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Abstract

The random forest probability machine (RFPM) introduced by Dasgupta et al. (2014)

is a consistent, non-parametric regression technique that, when applied to binary

outcomes, enables calculation of predictor effect size estimates. Using simulation,

RFPMs are found to estimate main effects for binary and categorical predictors,

and interaction effects for binary predictors with minimal bias. These estimates are

almost as efficient as those from a correctly specified logistic regression model when

the data-generating model is logistic. The intuitive interaction detection method in

Dasgupta et al. (2014) is shown to be a relatively quick screening process to identify

any potential interaction effects, but should be used with caution. Using RFPMs

to estimate the effect of a continuous predictor produces estimates with minimal

bias when the effect size is linear and small. The RFPM methods are applied to

a large Nova Scotia dataset to identify and quantify risk factors for fetal growth

abnormalities.
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Chapter 1

Introduction

Relationships between observed variables and a binary outcome are typically exam-

ined using logistic regression. Logistic regression models are fairly straightforward to

estimate and interpret, and are easily implemented in all major statistical software

packages. However, logistic regression models can be cumbersome in high dimensional

problems and have a limited ability to incorporate complex interactions of predictors.

In order to obtain unbiased effect estimates and predictions, the logistic regression

model must be correctly specified, which is rarely achieved in practice.

Malley et al. (2012) have recently described the concept of a probability machine.

A probability machine is a consistent, non-parametric regression technique that, when

applied to binary outcomes, generates an estimated probability for each observation.

This predicted probability is equivalent to the conditional probability of success for

that observation given the set of predictors. A probability machine has many desirable

properties including that it does not require any assumptions about the distribution

of the data or the shape of the relationship of the predictors with the outcome, nor

does it require the explicit structural specification of the presence of interactions, and

can be used in high dimensional data sets.

Based on the concept of probability machines, Dasgupta et al. (2014) developed

random forest probability machines (RFPMs) using slight alterations of the random

forest learning algorithm introduced by Breiman (2001). A RFPM can be applied

to large data sets and high dimensional problems, and only requires specification of

which predictors are to be included rather than specifying an explicit model. RFPMs

can be used to estimate counterfactual probabilities of success at the individual level,

which enables for the calculation of various risk effect measures such as odds ratios,

risk ratios, and attributable risks. Subgroup-specific or sample estimates of risk can

be obtained by averaging over the appropriate individual estimates.

Dasgupta et al. (2014) have demonstrated the use of RFPMs in simulated scenarios

1
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and have proposed methods for main effect estimation, interaction estimation, and

interaction discovery for binary predictors. The use of RFPMs in simulated scenarios

to estimate effects for categorical or continuous predictors has yet to be shown. Also,

the calculation of confidence intervals for probability and effect size estimates obtained

using RFPMs has not yet been examined. Although the properties of RFPMs have

been tested in simulated scenarios, they have not been used with real life data yet.

The objective of this thesis is to further expand on the RFPM methodology pro-

posed by Dasgupta et al. (2014) and apply RFPM methods to a real life data set.

Chapter 2 consists of a literature review of risk estimation in epidemiology, and de-

scribes both logistic regression and RFPMs in detail. RFPMs are built using various

parameters of the random forest algorithm. The effects of these parameters in the

RFPM methodology on main effect estimation for binary predictors are examined in

Chapter 3. The problem of detecting and estimating interaction effects for binary

predictors using the the intuitive interaction detection method and the four-machine

RFPM method is addressed in Chapter 4. In Chapter 5, a method for construct-

ing confidence intervals for risk estimates derived from RFPMs using a bootstrap

method is outlined. The more complex issue of estimating risk effects for categori-

cal and continuous predictors is considered in Chapter 6. RFPM methods are then

used to identify potential risk factors for fetal growth abnormalities using a data set

derived from the Nova Scotia Atlee Perinatal Database in Chapter 7.



Chapter 2

Risk Estimation

The main goal of epidemiological research is often identifying associations between

exposures and outcomes. Traditionally speaking, these outcomes have been defined

in terms of disease and can be either expressed as continuous or discrete variables.

Linear regression is commonly used to analyze continuous outcomes such as blood

pressure or glucose levels, whereas logistic regression is commonly used to analyze

dichotomous outcome variables. In order to identify any association, exposures and

outcomes need to first be measured quantitatively. These measures are referred to as

absolute measures of disease frequency and can be of two different types, incidence

or prevalence.

Once the outcomes and exposures have been measured, their association can be

evaluated by calculating various measures of association or effect. Measures of associ-

ation or effect fall into two major categories: absolute difference measures and relative

difference or ratio measures (generally called relative risks). Lastly, the impact of the

removal of an exposure on the outcome can be evaluated by computing measures of

potential impact, such as attributable risk percent and population attributable risk

fraction. In this chapter, measures of disease frequency, association or effect, and

potential impact are discussed with a primary focus on relative difference or ratio

measures. Following the description of these different types of measures, methods for

estimation, including logistic regression, random forest and random forest probability

machines are outlined.

2.1 Risk estimation in biostatistics and epidemiology

Exposures and outcomes need first to be measured quantitatively using absolute mea-

sures of disease frequency, such as incidence and prevalence. Incidence is used to

indicate a proportion of newly developed cases of a disease or outcome, whereas

prevalence measures the frequency of an existing outcome either at one point in time,

3
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denoted point prevalence, or during a given period, denoted period prevalence (Szklo

and Nieto, 2014). Their association can be evaluated by calculating various measures

of association or effect, particularly, absolute difference measures and relative differ-

ence or ratio measures. Examples of absolute difference measures include attributable

risk or risk difference and number needed to treat, whereas examples of relative dif-

ference or ratio measures include risk ratio and odds ratio. Lastly, the impact of the

removal of an exposure on the outcome can be evaluated by considering two measures

of potential impact; impact of exposure removal on exposed and impact of exposure

removal on population.

For the subsequent sections, refer to the following typical 2×2 epidemiological

table with standard notation depicted in Figure 2.1. In this table there are a total

of (a + b) exposed and (c + d) nonexposed individuals. a exposed and c nonexposed

individuals develop the outcome of interest, whereas b exposed and d nonexposed

individuals do not develop the outcome of interest.

Figure 2.1: Notation and setup for a standard 2×2 contingency table

2.1.1 Measures of association and potential impact

Absolute difference measures

When the researcher is not primarily interested in how strongly the exposure is

associated with a particular outcome, but rather the real impact of exposure on

the incidence of outcome in a specific population, absolute difference measures are

used. When exposures are harmful, a common absolute difference measure is the at-

tributable risk (AR) or risk difference (RD). AR or RD is described as the difference

between the incidence rates in exposed and nonexposed groups. In other cases the
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exposure may be protective, so an equivalent measure to AR or RD is the absolute

risk reduction (ARR), and is expressed as the difference in incidence rates in nonex-

posed and exposed groups. An alternative absolute difference measure often used in

assessing the effectiveness of a treatment or exposure is the number needed to treat

(NNT). This measure describes the number of individuals who would need to receive

a specific treatment or exposure, on average, for one individual to benefit from the

exposed treatment (Szklo and Nieto, 2014).

Relative difference or ratio measures

Relative difference measures estimate the extent of an association between an expo-

sure and an outcome. Relative difference measures that use ratios to compare the

frequency of an outcome include risk ratios and odd ratios (or collectively referred to

as measures of relative risk). These ratios indicate how much more likely it is that an

exposed individual will develop the outcome compared with an unexposed individual.

If the relative risk is greater than one, then exposed individuals are at greater risk,

less than one, then exposed individuals are at lower risk, and equal to one, then there

exists no difference in risk between exposed and nonexposed individuals.

The risk ratio or relative risk (RR) of developing a specific outcome is expressed

as the ratio of the risk (or incidence) in the exposed group to that in the nonex-

posed group. Risk estimates for the exposed and nonexposed groups are a
a+b

and c
c+d

respectively and thus the RR can be calculated as follows

RR =
Risk of outcome in exposed

Risk of outcome in nonexposed

=
a/(a+ b)

c/(c+ d)
.

The odds ratio (OR) is a measure of the relative probabilities of outcome or disease.

The odds ratio compares the odds of the outcome among exposed individuals divided
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by the odds of disease among nonexposed individuals.

OR =
P(outcome|exposed)/(1− P(outcome|exposed))

P(outcome|nonexposed)/(1− P(outcome|nonexposed))

=
a/b

c/d

=
ad

bc
.

The odds ratio measure is appropriate for assessing the strength of the association

between exposure and outcome variables in case-control studies (first two groups are

identified where one is known to have the outcome and the other is known to not

have the outcome and then the researcher traces back to investigate exposure). The

risk ratio measure described above is more appropriate for measuring the association

in cohort studies (the study population known to not have the outcome of interest is

first identified by the exposure of interest and followed in time until the outcome of

interest occurs) (Szklo and Nieto, 2014).

Measures of potential impact

Attributable risk or risk difference is an absolute difference measure of association that

measures the excess incidence of the outcome that can be attributed to the exposure.

Considering measures of potential impact, attributable risk percent (AR%) is the

percent of the outcome in exposed individuals that can be attributed to the exposure.

Population attributable risk (PAR) is a measure often used when researchers wish to

apply measures of attributable risk from an epidemiological study to a real population.

PAR is defined as the incidence of outcome in the population that can be attributed

to the exposure of interest. A similar measure derived from PAR is the population

attributable fraction (PAF) and is defined as the proportion of the outcome in the

population that is attributable to the exposure (Szklo and Nieto, 2014).

2.2 Logistic regression

Logistic regression is a common model used to describe relationships between a binary

outcome and one or more independent predictors. This model can be used to examine

the conditional probability of the outcome of interest, given the set of predictors, and
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also evaluate the predictor effect size estimates using conditional odds ratios. In the

following section the logistic regression model is introduced with a brief discussion on

the additive and multiplicative interaction measures that can be obtained.

2.2.1 Theory and estimation

Consider the data set (x1, y1), ..., (xn, yn) where each observation i has a p dimensional

vector xi and a binary outcome yi. The observed binary response yi of the random

variable Yi can take on values of 0 or 1 (where yi = 1 indicates the occurrence of the

event of interest) with corresponding probabilities πi and 1 − πi respectively. The

response Yi for each observation i has the following Bernoulli distribution

p(Yi = yi) = πyi
i (1− πi)

1−yi ,

where the parameters π = (π1, ..., πn)
T are estimated from the data. Simply using

a linear regression model to relate the probabilities πi to the observed predictors xi,

say

πi = xT
i β,

where β is a vector of regression coefficients, allows πi to take on any real value. This

cannot guarantee that the predicted values πi will be in the correct range of (0, 1).

To circumvent this problem and to map probabilities from the restricted range to the

entire real line, the probability is transformed by first converting to odds and then

taking the logarithm,

ηi = logit(πi) = log

(
πi

1− πi

)
. (2.1)

Solving for πi in (2.1) gives

πi = logit−1(ηi) =
eηi

1 + eηi
. (2.2)

By assuming logit(πi) rather than the probability itself follows a linear model, the

logistic regression model can be defined as

ηi = logit(πi) = log

(
πi

1− πi

)
= xT

i β, (2.3)
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with inverse relationship defined as

πi =
ex

T
i β

1 + ex
T
i β

. (2.4)

The regression coefficients β = (β0, β1, ..., βp)
T are estimated using the method of

maximum likelihood. Since Yi ∼ Bern(πi) and assuming Y1, ..., Yn are independent,

the likelihood function is given by

L(β) =
n∏

i=1

πyi
i (1− πi)

1−yi .

Taking logs, the log-likelihood function is given by

ℓ(β) =
n∑

i=1

(
yi log(πi) + (1− yi) log(1− πi)

)

=
n∑

i=1

(
yi log

(
πi

1− πi

)
+ log(1− πi)

)
. (2.5)

Using the inverse relationship defined in (2.4), an expression for 1− πi is

1− πi = 1− ex
T
i β

1 + ex
T
i β

= (1 + ex
T
i β)−1. (2.6)

A final expression for the log-likelihood function is obtained by substituting (2.3) and

(2.6) in (2.5), giving,

ℓ(β) =
n∑

i=1

(
yi x

T
i β − log(1 + ex

T
i β)

)
. (2.7)

The maximum likelihood estimates are obtained by solving the likelihood equa-

tions, which result from setting the partial derivatives ∂ℓ(β)
∂βj

to zero, for j ∈ {1, . . . , p}.
The partial derivative of the log-likelihood for any parameter βj is given by,

∂ℓ(β)

∂βj

=
n∑

i=1

(
yi xij −

ex
T
i β

1 + ex
T
i β

xij

)
=

n∑
i=1

(yi −
ex

T
i β

1 + ex
T
i β

)xij

=
n∑

i=1

(yi − πi)xij,
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where πi depends on both the covariates xi and the regression coefficients β through

the logit transformation of (2.3). These likelihood equations cannot be solved explic-

itly and so a method called iteratively re-weighted least squares (IRLS) is used to

obtain β̂ numerically. The regression coefficients β in the model can be interpreted

as log odds ratio estimates. For example, the parameter βj is the change in the log

odds of the outcome per unit change in xj holding all other predictors constant. By

exponentiating βj, a much more intuitive value can be obtained, namely the odds

ratio, which was described in section 2.1.1. If xj is binary, the odds ratio exp(βj) is

the odds for xj = 1 compared with the odds when xj = 0.

Other previously mentioned popular quantities of interest in epidemiological stud-

ies are risk ratios. Logistic regression can only be used to obtain odds ratio estimates

and these estimates will approximate risk ratios only if the outcome is rare (≤ 10%).

When the outcome is rare, and referring to Figure 2.1, both a will be much smaller

than b, and c will be much smaller than d. This means that a+ b ≈ b and c+ d ≈ d

and thus,

RR =
a(c+ d)

c(a+ b)
≈ ad

bc
= OR.

2.2.2 Additive and multiplicative interactions

The logistic regression model can also be used to evaluate both multiplicative and

additive interaction effects among predictors. For simplicity, the case where both

predictors under consideration are binary is considered. Since only odds ratios can

be evaluated from the logistic regression model, interaction measures are evaluated

on the odds ratio scale. A multiplicative interaction measures the extent to which

the effect of both the predictors together exceeds the product of the effects of the two

predictors considered separately. A multiplicative interaction measure on the odds

ratio scale is the ratio of odds ratios (ROR) defined as

ROR =
OR11

OR10OR01

,

where OR10 and OR01 are exponentiated main effects, OR11 is the exponentiated sum

of the main and interaction effects, and the whole quantity is the exponentiated in-

teraction effect obtained from the model. If OR11/OR10OR01 > 1, the multiplicative
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interaction is said to be positive and if OR11/OR10OR01 < 1, the interaction is said

to be negative.

An additive interaction measures the extent to which the effect of the two predic-

tors together exceeds the effect of each considered individually. A measure of additive

interaction on the odds ratio scale, called the relative excess risk due to interaction

(RERIOR), can also be estimated using the parameters of a logistic regression model.

The RERIOR is defined as

RERIOR = OR11 −OR10 −OR01 + 1.

If RERIOR > 0, the additive interaction is said to be positive and if RERIOR < 0,

the interaction is said to be negative.

Although the logistic regression model is widely used for the analysis of binary

outcomes, its application comes with several drawbacks. Logistic regression requires

that the model be correctly specified, meaning that the user must exactly specify

which predictors appear and how they interact with each other. This may be chal-

lenging for the researcher, and if the model is misspecified, both predictions and effect

size estimates may be biased (Malley et al., 2012). Another drawback of the logistic

regression model is that only estimates of odds ratios can be obtained. When risk

ratios are the quantities of interest and cannot be obtained directly, the odds ratio is

calculated and often interpreted as a risk ratio. However, only when the prevalence

of the outcome is low (<10%) does the odds ratio approximate the risk ratio. The

odds ratio will overestimate the risk ratio when the risk ratio is greater than 1, and

will underestimate the risk ratio when it is less than 1 (Zhang and Yu, 1998).

2.3 Decision Trees and random Forests

The classification and regression tree (CART) model was first introduced by Breiman

et al. (1984) and provides solutions to regression and classification problems that

are both easily interpreted and can be clearly displayed graphically. CART machine

learning algorithms, such as decision trees, involve recursively splitting the predictor

space into smaller regions and using these regions to predict the response for a new

observation. Predicting the response for a new observation typically involves using

the mean of the training observations in the region to which the new observation
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belongs. Building on the notion of decision trees, Breiman (1996) introduced ensem-

ble methods such as bagging and random forests that combine the predictions from

multiple decision trees in order to make more accurate predictions than those from

any individual tree.

Decision trees can be applied to both regression and classification problems. Typ-

ically, regression trees are used when the response is a continuous variable, whereas

classification trees are more often used when the response is discrete. In the following

section, the algorithm for building both types of decision trees and their limitations

in response prediction is discussed. Following decision tree construction, the ran-

dom forest and bagging algorithms are presented and differences between the two are

highlighted.

2.3.1 Regression and classification decision trees

Since the classification and regression tree building algorithms differ only slightly in

a couple of steps, the regression tree algorithm is first presented, and then alterations

to the algorithm for building classification trees are considered.

Consider the data set (x1, y1), ..., (xn, yn) where each observation i has a p dimen-

sional predictor vector xi and an outcome yi with values on the real number line.

In the first step in constructing a regression tree, the predictor space is divided. In

this step, the goal is to take the predictor space, defined as the set of all possible

values for x1, x2, ..., xp, and split it into J distinct and non-overlapping regions, de-

noted R1, R2, ..., RJ . These regions can be thought of as high dimensional boxes that

minimize the residual sum of squares (RSS) defined as

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2,

where ŷRj
is the mean response for the observations within the jth region.

The way in which in the predictor space is partitioned into regions that minimize

the RSS is known as recursive binary splitting. Beginning at the top of the tree

(all observations in one region), the predictor space is successively split into two new

regions, which results in the formation of two new branches. The regions continue

to be split until a certain stop criterion is met. At each potential split into two new

branches, the best split is made at that particular point in time rather than a split
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that will lead to a better tree at a later step. The steps in regression tree construction

using recursive binary splitting are as follows:

1. Consider all possible predictors (x1, ..., xp) and all possible values for the cut-

point c for each of these predictors. Choose predictor xj and cutpoint c such

that splitting the predictor space into two distinct regions, {x|xj < c} and

{x|xj > c}, leads to the greatest possible reduction in the residual sum of

squares. In other words, for any value of j ∈ {1, . . . , p} and cutpoint c, define

the pair of regions R1 and R2,

R1(j, c) = {x|xj < c} and R2(j, c) = {x|xj ≥ c},

and choose j and c so as to minimize∑
i:xi∈R1(j,c)

(yi − ŷR1)
2 +

∑
i:xi∈R2(j,c)

(yi − ŷR2)
2,

where ŷR1 and ŷR2 are the mean responses for the observations in R1(j, c) and

R2(j, c) respectively.

2. Split one of the previously identified regions that results in the smallest reduc-

tion in RSS by repeating the process described in step 1.

3. Continue splitting the regions until a stopping criterion is reached. A stop-

ping criterion may be to continue until all regions contain no more than five

observations.

Once all the regions or terminal nodes are defined, the resulting regression tree

can be used to predict the response for a new observation. The predicted response

for any new observation is found by taking the mean response of the observations in

the terminal node in which the new observation resides. In many cases, the resulting

regression tree is too complex, leading to poor prediction performance. One solution

to this problem is to use tree pruning techniques such as reduced error pruning or cost

complexity pruning, which essentially take the resulting regression tree and remove

terminal nodes that do not provide additional information.

Building a classification tree is very similar to building a regression tree except that

the response variable is often qualitative rather than quantitative. Again, the goal
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is to split the predictor space into J distinct and non-overlapping regions, denoted

R1, R2, ..., RJ . However, the residual sum of squares is no longer used as the split

criterion. For making binary splits, measures such as the Gini index (G) or cross-

entropy (D) are used to evaluate the quality of a particular split. These two measures

are defined as

G =
K∑
k=1

p̂mk(1− p̂mk)

and

D = −
K∑
k=1

p̂mk log(p̂mk),

where p̂mk is the proportion of observations in the mth region that are from the kth

class. If all of the p̂mks are close to 0 or 1, both the Gini index and cross-entropy will

take a small value. These measures can be thought of as measures of node purity,

meaning that a node contains predominantly observations from a single class. The

best split is one that leads to an increase in node purity or minimizes either G or

D. Since the response is qualitative for classification trees, the predicted response is

the majority vote or the most commonly occurring class of the observations in the

terminal node in which the new observation resides.

Classification and regression trees are widely used since they are very easily inter-

preted and represented graphically. However, these methods can be limited in their

predictive accuracy compared to other regression and classification approaches. De-

cision trees can be very non-robust, meaning that a small change in the data set used

to construct the tree can have a large effect in the final estimated structure of the

tree. The predictive accuracy and robustness of decision trees can be improved by

aggregating many decision trees, and using machine learning ensemble methods such

as bagging and random forests.

2.3.2 Random forests

In order to improve the predictive accuracy and robustness of decision trees, Breiman

(1996) introduced the ensemble method bagging or bootstrap aggregation. Bagging

is a common statistical procedure for reducing the variance of a statistical learning
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method. An undesirable feature of decision trees is that the building procedure could

potentially yield quite different tree structures if it is applied repeatedly to distinct

data sets. Thus, bagging can be used to reduce this inherent high variance of the

method. Building on the bagging method, Breiman (2001) proposed the random

forest technique, which adds an additional layer of randomness that decorrelates the

trees. A collection of bagged trees could look very similar if there exists a very

strong predictor in the data set, since most or all trees will use this predictor in

the top split. If all bagged trees have a similar tree structure, the predictions from

the bagged trees will be highly correlated and not much improvement will be made

over the use of a single tree. Random forests provide a solution to this problem by

considering only a random subset of the predictors at each split. In both bagging

and random forests, a fixed number of trees are constructed, each using a different

bootstrap sample of the data. In bagging, each node is split using the best split among

all predictors, whereas in random forest, each node is split using the best among a

subset of predictors randomly chosen at that node. The algorithm for both ensemble

methods is illustrated below.

Consider a training data set drawn from a sample of independently and identically

distributed random variables (x1, y1), ..., (xn, yn), where each observation i has a p

dimensional predictor vector xi and an outcome yi taking values on the real number

line. The random forest (and bagging) algorithm for both classification and regression

is as follows:

1. Draw a bootstrap sample b of size n from the training data set where b is drawn

with replacement. Any observations in the original training data set not drawn

in b are denoted “out-of-bag” (OOB) observations.

2. Grow an unpruned classification or regression tree from the bootstrap sample b

using the recursive binary splitting procedure described in section 2.2.1 until a

minimum node size is achieved in each node. For the bagging ensemble method,

consider at each node the best split among all predictors, whereas for random

forests, choose the best split from among a random sample of predictors. For a

continuous response, the best split is the one that minimizes the residual sum of

squares (or the mean square error). For a discrete response, the best split is the

one that minimizes a dichotomous purity measure (Gini index or cross-entropy).
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3. For a regression tree, calculate the mean response in each terminal node of the

tree; for a classification tree, calculate the majority vote in each terminal node

of the tree.

4. Repeat steps 1-3 until the desired number of trees have been constructed.

5. Predict the response for a new observation by dropping it down each tree until

it resides in a terminal node and aggregate the predictions of all trees. For

regression random forest take an average of the mean responses in the terminal

nodes (step 3) in which the new observation resides. For classification random

forest, take the majority vote of the terminal nodes (step 3) in which the new

observation resides.

2.4 Probability machines

Machine learning methods such as random forest are often used in binary classifi-

cation problems due to their good discriminatory performance. A similar problem,

when group membership is not entirely the goal, is the problem of estimating the

probability of group membership. Classical parametric methods such as logistic re-

gression have been widely used for probability estimation, but come with several

drawbacks as discussed in section 2.2. Malley et al. (2012) propose a solution to this

problem by simply treating it as a non-parametric regression problem. Their solution

involves using readily available machine learning methods to estimate the conditional

probability function for a binary outcome. They refer to such learning machines as

probability machines (PMs).

A PM produces, on the individual level, a predicted conditional probability of

success given a set of predictors. This predicted probability is calculated without

imposing any restrictions on the structure of the predictors or the distribution of the

data. Using individual predicted conditional probabilities of success, various effect

measures can be estimated both on the individual level and for specific groups of

observations. Malley et al. (2012) have studied non-parametric regression machines,

including random forest regression, and have shown these regression machines to have

provable consistency properties under fairly general conditions. They refer to the use
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of random forest regression as probability machines as random forest probability

machines (RFPMs).

Estimating potential or counterfactual outcomes is often of interest to researchers.

When using the potential outcome framework, the outcome under each possible value

of a predictor, say x1, must be observable. However, only the outcome under the

actual value for x1 is observed, whereas the potential outcomes under the other pos-

sible values for x1 are considered to be missing data. Dasgupta et al. (2014) propose

that using probability machines, counterfactual outcomes in the context of a binary

outcome can be directly observed. In the following section, the use of random forest

as probability machines introduced by Malley et al. (2012) is discussed. Further con-

sideration of the potential outcome framework, and methods proposed for estimating

potential outcomes including G-computation, Imbens’ method, and the two-machine

RFPM are outlined in subsequent sections.

2.4.1 Random forest probability machines

In order to use the random forest algorithm developed by Breiman (2001) to estimate

the conditional probability function for a binary outcome, slight alterations must

be made. Consider a training data set drawn from a sample of independently and

identically distributed random variables (x1, y1), ..., (xn, yn) where each observation

i has a p dimensional predictor vector xi and a binary outcome yi. As in the usual

random forest procedure, a test subject is dropped down each tree in the forest until

it resides in a terminal node. The predicted response for a new observation can then

be found by either taking an average of the mean responses in the terminal nodes

for regression random forest, or taking the majority vote of the terminal nodes for

classification random forest.

In methods involving random forest probability machines, the goal is to estimate

conditional probabilities rather than predict an expected response. In regression

RFPMs, each tree provides a conditional probability estimate, which is obtained by

taking the proportion of observations in the training data set with an outcome value

of 1 in the residing node. The final probability estimate is obtained by taking an

average of all the individual tree estimates in the forest. The general procedure for

regression random forest as a probability machine is as follows:
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1. Draw a bootstrap sample b of size n from the training data set where b is drawn

with replacement. Any observations in the original training data set not drawn

in b are denoted “out-of-bag” (OOB) observations.

2. Grow a regression tree using the bootstrap sample b until a minimum node

size is achieved. This is done using the recursive binary splitting procedure

described in section 2.3.1 and using the random forest method, the best split

at each node is determined by using a random sample of the predictors.

3. Calculate the proportion of 1’s in each terminal node of the tree.

4. Repeat steps 1-3 to grow a specific number of trees.

5. The predicted probability of success for an observation is obtained by first drop-

ping the observation down each tree in the random forest until it resides in a

terminal node. The proportion of 1’s in these final nodes are then calculated.

The probability estimate of success for an observation is taken as the average

of the proportion of 1’s over all trees.

2.4.2 Estimating counterfactual outcomes

Consider a situation where there exists two groups of subjects, and each subject is

identical to another in the other group except for the value of one predictor, say x1,

where x1 is binary. In this ideal situation, it would be feasible to directly observe

the change in outcome in each observation that results from changing the value of

x1 by simply considering that observation’s counterpart in the opposite group. In a

more realistic situation, each subject can only take on a single value for x1 and as a

result, only one of two potential outcomes Yx1=0 and Yx1=1 is observed. These two

variables Yx1=1 and Yx1=0 are termed potential outcomes or counterfactual outcomes

because for each subject, one of Yx1=1 or Yx1=0 describes the subject’s true outcome

value (observed effect), and the other describes the outcome that would have been

observed in a situation that did not happen (counterfactual effect). Individual causal

effects can then be defined as the difference in a subject’s counterfactual outcomes,

ICE = Yx1=1 − Yx1=0. However, these individual causal effects cannot be calculated

exactly for any individual since both Yx1=1 and Yx1=0 are not observed (Hernan, 2004).
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Although both Yx1=1 and Yx1=0 are not observed, predictive models can be used

to judge reasonably well how one’s counterpart will behave. Several approaches have

been proposed to estimate counterfactual outcomes, two of which are regression-based

approaches, and are called G-Computation and Imbens’ method. The G-Computation

method, proposed by Snowden et al. (2011), uses a single multivariable regression

model to regress the outcome on baseline covariates. One baseline covariate say, xj,

is binary and estimating the counterfactual outcomes due to a change in this covariate

is of primary interest. Using the single regression model, two predicted outcomes are

estimated for each subject; one as if that subject had a xj value of zero and the other

as if that subject had a xj value of one. Individual causal effect (ICE) estimates of

xj for each subject can be calculated using the two predicted outcomes.

The other regression-based approach proposed to estimate counterfactual out-

comes was introduced by Imbens (2004). In this method, the outcome is regressed

on the baseline covariates using two models, say I0 and I1, where I0 is fit using the

data of observations with xj = 0, and I1 is fit using the data of observations with

xj = 1. Using I0 and I1, the predicted outcome is estimated for all subjects regard-

less of their value of xj. The prediction from I0 is the predicted outcome had that

subject expressed a xj value of zero (even if xj = 1) and the prediction from I1 is

the predicted outcome had that subject expressed a xj value of one (even if xj = 0).

Thus for each subject, the two counterfactual outcomes can be estimated, Î0 and Î1

and like G-computation, ICE estimates for xj for each subject can be obtained.

Both of the above regression-based methods require an explicit statement of the

regression model. Since probability machines provide estimates without a particular

model structure, they provide an alternative non-parametric approach to a similar

problem. The two regression-based methods provide a technique to estimate coun-

terfactual outcomes for a continuous outcome, whereas researchers may be interested

in estimating counterfactual probabilities of success for a binary outcome. Similarly

to Imbens’ regression-based method, regression random forests can be used as the

two predictive models rather than two regression models to estimate counterfactual

outcomes. When counterfactual probabilities of success rather than counterfactual

outcomes are of interest, two random forest probability machines can be used. Das-

gupta et al. (2014) call the use of two RFPMs to estimate counterfactual probabilities



19

of success the two-machine RFPM method. The two-machine RFPM method is the

primary focus of the following section, and so its use is discussed in detail with sim-

ulations to follow in Chapter 3.

2.4.3 Two-machine random forest probability machine

Consider a sample of size n with p binary predictors (x1, x2, . . . , xp) and a binary out-

come yi. Suppose the main interest is determining individual counterfactual probabil-

ities of success when the value of predictor x1 is changed. Predicting counterfactual

probabilities of success using the two-machine RFPM method is depicted in Figure

2.2 and outlined as follows:

1. Split the data set into two groups based on whether x1 = 0 or x1 = 1. Denote

these subgroups G1 and G0.

2. Within each subgroup, train a random forest probability machine (RFPM0 and

RFPM1) on the remaining p− 1 predictors (x2, x3, . . . , xp).

3. Obtain observed and counterfactual probabilities of success for each observation

by predicting from the two RFPMs. For an observation with x1 = 1, its observed

probability of success will be predicted from RFPM1 and its counterfactual

probability of success will be predicted from RFPM0, and vice versa for an

observation with x1 = 0.

For each observation i, an observed and a counterfactual probability of success are

predicted: p1i(y = 1|x2, x3, . . . , xp) and p0i(y = 1|x2, x3, . . . , xp). This enables for the

calculation of various effect measures for each observation i, e.g.

Risk ratio

RRi =
p1i
p0i

Odds ratio

ORi =
p1i/1− p1i
p0i/1− p0i
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Figure 2.2: Procedure for predicting individual observed and counterfactual proba-
bilities of success using the two-machine RFPM method

Attributable risk

ARi = p1i − p0i.

Risk estimates for the full sample are calculated by averaging over the individual

estimates

RRsample =

∑n
i=1 RRi

n
,

ORsample =

∑n
i=1 ORi

n
,
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or

ARsample =

∑n
i=1 ARi

n
.

When the underlying generative model is logistic, and the correct model is specified,

the sample odds ratio estimates obtained using the two-machine RFPM method are

equivalent to the β̂ coefficients obtained using logistic regression. Since probability

machines provide non-parametric estimates, different estimates will be obtained using

an incorrectly specified logistic model.



Chapter 3

Tuning parameter optimization for two-machine RFPM

method

The two-machine RFPM method outlined in Chapter 2 is implemented in R using

the randomForest (Liaw and Wiener, 2002) package. Although the outcome is bi-

nary, it is stored as a numeric variable rather than a factor variable, so as to apply

regression random forest (typically classification random forest is used for a discrete

outcome). Conditional probabilities of success for classification random forest are

estimated as the proportion of component trees which classify the result as a success.

Malley et al. (2012) have found classification random forest to be far less efficient

at probability estimation than regression random forest, and the consistency of the

probability estimates produced has yet to be demonstrated.

There are several tuning parameters that can affect the construction of a random

forest including mtry, ntree, and nodesize. The mtry parameter controls the num-

ber of randomly selected predictors used to determine the best split at each node,

and typically remains constant throughout the tree building process. The parameter

ntree specifies the number of trees to be used to construct the forest, and nodesize

is the minimum size of the terminal nodes. Here, nodesize acts as a stopping crite-

rion, meaning that once a minimum node size is achieved, no further splits will be

performed on this node.

After several uses of the two-machine RFPMmethod to estimate a number of main

effects and corresponding 95% confidence intervals, it became clear that the computa-

tion time is an issue, especially when the sample size is large. For example, consider a

data set of size n = 50000 where both the outcome and the predictors x1, x2, . . . , x10

are binary. Suppose three main effects are estimated with tuning parameters set

at mtry = 9 (all predictors used in random forest construction), ntree = 500, and

nodesize = 250. This is the most computationally intensive simulation setting that

is considered, and the computation time required to run this setting once on a 4-core

22
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CPU is approximately 300 seconds. This computation time gets larger as the num-

ber of main effects needed to estimate, and the number of predictors in the data set

increases. Running this simulation setting 1000 times is very time consuming and

unfeasible.

In order to decrease the computation time needed to both run each simulation

and compute individual main effect estimates, parallel computing is implemented

through use of the R packages doParallel (Analytics and Weston, 2015a) and foreach

(Analytics and Weston, 2015b). Parallel computing allows both main effect estimate

computations and simulations to be executed simultaneously rather than sequentially.

Alternative ways to reduce computation times such as the R package ranger, a fast

implementation of random forests for high dimensional data (Wright and Ziegler,

2015), were explored, but produced computation times similar to parallelelizing the

randomForest commands using doParallel and foreach. For the reasons given above,

simulations are run using a 48-core processor and any computation times reported

reflect this.

3.1 Simulations

In order to illustrate the two-machine RFPM method and compare its performance to

that of logistic regression when the generative model is truly logistic, consider Model

1

logit(p) = β0 + log(1.2)x1 + log(1.5)x2 + log(2)x3 + 0x4 + ...+ 0x10,

where x1, x2 and x3 are uncorrelated binary predictors with main effects of β1 =

log(1.2) = 0.182, β2 = log(1.5) = 0.405, and β3 = log(2) = 0.693. The remaining

predictors are independently generated, binary, and have no association with the

outcome. The intercept β0 is chosen so that P (y = 1) ≈ 0.3 and the predictors are

generated to have a randomly selected P (xi = 1) between 0.05 and 0.95.

3.1.1 Simulation 1: Optimizing tuning parameters for the two-machine

RFPM method

In Simulation 1, the effect of altering several tuning parameters on the log odds

ratio estimates obtained using the two-machine RFPM method is demonstrated. The
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tuning parameters considered are: mtry, the number of predictors randomly selected

at each node; ntree, the number of trees in the random forest; nodesize, the minimum

node size; and n, the sample size. Values considered for these parameters are: for

mtry, the suggested value ⌈√p⌉ = 3, the largest integer greater than
√
p, and 9; for

ntree, 100, 200 and 500; for nodesize, 250 and 5% of the sample size; and for sample

size, 5000, 10000, and 50000. Bias in the estimates is measured using % relative bias

and is calculated as

% relative bias =
¯̂
θ − θ

θ
× 100,

where
¯̂
θ is the mean of the simulated estimates and θ is the true value.

For each combination of parameter values (n, nodesize, mtry, and ntree), 1000

simulations are completed. Predictors are kept fixed under each choice of n, and a

new outcome vector is generated each time. As discussed in section 2.4.3, the two-

machine RFPM method can be used to estimate several risk measures, including

log odds ratios, risk ratios, and attributable risks, but only estimation of log odds

ratios is considered. Subject-specific log odds ratio estimates are calculated using

counterfactual probability estimates, and the main effect log odds ratio estimates for

β1, β2, and β3 are obtained by averaging over the subject-specific estimates. The

results are summarized in Table 3.1 where ns = nodesize, %bias = % relative bias

and the β values are log(1.2), log(1.5), and log(2), respectively.
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Table 3.1: Sample mean, standard deviation (sβ̂), and % relative bias (%bias) of log
odds ratio estimates, β1, β2, and β3, from Model 1 using various parameter specifi-
cations of the two-machine RFPM method. For completeness, two simulations are
reported for n =5000 at ns =250 =5% of 5000.

Simulation setting β1 = log(1.2) = 0.182 β2 = log(1.5) = 0.405 β3 = log(2) = 0.693

n ns mtry ntree mean sβ̂1
%bias mean sβ̂2

%bias mean sβ̂3
%bias

50
00

25
0

3

100 0.179 0.076 -1.78 0.403 0.068 -0.61 0.683 0.125 -1.49

200 0.175 0.074 -3.78 0.405 0.065 -0.08 0.681 0.120 -1.70

500 0.178 0.075 -2.43 0.405 0.069 -0.00 0.685 0.124 -1.21

9

100 0.181 0.078 -0.94 0.407 0.069 0.31 0.686 0.122 -1.07

200 0.176 0.076 -3.49 0.410 0.069 1.19 0.697 0.125 0.51

500 0.181 0.075 -1.01 0.408 0.068 0.58 0.692 0.123 -0.14

5%

3

100 0.177 0.074 -2.99 0.404 0.068 -0.27 0.680 0.123 -1.95

200 0.179 0.076 -1.67 0.405 0.067 -0.12 0.683 0.123 -1.42

500 0.178 0.075 -2.47 0.405 0.067 -0.23 0.687 0.122 -0.94

9

100 0.184 0.073 0.66 0.407 0.067 0.46 0.692 0.127 -0.14

200 0.187 0.074 2.34 0.408 0.067 0.55 0.696 0.124 0.48

500 0.184 0.075 0.97 0.409 0.069 0.85 0.691 0.123 -0.28

1
00

00

25
0

3

100 0.189 0.054 3.44 0.403 0.053 -0.56 0.691 0.044 -0.38

200 0.189 0.055 3.57 0.407 0.052 0.45 0.694 0.047 0.11

500 0.187 0.053 2.69 0.407 0.053 0.44 0.692 0.045 -0.14

9

100 0.187 0.056 2.27 0.408 0.055 0.67 0.695 0.046 0.33

200 0.184 0.057 0.89 0.407 0.055 0.35 0.699 0.045 0.77

500 0.181 0.056 -0.62 0.409 0.054 0.77 0.696 0.046 0.48

5%

3

100 0.191 0.056 4.63 0.405 0.054 -0.23 0.692 0.046 -0.19

200 0.191 0.055 4.74 0.406 0.054 0.08 0.692 0.047 -0.17

500 0.189 0.054 3.91 0.407 0.054 0.27 0.691 0.046 -0.37

9

100 0.185 0.057 1.43 0.405 0.053 -0.12 0.692 0.046 -0.18

200 0.184 0.057 1.00 0.409 0.055 0.78 0.694 0.045 0.16

500 0.184 0.056 1.05 0.408 0.054 0.70 0.697 0.046 0.48

5
00

0
0

25
0

3

100 0.182 0.020 -0.19 0.406 0.031 0.02 0.693 0.021 0.04

200 0.181 0.020 -0.65 0.405 0.028 -0.07 0.695 0.021 0.23

500 0.181 0.020 -0.50 0.404 0.029 -0.26 0.693 0.022 -0.04

9

100 0.183 0.021 0.50 0.408 0.030 0.53 0.697 0.021 0.57

200 0.184 0.021 0.69 0.407 0.030 0.38 0.697 0.021 0.58

500 0.182 0.020 -0.12 0.408 0.030 0.62 0.697 0.021 0.56
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Simulation setting β1 = log(1.2) = 0.182 β2 = log(1.5) = 0.405 β3 = log(2) = 0.693

n ns mtry ntree mean sβ̂1
%bias mean sβ̂2

%bias mean sβ̂3
%bias

50
00

0
co
n
t.

5%

3

100 0.185 0.020 1.43 0.406 0.028 0.15 0.691 0.021 -0.32

200 0.183 0.020 0.45 0.405 0.030 -0.22 0.691 0.021 -0.33

500 0.184 0.021 1.07 0.406 0.029 0.13 0.692 0.020 -0.20

9

100 0.182 0.021 0.00 0.408 0.030 0.56 0.694 0.021 0.10

200 0.181 0.021 -0.71 0.407 0.031 0.25 0.692 0.020 -0.20

500 0.183 0.020 0.14 0.409 0.029 0.80 0.695 0.020 0.26

Although the two nodesize parameter settings for n = 5000 are 250 observations,

two simulations are completed for consistency. From Table 3.1, all combinations of

parameter settings perform fairly well with estimates reasonably close to the true

values. Both the standard deviation of the estimates and the % relative bias decrease

with n. Within each sample size, only minimal differences in the estimates are seen

when the nodesize parameter is decreased from 5% of the sample size to 250 observa-

tions. Minimal differences are also seen within mtry values by increasing the number

of trees used in the construction of the forest. By changing the mtry parameter from

3 to 9, a slight decrease in % relative bias is seen for n = 5000, but as n gets larger,

the difference in bias between the two parameter settings is small. Overall, no combi-

nation of parameter settings produced estimates with a % relative bias greater than

5% in absolute value.

The purpose of this simulation is to demonstrate the effect of changing the tun-

ing parameters, and to determine the optimal parameter settings for future simula-

tions. For all combinations of parameter settings, minimal differences are seen in the

estimates produced, whereas there are large differences in computation times. As

previously mentioned, simulations are run in parallel using a 48-core CPU, and the

approximate time to complete each block of simulations (each value of n corresponds

to one block) is 35, 115, and 770 minutes for n = 5000, 10000, and 50000 respectively.

Due to minimal differences in estimates, but large differences in computation times,

remaining simulations are run at parameter settings of nodesize = 5%, mtry = 3

and ntree = 100. It was decided to continue running future simulations using all

three values of sample size in order to demonstrate the improvement in precision by

increasing the sample size.
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3.1.2 Simulation 2: Comparing log odds ratio estimates from the

two-machine RFPM method to logistic regression

In Simulation 2, the optimal parameter settings determined in Simulation 1 are used

to compare the performance of the two-machine RFPM method to that of logistic

regression. Data is generated using the same logistic model (Model 1) given above and

for each value of n = 5000, 10000, and 50000, a thousand simulations are completed.

Similarly to Simulation 1, predictors are generated once, and a new outcome vector is

generated each time. Log odds ratio estimates for β1, β2, and β3 using the two-machine

RFPM method (nodesize = 5%, mtry = 3, and ntree = 100) are calculated as an

average over the subject-specific log odds ratio estimates. Log odds ratio estimates

using logistic regression are obtained using a correctly specified model. The sample

mean, standard deviation (sβ̂), and % relative bias (%bias) for each β estimate from

the two-machine RFPM method are reported in Table 3.2. The p-value corresponds

to the t-test assessing if the mean estimate value is significantly different from the

true value.

Table 3.2: Sample mean, standard deviation (sβ̂), and % relative bias (%bias) of log
odds ratio estimates, β1, β2, and β3, from Model 1 using the two-machine RFPM
method. The p-values listed are the results from a t-test comparing the mean RFPM
estimate to the true parameter value.

β n mean sβ̂ %bias p-value

β1 = log(1.2) = 0.182

5000 0.183 0.063 0.43 0.693

10000 0.182 0.045 -0.42 0.587

50000 0.182 0.020 -0.01 0.983

β2 = log(1.5) = 0.405

5000 0.381 0.118 -6.13 < 0.001

10000 0.398 0.045 -1.74 < 0.001

50000 0.406 0.020 0.11 0.490

β3 = log(2) = 0.693

5000 0.696 0.065 0.40 0.184

10000 0.691 0.046 -0.37 0.080

50000 0.686 0.034 -0.96 < 0.001

Figure 3.1 shows the results of the simulation, where the box plots represent

the estimates produced using the two-machine RFPM method (green) and logistic

regression (yellow). The figure is separated into three plots, where each plot represents
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Figure 3.1: Log odds ratio estimates for β1, β2, and β3 from Model 1 using the two-
machine RFPM method (green) and logistic regression (yellow). Each plot represents
one β estimate and the three sets of box plots are the estimates for the three different
samples sizes, n = 5000, 10000, and 50000. The true parameter value is indicated in
each plot by the horizontal line.

one β estimate. The three sets of box plots per β are the estimates for the three

different sample sizes in increasing order. In almost all applications of the two-

machine RFPM method, approximately unbiased estimates are produced indicated

by the medians of estimated log odds ratios being very close to the true values (shown

by the horizontal lines). The two-machine RFPM method performs comparatively

to logistic regression in that the variability among the estimates between the two

methods is very similar. In this and future simulations, both logistic regression and

RFPM methods are used on the same data sets. Figure 3.2 demonstrates the large

correlation between the two sets of estimates for two of the simulations.

Using results from Simulations 1 and 2, the two-machine RFPM method produces

log odds ratio estimates with minimal bias, and performs with similar efficiency to that
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Figure 3.2: Plot of log odds ratio estimates for β1 = log(1.2) and β2 = log(1.5) for
n = 5000 obtained using RFPMs against those obtained using logistic regression.
The dashed line indicates the line of equality.

of logistic regression. The two-machine RFPM method is non-parametric and requires

no explicit specification of the model, or the data generating process. Correctly

specifying the model can be challenging, and an incorrectly specified logistic regression

model will produce both inaccurate predictions and biased effect size estimates.



Chapter 4

Detecting and estimating interaction effects for binary

predictors using RFPMs

The two-machine RFPM method can be used to estimate log odds ratios, and pro-

duces estimates similar to those obtained using logistic regression. It is an effective

way to estimate risk effects, is not restricted to data generated using a logistic model,

and can be applied to any regression problem with binary outcomes. The estimation

of interaction effects, both multiplicative and additive, is now considered.

As discussed in section 2.2.2, measures of multiplicative interaction are easily ob-

tained using logistic regression, whereas additional work is needed to obtain measures

of additive interaction when the outcome prevalence is greater than 10%. Additive

interaction measures are often relevant in health research, but are less frequently

reported than measures of multiplicative interaction. Random forest probability ma-

chines provide estimates of counterfactual probabilities of success, which can be used

to estimate measures of both multiplicative and additive interaction easily and non-

parametrically. In this chapter, two methods pertaining to interaction detection and

estimation proposed by Dasgupta et al. (2014) are explored, namely, the intuitive

interaction detection method and the four-machine RFPM method. Their use is

demonstrated in several simulations, and application of RFPMs to estimate more

complicated interactions is briefly discussed.

4.1 Intuitive interaction screening method

In order to avoid computing risk estimates for all possible combinations of predictors,

Dasgupta et al. (2014) propose a method to detect the presence of both multiplicative

and additive interactions using a single random forest probability machine. Since

only a single machine is fit to the data, this method should not be used for direct

estimation.

Consider a sample of size n with p binary predictors (x1, x2, . . . , xp) and a binary

30
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outcome y. Suppose the main interest is to determine if there exists a significant

interaction between x1 and x2. The procedure for detecting such interaction is as

follows:

1. Fit a single random forest probability machine to the data, RFPM1.

2. Split the data set into four subgroups based on the four combinations of x1 and

x2. Denote these subgroups G00, G01, G10, G11, where Gij is the subgroup of

observations with x1 = i and x2 = j. Also, let n00, n01, n10, and n11 denote the

numbers of observations in each subgroup.

3. Using RFPM1, predict estimates of the conditional probability, P (y = 1|x1 =

i, x2 = j, x3, . . . , xp), for each observation in the four subgroups. Let pijc denote

the predicted conditional probability estimate for the cth observation in the ijth

subgroup.

4. Compute subgroup averages of the logits of the predicted conditional probability

estimates defined as

ℓ00 =

∑n00

c=1 logit (p00c)

n00

ℓ01 =

∑n01

c=1 logit (p01c)

n01

ℓ10 =

∑n10

c=1 logit (p10c)

n10

ℓ11 =

∑n11

c=1 logit (p11c)

n11

,

and averages of the predicted conditional probability estimates defined as

p00 =

∑n00

c=1 p00c
n00

p01 =

∑n01

c=1 p01c
n01
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p10 =

∑n10

c=1 p10c
n10

p11 =

∑n11

c=1 p11c
n11

,

The two-machine RFPM method produces two counterfactual probabilities of success

for each observation, p1i and p0i. These two probabilities can be used to calculate

sample log odds ratio estimates by averaging over individual log odds ratio estimates.

Since only a single RFPM is used in the intuitive interaction detection method, each

observation only has one conditional probability estimate, and thus individual log

odds ratio estimates cannot be computed. Due to there only being one conditional

probability estimate per observation, ℓij is calculated as the mean of the log odds of

the conditional probability estimates for observations in subgroup Gij.

Once subgroup-specific conditional probability estimates are calculated on the log

odds scale, multiplicative interaction effects can be estimated using the log ratio of

odds ratios (ℓROR) defined by

ℓROR = ℓ11 − ℓ10 − ℓ01 + ℓ00.

If there is no multiplicative interaction effect between x1 and x2, ℓROR will be close

to zero. The following odds ratios can also be calculated,

OR10 =
p10(1− p00)

p00(1− p10)
,

OR01 =
p01(1− p00)

p00(1− p01)
,

and

OR11 =
p11(1− p00)

p00(1− p11)
.

Additive interaction effects can be estimated on the risk ratio scale using the RERI

(relative excess risk due to interaction) defined as

RERIRR =
p11
p00

− p10
p00

− p01
p00

+ 1.

If there is no additive interaction effect between x1 and x2, RERIRR will be close

to zero. The information provided from these five estimates, in addition to area

expertise, can aid in determining important interactions. This method can be used in

the first steps of data analysis to provide quick insight into any interesting interactions

prior to computing estimates for all possible pairs of predictors.
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4.1.1 Simulations 3 and 4: Screening for possible interactions using the

intuitive interaction detection method

Refer to the following logistic regression model as Model 2,

logit(p) = β0 + log(1.2)x1 + log(1.5)x2 + log(2)x3 + log(2)x1x2

+ log(5)x2x3 + 0x4 + ...+ 0x10,

where x1, x2, and x3 are uncorrelated binary predictors with main effects of β1 =

log(1.2) = 0.182, β2 = log(1.5) = 0.405, and β3 = log(2) = 0.693. The remaining

predictors are independently generated, binary and have no association with the out-

come. Two interaction effects between corresponding predictor pairs (x1, x2) and (x2,

x3) are added with effect sizes of β4 = log(2) = 0.693 and β5 = log(5) = 1.609. The

intercept β0 is chosen so P (y = 1) ≈ 0.3 and the predictors are generated to have a

randomly selected P (xi = 1) between 0.05 and 0.95.

The main goal of the intuitive interaction detection method is to quickly identify

any potential interactions prior to estimation. For this reason, the estimates obtained

using the detection method are not examined, but instead the method’s ability to

detect an interaction when an interaction exists is evaluated. Only multiplicative

interactions are considered in these simulations, but the R code provided in Appendix

A reports both multiplicative and additive interaction estimates. For the purpose of

these simulations, an interaction estimate is deemed relevant if it is either less than

log(1/1.05) = −0.04879 or greater than log(1.05) = 0.04879. When used in practice,

these boundaries should be chosen using area expertise and knowledge of the subject

matter.

The intuitive interaction detection method is assessed using two sets of 1000 sim-

ulations. In both sets, and under each choice of sample size n, a single RFPM is used

with parameters set at mtry = 3, ntree = 100, and nodesize = 5%. For Simulation

3, a single set of predictors is generated for each choice of n, and a new outcome

vector is generated 1000 times. In Simulation 4, new predictors and a new outcome

vector is generated each time. Considering all possible combinations of predictors

(
(
10
2

)
= 45), counts of the number of times the intuitive interaction detection method

reported a possible interaction (less than log(1/1.05) or greater than log(1.05)) are

recorded in Table 4.1 (Simulation 3) and Table 4.2 (Simulation 4). The total number
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of false positives (where no interaction exists, but the estimate is deemed relevant)

identified for each value of n is recorded at the end of the table.

In Simulation 3, the intuitive interaction method correctly identifies the true in-

teracting pairs of predictors (x1, x2) and (x2, x3) in all runs for all choices of n. In

Simulation 4, where new predictors and a new outcome vector is generated each time,

true interacting pairs are identified almost 100% of the time. The number of correctly

identified counts tends to increase with both increasing sample size and effect size.

Both simulations report large amounts of false positives; however, fewer false positives

occur with a larger sample size. There are also more false positives identified for pairs

of predictors where one predictor is associated with the outcome (x1, x2, x3).

Considering pairs of unassociated predictors (predictors after the dotted line in

both tables), it is expected that the number of interactions identified is close to zero.

Due to the particular choice of cutoff points, some false positives for each predictor

pair are expected by chance, and this number should decrease with n. This behaviour

is seen in Table 4.2, where the number of false positives identified for unassociated

pairs of predictors stays relatively constant for each choice of n, and decreases with

n. This behaviour is not evident in Table 4.1, where the number of false positives

does not stay constant or decrease with n. For some predictor pairs, there are very

small and very large false positives for each choice of n.

Consider unassociated pairs of predictors in Table 4.1 for n = 50000. For predictor

pairs (x4, x6), (x4, x8), (x4, x10), (x5, x6) and (x6, x10), there are 0 false positives, and

for predictor pair (x7, x10) there are 991 false positives. To further investigate these

anomalies, consider predictor pair (x7, x10) for n = 50000. A histogram of the 1000

interaction estimates shows an approximate bell-shaped curve with a shifted mean of

0.074. Since the interaction estimate is calculated as a contrast of the four mean logit

conditional probabilities, this shift in mean may be due to one of ℓ00, ℓ01, ℓ10 or ℓ00
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Table 4.1: Counts of the number of times the intuitive interaction detection method
reported a possible interaction effect for predictor pair (xj, xk) for j, k ∈ {1, . . . , 10}
and j ̸= k in Simulation 3. An interaction effect estimate is deemed relevant if it is
either less than log(1/1.05) or greater than log(1.05). The true interacting pairs of
predictors (x1, x2) and (x2, x3) are listed first, and the total number of false positives
identified for each sample size is listed at the bottom.

xj xk

counts

n

5000 10000 50000

1 2 1000 1000 1000

2 3 1000 1000 1000

1 3 664 996 998

1 4 973 214 48

1 5 409 305 147

1 6 925 776 13

1 7 268 213 6

1 8 842 342 2

1 9 242 390 6

1 10 994 197 16

2 4 483 289 242

2 5 785 199 346

2 6 489 855 267

2 7 434 594 580

2 8 464 191 417

2 9 491 984 235

2 10 604 371 354

3 4 524 451 94

3 5 668 391 319

3 6 533 952 95

3 7 476 635 391

3 8 395 328 317

3 9 423 1000 163

xj xk

counts

n

5000 10000 50000

3 10 563 273 264

4 5 56 12 77

4 6 374 20 0

4 7 569 22 93

4 8 1000 72 0

4 9 115 19 1

4 10 953 24 0

5 6 996 66 0

5 7 344 117 4

5 8 46 376 18

5 9 820 950 60

5 10 57 219 1

6 7 77 843 7

6 8 104 982 74

6 9 171 17 9

6 10 927 878 0

7 8 88 37 276

7 9 424 520 391

7 10 996 69 991

8 9 833 21 0

8 10 347 41 2

9 10 75 93 1

Total FP 22021 16344 7325
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Table 4.2: Counts of the number of times the intuitive interaction detection method
reported a possible interaction effect for predictor pair (xj, xk) for j, k ∈ {1, . . . , 10}
and j ̸= k in Simulation 4. An interaction effect estimate is deemed relevant if it is
either less than log(1/1.05) or greater than log(1.05). The true interacting pairs of
predictors (x1, x2) and (x2, x3) are listed first, and the total number of false positives
identified for each sample size is listed at the bottom.

xj xk

counts

n

5000 10000 50000

1 2 939 961 968

2 3 990 996 998

1 3 782 771 749

1 4 570 438 185

1 5 558 423 168

1 6 572 425 164

1 7 577 424 183

1 8 556 442 185

1 9 566 423 163

1 10 573 421 171

2 4 575 503 408

2 5 636 501 422

2 6 596 526 395

2 7 619 536 404

2 8 595 498 381

2 9 589 512 424

2 10 594 521 378

3 4 592 533 394

3 5 612 521 403

3 6 591 522 407

3 7 616 522 389

3 8 592 514 392

3 9 632 524 416

xj xk

counts

n

5000 10000 50000

3 10 618 522 362

4 5 488 310 61

4 6 474 333 42

4 7 496 329 55

4 8 480 313 59

4 9 495 346 52

4 10 516 332 52

5 6 501 327 56

5 7 507 320 51

5 8 472 313 55

5 9 494 340 51

5 10 525 311 51

6 7 474 326 50

6 8 447 319 55

6 9 506 337 53

6 10 483 344 47

7 8 487 312 67

7 9 475 305 58

7 10 487 294 62

8 9 495 353 58

8 10 447 342 55

9 10 501 317 44

Total FP 23461 17845 8677
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defined in step 4. For the 1000 simulations, define the following mean logit estimates,

ℓ00 =

∑1000
i=1 ℓ00i
1000

ℓ01 =

∑1000
i=1 ℓ01i
1000

ℓ10 =

∑1000
i=1 ℓ10i
1000

ℓ11 =

∑1000
i=1 ℓ11i
1000

,

where ℓ00, ℓ01, ℓ10, and ℓ11 are defined above. Since both x7 and x10 are independently

generated and have no association with the outcome, all of the above logits should

be approximately equal to

logitP (y = 1|x7, x10) = logitP (y = 1)

= logit(0.3)

= −0.8473.

Using the results from Simulation 3, the above logits are found to be:

ℓ00 = −0.7741 ℓ01 = −0.8427

ℓ10 = −0.8431 ℓ11 = −0.8382.

The reduction in ℓ00 explains the shift in the mean of the interaction estimates.

A possible explanation for this reduction is that changes in x7 and x10 are related to

changes in the associated predictors x1, x2, and x3. To investigate this, three different

generalized linear models (GLMs) are used to regress x1, x2, and x3 on x7, x10, and

x7x10. These models will help determine if there exists some dependence in the

predictors that is not revealed in the correlation matrix. The regression of x1 reveals

no significant terms, but for the x2 and x3 models, all three terms are significant

(Tables 4.3 and 4.4). The results from these two GLMs reveal that although no

simple correlation exists between predictors, both the probability x2 = 1 and x3 = 1

depend on x7, x10 and their interaction. When x7 = 0 and x10 = 0, both GLMs

have a larger predicted probability of x2 = 1 and x3 = 1 than the values used to
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generate the data (0.284 and 0.670 for x2 and x3 respectively). This implies that the

probability x2 = 1 and x3 = 1 is larger in the subgroup containing observations with

x7 = 0 and x10 = 0. When a new outcome vector is generated, P (y = 1) is larger

than the expected value of 0.3 in the G00 subgroup, thus increasing p00. Therefore

in Simulation 3, dependence is randomly incorporated when generating predictors,

and since predictors remain the same, this dependence affects all outcome vectors. In

Simulation 4, new predictors and a new outcome vector is generated each time, and

thus any dependence randomly incorporated only affects one outcome vector rather

than all 1000.

Table 4.3: Results of the generalized linear model regressing x2 on x7, x10, and x7x10.
Predictors x2, x7, and x10 are from the simulated data generated in Simulation 3.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.8277 0.0504 -16.43 0.0000

x7 -0.1163 0.0555 -2.10 0.0361

x10 -0.1125 0.0574 -1.96 0.0498

x7x10 0.1254 0.0631 1.99 0.0470

Table 4.4: Results of the generalized linear model regressing x3 on x7, x10, and x7x10.
Predictors x3, x7, and x10 are from the simulated data generated in Simulation 3.

Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.8175 0.0503 16.26 0.0000

x7 -0.1201 0.0550 -2.19 0.0288

x10 -0.1543 0.0566 -2.73 0.0064

x7x10 0.1654 0.0619 2.67 0.0076

For predictor pairs with a large number of false positives, a possible explanation

is a shift in mean due to a complex dependence on the associated predictors x1, x2,

x3. Other noticeable anomalies in Table 4.1 are the detection of 0 false positives for

unassociated pairs of predictors. Consider predictor pair (x4, x6). A histogram of

the 1000 interaction estimates shows an approximate bell-shaped curve with a mean

of zero. The ℓROR estimates for this predictor pair, along with other unassociated

pairs of predictors, have a standard deviation of approximately 0.01. Due to the small
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variance in the estimates and the particular choice of cutoff points, very little or no

estimates are falling outside these bounds.

In Table 4.2, the method correctly identified the true interacting pairs of predictors

in almost all simulations. For unassociated pairs of predictors, the number of false

positives stays relatively constant and decreases with n. An investigation of the

mean and standard deviation of the ℓROR estimates reveals unassociated pairs of

predictors to have an approximate mean ℓROR value of 0 and a standard deviation

of 0.025. Removing any possible correlations between predictors requires generating

new predictors in each simulation, and so an increase in the variance of these estimates

is expected. The variance for predictor pairs where one predictor is associated and

the other is not is higher than for unassociated predictor pairs. This is expected as

the effect of the associated predictor will affect the variance of the ℓROR estimates.

Overall, the intuitive interaction detection method is a reasonable approach to

quickly screen for any interesting interactions prior to estimation. In Simulation

3, the true interacting pairs of predictors are identified in all simulations, and in

almost all simulations in Simulation 4. This method performs better with a larger

sample size as the total number of false positives reported decreases with n. Although

there are many false positives identified, this method is relatively quick and is only a

screening process that serves to provide insight into any potential interactions rather

than provide interaction effect estimates.

4.2 Four-machine RFPM method

The effects of previously identified, or known interacting predictors, can be esti-

mated using a procedure analogous to the two-machine RFPM method. Dasgupta

et al. (2014) propose the four-machine RFPM method, which calculates counterfac-

tual probabilities of success on the individual level. These estimated probabilities

enable for the calculation of various multiplicative and additive interaction measures.

Consider a sample of size n with p binary predictors (x1, x2, . . . , xp) and a binary

outcome y. Suppose estimating the interaction effect due to predictors x1 and x2 is of

primary interest. Use of the four-machine RFPM method to predict counterfactual

probabilities of success is as follows:

1. Split the data into four subgroups based on the four possible combinations of
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x1 and x2. Denote these subgroups G11, G01, G10, and G00, where Gij is the

subgroup containing observations with x1 = i and x2 = j.

2. Within each subgroup, train identically specified RFPMs (RFPM11, RFPM01,

RFPM10, and RFPM00) on the remaining p− 2 predictors (x3, x4, . . . , xp).

3. Obtain counterfactual probabilities of success for every observation by predict-

ing from the four RFPMs. Each observation has a vector of four predicted prob-

abilities of success (p00i, p01i, p10i, p00i). One predicted probability corresponds

to an observed probability of success, and the remaining three correspond to

counterfactual probabilities of success. For example, an observation with x1 = 1

and x2 = 1 has observed probability of success p11i (prediction from RFPM11)

and counterfactual probabilities of success p10i, p01i, and p00i (predictions from

RFPM01, RFPM10, and RFPM00).

The four predicted probabilities of success for each observation i, (p00i, p01i, p10i, p00i),

enables for the calculation of several measures of interaction. For a measure of mul-

tiplicative interaction, the following three odds ratio estimates can be obtained for

observation i,

OR10i =
p10i/(1− p10i)

p00i/(1− p00i)
,

OR01i =
p01i/(1− p01i)

p00i/(1− p00i)
,

and

OR11i =
p11i/(1− p11i)

p00i/(1− p00i)
.

These odds ratios can be used to calculate the ratio of odds ratios (ROR). The ROR

for observation i is given by,

RORi =
OR11i

OR10iOR01i

,

and is a measure of multiplicative interaction on the odds ratio scale. An additive

interaction measure can also be estimated, namely the RERI on the risk ratio scale,

for each observation i. The RERIRR for observation i is given by,

RERIRRi =
p11i
p00i

− p10i
p00i

− p01i
p00i

+ 1.
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Interaction estimates for the full sample are calculated by averaging over the individ-

ual estimates,

RORsample =

∑n
i=1 RORi

n
,

and

RERIsample =

∑n
i=1RERIRRi

n
.

Now that use of the four-machine RFPM method to estimate multiplicative and

additive interaction effects has been outlined, its use is demonstrated and compared

to logistic regression in the following simulation.

4.2.1 Simulation 5: Comparing log odds ratio estimates from the

four-machine RFPM method to logistic regression

In this simulation, optimal parameter settings determined in Simulation 1 (ntree =

100, mtry = 3, nodesize = 5%) are used to compare the performance of the four-

machine RFPM method to that of logistic regression. Consider Model 2 as mentioned

in section 4.1.1,

logit(p) = β0 + log(1.2)x1 + log(1.5)x2 + log(2)x3 + log(2)x1x2

+ log(5)x2x3 + 0x4 + ...+ 0x10.

1000 simulations are completed for each value of the sample size n = 5000, 10000,

and 50000. A single set of predictors is generated under each choice of n, and a

new outcome vector is generated 1000 times. Using the four-machine RFPM method,

ℓROR estimates for β4 = log(2) = 0.693 and β5 = log(5) = 1.609 are obtained by

averaging over the individual ℓRORi estimates. Logistic regression log odds ratio

estimates are obtained using a correctly specified model. For a given value of n, the

sample mean, standard deviation (sβ̂) and % relative bias (%bias) for each β estimate

using the four-machine RFPM method are reported in Table 4.5. The p-values listed

are the results from a t-test comparing the mean of the RFPM estimates to the true

parameter value.

Figure 4.1 shows the results of the simulation, where the box plots represent

the interaction estimates produced from the four-machine RFPM method (green)
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Table 4.5: Sample mean, standard deviation (sβ̂), and % relative bias (%bias) of log
odds ratio estimates β4 and β5 from Model 2 using the four-machine RFPM method.
The p-values listed are the results from a t-test comparing the mean RFPM estimate
to the true parameter value.

β n mean sβ̂ %bias p-value

β4 = log(2) = 0.693

5000 0.626 0.237 -9.75 < 0.001

10000 0.669 0.130 -3.44 < 0.001

50000 0.640 0.053 -7.63 < 0.001

β5 = log(5) = 1.609

5000 1.576 0.268 -2.10 < 0.001

10000 1.571 0.167 -2.36 < 0.001

50000 1.558 0.093 -3.20 < 0.001

and logistic regression (yellow). The figure is split in two plots based on the two

interacting pairs of predictors ((x1, x2) and (x2, x3)) and the three sets of box plots

per plot are the three different sample sizes in increasing order. The true parameter

value is indicated in the two plots by the horizontal line. From both Table 4.5 and

Figure 4.1, the bias in the estimates obtained from the four-machine RFPM method is

slightly larger than those obtained using logistic regression. The four-machine RFPM

method performs comparatively to the logistic regression in that the variability among

the estimates is very similar.

Overall the four-machine RFPM method performs comparatively to a correctly

specified logistic regression model. The four-machine RFPM method performs al-

most as efficiently as logistic regression, and does this without any specification of

the model or the data generating process. It should be addressed that the four-

machine RFPM method can only be used to estimate two-way interactions and the

two-machine RFPM method cannot be used to obtain main effect estimates of inter-

acting predictors. The next section entails the discussion of estimating more complex

interaction effects and main effects simultaneously.
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Figure 4.1: Log odds ratio estimates for β4 and β5 from Model 2 using the four-
machine RFPM method (green) and logistic regression (yellow). Each plot represents
one β estimate and the three sets of box plots are the estimates for the three different
samples sizes, n = 5000, 10000, and 50000. The true parameter value is indicated in
each plot by the horizontal line.

4.3 More complex interactions

The methodology behind both the two-machine and four-machine RFPM can easily

be extended to estimate more complex interactions, such as 3-way and 4-way inter-

actions. To estimate a k-way interaction effect, the data set is split into 2k subgroups

based on all the possible combinations of the predictors involved, and a RFPM is

fitted to each of these subgroups. Using the 2k RFPMs, observed and counterfactual

probabilities of success for each individual can be used to calculate various risk esti-

mates on the individual level and for the sample. Although this can be done, it may

be burdensome and computationally intensive. Also, creating many subgroups may

produce subgroups with varying sample sizes or subgroups with no observations. If
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this is the case, there may be a need to adjust the random forest parameter settings,

such as the terminal node size to accommodate for these issues.

As previously demonstrated, the two-machine RFPM and the four-machine RFPM

methods can be used to estimate interaction and main effect estimates respectively.

Although main and interaction effects can be estimated, the two-machine RFPM

method cannot be used to obtain main effect estimates for interacting predictors.

To estimate both main and interaction effects, 2m machines, where m is the highest

order term in the fully saturated model of interacting predictors, must be used. For

example, consider Model 2 used in Simulation 5. Estimating main and interaction

effects requires 23 = 8 machines since the highest order term in the fully saturated

model of interacting predictors is the 3-way interaction term between x1, x2, and

x3. If only one interaction exists, say between x1 and x2, but x1, x2, and x3 are all

associated with the outcome, the two-machine RFPM method can be used to obtain

a main effect estimate for x3. The four-machine RFPM method can be used to obtain

interaction and main effect estimates for x1 and x2, since the highest order term in

the fully saturated model of interacting predictors x1 and x2 is the 2-way interaction

term.



Chapter 5

Confidence intervals for RFPM risk estimates

In many cases, researchers may not only be interested in obtaining a point estimate

for a given risk measure, but are also interested in bounding this estimate with a

confidence interval. Constructing confidence intervals when the data is drawn from

a known distribution is easily done and implemented in statistical software packages.

However, it can be much more difficult when the distribution is unknown. Since

RFPMs make no assumption about the data generating process and are completely

non-parametric, standard approaches to constructing confidence intervals cannot be

used. In order to obtain confidence intervals non-parametrically, the use of a boot-

strapping method is explored.

In this chapter, the percentile bootstrap method is presented and its use in con-

structing confidence intervals for RFPM risk estimates is outlined. Using a simula-

tion, confidence intervals constructed for RFPM estimates using percentile bootstrap

samples are shown to have appropriate coverage probabilities, and to be an effec-

tive way to obtain confidence intervals. The computational aspects surrounding the

construction are also discussed.

5.1 Bootstrap percentile method

The bootstrap method is a general approach in statistical inference used for empirical

estimation, or approximation of sampling distributions. When the sampling distribu-

tion of an estimator cannot be defined mathematically, such as risk estimates derived

from RFPMs, bootstrap methods are especially useful. The main idea of any boot-

strap method is to use the observed data as an empirical estimate of the unknown

distribution. The empirical distribution of the data is estimated from numerous boot-

strap samples of the original data, where these bootstrap samples contain the same

number of observations and are drawn with replacement. From these bootstrap sam-

ples, the statistic of interest is calculated, and the distribution of these values is used
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to approximate the population sampling distribution.

Consider a sample of size n with p binary predictors (x1, x2, . . . , xp) and a binary

outcome y. Suppose obtaining a point estimate and constructing a (1−α)% confidence

interval for risk measure θ corresponding to predictor x1 is of interest. The bootstrap

percentile method is as follows:

1. Use the two-machine RFPM method to construct θ estimates for each observa-

tion i using the counterfactual probabilities of success, p0i(y = 1|x2, x3, . . . , xp)

and p1i(y = 1|x2, x3, . . . , xp). Calculate the point estimate θ̂ by averaging over

the individual θi.

2. Take b random samples of size n, where b is drawn with replacement. For each

sample, compute θ̂ using the two-machine RFPMmethod. Denote the collection

of the b bootstrap estimates as (θ̂1, θ̂2, . . . , θ̂b).

3. Order the b bootstrap estimates in ascending order, (θ̂(1), θ̂(2), . . . , θ̂(b)), where

θ̂(n) is the nth ordered bootstrap estimate.

The bounds of the bootstrap percentile confidence interval at the (1−α)% confidence

level are found by taking the (α/2)th and the (1 − α/2)th percentiles of the boot-

strap estimates. This bootstrapping approach does not assume normality, but may

produce large coverage error if the distribution of the statistic is not approximately

symmetric around the observed value (La Torre, 2010). However from previous sim-

ulation results, the distributions of the estimates derived from the two-machine and

four-machine RFPM methods appear to be fairly symmetric.

The bootstrap percentile method is shown here to construct a (1 − α)% confi-

dence interval for a main effect estimate using the two-machine RFPM method. The

procedure can easily be extended to risk estimates derived from multiple machines,

including the four-machine RFPM method. RFPMs compute counterfactual proba-

bilities of success and so, the percentile bootstrap method can be used to construct

confidence intervals for any of the risk measures mentioned in Chapter 2.
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5.1.1 Simulations 6 and 7: Computing confidence intervals for log odds

ratio estimates derived using the two-machine and four-machine

RFPM methods

Refer to the following logistic model as Model 3,

logit(p) = β0 + log(2)x1 + 0x2 + ...+ 0x10,

where x1 is an independent, binary predictor with a main effect of β1 = log(2) = 0.693.

The remaining predictors are independently generated, binary and have no association

with the outcome. The intercept β0 is chosen so that P (y = 1) ≈ 0.3 and the

predictors are generated to have a randomly selected P (xi = 1) between 0.05 and

0.95.

The bootstrap percentile method is used to obtain 95% confidence intervals for the

log odds ratio of predictor x1. Using b = 200, 500, and 1000 bootstrap samples, 10000

confidence intervals are constructed using a sample size of n = 5000. The endpoints

of the bootstrap percentile confidence interval are produced by the 5th and 195th, and

the 25th and the 975th values of the ordered bootstrap estimates for b = 200 and

1000 respectively. For b = 500, the endpoints are taken as an average of the 12th and

13th, and the 487th and 488th ordered values. An estimate of the coverage probability

is calculated as the proportion of the 10000 confidence intervals for which the true

parameter value (log(2) = 0.693) is contained. 10000 simulation runs give a coverage

probability estimate with a standard error of 0.0043 at the 5% significance level.

Estimated coverage probabilities and the average time in seconds to construct each

confidence interval are reported in Table 5.1 under the Model 3 heading. The coverage

probability for all three values of b is approximately 0.95, with b = 500 and 1000

having slightly higher probabilities. Although the estimated coverage probabilities

differ only slightly and are all close to the desired 0.95, the computation times differ

dramatically. The time to construct 10000 confidence intervals at a sample size of

5000 quickly increases with the number of bootstrap samples.

The bootstrap percentile method is shown to produce confidence intervals with

appropriate coverage probabilities for a main effect estimated using the two-machine

RFPM method. As an alternative, and more complex scenario, consider Model 2 as
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Table 5.1: Estimated coverage probabilities of 95% confidence intervals for log odds
ratio estimates of β1 for Model 3, and of β4 and β5 for Model 2. 10000 confidence
intervals produced for each β estimate using the bootstrap percentile method using
b = 200, 500, and 1000 bootstrap samples of size n = 5000. Average time required in
seconds to construct each confidence interval is reported under each model heading.
Confidence intervals for Model 2 constructed using only b =200 bootstrap samples.

b
Model 3 Model 2

β1 time (sec/CI) β4 β5 time (sec/CI)

200 0.9479 2.9 0.9561 0.9444 4.5

500 0.9494 8.9 - - -

1000 0.9491 16.6 - - -

mentioned in section 4.1.1,

logit(p) = β0 + log(1.2)x1 + log(1.5)x2 + log(2)x3 + log(2)x1x2

+ log(5)x2x3 + 0x4 + ...+ 0x10.

The bootstrap percentile method is used to obtain confidence intervals for the log

odds ratios, β4 = log(2) and β5 = log(5), corresponding to predictor pairs (x1, x2)

and (x2, x3). Log odds ratio estimates for β4 and β5 are calculated using the four-

machine RFPM method. Due to lengthy computation times, and the results from

above, only b = 200 is considered. 10000 confidence intervals are constructed for each

β estimate using a sample size of n = 5000. As estimate of the coverage probability

is calculated as the proportion of the 10000 confidence intervals for which the true

parameter values (log(2) = 0.693 and log(5) = 1.609 for β4 and β5 respectively) are

contained.

The estimated coverage probability and the average time in seconds to construct

each confidence interval are reported in Table 5.1 under the Model 2 heading. The

estimated coverage probability of the confidence intervals produced for both β4 and

β5 are approximately 0.95. Overall, the bootstrap percentile method is an efficient

way to obtain confidence intervals for RFPM risk estimates even when the number

of bootstrap samples taken is small. This method produces confidence intervals with

appropriate coverage probabilities for estimates derived from the two-machine and

the four-machine RFPM methods.



Chapter 6

Main effect estimation for categorical and continuous

predictors using RFPMs

Thus far, obtaining risk estimates using RFPMs only for binary predictors has been

considered. Although binary predictors are common in health research, researchers

often encounter categorical (variable with two or more levels) and continuous (variable

with infinite number of values) predictors. Since binary predictors are simply a special

case of categorical predictors, the use of RFPMs to obtain risk estimates for a binary

predictor can easily be extended to variables with more than two levels. The use of

RFPMs to estimate risk measures for a continuous predictor is not as easily done,

and requires the continuous predictor to be split into a number of bins and treated

as a categorical predictor.

In this chapter, obtaining risk estimates for both categorical and continuous pre-

dictors are discussed. First, categorical predictors are considered and presented as

an extension of binary predictors. Secondly, continuous predictors are considered,

and the main ideas behind binning are presented using conclusions drawn from linear

regression. Simulations demonstrating the use of RFPMs to obtain risk estimates

follow the discussion of each predictor type.

6.1 Categorical predictors

Binary predictors are simply a special case of categorical predictors, and so the theory

behind the two-machine RFPM method can be extended for variables with more than

two levels. Consider a sample of size n with p − 1 binary predictors (x2, x3, . . . , xp)

and a categorical predictor, x1, with k levels, (0, 1, 2, . . . , k − 1). Suppose obtain-

ing risk estimates for each level of x1 relative to the first is of interest. Predicting

counterfactual probabilities of success using RFPMs is as follows:

1. Split the data set into k subgroups based on the different levels of x1. Denote
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these subgroups G0, G1, . . . , Gk−1 where Gj for j ∈ {0, 1, . . . , k−1} corresponds
to the subgroup containing observations with (x1 = j, x2, . . . , xp).

2. Within each subgroup, train identically specified RFPMs (RFPM0, RFPM1,

. . . , RFPM(k−1)) on the remaining p− 1 predictors (x2, x3, . . . , xp).

3. Obtain observed and counterfactual probabilities of success for each observation

by predicting from all k RFPMs. Each observation will have a vector of k

counterfactual probabilities of success, (p0i, p1i, . . . , p(k−1)i).

For each observation i, risk estimates for each level of x1 relative to the first can be

obtained by comparing the appropriate probabilities of success. Various risk measure

estimates for level j relative to baseline (level 0) for each observation i are calculated

as follows;

Risk ratio

RRji =
pji
p0i

Odds ratio

ORji =
pji/1− pji
p0i/1− p0i

Attributable risk

ARji = pji − p0i.

Sample estimates for the effect of level j relative to baseline for each of the above risk

measures is found by averaging over the individual estimates. Therefore, to obtain

counterfactual probabilities of success for a categorical predictor with k levels, k RF-

PMs are needed. Effect estimates are obtained by comparing predicted probabilities

for level j ∈ {0, 1, . . . , k − 1}, pji, to baseline predicted probabilities, p0i. In the

following simulation, the use of RFPMs to calculate log odds ratios for a categorical

variable with four levels is demonstrated.
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6.1.1 Simulation 8: Comparing log odds ratio estimates for a

categorical predictor using RFPMs to logistic regression

Refer to the following logistic model as Model 4

logit(p) = β0 + β1 x1 + 0x2 + . . . 0x10,

where x1 is an independent categorical predictor with levels (A, B, C, D) and the

remaining predictors are independently generated, binary and have no association

with the outcome. The intercept β0 is chosen so that P (y = 1) ≈ 0.3 and predictors

x2, . . . , x10 are generated to have a randomly selected P (xi = 1) between 0.05 and

0.95. Categorical predictor x1 is generated with P (x1 = A) = 0.55, P (x1 = B) = 0.2,

P (x1 = C) = 0.15 and P (x1 = D) = 0.1. The effects relative to baseline (level A)

are generated to be log(1.5) = 0.405, log(2) = 0.693 and log(4) = 1.386 for levels B,

C and D respectively.

In order to demonstrate the use of RFPMs to obtain risk estimates for each level

of x1 relative to baseline, rewrite Model 4 as

logit(p) = β0 + log(1.5)xB + log(2)xC + log(4)xD + 0x2 + · · ·+ 0x10,

where xB, xC and xD are indicator variables for categories B, C, and D taking values

of 0 or 1. In Simulation 8, optimal parameter settings determined in Simulation 1

(ntree = 100, mtry = 3, nodesize = 5%) are used to compare the performance

of RFPMs to that of logistic regression in estimating log odds ratios for categorical

predictor x1. 1000 simulations are completed for each value of n = 5000, 10000, and

50000, where a single set of predictors is generated for each sample size and a new

outcome vector is generated 1000 times. Log odds ratio estimates for β1, β2, and β3

are obtained by averaging over the subject-specific log odds ratio estimates from four

RFPMs. Logistic regression log odds ratio estimates are obtained using a correctly

specified model. For each value of n, the sample mean, standard deviation (sβ̂), and

% relative bias (%bias) for each β estimate using four RFPMs are reported in Table

6.1. The p-values listed are the results from a t-test comparing the mean of the

RFPM estimates to the true parameter value.

Figure 6.1 shows the results of the simulation where the box plots represent the log

odds ratio estimates produced from the four RFPMs (green) and logistic regression
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Table 6.1: Sample mean, standard deviation (sβ̂), and % relative bias (%bias) of log
odds ratio estimates for β1, β2, and β3, from Model 4 using RFPMs. Four RFPMs
are used to obtain log odds ratio estimates for each level of the categorical predictor
(B, C, D) relative to first level (A). The p-values reported are the results from a t-test
comparing the mean RFPM estimate to the true parameter value.

β n mean sβ̂ %bias p-value

β1 = log(1.5) = 0.405

5000 0.410 0.085 1.12 0.091

10000 0.403 0.058 -0.71 0.116

50000 0.406 0.025 0.24 0.212

β2 = log(2) = 0.693

5000 0.699 0.088 0.87 0.031

10000 0.694 0.061 0.08 0.776

50000 0.693 0.028 -0.02 0.856

β3 = log(4) = 1.386

5000 1.389 0.103 0.18 0.435

10000 1.381 0.070 -0.38 0.019

50000 1.386 0.032 0.01 0.915

(yellow). The figure is split in three plots based on the main effects for the three

indicator variables xB, xC , and xD, and the three sets of box plots per plot represent

the three different sample sizes in increasing order. The true parameter value is

indicated in each plot by the horizontal line. In almost all applications of the RFPM

method, approximately unbiased estimates are produced. Using RFPMs to obtain log

odds ratio estimates for a categorical predictor performs comparatively to a correctly

specified logistic regression model in that the variability among the estimates is very

similar. RFPMs provide an efficient non-parametric approach to obtaining not only

log odds ratio estimates, but other risk effect measures derived from the counterfactual

probabilities.

6.2 Continuous predictors

Predicting risk effects for categorical predictors with more than two levels using

RPFMs can be thought of as an extension of the two-machine RFPMmethod. By con-

verting the categorical predictor with k levels into k − 1 binary indicator variables,

estimates can be obtained using a similar two-machine RFPM method procedure.
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Figure 6.1: Log odds ratio estimates for β1, β2, and β3 from Model 4 using RFPMs
(green) and logistic regression (yellow). Four RFPMs are used to obtain log odds
ratio estimates for each level of the categorical predictor (B, C, D) relative to the first
level (A). Each plot represents one β estimate and the three sets of box plots are the
estimates for the three different samples sizes, n = 5000, 10000, and 50000. The true
parameter value is indicated in each plot by the horizontal line.

Continuous predictors present a different challenge in that it is not feasible to con-

vert to indicator variables based on the perhaps infinite “levels” of the continuous

predictor. One approach to using RFPMs in predicting risk effects for a continuous

predictor is to use the concept of binning.

The goal is to split the continuous predictor into a number of distinct bins based

on some splitting criterion, and use RFPMs to obtain estimates for each bin. These

bin estimates can be plotted against the mean bin values of the continuous predictor

to examine graphically the relationship between the continuous predictor and the

outcome. For a linear relationship, as seen in an additive model for example, the plot

would display a linear relationship, and various techniques such as a linear model can
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be used to estimate the slope (effect).

In order to understand what happens when a continuous variable is discretized,

consider first the example of simple linear regression. Let the true relationship be-

tween continuous predictor x and response y be

yi = β0 + β1 xi + ϵi, (6.1)

where the deviations ϵi satisfy the usual assumptions for ordinary least squares. These

are assumed to be independent and approximately normal with zero mean and con-

stant variance. Consider a binary split, where x is split into two bins. Define x̃ to be

0 for x less than its median m, and 1 for x greater than m. Assume the number of

observations N is even so the median is not equal to any of the values, and splitting

into two bins creates equal sample sizes, namely n0 = n1 = N/2.

The mean response for observations in bin 1 (x̃ = 0) is

ȳx̃=0 =
1

n0

N∑
i=1

yi I(xi < m)

=
1

n0

N∑
i=1

(β0 + β1 xi + ϵi) I(xi < m)

= β0 + β1

∑N
i=1 xi I(xi < m)

n0

+

∑N
i=1 ϵi I(xi < m)

n0

= β0 + β1 x̄x̃=0 + ϵ̄x̃=0,

where I(·) represents the indicator function, x̄x̃=0 is the mean of x’s in bin 1 (x̃ = 0),

and ϵ̄x̃=0 is the mean of the deviations for x’s in bin 1. Similarly, the mean response

for observations in bin 2 (x̃ = 1) can be expressed as

ȳx̃=1 = β0 + β1 x̄x̃=1 + ϵ̄x̃=1.

The least squares fit to the model with the new discretized variable x̃ is

ŷ = ˆ̃β0 +
ˆ̃β2 x̃

with slope estimate

ˆ̃β2 =
∆y

∆x̃
=

ȳx̃=1 − ȳx̃=0

1− 0
= ȳx̃=1 − ȳx̃=0.
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Substituting expressions for ȳx̃=1 and ȳx̃=0,

ˆ̃β2 = ȳx̃=1 − ȳx̃=0

= β0 + β1 x̄x̃=1 + ϵ̄x̃=1 − (β0 + β1 x̄x̃=0 + ϵ̄x̃=0)

= β1 x̄x̃=1 − β1 x̄x̃=0 + ϵ̄x̃=1 − ϵ̄x̃=0

= β1 (x̄x̃=1 − x̄x̃=0) + ϵ̄x̃=1 − ϵ̄x̃=0. (6.2)

By (6.2), the estimated slope ˆ̃β2 is an unbiased estimator of the true slope, β1, mul-

tiplied by the difference in mean x values for each bin.

The theory behind two bins can be extended to discretizing continuous predictor

x into k bins of equal sizes using k− 1 splits. Define the following indicator variables

(x̃2, x̃3, . . . , x̃k), where x̃j for j ∈ {2, . . . , k} is 1 for any x belonging to bin j and is 0

otherwise. Using these indicator variables, the following regression model is fitted

ŷ = ˆ̃β0 +
ˆ̃β2 x2 + · · ·+ ˆ̃βk xk,

where β̃j for j ∈ {2, . . . , k} is a measure of the difference in mean response for x

belonging to the jth bin relative to the mean response for x in the first bin. Since

the primary goal is obtaining an estimate for β1 in (6.1), result (6.2) from the binary

case is extended to show the least squares estimate of β̃j to be

ˆ̃βj = β1(x̄j − x̄1) + ϵ̄j − ϵ̄1, (6.3)

where x̄j is the mean x values for x belonging to bin j, and ϵ̄j is the mean of the

deviations for x in bin j. The equation above is expanded as

ˆ̃βj = −β1 x̄1 + β1 x̄j + ϵ̄j − ϵ̄1,

and since β1 x̄1 is constant, this equation has the form of a simple linear regression,

y = θ0 + θ1 x+ u,

where y = ˆ̃βj, θ0 = −β1 x̄1, θ1 = β1 and u = ϵ̄j − ϵ̄1. The random deviations, u, have

zero mean, constant variance and no correlation. Thus, an unbiased estimator for the

slope β1 is obtained by regressing the bin estimates ˆ̃βj for j ∈ {2, . . . , k} on the mean
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bin values x̄j for j ∈ {2, . . . , k}. Separate estimates for β1 from each bin are given by
ˆ̃βj/(x̄j − x̄1) for j ∈ {2, . . . , k}.

Obtaining an unbiased estimator for the slope β1 for a discretized continuous

predictor using logistic regression is not as straightforward as the cases presented

above. Consider a binary outcome y with P (y = 1) = p, where y is dependent on

continuous predictor x through the linear predictor η,

η = log

(
p

1− p

)
= β0 + β1 x1 + ϵ.

The case where x is split into two bins is considered first. Split x in two equal

sized bins and define x̃ as before, where x̃ = 0 if x is less than the median (m) and

x̃ = 1 for x > m. Since the response is binary, there are a number of 0 and 1 responses

at both x̃ = 0 and x̃ = 1. Let p̂j for j ∈ {0, 1} be the proportion of 1s at each x̃.

Estimates for coefficients in the fitted model with the new discretized variable x̃,

ˆ̃η = ˆ̃β0 +
ˆ̃β2 x̃

are obtained using maximum likelihood estimation. The maximum likelihood estima-

tor of the slope is

ˆ̃β2 = log

(
p̂1

1− p̂1

)
− log

(
p̂0

1− p̂0

)
. (6.4)

Relating this estimator to the true slope, β1, is more complicated than in the linear

regression case because the true slope depends on the responses yi in a complex way.

In order to obtain a result analogous to that for linear regression, two approximations

must be made. The first approximation is made by replacing the expectation in (6.4)

with the expectations of the observed proportions,

E
[
ˆ̃β2

]
= E

[
log

(
p̂1

1− p̂1

)
− log

(
p̂0

1− p̂0

)]

≈ log

(
E[p̂1]

1− E[p̂1]

)
− log

(
E[p̂0]

1− E[p̂0]

)
. (6.5)

Since there areN/2 observations in bin 1 corresponding to x̃ = 0 andN/2 observations

in bin 2 corresponding to x̃ = 1, the observed proportions at x̃ = 0 and x̃ = 1 can be

written as

p̂0 =

∑N
i=1 yi I(xi < m)

N/2
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and

p̂1 =

∑N
i=1 yi I(xi > m)

N/2
,

where I(·) is the indicator function. The expectations of p̂0 and p̂1 are

E[p̂0] =
2

N

N∑
i=1

I(xi < m)pi

=
2

N

N∑
i=1

I(xi < m)
exp(ηi)

1 + exp(ηi)

and

E[p̂1] =
2

N

N∑
i=1

I(xi > m)
exp(ηi)

1 + exp(ηi)
,

where ηi = β0 + β1 xi is the true linear predictor for observation i.

The second approximation is to replace the average of the probabilities in these ex-

pectation expressions by the probability at the average value of xi, giving

E[p̂0] ≈
exp(η̄0)

1 + exp(η̄0)

and

E[p̂1] ≈
exp(η̄1)

1 + exp(η̄1)
,

where η̄0 = β0 + β1 x̄0 and η̄1 = β0 + β1 x̄1. In these expressions, x̄0 and x̄1 are the

average x in bin 1 and bin 2 respectively. Using this second approximation in (6.5),

the expected value of the slope estimator is

E[ ˆ̃β2] ≈ η̄1 − η̄0

= β1(x̄1 − x̄0),

which is analogous to result (6.2) in the binary case for linear regression.

This result can be extended to the case of splitting a continuous predictor x into k

equal sized bins. Similarly to the linear regression case, define the indicator variables

(x̃2, x̃3, . . . , x̃k), where x̃j for j ∈ {2, . . . , k} is 1 for any x belonging to bin j and is
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0 otherwise. The logistic regression model with the new discretized variable has the

linear predictor

η̃ = β̃0 + β̃2 x̃2 + · · ·+ β̃k x̃k.

Using the same two approximations as used in the binary case leads to

E
[
ˆ̃βj

]
≈ β1 (x̄j − x̄1), (6.6)

which is similar to result (6.3) obtained in linear regression. An approximately un-

biased estimate of β1 is obtained by regressing the ˆ̃βj estimates on the difference in

bin means (x̄j − x̄1) using a zero intercept. Individual β1 estimates from each bin are

given by ˆ̃βj/(x̄j − x̄1) for j ∈ {2, . . . , k}.
The analyses given above show how the actual linear term can be recovered when

a continuous variable is discretized, exactly for linear regression and approximately

for logistic regression. A similar approach is proposed for continuous predictors with

RFPMs.

In order to obtain risk estimates for each bin j relative to the first bin, ˆ̃βj for

j ∈ {2, . . . , k}, RFPMs can be used in a similar fashion as in the case for categorical

predictors. Consider a sample of size n with p−1 binary predictors (x2, x3, . . . , xp) and

a continuous predictor, x1. Suppose x1 is split into k equal sized bins and obtaining

risk estimates for each bin relative to the first is of interest. Predicting counterfactual

probabilities of success using RFPMs is as follows:

1. Determine cutpoints that will split x1 into k distinct bins (using quantiles for

example). Using these cutpoints, convert x1 into a factor variable, x̃, with levels

(1, 2, . . . , k).

2. Split the data set into k groups based on the different levels of x̃. Denote these

subgroups G1, G2, . . . , Gk, where Gj for j ∈ {1, 2, . . . , k} corresponds to the

subgroup containing observations with (x̃ = j, x2, . . . , xp).

3. Within each subgroup, train identically specified RFPMs (RFPM1, RFPM2,

. . . , RFPMk) on the remaining p− 1 predictors (x2, x3, . . . , xp).

4. Obtain observed and counterfactual probabilities of success for each observa-

tion by predicting from all k RFPMs. Each observation i has a vector of k

counterfactual probabilities of success, (p0i, p1i, . . . , pki).
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Similarly to categorical predictors, risk estimates for each bin relative to the first can

be obtained by comparing the appropriate predicted probabilities of success.

The theory given above is only valid when the effect of x1 is linear. Since the

relationship between x1 and the outcome can take many forms, the bin estimates
ˆ̃βj can be plotted against mean x bin values x̄j to examine this relationship graphi-

cally. Rather than using methods for estimating a linear relationship, methods such

as spline regression may be helpful in estimating the relationship. In the following

simulation, the use of RFPMs to obtain bin estimates for a N(0, 1) continuous pre-

dictor is demonstrated. Two types of relationships, namely a linear and quadratic,

are explored.

6.2.1 Simulation 9: Computing individual bin and overall log odds ratio

estimates using RFPMs for a continuous predictor

Refer to the following logistic model as Model 5,

logit(p) = β0 + β1 x1 + 0x2 + . . . 0x10,

where x1 is an independent and normally distributed random variable with a mean

of 0 and a variance of 1. The remaining predictors (x2, . . . , x10) are independently

generated, binary and have no association with the outcome. The intercept β0 is

chosen so that P (y = 1) ≈ 0.3 and the binary predictors are generated to have a

randomly selected P (xi = 1) between 0.05 and 0.95.

The relationship of x1 with the outcome is linear and so by the results given in

section 6.2, an approximate estimate for β1 is obtained by regressing the bin estimates

on the difference in mean bin x1 values using a zero intercept. For Simulation 9, 200

simulations are completed using three different effect sizes for β1, log(1.2) = 0.182,

log(2) = 0.693, and log(5) = 1.609, and using sample sizes of n = 5000, 10000 and

50000. Predictors for each combination of n and β1 are generated once, and a new

outcome vector is generated for each simulation.

The predictor x1 is split into 5 distinct bins using the quantcut command in the

gtools R package. This function converts x into a factor variable using the intervals

specified by sample quantiles corresponding to the given probabilities (0.2 for 5 bins).

Counterfactual probabilities of success are calculated by five RFPMs (mtry = 3,
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ntree = 100, nodesize = 5%), and from these, four log odds ratio estimates ˆ̃βj for

j ∈ {2, 3, 4, 5} are obtained for each bin by comparing to the first bin. For each ˆ̃βj

for j ∈ {2, 3, 4, 5}, an estimate for β1 is obtained by dividing ˆ̃βj by (x̄j − x̄1), where

x̄j is the mean of x1 in bin j. Sample mean, standard deviation (sβ̂1
) and % relative

bias (% bias) for each β1 estimate from the four bins per sample size are reported in

Table 6.2. The p-values listed are the results from a t-test comparing the mean of

the RFPM estimates to the true parameter value.

Table 6.2: Sample mean, standard deviation (sβ̂1
), and % relative bias (%bias) for

each log odds ratio estimate, β1, from the four bins produced by discretizing continu-

ous N(0, 1) predictor x1. Estimate of β1 for each bin calculated as ˆ̃βj/(x̄j − x̄1). The
p-values listed are the results from a t-test comparing the mean RFPM estimate to
the true parameter value.

β1 n bin mean sβ̂1
%bias p-value

β1 = log(1.2) = 0.182

5000

2 0.174 0.122 -4.47 0.344

3 0.177 0.072 -2.79 0.317

4 0.174 0.056 -4.33 0.049

5 0.184 0.036 0.76 0.587

10000

2 0.180 0.084 -1.31 0.689

3 0.183 0.048 0.45 0.806

4 0.180 0.037 -1.36 0.350

5 0.180 0.026 -1.03 0.316

50000

2 0.180 0.038 -1.10 0.454

3 0.183 0.022 0.33 0.698

4 0.181 0.016 -0.69 0.261

5 0.182 0.011 -0.00 0.977

β1 = log(2) = 0.693

5000

2 0.655 0.134 -5.48 < 0.001

3 0.670 0.083 -3.36 < 0.001

4 0.679 0.059 -2.08 0.001

5 0.680 0.037 -1.96 < 0.001

10000

2 0.658 0.096 -5.07 < 0.001

3 0.669 0.060 -3.41 < 0.001

4 0.676 0.047 -2.47 < 0.001

5 0.679 0.029 -2.04 < 0.001
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β1 n bin mean sβ̂1
%bias p-value

β1 = log(2) = 0.693
cont.

50000

2 0.655 0.044 -5.53 < 0.001

3 0.672 0.027 -3.10 < 0.001

4 0.676 0.018 -2.44 < 0.001

5 0.679 0.011 -2.07 < 0.001

β1 = log(5) = 1.609

5000

2 1.431 0.198 -11.07 < 0.001

3 1.499 0.120 -6.89 < 0.001

4 1.523 0.087 -5.40 < 0.001

5 1.495 0.063 -7.09 < 0.001

10000

2 1.430 0.136 -11.14 < 0.001

3 1.487 0.082 -7.58 < 0.001

4 1.517 0.058 -5.76 < 0.001

5 1.495 0.043 -7.10 < 0.001

50000

2 1.409 0.055 -12.45 < 0.001

3 1.477 0.034 -8.26 < 0.001

4 1.510 0.023 -6.19 < 0.001

5 1.489 0.017 -7.51 < 0.001

Figure 6.2 shows the results of the simulation where the box plots represent the

log odds ratio β1 estimates for each of the bins. The figure is split in three plots

based on the three effect sizes, log(1.2), log(2), and log(5), and the three sets of box

plots per plot represent the three different sample sizes in increasing order. The plots

are printed on the same scale for comparison purposes. The standard deviations

reported in Table 6.2 decrease for increasing bins, and this is due to the increasing

difference between x̄j and x̄1 for increasing j. The % relative bias tends to increase

with effect size and does not decrease with sample size. This indicates that although

the standard deviation decreases at a bin level as the sample size increases, there isn’t

a large reduction in bias by increasing the sample size. The bias becomes statistically

significant for a larger effect size. Consider the individual bin estimates for β1 =

log(5). The majority of the bin estimates underestimate the true β1 value (indicated

by the horizontal line), and the bias remains relatively constant for all sample sizes.
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Figure 6.2: Individual bin log odds ratio estimates of β1 in Model 5 with β1 effect
sizes of log(1.2), log(2), and log(5). Each plot represents estimates for one β1 value,
and the three sets of box plots are the individual β1 bin estimates calculated by
ˆ̃βj/(x̄j − x̄1) for n = 5000, 10000, and 50000. The true parameter value is indicated
in each plot by the horizontal line.

Since it is known that the relationship of x1 with the outcome is linear, the ˆ̃βj for

j ∈ {2, 3, 4, 5} estimates are regressed on the difference in mean x1 bin values using

a linear model with zero intercept in order to obtain an overall estimate for β1. The

sample mean, standard deviation (sβ̂1
) and % relative bias (%bias) of the regression

β1 slope estimates for each of the effect sizes are reported in Table 6.3. The p-

values reported are the results from a t-test comparing the mean of the β1 regression

estimates to the true parameter value. The box plots in Figure 6.3 represent the

regression β1 slope estimates (log odds ratio) for the different effect sizes. The three

box plots per plot are the estimates for the varying samples sizes in increasing order.

For both the smaller effect size (log(1.2)), the bias is not statistically significant,

whereas significant bias exists for all samples sizes with an effect size of β1 = log(5).

For increasing sample size, the standard deviation of the estimates decreases, but as
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seen before, the bias tends to remain constant.

Table 6.3: Sample mean, standard deviation (sβ̂), and % relative bias (%bias) of log
odds ratio estimates for varying β1 values in Model 5. Estimates for β1 are obtained

by regressing individual log odds ratio bin estimates ˆ̃βj on the difference in bin means
(x̄j − x̄1). The p-values listed are the results from a t-test comparing the mean of the
β1 regression estimates to the true parameter value.

β n mean sβ̂ %bias p-value

β1 = log(1.2) = 0.182

5000 0.180 0.042 -1.32 0.417

10000 0.181 0.029 -0.93 0.414

50000 0.182 0.012 -0.20 0.684

β1 = log(2) = 0.693

5000 0.677 0.046 -2.36 < 0.001

10000 0.676 0.037 -2.50 < 0.001

50000 0.676 0.015 -2.49 < 0.001

β1 = log(5) = 1.609

5000 1.500 0.079 -6.83 < 0.001

10000 1.496 0.053 -7.04 < 0.001

50000 1.488 0.021 -7.53 < 0.001

Interestingly, although some of the the β1 estimates from the individual bins have

a significantly large % relative bias, the overall β1 estimate from the regression has a

much smaller bias. This may be indication that even if all the individual β1 estimates

are underestimated, the slope of regression line between these points is close to the

true value. This is most notable in the large effect size where the bias for individual

bin estimates are as large as 12%, yet the bias in the regression estimates are all

approximately 7%. Although there is a decrease in bias, the bias is still statistically

significant for a large effect size.

6.2.2 Simulation 10: Plotting bin estimates against mean bin values to

detect relationship with the outcome for a continuous predictor

In practice, the relationship of a continuous predictor with the outcome may not al-

ways be linear. As seen above when the relationship is linear and the effect size is

small, the regression of the bin estimates ˆ̃βj on the mean x bin values is an effective

way to estimate the effect of a continuous predictor using RFPMs. When the rela-

tionship is unknown, plotting the bin estimates ˆ̃βj against the mean x bin values may



65

Figure 6.3: Regression β1 slope estimates (log odds ratios) for varying β1 values of

log(1.2), log(2), and log(5) in Model 5. β1 estimates obtained by regressing ˆ̃βj on the
difference in mean bin values x̄j. The three box plots per plot are the estimates for
the varying sample sizes in increasing order. The true parameter value indicated by
the horizonal line.

provide insight into this relationship and further techniques may be used to estimate

the effect. For example, consider the linear relationship of x1 with y in Model 5 where

β1 = log(1.2). A single data set with n = 5000 is generated and continuous predictor

x1 is split into 10 bins. For this example, 10 bins are used to better gauge the type

of relationship whereas, once the relationship is established, less bins may be used to

estimate the effect. Using RFPMs, 9 log odds ratio estimates ˆ̃βj for j ∈ {2, 3, . . . , 10}
are obtained and plotted against the mean x bin values x̄j as depicted in Figure

6.4. The ˆ̃βj estimates align in an approximately straight line with a positive slope,

indicating that the effect of x1 is positive and it has a linear relationship with the

outcome.
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Figure 6.4: Plot of bin ˆ̃βj log odds ratio estimates for j ∈ {2, . . . , 10} for continuous

N(0, 1) predictor x1 with a main effect of β1 = log(1.2) from Model 5. Each ˆ̃βj for
j ∈ {2, . . . , 10} is plotted against the mean bin x value x̄j.

As a second example, consider the nonlinear relationship of x1 with y in Model 6,

logit(p) = β0 + β1 x1 + β1 x
2
1 + 0x2 + . . . 0x10

where x1 is an independent and normally distributed random variable with a mean

of 0 and a variance of 1. The coefficient for both the x1 and x2
1 terms is chosen

to be log(1.2). The remaining predictors (x2, . . . , x10) are independently generated,

binary and have no association with the outcome. The results in section 6.2 aren’t

applicable when the relationship is nonlinear, but plotting the bin estimates ( ˆ̃βj)

against bin means (x̄j) may provide insight into the relationship. A single data set

with n = 5000 is generated and continuous predictor x1 is split into 10 bins as before.

Using RFPMs, 9 log odds ratio estimates ˆ̃βj for j ∈ {2, 3, . . . , 10} are obtained and

plotted against the mean x bin values (x̄j) as depicted in Figure 6.5. The estimates no

longer align in an approximately straight line, but now exhibit curvature associated

with a quadratic relationship. From this figure the researcher may conclude that
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the relationship is nonlinear and the coefficients of the x1 and x2
1 terms are positive.

Instead of fitting a straight line, the researcher may apply other techniques such as

spline regression to obtain an approximate estimate for β1.

Figure 6.5: Plot of bin ˆ̃βj log odds ratio estimates for j ∈ {2, . . . , 10} for continuous

N(0, 1) predictor x1 with β1 = log(1.2) from Model 6. Each ˆ̃βj for j ∈ {2, . . . , 10} is
plotted against the mean bin x value x̄j.



Chapter 7

Identifying risk factors for fetal growth abnormalities using

random forest probability machine methods

Infants with a birth weight below the 10th percentile (SGA; small for gestational age)

for gestational age and sex are at a higher risk for perinatal mortality and morbidity.

SGA infants also have higher health care utilization, including during the delivery

admission and for re-admissions within two weeks of delivery, compared to infants

born appropriate for gestational age.

Knowledge of the risk factors for SGA births has important implications for pre-

conception counselling and antenatal risk assessment. Smoking, young maternal age,

previous birth of a low birth weight infant, lower socioeconomic status, hypertensive

disorders of pregnancy, and maternal underweight have all been identified as risk fac-

tors for having an SGA infant. Conversely, high body mass index and diabetes in

pregnancy are protective factors.

The objective of this analysis is to use the random forest probability machine

methods presented in Chapters 2 through 6 to identify risk factors for SGA births

using data from the Nova Scotia Atlee Perinatal Database (NSAPD).

7.1 Data set

7.1.1 Source

The NSAPD contains information on routine demographic variables, medical con-

ditions, reproductive history, delivery events, and neonatal outcomes for each birth

to mothers resident in Nova Scotia. The data is entered by trained coders using

information from standardized clinical forms. Nova Scotia uses both a standard Pre-

natal Record and forms completed at the time of the hospital delivery admission to

document prenatal care and information relevant to care and medical research. The

NSAPD is administered by the Reproductive Care Program of Nova Scotia which also

68
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maintains the coding system, ensures the quality, integrity and security of the data.

Using the NSAPD, a retrospective cohort of singleton infants born in Nova Scotia

between January 1, 2009 and December 31, 2014 was established.

7.1.2 Outcome and predictors

The primary outcome is SGA (< 10th percentile birth weight for gestational age and

sex), or not SGA (≥ 10th percentile birth weight for gestational age and sex) relative

to the Canadian reference population published by Kramer et al. (2001). The outcome

prevalence for the dataset used in this analysis is 0.06.

Demographic and clinical characteristics recorded in the NSAPD that were avail-

able at 26 weeks are used as predictors (Table 7.1). The analysis was restricted to

women who have previously given birth (multiparous women) as their predictor set, in

addition to their sociodemographic and current pregnancy information, also includes

information from previous pregnancies.

Area-level household income quintile is calculated from the adjusted annual in-

come based on census data averaged over all households in a postal code area. Area

of residence is determined from the mother’s postal code at the time of pregnancy.

Any smoking at 20 weeks or at the labour admission is used as a proxy for smoking at

26 weeks. Pre-pregnancy body mass index (BMI) is based on height and weight infor-

mation collected by self-report at the first prenatal visit. Sample characteristics for

predictors in Table 7.1 using only complete data on multiparous women (N=15,771)

are reported in Table 7.2.

7.2 Analysis

The use of RFPMs to estimate log odds ratios for binary, categorical, and continuous

predictors, as well as corresponding confidence intervals, is outlined in Chapters 2

through 6. So far, use of RFPMs has only been demonstrated using simulated data

and have yet to be applied to a real life data set. In the following section, RFPMs are

used to estimate the association of the potential risk factors described in Table 7.1

with the risk for SGA. Ignoring any possible interaction effects, main effects for all

predictors are estimated using the appropriate application of RFPMs. Interactions
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Table 7.1: Demographic and clinical characteristics of predictors used in real life data
analysis recorded in the Nova Scotia Atlee Perinatal Database (NSAPD).

Description Type Identifier Values

Sociodemographics

Maternal age Continuous matage

Common-law/married Binary clmarried
(1 - common-law/

married, 0 - single)

Area-level income quintile Categorical ses5 (Q1, Q2, Q3, Q4, Q5)

Area of residence (rural) Binary rural (1 - rural, 0 - urban)

Pregnancy risk factors

Smoking before pregnancy Binary ppsmk (1 - yes, 0 - no)

Pre-pregnancy body mass index Continuous ppbmi

Pre-existing hypertension Binary prexht (1 - yes, 0 - no)

Pre-existing diabetes Binary prexdm (1 - yes, 0 - no)

Pregnancy history

Gravidity Categorical gravid (2, 3, ≥ 4)

Parity Categorical parity (1, 2, ≥ 3)

Previous gestational diabetes Binary prvgdm (1 - yes, 0 - no)

Previous child birth weight < 2500g Binary prvlbw (1 - yes, 0 - no)

Previous child birth weight > 4080g Binary prvbig (1 - yes, 0 - no)

Previous caesarean section Binary prvcs (1 - yes, 0 - no)

Previous preterm delivery < 29wks Binary prvpt29 (1 - yes, 0 - no)

Previous preterm delivery 29-32wks Binary prvpt2932 (1 - yes, 0 - no)

Previous preterm delivery 33-36wks Binary prvpt3336 (1 - yes, 0 - no)

Previous death of a neonate ≥ 500g Binary prvnnd (1 - yes, 0 - no)

Current pregnancy

Fetal sex Binary sex (1 - male, 0 - female)

Weight gain in pregnancy at 26wks Continuous pwtgain26w

Smoking during pregnancy Binary smk (1 - yes, 0 - no)

Substance use in pregnancy Binary chabus (1 - yes, 0 - no)

Gestational diabetes Binary gdm (1 - yes, 0 - no)

Pregnancy-induced hypertension Binary pih (1 - yes, 0 - no)

Psychiatric disorder Binary psych (1 - yes, 0 - no)



71

Table 7.2: Sample characteristics for real life data set predictors using only complete
information on multiparous women (N=15771). Data are presented as proportions
unless otherwise indicated.

Description Identifier Sample characteristics

Sociodemographics

Maternal age matage Mean 30.4 (SD 5.1)

Common-law/married clmarried 0.79

Area-level income quintile ses5 0.17/0.21/0.23/0.21/0.17

Area of residence (rural) rural 0.30

Pregnancy risk factors

Smoking before pregnancy ppsmk 0.24

Pre-pregnancy body mass index ppbmi Mean 26.7 (SD 6.6)

Pre-existing hypertension prexht 0.01

Pre-existing diabetes prexdm 0.01

Pregnancy history

Gravidity gravid 0.45/0.29/0.26

Parity parity 0.67/0.23/0.10

Previous gestational diabetes prvgdm 0.03

Previous child birth weight < 2500g prvlbw 0.07

Previous child birth weight > 4080g prvbig 0.12

Previous caesarean section prvcs 0.25

Previous preterm delivery < 29wks prvpt29 0.01

Previous preterm delivery 29-32wks prvpt2932 0.01

Previous preterm delivery 33-36wks prvpt3336 0.05

Previous death of a neonate ≥ 500g prvnnd < 0.01

Current pregnancy

Fetal sex sex 0.51

Pregnancy Weight gain at 26wks pwtgain26w Mean 7.9 (SD 3.3)

Smoking during pregnancy smk 0.19

Substance use in pregnancy chabus 0.02

Gestational diabetes gdm 0.06

Pregnancy-induced hypertension pih 0.01

Psychiatric disorder psych 0.12
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are then estimated using information provided from the intuitive interaction detection

method and a content expert.

7.2.1 Estimating main effects using RFPMs

Ignoring the potential presence of interactions, main effects are estimated using var-

ious applications of RFPMs. For binary predictors, the two-machine RFPM method

outlined in Chapter 2 is used to obtain odds ratio estimates. For the three categor-

ical predictors, ses5, gravidity, and parity, k RFPMs are used to obtain odds ratios

for each level relative to the first, where k is the number of levels of the categorical

predictor. For the three continuous predictors, matage, ppbmi, and pwtgain26w, 10

splits are made, and individual log odds ratio bin estimates ˆ̃βj for j ∈ {1, . . . , 10}
are plotted against bin means to determine the relationship with the outcome. Odds

ratio estimates for continuous predictors will be based on 5 bins once a relationship

is established. For all odds ratio estimates, 95% confidence intervals are constructed

using the bootstrap percentile method.

Odds ratio estimates and corresponding 95% confidence intervals for binary pre-

dictors are shown in Table 7.3. A previous child birth weight less than 2500g (prvlbw),

a previous child birth weight greater than 4080g (prvbig), a previous pre-term delivery

at 29-32 weeks (prvpt2932), a previous pre-term delivery at 33-36 weeks (prvpt3336),

pregnancy-induced hypertension (pih), pre-existing hypertension (prexht), marital

status (clmarried), smoking before pregnancy (ppsmk), smoking during pregnancy

(smk), and substance use during pregnancy (chabus) are all associated with having

a SGA baby.

The most strongly positively associated predictors (odds ratio greater than 3),

are prvlbw, smk, and chabus. This indicates that mothers who have previously given

birth to an infant with a birth weight less than 2500g, mothers who reported smoking

during pregnancy, and mothers who reported substance use during pregnancy all

have greater odds of having a SGA birth. However, mothers who have previously

given birth to an infant with a birth weight greater than 4080g have lower odds of

having a SGA birth relative to mothers who previously have not given birth to a large

infant. Interestingly, the common-law/married predictor is significant, indicating that

mothers who are married/common-law have lower odds of having a SGA baby relative
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to mothers who are single. This predictor may be acting as a proxy for maternal age

(matage) since it is known that younger (and most likely single) mothers are at a

greater risk of having a SGA baby.

Table 7.3: Odds ratios and corresponding 95% confidence intervals for binary predic-
tors constructed using the two-machine RFPM method. Predictors are presented in
the same order as in Tables 7.2 and 7.3.

Predictor Odds ratio estimate 95% confidence interval

clmarried 0.63 [0.52, 0.74]

rural 1.01 [0.85, 1.20]

ppsmk 2.66 [2.27, 3.15]

prexht 2.06 [1.27, 3.32]

prexdm 0.68 [0.23, 1.34]

prvgdm 0.92 [0.51, 1.40]

prvlbw 4.05 [3.37, 4.82]

prvbig 0.21 [0.13, 0.30]

prvcs 1.02 [0.85, 1.23]

prvpt29 1.90 [0.91, 3.04]

prvpt2932 2.31 [1.19, 3.50]

prvpt3336 1.71 [1.28, 2.35]

prvnnd 1.61 [0.49, 3.07]

sex 1.11 [0.95, 1.25]

smk 3.39 [2.84, 3.86]

chabus 3.27 [2.22, 4.57]

gdm 1.07 [0.80, 1.42]

pih 2.92 [1.35, 4.41]

psych 1.19 [0.92, 1.49]

Odds ratio estimates with corresponding 95% confidence intervals for the three

categorical variables are shown in Table 7.4. Mothers who have been pregnant more

than once (gravid) and mothers who have given birth more than once (parity) are

significantly more likely to have a SGA baby. The area-level income quintiles predictor

(ses5) has five levels, which are ordered from lowest to highest income. Quintiles 2

to 5 are all associated with a lower odds of having a SGA baby relative to Quintile

1. The association is statistically significant.
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Table 7.4: Odds ratios and corresponding 95% confidence intervals for categorical
predictors constructed using RFPMs. Odds ratios are calculated for each level of the
categorical predictor relative to the baseline (first level). Predictors are presented in
the same order as in Tables 7.2 and 7.3.

Predictor Level Odds ratio estimate 95% confidence interval

ses5

Q1 - -

Q2 0.81 [0.78, 0.84]

Q3 0.76 [0.73, 0.78]

Q4 0.68 [0.67, 0.72]

Q5 0.74 [0.72, 0.77]

gravid

2 - -

3 1.06 [1.02, 1.07]

≥ 4 1.26 [1.19, 1.26]

parity

1 - -

2 1.09 [1.04, 1.10]

≥ 3 1.54 [1.48, 1.59]

The maternal age predictor should have an approximate U-shaped relationship

with having a SGA infant. Young women are at a high risk and then this risk

drops until about age 35, after which it increases again because the placenta in older

women cannot support the fetus as effectively. With this knowledge, the relationship

in Figure 7.1 could be considered U-shaped, but the estimates have a high degree of

variability. One could also conclude that there is no association between maternal

age and SGA due to the scatter of the estimates. This may also be an indication

that more than nine estimates are required to visualize this relationship in a plot.

The relationship between pre-pregnancy body mass index and SGA is negative and

appears to be linear apart from a few estimates (Figure 7.2). There is also a negative

linear relationship between pregnancy weight gain at 26 weeks (pwtgain26wk) and

SGA (Figure 7.3). Both of these plots are in keeping with the literature as mothers

with a larger BMI and mothers who gain more weight during pregnancy are less likely

to have a SGA infant.

The odds ratios and 95% confidence intervals for the continuous predictors are

shown in Table 7.5. For matage, the baseline group consists of mothers between the

ages of 16 and 26 years. Mothers between the ages of 26 and 32 years have lower
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Figure 7.1: Log odds ratio bin estimates ˆ̃βj calculated relative to the first bin plotted
against bin means x̄j for j ∈ {2, . . . , 10} for matage (maternal age) predictor.

Figure 7.2: Log odds ratio bin estimates ˆ̃βj calculated relative to the first bin plotted
against bin means x̄j for j ∈ {2, . . . , 10} for ppbmi (pre-pregnancy body mass index)
predictor.
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Figure 7.3: Log odds ratio bin estimates ˆ̃βj calculated relative to the first bin plotted
against bin means x̄j for j ∈ {2, . . . , 10} for pwtgain26w (weight gain in pregnancy
at 26 weeks) predictor.

odds of having a SGA infant, and as mothers get older (ages 32-51), the odds are

getting closer to baseline. This relationship coincides with the expected U-shaped

relationship between maternal age and SGA. Young mothers and older mothers are

at a greater risk for having SGA babies relative to middle-aged mothers. For ppbmi,

the baseline group consists of mothers with a pre-pregnancy BMI between 15.1 and

21.3 kg/m2. With increasing pre-pregnancy BMI, the odds of having a SGA baby

relative to baseline decreases. For pwtgain26w, the baseline group consists of mothers

with a weight gain at 26 weeks between -13.7 and 5.41 kg (a negative weight gain

indicates mother weighed less at 26 weeks than pre-pregnancy). Similarly to ppbmi,

with increasing weight gain at 26 weeks, the odds of having a SGA baby relative to

baseline decreases.

7.2.2 Detecting and estimating interaction effects using RFPMs

The main effects estimation presented in section 7.2.1 ignores the potential presence of

interactions. Using the intuitive interaction detection method and the four-machine

RFPM method outlined in Chapter 4, potential interaction effects can be quickly
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Table 7.5: Bin odds ratio estimates and corresponding 95% confidence intervals for
continuous predictors constructed using four RFPMs. Continuous predictors are split
into five bins (quintiles) and odds ratios are obtained for each bin relative to baseline
(first bin).

Predictor Quintile Odds ratio estimate 95% confidence interval

matage

[16, 26] - -

(26, 29] 0.73 [0.73, 0.77]

(29, 32] 0.71 [0.70, 0.74]

(32, 35] 0.87 [0.85, 0.90]

(35, 51] 0.93 [0.91, 0.96]

ppbmi

[15.1, 21.3] -

(21.3, 23.7] 0.57 [0.56, 0.59]

(23.7, 26.8] 0.56 [0.54, 0.56]

(26.8, 31.7] 0.38 [0.35, 0.38]

(31.7, 67.8] 0.39 [0.37, 0.39]

pwtgain26w

[-13.7, 5.41] -

(5.41, 7.12] 0.60 [0.57, 0.61]

(7.12, 8.51] 0.50 [0.47, 0.50]

(8.51, 10.3] 0.39 [0.37, 0.40]

(10.3, 24.5] 0.25 [0.23, 0.25]

screened for and estimated. The intuitive interaction detection method has only

been formalized for interactions between binary predictors, and so any continuous

or categorical predictors in Table 7.1 are omitted from the screening process. The

interaction between two rare predictors is not entirely relevant for the purpose of this

analysis. Thus, any pair of predictors with a product of prevalence rates less than

0.1 are not considered. The combinations of these predictors may create p11, p10,

or p01 subgroups with very few observations or no observations at all. Since only a

single RFPM is fitted in the screening process, misleading results can be obtained if

subgroups have very small sample sizes.

To avoid calculating estimates and corresponding confidence intervals for all pos-

sible pairs of binary predictors, potential interactions are screened first using the

intuitive interaction detection method (Table 7.6). In Simulations 3 and 4, an in-

teraction was deemed relevant if its estimated log odds ratio (ℓROR) was either less
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than log(1/1.05) or greater than log(1.05) (or an odds ratio (ROR) less than 1/1.05

or greater than 1.05). Using these cutoff points, the effect of the interaction be-

tween predictors common-law/married (clmarried) and smoking status during preg-

nancy (smk); common-law/married (clmarried) and pre-pregnancy smoking status

(ppsmk); common-law/married (clmarried) and mother’s area of residence (rural);

and, fetus sex (sex) and mother’s area of residence (rural), are all potentially rele-

vant. Some of these interactions may be spurious. Therefore, interpretation of the

results from the screening process requires content expertise.

Table 7.6: Results of the intuitive interaction detection method where only binary
predictors are considered. Any predictors with a product of prevalence rates less than
10% are omitted. For each pair of predictors, the multiplicative measure of interaction
ROR, odds ratios OR01, OR10 and, OR11, and the additive measure of interaction
RERIRR, are reported. Predictor pairs are sorted by largest |ROR− 1|.

Predictors ROR OR01 OR10 OR11 RERIRR

clmarried smk 1.40 2.26 0.74 2.27 0.26

clmarried ppsmk 1.30 2.13 0.75 2.04 0.17

clmarried rural 1.11 0.95 0.58 0.62 0.08

sex rural 0.96 1.06 0.99 1.03 -0.03

prvcs clmarried 0.99 0.60 0.96 0.57 0.01

sex prvcs 0.99 0.92 0.99 0.90 -0.01

sex clmarried 1.00 0.60 0.99 0.59 0.00

sex ppsmk 1.00 2.67 1.00 2.67 0.00

The potential interaction between marital status (clmarried) and many other

predictors is most likely due to it being a proxy for maternal age, a predictor known to

have a strong association with SGA. Since predictors smk and ppsmk are very similar

and highly correlated (correlation coefficient of 0.86), only the interaction between

clmarried and smk is considered on account of smoking during the pregnancy being

more relevant biologically. The interaction between clmarried and rural is not useful,

and the latter may be a weak proxy for obesity (obesity rate is higher in women who

live in rural areas). Similarly, the interaction between sex and rural is both spurious

and irrelevant biologically, and is ignored.
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Based on the results from the intuitive interaction detection method and knowl-

edge from a content expert, only the interaction between clmarried and smk is fur-

ther investigated. Using the four-machine RFPM method, odds ratios for main effects

(OR10 and OR01) and the interaction effect (ROR) are obtained (Table 7.7). The

four-machine RFPM method can be used to obtain both main and interaction ef-

fects since the highest order term in the fully saturated model containing interacting

predictors (only clmarried and smk) is the 2-way interaction (22 = 4 machines).

All odds ratios reported are significant at the 5% significance level, indicating that

clmarried, smk and their interaction are associated with SGA.

The odds ratios reported are calculated relative to the baseline group (OR00),

which is the group of single mothers who do not smoke during pregnancy. The odds

ratio OR10 = 0.71 indicates that common-law/married mothers who do not smoke

during pregnancy have lower odds of having a SGA baby relative to the baseline

group, whereas OR11 = 2.50 indicates that common-law/married mothers who smoke

during pregnancy have higher odds of having a SGA baby relative to baseline. The

odds ratio OR01 = 2.39 indicates that single mothers who smoke during pregnancy

have higher odds of having a SGA baby relative to baseline.

Table 7.7: Odds ratio estimates for main effects (OR10 and OR01) and interaction
effect (ROR) for predictor pair clmarried and smk. ORij is the odds ratio for
clmarried = i and smk = j for i j ∈ {0, 1}. For each odds ratio, the corresponding
95% confidence interval is reported.

Predictors Estimate 95% confidence interval

clmarried smk

OR11 = 2.50 [1.95, 3.08]

OR10 = 0.71 [0.58, 0.91]

OR01 = 2.39 [1.89, 3.09]

ROR = 1.75 [1.31, 2.39]

7.3 Conclusion

The current methods for estimating main and interaction effects for predictors as-

sociated with SGA have been exclusively based on conventional regression methods.

RFPMs provide an alternative non-parametric approach for estimating these effects



80

without imposing any restrictions on the data generating process. In this analysis,

RFPMs identified the risk factors for SGA that are known to be associated from the

literature. The use of RFPMs to estimate odds ratios for a linear continuous predic-

tor using the concept of binning was helpful in visualizing the relationship as seen in

Figure 7.3.

Although RFPMs provided a non-parametric approach to this analysis, several

issues with the use of RFPMs in real life data were identified. The first issue is the

problem of computation times. For this analysis, a typical 4-core CPU was used to

compute all odds ratio estimates and 95% confidence intervals, which proved to be

very time consuming. Secondly, in Simulations 9 and 10, the 95% confidence intervals

constructed using the bootstrap percentile method were shown to have appropriate

coverage probability. However, in the real life data, although all the point estimates

are contained inside the 95% confidence interval, some of the estimates are on either

the lower or upper bound of the interval. This implies that the distribution of the

estimates may not be symmetric and either more bootstrap samples are required

(rather than b = 200), or an alternative bootstrap method may be more appropriate.

A couple of issues arose with the use of RFPMs for continuous predictors and

the concept of binning. The expected relationship between maternal age and SGA is

U-shaped, but this relationship is not immediately apparent in Figure 7.1. One could

just as easily conclude that there is not association between maternal age and SGA

due to the random scatter of the estimates. This may be an indication that more

estimates are required, or a different approach to binning is needed to visualize the

relationship between predictors and the outcome when the relationship is complex

and nonlinear. Using more estimates will increase the computation time required to

compute estimates, and could potentially lead to creating bins with very little obser-

vations resulting in misleading estimates. Determining the number of bins to split

the continuous predictor into requires consideration of both the outcome prevalence

and the total sample size of the data set.

The intuitive interaction screening method obviated the need to estimate all possi-

ble interactions, but the method had several drawbacks. In the first application of this

method, all possible binary predictors were considered (171 possible combinations),
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regardless of their prevalence rates. This produced 117 potentially relevant interac-

tions using the cutoff points used in Simulations 3 and 4, many of which were either

spurious or irrelevant biologically. Many of the rare predictors appeared to interact

very frequently, but this may be due to the very small sample sizes of the p11, p01, p10

subgroups. Since there is only one RFPM fitted in this method, these estimates may

be misleading when the sample sizes are small. Choosing which predictors to further

investigate from the 117 proved to be challenging and led us to introduce threshold

values with regard to the effect size and the prevalence of the respective predictor

pair, and to use content expertise to further screen for relevant interactions.

Due to the complexity of interactions between predictors of different types, the

intuitive interaction detection method has yet to be formalized for interactions be-

tween these predictors. Also, the estimation of the effect of these interactions becomes

increasingly complex with the concept of binning. These interaction effect estimates

between continuous and binary or categorical predictors may be difficult to interpret.

Overall, the results from the RFPM analysis aligned well with the literature, but

additional work is required reduce computation times and improve the estimation of

continuous predictors.



Chapter 8

Discussion

The use of RFPMs proposed by Malley et al. (2012) to estimate main and interac-

tion effects for binary predictors has been explored. A technique for estimating the

main effects of categorical predictors and of continuous predictors using the concept

of binning has been proposed. Using the bootstrap percentile method, confidence in-

tervals for a risk estimate derived using RFPMs were constructed and shown to have

appropriate coverage probability. RFPMs were then applied to a real life data set

and were found to identify risk factors associated with SGA that aligned with what

is known to be associated from the literature. The issues faced when using RFPMs

in this analysis were also discussed.

Logistic regression is the most commonly used model for examining the association

of potential risk factors with a binary outcome. This method is widely used due to its

simplicity, ease of interpretation, and implementation in all major statistical software

packages. However, for high dimensional data sets or data with complex relationships

between the predictors and outcome (e.g. higher order interactions or non-linear

relationships), logistic regression may not be able to fit the model correctly. Another

drawback of the logistic regression model is that it produces odds ratio estimates,

which may overestimate the relative risk for outcomes with a prevalence > 10%.

RFPM methods deal with several of these issues in that they are completely non-

parametric, and are applicable to large data sets and high dimensional problems.

RFPM methods require only a specification of which predictors are to be included,

rather than any explicit functional form. Since RFPMs estimate predicted counter-

factual probabilities of success, individual risk estimates can be calculated; subgroup-

specific risk estimates can be obtained by averaging over the appropriate individual

estimates.

The two-machine and four-machine RFPM methods are used to estimate main

and interaction effects of binary predictors. RFPMs were found to produce estimates

82
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with minimal bias and perform almost as efficiently as a correctly specified logistic

regression model when the data generating model was logistic. However, correct main

effect estimates can be difficult to obtain for predictors involved in many interactions.

This requires the use of 2m machines, where m is the highest order term in the

fully saturated model of interacting predictors. This may not always be feasible, as

increasing the number of machines may produce subgroups of the data set with very

few or no observations.

The intuitive interaction detection method proved to be a relatively quick screen-

ing process to identify any potential interaction effects. Rather than estimating all

possible combinations of predictors, this method can be used to quickly screen for po-

tentially relevant interactions. However, this method may produce an overwhelming

number of irrelevant or spurious interactions, and it must be used with caution and

knowledge from a content expert. The interactions between rare predictors may pro-

duce subgroups with very few observations, and may produce misleading estimates.

RFPMs can also be used to estimate the effects of categorical predictors by ex-

tending the methodology behind the two-machine RFPM. Estimates with minimal

bias were produced by using k machines, where k is the number of levels of the pre-

dictor, and performed comparably to a correctly specified logistic regression model

when the data generating process was logistic. Estimating the effects for a continuous

predictor is much more complex and a possible solution involves the concept of bin-

ning (described in Chapter 6.2). This method was shown to produce estimates with

minimal bias when the effect size was small, but the bias became substantial (around

10%) at an effect size of log(5). Interaction detection and estimation that involves

continuous variables is challenging due to the required pre-processing (binning) of the

continuous variables.

The relationship between the outcome and a continuous predictor may not always

be linear. A possible way to visualize relationships is to plot the individual bin es-

timates ˆ̃βj against the bin means, x̄j. This method proved to be valuable when the

relationship between the predictor and the outcome was simple and linear, whereas

complex and non-linear relationships were less apparent. This may be an indica-

tion that more bins are required to examine complex relationships, or an alternative

approach may be needed.
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The bootstrap percentile method was proposed as an approach to constructing

confidence intervals for risk effects derived from RFPMs. In Simulations 6 and 7, this

method was shown to produce confidence intervals with appropriate coverage proba-

bilities. However, constructing confidence intervals with a large number of bootstrap

samples was very computationally intensive and time consuming. When applied to

the real life data set, some of the estimates were on either the lower of upper bound

of the interval. This observation suggests that an alternative bootstrap method may

be more appropriate or more bootstrap samples are required.

An issue that was not explored in depth is the issue of correlation among predic-

tors. Correlated predictors were briefly explored Simulations 3 and 4 (section 4.1.1)

when it was found that complex correlations among predictors led to an increase in

false positive rates. Preliminary simulations (data not shown) demonstrated that ef-

fect estimates for correlated predictors from RFPMs were consistently biased toward

the Null when the correlation was greater than 0.2. The source of this bias is un-

known, but may relate to the way trees are built in the random forest. Correlations

among predictors are relatively common in health research (e.g. correlations between

environmental chemical metabolites), and their effect on RFPM estimates may be

substantial.

The use of RFPMs for risk estimation in epidemiological studies still requires addi-

tional work. These methods are computationally intensive, and there is no formalized

method for estimating interactions between different types of predictors. Future re-

search on the topic should consider developing such methodology, alternative methods

for confidence interval construction, and exploring the effect of correlations between

predictors on RFPM estimates and determining the source of the observed bias.
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Appendix A

R code

The R code in the following sections is used to implement the intuitive interaction

screening method, the two-machine RFPM method, the four-machine RFPM method,

use of RFPMs for a categorical predictor with k levels, and use of RFPMs for a dis-

cretized continuous predictor split into k bins. The code provided was used to obtain

the results from Simulations 1-10 and the results from Chapter 7. The functions

provided have a detailed introduction outlining its use, input parameters and output

results.
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A.1 Intuitive interaction screening method

1 # FUNCTION TO PERFORM DASGUPTA ’S "Intuitive Model - Free Interaction Screening Method"

IN

2 # "Risk Estimation using probability machines ".

3 # INTERACTION DETECTION ONLY FOR BINARY PREDICTORS

4

5 #INPUT:

6 # dataset: dataframe or matrix where each column represents one predictor and the

last column is the response vector

7 # (each row corresponds to 1 observation)

8 # n.tree: number of trees to grow in single RFPM fit to the data

9 # m.try: number of predictors randomly sampled as candidates at each split in

single RFPM fit to the data

10 # thres.p: prevalence cutoff point where if the product of any predictor

prevalences is less than p.thres , no interaction

11 # estimate will be computed. If no cutoff point is desired , (ie. compute all

interactions regardless of prevalence), set

12 # thres.p = 0

13

14 #OUTPUT:

15 # ’Intuitive Interaction Screening ’: matrix indicating potential interactions in

the model found by fitting

16 # one RFPM. First two columns are the two predictors involved (x_j, x_k)

and remaining are the interaction quantities:

17 # 1. log ratio of odds ratios: log of the ratio of p_11(1-p_10)/p_10(1-p_

11) and p_01(1-p_00)/p_00(1-p_01))

18 # 2. OR_01: odds ratio p_01(1-p_00)/p_00(1-p_01)

19 # 3. OR_10: odds ratio p_10(1-p_00)/p_00(1-p_10)

20 # 4. OR_11: odds ratio p_11(1-p_00)/p_00(1-p_11)

21 # 5. Relative Excess Risk due to Interaction (RERI): RERI = p_11/p_00 - p_01/p_00

- p_10/p_00 + 1

22 #

23 # *NOTE*: 1 is used to detect multiplicative interactions and 5 is used to

detect additive interactions. ORs (2-4) are

24 # provided for insight regarding main effect estimates. Interactions are

sorted by largest lROR in absolute value.

25

26 #Libraries

27 library(randomForest)

28 library(gtools)

29 library(foreach)

30 library(doParallel)

31

32 int.detection_final <- function(dataset , n.tree , m.try , thres.p){

33

34 #Set up dataframe

35 n.col <- ncol(dataset)
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36 data_mat <- data.frame(predictors=dataset[, 1:(n.col -1)], response=dataset[, n.col

])

37

38 #Set nodesize = 5% of dataset

39 node.size <- 0.05*nrow(data_mat)

40

41 #Determine number of continuous and categorical predictors:

42 unique.val <- apply(data_mat , 2, unique)

43 unique.val.length <- as.vector(unlist(lapply(unique.val , length))) #Determine

number of unique values in each column of data.mat

44 which.contcat.preds <- which(unique.val.length > 2)

45

46 ## Intuitive Model -Free Interaction Detection ------------------------------

47 #This method is done on dataset containing no continuous or categorical predictors

or their "bins" - nonsensical for

48 #a "bin" of one continuous predictor to interact with another bin and/or a binary

predictor. Only binary

49 #predictors are considered at this time

50

51 #Fit single RFPM to the data (P(Y=1)|X) - only binary predictors

52 PM_iid <- randomForest(response ~., data=data_mat , ntree=n.tree , mtry=m.try ,

nodesize=node.size)

53

54 #Create vectors to store ratio of odds ratios and RERI for each combination of X_j

X_k

55 comb <- combinations ((n.col -1), 2)

56

57 #If there are continuous/categorical predictors in the dataset , remove their

predictor index from comb

58 if (length(which.contcat.preds)!=0){

59 #Remove any rows of comb that contain index of continuous predictor

60 rm.rows <- rep(NA , 0)

61

62 for (i in 1: length(which.contcat.preds)){

63 contcat.pred.i <- which.contcat.preds[i]

64 rm.rows <- rbind(rm.rows , which(comb== contcat.pred.i, arr.ind = TRUE)[,1])

65 }

66

67 rm.rows <- unique(as.vector(rm.rows))

68

69 #Comb only contains binary predictors

70 comb <- comb[-rm.rows ,]}

71

72 odds.iid <- matrix(NA, ncol=4, nrow =0)

73 RERI.iid <- matrix(NA, ncol=1, nrow =0)

74

75 #Compute p00 , p01 , p10 , p11 for combinations of (X_m, X_n) and calculate ratio of

odds ratio and RERI

76 for (r in 1:nrow(comb)){
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77

78 print(r)

79

80 m <- comb[r,1]

81 n <- comb[r,2]

82

83 x_j <- data_mat[,m]; x_k <- data_mat[,n ]

84 prev.x_j <- mean(x_j); prev.x_k <- mean(x_k)

85

86 #Predicted probabilities conditional on the four possible combinations over (Xj ,

Xk)

87 p00 <- predict(PM_iid , newdata=subset(data_mat , data_mat[,m]==0 & data_mat[,n

]==0))

88 p01 <- predict(PM_iid , newdata=subset(data_mat , data_mat[,m]==0 & data_mat[,n

]==1))

89 p10 <- predict(PM_iid , newdata=subset(data_mat , data_mat[,m]==1 & data_mat[,n

]==0))

90 p11 <- predict(PM_iid , newdata=subset(data_mat , data_mat[,m]==1 & data_mat[,n

]==1))

91

92 lengths <- c(length(p00), length(p01), length(p10), length(p11))

93

94 if(prev.x_j*prev.x_k < thres.p){

95

96 print("Product prevelances of predictors less than 0.1:")

97 print(c(m,n))

98

99 lROR.iid <- NA

100 RERI <- NA

101

102 odds.iid <- rbind(odds.iid , lROR.iid)

103 RERI.iid <- rbind(RERI.iid , RERI)

104

105 } else if(any(lengths ==0)){

106

107 print("One of G_00, G_01, G_10, G_11 contains no observations for predictors:")

108 print(c(m,n))

109

110 lROR.iid <- NA

111 RERI <- NA

112

113 odds.iid <- rbind(odds.iid , lROR.iid)

114 RERI.iid <- rbind(RERI.iid , RERI)

115

116 } else{

117

118 #Mean of the logit of the conditional probabilities

119 p00.avlogit <- mean(logit(p00))

120 p01.avlogit <- mean(logit(p01))
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121 p10.avlogit <- mean(logit(p10))

122 p11.avlogit <- mean(logit(p11))

123

124 lROR.iid <- p11.avlogit - p10.avlogit - p01.avlogit + p00.avlogit

125

126 #Mean of the conditional probabilities

127 p00.av <- mean(p00)

128 p01.av <- mean(p01)

129 p10.av <- mean(p10)

130 p11.av <- mean(p11)

131

132 #Odds ratios relative to baseline

133 OR_01 <- (p01.av*(1-p00.av))/(p00.av*(1-p01.av))

134 OR_10 <- (p10.av*(1-p00.av))/(p00.av*(1-p10.av))

135 OR_11 <- (p11.av*(1-p00.av))/(p00.av*(1-p11.av))

136

137 odds.iid <- rbind(odds.iid , c(lROR.iid , OR_01, OR_10, OR_11))

138

139 #Additive Interactions (RERI_RR - relative excess risk due to interaction)

140 RERI <- p11.av/p00.av - p01.av/p00.av - p10.av/p00.av + 1

141 RERI.iid <- rbind(RERI.iid , RERI)}}

142

143 #Store results in one matrix

144 iid.odds.N.RERI.round <- round(cbind(odds.iid , RERI.iid), digits =3)

145 iid.odds.N.RERI <- cbind(comb , iid.odds.N.RERI.round)

146 colnames(iid.odds.N.RERI) <- c("X_m", "X_n", "lROR", "OR_01", "OR_10", "OR_11", "

RERI (add)"); rownames(iid.odds.N.RERI) <- NULL

147

148 #Only show predictors combinations with approporiate prevelances and subgroup sizes

149 iid.odds.N.RERI.complete <- iid.odds.N.RERI[complete.cases(iid.odds.N.RERI),]

150

151 #Sort the rows by interactions with largest ratio of odds ratios (in abs value)

different from 1

152 order.abs <- order(abs(0-iid.odds.N.RERI.complete [,3]), decreasing=TRUE)

153 iid.odds.N.RERI_final <- iid.odds.N.RERI.complete[order.abs , ]

154

155 ### Output ------------------------------------------------------------------

156 return(’Intuitive Model -Free Interaction Screening ’= iid.odds.N.RERI_final)}

R code/int.detection final.R
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A.2 Two-machine RFPM method

1 #FUNCTION TO COMPUTE LOG ODDS RATIO ESTIMATES AND CORRESPONDING 95% CONFIDENCE

INTERVALS USING DASGUPTA ’S

2 #TWO -MACHINE RFPM METHOD IN "Risk Estimation using Probability Machines" (binary

predictors)

3

4 # *** Runs in parallel using doParallel and foreach ***

5

6 #INPUT:

7 # dataset: dataframe or matrix where each column represents one predictor and the

last column is the response vector

8 # (each row corresponds to 1 observation)

9 # n.tree: number of trees to grow in RFPM_0 and RFPM_1

10 # m.try: number of predictors randomly sampled as candidates at each split in RFPM_

0 and RFPM_1

11 # test.main: vector where each element indicates the predictor index for which the

main effect estimate

12 # is to be calculated (eg. test.main = c(2,6) will calculate main effects

for predictors x_2 and

13 # x_6 in data set (columns 2&6))

14

15 #OUTPUT:

16 # ’Log odd Ratio Estimates (binary)’: two -machine RFPM method used to estimate log

odds ratios for any binary predictors

17 # not involved in any interactions. First column is predictor and second column

is the following log odd ratio estimate:

18 # 1. lOR = log (p_1(1-p_0)/p_0(1-p_1))

19 #

20 # ’95% Confidence interval for log odd ratio estimates (binary)’: two -machine RFPM

method and bootstrapping (b=200) used to

21 # construct 95% confidence intervals for lOR estimates from ’Log odd Ratio

Estimates ’. First column is predictor

22 # and columns 2 & 3 correspond to lower and upper endpoints for lOR estimate.

23

24 #Libraries

25 library(randomForest)

26 library(foreach)

27 library(doParallel)

28

29 RF2PM.CI_final <- function(dataset , n.tree , m.try , test.main){

30

31 #Set up dataframe

32 n.col <- ncol(dataset)

33 data_mat <- data.frame(predictors=dataset[, 1:(n.col -1)], response=dataset[, n.col

])

34

35 #Set nodesize = 5% of dataset

36 node.size <- 0.05*nrow(data_mat)
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37

38 #Determine number of main effects to estimate

39 n.main <- length(test.main)

40

41 ### Main effect Estimation --------------------- ----------------------------------

42 #Use two -machine RFPM method to obtain subject -specific lOR estimates and take mean

for overall lOR estimate

43 main.estimates_binary <- foreach (r=1:n.main , .combine=rbind) %dopar% {

44

45 #Set X_m to desired predictor for main effect estimation

46 m = test.main[r]

47

48 #Split dataset into 2 groups G0 and G1 based on whether Xi=0 or Xi=1 and remove

Xi

49 G_0 <- data_mat[data_mat[,m] == 0, -m]

50 G_1 <- data_mat[data_mat[,m] == 1, -m]

51

52 #Train identically specified RFPMs on each group , PM_0 and PM_1

53 PM_0 <- randomForest(response ~., data=G_0, ntree=n.tree , mtry=m.try , nodesize=

node.size)

54 PM_1 <- randomForest(response ~., data=G_1, ntree=n.tree , mtry=m.try , nodesize=

node.size)

55

56 #Obtain predictions for observed and counterfactual probabilities of success for

each individual

57 p_0 <- predict(PM_0, newdata=data_mat)

58 p_1 <- predict(PM_1, newdata=data_mat)

59

60 #Calculate subject -specific lOR estimates

61 OR.1 <- (p_1*(1-p_0))/(p_0*(1-p_1))

62 lOR.1 <- log(OR.1)

63

64 #Calculate sample lOR estimate by taking the mean over all subject -specific

estimates

65 lOR <- mean(lOR.1)

66 lOR}

67

68 results.main_binary <- cbind(test.main , main.estimates_binary)

69 colnames(results.main_binary) <- c("X_j", "lOR"); rownames(results.main_binary) <-

NULL

70

71 ### 95% Confidence Intervals for Main Effect Estimates (b=200) --------------

72 #Calculate 95% confidence intervals for each of the above log odds ratio estimates

73 main.estimates_binary.boot <- foreach(y=1:200 , .combine=rbind) %dopar% {

74

75 #Create boostrap sample with n=nrow(dataset)

76 boot.bin.sample <- sample(nrow(data_mat), size=nrow(data_mat), replace=TRUE)

77 sample.bin.b <- data_mat[boot.bin.sample , ]

78
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79 #Calculate OR for each predictor for each bootstrap sample

80 main.estimate_binary.b <- foreach(z=1:n.main , .combine = cbind) %dopar% {

81

82 #Set X_m to desired predictor for main effect estimation

83 m.b = test.main[z]

84

85 #Split dataset into 2 groups G0 and G1 based on whether Xi=0 or Xi=1 and remove

Xi

86 G_0b <- sample.bin.b[sample.bin.b[,m.b] == 0, -m.b]

87 G_1b <- sample.bin.b[sample.bin.b[,m.b] == 1, -m.b]

88

89 #Train identically specified RFPMs on each group , PM_0 and PM_1

90 PM_0b <- randomForest(response ~., data=G_0b, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

91 PM_1b <- randomForest(response ~., data=G_1b, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

92

93 #Obtain predictions for observed and counterfactual probabilities of success

for each individual

94 p_0b <- predict(PM_0b, newdata=sample.bin.b)

95 p_1b <- predict(PM_1b, newdata=sample.bin.b)

96

97 #Calculate subject -specific OR estimates

98 OR.1b <- (p_1b*(1-p_0b))/(p_0b*(1-p_1b))

99 lOR.1b <- log(OR.1b)

100

101 #Calculate sample OR estimate by taking the mean over all subject -specific

estimates

102 lORb <- mean(lOR.1b)

103 lORb}

104

105 main.estimate_binary.b

106 }

107

108 #Extract 5th and 195th ordered elements to construct 95% confidence interval for

each main effect OR estimate

109 lOR1.sort <- apply(main.estimates_binary.boot , 2, sort)

110 lOR.main.lower_binary <- lOR1.sort[5,]

111 lOR.main.upper_binary <- lOR1.sort [195,]

112 results.main.CI_binary <- cbind(test.main , lOR.main.lower_binary , lOR.main.upper_

binary)

113 colnames(results.main.CI_binary) <- c("X_j", "LB lOR", "UB lOR"); rownames(results.

main.CI_binary) <- NULL

114

115 ### Output ---------------------------------------------- -------------------

116 return(list(’Log odds ratio estimates (binary)’=results.main_binary , ’95%

Confidence interval for log odds ratio estimates (binary)’=results.main.CI_

binary))}
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R code/RF2PM.CI final.R

A.3 Four-machine RFPM method

1 #FUNCTION TO COMPUTE LOG/ODDS RATIO ESTIMATES (OR_11, OR_10, OR_01, ROR , lROR) AND

CORRESPONDING 95% CONFIDENCE INTERVALS

2 #USING DASGUPTA ’S FOUR -MACHINE RFPM METHOD IN "Risk Estimation using Probability

Machines" (binary predictors)

3

4 # *** Runs in parallel using doParallel and foreach ***

5

6 #INPUT:

7 # dataset: dataframe or matrix where each column represents one predictor and the

last column is the response vector

8 # (each row corresponds to 1 observation)

9 # n.tree: number of trees to grow in RFPM_00, RFPM_01, RFPM_10, RFPM_11

10 # m.try: number of predictors randomly sampled as candidates at each split in RFPM_

00, RFPM_01, RFPM_10, RFPM_11

11 # test.int: matrix with two columns (X_j and X_k) where each row indicates the

interaction estimate to be calculated

12 # (eg: test.int <- matrix(c(1,2,2,3), nrow=2, byrow=T) indicates interaction

estimation for predictors (x_1, x_2)

13 # and (x_2, x_3), corresponding to columns (1,2) and (2,3) in dataset)

14

15 #OUTPUT:

16 # ’Interaction Odds Ratio Estimates ’: four -machine RFPM method used to estimate log

/odd ratios for given combinations of

17 # binary predictors in test.int. First two columns are the two predictors

involved and remaining 4 columns are

18 # means of the following odd ratio estimates:

19 # 1. OR_11 = p_11(1-p_00)/p_00(1-p_11)

20 # 2. OR_10 = p_10(1-p_00)/p_00(1-p_10)

21 # 3. OR_01 = p_01(1-p_00)/p_00(1-p_01)

22 # 4. ROR = OR_11/OR_10*OR_01

23 # 5. lROR = log(ROR)

24 # *NOTE* Quantity described in Dasgupta is defined as OR_11/OR_10*OR_01

25 #

26 # ’95% Confidence interval for interaction odd ratio estimates ’: four -machine RFPM

method and bootstrapping (b=200) used to construct

27 # 95% confidence intervals for OR_11, OR_10, OR_01, ROR and lROR estimates

from ’Interaction Odd Ratio Estimates ’. Output is a

28 # list where first component is 95% lower bounds for all estimates and second

list component is 95% upper bounds for all estimates

29 # (labled accordingly)

30
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31 #Libraries

32 library(randomForest)

33 library(gtools)

34 library(foreach)

35 library(doParallel)

36

37 RF4PM.CI_final <- function(dataset , n.tree , m.try , test.int){

38

39 #Set up dataframe

40 n.col <- ncol(dataset)

41 data_mat <- data.frame(predictors=dataset[, 1:(n.col -1)], response=dataset[, n.col

])

42

43 #Set nodesize = 5% of dataset

44 node.size <- 0.05*nrow(data_mat)

45

46 ### Interaction Estimation --------------------------------------------------

-----------------------------

47 #Use 4 machine RFPM to estimate following odd ratios:

48 # OR_11 = p_11(1-p_00)/p_00(1-p_11)

49 # OR_10 = p_10(1-p_00)/p_00(1-p_10)

50 # OR_01 = p_01(1-p_00)/p_00(1-p_01)

51 # ROR = OR_11/(OR_10*OR_01)

52 # lROR = log(ROR)

53

54 #Determine number of interactions to estimate

55 n.int <- nrow(test.int)

56

57 #For each interaction combination , use four -machine RFPM method to obtain subject -

specific estimates and take mean

58 #for overall estimate

59 interaction.estimates <- foreach (r=1:n.int , .combine=rbind) %dopar% {

60

61 #Set X_m and X_n to desired predictors for interaction estimation

62 m = test.int[r,1]

63 n = test.int[r,2]

64

65 #Split dataset into 4 groups based on combinations (X_m, X_n)

66 G_00 <- data_mat[data_mat[,m] == 0 & data_mat[,n] == 0, c(-m, -n)]

67 G_01 <- data_mat[data_mat[,m] == 0 & data_mat[,n] == 1, c(-m, -n)]

68 G_10 <- data_mat[data_mat[,m] == 1 & data_mat[,n] == 0, c(-m, -n)]

69 G_11 <- data_mat[data_mat[,m] == 1 & data_mat[,n] == 1, c(-m, -n)]

70

71 #Train identically specified RFPMs on each group , PM_00, PM_01, PM_10, PM_11

72 PM_00 <- randomForest(response ~., data=G_00, ntree=n.tree , mtry=m.try , nodesize=

node.size)

73 PM_01 <- randomForest(response ~., data=G_01, ntree=n.tree , mtry=m.try , nodesize=

node.size)
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74 PM_10 <- randomForest(response ~., data=G_10, ntree=n.tree , mtry=m.try , nodesize=

node.size)

75 PM_11 <- randomForest(response ~., data=G_11, ntree=n.tree , mtry=m.try , nodesize=

node.size)

76

77 #Observed probability and counterfactual probabilities for each observation

78 p_00 <- predict(PM_00, newdata=data_mat)

79 p_01 <- predict(PM_01, newdata=data_mat)

80 p_10 <- predict(PM_10, newdata=data_mat)

81 p_11 <- predict(PM_11, newdata=data_mat)

82

83 #Calculate odds ratios:

84 OR.11 <- (p_11*(1-p_00))/(p_00*(1-p_11))

85 OR.10 <- (p_10*(1-p_00))/(p_00*(1-p_10))

86 OR.01 <- (p_01*(1-p_00))/(p_00*(1-p_01))

87 ROR <- OR.11/(OR.10*OR.01)

88 lROR <- log(ROR)

89

90 estimates.combined <- c(mean(OR.11), mean(OR.10), mean(OR.01), mean(ROR), mean(

lROR))

91 estimates.combined}

92

93 #Bind ORs with test.int for output

94 results.interaction <- cbind(test.int , matrix(interaction.estimates , nrow=n.int))

95 colnames(results.interaction) <- c("X_j", "X_k", "OR_11", "OR_10", "OR_01", "ROR",

"lROR"); rownames(results.interaction) <- NULL

96

97 ### 95% Confidence Intervals for Interaction Estimates (b=200) --------------

--------------

98 #Calculate 95% confidence intervals for each of the above odds ratio estimates

99 interaction.estimates_boot <- foreach(b=1:200 , .combine=rbind) %dopar% {

100

101 #Create boostrap sample with n=nrow(data_mat)

102 boot.int.sample <- sample(nrow(data_mat), size=nrow(data_mat), replace=TRUE)

103 sample.int.b <- data_mat[boot.int.sample , ]

104

105 #Calculate lOR_11, lOR_10, lOR_01 and lROR for each interaction in test.int for

each bootstrap sample

106 interaction.estimate_b <- foreach(z=1:n.int , .combine = cbind) %dopar% {

107

108 #Set X_m and X_n to desired predictors for interaction estimation

109 m.b = test.int[z,1]

110 n.b = test.int[z,2]

111

112 #Split dataset into 4 groups based on combinations (X_m, X_n)

113 G_00b <- sample.int.b[sample.int.b[,m.b] == 0 & sample.int.b[,n.b] == 0, c(-m.b

, -n.b)]

114 G_01b <- sample.int.b[sample.int.b[,m.b] == 0 & sample.int.b[,n.b] == 1, c(-m.b

, -n.b)]
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115 G_10b <- sample.int.b[sample.int.b[,m.b] == 1 & sample.int.b[,n.b] == 0, c(-m.b

, -n.b)]

116 G_11b <- sample.int.b[sample.int.b[,m.b] == 1 & sample.int.b[,n.b] == 1, c(-m.b

, -n.b)]

117

118 #Train identically specified RFPMs on each group , PM_00, PM_01, PM_10, PM_11

119 PM_00b <- randomForest(response ~., data=G_00b, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

120 PM_01b <- randomForest(response ~., data=G_01b, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

121 PM_10b <- randomForest(response ~., data=G_10b, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

122 PM_11b <- randomForest(response ~., data=G_11b, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

123

124 #Observed probability and counterfactual probabilities for each observation

125 p_00b <- predict(PM_00b, newdata=sample.int.b)

126 p_01b <- predict(PM_01b, newdata=sample.int.b)

127 p_10b <- predict(PM_10b, newdata=sample.int.b)

128 p_11b <- predict(PM_11b, newdata=sample.int.b)

129

130 #Calculate odds ratios:

131 OR.11b <- (p_11b*(1-p_00b))/(p_00b*(1-p_11b))

132 OR.10b <- (p_10b*(1-p_00b))/(p_00b*(1-p_10b))

133 OR.01b <- (p_01b*(1-p_00b))/(p_00b*(1-p_01b))

134 RORb <- OR.11b/(OR.10b*OR.01b)

135 lRORb <- log(RORb)

136

137 #Calculate odds ratio by taking the mean over all subject specific estimates

138 estimates.combinedb <- c(mean(OR.11b), mean(OR.10b), mean(OR.01b), mean(RORb),

mean(lRORb))

139 estimates.combinedb <- matrix(estimates.combinedb , nrow =1)

140 estimates.combinedb}

141

142 interaction.estimate_b}

143

144 if(sum(!is.finite(interaction.estimates_boot)) != 0){

145 sum.inf.na.nan <- sum(!is.finite(interaction.estimates_boot))

146 print(c("Inf/NA/NaN bootstrap estimates produced:", sum.inf.na.nan ,))

147 interaction.estimates_boot[which(!is.finite(interaction.estimates_boot))] <- 0

148 }

149

150 #Extract the 5th and 195th ordered elements

151 int.ORs.sort_binary <- apply(interaction.estimates_boot , 2, sort)

152 int.ORs.lower_binary <- matrix(int.ORs.sort_binary[5,], nrow=n.int , byrow=T)

153 int.ORs.upper_binary <- matrix(int.ORs.sort_binary [195,], nrow=n.int , byrow=T)

154

155 #Bind with predictor index

156 results.int.LCIs_binary <- cbind(test.int , int.ORs.lower_binary)
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157 colnames(results.int.LCIs_binary) <- c("X_j", "X_k", "LB OR_11", "LB OR_10", "LB OR

_01", "LB ROR", "LB lROR"); rownames(results.int.LCIs_binary) <- NULL

158 results.int.UCIs_binary <- cbind(test.int , int.ORs.upper_binary)

159 colnames(results.int.UCIs_binary) <- c("X_j", "X_k", "UB OR_11", "UB OR_10", "UB OR

_01", "UB ROR", "UB lROR"); rownames(results.int.UCIs_binary) <- NULL

160

161 #Create list containing upper and lower 95% confidence bounds

162 results.int.CIs_binary <- list("95% lower bounds"=results.int.LCIs_binary , "95%

upper bounds"= results.int.UCIs_binary)

163

164 ### Output ------------------------------------------------------------------

165 return(list("Interaction Odd Ratio Estimates"=results.interaction , "95% Confidence

intervals for interaction odd ratio estimates"=results.int.CIs_binary))}

R code/RF4PM.CI final.R

A.4 RFPMs for categorical predictors

1 #FUNCTION TO COMPUTE LOG ODDS RATIO ESTIMATES AND CORRESPONDING 95% CONFIDENCE

INTERVALS USING DASGUPTA ’S

2 #RFPM METHODS IN "Risk Estimation using Probability Machines" (categorical predictors

)

3

4 # *** Runs in parallel using doParallel and foreach ***

5

6 #INPUT:

7 # dataset: dataframe or matrix where each column represents one predictor and the

last column is the response vector

8 # (each row corresponds to 1 observation)

9 # n.tree: number of trees to grow in the RFPM_1, ..., RFPM_k where k is the number

of levels of categorical predictor

10 # m.try: number of predictors randomly sampled as candidates at each split in RFPM_

1, ..., RFPM_k where k is the

11 # number of levels of categorical predictor

12 # test.cat: vector where each element indicates the categorical predictor column

index. (eg. test.cat = c(2,4), indicates

13 # predictors x_2 and x_4 corresponding to columns 2 and 4 in dataset are

categorical)

14

15 #OUTPUT:

16 # ’Log odds ratio estimates (categorical) ’: n.levels RFPMs used to estimate log

odds ratios for each level of the

17 # categorical predictor relative to the first level. First column is

categorical predictor index and following

18 # columns correspond to the (n.levels - 1) estimates. Each row is one

predictor.

19 #
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20 # ’95% Confidence interval for log odds ratio estimates (categorical) ’: n.levels

RFPMs and bootstrapping (b=200) used to

21 # construct 95% confidence intervals for lOR estimates from ’Log ddds Ratio

Estimates ’. List object where first

22 # component corresponds to lower bounds and second component corresponds to

upper bounds. Formats of individual

23 # components analogous to ’Log odds ratio estimates ’ result

24

25 #Libraries

26 library(randomForest)

27 library(foreach)

28 library(doParallel)

29

30 cat.CI_final <- function(dataset , n.tree , m.try , test.cat){

31

32 #Set up dataframe

33 n.col <- ncol(dataset)

34 data_mat <- data.frame(predictors=dataset[, 1:(n.col -1)], response=dataset[, n.col

])

35

36 #Set nodesize = 5% of dataset

37 node.size <- 0.05*nrow(data_mat)

38

39 #Determine number of categorical predictors

40 n.cat <- length(test.cat)

41

42 #Determine maxmimum number of levels for any categorical predictor

43 data_cat <- data_mat[,c(test.cat)]

44

45 if(length(test.cat) == 1){max.levels = length(unique(data_cat))

46 } else {unique.levels <- apply(data_cat , 2, unique)

47 unique.levels.length <- as.vector(unlist(lapply(unique.levels , length)))

48 max.levels <- max(unique.levels.length)}

49

50 ###OR Estimates relative to first level for each categorical predictor

-------------

51 #Use n.levels RFPMs to obtain (n.levels -1) ORs for each categorical predictor

relative to the

52 #first level

53 level.estimates_categorical <- foreach(c=1:n.cat , .combine=rbind) %dopar% {

54

55 #Extract categorical predictor c

56 index.pred.c <- test.cat[c]

57 pred.c <- data_mat[,index.pred.c]

58

59 #Determine number of levels

60 n.levels <- length(unique(pred.c))

61

62 #Split dataset into groups based on different levels of categorical predictor
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63 split.c <- split(data_mat , data_mat[, index.pred.c])

64

65 #Create matrix to store all counterfactual and observed probabilities of success

for each n.level

66 probs.pred.c.level.g <- matrix(NA, nrow=nrow(data_mat), ncol=n.levels)

67

68 #Fit a n.levels RFPMs using observations in each level and predict observed and

counterfactual probabilities for

69 #each observation in the dataset

70 for (g in 1:n.levels){

71

72 #Extract all observations in level_g and remove categorical predictor

73 level.g <- split.c[[g]]

74 level.g.wo.c <- level.g[,-index.pred.c]

75

76 #Fit a RFPM to the remaining predictors

77 PM_g <- randomForest(response ~., data=level.g.wo.c, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

78

79 #Predict counterfactual and observed probabilities for each observation in the

dataset

80 p_g <- predict(PM_g, newdata=data_mat)

81

82 #Store in matrix

83 probs.pred.c.level.g[,g] <- p_g

84 }

85

86 #Compute log odds ratios of each level for each observation and take the mean (

using lOR.calc function)

87 level.lORs.pred.c <- apply(probs.pred.c.level.g[,-1], 2, lOR.calc , p0.vec=probs.

pred.c.level.g[,1])

88 level.lORs.pred.c_mat <- matrix(c(level.lORs.pred.c, rep(NA, times =(max.levels -n.

levels))), nrow =1)

89 level.lORs.pred.c_mat}

90

91 level.estimates_categorical <- matrix(cbind(test.cat ,level.estimates_categorical),

nrow=n.cat)

92 colnames(level.estimates_categorical) <- c("X_j", paste("lOR lvl", seq(2, max.

levels)))

93

94 ### 95% Confidence Intervals for level lOR Estimates (b=200) --------------

95 #Calculate 95% confidence intervals for each of the above odds ratio estimates

96 level.estimates_categorical.boot <- foreach(y=1:200 , .combine=rbind) %dopar% {

97

98 #Create boostrap sample with n=nrow(dataset)

99 boot.cat.sample <- sample(nrow(data_mat), size=nrow(data_mat), replace=TRUE)

100 sample.cat.b <- data_mat[boot.cat.sample , ]

101

102 #Calculate OR for each predictor for each bootstrap sample
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103 level.estimate_categorical.b <- foreach(cb=1:n.cat , .combine = cbind) %dopar% {

104

105 #Extract categorical predictor c

106 index.pred.cb <- test.cat[cb]

107 pred.cb <- data_mat[,index.pred.cb]

108

109 #Determine number of levels

110 n.levels <- length(unique(pred.cb))

111

112 #Split dataset into groups based on different levels of categorical predictor

113 split.cb <- split(data_mat , data_mat[, index.pred.cb])

114

115 #Create matrix to store all counterfactual and observed probabilities of

success for each n.level

116 probs.pred.cb.level.gb <- matrix(NA , nrow=nrow(data_mat), ncol=n.levels)

117

118 #Fit a n.levels RFPMs using observations in each level and predict observed and

counterfactual probabilities for

119 #each observation in the dataset

120 for (gb in 1:n.levels){

121

122 #Extract all observations in level_gb and remove categorical predictor

123 level.gb <- split.cb[[gb]]

124 level.gb.wo.cb <- level.gb[,-index.pred.cb]

125

126 #Fit a RFPM to the remaining predictors

127 PM_gb <- randomForest(response ~., data=level.gb.wo.cb, ntree=n.tree , mtry=m.

try , nodesize=node.size)

128

129 #Predict counterfactual and observed probabilities for each observation in

the dataset

130 p_gb <- predict(PM_gb, newdata=data_mat)

131

132 #Store in matrix

133 probs.pred.cb.level.gb[,gb] <- p_gb

134 }

135

136 #Compute log odds ratios of each level for each observation and take the mean (

using lOR.calc function)

137 level.lORs.pred.cb <- apply(probs.pred.cb.level.gb[,-1], 2, lOR.calc , p0.vec=

probs.pred.cb.level.gb[,1])

138 level.lORs.pred.cb_mat <- matrix(c(level.lORs.pred.cb , rep(NA , times=(max.

levels -n.levels))), nrow =1)

139 level.lORs.pred.cb_mat}

140

141 level.estimate_categorical.b}

142

143 #Sort bootstrap estimates for each level of each predictor

144 level.lORs.sort_categorical <- apply(level.estimates_categorical.boot , 2, sort)
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145

146 #If NA vector , convert its sorted values to NAs

147 for(u in 1: length(level.lORs.sort_categorical)){

148 estimate.sort.u <- level.lORs.sort_categorical [[u]]

149 if(length(estimate.sort.u) == 0){level.lORs.sort_categorical [[u]] <- rep(NA , 200)

}

150 }

151

152 level.lORs.sort_categorical <- matrix(unlist(level.lORs.sort_categorical), nrow

=200)

153

154 #Extract 5th and 195th ordered elements

155 level.lORs.lower_categorical <- matrix(level.lORs.sort_categorical [5,], nrow=n.cat ,

byrow=T)

156 level.lORs.upper_categorical <- matrix(level.lORs.sort_categorical [195,], nrow=n.

cat , byrow=T)

157

158 #Bind with predictor index

159 results.level.LCIs_categorical <- cbind(test.cat , level.lORs.lower_categorical)

160 colnames(results.level.LCIs_categorical) <- c("X_j", paste("LB lOR lvl", seq(2, max

.levels))); rownames(results.level.LCIs_categorical) <- NULL

161 results.level.UCIs_categorical <- cbind(test.cat , level.lORs.upper_categorical)

162 colnames(results.level.UCIs_categorical) <- c("X_j", paste("UB lOR lvl", seq(2, max

.levels))); rownames(results.level.UCIs_categorical) <- NULL

163

164 #Create list containing upper and lower 95% confidence bounds

165 results.level.CIs_categorical <- list("95% lower bounds"=results.level.LCIs_

categorical , "95% upper bounds"= results.level.UCIs_categorical)

166

167 ### Output ----------------

168 return(list(’Log odds ratio estimates (categorical)’=level.estimates_categorical , ’

95% Confidence interval for log odds ratio estimates (categorical)’= results.

level.CIs_categorical))}

169

170 lOR.calc <- function(pa.vec , p0.vec){

171

172 #Individual odds ratios and log odds ratios

173 OR_i <- (pa.vec/(1-pa.vec))/(p0.vec/(1-p0.vec))

174 lOR_i <- log(OR_i)

175

176 #Sample log odds ratios

177 lOR <- mean(lOR_i)

178 return(lOR)}

R code/cat.CI final.R

A.5 RFPMs for continuous predictors
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1 #FUNCTION TO COMPUTE LOG ODDS RATIO ESTIMATES AND CORRESPONDING 95% CONFIDENCE

INTERVALS USING DASGUPTA ’S

2 #RFPM METHODS IN "Risk Estimation using Probability Machines" (continuous predictors)

3

4 #************ RUNS IN PARALLEL ******************

5

6 #INPUT:

7 # dataset: dataframe or matrix where each column represents one predictor and the

last column is the response vector

8 # (each row corresponds to 1 observation)

9 # n.tree: number of trees to grow in the RFPM s

10 # m.try: number of predictors randomly sampled as candidates at each split in RFPMs

11 # n.break: number of bins to split continuous predictor into

12 # test.cont: vector where each element indicates the continuous predictor column

index that will be split. (eg:

13 # test.cont = c(2,4), indicates predictors x_2 and x_4 corresponding to columns 2

and 4 in dataset are continuous

14 # and will be split into n.break bins and (n.break -1) log odds ratios will be

estimated)

15

16 #OUTPUT:

17 # ’Log odds ratio estimates (continuous)’: n.break RFPMs used to estimate log odds

ratios for each bin of continuous predictor

18 # relative to first bin (produces n.break -1 lORs). First column is

continuous predictor index and

19 # columns correspond to the (n.break -1) lOR bin estimates. Each row is one

predictor

20 #

21 # ’95% Confidence interval for log odds ratio estimates (continuous)’: n.break

RFPMs and bootstrapping (b=200) used to

22 # construct 95% confidence intervals for lOR estimates from ’Log odd Ratio

Estimates ’. List object where first

23 # component corresponds to lower bounds and second component corresponds to

upper bounds. Formats of individual

24 # components analogous to Log odds ratio estimates (continuous)’ result

25 #

26 # ’Continuous predictor bin means ’: individual n.break bin means of continuous

predictor \bar{x}_j for each predictor

27 # in test.cont. First column is test.cont and reamaining n.break columns

correspond to bin means

28 #

29 # Plots: plot for each continuous predictor will also be produced. Plotting bin log

odds ratio estimates against bin means

30 # and corresponding 95% confidence intervals

31

32 #Libraries

33 library(randomForest)

34 library(foreach)
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35 library(doParallel)

36 library(ggplot2)

37

38 cont.CI_final <- function(dataset , n.tree , m.try , n.break , test.cont){

39

40 #Set up dataframe

41 n.col <- ncol(dataset)

42 data_mat <- data.frame(predictors=dataset[, 1:(n.col -1)], response=dataset[, n.col

])

43

44 #Set nodesize = 5% of dataset

45 node.size <- 0.05*nrow(data_mat)

46

47 #Determine number of continuous predictors

48 n.cont <- length(test.cont)

49

50 ###Bin OR Estimates for each continuous predictor -------------

51 #Use n.break RFPMs to obtain (n.break -1) ORs for each continuous predictor relative

to the

52 #first bin

53 bin.estimates_continuous <- foreach(c=1:n.cont , .combine=rbind) %dopar% {

54

55 #Extract continuous predictor c

56 index.pred.c <- test.cont[c]

57 pred.c <- data_mat[,index.pred.c]

58

59 #Break continuous predictor into n.break quantiles and split dataset into n.break

groups

60 #based on category of continuous predictor

61 break.c <- quantcut(pred.c, n.break)

62 bins.c <- split(data_mat , break.c)

63

64 #Store the mean of the continuous predictor in each bin

65 bins.pred.c <- split(pred.c, break.c)

66 mean.bins.pred.c <- unlist(lapply(bins.pred.c, mean))

67

68 #Create matrix to store all counterfactual and observed probabilities of success

for each n.break

69 probs.pred.c.bin.g <- matrix(NA , nrow=nrow(data_mat), ncol=n.break)

70

71 #Fit a n.break RFPMs using observations in each bin and predict observed and

counterfactual probabilities for

72 #each observation in the dataset

73 for (g in 1:n.break){

74

75 #Extract all observations in bin_g and remove continuous predictor

76 bin.g <- bins.c[[g]]

77 bin.g <- bin.g[,-index.pred.c]

78
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79 #Fit a RFPM to the remaining predictors

80 PM_g <- randomForest(response ~., data=bin.g, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

81

82 #Predict counterfactual and observed probabilities for each observation in the

dataset

83 p_g <- predict(PM_g, newdata=data_mat)

84

85 #Store in matrix

86 probs.pred.c.bin.g[,g] <- p_g

87 }

88

89 #Compute odds ratios of each bin for each observation and take the mean (using

lOR.calc function)

90 bin.lORs.pred.c <- apply(probs.pred.c.bin.g[,-1], 2, lOR.calc , p0.vec=probs.pred.

c.bin.g[,1])

91

92 #Bind estimates and means of bins

93 bin.lORs.N.means.pred.c <- c(bin.lORs.pred.c, mean.bins.pred.c)

94 bin.lORs.N.means.pred.c}

95

96 bin.estimates_continuous <- cbind(test.cont , matrix(bin.estimates_continuous , nrow=

n.cont))

97 colnames(bin.estimates_continuous) <- c("X_j", paste("OR Bin", seq(2, n.break)),

paste("Mean bin", seq(1, n.break)))

98 rownames(bin.estimates_continuous) <- NULL

99

100 ### 95% Confidence Intervals for Bin OR Estimates (b=200) --------------

101 #Calculate 95% confidence intervals for each of the above odds ratio estimates

102 bin.estimates_continuous.boot <- foreach(y=1:200 , .combine=rbind) %dopar% {

103

104 #Create boostrap sample with n=nrow(dataset)

105 boot.cont.sample <- sample(nrow(data_mat), size=nrow(data_mat), replace=TRUE)

106 sample.cont.b <- data_mat[boot.cont.sample , ]

107

108 #Calculate OR for each predictor for each bootstrap sample

109 bin.estimate_continuous.b <- foreach(cb=1:n.cont , .combine = cbind) %dopar% {

110

111 #Extract continuous predictor c

112 index.pred.cb <- test.cont[cb]

113 pred.cb <- data_mat[,index.pred.cb]

114

115 #Break continuous predictor into n.break quantiles and split dataset into n.

break groups

116 #based on category of continuous predictor

117 break.cb <- quantcut(pred.cb, n.break)

118 bins.cb <- split(data_mat , break.cb)

119
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120 #Create matrix to store all counterfactual and observed probabilities of

success for each n.break

121 probs.pred.cb.bin.gb <- matrix(NA, nrow=nrow(data_mat), ncol=n.break)

122

123 #Fit a n.break RFPMs using observations in each bin and predict observed and

counterfactual probabilities for

124 #each observation in the dataset

125 for (gb in 1:n.break){

126

127 #Extract all observations in bin_g and remove continuous predictor

128 bin.gb <- bins.cb[[gb]]

129 bin.gb <- bin.gb[,-index.pred.cb]

130

131 #Fit a RFPM to the remaining predictors

132 PM_gb <- randomForest(response ~., data=bin.gb, ntree=n.tree , mtry=m.try ,

nodesize=node.size)

133

134 #Predict counterfactual and observed probabilities for each observation in

the dataset

135 p_gb <- predict(PM_gb, newdata=data_mat)

136

137 #Store in matrix

138 probs.pred.cb.bin.gb[,gb] <- p_gb

139 }

140

141 #Compute odds ratios of each bin for each observation and take the mean (using

lOR.calc function)

142 bin.lORs.pred.cb <- apply(probs.pred.cb.bin.gb[,-1], 2, lOR.calc , p0.vec=probs.

pred.cb.bin.gb[,1])

143 bin.lORs.pred.cb <- matrix(bin.lORs.pred.cb, nrow =1)

144 bin.lORs.pred.cb}

145

146 bin.estimate_continuous.b}

147

148 #Extract the 5th and 195th ordered elements

149 bin.lORs.sort_continuous <- apply(bin.estimates_continuous.boot , 2, sort)

150 bin.lORs.lower_continuous <- matrix(bin.lORs.sort_continuous [5,], nrow=n.cont ,

byrow=T)

151 bin.lORs.upper_continuous <- matrix(bin.lORs.sort_continuous [195,], nrow=n.cont ,

byrow=T)

152

153 #Bind with predictor index

154 results.bin.LCIs_continuous <- cbind(test.cont , bin.lORs.lower_continuous)

155 colnames(results.bin.LCIs_continuous) <- c("X_j", paste("LB lOR Bin", seq(2, n.

break))); rownames(results.bin.LCIs_continuous) <- NULL

156 results.bin.UCIs_continuous <- cbind(test.cont , bin.lORs.upper_continuous)

157 colnames(results.bin.UCIs_continuous) <- c("X_j", paste("UB lOR Bin", seq(2, n.

break))); rownames(results.bin.UCIs_continuous) <- NULL

158
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159 #Create list containing upper and lower 95% confidence bounds

160 results.bin.CIs_continuous <- list("95% lower bounds"=results.bin.LCIs_continuous ,

"95% upper bounds"= results.bin.UCIs_continuous)

161

162 #Create bin means

163 bin.means_continuous <- bin.estimates_continuous[, c(1, (n.break +1):ncol(bin.

estimates_continuous))]

164

165 ### Plotting estimates and confidence intervals for each continuous predictor

-----------------------

166 #Plot estimates of continuous variables at the point (mean(bin), estimate) with

corresponding error bars (95% confidence interval)

167 for (p in 1:n.cont){

168

169 #Extract bin lOR estimates corresponding to continuous predictor p

170 bin.lOR.pred.p <- bin.estimates_continuous[p,2:n.break]

171 bin.means.pred.p <- bin.estimates_continuous[p, (n.break +1):ncol(bin.estimates_

continuous)]

172 pred.p_continuous <- bin.estimates_continuous[p,1]

173

174 bin.lORs.means_mat <- cbind(bin.lOR.pred.p, bin.means.pred.p[-1])

175 colnames(bin.lORs.means_mat) <- c("lOR", "Mean")

176

177 #Plot estimates over means

178 plot <- ggplot(as.data.frame(bin.lORs.means_mat), aes(x=Mean , y=lOR)) + geom_

point(shape =19) + scale_x_continuous(paste("Values of predictor X_", pred.p_

continuous)) + scale_y_continuous(name="log odds ratio") + ggtitle(paste("Bin

log odds ratio estimates and corresponding 95% confidence intervals (X_",

pred.p_continuous , ")")) + theme_bw() + theme(legend.position="none", plot.

title = element_text(hjust =0.5, size =15), axis.title = element_text(size =12),

axis.text= element_text(size =10)) + geom_errorbar(aes(x=bin.means.pred.p

[-1], ymin=bin.lORs.lower_continuous[p,], ymax=bin.lORs.upper_continuous[p,])

, width =0.1)

179 print(plot)}

180

181 ### Output ----------------

182 return(list(’Log odds ratio estimates (continuous)’=bin.estimates_continuous[,-c((n

.break +1):ncol(bin.estimates_continuous))], ’95% Confidence interval for log

odds ratio estimates (continuous)’= results.bin.CIs_continuous , "Continuous

predictor bin means" = bin.means_continuous))}

183

184 lOR.calc <- function(pa.vec , p0.vec){

185

186 #Individual odds ratios and log odds ratios

187 OR_i <- (pa.vec/(1-pa.vec))/(p0.vec/(1-p0.vec))

188 lOR_i <- log(OR_i)

189

190 #Sample log odds ratios

191 lOR <- mean(lOR_i)
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192 return(lOR)}

R code/cont.CI final.R
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