir et al., 

2007; Kim et al., 2009) and higher object classification rate (Burks et al., 2005; Tahir et al., 2007). 

The CCMs were developed by extending the idea of spatial gray-level dependence matrices 

(Haralick et al., 1973) to colour images (Shearer and Holmes, 1990).  

3.2.1 Programming Scope and Objective 

The primary objective of GDS was to develop a C# based GUI capable of reading the BGR 

AOI images in computer RAM directly coming from camera, creating HSI colour images, 

generating three CCMs from an AOI image, extracting textural features from each CCM, model 

these features into a meaningful result in terms of goldenrod detection and trigger the powering 

signal to solenoid valves attached to nozzles depending upon target detection. A streamlined 

version QGDS (Quick Goldenrod Detection System) of GDS was also developed for laboratory 

scale image analysis. The main advantage of the QGDS was its batch mode file handling algorithm 

for generating the CCMs and feature extraction. Moreover, this system was also capable of 

generating a database of extracted features by transferring them to a comma separated value (CSV) 
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file. The functionality of QGDS program was limited to the CCMs features extraction. Otherwise, 

the basic goal of image reading and processing was the same as found in GDS. Both GDS and 

QGDS were checked for image processing time, optimized, and selected based on their 

performance and compatibility.  

3.2.2 Changing the Colour Model  

The preliminary step adopted for construction of CCMs was the conversion of original 

images having BGR channels to HSI colour space. This colour space is adopted due to its strong 

tolerance towards any change in lighting condition or reflection (Shearer and Homes, 1990). The 

hue channel of HSI colour space represented the purity of colour such as pure red, green, and blue 

in terms of degree, whereas saturation represented the measure 1 to 0 to which pure colour is 

diluted by neutral colour (Gonzalez and Woods, 2008). The blue (B), green (G), and red (R) 

intensity levels of individual pixel of an image were utilized to calculate the H, S, and I components 

of that pixel by using the geometrical transformation relationships (Eqs. 3-1 – 3-4). These 

relationships are defined by the International Commission on Illumination (CIE) chromaticity 

diagram (Gonzalez and Woods, 2008). 

ϴ = cos−1{

1
2 [
(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)]1/2
} ⁡ (3-1) 

𝐻 = {
ϴ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡B ≤ G⁡

360 − ϴ⁡⁡⁡⁡if⁡B > 𝐺⁡
} (3-2) 

𝑆 = {1 −
3

𝑅 + 𝐺 + 𝐵
⁡[𝑀𝑖𝑛(𝑅,𝑀𝑖𝑛(𝐺, 𝐵)]} (3-3) 

𝐼 = (𝐵 + 𝐺 + 𝑅)/3 (3-4) 

A “Colour Conversion” class was developed for this project to read an AOI image coming 

from the camera using “Marshal.copy” method. This class encapsulated a “RGB2HSI” method for 

converting the input colour AOI image streaming to HSI images. The input parameters of this 
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method were set to source image in bitmap format and camera Id for tracking image source. The 

argument values representing the AOI image along with its format and camera id were supplied to 

these parameters on method call. Three 1D arrays namely “byteHue, byteSaturation, and 

byteIntensity” were created in this class. The size of these objects was equal to AOI image size 

rounded up to 4-byte of AOI image width. These objects were created for storing the converted 

images. As the acquired AOI images were in 24bpp (8-bits for three channels) format, therefore, 

a newly calculated H, S, or I value was applied to all channels for individual pixel to change it into 

respective new colour plane. A “for” loop was utilized to iterate the method call for every pixel in 

an AOI image thrice to generate three new H, S, and I images.   

The “divided by zero” exception was thrown by the method for pixels having same 

intensity level for all three B, G, and R channels. The similar exception was observed for the pixels 

with intensity level in all three channels equal to zero. However, the divided by zero exception 

was avoided by adding a very small factor (1 × 10-6) in the denominator of hue and saturation 

relationships (Eqs. 3-5 – 3-6).  

θ = cos−1{

1
2 [
(𝑅 − 𝐺) + (𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)]1/2 + 1 ∗ ⁡10−6
} ⁡ (3-5) 

𝑆 = 255 ∗ {1 −
3

𝑅 + 𝐺 + 𝐵 + 1 ∗ ⁡10−6
⁡[𝑀𝑖𝑛(𝑅,𝑀𝑖𝑛(𝐺, 𝐵)]} (3-6) 

The H colour plane in this study was defined in terms of circle. This is because the angle 

(θ = 360o) of circle can be easily normalized in the range [0, 1]. This normalized angle was then 

linearly transformed to 256 different intensity levels for calculating the H of particular pixel 

depending upon its B, G, and R components (Eq. 3-7).  
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𝐻 = {

ϴ

360
∗ 255⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡B ≤ G⁡

360 − ϴ

360
∗ 255⁡⁡⁡⁡if⁡B > 𝐺⁡

} (3-7) 

 

3.2.3 An Overview of Colour Co-occurrence Matrices  

One of the defining qualities of the texture is spatial distribution of gray values associated 

with individual pixel of an image. The CCMs are based on assumption that overall or average 

spatial relationship of pixels defines the texture of image (Shearer and Holmes, 1990). These 

matrices are in essence a measure of relative frequencies with which two neighboring pixels, 

separated by a distance “d” occur in image; one with intensity level “i”; the other with intensity 

level “j” and assigning these frequencies to a new spatial location defined by tonal values (i, j). An 

Image [I (x, y), 0 ≤ x ≤ Nx-1, 0 ≤ y ≤ Ny -1 with G intensity levels] can be utilized to generate a G 

× G co-occurrence matrix [P (i, j, d, θ)] for a distance vector d (dx, dy) as follows; 

𝑃(𝑖, 𝑗, 𝑑, 𝜃) = 𝑓𝑟𝑒𝑞{⁡((𝑟, 𝑠), (𝑡, 𝑣)) ∈ I ((𝑁𝑥, 𝑁𝑦), (𝑁𝑥, 𝑁𝑦))} 
(3-8) 

 

Where (r, s) represents coordinate of image I with intensity level i, (t, v) represents 

coordinate of image I with intensity level 𝑗, Nx is horizontal spatial domain of image I,  Ny is 

vertical spatial domain of image I, d is distance to consider two pixels as neighboring pixels, θ is 

angular relationship between two neighboring pixels, and freq is frequency of elements in the set. 

3.2.4 Conceptualization (Construction) of Colour Co-Occurrence Matrices 

The development of CCM was conceptualized by using an imaginary 4 × 4 image (I) with 

4 intensity levels ranging from 0 to 3 (Figure 3-5a), where 0 represented the darkest and 3 as 

brightest pixels of image. These intensity levels determined the dimensions of CCM as it was 

proportional to G × G. The reference pixel was marked with asterisk sign and the surrounding 
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nearest neighbors were labeled from 1 to 8 in a clockwise direction (Figure 3-6b, other entries 

were kept intentionally blank). All these neighbors were located at a distance equal to 1. Neighbors 

labelled 1 and 5 were located at a distance of one pixel and orientation of 0 o from the reference 

pixel located at (x, y).  

  

(a) (b) 

Figure 3-4: Diagram showing the framework for CCM construction (a) Imaginary 4 × 4 image (b) 

Labelled image showing the nearest neighbors.    

The feed forward mechanism of image scanning was utilized to generate the horizontal set 

(RH) of nearest neighbor pixel pairs with intensity levels i and⁡𝑗. In order to generate the symmetric 

CCM, the image was scanned again in reverse feed mode to find the pairs separated by distance of 

– d and were added in the set (Eq. 3-8).   

𝑅𝐻 = {[(0)(0)], [(0)(0)], [(0)(1)], [(1)(0)], [(1)(1)], [(1)(1)], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[(0)(0)], [(0)(0)], [(0)(1)], [(1)(0)], [(1)(1)], [(1)(1)], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[(0)(2)], [(2)(0)], [(2)(2)], [(2)(2)], [(2)(2)], [(2)(2)], 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[(2)(2)], [(2)(2)], [(2)(3)], [(3)(2)], [(3)(3)], [(3)(3)]} 

The numbers of pairs with intensity level i and 𝑗 in the set (RH) were counted and placed 

in the matrix (CCM) at a point whose geometric bounds were defined as (i,⁡𝑗). For example, the 
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element at (2, 3) position of horizontal CCM with a displacement vector of 1 pixel was total 

number of times the two intensity levels with values 2 and 3 occurred horizontally. Extending this 

concept to additional orientations and summing the results over the entire image, four CCMs were 

developed from this imaginary image (Figure 3-6).  

 

(a)                                                                                 (b) 

 

(c)                                                                                 (d) 

Figure 3-5: Four CCMs at four different orientations with d=1 (a) P (i, j, 1, 0), red circle indicates 

the number of highlighted pairs from RH (b) P (i, j, 1, 90) (c) (i, j, 1, 45) (d) (i, j, 1, 135). 

These CCMs were then normalized (Haralick et al., 1973) by dividing the individual entity 

in matrix by total number of pairs in each matrix (Eq. 3-9). Normalizing the CCMs resulted in 
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entities ranging from 0 to 1 which was in streamline with probability rule of minimum and 

maximum probabilities (Figure 3-6).  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑝(𝑖, 𝑗, 𝑑, 𝜃) =
𝑃(𝑖, 𝑗)

𝐶(𝑖,𝑗,𝑑,𝜃)
 (3-9) 

 

Where 𝐶(𝑖,𝑗,𝑑,𝜃)⁡is total number of pairs in matrix with specific orientation and displacement vector. 

 

 

(a)                                                                                 (b) 

 

(c)                                                                                 (d) 

Figure 3-6: Four normalized CCMs at four different orientations with d=1 (a) p (i, j, 1, 0) with Cij 

= 24 (b) p (i, j, 1, 90) with Cij = 24 (c) p (i, j, 1, 45) with Cij = 18 (d) p (i, j, 1, 135) with Cij = 18. 
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3.2.5 C# implementation of CCMs and Textural Features (CCM Class Construction) 

In this study, six unit images of 128 × 128 pixels extracted from an AOI were utilized to 

control the spray nozzles of a VR sprayer. The unit images were generated to minimize the canopy 

overlap of goldenrod and wild blueberry plants and helped in preparing the images for supervised 

learning. This also resulted in improving the learning mechanism and overall efficiency of the 

statistical and back-propagation artificial neural network (BP-ANN) architecture based models 

(section 4.3.3). Each unit image was utilized to generate three HSI colour images and each new 

HSI image was utilized to develop a CCM thus resulting a total of eighteen CCMs (6 unit images 

and 3 CCMs from a unit image). Unit images of 64 × 64 pixels (total 24 images from an AOI) and 

32 × 32 pixels (total 96 images from an AOI) can help to reduce the canopy overlap further, but 

processing the large number of unit images from an AOI may result in increased overall processing 

time. Moreover, manual classification of smaller size unit images with naked eye and preparing 

them for supervised learning purposes resulted in increased complexity.   

The concept of CCMs was implemented in C# by developing a “CCM” class responsible 

for creating eighteen CCMs from three HSI colour images, normalizing these CCMs and extracting 

a set of 13 features from individual CCM. In case of the QGDS system these features were stored 

in the database file, while in GDS system these features were utilized for further processing. As 

frequency in the CCMs is a function of angular relationship and distance between neighboring 

pixels therefore, in this study; an angular relationship of 0o and a displacement vector of 1 pixel 

were selected for CCM construction. The displacement vector of 1 pixel was selected as it provided 

the best result when varied between 1 and 5 (Chang et al., 2012a). Additionally, the textural 

features were not significantly affected by different orientation angles (0o, 45o, 90o, 135o) as long 
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as the displacement vector is 1 pixel (Burks, 1997). This resulted into the reduction of twelve 

CCMs from a unit image to only three CCMs.  

A looping mechanism along with the modified index bounds defined by starting location 

and original index of the one dimensional colour image array was utilized to partition a single H, 

S, or I image into six two dimensional CCMs from an AOI image (768 × 128 pixels) by utilizing 

the following relationship. 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑⁡𝐼𝑛𝑑𝑒𝑥⁡𝐵𝑜𝑢𝑛𝑑 = 𝑖 ∗ 𝑊𝑖𝑑𝑡ℎ ∗ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 + 𝑥𝑖 ∗ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 + 𝑗 ∗ 𝐶ℎ𝑎𝑛𝑙𝑒𝑠 (3-10) 

  

Where i is index bound to access the information in rows of HSI images, j is index bound 

to access the information in columns of HSI images, Width is AOI image width (768), xi is starting 

location of the CCM with reference to 1D image array and Channels represented number of colour 

channels in an AOI image. 

The loops incrementally selected each element in 1D HSI arrays by performing 128 

iterations. Upon each iteration, two dimensional CCM arrays were evaluated and updated on the 

basis of element being processed during that iteration. The starting location of six CCMs with 

reference to 1D image array were set with an interval of 128 elements starting from 0 for first 

CCM and ending on 640 for last CCM. The width during the scanning of one dimensional image 

array was limited by defining the maximum limit of the original column index bound to 127 using 

a “for” loop. The completion of the loop resulted in the development of a CCM. This whole process 

was repeated for all three HSI images. All the CCMs were normalized by dividing the individual 

entity with a constant factor of “32512” calculated for displacement vector of 1 pixel and angular 

relationship of 0o (𝐶(𝑖,𝑗,1,0)).   



36 
 

A process of extracting a set of 13 features was repeated HSI CCMs individually resulting 

in a total of 39 features from an individual unit image (128 × 128). This set was based on the 

textural features used by Shearer and Holmes (1990) with two additional features “contrast” and 

“homogeneity”. Instead of defining thirteen variables for a unit image, three arrays (hf [6, 13], sf 

[6, 13], and If [6, 13]) were defined for storing the CCM features for three HSI images. The row 

index of these arrays defined the number of unit images and column defined the number of features 

to be extracted from CCMs. For example, sf [1, 2] represented the second saturation feature of first 

unit image. The similar interpretations can be extended to hue and intensity images. The order of 

the features calculation and assignment to respective arrays was done in an order that minimizes 

the repetitive calculations. Two loops were utilized to iterate the feature calculation subroutines 

256 times to extract the information contained in individual CCM. The following is a list of textural 

features extracted from an individual CCM.   

Angular Second Moment (ASM): 

  The angular second moment calculated the level of uniformity of an image (Shearer and 

Holmes, 1990). For a uniform image with fewer intensity transitions, CCMs had fewer entries of 

large magnitude resulting into high ASM. Conversely, a numerous entries of small magnitude 

resulted in smaller value of ASM feature from a non-uniform image.  

𝐹1 =⁡∑ ∑ 𝑝(𝑖, 𝑗)2
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0   (3-11) 

Where p(i, j) is normalized CCM. 

 

Contrast (CON): 

Contrast quantified local variations in images. It measured the intensity variations between 

the reference pixel and its neighbor. In visual perception of real world, the similar intensity level 
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means the same contrast; therefore, a lower weightage was given to frequency of similar intensities 

occurring together and frequency of extremely different intensities occurring together were given 

the high weightage in contrast calculation.  

𝐹2 = ∑ (𝑖 − 𝑗)2{∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0 }

𝑁𝑔−1
𝑛=0   (3-12) 

Inverse Difference Moment (IDM): 

IDM computed the closeness of distribution of elements in image. The frequencies of 

similar intensities occurring together were given higher weightage as compared to frequency of 

extremely different intensities. The pixels with similar intensity levels were grouped up in the 

leading diagonal of the CCMs, therefore the maximum weightage of 1 was given to those elements 

of CCMs. These weights continued to decrease exponentially as (i- j) or distance from diagonal 

increased. 

𝐹3 =⁡∑ ∑ 𝑝(𝑖, 𝑗)
1

1+(𝑖−𝑗)2
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0   (3-13) 

Homogeneity (HOM): 

This feature measured the homogeneity of image by quantifying the extent of intensity 

levels transition between two different pixels. Homogeneity weighs the pixels by inverse of 

contrast, with weights decreasing linearly away from the diagonal. Therefore, intensity levels with 

smaller differences were given the larger weights. The maximum value of the homogeneity can be 

achieved when all the elements in image are same. Homogeneity and inverse difference moments 

were inversely related to contrast in terms of pixel pair’s distribution.  

𝐹4 = ∑ ∑ 𝑝(𝑖, 𝑗)
1

1+|𝑖−𝑗|

𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0   (3-14) 
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Average (AVG):  

The mean of brightness data contained in an image was computed by utilizing this feature. 

There were two different averages from an individual CCM, one in the horizontal direction and 

other in vertical direction and can be calculated by using the CCMs row or column index. 

𝐹5 =⁡𝜇𝑥 = ∑ 𝑖⁡𝑝𝑥(𝑖)⁡⁡⁡⁡⁡⁡OR⁡⁡⁡⁡⁡⁡𝐹5 =⁡𝜇𝑦 = ∑ 𝑗⁡𝑝𝑦(𝑗)
𝑁𝑔−1
𝑗=0 ⁡

𝑁𝑔−1
𝑖=0   (3-15) 

The px (i) and py (j) represents the marginal probability matrices (Eq. 3-16). For symmetrical 

CCMs, these matrices were equivalent resulting into the similar average values in the horizontal 

and vertical direction.  

𝑝𝑥(𝑖) = ∑ 𝑝(𝑖, 𝑗)⁡⁡⁡OR⁡⁡⁡⁡𝑝𝑦(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔−1
𝑖=0

𝑁𝑔−1
𝑗=0   (3-16) 

Sum of Squares (SSQ): 

The variatio n in intensity levels of an image was identified by using the sum of squares. It 

measured the dispersion of intensity values about the mean by assuming normal distribution of 

intensity levels.  

𝐹6 = ∑ ∑ [(𝑖 − 𝜇𝑥)
2𝑝(𝑖, 𝑗)]

𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0   (3-17) 

Correlation (COR): 

The measure of linear dependences among two neighboring pixels exhibited the correlation 

among them. The greater degree of association among neighboring pixels resulted into higher 

value of correlation, whereas the greater intensity variability among neighboring pixels showed 

zero values. Its value ranged from 0 to 1, with 1 representing the perfectly correlated image 

intensities.   

𝐹7 = ∑ ∑ 𝑝(𝑖, 𝑗)
[(𝑖−𝜇𝑥)(𝑗−𝜇𝑦)]

𝜎𝑥𝜎𝑦

𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0   (3-18) 
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Product Moment (PM): 

The monotonic associativity among intensity levels of two neighboring pixels gave the 

information about their covariance (PM). The positive value of higher magnitude indicated that 

the probability of occurring the similar intensity levels together is higher.  

𝐹8 = ∑ ∑ (i − 𝐹5)(j − 𝐹5)p(i, j)
Ng−1
j=0

Ng−1
i=0   (3-19) 

Entropy (ENT): 

The quantitative measure of repetitive order of intensity values in an image defined its 

entropy. This feature determined the disorder or level of complexity in an image. An image having 

the more repetitive patterns of similar intensity levels result into the higher entropy value, thus 

indicating nature of complexity of objects contained in it.  

𝐹9 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ ∑ [𝑝(𝑖, 𝑗)⁡ℓn𝑝(𝑖, 𝑗)]
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0   (3-20) 

Sum and Difference Entropies (SENT and DENT): 

The sum and difference entropies are difficult to interpret (Shearer and Holmes, 1990). The 

frequencies summed along the major (leading) diagonal of CCMs resulted into difference matrix, 

while frequencies summed along the minor diagonal resulted into sum matrix.  

𝐹10 = 𝑆𝑢𝑚⁡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑥+𝑦(𝑘)⁡ℓ𝑛(𝑝𝑥+𝑦(𝑘)
2(𝑁𝑔−1)
𝑘=0 )  

(3-21) 

𝐹11 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ 𝑝𝑥−𝑦(𝑘)ℓ𝑛 (𝑝𝑥−𝑦(𝑘))
𝑁𝑔−1
𝑘=0   

(3-22) 

Where:  

𝑝𝑥+𝑦(𝑘) = 𝑆𝑢𝑚⁡𝑀𝑎𝑡𝑟𝑖𝑥 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0 ⁡𝑓𝑜𝑟⁡𝑘 = 0,1,2, … ,2(𝑁𝑔 − 1)  

                                                     𝑘 = 𝑖 + 𝑗         

(3-23) 

𝑝𝑥−𝑦(𝑘) = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡𝑀𝑎𝑡𝑟𝑖𝑥 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔−1
𝑗=0

𝑁𝑔−1
𝑖=0 𝑓𝑜𝑟⁡𝑘 = 0,1,2, … , (𝑁𝑔 − 1)⁡  

𝑘 = |𝑖 − 𝑗|⁡  

(3-24) 
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Information Measures of Correlation:  

These two features did not exhibit any physical meaning with exception that they are the 

ratios of different entropies (Haralick et al., 1973; Shearer and Holmes, 1990).  

𝐹12 = 𝐼𝑛𝑓𝑜. 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐼 = (𝐻𝑋𝑌 − 𝐻𝑋𝑌1)/max⁡(𝐻𝑋,𝐻𝑌)  
(3-25) 

 𝐹13 = 𝐼𝑛𝑓𝑜. 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 − 𝐼𝐼 = [1 − 𝑒𝑥𝑝−2(𝐻𝑋𝑌2−𝐻𝑋𝑌)]
1/2

  
(3-26) 

 

Where: 

𝐻𝑋𝑌1 = ⁡∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔−1
𝑗=0 ⁡ℓ𝑛(𝑝𝑥(𝑖)⁡𝑝𝑦(𝑗))

𝑁𝑔−1
𝑖=0   (3-27) 

𝐻𝑋𝑌 = 𝐸𝑁𝑇 = ⁡∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔−1
𝑗=0 ⁡ℓ𝑛(𝑝(𝑖, 𝑗))

𝑁𝑔−1
𝑖=0   (3-28) 

𝐻𝑋 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙⁡𝐸𝑁𝑇 =⁡∑ 𝑝𝑦(𝑗)
𝑁𝑔−1
𝑗=0 ⁡ℓ𝑛(𝑝𝑦(𝑗))  (3-29) 

𝐻𝑋 = 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙⁡𝐸𝑁𝑇 = ⁡∑ 𝑝𝑥(𝑖)
𝑁𝑔−1
𝑖=0 ⁡ℓ𝑛(𝑝𝑥(𝑖))  (3-30) 

𝐻𝑋𝑌2 =⁡∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)
𝑁𝑔−1
𝑗=0 ⁡ℓ𝑛(𝑝𝑥(𝑖)⁡𝑝𝑦(𝑗))

𝑁𝑔−1
𝑖=0   (3-31) 

 

The CCM class thrown “Not a Number (NaN)” exception for entropy terms of some 

images. After checking, it was found that the natural log (ln) of zero caused by zero entries in 

CCMs resulted into this exception. In order to handle this exception for zero entries in CCMs a 

small factor (1 × 10-6) was added to natural log section of the entropy terms. This added some 

biasness to the entropy features, but relatively small magnitude of term made it a good compromise 

for NaN exceptions. Some of these features were found to be highly correlated and quantified the 

similar properties in different ways. Many of them were found to be a linear combination or scalar 
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multiple of the other features, but because of their wide acceptability in agriculture (Shearer and 

Holmes, 1990; Roy et al., 2006; Tahir et al., 2007) they all were included in this study.   

3.3 Development of Plant Cover Classifiers 

3.3.1 Field Selection for Image Acquisition 

Four wild blueberry fields were selected in central Nova Scotia, Canada to develop an 

image library containing the images of goldenrod, wild blueberry, bare spots, and mixed canopies. 

The selected fields were North River I (45° 35' 54" N, 63° 21' 18" W), Cattle Market (45° 21' 52" 

N 63° 12 '46" W), Londonderry (45° 46' 59" N and 63° 33' 13" W), and North River II (45° 37' 

45" N, 63° 22' 19" W). The Cattle Market and North River I fields were in their vegetative growth 

year during 2015⁡and in crop year during 2016, while the Londonderry and North River II were in 

their crop year during the 2015 and in vegetative growth year during 2016. Over the past decade, 

these fields were commercially managed and received biennial pruning by mowing. The image 

library was built by acquiring the images during vegetative growth year from each field.  

3.3.2 Image Library Development 

A task of developing an image library was completed during summer of 2015 and 2016 by 

acquiring wild blueberry field images focused on goldenrod only, wild blueberry plants only, and 

mixed canopies. A set of 2701 full frame (1280 × 1024) images was added to library by acquiring 

the images from North River I and Cattle Market fields during 2015 and were stored in BMP file 

format to avoid any loss of necessary information. Images were acquired using a µEye camera 

(UI-1240-LE) fixed with 3.5mm lens at four different day times (8 AM to 9 AM, 11:30 AM to 

12:30 PM, 3 PM to 4 PM and 6:30 PM to 7:30 PM) with 100% shade (to mimic cloudy conditions), 

50% shade (for reflections) and no shade (natural sunny conditions) from four cardinal directions 

to include as much lightning and directional variability as possible in acquired data. A rectangular 
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frame of polyvinyl carbonate (PVC) pipe along with camera housing was made to mount camera 

at height similar to boom height of mobile field imaging system. This imaging arrangement 

resulted in relatively good quality images by eliminating the motion blur and hand shake effects 

during acquisition.  

Another set of 9,669 AOI images was added to image library by collecting the data from 

North River II and Londonderry fields using mobile field imaging system equipped with four 

cameras during summer 2016. Test tracks containing goldenrod patches were selected and data 

were acquired from two cardinal directions. To accommodate the effect caused by sun angle, the 

image acquisition process was repeated at different day times.    

3.3.3 Image Pre-Processing and CCM Statistics 

The image library was partitioned into two datasets containing 70% of the data for 

developing and training a wild blueberry and goldenrod segmentation classifier and 30% for 

validating the classifier. To ensure randomization in image selection for model development, 

images were arranged according to time in ascending order and two images from same location 

with two different cardinal directions were selected. This approach minimizes a negative time 

dependent variability, and reduced the potential for data selection bias between the training and 

validation test datasets. The AOI images were cropped from the full frame images acquired during 

2015 by using IrfanView. The relative location of the AOI image was [200, 200] from top left 

corner of full frame image. In order to isolate the individual class specimen, 128 × 128 pixel unit 

images were extracted from AOI images of both years. There were six unit images from individual 

AOI image. The extracted unit images were manually classified into wild blueberry (WBB) and 

goldenrod (GR), and were labeled with “spray” or “no spray” tags to aid the classifiers for learning 
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from these labels at later stage. The manually classified images were rotated thrice at 90˚ to 

increase the volume of data in both model training and testing phases.  

3.3.4 Selection Classifying Variables 

The extraction of 39 textural features from an individual unit image (128 × 128) can result 

into a total number of 234 features (39 × 6) from an AOI image.  All of 39 extracted features, have 

discriminating power; however, some variables contribute less towards the identification of 

goldenrod and wild blueberry. This might occur due to either class membership means that are not 

very different on these variables or some variables share the same discriminatory information even 

though they are individually good discriminators (Klecka, 1980). The inclusion of these variables 

in the classifying criterion can also decrease the precision of estimated coefficients and predicted 

values (Klecka, 1980). Another important logical factor for reducing the variable set is to minimize 

computational time and complexity (Shearer and Holmes, 1990). Therefore, feature selection 

procedure was carried out on training data to achieve a balance between simplicity (as few 

variables as possible) and fit (as many variables as needed) to minimize the size of features set.  

The process of extracting the sub-set of quantitative features was carried to fulfill the two 

opposing objectives. First, to make a classifying criterion as complete and realistic as possible by 

adding more and more features, and second to include as few features as possible to minimize the 

cost of low discriminatory features.  

3.3.4.1 Stepwise Discriminant Analysis 

The SAS PROC STEPDISC procedure (SAS Institute Inc., Cary, NC, USA) was used to 

select subsets (called as data models hereafter) of most suitable discriminating features from the 

training images by performing stepwise analysis. This procedure was first used for sifting through 

large numbers (39) of potential independent features and then for fine-tuning the selected data 
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model (DM) by moving the selected features in or out to get more balanced DM. The stepwise 

procedure consisting of the forward selection and backward elimination was opted during feature 

selection. At each forward step, an individual feature or a pair of features with greatest 

discriminatory power, as determined by the F-statistic and R2 between the groups mean, was 

added. After every forward step, DM with added features was analyzed to identify the feature that 

no longer makes any contribution to discriminatory power and was cast out although it remained 

eligible for reselection at any future forward selection step. The procedure of adding and removing 

the features from DM was continued until all possible features have been added or remaining 

features do not contribute a sufficient power. The feature addition and removal was assisted by 

defining the significance level to enter (F-to-enter) and significance level to remove (F-to-remove) 

thresholds. The threshold level for F-to-enter and F-to-remove were 0.0015 and 0.0010, 

respectively (Chang et al., 2012a). At the end of the each step a multivariate statistic Wilk’s lambda 

was calculated for selected features to measure the class centroid’s differences over the selected 

features.  

The STEPDISC procedure was used for individual colour plane and their possible 

combinations along with control model containing all 39 features for monitoring the relative 

performance of all developed DMs.  All DMs extracted from different colour planes were used for 

different classifiers development. The classifiers developed by this procedure do not account the 

relationships between features that have not yet been selected. Moreover, the final classifying 

model cannot guarantee to be optimal in any specified sense (SAS 9.3 User’s Guide, 2011) and 

can result into the underestimated model. Therefore, in order to guard against the underestimated 

models, the matrix plots generated by using Minitab 17 statistical software (Minitab Inc. NY, 

USA) were used to identify features strongly relating to the class memberships. Moreover, these 
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plots also helped in identifying the features with similar discriminatory power, thereby providing 

the general guidelines about features necessarily needed to be selected or eliminated.      

3.3.5 Development of Statistical Classifiers 

The successfully selected DMs were used to define the classification criterion by using 

SAS PROC DISCRIM procedure (SAS Institute Inc., Cary, NC, USA) based discriminant analysis 

approach from which a new observation can be identified in future. In order to make a decision 

between the parametric and nonparametric methods for generating a discriminating function, a 

multivariate and univariate normality tests were performed in Minitab 17. The normality tests were 

performed for all the 39 features. The normality tests also helped to identify the outliers in training 

dataset resulting in exclusion of these extreme scenarios from discriminant function.   

The univariate normality test was performed by analyzing the frequency distribution plots 

of textural features for both goldenrod and wild blueberry classes. The multivariate normality was 

tested by calculating the Mahalanobis distances between features extracted from CCM of a colour 

plane and a multivariate space’s centroid (overall mean). A scatter plot between squared 

Mahalanobis distances and quantiles extracted from the chi-square distribution of features was 

developed from training dataset. This plot was used to subjectively evaluate the multivariate 

normality and outliers by using the underlying concept that Mahalanobis distances have chi-square 

distribution. This plot resembled a straight-line for normal data with outliers pointed on upper right 

corner having the squared Mahalanobis distance notably greater than chi-square quantile value. 

A likelihood ratio test for homogeneity to select from within group covariance matrices or 

pooled covariance matrix was performed at a significance level of 0.1 (Morrison, 1976). The 

significance of this test resulted in selection of within group covariance matrices leading towards 

the development of quadratic classification criterion. However, the linear classification criterion 
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was also developed and compared to the quadratic criterion because of its simple and easy 

implementation for real-time applications. This comparison also helped to quantify the cost of 

misclassification in order to make a fair compromise between classification accuracy and 

execution time. The prior probabilities of goldenrod and wild blueberry classes were set to equal 

level to treat both of them equally.  

The linear classification functions for GR and WBB classes were developed by linearly 

combining the coefficients with DM features from training dataset (Eq. 3-32). These functions 

were trained in a way that each linear combination maximizes class differences while minimizing 

the variation within classes. These classification functions were resolved for textural features of 

any unknown observation to calculate its class membership scores. The classification of unknown 

observation into a class having the highest class membership scores served as classification 

criterion (SAS 9.3 User’s guide, 2011). This process of calculating the class scores was repeated 

for all DMs to develop the individual linear combinations in an effort to get the highest 

classification accuracy.  

𝑆𝑘(𝑋
∗) = 𝑐𝑘 + 𝑏𝑘1𝑋1 + 𝑏𝑘2𝑋2 +⋯⁡+ 𝑏𝑘𝑝𝑋𝑝  (3-32) 

Where 𝑆𝑘(𝑋
∗) is classification score of kth class for an unknown observation 𝑋∗, 𝑐𝑘  is 

constant term for kth class, 𝑏𝑘𝑖 is Coefficient of  ith feature in kth class, 𝑋𝑖 is textural feature of an 

unknown observation 𝑋∗. 

The quadratic classification criterions were based on the estimation of proximity by 

measuring the distance of an individual unknown observation to each class centroids and classify 

the observation to closest class. The distance estimation used in this study was squared 

Mahalanobis distance (Eq. 3-33). The within group covariance matrices and vectors containing the 
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means of features in GR and WBB classes were extracted from training data. These within group 

variance matrices and mean vectors were used to develop and resolve two different generalized 

squared distance functions for an unknown observation in real-time. The posterior class 

membership probabilities (Eq. 3-35) calculated from these functions were used as a classifying 

criterion (SAS 9.3 User’s guide, 2011). This procedure of estimating the distances was repeated 

for all DMs. 

𝑑𝐺𝑅
2 (𝑋∗) = (𝑥 − 𝑚𝐺𝑅)

𝑇⁡𝑆𝐺𝑅
−1(𝑥 − 𝑚𝐺𝑅) 

(3-33) 

𝐷𝐺𝑅
2 (𝑋∗) = 𝑑𝐺𝑅

2 (𝑋∗) + ln⁡|𝑆𝐺𝑅| 
(3-34) 

𝑝(𝐺𝑅|𝑋∗) = 𝑒(−0.5𝐷𝐺𝑅
2 (𝑋∗))/∑ 𝑒(−0.5𝐷𝑊𝐵𝐵

2 (𝑋∗))
𝑛   

(3-35) 

 

Where 𝑑𝐺𝑅
2 (𝑋∗) represents squared Mahalanobis distance from  𝑋∗ to class GR, 𝑥 is a 

vector containing the quantitative values of features of an unknown observation 𝑋∗, 𝑚𝐺𝑅 is a vector 

containing means of features in class GR, 𝑆𝐺𝑅
−1 is inverse of within group covariance matrix 𝑆𝐺𝑅, 

𝐷𝐺𝑅
2 (𝑋∗) represented generalized squared distance function from 𝑋∗ to class GR, 𝐷𝑊𝐵𝐵

2 (𝑋∗) is 

generalized squared distance function from 𝑋∗ to class WBB,  𝑝(𝐺𝑅|𝑋∗) represented the posterior 

probability of  𝑋∗ belonging to class GR. 

3.3.6 Development of BP-ANN Classifiers 

The multilayer, feedforward, supervised, back-propagation neural networks were trained 

by using Peltarion Synapse (Peltarion Systems®, Netherlands) software. The same arrays (DMs) 

of input features selected by the STEPDISC were used for BP-ANN classifiers development. 

Moreover, use of same set of input variables between statistical and BP-ANN approaches allowed 

us a fair comparison. The BP-ANN classifiers were developed using DMs with the highest 
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classification accuracy during DISCRIM procedure along with DM containing all 39 features to 

compare the relative accuracy of other DMs. The network was trained for each DM on trial and 

error basis. Each parameter was tweaked individually at a time in an effort to come up with best 

choice of that particular parameter. The performance of these networks at the end of each tweak 

was tested by evaluating it on both training and testing data sets. The tweaked networks were 

extracted using the deployment post-processing tool of Peltarion Synapse software to make a 

separate and stand-alone WorkArea0.dll (.NET dynamic linking library) file. A C# based 

command prompt program was written to predict and validate both external and internal data sets 

by using WorkArea0.dll file and save processed result as a comma separated value (CSV) file. 

These networks for internal and external validations were tested and evaluated to achieve the 

highest overall and individual species classification accuracy with Mean Square Error (MSE) as a 

supplementary criterion to assist the evaluation process.  

3.3.6.1 Back-Propagation Topology Design 

The precise network topology (number of hidden layers and neurons) required for 

classifying the GR and WBB classes was experimentally determined with Peltarion Synapse 

default topology as initial network. The neurons at input layer for particular DM corresponded to 

number of input features with output layer neurons being fixed to number of classes (GR and 

WBB). An experimental approach for determining the appropriate number of intermediate hidden 

layers and neurons was based on the constructive algorithms. The initial network consisted of one 

hidden layer with number of neurons equal to mean of input and output neuron and were built 

larger at each successive step. The optimum numbers of hidden neurons for specific training data 

were also calculated by using log2 (T), where T is number of training samples (Mirchandani and 

Cao, 1989).  
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The learning parameters including learning rate (LR), learning mode (LM), momentum term (MT), 

epochs (iterative steps), and mathematical neuron activation function were remained fixed to 0.1, 

online, 0.7, 1000, and tanh sigmoid, respectively, during this experimentation. The learning 

parameters remained same for bigger networks except the linear activation function for the neurons 

of the last hidden layer. The network topology was tested by processing both training and testing 

data set to calculate and record both individual class and overall classification accuracies with the 

help of command prompt program. Additionally, MSE was recorded and plotted against the 

modified network topology.  

The same experimental topology design approach was adopted for all high performing 

DMs and control DM. The topologies were designed so that all DMs converged to a trainable 

solution. The topology with the highest individual and overall classification accuracies were 

nominated for further experimentation to select the appropriate learning parameters.  

3.3.6.2 Back-Propagation Training Parameters Selection 

The successful selection of networks topology led to identify the training parameters that 

would allow the network to learn from data thereby resulting to achieve the highest classification 

accuracies. The parameters adjusted during this experimentation include LR, LM, MT, epochs, 

and mathematical neuron activation function. The topology with the highest classification 

accuracies were first used to fine-tune the mathematical activation functions. The different 

mathematical activation functions (tanh sigmoid, logistic sigmoid, linear, sine, Gaussian, 

superposed logistic sigmoid-I, superposed logistic sigmoid-II, and Morlet) were tested in this 

session. All other parameters were kept constant (LR = 0.1, MT = 0.8, LM = online, and epochs = 

1000), and results were compared by plotting the accuracies against these functions along with 

MSE. 
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The LR was varied from 0.025 to 0.150 and MT was varied from 0.7 to 0.95 to generate the 

matrix of classification accuracies during the next phase. The LR was fine-tuned first followed by 

adjustments in MT. After each adjustment, individual class and overall accuracies along with MSE 

were plotted against LR and MT to locate the most suitable values of LR and MT. All these 

networks were trained for 1000 epochs with most suitable topology and activation function with 

online training mode to have a fair comparison among these networks. The adjustment of LR and 

MT was followed by the modifications in LM. The suitable combination of LR, MT, and 

mathematical function along with appropriate network topology were used to quantify the effect 

of LM for 1000 epochs. The batch and online learning modes were tested to make the suitable 

corrections in the weights and biases associated with each neuron by carrying out the gradient 

search in weight space on the basis of average network error.  

In order to generalize the basic relationships between input and output neurons based on the 

training data, epochs were varied between 500 and 10,000 in a step of 500 epochs. This range of 

epoch was utilized to minimize the chances of network over-training by getting entrapped in local 

minima (Bishop, 2007; LeCun et al., 2012). The individual class and overall accuracies were given 

more weightage as compared to MSE for evaluating the results of epoch experimentation. This 

was due to the fact that MSE in case of over-trained networks continued to decrease with a 

compromise being made on the generalization capabilities of the networks. Moreover, networks 

activated and initialized with different activation functions were analyzed to identify combination 

of different functions resulting in training of networks at relatively less epochs, thereby further 

reducing the chance of over-training. The epoch test was performed on appropriate network 

topology along with suitable learning parameters adjusted during previous steps. The similar 

parameter selection procedure was used for all DMs. 
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3.4 Field Evaluation 

3.4.1 VR Sprayer Hardware Configuration for Field Evaluation 

A prototype VR sprayer hardware as defined in Esau et al. (2014) was modified by 

removing the front sensor boom and incorporating the cameras on the spray boom (Figure 3-8). 

The newly developed GDS for this project was tested in real-time field conditions using the 

modified VR sprayer hardware. The VR sprayer hardware consisted of four μEye colour cameras, 

a fan-less desktop computer, an eight channel computerized variable rate controller (VRC), eight 

solenoid valves (Delware Pump and Parts Limited, Delware, ON, Canada), and spray nozzles 

(Figure 3-8). The cameras were fixed on a 6.1 m long boom at a height of 1.22 m. The 3.5 mm 

lenses were setup to f/4.0 fixed aperture and infinity focuses. Additionally, a flow rate control 

mechanism consisting of Dickey John Land Manager-II controller (LMC) module (Dickey John 

Corp., Auburn, IL, USA), a Garmin® GPS 18x receiver (Garmin International Inc., Olathe, KS, 

USA), a flow meter, and a servo valve was used to regulate the flow rate according to travel speed. 

The spray nozzles used in evaluation procedure were flat fan TeeJet TP8004E (Spraying Systems 

Co., Wheaton, IL, USA) having a spray angle of 80o and operated at a pressure of 275 ± 10 kPa. 

The sprayer boom was divided into eight sections of 0.76 m. A pair of solenoid valve and spray 

nozzle was mounted in the middle of each section with a uniform spacing of 0.76 m between two 

consecutive pairs. The nozzles were connected directly to solenoid valves with a 1.27 cm to 0.63 

cm union joint in between them.  
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Figure 3-7: Schematic diagram of VR sprayer for field evaluation showing different components 

of machine vision and flow control system.  

The centrifugal pump was operated by Honda® GX™ 160 (Honda Inc., NS, Canada) 3.57 

kilowatt (kW) at 3600 rated rpm air cooled gasoline engine. The cameras were installed in between 

the two nozzles in a way that spacing between centerline of camera and centerline of nozzle is 

approximately 0.38 m and between two consecutive cameras is 1.52 m (Figure 3-9).  This camera- 

nozzle agreement was utilized so that an AOI image can be used to control the two sections of 

boom. One half of an AOI image (three unit images) was utilized to control a nozzle at a time 

(Figure 3-10). The custom developed GDS was tested for acquiring and processing the AOI images 

along with goldenrod triggering signals sent to a U3-HV I/O module (LabJack Corp., Lakewood, 

CO, USA) through USB 2.0 cable.  
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Figure 3-8: Schematic diagram showing camera and sprayer nozzle arrangement for the half 

boom.  

The U3-HV module was capable of handling eight dedicated digital channels numbered 8 

to 15 on its DB-15 connector. This unit was further interfaced with VRC through DB-15 standard 

connector cable to feed the 8-channels of VRC.  The VRC was designed to pull a 5 V direct current 

(DC) signal coming from the U3-HV module to a 12 V (DC) signal. The solenoid valves were 

powered individually to open at specific time interval when needed. The VRC also shared its 

solenoid valve triggering signals with LMC to provide the information needed to adjust the flow 

rate using the servo flow control valve on the basis of number of nozzles opened and ground speed 

of UTV.  

 

Figure 3-9: Experimental setup showing relationship between AOI Image size and nozzle control 

configuration. 
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3.4.2 Field Experiments during 2016 

3.4.2.1 Fields Description 

Performance of GDS was tested in two wild blueberry fields during the summer of 2016. 

The selected fields were Londonderry (45° 46' 59" N and 63° 33' 13" W) and North River II (45° 

37' 45" N, 63° 22' 19" W).  Both of these fields were in vegetative growth year during experiments 

and crop year in 2015. Among other weed species, fields contained goldenrod in mix canopy 

pattern. Results reported during 2016 were achieved by training the classifiers using only the image 

library of 2015. The DISCRIM and BP-ANN classifiers with the highest classification accuracy 

were used for field evaluation. The highest performing classifier obtained through DISCRIM 

procedure was quadratic.     

3.4.2.2 Field Experiment 1 

 Two test tracks (6.1 m × 110 m), containing distinct goldenrod patches and occluded 

canopies were selected by surveying each field to compare and evaluate the accuracy of GDS 

(Figure 3-11, 3-12). The track boundaries and goldenrod patches were manually mapped from both 

tracks using a Hiper® lite+™ real-time kinematics (RTK) GPS receiver (Topcon positioning 

systems Inc., Livermore, CA, USA) for developing the representative maps of both fields using 

ArcGIS 10.2.2 (ESRI, Redlands, CA, USA). Eight goldenrod (targeted areas) and eight blueberry 

spots (non-targets) were randomly selected in each track and these locations were point marked 

using RTK-GPS. Sixteen water sensitive papers (WSPs) (Spraying Systems Co., Wheaton, IL, 

USA) were attached to plant canopies with the help of paper pins with their sensitive surface facing 

to sky. The GDS loaded with BP-ANN classifier was used to water spray these tracks in first run 

on June 4, 2016. The WSPs were collected after drying and new papers were placed at same 

locations. New WSPs were again water sprayed using a quadratic classifier and WSPs were again 

collected. Finally, WSPs were placed and sprayed on uniform application (UA) mode for 
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comparing the performance of individual classifier with UA application. Dried water sensitive 

papers were digitized and processed using a custom blue detection program (Precision Agriculture 

Research Program, Dalhousie University, NS, Canada) to detect colour change caused by water 

droplets. Percent area coverage (PAC) of sprayed targets in both blueberry and goldenrod areas 

were recorded for statistical analysis (Zaman et al., 2011). Similar experimental procedure was 

repeated in Londonderry field, except that tracks were first sprayed by using quadratic model 

followed by BP-ANN. The student paired t-test was utilized to calculate the significant difference 

between PAC of targets and non-targets in both VR and UA modes.  

 

Figure 3-10-: Map of North River II test tracks showing goldenrod and wild blueberry points 

selected for spray applications with GDS.  
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Figure 3-11: Map of Londonderry test tracks showing goldenrod and wild blueberry points 

selected for spray applications with GDS.  
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3.4.2.3 Field Experiment 2 

Same test tracks in both wild blueberry fields were used to compare the performance of 

two different classifying models. Weed maps were generated by using previously marked 

goldenrod patches from tracks. The test tracks in Londonderry and North river II were sprayed 

with BP-ANN and quadratic classifier, respectively, using a Lazer™ blue coloured non-permanent 

spray pattern indicator herbicide dye (Bluewater Chemgroup Inc., Fort Wayne, IN, USA) on June 

12, 2016. Blue marked patches were mapped using RTK-GPS and sprayed map was generated 

using ArcGIS 10.2.2. These tracks were again sprayed by switching models with same blue dye 

marker on June 15, 2016. The new marked patches were again mapped and sprayed maps were 

generated. Sprayed maps from BP-ANN and quadratic models were superimposed on the weed 

maps generated before dye spray separately using ArcGIS package. The coverage area (CA) of 

different sprayed polygons in sprayed maps were exported form ArcGIS and two-sample t-test was 

performed to statistically analyze the performance of both classifiers. The superimposed maps 

were also compared subjectively by placing side by side to look for any over and under-sprayed 

areas. The potential and actual chemical savings were also calculated by using the goldenrod area 

and sprayed area (Esau et al., 2014), respectively.   

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙⁡𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙⁡𝑆𝑎𝑣𝑖𝑛𝑔𝑠⁡(%) = ⁡100 −
𝐺𝑜𝑙𝑑𝑒𝑛𝑟𝑜𝑑⁡𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙⁡𝐴𝑟𝑒𝑎
× 100 

(3-36) 

𝐴𝑐𝑡𝑢𝑎𝑙⁡𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙⁡𝑆𝑎𝑣𝑖𝑛𝑔𝑠⁡(%) = ⁡100 −
𝑆𝑝𝑟𝑎𝑦𝑒𝑑⁡𝐴𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙⁡𝐴𝑟𝑒𝑎
× 100 

(3-37) 

 

3.4.2.4 Statistical Analysis 

PAC of two different VR modes (BP-ANN and quadratic) was compared with UA mode 

individually by performing paired t-test using Minitab 17. Collected data were tested for normality 



58 
 

assumption by performing Anderson-Darling (AD) normality test at significance level of 5%. The 

randomization of treatments within selected fields assured the independence of error terms.  

Performance of two different classifiers was evaluated by comparing CA of two different 

sprayed maps, while treating the individual polygon as an observation unit. Normality was checked 

by using AD test at 5% significance level and independence was achieved through randomization. 

The equal variance of two data populations was tested by calculating the ratio of sample standard 

deviations (with larger sample standard deviation in numerator). Validation of equal variance 

assumption led to analyze the CA by using t-distribution with pooled variance (Sp2).       

3.4.3 Field Experiments during 2017 

3.4.3.1 Field Selection and Experimental Design 

The BP-ANN and quadratic classifiers were compared with UA and non-treated control 

(CN) applications by setting field experiments at Portapique (45° 24' 28.20" N, 63° 43' 30.65" W) 

and Robie Glenn (45° 27' 3.63" N, 63° 25' 9.87" W) fields, Nova Scotia, Canada in May of 2017. 

These fields were mature, commercial wild blueberry fields, receiving mowing from at least last 

five years and were in vegetative growth year during experimentation. Experiments were setup as 

completely randomized design (CRD) to examine the effect of four different treatments (BP-ANN, 

Quadratic, UA and CN) on goldenrod damage. The experiment was replicated six times for each 

treatment in both fields and a plot size of 6.1 m × 5 m was used to collect the response data. A tank 

mix of 0.3 L ha-1 Callisto® 480SC (480 g L-1 Mesotrione) herbicide (Syngenta Canada Inc., Guelph, 

ON, Canada), 0.4 L ha-1 Agral® 90 (92% Nonylphenoxy polyethoxy ethanol) non-ionic spreading 

agent (Syngenta Canada Inc., Guelph, ON, Canada), and a water volume of 186.4 L ha-1 and was 

used to spray the test plots at a grower’s rate of 187.1 L ha-1. The GDS with two different classifiers 

and UA mode were used to apply the tank mix of Callisto® in test plots. Both BP-ANN and 



59 
 

quadratic classifiers used for 2017 experimentation were trained and laboratory tested using image 

libraries developed during 2015 and 2016 from different fields.  

3.4.3.2 Data Collection 

Goldenrod damage caused by the Callisto® was evaluated by recording goldenrod stem 

height (SH) and damage rating (DR) data, 21 days after treatment (DAT). The SH (cm) was 

measured by randomly selecting the 25 damaged goldenrod stems across each treated plot and 

averaged out to represent a single plot. The DR was measured subjectively on whole-plot basis by 

ranking the damage on a scale of 0 to 100, where 0 represented no visible damage and 100 as a 

complete death of above ground shoots (Wu and Boyd, 2012). The colour change from green to 

pale yellow caused by the goldenrod damage due to Callisto® application was quantified by using 

green ratio algorithm (Chang et al., 2014). The images were acquired from six randomly selected 

points in each plot using Fujifilm FinePix HS30EXR (Fujifilm, Mississauga, ON, Canada) 16- 

megapixel digital colour camera with a fixed aperture of f/3.6 by pointing it downward at a height 

of 0.75 m above the ground. The exposure, gain and white balance were on automatic mode during 

the image acquisition. A wooden quadrat of 25 cm × 25 cm was placed on selected points to mark 

the area of interest. There were other green weeds at some of the selected points and therefore, 

area of interest marked with quadrat was hand-weeded by pulling their stems to remove all green 

weeds except goldenrod. The percentage of green pixels (PGP) in quadrat region of images taken 

from four different treatments (BP-ANN, Quadratic, UA and CN) was calculated by green-ratio 

algorithm with manually obtained threshold of 90 (Esau et al., 2014).  

3.4.3.3 Statistical Analysis 

One-way analysis of variance (ANOVA) was used to test the effect of different treatments 

on collected data of SH and PGP using Minitab 17. Normality of error terms was checked by 

developing the normal probability plot (NPP) of error terms. The AD test at 5% level of 
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significance was performed on NPP of error terms. Constant variance was checked by plotting the 

residuals against fitted values. Randomization of treatments within selected fields assured 

independence of error terms. Least significant difference (LSD) test was used as multiple means 

comparison (MMC) method to identify the means significantly different from other at a level of 

5%.  

The DR data was analyzed by performing a rank-based, non-parametric Kruskal-Wallis H 

test using Proc Npar1Way procedure in SAS 9.3. Measurement of the DR on a 100-point scale 

assured the ordinal level assumption. Application of Callisto® tank mix with three different 

treatments helped to meet the assumption of more than two categorical, independent treatment 

populations. Dunn-Bonferroni test was performed as post-hoc to identify significantly different 

DR means at a level of 5%. 
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CHAPTER 4: DEVELOPMENT OF A GRAPHICAL USER INTERFACE BASED 

GOLDENROD DETECTION SYSTEM WITH AN EMBEDDED OPTIMIZED COLOUR 

CO-OCCURRENCE MATRIX ALGORITHM FOR REAL-TIME SPOT SPRAY 

 

4.1. Introduction 

The spatio-temporal variability of weed flora across wild blueberry fields offers an 

advantage of applying the agrochemicals on an as-needed basis. The wild nature of crop is 

responsible for inherent variability in terms of weed species, their distribution, and fruit 

productivity as compared to cultivated crops (Kennedy et al., 2010). Newly developing fields 

typically possess randomly distributed weed patches and bare spots varying from 30% to 50% of 

total field area (Zaman et al., 2008). The unique characteristics of wild blueberry cropping system 

emphasize the need to develop cost-effective and reliable solutions for spot application of 

agrochemicals on an as-needed basis.  

Several studies indicated that a mathematical process of extracting, characterizing, and 

interpreting leaf texture based tonal information of agronomic images has great potential to 

differentiate weeds from crops (Meyer, 2011). Textural features provide some botanical 

information, such as leaf venation, leaf pubescence, and leaf surface coarseness for detecting plant 

and weed phenotypes (Neto and Meyer, 2005). Numerous textural analysis algorithms have 

emerged over the last few decades to retrieve different levels of information from underlying 

scenes (Haralick, 1979). Gray level co-occurrence matrices (GLCMs) and CCMs followed by 

extraction of statistical features (Haralick et al., 1973) are widely used textural information 

retrieval techniques for agricultural applications (Shearer and Holmes, 1990; Burks et al., 2001; 

Pydipati et al., 2005; Roy et al., 2006; Tahir et al., 2007; Kim et al., 2009) and have proven to have 

significantly higher object recognition rates (Burks et al., 2005; Tahir et al., 2007).  
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Chang et al. (2012a) detected bare spots, wild blueberry plants, and weeds using CCMs. 

Research concluded that the process of constructing CCMs and extracting textural features is 

computationally intensive. They recommended 64-bit programming or hardware parallel 

computation for the commercial application of these algorithms in VR sprayers. The computational 

overheads can be minimized by first studying and analyzing the factors in time space responsible 

for the high computational loads. This analysis will then help in the appropriate selection of the 

parameters for optimized performance and real-time application of these algorithms in commercial 

VR sprayers. 

Many agricultural researchers developed the GUIs for continuous real-time sensing, 

mapping, monitoring and updating the sensed data (Schumann and Zaman, 2005; Zaman et al., 

2008; Swain et al., 2010; Zaman et al., 2010; Chang et al., 2012b; Farooque et al., 2013). 

Schumann and Zaman (2005) monitored citrus tree canopy area and height by using a GUI coupled 

with an array of ultrasonic sensors and differential global positioning system (DGPS). Zaman et 

al. (2010) developed a GUI for reading and storing the slope sensor data in a database. Chang et 

al. (2012b) used two digital cameras and GUI to estimate the wild blueberry yield. This GUI helped 

to monitor the performance of the cameras by providing the on-screen updates of processed images 

along with necessary camera and GPS communication parameters. A similar concept can be 

extended to develop a GUI capable of acquiring, saving, and processing continuous timed image 

streams from multiple cameras in real-time along with decision-making capabilities for the 

targeted application of agrochemicals on goldenrod. Moreover, the imaging system should be 

monitored and corrected for any errors and loss of connections during image acquisition process.  

Therefore, the specific objective of this chapter was to develop a user interface based GDS 

with an embedded optimized colour co-occurrence matrix algorithm in C# for image acquisition 
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and processing in real-time and to study the intrinsic and extrinsic parameters influencing the real-

time application of CCMs for wild blueberry fields. 

4.2 Materials and Methods  

4.2.1 Development of Goldenrod Detection System 

The custom image acquisition GUI program was upgraded from Figure 3-1 to accompany 

the CCM based textural analysis algorithm for extracting the CCM features in real-time, to model 

these features in meaningful way in terms of goldenrod and wild blueberry detection, and transfers 

the 5 volt weed or plant triggering signals through a digital U3-HV I/O unit to VRC (Figure 4-1). 

This upgraded program was capable of displaying the processed AOI images in the real-time and 

to provide the on-screen updates of sprayer nozzle status accordingly. A “Stop” button was also 

added to the GDS program to stop and resume the image acquisition, processing and other 

functionalities associated with camera. Other controls added, included the channel control, foam 

marker control, and artificial lighting control protocols. 

The AOI image data coming from each camera in computer memory were copied to the 

new instances of the “Bitmap” class with pixel format set to 24bpp. The “RGB2HSI” method of 

“Colour Conversion” class was called to convert the contents of copied image data. The “CCM” 

class was responsible for dividing an AOI image into six unit images, creating eighteen CCMs for 

HSI colour planes, normalizing these CCMs, and extracting a set of 13 features from an individual 

CCM. The angular relationship of 0o, a displacement vector of 1 pixel, and 256 intensity levels 

were selected in this study for CCM construction. A process of extracting a set of 13 features was 

repeated thrice for CCMs resulting in a total of 39 features from an individual unit image. The 

comprehensive detail of CCMs, list of textural features, and their definitions are presented in 

Chapter 3. This real-time GDS integrated the reduced list of CCM features according to the results 



64 
 

of STEPDISC function to minimize the processing time and enhance the overall classification 

accuracy. Instead of looping class call over four cameras, the GDS called these classes on different 

worker threads to minimize processing time for real-time application. The processed AOI images 

from all cameras were displayed on-the-screen using picture box controls and all contents of image 

were disposed of thereby enabling the program to process new incoming AOI image data.  

 

Figure 4-1: Windows based GDS showing real-time camera images display, processed images, 

controls, ground speed, and camera diagnostics.  

Two streamlined variants of GDS were developed to accommodate quadratic and BP-ANN 

based classifying criterions. The basic data handling flow and processing layout of both variants 

were same except the decision rules (Figure 4-2). The quadratic GDS directly included the mean 
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feature values and within group covariance matrices of GR and WBB classes to model the CCM 

features of new real-time observation. This program solved a quadratic model by calculating the 

generalized square distances of observation from both GR and WBB. These distances decided the 

category (GR or WBB) on the basis of smallest distance from particular class. A Dynamic link 

library (.dll) file extracted from the Peltarion Synapse was included in the BP-ANN based GDS. 

This library contained the definitions and all necessary parameters of a trained model. The CCM 

features were handed to this library in matrix format and a two elemental output (GR and WBB) 

were retrieved. These classifying criterions were solved for six unit images extracted from an AOI 

image and the process was repeated for all the cameras by both these variants. The results of 

classifiers development are shown in chapter 5. 

The outputs of classifying models were compared for the GR and WBB using “if-else” 

logical block for all unit images and results were stored in a six elemental decision unit array 

according to the following rule: 

Decision⁡Unit = {
1⁡⁡⁡⁡⁡⁡if⁡GR > WBB⁡
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡else⁡

} (4-1) 

Three decision units representing three unit images (One-half of an AOI image) were used 

to control an individual nozzle. Two counters checked and stored the sum of three decision units 

for an individual nozzle by comparing the decision unit values. These counters were finally used 

for switching the nozzle to “ON” or “OFF” state by using the following comparison condition: 

𝑁𝑜𝑧𝑧𝑙𝑒⁡𝑆𝑡𝑎𝑡𝑒 = {
Open⁡⁡⁡⁡⁡⁡if⁡Counter > 1
Close⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡else⁡

} (4-2) 

In order to physically trigger the nozzles, a U3-HV output control protocol was added in 

the GDS. An opening signal was sent through USB port to set up the communication rule between 
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computer and U3-HV module. This protocol automatically detected the USB location of module 

while communicating. The eight channels of this module were individually controlled by using 

(Eq. 4-2) along with the camera ID. The even and odd numbered channels were controlled by first 

and second counter separately. All parameters of this protocol except the communication signal 

were disposed of after sending the power pulse to VRC.  

The serial communication control for interfacing the GPS was updated to accommodate 

any variations in COM port names available on different computers. A button on the GUI was 

provided to query the registry of current computer for a list of valid serial port names and to add 

them on the GUI. The default port settings and in case the user manually typed the port name was 

set to first port available in list. The error handling mechanism for serial communication was also 

improved by adding the new exception handlers for port detection, port name change, and GPS 

signal outage during serial communication. The channel, foam marker, and artificial lighting 

controls included all necessary signal triggering codes to perform the respective operations.  They 

were checked and tested in laboratory for their respective use but were not operated in real-time 

applications because of the limited number of channels (8) available on VRC.  
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Figure 4-2: Flowchart of GDS from image acquisition and goldenrod detection to herbicide application.  
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4.2.2 Factors influencing the real-time application of CCMs 

 The real-time application of CCMs can be affected by intrinsic and extrinsic parameters. 

Intrinsic parameters include image size and intensity levels from an individual CCM. Extrinsic 

parameters are related to the performance of particular computer hardware/internal architecture 

and different methods available in any particular programming language/environment to perform 

a similar operation. The following intrinsic and extrinsic parameters were compared in this study.      

4.2.2.1 Image Reading from RAM- The Pointer Arithmetic 

Three different methods (Marshal.copy, unsafe pointers, and get pixel) are available in C# 

programming language to access image data contained in the RAM of the computer. A laboratory 

experiment was conducted to select the best method for accessing real-time image data. The 

method was selected on the basis of performance in terms of time and overall safety of code. In 

order to test their performance, three different codes were written to read an AOI image (768 × 

128) data from RAM for three different methods separately. The AOI image set with 256 intensity 

levels was used for this analysis. The time difference (%) and speed up ratio of the particular image 

reading method were calculated with reference to the average time of “get pixel” method. 

The first code was written to utilize the Marshal.copy method for copying the image data 

to a managed 1D array. The “BitmapData.LockBits” method was utilized to lock the bits of the 

bitmap image in the memory. This method was parameterized by specifying the image lock mode 

as “ReadWrite”, and pixel format similar to source image. The “BitmapData.Scan0” property was 

utilized to define a memory handler (IntPtr) to get the address of first pixel data in an AOI image. 

The copied image data were utilized to develop HSI image. After manipulating the image contents, 

the complete information was handed back from 1D array to IntPtr to dispose of image contents 

by setting all the controls to “null”.  The second code was written to perform pointer arithmetic in 
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unsafe context to handle the image data in RAM. This method had some similarities with the 

Marshal.copy in terms of locking the image bits and utilizing the Scan0 property. The memory 

handler (IntPtr) in this case was changed to a pointer by using an unsafe keyword to perform 

pointer arithmetic. This pointer was utilized to store the address of particular pixel during new HSI 

image development. The image contents were released after extracting the desired colour 

information. The third code utilized the get pixel method of “Colour” structure to access the colour 

information contained in individual pixel of an image. The parameters for this method were set to 

the coordinates (x, y) of each pixel. Two “for” loops were utilized for reading the number of pixels 

in image width (x) and height (y). This extracted colour information was utilized to generate HSI 

image by using the set pixel method.  

The processing time was measured by using “elapsed milliseconds, elapsed ticks, and date-

time” code profiling techniques to accurately measure the execution time. All other methods 

measured the execution time in ms directly except elapsed ticks. This method counted the number 

of elapsed ticks and was utilized as it provided the precise smallest measurement of processing 

time. The “frequency (number of ticks/second)” field was utilized to convert the elapsed ticks 

values in real world time (ms) by dividing the elapsed ticks with frequency. The codes were written 

to accommodate any frequency fluctuations caused by CPU clock speed due to power saving 

modes taken by operating system. Moreover, the computer was connected to continuous power 

supply in order to avoid any possible fluxes caused by low battery power. During the processing 

of individual image, codes checked the frequency of CPU, counted the elapsed ticks for all timers 

and generate a database of this information by writing it in a CSV file along with image location 

by processing images in batch file handling mode.  
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4.2.2.2 Selection of Intensity Levels and Computational Time 

The dimensions of CCMs were governed by the maximum intensity levels of pixels in the 

image. More levels would mean more accurate textural information, with a bigger size CCM and 

increased computational cost. In order to test the effect of intensity levels on computational 

complexity, an experiment was performed by modifying the QGDS for quantizing the eight-bit 

images down to three bits, converting the BGR images to HSI images, and constructing the CCMs. 

The Marshal.copy method was utilized for this test because of its fast processing results. The 

displacement vector and orientation angle during this experiment were fixed to the 1 and 0˚, 

respectively. Six different intensity levels (8, 16, 32, 64, 128, and 256) were included in this study, 

while keeping the image size (128 × 128) constant. The extraction of one-sixth portion of an AOI 

image (768 × 128) set resulted into the use of 2244 unit images (128 × 128) for this 

experimentation. The computational time calculation task was broken into three sections and three 

stopwatch components were created to precisely measure the time for HSI colour conversion, 

CCMs construction, and textural features extraction. The elapsed ticks property was utilized to 

count the number of elapsed ticks for all timers. The intensity level with minimum execution time 

was utilized as a benchmark to calculate the average time difference (%). 

In order to examine the effect of intensity levels on classification accuracy, textural features 

were extracted from an image library of 2112 unit images (128 × 128). This image library consisted 

of 1229 goldenrod (weed) and 883 wild blueberry (crop) images. The image library was divided 

into two datasets containing 70% of data for developing and training a model and 30% for 

validating the model. The QGDS program for different intensity levels was executed to extract the 

39 textural features by processing the images in the library. The SAS PROC DISCRIM procedure 

was used for training the different quadratic models based on different intensity levels. All 39 



72 
 

features from three different colour planes were used for training the classifier, and results were 

reported for both training and test data.  

4.2.2.3 Effect of image size on processing time 

The effect of image size on the computational time was analyzed by processing the 

different sized images with QGDS. The image acquisition GUI was modified to acquire the full 

frame images (1280 × 1024) thereby covering the wide variety of image sizes. The full frame field 

images were cropped into different sizes (256 × 256, 512 × 512, and 1024 × 1024) along with 

different unit images (16 × 16, 32 × 32, 64 × 64, and 128 × 128) extracted from AOI images. The 

time required for colour conversion, CCMs construction, and extraction of 39 features were 

measured by using elapsed ticks property of stopwatch component. The intensity levels were fixed 

to 256 during this experimentation. The average time difference (%) of the particular image size 

was computed with reference to the image size with the least execution time.   

The classification accuracy for different sized unit images (32 × 32, 64 × 64, and 128 × 

128) was studied by using a set of 1424 images. There were 484 goldenrod and 484 wild blueberry 

images in training data, while the test data contained 200 goldenrod and 256 wild blueberry 

images. The QGDS program was used for extracting textural features from different sized unit 

images. The SAS PROC DISCRIM procedure was again used for training different quadratic 

models based on different image sizes. All 39 features from three different colour planes were used 

for classifier training. 

4.2.3 Image Reading Experimentation Test Setup   

A set of 2244 AOI images (768 × 128 pixels) and a set of 2244 full frame images (1280 × 

1024) were utilized to study the effect of different intrinsic and extrinsic parameter included in this 
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study. The image set contained a wide variety of real field agronomic images, varying from dense 

lush green images, with more information confined in the green channel to very sparse images, 

mostly covering bare soil or twigs and few green plants (Figure 4-3). To ensure that test results 

were not biased by any particular computer hardware environment, the experiment was performed 

on four different machines equipped with a 64-bit Windows-7 operating system (Table 4-1). These 

choices were made to ensure that performance differences occurred due to the algorithmic 

differences rather than other machine factors.   

Table 4-1: Computer architecture information about four different test machines. 

  CPU Type CPU 

Chipset 

Clock 

Speed 

Cache  Memory Bus Speed RAM 

Type 

 
  

(GHz) 

L1 

(KB) 

L2 

(KB) 

L3 

(MB) 

 

(GB) 

 

(MHz) 

 

Core i5 4200 M Haswell 2.50 64 512 3 4 1600 DDR3 

Core i7 3740QM Ivy Bridge 2.70 128 1024 6 8 1333 DDR3 

Core i7 860 Lynnfield 2.80 128 1024 8 4 1333 DDR3 

Core i7 6700K Skylake 4.00 128 1024 8 8 2133 DDR4 

The L1, l2, and L3 indicates level-1, level-2, and level-3, respectively.  

 

(a) 
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(b) 

Figure 4-3: Images used for experimental analysis, (a) dense lush green image and (b) sparse 

image with twigs and soil. 

4.2.4 Statistical Analysis  

One-way Analysis of variance (ANOVA) was performed to study the effect of different 

extrinsic parameters individually on execution time using Minitab 17. The significantly different 

time measurement means were determined by performing the Tukey’s honestly significant 

difference (HSD) test as multiple means comparison at a significance level of 5%.   

4.3 Results and Discussion  

4.3.1 Comparison of Execution Time for Image Reading 

The time required to read the image from computer RAM and to convert the acquired BGR 

colour image to HSI was measured using three different codes. The results of image reading 

experiment indicated that maximum time with elapsed milliseconds method was 154.68 ms taken 

by the get pixel method, followed by 8.00 ms with unsafe pointers, and 2.61 ms with Marshal.copy 

method, respectively (Table 4-2). The time differences between unsafe pointers and Marshal.copy 

methods were found to be 94.82% and 98.31%, respectively, from get pixel method. The maximum 

speed-up ratio of 59.26 was observed for Marshal.copy method followed by a speed-up ratio of 

19.34 for unsafe pointers. A similar experiment was performed with two other benchmark timer 

routines to minimize the biases associated with particular method or property. The results of these 

experiments showed similar results (Table 4-2).   
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Table 4-2: Summary of execution time for three different image reading methods along with 

three different code profiling techniques (core i7 6700K). 

Timer 

Routines 

Image Reading Method 

 Get Pixel  Unsafe Pointers  Marshal.Copy 

 
Time 

(ms) 

 Time 

(ms) 

Difference  

(%) 

Speed Up 

Ratio  
Time 

(ms) 

Difference 

(%) 

Speed Up 

Ratio 

Milliseconds 154.68  8.00 94.82 19.34  2.61 98.31 59.26 

Date Time 155.2016  8.2727 94.66 18.76  3.2395 97.91 47.90 

Elapsed 

Ticks 
155.1836  8.2161 94.70 18.88  3.1766 97.95 48.88 

 

The real drawback of utilizing get pixel method was the higher time required to extract the 

colour information contained in an image resulting in a poor selection for real-time applications. 

The Marshal.copy method took least time, with the highest speed-up ratios making it a suitable 

choice for real-time applications. The unsafe pointer method can be a good alternative of 

Marshal.copy method from a speed-up ratio perspective, but this code was not being verified by 

Common Language Runtime (CLR) during code execution. This can result in an unexpected crash 

of program due to non-trusted assembly codes generated from unsafe codes (C# Programming 

Guide, 2015).  

Results of different time measuring routines revealed that time measured by these three 

methods was approximately the same. However, the resolution of elapsed milliseconds method 

was found to be insufficient to measure the elapsed period of microseconds. The other two routines 

had nanoseconds resolution, therefore resulting in more precise elapsed time measurement. 

However, results obtained from date-time method with code implemented on a high-speed 
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computer (core i7 6700K) showed the risk of inaccurate measurements associated with this method 

(Table 4-3). This inaccuracy may be due to fluctuation of computer timer clock and inaccuracy of 

computer timer synchronization with official Gregorian calendar. The elapsed ticks method was 

observed to be accurate code profiling tool among these methods along with a high resolution of 

about 200 nanoseconds.  

Table 4-3: Summary of the execution time of three different image reading methods using 

three different code profiling techniques on Core i7 6700K architecture. 

Image 

No. 
Image Reading Method 

 Get Pixel Unsafe Pointer Marshal.Copy 

 
Milli  

-Sec. 

Date 

Time 

Elapsed 

Ticks 

Milli

-Sec. 

Date 

Time 

Elapsed 

Ticks 

Milli 

-Sec. 

Date 

Time 

Elapsed 

Ticks 

1. 162 156.0001 162.5485 9 0.0000 9.0486 4 0.0000 4.5556 

2. 156 156.0001 156.8104 8 15.6001 8.8158 3 0.0000 3.1007 

3. 155 156.0001 155.1961 8 0.0000 8.3920 4 0.0000 4.0644 

4. 157 156.0001 157.6444 8 0.0000 8.0673 2 15.6001 2.8812 

5. 161 156.0001 161.8349 8 14.6090 8.2392 3 0.0000 3.0563 

6. 154 156.0001 154.9695 8 0.0000 8.2678 2 0.0000 2.4479 

7. 157 156.0001 157.3792 8 15.3012 8.1670 3 0.0000 3.0427 

8. 159 156.0001 159.5225 8 0.0000 8.3465 4 0.0000 3.0384 

9. 155 156.0001 155.7147 8 0.0000 8.0919 3 15.6001 3.4489 

10. 155 156.0001 155.4289 8 15.6001 8.3619 3 0.0000 3.1776 
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A consistent relative performance was shown by three image reading codes on each test 

platform. The execution results of different image reading codes on four different computer 

architecture (Table 4-1) showed that core i7 6700K architecture took the least time for 

manipulating and converting the colour information contained in any image (Table 4-4). This is 

due to high-end CPU clock speed, better processor architecture (sixth generation- Skylake series) 

and the highest front-side bus speed (FSB) causing minimal memory data delivery delays. Despite 

having higher clock speed and faster processor, the timing results on core i7 860 followed that of 

core i5 4200M, with the former typically larger than the later. The possible reason for this time lag 

can be the relatively lower FSB of core i7 860 architecture causing this CPU to spend a significant 

amount of time waiting for the data to arrive from computer memory. The maximum processing 

time was taken by core i7 3740QM architecture among all other platforms included in this study. 

Possible reason could be a better CPU architecture of the core i5 4200M (fourth generation- 

Haswell series) as compared to the core i7 3740QM processor (third Generation-Ivy Bridge series).  
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Table 4-4: Execution timing measurements for four different computer architectures. 

 Image Reading Method 

 Get Pixel  Unsafe Pointers Marshal.Copy 

 
Time 

(ms) 

 

 

Time 

(ms) 

Speed Up 

 

 

 

Time 

(ms) 

Speed Up 

Core i7 6700K        

Milliseconds 154.68  8.00 19.34  2.61 59.26 

Date Time 155.2016  8.2727 18.76  3.2395 47.90 

Elapsed Ticks 155.183691  8.216092 18.88  3.176588 48.88 

Core i5 4200M        

Milliseconds 224.66  12.72 17.66  5.40 41.60 

Date Time 225.1653  13.2587 16.98  5.7276 39.31 

Elapsed Ticks 225.163101  13.238470 17.00  5.710997 39.42 

Core i7 860        

Milliseconds 275.63  17.56 15.69  8.03 34.32 

Date Time 275.8567  17.9849 15.33  8.4559 32.62 

Elapsed Ticks 275.864002  18.00735 15.26  8.448458 32.65 

Core i7 3740QM        

Milliseconds 315.44  17.08 18.46  9.19 34.32 

Date Time 315.9631  17.78292 17.76  9.5727 33.03 

Elapsed Ticks 315.944302  17.731011 17.81  9.602078 32.90 

 

4.3.2 Selection of Intensity levels and Classification Accuracy 

The effect of image intensity levels on the processing time was investigated by quantizing 

the eight-bit images down to three-bits along with all other steps involved in CCM construction 

and feature extraction (Table 4-5). Results showed that average total time required for performing 



79 
 

a complete process from colour conversion to features extraction reduced with a reduction in 

intensity levels. The mean total time reduced from 10,650.264 µs to 534.718 µs with down 

quantization of eight-bit (256 levels) image to three-bit (8 levels). Time during colour conversion 

was found to be significantly higher (505.261 µs) for 256 levels when compared to other intensity 

levels. The colour conversion time for images with intensity levels of 16, 32, and 64 were not 

found to be significantly different at a level of 5%. The least time (310.503 µs) for colour 

conversion operation was observed for images with 8 intensity levels. 

Table 4-5: Execution time with different intensity levels and a fixed image size of 128 × 128 

pixels on core i7 6700K. 

Intensity 

Levels 

Mean Time (µs) Difference 

 HSI Conversion Co-Occurrence 

Matrix 

Textural 

Features 

Total (%) 

8 310.503 d 212.694 d 11.521 f 534.718 f ------ 

16 316.066 c 214.106 d 37.556 e 567.728 e 6.17 

32 316.086 c 222.688 d 142.803 d 681.578 d 27.46 

64 316.481 c 253.599 c 560.590 c 1130.670 c 111.40 

128 319.837 b 472.803 b 4234.359 b 5026.999 b 840.12 

256 505.261 a 1330.402 a 8814.601 a 10,650.264 a 1891.75 

Means with no letter shared in same column are statistically different at p=0.05 

Results of Tukey’s HSD test showed non-significant difference between mean CCMs 

construction time for intensity levels of 8, 16, and 32. A clear increment in the CCMs construction 

time was observed for images with 64, 128, and 256 levels. The increased time was due to larger 

sized CCMs caused by more intensity levels. The computational time for feature extraction was 
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found to be highly dependent on intensity and decreased by a factor of 765 as intensity levels were 

reduced from 256 to 8. The reduced iterations resulted from lower intensity levels caused QGDS 

to loop relatively fewer times over CCMs to extract the features.  

The analysis of weed-crop classification accuracy showed an improvement in accuracy 

with increase in CCM intensity levels (Table 4-6). It was observed that intensity levels from 8 to 

32 achieved good overall accuracy (>89%) on training data, while was not able to perform 

satisfactorily for test data. A low accuracy (<35%) was demonstrated by WBB class, whereas GR 

class showed good (>85 %) accuracy for these intensity levels. The highest overall classification 

accuracy was observed for 256 intensity levels during both training and test phase when compared 

to all other intensity levels included in study. A compromise between intensity levels and 

processing time was made by selecting the 256 intensity levels. They were selected because of 

plenty of information lost during the down quantization, which decreased the accuracy of machine 

learning algorithms (Table 4-6).   

Table 4-6: Effect of reduced CCM intensity levels on the classification accuracy for fixed 

image size of 128 × 128 pixels.  

Intensity 

Levels 

Training Accuracy (%) Testing Accuracy (%) 

 Category Category 

 GR WBB Total GR WBB Total 

8 98.26 86.99 93.55 87.22 15.09 57.07 

16 93.26 88.08 91.09 86.25 16.23 56.98 

32 90.23 89.43 89.90 88.67 33.58 65.65 

64 92.56 90.79 91.82 91.42 71.70 83.18 

128 96.86 91.33 94.55 93.37 83.77 89.36 

256 95.70 94.04 95.00 94.34 93.58 94.02 
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4.3.3 Effect of Image Size on Processing Time and Classification Accuracy 

A comprehensive analysis in time space was performed to calculate the execution time 

required to convert a colour image to HSI, generate three CCMs and extract 39 textural features 

on a core i7 6700K computer (Table 4-5). Full frame and AOI image sets were used to examine 

the effect of image size on overall processing time. The experimental results indicated that total 

time required for colour conversion to feature extraction increases with an increase in image size. 

An increment of 6.46 times was observed as the image size grew from 16 × 16 to 1024× 1024 

pixels. The computational time break-up showed that the increase in image size from 16 × 16 to 

1024× 1024 pixels resulted in an escalation in colour conversion time from 25.930 µs to 

37,079.122 µs. Significantly higher colour conversion time was observed for images having a size 

of 128 × 128, 256 × 256, 512 × 512, and 1024 × 1024 pixels. This might be due to large number 

of trigonometric calculations needed to convert the colour information contained in an individual 

pixel of relatively larger sized images.  

The time required for CCMs construction varied from 1024.392 µs to 17,854.930 µs.  A 

visible increment in construction time was observed for images larger than 64 pixels and was found 

to be second highest processing time for 1024 × 1024 images in overall time space. This increasing 

trend was due to an increase in lookup time required to search and fill the particular intensity level 

information contained in larger images. The computational time for textural features extraction 

was not affected by image size and varied from 8813.606 µs to 8816.116 µs. The non-significant 

difference in mean features extraction time was observed for all image sizes involved in this study. 

This behavior revealed that time required for textural feature extraction was independent at least 

for these image sizes. This was due to fixed spatial dimensions (256 × 256) of CCMs causing the 

constant 256 iterations to extract each textural feature from individual CCM without being 
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influenced by image size. Therefore, computational time for textural features was found to be 

dominant for small images and as image size increases, computational time for colour conversion 

and CCMs construction gets larger and gradually becomes dominant.  

Table 4-7: Detailed analysis of the colour conversion, CCM construction, and textural 

features extraction time for different sized images on core i7 6700K architecture. 

Image Size 

(Pixels) 

Average Time (µs) Difference 

(%) 

 HSI 

Conversion 

Co-

occurrence 

Matrix 

Textural 

Features 

Total 
 

16 × 16 25.930 e 1024.392 e 8813.606 a 9863.928 e -------- 

32 × 32 44.615 e 1025.162 e 8813.893 a 9883.670 e 0.20 

64 × 64 136.065 e 1037.787 e 8814.393 a 9988.245 e 1.26 

128 × 128 505.261 d 1330.402 d 8814.601 a 10,650.264 d 7.97 

256 × 256 2210.559 c 2149.351 c 8815.610 a 13,175.520 c 33.57 

512 × 512 9194.725 b 5667.850 b 8815.705 a 23,678.280 b 140.05 

1024 × 1024 37,079.122 a 17,854.930 a 8816.116 a 63,750.168 a 546.29 

Means with no letter shared in the same column are significantly different at p=0.05 

 

The extrapolation of different unit image sizes (16 × 16, 32 × 32, 64 × 64, 128 × 128) for 

an AOI image (768 × 128) revealed that average total time for an AOI image with 384 of 16 × 16 

pixels unit images was highest (3,787,748.352 µs) (Table 4-8). However, only 63,901.584 µs were 

required to convert, construct, and extract all textural information contained in an AOI image with 



83 
 

6 of 128 × 128 pixels unit images. The overall processing time was reduced by a factor of 59.26 

as number of unit images decreased from 384 to 6 or as size of the unit image increased from 16 

× 16 to 128 × 128 pixels. This was due to constant average time required for textural feature 

extraction. Therefore, smaller unit image size resulted in large number of unit images from an 

AOI, which ultimately lead to greater overall processing time.  

Table 4-8: Summary of computational time for an AOI image with different sizes of unit 

images on core i7 6700K.  

 

The effect of unit image size on classification accuracy showed a decrease in overall and 

individual class accuracy with decrease in image size (Table 4-9). The 16 × 16 unit image was not 

included in this analysis because of difficulty involved in manually labeling the category of 

different images used for training purposes. All unit image sizes included in study achieved very 

high overall classification accuracy (>95%) during training phase. However, unit images of 32 × 

32 size were only able to identify 53.94% of observations included in test data. A drastic decrease 

from 97.11% to 48.82% was observed for WBB class with GR accuracy decreased from 94.63% 

to 60.5%. Increase in unit image size to 64 × 64 helped to correctly identify 73.44% of test WBB 

observations. The highest performing unit image size was found to be 128 × 128 with overall test 

accuracy of 90.79% when compared to all other unit image sizes included in this study.  

Unit Image Size No. of Unit 

images in an AOI 

Average Total Time (µs) Difference 

(Pixels)  1 Unit Image 1 AOI Image (%) 

128 × 128 6 10,650.264 63,901.584 --------- 

64 × 64 24 9988.245 239,717.88 275.13 

32 × 32 96 9883.670 948,832.32 1384.55 

16 × 16  384 9863.928 3,787,748.352 5826.36 
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Table 4-9: Effect of different unit image sizes on the classification accuracy for fixed intensity 

levels of 256.  

Image Size Training Accuracy (%) Testing Accuracy (%) 

 Category Category 

 
GR WBB Total GR WBB Total 

32 × 32 94.63 97.11 95.87 60.5 48.82 53.94 

64 × 64 98.76 97.73 98.34 82.00 73.44 77.19 

128 × 128 97.93 99.17 98.55 89.5 91.80 90.79 

 

4.3.4 Comparison of Individual CCMs in Computational Time Frame 

Hue, saturation, and intensity CCMs took almost the same time for colour conversion, 

CCMs construction, and features extraction. A quantification procedure was adopted to process a 

set of 2244 unit images (128 × 128). The intensity levels of these images were fixed to 256 during 

this experimental setup and core i7 6700K architecture was used. Results of Tukey’s HSD 

indicated that mean time required for colour conversion was significantly different for all three 

colour planes. The maximum time was required to extract hue information from a BGR colour 

image (Figure 4-4).  The minimum time taken during colour conversion was for intensity (52.638 

µs) followed by saturation (98.336 µs). The relatively lower time requirement for intensity was 

due to the simple arithmetic operations involved in its extraction. A similar concept can be used to 

explain the low extraction time needed for saturation colour plane.   

The time required for CCM construction was also found to be significantly different with 

highest (449.980 µs) and lowest (397.054 µs) times observed for saturation and intensity CCMs, 

respectively. A similar trend of significantly different execution time was observed for textural 
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features. The highest time (3601.741 µs) during feature extraction was required by saturation 

colour plane, followed by intensity colour plane (3585.643 µs). The hue features took 3568.160 

µs. Overall performance of CCMs based algorithms can be improved by reducing the time required 

for hue conversion. A colour conversion look-up table (LUT) might be an acceptable solution to 

reduce the processing overhead involved with hue extraction. The reduction of features could also 

be helpful for reducing the overall processing time of CCMs. 

 

Figure 4-4: Mean execution time from colour conversion to feature extraction for individual CCM 

using core i7 6700K (Means with no letter shared are statistically different at P = 0.05).   

4.4 Conclusions 

The goldenrod detection system consisting of a graphical user interface, CCM based image 

processing algorithm for extracting textural features in real-time, and machine learning techniques 

was developed. Parameters influencing the real-time application of CCMs were also optimized 

with their potential effect on goldenrod identification accuracy. The Marshal.copy method of C# 

programming language was found to be most suitable for reading the image from computer RAM 
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as it took the least time. There was a significant difference between mean execution time of CCMs 

for different intensity levels. Images with 256 and 128 intensity levels took 10,650.264 µs and 

5026.999 µs, respectively and were able to achieve an overall accuracy of 94% and 89%, 

respectively on test images. Reduction of intensity levels also resulted in the reduction of 

goldenrod classification accuracy. The colour conversion and CCM construction time were found 

to be dominant for the images larger than 256 × 256 pixels. A unit image size of 128 × 128 pixels 

can be adopted for real-time applications because of the highest classification accuracy. It also 

helped to minimize the computational time for processing an AOI image with current camera 

settings. The textural features extracted from CCMs were intensity dependent rather than image 

size. The highest time for colour conversion was needed by hue, while CCM construction and 

feature extraction required the most time for saturation colour plane. Based on the results of this 

study, it can be concluded that Marshal.copy method, intensity levels of 128 or 256, and a unit 

image size of 128 × 128 pixels can help to minimize the computational burden without 

compromising the classification accuracy for real-time applications. The quantitative textural 

features extracted from CCMs in combination with statistical and artificial neural network 

techniques can be used to develop classification criterions to target the goldenrod site-specifically 

in wild blueberry fields.  
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CHAPTER 5: DEVELOPMENT OF WILD BLUEBERRY AND GOLDENROD 

SEGMENTATION CLASSIFIERS USING STATISTICAL AND ARTIFICIAL NEURAL 

NETWORK TECHNIQUES 

 

5.1 Introduction 

Despite complex plant, residue, and soil ecosystem’s dynamics, CCMs along with non-

linear, multifactor modeling techniques have the potential to systematically identify different plant 

covers (Burks et al., 2005). The quantitative textural features can be employed to classify the 

members of two or more mutually exclusive data groups by mining the underlying relationships 

between these features and respective group (Pao, 1989). These modeled relationships can learn 

from externally supplied successive real field plant cover instances to make predictions about 

similar future instances (Marchant and Onyango, 2003) and will be able to adapt any unforeseen 

changes in data on the basis of the similarity of supplied instances (Pao, 1989). Modeling these 

classifying relationships from textural features is possible by using statistical and artificial neural 

network (ANN) techniques based on the dimensional nature of input data and output classes (Burks 

et al., 2005).  

The statistical methods for developing the classification relationships are based on the 

process of calculating the instance probability of belonging to an individual class followed by a 

decision condition of classifying the instance to a class with the highest probability (Klecka, 1980). 

These methods were reported to be effective for weed crop classification in a variety of plant 

covers (Shearer and Holmes, 1990; Mayer et al., 1998; Lee et al., 1999; Burks et al., 2001; 

Gebhardt et al., 2006; de Castro et al., 2013). Shearer and Holmes (1990) used textural features to 

develop a discriminant model based on generalized square distances between two classes to 

classify seven different cultivars of nursery plants. They were able to achieve a maximum 

classification accuracy of 90.9% on test image data using a quadratic model.  



88 
 

The ANN based techniques can be effectively used to relate the multifactor linear or non-

linear associativity of textural features with different groups (Burks et al., 2005). The key element 

of this paradigm is the novel structure of information processing system capable of extracting the 

useful classifying non-linear functional relationships (Pao, 1989). Tang et al. (1999) characterized 

images into broadleaf and grass categories with 100% classification accuracies using the Gabor 

wavelet algorithm followed by three-layered feedforward back-propagation ANN model. Cho et 

al. (2002) modeled the canopy shape features to an ANN classifier trained with logistic sigmoid 

function for delineating the weed plants in radish fields. They achieved approximately 93% 

accuracy in both cases. Burks et al. (2005) compared the performance of four ANN classifiers 

modeled through CCM features. The results of this study indicated that BP-ANN classifier resulted 

in the highest classification accuracy of 97% along with the low computational requirements. 

Chang et al. (2012a) were able to classify 98.9% of wild blueberry and 93.9% of weeds correctly 

by using a linear discriminant model. A large number of studies have been carried out for different 

cropping systems, however, to date no work has been reported regarding the application of 

statistical and ANN classifying models specifically for goldenrod identification in wild blueberry 

cropping system. 

Wild blueberry producers are currently looking for technologies to minimize the cost of 

production due to continuously shrinking profit margins. The cost associated with traditional 

uniform application of herbicides can be cut down by developing a VR spraying system capable 

of targeting goldenrod site -specifically. Therefore, there is a need to develop classifying models 

from textural features by employing statistical and ANN techniques for goldenrod detection in 

real-time that can control the individual nozzle of VR spraying system accordingly. The 

classification accuracy of these developed relationships needs to be compared and evaluated on 
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independent test dataset to select highly accurate classifying model for practical applications. 

These models will help the wild blueberry growers to minimize the cost of production by reducing 

today’s herbicide influx.   

5.2 Materials and Methods 

5.2.1 Image Acquisition 

Four wild blueberry fields were selected in central Nova Scotia, Canada to develop an image 

library containing the images of goldenrod, wild blueberry, bare spots, and mixed canopies. The 

wild blueberry field images were acquired during summer of 2015 and 2016. A set of 2701 full 

frame (1280 × 1024) images was added to the library from North River I and Cattle Market fields 

during 2015. Another set of 9,669 AOI images was added to image library by collecting data from 

North River II and Londonderry fields using mobile field imaging system equipped with four 

cameras during summer 2016. Test tracks containing goldenrod patches were selected and data 

was acquired from two cardinal directions. The images were acquired in the natural illumination 

conditions along with any artifacts caused by UTV/boom shade, and variation in lightning caused 

by clouds. To accommodate the effect caused by sun angle, the image acquisition process was 

repeated at different times throughout the day.    

5.2.2 Data Division and Processing 

The image library was partitioned into two datasets containing 70% of data for developing 

and training a model and 30% for validating the model. The images were randomized before 

including in any of these datasets on the basis of their acquisition time. The AOI images were 

cropped from full frame images acquired during 2015 by using IrfanView. In order to isolate the 

individual class specimen, 128 × 128 pixels unit images were extracted from AOI images of both 

years. There were six unit images (128 × 128) from an individual AOI image. The extracted unit 

images were manually classified into wild blueberry and goldenrod and were labeled with “spray” 
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or “no spray” tags. The unit images were processed in laboratory using QGDS program and two 

databases of textural features were developed for GR and WBB classes.  

5.2.3 Classifying Variables Selection 

The SAS PROC STEPDISC procedure was used for sifting through a large number (39) of 

potential independent features from a unit image and then for fine-tuning an existing model. The 

stepwise procedure consisting of forward selection and backward elimination opted during feature 

selection. The feature having the highest F-statistics and R2 was added first in model during 

forward selection followed by the exclusion of non-significant feature during backward 

elimination. The feature addition and removal was assisted by defining 0.00015 as significance 

level to enter (F-to-enter) and 0.0001 as significance level to remove (F-to-remove). This 

procedure was used for individual colour plane and their possible combinations along with control 

model containing all 39 features for monitoring the relative performance of all developed DMs. 

The feature selection procedure was further aided by developing the matrix plots in Minitab 17 to 

identify features strongly relating to class memberships.  

5.2.4 Development of Statistical Classifiers 

The SAS PROC DISCRIM procedure was used to define a statistical classification criterion. 

The univariate and multivariate normality tests were performed to select from parametric and non-

parametric methods. The normality tests also helped to identify outliers in training data set 

resulting in the exclusion of these extreme scenarios from classifers. The test of homogeneity was 

performed for selection of within group or group covariance matrices. The linear and quadratic 

classifying criterions were developed for all DMs extracted during previous step. The prior 

probabilities of goldenrod and wild blueberry classes were set to the same level.  
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5.2.5 Development of BP-ANN Classifiers 

The multilayer, feedforward, supervised, back-propagation neural networks were trained by 

using Peltarion Synapse software. The same arrays (DMs) of input variables selected by 

STEPDISC were used for BP-ANN classifiers development. The BP-ANN classifiers were 

developed using DMs with the highest classification accuracy during DISCRIM procedure along 

with DM containing all 39 features to compare the relative accuracy of other DMs. For the 

individual DM, the network was trained on trial and error basis. The adjusted networks were 

extracted using the deployment post-processing tool of Peltarion Synapse software to make a 

separate and stand-alone WorkArea0.dll (.NET dynamic linking library) file. A C# based 

command prompt program was written to predict and validate both external and internal data sets 

by using WorkArea0.dll file and save processed result as a comma separated value (CSV) file. 

These networks for internal and external validations were tested and evaluated to achieve highest 

overall and individual species classification accuracy with MSE as a supplementary criterion to 

assist the evaluation process. Each parameter was tweaked individually at a time to determine the 

best choice for each parameter. The performance of these networks at the end of each tweak was 

tested by evaluating it on both training and testing data sets. The detailed procedure of statistical 

and BP-ANN classifiers development can be seen in Chapter 3. 

5.3 Results and Discussion  

5.3.1 Feature Selection Results 

The SAS STEPDISC resulted in development of seven different reduced DMs along with a 

control DM containing all 39 features (Table 5-1). The features of three models (DM-HSD, DM-

SSD, and DM-ISD) were reduced by removing the CCMs and features of other planes followed by 

the implementation of feature reduction procedure. The least number of features (5) were observed 

for intensity CCMs followed by hue and saturation features (7). The other three models (DM-
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HSSD, DM-HISD, and DM-SISD) were developed by reducing the features from all possible 

combinations of two colour planes. The final model (DM-HSISD) was extracted by reducing the 

features of all three colour planes in order to get the list of features having the highest possible 

classification accuracy with minimal computational load. The number of required features in this 

model was reduced from 39 to only 7 with complete exclusion of features from intensity colour 

plane. This significant reduction of H and S features along with complete removal of intensity 

colour plane could reduce the computation required in the analysis by at least one-third, given that 

this model will comparatively achieve the highest classification accuracy. The removal of intensity 

features from this model might be due to their limited discriminatory power as this colour plane is 

majorly affected by any variation in outdoor illumination condition (Burks, 1997).  

Table 5-1: Summary of SAS STEPDISC function for selection of different textural features 

from different colour planes.  

Data Model Colour Spaces Used Selected Textural Features 

DM-HSD H Hf2, Hf3, Hf4, Hf5, Hf7, Hf8, Hf13   

DM-SSD S Sf2, Sf4, Sf5, Sf7, Sf9, Sf10, Sf13  

DM-ISD I If1, If3, If5, If9, If12 

DM-HSSD H and S Hf3, Hf5, Hf9,Hf8, Hf11,  Hf13, Sf3, Sf7 

DM-HISD H and I Hf2, Hf13, If1, If3, If5, If9, If12 

DM-SISD S and I Sf4, Sf5, Sf7, Sf9, Sf11, If9 

DM-HSISD H, S, and I Hf3, Hf4, Hf5,  Sf5, Sf7, Sf10, Sf13 

DM-HSI H, S, and I All 39 features 

The subscript SD indicates the STEPDISC models with reduced features, Hf2 indicates the second feature 

of the hue term, and so on.  

The matrix plots of different textural features were developed for both classes in order to 

guard against the over and under specified data models (Figures A-3, A-4; Appendix A). The 
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matrix plot of hue features indicated that several features are correlated thereby shared same 

discriminatory information and can be reduced further. Taking help from this plot Hf2 feature was 

removed from DM-HSD model and another feature HF12 was added in it (Table 5-2). The matrix 

plot of saturation and intensity features indicated the addition of Sf2, Sf5 features in DM-HSISD, 

DM-HSSD and If7 in DM-ISD, respectively. These fine-tuned models were used for the development 

of classifiers. 

Table 5-2: Modified models with new features added or removed by using matrix plots. 

Data 

Model 

Colour 

Spaces 

Used 

Feature(s) List of New Textural Features1 

  Adde

d 

Remove

d 

 

DM-HSD H Hf12 Hf2 Hf3, Hf4, Hf5, Hf7, Hf8, Hf12, Hf13   

DM-SSD S ---- Sf10 Sf2, Sf4, Sf5, Sf7, Sf9, Sf13  

DM-ISD I If7 ---- If1, If3, If5, If7, If9, If12 

DM-HSSD H and S Sf5 ---- Hf3,  Hf5, Hf8, Hf9, Hf11, Hf13, Sf3, Sf5, Sf7 

DM-HISD H and I ----- ----- Hf2, Hf13, If1, If3, If5, If9, If12 

DM-SISD S and I ---- Sf11 Sf4, Sf5, Sf7, Sf9, If9 

DM-HSISD H, S, and I Sf2 ---- Hf3, Hf4, Hf5, Sf2, Sf5, Sf7, Sf10, Sf13 

DM-HIS H, S, and I ---- ---- All 39 features 

1Bold face letters indicate newly entered features 

5.3.2 Normality Test 

The multivariate and univariate (Shearer, 1987) normality tests were performed for both 

training and testing datasets using Minitab 17 in order to make a decision between parametric or 

non-parametric methods of generating the discriminant criterion. The results of univariate 

normality tests indicated that most of textural features of both classes were normally distributed 
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with exception to the few that were found to be skewed. The data was transformed using different 

techniques (square root, cube root, natural log, log, square, and cube) to induce the normality. 

While these transformations helped to induce normality in some features, they actually skewed the 

distribution of other features in same class or other class. None of these transformations were 

founded to normalize the whole dataset of both classes. Although some features exhibited the 

skewness, but none of them were found to be bimodal leading us to approximate that all features 

in both classes were normally distributed (Shearer and Homes, 1990). Furthermore, the 

discriminant analysis is a robust technique which can tolerate skewness in real field data 

(Lachenbruch, 1975) thus minimizing the effect of this approximation.  

The scatter plots of squared Mahalanobis distance against chi-square quantiles for the hue, 

saturation, and intensity indicated that most of data in multivariate space were normal for both 

classes (Figures A-1 and A-2; Appendix A). The analysis of these plots indicated that outliers have 

squared Mahalanobis distance notably greater than their chi-quantiles for these data points. It was 

also observed that the outliers in all three hue, saturation, and intensity plots were from same 

goldenrod and/or wild blueberry images. It was found that outlier images had relatively high 

saturated pixels caused by variation in outdoor illumination conditions and/or reflections from 

UTV/boom (Figure 5-1). The outlier images were removed from training data resulting into the 

datasets, which were more representative of two classes.  
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Figure 5-1: Sample images responsible for generating the relatively erroneous data in hue, 

saturation, and intensity colour planes. 

 

5.3.3 Statistical Classifiers  

The parametric methods were used for developing the decision criterion using discriminant 

analysis. The significance of homogeneity test at level of 10% indicated the use of within-group 

covariance matrices to derive quadratic discrimination criterion for all DMs. However, the linear 

classifiers were also developed and compared to quantify the cost of misclassification. The linear 

and quadratic classifiers were trained by running each DM individually. In each case, same training 

and testing data sets were utilized in order to have a fair comparison between DMs. The results of 

quadratic classification criterion indicated that model DM-HSISD achieved the highest accuracy 

among all other models (Table 5-3). The overall classification accuracy achieved by this model 

was 95.39% and 93.08% for training and testing datasets, respectively. The accuracies for GR and 

WBB classes were 94.13% and 97.18% during the training phase, and 93.27% and 92.74% during 

the test run. The model (DM-HSI) containing all 39 features showed relatively lower overall 

classification accuracy when compared with DM-HSISD. The DM-HSISD misclassified the 2,993 

GR observations to WBB class along with 1,825 WBB observations categorized as GR from the 

test data (Table 5-4). Out of 44,473 GR observations, the DM-HSI model misclassified 3,385 as 

WBB. The misclassification rate of this model was approximately 28.66% higher when compared 

with the DM-HSISD for WBB data (Table 5-4). This relatively high WBB misclassification rate 
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might be due to the similarity of class membership means at some features included in DM-HSI 

model thereby increasing the misclassification rate (Klecka, 1980).  

Table 5-3: Classification accuracies of quadratic classifiers developed by using different 

DMs. 

Data Model Training Accuracy (%) Testing Accuracy (%) 

 Category Category 

 GR WBB Total GR WBB Total 

DM-HSD 77.77 90.14 82.86 70.60 85.16 75.86 

DM-SSD 93.96 91.77 93.06 91.92 87.36 90.27 

DM-ISD 85.30 69.15 78.65 75.76 66.04 72.25 

DM-HSSD 91.34 91.71 91.49 88.89 91.18 89.72 

DM-HISD 87.93 79.12 84.30 87.40 76.37 83.42 

DM-SISD 92.39 95.77 93.78 90.91 86.26 89.23 

DM-HSISD 94.13 97.18 95.39 93.27 92.74 93.08 

DM-HSI 93.96 92.96 93.55 92.39 90.66 91.77 

 

The model (DM-SSD) containing the reduced features from the saturation classified the 

93.96% of GR and 91.77% of WBB on training data. The accuracies of GR and WBB were reduced 

to 91.92% and 87.36% respectively during the test run. The accuracies of this model in comparison 

of DM-HSISD were lower for WBB class. However, only one CCM was required for this model 

thereby reducing the processing time by at least two-third along with the exclusion of most time-

consuming hue CCM. This model categorized 3,593 GR observations as WBB and 3,178 WBB 

observations as GR. This model can be used for real-time applications with little compromise made 
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on over spray in WBB patches. The remaining individual CCM models (DM-HSD, DM-ISD) 

showed less than 90% overall accuracy. The model DM-HSD achieved 85.16% accuracy for WBB 

classification with very high misclassification of GR on test data. The DM-ISD model showed poor 

performance (<70%) for classifying WBB during both training and test run. The lower accuracy 

of this model for WBB could be due to variation in illumination conditions affecting the intensity 

colour plane thereby causing the rapid variability in CCM features (Burks et al., 2001). These 

results for DM-ISD for WBB were similar to Chang et al. (2012a).  

Table 5-4: Misclassified observations of three different models from the test data. 

Category Number of Observations Classified into Category 

 DM-HSISD DM-HSI DM-SSD 

 GR WBB GR WBB GR WBB 

GR 41,480 2,993 41,088 3,385 40,879 3,593 

WBB 1,825 23,319 2,348 22,796 3,178 21,966 

 

The models (DM-HSSD, DM-HISD, and DM-SISD) developed from the combination of two 

different CCMs achieved overall accuracies ranging from 84% to 94% for training data and 83% 

to 90% for test data. The least accurate model among these was DM-HISD, as it just classified 

84.30% and 83.42% of observation correctly in training and resting respectively. The overall 

accuracy of this model was reduced because of lower accuracy showed by this model for WBB 

class. The model DM-SISD showed some promise over DM-HISD for GR (92.39%) and WBB 

(95.77%) during training. However, it performed relatively poor for WBB (86.26%) on test data 

while maintaining the acceptable classification accuracy for GR. The WBB class affected the 
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performance of both of these models that might be again due to poor identification capacity of 

intensity features.  

The overall classification accuracies of all linear DMs were less than their respective 

quadratic DMs for test data (Table 5-5). None of the linear models showed the classification 

accuracy of 90% for GR class on test data. The only model that achieved the highest classification 

accuracy was DM-HSISD for both GR and WBB during training and testing phase. Another model 

with the comparable performance was DM-SSD, which showed an accuracy of 91.86% and 90.23% 

in training and 85.86% and 91.21% in testing for GR and WBB respectively. The DM-HSI model 

with all 39 features showed good overall accuracy (96.64%)during the training phase but was not 

up to the mark for GR classification in the testing phase.  

Table 5-5: Classification accuracies of linear classifiers developed by using different DMs. 

Data Model Training Accuracy (%) Testing Accuracy (%)  

 Category Category 

 GR WBB Total GR WBB Total 

DM-HSD 87.88 63.38 77.79 86.09 51.65 73.65 

DM-SSD 91.86 90.23 91.19 85.86 91.21 87.79 

DM-ISD 90.03 50.70 73.83 87.88 41.21 71.02 

DM-HSSD 93.44 97.59 95.15 80.81 91.21 84.57 

DM-HISD 88.98 85.92 87.72 82.83 74.73 79.90 

DM-SISD 92.13 95.77 93.63 84.88 90.11 86.77 

DM-HSISD 92.87 97.18 94.64 86.87 93.92 89.42 

DM-HSI 95.28 98.59 96.64 81.82 92.86 85.81 
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5.3.4 BP-ANN Classifiers 

The BP-ANN classifiers were developed using two DMs (DM-HSISD, DM-SSD) that showed 

the highest classification accuracy (>87%) with quadratic classifiers on both training and testing 

data sets during DISCRIM procedure along with a control DM-HSI containing all 39 features. 

Only two DMs were selected for BP-ANN classifiers because of the difficulty involved with 

tweaking the topology and learning parameters for individual DM on trial and error basis. The 

similar training and testing data sets were used for evaluating the relative performance of BP-ANN 

over respective statistical classifiers. All discussion about topology design and parameters 

selection was made for only DM-HSISD model due to limitation of space, however, similar 

procedure was adopted for DM-SSD, DM-HSI used to develop BP-ANN classifiers.  

5.3.4.1 Back-Propagation Topology Design 

The network topology of the BP-ANN classifier based on DM-HSISD model was evaluated 

by adopting the experimental approach of constructive algorithms. The numbers of input and 

output neurons for all these topologies were remained fixed along with variable number of hidden 

layer neurons (Table 5-6). The eleven topologies were developed during this experimentation and 

classification accuracies for both training and testing datasets were recorded for evaluation and 

comparison purposes. The topology design evaluation also compared the symmetrical (same 

number of neurons in each hidden layer) and asymmetrical two hidden layer topologies. The results 

indicated that all topologies showed higher GR classification accuracies (>91%) during training 

and testing phases. However, none of these topologies achieved greater than 90% accuracy for 

WBB class in testing phase. This may be due to limited training epochs thereby lowering the WBB 

test classification accuracy.   



100 
 

The DM-HSISD model showed the highest overall classification accuracy on training and 

testing data sets for TM6 topology (Table 5-6). This topology achieved classification accuracies 

of 97.80%, 94.93% for GR class and 91.99%, 88.74% for WBB class during training and testing. 

A similar number of hidden neurons with one hidden layer (TM2) did not perform as closely to 

TM6 during test run. A reduction of approximately 4.73%, 4.12%, and 3.41% was observed in 

overall classification accuracies of TMI, TM2, and TM3 topologies in comparison to TM6. Even 

though TM2 contained nine hidden neurons like TM6 but exclusion of a hidden layer resulted in 

a drop of in WBB classification accuracy on test data. The comparison of symmetrical two hidden 

layer topologies indicated that overall classification accuracy increased with increasing number of 

hidden neuron until TM8 (5×5) and then reduced with six neurons at each hidden layer (TM10). 

The better performance of TM8 over the other symmetrical topologies was majorly due to WBB 

classification accuracy of 87.03% on test dataset. The GR classification accuracy of this topology 

was approaching to asymmetrical TM6, thereby making it a good alternative of this asymmetrical 

topology. It was observed that TM10 was over-trained symmetrical topology with least MSE at a 

cost of decrement in classification accuracy of test WBB. The least value of MSE indicated the 

closeness of fit of TM10 topology to training data only thereby losing the accuracy for overall 

population of WBB class. This topology tried to suit the particularities of training data being used 

along with the loss of network ability to generalize the ranges of input values to cover the entire 

population of (LeCun et al., 2012) WBB class. 

The MSE reduced with increase in number of hidden neurons. The MSE showed by the TM6 

was lower than all other bigger networks, but higher overall classification accuracy (92.26%) of 

this topology on test data made it more appropriate selection for further analysis. Moreover, the 

computational complexity of TM6 was relatively less than TM8 and TM9. It was therefore 
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concluded from these results that asymmetrical TM6 was appropriate selection among these 

topologies based on 94.93% and 88.74% test accuracies for GR and WBB, respectively.  

Table 5-6: Classification accuracy of different topologies tested for the DM-HSISD data model 

at an epoch size of 1,000.  

Topology 

Model 

Model 

Structure 

MSE Training Accuracy (%) Testing Accuracy (%) 

   Category Category 

   GR WBB Total GR WBB Total 

TM1 8×5×2 0.093 96.45 88.28 92.14 91.44 81.89 87.89 

TM2 8×9×2 0.089 94.56 90.88 93.16 91.74 84.50 88.45 

TM3 8×3×3×2 0.084 96.45 91.90 94.65 92.93 83.80 89.11 

TM4 8×4×3×2 0.083 97.16 93.90 95.67 93.93 88.03 91.47 

TM5 8×4×4×2 0.083 96.79 90.09 94.65 92.92 84.50 89.11 

TM6 8×5×4×2 0.082 97.80 91.99 95.91 94.93 88.74 92.26 

TM7 8×4×5×2 0.081 96.80 91.90 95.16 93.43 88.03 91.17 

TM8 8×5×5×2 0.075 97.16 90.90 95.67 93.94 87.03 91.47 

TM9 8×6×5×2 0.075 96.80 91.90 95.20 93.43 88.03 91.17 

TM10 8×6×6×2 0.073 96.45 90.99 94.94 93.43 83.80 89.41 

TM11 8×7×6×2 0.078 96.45 90.99 94.91 94.44 87.32 91.47 

 

5.3.4.2 Back-Propagation Parameter Selection 

The TM6 topology was used further for the selection of the appropriate training parameters. 

The TM6 topology, tanh sigmoid mathematical function, MT of 0.7, and online training mode was 

used to locate the best LR at 1000 epochs for these particular settings. Results showed that all LRs 
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attained high (>93%) classification accuracy for GR class for both training and testing data (Table 

5-7). However, only two LRs (0.075 and 0.085) showed a classification accuracy of approximately 

90% for WBB class during the test phase. It was also observed that increasing the LR beyond 0.09 

enabled TM6 topology to learn better during training phase while causing noticeable drop of in 

WBB accuracy for test data. These high LRs resulted into the over-trained networks with the lower 

MSE, thereby reducing the accuracy of TM6 topology. By keeping in view the results of 

classification accuracies and MSE, the LR of 0.085 was selected for the further parameter 

selection. 

Table 5-7: Classification accuracy of different learning rates for the DM-HSISD data model 

at an epoch size of 1,000. 

Learning 

Rate 

MSE Training Accuracy (%) Testing Accuracy (%) 

  Category Category 

  GR WBB Total GR WBB Total 

0.025 0.106 96.10 87.39 92.51 93.94 85.92 90.76 

0.040 0.095 96.45 89.19 93.46 93.44 85.92 90.72 

0.045 0.093 96.45 89.19 93.46 92.93 85.21 90.14 

0.050 0.091 96.10 89.19 93.25 94.44 86.62 91.62 

0.075 0.086 96.81 91.89 94.78 93.94 89.44 92.31 

0.085 0.076 97.16 92.09 95.07 93.94 91.14 92.93 

0.090 0.081 96.81 91.89 94.78 93.94 88.73 92.06 

0.100 0.071 96.81 91.01 94.42 93.44 86.62 90.98 

0.125 0.068 97.16 92.80 95.36 94.44 88.73 92.38 

0.150 0.064 96.81 91.40 94.58 93.94 85.92 91.04 
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The batch and online LMs were tested for adjusting the weights and biases either on the 

system or pattern error for TM6 topology with previously selected parameters. The results 

indicated that the overall performance of batch mode was poor (Figure 5-2). The TM6 topology 

with this mode of weight updates was not able to learn appropriately for GR class as indicated by 

very low accuracy (<4%) of this class during training. On the other hand, online mode indicated 

the potential of classifying approximately 96% of GR correctly during both training and testing 

phase. It showed relatively lower performance for WBB class when compared with the batch 

mode. A balance between the accuracy of both classes resulted in the selection of online LM for 

further analysis.  

 

Figure 5-2: Effect of batch versus the online learning mode on the classification accuracy for DM-

HSISD data model at an epoch size of 1,000 (I and II represent the training and test data, 

respectively). 
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The MT was varied from 0.70 to 0.95 for TM6 topology along with all previously adjusted 

parameters. It was observed that MT of 0.80 achieved comparatively highest classification 

accuracy (89.44%) for the WBB class of test data and all MTs indicated GR accuracy of at least 

92% during test phase (Table 5-8). Despite having high classification accuracy for both classes 

during a training session and low MSE, the relative decrement in WBB accuracy for test data at 

MT of 0.95 was due to the over-training of this topology.  

Table 5-8: Effect of the MT on the classification accuracy for the DM-HSISD data model at 

an epoch size of 1,000. 

Momentum 

Term 

MSE Training Accuracy (%) Testing Accuracy (%) 

  Category Category 

  GR WBB Total GR WBB Total 

0.70 0.077 97.16 91.89 94.99 92.93 88.73 91.41 

0.75 0.083 96.45 90.99 94.20 92.93 83.80 89.63 

0.80 0.067 97.16 91.89 94.99 95.45 89.44 93.28 

0.85 0.072 97.16 91.89 94.99 94.45 88.03 92.13 

0.90 0.070 97.16 92.79 95.36 94.94 87.32 92.19 

0.95 0.030 98.93 96.40 97.89 97.47 78.87 90.75 

 

Eight mathematical functions were tested with TM6 topology, LR of 0.085, MT of 0.80, 

and online training mode at 1000 epochs to find a suitable mathematical function (Table 5-9). 

Results showed that superposed logistic sigmoid-I, superposed logistic sigmoid-II, and Gaussian 

functions were not able to identify the WBB class at all, thereby classifying all the observations as 

GR for both training and test data. These functions did not allow TM6 topology to converge to a 
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trainable solution during training and were found to be inappropriate for this classification task. 

The Morlet and sine functions also showed relatively very less classification accuracy for WBB 

class during both training and testing phase along with MSE approaching to other poor performing 

functions. Results indicated that three functions, tanh sigmoid, logistic sigmoid, and linear had 

capabilities to classify GR and WBB with a reasonably high (>80%) accuracy for both training 

and test data (Table 5-9). It was found that tanh sigmoid achieved the highest training and testing 

classification accuracies for both GR and WBB classes among all functions tested. Furthermore, 

this function also indicated the least MSE. Based on the results of classification accuracies and 

MSE, the tanh sigmoid was selected for the further parameter selection. 

Table 5-9: Tested mathematical activation functions for the DM-HSISD data model at an 

epoch size of 1,000. 

Mathematical 

Function 

MSE Training Accuracy (%) Testing Accuracy (%) 

  Category Category 

  GR WBB Total GR WBB Total 

Tanh Sigmoid 0.071 97.16 92.10 95.08 94.44 91.14 93.28 

Logistic Sigmoid 0.128 96.10 88.73 93.07 93.93 85.59 90.92 

Superposed Logistic 

Sigmoid-I 
0.388 100.00 0.00 58.82 100.00 0.00 63.88 

Superposed Logistic 

Sigmoid-II 
0.388 100.00 0.00 58.82 100 0.00 63.88 

Gaussian 0.387 100.00 0.00 58.82 100 0.00 63.88 

Morlet 0.342 98.23 28.82 69.65 96.46 28.87 72.05 

Linear 0.173 93.97 91.89 93.11 91.41 81.69 87.90 

Sine 0.337 95.04 17.11 62.95 96.96 14.08 67.03 
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The results of epoch testing indicated that epoch size of 2,500 was enough for TM6 topology 

to classify the GR and WBB classes accurately, as a marked drop in the accuracy of test WBB was 

observed with greater epochs (Table 5-10). The results showed that with increase in epoch size 

MSE continues to decrease thus resulting in increased classification accuracy of both classes 

during training.  While this increase caused the reduced accuracy of WBB class during test session 

especially beyond 4,000 epochs (Table 5-10). Results suggested the LR of 0.085, online LM, MT 

of 0.80, tanh sigmoid function, and an epoch size of 2,500 was suitable for TM6 topology. 

Table 5-10: Relationship between epoch size and classification accuracy for the DM-HSISD 

data model.  

Epochs MSE Training Accuracy (%) Testing Accuracy (%) 

  Category Category 

  GR WBB Total GR WBB Total 

500 0.085 96.45 91.01 94.21 92.93 85.92 90.40 

1,000 0.075 96.81 91.90 94.79 94.44 90.14 92.89 

1,500 0.047 98.94 76.58 89.73 95.96 68.31 85.97 

2,000 0.059 97.87 95.52 96.90 95.45 86.61 92.26 

2,500 0.044 98.23 96.41 97.48 96.96 94.89 96.21 

3,000 0.043 98.23 95.52 97.11 94.95 88.73 92.70 

3,500 0.040 98.58 95.52 97.32 97.47 80.28 91.26 

4,000 0.039 98.23 97.30 97.85 96.96 84.50 92.46 

4,500 0.028 99.29 96.41 98.10 97.47 77.46 90.24 

5,000 0.027 98.94 96.41 97.90 96.97 71.17 87.65 
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5.3.4.3 Comparison of BP-ANN Classifiers Only Based On DM-HSISD, DM-HSI, DM-SSD  

Two different DMs showing highest classification accuracy for both classes during 

DISCRM procedure were compared with a control DM containing all 39 features by developing 

three different BP-ANN classifiers for these DMs. The results showed that DM-HSISD based BP-

ANN classifier was able to classify at least 97% of the GR with 95% of WBB classified correctly 

during both training and test session (Figure 5-3). The individual class and overall classification 

accuracy of this DM was highest when compared to other DMs included in this study. The test 

performance of this BP-ANN classifier increased approximately 3.69%, 2.15%, and 3.13% for the 

GR, WBB, and overall categories as compared to its quadratic statistical counterpart. The DM-

HSI based BP-ANN classifier also showed the decent performance with approximately 1.82% and 

3.93% less accuracy for test GR and WBB, respectively, when compared with the DM-HSISD 

classifier. The model (DM-SSD) with least number of features showed relatively lower accuracy 

for the test WBB (87.17%) as compared to other models. It can be a good selection for real-time 

applications with a little compromise on classification accuracy. The optimum topologies and 

learning parameters used to achieve these accuracies for all three different DMs are given in Table 

5-11. Based on the results DM-HSISD based BP-ANN classifier was used for field evaluation. 
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Figure 5-3: Performance comparison three different BP-ANNs developed from different DMs.  

Table 5-11: Topologies and learning parameters used for different DMs based BP-ANN 

classifiers.   

Optimum Parameters DM-HSISD DM-HSI DM-SSD 

Topology 8×5×4×2 39×4×3×3×2 6×4×2×2 

Mathematical Function Tanh Sigmoid Tanh Sigmoid Tanh Sigmoid 

Learning Rate 0.085 0.05 0.09 

Momentum Term 0.80 0.75 0.90 

Training Mode Online Online Online 

Epoch Size 2,500 2,000 4,500 
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5.4 Conclusions 

In this study, plant cover imagery from wild blueberry fields was used to design and evaluate 

the statistical and BP-ANN classifying models to differentiate goldenrod from wild blueberry 

plants. The textural features extracted from image data using QGDS program were used to develop 

the different DMs with an effort to incorporate the most qualifying features for classifiers 

development. The performance of developed classifying models was evaluated using both training 

and test datasets. The optimal statistical classification model was quadratic in nature and was able 

to achieve highest overall classification accuracy of 93.08% on test data, when compared to all 

other quadratic models. The comparison of the quadratic and linear classifiers showed lower 

performance of all linear models developed in this study.  

Two different DMs and a control DM were used to train the back-propagation based BP-

ANN models. It was observed that topology and training parameters needs to be adjusted 

individually for different DMs to achieve the highest classification accuracy without being 

entrapped in the risk of over training. The same procedure of adjusting the individual network 

parameters was used for developing and evaluating the selected DMs. The BP-ANN model with 

the highest classification accuracy consisted of two hidden layers, a tanh sigmoid function, 

learning rate of 0.085, momentum term of 0.8, online training mode, and epoch size of 2,500. The 

comparison indicted the superiority of BP-ANN model (DM-HSISD) over respective statistical 

counterpart with better classification of both training and test data. In both (statistical and BP-

ANN) cases, same model achieved the highest classification accuracy. On the basis of these results, 

it was decided to use the highest performing quadratic and BP-ANN classifiers for the field 

evaluation purposes thereby allowing us to quantify their actual performance experimentally. 
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CHAPTER 6: PERFORMANCE EVALUATION OF DEVELOPED GOLDENROD 

DETECTION SYSTEM FOR SPOT-APPLICATION OF HERBICIDE IN WILD 

BLUEBERRY FIELDS 

 

6.1 Introduction 

The response accuracy of machine vision and machine learning algorithms needs to be 

critically characterized, quantified, compared, and evaluated in real-life outdoor conditions 

(Haralick, 1993). Random variations and imperfections of input images caused by highly variable 

and adverse operating environments can easily influence the accuracy and precision of machine 

vision systems specifically used in agricultural fields (Romeo et al., 2013). Field evaluations of 

GDS can systematically unravel its potential for real-time applications by serving as a knowledge 

base to identify the sources responsible for reduced accuracy. These evaluations may also be 

helpful in identifying the loss of accuracy caused by over-generalization or non-convergence of 

network towards the desired results during laboratory scale training and evaluations of back-

propagation artificial neural network (BP-ANN). The field experience gained can further be used 

enhance the accuracy of such systems by addressing the sources of error inside the algorithms 

(Jeon et al., 2011) and/or by adjusting the extrinsic parameters of the imaging devices (Romeo et 

al., 2013). The feedback of such critical investigations may also help to find the range of most 

suitable parameters for the algorithm to improve overall weed classification accuracy (Chang et 

al., 2014). 

Lee et al. (1999) compared the performance of a robotic weed control system in outdoor 

and indoor conditions for tomato cotyledons. Results of indoor trials showed that only 8% of 

simulated tomato cotyledons were incorrectly sprayed with complete control of simulated weeds 

achieved by correct spraying. The system was only able to spray 47.6% of weeds properly with 

24.2% over-sprayed tomato plants in a real-time commercial application. Tian et al. (1999) 
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evaluated a discrete wavelet transform based algorithm in corn and soybean fields for proper weed 

detection and spray. It was observed that maximum and minimum weed identification accuracies 

achieved by algorithm were 87.5% and 66.1%, respectively.  

Esau et al. (2014) tested a prototype VR sprayer for foliar application of fungicides in wild 

blueberry cropping system. They reported that the prototype sprayer was able to correctly target 

the plant area with no significant difference in chemical application coverage when compared with 

uniform application (UA). The savings achieved by VR sprayer in bare soil zones were reported 

to be 9.90% to 51.22% compared to uniform application. Chang et al. (2014) used VR sprayer 

hardware developed by Esau et al. (2012) with an updated spectral reflectance based algorithm for 

identification of common weeds in wild blueberry cropping system. Results indicated that there 

was no significant difference between VR and UA on targeted weed spots. A significant difference 

was observed between weed and non-weed targets included in the study. A similar concept of 

successive field evaluations can be used to compare the performance of developed GDS (CCM 

algorithm and highly competitive BP-ANN and quadratic classifiers) in real-time field conditions. 

Results of these experimentations will be helpful in identifying the factors influencing the overall 

accuracy of GDS and can be used to increase the efficiency by addressing the sources of error 

inside of algorithm and classifiers or by adjusting the hardware related issues. Therefore, the major 

goal of this chapter was to quantify the real-time performance of a developed goldenrod detection 

system with different classifiers over the span of two years in different wild blueberry fields.  

6.2 Materials and Methods 

Field experiments were performed by using GDS containing two high performance 

classifiers in Londonderry, North River II, Portapique, and Robie Glenn wild blueberry fields 

during 2016 and 2017. Two experiments including a target spot based method with water sensitive 
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papers (WSPs) and coverage area (CA) detection approach with a non-permanent blue colour dye 

marker were performed in two fields during 2016. Experiment with WSPs helped to quantitatively 

compare the two different classifiers with UA in goldenrod and wild blueberry spots. Eight 

goldenrod (targets) and eight wild blueberry spots (non-targets) were randomly selected 

Londonderry and North River II field. Sixteen WSPs were placed on the selected points and were 

sprayed with two classifiers and UA. The paired t-test was used to compare the percentage area 

coverage (PAC) results of individual classifier with UA. The CA experiment was performed to 

compare classifier accuracy in real-time with an emphasize to determine any under-sprayed and 

over-sprayed areas. Goldenrod patches were mapped with RTK-GPS and tracks were sprayed with 

a tank mix of water and blue dye using two different classifiers. The same procedure was repeated 

by switching the models in two different fields to ensure the randomization of treatment 

application. Sprayed patches as indicated by colour dye were mapped again and superimposed 

maps were generated. Two-sample t-test was used to compare the CA of different sprayed 

polygons.   

The goldenrod damage was assessed by spraying Portapique, and Robie Glenn wild 

blueberry fields with a tank mix of Callisto® 480SC (480 g L-1 Mesotrione) herbicide, Agral® 90 

(92% Nonylphenoxy polyethoxy ethanol) non-ionic spreading agent and water in 2017. A 

completely randomized design was used to setup field plots of 6.1 m × 5 m for data collection. The 

stem height (SH), damage rating (DR), and percentage of green pixels (PGP) calculated from 

digital images were used as measures to compare the performance of two classifiers along with 

UA and CN. One-way analysis of variance (ANOVA) was used to compare three different 

treatment means, followed by a least significance difference (LSD) test as a post hoc method for 

identifying any significantly different mean. The DR data were analyzed by performing a rank-
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based non-parametric Kruskal-Wallis H test using Proc Npar1Way procedure in SAS 9.3. The 

detailed procedure adopted for experimental purposes are shown in Chapter 3. The results reported 

during 2016 were achieved by training the classifiers using only the image library of 2015. The 

image library of 2016 was used for the experiments performed in 2017.  

6.3 Results and Discussion   

6.3.1 Results of Field Experiment 1 

 The PAC was calculated from WSPs sprayed on VR mode using two different classifiers 

with GDS (Tables 6-1 to 6-4; Figures 6-1 to 6-3; Figures B-1 to B-9; Appendix B). The mean PAC 

of WSPs placed at wild blueberry and goldenrod spots varied from 0.61% to 43.02% in 

Londonderry field and from 2.27% to 42.30% in North River II field respectively, using BP-ANN 

classifier. The quadratic classifier showed that mean PAC of WBB and GR spots varied from 

1.65% to 41.78% in Londonderry field and from 3.30% to 36.91% in North River II field, 

respectively (Table 6-3; 6-4). The results of paired t-test indicated that there was no significant 

difference between mean PAC of GR spots sprayed uniformly and with BP-ANN classifier at a 

significance level of 5% in both fields (Table 6-1; 6-2).  

Table 6-1: Results of paired t-test for percent area coverage (PAC) of the sprayed targets 

(GR) and non-targets (WBB) using BP-ANN classifier in Londonderry field. 

Application (n) Minimum (%) Maximum (%) Mean (%) S.D. (%) P-Value 

GR      

VR-T1+T2 (16) 27.68     68.23 43.02 12.76 
0.632 

UA-T1+T2 (16) 33.50     62.31 45.13 9.03 

WBB      

VR-T1+T2 (16) 0.002     4.860 0.61 1.23 
<0.001 

UA-T1+T2 (16) 29.36     67.57 45.32 9.08 

VR for variable rate, UA stands for uniform application, T1 for track 1, and T2 for track 2. 
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Table 6-2: Results of paired t-test for percent area coverage (PAC) of the sprayed targets 

(GR) and non-targets (WBB) using BP-ANN classifier in North River II field. 

Application (n) Minimum (%) Maximum (%) Mean (%) S.D. (%) P-Value 

GR      

VR-T1+T2 (16) 29.31    74.67 42.30 10.56 
0.450 

UA-T1+T2 (16) 27.42     62.64 45.48   10.26 

WBB      

VR-T1+T2 (16) 0.003     30.51 2.27    7.56 <0.001 

 UA-T1+T2 (16) 29.54     68.48 52.68   12.57 

VR for variable rate, UA stands for uniform application, T1 for track 1, and T2 for track 2. 

 

The GR mean PAC differences between BP-ANN classifier and UA mode were 2.11% in 

Londonderry field and 3.18% in North River II field and therefore were found to be sufficient 

enough to eradicate goldenrod. The mean PAC of WBB spots was found to be significantly 

different (P < 0.05), when comparing the performance of BP-ANN classifier and uniform 

applications in both fields (Table 6-1, 6-2). The PAC values of WBB spots were in the range of 

0.002% to 4.860% in Londonderry field. The fluctuation in PAC values might be caused by spray 

drift due to wind gusts (Figure B-1; Appendix B). The average speed of wind gusts on June 4 of 

2016 was 7 km hr-1 with a maximum of 14 km hr-1 directed towards West (National Climate Data 

and Information Archive, 2016). The WSPs placed at WBB spots in North River II and sprayed 

with BP-ANN classifier had the highest standard deviation of 7.56% among all other WBB spots 

sprayed on VR mode. It was observed that a non-target (WBB) WSP was sprayed even with BP-

ANN classifier (Figure B-7; Appendix B), thus resulting into high standard deviation. During the 

data checking, it was found that WSP at a WBB spot number 3 was quite close to GR patch, which 

may have caused this WSP to get over-sprayed.  
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The comparison between the quadratic classifier and UA application revealed that there 

was no significant difference in the mean PAC of GR spots in Londonderry field (Table 6-3). 

However, in North River II, the mean PAC was found to be marginally non-significant with a 

relatively lowest p-value among all variably sprayed field tracks (Table 6-4). The reason of lower 

PAC value was found to be under-sprayed WSPs in first test track of this field (Figure B-5; 

Appendix B). A WSP at targeted spot (GR) was completely missed with a PAC of only 2.64%. 

The spray pattern of droplets on this WSP further revealed that a PAC of 2.64% was even due to 

the drift of sprayed liquid caused by wind. A relatively lower accuracy of achieved by quadratic 

classifier during laboratory evaluations could be a reason that it was not able to recognize GR as a 

target spot in real-time field conditions. Additionally, it was also observed that this field was not 

properly mowed during fall of 2015 compared to Londonderry field, which may also have 

contributed towards relatively high fluctuation in PAC (SD = 18.65%). The average PAC of 

41.78% and 36.91% in Londonderry and North River II fields was sufficient enough to eradicate 

goldenrod. However, the minimum PAC (2.64%) in GR spots should preferably be higher to 

minimize the risk of under-spray.  

Table 6-3: Results of paired t-test for percent area coverage (PAC) of the sprayed targets 

(GR) and non-targets (WBB) using quadratic classifier in Londonderry field. 

Application (n) Minimum (%) Maximum (%) Mean (%) S.D. (%) P-Value 

GR      

VR-T1+T2 (16) 21.19 71.41 41.78   15.86 
0.484 

UA-T1+T2 (16) 33.50     62.31 45.13    9.03 

WBB      

VR-T1+T2 (16) 0.003     4.97 1.65   1.82 
<0.001 

UA-T1+T2 (16) 29.36     67.57 45.32    9.08 

VR for variable rate, UA stands for uniform application, T1 for track 1, and T2 for track 2. 
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Table 6-4: Results of paired t-test for percent area coverage (PAC) of the sprayed targets 

(GR) and non-targets (WBB) using quadratic classifier in North River II field. 

Application (n) Minimum (%) Maximum (%) Mean (%) S.D. (%) P-Value 

GR      

VR-T1+T2 (16) 2.64     79.79 36.91   18.65 
0.162 

UA-T1+T2 (16) 27.42     62.64 45.48   10.26   

WBB      

VR-T1+T2 (16) 0.001     28.23 3.30    7.21 
<0.001 

UA-T1+T2 (16) 29.54     68.48 52.68   12.57 

VR for variable rate, UA stands for uniform application, T1 for track 1, and T2 for track 2. 

 

The WBB WSPs sprayed with quadratic classifier showed significantly different PAC (P 

< 0.05) as compared to uniform applications in both fields. A maximum PAC (28.23%) was again 

due to WSP located at a WBB spot number 3 (Figure B-8; Appendix B). The results of this 

experiment suggested that both BP-ANN and quadratic classifiers had ability to target goldenrod 

spots in real-time with a potential of chemical savings in wild blueberry spots. Similar to laboratory 

evaluations, results of this experiment indicated that BP-ANN classifier outperformed its quadratic 

counterpart.  
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Figure 6-1: First track (T1) of Londonderry field sprayed with BP-ANN classifier (GR represents 

the selected goldenrod spots and WBB represents selected wild blueberry spots).  
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Figure 6-2: First track (T1) of Londonderry field sprayed with quadratic classifier (GR represents 

the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure 6-3: First track (T1) of Londonderry field sprayed uniformly (GR represents the selected 

goldenrod spots and WBB represents selected wild blueberry spots). 
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6.3.2 Results of Field Experiment 2 

 The comparison of BP-ANN and quadratic classifier at field scale was done by spraying 

the test tracks in both fields using a non-permanent dye marker. The CA calculated using ArcGIS 

was imported in the Minitab 17 to perform group comparison using two sample t-test (Table 6-5). 

The results of Anderson-Darling (AD) normality test indicated that CA of BP-ANN and quadratic 

classifier were normally distributed at a significance level of 5% in both fields. The CA obtained 

from two classifiers were found to have equal variance in both fields and therefore, allowed the 

use of pooled standard deviation (Sp) for further analysis. The results of two sample t-test revealed 

that mean CA of sprayed patches with both classifiers was not significantly different at a level of 

5%. A total goldenrod coverage of 607.33 m2 in Londonderry field was sprayed with a mean of 

84.95 m2 using BP-ANN algorithm and 83.5 m2 using quadratic classifiers. Similarly, a goldenrod 

coverage of 407.6 m2 was sprayed with a mean of 56 m2 using BP-ANN and 48.9 m2 using 

quadratic classifiers in North River II field.  

Table 6-5: Results of two sample t-test and summary statistics of coverage area in 

Londonderry and North River II field using BP-ANN and quadratic algorithm.  

Application (n) Minimum (m2) Maximum (m2) Mean (m2) S.D. (m2) P-Value 

Londonderry      

BP-ANN (9) 12.7     159.2 84.95    51.2      
0.919 

Quadratic (10) 6.5     163.8 83.54 54.7       

North River II      

BP-ANN (10) 22.1 127.5 56.0 35.4 
0.687 

Quadratic (12) 4.0 145.9 48.9 43.8 

 

The subjective analysis of the sprayed maps of two fields indicated that BP-ANN classifier 

was able to correctly target and spray the goldenrod patches in both fields (Figures 6-4, 6-6). The 

over-sprayed dye marker before and after goldenrod patches could be due to a 25cm buffer 
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adjusted in VRC to ensure proper overlap of spray application on the targets (Zaman et al., 2011). 

The quadratic algorithm also properly targeted goldenrod patches in Londonderry field with only 

one spot as over-sprayed (Figure 6-5). However, its performance in the North River II field was 

not as good as BP-ANN with two over-sprayed spots and few missed goldenrod patches (Figure 

6-7). It can be seen that the BP-ANN classifier was able to correctly target small goldenrod patches 

while the quadratic classifier missed these patches and was not able to spray them. The relatively 

poor performance of quadratic algorithm in North River II field might be due to the poor field 

management. It was noticed during the field applications that this field was not properly pruned 

and might increase variability and image noise acquired during spraying.  

The goldenrod area and sprayed area were used to calculate the potential and actual 

chemical savings based on the goldenrod distribution within selected wild blueberry tracks. Results 

showed that potential savings ranged from 46.71% to 62.77% and 64.38% to 74.83% in 

Londonderry and North River II field, respectively based on goldenrod patches (Table 6-6; 6-7). 

Depending upon the classifier, the actual savings ranged from 30.12 to 53.95% and 49.22 to 

65.19% in Londonderry and North River II field, respectively. The BP-ANN classifier showed an 

actual savings of 32.09% and 53.95%, while the quadratic classifier showed 30.12% and 45.33% 

actual savings in Londonderry field. Similarly, the actual savings from BP-ANN classifier were 

higher (65.19% and 51.31%) comparative to the quadratic classifier (60.58% and 49.22%) in North 

River II field. The actual chemical savings from goldenrod patches will not only lower the cost of 

production but also help to lower environmental hazards (Esau et al., 2014).  
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Table 6-6: Results of variable rate sprayer chemical savings in goldenrod patches in 

Londonderry field. 

Track 
Total Area 

(m2) 

Goldenrod 

Patches (m2) 

Sprayed Area 

(m2) 

Potential 

Savings (%) 

Actual 

Savings (%) 

BP-ANN      

1 671 357.57 455.62 46.71 32.09 

2 671     249.76 308.96 62.77 53.95 

Quadratic      

1 671 357.57 468.88 46.71 30.12 

2 671     249.76 366.59 62.77 45.33 

 

Table 6-7: Results of variable rate sprayer chemical savings in goldenrod patches in North 

River II field. 

Track 
Total Area 

(m2) 

Goldenrod 

Patches (m2) 

Sprayed Area 

(m2) 

Potential 

Savings (%) 

Actual 

Savings (%) 

BP-ANN      

1 671 168.87 233.51 74.83 65.19 

2 671     238.99 326.25 64.38 51.31 

Quadratic      

1 671 168.87 246.45 74.83 60.58 

2 671     238.99 340.67 64.38 49.22 
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Figure 6-4: Londonderry test tracks layout showing goldenrod coverage and sprayed patches 

using BP-ANN classifier.   
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Figure 6-5: Londonderry test tracks layout showing goldenrod coverage and sprayed patches 

using quadratic classifier.   
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Figure 6-6: North River II test tracks layout showing goldenrod coverage and sprayed patches 

using BP-ANN classifier.    
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Figure 6-7: North River II test tracks layout showing goldenrod coverage and sprayed patches 

using quadratic classifier.   

6.3.3 Results of Field Experiment during 2017 

 An experiment was performed by spraying the Callisto® herbicide to compare BP-ANN 

and quadratic classifiers with respect to UA and CN. Anderson-Darling test of normality indicated 

that stem height followed a non-normal distribution in Portapique field, while was normally 

distributed in Robie Glenn. Non-normal data (P< 0.05) were normalized using square root 

transformation for analysis and results were reported by back-transformation to original scale. The 

Under Sprayed  
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PGP were found to be normal in both fields. Results of ANOVA indicated the significant 

difference between four treatments (BP-ANN, quadratic, UA, and CN) means for SH and PGP 

(Table 6-8). The BP-ANN, quadratic, and UA decreased the SH significantly compared to the 

untreated CN in both fields. Results of LSD further indicated no significant difference between 

the BP-ANN, quadratic, and UA at Portapique, however in Robie Glenn field quadratic classifier 

was significantly different as compared to BP-ANN and UA. The PGP was reduced significantly 

by the application of Callisto® using BP-ANN, quadratic, and UA when compared with CN (Figure 

6-8). The results of LSD indicated no significant difference between BP-ANN, quadratic, and UA 

with mean values of 4.11, 5.89, 3.72, and 9.83, 11.33, 9.50 in Portapique and Robie Glenn fields, 

respectively. Based on the results of ANOVA and LSD, it can be concluded that developed 

classifiers (BP-ANN and quadratic) along with Callisto® have significant effect on goldenrod stem 

height and percentage of green pixels.  

Table 6-8: Results of ANOVA for GD, SH, and PGP to compare the damage caused by BP-

ANN and quadratic classifiers relative to the UA and CN in two different fields.  

  Portapique Robie Glenn 

Treatment (n) 
Goldenrod damage 

parameters 
Mean  P-Value Mean  P-Value 

BP-ANN (6) SH (cm) 9.93 ± 1.28 b 

<0.001 

9.03 ± 0.91  c 

<0.001 
Quadratic (6) SH (cm) 10.23 ± 1.56 b 11.53 ± 1.25 b 

UA (6) SH (cm) 9.86 ± 1.17 b 8.49 ± 1.15  c 

CN (6) SH (cm) 16.83 ± 1.23 a 19.15 ± 1.58 a 

BP-ANN (6) PGP  4.11 ± 2.32 b 

<0.001 

9.83 ± 5.99  b 

<0.001 
Quadratic (6) PGP  5.89 ± 5.1 b 11.33 ± 6.87  b 

UA (6)  PGP 3.72 ± 2.72 b 9.50 ± 4.72 b 

CN (6) PGP 42.44 ± 12.16 a 47.39 ± 14.17 a 

Means with no letters shared in same column are statistically different at P= 0.05. 
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                                        (a)                                                                     (b) 

Figure 6-8: Percentage of green pixels, (a) Callisto® application on the goldenrod using BP-ANN, 

(b) Untreated control.   

The results of Kruskal-Wallis H test indicated that DR was significantly different among 

different treatment means (BP-ANN, quadratic, UA, and CN) in both fields (Table 6-9). The UA 

resulted into the highest damage to goldenrod, followed by BP-ANN and quadratic in both fields 

(Figure 6-8). The results of Dunn-Bonferoni pairwise post-hoc test indicated no significant 

difference between UA and BP-ANN treatments, whereas all other treatment pairs were found to 

be significantly different from others (Table 6-9). The DR caused by quadratic classifier was found 

to be significantly lower than UA and BP-ANN in both fields. As control was not treated with 

Callisto®, therefore no damage was observed in CN plots. On the basis of SH, PGP, and DR results, 

it can be concluded that BP-ANN classifier performed better than the quadratic classifier. 

Furthermore, results also suggested that the performance of BP-ANN classifier was comparable to 

the UA.   
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Table 6-9: Results of Kruskal-Wallis H test for goldenrod DR to compare the performance 

of BP-ANN and quadratic classifiers relative to the UA and CN in two different fields.  

Treatment (n) Minimum  Maximum  Mean  S.D. P-Value 

Portapique       

BP-ANN (6) 75.00 95.00 85.83 NS 7.36  

<0.001 
Quadratic (6) 60.00 90.00 81.60  11.14 

UA (6) 70.00 95.00 86.16 NS 9.31  

CN (6) 0.00 0.00 0.00 0.00 

Robie Glenn      

BP-ANN (6) 70.00 90.00 80.83 NS 6.83 

<0.001 
Quadratic (6) 65.00 85.00 72.50 8.22 

UA (6) 70.00 90.00 81.66 NS 6.65 

CN (6) 0.00 0.00 0.00 0.00 

Treatment pairs with NS are not significantly different at P= 0.05. 

 

 

Figure 6-9: Mean goldenrod damage ratings caused by different treatments at Portapique and 

Robie Glenn fields.  
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6.4 Conclusions 

The GDS with two different classifiers was evaluated and compared with UA in real field 

conditions. Results of field experimentation indicted that the developed system correctly targets 

goldenrod and triggers the nozzles to “off” state in wild blueberry zones. Results of PAC 

experiment indicated that quadratic classifier resulted in under-sprayed WSPs in one track of North 

River II field, while the BP-ANN targeted the goldenrod WSPs in both fields. The performance of 

quadratic and the BP-ANN classifiers was further compared by spraying blue coloured spray 

pattern indicator dye with water in selected blueberry tracks. It was found that CA of two classifiers 

was not statistically significant in both fields. The BP-ANN classifier showed a maximum water 

savings of 65% compared to 61% with quadratic classifier depending upon the goldenrod coverage 

with 25cm buffer to ensure proper application overlap. The Callisto® application helped to halt 

goldenrod growth, thereby resulting in reduced shoot height and percentage of green pixels along 

with increased damage ratings. Results of SH, PGP, and DR indicated no significant difference 

between BP-ANN and UA application. Results suggested that developed CCM algorithm with a 

BP-ANN classifier has potential of targeting the goldenrod in a site-specific manner. The visual 

performance of BP-ANN as indicated by WSPs, dye marker, and Callisto® experimentation was 

in line with model training and evaluation results reported in chapter 5. Based on the results of 

field evaluation it can be concluded that both BP-ANN and quadratic classifiers can be used for 

real-time application of Callisto® on goldenrod. However, the BP-ANN model showed more 

promising results compared to quadratic classifier. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The overall goal of this research was to develop and evaluate a graphical user interface 

based goldenrod detection system using CCMs as image processing algorithm and machine 

learning procedures to apply herbicide in wild blueberry fields. The hardware used for the 

evaluation of goldenrod detection system consisted of four μEye CMOS colour cameras, Garmin® 

GPS receiver, ruggedized field computer, LMC, LabJack® U3-HV I/O module, an 8-channel 

computerized VRC, and 8-solenoid valves assisted nozzles. The developed goldenrod detection 

system was evaluated by operating it with hardware through a UTV for real-time application of 

water and Callisto® 480SC in selected wild blueberry fields during summer of 2016 and 2017. 

Results of field evaluations using WSPs, blue coloured spray pattern indicator dye with application 

maps, and goldenrod damage ratings revealed that the developed goldenrod detection system has 

potential of targeting the goldenrod in a site-specific manner. Results of laboratory evaluation 

suggested that developed CCM algorithm with a BP-ANN classifier has ability to target the 

goldenrod with an accuracy of 97%, thereby can be used to apply Callisto® adequately only on 

targeted goldenrod patches. 

The effect of different image parameters on computational complexity and goldenrod 

identification accuracy of CCMs was tested by studying three different image reading methods 

(get pixel, unsafe pointers, and Marshal.copy), six intensity levels (8, 16, 32, 64, 128, and 256), 

and seven image sizes (16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256, 512 × 512, and 1024 × 

1024) on 2244 AOI and 2244 full frame field images. One-way ANOVA with Tukey’s HSD test 

was performed for analyzing statistically different time measurement means. The Marshal.copy 

method of C# programming language was found to be most suitable for reading the image from 
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computer RAM as it took the least time. Images with 256 intensity levels took the highest 

processing time and were able to achieve an overall accuracy of 94% on test images. The 256 

intensity levels were selected for the actual spray using goldenrod detection system in wild 

blueberry fields. A unit image size of 128 × 128 pixels minimized the computational time for 

processing an AOI image (768 × 128) with current camera settings and was adopted for real-time 

applications because of the highest (91%) overall classification accuracy on test data.  

The quantitative textural features extracted from CCMs can aid in classifying the members 

of goldenrod and wild blueberry data groups by predicting the underlying relationships between 

these features and respective group. Feature reduction resulted in the reduction of 39 to only 8 of 

H and S features with complete exclusion of features from intensity colour plane. Comparison of 

statistical quadratic and linear classifiers revealed that quadratic performed better than linear 

classifiers for all reduced DMs. The BP-ANN network training on trial and error basis indicated 

that optimal network with the highest classification accuracy consisted of nine neurons on two 

hidden layers, a learning rate of 0.085, online training mode, a momentum term of 0.80, a tanh 

sigmoid mathematical function with linear function at output layer, and epoch size of 2,500. 

Results suggested that developed CCM algorithm with the BP-ANN classifier outperformed the 

statistical quadratic counterpart in terms of classification accuracy on both training and test 

datasets. The DM-HSISD model achieved the highest classification accuracy for both statistical 

quadratic and the BP-ANN classifiers. These classifiers trained on DM-HSISD model was thus 

selected for real-time field application tests.   

In order to test and evaluate the performance of CCMs with the statistical and BP-ANN 

classifiers, two experiments were conducted in summer of 2016 in two commercial wild blueberry 

fields. Two test tracks (6.1 m × 110 m) were randomly constructed at each site and track boundaries 
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along with goldenrod patches were manually mapped. Sixteen WSPs were randomly placed in 

each test track. Results of PAC experiment indicated that quadratic classifier resulted in under-

sprayed WSPs in one track of North River II field, while the BP-ANN targeted the goldenrod 

WSPs in both fields. The performance of statistical quadratic and the BP-ANN classifiers was 

further compared by spraying blue coloured spray pattern indicator dye with water in selected 

blueberry tracks. It was found that CA of two classifiers were not statistically significant in both 

fields. The water application with the BP-ANN classifier showed a maximum 65% savings, while 

quadratic classifier resulted in 61% savings depending upon the goldenrod coverage with 25 cm 

buffer to ensure proper application overlap. The Callisto® application helped to halt goldenrod 

growth, thereby resulting in reduced shoot height and percentage of green pixels along with 

increased damage ratings. Results of SH, PGP, and DR indicated no significant difference between 

BP-ANN and UA application. It can be concluded that developed CCM algorithm with a BP-ANN 

classifier has potential of targeting the goldenrod in a site-specific manner and can be operated at 

the growers recommended speed of 6 km hr-1. 

7.2 Recommendations 

It is proposed that current goldenrod detection system with four cameras for 6.1m of spray 

coverage can be upgraded to complement a larger commercial size sprayer for spot-application on 

goldenrod. The transfer of GDS to a commercial sprayer may also include the removal of U3-HV 

I/O module from the hardware, thereby allowing for direct serial communication between the 

image processing computer and VRC. The developed GDS can be modified to detect other weeds 

in wild blueberry fields. The modification of GDS can help to transfer the technology to other fruit 

and vegetable cropping system for detecting and targeting the in-season weeds, thereby allowing 

the farmers to increase farm gate value with reduced environmental risk.  Deep convolution neural 
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networks and other advanced techniques can also be used for modification in existing system to 

detect the goldenrod and other weeds in wild blueberry fields. 
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APPENDIX A: RESULTS OF MULTIVARIATE NORMALITY TESTS AND MATRIX 

PLOTS FOR DEVELOPMENT OF THE STATISTICAL AND BP-ANN CLASSIFIERS 
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(c) 

Figure A-1: Multivariate Normality Plots of Goldenrod Class (a) Hue features (b) Saturation 

features (c) Intensity features. 
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(b) 

 

(c) 

Figure A-2: Multivariate Normality Plots of Wild Blueberry Class (a) Hue features (b) Saturation 

features (c) Intensity features. 
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(c) 

Figure A-3: Matrix Plots of Goldenrod Class (a) Hue featured (b) Saturation features (c) Intensity 

features. 
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(b) 

 

(c) 

Figure A-4: Matrix Plots of Wild Blueberry Class (a) Hue Features (b) Saturation features (c) 

Intensity features. 
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APPENDIX B: RESULTS OF GOLDENROD DETECTION SYSTEM EVALUATION 

FROM DIFFERENT FIELD EXPERIMENTS  

 

Figure B-1: Second track (T2) of Londonderry field sprayed with BP-ANN classifier (GR 

represents the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-2: Second track (T2) of Londonderry field sprayed with quadratic classifier (GR 

represents the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-3: Second track (T2) of Londonderry field sprayed uniformly (GR represents the 

selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-4: First track (T1) of North River II field sprayed with BP-ANN classifier (GR represents 

the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-5: First track (T1) of North River II field sprayed with quadratic classifier (GR represents 

the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-6: First track (T1) of North River II field sprayed uniformly (GR represents the selected 

goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-7: Second track (T2) of North River II field sprayed with BP-ANN classifier (GR 

represents the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-8: Second track (T2) of North River II field sprayed with quadratic classifier (GR 

represents the selected goldenrod spots and WBB represents selected wild blueberry spots).   
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Figure B-9: Second track (T2) of North River II field sprayed uniformly (GR represents the 

selected goldenrod spots and WBB represents selected wild blueberry spots).   


