
A MULTI-DEPOT CREW ROUTING OPTIMIZATION FOR

POST-DISASTER SERVICE RESTORATION

by

Parth Pancholi

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

April 2017

© Copyright by Parth Pancholi, 2017

ii

Table of Contents

List of Figures ... v

List of Tables ... vi

Abstract ... vii

List of Abbreviations Used .. viii

Acknowledgements ... x

Chapter 1 Introduction .. 1

1.1 Problem Summary ... 3

1.2 Problem assumptions... 5

Chapter 2 Literature review and background .. 7

2.1 Vehicle Routing Problem and its variants ... 7

2.2 Proposed methods to solve VRP and its variants .. 10

2.2.1 Exact methods... 11

2.2.1.1 Linear Programming .. 11

2.2.1.2 Dynamic Programming .. 13

2.2.2 Heuristics .. 14

2.2.3 Metaheuristics ... 16

2.2.3.1 Local search ... 17

2.2.3.2 Population search ... 18

2.2.3.3 Learning Mechanism ... 19

2.3 Classes of the problem closely related to the thesis problem .. 20

Chapter 3 Methodology .. 27

3.1 Optimum Method (Formulation) ... 27

3.1.1 Sets and Parameters .. 27

3.1.2 Decision Variables .. 28

iii

3.1.3 Objective function .. 28

3.1.4 Constraints .. 28

3.2 Multi-Stage Metaheuristic method .. 30

3.2.1 Clustering stage .. 31

3.2.2 Initial routing stage ... 33

3.2.3 Improvement stage ... 36

3.2.3.1 Intra-route improvement .. 36

3.2.3.2 Inter-route improvement .. 41

3.3 Hybrid method... 47

3.3.1 Clustering stage alternative .. 47

3.3.1.1 Sets and Parameters ... 47

3.3.1.2 Decision variable ... 48

3.3.1.3 Objective function .. 48

3.3.1.4 Constraints ... 48

3.3.2 Initial routing alternative .. 50

3.3.2.1 Sets and Parameters ... 50

3.3.2.2 Decision Variables ... 50

3.3.2.3 Objective function .. 50

3.3.2.4 Constraints ... 51

3.3.3 Improvement stage alternative .. 51

3.4 Summary of the proposed methodologies ... 52

Chapter 4 Results .. 53

4.1 Data Simulation ... 53

4.2 Selection of parameters for tabu search metaheuristic .. 54

4.2.1 Selection of maximum number of consecutive non-improving solutions 55

iv

4.2.1.1 Multi-Stage Metaheuristic method ... 56

4.2.1.2 Hybrid method ... 57

4.2.2 Selection of the length of the tabu-list .. 58

4.2.2.1 Multi-Stage Metaheuristic method .. 59

4.2.2.2 Hybrid method ... 60

4.3 Comparison of proposed methods ... 62

4.3.1 Performance of Multi-Stage Metaheuristic and Hybrid method with respect to

 optimum method (MILP) .. 62

4.3.2 Performance of Hybrid method with respect to Multi-Stage Metaheuristic method ... 67

4.3.3 Performance of tabu-search in proposed Multi-Stage Metaheuristic method 70

Chapter 5 Conclusion and Future Research .. 73

5.1 Conclusion ... 73

5.2 Future research .. 74

References ... 76

Appendices .. 87

Appendix A. Performance of tabu search Metaheuristic .. 87

v

List of Figures

Figure 1. An instance involving one depot, five outages and two PLTs .. 4

Figure 2. Overview of the Approximate method .. 31

Figure 3. k-means clustering algorithm .. 32

Figure 4. Assignment of clusters to depots ... 33

Figure 5. Initial Routing Heuristic .. 34

Figure 6. Initial tours in clusters ... 36

Figure 7. Sub-tour reversal example ... 37

Figure 8. Neighborhood of current solution after sub-tour reversal ... 38

Figure 9. Tabu search metaheuristic for intra-route improvement ... 40

Figure 10. Selection of donor to transfer outage... 42

Figure 11. The transferred outage from the donor is inserted at all the places in another cluster 43

Figure 12. Transfer of an outage from one cluster to others ... 44

Figure 13. Tabu search metaheuristic for inter-route improvement ... 46

Figure 14. Hybrid clustering ... 49

Figure 15. Performance of Multi-Stage Metaheuristic and Hybrid methods with respect to

 Optimum method ... 65

Figure 16. Performance of Hybrid method with respect to Multi-Stage Metaheuristic method .. 69

Figure 17. Performance of tabu-search Metaheuristic .. 71

file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221481
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221482
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221483
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221484
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221485
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221486
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221487
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221488
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221489
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221490
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221491
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221492
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221493
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221494
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221495
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221495
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221496
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221497

vi

List of Tables

Table 1. Summary of the proposed methodologies .. 52

Table 2. Selection of the number of consecutive non-improving solutions for Metaheuristic

 method... 56

Table 3. Selection of the number of consecutive non-improving solutions for Hybrid method .. 58

Table 4. Selection of the length of tabu-list for Metaheuristic method .. 59

Table 5. Selection of the length of tabu-list for hybrid method .. 61

Table 6. comparison of Metaheuristic and Hybrid method with Optimum MILP method 63

Table 7. Performance of Hybrid method with respect to Multi-Stage Metaheuristic method 67

file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221498
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221499
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221499
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221500
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221501
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221502
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221503
file:///C:/Users/Parth/Dropbox/MEng/Write%20up/Thesis%20report/Corrections/Final%20version.docx%23_Toc480221504

vii

Abstract

After any natural disaster, thousands of customers may get disconnected from the supply of

electricity. To deal with the after effect of such calamity, the power utility companies will need to

allocate the PLTs to the depots which are responsible to maintain power grids of certain areas, and

schedule the sequence in which PLTs will fix the outages. The goal is to restore the service of all

the customers as soon as possible while reducing the total weighted wait times across all the

customers.

In this research, a Mixed Integer Linear Programming model is proposed to solve this problem

optimally, as well as a Multi-Stage Metaheuristic method is proposed to achieve a near optimum

solution. Additionally, a Hybrid method is proposed which uses a combination of the optimum

method and metaheuristic method to solve the problem. The performances of the proposed

methods are compared with each other based on simulated data.

viii

List of Abbreviations Used

AOC Ant Colony Optimization

CCVRP Cumulative Capacitated Vehicle Routing Problem

CVRP Capacitated Vehicle Routing Problem

DOM Disaster Operations Management

GA Genetic Algorithm

ILP Integer Linear Programming

ILS Iterated Local Search

k-DCT k-Degree Centre Trees

LP Linear Programming

MA-MCPTDR Multiple Agents Maximum Collection Problem with Time-Dependent Reward

MCPTDR Maximum Collection Problem with Time-Dependent Reward

MDVRP Multi-Depot Vehicle Routing Problem

MDVRPI Multi-Depot Vehicle Routing Problem with Inter-depot routes

MILP Mixed Integer Linear Programming

MLP Minimum Latency Problem

MT-CCVRP Multi Trip Cumulative Capacitated Vehicle Routing Problem

MTMCP Multiple Tour Maximum Collection Problem

NP Non-Polynomial

OR/MS Operations Research and Management Science

PDVRP Pick-up and Delivery Vehicle Routing Problem

PLT Power Line Technician

PVRP Periodic Vehicle Routing Problem

SDVRP Split Delivery Vehicle Routing Problem

TRP Traveling Repairman Problem

TRPP Traveling Repairman Problem with Profits

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

ix

VRPB Vehicle Routing problem with Backhaul

VRPM Vehicle Routing Problem with Multiple uses of the vehicles

VRPTW Vehicle Routing Problem with Time Window

x

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Dr. Alireza

Ghasemi for his excellent guidance and motivation throughout this research. This thesis would not

have been possible without his invaluable advice and continuous cooperation.

I would also like to thank Dr. Pemberton Cyrus and Dr. Nader Azad for offering their time and

knowledge in evaluating my thesis. Moreover, I am immensely grateful to all my teachers for their

academic guidance in my graduate courses.

I do not know how to thank my parents who have always believed in me and supported me in all

aspects of my life. Without them, I would not be able to pursue advanced degrees. Last but not the

least, a very special thanks to my friends for their continuous encouragement throughout this

thesis.

1

Chapter 1 Introduction

Transportation costs billions of dollars to customers and manufacturers in today’s distribution and

logistics field. An increasing growth of e-commerce, competitive environment between the

manufacturers, and increasing consumers’ demand call for an effective planning of the distribution

network. Hence, it is of crucial importance to design these distribution routes in an efficient manner

to minimize the overall cost as well as the overall time for distribution. To cope up with the high

demand of consumers, it is also pivotal to allocate the available resources in an optimal manner.

Besides the logistics field, optimum distribution networks are also important for the service

industry. For instance, a utility company has several service demands from the customers

distributed in different areas of the city. When the company assigns these jobs to a salesman, he

must decide the order in which he will visit the customers. This must be done in the most efficient

way to minimize the distance and the associated costs. By doing so, he will also be able to provide

a quick service to the customers and serve more customers in a given time, which in turn will result

in more profit. This problem of visiting a maximum number of locations in minimum time or

traveling minimum distance is regarded as the Traveling Salesman Problem (TSP) in literature

(Flood, 1956).

In a TSP, a salesman must begin his journey from one point and visit N customers (cities) exactly

once before ending his journey at the same point. He should complete his journey traveling

minimum distance or incurring a minimum cost. The generalized form of the TSP is called the

Vehicle Routing Problem (VRP) (Laporte & Nobert, 1987). VRP can be defined as the problem

of finding an optimal route for the fleet of vehicles from single or multiple depots to several

2

customers scattered in a geographic area (Laporte G. , 1992). The purpose of the routing can be

pick-up or delivery of goods or services.

In addition to logistics and service industry, VRP is also applicable for disaster management.

Natural disasters, being devastating for people’s lives and governments, demand for quick and

efficient decision making and response in post-disaster activities. These activities are simply the

restoration of the services interrupted by the disaster or delivering help such as communication,

medical supply, and goods distribution to the impacted people. Delivering these services at the

minimum possible time is of utmost importance in these situations.

Over the past several decades, many variants of VRP have been extensively studied which

incorporate several real-life scenarios. These scenarios may include the capacity of the vehicles,

the time-window for which vehicles are available or the time-window in which the locations must

be visited, split deliveries, pick-up and delivery, etc. As per Lenstra & Rinnooy Kan (1987), most

VRPs are NP-hard which are unlikely to be solved in a polynomial time. Therefore, it needs great

attention to develop different algorithms which can solve VRP in less time. In the last few decades,

several exact and approximation algorithms are developed. But because of NP-hardness of VRP,

exact algorithms can only solve the small problems in many cases. On the other hand, the

approximation algorithms can yield comparatively good results in less time.

In this research, the problem of post-disaster service restoration is considered. An optimum and

approximation methods are proposed to solve the problem. Moreover, a hybrid technique using a

combination of both optimum and approximate algorithms is developed to solve the problem. In

section 1.1, the exact definition of the problem is provided, followed by section 1.2 which enlists

and explains the assumptions made while solving the problem.

3

1.1 Problem Summary

Under any natural calamity, significant damage to the power grid can occur, disconnecting

thousands of customers from the supply of electricity that supports many critical activities. In order

to meet customers’ expectations, an electricity supplier organization must have an effective plan

for restoring the power outages as soon as possible.

In the problem under investigation, a certain number of Power Line Technicians (PLT) are present

across all the depots governed by a power supplier organization, each depot is responsible for

maintaining the grid for a specific geographical area during regular maintenance and repair of the

system. After a disaster, the power supplier organization needs to allocate the PLTs to the depots

depending on the number of outages in the whole region and the order in which PLTs will fix the

outages. The PLTs spend time while traveling from one outage to another (travel time), as well as

while fixing the outages (service time). The primary objective of this problem is to minimize the

overall restoration time of all the customers while minimizing the total weighted wait time

(secondary objective) across all the customers.

Before moving further, it is important to clearly distinguish the restoration time and the weighted

wait time. The restoration time depends on the travel time and service time of the outages, whereas

the weighted wait time depends on the number of customers associated with each outage (weight)

in addition to the travel time and service time. For any outage, the restoration time is the sum of

the time taken to arrive at that outage and time taken to fix that outage, whereas the weighted wait

time is the restoration time of that outage multiplied by the number of customers associated with

that outage. The restoration time and weighted wait time of an entire route traveled by one PLT

are respectively the sum of the restoration times and the sum of the weighted wait times of all the

outages in that route. The overall restoration time of the problem is the restoration time of the last

4

outage restored, whereas the overall (total) weighted wait time is the sum of the weighted wait

times of all the routes.

Figure 1 gives a good idea to understand both the terms. It shows the route traveled by two PLTs

who start their journeys at the same time. PLT-1 follows route-A visiting two nodes, whereas PLT-

2 follows route-B visiting three nodes. The time taken (in hours) to travel from one point to another

is mentioned near the arrows. Let’s assume that the time taken to fix any outage is 2 hours and the

number of customers associated with each outage is 10 (both values may not be same for all the

nodes in a real life problem).

From Figure 1:

• Restoration time (Route A) = (Time taken to travel from depot to outage 1 +

 Time taken to restore outage 1 + Time taken to travel from outage 1 to outage 2 +

 Time taken to restore outage 2)

⸫ Restoration time (A) = (1 + 2 + 1.5 + 2) = 6.5 hours

⸫ Restoration time (B) = (1 + 2 + 1.5 + 2 + 1 + 2) = 9.5 hours

Figure 1. An instance involving one depot, five outages and two PLTs

5

• Weighted wait time (Route A) = (Restoration time of outage 1 ∗

 Number of customers associated with outage 1) + (Restoration time of outage 2 ∗

 Number of customers associated with outage 2)

⸫ Weighted wait time (A) = (1 + 2) ∗ 10 + (1 + 2 + 1.5 + 2) ∗ 10 = 95 hours

⸫ Weighted wait time (B) = (1 + 2) ∗ 10 + (1 + 2 + 1.5 + 2) ∗ 10 + (1 + 2 +

1.5 + 2 + 1 + 2) ∗ 10 = 190 hours

Therefore, the objective function values are as follows:

• Overall Restoration time = max (6.5, 9.5) = 9.5 hours

• Total Weighted Wait time = (95 + 190) = 285 hours

One important thing to note is the contradictory behavior of primary and secondary objectives in

some cases. The improvement in overall restoration time does not always guarantee the

improvement in weighted wait time, in contrast, it may increase the weighted wait time in some

instances. The reason behind this is the number of customers associated with each outage, which

is considered in weighted wait time but not in restoration time. In the quest of improvement in

restoration time, it is quite possible that an outage which is getting fixed first has very less number

of customers than the outage getting fixed later. In that case, although the solution will improve

the restoration time on one hand, it may increase the weighted wait time on the other hand.

1.2 Problem assumptions

In this section, the assumptions made in solving the problem are discussed.

• All the PLTs start their journeys at the same time from multiple depots.

• All the PLTs are assumed to have the same efficiency resulting in homogeneous fleet.

6

• The calculation of restoration and weighted wait time is started when the PLTs start their

journeys to fix the outages from the depot. Therefore, the time spent for the allocation of

PLTs to the depots is neglected.

• It is mandatory to fix all the outages.

• All the outages will be fixed on the first visit.

• The restoration time and the weighted wait time remain constant as soon as all the outages

are restored by the PLTs. Therefore, any PLT’s trip from the last visited outage back to the

depot doesn’t change the objective functions.

• The time to fix each of the outages is predetermined based on historical data of that outage

or using industry standards.

• The factors which cannot be realized in advance are not considered in this problem. These

factors may include the delay caused by weather and traffic, stochastic service delay due

to lack of equipment, etc.

The remainder of this thesis is organized as follows. In chapter 2, a literature review related to the

problem is presented. The proposed optimum method (Formulation), approximate method and

hybrid method are described in chapter 3. Chapter 4 describes the computation experiments and

comparison between the proposed methods using simulated data. Finally, conclusions and future

research directions are discussed in chapter 5.

7

Chapter 2 Literature review and background

This chapter discusses the previous research work related to the problem under investigation. The

evolution of the Vehicle Routing Problem (VRP) from its simplest form to the complex variants

addressing the real-life scenarios, as well as the development of different techniques to solve the

VRP and its variants are discussed in this chapter. Moreover, the classes of VRP which closely

relate to the problem under investigation are discussed in detail.

2.1 Vehicle Routing Problem and its variants

Dantzig & Ramser (1959) were the first to propose a model to route a fleet of homogeneous trucks

from the central hub to number of gas stations to fulfill their demand for gasoline. After five years,

Clarke & Wright (1964) related this problem with the delivery of goods in the field of logistics

and transportation. They converted this problem to a linear optimization problem which became

popular as a ‘Vehicle Routing Problem (VRP)’. Christofides (1976) seems to be the first one to

use the term ‘Vehicle Routing Problem’ which is one of the most studied problems in the field of

combinatorial optimization. The classic VRP is defined on the graph 𝐺 = (𝑉, 𝐴), where 𝑉 =

{1, … , 𝑛} is the set of the cities to be visited with the depot on vertex 1, and 𝐴 is a set of arcs, 𝐴 =

{(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉}. A distance/cost matrix 𝐶 = (𝑐𝑖𝑗) is associated with every arc (𝑖, 𝑗). In some

conditions, 𝑐𝑖𝑗 may stand for the travel time or a travel cost depending on the problem. Initially, a

fleet of 𝑚 vehicles is located at the depot. We need to find 𝑚 least cost optimal routes such that:

(i) each vehicle start and end its journey at the depot (ii) each customer is visited exactly once and

by one vehicle only. (iii) according to the problem, some side constraints such as capacity of

vehicle, availability of customers and vehicles, etc. are satisfied (Laporte G. , 1992).

8

Over the past few decades, the burgeoning use of VRP in various real life scenarios resulted in the

invention of many variants of VRP, which motivated the researchers to take more and more interest

in this field. Some of the variants are discussed below:

Two of the most basic variants of VRP are Capacitated Vehicle Routing Problem (CVRP) and

Vehicle Routing Problem with Time Window (VRPTW). In CVRP, the fleet of the vehicles is

initially located at the central depot. The objective is to route these vehicles to fulfill the demands

of all the customers incurring a minimum cost such that the total demand of any route does not

exceed vehicle’s capacity, and above-mentioned general VRP constraints are satisfied (Laporte,

Mercure, & Nobert, 1986). CVRP can also be found in the work of (Toth & Vigo, 2002; Akpinar,

2016; Uchoa, Pecin, Pessoa, Vidal, & Subramanian, 2017). In VRPTW, the cities must be visited

in their respective time window. Sometimes the vehicles are only available for particular time

window; they have to start and end their journeys within that time period. Hence, a time-window

constraint must be satisfied in addition to general VRP requirements (Solomon & Desrosiers,

1988; Kallehauge, 2008; Braaten, Gjønnes, Hvattum, & Tirado, 2017). When we have a small fleet

of vehicles available to visit a large number of customers, or when a vehicle is available for a

longer period of the day as compared to the average duration of a route, a vehicle can be assigned

more than one route. This type of problem is called Vehicle Routing Problem with Multiple Use of

Vehicles (VRPM) (Azi, Gendreau, & Potvin, 2010; Koç & Karaogˇlan, 2012). In the available fleet

of vehicles, if the capacities of all the vehicles are same, the problem is called VRP with a

homogeneous fleet of vehicle, and if different types of the vehicles are used, it is called VRP with

a heterogeneous fleet of vehicles. Moreover. Instead of one-day planning, if the standard VRP’s

planning period extends for several days, it is called Periodic Vehicle Routing Problem (PVRP)

(Dayarian, Crainic, Gendreau, & Rei, 2015; Ouaddi, Benadada, & Mhada, 2016)

9

In large distribution networks, several depots may be considered instead of one central depot. This

type of problem is called Multi-Depot Vehicle Routing Problem (MDVRP). MDVRP first appeared

in the work of (Kulkarni & Bhave, 1985) and (Laporte, Nobert, & Taillefer, 1988). In standard

MDVRP, the vehicles start their respective journeys from different depots and end their journeys

at the same depot from where they started, satisfying all the constraints of standard VRP (Montoya-

Torres, López Franco, Nieto Isaza, Felizzola Jiménez, & Herazo-Padilla, 2015; Contardo &

Martinelli, 2014). In MDVRP, vehicles cannot generally travel directly from one depot to another;

if they can, it is called Multi-Depot Vehicle Routing Problem with Inter-Depot Routes (MDVRPI).

MDVRPI can be found in the work of (Jordan & Burns, 1984; Crevier, Cordeau, & Laporte, 2007).

In some cases, depots also work as a replenishment facility where vehicles may be replenished

with the delivery product at intermediate depots along their route.

Another variant of VRP is Pick-up and Delivery Vehicle Routing Problem (PDVRP), in which

goods are picked up from some customer’s location and delivered to other customers (Li, Wang,

Hei, Li, & Jiang, 2017). In contrast to PDVRP, in Vehicle Routing problem with Backhaul (VRPB),

the goods are delivered from several depots or from one central depot to set of linehaul customers,

and from backhaul customers to the depots (Goetschalckx & Jacobs-Blecha, 1989; Wassan,

Wassan, Nagy, & Salhi, 2017). Another popular example of VRP is Split Delivery Vehicle Routing

Problem (SDVRP) in which split deliveries to one customer by more than one vehicle are allowed,

in contrast with the classical VRP where one customer can only be visited exactly once and by one

vehicle only (Archetti & Speranza, 2012; Chen, Golden, Wang, & Wasil, 2017).

In addition to above variants, there exist more complex variants inspired by real life scenarios. For

example, Oesterle & Bauernhansl (2016) proposed an exact method for a vehicle routing problem

with mixed linehaul and backhaul customers, heterogeneous fleet, time window and manufacturing

10

capacity. Gao, Wang, & Liu (2016) considered a VRPTW with multiple objectives of

simultaneously minimizing cost, the number of vehicles used, and the traveled distance. Zhang et

al. (2017) considered VRPTW with realistic pallet loading constraints in which goods of different

sizes must be transported in standard sized boxes with limited capacity. They addressed the actual

needs of the logistics industry for distribution of consumer goods and agricultural products. Some

other examples of complex VRP variants are split delivery and pickup (Annouch, Bellabdaoui, &

Minkhar, 2016), fuel consumption and stochastic travel speed (Feng, Zhang, & Jia, 2017), multi-

objective vehicle routing problem for simultaneous delivery and pick up with time windows (Li,

Wang, Hei, Li, & Jiang, 2017), etc. The increasing complexity of these variants demands efficient

methods to solve VRP which are discussed in the next section.

2.2 Proposed methods to solve VRP and its variants

As far as complexity is concerned, VRP is considered NP-hard problem because of the augmented

Traveling Salesman Problem (TSP) which is a popular NP-hard problem itself (Garey & Johnson,

1979). There exist exact algorithms which can solve TSP containing hundreds or thousands of

vertices (Applegate, Bixby, Chvátal, & Cook, 2007), whereas VRP is much more difficult to solve

in real life for which best exact algorithms can handle a couple of hundred customers only

(Baldacci, Christofides, & Mingozzi, 2008) (Baldacci, Mingozzi, & Roberti, 2012). Over the past

few decades, extensive research has been done in developing exact and approximation methods to

solve VRP and its variants as discussed below:

11

2.2.1 Exact methods

Since the beginning of VRP era, the exact methods to solve VRP have transformed from basic

branch-and-bound algorithms to highly advanced mathematical programming. Among them, the

main algorithms are discussed here.

2.2.1.1 Linear Programming

Linear programming (LP) or linear optimization is a method to maximize or minimize a linear

function. It uses a mathematical model in which all the requirements of the problem (constraints)

are linear. If all the decision variables of a model are constrained to be integers, the method is

called Integer Linear Programming (ILP). And if the mathematical model has some integer

variables and some non-integer decision variables, the method is called Mixed Integer Linear

Programming (MILP) (Hiller & Lieberman, 2015). Over the past few decades, the algorithms to

solve LP models have evolved from a branch-and-bound algorithm (Davis, Kendrick, &

Weitzman, 1971) to branch-and-cut algorithm (Finkel'shteyn, 1971), column generation (Og˜uz,

2002), set partitioning formulation (Marsten, 1974), vehicle flow formulation (Laporte, Nobert, &

Desrochers, 1985), etc. Some of the popular algorithms to solve VRP optimally are discussed

below.

Branch and bound algorithms are one of the most popular algorithms to solve the NP-hard

problems in the field of combinatorial optimization. The basic concept of branch-and-bound is to

divide a large problem into smaller and smaller sub-problems and solve them to obtain the solution

of the original undivided problem. The algorithm systematically calculates the candidate solutions

one by one forming a rooted tree. It then explores the branches of the tree which represent the

subset of the solution set. Each candidate solution (branch) is tested against estimated lower and

upper bounds on the optimum solution. The algorithm discards the branch if it cannot produce a

12

better solution than the best one found so far. Little et al. (1963) used the branch-and-bound name

for the first time in their work on the traveling salesman problem. For VRP, it seems to appear in

the work of (Christofides & Eilon, 1969) for the first time. The performance of the algorithm was

greatly improved by two effective lower bounds by q-routes and shortest spanning k-Degree

Centre Trees (k-DCT) introduced by Christofides, Mingozzi, & Toth (1981) solving up to 25

customers. Kumar & Jain (2015) applied branch-and-bound algorithm in school bus routing

problem and were able to optimally solve the instances up to 65 buses.

The Branch-and-cut algorithm combines the branch-and-bound algorithm with cutting planes to

solve Integer Linear Program (ILP) in which the cutting planes restrict the non-integer solutions

tightening the Linear Programming (LP) relaxation. These cuts reduce the number of branches.

Fisher (1994) incorporated k-DTC lower bound within a branch-and-cut algorithm and could solve

instances up to 134 vertices.

Balinski & Quandt (1964) were the first to provide a simple set partitioning formulation for VRP.

The set-partitioning algorithm consists of the m×n binary matrix in which each row represents a

customer and each column represents a feasible route. The objective is to cover all the customers

(rows) with subsetting routes (columns) incurring a minimum cost. However, the formulation is

not that efficient because of (1) a large number of potential routes, and (2) difficulty in solving

the optimum cost for an exponential number of NP-hard routes (Laporte G. , 2009). To solve this

problem, several column generation algorithms were proposed (Rao & Zionts, 1968; Foster &

Ryan, 1976; Agrawal, Mathur, & Salkin, 1989). Some LP models are too large to consider all the

variables explicitly, and since most of the variables are assumed to have zero value in the objective

function, the column generation only considers a subset of the problem and generates only those

variables which have potential to improve the objective function. Column generation is widely

13

used exact algorithm to solve vehicle routing problem with time window (VRPTW) since

(Desrochers, Desrosiers, & Solomon, 1992). When column generation is combined with branch

and bound algorithm, it is called Branch and price algorithm. Fukasawa, et al. (2006) developed

a branch-cut-and-price algorithm which showed that the combination of cut and column generation

can be much more effective. Most recently Pecin et al. (2017) proposed an improved branch-cut-

and-price algorithm for the capacitated vehicle routing problem by combining several elements of

the previous research. Their algorithm was able to optimally solve CVRP for up to 360 customers,

which were only considered by approximation method before.

2.2.1.2 Dynamic Programming

Dynamic programming is a recursive approach to solve a complex sequential problem by breaking

it into simpler sub-problems. Then, each sub-problem is solved and the solution is stored. The

solutions are used to make the sequence of interrelated decisions. Unlike linear programming,

dynamic programming does not have a standard mathematical formulation. It is a general approach

to problem-solving in which the equations are developed to fit the situation under the study. The

dynamic programming based exact algorithm to solve VRP can be seen in the work of

(Christofides, Mingozzi, & Toth, 1981; Mahmoudi & Zhou, 2016).

Other exact algorithms to solve VRP are Vehicle flow formulation based algorithm, A commodity

flow formulation based algorithm, etc. The Vehicle flow formulation based algorithm can be

subdivided in (i) Two- index vehicle flow formulation (Laporte, Nobert, & Desrochers, 1985) and

(ii) Three-index vehicle flow formulation. The Commodity flow formulation based algorithm can

be subdivided into (i) Single-commodity flow, (ii) Two-commodity flow (Baldacci,

Hadjiconstantinou, & Mingozzi, 2004), and (iii) Multi- commodity flow (Letchford & Salazar-

González, 2015).

14

As mentioned earlier, VRP is NP-hard problem. Therefore, it is often not possible to solve large

problems by exact methods.

2.2.2 Heuristics

A heuristic is a rule of thumb technique, designed to solve the problems more quickly when the

exact methods fail to do so in a “reasonable” amount of time. It is a technique to find a satisfactory

approximate solution when exact methods cannot find an optimum solution.

Dantzig & Ramser (1959) seem to introduce the first heuristic for VRP in their paper. Their

algorithm iteratively matches vertices and partial routes, to form a final set of the vehicle route.

They do so by setting the decision variables to 1 if two vertices, or vertices and partial routes are

matched. They illustrated this heuristic for seven-vertex indices. Since then, several heuristics were

developed among which some were construction heuristics whereas some contained improvement

phase. Some of the popular heuristics are explained below.

The saving heuristic was first proposed by Clarke & Wright (1964) which yields a good solution,

and is easy to describe and implement. The algorithm starts with an initial route containing the

depot (0) and one other vertex (𝑖) i.e. (0, 𝑖, 0). At each iteration, it merges two routes which are

feasible to merge (one ending with 𝑖 and the other starting with 𝑗 and maximize the saving 𝑠𝑖𝑗 =

 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗), where 𝑐𝑖𝑗 denotes the cost incurred while traveling from vertex 𝑖 to vertex 𝑗. The

algorithm is terminated when no merging of routes is further possible. The output of this algorithm

is the minimum number of vehicles used in the solution. Some enhancements in the original

algorithms were proposed by several researchers afterwards: Nelson et al. (1985) proposed six

methods for implementing the saving heuristic. They tested 55 instances to compare these methods

and they suggested which method to choose for different VRPs. Paessens (1988) proposed the

15

enhancement making use of efficient data structures to speed up the computation requiring reduced

storage. Altinel & O¨ncan (2005) proposed a new enhancement in Clarke-Wright’s algorithm

which differed from the previous enhancements in saving criteria: they considered customer

demands in addition to the distances. Gronalt et al. (2003) proposed four different saving heuristics

for the pickup and delivery problem under time window constraint which were able to find a good

solution in quick time.

Another popular heuristic is Cluster-first, Route-second heuristics. For VRP, this algorithm was

first introduced by Fisher & Jaikumar (1981). It first locates a certain number of seeds and then

clusters the customers to each seed so as to minimize the sum of the distances between seed and

customer, while satisfying the capacity constraint. Then, one vehicle is assigned to each cluster

and the vehicle route is constructed for each cluster. After that, Baker & Sheasby (1999) proposed

better methods to select the seeds. This heuristic follows two steps to achieve the solution, i.e.

Clustering and Routing. This can be advantageous as the method can take benefit from the

algorithmic improvements for any of the Clustering or Routing.

Moreover, one of the most popular heuristics is Two-phase heuristics. As mentioned in (Laporte

G. , 2009), in the first phase of this heuristic, initial routes of the vehicles are constructed using

the construction heuristics, and in the second phase, those routes are improved through

improvement heuristics. The initial VRP solution generated by construction heuristics can be post-

optimized using two broad types of methods: (i) Intra-route improvement (ii) Inter-route

improvement. In Intra-route improvement, each route is improved separately using TSP

algorithms, whereas, in Inter-route improvement, several routes are improved simultaneously. The

algorithms to improve single route can be found in the TSP literature review conducted by Laporte

(2009). In Inter-route, the routes are improved by transfer or swap steps. In transfer step, one or

16

several vertices are removed from one route and relocated to another route, whereas in a swap, the

same number of vertices are swapped between two routes in search for the better overall solution.

According to Toth & Vigo (2014), inter-route heuristics play a significant role in achieving good

results. Wang & Wang (2009) implemented two-phase heuristics for VRP with backhaul.

In general, a heuristic is a problem-dependent approach. They take the advantage of specialty of

the problem. However, they often perform in a greedy way and do not allow deterioration in the

objective function from one iteration to the next one. Therefore, they often get trapped in the local

optimum and cannot achieve the global optimum. To overcome this disadvantage, metaheuristics

are used which provide a better chance to escape from local optimum.

2.2.3 Metaheuristics

Metaheuristics are the problem-independent techniques, which allow deteriorating intermediate

solutions during the search process, providing a better chance to get out of the local optima, which

results in more extensive search for the global optima (Bräysy & Gendreau, 2005). Therefore,

metaheuristics have a better chance to achieve global optimum than heuristics. Because of this

feature, the metaheuristic approach has captured the interest of the researchers over the past

twenty-five years. Most of the metaheuristics work as improvement methods and produce a

relatively high-quality solution even if they are initiated from a low-quality solution.

Metaheuristics can be broadly classified as local search, population search, and learning

mechanism. In the search for the near optimum solution, local search explores the solution by

moving from one solution to another in its neighborhood, whereas population search works with

the entire population of trial solutions rather than just one. The learning mechanism learns from

its experience during the progression of the search process. In recent years, the hybrid methods are

developed which use more than one principle of main metaheuristics, for example, memetic

17

algorithms combine the principles of local search and population search. Li, Tian, & Leung (2009)

hybridized the principle of learning mechanism with local search to solve open vehicle routing

problem. The basic principles of the algorithms and special features of important metaheuristics

are discussed below.

2.2.3.1 Local search

In the search for the best solution, local search explores the solution space by moving from the

current solution to the best one in its neighborhood at each iteration. The performance of the local

search highly depends on two things: (i) the mechanism used to define the neighborhood, and (ii)

the method used to explore the solution space (Laporte G. , 2009). The classical metaheuristics

using the principle of local search are tabu search, simulated annealing, very large neighborhood

search (Ergun, Orlin, & Steele-Feldman, 2006; Kytöjoki, Nuortio, Bräysy, & Gendreau, 2007), an

adaptive large neighborhood search (Ropke & Pisinger, 2006; Mattos & Laporte, 2012; Mancini,

2016), and variable neighborhood search (Polacek, Hartl, Doerner, & Reimann, 2004; Liu, Liu, &

Zhang, 2008; Wei, Zhang, Zhang, & Lim, 2015). Among them, two of the most popular

metaheuristics are tabu search and simulated annealing.

Tabu search is a metaheuristic technique which accepts the non-improving solutions in addition to

the improving solutions. Moreover, it records the recently visited solutions in a list called tabu list,

and prohibits the search returning to those solutions for a certain number of iterations. This

attribute helps the search process to get out of the strict local optimum in search for the global

optimum. For tabu move, one exception is there that the tabu-move is allowed if and only if the

resulting solution is the best solution achieved so far. Tabu search can be found in the work of

(Gendreau, Laporte, Musaraganyi, & Taillard, 1999; Derigs & Reuter, 2009; Silvestrin, Paulo, &

Ritt, 2017).

18

On the other hand, simulated annealing mimics the annealing process of metallurgy, a technique

in which the material is heated at high temperature and slowly cooled down to reduce the defects

in its crystals. Simulated annealing is a probabilistic technique to achieve the approximate global

optimum in the larger solution spaces. The unique feature of this metaheuristics is that at each

iteration it does not directly reject the non-improving solution, but it accepts it with some

probability, allowing an extensive search for the global optimum. The slow cooling in the

annealing process is interpreted as the slow decrease in the probability of accepting the non-

improving solution in the simulated annealing. (Chiang & Russell, 1996; Lin, Ying, Lee, & Hsi,

2007; Yu, A.A.N., Hidayat, & Wibowo, 2017) implemented simulated annealing to solve different

variants of VRP.

2.2.3.2 Population search

Unlike local search where a single solution is tackled at a time, population search works with the

entire population of trial solutions. The best-known example of population search is the Genetic

algorithm (GA). The core of the genetic algorithm is defined by the analogy of the biological

evolution. In each iteration, the fitness of each of the trial solution from the population is calculated

based on their objective function value. Based on this fitness index, two fittest parent solutions are

stochastically selected to generate the new solution (child) which will contain some properties of

both the parents. This is done by crossover. If a mutation occurs in the child solution, it can contain

the property that none of its parents possessed, which helps the algorithm to explore the new part

of the feasible region. Depending on its fitness value, the child will replace the worst solution in

the population and it will be used to construct the next generation. Similarly, the desired number

of children are generated in each iteration, which results in a new and better population of the

solutions. The algorithm is terminated when the stopping criteria are achieved. The stopping

19

criteria can be the level of fitness or a maximum number of generations (Hillier & Lieberman,

2015). The Genetic Algorithm is well documented in the work of (Potter & Bossomaier, 1995;

Ting & Huang, 2005; Mocková & Rybicˇková, 2014; Kurniawan, Sulistiyo, & Wulandari, 2015)

Rochat & Taillard (1995) proposed an excellent method to combine the population search with

local search. In this method, the local search is first applied to the initial solution and the best-

known solutions are recorded. Then, the genetic search is applied on these solutions to create the

new candidate solutions. After that, the local search is restarted from these new candidate

solutions, and the memory is updated to the newly recorded solutions. Recently, Seidgar et al.

(2016) combined simulated annealing and genetic algorithm to solve multi-server vehicle routing

problem with multi-entry. The progress in genetic algorithms for VRP is well documented in a

survey conducted by (Karakatič & Podgorelec, 2015).

2.2.3.3 Learning Mechanism

As the name suggests, these algorithms learn from their experience while progressing. One of the

most popular forms of this algorithm is Ant Colony Optimization (AOC). The ant colony

optimization originally proposed by Dorigo & Gambardella (1997), is a probabilistic technique

which mimics the food seeking behavior of ants from their colony to the source of food. When an

ant finds the source of food, it returns to its colony laying down a trail. If the other ants find this

trail, they start following the trail in search of the food. Since more and more ants are likely to take

the shortest path, the trail on the shortest path becomes denser. Similarly, in this algorithm, more

weight is put on those parts which appear commonly in good solutions. This leads to the

convergence towards a near optimum solution. For instance, to solve the CVRP using AOC, the

researchers have provided two stages. In the first stage, each ant starts its journey from depots and

return to the depot after visiting the customers. In the second stage, the feasible solution is created

20

from ants’ good paths. To improve AOC, several enhancements are proposed by the researchers.

Some of them are to update the trail (Mavrovouniotis & Yang , 2015), to introduce multiple types

of ants (Rizzoli, Montemanni, Lucibello, & Gambardella, 2007), to reduce the solution space

(Baskan, Haldenbilen, Ceylan, & Ceylan, 2009), etc. Wang et al. (2016) simplified the

construction of feasible paths by allowing the ants to go in and out from the depots until it visits

all the customers. This novel approach performs very well compared to conventional AOC.

Another learning algorithm to solve VRP is a Neural Network (NN) algorithm which can be found

in the work of (Torki, Somhon, & Enkawa, 1997; Steinhaus, Shirazi, & Sodhi, 2015).

2.3 Classes of the problem closely related to the thesis problem

One of the variants of Capacitated Vehicle Routing Problem (CVRP) is Cumulative Capacitated

Vehicle Routing Problem (CCVRP) whose objective is to minimize the sum of the “arrival times”

(time taken to arrive) of the vehicles at each customer instead of the total routing time or cost or

distance. This objective is similar to the “primary” objective of this thesis- to minimize the overall

Restoration time. In CCVRP, a set of 𝑘 vehicles, each with same capacity 𝑄 > 0 are available at

a depot and supposed to visit 𝑛 customers, where customer 𝑖 has a demand 𝑞𝑖. If the vehicle is

traveling from a customer i to customer j, then the arrival time at customer j is the sum of the travel

time from customer i to j, and the time taken by the vehicle before reaching to customer i. The

remaining constraints are same as CVRP, except the objective in CCVRP is to minimize the sum

of all 𝑛 arrival times at the customers. Lysgaard & Wøhlk (2014) seems to propose the first exact

algorithm (branch-and-cut-and-piece algorithm) for CCVRP. Before that, some researchers solved

CCVRP with heuristic and metaheuristic approach which includes Memetic algorithms (Ngueveu,

Prins, & Wolfler Calvo, 2010), Local Search (Chen, Dong, & Niu, 2012), Adaptive Large

21

Neighborhood Search (Ribeiro & Laporte, 2012), two-phase heuristic (Ke & Feng, 2013), etc. Ke

& Feng (2013) compared their two-phase heuristics with Memetic algorithms (Ngueveu, Prins, &

Wolfler Calvo, 2010) and Adaptive Large Neighborhood Search (Ribeiro & Laporte, 2012), and

concluded that two-phase heuristics and Adaptive Large Neighborhood Search outperformed

Memetic algorithms for over fifty percent of the tested instances. Recently, Rivera et al. (2016)

worked on one variant of CCVRP called Multi-trip Cumulative Capacitated Vehicle Routing

Problem (MT-CCVRP) in which a vehicle can perform multiple trips to serve the customers. They

proposed two mixed integer linear programs- flow based model and set partitioning model.

Moreover, they also developed an exact method which transforms the MT-CCVRP into a resource

constrained shortest path problem.

In the literature, CCVRP is also known as k-Traveling Repairmen Problem (k-TRP) (where k

represents the number of available vehicles or repairmen) (Fakcharoenphol, Harrelson, & Rao,

2007), and Multi-Vehicle Minimum Latency Problem (Post & Swamy, 2015). These classes, in

turn, are the generalization of Traveling Repairman Problem (TRP) (Dewilde, Cattrysse, Coene,

Spieksma, & Vansteenwegen, 2013) and Minimum Latency Problem (MLP) (Blum, et al., 1994)

respectively, which are also regarded as The Traveling Deliveryman Problem in literature

(Méndez-Díaz, Zabala, & Lucena, 2008).

In networks, latency is a metric used to define the length of the tour from each vertex to other

vertices in the network. Latency at customer i is basically the distance traveled by the vehicle

before visiting customer i. The Minimum Latency Problem (MLP) aims to minimize the sum of

the latencies of all visited customers. Therefore, MLP can be stated as the “customer-centric”

routing problem. Several approximation algorithms are proposed to solve MLP (Goemans &

Kleinberg, 1998; Chaudhuri, Godfrey, Rao, & Talwar, 2003; Arora & Karakostas, 2003; Archer,

22

Levin, & Williamson, 2007). Among them, Chaudhuri et al. (2003) have achieved the current best

approximation ratio of 3.59α, where α is an approximation factor and 3.59α is the ratio of the

latency of the 𝑖th vertex in the best tour found by the algorithm to the latency of the 𝑖th vertex in

the optimum tour. Several exact algorithms are available to solve MLP such as dynamic

programming (Wu, 2000) and branch-and-bound algorithm (Wu, Huang, & Zhan, 2004). The

branch and bound algorithm proposed by Wu et al. (2004) is much more efficient than the dynamic

programming proposed by Wu (2000) earlier. Post & Swamy (2015) proposed linear programming

based approximate algorithms for Multi-Depot Multi-Vehicle Minimum Latency Problem (multi-

depot k-MLP). Using the LP-relaxation technique, they have achieved 7.183α-approximation for

the problem where all the vehicles start their journey from the same depot, and 8.497α-

approximation for the problem where the vehicles are located at different depots.

In addition to the arrival times considered in CCVRP and MLP, in TRP the time spent at each

customer (repair time) may also be considered. The objective of TRP is to minimize the sum of

the wait time of all the customers (vertices). The wait time of customer i is actually the arrival time

of the repairman at customer i. This problem is studied by a large number of researchers (Afrati,

Cosmadakis, Papadimitrious, Papageorgiou, & Papakostantinou, 1986; García, Jodrá, & Tejel,

2002; Salehipour, Sörensen, Goos, & Bräysy, 2011). Fakcharoenphol et al. (2007) proposed k-

TRP for the first time and they proposed 8.497α-approximation algorithm for this problem. Jothi

& Raghavachari (2007) considered both cases where the repair times for all the customers were

same as well as different. Recently, Nucamendi-Guillén et al. (2016), proposed a mixed integer

formulation to solve the k-TRP which produces optimum results in lesser time outperforming the

previously proposed algorithms for k-TRP.

23

Dewilde et al. (2013) studied Traveling Repairman Problem with Profits (TRPP) in which a profit

is obtained when the customer is visited by a repairman (vehicle) for the first time. The objective

is to maximize the sum of the profits minus the sum of the arrival times. In this problem, it is not

mandatory to visit all the customers. This introduces us to the new class of the problems called

Maximum Collection Problem with time-dependent rewards (MCPTDR). Consider a graph

𝐺(𝑉, 𝐸), where 𝑉 = {0, 1, 2, … , 𝑛} denotes the locations to be visited with depot located at vertex

0, 𝐸 represents the set of edges 𝐸 = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑉}. Reward 𝑟 at each node 𝑗 ∈ 𝑉 (except depot

where 𝑟0 = 0) is a decreasing function of time and denoted by 𝑟𝑗(𝑡) = max (𝑏𝑗 − 𝑠𝑗𝑡, 0), where 𝑏𝑗

and 𝑠𝑗 denote an initial reward and penalty rate at location 𝑗, respectively; 𝑡 ≥ 0 is an arrival time

at the location. The time required to collect the reward at location 𝑗 can be denoted by 𝑣𝑗 . The

objective is to select which locations to visit and in what order, to maximize the total reward

collected. Time is spent while traveling between the locations as well as while visiting the

locations. The reward 𝑟𝑗 is collected upon arrival at location 𝑗 and time 𝑣𝑗 is spent before location

𝑗 is departed. Erkut & Zhang (1996) proposed penalty-based-greedy heuristic and branch-and-

bound algorithm for this problem that could solve up to 20 nodes optimally. Ekici & Retharekar

(2013) solved the same reward collection problem with multiple agents (MA-MCPTDR) where all

the agents are initially located at a central depot. The objective is to route multiple agents to

maximize the total surplus (total reward minus total travel cost). The agents start and end their

journey at the depot. They used cluster-first, route-second heuristic to solve this problem in which

they first clustered the locations using well known k-means clustering algorithm and then solved

single agent routing problem for each cluster. They proposed a Modified Penalty-Based Heuristic

in which they modified a loss function of not visiting a node proposed by Erkut & Zhang (1996).

Ekici & Retharekar (2013) also proposed several other heuristics to solve MCPTDR such as:

24

Profit-Based Heuristic in which the profit per unit time is calculated for each node and the node

providing maximum profit per unit time is visited next, Total Loss-Based Heuristic in which they

calculated the loss incurred in reward of other nodes if one node is chosen to visit next and based

on total loss the next node to be visited is selected, and Profit-Loss Based Heuristic in which both

profit and total loss for the remaining nodes are calculated and based on their (profit and total loss)

difference the next node is selected. They have also proposed several improvement ideas to

improve the solution obtained from the initial routing of the agents. Butt & Ryan (1998) also,

proposed an algorithm using set-partitioning formulation and column generation to optimally solve

Multiple Tour Maximum Collection Problem (MTMCP). The difference between MTMCP and

MA-MCPTDR is that the decreasing rate of reward in each problem was different which

significantly affected the routing.

The objective of MCPTDR can be compared with the secondary objective of this thesis- to

minimize the total weighted wait time. The “reward” and “penalty” of MCPTDR can be compared

with the “wait time” and “weight (number of customers associated with each outage location)”,

respectively. In contrast, to “maximize” the total reward in MCPTDR, we need to “minimize” the

total weighted wait time. Additionally, the reward is a “decreasing” function of time, whereas

“wait time” is an increasing function of time. Moreover, in MCPTDR the locations producing zero

rewards may not be visited, but in the thesis’s problem, it is mandatory to visit all the locations.

Additionally, in MCPTDR the reward is collected upon arrival at the location and after that, some

time is spent before leaving the location, therefore, the reward does not account for the time spent

at the location. Whereas in thesis’s problem, the customers have to wait until the outage at their

location is restored. Therefore, the time spent before departing the location is also included in the

wait time of the customers at that location.

25

In addition to the above-mentioned classes of problems, extensive research has been done in the

field of disaster operations management (DOM). The Operations Research and Management

Science (OR/MS) community has evolved significantly in the field of DOM in last few years,

providing better ways for humanitarian aid after disasters. The researchers in this field have

addressed several criteria in their objective- e.g. cost, response time, travel distance, reliability,

security, equity, etc. Among them, response time is closely related to the primary objective of the

thesis’s problem. Campbell et al. (2008) were the first to show the importance of considering the

objective function regarding the urgency of the situation rather than classic cost-minimizing

routing problems. They proposed algorithms to solve two different objectives: one was to

minimize the maximum arrival time and the second one was to minimize the average arrival time.

They solved both objectives separately. Later, Lysgaard & Wøhlk (2014) used this concept to

propose their objective function for CCVRP which was to minimize the sum of the arrival times

at all locations. Several surveys have addressed the development of OR/MS community in DOM,

which provides better ideas and different ranges of the problems and their solutions (Altay &

Green, 2006; Galindo & Batta, 2013; Gutjahr & Nolz, 2016).

In the problem of the thesis, both primary (minimize restoration time) and secondary (minimize

total weighted wait time) objectives are addressed simultaneously. To our knowledge, in the

literature, both objectives are addressed separately in which the primary objective is clearly

addressed in several classes, while the secondary objective is addressed in MCPTDR with the

differences mentioned above. Moreover, in this thesis, a hybrid approach is developed to solve the

problem which uses a combination of heuristics, metaheuristics, and optimum method. The

incorporation of the optimum method in metaheuristic method is to our knowledge, is the first

attempt to solve this type of problem.

26

27

Chapter 3 Methodology

In the problem under investigation, a certain number of Power Line Technicians (PLT) are present

across all the depots governed by a power supply organization. After a disaster, the power supply

organization needs to allocate the PLTs to the depots depending on the number of outages in the

whole region. After that, the power supply organization needs to decide the order in which PLTs

will fix the outages. The primary objective of this problem is to minimize the overall restoration

time of all the customers which is valuable for the organization and to minimize the total weighted

wait time of all the customers which is more valuable for the customers and has some value to the

organization. In this chapter, we will discuss three approaches which are proposed to solve this

problem: (i) Optimum method- MILP model (ii) Multi-Stage Metaheuristic method (iii) Hybrid

method- combining optimum method with metaheuristics and heuristics.

3.1 Optimum Method (Formulation)

In this method, a mathematical model is developed using a Mixed Integer Linear Program (MILP)

to obtain the optimal solution. Erkut & Zhang (1996) developed an MILP model for the maximum

collection problem with time-dependent rewards. Using the concept of their model, a new

objective function and some additional constraints are developed according to the problem under

investigation. The objective function and all the constraints of the model are linear. Assume that

there are 𝑚 depots and 𝐾 total PLT crews available to fix 𝑛 outages.

3.1.1 Sets and Parameters

𝐷 Set of all the depots, {1,2, … , 𝑚}

𝑅 Set of all the outages, {𝑚 + 1, … , 𝑚 + 𝑛}

28

𝑠𝑖 Number of customers (weight) associated with outage 𝑖

𝑣𝑖 Service time to fix an outage 𝑖

𝑑𝑖𝑗 Time to travel between depot/outage 𝑖 and depot/outage 𝑗

𝐾 Total number of PLT crews available

𝛼1 Importance factor of maximum restoration time objective

𝛼2 Importance factor of total weighted wait time objective

3.1.2 Decision Variables

𝑥𝑖𝑗 = {
1, if outage 𝑗 is visited right after outage 𝑖
0, Otherwise

𝑡𝑖 ≥ 0 Arrival time at outage 𝑖

𝑟𝑖 ≥ 0 Restoration time of outage 𝑖

𝑍 ≥ 0 Maximum overall restoration time

3.1.3 Objective function

Minimize: 𝛼1 ∗ 𝑍 + 𝛼2 ∗ ∑ 𝑠𝑖(𝑡𝑖 + 𝑣𝑖) 𝑖 ∈ 𝑅 (1.1)

3.1.4 Constraints

Subject to:

𝑟𝑖 = 𝑡𝑖 + 𝑣𝑖 ; ∀ 𝑖 ∈ 𝑅 (1.2)

𝑡𝑗 ≥ 𝑡𝑖 + 𝑣𝑖 + 𝑑𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗) ; ∀ 𝑖 ∈ (𝑅 ⋃ 𝐷) , 𝑗 ∈ 𝑅 (1.3)

∑ 𝑥𝑖𝑗 = 1 ; ∀ 𝑖 ∈ 𝑅𝑗 ∈(𝑅 ⋃ 𝐷) (1.4)

∑ 𝑥𝑖𝑗 𝑖 ∈(𝑅 ⋃ 𝐷) = ∑ 𝑥𝑗𝑖 ; 𝑖 ∈(𝑅 ⋃ 𝐷) ∀ 𝑗 ∈ (𝑅 ⋃ 𝐷) (1.5)

∑ 𝑥𝑖𝑗 ≤ 𝐾 ; ∀ 𝑖 ∈ 𝐷 𝑗 ∈𝑅 (1.6)

𝑍 ≥ 𝑟𝑖 ; ∀ 𝑖 ∈ 𝑅 (1.7)

29

The objective function (1.1) minimizes the sum of the maximum restoration time and the total

weighted wait time of the entire problem. 𝛼1 and 𝛼2 are weights which show the relative

importance of restoration time and total weighted wait time. Relationship between 𝛼1 and 𝛼2:

(𝛼1 + 𝛼2 = 1); 𝑤ℎ𝑒𝑟𝑒, 0 ≤ 𝛼1, 𝛼2 ≤ 1.

Constraint (1.2) defines the restoration time of an outage 𝑖. If a crew member is going from outage

𝑖 to 𝑗, constraint (1.3) ensures that the arrival time at outage 𝑗 becomes greater than or equal to the

arrival time at outage 𝑖, plus the time spent to fix outage 𝑖, and the time to travel from outage 𝑖 to

𝑗. If a crew member is not going from outage 𝑖 to 𝑗, the big M ensures that the condition becomes

always true eliminating that constraint. Constraint (1.4) ensures that all the outages are visited

exactly once and crew members return to the depot after visiting few outages. Constraint (1.5) is

the flow balance equation, which ensures that a crew member visiting an outage leaves that outage.

Constraint (1.6) ensures that the total number of crews assigned to work does not exceed the

number of crews available. And finally, constraint (1.7) is a min-max constraint which defines the

overall maximum restoration time and is minimized in the objective function.

The objective function described in the proposed MILP model contains two different objectives

which sometimes may contradict each other. This kind of problem is regarded as multi-objective

optimization and multi-criteria optimization in the literature. As mentioned by (Demir, Bektas, &

Laporte, 2014), the kind of objective function proposed in this method needs to be solved with

preference based method. In this method, the preferences of the objectives are sought from the

decision maker. These preferences vary from one decision maker to another. Hence, it is hard to

estimate values of 𝛼1 and 𝛼2. Knowing the preference of the decision maker, the proposed MILP

model can achieve the optimum solution, but the methods to estimate the preferences of the

decision maker is not considered in the scope of this thesis, and needs further investigation.

30

3.2 Multi-Stage Metaheuristic method

The proposed MILP model was solved by Gurobi 6.5.2 solver on a 64-bit personal computer with

an intel(R) Core(TM) i5 processor having 6.00 GB RAM and 3.20 GHz CPU clock rate, and it

was only able to solve maximum of 11 outages in a reasonable amount of time (4612.25 seconds).

For 12 outages, the model was run for 24 hours, but it could not produce the final results. Therefore,

to solve medium (100 outages) and larger (500 outages) instances in less computational time, the

problem is solved using approximation algorithms. For this, an approach using the combination of

heuristic and metaheuristics is developed. The method can be divided mainly into three stages

according to the algorithm used in each stage- (i) Clustering stage (ii) Initial routing stage (iii)

Improvement stage. The idea of dividing this method in above three cases is based on the one

described by (Ekici & Retharekar, 2013). As shown in Figure 2, in the first stage, the targets are

split into K clusters, where K is the available number of PLTs. In the second stage, a single agent

VRP problem is solved for each cluster. In the third stage, several improvement methods are

iteratively implemented to improve the objective functions.

31

3.2.1 Clustering stage

Clustering is simply the task of grouping a set of objects such that the objects in the same group

(cluster) are somewhat more similar to each other than the objects in other clusters. In this thesis,

we cluster the outages based on their proximity to each other. The outages that are nearer to each

other are grouped together to form a cluster. The purpose of this stage is to break the problem

under investigation into smaller sub-problems. We assume one PLT will fix all the outages of one

Figure 2. Overview of the Approximate method

32

cluster and then solve a single-agent problem for each cluster, rather than a multi-agent problem

for all the outages together.

The outages are clustered using the k-means clustering algorithm. k-means clustering is a well-

known algorithm which uses iterative refinement to generate a final solution. The algorithm aims

to partition N objects into k clusters. The objective of this algorithm is to minimize the sum of

distance functions of each point in the cluster to the centre of that cluster (Hartigan & Wong, 1979).

The inputs for the algorithm are the data set and the number of clusters k. In our case, the data set

is the set of locations of the outages and k is the number of PLTs available.

As shown in Figure 3, the algorithm starts with inserting k number of centroids at random positions

within the plane of the outage locations. In the next step, each outage is assigned to its nearest

centroid to form k groups, which are known as clusters. After forming k clusters, the mean position

Figure 3. k-means clustering algorithm

33

of the outages (mean of the coordinates of outages) in each cluster is calculated, and the centroid

of that cluster is relocated at that mean position. As the centroids’ positions change, the distance

of the outages from the centroids will also change. Therefore, the outages are reassigned to their

nearest centroid forming potentially different clusters. The same procedure is repeated until there

is no change in any of the clusters.

At the end of the k-means clustering, we have k clusters (equal to the number of PLTs) as shown

in Figure 4(a), each cluster is then assigned to the nearest depot from its centroid as shown in

Figure 4(b). This identifies how many PLT are required at each depot. In this process, we may

have some depots to which no cluster is assigned.

3.2.2 Initial routing stage

After identifying the clusters which group the outages and assigning one PLT to each cluster, the

initial route by which PLT will visit and restore each outage has to be identified. In this stage, we

(b) Assignment of the clusters to the nearest

depot from their centroid

Figure 4. Assignment of clusters to depots

(a) Final clusters after k-means clustering

34

introduced an Initial Routing Heuristic which works greedily to construct the initial route of each

PLT.

Erkut & Zhang (1996) developed a penalty based heuristic to solve MCPTDR in which the cost-

per-unit time of not visiting a node at any given point in that tour is calculated and the next node

is selected based on its cost. Using the same concept, Ekici & Retharekar (2013) proposed a Total

Loss-Based Heuristic in which the total loss in rewards of other nodes is calculated if we choose

to visit a node, say node j, next. Based on this loss, the node providing minimum total loss is

selected to be visited next and added to the partial tour P. In this thesis, the Total Loss-Based

Heuristic is modified to propose an Initial Routing Heuristic.

The initial routing heuristic is a construction heuristic which constructs the initial route of each

PLT. This heuristic selects the next location to visit based on the total increase in weighted wait

time if we choose to visit that location instead of others at any given point in the tour. To

understand it clearly, let’s consider one instance where 𝑞 is the last outage visited in the partial

tour (yet to be fixed), and we have two more outages to visit- 𝑗 and 𝑘.

The time to fix the outage 𝑗 and 𝑘 are 𝑣𝑗 and 𝑣𝑘 respectively, whereas

the number of customers (weight) associated with the outages j and k

are 𝑠𝑗 and 𝑠𝑘 respectively. The time to travel from any outage 𝑗 to

another outage 𝑘 can be denoted by 𝑑𝑗𝑘. After fixing outage q, if we

visit outage k, the weighted wait time at outage k becomes

𝑠𝑘(𝑑𝑞𝑘 + 𝑣𝑘) and if we visit outage j before k then the weighted wait time at outage k becomes

𝑠𝑘(𝑑𝑞𝑗 + 𝑣𝑗 + 𝑑𝑗𝑘 + 𝑣𝑘). Therefore, after visiting outage 𝑞, the increase in the weighted wait time

to visit outage 𝑗 instead of k will be {𝑠𝑘(𝑑𝑞𝑗 + 𝑣𝑗 + 𝑑𝑗𝑘 + 𝑣𝑘) − 𝑠𝑘(𝑑𝑞𝑘 + 𝑣𝑘)} = 𝑠𝑘(𝑑𝑞𝑗 + 𝑣𝑗 +

Figure 5. Initial

Routing Heuristic

35

𝑑𝑗𝑘 − 𝑑𝑞𝑘). Similarly, the increase in weighted wait time to visit outage k before j is calculated

(𝑠𝑗(𝑑𝑞𝑘 + 𝑣𝑘 + 𝑑𝑘𝑗 − 𝑑𝑞𝑗)), and the outage providing minimum increase in weighted wait time

is selected to be visited after q.

Now, instead of just two outages, suppose we have a set of outages 𝑉 = {𝑗, 𝑘, 𝑙, 𝑚} to visit after 𝑞.

If the outage 𝑗 is visited next, then the total increase in weighted wait time is equal to

∑ 𝑠𝑛(𝑑𝑞𝑗 + 𝑣𝑗 + 𝑑𝑗𝑛 − 𝑑𝑞𝑛)𝑛∈𝑉 . Similarly, the total increase in weighted wait time for visiting

each outage in set 𝑉 is calculated and the outage producing a minimum increase in weighted wait

time is selected to visit after node 𝑞. Suppose outage 𝑚 is selected to be visited next. In the next

stage, outage 𝑚 is removed from set 𝑉 and added to the partial tour after 𝑞, and the next outage is

selected using the same method from outage 𝑚. The heuristic continues until all the outages from

set 𝑉 are visited. Following is the pseudo code for the same algorithm:

ALGORITHM 1: The Initial Routing Heuristic

Input: Partial tour 𝑇 = {0}, currently at outage 𝑞 = 0, set of unvisited outages 𝑉 = {1,2, … , 𝑚},

time = 0, weighted_wait_time = 0

while 𝑉 ≠ ∅ do

 for 𝑗 ∈ 𝑉 do

 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑗 = ∑ 𝑠𝑛(𝑑𝑞𝑗 + 𝑣𝑗 + 𝑑𝑗𝑛 − 𝑑𝑞𝑛)𝑛∈𝑉−{𝑗}

 end for

 𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑗∈𝑉{𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑗 }

 𝑉 = 𝑉 − {𝑙}

 arrival_time = time + 𝑣𝑞 + 𝑑𝑞𝑙

 weighted_wait_time = weighted_wait_time + (arrival_time + 𝑣𝑙) 𝑠𝑙

 𝑇 = 𝑇 ⋃{𝑙}

 𝑞 = 𝑙

 time = arrival_time

end while

36

Suppose that Figure 6(a) is an outcome of the clustering stage, in which three clusters A, B, C

(generated from k-means clustering algorithm) are assigned to a depot D. Then, Figure 6(b) shows

hypothetical routes generated by an initial routing heuristic in each of the clusters. By following

the same method, the routes in all the clusters are constructed using an initial routing heuristic.

These routes are actually the order in which PLTs will fix the outages minimizing the total

weighted wait time of their cluster.

3.2.3 Improvement stage

As mentioned earlier, the initial routing heuristic is applied to construct the initial route in each

cluster. However, the outcome of this initial solution may be far from an optimal solution and

needs to be improved. In this stage, the initial solution generated by the initial routing heuristic is

improved to minimize the overall restoration time as well as total weighted wait time. This is

achieved by two methods- (i) Intra-route improvement (ii) Inter-route improvement

3.2.3.1 Intra-route improvement

The proposed initial routing heuristic works greedily to construct the initial routes in each cluster.

Any greedy algorithm makes the locally optimum choice at each stage with the hope of finding a

Figure 6. Initial tours in clusters

37

solution close to the global optimum at the end. It produces a good solution from which we can

start the improvement. Therefore, before moving any further, the routes generated by the initial

routing heuristic needs to be improved in order to minimize the total weighted wait time of each

cluster. In this section, a method is described to improve these routes using a tabu search

metaheuristic with the combination of sub-tour reversal technique.

The sub-tour reversal is a well-known technique which generates new solutions by reversing the

partial tours of the original solution. Since these new solutions are generated from the original

solution, they are known as the neighbors of the original solution, and a set of all the neighbors is

called the neighborhood of the original solution. Let us consider an example shown in Figure 7, in

which each node denotes an outage and the time to travel between any two nodes is denoted on

the arcs, whereas a pair of (time to fix the outage, and the number of customers associated with

each outage) is denoted at respective nodes. Node 1 is the depot. As shown in Figure 8(a), let’s

assume that 1-2-3-4-1 is an initial solution obtained from the proposed initial routing heuristic as

mentioned earlier. By reversing nodes 2 and 3 in the initial solution, the sub-tour reversal generates

a new solution (1-3-2-4-1) as shown in Figure 8(b). Similarly, by reversing nodes (3, 4) and (2, 3,

4) in the initial solution, the sub-tour reversal generates two other neighbors 1-2-4-3-1 (Figure

8(c)) and 1-4-3-2-1 (Figure 8(d)), respectively. The process is repeated until all the possible partial

Figure 7. Sub-tour reversal example

38

tours are reversed. After calculating the objective value of each neighbor, which is a weighted wait

time in this case, the neighbor with the least objective value is selected. For our example, there are

only three possible neighbors and we can see that 1-3-2-4-1 (Figure 8(b)) has the least objective

value among all the neighbors including the initial solution. In this way, the sub-tour reversal

results in an improved solution from initial solution. This concept of sub-tour reversal is used in

Figure 8. Neighborhood of current solution after sub-tour reversal

39

the tabu search metaheuristic which eventually improves the weighted wait time of each tour in

the problem.

Tabu search is a metaheuristic technique which provides a better chance to escape from a local

optimum and reach the global optimum by accepting non-improving solutions in addition to the

improving solutions. Moreover, it records the recently visited solution and prohibits (hence the

term tabu) the search returning to previously visited solutions for a certain number of iterations.

The recently visited solutions are stored in a list called the tabu list. The size of the tabu list is

defined by the user based on problem characteristics. When the list gets full, the metaheuristic

starts to omit the oldest solution in the list to add a newly visited solution. Tabu search iteratively

moves from one potential solution to an approved solution in its neighborhood until some user

specified stopping criterion is met. Two examples of the stopping criteria are CPU runtime and the

maximum number of consecutive non-improving solutions.

For the problem under investigation, the tabu search metaheuristic initiates from the solution

obtained after the initial routing heuristic. As mentioned in the flowchart (Figure 9), all the

neighbors of the initial solution are obtained using the sub-tour reversal technique and the best one

is selected. If the objective value of that neighbor is the best (minimum) value found so far, it is

immediately updated as the next trial solution. In case if that neighbor is not the best solution found

so far by the metaheuristic, the tabu list is checked. If that neighbor is present in the tabu list, the

next best neighbor not in the tabu list is selected from the neighborhood and it becomes the trial

40

(current) solution for the next iteration and the tabu list is updated. If the selected neighbor’s

objective value is worse than that of the current solution, the counter of consecutive non-improving

solutions is increased by 1, otherwise, the counter is reset to zero. As soon as the tabu list’s size

Figure 9. Tabu search metaheuristic for intra-route improvement

41

reaches to the maximum limit defined by the user, the oldest added solution is omitted from the

list with each addition of a new solution. The same process continues until the counter for

consecutive non-improving solutions becomes greater than that defined by the user, say 𝑁, or the

search process runs out of neighbors which are not in the tabu list. At the end of the process, the

best solution found is selected as the final solution.

This metaheuristic is used as one step in the inter-route metaheuristic discussed in the next section.

3.2.3.2 Inter-route improvement

The metaheuristic mentioned in section 3.2.3.1 improves the total weighted wait time (secondary

objective) by improving the weighted wait time of each cluster. To minimize the overall

(maximum) restoration time of all customers (primary objective), the tabu search metaheuristic is

again used for inter-route improvement, but with a different tactic. In contrast to the intra-route

improvement phase, which works with only one tour (cluster) at a time, the inter-route

improvement works with all the tours simultaneously. After clustering the outages and obtaining

an initial tour (route) of each of the clusters using the initial routing heuristic, all the tours in the

solution are once improved using the tabu search metaheuristic mentioned in section 3.2.3.1. After

that, two improvement steps are implemented iteratively to minimize the maximum restoration

time of all tours: (i) transfer, and (ii) insertion. These two improvement steps follow the idea

proposed by (Ekici & Retharekar, 2013). As the names suggest, the transfer and insertion steps

transfer an outage from one cluster and insert it into another cluster at the most suitable position

according to the desired objective. Both steps are discussed in detail in the following paragraph.

The process of tabu search metaheuristic for inter-route improvement applied to the problem under

investigation is shown in the flowchart (Figure 13). In the beginning of this metaheuristic, the

improved solution obtained after applying tabu-search for intra-route improvement (section

42

3.2.3.1) is set as the current trial solution for inter-route improvement. Initially, this trial solution

is assumed as the best solution and its objective is assumed as the best objective. The counter for

a consecutive non-improving solution is set to zero.

As the objective of this metaheuristic is to minimize (improve) the maximum restoration time of

the entire solution, the restoration times of all the current routes (tours) are calculated, and the tour

having the highest restoration time is selected to transfer (donate) an outage to one of the other

tours (including the tours assigned to other depots). Let’s assume that Figure 10 shows the initial

tours obtained in three clusters (A, B, C) after applying tabu-search for intra-route improvement

(section 3.2.3.1). The resulting restoration times are mentioned near respective tours. Among all

three clusters, as cluster-A has maximum restoration time of 10 hours, it will be selected as a

donor. Say outage-5 is the first outage to be considered for transfer from cluster-A to cluster-B or

cluster-C.

After the selection of the donor, the selected outage is inserted in all the other tours at the most

suitable position such that the weighted wait time of that tour is minimized. This process of

insertion is demonstrated in Figure 11. Outage-5 is transferred from cluster-A (which has the

Figure 10. Selection of donor to transfer

outage

43

longest restoration time) and inserted in all the positions in cluster-B. All potential resulting

insertion into cluster-B are demonstrated in Figure 11. The weighted wait time of cluster-B after

each insertion is indicated above the respective figures. In the example, Figure 11(a) (the insertion

of outage-5 between outage-1 and outage-2) shows the least weighted wait time of cluster-B.

Therefore, that position is selected as the best insertion for outage-5 in cluster-B. Similarly, the

best position for outage-5 in cluster-C can also be obtained.

Figure 11. The transferred outage from the donor is inserted at all the places in another cluster

44

After inserting the outage at the best position in all clusters (tours), the cluster producing the least

overall restoration time of the solution is selected as the receiver. The resultant solution is regarded

as one neighbor of the current solution. As exemplified in Figure 12(b) and Figure 12(c), if outage-

5 is transferred to cluster-B and cluster-C, the resultant maximum restoration time becomes 9 hours

and 12 hours for each solution, respectively. Hence, cluster-B is selected as the receiver of outage-

5. These transfer and insertion steps are tested for all the outages in the donor (cluster-A), and the

transfer- insertion resulting in lowest overall restoration time is selected as the best neighbor of

the current solution. The respective resultant solutions obtained after transferring each of the

outages of the donor define the neighborhood of the current solution. As in the current solution

Figure 12. Transfer of an outage from one cluster to others

45

(Figure 12(a)), the donor (cluster-A) has five outages, the current solution will have five neighbors

in the neighborhood.

The weighted wait time of each tour of the selected best neighbor will then be improved using the

intra-route tabu search metaheuristic mentioned in section 3.2.3.1.

One important thing to notice here is the intra-route tabu search does not consider the restoration

time at all. Therefore, even if it improves the weighted wait time, it does not guarantee that the

overall restoration time will also improve. It may rather increase the overall restoration time in

some cases. But the primary objective (overall restoration time) will be addressed in the transfer

step as well as the selection process of the neighbors, which will alleviate the potential compromise

made by the metaheuristic for intra-route improvement.

If the overall restoration time of the selected neighbor is the best found so far, it immediately

becomes the trial (current) solution for the next iteration, the counter for consecutive non-

improving solutions is reset to zero, and the tabu list is updated.

The purpose of the tabu list is to restrict the transfer of an outage back to the same tour from which

it was transferred a few iterations ago (tabu move). The pair of indices of the donor and the

transferred outage is stored in the tabu list, which is counted as one tabu move. If the candidate

neighbor is not the best one found so far, the indices of the receiver tour and the received outage

are checked with the tabu moves in the tabu list. If that move is restricted by the tabu list, the next

best neighbor having minimum overall restoration time whose move is not in the tabu list is

selected. The candidate neighbor becomes a trial (current) solution for the next iteration and the

tabu list is updated. If the selected neighbor has a better value of overall restoration time than the

current solution, the counter for a consecutive non-improving solution is reset to zero. Otherwise,

46

the counter is increased by one. The entire process of transfer, insertion, and selection of neighbor

is repeated until the counter exceeds the predefined number of consecutive non-improving

solutions (𝑁), or the search process runs out of neighbors whose transfer move is not restricted by

the tabu list. The best solution found by the metaheuristic so far is selected as the final solution of

the problem. Figure 13 shows the entire method for inter-route improvement mentioned in this

section.

Figure 13. Tabu search metaheuristic for inter-route improvement

47

3.3 Hybrid method

This method combines the metaheuristic mentioned in section 3.2 with the optimum method

(Linear Programming (LP)) for sections of the multi-stage metaheuristic approach to improve the

solution. In this method, we use Integer Linear Programming (ILP) to obtain optimum clusters for

the problem as well as to find the optimum route in each cluster minimizing the total weighted

wait time. The method follows the same three stages as mentioned in section 3.2: (i) clustering

stage (ii) Initial routing stage (iii) Improvement stage, but finds an optimum solution at some

stages. Because of the optimum solutions achieved in some stages, this method could potentially

provide a better chance to reach to a global optimum for the final solution.

3.3.1 Clustering stage alternative

The hybrid method starts with finding the initial clusters using the k-means clustering algorithm

as mentioned in section 3.2.1. Since the k-means clustering algorithm does not consider the

restoration time or weighted wait time, and only considers the closeness of the outages, it may

create an initial solution which is far from optimality, requiring much more computation to

improve by heuristic and metaheuristic methods. It may also affect the quality of the final result.

To address this shortcoming, a mathematical model is developed using Integer Linear

Programming (ILP) with an objective of allocating a relatively equal number of outages to each

cluster. This ILP model initiates from the final centroids obtained after k-means clustering. Let us

consider an instance in which we need to cluster 𝑛 outages into 𝑚 clusters.

3.3.1.1 Sets and Parameters

centroids Set of the centroids of each cluster, {1,2, … , 𝑚}

outages Set of the outages, {1,2, … 𝑛}

48

𝑑𝑖𝑗 Distance between centroid 𝑖 and outage 𝑗

3.3.1.2 Decision variable

𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑜𝑢𝑡𝑎𝑔𝑒 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.3.1.3 Objective function

Minimize: ∑ ∑ 𝑑𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 𝑥𝑖𝑗 (2.1)

3.3.1.4 Constraints

Subjected to:

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 − ∑ 𝑥𝑘𝑗

𝑛
𝑗=1 ≤ 1; ∀ 𝑖 ≠ 𝑘; ∀ 𝑖, 𝑘 ∈ centroids (2.2)

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 − ∑ 𝑥𝑘𝑗

𝑛
𝑗=1 ≥ (−1); ∀ 𝑖 ≠ 𝑘; ∀ 𝑖, 𝑘 ∈ centroids (2.3)

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 1; ∀ 𝑗 ∈ outages (2.4)

Objective function (2.1) minimizes the total distance between the outages and the centroid of the

cluster to which they are assigned. Constraints (2.2) and (2.3) ensures that the difference between

a number of outages in any two clusters is not more than one, which in turn distributes an almost

equal number of outages to each cluster. Constraint (2.4) ensures that each outage is assigned to

exactly one cluster.

49

This ILP model is iteratively used to obtain optimum clusters (see Figure 14). After each iteration,

the centroids are relocated to the mean position of the current outages in their respective clusters.

These positions are selected as initial positions of the centroids for the next iteration. The process

is repeated until the optimum combination of clusters is achieved. By doing so, we may add those

outages to the cluster, which is relatively far from the rest of the outages in that cluster, but it will

be taken care of in upcoming stages.

By following the same procedure of assignment of clusters to depots mentioned in section 3.2.1,

at the end of this stage, each cluster is assigned to its nearest depot from its centroid and one PLT

is assigned to each cluster.

Figure 14. Hybrid clustering

50

3.3.2 Initial routing alternative

After obtaining optimum clusters from the previous stage, in this stage, an optimum route in each

cluster is obtained using the MILP model, in contrast to finding good initial routes using the initial

routing heuristic mentioned section 3.2.2. For this purpose, the mathematical model mentioned in

section 3.1 can be modified to minimize only the total weighted wait time. As this model is used

to solve only one cluster at a time, it has only one depot and a single crew member. All the

constraints, as well as the objective function of this model, are linear.

Assume that we have a cluster having 𝑛 number of outages and we want to find the optimum route

of a PLT who will start his journey from the depot to which the cluster is assigned, visit all the

outages in the cluster, and finally end his journey at the same depot.

3.3.2.1 Sets and Parameters

𝐷 Depot

𝑅 Set of all the outages, {1, … , 𝑛}

𝑠𝑖 Number of customers (weight) associated with outage 𝑖

𝑣𝑖 Service time to fix an outage 𝑖

𝑑𝑖𝑗 Time to travel between outage 𝑖 to 𝑗

3.3.2.2 Decision Variables

𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑜𝑢𝑡𝑎𝑔𝑒 𝑗 𝑖𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑟𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑜𝑢𝑡𝑎𝑔𝑒 𝑖

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑡𝑖 ≥ 0 Arrival time at outage 𝑖

3.3.2.3 Objective function

Minimize: ∑ 𝑠𝑖(𝑡𝑖 + 𝑣𝑖) 𝑖 ∈ 𝑅 (3.1)

51

3.3.2.4 Constraints

Subject to:

𝑡𝑗 ≥ 𝑡𝑖 + 𝑣𝑖 + 𝑑𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗) ; ∀ 𝑖 ∈ (𝑅 ⋃ 𝐷) , 𝑗 ∈ 𝑅 (3.2)

∑ 𝑥𝑖𝑗 = 1 ; ∀ 𝑖 ∈ (𝑅 ⋃ 𝐷)𝑗 ∈(𝑅 ⋃ 𝐷) (3.3)

∑ 𝑥𝑖𝑗 𝑖 ∈(𝑅 ⋃ 𝐷) = ∑ 𝑥𝑗𝑖 ; 𝑖 ∈(𝑅 ⋃ 𝐷) ∀ 𝑗 ∈ (𝑅 ⋃ 𝐷) (3.4)

The objective function (3.1) minimizes the total weighted wait time of the cluster. If outage 𝑗 is

visited right after outage 𝑖, constraint (3.2) ensures that the arrival time at outage 𝑗 becomes greater

than or equal to the sum of the arrival time at outage 𝑖, time spent to fix the outage 𝑖, and the time

to travel from outage 𝑖 to 𝑗. Constraint (3.3) ensures that all the outages are visited exactly once

and a crew member can only return to the depot after visiting all the outages. In contrast to the

MILP model proposed in section 3.1, in this case, as the crew member has to visit all the outages

of his cluster before returning to the depot, the range of 𝑖 is (𝑅⋃𝐷) instead of (𝑅). And finally,

constraint (3.4) ensures that a crew member entering a location leaves that location.

At the end of this stage, we will have tours having optimum weighted wait times. But as mentioned

in section 1.1, because of the contradictory behavior of total weighted wait time and restoration

time in some cases, it does not guarantee that the clusters will always have the optimum restoration

times as well. Therefore, the maximum restoration time will be improved in the improvement

stage.

3.3.3 Improvement stage alternative

In this stage, the same tabu search metaheuristic for inter-route improvement is used as mentioned

in section 3.2.3.2. But instead of using tabu search metaheuristic for intra-route improvement

(section 3.2.3.1), the MILP model, mentioned in section 3.3.2, is used in each iteration to find an

52

optimal tour of the clusters. The same transfer and insertion steps are used as mentioned in section

3.2.3.2. The transfer and insertion steps will alleviate the compromise made in restoration time by

MILP model.

3.4 Summary of the proposed methodologies

Multi-Stage

 Metaheuristic
Hybrid OptimumMethodology

k -means clustering +

 ILP
Clustering k -means clustering

Intra-route

improvement

Tabu search +

Subtour reversal
MILP

Inter-route

improvement

Tabu search +

Transfer-Insertion

Tabu search +

Transfer-Insertion

MILP

MILPInitial routing Initial Routing Heuristic

Table 1. Summary of the proposed methodologies

53

Chapter 4 Results

In chapter 3, the MILP models and heuristic, as well as metaheuristic algorithms, are proposed to

solve the problem. In this chapter, the simulation process used to generate the data and the results

obtained from several instances are discussed. The simulation process is written in Python

language and the MILP/ILP models are implemented in GLPK 0.2.18 and solved by GUROBI

6.5.2. The heuristic and metaheuristics are written and conducted in Python 2.7.10. All the

software are operated on a 64-bit personal computer with an intel(R) Core(TM) i5 processor

having 6.00 GB RAM and 3.20 GHz CPU clock rate.

4.1 Data Simulation

The simulation process requires the number of depots, number of outages and the number of

available PLTs as input. It is assumed that the depots are responsible for maintaining the power

grids situated within the radius of 25 kilometers from their position. Therefore, the maximum

length and maximum width of the plane are assumed to be (25 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑜𝑡𝑠). The square

plane is generated in the first quadrant, from the origin (0, 0) having sides equal to the maximum

length. In the real-life scenario, when the storm passes from one area, it creates a more disastrous

effect in the areas nearer to its centre compared to those far from its centre. Therefore, a centre of

the storm is randomly selected within that plane and the number of overall outages defined by the

user is distributed such that the depots nearer to the centre of the storm have more number of

outages than those situated far from the centre. The distributed number of outages to each depot

are randomly generated within the radius of 25 kilometers from their respective depots.

The time to fix each of the outages and the number of customers associated with each outage are

generated based on the historical data provided by a power company (name withheld). Based on

54

the data, the time to fix an outage is kept within the range of 1 hour to 3 hours. To generate the

number of customers associated with each outage, the probabilistic sampling technique is used.

After thoroughly observing the data, the number of customers are divided into the ranges of (5 to

50), (51 to 100), (101 to 250), (251 to 500), (501 to 1000) and (1000 to 2000). The probability of

the number of customers falling in each range is estimated from the power company’s data. Based

on those probabilities, one range is randomly allocated to each outage. Then a random integer

number within the allocated range is generated to indicate the number of customers associated with

the outage.

For simplicity reasons, the travel distance is considered as straight-line Euclidian distance. Given

the coordinates of any two points (𝑥, 𝑦) and (𝑎, 𝑏), the Euclidean distance between them can be

calculated using equation √(𝑥2 − 𝑎2) + (𝑦2 − 𝑏2). The average speed of the vehicle is estimated

to be 50 kilometers per hour considering the traffic restrictions and the road conditions. Therefore,

the travel time between any two points will be the distance between them divided by the speed of

the vehicle. Moreover, it is assumed that it is always possible to travel between all the points.

Therefore, there will not be any infeasible tours in the problem.

4.2 Selection of parameters for tabu search metaheuristic

The parameters used for any metaheuristic may influence its performance, which reflects in the

solution and computational time. Therefore, before comparing all the methods mentioned in

chapter 3, it is important to determine a good set of parameters for the metaheuristics for the

different sizes of the problem. There are two parameters needed to be determined for the tabu

search metaheuristic used in the methodology: (i) the number of consecutive non-improving

iterations, and (ii) the length of tabu-list. Usually, the tabu search metaheuristic having a higher

55

number of non-improving solutions has a better chance of finding good solutions but needs more

computational time.

In this thesis, the parameters are determined for different sizes of the problem. The problems are

arbitrarily classified in three sizes, i.e. small, medium, and large. For each of the sizes, problems

of two sub-sizes are tested as following: for small size (2 depots, 7 outages, 2 PLTs) and (3 depots,

10 outages, 3 PLTs), for medium size (5 depots, 50 outages, 10 PLTs) and (10 depots, 100 outages,

40 PLTs), for large size (31 depots, 500 outages, 140 PLTs) and (31 depots, 600 outages, 140

PLTs). The proportion of depots, outages, and PLTs for large instances are determined from the

power company’s data. For each of the sub-sizes, five sets of data are generated, and the conclusion

is made based on the average value of the primary objective function (maximum restoration time)

of the five sets.

4.2.1 Selection of maximum number of consecutive non-improving solutions

To select the maximum number of consecutive non-improving solutions, a certain length of tabu-

list was primarily fixed for each size of the problem, and the problem was solved for a different

number of consecutive non-improving solutions. The tabu-list length for the small, medium and

large size of problems is initially fixed at 5, 7 and 10 respectively, which will be tested later.

56

4.2.1.1 Multi-Stage Metaheuristic method

As shown in Table 2, for the smaller instances, the length of tabu-list was fixed at 5, and the

problems were solved for (5, 7, 10, 15) consecutive non-improving solutions. Similarly, for

medium and large sized problems, the length of tabu-list was fixed at 7 and 10 respectively, and

5 7 10 15 5 7 10 15 5 7 10 15

1 7.27 7.27 7.27 7.27 1074.2 1074.2 1074.2 1074.2 0.07 0.09 0.14 0.29

2 7.47 7.47 7.47 7.47 1146.8 1146.8 1146.8 1146.8 0.06 0.09 0.16 0.42

3 10.49 10.26 10.26 10.26 1867.3 1850.0 1850.0 1850.0 0.06 0.25 0.33 0.69

4 8.37 8.37 8.37 8.37 1858.8 1858.8 1858.8 1858.8 0.11 0.16 0.22 0.55

5 7.67 7.67 7.67 7.67 1873.5 1873.5 1873.5 1873.5 0.06 0.10 0.14 0.39

Avg. 8.25 8.21 8.21 8.21 1564.14 1560.69 1560.69 1560.69 0.07 0.14 0.20 0.47

Std. Dev. 1.32 1.22 1.22 1.22 414.94 411.84 411.84 411.84 0.02 0.07 0.08 0.16

5 7 10 15 5 7 10 15 5 7 10 15

1 8.65 8.65 8.65 8.65 2040.1 2040.1 2040.1 2040.1 0.14 0.21 0.32 0.51

2 9.88 9.52 9.52 9.52 2616.2 2637.1 2637.1 2637.1 0.07 0.27 0.38 0.67

3 8.78 8.78 8.70 8.70 2463.1 2463.1 2524.4 2524.4 0.17 0.22 0.47 0.77

4 8.10 8.10 8.10 8.10 1863.1 1863.1 1863.1 1863.1 0.12 0.18 0.28 0.49

5 8.14 7.75 7.75 7.75 1925.3 1647.5 1647.5 1647.5 0.20 0.30 0.45 0.69

Avg. 8.71 8.56 8.55 8.55 2181.6 2130.2 2142.4 2142.4 0.14 0.23 0.38 0.63

Std. Dev. 0.72 0.68 0.68 0.68 337.37 412.41 425.48 425.48 0.05 0.05 0.08 0.12

10 15 20 30 10 15 20 30 10 15 20 30

1 11.39 11.39 11.39 11.39 15057.9 15057.9 15057.9 15057.9 2.26 3.72 4.67 7.31

2 11.62 11.47 11.47 11.47 22448.3 23884.9 23884.9 23884.9 2.39 6.36 7.67 11.52

3 10.58 10.58 10.58 10.58 22309.4 22309.4 22309.4 22309.4 3.71 4.97 6.68 11.11

4 11.59 11.59 11.38 11.38 45487.1 45487.1 48683.4 48683.4 4.51 6.63 12.52 18.27

5 11.96 11.96 11.96 11.96 28863.2 28863.2 28863.2 28863.2 4.49 6.42 9.02 15.42

Avg. 11.43 11.40 11.36 11.36 26833.2 27120.5 27759.8 27759.8 3.47 5.62 8.11 12.73

Std. Dev. 0.51 0.50 0.49 0.49 11515.60 11396.15 12699.17 12699.17 1.09 1.25 2.93 4.22

10 15 20 25 10 15 20 25 10 15 20 25

1 6.89 6.85 6.85 6.85 46822.4 48836.7 48836.7 48836.7 20.32 30.66 38.11 36.65

2 7.08 7.08 7.08 7.08 59636.1 59688.8 59688.8 59688.8 17.85 22.55 26.43 25.56

3 7.09 7.09 7.09 7.09 38054.2 38054.2 38054.2 38054.2 15.02 16.09 19.20 17.83

4 6.33 6.33 6.33 6.33 44713.4 44713.4 44713.4 44724.4 15.25 17.97 23.37 18.92

5 6.71 6.71 6.71 6.71 51699.0 51699.0 51699.0 51699.0 15.11 15.80 19.01 17.66

Avg. 6.82 6.81 6.81 6.81 48185.01 48598.43 48598.43 48600.64 16.71 20.61 25.23 23.32

Std. Dev. 0.31 0.31 0.31 0.31 8062.53 8045.82 8045.82 8044.49 2.34 6.23 7.84 8.13

10 20 30 100 10 20 30 100 10 20 30 100

1 10.86 10.76 10.76 10.8 270029.8 271702.0 271702.0 271702.0 817.4 1017.4 1085.9 2811.9

2 10.18 10.04 10.04 10.0 257046.0 255289.2 255289.2 255289.2 790.0 1147.8 1233.3 3144.7

3 11.01 10.56 10.56 10.6 280777.0 290805.4 290805.4 290805.4 545.3 1187.9 1295.7 3831.3

4 10.36 10.30 10.30 10.3 253448.7 253261.5 253261.5 253261.5 529.1 633.3 662.7 1707.0

5 10.15 10.15 10.15 10.2 231668.5 231668.5 231668.5 231668.5 670.7 711.5 735.8 1841.4

Avg. 10.51 10.36 10.36 10.36 258594.0 260545.3 260545.3 260545.3 670.5 939.6 1002.7 2667.2

Std. Dev. 0.40 0.30 0.30 0.30 18552.07 22105.98 22105.98 22105.98 133.73 253.42 288.47 895.53

10 20 30 100 10 20 30 100 10 20 30 100

1 12.51 12.46 12.46 12.46 378410.8 378682.9 378682.9 378682.9 1613.9 1828.3 1956.5 5412.3

2 12.38 11.90 11.90 11.90 347023.7 347875.8 347875.8 347875.8 1535.8 3033.4 3153.9 8565.9

3 12.78 12.78 12.65 12.62 333099.1 333099.1 341126.8 340369.1 540.5 657.1 994.4 4713.4

4 11.99 11.80 11.74 11.74 339281.4 333766.9 332132.9 333836.2 1466.8 2610.1 3415.3 9726.7

5 12.08 11.83 11.45 11.45 306807.6 312742.3 335916.6 335916.6 1028.9 1543.7 2705.3 7233.6

Avg. 12.35 12.15 12.04 12.04 340924.5 341233.4 347147.0 347336.1 1237.2 1934.5 2445.1 7130.4

Std. Dev. 0.32 0.44 0.50 0.49 25837.59 24393.89 18593.23 18331.04 450.71 930.03 981.67 2097.95

5

Tabu list

length

3

Clusters

10

Outages

3

Depots

10

Tabu list

length

140

PLT

600

Outages

31

Depots

10

Tabu list

length

140

PLT

500

Outages

31

Depots

7

Tabu list

length

40

PLT

100

Outages

10

Depots

CPU Runtime (second)Final Weighted wait time (hour)Final restoration time (hour)

Final restoration time (hour) Final Weighted wait time (hour) CPU Runtime (second)

Final Weighted wait time (hour) CPU Runtime (second)

SMALL SIZE

MEDIUM SIZE

LARGE SIZE

7

Tabu list

length

11

PLT

50

Outages

5

Depots

Number of consecutive non-improving solutions

5

Tabu list

length

2

Clusters

7

Outages

2

Depots

Number of concecutive non-improving solutions

Number of consecutive non-improving solutions

Number of concecutive non-improving solutions

Number of consecutive non-improving solutions

Number of concecutive non-improving solutions

Final restoration time (hour)

Table 2. Selection of the number of consecutive non-improving solutions for Metaheuristic method

57

the problems were solved for (10, 15, 20, 30) and (10, 20, 30, 100) consecutive non-improving

solutions respectively. By observing the average value of the maximum restoration time generated

by all five instances of each size, we concluded that the proposed multi-stage metaheuristic method

will produce good solutions when a minimum of 10 consecutive non-improving solutions are

allowed for small instances, whereas, for medium and large instances it will produce good

solutions when minimum 20 and 30 consecutive non-improving solutions are allowed,

respectively.

4.2.1.2 Hybrid method

The Hybrid method is the combination of metaheuristic and MILP. Therefore, considering the NP-

hardness of the problem and the capacity of the computer, it can only solve small and medium size

instances in a reasonable amount of time. By following the same technique mentioned in section

4.2.1.1, we will determine the maximum number of the consecutive non-improving solution

according to the size of the problem.

As shown in Table 3, for small instances, the length of the tabu-list was fixed at 5, whereas for the

medium sized instances it was fixed at 7. The small and medium sized instances were solved for

(3, 5, 7, 10) and (5, 10, 15, 20) number of consecutive non-improving solutions respectively. By

observing the average value of the maximum restoration time generated by all five instances of

each size, we can conclude that for small sized problems, the proposed hybrid method will produce

a good solution when we allow 7 consecutive non-improving solutions, whereas for medium size

58

instances the method will produce a good solution when we allow 15 consecutive non-improving

solutions.

After determining the number of consecutive non-improving solutions that should be allowed for

each size, we can determine the most suitable length of tabu-list for each size.

4.2.2 Selection of the length of the tabu-list

To determine the most suitable length of tabu-list, we will fix the number of consecutive non-

improving solutions obtained from the method mentioned in section 4.2.1, and test the problems

for different lengths of the tabu-list.

3 5 7 10 3 5 7 10 3 5 7 10

1 7.48 7.48 7.26 7.26 1085.1 1085.1 1060.6 1060.6 0.47 0.93 2.09 2.73

2 7.47 7.47 7.47 7.47 1146.8 1146.8 1146.8 1146.8 0.39 0.74 1.00 1.55

3 10.31 10.31 10.26 10.26 1852.7 1852.7 1850.0 1850.0 0.92 1.12 2.26 3.03

4 8.99 8.37 8.37 8.37 1858.3 1858.8 1858.8 1858.8 0.37 1.36 1.67 2.08

5 7.67 7.67 7.67 7.67 1873.5 1873.5 1873.5 1873.5 0.54 0.71 1.05 1.23

Avg. 8.38 8.26 8.21 8.21 1563.3 1563.4 1558.0 1558.0 0.54 0.97 1.61 2.12

Std. Dev. 1.25 1.20 1.22 1.22 409.0 409.1 415.9 415.9 0.22 0.27 0.58 0.76

3 5 7 10 3 5 7 10 3 5 7 10

1 8.93 8.65 8.65 8.65 1925.4 2040.1 2040.1 2040.1 0.90 2.03 2.41 2.92

2 9.97 9.97 9.52 9.52 2585.6 2585.6 2665.9 2665.9 0.89 1.40 3.94 4.07

3 8.86 8.86 8.40 8.40 2335.8 2335.8 2502.6 2502.6 0.86 1.65 3.01 3.79

4 8.36 8.10 8.10 8.10 2012.0 1863.1 1863.1 1863.1 0.63 1.57 2.02 2.83

5 7.57 7.57 7.57 7.57 1541.4 1541.4 1541.4 1541.4 0.84 1.12 1.69 2.14

Avg. 8.74 8.63 8.45 8.45 2080.0 2073.2 2122.6 2122.6 0.83 1.56 2.62 3.15

Std. Dev. 0.88 0.90 0.72 0.72 399.9 406.0 461.4 461.4 0.11 0.33 0.89 0.78

5 10 15 20 5 10 15 20 5 10 15 20

1 11.28 11.17 11.17 11.17 15544.8 15999.9 15999.9 15999.9 8.9 18.3 27.0 26.4

2 11.45 11.45 11.00 11.00 22162.7 22162.7 22851.6 22851.6 15.5 19.1 91.5 92.3

3 10.14 10.14 10.14 10.14 19610.7 19610.7 19610.7 19610.7 14.8 18.2 24.2 29.6

4 11.16 11.16 11.16 11.16 46903.3 46903.3 46903.3 46903.3 19.6 19.9 24.5 27.2

5 12.01 11.94 11.94 11.94 30151.5 30316.7 30316.7 30316.7 27.7 42.3 47.1 50.4

Avg. 11.21 11.17 11.08 11.08 26874.6 26998.6 27136.4 27136.4 17.31 23.56 42.88 45.19

Std. Dev. 0.68 0.66 0.64 0.64 12401.8 12310.0 12246.0 12246.0 6.95 10.52 28.81 28.15

5 10 15 20 5 10 15 20 5 10 15 20

1 6.86 6.64 6.64 6.64 44770.9 43530.3 43530.3 43530.3 108.10 141.23 152.85 169.84

2 7.02 7.02 7.02 7.02 57445.8 57445.8 57445.8 57445.8 112.62 111.81 115.46 124.07

3 7.02 7.02 7.02 7.02 35310.4 35310.4 35310.4 35310.4 108.65 111.15 122.51 126.39

4 6.20 6.20 6.20 6.20 45350.1 45350.1 45350.1 45350.1 137.29 149.37 144.53 161.83

5 6.68 6.68 6.68 6.68 51282.5 51282.5 51282.5 51282.5 69.76 73.33 73.41 86.42

Avg. 6.78 6.72 6.72 6.72 45719.3 45409.2 45409.2 45409.2 116.7 128.4 133.8 130.6

Std. Dev. 0.34 0.34 0.34 0.34 8240.9 8336.6 8336.6 8336.6 24.2 30.0 31.1 33.5

CPU Runtime (second)Final Weighted wait timeFinal restoration time

Final restoration time Final Weighted wait time CPU Runtime (second)

Number of consecutive non-improving solutions

Number of consecutive non-improving solutions

Number of consecutive non-improving solutions

10

Depots

40

PLT

100

Outages

11

PLT

50

Outages

5

Depots

7

Tabu list

length

Number of consecutive non-improving solutions

SMALL SIZE

MEDIUM SIZE

5

Tabu list

length

2

PLT

7

Outages

2

Depots

5

Tabu list

length

3

PLT

10

Outages

3

Depots

7

Tabu list

length

Table 3. Selection of the number of consecutive non-improving solutions for Hybrid method

59

4.2.2.1 Multi-Stage Metaheuristic method

As mentioned in section 4.2.1.1, the suitable number of consecutive non-improving solutions for

small, medium and large size problems are 10, 20 and 30 respectively. Therefore, we will fix these

numbers of non-improving solutions and solve the problems for different lengths of tabu-list. As

shown in Table 4, the small sized problems were solved for the tabu-list’s length of (2, 3, 5, 7),

2 3 5 7 2 3 5 7 2 3 5 7

1 7.27 7.26 7.27 7.27 1074.2 1060.6 1074.2 1074.2 0.14 0.35 0.15 0.13

2 7.47 7.47 7.47 7.47 1146.8 1146.8 1146.8 1146.8 0.17 0.17 0.15 0.15

3 10.49 10.49 10.26 10.49 1867.3 1867.3 1850.0 1867.3 0.13 0.16 0.39 0.11

4 8.82 8.37 8.37 8.37 1925.8 1858.8 1858.8 1858.8 0.19 0.24 0.25 0.15

5 7.67 7.67 7.67 7.67 1873.5 1873.5 1873.5 1873.5 0.13 0.14 0.14 0.13

Avg. 8.35 8.25 8.21 8.25 1577.5 1561.4 1560.7 1564.1 0.15 0.21 0.21 0.13

Std. Dev. 1.34 1.32 1.22 1.32 427.7 419.0 411.8 414.9 0.03 0.09 0.10 0.02

2 3 5 7 2 3 5 7 2 3 5 7

1 8.93 8.65 8.65 8.65 1925.4 2040.1 2040.1 2040.1 0.19 0.26 0.28 0.28

2 9.80 9.80 9.52 9.52 2689.8 2590.0 2637.1 2637.1 0.27 0.33 0.38 0.25

3 8.78 8.78 8.70 8.78 2463.1 2463.1 2524.4 2463.1 0.29 0.28 0.52 0.32

4 8.10 8.10 8.10 8.10 1863.1 1863.1 1863.1 1863.1 0.24 0.25 0.28 0.25

5 8.52 7.76 7.75 7.86 1665.2 1796.2 1647.5 1764.0 0.24 0.48 0.42 0.42

Avg. 8.83 8.62 8.55 8.58 2121.3 2150.5 2142.4 2153.5 0.25 0.32 0.37 0.30

Std. Dev. 0.63 0.78 0.68 0.65 433.9 357.5 425.5 380.4 0.04 0.10 0.10 0.07

3 5 7 10 3 5 7 10 3 5 7 10

1 11.39 11.39 11.39 11.39 15057.9 15057.9 15057.9 15088.5 4.2 4.4 4.4 4.6

2 11.43 11.47 11.47 11.47 21963.1 23844.9 23884.9 23904.3 10.1 6.2 7.1 7.0

3 10.32 10.32 10.58 10.61 20388.1 20017.6 22309.4 20516.6 6.8 8.7 6.3 5.8

4 11.51 11.59 11.38 11.34 49387.0 45487.1 48683.4 46667.8 8.1 7.7 11.5 18.4

5 11.95 11.96 11.96 11.96 30836.3 28863.2 28863.2 28863.2 14.1 8.9 9.1 9.6

Avg. 11.32 11.34 11.36 11.35 27526.5 26654.1 27759.8 27008.1 8.68 7.19 7.68 9.08

Std. Dev. 0.60 0.61 0.49 0.48 13474.1 11683.0 12699.2 12080.9 3.74 1.89 2.71 5.55

3 5 7 10 3 5 7 10 3 5 7 10

1 6.86 6.85 6.85 6.85 49013.2 48836.7 48836.7 49352.1 30.37 39.62 39.00 40.41

2 7.08 7.08 7.08 7.08 59688.8 59688.8 59688.8 61166.9 29.63 27.71 27.04 26.53

3 7.09 7.09 7.09 7.09 38054.2 38054.2 38054.2 38022.0 19.59 19.88 19.73 21.32

4 6.33 6.33 6.33 6.37 44715.2 44713.4 44713.4 44724.4 24.90 23.76 24.44 16.54

5 6.71 6.71 6.71 6.71 52557.0 51699.0 51699.0 51699.0 25.57 19.65 19.67 20.42

Avg. 6.81 6.81 6.81 6.82 48805.7 48598.4 48598.4 48992.9 26.01 26.13 25.98 25.05

Std. Dev. 0.31 0.31 0.31 0.30 8137.6 8045.8 8045.8 8576.7 4.32 8.23 7.93 9.30

5 10 15 25 5 10 15 25 5 10 15 25

1 10.76 10.76 10.92 10.9 270790.5 271702.0 272510.5 274470.5 1153.5 1095.5 897.6 877.3

2 10.13 10.04 9.92 10.1 257318.4 255289.2 256507.7 255740.4 1125.5 1209.8 1708.8 1321.0

3 10.56 10.56 11.13 11.1 288486.3 290805.4 283295.9 283295.9 934.1 1326.4 606.4 652.5

4 10.31 10.30 10.32 10.3 253270.4 253261.5 253376.9 253376.9 643.7 655.1 787.8 761.7

5 10.15 10.15 10.07 10.1 231668.5 231668.5 233395.9 232181.4 750.5 731.8 1165.3 947.1

Avg. 10.38 10.36 10.47 10.49 260306.8 260545.3 259817.4 259813.0 921.5 1003.7 1033.2 911.9

Std. Dev. 0.27 0.30 0.53 0.49 21110.4 22106.0 19123.8 19923.6 224.7 296.0 428.6 254.8

5 10 15 25 5 10 15 25 5 10 15 25

1 12.34 12.46 12.46 12.27 385188.8 378682.9 378682.9 377228.6 2312.5 1920.9 1936.2 2576.4

2 11.83 11.90 12.00 11.89 340488.6 347875.8 353614.4 341662.0 3475.6 3122.5 2901.2 3530.6

3 12.59 12.65 12.78 12.78 341349.5 341126.8 330049.8 330049.8 1061.7 982.6 720.4 706.4

4 11.85 11.74 11.92 11.88 329807.8 332132.9 333163.1 336949.5 2322.4 3359.8 1990.8 2043.1

5 12.08 11.45 11.56 11.56 310599.1 335916.6 316024.5 313062.0 1334.2 2674.0 2432.3 2674.2

Avg. 12.14 12.04 12.15 12.08 341486.8 347147.0 342307.0 339790.4 2101.3 2412.0 1996.2 2306.2

Std. Dev. 0.33 0.50 0.48 0.47 27392.2 18593.2 24370.5 23571.6 955.4 969.0 812.5 1041.2

Length of tabu list

31

Depots

600

Outages

140

PLT

30

Non-impr.

Solutions

Final restoration time (hour) Final Weighted wait time (hour) CPU Runtime (second)

Length of tabu list

31

Depots

500

Outages

140

PLT

30

Non-impr.

Solutions

LARGE SIZE

Final Weighted wait time CPU Runtime (second)

Length of tabu list

Length of tabu list

10

Depots

100

Outages

40

PLT

20

Non-impr.

Solutions

Final restoration time Final Weighted wait time CPU Runtime (second)

Length of tabu list

5

Depots

50

Outages

11

PLT

20

Non-impr.

Solutions

Length of tabu list

3

Depots

10

Outages

3

PLT

10

Non-impr.

Solutions

MEDIUM SIZE Final restoration time

2

Depots

7

Outages

2

PLT

10

Non-impr.

Solutions

SMALL SIZE

Table 4. Selection of the length of tabu-list for Metaheuristic method

60

whereas the medium and large sized problems are solved for tabu-list’s length of (3, 5, 7, 10) and

(5, 10, 15, 25) respectively.

By observing the average values of the final restoration time for each of the sizes in Table 4, we

can see that the most suitable length of tabu-list for small, medium and large size problems are 5,

3 and 10 respectively. Therefore, to compare the multi-stage metaheuristic method with other

proposed methods, we will keep the pair of (number of consecutive non-improving solution, the

length of tabu list) at (10, 5) for small instances, (20, 3) for medium instances and (30, 10) for

large instances. This method of selecting the tabu search parameter is not optimum and needs more

investigation. But since the general recommendation of tabu search parameters is not considered

in the scope of the thesis, we have chosen these values for comparison purpose.

4.2.2.2 Hybrid method

The selection of the most suitable length of the tabu list for the Hybrid method is made by using

the same technique mentioned in section 4.2.2.1. As mentioned in section 4.2.1.2, for the Hybrid

method, the most suitable number of non-improving solutions for small and medium-sized

problems are 7 and 10 respectively. Therefore, we will fix this parameter at 7 and 10, and will

solve the problems for the tabu-list’s length of (2, 3, 5, 7) and (3, 5, 7, 10) for small and medium

size problems, respectively.

By observing the average values of final restoration times in Table 5, we can conclude that the

most suitable length of the tabu-list for small sized problems is 5. For medium size problems, we

can see that for (10 depots, 100 outages, 40 PLTs), the hybrid method performs better at tabu-list’s

length of 3, but the difference between the average final restoration times for the lengths 3 and 7

is only 0.09 hours. On the other hand, for (5 depots, 50 outages, 11 PLTs) the method produces its

61

best result at the tabu-list’s length of 7. Therefore, for the medium sized problem, 7 will be a good

choice for the length for tabu-list. From the results obtained from section 4.2.1.2 and 4.2.2.2, to

compare the hybrid method with other proposed methods we will keep the pair of (number of

consecutive non-improving solution, the length of tabu list) at (7, 5) for small instances and (15,

7) for medium instances.

As mentioned earlier, this technique of selecting the tabu search parameters needs further

investigation, but for the comparison between the proposed methods, this technique yields good

results.

2 3 5 7 2 3 5 7 2 3 5 7

1 7.48 7.48 7.26 7.31 1085.1 1085.1 1060.6 1060.8 0.79 0.94 1.97 1.18

2 7.47 7.47 7.47 7.47 1146.8 1146.8 1146.8 1146.8 0.77 0.85 1.03 1.07

3 10.31 10.31 10.26 10.31 1852.7 1852.7 1850.0 1852.7 0.76 1.07 2.27 1.28

4 8.82 8.37 8.37 8.37 1925.8 1858.8 1858.8 1858.8 1.10 1.27 1.61 1.26

5 7.67 7.67 7.67 7.67 1873.5 1873.5 1873.5 1873.5 0.68 0.79 1.02 1.14

Avg. 8.35 8.26 8.21 8.22 1576.8 1563.4 1558.0 1558.5 0.82 0.98 1.58 1.18

Std. Dev. 1.23 1.20 1.22 1.23 422.1 409.1 415.9 416.3 0.16 0.19 0.56 0.09

2 3 5 7 2 3 5 7 2 3 5 7

1 8.93 8.65 8.65 8.65 1925.4 2040.1 2040.1 2040.1 1.41 2.34 3.50 2.61

2 9.97 9.97 9.52 9.52 2585.6 2585.6 2665.9 2665.9 1.13 1.63 3.54 2.04

3 8.86 8.86 8.40 8.40 2335.8 2335.8 2502.6 2502.6 1.21 1.60 2.97 2.80

4 8.10 8.10 8.10 8.10 1863.1 1863.1 1863.1 1863.1 1.60 2.08 2.02 2.02

5 7.57 7.57 7.57 7.57 1541.4 1541.4 1541.4 1541.4 1.29 1.73 1.55 1.55

Avg. 8.69 8.63 8.45 8.45 2050.3 2073.2 2122.6 2122.6 1.33 1.87 2.72 2.21

Std. Dev. 0.91 0.90 0.72 0.72 411.6 406.0 461.4 461.4 0.18 0.32 0.90 0.50

3 5 7 10 3 5 7 10 3 5 7 10

1 11.17 11.17 11.17 11.17 15999.9 15999.9 15999.9 15999.9 21.5 21.7 21.6 21.3

2 11.45 11.29 11.00 11.45 22162.7 24553.7 22851.6 22162.7 22.4 39.5 83.5 19.6

3 10.14 10.14 10.14 10.31 19610.7 19610.7 19610.7 19527.7 22.5 23.5 23.2 16.2

4 11.13 11.16 11.16 11.16 49651.9 46903.3 46903.3 46903.3 60.3 20.9 23.1 24.2

5 11.94 11.94 11.94 11.94 30316.7 30316.7 30316.7 30316.7 47.9 47.0 47.0 47.5

Avg. 11.17 11.14 11.08 11.21 27548.4 27476.8 27136.4 26982.0 34.93 30.51 39.68 25.77

Std. Dev. 0.66 0.64 0.64 0.59 13431.4 12120.2 12246.0 12322.5 18.03 11.97 26.70 12.49

3 5 7 10 3 5 7 10 3 5 7 10

1 6.58 6.58 6.64 6.86 45149.7 43147.3 43530.3 44770.9 138.16 210.27 165.25 119.10

2 6.64 6.97 7.02 7.02 59924.4 57365.7 57445.8 57445.8 157.20 159.31 109.27 107.88

3 7.02 7.02 7.02 7.02 35310.4 35310.4 35310.4 35310.4 129.68 138.76 113.60 108.24

4 6.20 6.20 6.20 6.20 45350.1 45350.1 45350.1 45350.1 161.50 191.11 141.76 138.90

5 6.68 6.68 6.68 6.68 51206.2 51408.2 51282.5 51282.5 84.10 119.66 72.13 69.98

Avg. 6.62 6.69 6.71 6.76 47388.2 46516.4 46583.8 46831.9 134.13 163.82 120.40 108.82

Std. Dev. 0.29 0.33 0.34 0.34 9038.4 8365.5 8336.6 8240.9 30.91 37.09 35.24 25.10

CPU Runtime (second)Final Weighted wait time (hour)Final restoration time (hour)

Final restoration time (hour) Final Weighted wait time (hour) CPU Runtime (second)

Length of tabu list

Length of tabu list

Length of tabu list

10

Depots

40

PLT

100

Outages

11

PLT

50

Outages

5

Depots

15

Non-impr.

Solutions

Length of tabu list

SMALL SIZE

MEDIUM SIZE

7

Non-impr.

Solutions

2

PLT

7

Outages

2

Depots

7

Non-impr.

Solutions

3

PLT

10

Outages

3

Depots

15

Non-impr.

Solutions

Table 5. Selection of the length of tabu-list for hybrid method

62

4.3 Comparison of proposed methods

In this section, the performances of all three proposed methods i.e. MILP, Hybrid, and Multi-Stage

Metaheuristic are compared. Before starting the comparison, it is important to note that the

objectives of the problem under investigation (overall restoration time and the total weighted wait

time) may contradict in some cases. Therefore, it is not necessary that the solution which causes

improvement in overall restoration time will also improve the total weighted wait time. In contrast,

it may increase the total weighted wait time. But the performance of any method will be rated

based on the primary objective value, i.e. overall restoration time, and by some considerations for

weighted wait time explained later.

4.3.1 Performance of Multi-Stage Metaheuristic and Hybrid method with

respect to optimum method (MILP)

Because of the NP-hardness of the problem under investigation, the MILP model was only able to

solve the small size problems. As mentioned in section 3.1, selection of the importance factor for

both the objectives of the problem is very subjective, making the comparison difficult for the

solutions obtained from the MILP model with those obtained from the Hybrid method and Multi-

Stage Metaheuristic method. Therefore, for the comparison purpose, the importance factors are

eliminated from the objective function and two constraints are added (one at a time) in the MILP

model to restrict the objective function values of the overall restoration time and total weighted

wait time to as discussed in this section.

For instance, a problem is first solved using either a multi-stage metaheuristic method or a hybrid

method. As we can see in Table 6- instance #1, the restoration time and weighted wait time

obtained from Multi-Stage Metaheuristic method are 7.27 hours and 1074.2 hours respectively.

63

Therefore, to obtain the optimum restoration time from MILP model, a constraint is added to the

model proposed in section 3.1 which ensures that the total weighted wait time of the solution does

not exceed 1074.2 hours, obtained from the Meta-Heuristic method. Afterward, the MILP model

is solved with Gurobi solver and the resultant restoration time is noted as “the optimum restoration

time constrained to the result of Multi-Stage Metaheuristic method”. In this case, 7.26 hours is the

optimum restoration time, hence the optimality percentage of the Multi-Stage Metaheuristic

method for the restoration time objective is (
7.26

7.27
=) 99.78%.

Similarly, to obtain the weighted wait time optimality percentage, a constraint is added which

ensures that the maximum restoration time does not exceed the restoration time obtained from

Multi-Stage Metaheuristic method, i.e. 7.27 hours. The MILP model is again solved to obtain the

total weighted wait time and it is noted as “the optimum weighted wait time constrained to the

result of Multi-Stage Metaheuristic method”. In this case, it is 1054.9 hours, hence the optimality

percentage of the Meta-heuristic method for the weighted wait time objective is (
1054.9

1074.2
=)98.20%.

Instance Meta Hybrid Meta Hybrid

1 7.27 7.26 7.26 7.26 99.78% 100% 1074.2 1060.6 1054.9 1055.3 98.20% 99.50% 0.08 1.97 0.59 0.29

2 7.47 7.47 7.47 7.47 100% 100% 1146.8 1146.8 1146.8 1146.8 100.00% 100% 0.10 1.03 0.54 0.29

3 10.26 10.26 10.26 10.26 100% 100% 1850.0 1850.0 1842.0 1842.0 99.56% 100% 0.23 2.27 0.83 0.36

4 8.37 8.37 8.37 8.37 100% 100% 1858.8 1858.8 1848.4 1848.4 99.44% 99.44% 0.12 1.61 0.75 0.26

5 7.67 7.67 7.67 7.67 100% 100% 1873.5 1873.5 1873.5 1873.5 100.00% 100% 0.08 0.99 0.95 0.26

Avg. 8.21 8.21 8.21 8.21 99.96% 100% 1560.7 1558.0 1553.1 1553.2 99.44% 99.70% 0.12 1.57 0.73 0.29

St. Dev. 1.22 1.22 1.22 1.22 0.001 0.00000 411.8 415.9 414.3 414.2 0.01 0.00 0.06 0.57 0.17 0.04

6 8.65 8.65 8.41 8.41 97.17% 97.17% 2040.1 2040.1 1901.2 1901.2 93.19% 93.19% 0.24 1.99 142.34 18.44

7 9.52 9.52 9.26 9.26 97.27% 97.27% 2637.1 2665.9 2510.8 2510.8 95.21% 94.18% 0.34 2.84 85.77 2.35

8 8.70 8.40 8.37 8.37 96.25% 99.73% 2524.4 2502.6 2262.7 2399.1 89.63% 95.87% 0.42 2.39 186.22 17.95

9 8.10 8.10 8.10 8.10 100% 100% 1863.1 1863.1 1846.8 1846.8 99.12% 99.12% 0.28 2.02 60.13 8.69

10 7.75 7.57 7.47 7.57 96.39% 100% 1647.5 1541.4 1541.4 1541.4 93.56% 100% 0.42 1.55 16.34 1.92

Avg. 8.55 8.45 8.32 8.34 97.41% 98.83% 2142.4 2122.6 2012.6 2039.9 94.14% 96.47% 0.34 2.16 98.16 9.87

St. Dev. 0.68 0.72 0.65 0.61 0.015 0.015 425.5 461.4 378.4 404.9 0.03 0.03 0.08 0.48 67.08 8.06

CPU Runtime (second)Restoration time (hour) Optimality Weighted wait time (hour) Optimality

Optimum

wait
Meta Hybrid Meta

Optimum

constrained to

results of

Optimum

constrained to

results of

Optimum

Restoration
Meta HybridMeta Hybrid Meta Hybrid

3

Depots

10

Outages

3

PLT

Hybrid

2

PLT

7

Outages

2

Depots

Method

Table 6. comparison of Metaheuristic and Hybrid method with Optimum MILP method

64

After that, the problem is solved by the Hybrid method as well and the constraints are added in the

MILP model as explained for Multi-Stage Metaheuristic method. Following the same procedure,

the optimum restoration and total weighted wait time constrained to the results of the hybrid

method are obtained. For instance #1, the optimum restoration time and total weighted wait time

constrained to the results of the hybrid method are 7.26 hours and 1060.6 hours, respectively,

which result in (
7.26

7.26
=)100% and (

1060.6

1074.2
=)99.50% optimality, respectively.

As shown in Table 6 for (3 depots, 10 outages, 3 PLTs), the average optimality of the Multi-Stage

Metaheuristic method for overall restoration time and total weighted wait time is 97.41% and

94.14% respectively. And that for the Hybrid method is 98.83% and 96.47% respectively. The

computation time for both Metaheuristic and Hybrid method are mentioned in Table 6. The

computation time under title “Optimum restoration” is the average of the computation time to

obtain optimum restoration time solving the MILP model constrained to the results of Multi-Stage

Metaheuristic and Hybrid method. And the computation time under title “Optimum weighted wait

time” is the average of the computation time to obtain optimum weighted wait time solving MILP

model constrained to the results of Multi-Stage Metaheuristic and Hybrid method.

As shown in Figure 15(a), for all instances, the restoration time of Hybrid method is either same

or better than that of the Multi-Stage Metaheuristic method. For (2 depots, 7 outages, 2 PLTs), the

Hybrid method was able to achieve the optimum solution for all five instances, whereas the Multi-

Stage Metaheuristic method achieved the optimum solution in four instances. For (3 depots, 10

outages, 3 PLTs), the Hybrid method was able to achieve the optimum solution in two instances,

whereas Multi-Stage Metaheuristic Method achieved 100% optimality in one instance only. As

shown in Figure 15(b), except instance #7, the total weighted wait time of Hybrid method is also

either same or better than the Metaheuristic. In instance #7, although Hybrid method obtained

65

better restoration time than Multi-Stage Metaheuristic method, its total weighted wait time was

higher than that of Metaheuristic. As mentioned in section 1.1, instance #7 exemplifies an instance

where both the primary and secondary objectives may contradict each other.

(a) Based on Restoration time

(b) Based on Total Weighted wait time

Figure 15. Performance of Multi-Stage Metaheuristic and Hybrid methods with respect to Optimum

method

66

Observing the average optimality of both the methods for each sub-size in Table 6, we can

conclude that both Metaheuristic and Hybrid method perform very well and are also able to achieve

optimum solutions in many cases. Because of the NP-hardness of the problem under investigation,

the optimum method was not able to solve more than 11 outages, therefore for medium and large

sized problems, we could not test the performance of Metaheuristic and Hybrid method with

respect to the optimum MILP method. But looking at their performance on small instances, both

the methods are expected to perform well on medium and large sizes as well.

67

4.3.2 Performance of Hybrid method with respect to Multi-Stage Metaheuristic

method

In this section, the performance of the Hybrid method is further tested with respect to the Multi-

Stage Metaheuristic method. As the Hybrid method uses the combination of Metaheuristic and

optimum method, it was only able to solve small and medium sized problems in a reasonable

amount of time, and the results are shown in Table 7. The percentage noted under title

“Performance of Hybrid” denotes how better (positive) or worse (negative) Hybrid method

performed with respect to the Multi-Stage Metaheuristic method. As shown in Table 7, for small-

sized instances, the restoration times of Hybrid method are either same or better than the Multi-

Stage Metaheuristic method, whereas, for all medium sized instances, the restoration times of

Hybrid method are better than Multi-Stage Metaheuristic method. Moreover, in most cases, the

1 7.27 7.26 +0.22% 1074.23 1060.60 +1.27% 0.08 1.97

2 7.47 7.47 0.00% 1146.78 1146.78 0.00% 0.10 1.03

3 10.26 10.26 0.00% 1850.04 1850.04 0.00% 0.23 2.27

4 8.37 8.37 0.00% 1858.84 1858.84 0.00% 0.12 1.61

5 7.67 7.67 0.00% 1873.53 1873.53 0.00% 0.08 0.99

Avg. 8.21 8.21 +0.04% 1560.69 1557.96 +0.25% 0.12 1.57

Std. Dev. 1.22 1.22 0.001 411.84 415.89 0.01 0.06 0.57

1 8.65 8.65 0.00% 2040.08 2040.08 0.00% 0.24 1.99

2 9.52 9.52 0.00% 2637.14 2665.91 -1.09% 0.34 2.84

3 8.70 8.40 +3.49% 2524.40 2502.55 +0.87% 0.42 2.39

4 8.10 8.10 0.00% 1863.11 1863.11 0.00% 0.28 2.02

5 7.75 7.57 +2.34% 1647.46 1541.43 +6.44% 0.42 1.55

Avg. 8.55 8.45 +1.17% 2142.44 2122.62 +1.24% 0.34 2.16

Std. Dev. 0.68 0.72 0.016 425.48 461.37 0.03 0.08 0.48

1 11.39 11.17 +1.90% 15057.9 15999.87 -6.26% 4.2 21.56

2 11.43 11.00 +3.78% 21963.1 22851.60 -4.05% 10.1 83.54

3 10.32 10.14 +1.68% 20388.1 19610.73 +3.81% 6.8 23.19

4 11.51 11.16 +3.06% 49387.0 46903.27 +5.03% 8.1 23.14

5 11.95 11.94 +0.07% 30836.3 30316.65 +1.69% 14.1 46.96

Avg. 11.32 11.08 +2.10% 27526.49 27136.42 +0.05% 8.68 39.68

Std. Dev. 0.60 0.64 0.014 13474.12 12246.03 0.05 3.74 26.70

1 6.86 6.64 +3.24% 49013.2 43530.33 +11.19% 30.37 165.25

2 7.08 7.02 +0.77% 59688.8 57445.79 +3.76% 29.63 109.27

3 7.09 7.02 +0.96% 38054.2 35310.40 +7.21% 19.59 113.60

4 6.33 6.20 +2.05% 44715.2 45350.13 -1.42% 24.90 141.76

5 6.71 6.68 +0.40% 52557.0 51282.49 +2.43% 25.57 72.13

Avg. 6.81 6.71 +1.48% 48805.72 46583.83 +4.63% 26.01 120.40

Std. Dev. 0.31 0.34 0.012 8137.64 8336.60 0.05 4.32 0.00

3

Depots

10

Outages

3

PLT

2

Depots

7

Outages

2

PLT

SMALL SIZE Restoration time (hour) Weighted wait time (hour) CPU Runtime (second)

Method Metaheuristic Hybrid
Performance

of Hybrid
Metaheuristic Hybrid

Performance

of Hybrid
Metaheuristic Hybrid

CPU Runtime (second)

HybridMetaheuristicMetaheuristic
Performance

of Hybrid
Hybrid

Performance

of Hybrid
Hybrid Metaheuristic

Weighted wait time (hour)

10

Depots

100

Outages

40

PLT

Restoration time (hour)

Method

MEDIUM SIZE

5

Depots

50

Outages

11

PLT

Table 7. Performance of Hybrid method with respect to Multi-Stage Metaheuristic method

68

Hybrid method has either same or better weighted wait times than Multi-Stage Metaheuristic

method in most cases; the higher weighted wait time in some cases exemplifies the possibility of

contradictory behavior of both objective functions as mentioned in section 1.1. Moreover, the

difference in computation time of both the methods is not that huge, which implies that it is

advantageous to solve these problems with Hybrid method to obtain the better objective values.

However, the performance of the hybrid method also depends on which third-party solver is used

to solve the problem which might be costly.

Figure 16 shows the performance of Hybrid method based on the average values of restoration and

weighted wait times for all five instances in each sub-size. Figure 16(a) shows the performance

based on average restoration time, whereas Figure 16(b) shows the performance based on average

total weighted wait time. The number of outages on the x-axis indicates the sub-size of the

problem. From Figure 16(a) and Figure 16(b), we can see that the average restoration time and

weighted wait time of Hybrid method are better than that of Multi-Stage Metaheuristic method for

all sub-sizes. However, considering the standard deviation of the data, the difference may not be

statistically significant which implies the Multi-Stage Metaheuristic method also performs pretty

well. The more statistical analysis could be done to investigate the performances of both methods.

69

0

2

4

6

8

10

12

14

7 10 50 100

R
es

to
ra

ti
o

n
 t
im

e
(h

o
u

r)

Outages

Metaheuristic_Average Hybrid_average

(a) Based on Restoration time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

7 10 50 100

T
o

ta
l

W
ei

g
h

te
d

 w
ai

t
ti

m
e

(h
o
u
r)

Outages

Metaheuristic_Average Hybrid_average

(b) Based on total Weighted wait time

Figure 16. Performance of Hybrid method with respect to Multi-Stage Metaheuristic method

70

4.3.3 Performance of tabu-search in proposed Multi-Stage Metaheuristic

method

As mentioned in section 3.2.3 two tabu-search metaheuristics are used in the proposed Multi-Stage

Metaheuristic method, one for the inter-route improvement, and the other for intra-route

improvement which is a part of the inter-route improvement. In this section, we will consider both

the tabu-search metaheuristics as one, because the final solution is the result of the performance of

both metaheuristics. As mentioned in section 3.2.2, an initial routing heuristic is used to obtain an

initial solution after clustering stage, and the tabu search metaheuristic is initiated from this

solution. In this section, the performance of the tabu search metaheuristic is discussed based on

the results from which it was initiated, and the final results that it achieved.

The Multi-Stage Metaheuristic method was tested on five data sets of each sub-size of the

problems, i.e. (2 depots, 7 outages, 2 PLTs), (3 depots, 10 outages, 3 PLTs), (5 depots, 50 outages,

11 PLTs), (10 depots, 100 outages, 40 PLTs), (31 depots, 500 outages, 140 PLTs) and (31 depots,

600 outages, 140 PLTs). The resultant Restoration and total weighted wait time of all five instances

of each sub-size can be found in Appendix A. In this discussion, we will denote the sub-sizes based

on their respective number of outages. The comparison between the average values of the initial

solution and that of the final solutions of five instances in each sub-size can be found in Figure 17.

As shown in Figure 17(a), for all sub-sizes, there is a great improvement in final restoration time

compared to the initial restoration time. For 7 outages and 10 outages, the tabu-search improved

the overall restoration time by 19.62% and 26.58% respectively. For medium and large sizes, this

improvement was even better. For 50 outages and 100 outages, the improvement was 43.40% and

51.26%, respectively, whereas, for 500 outages and 600 outages, the improvement was 49.13%

and 48.45%, respectively.

71

Above numbers show how well the tabu search metaheuristic performed for all sizes of the

problem. But as the objective of the initial routing heuristic is only to minimize the total weighted

wait time, a great improvement in restoration time was expected from metaheuristic. Having said

0

5

10

15

20

25

30

7 10 50 100 500 600

R
es

to
ra

ti
o

n
 t

im
e

(h
o

u
r)

Number of outages

Initial_average Final_average

0

10000

20000

30000

40000

50000

60000

7 10 50 100

T
o

ta
l

W
ei

g
h
te

d
 w

ai
t

ti
m

e
(h

o
u
r)

Number of outages

Initial_average Final_average

0

50000

100000

150000

200000

250000

300000

350000

400000

500 600

T
o

ta
l

W
ei

g
h
te

d
 w

ai
t

ti
m

e
(h

o
u
r)

Number of outages

Initial_average Final_average

(a) Restoration time

(b) Total Weighted wait time

Figure 17. Performance of tabu-search Metaheuristic

72

that, because of the contradictory behavior of the primary and secondary objective functions in

some cases, the chances of tabu-search resulting in a higher value of the weighted wait time than

the greedy heuristic was also expected. As shown in Figure 17(b) and Appendix A, for 7 outages,

10 outages and 50 outages, the tabu-search actually improved the total weighted wait time by

7.28%, 8.65 % and 6.31%, whereas, for 100 outages, 500 outages, and 600 outages, tabu search

showed an increment in total weighted wait time by 3.70%, 5.78%, and 7.59%, respectively. On

the other hand, as tabu-search improved the restoration time of 100 outages, 500 outages, and 600

outages, by 51.26%, 49.13%, and 48.45%, respectively, we can conclude that tabu-search is

performing efficiently for all sizes of the problem under investigation.

73

Chapter 5 Conclusion and Future Research

5.1 Conclusion

In this research, a crew routing problem for post-disaster service restoration is considered, which

addresses the maximum restoration time of all the customers as well as the total weighted wait

time incurred by the customers. To the best of our knowledge, this is the first time that both

objectives, which in some cases may contradict each other, are addressed together for the problem

like Maximum Collection Problem, Minimum Latency Problem, Traveling Repairman Problem.

In this thesis, three methods are proposed to solve the problem. An MILP model is proposed to

solve the problem optimally, but as it cannot solve large problems in a reasonable amount of time,

a Multi-Stage Metaheuristic method is proposed which can solve large instances in less time.

Moreover, to take advantage of the optimality of MILP and computation time of Multi-Stage

Metaheuristic method, a novel Hybrid method is proposed. To the best of our knowledge, this

Hybrid method is proposed for the first time to solve this kind of problem. Additionally, a novel

initial routing heuristic is proposed to construct the initial routes. Several improvement steps such

as transfer and insertion are also proposed for both Multi-Stage Metaheuristic and Hybrid methods.

The results show that both Metaheuristic and Hybrid method yield near optimum solutions for

small instances, in which the Hybrid method was able to achieve optimality more often than Multi-

Stage Metaheuristic method. Because of the NP-hardness of the problem, MILP model was not

able to solve large instances. By using appropriate settings for tabu-search parameters, the Hybrid

method achieves better restoration time than Multi-Stage Metaheuristic method for medium

instances. However, because of the contradictory behavior of both the objectives in some cases,

Multi-Stage Metaheuristic method was able to yield a better weighted wait time than the Hybrid

74

method in few instances. As the Hybrid method includes an optimum MILP method in some parts,

it could not solve large instances in a reasonable amount of time, whereas the Multi-Stage

Metaheuristic method solves the problem in less computation time than the Hybrid method. The

performance of the tabu search metaheuristic was also tested on small, medium and large instances

and it was performing significantly well to give a better combination of both objectives.

The Hybrid method takes more time than Multi-Stage Metaheuristic method, but yields better

solutions. Therefore, it can be used to achieve better solutions for big problems which cannot be

solved by the optimum method. The proposed Hybrid method can be regarded as a bridge between

Metaheuristic and Optimum method.

5.2 Future research

In this section, we will discuss some potential future research which may improve the

methodologies proposed in this thesis, as well as the scenarios which may be addressed with the

existing problem to make it applicable in more areas.

• In this research, the multi-objective function is to minimize the overall restoration time

while minimizing the total weighted wait time of all customers. However, due to

widespread of service distortion after disasters, a practical approach will be to only aim at

the certain higher percentage of the outage (say 90%) in the optimization process.

• In this research, the efficiencies of all the PLTs are considered to be the same, but in real

life the efficiency of each technician is different. Also, different outages may require

different skills and equipment. Therefore, a potential extension of this work is to consider

heterogeneous fleet in which the skills and efficiency of all PLTs are different.

75

• Some research is needed on how to select the importance factor for both the objectives.

More research could also be done to improve the MILP model for handling bigger sizes of

the problem.

• The technique used to select the tabu search parameters in this research is exclusively for

testing purpose. As these parameters may affect the performance of tabu search, an

extensive research is needed to propose the selection of these parameters according to the

characteristics of the problem. Moreover, in this research, the optimum objective values

are constrained to the results obtained from the Metaheuristic and Hybrid method.

Therefore, a better way is needed to fully investigate the optimality achieved by

Metaheuristic and Hybrid methods.

• The performance of Metaheuristic and Hybrid method greatly depends on the improvement

steps within them. In this thesis, the transfer and insertion steps are proposed for inter-route

improvement. More research can be done to increase the efficiency of the proposed

improvement steps or new improvement steps can be used.

76

References

Afrati, F., Cosmadakis, S., Papadimitrious, C. H., Papageorgiou, G., & Papakostantinou, N.

(1986). The complexity of the travelling repairman problem. Theoretical Informatics and

Applications, 20(1), 79-87.

Agrawal, Y., Mathur, K., & Salkin, H. M. (1989). A set-partitioning-based exact algorithm for

the vehicle routing problem. Networks, 19(7), 731-749. doi:10.1002/net.3230190702

Akpinar, S. (2016). Hybrid large neighbourhood search algorithm for capacitated vehicle routing

problem. Expert Systems with Applications, 61, 20-38. doi:10.1016/j.eswa.2016.05.023

Altay, N., & Green, W. G. (2006). OR/MS research in disaster operations management. uropean

Journal of Operational Research, 175(1), 475–493.

Altinel, I. K., & O¨ncan, T. (2005). A new enhancement of the Clarke and Wright savings

heuristic for the capacitated vehicle routing problem. Journal of the Operational

Research Society, 56(8), 954-961.

Altinkemer, K., & Gavish, B. (1991). Parallel savings based heuristics for the delivery problem.

Operations Research, 39(3), 456-469.

Annouch, A., Bellabdaoui, A., & Minkhar, J. (2016). Split delivery and pickup vehicle routing

problem with two-dimensional loading constraints. 11th International Conference on

Intelligent Systems: Theories and Applications, SITA 2016. Mohammedia, Morocco:

Institute of Electrical and Electronics Engineers Inc. doi:10.1109/SITA.2016.7772277

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2007). The Traveling Salesman

Problem. A Computational Study. Princeton, NJ: Princeton University Press.

Archer, A., Levin, A., & Williamson, D. P. (2007). A faster, better approximation algorithm for

the minimum latency problem. SIAM Journal on Computing, 37(5), 1472-1498.

Archetti, C., & Speranza, M. G. (2012). Vehicle routing problems with split deliveries.

International Transactions in Operational Research, 19(1/2), 3-22.

Arora, S., & Karakostas, G. (2003). Approximation schemes for minimum latency problems.

SIAM Journal on Computing, 32(5), 1317-1337.

Azi, N., Gendreau, M., & Potvin, J. (2010). An exact algorithm for a vehicle routing problem

with time windows and multiple use of vehicles. European Journal of Operational

Research, 202(3), 756-763. doi:10.1016/j.ejor.2009.06.034

Azi, N., Gendreau, M., & Potvin, J. (2014). An adaptive large neighborhood search for a vehicle

routing problem with multiple routes. Computers and Operations Research, 41(1), 167-

173. doi:10.1016/j.cor.2013.08.016

Baker, B. M., & Sheasby, J. (1999). Extensions to the generalised assignment heuristic for

vehicle routing. European Journal of Operational Research, 119(1), 147-157.

77

Baldacci, R., Christofides, N., & Mingozzi, A. (2008). An exact algorithm for the vehicle routing

problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2), 351-385.

Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for the

capacitated vehicle routing problem based on a two-commodity network flow

formulation. Operations Research, 52(5), 723-738.

Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle

routing problem under capacity and time window constraints. European Journal of

Operational Research, 218(1), 1-6.

Balinski, M., & Quandt, R. E. (1964). On an integer program for a delivery problem. Operations

Research, 12(2), 300-304.

Baskan, O., Haldenbilen, S., Ceylan, H., & Ceylan, H. (2009). A new solution algorithm for

improving performance of ant colony optimization. Applied Mathematics and

Computation, 211(1), 75-84. doi:10.1016/j.amc.2009.01.025

Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., & Sudan, M. (1994).

Minimum latency problem. Proceedings of the 26th Annual ACM Symposium on the

Theory of Computing (pp. 163-171). Montreal, Canada: Publ by ACM, New York, NY,

United States.

Braaten, S., Gjønnes, O., Hvattum, L. M., & Tirado, G. (2017). Heuristics for the robust vehicle

routing problem with time windows. Expert Systems with Applications, 77, 136-147.

Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem with time windows, Part II:

Metaheuristics. Transportation Science, 39(1), 119-139. doi:10.1287/trsc.1030.0057

Butt, S. E., & Ryan, D. M. (1998). An optimal solution procedure for the multiple tour maximum

collection problem using column generation. Computers and Operations Research, 26(4),

427-441.

Campbell, A. M., Vandenbussche, D., & Hermann, W. (2008). Routing for relief efforts.

Transportation Science, 42(2), 127-145.

Chaudhuri, K., Godfrey, B., Rao, & Talwar, K. (2003). Paths, trees, and minimum latency tours.

44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003, (pp.

36-45). Cambridge, MA, United states. doi:10.1109/SFCS.2003.1238179

Chen, P., Dong, X., & Niu, Y. (2012). An iterated local search algorithm for the cumulative

capacitated vehicle routing problem. Advances in Intelligent and Soft Computing, 136,

575-581. doi:10.1007/978-3-642-27711-5_76

Chen, P., Golden, B., Wang, X., & Wasil, E. (2017). A novel approach to solve the split delivery

vehicle routing problem. International Transactions in Operational Research, 24(1-2),

27-41.

78

Chiang, W. C., & Russell, R. A. (1996). Simulated annealing metaheuristics for the vehicle

routing problem with time windows. Annals of Operations Research(63), 3-27.

Christofides, N. (1976). The Vehicle Routing Problem. RAIRO (Recherche opérationnelle),

10(2), 55-70.

Christofides, N., & Eilon, S. (1969, September). An Algorithm for the Vehicle-dispatching

Problem. Journal of the Operational Research Society, 20(3), 309-318.

doi:10.1057/jors.1969.75

Christofides, N., Mingozzi, A., & Toth, P. (1981). Exact algorithms for the vehicle routing

problem, based on spanning tree shortest path relaxation. Mathematical Programming,

20(1), 255-282.

Christofides, N., Mingozzi, A., & Toth, P. (1981). State-space relaxation procedures for the

computation of bounds to routing problems. Networks, 11(2), 145-164.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of

delivery points. Operations Research, 12(4), 568-582.

Contardo, C., & Martinelli, R. (2014). A new exact algorithm for the multi-depot vehicle routing

problem under capacity and route length constraints. Discrete Optimization, 12(1), 129-

146. doi:10.1016/j.disopt.2014.03.001

Crevier, B., Cordeau, J.-F., & Laporte, G. (2007). The multi-depot vehicle routing problem with

inter-depot routes. European Journal of Operational Research, 176(2), 756-773.

doi:10.1016/j.ejor.2005.08.015

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science,

6(1), 80-91. doi:10.1287/mnsc.6.1.80

Davis, R., Kendrick, D., & Weitzman, M. (1971). Branch- and- bound algorithm for zero- one

mixed integer programming problems. Operations Research, 9(4), 1036-1044.

Dayarian, I., Crainic, T. G., Gendreau, M., & Rei, W. (2015). A branch-and-price approach for a

multi-period vehicle routing problem. Computers and Operations Research, 55, 167-184.

doi:10.1016/j.cor.2014.06.004

Demir, E., Bektas, T., & Laporte, G. (2014). The bi-objective Pollution-Routing Problem.

European journal of operational research, 232(3), 464-478.

Derigs, U., & Reuter, K. (2009). A simple and efficient tabu search heuristic for solving the open

vehicle routing problem. Journal of the Operational Research Society, 60(12), 1658-

1669. doi:10.1057/jors.2008.107

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm for the

vehicle routing problem with time windows. Operations research, 40(2), 342-354.

79

Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F. C., & Vansteenwegen, P. (2013). Heuristics

for the traveling repairman problem with profits. Computers & Operations Research,

40(7), 1700-1707. doi:10.1016/j.cor.2013.01.003

Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F., & Vansteenwegen, P. (2013). Heuristics for

the traveling repairman problem with profits. Computers and Operations Research,

40(7), 1700-1707.

Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach

to the traveling salesman problem. IEEE Transactions on Evolutionary Computation,

1(1), 53-66.

Ekici, A., & Retharekar, A. (2013). Multiple agents maximum collection problem with time

dependent rewards. Computers and Industrial Engineering, 64(4), 1009-1018.

Ergun, O., Orlin, J. B., & Steele-Feldman, F. (2006). Creating very large scale neighborhoods

out of smaller ones by compounding moves. Journal of Heuristics, 12(1), 115-140.

Erkut, E., & Zhang, J. (1996). Maximum collection problem with time-dependent rewards. Naval

Research Logistics, 43(5), 749-763.

Fakcharoenphol, J., Harrelson, C., & Rao, S. (2007). The k-traveling repairmen problem. ACM

Transactions on Algorithms, 3(4). doi:10.1145/1290672.1290677

Feng, Y., Zhang, R., & Jia, G. (2017). Vehicle Routing Problems with Fuel Consumption and

Stochastic Travel Speeds. Mathematical Problems in Engineering.

doi:10.1155/2017/6329203

Finkel'shteyn, Y. (1971). Method of Cuts and Branches for solving Integer Linear Programming

Problems. Engineering Cybernetics, 9(4), 619-623.

Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum. Operations

Research, 42(4), 626-642.

Fisher, M. L., & Jaikumar, R. (1981). A generalized assignment heuristic for vehicle routing.

Networks, 11(2), 109-124. doi:10.1007/s11590-015-0878-3

Flood, M. M. (1956). Traveling-salesman problem. Operations Research Society of America,

4(1), 61-75.

Foster, B. A., & Ryan, D. M. (1976). An integer programming approach to the vehicle

scheduling problem. Operations Research, 27(2), 367-384.

Fukasawa, R., Longo, H., Lysgaard, J., Poggi de Aragão, M., Reis, M., Uchoa, E., & Werneck,

R. F. (2006). Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing

Problem. Mathematical Programming, 106(3), 491-511.

Galindo, G., & Batta, R. (2013). Review of recent developments in OR/MS research in disaster

operations management. European Journal of Operational Research, 230(2), 201-211.

80

Gao, Y., Wang, C., & Liu, C. (2016). An archived multi-objective simulated annealing algorithm

for vehicle routing problem with time windows. International Journal of u- and e-

Service, Science and Technology, 9(12), 187-198. doi:10.14257/ijunesst.2016.9.12.17

García, A., Jodrá, P., & Tejel, J. (2002). A note on the traveling repairman problem. Networks,

40(1), 27-31.

Garey, M. R., & Johnson, D. S. (1979). A guide to the theory of NP-completeness. New York,

USA: W.H. Freeman & Co Ltd.

Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, E. (1999). A tabu search heuristic for

the heterogeneous fleet vehicle routing problem. Computers and Operations Research,

26(12), 1153-1173. doi:10.1016/S0305-0548(98)00100-2

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research, 13(5), 533-549.

Goemans, M., & Kleinberg, J. (1998). An improved approximation ratio for the minimum

latency problem. Mathematical Programming, 82(1-2), 111-124.

Goetschalckx, M., & Jacobs-Blecha, C. (1989). Vehicle routing problem with backhauls.

European Journal of Operational Research, 42(1), 39-51. doi:10.1016/0377-

2217(89)90057-X

Golden, B. L., Magnanti, T. L., & Nguyen, H. Q. (1977). Implementing vehicle routing

algorithms. Networks, 7(2), 113-148. doi:10.1002/net.3230070203

Gronalt, M., Harti, R., & Reimann, M. (2003). New savings based algorithms for time

constrained pickup and delivery of full truckloads. European Journal of Operational

Research, 151(3), 520-535. doi:10.1016/S0377-2217(02)00650-1

Gutjahr, W. J., & Nolz, P. C. (2016). Multicriteria optimization in humanitarian aid. European

Journal of Operational Research, 252(2), 351-366.

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-Means Clustering Algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.

Hiller, F. S., & Lieberman, G. J. (2015). Integer Programming. In Introduction to Operations

research (pp. 474-532). New-York: McGraw-Hill Education.

Hillier, F. S., & Lieberman, G. J. (2015). Genetic Algorithm. In Introduction to Operations

Research (Tenth ed., pp. 645-655). New York: McGraw-Hill.

Jordan, W. C., & Burns, L. D. (1984). Truck backhauling on two terminal networks.

Transportation Research, 18B, 487-503.

Jothi, R., & Raghavachari, B. (2007). Approximating the k-traveling repairman problem with

repairtimes. Journal of Discrete Algorithms, 5(2), 293-303.

81

Kallehauge, B. (2008, July). Formulations and exact algorithms for the vehicle routing problem

with time windows. Computers and Operations Research, 35(7), 2307-2330.

doi:10.1016/j.cor.2006.11.006

Karakatič, S., & Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot

vehicle routing problem. Applied Soft Computing, 27, 519-532.

Ke, L., & Feng, Z. (2013). A two-phase metaheuristic for the cumulative capacitated vehicle

routing problem. Computers & Operations Research, 40(2), 633–638.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.

Science, 220(4598), 671-680.

Koç, C., & Karaogˇlan, G. (2012). A mathematical model for the vehicle routing problem with

time windows and multiple use of vehicles. Journal of the Faculty of Engineering and

Architecture of Gazi University, 27(3), 569-576.

Kulkarni, R., & Bhave, P. (1985). Integer programming formulations of vehicle routing

problems. European Journal of Operational Research, 20(1), 58-67.

Kumar, Y., & Jain, S. (2015). School bus routing based on branch and bound approach. IEEE

International Conference on Computer, Communication and Control, IC4 2015. Indore,

India: Institute of Electrical and Electronics Engineers Inc.

doi:10.1109/IC4.2015.7375684

Kurniawan, R., Sulistiyo, M., & Wulandari, G. (2015). Genetic Algorithm for Capacitated

Vehicle Routing Problem with considering traffic density. 2nd International Conference

on Information Technology Systems and Innovation, ICITSI 2015. Bandung, Bali,

Indonesia: Institute of Electrical and Electronics Engineers Inc.

doi:10.1109/ICITSI.2015.7437695

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient variable

neighborhood search heuristic for very large scale vehicle routing problems. Computers

and Operations Research, 34(9), 2743-2757. doi:10.1016/j.cor.2005.10.010

Laporte, G. (1992). Vehicle Routing Problem: An overview of exact and approximate

algorithms. European Journal of Operational Research, 59(3), 345-358.

Laporte, G. (2009). A Concise Guide to the Traveling Salesman Problem. The Journal of the

Operational Research Society, 61(1), 35-40.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408-416.

Laporte, G., & Nobert, Y. (1987). Exact Algorithms for the Vehicle Routing Problem. North-

Holland Mathematics Studies, 132, 147-184.

Laporte, G., Mercure, H., & Nobert, Y. (1986). Exact Algorithm for th Asymmetrical

Capacitated Vehicle Routing Problem. Networks, 16(1), 33-46.

82

Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal Routing Under Capacity and

Distance Restrictions. Operations research, 33(5), 1050-1073.

doi:10.1287/opre.33.5.1050

Laporte, G., Nobert, Y., & Taillefer, S. (1988). Solving a family of multi-depot vehicle routing

and location-routing problems. Transportation Science, 22(3), 161-172.

Lenstra, J. K., & Rinnooy Kan, A. (1987). Complexity of vehicle routing and scheduling

problem. Networks, 11(2), 221-227.

Letchford, A. N., & Salazar-González, J.-J. (2015). Stronger multi-commodity flow formulations

of the Capacitated Vehicle Routing Problem. European Journal of Operational Research,

244(3), 730-738.

Li, H., Wang, L., Hei, X., Li, W., & Jiang, Q. (2017). A decomposition-based chemical reaction

optimization for multi-objective vehicle routing problem for simultaneous delivery and

pickup with time windows. Memetic Computing, 1-18.

Li, X., Tian, P., & Leung, S. (2009). An ant colony optimization metaheuristic hybridized with

tabu search for open vehicle routing problems. Journal of the Operational Research

Society, 60(7), 1012-1025. doi:10.1057/palgrave.jors.2602644

Lin, S.-W., Ying, K., Lee, Z., & Hsi, F. (2007). Applying simulated annealing approach for

capacitated vehicle routing problems. Conference Proceedings - IEEE International

Conference on Systems, Man and Cybernetics. Taipei, Taiwan: Institute of Electrical and

Electronics Engineers Inc., 3 Park Avenue, 17th Floor, New York, NY 10016-5997,

United States.

Little, J., Murty, K. G., Sweeney, D. W., & Karel, C. (1963). An algorithm for the traveling

salesman problem. Operations Research, 11(6), 972-989. doi:10.1287/opre.11.6.972

Liu, S., Liu, L., & Zhang, T. (2008). Variable neighborhood search for solving vehicle routing

problems with backhauls and time windows. Dongbei Daxue Xuebao/Journal of

Northeastern University, 29(3), 316-319.

Lysgaard, J., & Wøhlk, S. (2014). A branch-and-cut-and-price algorithm for the cumulative

capacitated vehicle routing problem. European Journal of Operational Research, 236(3),

800-810.

Mahmoudi, M., & Zhou, X. (2016). Finding optimal solutions for vehicle routing problem with

pickup and delivery services with time windows: A dynamic programming approach

based on state-space-time network representations. Transportation Research Part B:

Methodological, 89, 19-42. doi:10.1016/j.trb.2016.03.009

Mancini, S. (2016). A real-life Multi Depot Multi Period Vehicle Routing Problem with a

Heterogeneous Fleet: Formulation and Adaptive Large Neighborhood Search based

Matheuristic. Transportation Research Part C: Emerging Technologies, 70, 100-112.

doi:10.1016/j.trc.2015.06.016

83

Marsten, R. (1974). Algorithm for large set partitioning problems. Management Science, 20(5),

774-787.

Mattos, R., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the

cumulative capacitated vehicle routing problem. Computers and Operations Research,

39(3), 728-735. doi:10.1016/j.cor.2011.05.005

Mavrovouniotis, M., & Yang , S. (2015). Ant algorithms with immigrants schemes for the

dynamic vehicle routing problem. Information Sciences, 294, 456-477.

Méndez-Díaz, I., Zabala, P., & Lucena, A. (2008). A new formulation for the Traveling

Deliveryman Problem. Discrete Applied Mathematics, 156(17), 3223-3237.

doi:10.1016/j.dam.2008.05.009

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations

Research, 24(11), 1097-1100.

Mocková, D., & Rybicˇková, A. (2014). Application of genetic algorithms to vehicle routing

problem. Neural Network World, 24(1), 57-78.

Montoya-Torres, J. R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., & Herazo-

Padilla, N. (2015). A literature review on the vehicle routing problem with multiple

depots. Computers and Industrial Engineering, 79, 115-129.

Nelson, M. D., Nygard , K. E., Griffin, j. H., & Shreve , W. E. (1985). Implementation

techniques for the vehicle routing problem. Computers & Operations Research, 12(3),

273-283.

Ngueveu, S. U., Prins, C., & Wolfler Calvo, R. (2010). An effective memetic algorithm for the

cumulative capacitated vehicle routing problem. Computers & Operations Research,

37(11), 1877-1885.

Noble, C. E. (1957). Simplex method for solving linear programming problems. Industrial

Quality Control, 13(9), 5-9.

Nucamendi-Guillén, S., Martínez-Salazar, I., Angel-Bello, F., & Moreno-Vega, J. (2016). Mixed

integer formulation and an efficient metaheuristic procedure for the k-Travelling

Repairmen Problem. Journal of the Operational Research Society, 67(8), 1121-1134.

Oesterle, J., & Bauernhansl, T. (2016). Exact Method for the Vehicle Routing Problem with

Mixed Linehaul and Backhaul Customers, Heterogeneous Fleet, time Window and

Manufacturing Capacity. 48th CIRP International Conference on Manufacturing

Systems, CIRP CMS 2015. 41, pp. 573-578. Ischia, Italy: Elsevier.

Og˜uz, O. (2002). Generalized column generation for linear programming. Management Science,

48(3), 444-452. doi: 10.1287/mnsc.48.3.444.7729

84

Ouaddi, K., Benadada, Y., & Mhada, F. (2016). Multi period dynamic vehicles routing problem:

Literature review, modelization and resolution. 3rd IEEE International Conference on

Logistics Operations Management, GOL 2016. Fes, Morocco: Institute of Electrical and

Electronics Engineers Inc. doi:10.1109/GOL.2016.7731706

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European Journal of

Operational Research, 34(3), 336-344.

Pecin, D., Pessoa, A., Poggi, M., & Uchoa, E. (2017, March 1). Improved branch-cut-and-price

for capacitated vehicle routing. Mathematical Programming Computation, 9(1), 61-100.

Polacek, M., Hartl, R., Doerner, K., & Reimann, M. (2004). AVariable Neighborhood Search for

the Multi Depot Vehicle Routing Problem with Time Windows. Journal of Heuristics,

10(6), 613-627. doi:10.1007/s10732-005-5432-5

Post, I., & Swamy, C. (2015). Linear programming-based approximation algorithms for multi-

vehicle minimum latency problems. 26th Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2015, (pp. 512-531). San Diego, CA, United states.

Potter, T., & Bossomaier, T. (1995). Solving vehicle routing problems with genetic algorithms.

Proceedings of the 1995 IEEE International Conference on Evolutionary Computation.

Part 1 (of 2) (pp. 788-793). Perth, Australia: IEEE, Piscataway, NJ, United States.

Rao, M. R., & Zionts, S. (1968). Allocation of transportation units to alternative trips—A

column generation scheme with out-of-kilter subproblems. Operations Research, 16(1),

52-63.

Ribeiro, G. M., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the

cumulative capacitated vehicle routing problem. Computers & Operations Research,

39(3), 728-735.

Rivera, J. C., Murat Afsar, H., & Prins, C. (2016). Mathematical formulations and exact

algorithm for the multitrip cumulative capacitated single-vehicle routing problem.

European Journal of Operational Research, 249(1), 93-104.

doi:10.1016/j.ejor.2015.08.067

Rizzoli, A. E., Montemanni, R., Lucibello, E., & Gambardella, L. M. (2007). Ant colony

optimization for real-world vehicle routing problems. Swarm Intelligence, 1(2), 135-151.

Rochat, Y., & Taillard, E. D. (1995). Probabilistic diversification and intensification in local

search for vehicle routing. Journal of Heuristics, 1(1), 147-167.

Ropke, S., & Pisinger, D. (2006). A unified heuristic for a large class of Vehicle Routing

Problems with Backhauls. European Journal of Operational Research, 171(3), 750-775.

Salehipour, A., Sörensen, K., Goos, P., & Bräysy, O. (2011). Efficient GRASP+VND and

GRASP+VNS metaheuristics for the traveling repairman problem. 4OR: A Quarterly

Journal of Operations Research, 9(2), 189-209.

85

Seidgar, H., Abedi, M., Rad, S., & Rezaeian, J. (2016). An efficient hybrid of genetic and

simulated annealing algorithms for multi server vehicle routing problem with multi entry.

International Journal of Industrial and Systems Engineering, 24(3), 333-360.

Silva, M. M., Subramanian, A., Thibaut, V., & Ochi, L. S. (2012). A simple and effective

metaheuristic for the Minimum Latency Problem. European Journal of Operational

Research, 221(3), 513-520.

Silvestrin, P., Paulo, V., & Ritt, M. (2017). An iterated tabu search for the multi-compartment

vehicle routing problem. Computers and Operations Research, 81, 1925-202.

Solomon, M. M., & Desrosiers, J. (1988). Time window constrained routing and scheduling

problems. Transportation Science, 22(1), 1-13.

Steinhaus, M., Shirazi, A. N., & Sodhi, M. (2015). Modified self organizing neural network

algorithm for solving the Vehicle Routing Problem. 18th IEEE International Conference

on Computational Science and Engineering, CSE 2015 (pp. 246-252). Porto, Portugal:

Institute of Electrical and Electronics Engineers Inc.

Ting, C.-J., & Huang, C.-H. (2005). An improved genetic algorithm for vehicle routing problem

with time windows. International Journal of Industrial Engineering : Theory

Applications and Practice, 12(3), 218-228.

Torki, A., Somhon, S., & Enkawa, T. (1997). Competitive Neural Network algorithm for solving

Vehicle Routing Problem. Computers and Industrial Engineering, 33(3-4), 473-476.

doi:10.1016/S0360-8352(97)00171-X

Toth, P., & Vigo, D. (2002). Models, relaxations and exact approaches for the capacitated

vehicle routing problem. Discrete Applied Mathematics, 123(1-3), 487-512.

Toth, P., & Vigo, D. (2014). Vehicle routing: problems, methods, and applications. Society for

Industrial and Applied Mathematics (SIAM).

Uchoa, E., Pecin, D., Pessoa, A., Vidal, T., & Subramanian, A. (2017). New benchmark

instances for the Capacitated Vehicle Routing Problem. European Journal of Operational

Research, 257(3), 845-858. doi:10.1016/j.ejor.2016.08.012

Wang, X., Choi, T., Liu, H., & Yue, X. (2016). Novel Ant Colony Optimization Methods for

Simplifying Solution Construction in Vehicle Routing Problems. IEEE Transactions on

Intelligent Transportation Systems, 17(11), 3132-3141. doi:10.1109/TITS.2016.2542264

Wang, Z., & Wang, Z. (2009). A novel two-phase heuristic method for vehicle routing problem

with backhauls. Computers and Mathematics with Applications, 57(11-12), 1923-1928.

Wassan, N., Wassan, N., Nagy, G., & Salhi, S. (2017). The Multiple Trip Vehicle Routing

Problem with Backhauls: Formulation and a Two-Level Variable Neighbourhood Search.

Computers and Operations Research, 78, 454-467. doi:10.1016/j.cor.2015.12.017

86

Wei, L., Zhang, Z., Zhang, D., & Lim, A. (2015). A variable neighborhood search for the

capacitated vehicle routing problem with two-dimensional loading constraints. European

Journal of Operational Research, 243(3), 798-814. doi:10.1016/j.ejor.2014.12.048

Wu, B. Y. (2000). Polynomial time algorithms for some minimum latency problems. Information

Processing Letters, 75(5), 225-229.

Wu, B. Y., Huang, Z., & Zhan, F. (2004). Exact algorithms for the minimum latency problem.

Information Processing Letters, 92(6), 303-309.

Yu, V., A.A.N., P., Hidayat, Y., & Wibowo, O. (2017). A simulated annealing heuristic for the

hybrid vehicle routing problem. Applied Soft Computing Journal, 53, 119-132.

doi:10.1016/j.asoc.2016.12.027

Zhang, D., Cai, S., Ye, F., Si, Y., & Nguyen, T. (2017). A hybrid algorithm for a vehicle routing

problem with realistic constraints. Information Sciences, 394-395, 167-182.

doi:10.1016/j.ins.2017.02.028

87

Appendices

Appendix A. Performance of tabu search Metaheuristic

CPU Runtime (sec)

1 9.78 7.27 +25.66% 1275.52 1074.23 +15.78% 0.15

2 8.83 7.47 +15.40% 1110.59 1146.78 -3.26% 0.15

3 13.69 10.26 +25.08% 2067.55 1850.04 +10.52% 0.39

4 8.99 8.37 +6.91% 1858.27 1858.84 -0.03% 0.25

5 10.23 7.67 +25.04% 2163.66 1873.53 +13.41% 0.14

Avg. 10.31 8.21 +19.62% 1695.12 1560.69 +7.28% 0.21

Std. Dev. 1.98 1.22 0.08 475.02 411.84 0.08 0.10

1 13.91 8.65 +37.80% 2311.65 2040.08 +11.75% 0.28

2 12.66 9.52 +24.81% 2783.85 2637.14 +5.27% 0.25

3 10.69 8.70 +18.61% 2692.28 2524.40 +6.24% 0.32

4 8.36 8.10 +3.12% 2012.01 1863.11 +7.40% 0.25

5 15.07 7.75 +48.57% 1884.77 1647.46 +12.59% 0.42

Avg. 12.14 8.55 +26.58% 2336.91 2142.44 +8.65% 0.30

Std. Dev. 2.66 0.68 0.18 398.96 425.48 0.03 0.07

CPU Runtime (sec)

1 20.06 11.39 +43.24% 17515.01 15057.93 +14.03% 897.64

2 19.00 11.43 +39.85% 25994.79 21963.10 +15.51% 1708.85

3 17.42 10.32 +40.78% 20134.32 20388.13 -1.26% 606.38

4 25.02 11.51 +53.99% 55394.87 49386.97 +10.85% 787.82

5 19.63 11.95 +39.12% 28661.79 30836.33 -7.59% 14.15

Avg. 20.23 11.32 +43.40% 29540.16 27526.49 +6.31% 802.97

Std. Dev. 2.86 0.60 0.06 15123.50 13474.12 0.10 610.47

1 14.41 6.86 +52.42% 45342.57 49013.24 -8.10% 30.37

2 15.48 7.08 +54.28% 59042.98 59688.85 -1.09% 29.63

3 15.30 7.09 +53.68% 35786.04 38054.24 -6.34% 19.59

4 14.68 6.33 +56.85% 44418.75 44715.23 -0.67% 24.90

5 11.01 6.71 +39.06% 51380.39 52557.04 -2.29% 25.57

Avg. 14.18 6.81 +51.26% 47194.15 48805.72 -3.70% 26.01

Std. Dev. 1.82 0.31 0.07 8648.64 8137.64 0.03 4.32

CPU Runtime (sec)

1 20.63 10.92 +47.05% 254595.65 272510.51 -7.04% 897.64

2 19.84 9.92 +50.01% 244543.49 256507.72 -4.89% 1708.85

3 18.90 11.13 +41.14% 280238.95 283295.92 -1.09% 606.38

4 21.65 10.32 +52.35% 230950.91 253376.90 -9.71% 787.82

5 22.42 10.07 +55.10% 219805.08 233395.91 -6.18% 1165.34

Avg. 20.69 10.47 +49.13% 246026.81 259817.39 -5.78% 1033.20

Std. Dev. 1.40 0.53 0.05 23243.05 19123.84 0.03 428.58

1 29.13 12.46 +57.22% 348720.48 378682.93 -8.59% 1920.94

2 22.83 11.90 +47.88% 320817.44 347875.77 -8.43% 3122.47

3 18.47 12.65 +31.49% 332047.93 341126.78 -2.73% 982.64

4 27.66 11.74 +57.55% 316247.71 332132.93 -5.02% 3359.78

5 22.07 11.45 +48.12% 296791.54 335916.60 -13.18% 2673.97

Avg. 24.03 12.04 +48.45% 322925.02 347147.00 -7.59% 2411.96

Std. Dev. 4.34 0.50 0.11 19239.41 18593.23 0.04 969.01

Total

Weighted wait time (hour)

TotalImprovementFinal Improvement FinalInitial

ImprovementFinal

Total

31

Depots

600

Outages

140

PLT

Restoration time (hour)Large Size

31

Depots

500

Outages

140

PLT

InitialInitial ImprovementFinal

Initial

Final Improvement Total

10

Depots

100

Outages

40

PLT

Initial Final Improvement Initial

Total

2

Depots

7

Outages

2

PLT

Small Size Restoration time (hour) Weighted wait time (hour)

Initial Final Improvement Initial Final Improvement

Final Improvement Total

3

Depots

10

Outages

3

PLT

Initial Final Improvement Initial

10

Depots

100

Outages

40

PLT

Weighted wait time (hour)

Initial Final Improvement

Medium Size Restoration time (hour)

Initial Final Improvement

Table 1. Results- before and after applying the tabu-search metaheuristic

