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ABSTRACT 

This paper presents a robust analytical model for a moment connection of concrete-filled fiber 

reinforced-polymer (FRP) tubes (CFFTs) to concrete footings. The CFFT connection is based on 

a simple approach of direct embedment into the footing, thereby eliminating the need for 

connection rebar or mechanical devices. The CFFT is externally subjected to lateral and axial 

loads, resembling practical applications such as piles affixed to pile caps, bridge columns or 

utility poles. The model adopts the concepts of equilibrium, deformations compatibility, and 

nonlinear concrete stress-strain behavior. It also employs a ‘bond stress-slip’ relation that can be 

obtained from simple push-through tests on some of the commercially used tubes. The model can 

predict the critical embedment length crX , which is the minimum length required to achieve 

material failure of the CFFT outside the footing, and bond failure inside the footing, 

simultaneously. If the actual embedment length is less than crX , bond failure occurs prematurely, 

at a lower strength that can also be predicted by the model. The model was verified using 

experimental data and showed that crX was only 0.7 the diameter for that case. A sensitivity 

parametric analysis was carried out and lead to some approximations. Based on which, a simple 

closed-form expression was established for crX
 
in the case of lateral loading only. 
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INTRODUCTION 

Hybrid construction using innovative systems such as concrete-filled fiber reinforced polymer 

(FRP) tubes (CFFTs), as cast-in-situ or precast members, offer several advantages (Mirmiran and 

Shahawy, 1997, and Fam and Rizkalla, 2002). The tube provides a permanent noncorrosive form 

for the concrete fill, and bi-directional reinforcement at the same time. Unlike steel tubes, the 

FRP tube laminate can be engineered to provide different mechanical properties in the 

orthogonal directions (Fam et al., 2003(a)). CFFTs have been used in field applications, 

including marine piles (Fam et al, 2003(b)) and in a bridge pier (Fam et al., 2003(c)). They also 

have a strong potential for utility and light pole applications (Qasrawi and Fam, 2008). 

Seible et al. (1995) tested two different moment connections of carbon-FRP (CFRP) CFFTs, 

one with steel bars connecting the CFFT to a reinforced concrete (RC) footing, and the other 

with the CFFT embedded inside an RC footing to a depth of 1.3 times the diameter. The study 

showed that the former was more ductile, while the latter had higher flexural strength.  Pseudo-

ductile plastic hinges have also been proposed, using CFRP dowels that provide ductility through 

gradual slip between the concrete and the bars (Wernli and Seible, 1998). This ductility, 

however, is only in one direction, and the deformation and damage are nonreversible. 

Zhu et al. (2004) tested three connections of CFFT to RC footings, in 1/6 scale modular 

piers, namely, a male-female connection, dowel-bars connection with and without CFFT 

embedment in footing, and post-tensioning of the CFFT to the footing. The study showed that 

the embedment of the CFFT into the footing provides additional benefit for the connection. Zhu 

et al. (2006) extended this work by testing CFFT column-footing assemblies to investigate 

construction feasibility and seismic performance of the joints, for both precast and cast-in-place 

https://www.researchgate.net/publication/239390760_Behavior_of_Concrete_Columns_Confined_by_Fiber_Composites?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
https://www.researchgate.net/publication/255540807_Experimental_and_Analytical_Modeling_of_Concrete-Filled_FRP_Tubes_Subjected_to_Combined_Bending_and_Axial_Loads?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
https://www.researchgate.net/publication/240504789_Flexural_Behavior_of_Concrete-Filled_Fiber-Reinforced_Polymer_Circular_Tubes?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
https://www.researchgate.net/publication/289300516_Flexural_Load_Tests_on_New_Spun-Cast_Concrete-Filled_Fiber-Reinforced_Polymer_Tubular_Poles?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
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CFFTs, in comparison to conventional RC columns.  The FRP tube, when secured properly in 

the footing, showed great influence on the seismic performance of the column by providing both 

longitudinal reinforcement and hoop confinement to the concrete core. 

Recently, Nelson et al. (2008) tested CFFT cantilevered specimens embedded into RC 

footings at various embedment lengths, without any dowel-bars or post-tensioning. A short 

embedment of about 0.73 the diameter was sufficient to achieve flexural failure outside the 

footing. The interfacial bond strength between the CFFT and concrete was also established using 

push-through tests, and was found to be about 0.7 MPa. Direct embedment of CFFTs without 

any rebar or mechanical connection greatly simplified and accelerated constructability. 

While CFFTs have been studied extensively as structural members, very few studies as was 

shown, have addressed their connections to other structural members. These few studies were 

mainly experimental. In this paper, an analytical approach is developed for the connection of 

CFFT members to RC footings by direct embedment. The CFFT member is subjected to a 

general state of axial load, bending moment and shear force. 

 

DESCRIPTION OF THE ANALYTICAL MODEL 

The objective of the proposed model is to determine the critical embedment length crX of 

circular CFFTs into RC footings, to provide a fixed connection, without the use of dowels or any 

mechanical devices. Figure 1 shows the geometry of the problem under consideration. The CFFT 

is subjected to a general loading condition comprising transverse and axial loadings at the free 

end. The general embedment length is X , while the length of CFFT outside of the footing is L , 

and the outer diameter of tube is D . It is hypothesized that if the embedment length is smaller 

than the critical value (i.e. crXX  ), a premature bond failure of the CFFT will occur within the 

https://www.researchgate.net/publication/245395598_Moment_Connection_of_Concrete-Filled_Fiber_Reinforced_Polymer_Tubes_by_Direct_Embedment_into_Footings?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
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RC footing, before the CFFT achieves its full potential strength at a section outside the footing. 

On the other hand, if crXX  , although bond failure is avoided, there may be an unnecessarily 

excessive embedment length. 

The model is based on static equilibrium equations and deformations compatibility 

relationships for the free body diagram of the connection region (Fig. 2). The problem is solved 

at the ultimate state of bond failure. The external loads acting on the CFFT are reduced to a 

moment M , a shear forceV , and an axial load P, acting at the face of the RC footing. The 

moment and shear are coupled through the moment arm L ( L.VM  ). 

A summary of the assumptions made in this model can then be listed as follows, in 

conjunction with Fig. 2: 

1. All contact interfaces between the CFFT and RC footing are subjected to bearing stresses in 

compression, but separation could occur in tension (i.e. adhesion is insignificant).  

2. Given the relatively short embedment length expected for most practical cases, only one 

inflection point exists within the embedment length, with regard to transverse bearings.  

3. The bearing compressive stress distribution on concrete follows the nonlinear stress-strain 

constitutive relationship of concrete in compression (Collins and Mitchell, 1997), in which 

the compressive stress (σ ) corresponding to a strain ( ε ) is given by: 
































2

coco

c 2f







          (1) 

where cf  is the concrete compressive strength and co  is the corresponding strain. 

4. ‘Bond stress-slip’ response is dominant in the tension region only, below neutral axis (i.e. the 

bond (shear) stresses, which is a resistance factor against bond failure, are applied on the 

sliding interface in the tension region). 
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5. Slip at the beginning and the end of the CFFT embedment length, longitudinally, is equal 

(i.e.
21 xxxx SS   ), given its relatively short length. 

6. Slip distribution in the tension region, transversely, is linear with a zero value at neutral axis.  

7. Strains in the two orthogonal directions of the embedded CFFT segment vary linearly and the 

equivalent curvatures of the CFFT segment are referred to asα and β .  

8. The concrete footing extends sufficiently beyond the end of the CFFT embedment length.  

 

General Expressions for Internal Forces 

Figure 2 shows the resistance stress distributions, and their resultant forces, acting on the 

connection region of the CFFT, under the external forces V , M , and P . Two systems 

contributing to the overall resistance of the connection are established: (a) a transverse system 

comprising the couple produced by the forces 1F  and 2F , which are the resultants of 

compressive stresses acting on the transverse bearing interfaces; and (b) a longitudinal system 

comprising the couple produced by the forces 3F , which is the resultant of the compressive 

stresses acting on the end bearing interface of the circular cross section, and 4F  which is the 

resultant of shear (bond) stresses acting on the tension side (the sliding interface).  

The mathematical expressions of the resistance resultant forces, 1F  to 4F , and the 

corresponding moments, 1M  to 4M , are presented next. Moments are taken with respect to a 

reference point located at the intersection of the y and z axes (Fig. 2). The y -axis is located at 

the inflection point, at distances 1x  and x2 from the front and rear ends of the embedment length, 

respectively, while the z-axis is located at the center of the circular cross-section.  
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  dx d R cos      F
1

1

xx  

0x  

2/  

2/  

r1  














        (2) 

  dx d R cos x     M
1

1

xx  

0x  

2/  

2/  

r1  














        (3) 

where 
1F  and 

1M  correspond to the bearing interface with the length 
1x .  x,

11 rr    is the 

radial compressive bearing stress at a particular point with the coordinates (θ , x ) on the 

cylindrical interface of the length 
1x . The distribution of bearing stresses 

1r
 in the transverse 

direction at a general section, at x, is shown in Fig. 3. R  is the outer radius of the tube. 

  dx d R cos      F
2

2

xx

0x  

2/  

2/  

r2  














        (4) 

  dx d R cos x     M
2

2

xx  

0x  

2/  

2/  

r2  














        (5) 

where 2F  and 2M  correspond to the bearing interface with the length 
2x .  x,

22 rr    is the 

radial compressive bearing stress at a particular point with the coordinates (θ , x ) on the 

cylindrical interface with the length 2x . As indicated earlier, it is assumed that only one 

inflection point exists, due to the short embedment length. This is different from the problem of 

laterally loaded piles embedded in soil, where multiple inflection points may exist along the 

typically very long embedment length. 

  dy yR2       F

Ry  

xRy  

22

x3

3






           (6) 

  dy yR2 y       M

Ry  

xRy  

22

x3

3






          (7) 
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where 3F  and 3M  correspond to the end bearing interface and  yxx    is the longitudinal 

compressive bearing stress within the length 3x . 

  dx d R         F
1

2

xx  

xx  

  

)(  

rx4 




 









         (8) 

  dx d R  cosR        M
1

2

xx  

xx  

  

)(  

rx4 




 









        (9) 

where 4F  and 4M  are the resultant force and corresponding moment along the sliding interface 

with the length 21 xxX  ,  x,rxrx    is the shear (bond) stress along the sliding interface, 

and   is the angle to the end of the perimeter of the region in compression ( Fig. 2). 

 

Reduced Forms for Internal Forces and Equilibrium  

In order to solve the above integrals, the stress distribution functions are required. Figure 3 

shows that the radial bearing stress  x,rr    at a general section is decreased from the 

maximum value of  x
mr

  to zero, when   is increased from zero to 2/ based on the 

following relationship:  

   
2

0      ,
2

1xx,
mrr







 








        (10) 

On the other hand, based on Eq. (1) of the concrete constitutive relationship in compression 

and the linear strain distribution assumed longitudinally ( x y   ) (Fig. 2), the maximum value 

of the radial stress  x
mr

  is expressed as follows: 

 































2

coco

cr

x x 
2fx

m 






           (11) 
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As such, 
1F  and 

1M  given in Eqs. (2) and (3) can be expressed as follows: 

dx d R cos
2

1
x x 

2f2F
1xx  

0x  

2
  

0  

2

coco

c1  


































































    (12) 

dx d R cos
2

1
x x 

2f x2M
1xx  

0x  

2
  

0  

2

coco

c1  


































































    (13) 

The integrals are then reduced to the following expressions:   
















2

co

3

1

2

co

2

1
c1

3

xx 
f 

R4
F










         (14) 
















2

co

4

1

2

co

3

1
c1

4

x

3

x 2
f 

R4
M










        (15) 

Similarly, 2F  and 2M  given in Eqs. (4) and (5) are reduced to the following expressions: 
















2

co

3

2

2

co

2

2
c2

3

xx 
f 

R4
F










         (16) 
















2

co

4

2

2

co

3

2
c2

4

x

3

x 2
f 

R4
M










        (17) 

As shown in Fig. 2, and based on linear strain distribution in the transverse direction at the 

end interface   3x xRy   , as well as the parabolic bearing stress distribution (Eq. 1), 3F  

and 3M  given in Eqs. (6) and (7) can be expressed as follows: 

   
dy yR 

Rxy Rxy 
2 f2F

Ry  

xRy  

22

2

co

3

co

3
c3

3

















































    (18) 

   
dy yR 

Rxy Rxy 
2 f y2M

Ry  

xRy  

22

2
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3

co

3
c3

3

















































   (19) 

These integrals are then reduced to the following expressions:   
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   CBRx
 

2ARx
 

2Rx
f2

F 3
co

3
co

32

co

c

2

3 

















































    (20) 

   DCRx
 

2BRx
 

2Rx
f2

M 3
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3
co

32

co

c

2

3 

















































   (21) 

where, 






 





R

xR
arcsin

2

R
xRx2

2

xR

4

R
A 3

2
2

33

3

2
,  32

33 xRx2
3

1
B  ,  

    






 








R

xR
arcsin

8

R
xRx2

4

xR
xRx2

8

xRR

16

R
C 3

4
32

33

32

33

3

24
, and 

   32

33

2

33 xRx2
15

R5R2xx3
D 


  

In order to establish reduced expressions for 4F  and 4M  given in Eqs. (8) and (9), the ‘bond 

stress-slip’ relationship is required.  Figure 4 shows this relationship for ‘push-through’ 

specimens comprising CFFT stubs embedded in concrete blocks (Nelson et al., 2008).  The 

figure shows that the initial part of the response is fairly linear, until the peak value of bond 

strength max  is reached. Based on this observation and the assumed linear variation of slip 

transversely, below neutral axis, the shear stress distribution  x,rxrx    on the sliding 

interface also varies linearly in the transverse direction (Eq. (22)), from zero at 3xRy   to the 

maximum value max  at Ry   (or as θ  is reduced from (   ) to zero, whereθ  is measured 

from the extreme tension point on y-axis).  

 
  

R

x
1arccos     ,-0     ,

xR2

xcos1 R 3

3

3
maxrx 























 


    (22) 

As a result, 4F  and 4M  can be expressed in the following expressions: 

 
dx d R 

xR2

xcos1 R
2F

1

2

xx  

xx  

  

0  3

3
max4 







 






















      (23) 
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 
dx d R 

xR2

xcos1 R
  cosR2M

1

2

xx  

xx  

  

0  3

3
max4 







 






















     (24) 

These integrals are then reduced to the following expressions: 

 
   







 3

3

max21
4 xRsinR

xR2

 xx R2
F       (25) 

 
  





















 


2sin

2

1

2

R
sinxR

xR2

 xx R2
M 3

3

max21

2

4     (26) 

To this end, the internal forces have been expressed in closed-forms in terms of five main 

parameters, namely 1x , 2x , 3x ,  , and  . By applying static equilibrium conditions, considering 

internal and external forces, as shown in Fig. 2, the following three equations are derived: 

0PFF 43            (27) 

0FFV 21            (28) 

0MMMMx.VM 43211          (29) 

The three equations are insufficient to obtain all parameters. Two additional equations are 

required as described next. 

 

Compatibility Relationships 

In order to establish the additional equations, the compatibility conditions of deformations at the 

CFFT-footing interface are used.  Initial analyses during model development have shown that the 

compressive stresses in the transverse bearings are well within the nonlinear range, and hence, 

the use of the parabolic concrete function (Eq. (1)) is quite important. However, at the 

longitudinal end bearing, strains were generally small and the concrete stress remains within the 
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linear range. As such, a closed-form approach based on theory of elasticity is used to apply the 

compatibility conditions at the end bearing interface. 

A typical longitudinal section of the footing is illustrated in Fig. 5. The strain and 

displacement profiles and the bearing stress distribution as well as its corresponding resultant 

force 3F  at the end interface (section A-A), are also shown. An equivalent circular disk of a 

radius c , with a uniform stress distribution of intensity q , is used to substitute the original bearing 

stress system, such that three conditions are satisfied: 

(a) the resultants of both systems must be equal ( 3F ),  

(b) the location of both resultants is the same, at a distance x from neutral axis: 

 3

3

3 xR
F

M
x  , and          (30) 

(c) the radius of the fictitious disc c is established such that the area of the disk is equal to the 

actual end bearing area (the part of the circular cross-section of the CFFT), which gives: 

 


R

xR

22

3

dyyR
2

c


         (31) 

This integral is then reduced to the following expression: 








 





R

xR
arcsin

R
xRx2

xR

2

R
c 3

2
2

33

3
2

    

   (32) 

The displacement distribution  zww   under the equivalent disk load, as a function of the 

depth z  within the concrete footing, can be established based on a three dimensional half-space 

domain. Analysis has shown that the depth of typical conventional footings is sufficient for using 

the half-space domain assumption. The maximum displacement mw ( 0z  ) at the end bearing 

interface (i.e. section A-A in Fig. 5, 0z  ) is given in Eq. (33), based on the classical theory of 

elasticity (Timoshenko and Goodier, 1970).  

https://www.researchgate.net/publication/44725858_The_Theory_of_Elasticity?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
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 
cE

F12
w

c

3

2

m



           (33) 

where ν  and cE are Poisson’s ratio and elastic modulus of the concrete footing, respectively. 

Based on the linear displacement profile at the interface, section (A-A) in Fig. 5, the following 

displacement compatibility relationship is established: 















3

um
xR2

x
Sw           (34) 

where uS is the slip when maximum bond strength is reached and bond failure occurs (this will 

be discussed in detail in the next section). From Eqs. (33) and (34) the following expression for 

3x  can be established: 

 
  u

3

2

c

3 S
F12

Ex c 
R2x 















         (35) 

The normal strain distribution  zεε   within the half-space domain under the equivalent 

disk load has been derived from the general displacement distribution function  zww  , which 

is reduced to the following expression for the maximum strain mε ( 0z  ) that occurs at the end 

bearing interface (i.e. section A-A in Fig. 5, 0z  ): 

  

c

2

3
m

Ec 

F121







           (36) 

Based on the linear strain profile in Fig. 5, which indicates that x βεm  , and using Eq. (36), 

the following expression can be established: 

  
  c

2

3

Exc 

F121







           (37) 
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Equations (35) and (37) are the compatibility equations required in addition to the 

equilibrium Eqs. (27), (28), and (29), to obtain the five unknown parameters. 

 

‘Bond Stress-Slip’ Behavior 

‘Bond stress-slip’ response at the interface between the GFRP tube and concrete footing 

generally depends on the texture of the tube surface, concrete strength, and type of loading. 

Nelson et al. (2008) conducted six push-through tests on CFFT specimens embedded into 

concrete blocks under concentric compressive axial loading, to establish the ‘bond stress-slip’ 

response for 219 mm diameter CFFTs with commonly used commercial GFRP tubes. The 

specimens included two groups, with embedment lengths of 200 mm and 400 mm, and each 

group consisted of three similar specimens. The CFFTs were embedded in 500×500×200 mm 

blocks in the first group and in 500×500×400 mm blocks in the second group. The concrete 

strength of the footing was 41 MPa. The ‘bond stress-slip’ responses were shown earlier in Fig. 

4. All responses showed a somewhat linear initial part up to the maximum value of bond 

strength max . Once max  was achieved, the load dropped significantly and a subsequent residual 

strength was maintained over a large range of slip. The average maximum bond strength max  

and corresponding slip were 0.71 MPa and 2.1 mm, respectively. 

The magnitude of slip at bond failure depends on the nature of loading and is not an absolute 

general value. This concept is explained in Fig. 6.  The case under consideration in this model is 

different from the push-through specimens in that loading is not concentric, due to the moment. 

As such, a slip gradient on the sliding interface is expected. Figure 6(a) shows the case of push-

through specimens, where max  is uniform over the entire perimeter. The resultant force in this 

case   maxa XDF 
 
and the corresponding slip, which is also uniform, is   .)conc(uau SS  , as 
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shown in Fig. 6(d). To understand the concept of slip gradient, a hypothetical case (b) is first 

introduced, showing a linear bond stress distribution along the full depth (Fig. 6(b)). When the 

maximum bond strength max  is reached at the extreme point, the resultant force  bF  is the 

integral of a sine-curve distribution of bond stress over the perimeter ( D ), which is 

  maxb XD5.0F   (i.e.    ab F5.0F  ). From Fig. 6(d), the corresponding maximum slip  buS  

then is  auS5.0 . In the case under consideration in the model, however, slip occurs in the tension 

region, below neutral axis (Fig. 6(c)). In this case, when max
 
is reached at the extreme fiber, the 

corresponding resultant force  cF  is the integral of a sine-curve distribution of bond stress over 

the part of perimeter in tension ( DK  , 1K  ). As such,    bc KFF  and from Fig. 6(d), the 

corresponding maximum slip      aubucu KS5.0KSS  , where K  is the ratio of the length of 

perimeter in tension to full perimeter (    /K  ).  cuS
 
is the value to be used in Eq. (35). 

 

Procedure of Analysis and Critical Embedment Length 

Five equations (27, 28, 29, 35 and 37) have been established to solve for the five unknowns 1x , 

2x , 3x ,  , and  . The input parameters are the forces acting at the face of the footing, M , V , 

and P , the tube outer diameter R2D  , concrete strength cf  , corresponding strain co  , 

concrete Poisson’s ratio ν , maximum bond strength max , and the corresponding ultimate 

slip .)conc(uS  based on push-through tests. The five equations system can be solved by a trial and 

error numerical procedure. The main output of the analysis is the embedment length 21 xxX   

required to achieve the full bond strength max , the curvatures  and  , resultant internal forces 

F1 to F4 and moments M1 to M4, and bearing stress distributions on the interfaces.  
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The critical embedment length crX can then be defined as the minimum embedment length 

required to achieve ‘material failure’ of the CFFT outside the footing, essentially the full 

potential of the system, simultaneously with a ‘bond failure’ inside the footing. Material failure 

of the CFFT could be tension- or compression-controlled, depending on the relative magnitudes 

of M , P , and V . Models are already available in literature to establish the strength of a CFFT 

member (for example, Fam et al (2003(a))). If the embedment length X < crX , bond failure 

occurs before the full potential strength of the CFFT is achieved (i.e. a premature failure).  

 

VERIFICATION OF THE MODEL 

The model has been used to predict the strength of five cantilever CFFT specimens embedded 

into concrete footings at various embedment lengths. The specimens were tested by Nelson et al. 

(2008) in bending, under lateral loading, to establish the critical embedment length. The 

specimens, referred to as C1 to C5, consist of 219 mm diameter CFFTs embedded into 

500×500×500 mm RC footings at various embedment lengths, namely 66 mm, 110 mm, 154 

mm, 220 mm, and 330 mm for specimens C1 to C5, respectively. This provides embedment 

length-to-diameter ratios of 0.3, 0.5, 0.7, 1.0, and 1.5. The specimens were all laterally loaded to 

failure at a distance, 1100 mm from the face of the footing.  Specimens C4 and C5 had a flexural 

tension failure just outside the footing, whereas specimens C1, C2, and C3 had a ‘bond-slip’ 

failure. Figure 7 shows the data points of the measured ultimate bending moment (and ultimate 

shear load) of all specimens versus the embedment length-to-diameter ratio ( D/X ). 

The model was used to predict the trend shown in Fig. 7. The input parameters obtained from 

Nelson et al (2008), except for co   and  which were assumed, are: cf = 41 MPa, co  = 0.002, 

 = 0.2, max = 0.71 MPa, .)conc(uS = 2.1 mm. In this study, there was no axial loads ( P = 0). The 

https://www.researchgate.net/publication/245395598_Moment_Connection_of_Concrete-Filled_Fiber_Reinforced_Polymer_Tubes_by_Direct_Embedment_into_Footings?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
https://www.researchgate.net/publication/245395598_Moment_Connection_of_Concrete-Filled_Fiber_Reinforced_Polymer_Tubes_by_Direct_Embedment_into_Footings?el=1_x_8&enrichId=rgreq-61d30d99d3d7461b195d01208ac0258b-XXX&enrichSource=Y292ZXJQYWdlOzI0NTI4NzMwNDtBUzo0MTc1OTI1NzQ1Mjk1MzZAMTQ3NjU3MzIzNjU1OA==
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model was then used to solve for the embedment lengths, for various moments, ranging from 

zero up to the ultimate moment of the CFFT member. The resulting curve is marked as ‘General 

model’ in Fig. 7, and shows good agreement with the experimental data points (C1, C2, and C3) 

representing bond failure. The ultimate moment increases gradually as the embedment length 

increases, until it reaches the critical embedment length, beyond which, the flat plateau 

represents the ultimate strength of the CFFT member. To establish the flat plateau, the model by 

Fam and Rizkalla (2002) for flexural strength of CFFT member has been adopted, accounting for 

the effect of shear on the FRP laminate strength through the Tsai-Wu failure criteria (Daniel and 

Ishai, 1994). This also showed good agreement with the average experimental strength of 

specimens C4 and C5. The critical embedment length crX  was 0.7 D  in this case.  

 

SENSITIVITY ANALYSIS FOR DIFFERENT PARAMETERS 

In order to gain a better understanding of the influence of various parameters in the model, a 

sensitivity study is carried out by establishing the variation of major parameters with  D/X  

ratio (Fig. 8). The variations of   and β  are shown in Fig. 8(a). The figure shows that for the 

most part β  is larger than   and as  D/X  decreases, both   and β  increase. In the 

hypothetical case of  D/X  equals zero,   and   approach infinity, whereas if  D/X  is 

assumed to be infinity,   and   approach zero. 

Figure 8(b) shows the variations of 1x , 2x , and 3x  with  D/X . It is noticed that 1x  is 

slightly greater than 2x . This is consistent with the fact that the force 1F  is greater than 2F  by the 

shear forceV ( VFF 12  ). The difference between 1x  and 2x  is little because of the very large 

difference between the embedment length X  and the length of the CFFT member outside the 
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footing, L , which also makes 
1F  (or

2F ) significantly larger than V . This fact is also 

demonstrated in Fig. 8(c), where 
1F  and 2F  are very close and 3F  is significantly smaller than 

either of them. It should be noted that this analysis is demonstrated for a laterally loaded 

cantilever. If an external longitudinal compression load P  was also present, the magnitude of 3F
 

will be significantly higher.  Figure 8(b) shows that  X/x1
,  X/x2

, and  D/x3  change very 

little with  D/X .  Figure 8(d) shows the variations of slip at failure, uS and the parameter K  

with  D/X , which are directly affected by 3x  variation.  

 

A SIMPLIFIED CLOSED-FORM MODEL 

A closed-form expression for crX
 
is established in this section for the case of a long CFFT pole 

subjected to a lateral load only (i.e. 0P   and hence 43 FF  ). Based on the results of the 

sensitivity study (Fig. 8), the following approximations can be made, leading to a considerable 

simplification: D1.0x3  , which is very small, so 3F  can then be assumed at the edge of the 

CFFT. Also, 21 xx  , equal to 0.5X. The sensitivity analysis also indicates that the maximum 

strains in the transverse direction ( 1x   and 2x  ) suggest that cf 
 
is reached and exceeded. 

Therefore, an approximate triangular stress distribution with a maximum stress of cf   is assumed 

at both sides of the transverse bearing area (Fig. 9). Based on these assumptions, Eqs. (14), (25), 

and (26) are simplified as follows: 

2

f XD
F c

1


            (38) 

2

 XD
F max

4


           (39) 
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8

 XD
M max

2

4


           (40) 

The moment arm of the couple formed by forces 3F  and 4F  is equal to 

[ D75.0F/MD5.0 44  ]. Based on Fig. 9, Eq. (29) is simplified to the following expression: 

 D75.0FX
3

2
FM 41 








 , leading to:       (41) 































D

X
 375.0

D

X

3

f
DM max

2

c3 


       (42) 

From which, the required embedment length X
 
for a given moment, when max

 
is achieved, 

can be given by the following single expression: 




















 1

D

Mf
31.01

f
55.5

D

X
32

max

c

c

max




       (43) 

By setting the moment M equal to the flexural strength of the CFFT member, crX  can be 

obtained.  Equation (43) is examined in Fig. 7 (Simplified model (a)), and shows very good 

agreement with the robust general model and experimental results. Because
 3F

 
is significantly 

smaller than 
1F  and

2F  (Fig. 8(c)), the model can be further simplified by ignoring 3F , rendering 

Eq. (41) reduced to a compacted expression (Eq. (44)), which is also examined in Fig. 7 

(Simplified model (b)) and shows reasonable agreement with the robust general model.  

c

3 fD

M 3

D

X





           (44) 

While the simplified models, Eqs. (43) and (44), were developed for a case of lateral loading 

only, they can be used as a conservative approach to obtain crX  for a CFFT under both lateral 

and axial load.  Axial compressive loads make the connection less sensitive to bond failure. 
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ANALYSIS OF THE RC SHALLOW FOUNDATION 

A procedure is proposed for analysis of the footing, as a shallow foundation, under the internal 

forces produced by the embedded CFFT segment. In conventional analysis of a footing under 

axial load and moment, the length (H) and width (B) of the footing are generally established 

based on the allowable stress of soil (
allowablemax qq  ) while the thickness (t) and steel 

reinforcement are designed based on the shear forces and bending moments at critical sections. 

The difference from conventional footings in this case is that the forces are applied internally, 

within the embedment length of CFFT (Fig. 10(a)). In this case the soil pressure is established 

similar to the conventional method (i.e. using the axial load P and moment M). The forces and 

moments acting on the critical cross-section, however, namely tensile force fT , moment fM , and 

shear fV are calculated from the free body diagram in Fig. 10(a)).  The thickness (t) and steel 

reinforcement of the critical cross-section can then be designed under these forces (Fig. 10(b)).   

 

SUMMARY AND CONCLUSIONS 

A robust analytical method was developed for a moment connection between circular concrete-

filled FRP tubular (CFFT) members and reinforced concrete (RC) footings. The connection is 

based on the simple approach of direct embedment of the CFFT member into the footing for a 

certain length, and hence do not require the use of dowel bars or any mechanical devices. The 

CFFT member is subjected to lateral or lateral and axial loads at its free end. This resembles 

several applications such as utility and light poles, which are typically laterally loaded, and 

bridge columns and piles connection to pile-caps, which could be axially and laterally loaded. 
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The model is capable of predicting the critical embedment length crX  of the CFFT member, 

which is the minimum length required to achieve material failure of the CFFT, outside the 

footing, and bond failure inside the footing, simultaneously. If the actual embedment length X is 

less than crX , bond failure occurs prematurely at a lower capacity, and the model can also predict 

the reduced strength. If X is larger than crX , bond failure is avoided.  

The model is based on the concepts of equilibrium, deformations compatibility, and the 

nonlinear concrete stress-strain behavior. The model also employs a ‘bond stress-slip’ relation 

which can be obtained from simple push-through tests on some of the commercially used FRP 

tubes. The model was verified using experimental results and showed good agreement. In this 

case, it was shown that D7.0X cr  , where D  is the CFFT diameter. 

A sensitivity analysis of various parameters involved in the model was carried out, and lead 

to some approximations. Based on which, and for the case of zero axial load, a simple closed-

form expression was established for crX . For embedment length less than crX , the expression can 

also predict the reduced moment capacity based on bond failure. The expression could also be 

used to provide a conservative estimation of crX , for design purposes, in presence of axial load. 
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NOTATION 

c   =  radius of equivalent disk stress distribution;  

id   =  arm of moment in footing; 
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D   =  tube outer diameter; 

e   =  load eccentricity; 

cE   =  concrete elastic modulus; 

iF   =  resultant force of interface i ; 

cf    =  concrete compressive strength; 

H   =  length of footing; 

i   = code of interface (1, 2, 3, or 4); 

K   =  slip surface factor; 

L   = length of CFFT at the outside of footing; 

M  = bending moment; 

iM
 

=  resultant moment of interface i ; 

fM   =  moment of footing; 

uM   =  resistance bending moment of CFFT; 

P   =  compressive axial load; 

cP   =  compression perimeter of CFFT; 

oP   =  total perimeter of CFFT; 

tP   =  tension perimeter of CFFT; 

q   =  intensity of equivalent disk stress distribution; 

maxq   =  minimum soil pressure; 

mixq   =  maximum soil pressure; 

R   =  tube outer radius; 

r   =  polar coordinate variable (radius); 

uS   =  ultimate slip; 

xS   =  slip at position x ; 

t   =  thickness of footing; 

t   =  area centre position of footing; 

fT   =  tension force of footing; 

V   =  shear load; 

fV   =  shear of footing; 

w   =  displacement distribution along z ; 

X   =  embedment length; 

crX   =  critical embedment length; 

optX   =  optimum embedment length; 

x   =  longitudinal coordinate variable;  

ix   =  compression length of interface i ; 

x   =  effective point of 3F ; 

y   =  transverse (shear direction) coordinate variable;  

z   = transverse coordinate variable;  
z   =  depth in half space region; 

   =  lateral interface curvature;  



 22 

   =  circular end interface curvature;  

   =  compressive strain; 

x   =  compressive strain along x ; 

y   =  compressive strain along y ; 

co    =  concrete strength corresponding strain;  

m   =  maximum strain; 

   =  angle of compression region on end section; 

   =  concrete Poisson’s ratio; 

   =  polar coordinate variable (angle); 

   =  compressive stress at strain ε ; 

ir
   =  radial compressive stress on interface i ; 

mr
   =  maximum radial compressive stress; 

x   =  normal compressive stress along x ; 

rx   =  shear stress on sliding interface; and 

max   =  maximum bond stress. 
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Fig. 1. Geometry of the problem 

 

 

 

 

 

 

 

 

 



 25 

 

Fig. 2. Internal forces and stress distribution in the longitudinal direction within the 

embedment length 
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Fig. 3. Lateral stress distribution at a general cross-section within the embedment length 
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Fig. 4. ‘Bond stress-slip’ response of CFFT embedded in RC block (adopted from Nelson et 

al, 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Su (conc.) = 2.1 mm 
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Fig. 5. Stress, strain, and displacement profiles at end interface  
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Fig. 6. Stress, strain, and displacement profiles at end interface  

 

Fig. 6. Simplified slip response 
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Fig. 7. Experimental and analytical variation of ultimate moment with embedment length 

 

 

 

 

 

 

 

 

 

 

 

Simplified model (a) 

Simplified model (b) 
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Fig. 8. Summary of the sensitivity analysis 
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Fig. 9. Geometry and mechanics of the simplified model 
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Fig. 10. Analysis of the RC footing 
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