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Abstract

The neighbourhood polynomial of a graph G is the polynomial neighG(x) =
∑
x|S|

where the sum is taken over all sets of vertices S ⊂ V (G) which have a common

neighbour in G. We begin with some formulas for computing the neighbourhood

polynomial for common families of graphs and graph operations. We then show

the neighbourhood polynomial and domination polynomial DG(x) are linked by the

equation neighG(x)+DG(x) = (1+x)n, and prove that computing the neighbourhood

polynomial is NP-hard. Concerning the roots of the neighbourhood polynomial, we

consider when all the roots are real and what bounds we can place on them. We

show that the possible rational roots of neighbourhood polynomials are exactly those

numbers of the form −1/2n with n ∈ N. We also answer the question of the closure

of the neighbourhood roots, which is (−∞, 0] for the real roots and all of C for the

complex roots. Finally, we use random graphs to show that almost all neighbourhood

polynomials do not have all real roots.
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Chapter 1

Introduction

1.1 Background

Since Birkhoff first defined the chromatic polynomial of a graph in his 1912 paper [2],

several graph polynomials have been defined and studied, including the neighbour-

hood polynomial. Before we can examine these graph polynomials, we must first

discuss a number of graph theory terms and establish the notation we will use. We

will begin with a definition of a graph.

Definition 1.1.1. A graph G = (V (G), E(G)) consists of a vertex set V (G) and

an edge set E(G) containing unordered pairs of vertices.

Each of the two vertices associated with an edge are called the endpoints of

the edge. If the two endpoints of an edge are the same, the edge is called a loop.

Multiple edges are edges which have the same pair of endpoints. A simple graph

has no loops or multiple edges, so each edge has a unique pair of distinct endpoints.

We call a graph finite if |V (G)| and |E(G)| are both finite. Every graph we

consider will be finite and simple.

Example 1.1.1. Let G be a graph with V (G) = {a, b, c, d, e} and E(G) = {ab, ac, bd,
be, cd, de}. Then G is a finite and simple graph. See Figure 1.1 for a visual represen-

tation of G.

For any two vertices u, v ∈ V (G), we say that u and v are adjacent and write

u ∼ v if uv ∈ E(G).

Definition 1.1.2. Let G be a graph. The (open) neighbourhood of a vertex u ∈
V (G) is the set of all vertices in G adjacent to u, denoted NG(u) = {v ∈ V (G) |u ∼ v},
or just N(u) when the corresponding graph is made obvious through context. We call

the elements of N(u) the neighbours of u. The closed neighbourhood NG[u] =

NG(u) ∪ {u} includes u as well. For a set of vertices U ⊆ V (G), we define the
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Figure 1.1: Example of a Graph

common neighbourhood N(U) to be the intersection of the neighbourhoods of the

vertices contained in U , that is N(U) =
⋂
u∈U N(u). The elements of N(U) are the

common neighbours of the set U .

Example 1.1.2. Let G be the graph in Example 1.1.1 and consider vertex a. Since b

and c are the only vertices adjacent to a, we can write a ∼ b and a ∼ c. We can also say

the neighbourhood of vertex a contains b and c and write N(a) = {b, c}. Similarly,

N(e) = {b, d}. If we let U = {a, e}, then their common neighbourhood is N(U) = {b},
so the only common neighbour of a and e is b.

The degree of a vertex v is the size of its neighbourhood, and we say deg(v) =

|N(v)|. The degree sequence of a graph G is the sequence of the degrees of every

vertex of G, written in nonincreasing order.

Example 1.1.3. For the graph G in Example 1.1.1, vertex a has two neighbours, so

deg(a) = 2. The degree sequence of G is 3, 3, 2, 2, 2.

The complement of a graph G, denoted G, is the graph with vertex set V (G) =

V (G) and edge set E(G) = {uv |u, v ∈ V (G) and uv 6∈ E(G)}.
There are a few families of graphs which arise regularly due to their simplicity, so

we will define them here (see Figure 1.2 for some examples of these). The complete

graph (on n vertices), Kn, is the graph with n vertices and all possible edges.

The empty graph (on n vertices), its complement, is denoted Kn and has n

vertices and no edges. The path graph on n vertices, Pn, consists of n vertices

V (Pn) = {v1, v2, . . . , vn} and n − 1 edges E(Pn) = {v1v2, v2v3, . . . , vn−1vn}. The
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cycle graph on n vertices, Cn, consists of n vertices V (Cn) = {v1, v2, . . . , vn} and n

edges E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

A subgraph H of a graph G has vertex set V (H) ⊆ V (G) and edge set E(H) ⊆
E(G). A subgraph is an induced subgraph if u, v ∈ V (H) and uv ∈ E(G) implies

uv ∈ E(H). Two vertices u and v are connected if G contains as a subgraph a path

which starts at u and ends at v. A graph G is connected if every pair of vertices

u, v ∈ V (G) is connected. Otherwise, the graph is disconnected. The (connected)

components of a graph are the connected induced subgraphs which are maximal in

size.

A tree is a graph which is connected and does not contain a cycle (i.e. it is

acyclic). If a tree T has n vertices, it must have n− 1 edges [30]. A forest is a (not

necessarily connected) graph, all of whose components are trees. A leaf is a vertex

v of degree deg(v) = 1, so named because every tree other than K1 has at least one

leaf.

K5

P5

C5 A Tree

Figure 1.2: Examples of Common Families of Graphs
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1.2 Graph Polynomials

A graph polynomial is essentially just a way of assigning a polynomial to a graph,

typically defined in such a way that the polynomial encodes useful information from

the graph. Many graph polynomials, including the neighbourhood polynomial, can

be defined based on an underlying structure called a simplicial complex. Given a

finite set X, a simplicial complex or complex on X is a collection C of subsets of

X which is closed under containment. The vertices of the complex are the elements

of X and the faces of the complex are the elements of C. We call the maximal faces

with respect to containment the facets or bases of the complex, and the cardinality

of the largest face or faces the dimension of the complex.

The f-vector or face-vector for a complex of dimension d is the vector

(f0, f1, . . . , fd), where fi is the number of faces of C with i elements. From this we

can define the f-polynomial, which is just the generating function of the f-vector,

fC(x) =
d∑
i=0

fix
i.

Several different graph polynomials have been studied besides neighbourhood

polynomials. One of the first to be defined is the chromatic polynomial π(G, x),

which is a function which maps x to the number of valid colourings of the vertices of

G with x colours (a valid colouring is one which assigns different colours to adjacent

vertices). Initially defined by Birkhoff [2], they have been widely studied [4, 6, 27],

including investigations into the behaviour of their roots [8, 10].

As an example, consider the complete graph Kn. For any integer x ≥ n we can

form a valid colouring by choosing any of x colours for one vertex, then any of the

remaining x − 1 colours for the next, and by continuing in this manner arrive at

x(x − 1)(x − 2) · · · (x − n + 1) distinct colourings. This process includes every valid

colouring of Kn, and so we can conclude that

π(Kn, x) = x(x− 1)(x− 2) · · · (x− n+ 1).

Note that if 0 ≤ x < n then π(Kn, x) = 0, which correctly encodes the fact that

we cannot colour Kn with fewer than n colours. Also, π(Kn, x) happens to be a

polynomial in x, which was not explicitly guaranteed by our definition, but does in

fact happen for any graph [1].
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Another example of a graph polynomial is the independence polynomial, which

is the generating function for the number of independent sets of a graph of various

sizes (an independent set is a set of vertices which contains no edges). Indepen-

dence polynomials [11, 14, 19–21, 25, 26, 28] and their roots [9, 12, 13] have attracted

considerable interest. Let ik be the number of independence sets of size k in a graph

G with n = |V (G)|. The independence polynomial of G is,

i(G, x) =
n∑
k=0

ikx
k.

Similarly, if we let mk be the number of matchings with k edges of a graph G with n

vertices, then we can use this to define the matching polynomial µ(G, x), where a

matching is a set of edges of G with no endpoints in common. We assume m0 = 1

since the empty set is a matching with no edges, and let

µ(G, x) =
n∑
k=0

(−1)kmkx
n−2k.

The matching polynomial has also been the subject of several studies, such as [20–22].



Chapter 2

Neighbourhood Polynomials

The neighbourhood complex N (G) of a graph G with vertex set V is the collection

of subsets S ⊂ V for which every element of S has a common neighbour in G. That

is, any face S ∈ N (G) is a subset of the neighbourhood of one of the vertices of G.

Since any subset of S ∈ N (G) will still have the same common neighbour as S, this

collection is closed under containment, as required to be a complex.

Definition 2.0.1. The neighbourhood polynomial of a graph G with neighbour-

hood complex N (G) is the f-polynomial of N (G), that is,

neighG(x) =
∑

S∈N (G)

x|S|.

We note that the degree of the neighbourhood polynomial is just the maximum

degree of the graph.

2.1 Known Formulas for Families of Graphs

In their paper on neighbourhood polynomials, Brown and Nowakowski [15] calculate

the neighbourhood polynomials for a number of families of graphs which will be useful

to us and which we summarize in Table 2.1. The first of these is the complete graph

Kn, for which any set of vertices has a common neighbour, except of course the entire

set. Thus the coefficient of xk in neighKn
(x) is

(
n
k

)
for all 0 ≤ k ≤ n − 1, which can

be written more succinctly as

neighKn
(x) = (1 + x)n − xn.

In the case of the path Pn on n ≥ 2 vertices, every vertex except the two endpoints

has a unique pair of neighbours (contributing an x2 term) and every vertex has a

common neighbour (contributing an x term) since there are no isolated vertices.

6
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Family Neighbourhood Polynomial
Complete Graphs Kn (1 + x)n − xn
Paths Pn 1 + nx+ (n− 2)x2

Cycles Cn, n 6= 4 1 + nx+ nx2

Cycles Cn, n = 4 1 + 4x+ 2x2

Complete Bipartite Graphs Km,n (1 + x)m + (1 + x)n − 1

Table 2.1: Formulas for the Neighbourhood Polynomial of Common Graph Families

These along with the empty set are the only sets which share a common neighbour,

so

neighPn
(x) = 1 + nx+ (n− 2)x2.

The cycle graph Cn is very similar to the path, as it can be formed by adding an

edge to Pn connecting the two endpoints. With the exception of n = 4, the only effect

of this new edge is to add two new pairs of vertices with common neighbours, and so

for n = 3 and n ≥ 5 we have 1 +nx+nx2. However, in the case of C4, the two newly

created pairs are precisely the pairs we started with, and so neighC4
(x) = neighP4

(x).

Overall, this means

neighCn
(x) =

1 + nx+ nx2, n 6= 4

1 + 4x+ 2x2, n = 4.

For the complete bipartite graph Km,n, we simply note that any subset of the first

partite set has a common neighbour (namely anything in the second partite set), and

similarly for subsets of the second partite set. This counts the empty set twice, so

after accounting for this we are left with

neighKm,n
(x) = (1 + x)m + (1 + x)n − 1.

Finally, given the degree sequence of the graph, which can be found in polynomial

time, we can roughly approximate the neighbourhood polynomial by counting every

possible subset of the neighbourhoods of each vertex, that is,

neighG(x) ≈
∑

v∈V (G)

(1 + x)deg(v).

Of course, this overcounts any sets of vertices with multiple common neighbours.

For the empty set and individual vertices, it is not too difficult to account for this
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overcounting, and so a first order approximation was found for a graph G with n

vertices and m edges.

neighG(x) =
∑

v∈V (G)

(1 + x)deg(v) − (2m− n)x− (n− 1). (2.1)

This still overcounts sets of size two or larger which have multiple common neigh-

bours, but if such a set exists then G must have C4 as a subgraph, although not

necessarily an induced one. If we call graphs which do not have C4 as a subgraph

C4-free, then the above approximation is exact for the family of C4-free graphs.

Theorem 2.1.1. [15] For a C4-free graph G with n vertices and m edges, equation

2.1 holds.

This implies that for C4-free graphs, the neighbourhood polynomial depends only

on the degree sequence of the graph.

2.2 Graph Operations

One graph operation whose effect on the neighbourhood polynomial is simple to track

is that of adding a leaf to a graph. If G is a graph with a leaf u, then u has exactly

one neighbour, say v. Then any set of vertices in G−u with a common neighbour will

also have a common neighbour in G. In addition, any subset of the neighbourhood

of v in G − u along with the vertex u will form a set of vertices in G that has v as

a common neighbour. As long as v has another neighbour, these are the only new

elements of the neighbourhood complex formed by adding a leaf, so we can relate the

neighbourhood polynomials of G and G− u.

Proposition 2.2.1. Let G be a graph with a vertex u of degree 1 ( i.e. a leaf), where

the only neighbour of u is v of degree deg(v) ≥ 2. Then,

neighG(x) = neighG−u(x) + x(1 + x)deg(v)−1.

Proof. The result follows immediately from the preceding discussion by noting that

v has deg(v)− 1 neighbours in G− u.

Note that the condition that deg(v) ≥ 2 is required, or else adding the leaf u

will add {v} to the neighbourhood complex by giving v a neighbour. This does not

happen in any other case and so will not be counted correctly by the formula.
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Leaves are of special interest in the study of one particular family of graphs of

course, trees. Since every tree except K1 and K2 has a leaf which satisfies the con-

dition for Proposition 2.2.1, we can use the proposition as a reduction formula for

the neighbourhood polynomials of trees. This gives us another way to write the

neighbourhood polynomial of a tree.

Theorem 2.2.2. Let T be a tree with n = |V (T )| ≥ 2, and define,

L = {v ∈ V (T ) | deg(v) = 1},

the set of leaves of T . Then,

neighT (x) = 1 + 2x+
∑

v∈V (G)\L

deg(v)−1∑
k=1

x(1 + x)k. (2.2)

Proof. Starting with the tree T , we can remove leaves one by one until we are left

with only a single edge, the graph K2. Alternatively, starting with the graph K2, for

which neighK2
(x) = 1 + 2x, we can construct T by iteratively adding a leaf n − 2

times. We can track the effect of this process on the neighbourhood polynomial by

using Proposition 2.2.1.

If v ∈ L, then v is a leaf in the final graph T so we never add a leaf to it. Otherwise,

deg(v) ≥ 2, so at some point in our construction of T we added deg(v)− 1 leaves to

v.

The first of these was added when v was a leaf itself, the second when v had 2

neighbours, and in general when we add the kth leaf to v in this process it has k

neighbours, so adding leaves to v adds

deg(v)−1∑
k=1

x(1 + x)k

to the neighbourhood polynomial of the tree. Summing this over every non-leaf of T

gives us the total effect of this construction on the neighbourhood polynomial. Since

we start with neighK2
(x) = 1 + 2x, we are left with our result.

Corollary 2.2.3. If T is a tree with n ≥ 3 vertices, then,

• neighT (−1) = −1, and,
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• neighT (−1/2) < 0, and,

• neighT (x) = 0 for some x ∈ (−1/2, 0).

Proof. If we let x = −1 in (2.2), then every term involving a power of 1 + x vanishes

and we are left with neighT (−1) = 1 + 2(−1) = −1. If instead we let x = −1/2,

the first two terms sum to zero and we note that every term in the double sum will

be negative, as they are the product of −1/2 and a power of 1/2. Since n ≥ 3,

there is at least one term in the double sum, so neighT (−1/2) < 0. Finally, we know

neighT (0) = 1 because this is true for any neighbourhood polynomial, and since this

is positive we must have a root in the interval (−1/2, 0) by the Intermediate Value

Theorem.

Note that this says the neighbourhood polynomial of every tree on three or more

vertices has a real root in the interval (−1/2, 0). This is interesting to us, as many

graphs have neighbourhood polynomials without any real roots.

Another graph operation which interacts well with the neighbourhood polynomial

is the lexicographic product of a graph G with the empty graph Kn, as shown by

Brown and Nowakowski [15].

Proposition 2.2.4. [15] For any graph G with neighbourhood polynomial neighG(x),

the neighbourhood polynomial of the lexicographic product G[Kn] is,

neighG[Kn](x) = neighG((1 + x)n − 1).

Proof. For any set S of vertices with a common neighbour in G, we can replace each

vertex in S with a nonempty subset of the n corresponding vertices in G[Kn] to

get a set of vertices in G[Kn] with a common neighbour. This is accounted for by

substituting (1 + x)n − 1 into the original generating function neighG(x). Since the

vertices of G were replaced with empty graphs, every set of vertices with a common

neighbour in G[Kn] has the above form, so we are done.

2.3 Relationship with the Domination Polynomial

The neighbourhood polynomial of a graph G is directly related to the domination

polynomial of the complement graph G. To draw the connection, we need a pair of

definitions.
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Definition 2.3.1. For a graph G with vertex set V (G), a set S ⊂ V (G) is a domi-

nating set if every vertex v 6∈ S is adjacent to a vertex in S.

Definition 2.3.2. For a graph G with dk dominating sets of size k, the domination

polynomial of G, denoted DG(x), is

n∑
k=1

dkx
k =

∑
S

x|S|,

where the second sum is taken over all dominating sets S.

We can now relate this to the neighbourhood polynomial.

Theorem 2.3.1. For any graph G on n vertices, the following equation holds.

neighG(x) +DG(x) = (1 + x)n

Proof. The theorem relies on the fact that a set of vertices S with a common neighbour

in G corresponds directly to a non-dominating set in G and vice versa, as first noted

in [5].

If S has a common neighbour v 6∈ S in G, then there are no edges between v and

any element of S in G. Thus, S is not a dominating set of G since v is not in S nor

is it adjacent to any element of S.

If S is a non-dominating set of G, then there exists a vertex v 6∈ S which is not

adjacent to any element of S in G. Therefore v is adjacent to every element of S in

G, so S has a common neighbour in G, namely v.

This tells us that the neighbourhood polynomial of G is equal to the generating

function for the non-dominating sets of G. Since every subset of the vertices of G is

either dominating or not (and not both), and because the generating function for any

subset of the n vertices is (1 + x)n, the generating function for the non-dominating

polynomial of G is simply (1 + x)n − DG(x). Setting this equal to neighG(x) and

rearranging yields the result.

This result allows us to extend knowledge about the neighbourhood polynomial

to the domination polynomial. Each of the formulas in Section 2.1 can be used to

find the dominating polynomial of the complementary graph. For example,

DKn
(x) = (1 + x)n − neighKn

(x) = xn,
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though this is more easily derived by noting that the entire vertex set is the only

dominating set of the empty graph.

2.4 Complexity

The formulas and relationships mentioned throughout this chapter are useful for

computing the neighbourhood polynomials of specific graphs, but there is no known

efficient method for computing the neighbourhood polynomial of an arbitrary graph.

In order to clarify what we consider efficient and ultimately show that computing the

neighbourhood polynomial is difficult in general, we must discuss some complexity

theory.

In their book [17] on the subject, Garey and Johnson define a number of terms

useful to us and for which we will give an informal overview. A decision problem

is a problem which, for each given input, can only have a “yes” or “no” answer. If an

algorithm runs for at most O(nk) simple operations (e.g. addition, multiplication) for

any input of size n and some fixed natural number k, then we say that the algorithm

requires polynomial time to run. If a polynomial time algorithm exists which will

solve a decision problem, we say that the decision problem belongs to class P.

If it is possible to verify that the answer to a decision problem is “yes,” given some

additional information (called a certificate), then we say that the decision problem

belongs to class NP. For example, while determining if a large number can be factored

may be difficult, only one division operation is required to verify a number can be

factored if we are given a factor, so the decision problem “can N be factored?” is in

NP.

The class NP-complete contains decision problems in NP which any member

of NP can be reduced to in polynomial time. In other words, we mean that if an

algorithm A exists to solve a NP-complete problem X, then for any problem Y in

NP there exists a polynomial time algorithm to convert an input for Y into an input

for X such that algorithm A with this input will correctly answer problem Y . The

utility of this class is that if a polynomial time algorithm exists for any member of

NP-complete, then a polynomial time algorithm exists for every problem in NP. This

would prove that P=NP, which is generally thought to be false.

Finally, if a problem can be reduced to an NP-complete problem in polynomial
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time but is not necessarily in NP, we say the problem is NP-hard. The problems in

NP-hard do not need to be decision problems, they can be of arbitrary form. Similar

to NP-complete, the problems in NP-hard likely can not be solved in polynomial

time, since the existence of a polynomial time algorithm would imply the existence

of a polynomial time algorithm for every problem in NP.

We now return to the neighbourhood polynomial, starting with a result on the

complexity of computing the value of the polynomial at a given location.

Theorem 2.4.1. Computing the value of neigh(t) for a real number t 6∈ {−2,−1, 0}
is NP-hard.

Proof. Assume there exists a real number t 6∈ {−2,−1, 0}, such that for any graph,

computing the value of neigh(x) at x = t is possible in polynomial time.

Now we will consider a graph G and its complement H ∼= G. If they have n

vertices, the degree of the neighbourhood polynomial of H is at most n− 1, so there

exist coefficients a0, a1, . . . , an−1 such that neighH(x) = a0 + a1x + · · · + an−1x
n−1.

Now recall that, by Proposition 2.2.4,

neighH[Km](t) = neighG((1 + t)m − 1),

and so we can find the value of neighH(x) at x = (1 + t)m − 1 for 2 ≤ m ≤ n by

computing the value of neighH[Km](t) for each m. Constructing the graph H[Km]

involves creating mn ≤ n2 vertices and deciding whether or not the edge between

each of the at most
(
n2

2

)
= O(n4) pairs of vertices exists, so this can be done in

polynomial time. Then by assumption we can compute the value of neighH[Km](x)

at x = t in polynomial time as well. This gives us the following system of equations
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with the variables ai.

a0 + a1t+ · · ·+ an−1t
n−1 = neighH(t)

a0 + a1((1 + t)2 − 1) + · · ·+ an−1((1 + t)2 − 1)n−1 = neighH((1 + t)2 − 1)

= neighH[K2](x)

...

a0 + a1((1 + t)n − 1) + · · ·+ an−1((1 + t)n − 1)n−1 = neighH((1 + t)n − 1)

= neighH[Kn](x)

This system has n equations and n unknowns, so it has a solution if and only if

the determinant of the following matrix has a nonzero determinant.

M =


1 t t2 · · · tn−1

1 (1 + t)2 − 1 ((1 + t)2 − 1)2 · · · ((1 + t)2 − 1)n−1

...
...

...
. . .

...

1 (1 + t)n − 1 ((1 + t)n − 1)2 · · · ((1 + t)n − 1)n−1


This matrix is a Vandermonde matrix [24], that is, each row of the matrix is

composed entirely of consecutive powers of a number, namely Mi,2 in the ith row. If

we let ci = Mi,2 = (1 + t)i − 1, then the determinant of M can be found from the

following well-known formula [24],

det(M) =
∏

1≤i<j≤n

(cj − ci)

=
∏

1≤i<j≤n

((1 + t)j − (1 + t)i)

=
∏

1≤i<j≤n

(1 + t)i((1 + t)j−i − 1).

Thus det(M) = 0 if and only if (1 + t)i = 0 or (1 + t)j−i = 1 for some i and j.

Since t is real, the only solutions to either of the above equations are t = −2, t = −1,

and t = 0, all of which do not occur by assumption. Thus det(M) 6= 0, so the system

of equations has a unique solution.
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Computing the values of the coefficients ai is possible in O(n3) time (via Gauss-

Jordan elimination), and so we can compute the neighbourhood polynomial of H in

polynomial time.

By Theorem 2.3.1,

neighH(x) +DG(x) = (1 + x)n,

where DG(x) is the dominating polynomial of G. So we can subtract neighH(x) from

(1 + x)n to get the dominating polynomial of G in polynomial time. Then we can

easily find the smallest k such that xk has a nonzero coefficient in DG(x), which is

the domination number of G (the cardinality of a smallest dominating set of G).

Thus we have a polynomial time algorithm to determine the domination number of

an arbitrary graph G, which is known to be NP-hard [17]. This reduction allows us

to conclude that for all real numbers t other than possibly −2, −1, or 0, it is NP-hard

to compute the value of neigh(t).

In particular, this implies that computing the value of neigh(1), which is the

cardinality of the neighbourhood complex, is NP-hard. This provides an answer to

Problem 6 in [15].

We can expand this result to complex t by noting that the proof only requires

t does not satisfy (1 + t)i = 0 nor (1 + t)j−i = 1 for all integers 1 ≤ i < j. The

first equation only has the solution t = −1. The second equation can be satisfied

whenever 1 + t is a root of unity ω (that is, ω ∈ C satisfies ωn = 1 for some natural

number n). This proves the following corollary.

Corollary 2.4.2. Computing neigh(t) for any complex number t which is not −1 or

ω − 1 for some root of unity ω is NP-hard.

Note that computing neigh(0) is trivially possible in polynomial time, since it

is always equal to 1. It is not clear how difficult it is to compute neigh(t) at the

remaining values of t, namely −1 and the set {ω − 1 |ωn = 1, ω 6= 1, n ∈ N}.
If we can compute the entire neighbourhood polynomial in polynomial time then

we can compute its value anywhere in polynomial time, so we also get the following

result which provides an answer to Problem 5 in [15].

Corollary 2.4.3. Computing all of the coefficients of the neighbourhood polynomial

is NP-hard.
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Keep in mind that computing the coefficients of the highest and lowest degree

terms is often easy. For example, the coefficient of xd in a neighbourhood polynomial

of degree d can be found by considering the vertices of the graph with degree d and

eliminating vertices of this class that have the same neighbourhood as one of their

classmates until the only vertices left have distinct neighbourhoods, which can be

done fairly quickly. On the lower end, the constant term is again always 1, and the

coefficient of x is the number of vertices of degree at least one. Thus it is the middle

terms of the polynomial which are difficult to calculate, and so while we can often

compute a handful of the coefficients of the neighbourhood polynomial in polynomial

time, it is difficult to compute the entire polynomial.

The results in this section have corresponding results for the domination polyno-

mial. In particular, computing the domination polynomial is difficult in general.

Corollary 2.4.4. Computing all of the coefficients of the domination polynomial is

NP-hard.

Proof. Theorem 2.3.1 allows us to compute the coefficients of the neighbourhood

polynomial in polynomial time given the domination polynomial of the complimen-

tary graph. By Corollary 2.4.3, computing the coefficients of the neighbourhood

polynomial is NP-hard, so computing the coefficients of the domination polynomial

must be at least as difficult.

2.5 Additional Formulas for Families of Graphs

In addition to the formulas presented in Section 2.1, there are a few more families of

graphs for which we would like to have the general form of their neighbourhood poly-

nomials, as they will be mentioned again in Chapter 3 on the roots of neighbourhood

polynomials.

To construct the first of these families, consider the cycle Cn with vertices U =

{u1, u2, . . . , un} and the path Pk with vertices V = {v1, v2, . . . , vk}. Let TP be their

disjoint union plus an edge e between u1 and v1. Such a graph is sometimes called a

tadpole graph. Any subset of U or V which had a common neighbour before adding

e will still have a common neighbour, though the empty set is counted twice by this

argument. The only new elements of the neighbourhood complex after adding e will
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be {u1, v2}, {u2, v1}, {un, v1}, and {u2, un, v1}. Thus the neighbourhood polynomial

for TP is,

neighTP (x) = neighCn
(x) + neighPk

(x)− 1 + 3x2 + x3

=

1 + (n+ k)x+ (n+ k + 1)x2 + x3, n 6= 4

1 + (k + 4)x+ (k + 3)x2 + x3, n = 4

Note that for n 6= 4 this depends only on the total number of vertices n+k of TP and

not on the relative size of the cycle and path. We will occasionally write TPN to refer

to the tadpole graphs of size N = n+ k and for which n 6= 4 since they conveniently

share the same neighbourhood polynomial.

u1

u2

u3

u4

u5

un−1

un

v1 v2 v3 vk−1 vk

Figure 2.1: Tadpole Graph

Similarly, consider the disjoint union of Kk and Pn, which has neighbourhood

polynomial neighKk
(x) + neighPn

(x)− 1. If we let G be the result of adding an edge

between a vertex u in Kk and an endpoint v of Pn, then any nonempty subset of the

vertices of Kk\{u} along with v will form a unique element of the neighbourhood

complex of G that was not in the neighbourhood complex of the disjoint union. In

addition, if w is the lone neighbour of v in Pn then {u,w} has the common neighbour

v. This accounts for all the new elements of the neighbourhood complex created by

the addition of the edge, so,

neighG(x) = neighKk
(x) + neighPn

(x)− 1 + x((1 + x)k−1 − 1) + x2

= (1 + x)k − xk + x(1 + x)k−1 + (n− 1)x+ (n− 1)x2
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Of course, this only applies to nontrivial paths, which have at least two vertices.

However, it is easy to see that we get a similar formula for a graph which consists of

a complete graph Kn with an added leaf. This is our third and final family we will

consider in this section, and its neighbourhood polynomial is

(1 + x)n − xn + x(1 + x)n−1 = (1 + x)n−1(1 + 2x)− xn.



Chapter 3

Roots of Neighbourhood Polynomials

One of the most natural questions to consider, given a family of polynomials, is the

nature of the roots of these polynomials, which leads us to study the behaviour of

the roots of neighbourhood polynomials. Indeed, the roots of every graph polynomial

mentioned in Section 1.2 have been widely studied.

Birkhoff, who first defined the chromatic polynomial [2], later showed along with

Lewis in a 1946 paper [3] that the chromatic polynomial of a plane triangulation can

have no roots in any of the intervals (−∞, 0), (0, 1), (1, 2), or [5,∞). Later, Tutte drew

a connection between the roots of the chromatic polynomials of certain graphs and the

golden ratio [29]. Even more recently, Brown showed that all connected graphs with

n vertices and m edges have a chromatic root of modulus at least (m− 1)/(n− 2) [6].

In many areas of combinatorics, the concept of unimodality appears. A sequence

of real numbers a0, a1, . . . , an is said to be unimodal if there is a k ∈ {0, 1, . . . , n}
such that

a0 ≤ a1 ≤ · · · ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an−1 ≥ an.

Newton showed (see [16], for example) that if a polynomial
∑n

j=0 ajx
j has all positive

coefficients and all real roots, then the sequence a0, a1, . . . , an is unimodal. Thus we

are often interested in finding out when graph polynomials have all real roots. In [18],

Godsil and Gutman show that the roots of the matching polynomial are always real,

and that the roots of µ(G) are interlaced by the roots of µ(G− v) for any vertex v of

G. We consider the neighbourhood polynomials with all real roots in Section 3.1.

Alternatively, the closure of the roots of all the graph polynomials of a particular

kind can be considered, or one can find areas where the roots are dense. In [12],

Brown, Hickman, and Nowakowski show that the real independence roots are dense

in the interval (−∞, 0]. We show that the same is true for neighbourhood roots in

Section 3.4. We also find the closure of the complex neighbourhood roots in Section

3.5.

19
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Another method to gain insight on the nature of the roots is to attempt to bound

them. It has been shown [13], for example, that the roots of independence polynomials

for graphs with independence number β and number of vertices n have modulus at

most (n/β)β−1 + O(nβ−2). In Section 3.2, we consider what bounds may be placed

on the roots of neighbourhood polynomials.

3.1 Neighbourhood Polynomials with All Real Roots

As mentioned in the preceding section, it can be useful to consider when a graph

polynomial has all real roots. This is particularly true in the case of neighbourhood

polynomials, as an empirical analysis of the neighbourhood polynomial for small

graphs reveals the polynomial often has unimodal coefficients, and a result by Newton

[16] states that polynomials with all positive coefficients and all real roots must have

unimodal coefficients. Indeed, as shown in Appendices A and B, every graph on four

or five vertices has a neighbourhood polynomial with unimodal coefficients. There

are neighbourhood polynomials which are not unimodal, as shown in [15], but they

do not appear to be common. The appendices also reveal that many neighbourhood

polynomials have nonreal roots, an idea we will expand on in Section 3.6, but some

neighbourhood polynomials have all real roots and we desire a way to characterize

them.

The neighbourhood polynomial never has nonnegative real roots, as its coefficients

are all positive, but it can have negative real roots or complex roots. Two families of

graphs in particular always have all real roots: nontrivial paths, and cycles of size at

least 4.

It can be readily verified that neighC4
(x) = 1 + 4x + 2x2 has all real roots. For

cycles Cn with n > 4, the neighbourhood polynomial is neighCn
(x) = 1 + nx + nx2,

which has two roots.

x =
−n±

√
n2 − 4n

2n
= −1

2
±
√
n2 − 4n

2n

These two roots are real (and centred at −1/2) for all n > 4.

Similarly, the path Pn has neighbourhood polynomial neighPn
(x) = 1 +nx+ (n−

2)x2 as long as n ≥ 2. The trivial case of a lone vertex gives rise to the constant

polynomial 1, which has no roots. For nontrivial paths, the neighbourhood polynomial
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has two roots,

x =
−n±

√
n2 − 4n+ 8

2n− 4
,

which are always real as n2 − 4n+ 8 > 0 for all n.

Cycles and paths are the only connected graphs with maximum degree 2, and this

relationship will allow us to obtain the following.

Theorem 3.1.1. If G is a graph with degree at most 2, its neighbourhood polynomial

has no nonreal roots, unless G is the disjoint union of K3 and isolated vertices.

Proof. If G is the disjoint union of K3 and isolated vertices, it is easy to verify neighG

has two nonreal roots. Otherwise, we first note that the only connected graphs of

degree at most 2 are the cycles and paths. So G is the disjoint union of cycles, paths

of length at least 2, and isolated vertices.

Note that C4 is unique among cycles in that its neighbourhood polynomial does

not follow the pattern neighCn
= 1 +nx+nx2. To simplify our computations, we will

take advantage of the fact that neighC4
(x) = neighP4

(x). This and the form of the

neighbourhood polynomial of a disjoint union allows us to replace each copy of C4 in

G with a copy of P4 without changing the neighbourhood polynomial. We call this

new graph H and note that since neighH(x) = neighG(x) the roots of each polynomial

will be the same.

Let M1 be the size of the largest cycle in H and M2 the size of the largest path.

Let ci be the number of copies of Ci in H for 3 ≤ i ≤ M1, and let pj be the number

of copies of Pj for 2 ≤ j ≤M2. Then,

neighH(x) = 1 +

M1∑
i=3

ci(neighCi
(x)− 1) +

M2∑
j=2

pj(neighPj
(x)− 1).

By the construction of H, c4 = 0, so,

neighH(x) = 1 +

M1∑
i=3

ci(ix+ ix2) +

M2∑
j=2

pj(jx+ (j − 2)x2)

= 1 + x

M1∑
i=3

cii+ x2

M1∑
i=3

cii+ x

M2∑
j=2

pjj + x2

M2∑
j=2

pj(j − 2).

Now, let N1 =
∑M1

i=3 cii, which is the total number of vertices of H contained in

a cycle. Also, let N2 =
∑M2

j=2 pjj, the total number of vertices of H contained in a
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path. Finally, let N3 =
∑M2

j=2 pj ≥ 0, the number of path components of H. These

definitions allow us to simplify our expression for neighH ,

neighH(x) = 1 +N1x+N1x
2 +N2x+ (N2 − 2N3)x2

= 1 + (N1 +N2)x+ (N1 +N2 − 2N3)x2.

Let N = N1 + N2, which is the number of vertices of H contained in any cycle

or path, or the number of nonisolated vertices of H. Equivalently, N is the number

of nonisolated vertices of G. Thus neighH(x) = neighG(x) = 1 +Nx+ (N − 2N3)x2.

The roots of this quadratic are real whenever the discriminant N2 − 4N + 8N3 is

nonnegative. Since N3 ≥ 0, the discriminant is clearly nonnegative if N ≥ 4. We will

handle the remaining cases individually.

If N = 0, then all vertices of G are isolated, so neighG(x) = 1 which has no roots

at all.

The case N = 1 is not possible, as N only counts vertices in paths of length at

least 2 and vertices in cycles, and so we cannot have just 1.

If N = 2, then G must be the disjoint union of P2 and some number of isolated

vertices, since there is no cycle of length 2. Then neighG(x) = 1 + 2x which has

x = −1/2 as its only root, which is of course real.

Finally, if N = 3, then either G contains a copy of C3
∼= K3 along with some

isolated vertices (which is the graph excluded in the theorem statement), or else it

consists of P3 along with some isolated vertices and so neighG(x) = 1+3x+x2, which

has two real roots.

There are families of graphs whose neighbourhood polynomials have all real roots

and which have maximum degree greater than 2, however. For example, consider the

graphs formed by attaching a leaf to any vertex of Pn−1 other than one of its end-

points (so as not to simply construct Pn). All of them have the same neighbourhood

polynomial, namely,

1 + nx+ (n− 1)x2 + x3.

This formula holds because there are n vertices, all of which have a neighbour, so

the coefficient of x is n. There are n− 3 pairs of vertices with a common neighbour

along the path, and in addition 2 pairs created by attaching the leaf v to vertex
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u (each pair consists of v and one of the neighbours of u in the path). Thus the

coefficient of x2 is n− 1. Finally there is a single set of three vertices with a common

neighbour, these are the neighbourhood of u, and so we have a lone x3 term.

We claim the following.

Proposition 3.1.2. Let p(x) = 1+nx+(n−1)x2 +x3, the neighbourhood polynomial

of any graph consisting of Pn−1 plus a leaf attached at a non-endpoint vertex. Then

if n ≥ 6, the polynomial p(x) has all real roots, and the leftmost of these roots lies in

the interval (−(n− 2),−(n− 3)).

Proof. We will calculate the polynomial at the following locations,

p(0) = 1

p(−1) = −1

p(−2) = 2n− 11 > 0

p(−(n− 3)) = n2 − 9n+ 19

p(−(n− 2)) = −2n+ 5 < 0

We find that n2 − 9n + 19 = 0 when n = 9/2 ±
√

5/2, or roughly n ≈ 3.38 and

n ≈ 5.62, so p(−(n − 3)) > 0 for all n ≥ 6. The sign changes above give us the

location of all three roots of p(x): the polynomial has a root in the intervals (−1, 0)

and (−2,−1), and in particular the leftmost root lies in (−(n− 2),−(n− 3)). Since

p(x) is a cubic with three real roots, it must have all real roots. Note that if n < 6,

there are only two permissible cases, n = 4 and n = 5 (otherwise the path is too short

to have a non-endpoint vertex). It can be directly verified that p(x) does not have

all real roots in these two cases.

These are not the only graphs with all real roots. As discussed in Section 3.2

on bounding the roots of the neighbourhood polynomial, the tadpole graphs have

all real roots as long as the total number of vertices is at least five. Other graphs

yield neighbourhood polynomials with all real roots as well, such as the cycle C5

with any one of the missing edges added in (i.e., the graph formed by adding an

edge between a pair of non-adjacent vertices in C5). Its neighbourhood polynomial,
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neighC5+e(x) = 1 + 5x + 7x2 + 2x3, has three real roots, but it does not fit into any

of the families mentioned above.

Many other examples of graphs whose neighbourhood polynomials have all real

roots exist as well. Many of the smaller ones have similarities to the families men-

tioned, such as cycles with more than one path attached to different vertices, graphs

that are nearly cycles except for a small number of added edges, or complete graphs

with a small number of removed edges. Beyond seven or so vertices, the structures

of graphs with this property become harder to characterise.

It is not clear if there is a maximum degree of a neighbourhood polynomial with all

real roots either. So far we have presented neighbourhood polynomials up to degree

3 with all real roots. Due to Theorem 2.1.1, the neighbourhood polynomial of C4-free

graphs depends only on the degree sequence of the graph. Using this and the fact

that trees are always C4-free, we have found trees of maximum degree 4 and 5 which

have neighbourhood polynomials with all real roots through brute force calculation,

which leads us to conjecture neighbourhood polynomials with all real roots can have

arbitrarily large degree.

The smallest trees whose neighbourhood polynomial have degree 4 and all real

roots have 13 vertices and degree sequence 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 4. Their neigh-

bourhood polynomial is neighT (x) = x4 + 8x3 + 18x2 + 13x + 1. An example of one

of these trees is shown in Figure 3.1.

Figure 3.1: A Tree with Max Degree 4 and All Real Neighbourhood Roots

For degree 5, the smallest such trees have 75 vertices. Their degree sequence

consists of forty-four 1’s, zero 2’s, twenty-one 3’s, nine 4’s and a single 5, and they all

have the neighbourhood polynomial neighT (x) = x5 + 14x4 + 67x3 + 127x2 + 75x+ 1.
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The sum of the degree sequence, 148, correctly implies such a tree would have 74

edges, which is sufficient to show such a tree exists [15].

For some C4-free graphs, it is possible to determine the neighbourhood polynomial

has a pair of nonreal roots by examining the degree sequence of the graph.

Theorem 3.1.3. For a graph G, let ∆ = maxv∈V (G) deg(v). If G is C4-free, has

at least one vertex of degree 2, and there exists k ∈ N with 3 ≤ k ≤ ∆ such that

deg(v) 6= k for all v ∈ V (G), then neighG(x) has at least two nonreal roots.

Proof. By Theorem 2.1.1, the neighbourhood polynomial of a C4-free graph with n

vertices and m edges is,

neighG(x) =
∑

v∈V (G)

(1 + x)deg(v) − (2m− n)x− (n− 1).

Making the substitution y = 1 + x yields,

p(y) =
∑

v∈V (G)

ydeg(v) − (2m− n)y − (2n− 2m− 1).

By Descartes’ Law of Signs, the number of positive real roots of p(y) is at most

the number of sign changes in the list of its coefficients. Similarly, the number of

negative real roots of p(y) is at most the number of sign changes in the list of the

coefficients of p(−y). Thus, the number of real roots is at most the total number of

sign changes in the two lists.

By assumption, the coefficient of yk is zero. Thus there are at most ∆ nonzero

coefficients in each polynomial p(y) and p(−y), which means at most ∆− 1 adjacent

pairs of coefficients of 2∆ − 2 pairs total. So the total number of sign changes is at

most 2∆− 2.

However, the coefficients of yj for 2 ≤ j ≤ ∆ and j 6= k are all positive or zero in

p(y), which eliminates ∆− 3 potential sign changes.

If 2m − n = 0, the coefficient of y is zero in both polynomials which eliminates

another 4 potential sign changes. Or, if 2n− 2m− 1 = 0, the constant coefficient is

zero in both polynomials which eliminates 2 potential sign changes. Otherwise, both

of these coefficients are nonzero. Since the constant coefficient has the same sign in

both polynomials and the coefficient of y has opposite sign in the two polynomials,

the sign of these two coefficients matches in one of the polynomials, eliminating 1
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potential sign change. The coefficient of y will also be positive in one of the two

polynomials, matching the sign of the coefficient of y2, eliminating 1 more potential

sign change. In all of these scenarios, at least 2 potential sign changes are eliminated.

Thus, at least ∆− 1 of the 2∆− 2 potential sign changes do not occur, so there

are at most ∆ − 1 sign changes. This implies there are at most ∆ − 1 real roots of

p(y), which is a polynomial of degree ∆, so p(y) has a nonreal root. In fact, it has a

pair of nonreal roots, since it has all real coefficients so nonreal roots occur only in

conjugate pairs. Finally, if y = x + 1 is a root of p(y) then x = y − 1 is a root of

neighG(x), so the neighbourhood polynomial has a pair of nonreal roots as well.

3.2 Bounding Neighbourhood Roots

We would like to find some bounds on the set of roots of neighbourhood polynomials.

This set is unbounded if we consider all neighbourhood polynomials [15], but if we

restrict the graphs we consider, this may also restrict the possible roots. For example,

the roots of neighbourhood polynomials of graphs of order n certainly have some

maximum modulus (this set is finite for fixed n), so perhaps a relationship exists

between this maximum modulus and n. For small n, we can calculate and plot every

neighbourhood root for graphs on n vertices; see Figures 3.2 through 3.5.

Looking at these plots, a few patterns are evident. The first is that the majority

of the roots, particularly the nonreal roots, tend to cluster around the negative real

axis and have relatively small modulus. This clustering is most obvious near −1/2.

In addition, there are a number of real roots, and at least for small graphs the roots

of largest modulus are always real. We conjecture that this pattern continues for all

n.

We wonder just how large the root of maximum modulus can be for a fixed n. To

that end, we will consider two families of graphs which have some of the largest roots

in modulus for the small graphs. These are the tadpole graphs and the graphs formed

by adding a leaf to a complete graph. In particular, we conjecture that the second

family have the roots of largest moduli for a fixed number of vertices, and that their

root of largest modulus happens to be a (negative) real number.
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Figure 3.2: Neighbourhood Roots of all Graphs on 4 Vertices

For the tadpole graphs, which consist of a cycle connected to a path by a sin-

gle edge attached to an endpoint of the path, the neighbourhood polynomial is

neighTPn
(x) = 1 +nx+ (n+ 1)x2 + x3, where n ≥ 5 is the total number of vertices of

the entire graph. For large enough n, this polynomial’s three roots appear to be real

and lie near −n,−1, and 0. To show this, note that neighTPn
(0) = neighTPn

(−1) = 1

and consider the value of the polynomial in the following places:

neighTPn

(
−1

n− 2

)
= 1− n

n− 2
+

n+ 1

(n− 2)2
− 1

(n− 2)3

=
−n2 + 7n− 11

(n− 2)3

< 0
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Figure 3.3: Neighbourhood Roots of all Graphs on 5 Vertices

for all n ≥ 5, and

neighTPn

(
−1 +

1

n− 3

)
=
−1

n− 3
+

1

(n− 3)2
+

1

(n− 3)3

=
−n2 + 7n− 11

(n− 3)3

< 0

again for n ≥ 5. The smallest nontrivial cycle and path have 3 and 2 vertices,

respectively, so requiring at least 5 total vertices is no restriction. Since neighTPn

changes sign at these locations, it has a real root in each of the intervals (−1,−1 +

1/(n − 3)) and (−1/(n − 2), 0). Also, neighTPn
is a cubic polynomial with two real

roots, so the final root must be real, and because the sum of the roots of a monic

cubic is the negative of the coefficient of x2, the third root must add to the first two to

yield −n−1. This implies that the third root lies in (−n−1/(n−3),−n+1/(n−2)).

Since neighTPn
(−1) = 1 and neighTPn

(−n) = 1 are both positive, there exists

an even number of roots (counting multiplicities) in the interval [−n,−1]. We have

already determined two of the three roots do not lie in this interval, so there is also at
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Figure 3.4: Neighbourhood Roots of all Graphs on 6 Vertices

most one root in [−n,−1]. Therefore there are exactly zero roots in [−n,−1], which

allows us to trim the interval in which our third root lies from (−n− 1/(n− 3),−n+

1/(n− 2)) to (−n− 1/(n− 3),−n). In summary, for n ≥ 5, one root of neighTPn
(x)

lies in each of the following intervals,(
−n− 1

n− 3
,−n

)
,

(
−1,−1 +

1

n− 3

)
,

(
− 1

n− 2
, 0

)
.

Next, we consider graphs formed by adding a leaf to a complete graph. More

precisely, start with the disjoint union of Kn and K1 and add an edge between any

vertex of Kn and the lone vertex of K1. We shall call this graph Gn for this section.

This graph has as its neighbourhood polynomial,

neighGn
(x) = (1 + x)n−1(1 + 2x)− xn,

as shown in Section 2.5. It can be verified directly that this graph on n+1 vertices has

the root of largest modulus, and that this root is a negative number, for 2 ≤ n ≤ 6.

We conjecture that this is the case for larger n as well.
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Figure 3.5: Neighbourhood Roots of all Graphs on 7 Vertices

We can show that neighGn
(x) has a root which tends toward−n/ ln(2) ≈ −1.4427n

as n→∞. To show this, we compute neighGn
(kn) for some real constant k,

neighGn
(kn) = (1 + kn)n−1(1 + 2kn)− (kn)n

= (kn)n
[(

1 + kn

kn

)n(
1 + 2kn

1 + kn

)
− 1

]
.

We are interested in real k < 0 since any roots of the neighbourhood polynomial

are negative, so with that assumption, the sign of the (kn)n factor alternates based

on the parity of n. So, consider the limit of the factor in the square brackets,

lim
n→∞

(
1 + kn

kn

)n(
1 + 2kn

1 + kn

)
− 1 = lim

n→∞

(
1 +

1/k

n

)n(
1 + 2kn

1 + kn

)
− 1

= 2e1/k − 1,

since limn→∞(1+x/n)n = ex. The expression 2e1/k−1 changes sign at k = −1/ ln(2),

so for any large and fixed n, the sign of neighGn
(x) will also change near x = kn =

−n/ ln(2), implying it has a root near that value.
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3.3 Integral and Rational Neighbourhood Roots

It is natural to wonder what integers or rational numbers, if any, can be roots of

neighbourhood polynomials. Before we answer this question, we must first show that

neighG(1) is always odd.

Theorem 3.3.1. For any graph G, the number neighG(1) is odd.

Proof. This follows from the fact that the number of dominating sets of a graph is

odd [5], and from Theorem 2.3.1, which states,

neighG(x) +DG(x) = (1 + x)n.

Substituting x = 1, we get DG(1) (the number of dominating sets) which is odd,

and 2n which is even, so neighG(1) must be odd.

Note that neighG(1) is just the sum of the coefficients of neighG(x), which is the

cardinality of the neighbourhood complex, so we have the following corollary.

Corollary 3.3.2. For any graph G, the cardinality of the neighbourhood complex,

|N (G)|, is odd.

Theorem 3.3.1 and the fact that neighG(0) = 1 is also always odd, gives us the

following result.

Corollary 3.3.3. For any graph G, the neighbourhood polynomial neighG(x) has no

integral roots.

Proof. Let G be a graph and a ∈ Z. If a ≡ 0 (mod 2), then neighG(a) ≡ neighG(0) ≡
1 (mod 2), and since zero is even this implies a is not a root. Otherwise, a ≡ 1

(mod 2), so neighG(a) ≡ neighG(1) ≡ 1 (mod 2), and again a is not a root.

We now turn to the subject of rational roots. By the Rational Root Theorem,

if the leading coefficient of neighG(x) is a, then the only possible rational roots are

±1/b where b divides a, as the constant term is always 1. It turns out that 1/b is a

root of a neighbourhood polynomial if and only if b is even.

Theorem 3.3.4. The numbers −1/2n for n ∈ N are all roots of neighbourhood poly-

nomials, and are the only rational numbers which are roots of neighbourhood polyno-

mials.
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Proof. For any n ∈ N, let G =
⋃n
k=1 K2, the disjoint union of n copies of K2. Then

neighG(x) = 2nx+ 1, which has a root at −1/2n.

Since the neighbourhood polynomial has no nonnegative roots, and by our previ-

ous discussion involving the Rational Root Theorem, the only other possible rational

roots are of the form −1/(2n+ 1) for n ∈ N.

Suppose a graph G and a natural number n exist such that −1/(2n + 1) is a

root of neighG(x). Let d be the degree of neighG(x), and let p(x) = xd neighG(1/x),

a polynomial with the same coefficients as neighG(x) but with their order reversed.

Since −1/(2n + 1) is a root of neighG(x), we must have that −(2n + 1) is a root of

p(x).

However, by Theorem 3.3.1, neighG(1) is odd, so

p(1) = 1d neighG(1/1) = neighG(1)

is odd too. Since −(2n+ 1) ≡ 1 (mod 2), we have p(−(2n+ 1)) ≡ p(1) ≡ 1 (mod 2),

which contradicts −(2n + 1) being a root of p(x). Thus −1/(2n + 1) is not a root

of any neighbourhood polynomial for any natural number n, so the only possible

rational roots are of the form −1/2n.

3.4 Closure of the Real Neighbourhood Roots

The closure of the real neighbourhood roots is at most (−∞, 0], since any real roots

of a neighbourhood polynomial are negative. We know from the discussion of tadpole

graphs in Section 3.2 that there is a sequence of roots that approach 0 and −1, so

they are both included at the very least.

Proposition 3.4.1. The closure of the set of real roots of neighbourhood polynomials

contains the interval (−∞,−1].

Proof. Let Uk =
⋃k
i=1K2 be the disjoint union of k complete graphs on two vertices

each, so Uk has 2k vertices and k edges. Let Gk,n = Uk ∪ C2n, the disjoint union of

Uk with an even cycle on 2n vertices. Then, for k ≥ 1 and n ≥ 3,

neighGk,n
(x) = 2kx+ (1 + 2nx+ 2nx2) = 1 + 2(n+ k)x+ 2nx2,
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which we claim has a root in the following interval,

I(k, n) :=

(
−1− k

n
,−1− k − 1

n

)
.

To confirm this, we calculate,

neighGk,n

(
−1− k

n

)
= 1 > 0,

and,

neighGk,n

(
−1− k − 1

n

)
= −n+ 2k − 2

n
< 0.

These have opposite sign, and so neighGk,n
(x) has at least one real root in the interval

I(k, n) by the Intermediate Value Theorem.

Finally, for any real number r < −1 and ε > 0, we can choose an n > 1/ε so that

width(I(k, n)) = 1/n < ε. Keeping n fixed, let k = d−n(r + 1)e, which is the ceiling

of a positive number and so k ≥ 1 and k ∈ N. Thus

k − 1 < −n(r + 1) ≤ k

−1− k − 1

n
> r ≥ −1− k

n
,

and so both r and a root of neighGk,n
(x) are in the closed interval I(k, n). Since this

interval also has width 1/n < ε, this yields a root of a neighbourhood polynomial

within ε of r, as desired.

Note that this proof relies on the disconnected graphs Gk,n to work, which leaves

open the question of the density of the real roots for connected graphs only.

It is also worth noting that only graphs of maximum degree two are required to

obtain this result. Graphs with maximum degree zero have no edges, and thus no

vertices have common neighbours, so their neighbourhood polynomial is the constant

neigh(x) = 1 which has no roots. Graphs with minimum degree one are essentially

disjoint copies of K2 and have neighbourhood polynomial neighm(x) = 2mx+1, where

m is the number of edges. This is because each endpoint of each edge is a unique

vertex which has a common neighbour with itself, namely the other endpoint of the

edge, and there are 2m endpoints. Each of these polynomials has exactly one root at

x = −1/2m, which are real and approach zero.
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Even connected graphs of maximum degree two are insufficient; these graphs are

characterised by paths and cycles. Other than the special case of C4, their neighbour-

hood polynomials are,

neighCn
(x) = 1 + nx+ nx2, n ≥ 5,

neighPn
(x) = 1 + nx+ (n− 2)x2, n ≥ 2,

from which we can use the quadratic formula to show both of these have roots which

approach −1 and 0 as n→∞. Thus, the roots of these polynomials are not dense in

the nonpostive real numbers.

Proposition 3.4.1 does not tell us if the real roots of neighbourhood polynomials

are dense or not in the interval (−1, 0). Many roots lie in this interval, so we suspect

the real roots may be dense there as well and thus on the entire negative real axis.

To show this, we will first need the following lemma.

Lemma 3.4.2. For all x ∈ (0, 1) and ε > 0 such that 0 < x − ε < x + ε < 1, there

exists δ > 0 such that the following union of intervals,

S =
∞⋃
n=0

((x− ε)n, (x+ ε)n) ,

contains the interval (0, δ).

Proof. The proof will hinge on the fact that the intervals that form S are not disjoint,

instead for large enough n they begin to overlap. To that end, let N ∈ N be such

that for all n ≥ N ,
n+ 1

n
<

ln(x− ε)
ln(x+ ε)

.

Since 0 < x − ε < x + ε < 1, we have ln(x − ε) < ln(x + ε) < 0, and so the right

hand side of the above equation is greater than 1. The left hand side monotonically

approaches 1 from the right as n→∞, so such an N exists.

Thus, for all n ≥ N ,

(n+ 1) ln(x+ ε) > n ln(x− ε)

ln
[
(x+ ε)n+1

]
> ln [(x− ε)n]

(x+ ε)n+1 > (x− ε)n,



35

which implies that the right endpoint of the (n+1)th interval lies to the right of the left

endpoint of the nth interval; that is, the two intervals have a nonempty intersection.

Therefore, for all N ′ ≥ N ,

S ⊃
N ′⋃
n=N

((x− ε)n, (x+ ε)n) =
(

(x− ε)N ′
, (x+ ε)N

)
,

because in this union all the intervals intersect with their neighbours, and so the union

contains everything from the left endpoint of the last interval to the right endpoint of

the first interval. Let δ = (x+ ε)N > 0 and note that if we take the limit as N ′ →∞
the left endpoint will approach zero since 0 < x− ε < 1. This gives us our result,

S ⊃ lim
N ′→∞

N ′⋃
n=N

((x− ε)n, (x+ ε)n) = (0, δ).

We can now provide an answer to Problem 2 in [15].

Theorem 3.4.3. The closure of the real roots of neighbourhood polynomials is the

negative real numbers (−∞, 0].

Proof. From Proposition 3.4.1 and the discussion that preceded it, the closure of

the real roots of neighbourhood polynomials contains zero and (−∞,−1], so all that

remains to be shown is (−1, 0).

Let x′ ∈ (−1, 0) and let ε > 0 be small enough such that x′− ε and x′+ ε are both

in (−1, 0) as well. To show the real roots of neighbourhood polynomials are dense in

the interval (−1, 0), we seek a real root of a neighbourhood polynomial in the interval

(x′ − ε, x′ + ε).

Let x = x′ + 1 so 0 < x− ε < x+ ε < 1. By Lemma 3.4.2, there exists δ > 0 such

that,

(0, δ) ⊂
∞⋃
n=0

((x− ε)n, (x+ ε)n) .

From the discussion of tadpole graphs in Section 3.2, there exists a sequence of roots

of neighbourhood polynomials which approaches −1 from the right. So, there exists

a graph G whose neighbourhood polynomial has a root ρ′ ∈ (−1,−1 + δ), and if we
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let ρ = ρ′ + 1 then ρ ∈ (0, δ). This means ρ ∈ ((x− ε)n, (x+ ε)n) for some n ∈ N, so

if we fix n to this value then,

(x− ε)n < ρ < (x+ ε)n. (3.1)

Similar to the proof of Corollary 3.5.1, we can use the lexicographic product

G[Km], which has neighbourhood polynomial neighG[Km](x) = neighG((1 + x)m − 1),

to find more roots of neighbourhood polynomials from the roots of neighG(x). Since

ρ′ is a root of neighG(x), the real number (ρ′ + 1)1/m − 1 = ρ1/m − 1 is a root of

neighG[Km](x) for all m ∈ N (ρ has a real mth root because ρ > 0).

In particular, ρ1/n − 1 is a real root of a neighbourhood polynomial, and by

Equation (3.1),

(x− ε)− 1 < ρ1/n − 1 < (x+ ε)− 1

(x′ − ε) < ρ1/n − 1 < (x′ + ε)

so this real root of a neighbourhood polynomial lies in the interval (x′ − ε, x′ + ε), as

desired.

3.5 Closure of the Complex Neighbourhood Roots

In [15], Brown and Nowakowski showed that the closure of the set of roots of neigh-

bourhood polynomials contains all of C except for possibly the unit disk centred at

z = −1. We can use Proposition 3.4.1 to show the closure is in fact the entire complex

plane, which solves Problem 1 of their paper.

Corollary 3.5.1. The closure of the set of roots of neighbourhood polynomials is all

of C.

Proof. Similar to the proof of Theorem 8 in [15], we can extend a line in C where

the roots of neighbourhood polynomials are dense to a larger region by replacing

the vertices of the graphs used above with independent sets of size m. That is, we

consider the lexicographic products Gk,n[Km].

The neighbourhood polynomial of Gk,n[Km] is,

neighGk,n[Km](x) = neighGk,n
((1 + x)m − 1),
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by Proposition 2.2.4.

Thus, if ρ is a root of neighGk,n
(x), then the m complex solutions of (1+x)m−1 = ρ

are roots of neighbourhood polynomials as well. We can rearrange this to (1 +x)m =

ρ+ 1, and note that the set

S =
{
ρ+ 1 | ρ is a root of neighGk,n

(x)
}

is dense in the entire negative real axis. We claim that the set of m-th roots of

elements of S are dense in the entire complex plane. If so, then the same goes for the

set of possible values of 1 + x, and so the set of roots of Gk,n[Km] are dense in the

plane as well since a translation of C is still C.

To verify our claim, let c ∈ C be any nonzero complex number and ε > 0. We

seek a root of a neighbourhood polynomial within a distance of ε of c. There exists δ

with 0 < δ < |c| such that if the argument and modulus of a complex number c′ are

within δ of the argument and modulus of c, then c′ is within ε of c.

Now there exists an m ∈ N sufficiently large that every nonzero complex number

has an m-th root with argument within δ of the argument of c. For this fixed value

of m, consider the interval J = ((|c| − δ)m, (|c| + δ)m), which is a nonempty subset

of the positive real numbers. By the density of S in the negative reals, there exists

ρ+ 1 ∈ S such that ρ is the root of a neighbourhood polynomial and |ρ+ 1| is in the

interval J . Then any m-th root of ρ + 1 will have modulus within δ of c, and one

of these m-th roots will have argument within δ of c as well, and so an m-th root of

ρ + 1 ∈ S lies within ε of c. Thus the closure of the set of m-th roots of elements of

S contains all of C except possibly zero, but since the closure of a set must be closed

it must contain zero as well, and so the closure of the m-th roots of the elements of

S is C as claimed.

3.6 Random Graphs

While it is difficult to characterise the families of graphs which have all real roots, we

can at least claim that most graphs have a nonreal root, in the sense that randomly

generated graphs have neighbourhood polynomials which have a nonreal root with

probability approaching 1. By randomly generated, we mean graphs Gn,p with n
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vertices where each possible edge exists independently with probability p ∈ (0, 1). To

show that these graphs usually have a nonreal root, we will use the following lemma

on the coefficients of such graphs.

Lemma 3.6.1. Given a randomly generated graph Gn,p with n its number of vertices,

p ∈ (0, 1) a fixed probability, and a fixed integer k ≥ 0, the coefficient of xk in

neighGn,p
(x) is

(
n
k

)
with probability approaching 1 as n→∞.

Proof. Let S ⊂ V (Gn,p) be a subset of the vertices such that |S| = k. Then for

any given vertex not in S, the probability that it is a common neighbour to all the

vertices in S is pk, so 1− pk is the probability that this is not the case. This applies

independently to all n−k vertices not in S, so the probability of the event that S has

no common neighbour is (1−pk)n−k. Let ES denote this event so P (ES) = (1−pk)n−k.
Now, the event that there exists a set S ⊂ V (Gn,p) with |S| = k such that ES

occurs (and thus that the coefficient of xk is not
(
n
k

)
) is just the union

⋃
S ES taken

over all possible subsets of k vertices. This allows us to find an upper bound of the

probability of this event, and we can use the fact that there are
(
n
k

)
possible subsets

of vertices of size k to get a closed form for this bound.

P

(⋃
S

ES

)
≤
∑
S

P (ES) =

(
n

k

)
(1− pk)n−k

To facilitate taking the limit of this expression, note that

0 ≤
(
n

k

)
(1− pk)n−k ≤ nk(1− pk)n−k

and so

nk(1− pk)n−k = exp
[
ln
(
nk(1− pk)n−k

)]
= exp

[
k ln(n) + n ln(1− pk)− k ln(1− pk)

]
Now we can take the limit of the expression inside the exponential. Since 1− pk < 1,

the expression ln(1 − pk) < 0. Thus the second term, n ln(1 − pk), grows negative

linearly with n, while the k ln(n) term and the constant term become negligibly small

relative to the second term. So, the expression inside the exponential approaches

−∞, which implies nk(1−pk)n−k → 0. Finally, since 0 ≤ P (
⋃
S ES) ≤ nk(1−pk)n−k,

we have that P (
⋃
S ES) → 0 as n → ∞. Therefore every set of k vertices of Gn,p
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has a common neighbour with probability approaching 1, so the coefficient of xk in

neighGn,p
(x) is

(
n
k

)
.

The proof of our next two results will require the Gauss-Lucas Theorem, so we

will state it below.

Theorem 3.6.2 (Gauss-Lucas). [23] Let R be the set of roots of a polynomial p(x),

and let Γ be the smallest convex set containing R ( i.e. the convex hull of R). Then

all of the roots of the derivative of p(x) will lie in Γ.

Theorem 3.6.3. The neighbourhood polynomial of a randomly generated graph Gn,p

on n vertices, where each possible edge exists independently with fixed probability 0 <

p < 1, has a nonreal root with probability approaching 1 as n→∞.

Proof. Let ∆ be the maximum degree of a vertex of Gn,p, and thus the maximum

degree of neighGn,p
(x) as well. The constant coefficient of neighGn,p

(x) is 1, since this

is always the constant coefficient for a neighbourhood polynomial.

By the preceding lemma, the coefficient of x is n with probability approaching 1

as n→∞, and similarly the coefficient of x2 is almost surely
(
n
2

)
. Thus, neighGn,p

(x)

almost always has the following form,

neighGn,p
(x) = a∆x

∆ + · · ·+ n(n− 1)

2
x2 + nx+ 1,

for some constant a∆ and so,

x∆ neighGn,p
(1/x) = x∆ + nx∆−1 +

n(n− 1)

2
x∆−2 + · · ·+ a∆.

Note that neighGn,p
(x) has all real roots if and only if x∆ neighGn,p

(1/x) has all

real roots as well. Now by the Gauss-Lucas Theorem, if x∆ neighGn,p
(1/x) has all

real roots, then the convex hull of its roots is a subset of R, and thus none of its

derivatives has a nonreal root. However,

d∆−2

dx∆−2
x∆ neighGn,p

(1/x) = (∆− 2)!

(
∆(∆− 1)

2
x2 + n(∆− 1)x+

n(n− 1)

2

)
,

which is a quadratic with discriminant

(n(∆− 1))2 − 4

(
∆(∆− 1)

2

)(
n(n− 1)

2

)
,
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which simplifies to the following,

n(∆− 1) (n(∆− 1)−∆(n− 1)) = n(∆− 1)(∆− n). (3.2)

Clearly n > 0, and for sufficiently large n we have ∆ − 1 > 0 with probability

approaching 1 as well. This is because otherwise otherwise ∆ ≤ 1, implying every

vertex has at most one neighbour. The probability of a particular vertex having at

most one neighbour is (1 − p)n−1 + (n − 1)p(1 − p)n−2, which approaches zero as

n → ∞, and the probability of this occurring for every vertex is even smaller. So n

and ∆ − 1 are both positive for sufficiently large n, and so (3.2) has the same sign

as ∆− n. The maximum degree of every vertex is always strictly less than n, so this

expression is negative. Thus the (∆ − 2)th derivative of x∆ neighGn,p
(1/x) has two

nonreal roots, so x∆ neighGn,p
(1/x) itself has at least two nonreal roots (a polynomial

with real coefficients cannot have a single nonreal root), and so neighGn,p
(x) has at

least two nonreal roots as well.

Corollary 3.6.4. The following statements about the roots of the neighbourhood poly-

nomial of the random graph Gn,p with notation from Theorem 3.6.3 and its proof all

hold with probability approaching 1 as n→∞.

1. There exists a root with modulus at most√
∆(∆− 1)

n(n− 1)
<

∆

n
.

2. There exists a root with real part at most −∆/n.

3. There exists a root with imaginary part at most

∆

√
∆− 1

n(n−m)

in absolute value.

Proof. From the proof of Theorem 3.6.3, the (∆−2)th derivative of x∆ neighGn,p
(1/x)

has the form,

(∆− 2)!

(
∆(∆− 1)

2
x2 + n(∆− 1)x+

n(n− 1)

2

)
.
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Before, we only calculated the discriminant of this quadratic, n(∆ − 1)(∆ − n), but

we can also explicitly calculate the roots.

r+, r− =
−n(∆− 1)±

√
n(∆− 1)(∆− n)

∆(∆− 1)

We know the discriminant is negative from before, so after some simplification these

roots become,

r+, r− =
−n
∆
± i
√
n(∆− 1)(n−m)

∆(∆− 1)
.

Finally we note that both roots have the same modulus, which is,

µ =

√
n2

∆2
+

n(n−m)

∆2(∆− 1)
=

√
n(n− 1)

∆(∆− 1)
.

Now, by Gauss-Lucas, this pair of roots must be within the convex hull of the

roots of x∆ neighGn,p
(1/x). So this polynomial must have a root with modulus at

least as large as µ, or else all of the roots (and thus their convex hull) would be

strictly contained in the circle |z| = µ which would prevent r+ or r− being inside

the convex hull. By similar reasoning, there must exist a root with real part at least

−n/∆, and a root with imaginary part at least as large in absolute value as the

imaginary parts of r+ and r−.

We can relate these roots to roots of the original neighbourhood polynomial,

neighGn,p
(x). The roots of x∆ neighGn,p

(1/x) are just reciprocals of the roots of

neighGn,p
(x), so from the conclusions in the last paragraph we can draw the three

new conclusions about the roots of the neighbourhood polynomial laid out in the

corollary.

First, the modulus of the reciprocal is the reciprocal of the modulus, and taking

the reciprocal flips the inequality, so neighGn,p
(x) has a root of modulus at most 1/µ.

Note that we can bound 1/µ by a simpler expression,

1

µ
=

√
∆(∆− 1)

n(n− 1)
<

√
∆2

n2
=

∆

n
,

because ∆ < n implies (∆− 1)/(n− 1) < ∆/n.

Second, for a complex number z = a+ ib, the real part of

1

z
=

a− ib
a2 + b2
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is
a

a2 + b2
≤ 1

a
,

so the real part of the reciprocal is at most the reciprocal of the real part. So we can

conclude that the neighbourhood polynomial neighGn,p
(x) has a root with real part

at most −∆/n.

Similarly, the absolute value of the imaginary part of 1/z for z = a+ ib is b/(a2 +

b2) ≤ 1/b, so if x∆ neighGn,p
(1/x) has a root with imaginary part at least as large

as the imaginary part of r+ in absolute value, then neighGn,p
(x) has a root with

imaginary part at most,

∆(∆− 1)√
n(∆− 1)(n−m)

= ∆

√
∆− 1

n(n−m)
,

in absolute value. Note that if this root has nonzero imaginary part (i.e. it is a

nonreal root), then its conjugate must exist as well to make two such roots.

As one final observation from calculations on small graphs, the nonreal roots of

random graphs tend to line up on a circle around −1. Also, the roots of largest

modulus tend to be real. For some examples of this, see Figures 3.6 through 3.10.
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Figure 3.6: Roots of 20 instances of neighGn,p
(x), n = 20, p = 0.2

Figure 3.7: Roots of 20 instances of neighGn,p
(x), n = 20, p = 0.5
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Figure 3.8: Roots of 20 instances of neighGn,p
(x), n = 20, p = 0.8

Figure 3.9: Roots of 20 instances of neighGn,p
(x), n = 25, p = 0.2
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Figure 3.10: Roots of 20 instances of neighGn,p
(x), n = 25, p = 0.5



Chapter 4

Conclusion

The study of the neighbourhood polynomial is still in its infancy. We have found new

ways to compute the polynomial. We found a relationship between the neighbourhood

polynomial and the domination polynomial, allowing us to find new results for each

polynomial using old results for the other. In particular, this allowed us to conclude

that computing the neighbourhood polynomial is NP-hard, motivating us to study

the properties of the polynomial in more indirect ways.

We examined the roots of the polynomial, including when these roots are all real

and what bounds we can place upon them. We were able to show there are no

integral roots, and that the rational roots are restricted to the form −1/2n, n ∈ N
(and that all such roots occur). We were able to find the closure of the real and

complex neighbourhood roots, and we were able to use random graphs to conclude

that almost all neighbourhood polynomials do not have all real roots.

Still, many questions remain, which provide plenty of room for further study. To

conclude, we will state and discuss a few of these remaining problems.

Problem 1. Which graphs have neighbourhood polynomials with all real roots?

As we discussed in Section 3.1, nontrivial paths and cycles of length at least

4 have all real neighbourhood roots, and there are other families which have all

real roots as well. However, empirical analysis reveals several graphs with all real

neighbourhood roots and which do not belong to any of the families found thus far,

such as the graph in Figure 4.1, which has a neighbourhood polynomial with all real

roots, 1 + 6x+ 11x2 + 6x3 + x4.

Problem 2. Do graphs of arbitrarily large maximum degree exist with all real neigh-

bourhood roots?

Since the maximum degree of the graph is the degree of its neighbourhood poly-

nomial, the total number of neighbourhood roots is always equal to the maximum

46
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Figure 4.1: Graph with All Real Neighbourhood Roots

degree of the graph. We provided examples in Section 3.1 of graphs with maximum

degree 1 ≤ ∆ ≤ 5 and all real neighbourhood roots. We conjecture that the answer to

this problem is “yes,” in fact it seems likely that trees with arbitrarily large maximum

degrees and all real neighbourhood roots exist since we were able to find examples for

∆ = 4 and ∆ = 5 through an exhaustive search. The tree with ∆ = 5 has 75 vertices

and was already computationally intensive to find, so finding larger examples will

require a less brute force approach, and ultimately one would hope to find a family

of graphs with increasing maximum degree and all real neighbourhood roots.

Problem 3. What is the maximum modulus root of the neighbourhood polynomials

of graphs on n vertices? Is it real?

For small graphs, it appears that the maximum modulus root is real, and is the

most negative root of the graph formed by adding a leaf to a complete graph. At

the very least, these graphs always have a large negative root, which approaches

−n/ ln(2) as n → ∞. We wonder if this is always the maximum modulus root or

if some other family of graphs eventually overtakes this family. If it does, perhaps

the maximum modulus root can be nonreal. Even if such a family does not exist,

one might consider what bounds can be placed on the modulus of the nonreal roots.

We are also interested in the minimum modulus of neighbourhood roots. In general

−1/2n is a root of a neighbourhood polynomial for n ∈ N so the modulus can be

arbitrarily small, but for specific sizes or families of graphs the minimum modulus is

likely nontrivial to find.

Problem 4. Which polynomials are the neighbourhood polynomial of some graph?

When is a neighbourhood polynomial unique, that is, for which polynomials is there

only one graph which has that polynomial as its neighbourhood polynomial?
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Neighbourhood polynomials have exclusively nonnegative integer coefficients, their

constant term is always 1, and the sum of their coefficients is odd. Beyond these

obvious restrictions, it is difficult to say if a particular polynomial is a neighbourhood

polynomial. There are certainly more conditions necessary, as for example p(x) =

1 + 11x+ 40x2 + 121x3 is not the neighbourhood polynomial of any graph. This can

be verified by using Sperner’s Lemma (see for example [7, p. 124]), which states that

for a complex on a set of order n, the f -vector of the complex {f0, f1, . . . , fd} satisfies

the following inequality for all i = 1, 2, . . . , d:

n− i+ 1

i
fi−1 ≥ fi.

The f -vector of the neighbourhood complex is the coefficients of the neighbourhood

polynomial, so the coefficients of any neighbourhood polynomial must also satisfy this

inequality. The coefficients of p(x) do not, because when n = 11 and i = 3 we have,

9

3
· 40 = 120 < 121.

Note that n = 11 follows from the coefficient of x being 11 and the fact that we can

ignore isolated vertices, as they have no effect on the neighbourhood polynomial.

We note that it is not the case that each graph has a unique neighbourhood

polynomial; for example neighP4
(x) = neighC4

(x) = 1 + 4x + 2x2. Still, one may ask

which neighbourhood polynomials do belong to only one graph up to isomorphism,

or how many nonisomorphic graphs have a particular neighbourhood polynomial.
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Appendix A

The Neighbourhood Polynomial and its Roots for all Graphs on Four Vertices

Graph Neighbourhood Roots Neighbourhood Polynomial

1

1 + 2x

x2 + 3x+ 1

x3 + 3x2 + 4x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

1 + 4x

3x2 + 3x+ 1

2x2 + 4x+ 1

x3 + 5x2 + 4x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

2x2 + 4x+ 1

2x3 + 6x2 + 4x+ 1

4x3 + 6x2 + 4x+ 1



Appendix B

The Neighbourhood Polynomial and its Roots for all Graphs on Five Vertices

Graph Neighbourhood Roots Neighbourhood Polynomial

1

1 + 2x

x2 + 3x+ 1

x3 + 3x2 + 4x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

x4 + 4x3 + 6x2 + 5x+ 1

1 + 4x

x2 + 5x+ 1

3x2 + 3x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

2x2 + 4x+ 1

x3 + 5x2 + 4x+ 1

x3 + 4x2 + 5x+ 1

x4 + 4x3 + 8x2 + 5x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

2x3 + 7x2 + 5x+ 1

2x2 + 4x+ 1

2x3 + 6x2 + 4x+ 1

x3 + 4x2 + 5x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

x4 + 5x3 + 9x2 + 5x+ 1

x3 + 4x2 + 5x+ 1

2x4 + 7x3 + 10x2 + 5x+ 1

3x2 + 5x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

3x2 + 5x+ 1

x3 + 6x2 + 5x+ 1

x4 + 4x3 + 10x2 + 5x+ 1

4x3 + 6x2 + 4x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

3x3 + 8x2 + 5x+ 1

x4 + 7x3 + 9x2 + 5x+ 1

5x2 + 5x+ 1

2x3 + 7x2 + 5x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

x4 + 6x3 + 10x2 + 5x+ 1

2x4 + 9x3 + 10x2 + 5x+ 1

3x3 + 8x2 + 5x+ 1

x4 + 6x3 + 10x2 + 5x+ 1
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Graph Neighbourhood Roots Neighbourhood Polynomial

3x4 + 10x3 + 10x2 + 5x+ 1

5x4 + 10x3 + 10x2 + 5x+ 1




