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Abstract

The so-called Einstein-Aether theory is General Relativity coupled (at second deriva-

tive order) to a dynamical time-like unit vector field (the “Aether”). It is a Lorentz-

violating theory, and has gained much attention in recent years. We study two classes

of Einstein-Aether cosmological scalar field models using dynamical systems tech-

niques. In particular, we are interested in exploring the impact of Lorentz violation

on the inflationary scenario. We study the local stability of the equilibrium points

of the dynamical system corresponding to physically realistic solutions, and find that

there are always ranges of values of the parameters of the models for which there

exists an inflationary attractor.

In the first application, we investigate the qualitative behaviour of a class of spatially

homogeneous Einstein-Aether models with a scalar field. Particularly, we study two

models; an isotropic model and an anisotropic model. In both models there always

exists a range of the values of the parameters in which there is an attractor which

corresponds to an inflationary universe at late times.

In the second application, we study spherically symmetric cosmological models with

a scalar field. Particularly, we consider a special case of spatially homogeneous

Kantowski-Sachs models using appropriate normalized bounded variables. In this

special case, we found that there always exists a range of values in the parameters in

which there is one inflationary attractor solution at late times.
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Chapter 1

Introduction

The aim of studying physical cosmology is to understand the Universe as a whole on

large scales. More precisely, cosmology explores the origins of the Universe and its

evolution. There are various models of early universe cosmology which incorporate a

violation of Lorentz invariance, which include the Einstein-Aether theory [1, 2] and

the IR limit of (extended) Horava gravity [3]. When the phenomenology of theories

with a preferred frame is studied, it is generally assumed that this frame coincides,

at least roughly, with the cosmological rest frame defined by the Hubble expansion

of the universe.

Einstein-Aether theory [1, 2] consists of general relativity (GR) coupled, at second

derivative order, to a dynamical time-like unit vector field, the “Aether”. In Horava

gravity, the Aether vector is assumed to be hypersurface-orthogonal; hence every

hypersurface-orthogonal Einstein-Aether solution is a Horava solution (most of the

solutions studied). In this effective field theory approach, the aether vector field ua

and the metric tensor gab together determine the local spacetime structure.

The inflationary paradigm [4] provides one of the simplest ways to describe various

aspects of the physics of the early universe in standard cosmology. However, despite its

1
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successes, some fundamental questions still remain to be answered in this paradigm.

We shall discuss the late time dynamics of Einstein-Aether cosmological models. In

particular, we explore the impact of Lorentz violation on the inflationary scenario

[1, 2, 5, 6].

Cosmological models in Einstein- Aether (Lorentz-violating) theories of gravity are

currently of interest. A systematic construction of an Einstein-aether gravity theory

with a Lorentz violating dynamical field that preserves locality and covariance in the

presence of an additional “Aether” vector field has been presented.

In an isotropic and spatially homogeneous Friedmann universe with expansion scale

factor a(t) and co-moving proper time t, the Aether field will be aligned with the

cosmic frame and is related to the expansion rate of the universe. The Einstein Field

Equations are generalized by the contribution of an additional stress tensor for the

Aether field.

In particular, in this thesis we will investigate the qualitative properties of Einstein-

Aether (EA) cosmological models with a scalar field at late times and determine

whether or not the model has inflationary attractor solutions using dynamical sys-

tems theory techniques. Dynamical systems techniques are powerful tools in such

an investigation. More precisely, we study the inflationary scenario in the scalar-

vector-tensor theory, where the vector is constrained to be a unit and time-like, and

investigate whether the inflationary solutions proposed [8] are stable when spatial

curvature and anisotropic perturbations are considered.
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The governing equations of the most commonly studied cosmological models are a

system of ODE. Since our main goal is to give a qualitative description of these

models, a dynamical systems approach is undertaken. Usually, a dimensionless time

variable, τ , is introduced so that the models are valid for all times since τ takes

on all real valued. A normalized set of variables are then chosen for a number of

reasons. First, these variables are well-behaved and often have a direct physical

interpretation. Second, this normally leads to a bounded dynamical system. Third,

one of the equations will be decouple due to a symmetry in the equations. Fourth, it

results in a simplified reduced system that is easier to study. The equilibrium points of

the reduced system then correspond to dynamically evolving self-similar cosmological

models. By using the dimensionless time variable and a normalized set of variables,

the governing ODE, define a flow and the evolution of the cosmological models, can

then be analysed by studying the orbits of this flow in the state space.

The outline of the thesis is as follows. In chapter (2), we give a brief review of

the theory of dynamical systems and some techniques and theorems that we used

throughout the thesis to analyze the models under consideration. This thesis contains

two parts which are applications of the Einstein-Aether theory.

In part I, we study the “Spatially Homogeneous Einstein-Aether Cosmological Model”.

We start with a basic introduction to the Einstein-Aether theory. In Chapter (3), we

begin by introducing the model and set up the evolution equations, with particular

emphasis on Bianchi models of class V Ih with a scalar field. In Chapter (4), we study

the isotropic model with two forms for the potential. In Chapter (5), we expand the
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analysis to study the anisotropic model with three forms for the potential. In Chapter

(6), we discuss our final conclusion of this part with emphasis on whether or not the

models have an inflationary attractor solutions.

In part II, we study the “Spherically Symmetric Einstein-Aether Cosmological Model

with Scalar Field”. In Chapter (7), we introduce the model. In Chapter (8), we study

the special case of the model called the “ Kantowski-Sachs Model”. In Chapter (9),

we discuss our conclusion for this special case. Finally, in Chapter (10), we state our

final conclusion for both parts and some extensions for future work.



Chapter 2

Dynamical Systems Theory

The aim of this chapter is to present a brief review of dynamical systems theory

[9, 10, 11, 12, 13].

Consider the dynamical system of differential equations (DE) of the standard form

ẋ = f(x). (2.0.1)

where ẋ = dx
dt
, x = (x1, x2, .., xn) ∈ Rn and the map f : Rn → Rn. An autonomous

system is one in which there is no explicit time dependence. As far as this thesis

is concerned, the dynamical systems under consideration are finite dimensional and

continuous autonomous systems.

Let us now state briefly some of the key words related to dynamical system which

mention in this thesis:

Definition 2.1. Solution of DE: A function ψ(t) : R → Rn is a solution for the

DE (2.0.1) if

ψ̇(t) = f(ψ(t)) (2.0.2)

is satisfied for all t ∈ R.

Definition 2.2. Equilibrium Point: The point x0 ∈ Rn is an equilibrium point for

5
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the DE in (2.0.1) if and only if f(x0) = 0 holds.

Definition 2.3. Linearization Matrix: Linearization matrix is the derivative ma-

trix of f : Rn → Rn (the n× n matrix) is defined by

Df(x0) =

(
∂fi
∂xj

)
x=x0

, i, j = 1, ..., n, (2.0.3)

where the fi are the components of the f.

Definition 2.4. Hyperbolic Equilibrium Points: Let x0 be a equilibrium point

for the DE in (2.0.1). Then x0 is hyperbolic if none of the eigenvalues of the lineariza-

tion matrix Df(x0) in (2.0.3), have zero real parts; otherwise it is a non-hyperbolic

equilibrium point.

Definition 2.5. The Flow: Let x(t) = φa(t) be a solution of the DE (2.0.1) with an

initial condition x(0) = a. The flow {gt} is defined in terms of the solution function

φa(t) of the DE by

gta = φa(t). (2.0.4)

Definition 2.6. Linear Equivalent: Given two DEs

ẋ = Ax, ẏ = By, (2.0.5)

where A and B are matrices. The two DEs in (2.0.5) are linearly equivalent if and

only if if there exists an invertible matrix P and positive constant s > 0 such that

etA = P−1estBP for all t ∈ R. (2.0.6)

Definition 2.7. The Orbit: The orbit through a, denoted by γ(a), is defined by

γ(a) = {x ∈ Rn|x = gta, for all t ∈ R}. (2.0.7)
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There are three types of orbits:

• Point Orbits correspond to equilibrium points which can be happen if gta = a

for all t ∈ R, thus γ(a) = {a}.

• Periodic Orbits describe a system that evolves periodically in time which can

be happen if there exists a period T > 0 such that gT a = a.

• Non- Periodic Orbits happen if gta 6= a for all t 6= 0.

Definition 2.8. Homomorphism Map: A map H : Rn → Rn is a homomorphism

on Rn if and only if it is one to one and onto and it is continuous as well as it’s inverse.

Definition 2.9. Topologically Equivalent: Two linear flows etA, etB are topolog-

ically equivalent if and only if there exists a homomorphism map H and a positive

constant s such that

H(etAx) = estBH(x), for all x ∈ Rn and for all t ∈ R. (2.0.8)

Definition 2.10. Invariant Set: Given a DE as in (2.0.1), a set S ⊆ Rn is an

invariant set for the DE if for any point a ∈ S the orbit through a lies entirely in S,

(i.e., γ(a) ⊆ S, the orbits stay inside S and never leave).

Definition 2.11. Bifurcation: Given a dynamical system that depends on param-

eters of the form

ẋ = f(x, µ), (2.0.9)

where x ∈ Rn and µ ∈ Rm represent phase variables and parameters. As the pa-

rameters vary, the phase portrait also varies (i.e., A bifurcation is a change of the

topological type of the system under parameter variation).
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There is one theorem which helps us to study the models in this thesis and provide

information regarding the local stability of equilibrium points of the dynamical sys-

tem. The Hartman Grobman Theorem can be used to analyze the stability of the

hyperbolic equilibrium points. On the other hand, we use the multiple scale method

to investigate the stability of the non-hyperbolic equilibrium points .

2.1 Hyperbolic Equilibrium Points and the Hartman Grobman Theorem

Given a one dimensional dynamical system ẋ = f(x), where x ∈ R and x0 is an

equilibrium point. We first define the linear approximation of f(x) such that

f(x) ≈ f(x0) +
f ′(x0)

1!
(x− x0) +

f ′′(x0)

2!
(x− x0)2 + ... (2.1.1)

which can be written in the generalized form as

f(x) ≈
∞∑
n=0

f (n)(x0)

n!
(x− x0)n. (2.1.2)

From the definition of the equilibrium point (i.e., f(x0) = 0) and by ignoring the

higher order terms in equation (2.1.2), for values of x in a neighbourhood of x0 the

DE behaves like

ẋ = f ′(x0)(x− x0). (2.1.3)

In Rn, f(x) can be written as follows

f(x) ≈ f(x0) +Df(x0)(x− x0) + ..., (2.1.4)

where

Df(x0) =

(
∂fi
∂xj

)
x=x0

, i, j = 1, ..., n. (2.1.5)
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Then, for x in a neighbourhood of x0, the DE behaves as

ẋ = Df(x0)(x− x0). (2.1.6)

Qualitative analysis of a system starts with finding the location of equilibrium points.

Once the equilibrium points of a system of autonomous ordinary differential equations

are obtained, it is of interest to consider the dynamics in a local neighbourhood of

each of the points. The process of determining the local behaviour is based on the

linearization matrix in (2.1.5) at the equilibrium point x0. Then, it follows that the

linear stability of these equilibrium points is classified based on the signs of the

eigenvalues of the linearization matrix as follows:

1. If all of the real part of the eigenvalues of the linearization matrix at x0 are neg-

ative (λi < 0), then the equilibrium point of the dynamical system is asymp-

totically stable and the trajectories which start near that point will approach

that point.

2. If all of the real part of the eigenvalues of the linearization matrix at x0 are

positive (λi > 0), then the equilibrium point of the dynamical system is a

source and unstable and the trajectories will go away from that point.

3. If at least one of the real part of the eigenvalues of the linearization matrix at

x0 is positive and the others are negative (λi > 0, λj < 0), then the equilibrium

point of the dynamical system is a saddle and it is unstable.

This classification follows from the fact that if the equilibrium point is hyper-

bolic in nature the flows of the non-linear system and its linear approximation are
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topologically equivalent in the neighbourhood of the equilibrium points. Using such

qualitative characteristics, we can study whether the solution trajectories approach or

move away from the equilibrium point over time. This result is stated in the following

theorem.

Theorem 2.12. (Hartman- Grobman Theorem): Let a DE ẋ = f(x), where

the vector field f is of class C1. If x0 is a hyperbolic equilibrium point of the DE then

there exists a neighbourhood of x0 on which the flow is topologically equivalent to the

flow of the linearization of the DE at x0.

Unfortunately, the Hartman Grobmen theorem does not apply for the non-hyperbolic

equilibrium points, in which the real part of at least one of the eigenvalues is zero.

Therefore, an alternative technique such as multiple scale method can be applied

which we use in some cases.

2.2 The Multiple Scale Method

The multiple scale in [14, 15] technique is used to construct uniformly valid approx-

imations to the solutions of perturbation problems in which the solutions depend

simultaneously on widely different scales. This is done by introducing fast-scale and

slow-scale variables for an independent variable, and subsequently treating these vari-

ables, fast and slow, as if they are independent. We will use a classical example to

illustrate the idea of the multiple scale method. Consider the ordinary differential

equation

y′′ + εy′ + y = 0 for t > 0, y(0) = 0, y′(0) = 1. (2.2.1)
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The exact solution of (2.2.1) is

y(t) =
1√

1− ε2

4

e
−εt
2 sin

(
t

√
1− ε2

4

)
. (2.2.2)

This solution has an oscillatory component that occurs on a time scale of order 0(1),

as well as it has a slow variation of order 0
(

1
ε

)
. To incorporate two time scales into

the problem, we introduce the variables t, τ = εαt. We treat these time scales as

independent variables. Based in the solution it is expected to have α = 1 in this case.

Thus, it follows that

d

dt
=

∂

∂t
+ ε

∂

∂τ
. (2.2.3)

By substituting this into (2.2.1) yields

ytt + 2εytyτ + ε2yττ + ε(yt + εytτ ) + y = 0 (2.2.4)

y = 0 yt + εyτ = 1 for t = 0 = τ. (2.2.5)

Note that we use the symbol yt in place of ∂y
∂t

(similarly for yτ ) for simplification.

Note that the solution of the ordinary differential equation is not unique and this will

enable us to prevent the secular terms from appearing in the expansion at least over

the time scales that we are using.

Now we use the power series expansion of the form

y ∼ y0(t, τ) + εy1(t, τ) + ... (2.2.6)

By substituting (2.2.6) into (2.2.5) yields

y0tt + y0 + ε(y1tt + y1 + 2y0tτ + y0t) + 0(ε2) + ... (2.2.7)

Now collecting terms of ε order as follows,
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O(1)

y0tt + y0 = 0. (2.2.8)

The general solution of this equation can be written as

y0(t) = A(τ) sin(t) +B(τ) cos(t). (2.2.9)

y0(t) = A(τ) cos(t+ ϕ) or as y0(t) = A(τ)eti + Ā(τ)e−ti, (2.2.10)

where A(τ) is a complex valued constant and the over bar indicates a complex con-

jugate.

O(ε)

y1tt + y1 = −2y0tτ − y0t. (2.2.11)

From (2.2.9), the differential equation for y1 is

y1tt + y1 = (2Bτ +B(τ)) sin(t)− (2Aτ + A(τ)) cos(t). (2.2.12)

Then the secular terms are

Bτ = −B(τ)

2
, (2.2.13)

Aτ = −A(τ)

2
. (2.2.14)

After imposing the initial conditions we get

Bτ = −B(τ)

2
⇒ B(τ) = β1e

− τ
2 ⇒ B(τ) = 0, (2.2.15)

Aτ = −A(τ)

2
⇒ A(τ) = β2e

− τ
2 ⇒ A(τ) = e−

τ
2 (2.2.16)
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Putting all the result together, we find that the solution of

y ∼ e−
τ
2 sin(t). (2.2.17)

This is first term of approximation that is valid up to the first order of ε, which gives us

a good approximation for the problem. Moreover, this procedure is easily expandable

to more general oscillators, also it can used to investigate if the oscillations decay or

grow.



Part I

Spatially Homogeneous

Einstein-Aether Cosmological

Models: Scalar Fields with

Harmonic Potential

14



Chapter 3

Introduction to the Model

Cosmological models in Lorentz-violating theories of gravity are of recent interest

among many scientists. Einstein-Aether theory [1], [3] consists of general relativ-

ity coupled, at second derivative order, to a dynamical time-like unit vector field,

“Aether”. It is one of several proposed models of early universe cosmology which

incorporate a violation of Lorentz invariance [2]. The local space-time structure is

determined by the Aether vector field, ua, together with the metric tensor gab [16].

We shall discuss the late time dynamics of Einstein-Aether cosmological models; in

particular, we explore the impact of Lorentz violation on the inflationary scenario [4],

which provides one of the simplest ways to describe various aspects of the physics of

the early universe in standard cosmology. More precisely, we study the inflationary

scenario in the scalar-vector-tensor theory, where the vector is constrained to be unit

and time-like, and investigate whether the inflationary solutions proposed [8] are

stable when spatial curvature and anisotropic perturbations are considered.

In the phenomenology of the theories, it is assumed that the preferred frame coincides

with the cosmological rest frame is defined by the Hubble expansion of the universe.

15
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3.1 Einstein-Aether Cosmology Theory

The action for Einstein-Aether theory is the most general covariant functional of the

spacetime metric gab and Aether field ua involving no more than two derivatives (not

including total derivatives) is [17, 30]

S =

∫
d4x
√
−g
[

1

2
R−Kab

cd∇au
c∇bu

d + λ (ucuc + 1) + Lm
]
, (3.1.1)

where

Kab
cd ≡ c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd. (3.1.2)

The action (3.1.1) contains an Einstein-Hilbert term for the metric, a kinetic term

for the Aether with four dimensionless coefficients ci, and λ is a Lagrange multiplier

enforcing the time-like constraint on the Aether. The convention used in this thesis

for metric signature is (−+++) and the units are chosen so that the speed of light

defined by the metric gab is unity and κ2 ≡ 8πG = 1. The field equations from varying

(3.1.1) with respect to gab, ua, and λ are given respectively by [16].

Gab = Tæ
ab (3.1.3)

λub = ∇aJ
a
b + c4u̇a∇bu

a (3.1.4)

uaua = −1. (3.1.5)

Here Gab is the Einstein tensor of the metric gab. The quantities Jab, u̇a and the
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Aether stress-energy Tæ
ab are given by

Jam = −Kab
mn∇bu

n (3.1.6a)

u̇a = ub∇bua (3.1.6b)

Tæ
ab = 2c1(∇au

c∇buc −∇cua∇cub)

− 2[∇c(u(aJ
c
b)) +∇c(u

cJ(ab))−∇c(u(aJb)
c)]− 2c4u̇au̇b+

+ 2λuaub + gabLu. (3.1.6c)

where

Lu ≡ −Kab
cd∇au

c∇bu
d, (3.1.7)

is the Einstein-Aether Lagrangian.Taking the contraction of (3.1.4) with ub and with

the induced metric hbc := gbc + ubuc we obtain the equations

λ = −ub∇aJ
a
b − c4u̇au̇

a, (3.1.8a)

0 = hbc∇aJ
a
b + c4h

bcu̇a∇bu
a. (3.1.8b)

3.2 Models and the Parameters ci

Regarding this last subcase, there are 4 dimensionless free parameters (constants)

that define the Einstein-Aether theory (ci; i = 1...4). Since we have normalized G

(c1 + 3c2 + c3 = 0), and since there is an invariance in the action in the cosmological

application, there are effectively only two independent parameters [1] denoted here by

c2 and d. The arbitrary parameter d = c1−c4 does not occur in the tilt-free equations

above. The final parameter, c2−1 = (c1 + c3) satisfies 0 ≤ c2 ≤ 1, where c2 = 1 is the
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corresponding GR value. In [17] it was shown that (c1 + c3) is positive and bounded

above; indeed, it is expected that (c1 + c3) is very small (i.e., ∼ 10−3). Therefore,

c2 = 1 is consistent with [1]. In addition, since it is not expected that there would

be any significant different qualitative behaviour in the late time dynamics, we could

assume self-consistently here that c2 = 1 to simplify the analysis.

3.3 Isotropic Model

In an isotropic and spatially homogeneous Friedmann universe with the expansion

scale factor a(t) and the proper time t, “Aether” Aether field will be aligned with the

cosmic frame and is related to the expansion rate of the universe. The Friedmann

equation is generalized by the contribution of the additional stress tensor for the

Aether field. If the universe contains a single self-interacting scalar field φ with a

self-interacting potential V , then V can now be a function of φ and the expansion

rate θ. We shall investigate these models in chapter (4).

3.4 Anisotropic Model

In an anisotropic Einstein-Aether model there will be additional terms in the field

equations when compared to the isotropic model. For example:

• The effects on the geometry from the anisotropy (and curvature) of the Bianchi

spatially homogeneous models will be present in the equations. We shall only

be concerned here with a subclass of Bianchi type V Ih models with non-positive

spatial curvature (scalar field models with a harmonic potential and a positive
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spatial curvature are known to be chaotic [13]).

• The effect of the energy momentum tensor of the scalar field, due to the possible

dependence on V of the Lorentz violating vector field.

• The Einstein Friedmann equations are generalized by the contribution of an

additional stress tensor, Tæ
ab, for the Aether field which depends on the dimen-

sionless parameters of the Aether model (e.g., the “ci”) [18]. In GR, all of the

ci = 0. To study the effects of matter, we could perhaps assume the corre-

sponding GR values (or close to them) in the first instance. The parameter c2,

depends on (c1 + c3) such that c2 ≤ 1, is expected to satisfy c2 ∼ 1, consistent

with [1, 19]. In addition, since it is not expected that there would be any signif-

icant different qualitative behaviour in the late time dynamics, we will assume

here that c2 = 1 (the corresponding GR value).

• In anisotropic models, there may be a tilt between the preferred direction of the

Aether and that of the anisotropy (in an isotropic and spatially homogeneous

Friedmann universe the Aether field is aligned with the cosmic frame). This adds

additional terms to the Aether stress tensor Tæ
ab, which can be characterized by

a hyperbolic tilt angle, α(t), measuring the boost of the Aether relative to the

rest frame of the homogeneous spatial sections [5, 20]. The tilt is expected to

decay to the future [21, 22]. Henceforward, we shall assume that the tilt is

negligible and so α = 0 (and the model does not depend on the parameter d).
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3.5 The Model

We shall assume that the spacetime is spatially homogeneous and anisotropic having

a normalized hyper-surface orthogonal vector field that is aligned with the Aether,

ua = (1; 0; 0; 0). An interesting one-parameter class of spacetimes is described by the

diagonal Bianchi type V Ih metric

ds2 = −dt2 + a(t)2dx2 + b(t)2e2mxdy2 + c(t)2e2xdz2, (3.5.1)

where m is a constant and it is define by m = h− 1. If m = 1, then we have Bianchi

type V; if m = 0, then we have a Bianchi type III and when m = −1 we have Bianchi

type V I0. With the above assumptions on the metric and Aether vector, the vorticity

and the acceleration of the Aether vector are zero and the covariant derivative

ua;b = σab +
1

3
θhab (3.5.2)

is classified by the expansion scalar

θ = ∇au
a =

ȧ

a
+
ḃ

b
+
ċ

c
, (3.5.3)

and σ2 ≡ 1
2
σabσab, where we assume σ1 = σ2. We shall consider the effective potential

of the form

V (θ, φ, σ) =
∑
r,s

ar,sθ
rσsφ2−r−s, (3.5.4)

where {ar,s} are constants. For convenience and simplicity we study a potential

with arbitrary values for (a00 = 1
2
n2, a10 = µ, a01 = ν). Negative constants ar,s are
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permitted; however, it might be required that the potential V (θ, φ, σ) is positive

definite. The general Friedmann equation has the form

θ2 = 3σ2 + 3ρφ +
3(m2 +m+ 1)c2

a2
. (3.5.5)

The Raychaudhuri equation governing the evolution of the expansion is given by

θ̇ = −1

3
θ2 − 2σ2 − 1

2
(ρφ + 3pφ). (3.5.6)

The shear evolution equation is given by

σ̇ = −σθ +
1−m

3
√

3
√
m2 +m+ 1

(
θ2 − 3σ2 − 3ρφ

)
. (3.5.7)

The Klein-Gordon equation yields

φ̈ = −θφ̇− Vφ. (3.5.8)

The Hubble expansion is 3H = θ, and the shear is defined by σ2 ≡ 1
2
σabσab. An

over dot represents differentiation with respect to coordinate time t. Units have been

chosen so that 8πG = c2 = 1. The Einstein field equation, the conservation equa-

tion, together with the Klein-Gordon equation for the scalar field, yield the following

autonomous system of ordinary differential equations:

θ̇ = −1

3
θ2 − 2σ2 − 1

2
(ρφ + 3pφ),

σ̇ = −σθ +
1−m

3
√

3
√
m2 +m+ 1

(
θ2 − 3σ2 − 3ρφ

)
,

φ̇ = ψ,

ψ̇ = −θψ − Vφ,

(3.5.9)

with first integral

θ2 = 3σ2 + 3ρφ +
3(m2 +m+ 1)

a2
. (3.5.10)
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In this part of thesis we shall look at the isotropic sub cases of these models: the case

when m = 1, σ = 0 yields a negative spatial curvature model and the limiting case

as ( 1
a2

) → 0 which corresponds to a zero curvature model. We will investigate these

isotropic cases in chapter (4). In chapter (5), we shall look at the anisotropic models

for m = 1, which yields a 4- dimensional system.

3.6 Self Interacting Scalar Field

If the universe contains a self-interaction potential V , which is dependent on a self-

interacting scalar field φ, together with the expansion rate, then the modified stress

tensor for the scalar field [1] is given by

T φab =∇aφ∇bφ−
(

1

2
∇aφ∇aφ+ V

)
gab + (V̇θ + θVθ)gab + V̇θuaub

+ V̇σ
σab
6σ

+
Vσ
6σ

[(
θ − σ̇

σ

)
σab + σ̇ab − 6σ2uaub − u̇cσc(aub)

]
, (3.6.1)

where Vθ is the derivative of V with respect to θ (similarly for Vσ) and a dot is the

covariant derivative along the Aether field, ( ˙ := ua∇a). For the class of models

under consideration the effective energy density and pressure due to a scalar field

which interacts with the Aether field velocity vector through its expansion and shear

has the form [1, 13]

ρφ =
1

2
φ̇2 + V − Vθ(θ + α

√
6σ)− Vσ

(
βσ − 1√

6
θ

)
, (3.6.2)

And
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pφ =
1

2
φ̇2 − V + Vθ

(
θ + α

√
6σ +

α
√

6σ̇

θ

)
+ (β − 1)Vσ

σ̇

θ
+ Vσ

(
βσ − 1√

6
θ − 1√

6

θ̇

θ

)

+V̇θ

(
1 +

α
√

6σ

θ

)
+ V̇σ

(
βσ

θ
− 1√

6

)
, (3.6.3)

where we include arbitrary constant α, β to generalize the effective density and the

pressure equations. In this thesis, we set α = 1 = β. Therefore, the effective density

and the pressure become

ρφ =
1

2
φ̇2 + V − Vθ(θ +

√
6σ)− Vσ

(
σ − 1√

6
θ

)
, (3.6.4)

pφ =
1

2
φ̇2 − V + Vθ

(
θ +
√

6σ +
√

6
σ̇

θ

)
+ Vσ

(
σ − 1√

6
θ − 1√

6

θ̇

θ

)

+V̇θ

(
1 +
√

6
σ

θ

)
+ V̇σ

(
σ

θ
− 1√

6

)
. (3.6.5)

3.6.1 Harmonic Potential

Many kinds of scalar field potentials have been studied in early universe cosmology,

and particularly convex potentials such as the harmonic potential V (φ) = 1
2
n2φ2.

Exponential potentials V (φ) = V0e
kφ, the focus of much recent work, are also of

physical importance and are of particular interest mathematically due to the exis-

tence of symmetry in the evolution equations. This leads to the decoupling of the

Raychaudhuri equation and makes a qualitative analysis of such models particularly

illuminating [13]. However, a qualitative analysis of scalar field cosmological models

with a non-exponential potential is still useful. In an analysis of inflation in scalar

field models it is usually the dynamics at intermediate times that are of importance.
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For example, for massive scalar field models a slow roll regime is entered, inflation

results until oscillations in the scalar field develop, after which the scalar particles

decay reheating the plasma. However, a qualitative analysis is still useful; in partic-

ular, the question of the degree of generality of solutions that possess an inflationary

stage in such models was addressed in [4].

3.6.2 The Potential

The form of the potential includes effects from the interaction of the scalar field φ and

the velocity vector of the Aether through the expansion and shear V (φ, θ, σ). Here

we are interested in the harmonic potentials of the form

• The potential is a function on φ only,

V (φ) =
1

2
n2φ2, (3.6.6)

where n is a positive constant

• The potential is a function of the scalar field and the expansion rate as follows:

V (θ, φ) =
1

2
n2φ2 + µθφ, (3.6.7)

where n, µ are positive constants.

• The potential is a function of the scalar field; the expansion rate and the shear,

V (θ, φ, σ) =
1

2
n2φ2 + µθφ+ νσφ, (3.6.8)

in which we assume that V is a positively definite potential and µ and n are

positive constants but ν can be either positive or negative.



Chapter 4

Isotropic FRW Models

We shall consider the spatially homogeneous and isotropic Einstein-Aether models.

Given the metric is Bianchi V Ih in the diagonal form then the Friedmann equation

is given as

θ2 − 3σ2 − 3ρφ =
3

a2
(m2 +m+ 1). (4.0.1)

The negative curvature Friedmann, Robertson Walker (FRW) model are an invariant

set of the dynamical system when m = 1 and σ = 0. In which case the Friedmann

equation becomes

θ2 = 3ρφ −
9

a2
. (4.0.2)

This corresponds to a (k = −1) FLRW models. The zero curvature (k = 0) FLRW

models are found in the limiting case when σ → 0 and 1
a2
→ 0, in which case the

Friedmann equation becomes

θ2 − 3ρφ = 0. (4.0.3)

Hence, both k = 0,−1 (FRW) models can be describe by the dynamical system

25
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

θ̇ = −1

3
θ2 − 1

2
(ρφ + 3pφ),

φ̇ = ψ,

ψ̇ = −θψ − Vφ,

(4.0.4)

with first integral

θ2 = 3ρφ −
9k

a2
. (4.0.5)

Note that θ = 3ȧ
a

. The energy density and pressure equations yield

ρφ =
1

2
φ̇2 + V − Vθθ, (4.0.6)

pφ =
1

2
φ̇2 − V + Vθθ + V̇θ. (4.0.7)

Therefore,

ρφ + 3pφ = 2φ̇2 − 2V + 2θVθ + 3V̇θ. (4.0.8)

We consider a polynomial potential of the form:

V (φ, θ) =
1

2
n2φ2 + µθφ, (4.0.9)

where n, µ are assumed to be positive since we assume that the potential is positive

definite. We shall investigate two sub cases under this general case:

1. When the potential is a function of the scalar field φ only (µ = 0)

V (φ) =
1

2
n2φ2.

2. When the potential depends on scalar field and the expansion rate with (µ > 0)

V (φ, θ) =
1

2
n2φ2 + µφθ.
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We investigate the qualitative behaviour of the spatially isotropic model in the late

times using two approaches: an analysis using original variables, an analysis us-

ing normalized variables numerically and analytically. Moreover, we investigate the

early times behaviour for these model using the original variables and the normalized

bounded variables numerically only.

4.1 Case (1a): When µ = 0

4.1.1 Original Variables

We shall look to the isotropic spatially homogeneous model with a potential of the

form

V (φ) =
1

2
n2φ2. (4.1.1)

With this particular potential the autonomous system in (4.0.4) reduce to

ȧ =
1

3

(√
1

6
φ̇2 +

1

6
n2φ2 − k

a2

)
a,

φ̇ = ψ,

ψ̇ = −3

(√
1

6
φ̇2 +

1

6
n2φ2 − k

a2

)
ψ − n2φ.

(4.1.2)

Original Variables: Multiple Scales Method

In this subsection, we use the multiple scales method to analyse the behaviour of the

model. It is an extremely powerful approach with widespread applications [25]. In

this method, we introduce one or more new “slow” time variables for each time scale

of our problem. This method gives us a leading order expansion corresponding to the
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scalar field φ in our model. Our objective is to simplify our model with the original

variables to a reduced and easier model to study.

Define the variable,

r =
1

a
⇒ ṙ =

−ȧ
a2
. (4.1.3)

Then, it follows that

ṙ = −1

3

(√
1

6
φ̇2 +

1

6
n2φ2 − kr2

)
r. (4.1.4)

Combining the second equation of (4.1.2) and (4.1.4) leads to
φ̈ = −3

(√
1

6
φ̇2 +

1

6
n2φ2 − kr2

)
φ̇− n2φ,

ṙ = −1

3

(√
1

6
φ̇2 +

1

6
n2φ2 − kr2

)
r.

(4.1.5)

Next, rescale the variables r and φ, where ε is small, as follows

φ = εΦ, r = εR. (4.1.6)

Hence, the system (4.1.5) becomes
Φ̈ = −3ε

(√
1

6
Φ̇2 +

1

6
n2Φ2 − kR2

)
Φ̇− n2Φ,

Ṙ = −1

3
ε

(√
1

6
Φ̇2 +

1

6
n2Φ2 − kR2

)
R.

(4.1.7)

Multiple Scales Method

We use the multiple scales method with t as the fast time and τ = εt as the slow time

to determine a leading order approximation to the solution of Φ,R of the model in

equation (4.1.7). The solution od Φ,R are expanded as

Φ ≡ Φ(t, τ) ∼ Φ0(t, τ) + εΦ1(t, τ) + ...,

R ≡ R(t, τ) ∼ R0(t, τ) + εR1(t, τ) + .... (4.1.8)
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Using the chain rule gives

Ṙ = R0t + ε (R0τ +R1t) + ...,

Φ̇ = Φ0t + ε (Φ0τ + Φ1t) + ...,

Φ̈ = Φ0tt + ε (2Φ0tτ + Φ1tt) + ...,

(4.1.9)

Note that, for simplification we used
(
dΦ
dt

= Φt,
dΦ
dtdτ

= Φtτ

)
and so on. Substituting

(4.1.8) and (4.1.9) into the model in equation (4.1.7) yields the following

Φ0tt + ε(2Φ0tτ + Φ1tt) + n2(Φ0 + εΦ1) + 3ε

(
Φ0t + ε

(
Φ0τ

+ Φ1t

))(√
1

6
Φ0t

2 +
1

6
n2Φ0

2 − kR0
2

)
,

R0t + ε(R0τ +R1t) = −1

3
εR0

(√
1

6
Φ0t

2 +
1

6
n2Φ0

2 − kR0
2

)
.

(4.1.10)

Equating coefficients of like powers of ε to 0, gives the following sequence of partial

differential equations:

O(1) : Φ0tt + n2Φ0 = 0, (4.1.11a)

: R0t = 0 (4.1.11b)

O(ε) : Φ1tt + n2Φ1 = −3

(√
1

6
Φ2

0t +
1

6
n2Φ0

2 − kR0
2

)
Φ0t − 2Φ0tτ , (4.1.11c)

: R1t = −1

3

(√
1

6
Φ0t

2 +
1

6
n2Φ2

0 − kR2
0

)
R0 −R0τ . (4.1.11d)

Equation (4.2.25a,4.2.25b) have the solutions
Φ0 = A(τ) cos(nt+ ϕ(τ)),

R0 = R(τ) where R(τ) an arbitrary function of τ.

(4.1.12)
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After some algebraic calculations the order of ε yields
Φ1tt + n2Φ1 = sin(θ)

(
3A

√
n2A2

6
− kR0

2 + 2Aτ

)
− 2n2Aϕτ cos(θ),

R1t = −1

3

(√
n2A2

6
− kR0

2

)
R0 −R0τ .

(4.1.13)

Therefore, in order to eliminate these secular terms, we must have the following

differential equations 

ϕτ = 0,

Aτ = −3

2

(√
n2A2

6
− kR2

0

)
A,

R0τ = −1

3

(√
n2A2

6
− kR2

0

)
R0,

(4.1.14)

where R0 = R(τ). The equations in (4.1.14) are separable and it can be solved

explicitly when k = 0. 
Aτ = −

√
6

4
nA2,

R0τ = − nA

3
√

6
R0.

(4.1.15)

Integrating (4.1.15), we obtain
A(τ) =

4√
6nτ + C1

, where C1 is a constant of integration

R0(τ) =
8

(3
√

6nτ + C1)
2
3

.

(4.1.16)

The multiple scale approximation A and the exact solution φ for ε = 0.1 are depicted

in figure (4.4) which mean that the analogue curve of A gives us how the oscillation

of φ decays as t→∞.

4.1.2 Original Variables: Numerical Method-Past Behaviour

In figures 4.1, 4.2, we plot solutions of φ(t), a(t) for the system (4.1.2) into the past

time with k = 0.
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Figure 4.1: Plot of the solution for φ(t) of the system (4.1.2) with n = 1 and k =
0 as t → −∞ with several initial conditions:[[φ(0) = 0.2, (D(φ))(0) = 0, a(0) =
0.1], [φ(0) = 0.3, (D(φ))(0) = 0.1, a(0) = 0.05]].

Figure 4.2: Plot of the solution for a(t) of the system (4.1.2) with n = 1 and k =
0 as t → −∞ with several initial conditions:[[φ(0) = 0.2, (D(φ))(0) = 0, a(0) =
0.10], [φ(0) = 0.3, (D(φ))(0) = 0.1, a(0) = 0.11]].

Discussion: As can be seen in figure 4.1, φ(t) tends to infinity into the past and in

figure 4.2 show that a(t) decreases. In summary, the numerical solutions for the model

with the original variables to the past with zero curvature is similar to the numerical

solutions for the model with negative curvature, which implies that changing the

curvature does not effect the behaviour of the model under consideration at early
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times.

4.1.3 Original Variables: Numerical Method-Future Behaviour

In figures 4.3, we plot solutions of of A(t) for the system (4.1.14) and in figure 4.4,

we plot the solution of of Φ(t), A(t) for the (4.1.14) and (4.1.7) together with k = 0,

at the late times.

Figure 4.3: Plot of solution of A(t) for the system (4.1.14) with n = 1 and k = 0 and
initial condition: [A(0) = 1,R0(0) = 1].

Discussion As can be seen from the numerical solution, in figure 4.4 the analogue

of A(t) consists with the solution of Φ(t) which starts by oscillation than decays to

zero.
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Figure 4.4: Plot of solution of A(t) for the system (4.1.14) with n = 1 and k = 0 and
initial condition: [A(0) = 1,R0(0) = 1] together with the plot the solution of Φ for
the system (4.1.7) with n = 1, k = 0 and one initial condition:[Φ(0) = 1, D(Φ(0)) =
0,R(0) = 1], as t→∞. Black line indicates the oscillation envelope A(t).

4.1.4 Bounded Normalized Variables

Introducing Normalized Variables

We introduce normalized variables to analyze the model. We define a bounded vari-

able D along with the following expressions for Φ and Ψ :

D ≡ θ√
1 + θ2

, Ψ ≡
√

3

2

(
nφ√

1 + θ2

)
, Φ ≡

√
3

2

(
φ̇√

1 + θ2

)
. (4.1.17)

The Friedmann equation becomes

D2 − Φ2 −Ψ2 = − 9k

a2(1 + θ2)
≥ 0, (4.1.18)

which is conserved by the 3D system (4.1.20) (illustrated below), when k = 0.
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Define

Λ = D2 − Φ2 −Ψ2,

then

Λ′ = 2DD′ − 2ΦΦ′ − 2ΨΨ′

= 2

[
D(1−D2)X +DΦ2(1 + X ) +DΨ2X

]

= 2

[
−DX (D2 − Φ2 + Ψ2) +D(X + Φ2)

]

= 2

[
−DXΛ− 1

3
D
(
D2 − Φ2 + Ψ2

)]

= 2

[
−DXΛ− 1

3
DΛ

]
= −2

3
DΛ(3X + 1) = 0.

The domain of interest is 0 ≤ D ≤ 1, since if

θ →∞ =⇒ D → 1,

and

θ → 0 =⇒ D → 0.

Based on the equation (4.1.18) with k = 0 and the interest domain of D ( 0 ≤ D ≤ 1),

hence

0 ≤ Φ2 + Ψ2 ≤ D2 ≤ 1. (4.1.19)

Then, it follows that the other variables Φ,Ψ are bounded. Now we define a new time

variable τ with dτ
dt

=
√

1 + θ2, and apply it to the bounded variables in (4.1.17), then
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we obtain the reduced (3D) system:

D′ = (1−D2)X ,

Ψ′ = n
√

1−D2Φ−DΨX ,

Φ′ = −DΦ− n
√

1−D2Ψ− ΦDX ,

(4.1.20)

where the prime here indicates the differentiation of each variable with respect to the

new variable time τ and X is given by

X = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 =

θ̇

(θ2 + 1)
(4.1.21)

Moreover, for k = −1,X < 0, and so D is a monotone decreasing in the interior of

the phase space. Note that X = 0 if Φ = 0 and D = Ψ.

Bounded Variables:Qualitative Analysis

The equations in system (4.1.20) are relatively simple and it is a well defined system.

Also, note that the D′ does not decouple and the system is not analytic at D = 1 since

we have the square root term in the second equation of the 3D system in (4.1.20).

Moreover, the origin equilibrium point P0 is highly degenerate.

Equilibrium Points

In table (4.1), we present the summary of equilibrium points for the system (4.1.20);

the values of X and their stability.

Let us discuss the stability of the equilibrium points of the system (4.1.20):



36

Pt (D,Φ,Ψ) X Stability k -values
P0 (0, 0, 0) 0 Sink k = 0,−1

P1 (1, 1, 0) −1 Source k = 0,−1

P2 (1,−1, 0) −1 Source k = 0,−1

P3 (1, 0, 1) 0 Saddle k = 0,−1

P4 (1, 0,−1) 0 Saddle k = 0,−1

P5 (1, 0, 0) −1
3

Saddle k = −1

Table 4.1: Equilibrium points of the system (4.1.20); the value of X and their stability.

Stability of Equilibrium Point (P0)

Evaluating linearization matrix for the 3D system in equation (4.1.20) at P0 gives us

one zero eigenvalue and other two complex eigenvalues. Since one of the eigenvalues

is zero, so we can not tell from the linear stability analysis alone whether or not P0 is

stable. Numerically, we have been able to show that all solutions (orbits) near P0 go

toward it which implies that it is a sink (i.e., see figure 4.9). Below; we analytically

show that P0 is a sink. We have that D′ = (1 − D2)X and we want to show that

D′ < 0 in the interior (k = −1) of the phase space. We know that the term (1−D2)

is always positive since the domain of our interest is 0 < D < 1. However, by using

the constraint Ψ2 < (D2 − Φ2) in X as follows:

X = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2

≤ −1

3
D2 − 2

3
Φ2 +

1

3

(
D2 − Φ2

)
< −Φ2 ≤ 0. (4.1.22)

Therefore, D′ < 0 in the interior of our phase space which implies that the origin

P0 in the 3D system is a sink. Note that D → 0 as τ → ∞. Similarly, D → 1 as

τ → −∞. This implies that past behaviour is determined by the D = 1 invariant set
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and the future behaviour of the model is determined by the k = 0 invariant set (see

figures 4.8, 4.9)

Stability of Equilibrium Points (P1,2,3,4,5)

Evaluating the linearization matrix of the system in equation (4.1.20) at P1,2,3,4 gives

us undefined terms, so we have to examine the stability of these equilibrium points

using different techniques. Then, evaluating the linearization matrix at Φ = 0, Ψ =

±1 or at Φ = ±1,Ψ = 0, we found that there is always one positive eigenvalue at

D = 1. In order to determine the signs of the other eigenvalues we need to study the

2D system of Φ, Ψ. There are two cases:

When k = 0 and if D = 1 then we have a 1-dimensional set (i.e.,Φ2 + Ψ2 = 1).

When k = −1 There is a 2-dimensional invariant set when D = 1 given by


Ψ′ = −Ψ

(
−1

3
− 2

3
Φ2 +

1

3
Ψ2

)
,

Φ′ = −Φ

(
2

3
− 2

3
Φ2 +

1

3
Ψ2

)
,

(4.1.23)

with the constraint Φ2 + Ψ2 ≤ 1. There are five equilibrium points for the 2D system

in equation (4.1.23).

{(Ψ,Φ)} = {(0, 0), (±1, 0), (0,±1)}. (4.1.24)

Note that, (±1, 0), (0,±1) are equilibrium points in the k = 0 set.

The linearization matrix for the 2D system (4.1.23) is given by
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J(Ψ,Φ) =


1
3

+ 2
3
Φ2 −Ψ2 4

3
ΦΨ

−2
3
ΦΨ −2

3
− 1

3
Ψ2 + 2Φ2

 . (4.1.25)

Now we will evaluate all the equilibrium points in the linearization matrix (4.1.25)

to see the stability (the behaviour) of them in the unit disk. For (0, 0), we get two

eigenvalues one positive and the other negative, which implies that the point (0, 0) is

a saddle. For P1,2, we get two positive real eigenvalues, which implies that P1,2 are

sources in the 2D system as well as in the 3D since we know that the third eigenvalue

is positive. Lastly, for P3,4, we get two negative real eigenvalues, which implies that

P3,4 are sinks in the 2D system. However, P3,4,5 are saddles in the 3D since we know

that the third eigenvalue is positive. The shape of the phase space for the model is

Figure 4.5: Plot of system (4.1.23) as t→∞

a cone in the 3D space and it is a circle in the 2D. In figure 4.5, we plot the phase

portrait for the model in the invariant set D = 1. When k = 0, the phase space is

the boundary (i.e., Φ2 + Ψ2 = 1) but if k = −1, the phase space is the interior of the
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circle (i.e., Φ2 + Ψ2 < 1). Note that when k = 0 we have four equilibrium points but

when k = −1 we have one equilibrium point in the 2D invariant set and the others

are on the boundary. As can be seen from figure 4.5 that P1,2 are sources and P3,4

are sinks and P5 is a saddle.

Qualitative Analysis for Bounded Variables (Point P0)

Our objective now is to reduce the system with the normalized bounded variables in

(4.1.20) using the multiple scales method.

Expand
√

1−D2 using a Taylor series as follows

√
1−D2 = 1− 1

2
D2 + ......., (4.1.26)

which is valid for small value of D. Then, neglecting all the higher order terms the

system in (4.1.20) becomes

D′ = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2,

Ψ′ = nΦ,

Φ′ = −DΦ− nΨ.

(4.1.27)

Define the variables as follows:

D = εd, Φ = εφ, Ψ = εψ, (4.1.28)

where ε is small. Plugging (4.1.28) into (4.1.27) yields to

d′ =
ε

3

(
−d2 − 2φ2 + ψ2

)
,

ψ′ = nφ,

φ′ = −εdφ− nψ.

(4.1.29)
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The system (4.1.29) can be rewritten as follows:
d′ =

ε

3

(
−d2 − 2

ψ′2

n2
+ ψ2

)
,

ψ′′ = −n2ψ − εdψ′.

(4.1.30)

Multiple Scales Method

We use the multiple scales method with t as the fast time and τ = εt as the slow

time to determine a leading order approximation to the solution of ψ, d of the model

in equation (4.1.30). The solution of ψ, d are expanded as

ψ ≡ ψ(t, τ) ∼ ψ0(t, τ) + εψ1(t, τ) + ...,

d ≡ d(t, τ) ∼ d0(t, τ) + εd1(t, τ) + .... (4.1.31)

Using the chain rule gives

d′ = d0t + ε(d0τ + d1t) + ...,

ψ′ = ψ0t + ε(ψ0τ + ψ1t) + ...,

ψ′′ = ψ0tt + ε(2ψ0tτ + ψ1tt) + ..,

(4.1.32)

where (′) indicates the derivative of the variables with respect to time t. Substituting

(4.1.32) and (4.1.31) into (4.1.30) yields


d0t + ε(d0τ + d1t) =

ε

3

(
−d0

2 − 2

n2
ψ0t

2 + ψ0
2

)
,

ψ0tt + ε(2ψ0tτ + ψ1tt) = −n2(ψ0 + εψ1)− εd0ψ0t.

(4.1.33)

Equating coefficients of like powers of ε to 0, gives the following sequence of partial
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differential equations:

O(1) : ψ0tt + n2ψ0 = 0, (4.1.34a)

: d0t = 0 (4.1.34b)

O(ε) : ψ1tt + n2ψ1 = −2ψ0tτ − d0ψ0t, (4.1.34c)

: d1t = −d0τ −
1

3

(
−d2

0 −
2

n2
ψ2

0t + ψ2
0

)
. (4.1.34d)

Equation (4.2.25a),(4.2.25b) have the following solutions
d0 = d(τ) an arbitrary function,

ψ0 = A(τ) cos(θ) where θ = nt+ ϕ(τ).

(4.1.35)

After some algebraic calculations the order of ε yields


d1t = −d0τ −

1

3

(
−d2

0 +
1

2
A2

)
,

ψ1tt + n2ψ1 = n sin(θ) (2Aτ + d0A)− 2Anϕτ cos(θ).

(4.1.36)

Therefore, in order to eliminate these secular terms, we must have the following

differential equations 

ϕτ = 0,

Aτ = −do
2
A,

d0τ = −1

3

(
d2

0 +
1

2
A2

)
.

(4.1.37)

As can be seen in (4.1.37) that d0τ < 0. which match the numerical solution in figure

4.7. When we plot the solution of Aτ , we found that A(τ) decrease. which implies

that the approximate solutions of the reduced system (4.1.37) decay to zero. Hence,

the approximate solutions of (4.1.30) decay to zero as well. Therefore, P0 is a sink.
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Figure 4.6: Plot of solution of A(t) for the system (4.1.37) with n = 1 and k = 0 and
initial condition: [A(0) = 1, d0(0) = 1] together with the plot the solution of ψ(t) for
the system (4.1.30) with n = 1, k = 0 and one initial condition:[ψ(0) = 1, D(ψ(0)) =
0, d(0) = 1], as t→∞. Black line indicates the oscillation envelope A(t).

Figure 4.7: Plot of solution of d0(t) for the system (4.1.37) with n = 1 and k = 0 and
initial condition: [A(0) = 1, d0(0) = 1] together with the plot the solution of ψ(t) for
the system (4.1.30) with n = 1, k = 0 and one initial condition:[ψ(0) = 1, D(ψ(0)) =
0, d(0) = 1], as t→∞.
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4.1.5 Bounded Variables: Numerical Method-Past Behaviour

In the following figure 4.8, we plot solutions of the system (4.1.20) into the past times

with k = 0.

Figure 4.8: Plot for the system (4.1.20) with n = 1; k = 0 as t → −∞ with sev-
eral initial conditions:[[D(0) = 0.5,Φ(0) = 0.5 cos(45),Ψ(0) = 0.5 sin(45)], [D(0) =
0.6,Φ(0) = 0.6 cos(120),Ψ(0) = 0.6 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].

Discussion: As can be seen in figures 4.8, D,Φ→ 1 and Ψ→ 0 as t→ −∞ which

implies that it is going to P1 in the past time limit. Note that changing the curvature

value k = −1 does not effect the behaviour of the model into the past, we get similar

behaviour as k = 0.

4.1.6 Bounded Variables: Numerical Method-Future Behaviour

In figure 4.9 we plot the numerical solutions for the system (4.1.20) with n = 1 and

with zero curvature into the future times.
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Figure 4.9: Plot for the system (4.1.20) with n = 1 and k = 0 as t → ∞ with
several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) = 0.6 sin(45)], [D(0) =
0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].

Discussion

As can be seen in figure 4.9, Φ,Ψ oscillate and decay to zero, and D decreases and

decays to zero in the late time limit, which means that P0 is sink. Note that when

k = −1, we get similar behaviour as with k = 0. In summary, the numerical solutions

for the model with the bounded variables is consistent with the numerical solutions

for the model with the original variables in the late time limit ( see figures 4.4 and

4.9). In summary, solution approach P0 at t→∞.

4.1.7 Inflation

As an indicator of the accelerated expansion of the universe we introduce the decel-

eration parameter, defined as

q ≡ −

(
3θ̇

θ2
+ 1

)
= −aä

ȧ2
. (4.1.38)
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With the use of the first equation in (4.0.4) and equation (4.1.17) it follows that the

deceleration parameter can be expressed in terms of the normalized bounded variables

as

q = − 1

D2
(Ψ2 − 2Φ2). (4.1.39)

The sign of the deceleration parameter indicates the nature of the expansionary evo-

lution. If q > 0, the cosmological expansion is decelerating, while negative values of q

indicate an accelerating dynamics. The value for q for each of the equilibrium points

of the model are

1. P0: q is undefined in terms of the normalized variables. However, using the

original variables we obtain that

q = − 1

θ2

(
−3φ̇2 +

3

2
n2φ2

)
, (4.1.40)

which is zero at P0. Hence, P0 is not inflationary.

2. P1,2:

q
∣∣
P1,2

= 2 > 0, (4.1.41)

are always positive which implies that P1,2 are not inflationary.

3. P3,4:

q
∣∣
P3,4

= −1 < 0, (4.1.42)

are always negative which implies that P3,4 are inflationary.

4. P5:

q
∣∣
P5

= 0, (4.1.43)
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which implies that P5 is not inflationary.

4.1.8 Slow Roll Inflation

The expansion term tends to slow down the evolution of φ, if the following slow roll

conditions are valid

φ̇2 � V (φ), (4.1.44)

|φ̈| � |θφ̇|, (4.1.45)

Now, we may approximate Friedmann equation using the slow roll conditions as follow

θ2 = 3(n2φ2+φ̇2)
2

⇒ θ =
√

3
2

√
φ̇2 + n2φ2, (4.1.46)

which will be simpler using the slow roll conditions

θ =

√
3

2
n|φ|. (4.1.47)

And the Klein Gordon equation in (4.0.4) becomes

θφ̇+ n2φ = 0. (4.1.48)

Plugging (4.1.47) into equation (4.1.48) leads to

φ̇ = −
√

2

3
n < 0. (4.1.49)

Integrating (4.1.49) yields

φ = −
√

2

3
nt+ C3, where C3 is a constant. (4.1.50)
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Hence,

θ = −n2t+ C4, where C4 is a constant. (4.1.51)

Now, we can calculate the solution of the dimensionless scale factor for the universe

a by integrating the following equation

θ =
3ȧ

a
, (4.1.52)∫

ȧ

a
=

1

3

(∫
(−n2t+ C4) dt

)
, (4.1.53)

⇒ ln(a) =
1

6
n2t2 + C4t+ C5, (4.1.54)

a = C6e
− 1

6
n2t2+C4t, where C6 is a constant. (4.1.55)

Thus, the solution for the scale factor of the expanding universe at time zero is a = C6.

Moreover, the slow roll inflation will happen for intermediate times (values of t for

which the approximations are valid).

4.1.9 Discussion

In the isotropic model (Case (1a): µ = 0) we found there is only one sink which is

at the origin P0. There are inflationary saddles at P3,4 but no inflationary sinks nor

inflationary sources.
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4.2 Case(1b): When µ > 0

4.2.1 Original Variables

We shall look to the isotropic spatially homogeneous model with a potential of the

form

V (θ, φ) =
1

2
n2φ2 + µθφ, (4.2.1)

With this particular potential the autonomous system in (4.0.4) reduce to
ȧ =

1

3

(√
1

6
φ̇2 +

1

6
n2φ2 − k

a2

)
a,

φ̈ = −3(φ̇+ µ)

(√
1

6
φ̇2 +

1

6
n2φ2 − k

a2

)
− n2φ.

(4.2.2)

Since the evolution equations are invariant under the transformation µ→ −µ, without

lost of generality we can assume that µ > 0. In the following two subsections, we

investigate the late time behaviour of the model using two approaches: an analysis

of the model with the original variables and analysis using the normalized bounded

variables, numerically and analytically.

4.2.2 Original Variables: Numerical Method-Past Behaviour

In figures 4.10, 4.11, we plot the the solutions of φ(t), a(t) of the system (4.2.2) into

the past times with k = 0.

Discussion

As can be seen from figure 4.10 that φ(t) blows up to infinity and in figure (4.11)

that a(t) decreases into the past time limit. Also, we have the similar behaviour
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Figure 4.10: Plot of the solution for φ(t) of the system (4.2.2) with n = 1 and
k = 0 as t → −∞ with several initial conditions:[[φ(0) = 0.1, (D(φ))(0) = 0, a(0) =
0.1], [φ(0) = 0.001, (D(φ))(0) = 0.1, a(0) = 0.3]].

Figure 4.11: Plot for the system (4.2.2) with n = 1, k = −1 as t → −∞
with several initial conditions:[[φ(0) = 0.1, (D(φ))(0) = 0, a(0) = 0.10], [φ(0) =
0.00001, (D(φ))(0) = 0, a(0) = 0.11]].

with negative curvature (k = −1) into the past for any positive values of µ smaller

or bigger than the bifurcation value of µc which we will be discussed later in this

chapter.
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4.2.3 Original Variables: Numerical Method-Future Behaviour

In figures from 4.12 to 4.15 we plot the solutions of φ(t) of the system (4.2.2) at the

future time with k = 0 with different positive values of µ.

Figure 4.12: Plot for the solution of φ(t) of the system (4.2.2) with n = 1, µ = 0.45,
k = 0 as t → ∞ with several initial conditions:[[φ(0) = 1, (D(φ))(0) = 0.1, a(0) =
1], [φ(0) = 0.22, (D(φ))(0) = 0.1, a(0) = 0.6], [φ(0) = 0.6, (D(φ))(0) = 0.5, a(0) =
0.8]].

Figure 4.13: Plot for the solution of φ(t) of the system (4.2.2) with n = 1, µ = 0.75,
k = 0 as t → ∞ with several initial conditions:[[φ(0) = 1, (D(φ))(0) = 0.1, a(0) =
1], [φ(0) = 0.22, (D(φ))(0) = 0.1, a(0) = 0.4], [φ(0) = 0.6, (D(φ))(0) = 0.5, a(0) =
0.8].
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Figure 4.14: Plot for the solution of φ(t) of the system (4.2.2) with n = 1, µ = 0.81,
k = 0 as t → ∞ with several initial conditions:[[φ(0) = 1, (D(φ))(0) = 0.1, a(0) =
1], [φ(0) = 0.22, (D(φ))(0) = 0.1, a(0) = 0.4], [φ(0) = 0.6, (D(φ))(0) = 0.5, a(0) =
0.8]].

Figure 4.15: Plot for the solution of φ(t) of the system (4.2.2) with n = 1, µ = 2,
k = 0 as t → ∞ with several initial conditions:[[φ(0) = 0.1, (D(φ))(0) = 0.1, a(0) =
1], [φ(0) = 0.001, (D(φ))(0) = 0.1, a(0) = 0.4], [φ(0) = 0.01, (D(φ))(0) = 0.5, a(0) =
0.8]].

Discussion

As can be seen in figures from 4.12 to 4.15, the numerical solutions suggest that there

is bifurcation value, in which the model changes its behaviour as µ passes through a



52

bifurcation value µ =
√

2
3
n. As can be seen from figure 4.12, where we plotted the

model with small value of µ, and we have oscillations for φ(t) then decay to zero.

However, when µ >
√

2
3
n the oscillations disappear and the stability (the behaviour)

of the model changes (see figure 4.14). For the value µ >
√

2
3
n, as can be seen in figure

4.15, there is no oscillations and φ decreases (note that we get the same behaviour

even if we run it for long time). Note that changing the curvature to negative we get

similar behaviour of the model in the original variables.

Bifurcation Value
(
i.e., µc =

√
2
3
n
)

Analysis

In this subsubsection we show an analytic proof for the bifurcation value. From the

steady state for the model in the equation (4.2.2), set φ̇ = 0 leads to

n2φ+ 3µ

(√
1

6
n2φ2 − k

a2

)
= 0,

n2φ = −3µ

(√
1

6
n2φ2 − k

a2

)
,

n4φ2 = 9µ2

(
1

6
n2φ2 − k

a2

)
n4φ2 − 3

2
µ2n2φ2 = −9

k

a2
µ2,

n2φ2(n2 − 3

2
µ2) = −9

k

a2
µ2.

(4.2.3)

If k = 0 then

n2Φ2(n2 − 3

2
µ2) = 0. (4.2.4)

Then,

(n2 − 3

2
µ2) = 0. (4.2.5)
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Hence, the bifurcation value, in which the stability (the behaviour) of the model

changes, is defined by (recall µ is positive):

µc =

√
2

3
n. (4.2.6)

4.2.4 Normalized Bounded Variable

Introducing Normalized Variables

Introduce the normalized bounded variable D as before, along with the following

expressions for Φ,Ψ :

D ≡ θ√
1 + θ2

, Ψ ≡
√

3

2

(
nφ√

1 + θ2

)
, Φ ≡

√
3

2

(
φ̇√

1 + θ2

)
. (4.2.7)

Then the Friedmann equation for this model becomes

D2 − Φ2 −Ψ2 = − 9k

a2(1 + θ2)
≥ 0. (4.2.8)

For the zero curvature the Friedmann equation becomes as follow:

D2 = Φ2 + Ψ2, (4.2.9)

which is conserved by the 3D system in (4.2.11) (illustration below), when k = 0.

Define

Λ = D2 − Φ2 −Ψ2,
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then

Λ′ = 2DD′ − 2ΦΦ′ − 2ΨΨ′

= 2

[
D(1−D2)X +DΦ2(1 + X ) +DΨ2X +

√
3

2
µΦD

√
1−D2

]

= 2

[
−DXΛ +DX +DΦ2 +

√
3

2
µΦD

√
1−D2

]

= 2

[
−DXΛ− D

3
(D2 − Φ2 −Ψ2)

]
= −2

3
DΛ(3X + 1) = 0.

The domain of interest is 0 ≤ D ≤ 1 since if

θ →∞ =⇒ D → 1,

and

θ → 0 =⇒ D → 0.

Based on equation (4.2.9) and the interest domain of D ( 0 ≤ D ≤ 1), then

0 ≤ Φ2 + Ψ2 ≤ D2 ≤ 1. (4.2.10)

Then, it follows that the other variables Φ,Ψ are bounded. Now we define a new

time variable τ with dτ
dt

=
√

1 + θ2, and apply it to (4.2.7), therefore the evolution

equation becomes



D′ = (1−D2)X ,

Ψ′ = nΦ
√

1−D2 −DΨX ,

Φ′ = −DΦ−
√

1−D2

(
nΨ +

√
3

2
µD

)
− ΦDX .

(4.2.11)
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where the prime here indicates the differentiation of each variable with respect to the

new variable time τ and X is given by the expression as follows:

X = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 −

√
3

2
µΦ
(√

1−D2
)

=
θ̇

(θ2 + 1)
. (4.2.12)

Bounded Variables:Qualitative Analysis

The equations in 3D system (4.2.11) are relatively simple and it is a well defined

system. Note that the D′ does not decouple and the system is not analytic at D = 1

since we have the square root term in the second equation of the 3D system (4.2.11).

Moreover, the origin equilibrium point P0 is highly degenerate.

Equilibrium Points

In table (4.2), we present the summary of equilibrium points for the system (4.2.11)

with the value of X and their stability.

Pt (D,Φ,Ψ) X Stability k-value

µ <
√

3
2
n µ >

√
3
2
n

P0 (0, 0, 0) 0 Sink Saddle k = 0,−1

P1 (1, 1, 0) −1 Source Source k = 0,−1

P2 (1,−1, 0) −1 Source Source k = 0,−1

P3 (1, 0, 1) 0 Saddle Saddle k = 0,−1

P4 (1, 0,−1) 0 Saddle Sink k = 0,−1

P5 (1, 0, 0) −1
3

Saddle Saddle k = −1

Table 4.2: Equilibrium points of the system (4.2.11); the value of X and their stability.

Let us discuss the stability of the equilibrium points of the system (4.2.11):
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Stability of Equilibrium point (P0) for k = 0

Evaluating the linearization matrix of the system (4.2.11) at P0 gives us the following

eigenvalues

λ1 = 0, (4.2.13)

λ2,3 = ±
√

6µ2 − 4n2

2
. (4.2.14)

Note that, if µ >
√

2
3
n then λ2 > 0, λ3 < 0 which implies that P0 is a saddle. But, if

µ <
√

2
3
n then all the eigenvalues have zero real part which implies that P0 is non-

hyperbolic equilibrium point. Therefore, the “Hartman-Grobman” theorem fails and

the behaviour of P0 for this model is generally not determined by the linearization

and thus is more difficult to study. Therefore, P0 needs to be analyzed more carefully

with different techniques (see below).

The numerical solutions of the system (4.2.11) (see figure 4.15) suggest that for any

positive value of µ such that µ >
√

2
3
n, P0 is a saddle. When µ <

√
3
2
n then P0 is a

sink. In the following pages we will show that analytically.

Qualitative Analysis for P0 when µ < µc

This section presents analytic proof to show that P0 is a sink when µ < µc. Recall

the model 

D′ = (1−D2)X ,

Ψ′ = nΦ
√

1−D2 −DΨX ,

Φ′ = −DΦ−
√

1−D2

(
nΨ +

√
3

2
µD

)
− ΦDX .

(4.2.15)
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where X is

X = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 −

√
3

2
µΦ
(√

1−D2
)
. (4.2.16)

Using Taylor series, we have

√
1−D2 = 1− 1

2
D2 + ..., (4.2.17)

which is valid for small value of D. Neglect all the higher order terms then the system

(4.2.15) becomes 

D′ = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 −

√
3

2
µΦ,

Ψ′ = nΦ,

Φ′ = −DΦ−

(
nΨ +

√
3

2
Dµ

)
.

(4.2.18)

Define the variables as follow:

D = εd, Φ = εφ, Ψ = εψ, (4.2.19)

where ε is small. Now, plugging (4.2.19) into (4.2.18) leads to

d′ =
ε

3

(
−d2 − 2φ2 + ψ2

)
−
√

3

2
µφ,

ψ′ = nφ,

φ′ = −εdφ−

(
nψ +

√
3

2
dµ

)
.

(4.2.20)

The system (4.2.20) can be rewritten as follow:
d′ =

ε

3

(
−d2 − 2

n2
ψ′

2
+ ψ2

)
−
√

3

2

µ

n
ψ′,

ψ′′ = −n

(
nψ +

√
3

2
dµ

)
− εdψ′.

(4.2.21)
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Multiple Scales Method

We use the multiple scales method with t as the fast time and τ = εt as the slow

time to determine a leading order approximation to the solution of ψ, d of the model

in equation (4.2.21). The solutions of ψ, d are expanded as

ψ ≡ ψ(t, τ) ∼ ψ0(t, τ) + εψ1(t, τ) + ...,

d ≡ d(t, τ) ∼ d0(t, τ) + εd1(t, τ) + .... (4.2.22)

Using the chain rule gives

d′ = d0t + ε(d0τ + d1t) + ...,

ψ′ = ψ0t + ε(ψ0τ + ψ1t) + ...,

ψ′′ = ψ0tt + ε(2ψ0tτ + ψ1tt) + ..,

(4.2.23)

Substituting (4.2.23) and (4.2.22) into (4.2.21) yields


d0t + ε(d0τ + d1t) =

ε

3

(
−d0

2 − 2

n2
ψ0t

2 + ψ0
2

)
−
√

3

2

µ

n
(ψ0t + ε(ψ0τ + ψ1t)),

ψ0tt + ε(2ψ0tτ + ψ1tt) = −n2(ψ0 + εψ1)− n
√

3

2
µ(d0 + εd1)− εd0ψ0t.

(4.2.24)

Equating coefficients of like powers of ε to 0, gives the following sequence of partial
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differential equations:

O(1) : d0t +

√
3

2

µ

n
ψot = 0, (4.2.25a)

: ψ0tt + n2ψ = −n
√

3

2
µd0, (4.2.25b)

O(ε) : d1t +

√
3

2

µ

n
ψ1t = −d0τ +

1

3

(
−d2

0 −
2

n2
ψ2

0t + ψ2
0

)
−
√

3

2

µ

n
ψ0τ , (4.2.25c)

: ψ1tt +

(
n2ψ1 +

√
3

2
nµd1

)
= −2ψ0tτ − d0ψ0t. (4.2.25d)

It follows from (4.2.25a), (4.2.25b) that d0 and ψ0 have the following solutions
d0 = −

√
3

2

µ

n
ψ0 + A(τ) ,

ψ0 = B(τ) cos(

√
n2 − 3

2
t+ θ(τ)) +

√
6nµA(τ)

3µ2 − 2n2
,

(4.2.26)

where A(τ), B(τ) are arbitrary functions of τ. Plugging the solutions from (4.2.26)

into (4.2.25c) yields to

d1t +
√

3
2
µ
n
ψ1t = −1

3

(
n2 − 3

2
µ2
)(
−B2(τ)

n2 + A(τ)2n2

(n2− 3
2
µ2)

2

)
− Aτ

−B(τ)2

n2

(
n2 − 3

2
µ2
)

sin2
(√

n2 − 3
2
µ2t+ θ(τ)

)
. (4.2.27)

Integrating (4.2.27) with respect to t gives

d1 = −
√

3
2
µ
n
ψ1 − 1

3
t
(
n2 − 3

2
µ2
)(
−B2(τ)

n2 + A(τ)2n2

(n2− 3
2
µ2)

2

)
− tAτ

−B(τ)2

n2

√
n2 − 3

2
µ2

(
−1

2
sin
(√

n2 − 3
2
µ2t+ θ(τ)

)
cos
(√

n2 − 3
2
µ2t+ θ(τ)

)
1
2

√
n2 − 3

2
µ2t+ 1

2
θ

)
. (4.2.28)



60

Substituting (4.2.28) into (4.2.25d) yields

ψ1tt +
(
n2 − 3

2
µ2
)
ψ1 = 2

√
n2 − 3

2
µ2B(τ)θτ cos

(√
n2 − 3

2
µ2t+ θ(τ)

)
+
√
n2 − 3

2
µ2 sin

(√
n2 − 3

2
µ2t+ θ(τ)

)(
2Bτ + n2B(τ)A(τ)

(n2− 3
2
µ2)

)
+3

2
µ nt

(
−1

3

(
n2 − 3

2
µ2
)(

B(τ)2

2n2 + A(τ)2n2

3(n2− 3
2
µ2)

2

)
− Aτ

)
. (4.2.29)

Therefore, in order to eliminate these secular terms, we must have the following

differential equations

ϕτ = 0,

Aτ = −1

3

(
n2 − 3

2
µ2

)(
B(τ)2

2n2
+

A(τ)2n2

3
(
n2 − 3

2
µ2
)2

)
,

Bτ = − n
2B(τ)A(τ)

2
(
n2 − 3

2
µ2
) .

(4.2.30)

Now, in figure 4.16, 4.17, we plot the original system in equation 4.2.21 and the re-

duced system in (4.2.30) with n = 1, µ = 0.5 and compare the behaviour of d(t), ψ(t).

with A(t), B(t).

As can be seen from the equations (4.2.30) that Aτ < 0 if µ <
√

3
2
n, which consistent

with the numeric plot in figures 4.16. Also, from figure 4.17 show that B(t) decays

too, which implies thatBτ decreases. Therefore, when µ <
√

3
2
n, the solution decay

to zero which implies that P0 is a sink in this case.
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Figure 4.16: Plot of solution of A(t) for the system (4.2.30) with n = 1 and k = 0
and initial condition: [A(0) = 1, B(0) = 1] together with the plot the solution of
d(t) for the system (4.2.21) with n = 1, k = 0 and one initial condition:[ψ(0) =
0.99, D(ψ(0)) = 0, d(0) = 1], as t→∞.

Qualitative Analysis P0: When µ > µc for the 2D (k=0) invariant set

At equilibrium point P0, we have D2 ∼= 0, and Φ2 + Ψ2 ∼= 0. For the first equation in

the system (4.2.11), we have that D′ = (1−D2)X . So, we want to analyze the sign

of D′. Since the domain of interest for D is 0 ≤ D ≤ 1, then (1 − D2) > 0 (i.e., in

our interest domain for D : 0 ≤ D < 1). We have X

X = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 −

√
3

2
µΦ
(√

1−D2
)
, (4.2.31)

and since Φ2 + Ψ2 ≤ D2 then

X ≤ −Φ2 − µΦ

√
3

2

√
1−D2. (4.2.32)
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Figure 4.17: Plot of solution of B(t) for the system (4.2.30) with n = 1 and k = 0
and initial condition: [A(0) = 1, B(0) = 1] together with the plot the solution of
ψ(t) for the system (4.2.21) with n = 1, k = 0 and one initial condition:[ψ(0) =
0.99, D(ψ(0)) = 0, d(0) = 1], as t→∞.

For D2 ' 0 and Φ2 + Ψ2 ' 0, then

X ∼= −
√

3

2
µΦ. (4.2.33)

Also, note that
√

1−D2 ∼= 1− 1
2
D2 for D2 ∼= 0. So,

D′ = −
√

3

2
µΦ. (4.2.34)

Since we are looking to see what happen to the system when D2 ∼= 0, then we can

neglect higher order terms of all variables Φ,Ψ, D which yield to

D′ = −µ
√

3

2
Φ,

Ψ′ = nΦ,

Φ′ = −

[
nΨ +

√
3

2
µD

]
.

(4.2.35)
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We notice using (4.2.35) that

nD′ +

√
3

2
µΨ′ ∼= −n

√
3

2
µΦ + nµ

√
3

2
Φ ∼= 0. (4.2.36)

Thus, √
3

2
µΨ + nD ∼= 0, (4.2.37)

which implies

D ∼= −

√
3
2
µ

n
Ψ. (4.2.38)

Hence, the constraint with zero curvature (4.2.9) can be written as follow

Ψ2 + Φ2 =

(√
3

2

µ

n

)2

Ψ2 (4.2.39)

Then,

Φ2 = Ψ2

[(√
3

2

µ

n

)2

− 1

]
, (4.2.40)

which is only valid if µ >
√

2
3
n. Substituting the value of D from (4.2.38) into Φ′

equation in (4.2.35), we obtain

Φ′ = −
√

2

3

D

µ

[
3

2
µ2 − n2

]
< 0

(
if µ >

√
2

3
n

)
.

Since Φ = 0 is not invariant, Φ′ < 0 and therefore Φ decreases. Therefore, X becomes

positive, which implies that D′ > 0 and D increases. So, we can conclude that when

µ >
√

2
3
n, the origin equilibrium point P0 is unstable and it is a saddle.

Stability of the Equilibrium Points P1,2 When k = 0,−1

Evaluating the linearization matrix of the system in equation (4.2.11) at P1,2 gives

us undefined terms, so we have to examine the stability of these equilibrium points
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using different techniques. Evaluating the linearization matrix at Φ = ±1,Ψ = 0, we

found that there is always one positive eigenvalue at D = 1. In order to determine

the signs of the other eigenvalues we need to study the 2D system of Φ, Ψ. We can

do that with k = 0,−1 as shown below;

When k = 0 and if D2 = 1 then we have a 1-dimensional set (i.e.,Φ2 + Ψ2 = 1).

When k = −1 There is a 2-dimensional invariant set when D2 = 1 given by


Ψ′ = −Ψ

(
−1

3
− 2

3
Φ2 +

1

3
Ψ2

)
,

Φ′ = −Φ

(
2

3
− 2

3
Φ2 +

1

3
Ψ2

)
,

(4.2.41)

with the constraint Φ2 + Ψ2 ≤ 1. There are five equilibrium points for the 2D system

in equation (4.2.41).

{(Ψ,Φ)} = {(0, 0), (±1, 0), (0,±1)}. (4.2.42)

Note that, (±1, 0), (0,±1) are in the k = 0 set. The linearization matrix for the 2D

system (4.2.41) is given by

J(Ψ,Φ) =


1
3

+ 2
3
Φ2 −Ψ2 4

3
ΦΨ

−2
3
ΦΨ −2

3
− 1

3
Ψ2 + 2Φ2

 . (4.2.43)

Now we will evaluate all the equilibrium points in the linearization matrix (4.2.43)

to see the stability (the behaviour) of them in the unit disk. For (0, 0), we get two

eigenvalues one positive and the other negative, which implies that the point (0, 0)



65

is a saddle. For P1,2, we get two positive real eigenvalues which implies that P1,2 are

sources in the 2D system as well as in the 3D However, P5 are saddles in the 2D as

well as 3D.

Stability of the Equilibrium Points P3,4 When k = 0,−1

Evaluating the linearization matrix (4.2.43) at P3,4, we get two negative eigenvalues

which implies that P3,4 are sinks in the 2D invariant set D2 = 1. All we need now

is to examine whether the third eigenvalue on the boundary has positive or negative

sign. In order to do that we will reduce the system (4.2.11) to easier system to study.

Recall the system

D′ = (1−D2)X ,

Ψ′ = nΦ
√

1−D2 −DΨX ,

Φ′ = −DΦ−
√

1−D2

(
nΨ +

√
3

2
µD

)
− ΦDX .

(4.2.44)

where X is given by

X = −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 −

√
3

2
µΦ
(√

1−D2
)
. (4.2.45)

Also, we have the Friedmann equation with zero curvature

D2 − Φ2 −Ψ2 = 0 (4.2.46)

Plugging equation (4.2.46) into the expression (4.2.45) leads to

X = −Φ2 −
√

3

2
µΦ
√

1−D2, (4.2.47)
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on the boundary of the phase space and therefore,

D′ = −(1−D2)

(
Φ2 +

√
3

2
µΦ
√

1−D2

)
,

Ψ′ = nΦ
√

1−D2 +DΨ

(
Φ2 +

√
3

2
µΦ
√

1−D2

)
,

Φ′ = −DΦ

(
1− Φ2 −

√
3

2
µΦ
√

1−D2

)
−
√

1−D2

(
nΨ +

√
3

2
µD

)
.

(4.2.48)

Since Φ ' 0 is an invariant set near P3,4, we can neglect the higher order terms of Φ

in the above system and leads to
D′ = −(1−D2)

(
Φ2 +

√
3

2
µΦ
√

1−D2

)
,

Φ′ = −DΦ−
√

1−D2

(
nΨ +

√
3

2
µD

)
.

(4.2.49)

Since, Φ is an invaraint set then Φ′ = 0, which yield

Φ = −T

(
nΨ +

√
3

2
µ

)
. (4.2.50)

Let T =
√

1−D2 << 1, then, T 2 = 1−D2. And

2TT ′ = −2DD′,

TT ′ = −D

(
−T 2

(
Φ2 +

√
3

2
µΦT

))
,

T ′ = DTΦ

(
Φ +

√
3

2
µT

)
,

T ′ =
√

1− T 2TΦ

(
Φ +

√
3

2
µT

)
. (4.2.51)

Since T is small then expand
√

1− T 2 using a Taylor series as

√
1− T 2 = 1− 1

2
T 2 + .... (4.2.52)
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Now, plugging (4.2.52) into (4.2.51), and using (4.2.50), T ′ becomes

T ′ = T 3nΨ

(
nΨ +

√
3

2
µ

)(
1− T 2

2

)
. (4.2.53)

Examine the sign of the constant of the lowest order term of T

T ′ = T 3nΨ

(
nΨ +

√
3

2
µ

)
. (4.2.54)

Therefore, we can now study each of the equilibrium points P3,4 below.

1. P3, since Ψ = 1 near P3, plug Ψ = 1 in (4.2.54), thus T ′ is always positive which

means P3 is always a saddle.

2. P4: plug Ψ = −1 in (4.2.54) then T ′ have two cases:

• If µ <
√

2
3
n =⇒ T ′ > 0 which means P4 is a saddle.

• If µ >
√

2
3
n =⇒ T ′ < 0 which means P4 is a sink.

Stability of the line of the Equilibrium Points When µ = µc:

When µ = µc, we have a line of sinks of the form

Φ = 0,Ψ = −D,D = D.

And the determinant equation of the system when µ =
√

2
3
n when Φ = 0 is given by

λ3 +
5

3
Dλ2 +

2

3
D2λ = 0. (4.2.55)

If D = 0 then λ1,2,3 = 0. But if D 6= 0 then there are three eigenvalue:

λ1 = −D, λ2 = −2

3
D, λ3 = 0,

which is line of sinks for all D > 0.
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4.2.5 Bounded Variables: Numerical Method-Past Behaviour

In figure 4.18 we plot solution of the 3D system in (4.2.11) with n = 1, k = 0 for

different positive values of µ into the past times.

Figure 4.18: Plot for the system (4.2.11) with n = 1 and k = 0 as t → −∞ with
several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) = 0.6 sin(45)], [D(0) =
0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].

Discussion: As can be seen in figure 4.18, D,Φ → 1 and Ψ → 0 as t → −∞

which implies that it is going to P1 in to the past time limit. Note that changing the

curvature value to negative value does not effect the behaviour of the model into the

past (i.e., we get similar behaviour when k = −1 in the early times).
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4.2.6 Bounded Variables: Numerical Method-Future Behaviour

In figures from 4.19 to 4.22 we plot the numerical solutions for the system in (4.2.11)

with n = 1 and with zero curvature into the future times for different positive values

of µ > 0.

Figure 4.19: Plot for the system (4.2.11) with n = 1, µ = 0.45 and k = 0 as
t → ∞ with several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) =
0.6 sin(45)], [D(0) = 0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) =
0.8,Φ(0) = 0.8 cos(90),Ψ(0) = 0.8 sin(90)]].

Discussion

As can be seen from figure 4.19 to figure 4.20, we get the same numerical results for

any values such that µ < µc), the solutions start with oscillations and then decay to

zero which implies that P0 is a sink. When µ > µc, P4 is a sink (see figure 4.22).
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Figure 4.20: Plot for the system (4.2.11) with n = 1, µ = 0.75 and k = 0 as
t → ∞ with several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) =
0.6 sin(45)], [D(0) = 0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) =
0.8,Φ(0) = 0.8 cos(90),Ψ(0) = 0.8 sin(90)]].

Figure 4.21: Plot for the system (4.2.11) with n = 1, µ = 0.814 and k = 0 as
t → ∞ with several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) =
0.6 sin(45)], [D(0) = 0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) =
0.8,Φ(0) = 0.8 cos(90),Ψ(0) = 0.8 sin(90)]].

Bounded Variable: Numerical Method in (2D Space) When k = 0

When 0 ≤ µ < µc In figures 4.23, 4.24, we plot the solution of the system in

(4.2.11) with the constraint (4.2.9) in the k = 0 invariant set 2D space with n = 1,

µ = 0, 0.5 respectively.
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Figure 4.22: Plot for the system (4.2.11) with n = 1, µ = 2 and k = 0 as t→∞ with
several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) = 0.6 sin(45)], [D(0) =
0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].

Discussion As you can see from the figures 4.23, 4.24, when 0 ≤ µ < µc, the

trajectories go away from the sources P1,2 and approach P0.

When µ = µc In figure 4.25, we plot the solution of the system in (4.2.11) with the

constraint (4.2.9) in the k = 0 invariant set 2D space with n = 1, µ = 0.814.

Discussion As you can see from the figures 4.25, when µ = µcthe trajectories

approach the line of sinks (Φ = 0,Ψ = −D,D = D).

When µ > µc In figure 4.26, we plot the solution of the system in (4.2.11) with the

constraint (4.2.9) in the k = 0 invariant set 2D space with n = 1, µ = 2.

Discussion As can be seen from figure (4.26), when µ > µc the trajectories move

away from the line of sink to approach P4.
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4.2.7 Inflation

As an indicator of the accelerated expansion we introduce the deceleration parameter,

defined as

q ≡= −aä
ȧ2

= −

(
3θ̇

θ2
+ 1

)
. (4.2.56)

With the use of equation of X from (4.2.45) and by using the definition of the normal-

ized variables, it follows that the deceleration parameter can be expressed in terms

of the normalized bounded variables as follows;

q = − 1

D2

(
−2Φ2 + Ψ2 − 3

√
3

2
µ
√

1−D2Φ

)
. (4.2.57)

The sign of the deceleration parameter indicates the nature of the expansionary evo-

lution. If q > 0, the cosmological expansion is decelerating, while negative values of q

indicate an accelerating dynamics. The value for q for each of the equilibrium points

of the model are:

1. P0: q is undefined in terms of the normalized variables. Using the original

variables we obtain that

q = − 9

θ2

(
−1

3
φ̇2 − 1

2
µφ̇+

1

6
n2φ2

)
, (4.2.58)

which is zero at P0. Hence, P0 is not inflationary.

2. P1,2:

q
∣∣
P1,2

= 2 > 0, (4.2.59)

are always positive which implies that P1,2 are not inflationary.



73

3. P3,4:

q
∣∣
P3,4

= −1 < 0, (4.2.60)

are always negative which implies that P3,4 are inflationary.

4. P5:

q
∣∣
P5

= 0, (4.2.61)

which implies that P5 is not inflationary.

4.2.8 Slow Roll Inflation:

The expansion term tends to slow the evolution of φ down if the slow roll conditions

are valid

φ̇2 � V (φ), (4.2.62)

|φ̈| � |θφ̇|, (4.2.63)

With the slow-roll conditions (4.2.62,4.2.63) the Friedmann equation can be simplified

to

θ =
3n|φ|√

6
. (4.2.64)

And the Klein-Gordon equation in (4.2.2) becomes

θ(φ̇+ µ) + n2φ = 0. (4.2.65)

Plugging (4.2.64) into equation (4.2.65) we obtain

φ̇ =

√
2

3
n− µ (4.2.66)
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Note that, when µ <
√

2
3
n then φ̇ > 0 but if µ >

√
2
3
n then φ̇ < 0. Integrating

(4.2.66) we obtain

φ =

(√
2

3
n− µ

)
t+ C5, where C5 is a constant. (4.2.67)

Hence,

θ =
3n√

6

(√
2

3
n− µ

)
t+ C7. (4.2.68)

Now, we can calculate the solution of the dimensionless scale factor for the universe

a by integrating the following equation

θ =
3ȧ

a
,∫

3ȧ

a
=

∫ (
3n√

6

(√
2

3
n− µ

)
t+ C7

)
dt,

⇒ ln(a) =
3n

2
√

6

(√
2

3
n− µ

)
t2 + C7t+ C8, where C7, C8 constants

a = a0e
n

2
√
6

(√
2
3
n−µ

)
t2+C7t.

Thus, the solution for the scale factor of the expanding universe at t = 0 is a = a0.

Moreover, the slow roll inflation will happen for intermediate times (values of t for

which the approximation are valid).

4.2.9 Discussion

In summary, in the isotropic model with µ > 0, we found there is a bifurcation value

(i.e., µc =
√

3
2
n). When µ < µc, the equilibrium point P4 is a saddle and P0 is a sink,

which is consistent with the previous sub case (i.e., when µ = 0, we have the origin
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P0 is a sink). However, when µ > µc the equilibrium point P4 is a sink (see figures

4.21). Moreover, if µ > µc, then there is an inflationary attractor at P4 and there is

inflationary saddle at P3 but there is no inflationary source.
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Figure 4.23: Plot for the system (4.2.11) with n = 1, μ = 0.5 and k = 0 as t → ∞ with
several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) = 0.6 sin(45)], [D(0) =
0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].
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Figure 4.24: Plot for the system (4.2.11) with n = 1, μ = 0.5 and k = 0 as t → ∞ with
several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) = 0.6 sin(45)], [D(0) =
0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].



78

Figure 4.25: Plot for the system (4.2.11) with n = 1, μ = 1.5 and k = 0 as t → ∞
with several initial conditions for example:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) =
0.6 sin(45)], [D(0) = 0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) =
0.8,Φ(0) = 0.8 cos(90),Ψ(0) = 0.8 sin(90)]].
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Figure 4.26: Plot for the system (4.2.11) with n = 1, μ = 2 and k = 0 as t → ∞ with
several initial conditions:[[D(0) = 0.6,Φ(0) = 0.6 cos(45),Ψ(0) = 0.6 sin(45)], [D(0) =
0.5,Φ(0) = 0.5 cos(120),Ψ(0) = 0.5 sin(120)], [D(0) = 0.8,Φ(0) = 0.8 cos(90),Ψ(0) =
0.8 sin(90)]].



Chapter 5

Anisotropic Model

In this chapter, we investigate a class of the spatially homogeneous anisotropic Einstein-

Aether models. We shall consider a potential of the form:

V (θ, φ, σ) =
∑
r,s

ar,sθ
rσsφ2−r−s, (5.0.1)

where {ar,s} are constants. Negative constants ar,s are permitted; however, it maybe

required that the potential V (θ, φ, σ) to be positive-definite. In particular, we shall

study the potential of the form

V (θ, φ, σ) =
1

2
n2φ2 + µθφ+ νσφ, (5.0.2)

where, without loss of generality, µ is positive (the system has combined µ → −µ

and φ→ −φ symmetry); in principle ν can be either sign positive or negative.

There are a number of special cases that might be of interest. The Einstein-Aether

model with the shear equal to zero (i.e., σ = 0) that we studied earlier the isotropic

model in chapter (4). Two other cases are:

1. The diagonal Bianchi type V Ih (non-zero curvature case), (note that we only

set up the equations for future work but we are not study them in this thesis).

80
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2. The Bianchi type V with zero curvature. There are three sub-cases that we

study in this chapter:

(a) When ν 6= 0 and µ > 0.

(b) When ν = 0 and µ > 0.

(c) When ν 6= 0 and µ = 0.

5.1 Case(1): Diagonal Bianchi V Ih

The general Friedmann equation (3.5.5) becomes

θ2 = 3σ2 + 3

[
1

2
φ̇2 +

1

2
n2φ2 −

√
6φσµ+

1√
6
νθφ

]
− 3(m2 +m+ 1)

a2
, (5.1.1)

where m is a constant and it is define by m = h− 1. If m = 1, then we have Bianchi

type V; if m = 0, then we have a Bianchi type III and we m = −1 we have Bianchi

type V I0. The Raychaudhuri equation (3.5.6) can be written as

θ̇ = −1

3
θ2 − 2σ2 − 1

2
(ρφ + 3pφ). (5.1.2)

The shear evolution equation (3.5.7) becomes

σ̇ = −σθ +
M

3
√

3

[
θ2 − 3σ2 − 3

(
1

2
φ̇2 +

1

2
n2φ2 −

√
6µφσ +

1√
6
νθφ

)]
. (5.1.3)

The Klein-Gordon equation (3.5.8) becomes

φ̈+ θφ̇+ n2φ+ µθ + νσ = 0. (5.1.4)
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5.1.1 The Scalar Field

For the class of model under consideration the effective energy density and pressure

has the following form

ρφ =
1

2
φ̇2 +

1

2
n2φ2 −

√
6µφσ +

1√
6
νθφ, (5.1.5)

pφ =
1

2
φ̇2 − 1

2
n2φ2 +

√
6µφ

(
σ +

σ̇

θ

)
− νφ√

6

(
θ +

θ̇

θ

)

+ µφ̇

(
1 +

√
6σ

θ

)
+ νφ̇

(
σ

θ
− 1√

6

)
. (5.1.6)

Hence,

ρφ + 3pφ =
2
√

6θ

2
√

6θ − 3νφ

[
2φ̇2 − n2φ2 + 2

√
6µφσ − νθφ√

6
+ 3
√

6µφ
σ̇

θ

+

√
6νφσ2

θ
+ 3µφ̇

(
1 +

√
6σ

θ

)
+ 3νφ̇

(
σ

θ
− 1√

6

)]
. (5.1.7)

Therefore, the evolution equation of the expansion rate for this model can be written

as follows:

θ̇ = −1

3
θ2 − 2σ2 −

√
6θ

2
√

6θ − 3νφ

[
2φ̇2 − n2φ2 + 2

√
6µφσ − νθφ√

6
+ 3
√

6µφ
σ̇

θ

+

√
6νφσ2

θ
+ 3µφ̇

(
1 +

√
6σ

θ

)
+ 3νφ̇

(
σ

θ
− 1√

6

)]
. (5.1.8)
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Thus, the system as follow:



θ̇ = −1

3
θ2 − 2σ2 −

√
6θ

2
√

6θ − 3νφ

[
2φ̇2 − n2φ2 + 2

√
6µφσ − νθφ√

6
+ 3
√

6µφ
σ̇

θ

+

√
6νφσ2

θ
+ 3µφ̇

(
1 +

√
6σ

θ

)
+ 3νφ̇

(
σ

θ
− 1√

6

)]
,

σ̇ = −σθ +
M

3
√

3

[
θ2 − 3σ2 − 3

(
1

2
φ̇2 +

1

2
n2φ2 −

√
6µφσ +

1√
6
θνφ

)]
,

φ̇ = ψ,

ψ̇ = −θ(ψ + µ)− n2φ− νσ,

ȧ =
1

3
aθ,

(5.1.9)

with first integral

θ2 = 3σ2 + 3

[
1

2
φ̇2 +

1

2
n2φ2 −

√
6µφσ +

1√
6
νθφ

]
− 3(m2 +m+ 1)

a2
, (5.1.10)

and M is defined as follows:

M :=
1−m√

m2 +m+ 1
. (5.1.11)

5.2 Case(2): Bianchi V with k = 0

In this model, M = 0 and we investigate three sub-cases.
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5.3 Case (2a): When ν 6= 0, and µ > 0

5.3.1 Original Variables

The system in (5.1.9) yields

θ̇ = −1

3
θ2 − 2σ2 −

√
6θ

2
√

6θ − 3νφ

[
2φ̇2 − n2φ2 −

√
6µφσ − νθφ√

6

+

√
6νφσ2

θ
+ 3µφ̇

(
1 +

√
6σ

θ

)
+ 3νφ̇

(
σ

θ
− 1√

6

)]
,

σ̇ = −σθ,

φ̇ = ψ,

ψ̇ = −θ(ψ + µ)− n2φ− νσ,

ȧ =
1

3
aθ.

(5.3.1)

with first integral

θ2 = 3σ2 + 3

[
1

2
φ̇2 +

1

2
n2φ2 −

√
6µφσ +

1√
6
νθφ

]
. (5.3.2)

We investigate both early and late time behaviour of the model numerically using

two approaches: an analysis of the model with the original variables and an analysis of

the model using the normalized bounded variables. Moreover, we investigate the late

time behaviour of these sub-cases analytically using normalized bounded variables.

5.3.2 Original Variables: Numerical Method-Past Behaviour

In figures from 5.1 to 5.3, we plot the numerical solutions of (φ(t), σ(t), a(t)) respec-

tively, for the model in (5.3.1) with µ = 2, n = 1 and ν = 0.81 into the past times.
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Figure 5.1: Plot for solution of φ(t) for the model in (5.3.1) with n = 1, µ = 2 and
ν = 0.81 as t→ −∞ with several initial conditions:[[φ(0) = 0.3, σ(0) = 0.5, D(φ(0)) =
0.003, a(0) = 0.5, θ(0) = 0.1], [φ(0) = 0.1, σ(0) = 0.6, D(φ(0)) = 0.1, a(0) =
0.4, θ(0) = 0.6], [φ(0) = 0.2, σ(0) = 0.5, D(φ(0)) = 0.3, a(0) = 0.4, θ(0) = 0.6]].

Figure 5.2: Plot for solution of σ(t) for the model in (5.3.1) with n = 1, µ = 2
and ν = 0.81 as t → −∞ with several initial conditions:[[φ(0) = 0.3, σ(0) =
0.5, D(φ(0)) = 0.003, a(0) = 0.5, θ(0) = 0.1], [φ(0) = 0.1, σ(0) = 0.6, D(φ(0)) =
0.1, a(0) = 0.4, θ(0) = 0.6].

Discussion

As can be seen from figures 5.1, 5.2, as t→ −∞, σ(t) and φ(t) blow up and from figure

5.3, a(t) decreases. Also, we did numerical solutions for several negative values of ν,

for instance; ν = −1,−1.8,−2,−2.2,−3 and we get qualitative similar behaviour as in
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Figure 5.3: Plot for solution of a(t) for the model in (5.3.1) with n = 1, µ = 2
and ν = 0.81 as t → −∞ with several initial conditions:[[φ(0) = 0.3, σ(0) =
0.5, D(φ(0)) = 0.003, a(0) = 0.5, θ(0) = 0.1], [φ(0) = 0.1, σ(0) = 0.6, D(φ(0)) =
0.1, a(0) = 0.4, θ(0) = 0.6].

figures from 5.1 to 5.3. Note that, we did several cases by fixing µ = 0.8, 1, 1.8, 2, 2.2,

and 2.8. So, for each fixed value of µ we took different positive and negative values

of ν such as ν = 0.5, 0.8, 1, 1.8, 2, 2.2, 2.8,−0.5,−.8,−1, −1.8,−2,−2.2,−2.8. As a

result, we get similar qualitative behaviour as in figures 5.1- 5.3, which is consistent

with the result found studying the isotropic model.

5.3.3 Original Variables: Numerical Method-Future Behaviour

We plot the system (5.3.1) for different fixed values of the parameter µ > 0 and vary

ν 6= 0 and with zero curvature at the late times. We do this because we want to see

the behaviour of the model and compare it with the isotropic model.
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Fix µ = 0.5 and ν > 0

In figure 5.4, we plot the system (5.3.1) for fixed value of ν = 0.5 and µ = 0.5, n = 1

into the future.

Figure 5.4: Plot for the solution of the system in (5.3.1) with n = 1, µ = 0.5 and ν =
0.5 as t → ∞ with several initial conditions:[[φ(0) = 0.0005, σ(0) = 0.5, D(φ(0)) =
0.3, a(0) = 0.3, θ(0) = 0.1], [φ(0) = 0.05, σ(0) = 0.1, D(φ(0)) = 0.003, a(0) =
0.1, θ(0) = 0.2], [φ(0) = 0.7, σ(0) = 0.3, D(φ(0)) = 0, a(0) = 0.3, θ(0) = 0.4]].

Discussion

As can been seen in figure 5.4, φ(t) oscillates; σ(t) decreases and decays to zero which

is consistent with the isotropic model that we studied earlier. Note that we did several

cases by fixing µ to be µ = 0.5 and varying ν > 0 such as ν = 0.5, 0.8, 1, 1.8, 2, 2.2, 2.8.

As a result, we ended up with similar qualitative behaviour as in figure 5.4. The next

step that we are going to take the same fixed value of µ = 0.5 with different negative

values of ν.
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Fix µ = 0.5 and ν < 0

In figures from 5.5 to 5.7, we plot the system (5.3.1) for fixed value of µ = 0.5 and

different negative values of ν into the future.

Figure 5.5: Plot for the solution of the system in (5.3.1) with n = 1, µ = 0.5
and ν = −0.5 as t → ∞ with several initial conditions:[[φ(0) = 0.0005, σ(0) =
0.5, D(φ(0)) = 0.3, a(0) = 0.3, θ(0) = 0.1], [φ(0) = 0.05, σ(0) = 0.1, D(φ(0)) =
0.003, a(0) = 0.1, θ(0) = 0.2], [φ(0) = 0.7, σ(0) = 0.3, D(φ(0)) = 0, a(0) = 0.3, θ(0) =
0.3]].

Figure 5.6: Plot for the solution of the system in (5.3.1) with n = 1, µ = 0.5 and ν =
−1 as t → ∞ with several initial conditions:[[φ(0) = 0.0005, σ(0) = 0.5, D(φ(0)) =
0.3, a(0) = 0.3, θ(0) = 0.1], [φ(0) = 0.05, σ(0) = 0.1, D(φ(0)) = 0.003, a(0) =
0.1, θ(0) = 0.2], [φ(0) = 0.7, σ(0) = 0.3, D(φ(0)) = 0, a(0) = 0.3, θ(0) = 0.3]].
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Figure 5.7: Plot for the solution of the system in (5.3.1) with n = 1, µ = 0.5
and ν = −1.1 as t → ∞ with several initial conditions:[[φ(0) = 0.0005, σ(0) =
0.5, D(φ(0)) = 0.3, a(0) = 0.3, θ(0) = 0.1], [φ(0) = 0.05, σ(0) = 0.1, D(φ(0)) =
0.003, a(0) = 0.1, θ(0) = 0.2], [φ(0) = 0.7, σ(0) = 0.3, D(φ(0)) = 0, a(0) = 0.3, θ(0) =
0.3]].

Discussion

As can been seen in figure 5.5, φ(t) oscillates; σ(t) decreases then decays to zero

(this behaviour is true for values of ν in the interval −1 . ν < 0). When ν ' −1,

the oscillations for φ disappear. When ν . −1.1, as can been seen in figure 5.7,

we have that φ decreases; σ decreases and decays to zero. This is qualitatively the

same behaviour as in the isotropic model when σ = 0 and µ > 0 but in anisotropic

model with µ > 0 and ν 6= 0, we get different bifurcation values. Note that we

repeated the numerical with different fixed positive values of µ and vary ν and we

get similar qualitative behaviour with different bifurcation values (see table (5.1) for

more details).
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Bifurcation-Value ν, µ -Value The Behaviour

ν ∼= −1.1 µ = 0.5n and ν < 0 For ν > −1.1 (φ(t) de-
ceases; σ(t) decreases to
0). For ν < −1.1 (φ(t)
deceases; σ(t) decreases
to 0).

ν ∼= −0.2 µ = 0.81n and ν < 0 For ν > −0.2 (φ(t) de-
ceases; σ(t) decreases to
0). For ν < −0.2 (φ(t)
deceases; σ(t) decreases
to 0).

ν ∼= 0.4 µ = n and ν > 0 For ν < 0.4 (φ(t) de-
ceases; σ(t) decreases to
0). For ν > 0.4 (φ(t) os-
cillates; σ(t) decreases to
0).

ν ∼= 1.8 µ = 1.8n and ν > 0 For ν < 1.8 (φ(t) de-
ceases; σ(t) decreases to
0). For ν > 1.8 ( φ(t)
decreases then increases
then oscillates; σ(t) de-
creases to 0).

ν ∼= 2.1 µ = 2n and ν > 0 For ν < 2.1 (φ(t) de-
ceases; σ(t) decreases to
0). For ν > 2.1 (φ(t)
decreases then increases
then oscillates; σ(t) de-
creases to 0).

Table 5.1: Summary of different bifurcation values for ν and the behaviour of the
model (5.3.1) with fixed values of n = 1, µ > 0 and ν 6= 0
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5.3.4 Normalized Bounded Variable

Introducing Normalized Variables

Introduce the normalized bounded variable D as before, along with the following

expressions for Φ,Ψ,Σ :

D ≡ θ√
1 + θ2

, Σ ≡ σ√
1 + θ2

, (5.3.3)

Ψ ≡
√

3

2

(
nφ√

1 + θ2

)
, Φ ≡

√
3

2

(
φ̇√

1 + θ2

)
. (5.3.4)

Then, the Friedmann equation for this model becomes

D2 − Φ2 − 3Σ2 −Ψ2 +
6µ

n
ΨΣ− νΨD

n
= 0. (5.3.5)

The domain of interest is 0 ≤ D ≤ 1, since

θ →∞ =⇒ D → 1,

and

θ → 0 =⇒ D → 0.

We have that D is a bounded variable and the other variables Φ,Ψ,Σ are bounded if

6µ2 < n2 is satisfied. This follows from the Friedmann equation that can be rewritten

as follows

(
1 +

v2

2n2

)
D2−Φ2−1

2

(
Ψ− 6µΣ

n

)2

−1

2

(
Ψ +

vD

n

)2

−3Σ2

(
1− 6

µ2

n2

)
= 0. (5.3.6)
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Note that the system is not well defined for 2D − νΨ
n

= 0, which include the origin

D = 0 = Ψ see below (5.3.7, 5.3.8). Defining a new time variable τ with dτ
dt

=
√

1 + θ2.

Therefore, the evolution equations become



D′ = (1−D2)X ,

Ψ′ = n
√

1−D2Φ−DΨX ,

Φ′ = −DΦ(1 + X )−
√

1−D2

[
nΨ +

√
3

2
(µD + νΣ)

]
,

Σ′ = −ΣD(1 + X ),

(5.3.7)

where the prime here indicates the differentiation of each variable with respect to the

new variable time τ and X is given by the following expression:

X := −1

3
D2 − 2Σ2 −

√
6D√

6(2D − νΨ
n

)

[
4

3
Φ2 − 2

3
Ψ2 − 2µ

n
ΨΣ− ν

3n
DΨ +

2νΣ2Ψ

nD

+
√

6
√

1−D2

[
µΦ

(
1 +

√
6Σ

D

)
+ νΦ

(
Σ

D
− 1√

6

)]]
=

θ̇

(θ2 + 1)
. (5.3.8)

Also, the Friedmann equation (5.3.5) is conserved by the 4D system in (5.3.7).

Define

Λ := D2 − Φ2 − 3Σ2 −Ψ2 +
6µ

n
ΨΣ− νΨD

n
. (5.3.9)

then,
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Λ′ = 2DD′ − 2ΦΦ′ − 6ΣΣ′ − 2ΨΨ′ +
6µ

n
(Ψ′Σ + ΨΣ′)− ν

n
(Ψ′D + ΨD′)

= 2DX − 2D3X + 2DΦ2(1 + X ) + 2n
√

1−D2ΦΨ +
√

6µ
√

1−D2Φ(D + Σ)

+ 6Σ2D(1 + X )− n
√

1−D2ΦΨ + 2Ψ2DX + 6µDΦ
√

1−D2 − 12µ

n
DΨΣX

− 6µ

n
ΣDΨ− ν

√
1−D2DΦ +

2ν

n
D2ΨX − ν

n
ΨX

= −2DX
(
D2 − Φ2 − 3Σ2 −Ψ2 +

6µ

n
ΨΣ− νΨD

n

)
+
(

2D − ν

n
Ψ
)
X

+ 6Σ2D + 2DΦ2 − 6µ

n
ΣDΨ +

√
1−D2Φ(

√
6(µD + νΣ) + 6µΣ− νD).

= −2DXΛ− 2

3
D3 +

2ν

3n
D2Ψ + 2DΣ2 +

2

3
DΨ2 +

2

3
DΦ2 − 4µ

n
DΣΨ.

= −2DXΛ− 2

3
D

(
D2 − Φ2 − 3Σ2 −Ψ2 +

6µ

n
ΨΣ− νΨD

n

)
= −2

3
DΛ(3X + 1).

Bounded Variables:Qualitative Analysis

The equations in system (5.3.7) are relatively simple. Also, note that the D′ does not

decouple and the system is not analytic at D = 1 since we have the square root term

in the second equation of the 4D system (5.3.7).

Equilibrium Points

There are several equilibrium points of the system but we are only interested in the

study of the anisotropic generalization of P1,2,3,4 and to compare it then with the

isotropic model that we studied earlier. In table 5.2, we present the four equilibrium

points of the system (5.3.7), µ > 0 and ν 6= 0, and the value of X for each one.
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Pt (D,Φ,Ψ,Σ) X Stability
P1 (1, 1, 0, 0) −1 Source

P2 (1,−1, 0, 0) −1 Source

P3

(
1, 0, −ν+

√
4n2+ν2

2n
, 0
)

0 Saddle

P4

(
1, 0,−

(
ν+
√

4n2+ν2

2n

)
, 0
)

0 Sink if
√

6
√

4n2 + ν2 +
√

6ν − 6µ < 0.

Table 5.2: Equilibrium points of the system (5.3.7) and the value of X for each one.

Let us discuss the stability of the four equilibrium points (P1,2,3,4) of the system

(5.3.7).

Stability of Equilibrium Point P1,2

Evaluating the linearization matrix of the system (5.3.7) at P1,2 leads to undefined

terms which means that the linearization fails to determine the stability of P1,2 . Thus,

we need to use different approach to study these equilibrium points P1,2. D = 1,Σ = 0

is an invariant set then there is 2-dimensional dynamic system given by


Φ′ =

2

3
Ψ

(
2Φ2n− nΨ2 − νΨ + n

2n− νΨ

)
,

Ψ′ =
1

3
Φ

(
4Φ2n− 2nΨ2 + νΨ− 4n

2n− νΨ

)
.

(5.3.10)

Evaluating the linearization matrix of (5.3.10) at Φ = ±1,Ψ = 0 lead two positive

eigenvalues. Now we need to find the sign of other two eigenvalues.

By plugging equation (5.3.5) into the expression (5.3.8), and since Σ→ 0 at equilib-

rium points (so that we neglect any terms with Σ), we obtain a simpler expression
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for X as follows:

X := −1

3
Φ2 − νΨD

3m
− 1

3
Ψ2 −

√
6D√

6(2D − νΨ
m

)

[
4

3
Φ2 − 2

3
Ψ2

− ν

3m
DΨ + Φ

√
6
√

1−D2

[
µ− ν√

6

]]
. (5.3.11)

Define T =
√

1−D2 << 1, then, T 2 = 1−D2. And

2TT ′ = −2DD′,

TT ′ = −DT 2X ,

T ′ = −
√

1− T 2TX . (5.3.12)

Since T is small, then we can expand
√

1− T 2 using a Taylor series as

√
1− T 2 = 1− 1

2
T 2. (5.3.13)

Now, by plugging (5.3.13) into (5.3.12), T ′ becomes

T ′ = TX
(

1− T 2

2

)
. (5.3.14)

Now, we find the remaining two eigenvalues by looking to the system of D and Σ

given by 
T ′ = −TX ,

Σ′ = −Σ(1 + X ).

(5.3.15)

Next, substituting the simpler expression for X from equation (5.3.11) into (5.3.15)

leads to 
T ′ = α1T +O(T 3),

Σ′ = α2Σ +O(Σ2).

(5.3.16)
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where α1,2 are the remaining two eigenvalues given by
λ1 = α1 =

Φ2(4n− νΨ)

3(2n− νΨ)
,

λ2 = α2 =
Φ2(2n+ νΨ)

3(2n− νΨ)
.

(5.3.17)

If Ψ = 0 then the eigenvalues (5.3.17) become


λ1 =

2Φ2

3
,

λ2 =
Φ2

3
.

(5.3.18)

When Φ2 = 1, λ1,2 are positive which implies that P1,2 are always sources, which is

consistent with the analysis and the result found studying the isotropic model.

Stability of Equilibrium Point P3,4

Evaluating the linearization matrix of the system (5.3.7) at P3,4 leads to undefined

terms which means that the linearization fails to determine the stability of P3,4. Thus,

we need to use different approach to study these equilibrium points P3,4. When D = 1

is an invariant set then there is a 3 -dimensional invariant set given by



Φ′ =
2

3
Ψ

(
2Φ2n+ 6nΣ2 − 3ΣµΨ− nΨ2 − νΨ + n

2n− νΨ

)
,

Ψ′ =
1

3
Φ

(
4Φ2n+ 12nΣ2 − 6µΣΨ− 2nΨ2 + νΨ− 4n

2n− νΨ

)
,

Σ′ =
1

3
Σ

(
4Φ2n+ 12nΣ2 − 6µΣΨ− 2nΨ2 + νΨ− 4n

2n− νΨ

)
.

(5.3.19)

Evaluating the linearization matrix of (5.3.19) at Φ = 0,Σ = 0 lead to three negative

eigenvalues. Now we just need to determine the sign of the fourth eigenvalue. Since

X at P3,4 is 0 and D > 0 then Σ′ < 0 which implies that Σ→ 0 as t→∞, hence we

can neglect all terms that has Σ.
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Define T =
√

1−D2, then, T 2 = 1−D2. And

2TT ′ = −2DD′,

TT ′ = −DT 2X ,

T ′ = −
√

1− T 2TX . (5.3.20)

Since T is small, then we can expand
√

1− T 2 using a Taylor series as

√
1− T 2 = 1− 1

2
T 2. (5.3.21)

Now, by plugging (5.3.21) into (5.3.20), T ′ becomes

T ′ = TX
(

1− T 2

2

)
. (5.3.22)

Since Φ = 0 is an invariant set then Φ′ = 0, then it follows that

Φ = −T

(
nΨ +

√
3

2
µ

)
. (5.3.23)

Next, plugging Φ from equation (5.3.23) and the simpler expression for X from equa-

tion (5.3.11) into (5.3.22) leads to

T ′ = α3T + α4(T 3), (5.3.24)

where
α3 = −Ψν(nΨ2 + νΨ− n)

3n(2n− νΨ)
,

α4 =

(
−
√

6nν Ψ2 + 6
√

6n2Ψ + 3
√

6nν − 3µ ν Ψ
) (√

6nΨ + 3µ
)

18(−ν Ψ + 2n)
.

(5.3.25)

When Ψ = ±
(
−ν+

√
4n2+ν2

2n

)
then α3 = 0. Since α3 = 0, there is no linear part.

Hence, if α4 < 0 then T = 0 is attractor at P4.
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1. For P3 : When Ψ = −ν+
√

4n2+ν2

2n
then α4 > 0 always which implies that P3 is a

saddle.

2. For P4: When Ψ = −
(
ν+
√

4n2+ν2

2n

)
then α4 is given by

α4 = 1
36(ν

√
4n2+ν2+4n2+ν2)

((
√

4n2 + ν2(6
√

6n2 +
√

6ν2 − 3µ ν )

+ν(2
√

6n2 +
√

6ν2 − 3µν)

)(√
6
√

4n2 + ν2 +
√

6ν − 6µ
))
. (5.3.26)

which is negative if
√

6
√

4n2 + ν2+
√

6ν−6µ < 0. To illustrate this, for example,

choose n = 1, µ = 0.5 and ν > 0 then α4 > 0 which mean that P4 is a saddle

in this case (see figure 5.8). However, when n = 1, µ = 0.5 and for any value of

ν . −1.1, then α4 < 0 which means P4 is sink in this case (see figure 5.12).

Discussion

Among the four equilibrium points that we studied (P1,2,3,4), we found that P4 is a

sink when α4 < 0(
√

6
√

4n2 + ν2 +
√

6ν − 6µ < 0).

Bounded Variables: Numerical Method-Past Behaviour

In figure 5.8, we plot the solution of system (5.3.7) for µ = 1, n = 1 and ν = 1 into

the past times.

Discussion As can be seen from figure 5.8, the solution into the past goes to the

point P1, which is consistent with the isotropic model that we studied earlier in

chapter (4). Note that, we did this for different positive values of µ and vary ν 6= 0

and we get similar qualitative behaviour.
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Figure 5.8: Plot for system (5.3.7) with n = 1, µ = 1 and ν = 1 as t →
−∞ with several initial conditions:[[D(0) = 0.6,Ψ(0) = 0.3,Σ(0) = 0.1,Φ(0) =
0.3281767816], [D(0) = 0.4,Ψ(0) = 0.3,Σ(0) = 0.03,Φ(0) = 0.03605551275], [D(0) =
0.8,Ψ(0) = 0.1,Σ(0) = 0.02,Φ(0) = 0.7488658091]]. Note that CC(t) = D(t)2 −
Φ(t)2 − 3Σ(t)2 −Ψ(t)2 + 6µ

n
Ψ(t)Σ(t)− νΨ(t)D(t)

n
.

Bounded Variables: Numerical Method Future Behaviour

For completeness, we plot the system (5.3.7) for different positive values of the pa-

rameters µ and vary ν 6= 0 at the late times. We do this because we want to see

the behaviour of the model and compare it with the standard model, which does not

have shear. We fixed µ and vary ν as follows.

Fix µ = 0.5 and ν > 0: In figures from 5.9, we plot the system (5.3.7) for µ = 0.5

and ν = 0.5 and with zero curvature into the future.

Discussion As can been seen in figure 5.9, Φ(t) and Ψ(t) oscillate; Σ(t) decreases

and decays to zero, as in the isotropic model that we studied earlier (4). Note

that we did several cases by fixing µ to be µ = 0.5 and varying ν such as ν =
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Figure 5.9: Plot for system (5.3.7) with n = 1, µ = 0.5 and ν = 0.5 as t →
∞ with several initial conditions:[[D(0) = 0.6,Ψ(0) = 0.3,Σ(0) = 0.1,Φ(0) =
0.3141655614], [D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) = 0.4430575583], [D(0) =
0.8,Ψ(0) = 0.3,Σ(0) = 0.02,Φ(0) = 0.5716642371]]. Note that CC(t) = D(t)2 −
Φ(t)2 − 3Σ(t)2 −Ψ(t)2 + 6µ

n
Ψ(t)Σ(t)− νΨ(t)D(t)

n
.

0.5, 0.8, 1, 1.8, 2, 2.2, 2.8. As a result, we get similar qualitatively behaviour as in fig-

ure 5.9. The next step that we are going to take the same fixed value of µ = 0.5 with

different negative values of ν.

Fix µ = 0.5 and ν < 0: In figures from 5.10 to 5.12, we plot the solution of the

system in (5.3.7) with fixed µ = 0.5 and different negative values of ν in to the future

Discussion

As can been seen in figure 5.10, Φ(t) and Ψ(t) oscillate; Σ(t) decreases and decays to

zero (this behaviour is true for small values of ν in the interval −1.1 . ν < 0). When

ν ' −1.1, the oscillations for Φ(t) and Ψ(t) disappear and D(t) → 1, Ψ(t) → −0.5

and Σ(t),Φ(t)→ 0 which means that P4 is a sink in this case (see figure 5.12).
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Figure 5.10: Plot for system(5.3.7) with n = 1, µ = 0.5 and ν = −0.5 as
t → ∞ with several initial conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) =
0.5208646657], [D(0) = 0.6,Ψ(0) = 0.3,Ψ(0) = 0.01,Φ(0) = 0.6072067193], [D(0) =
0.8,Ψ(0) = 0.3,Σ(0) = 0.02,Φ(0) = 0.8287339742]]. Note that CC(t) = D(t)2 −
Φ(t)2 − 3Σ(t)2 −Ψ(t)2 + 6µ

n
Ψ(t)Σ(t)− νΨ(t)D(t)

n
.

Figure 5.11: Plot for system (5.3.7) with n = 1, µ = 0.5 and ν = −1 as t → ∞
with several initial conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) =
0.5443344560], [D(0) = 0.6,Ψ(0) = 0.3, ,Σ(0) = 0.01,Φ(0) = 0.6772739475], [D(0) =
0.8,Ψ(0) = 0.3,Σ(0) = 0.02,Φ(0) = 0.8982204629]]. Note that CC(t) = D(t)2 −
Φ(t)2 − 3Σ(t)2 −Ψ(t)2 + 6µ

n
Ψ(t)Σ(t)− νΨ(t)D(t)

n
.
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Figure 5.12: Plot for system (5.3.7) with n = 1, µ = 0.5 and ν = −1.1 as
t → ∞ with several initial conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) =
0.5489080069], [D(0) = 0.6,Ψ(0) = 0.3, ,Σ(0) = 0.01,Φ(0) = 0.6904346457], [D(0) =
0.8,Ψ(0) = 0.3,Σ(0) = 0.02,Φ(0) = 0.9114823092]]. Note that CC(t) = D(t)2 −
Φ(t)2 − 3Σ(t)2 −Ψ(t)2 + 6µ

n
Ψ(t)Σ(t)− νΨ(t)D(t)

n
.

5.3.5 Inflation:

We will check if this case has an inflationary attractor using the deceleration param-

eter in (4.2.56).

q = − 1

D2

[
−6Σ2 − 3

√
6D√

6(2D − νΨ
n

)

[
4

3
Φ2 − 2

3
Ψ2 − 2µ

n
ΨΣ− ν

3n
DΨ +

2νΣ2Ψ

nD

+
√

6
√

1−D2

[
µΦ

(
1 +

√
6Σ

D

)
+ νΦ

(
Σ

D
− 1√

6

)]]]
. (5.3.27)

The sign of the deceleration parameter indicates the nature of the expansionary evo-

lution. If q > 0, the cosmological expansion is decelerating, while negative values of q

indicate an accelerating dynamics. The value for q for each of the equilibrium points

of the model are:

1. P1,2:

q
∣∣
P1,2

= 2 > 0, (5.3.28)
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are always positive which implies that P1,2 are not inflationary.

2. P3,4:

q
∣∣
P3,4

= −1 < 0, (5.3.29)

which implies that P3,4 has an inflationary solutions.

5.3.6 Discussion

In this case when Σ 6= 0, ν 6= 0, and µ > 0, we looked at only P1,2,3,4 and we found

there is some different bifurcation values for different values of ν with fixed value of µ

(for more details see the table (5.1)). P1,2 is always a saddle and never inflationary. P3

is inflationary saddle and P4 is inflationary attractor if if
√

6
√

4n2 + ν2 +
√

6ν−6µ <

0.

5.4 Case(2b):When ν = 0, µ > 0

For completeness let us consider the sub-case when σ 6= 0, ν = 0, and µ > 0.

5.4.1 Original Variables

The model is given by

φ̇ = ψ,

ψ̇ = −n2φ− (ψ + µ)

(√
3σ2 +

3

2
ψ2 +

3

2
n2φ2 − 3

√
6µσφ

)
,

σ̇ = −σ

(√
3σ2 +

3

2
ψ2 +

3

2
n2φ2 − 3

√
6µσφ

)
,

ȧ =
1

3
a

(√
3σ2 +

3

2
ψ2 +

3

2
n2φ2 − 3

√
6µσφ

)
.

(5.4.1)
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5.4.2 Original Variables: Numerical Method-Past Behaviour

In figures 5.13, 5.14, 5.15, we plot the solution of (φ(t), σ(t), a(t)) of system in equa-

tions (5.4.1) respectively into the past times with different positive values of the

parameter µ > 0.

Figure 5.13: Plot for the solution of φ(t) for system (5.4.1) with n = 1, µ = 0.5 as
t → −∞ with several initial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 0.5, a(0) =
1, θ(0) = 0.1], [φ(0) = 0.85, D(φ(0)) = 0.005, σ(0) = 0.5, a(0) = 0.7, θ(0) =
0.2], [φ(0) = 0.5, D(φ(0)) = 0.003, σ(0) = 0.6, a(0) = 0.75, θ(0) = 0.3]].

Discussion

As can be seen from figures 5.13, 5.14, σ(t) and φ(t) go to infinity but a(t) is decreases.

By comparing with the isotropic model when σ = 0, we have that φ(t) blows up to

infinity which is consistent with the anisotropic model.

5.4.3 Original Variables: Numerical Method-Future Behaviour

In figures from 5.16 to 5.19, we plot the system in (5.4.1) with different positive values

of µ to see the behaviour of this model at the late times.
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Figure 5.14: Plot of the solution of σ(t) of the for system (5.4.1) with n = 1, µ = 0.5
as t→ −∞ with several initial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 0.5, a(0) =
1, θ(0) = 0.1], [φ(0) = 0.85, D(φ(0)) = 0.005, σ(0) = 0.5, a(0) = 0.7, θ(0) =
0.2], [φ(0) = 0.5, D(φ(0)) = 0.003, σ(0) = 0.6, a(0) = 0.75, θ(0) = 0.3]].

Figure 5.15: Plot of the solution of a(t) of the for system (5.4.1) with n = 1, µ = 0.5
as t→ −∞ with several initial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 0.5, a(0) =
1, θ(0) = 0.1], [φ(0) = 0.85, D(φ(0)) = 0.005, σ(0) = 0.5, a(0) = 0.7, θ(0) =
0.2], [φ(0) = 0.5, D(φ(0)) = 0.003, σ(0) = 0.6, a(0) = 0.75, θ(0) = 0.3]].

Discussion

As can be seen in figures from 5.16 to 5.19, the numerical solutions suggest that there

is bifurcation value. As can be seen from figure 5.16, where we plotted the model with
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Figure 5.16: Plot for system (5.4.1) with n = 1, µ = 0.5 as t → ∞ with several ini-
tial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 1, a(0) = 0.8, θ(0) = 0.3], [φ(0) =
0.25, D(φ(0)) = 0.5, σ(0) = 0, a(0) = 0.7, θ(0) = 0.2], [φ(0) = 0.75, D(φ(0)) =
1, σ(0) = 1, a(0) = 0.2, θ(0) = 0.1]].

Figure 5.17: Plot for system (5.4.1) with n = 1, µ = 0.5 as t → ∞ with several ini-
tial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 1, a(0) = 0.8, θ(0) = 0.2], [φ(0) =
0.25, D(φ(0)) = 0.5, σ(0) = 0, a(0) = 0.7, θ(0) = 0.1], [φ(0) = 0.75, D(φ(0)) =
1, σ(0) = 1, a(0) = 0.2, θ(0) = 0.3]].

small value of µ, and we have oscillations for φ(t). When µ <
√

2
3
n, in figure 5.17, we

still have oscillations but they are not symmetric. However, when µ passes through

the bifurcation value the oscillations disappear and the stability (the behaviour) of

the model changes (see figure 5.18). For the value µ >
√

2
3
n, as can be seen in figure



107

Figure 5.18: Plot for system (5.4.1) with n = 1, µ = 0.5 as t → ∞ with several ini-
tial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 1, a(0) = 0.8, θ(0) = 0.2], [φ(0) =
0.25, D(φ(0)) = 0.5, σ(0) = 0, a(0) = 0.2, θ(0) = 0.3], [φ(0) = 0.75, D(φ(0)) =
1, σ(0) = 1, a(0) = 0.2, θ(0) = 0.1]].

Figure 5.19: Plot for system (5.4.1) with n = 1, µ = 0.5 as t→∞ with several initial
conditions:[[φ(0) = 0.5, D(φ(0)) = 0, σ(0) = 0.001, a(0) = 0.8, θ(0) = 0.2], [φ(0) =
0.25, D(φ(0)) = 0.5, σ(0) = 0, a(0) = 0.7, θ(0) = 0.1], [φ(0) = 0.75, D(φ(0)) =
1, σ(0) = 0.0001, a(0) = 0.2, θ(0) = 0.3]].

5.19, there is no oscillations and σ(t) decays, which is consistent with the isotropic

model that we studied earlier in chapter (4).
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5.4.4 Bifurcation Value Analytic Proof of the System (5.4.1):

In this subsubsection we show an analytic proof for the bifurcation value for this

model. Setting φ̇ = 0 in the equation (5.4.1) yields to

n2φ+ µ

(√
3σ2 +

3

2
n2φ2 − 3

√
6µσφ

)
= 0. (5.4.2)

Since the value of σ = 0 at the equilibrium points (i.e., P1,2,3,4) of the system (5.4.1)

then (5.4.2) becomes

n2φ = −µ

(√
3

2
n2φ2

)
, (5.4.3)

n4φ2 =
3

2
µ2n2φ2, (5.4.4)

⇒ µ2 =
2

3
n2. (5.4.5)

Hence, the bifurcation value in which the stability (the behaviour) of the model will

change is defined by (recall µ is positive):

µc =

√
2

3
n, (5.4.6)

which is consistent with the sub-case (1b) that we studied earlier in chapter (4).
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5.4.5 Normalized Bounded Variable

Introducing Normalized Variables

Consider the same bounded variables we did earlier. Then, the evolution equations

become 

D′ = (1−D2)X ,

Ψ′ = n
√

1−D2Φ−DΨX ,

Φ′ = −DΦ(1 + X )−
√

1−D2

[
nΨ +

√
3

2
µD

]
,

Σ′ = −ΣD(1 + X ),

(5.4.7)

where

X := −1

3
D2 − 2

3
Φ2 +

1

3
Ψ2 − 2Σ2 −

√
3

2
µ
√

1−D2Φ

(
1 +
√

6
Σ

D

)
+
e

6
ΣΨ. (5.4.8)

Thus, the Friedmann equation becomes

D2 − Φ2 − 3Σ2 −Ψ2 + eΣΨ = 0, (5.4.9)

where e is defined as follow:

e ≡ 6µ

n
> 0. (5.4.10)

The domain of interest is 0 ≤ D ≤ 1, since

θ →∞ =⇒ D → 1,

and

θ → 0 =⇒ D → 0.
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We have that D is a bounded variable and the other variables Φ,Ψ,Σ are bounded if

3µ2 < n2. This is follows from the Friedmann equation that can be written as follows

1− Φ2 −
(

Ψ− 3µΣ

n

)2

− 3Σ2

(
1− 3

µ2

n2

)
= 0. (5.4.11)

Note that the system (5.4.7) is not well defined at D = 0, see (5.4.8). Note that

(5.4.9) is conserved using the 4D system (5.4.7) as follows

Define

Λ = D2 − Φ2 − 3Σ2 −Ψ2 + eΣΨ,

then

Λ′ = 2DD′ − 2ΦΦ′ −−6ΣΣ′ − 2ΨΨ′ + e(ΣΨ′ + Σ′Ψ)

= 2D(1−D2)X + 2DΦ2(1 + X ) + 2

√
3

2
µD
√

1−D2Φ + 6Σ2D(1 + X )

+ 2DΨ2X + e(nΣ
√

1−D2Φ−ΨΣD(1 + 2X )

= −2DX (D2 − Φ2 − 3Σ2 −Ψ2 + eΣΨ) + enΣΦ
√

1−D2

+ 2D

[
X + Φ2 +

√
3

2
µΦ
√

1−D2 + 3Σ2 − e

2
ΣΨ

]

= 2

[
−DXΛ− 2D

3
(D2 − Φ2 − 3Σ2 −Ψ2 + eΣΨ)

]
= −2

3
DΛ(3X + 1) = 0.

Note that, since D 6= 0 for the above system, the evolutionary system is not analytic

at P0 (i.e., D = Φ = Ψ = Σ = 0, is not equilibrium point for the system (5.4.7)).
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Bounded Variables:Qualitative Analysis

The equations in system (5.4.7) are relatively simple. Also, note that the D′ does not

decouple and the system is not analytic at D = 1 since we have the square root term

in the second equation of the 4D system (5.4.7).

Equilibrium Points

There are several equilibrium points of the system but we are only interested in the

study of P1,2,3,4 and to compare it then with the isotropic model that we studied

earlier. In table 5.3, we present four equilibrium points of the system (5.4.7), µ > 0

and ν = 0, and the value of X for each one.

.

Pt (D,Φ,Ψ,Σ) X Stability
P1 (1, 1, 0, 0) −1 Source

P2 (1,−1, 0, 0) −1 Source

P3 (1, 0, 1, 0) 0 Saddle

P4 (1, 0,−1, 0) 0 Sink when µ >
√

2
3
n

Table 5.3: Equilibrium points of the system (5.4.7) and the value of X .

Now, let us discuss the stability of the equilibrium points (P1,2,3,4) of the system

(5.4.7).

Stability of the Equilibrium Points P1,2

By using eigenvalues in (5.3.18) when Φ2
0 = 1 then all the eigenvalues are positive

which implies that P1,2 are always sources.
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Stability of the Equilibrium Points P3,4

Evaluating the linearization matrix of the system (5.4.7) at P3,4 leads to undefined

terms which means that the linearization fails to determined the stability of P3,4.

Thus, we need to use different approach to study these equilibrium points P3,4. When

D = 1 is an invariant set then there is a 3 -dimensional invariant set given by



Φ′ =
2

3
Ψ

(
2Φ2n+ 6nΣ2 − 3ΣµΨ− nΨ2 + n

2n

)
,

Ψ′ =
1

3
Φ

(
4Φ2n+ 12nΣ2 − 6µΣΨ− 2nΨ2 − 4n

2n

)
,

Σ′ =
1

3
Σ

(
4Φ2n+ 12nΣ2 − 6µΣΨ− 2nΨ2 − 4n

2n

)
.

(5.4.12)

Evaluating the linearization matrix of (5.4.12) at Φ = 0,Σ = 0 lead to three negative

eigenvalues. Now we just need to determine the sign of the four eigenvalue. By

plugging (5.4.9) into (5.4.8), we obtain;

X = −Φ2 − 3Σ2 +
3µ

n
ΨΣ.−

√
3

2
µΦ
√

1−D2

(
1 +

√
6Σ

D

)
.

Since Σ = 0 at P3,4, (so that we neglect any terms with Σ), we obtain a simpler

expression for X as follows:

X ≡ −Φ2 −
√

3

2
µΦ
√

1−D2. (5.4.13)

Let T =
√

1−D2 Then, it follows that;

T ′ = TX (5.4.14)

Moreover, since Φ′ = 0, then we obtain

Φ = −T

(
nΨ +

√
3

2
µ

)
. (5.4.15)
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Next, plugging the value of Φ from (5.4.15) into (5.4.14), then we obtain

T ′ =

√
3

2
nT 3

(
nΨ +

√
3

2
µ

)
. (5.4.16)

Therefore, now we can study the stability of P3,4 as follows

1. For the P3, it is a always a saddle for any value of µ since T ′ is small and

positive.

2. For the P4, we have two cases of stability (the behaviour):

• If µ <
√

2
3
n =⇒ T ′ > 0, which implies that P4 is a saddle in this case.

• If µ >
√

2
3
n =⇒ T ′ < 0, which implies P4 is a sink in this case.

This result is consistent with the isotropic model that we studied earlier.

Bounded Variables: Numerical Method -Past Behaviour

In figure 5.20, we plot the solution of system in (5.4.7) with µ = 0.5 into the past

times.

Discussion

As can be seen from figure 5.20, the solution goes toward the equilibrium point P1

into the past limit in which is consistent with the isotropic model that we studied

earlier in chapter (4).
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Figure 5.20: Plot for system (5.4.7) with n = 1, µ = 0.5 as t→ −∞ with several initial
conditions:[[D(0) = 0.5,Ψ(0) = 0.3,Σ(0) = 0.03,Φ(0) = 0.4066607923], [D(0) =
0.7,Ψ(0) = 0.2,Σ(0) = 0.01,Φ(0) = 0.6794850992], [D(0) = 0.8,Ψ(0) = 0.03,Σ(0) =
0.02Φ(0) = 0.8009369513]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 +
6µ
n

Ψ(t)Σ(t).

Bounded Variables: Numerical Method-Future Behaviour

In figures from 5.21 to 5.24, we plot the solution of the system (5.4.7) with different

positive values of µ to see the behaviour of this model into the future times with the

normalized bounded variable and compare it with the numerical solutions that we

get from the original variables as well as with the isotropic model

Discussion

As can be seen from figures 5.21 and 5.22 with µ < µc, the solutions for Φ, Ψ, D start

with oscillations and decay and Σ decreases and decays to zero. In figure 5.24 when

µ > µc, the solution as t→ −∞ go toward P4 which is consistent with the isotropic

model that we studied earlier in chapter (4).
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Figure 5.21: Plot for system (5.4.7) with n = 1, µ = 0.5 as t→∞ with several initial
conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) = 0.4962862077], [D(0) =
0.6,Ψ(0) = 0.3,Σ(0) = 0.01,Φ(0) = 0.5279204486], [D(0) = 0.8,Ψ(0) = 0.3,Σ(0) =
0.02Φ(0) = 0.7528612090]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 +
6µ
n

Ψ(t)Σ(t).

Figure 5.22: Plot for system (5.4.7) with n = 1, µ = 0.75 as t→∞ with several initial
conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) = 0.5007993610], [D(0) =
0.6,Ψ(0) = 0.3,Σ(0) = 0.01,Φ(0) = 0.5321653878], [D(0) = 0.8,Ψ(0) = 0.3,Σ(0) =
0.02Φ(0) = 0.7588148654]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 +
6µ
n

Ψ(t)Σ(t).
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Figure 5.23: Plot for system (5.4.7) with n = 1, µ = 0.81 as t→∞ with several initial
conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) = 0.5019482045], [D(0) =
0.6,Ψ(0) = 0.3,Σ(0) = 0.01,Φ(0) = 0.5332466596], [D(0) = 0.8,Ψ(0) = 0.03,Σ(0) =
0.1Φ(0) = 0.7897797161]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 +
6µ
n

Ψ(t)Σ(t).

Figure 5.24: Plot for system (5.4.7) with n = 1, µ = 0.5 as t→∞ with several initial
conditions:[[D(0) = 0.5,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) = 0.5052722039], [D(0) =
0.7,Ψ(0) = 0.03,Σ(0) = 0.01,Φ(0) = 0.7004284403], [D(0) = 0.6,Ψ(0) = 0.3,Σ(0) =
0.01Φ(0) = 0.5363767333]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 +
6µ
n

Ψ(t)Σ(t).

5.4.6 Inflation:

We will check if this case has an inflation attractor. The deceleration parameter in

(5.5.10) when ν = 0 becomes

q = − 1

D2

[
−6Σ2 − 2Φ2 + Ψ2 +

3µ

n
ΨΣ− 3

2

√
6
√

1−D2µΦ

(
1 +

√
6Σ

D

)]
. (5.4.17)
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The sign of the deceleration parameter indicates the nature of the expansionary evo-

lution. If q > 0, the cosmological expansion is decelerating, while negative values of q

indicate an accelerating dynamics. The value for q for each of the equilibrium points

of the model are:

1. P1,2:

q|P1,2 = 2 > 0, (5.4.18)

are always positive which implies that P1,2 are not inflationary.

2. P3,4:

q|P3,4 = −1 < 0, (5.4.19)

are always negative which implies that P3,4 are inflationary.

5.4.7 Discussion:

In this case when Σ 6= 0, µ > 0 and ν = 0, we found that P3 is a saddle inflationary

solution. Moreover, P4 is an inflationary attractor when µ >
√

2
3
n which is consistent

with the isotropic model case (1b) when Σ = 0 and µ > 0.
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5.5 Case (2c):When µ = 0, ν 6= 0

5.5.1 Original Variables



θ̇ = −1

3
θ2 − 2σ2 −

√
6θ

2
√

6θ − 3νφ

[
2φ̇2 − n2φ2 − νθφ√

6

+

√
6νφσ2

θ
+ 3νφ̇

(
σ

θ
− 1√

6

)]
,

σ̇ = −σθ,

φ̇ = ψ,

ψ̇ = −θ(ψ + µ)− n2φ− νσ,

ȧ =
1

3
aθ,

(5.5.1)

with first integral

θ2 = 3σ2 + 3

[
1

2
φ̇2 +

1

2
n2φ2 +

1√
6
νθφ

]
. (5.5.2)

5.5.2 Original Variables: Numerical Method-Past Behaviour

In figures 5.25, 5.26, 5.27 , we plot the solution of φ(t), σ(t) and a(t) for the system

in (5.5.1) with ν = 0.5 in to the past

Discussion

As can be seen from the figures 5.25,5.26 that φ(t) and σ(t) blow up to infinity but

a(t) is decreases which is consistent with the isotropic model. Note this is true for

any value of ν 6= 0.
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Figure 5.25: Plot for φ(t) for the system (5.5.1) with n = 1, ν = 0.5 as t → −∞
with several initial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 0.5, a(0) = 1, θ(0) =
0.1], [φ(0) = 0.85, D(φ(0)) = 0.005, σ(0) = 0.5, a(0) = 0.7θ(0) = 0.2], [φ(0) =
0.5, D(φ(0)) = 0.003, σ(0) = 0.6, a(0) = 0.75, θ(0) = 0.3]].

Figure 5.26: Plot for σ(t) for the system (5.5.1) with n = 1, ν = 0.5 as t → −∞
with several initial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 0.5, a(0) = 1, θ(0) =
0.1], [φ(0) = 0.85, D(φ(0)) = 0.005, σ(0) = 0.5, a(0) = 0.7θ(0) = 0.2], [φ(0) =
0.5, D(φ(0)) = 0.003, σ(0) = 0.6, a(0) = 0.75, θ(0) = 0.3]].

5.5.3 Original Variables: Numerical Method-Future Behaviour

In figure 5.28, we plot (5.5.1) with ν = 0.5, n = 1 to see the behaviour of this model

into the future
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Figure 5.27: Plot for a(t) for the system (5.5.1) with n = 1, ν = 0.5 as t → −∞
with several initial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 0.5, a(0) = 1, θ(0) =
0.1], [φ(0) = 0.85, D(φ(0)) = 0.005, σ(0) = 0.5, a(0) = 0.7θ(0) = 0.2], [φ(0) =
0.5, D(φ(0)) = 0.003, σ(0) = 0.6, a(0) = 0.75, θ(0) = 0.3]].

Figure 5.28: Plot for system (5.5.1) with n = 1, ν = 0.5 as t → ∞ with several ini-
tial conditions:[[φ(0) = 1, D(φ(0)) = 0, σ(0) = 1, a(0) = 0.8, θ(0) = 0.1], [φ(0) =
0.59, D(φ(0)) = 0.5, σ(0) = 0, a(0) = 0.7, θ(0) = 0.2], [φ(0) = 0.8, D(φ(0)) =
1, σ(0) = 1, a(0) = 0.2, θ(0) = 0.3]].

Discussion

As can be seen from the figure 5.28, σ(t) decreases and φ(t) oscillates and then decays

to zero, which is consistent with the isotropic model. Note this is true for any value

of ν 6= 0.
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5.5.4 Normalized Bounded Variable

Introducing Normalized Variables

Consider a bounded variable D as before, along with the following expressions for

Φ,Ψ, and Σ

D ≡ θ√
1 + θ2

, Σ ≡ σ√
1+θ2

, (5.5.3)

Ψ ≡
√

3

2

(
nφ√

1 + θ2

)
, Φ ≡

√
3
2

(
φ̇√

1+θ2

)
. (5.5.4)

So, the Friedmann equation for this model becomes

Λ = D2 − Φ2 − 3Σ2 −Ψ2 − νΨD

n
= 0, (5.5.5)

which is conserved by the 4D system in (5.5.6), illustrated below.

Define

Λ = D2 − Φ2 − 3Σ2 −Ψ2 − νΨD

n
,
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then

Λ′ = 2DD′ − 2ΦΦ′ − 6ΣΣ′ − 2ΨΨ′ − ν

n
(D′Ψ +DΨ′)

= 2D(1−D2)X + 2Φ2D(1 + X ) + 2

√
3

2
νΦΣ
√

1−D2 + 6DΣ2(1 + X )

+ 2DΦ2(1 + X ) + 2nD
√

1−D2Ψ +
√

6µD
√

1−D2Φ

+ 2DΨ2X − νΦD
√

1−D2 +
2ν

n
ΦD2X − ν

n
ΨX

= −2DX
(
D2 − Φ2 − 3Σ2 −Ψ2 − νΨD

n

)
+ X

(
2D − ν

n
Ψ
)

+ 2DΦ2 + 2

√
3

2
νΦΣ
√

1−D2 + 6Σ2D − νDΦ
√

1−D2

= −2DXΛ− 2

3
D

(
D2 − Φ2 − 3Σ2 −Ψ2 − νΨD

n

)
= −2

3
DΛ(3X + 1) = 0.

Now we define a new time variable τ with dτ
dt

=
√

1 + θ2. Therefore the evolution

equations become



D′ = (1−D2)X ,

Ψ′ = nΦ
√

1−D2 −DΨX ,

Φ′ = −DΦ(1 + X )−
√

1−D2

[
nΨ +

√
3

2
(νΣ)

]
,

Σ′ = −ΣD(1 + X ),

(5.5.6)

where the prime here indicates the differentiation of each variable with respect to the

new variable time τ and X is given by the expression as follow:

X ≡ −1

3
D2 − 2Σ2 −

√
6D√

6(2D − νΨ
n

)

[
4

3
Φ2 − 2

3
Ψ2 − ν

3n
DΨ +

2νΣ2Ψ

nD

+
√

6
√

1−D2

[
νΦ

(
Σ

D
− 1√

6

)]]
=

θ̇

(θ2 + 1)
. (5.5.7)
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Note that the system is not well define when 2D − Ψν
n

= 0, which include the origin

D = 0 = Ψ see (5.5.6, 5.5.7). But since D 6= 0 for the system (5.5.6), the evolutionary

system is not analytic at the origin (i.e., D = Φ = Ψ = Σ = 0, is not equilibrium

point for the system (5.5.6)).

Bounded Variables:Qualitative Analysis

The equations in system (5.4.7) are relatively simple. Also, note that the D′ does not

decouple and the system is not analytic at D = 1 since we have the square root term

in the second equation of the 4D system (5.4.7).

Equilibrium Points

There are several equilibrium points of the system but we are only interested in study

the P1,2,3,4 to compare it with the isotropic model that we studied earlier. In table

(5.4), we present the summary of strictly speaking interesting equilibrium points to

study, for the system (5.5.6), µ = 0 and ν 6= 0, and the value of X for each one.

Pt (D,Φ,Ψ,Σ) X Stability
P1 (1, 1, 0, 0) −1 Source

P2 (1,−1, 0, 0) −1 Source

P3

(
1, 0, −ν+

√
4n2+ν2

2n
, 0
)

0 Saddle

P4

(
1, 0,−

(
ν+
√

4n2+ν2

2n

)
, 0
)

0 Saddle

Table 5.4: Equilibrium points of the system (5.5.6) and the value of X .

Now, let us discuss the stability of the equilibrium points (P1,2,3,4) of the system

(5.5.6).
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Stability of the Equilibrium Points P1,2

Basically, we use the eigenvalues in (5.3.18) when Φ2
0 = 1 then we end up with all

of the eigenvalues are positive which implies that P1,2 are always sources, which is

consistent with the isotropic model.

Stability of the Equilibrium Points P3,4

Basically, we use same analysis as we did earlier with the case (2a) with µ = 0. When

D = 1 is an invariant set then there are 3 dynamic system;



Φ′ =
2

3
Ψ

(
2Φ2n+ 6nΣ2 − nΨ2 − νΨ + n

2n− νΨ

)
,

Ψ′ =
1

3
Φ

(
4Φ2n+ 12nΣ2 − 2nΨ2 + νΨ− 4n

2n− νΨ

)
,

Σ′ =
1

3
Σ

(
4Φ2n+ 12nΣ2 − 2nΨ2 + νΨ− 4n

2n− νΨ

)
.

(5.5.8)

Evaluating the linearization matrix of (5.5.8) at Φ = 0,Σ = 0 lead to three negative

eigenvalues. For the fourth eigenvalue it just follows from equation (5.3.26) with

µ = 0:

α4 =
1

36(ν
√

4n2 + ν2 + 4n2 + ν2)

((
√

4n2 + ν2(6
√

6n2 +
√

6ν2)

+ν(2
√

6n2 +
√

6ν2

)(√
6
√

4n2 + ν2 +
√

6ν
))

, (5.5.9)

Which is always positive therefore P3,4 are saddles.
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Discussion

Among the four equilibrium points (P1,2,3,4) that we studied, we found that P3,4 are

inflationary saddles.

5.5.5 Bounded Variables: Numerical Method-Past Behaviour

In figure 5.29, we plot the solution of the system in (5.5.6) with ν = 0.5 into the past

times.

Figure 5.29: Plot for system (5.5.6) with n = 1, ν = 2 as t→ −∞ with several initial
conditions:[[D(0) = 0.9,Ψ(0) = 0.1,Σ(0) = 0.04,Φ(0) = 0.8397618710], [D(0) =
0.7,Ψ(0) = 0.03,Σ(0) = 0.02,Φ(0) = 0.6833008122], [D(0) = 0.6,Ψ(0) = 0.3,Σ(0) =
0.01,Φ(0) = 0.2994995826]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 −
νΨ(t)D(t)

n
.

Discussion

As can be seen from figure 5.29, the solution goes toward the equilibrium point P3

into the past limit in which is consistent with the sub-case (2a) that we studied earlier

in chapter (4). Note this is true for any value of ν 6= 0.
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Bounded Variables: Numerical Method-Future Behaviour

In figure 5.30, we plot the solution of the system (5.5.6) with ν = 0.5 into the future.

Figure 5.30: Plot for system (5.5.6) with n = 1, ν = 1 as t → ∞ with several initial
conditions:[[D(0) = 0.4,Ψ(0) = 0.1,Σ(0) = 0.03,Φ(0) = 0.3275667871], [D(0) =
0.7,Ψ(0) = 0.03,Σ(0) = 0.01,Φ(0) = 0.6839590631], [D(0) = 0.6,Ψ(0) = 0.3,Σ(0) =
0.01,Φ(0) = 0.2994995826]]. Note that CC(t) = D(t)2 − Φ(t)2 − 3Σ(t)2 − Ψ(t)2 −
νΨ(t)D(t)

n
.

Discussion

As can be seen from figure 5.30, the solution oscillate and decay to zero, which is

consistent with the sub-case (2a) that we studied earlier in chapter (4). Note this is

true for any value of ν 6= 0.
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5.5.6 Inflation

In the sub section, we will check if this case has an inflation attractor. The deceleration

parameter in The deceleration parameter in (5.5.10) when µ = 0 becomes

q = − 1

D2

[
−6Σ2 − 3

√
6D√

6(2D − νΨ
n

)

[
4

3
Φ2 − 2

3
Ψ2 − ν

3n
DΨ +

2νΣ2Ψ

nD

+
√

6
√

1−D2νΦ

(
Σ

D
− 1√

6

)]]
. (5.5.10)

The sign of the deceleration parameter indicates the nature of the expansionary evo-

lution. If q > 0, the cosmological expansion is decelerating, while negative values of q

indicate an accelerating dynamics. The value for q for each of the equilibrium points

of the model are:

1. P1,2:

q
∣∣
P1,2

= 2 > 0, (5.5.11)

are always positive which implies that P1,2 are not inflationary.

2. P3,4:

q
∣∣
P3,4

= −1 < 0, (5.5.12)

which implies that P3,4 have an inflationary solutions.

Discussion:

In this case when Σ 6= 0, ν 6= 0, and µ = 0, we found that P1,2 are always sources

and not inflationary. P3,4 are inflationary saddles.



Chapter 6

Discussion

In chapters (4)-(5), we have investigated cosmological models in the Einstein-Aether

theory and (extended) Horava gravity in which both the Aether vector field and the

metric tensor together determine the evolution. We have been especially interested in

the possible inflationary behaviour of the models in a class of spatially homogeneous

cosmological models. In particular, we have studied scalar field models in which the

self-interaction potential, consisting of terms each containing exponentials, depends

on the scalar field φ and also on the timelike vector field through the expansion rate

θ and the shear scalar σ. We derived the evolution equations in two models: the

isotropic and an anisotropic models, which consist of the energy momentum con-

servation law or Klein-Gordon equation, the generalized Friedmann equation, the

Raychaudhuri equation, and the evolution equations for the shear. We introduced

expansion-normalized variables and obtained the resulting dimensionless evolution

equations which reduce to a dynamical system. We studied the behaviour of the

models with zero and negative curvature for the isotropic model and only the zero

curvature case for the anisotropic model. In particular, we studied the local stability

of five equilibrium points (P0,1,2,3,4) of the dynamical system corresponding to physi-

cally realistic solutions with a restricted set of values of the parameters. We concluded
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that there are always ranges of values for which there exists an inflationary sink.

We investigated the qualitative late time behaviour of isotropic and anisotropic model

using two techniques; the first one with the original variables and the second one with

normalized bounded variables. The normalized bounded variables are particularly

suitable for numerical and qualitative analysis [13, 21]. In particular, we considered

the isotropic model and an anisotropic model (Bianchi type V Ih) with sub-cases for

each one. In the isotropic model (Case (1)), when the potential is not a function

of the shear, (i.e.,V (φ, θ)), we studied two sub-cases: case (1a) when σ = 0, µ = 0

and ν = 0; case (1b) when σ = 0 = ν and µ > 0. In the anisotropic model (Case

(2)), when the potential function depends on the shear as well as the scalar field

and the expansion rate, (i.e., V (φ, θ, σ)), we studied three sub-cases: case (2a) when

σ 6= 0, µ > 0 and ν 6= 0; case (2b) when σ 6= 0, ν = 0 and µ > 0 and lastly case

(2c) when σ 6= 0, µ = 0 and ν 6= 0 (where ν could be either positive or negative).

In the isotropic model (Case(1)), we examined the case when the potential does

not depend on the shear and we studied two further sub-cases. We paid particular

attention to the sinks and whether there are any inflationary attractors. In the sub-

case (1a), we found that the equilibrium point P0 is a sink but not inflationary and

P3,4 are inflationary saddles. Hence, there is no inflationary attractor for this case. In

the sub-case (1b), we found there exists a bifurcation value (i.e., µ =
√

2
3
n) at which

the stability of the equilibrium points changes. To illustrate this, when µ ≤
√

2
3
n, P0

is sink but P4 is a saddle. However, when µ >
√

2
3
n P0 changes from sink to a saddle

and P4 becomes a sink. Also, we conclude, if µ > µc there is an inflationary attractor
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at P4 and there is inflationary saddle at P3 but there is no inflationary source. In

addition, we studied slow roll inflation in these two sub-cases For example; for the

sub-case (1b), we found that the slow roll inflation happens when

φ =

(√
2

3
n− µ

)
t+ C6, (6.0.1)

where C3, C6 are constants. The scale factor of the expnading Universe is

a = a0e
n

2
√
6

(√
2
3
n−µ

)
t2+C7t,

which has the solution a = a0, where a0 is constance, when t = 0.

In the anisotropic model case (2), we considered the Bianchi type I (i.e., M = 0)

model with zero curvature, in which the potential is a function of the scalar field φ,

the expansion rate θ and the shear σ. We paid particular attention to the sinks and

whether there are any inflationary attractors. We further investigated three sub-cases.

In all three sub-cases, we found that P0 is not an equilibrium point since the system

with the shear is not well defined at D = 0 = Ψ. In the sub-case (2a), we found

there always exists a ranges of values of the parameters µ, ν where the model has an

inflationary attractor. For instance, P4 is a sink when
√

6
√

4n2 + ν2 +
√

6ν−6µ < 0.

In the sub-case (2b), we found that there is a bifurcation value same as in the case

(1b) and P4 is inflationary attractor when µ >
√

2
3
n. Lastly, in the sub-case (2c) we

found that P3,4 are an inflationary saddles. In all cases, our major conclusion that we

require that µ > 0 to be large enough in order to have an inflationary attractor.

In conclusion, we investigated the stability of the isotropic equilibrium points and

their stability as well as the stability of four equilibrium points (P1,2,3,4) in the
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anisotropic model. The result is consistent with the standard inflationary cosmo-

logical solutions and previous works in Einstein-Aether cosmological models. A qual-

itative analysis of these cosmological models are based on the dynamical systems

approach. In table (6.1), we summarize all the sinks and the inflationary solutions

for each of the two models and their sub-cases.

Cases Sub Cases Sinks Inflation

Case(1)
Sub-case (1a) P0 in table (4.1) P3,4 in table (4.1)
µ = 0 = ν

(Σ = 0) Sub-case(1b) In table (4.2): two sinks

Isotropic µ > 0, ν = 0 1- P0 if µ <
√

2
3
n P3,4 in table (4.2)

Model 2- P4 if µ >
√

2
3
n

Case (2)
Sub-case (2a) P4 in table when (5.2) P3,4 in table (5.2)√

6
√

4n2 + ν2 +
√

6ν − 6µ < 0
(Σ 6= 0) Sub-case (2b) Sink

Anisotropic µ > 0, ν = 0 P4 if µ >
√

2
3
n P3,4 in table (5.3)

Model Sub-case (2c) No sink P3,4 in table (5.4)
µ = 0, ν 6= 0

Table 6.1: Summary of the sinks points and inflation for all sub-cases studied.
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To find where all numerical and qualitative analysis has been done in this chapter

for each case see the following table (6.2) In future work we shall investigate the

Cases Sub Cases Original Variables Bounded Variables

σ = 0
µ = 0 = ν In section (4.1.1) In section (4.1.4)
µ 6= 0, ν = 0 section (4.2.1) In section (4.2.4)

σ 6= 0
µ 6= 0, ν 6= 0 In section (5.3.1) On section (5.3.4)
µ 6= 0 ν = 0 In section (5.4.1) In section (5.4.5)
µ = 0, ν 6= 0 In section (5.5.1) In section (5.5.4)

Table 6.2: Locations in the manuscript where the analysis with original variable and
normalized bounded variables for the isotropic model (and its two sub-cases) and the
anisotropic model (and its three sub-cases).

Anisotropic model with a polynomial potential of the following form

V (θ, φ, σ) =
1

2
n2φ2 + µθφ+ νσφ+ [a20θ

2 + a11θσ + a02σ
2], (6.0.2)

where ars are positive constants. Without loss of generality, we can assume µ, n are

positive constants but ν could be either positive or negative. In particular, it would

be of my interest to determine whether the model with the above potential will have

the same equilibrium points as in our two models that we studied or not. Also, if it

turns out to be the case we would be interest to see the stability of them and compare

it with our cases.



Part II

Spherically Symmetric

Einstein-Aether Kantowski-Sachs

Cosmological Models with Scalar

Field
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Chapter 7

Introduction to the Model

Since the vacuum in quantum gravity may determine a preferred rest frame at the

microscopic level, gravitational Lorentz violation has been studied within the frame-

work of general relativity (GR), where the background tensor field(s) breaking the

symmetry must be dynamical [17]. Einstein-Aether theory [1, 2] consists of GR cou-

pled, at second derivative order, to a dynamical timelike unit vector field, the aether.

In this effective field theory approach, the Aether vector field and the metric tensor

together determine the local spacetime structure.

The aether spontaneously breaks Lorentz invariance by picking out a preferred frame

at each point in spacetime while maintaining local rotational symmetry (breaking

only the boost sector of the Lorentz symmetry). Since the aether is a unit vector, it

is everywhere non-zero in any solution, including flat spacetime.

There has been much interest in the qualitative features of cosmological models in

Einstein -Aether theory (and in particular in the presence of curvature and shear),

with a polynomial self-interaction scalar field potential, V , and especially a general-

ization of the harmonic potential [1, 28].

Einstein -Aether theories offer an alternative that permits inflation [5, 20]. Lorentz

violation affects the dynamics of the chaotic inflationary model. Generalizations
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of Einstein -Aether cosmology with a chaotic potential, V, in FLRW models were

studied in [1] and more general models (with coupling constants depending on φ) in

[29]. modifies the picture of the chaotic inflationary scenario.

In this part of the thesis, we study “spherically symmetric Einstein-Aether mod-

els”. We shall study scalar field models with an exponential self-interaction potential.

Einstein-Aether models with an exponential potential were recently studied [8, 13, 26].

In a companion paper [27], it investigates spherically symmetric Einstein-Aether per-

fect fluid models.

We shall use the 1+3 frame formalism [30, 31] to write down the evolution equa-

tions for non-comoving scalar field spherically symmetric models. We then consider

the spatially homogeneous Kantowski- Sachs models using appropriate normalized

variables, and obtain the general evolution equations. We then consider a special

case and analyse the qualitative behaviour for physically reasonable values of the pa-

rameters. We are particularly interested in the future asymptotic behaviour of the

models for different values of the parameters and investigate whether the model has

an inflationary attractor or not.

7.1 Einstein- Aether Cosmology Theory

The action for Einstein-Aether theory is the most general covariant functional of the

spacetime metric gab and aether field ua involving no more than two derivatives (not

including total derivatives) [17, 30]. The action is [17, 23]

S =

∫
d4x
√
−g
[

1

2
R−Kab

cd∇au
c∇bu

d + λ (ucuc + 1)

]
, (7.1.1)
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where

Kab
cd ≡ c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd. (7.1.2)

The standard Einstein equations (i.e., Gab = kTab) can incorporate the effects of the

Aether by the contribution of an additional stress tensor for the aether field

Gab = kTab + T aeab , (7.1.3)

where

T aeab = 2c1(∇au
c∇buc −∇cua∇cub)− 2[∇c(u(aJ

c
b)) +∇c(u

cJ(ab))−∇c(u(aJ
c
b))]

−2c4u̇au̇b + 2λuaub + gabLu (7.1.4)

and

Kab
cd ≡ c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd,

Jam = −Kab
mn∇bu

n,

Lu ≡ −Kab
cd∇au

c∇bu
d.

7.2 Models and the ci Parameters

We study the model with different dimensionless parameters ci where i = 1, ..4. To

simplify the expressions and the equations it is convenient to make a reparameteri-

zation of the aether parameters, analogous to the one given in [32]

cθ = c2 +
c1 + c3

3
, cσ = c1 + c3, cω = c1 − c3, ca = c4 − c1. (7.2.1)
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where the new parameters correspond to terms in the Lagrangian relating to expan-

sion, shear, acceleration and twist of the aether. Since the spherically symmetric

models are hypersurface orthogonal the aether field has vanishing twist and is there-

fore independent of the twist parameter cω. Also, for simplicity and convenience we

define

c2 = 1− 2cσ ≥ 0.

7.3 Spherical Symmetry

All spherically symmetric aether fields are hypersurface orthogonal and, hence, all

spherically symmetric solutions of aether theory will also be solutions of the IR limit

of Horava gravity. The converse is not true in general, but it does hold in spherical

symmetry for solutions with a regular center [18] . The ci are dimensionless constants

in the model. When spherical symmetry is imposed the aether is hypersurface or-

thogonal, and so it has vanishing twist. Thus it is possible to set c4 to zero without

loss of generality [18]. After the parameter redefinition to eliminate c4, one is left

with a 3- dimensional parameter space. The ci contribute to the effective Newtonian

gravitational constant G; so a renormalization of the parameters in the model can

be then used to set 8πG = 1 (i.e., another condition on the ci can effectively be

specified). The remaining parameters in the model can be characterized by two non-

trivial constant parameters. In GR ci = 0. We shall study the qualitative properties

of models with values for the non-GR parameters which are consistent with current
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constraints.

7.4 The Model

The evolution equations, follows from the Einstein Field equations, derived from the

Einstein aether action [18, 31]. In an Einstein-aether model there will be additional

terms in the Friedmann equation:

1. The effects on the geometry from the anisotropy and inhomogeneities (e.g., the

curvature) of the spherically symmetric models under consideration.

2. The Einstein field equations are generalised by the contribution of an additional

stress tensor, Tab, for the aether field which depends on the dimensionless pa-

rameters (ci) of the aether model. In GR, all of the ci = 0. To study the effects

of matter, we could perhaps assume the corresponding GR values (or close to

them) in the first instance.

3. The energy momentum tensor of a scalar field, due to the possible dependence

of the scalar field potential V on the Lorentz violating vector field; primar-

ily through the expansion, but also through the shear and tilt in spherically

symmetric model.

4. When the phenomenology of theories with a preferred frame is studied, it is gen-

erally assumed that this frame coincides, at least roughly, with the cosmological

rest frame defined by the Hubble expansion of the universe. In particular, in an

isotropic and spatially homogeneous Friedmann universe the aether field will be



139

aligned with the (natural preferred CMB rest frame) cosmic frame and is thus

related to the expansion rate of the universe. In principle, the preferred frame

determined by the aether can be different from the CMB rest frame in spheri-

cally symmetric models. This adds additional terms to the aether stress tensor

Sab, which can be characterized by a hyperbolic tilt angle, ν(t), measuring the

boost of the aether relative to the (perfect fluid) CMB rest frame [5, 20]. The

tilt is expected to decay to the future in anisotropic but spatially homogeneous

models [22].

7.5 Coupling to a Scalar Field

In Einstein-aether theory with inflation caused by a scalar field there exists the pos-

sibility that inflation is affected by the aether through a direct coupling of the scalar

field with the aether field through quantities like the expansion or shear of the aether.

This is in contrast to the situation in a purely metric theory like GR, where such

quantities cannot be constructed from the metric in a covariant way [1]. Explicit

couplings have been studied for spatially homogeneous and isotropic models in sev-

eral papers [7], [26], and we extended to the anisotropic case with a phenomenological

model in [21]. We will here derive the equations from first principles in the spherically

symmetric case.

Assume that a scalar field has a potential, V (φ, θ, σ+), that depends on both the

expansion and shear of the aether (but not the acceleration u̇a), defined as θ = ∇au
a
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and 6σ2
+ = ∇au

b∇bu
a − 1

3
θ2, where

∇aub = −uau̇b + 1
3
θhab + σab, (7.5.1)

and σ2
+ = 1

6
σabσ

ab, hab = gab + uaub, σab = σba, u
aσab = uau̇a = uahab = 0. We here

assume that the Aether has vanishing vorticity.

The energy-momentum tensor for the scalar field is of the form [27]

T φab =∇aφ∇bφ−
(

1

2
∇aφ∇aφ+ V

)
gab + (V̇θ + θVθ)gab + V̇θuaub

+ V̇σ+
σab
6σ+

+
Vσ+
6σ+

[(
θ − σ̇+

σ+

)
σab + σ̇ab − 6σ2

+uaub − u̇cσc(aub)
]
, (7.5.2)

where the subscripts in Vθ and Vσ+ denotes partial derivatives of V (φ, θ, σ+) with

respect to θ and σ+ and a dot the covariant derivative along the aether field, ˙ := ua∇a.

The irreducible decomposition of the tensor (7.5.2) with respect to a comoving aether

field is given by

T φab = ρφuaub + 2qφ(aub) + pφ(gab + uaub) + πφab, (7.5.3)

where

qφα = (qφ1 , 0, 0), πφαβ = diag(−2πφ+, π
φ
+, π

φ
+), (7.5.4)

ρφ = 1
2

[
e0(φ)2 + e1(φ)2

]
+ V − θVθ − Vσ+σ+, (7.5.5)

pφ = 1
2
e0(φ)2 − 1

6
e1(φ)2 − V + θVθ + e0(Vθ), (7.5.6)

qφ1 = −e0(φ)e1(φ)− 1
6
Vσ+u̇, (7.5.7)

πφ+ = −1
3
e1(φ)2 + 1

6
θVσ+ + 1

6
e0(Vσ+). (7.5.8)
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7.6 Exponential Potential

Exponential potentials of the form V = V0e
−λφ occur in higher dimensional frame-

works, Kaluza-Klein theories, and super gravity [24]. Although in general relativity

the exponential potential of the scalar field does not lead to exponential inflation [4],

if the potential is not too steep it can lead to a power law inflation. Ultimately, we

restrict the steep potentials by using multiple fields in order to have assisted inflation

[34, 35, 36, 37, 38]. A late time attractor is a scaling solution for exponential poten-

tials with sufficiently flat potentials [13, 39, 40, 41, 42]. The dynamical system with

negative exponential leads to rich physics, such as that which is found in Ekpyrotic

behaviour [10]. The main reason of using this kind of exponential potentials is that

the dynamical system that results allows us to use dimensionless variables.

Consider the Exponential potential of the form [26]:

V (φ, θ, σ+) = a1e
−2kφ + a2θe

−kφ + a3σ+e
−kφ, (7.6.1)

where constants a1, a2 and a3 are defined such that the potential V (θ, φ, σ+) can be

assumed to be positive definite. We shall let a1 > 0 but allow a2, and a3 to have either

positive or negative sign. Thus, the components of the energy momentum become

ρφ = 1
2

[
e0(φ)2 + e1(φ)2

]
+ a1e

−2kφ, (7.6.2)

pφ = 1
2
e0(φ)2 − 1

6
e1(φ)2 − a1e

−2kφ − ka2e0(φ)e−kφ − a3σ+e
−kφ, (7.6.3)

qφ1 = −e0(φ)e1(φ)− a3

6
u̇e−kφ, (7.6.4)

πφ+ = −1
3
e1(φ)2 +

a3

6

(
θ − ke0(φ)

)
e−kφ. (7.6.5)
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7.7 The Evolution Equation

The Einstein Field equations, the Jacobi identities and the contracted Bianchi iden-

tities give a system of partial differential equations on the frame and commutator

functions [27]:

e0(e1
1) = −1

3
(θ − 6σ+)e1

1, (7.7.1)

e0(K) = −2
3
(θ + 3σ+)K, (7.7.2)

e0(θ) = −1
3
θ2 − 6

1− 2cσ
1 + 3cθ

σ2
+ +

1 + ca
1 + 3cθ

(
e1 + u̇− 2a

)
u̇

+
1

1 + 3cθ

(
− e0(φ)2 + a1e

−2kφ + 3
2
a2ke

−kφe0(φ) + 3
2
a3σ+e

−kφ), (7.7.3)

e0(σ+) = −θσ+ +
1

3(1− 2cσ)

(
e1(a)− e1(u̇)− au̇−K − (1 + 2ca)u̇

2
)

+
1

6(1− 2cσ)

(
− 2e1(φ)2 + a3θe

−kφ − a3ke0(φ)e−kφ
)
, (7.7.4)

e0(a) = −1
3
(θ − 6σ+)a+ 1

3
(e1 − u̇)(θ + 3σ+), (7.7.5)

Constraints

e1(lnN) = u̇, (7.7.6)

e1(lnK) = 2a, (7.7.7)

2e1(a) = 3a2 −K − ca(2e1 + u̇− 4a)u̇− 1
3
(1 + 3cθ)θ

2 + 3(1− 2cσ)σ2
+

+ 1
2
e0(φ) + 1

2
e1(φ) + a1e

−2kφ, (7.7.8)

0 = −36(1− 2cσ)aσ+ + 4(1 + 3cθ)e1(θ) + 12(1− 2cσ)e1(σ+) + 6e0(φ)e1(φ)

+
(
4a3

u̇θ

σ+

+ 72a3a− 23a3u̇− 4(3a2 − a3)ke1(φ)
)
e−kφ. (7.7.9)
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Klein-Gordon equation

e0(e0(φ)) = −θe0(φ) +
(
e1 + u̇− 2a

)
e1(φ) + 2ka1e

−2kφ + (a2θ+ a3σ+)ke−kφ. (7.7.10)

The commutator

e0(e1(φ)) = e1(e0(φ))− 1

3
(θ − 6σ+)e1(φ) + u̇e0(φ). (7.7.11)



Chapter 8

The Kantowski-Sachs Models

The Kantowski-Sachs models [33] are spatially homogeneous spherically symmetric

models (that have 4 Killing vectors, the fourth being ∂x). We shall consider the special

co-moving aether case. The metric that mentioned earlier in [27] simplifies to

ds2 = −N(t)2dt2 + (e1
1(t))−2dx2 + (e2

2(t))−2(dϑ2 + sin2 ϑdϕ2), (8.0.1)

(i.e., N , e1
1 and e2

2 are now independent of x). The spatial derivative terms e1( )

vanish and as a result a = 0 = u̇. Since u̇ = 0, N is a positive function of t which

under a time rescaling can be set to one. We assume here that the aether field is

invariant under the same symmetries as the metric and therefore is aligned with the

symmetry adapted time coordinate. The evolution equations for the Kantowski-Sachs

metric for an Einstein-Aether spherically symmetric cosmology, in the presence of a

144
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scalar field, are:

e0(e1
1) = −1

3
(θ − 6σ+)e1

1, (8.0.2a)

e0(K) = −2
3
(θ + 3σ+)K, (8.0.2b)

e0(θ) = −1
3
θ2 − 6

(
1− 2cσ
1 + 3cθ

)
σ2

+ +
1

1 + 3cθ

(
−e0(φ)2 + a1e

−2kφ

+ 3
2
a2ke

−kφe0(φ) + 3
2
a3σ+e

−kφ

)
, (8.0.2c)

e0(σ+) = −θσ+ +
1

6(1− 2cσ)

(
a3θe

−kφ − a3ke0(φ)e−kφ − 2K
)
, (8.0.2d)

e0(e0(φ)) = −θe0(φ) + 2ka1e
−2kφ + (a2θ + a3σ+)ke−kφ, (8.0.2e)

with the following constraint:

K + 1
3
(1 + 3cθ)θ

2 = 3(1− 2cσ)σ2
+ + 1

2
e2

0(φ) + a1e
−2kφ, (8.0.3)

where cσ and cθ are parameters (see definition of the ci parameters in section (7.2)

from chapter (7)) . Note that all evolution and constraint equations are derived in

[27].

8.1 Normalized Variables

We introduce the normalized variables (which are bounded for 1− 2cσ ≥ 0, note that

we do not use the β-normalized variable as in [27, 43] for convenience here):

x =
e0(φ)√

2D
, y =

√
3σ+

D
, z =

√
K

D
, Q =

θ√
3D

, W =
e−kφ

D
, (8.1.1)

where

D =

√
K +

θ2

3
, (8.1.2)
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and the new time variable f ′ ≡ 1
D
e0(f). To further simplify our model we defined

c2 ≡ (1− 2cσ) = 1− 3(c1 + c3) ≥ 0. Since the evolution equations are invariant under

the transformation y → −y and c → −c, without loss of generality we can assume

c > 0. Thus, it reduce to full 5 dimensional (5D) system:

x′ = −2
√

3

3
Qx+

√
2ka1W

2 +

√
6

2
kW

(
a2Q+

a3

3
y
)

+

√
3

3
xz2y

−
√

3xQ

3(1 + 3cθ)

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW +

3
√

2

2
a2kWx

]
, (8.1.3a)

y′ = −
√

3Qy +

√
3

3
yz2(Q+ y) +

√
3

3
yQ3

+

√
3

6c2

[
−2z2 +

√
3a3QW −

√
2a3kWx

]

−
√

3yQ

3(1 + 3cθ)

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW +

3
√

2

2
a2kWx

]
, (8.1.3b)

z′ =
−
√

3zQ

3

[
Qy +

1

1 + 3cθ

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW

+
3
√

2

2
a2kWx

]]
, (8.1.3c)

Q′ =

√
3z2

3

[
Qy +

1

1 + 3cθ

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW

+
3
√

2

2
a2kWx

]]
, (8.1.3d)

W ′ = W

[
−
√

2kx+

√
3

3
(Q+ y)−

√
3

3
Q2y

−
√

3Q

3(1 + 3cθ)

[
−2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx+

√
3

2
a3yW

]]
. (8.1.3e)

The variables (8.1.3) are related through the following constraints

−3cθQ
2 + x2 + c2y2 + a1W

2 = 1, (8.1.4a)

Q2 + z2 = 1, (8.1.4b)
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which are preserved by the 5D system in equations (8.1.3). From the equations

(8.1.4) it follows that Q and z are bounded in the intervals Q ∈ [−1, 1], z ∈ [0, 1]

(for expanding universes Q ≥ 0). However, since c2 is not necessarily non-negative

it follows that x, y and W are unbounded, unless c2 > 0. Thus, x, y,W is bounded

when c2 > 0 in the intervals x ∈ [−1, 1] , y ∈
[
− 1
|c| ,

1
|c|

]
and W ∈

[
0, 1√

a1

]
(since

W > 0). Clearly, the case c = 0 is not included here which is the GR case since the

equation for y′ is not valid in that case. The restriction in the second equation of

(8.1.4) allows the elimination of the variable z globally. This leads to the following

4-dimensional dynamical system:

x′ = −2
√

3

3
Qx+

√
2ka1W

2 +

√
6

2
kW

(
a2Q+

a3

3
y
)

+

√
3

3
xy(1−Q2)

−
√

3xQ

3(1 + 3cθ)

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW +

3
√

2

2
a2kWx

]
, (8.1.5a)

y′ = −2
√

3

3
Qy +

√
3

3c2
(1−Q2)(c2y2 − 1) +

a3W

2c2

(
Q−

√
6

3
kx

)

−
√

3yQ

3(1 + 3cθ)

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW +

3
√

2

2
a2kWx

]
, (8.1.5b)

Q′ =

√
3(1−Q2)

3

[
Qy +

1

1 + 3cθ

[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW

+
3
√

2

2
a2kWx

]]
, (8.1.5c)

W ′ = W

[
−
√

2kx+

√
3

3
(Q+ y)−

√
3

3
Q2y

−
√

3Q

3(1 + 3cθ)

[
−2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx+

√
3

2
a3yW

]]
, (8.1.5d)
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subject to the following constraint

−3cθQ
2 + x2 + c2y2 + a1W

2 = 1. (8.1.6)

Using the normalized variables in (8.1.1), then the deceleration parameter equation

is given by

q ≡ − 1

(1 + 3cθ)Q2

[
−2c2y2 − 2x2 + a1W

2 +
3
√

2a2

2
kWx+

√
3

2
a3yW

]
. (8.1.7)

We shall study the general case in the future work. For this part of the thesis, we

consider the following special case.

8.2 Special Case

Let us assume

3cθ ≡ c1 + 3c2 + c3 = 0

and assume a3 = 0 [7, 21]. Then the system (8.1.5) becomes

x′ =
√

2ka1W
2 +

√
6

2
ka2WQ+

√
3

3
xy(1−Q2)

−
√

3xQ

3

[
2− 2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx

]
, (8.2.1a)

y′ = −
√

3yQ

3

[
2− 2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx

]

+

√
3

3c2
(1−Q2)

(
c2y2 − 1

)
, (8.2.1b)

Q′ =

√
3(1−Q2)

3

[
Qy − 2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx

]
, (8.2.1c)

W ′ = W

[
−
√

2kx+

√
3

3
(Q+ y)−

√
3

3
Q2y

−
√

3Q

3

[
−2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx

]]
, (8.2.1d)
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with the constraint

x2 + c2y2 + a1W
2 = 1, (8.2.2)

which is preserved by the 4D system in equations (8.2.1). The declaration equation

for the 4D system becomes

q ≡ − 1

Q2

[
−2c2y2 − 2x2 + a1W

2 +
3
√

2a2

2
kWx

]
. (8.2.3)

8.2.1 Analysis of the Special Case Using W Substitution:

Solving the constraint (8.2.2) for W leads to

W =

√
1− c2y2 − x2

√
a1

. (8.2.4)

Substituting W from (8.2.4) into the system (8.2.1) leads to the following 3D system

x′ = (1− c2y2 − x2)(
√

2k −
√

3xQ) +

√
3

3
xy(1−Q2) +

√
6

2

a2kQ
√

1− x2 − c2y2(1− x2)
√
a1

,

(8.2.5a)

y′ =

√
3

3c2
(1−Q2)(c2y2 − 1)−

√
3yQ(1− c2y2 − x2)−

√
6

2

a2kxQy
√

1− x2 − c2y2

√
a1

,

(8.2.5b)

Q′ =

√
3(1−Q2)

3

[
Qy − 3c2y2 − 3x2 + 1 +

3
√

2

2

a2kx
√

1− c2y2 − x2

√
a1

]
. (8.2.5c)

Equilibrium Points

In table (8.1, 8.2), we present the equilibrium points of the system (8.2.5); their

existence conditions and their acceleration parameter (q) value for each one.
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Pt x y Q W Existence q

P1 0 1
c

2c 0 c ≤ 1
2

1
2c2

P2 0 −1
c
−2c 0 c ≤ 1

2
1

2c2

P ∗3
√

1− c2y∗2 y∗ 1 0 −1
c
< y∗ < 1

c
; c > 0 2

P ∗4 −
√

1− c2y∗2 y∗ 1 0 −1
c
< y∗ < 1

c
; c > 0 2

P ∗5
√

1− c2y∗2 y∗ −1 0 −1
c
< y∗ < 1

c
; c > 0 2

P ∗6 −
√

1− c2y∗2 y∗ −1 0 −1
c
< y∗ < 1

c
; c > 0 2

P7

√
3k(2
√

2a1+a2
√
B)

3(a22k
2+2a1)

0 1
√

3(−2a2k2+
√

2B)

3(a22k
2+2a1)

1) k <
√

3
2

In

2) k >
√

3
2
, a2 < 0 (8.2.72)

a2
2k2 > 2a1

3
(2k2 − 3)

P8

√
3k(2
√

2a1−a2
√
B)

3(a22k
2+2a1)

0 1 −
√

3(2a2k2+
√

2B)

3(a22k
2+2a1)

a2 < 0, k >
√

3
2

In

a2
2k2 > 2a1

3
(2k2 − 3) (8.2.73)

P9
−
√

3k(2
√

2a1+a2
√
B)

3(a22k
2+2a1)

0 −1
√

3(2a2k2−
√

2B)

3(a22k
2+2a1)

k <
√

3
2
, a2 > 0 In

a2
2k2 > 2a1

3
(2k2 − 3) (8.2.74)

P10
−
√

3k(2
√

2a1−a2
√
B)

3(a22k
2+2a1)

0 −1
√

3(2a2k2+
√

2B)

3(a22k
2+2a1)

1) k <
√

3
2

In

2) k >
√

3
2
, a2 > 0 (8.2.75)

a2
2k2 > 2a1

3
(2k2 − 3)

Table 8.1: Equilibrium points (P1,2, P
∗
3,4,5,6, P7,8,9,10) of the system (8.2.5); their

existence conditions and their deceleration value (q). We use the notation B =
3(a2

2k
2 + 2a1) − 4a1k

2. y∗ is an arbitrary parameter and hence the curve P ∗3,4,5,6
represent lines of equilibrium points (y∗ = 0 is a special equilibrium point in the
curves)
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Pt x y Q W Existence q

P11

√
6

2k

√
−B

2kc
√
a1

1 −
√

3a2
2a1

a2 < 0, k >
√

3
2

a2
2k2 < 2a1

3
(2k2 − 3) 2

P12

√
6

2k
−
√
−B

2kc
√
a1

1 −
√

3a2
2a1

a2 < 0, k >
√

3
2

a2
2k2 < 2a1

3
(2k2 − 3) 2

P13 −
√

6
2k

√
−B

2kc
√
a1

−1
√

3a2
2a1

a2 > 0, k >
√

3
2

a2
2k2 < 2a1

3
(2k2 − 3) 2

P14 −
√

6
2k
−
√
−B

2kc
√
a1
−1

√
3a2

2a1
a2 > 0, k >

√
3
2

a2
2k2 < 2a1

3
(2k2 − 3) 2

Table 8.2: Equilibrium points (P11,12,13,14) of the system (8.2.5); their existence
conditions and their deceleration value (q). We use the notation B = 3(a2

2k
2 + 2a1)−

4a1k
2.

Qualitative Analysis

Let us present the analysis for the existence and stability conditions of each equilib-

rium points in terms of the parameters a1, k, c and a2.

Stability of Equilibrium Point P1

The equilibrium point P1 exists when c > 0. Evaluating the linearization of the

system (8.2.5) at P1 leads to undefined terms. Using the implicit function theorem

from vector calculus, we have the constraint surface is

f = x2 + c2y2 + a1W
2 − 1, (8.2.6)

Then the

5 f
∣∣
P1

= (0, 2, 0). (8.2.7)
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Therefore, we can not globally use W substitution to analyze the stability of P1.

Thus, we can reduce the 4D system (8.2.1) to a 3D system in a neighbourhood of P1

by eliminating the variable y. Subsituating y

y =

√
1− x2 − a1W 2

c
, (8.2.8)

into the 4D system in (8.2.1) leads to the 3D system

x′ = a1W
2(
√

2k −
√

3xQ) +

√
3

3
x

√
1− x2 − a1W 2

a1

(1−Q2) +

√
6

2
a2kWQ(1− x2),

(8.2.9a)

Q′ =

√
3(1−Q2)

3

[
Q

√
1− x2 − a1W 2

a1

− 2 + 3a1W
2 +

3
√

2

2
a2kxW

]
, (8.2.9b)

W ′ = W

[
−
√

2kx+

√
3

3
(1−Q2)

√
1− x2 − a1W 2

a1

−
√

3

3
Q

[
−3 + 3a1W

2 +
3
√

2

2
a2kxW

]]
(8.2.9c)

Evaluating the linearization of the system (8.2.9) at P1 leads to three eigenvalues

λ1 =

√
3(2c2 + 1)

3c
, λ2 = −

√
3(4c2 − 1)

3c
, λ3 = −

√
3(4c2 − 1)

3c
. (8.2.10)

Therefore, P1 is a source if c < 1
2
; a saddle if c > 1

2
. So, P1 is never a sink.

Stability of Equilibrium Point P2

The equilibrium point P2 exists when c > 0. Evaluating the linearization of the

system (8.2.5) at P2 leads to undefined terms. We know that

5 f
∣∣
P2

= (0,−2, 0). (8.2.11)

Therefore, we can not globally use W substitution to analyze the stability of P2.

Thus, we can reduce the 4D system (8.2.1) to a 3D system in a neighbourhood of P2
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by eliminating the variable y. Subsituating y

y = −
√

1− x2 − a1W 2

c
, (8.2.12)

into the 4D system in (8.2.1) leads to the 3D system

x′ = a1W
2(
√

2k −
√

3xQ)−
√

3

3
x

√
1− x2 − a1W 2

a1

(1−Q2) +

√
6

2
a2kWQ(1− x2),

(8.2.13a)

Q′ =

√
3(1−Q2)

3

[
−Q
√

1− x2 − a1W 2

a1

− 2 + 3a1W
2 +

3
√

2

2
a2kxW

]
, (8.2.13b)

W ′ = W

[
−
√

2kx−
√

3

3
(1−Q2)

√
1− x2 − a1W 2

a1

−
√

3

3
Q

[
−3 + 3a1W

2 +
3
√

2

2
a2kxW

]]
(8.2.13c)

Evaluating the linearization of the system in (8.2.13) at P2 leads to the three eigen-

values

λ1 = −
√

3(2c2 + 1)

3c
, λ2 =

√
3(4c2 − 1)

3c
, λ3 =

√
3(4c2 − 1)

3c
. (8.2.14)

Therefore, P2 is sink if c < 1
2
.

Stability of Equilibrium Point P ∗3

The line of equilibrium point P ∗3 exists when y∗ < 1
c

with c > 0. We did similar

analysis as we did earlier for P1,2: since

5 f
∣∣
P ∗3

=
(√

1− c2y∗2, y∗, 0
)
. (8.2.15)

Therefore, we can not globally use W substitution to analyze the stability of P ∗3 .

Thus, we can reduce the 4D system (8.2.1) to a 3D system in a neighbourhood of P ∗3
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by eliminating the variable y. Evaluating the lineraization of (8.2.9) at P ∗3 leads to

three eigenvalues

λ1 = 0, λ2 = −2
√

3(y∗ − 2)

3
, λ3 = −

√
2k
√

1− c2y∗2 +
√

3. (8.2.16)

Since we have one zero real eigenvalue the equilibrium point P ∗3 called a normal

hyperbolic and the stability of these line of equilibrium points will be determined by

studying the signs of the remaining two eigenvalues. There are two lines of sinks:

• If c < 1
2
; k >

√
3
2
; 4c2 + 3

2k2
> 1 then the part of the line that is a sink is

−1
c

√
1− 3

2k2
< y∗ < 1

c

√
1− 3

2k2
.

• If c < 1
2
; k >

√
3
2
; 4c2 + 3

2k2
< 1 then the part of the line that is a sink is

1
c

√
1− 3

2k2
< y∗ < 2.

Stability of Equilibrium Point P ∗4

The line of equilibrium point P ∗4 exists when y∗ < 1
c

with c > 0. We did similar

analysis as we did earlier for P1,2: since

5 f
∣∣
P ∗4

=
(
−
√

1− c2y∗2, y∗, 0
)
. (8.2.17)

Therefore, we can not globally use W substitution to analyze the stability of P ∗4 .

Thus, we can reduce the 4D system (8.2.1) to a 3D system in a neighbourhood of P ∗4

by eliminating the variable y. Evaluating the lineraization of (8.2.13) at P ∗4 leads to

three eigenvalues

λ1 = 0, λ2 = −2
√

3(y∗ − 2)

3
, λ3 =

(√
2k
√

1− c2y∗2 +
√

3
)
. (8.2.18)
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Since we have one zero real eigenvalue the equilibrium point P ∗4 called a normal

hyperbolic and the stability of these line of equilibrium points will be determined by

studying the signs of the remaining two eigenvalues. It is a saddle when y∗ > 2 but

it is source when y∗ < 2. P ∗4 is non-hyperbolic for y∗ = 2. So, P ∗4 is never a sink.

Stability of Equilibrium Point P ∗5

The line of equilibrium point P ∗5 exists when y∗ < 1
c

with c > 0. We did similar

analysis as we did earlier for P1,2: since

5 f
∣∣
P ∗5

=
(√

1− c2y∗2, y∗, 0
)
. (8.2.19)

Therefore, we can not globally use W substitution to analyze the stability of P ∗5 .

Thus, we can reduce the 4D system (8.2.1) to a 3D system in a neighbourhood of P ∗5

by eliminating the variable y. Evaluating the lineraization of (8.2.9) at P ∗5 leads to

three eigenvalues

λ1 = 0, λ2 = −2
√

3(y∗ + 2)

3
, λ3 = −

(√
2k
√

1− c2y∗2 +
√

3
)
. (8.2.20)

Since we have one zero real eigenvalue the equilibrium point P ∗5 called a normal

hyperbolic and the stability of these line of equilibrium points will be determined by

studying the signs of the remaining two eigenvalues. There are two line of sinks:

• If c < 1
2

then the part of the line that is a sink is −2 < y∗ < 1
c
.

• If c > 1
2

then the entire line −1
c
< y∗ < 1

c
is a sink.
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Stability of Equilibrium Point P ∗6

The equilibrium point P ∗6 exists when y∗ < 1
c

with c > 0. We did similar analysis as

we did earlier for P1,2: since

5 f
∣∣
P ∗6

=
(
−
√

1− c2y∗2, y∗, 0
)
. (8.2.21)

Therefore, we can not globally use W substitution to analyze the stability of P ∗6 .

Thus, we can reduce the 4D system (8.2.1) to a 3D system in a neighbourhood of P ∗6

by eliminating the variable y. Evaluating the lineraization of (8.2.13) at P ∗6 leads to

three eigenvalues

λ1 = 0, λ2 = −2
√

3(y∗ + 2)

3
, λ3 =

(√
2k
√

1− c2y∗2 −
√

3
)
. (8.2.22)

Since we have one zero real eigenvalue the equilibrium point P ∗6 called a normal

hyperbolic and the stability of these line of equilibrium points will be determined by

studying the signs of the remaining two eigenvalues. If y∗ > −2 then we will have

several portions that we have sinks:

1. If k <
√

3
2
, we have two cases:

(a) If c < 1
2

the only line of sink is −2 < y∗ < 1
c
.

(b) If c > 1
2

the entire line is sink −1
c
< y∗ < 1

c
.

2. If k >
√

3
2
, we have two cases:

(a) If c < 1
2
; 4c2 + 3

2k2
> 1, then the only line of sink is −2 < y∗ < 1

c

√
1− 3

2k2

(b) If c < 1
2
; 4c2 + 3

2k2
< 1 the sink is in the portion 1

c

√
1− 3

2k2
< y∗ < 1

c
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(c) If c > 1
2

there are two line of sinks are−1
c
< y∗ < −1

c

√
1− 3

2k2
; 1
c

√
1− 3

2k2
<

y∗ < 1
c
.

Stability of Equilibrium Point P7

In order for P7 to exist we need to find the conditions in the parameters where W,x

are real and W ∈
[
0, 1√

a1

]
.

W, x are real when B > 0

B > 0 =⇒ 3a2
2k2 + 6a1 − 4k2a1 > 0

⇒ 3a2
2k2 + 2a1(3− 2k2) > 0

Thus, there are two cases for B > 0 :

B > 0 =⇒
1) If k <

√
3

2
⇒ B > 0 always.

2) If k >

√
3

2
⇒ B > 0 if a2

2 >
2a1

3k2
(2k2 − 3).

.

W7 > 0 : W7 > 0⇒ −2a2k
2 +
√

2B > 0, which can be written of the form

−N1 +
√

(N1)2 −M1, (8.2.23)

where

N1 := −2a2k
2, M1 := 2(a2

2k2 + 2a1)(2k2 − 3).

So,

−N1 +
√

(N1)2 −M1 > 0,

in two cases:
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• If a2 < 0 then W7 > 0 always.

• If a2 > 0 then W7 > 0 provided M1 > 0⇒ k >
√

3
2
.

Therefore,

W7 > 0 =⇒
1) If a1 > 0, a2 any value⇒ W7 > 0 if k <

√
3

2
.

2) If a1 > 0, a2 < 0⇒ W7 > 0 if k >

√
3

2

.

W7 ≤ 1√
a1

: which always true when P7 exists. Therefore, P7 exists with these

conditions:

P7 exists =⇒
1) If k <

√
3

2

2) If k >

√
3

2
, a2 < 0 and a2

2 >
2a1

3k2
(2k2 − 3).

.

Evaluating the linearization martix of the system (8.2.5) at Q = 1, y = 0 and x = x7

gives us the following three eigenvalues

λ1 =

√
3

3
√
a1

(
−3
√

2a2kx7

√
1− x2

7 + 2
√
a1(3x2

7 − 1)

)
, (8.2.24a)

λ2 =

√
3

2
√
a1

(
−
√

2a2kx7

√
1− x2

7 + 2
√
a1(x2

7 − 1)

)
, (8.2.24b)

λ3 =
1

2
√
a1

(
−3
√

6a2kx7

√
1− x2

7 + 2
√

3a1(3x2
7 − 1)− 4

√
2a1kx7

)
. (8.2.24c)

Note that, by plugging y = 0, Q = 1 into the equation of x′ in (8.2.5) we obtain the

following expression:
√

6a2k
√

1− x2
7

2
√
a1

=
√

3x7 −
√

2k, (8.2.25)
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which can simplify our expression for the eigenvalues to

λ1,2 =
√

2kx7 −
√

3, (8.2.26a)

λ3 = 2

(
√

2kx7 −
√

3

3

)
. (8.2.26b)

Sink conditions:

1. λ1,2 < 0 :⇒
√

3a2k
2
[
−N2 +

√
(N2)2 −M2

]
< 0, where

N2 := 1
a2k2

(3(a2
2k2 + 2a1)− 4k2a1),

M2 := 1
a22k4

((a2
2k2 + 2a1)(3− 2k2)(3a2

2k2 + 2a1(3− 2k2)).

Thus, λ1,2 < 0 in two cases:

• If a2 < 0 then λ1,2 always negative.

• If a2 > 0 then λ1,2 < 0 provided M2 > 0⇒ k <
√

3
2
.

2. λ3 < 0⇒ 2
√

3a2k
2
[
−N3 +

√
(N3)2 −M3

]
< 0, where

N3 := 1
a2k2

(a2
2k2 + 2a1− 4k2a1),

M3 := 1
a22k4

((a2
2k2 + 2a1)(a2

2k2(1− 6k2) + 2a1(1− 2k2)2).

Thus, λ3 < 0 in two cases:

• If a2 < 0 and a2
2k2 + 2a1(1− 2k2) < 0⇒ λ3 < 0 always.

• If a2 > 0 and a2
2k2 + 2a1(1 − 2k2) > 0 ⇒ M3 > 0 ⇒ a2

2k2(1 − 6k2) +

2a1(1− 2k2)2 > 0.

Hence, P7 is a sink if there cases:
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• If a2 > 0 and k <
√

3
2
; a2

2k2 + 2a1(1− 2k2) > 0 and a2
2k2(1− 6k2) + 2a1(1−

2k2)2 > 0.

• If a2 < 0, k <
√

3
2
; and a2

2k2 + 2a1(1− 2k2) < 0.

• If a2 < 0, k >
√

3
2
; and a2

2 > 2a1
3k2

(2k2 − 3); a2
2k2 + 2a1(1− 2k2) < 0.

Stability of Equilibrium Point P8

In order for P8 to exist we need to find the conditions in the parameters where W,x

are real and W ∈
[
0, 1√

a1

]
.

W, x are real when B > 0

B > 0 =⇒ 3a2
2k2 + 6a1 − 4k2a1 > 0

⇒ 3a2
2k2 + 2a1(3− 2k2) > 0

Thus, there are two cases for B > 0 :

B > 0 =⇒
1) If k <

√
3

2
⇒ B > 0 always.

2) If k >

√
3

2
⇒ B > 0 if a2

2 >
2a1

3k2
(2k2 − 3).

.

W8 > 0 : W8 > 0⇒ 2a2k
2 +
√

2B < 0, which can be written of the form

N4 +
√

(N4)2 −M4 < 0, (8.2.27)

where

N4 := 2a2k
2, M4 := 2(a2

2k2 + 2a1)(2k2 − 3).
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So,

N4 +
√

(N4)2 −M4 < 0

W8 > 0 if a2 < 0 and k >
√

3
2

.

W8 ≤ 1√
a1

: which always true when P8 exists. Therefore, P8 exists with these

conditions:

P8 exists ⇒ a2 < 0 and k >
√

3
2
.

Evaluating the lineraization of the system (8.2.5) at Q = 1, y = 0 and x = x8 gives

us the following three eigenvalues

λ1 =

√
3

3
√
a1

(
−3
√

2a2kx8

√
1− x2

8 + 2
√
a1(3x2

8 − 1)

)
, (8.2.28a)

λ2 =

√
3

2
√
a1

(
−
√

2a2kx8

√
1− x2

8 + 2
√
a1(x2

8 − 1)

)
, (8.2.28b)

λ3 =
1

2
√
a1

(
−3
√

6a2kx8

√
1− x2

8 + 2
√

3a1(3x2
8 − 1)− 4

√
2a1kx8

)
. (8.2.28c)

Note that, by plugging y = 0, Q = 1 into the equation of x′ in (8.2.5) we obtain the

following expression:
√

6a2k
√

1− x2
8

2
√
a1

=
√

3x8 −
√

2k, (8.2.29)

which can simplify our expression for the eigenvalues to

λ1,2 =
√

2kx8 −
√

3, (8.2.30a)

λ3 = 2

(
√

2kx8 −
√

3

3

)
. (8.2.30b)



162

Sink conditions:

1. λ1,2 < 0 :⇒ −
√

3a2k
2
[
N5 +

√
(N5)2 −M5

]
< 0, where

N5 := 1
a2k2

(3(a2
2k2 + 2a1)− 4k2a1),

M5 := 1
a22k4

((a2
2k2 + 2a1)(3− 2k2)(3a2

2k2 + 2a1(3− 2k2)).

Thus, λ1,2 < 0 if

a2 < 0, k >

√
3

2
. (8.2.31)

2. λ3 < 0⇒
√

3− 2
√

3a2k
2
[
N6 +

√
(N6)2 −M6

]
< 0, where

N6 := 1
a2k2

(a2
2k2 + 2a1− 4k2a1),

M6 := 1
a22k4

((a2
2k2 + 2a1)(a2

2k2(1− 6k2) + 2a1(1− 2k2)2).

Thus, λ3 < 0 if

a2 < 0, k >

√
3

2
; a2

2 >
2a1

k2
(2k2 − 1) and2a1(1− 2k2)2 > a2

2k2(6k2 − 1).

(8.2.32)

Hence, P8 is a sink if these following conditions hold

a2 < 0, k >

√
3

2
; a2

2 >
2a1

k2
(2k2 − 1) and 2a1(1− 2k2)2 > a2

2k2(6k2 − 1).

Stability of Equilibrium Point P9

In order for P9 to exist we need to find the conditions in the parameters where W,x

are real and W ∈
[
0, 1√

a1

]
.
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W,x are real when B > 0

B > 0 =⇒ 3a2
2k2 + 6a1 − 4k2a1 > 0

⇒ 3a2
2k2 + 2a1(3− 2k2) > 0

Thus, there are two cases for B > 0 :

B > 0 =⇒
1) If k <

√
3

2
⇒ B > 0 always.

2) If k >

√
3

2
⇒ B > 0 if a2

2 >
2a1

3k2
(2k2 − 3).

.

W9 > 0 : W9 > 0⇒ 2a2k
2 −
√

2B < 0, which can be written of the form

N7 +
√

(N7)2 −M7 < 0, (8.2.33)

where

N7 := 2a2k
2, M7 := 2(a2

2k2 + 2a1)(2k2 − 3).

So,

N7−
√

(N7)2 −M7 > 0

W9 > 0 if a2 > 0 and k >
√

3
2

.

W9 ≤ 1√
a1

: which always true when P9 exists. Therefore, P9 exists with these

conditions:

P9 exists ⇒ a2 > 0; k >
√

3
2

and a2
2 > 2a1

3k2
(2k2 − 3) .
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Evaluating the lineraization of the system (8.2.5) at Q = −1, y = 0 and x = x9 gives

us the following three eigenvalues

λ1 =

√
3

3
√
a1

(
3
√

2a2kx9

√
1− x2

9 + 2
√
a1(1− 3x2

9)

)
, (8.2.34a)

λ2 =

√
3

2
√
a1

(√
2a2kx9

√
1− x2

9 + 2
√
a1(1− x2

9)

)
, (8.2.34b)

λ3 =
1

2
√
a1

(
3
√

6a2kx9

√
1− x2

9 + 2
√

3a1(1− 3x2
9)− 4

√
2a1kx9

)
. (8.2.34c)

Note that, by plugging y = 0, Q = −1 into the equation of x′ in (8.2.5) we obtain

the following expression:

√
6a2k

√
1− x2

9

2
√
a1

=
√

3x9 −
√

2k, (8.2.35)

which can simplify our expression for the eigenvalues to

λ1,2 =
√

2kx9 +
√

3, (8.2.36a)

λ3 = 2

(
√

2kx9 +

√
3

3

)
. (8.2.36b)

Sink conditions:

1. λ1,2 < 0 :⇒ −
√

3a2k
2
[
N8 +

√
(N8)2 −M8

]
< 0, where

N8 := 1
a2k2

(3(a2
2k2 + 2a1)− 4k2a1),

M8 := 1
a22k4

((a2
2k2 + 2a1)(3− 2k2)(3a2

2k2 + 2a1(3− 2k2)).

Thus, λ1,2 always positive since P9 exists only when a2 > 0..

2. λ3 < 0⇒
√

3− 2
√

3a2k
2
[
N9 +

√
(N9)2 −M9

]
< 0, where

N9 := 1
a2k2

(a2
2k2 + 2a1 + 4k2a1),

M9 := 1
a22k4

((a2
2k2 + 2a1)(a2

2k2(1− 6k2) + 2a1(1− 2k2)2).
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Thus, λ3 > 0 always positive. Hence, P9 is a source if

a2 > 0, k >

√
3

2
; a2

2 >
2a1

3k2
(2k2 − 3).

Thus, P9 is not a sink.

Stability of Equilibrium Point P10

In order for P10 to exist we need to find the conditions in the parameters where W,x

are real and W ∈
[
0, 1√

a1

]
.

W, x are real when B > 0

B > 0 =⇒ 3a2
2k2 + 6a1 − 4k2a1 > 0

⇒ 3a2
2k2 + 2a1(3− 2k2) > 0

Thus, there are two cases for B > 0 :

B > 0 =⇒
1) If k <

√
3

2
⇒ B > 0 always.

2) If k >

√
3

2
⇒ B > 0 if a2

2 >
2a1

3k2
(2k2 − 3).

.

W10 > 0 : W10 > 0⇒ 2a2k
2 +
√

2B > 0, which can be written of the form

N10 +
√

(N10)2 −M10, (8.2.37)

where

N10 := 2a2k
2, M10 := 2(a2

2k2 + 2a1)(2k2 − 3).

So,

N1 +
√

(N1)2 −M1 > 0 if



166

• If a2 > 0 then W10 > 0 always positive.

• If a2 < 0 then W10 > 0 provided M10 > 0⇒ k <
√

3
2
.

Therefore,

W10 > 0 =⇒
1) If a1 > 0, a2 any value⇒ W10 > 0 if k <

√
3

2
.

2) If a1 > 0, a2 > 0⇒ W10 > 0 if k >

√
3

2

.

W10 ≤ 1√
a1

: which always true when P10 exists. Therefore, P10 exists with these

conditions:

P10 exists =⇒
1) If k <

√
3

2

2) If k >

√
3

2
, a2 > 0 and a2

2 >
2a1

3k2
(2k2 − 3).

.

Evaluating the lineraization of the system (8.2.5) at Q = −1, y = 0 and x = x10 gives

us the following three eigenvalues

λ1 =

√
3

3
√
a1

(
3
√

2a2kx10

√
1− x2

10 + 2
√
a1(1− 3x2

10)

)
, (8.2.38a)

λ2 =

√
3

2
√
a1

(√
2a2kx10

√
1− x2

10 + 2
√
a1(1− x2

10)

)
, (8.2.38b)

λ3 =
1

2
√
a1

(
3
√

6a2kx10

√
1− x2

10 + 2
√

3a1(1− 3x2
10)− 4

√
2a1kx10

)
. (8.2.38c)

Note that, by plugging y = 0, Q = −1 into the equation of x′ in (8.2.5) we obtain

the following expression:

√
6a2k

√
1− x2

10

2
√
a1

=
√

3x10 −
√

2k, (8.2.39)
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which can simplify our expression for the eigenvalues to

λ1,2 =
√

2kx10 +
√

3, (8.2.40a)

λ3 = 2

(
√

2kx10 +

√
3

3

)
. (8.2.40b)

Sink conditions:

1. λ1,2 < 0 :⇒ −
√

3a2k
2
[
N11 +

√
(N11)2 −M11

]
< 0, where

N11 := 1
a2k2

(3(a2
2k2 + 2a1)− 4k2a1),

M11 := 1
a22k4

((a2
2k2 + 2a1)(3− 2k2)(3a2

2k2 + 2a1(3− 2k2)).

Thus, λ1,2 > 0 always.

2. λ3 < 0⇒
√

3− 2
√

3a2k
2
[
N12 +

√
(N12)2 −M12

]
< 0, where

N12 := 1
a2k2

(a2
2k2 + 2a1 + 4k2a1),

M12 := 1
a22k4

((a2
2k2 + 2a1)(a2

2k2(1− 6k2) + 2a1(1− 2k2)2).

Thus, λ3 > 0 if a2 > 0, k >
√

3
2
, but a2 < 0, k <

√
3
2
, then λ3 < 0.

Hence, P10 is a source if a2 > 0, k >
√

3
2
, but if a2 < 0; and k <

√
3
2
, then P10 is

saddle. Thus, P10 is not a sink.



168

Stability of Equilibrium Point P11

Recall the 3D system

x′ = (1− c2y2 − x2)(
√

2k −
√

3xQ) +

√
3

3
xy(1−Q2) +

√
6

2

a2kQ
√

1− x2 − c2y2(1− x2)
√
a1

,

(8.2.41a)

y′ =

√
3

3c2
(1−Q2)(c2y2 − 1)−

√
3yQ(1− c2y2 − x2)−

√
6

2

a2kxQy
√

1− x2 − c2y2

√
a1

,

(8.2.41b)

Q′ =

√
3(1−Q2)

3

[
Qy − 3c2y2 − 3x2 + 1 +

3
√

2

2

a2kx
√

1− c2y2 − x2

√
a1

]
, (8.2.41c)

which has the equilibrium point P11;

x11 =

√
6

2k
, y11 =

√
4k2a1 − 3(a2

2k2 + 2a1)

2kc
√
a1

, Q11 = 1 W11 = −
√

3a2

2a1

. (8.2.42)

P11 exists when a2 < 0 (since W11 > 0); k >
√

3
2

and a2
2k2 < 2a1

3
(2k2 − 3) (because

y11 is real). Evaluating the linearization of the system (8.2.41) at P11 leads to three

eigenvalues:

λ1 =
a2

√
6[3(a2

2k2 + 2a1)− 4k2a1]

4a1

, (complex with real part zero), (8.2.43a)

λ2 = −
a2

√
6[3(a2

2k2 + 2a1)− 4k2a1]

4a1

, (complex with real part zero) (8.2.43b)

λ3 = −
√

3

3ka1c

(
−4a1kc+

√
a1[4k2a1 − 3(a2

2k
2 + 2a1)]

)
(real). (8.2.43c)

λ3 is real and negative if these two conditions hold: c < 1
2

and 3(a2
2k2 + 2a1) <

4a1k
2(1 − 4c2). Since P11 have two purely complex eigenvalues (i,e., P11 called a

non-hyperbolic equilibrium point), then Hartman Grobman theorem fails to tell the

stability of P11. Thus, we will analyze the stability of such equilibrium point using
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different approach. Since Q = 1 is an invariant set, then plugging Q = 1 into the 3D

system (8.2.41) leads to

x′ = (1− c2y2 − x2)(
√

2k −
√

3x) +

√
6

2

a2k
√

1− x2 − c2y2(1− x2)
√
a1

, (8.2.44a)

y′ = −
√

3y(1− c2y2 − x2)−
√

6

2

a2kxy
√

1− x2 − c2y2

√
a1

. (8.2.44b)

Doing the linreaization around P11 of the system (8.2.44) to second order terms yields

x̄′ = Ax̄−Bȳ + Cx̄2 +Dx̄ȳ + Eȳ2, (8.2.45a)

ȳ′ = Fx̄− Aȳ +Gx̄2 +Hx̄ȳ + Jȳ2, (8.2.45b)

where x̄, ȳ define as

x̄ = x− x11, ȳ = y − y11. (8.2.46)

and A,B,C,D,E, F,G,H, J are constants (i.e., arbitrary functions of the parameters

a1; a2; k; c) defined by

A :=

√
3

4k2a1

[
3(a2

2k2 + 2a1)− 4k2a1

]
, (8.2.47a)

B :=

√
2c(2k2 − 3)

4k2
√
a1

√
4k2a1 − 3(a2

2k2 + 2a1), (8.2.47b)

C :=

√
2(3a2

4k4 + a1(2k2 − 3)(2a1 − a2
2k2))

4k3a1a2
2

, (8.2.47c)

D :=

√
3a1c(2k

2 − 3)
√

4k2a1 − 3(a2
2k2 + 2a1)

3k3a2
2

, (8.2.47d)

E :=

√
2c2(2k2 − 3) [−3a2

2k2 + a1(2k2 − 3)]

6a2
2k3

, (8.2.47e)

F :=
3
√

2(a2
2k2 + 2a1)

√
4k2a1 − 3(a2

2k2 + 2a1)

8ck2a1
3
2

, (8.2.47f)

G := −
√

3(a2
2k2 + 2a1)

√
4k2a1 − 3(a2

2k2 + 2a1)

4k3ca2
2
√
a1

, (8.2.47g)
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H := −
√

2(a2
2k2 + 2a1)(−3a2

2k2 + 2a1k
2 − 3a1)

2a1a2
2k3

, (8.2.48a)

J :=

√
3c
√

4k2a1 − 3(a2
2k2 + 2a1) [6a2

2k2 − a1(2k2 − 3)]

6a2
2k3
√
a1

. (8.2.48b)

Rescaling x̄ and ȳ as follows;

x̄ = εX, ȳ = εY, where ε small. (8.2.49)

Thus, the system (8.2.45) becomes

X ′ = AX −BY + ε(CX2 +DXY + EY 2), (8.2.50)

Y ′ = FX − AY + ε(GX2 +HXY + JY 2). (8.2.51)

Now, changing the system in equation (8.2.50 - 8.2.51) from two variables to one

variable in terms of Y as follow:

First, from (8.2.51) X is given by

X =
1

F

(
Y ′ + AY − ε(GX2 +HXY + JY 2)

)
. (8.2.52)

Next, differentiating (8.2.51) then using (8.2.50); (8.2.51) and (8.2.52), and keeping

only the second order terms of ε, yields to

Y ′′+w2Y = ε(α1Y
2+α2Y

′Y +α3Y
′2)+ε2(α4Y

3+α5Y
′Y 2+α6Y

′2Y +α7Y
′3), (8.2.53)



171

where w =
√
FB − A2, and α1, α2, α3, α4, α5, α6, α7 are constants (i.e., arbitrary func-

tions of the parameters a1; a2; k; c) defined by

α1 :=
3ca2

2k (−3 a2
2k2 + 2 k2a1 − 6 a1)

√
4k2a1 − 3(a2

2k2 + 2a1)

4a1
3/2 (a2

2k2 + 2 a1)
, (8.2.54a)

α2 :=
2
√

3a1c
√

4k2a1 − 3(a2
2k2 + 2a1)k

a2
2k2 + 2 a1

, (8.2.54b)

α3 := −
2
√
a1ck (−3 a2

2k2 + a1(2k2 − 3))√
−3 a2

2k2 + 4 k2a1 − 6 a1 (a2
2k2 + 2 a1)

, (8.2.54c)

α4 :=
−c2k2

3a1(a2
2k2 + 2a1)2

[
a2

2k4(9a2
4 − 12a1a2

2 + 4a1
2)

+ 4k2a1(9a2
2(a2

2 − a1) + 4a1
2) + 12a1

2(3a2
2 − 2a1)

]
, (8.2.54d)

α5 :=
4
√

3 (−3 a2
2k2 + 2 k2a1 − 6 a1) k2a1 c

2

3 (a2
2k2 + 2 a1)2 , (8.2.54e)

α6 :=
−8c2 (−3 a2

2k2 + 2 k2a1 − 6 a1)
2
a1 k

2

3 (a2
2k2 + 2 a1)2 (−3 a2

2k2 + 4 k2a1 − 6 a1)
, (8.2.54f)

α7 := − 32
√

3a1
3c2k2 (−3 a2

2k2 + 2 k2a1 − 6 a1)

27 a2
2 (−3 a2

2k2 + 4 k2a1 − 6 a1) (a2
2k2 + 2 a1)2 . (8.2.54g)

Multiple Scales Method

Here we seek an asymptotic approximation for Y in equation (8.2.53) of the following

form

Y ≡ Y(t, τ, s) ∼ Y0(t, τ, s) + εY1(t, τ, s) + ε2Y2(t, τ, s), (8.2.55)

for three time scales t, τ = εt, s = ε2t. Substituting (8.2.55) into (8.2.53) and then

collecting coefficients of equal power of ε gives
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Y0tt + Y0 + ε

(
Y1tt + 2Y0tτ + w2Y1 − α1Y0

2 − α2Y0Y0t − α3Y0t2

)
+ ε

(
2Y0ts

+Y0ττ + 2Y1tτ + Y2tt + w2Y2 − 2α3Y0t(Y0τ + Y1t)− α2Y0tY1

)
+ ε2

(
−α2Y0

(Y0τ + Y1t)− 2α1Y0Y1 − α7Y0t
3 − α6Y0Y0t

2 − α5Y0
2Y0t − α4Y0

3

)
+O(ε3) = 0.

Note that we use the symbol Yt in place of ∂Y
∂t

(similarly for Yτ ) for simplification.

Equating coefficients of like powers of ε to 0, gives the following sequences of linear

partial differential equations:

O(1) : Y0tt + w2Y0 = 0, (8.2.56a)

O(ε) : Y1tt + w2Y1 = −2Yotτ + α1Y0
2 + α2Y0Yot + α3Yot2, (8.2.56b)

O(ε2) : Y2tt + w2Y2 = −2Yots + 2α1Y0Y1 + α2(Y1Y0)t + 2α3Y0tY1t

+ α4Y0
3 + α5Y0tY0

2 + α6Y0Y0t
2 + α7Y0t

3. (8.2.56c)

Equation (8.2.56a) has the following solution

Y0 = A(s)ewit + A(s)e−wit. (8.2.57)

Then equation (8.2.56b) becomes

A(s)2e2wit(α1 + α2iw − α3w
2) + A(s)

2
e−2wit(α1 − iα2w − α3w

2) (8.2.58)

+2A(s)A(s)(α1 + α3w
2), (8.2.59)

which yields to

Y1 = −1
3
A(s)2e2iwt(α1 + α2iw − α3w

2)− 1
3
A(s)

2
e−2iwt(α1 − α2iw − α3w

2)

−2
3
A(s)A(s)(α1 + α3w

2).
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Hence, the term of order ε2 leads to

Y2tt + w2Y2 = −2Yots + 2α1Y0Y1 + α2(Y1Y0)t + 2α3Y0tY1t

+α4Y0
3 + α5Y0tY0

2 + α6Y0Y0t
2 + α7Y0t

3.

Substituting Y0 and Y1, followed by some calculation yields the following coefficient

of ewit

iAs = 1
2
|A(s)|2A(s)

[(
−2α1

2 − 2α1α3w
2 + 3α4 + 1

3
α2

2w2 + 4
3
w4α3

2
)

+i
(
−5

3
α2w(α1 + α3w

2) + α5w + 3α7w
3
)]
. (8.2.60)

Note that the expression in front of i in the right hand side of equation (8.2.60) is

equal to zero (i.e., −5
3
α2w(α1 +α3w

2) +α5w+ 3α7w
3 = 0). Suppression of secularity

requires the above equation (i.e., 8.2.60) to be zero. The substitution A = ReiΦ,

yields

Φs = −1
2
R2
(
−2α1

2 − 2α1α3w
2 + 3α4 + 1

3
α2

2w2 + 4
3
w4α3

2
)
. (8.2.61)

Rs = 0. (8.2.62)

Therefore, the behaviour of the model near to P11 is oscillations. Note that the

expression in front of R2 in equation (8.2.62) can be simplified in terms of a1, a2, k, c

as follows
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β0 := −2α1
2 − 2α1α3w

2 + 3α4 + 1
3
α2

2w2 + 4
3
w4α3

2

β0 = − c2

4a1 3(a2 2k2+2 a1 )2k2

[
(81 a2

10k6 − 216 a1 a2
8k6 + 180 a1

2a2
6k6

−48 a1
3a2

4k6 + 486 a1 a2
8k4 − 882 a1

2a2
6k4 + 456 a1

3a2
4k4

−80 a1
4a2

2k4 + 972 a1
2a2

6k2 − 936 a1
3a2

4k2 + 144 a1
4a2

2k2

+64 a1
5k2 + 648 a1

3a2
4 − 72 a1

4a2
2 − 96 a1

5

]

When a1 = 3, a2 = −1, c = 1, k = 2 then β0 = 24
25
. Hence,

Y0 = A(s)ewit + A(s)e−wit = 2R cos

(
t

[
1− 24

25
ε2R2

])
. (8.2.63)

with the initial condition Y0(0) = 1,Y0t = 0 then R = 1
2
. Therefore,

Y0 = cos

(
t

[
1− 6

25
ε2
])

. (8.2.64)
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Numerical Plot

In figure 8.1, we plot for the solution of the system with 3 variables (x, y,Q) in (8.2.41)

Figure 8.1: Plot of the system (8.2.41) with a1 = 3, a2 = −1, c = 1, k = 2 with one
initial condition: [x(0) = 0.6, y(0) = 0.6, Q(0) = 0.999999]

As can be seen from figure 8.1 that the solutions for x, y oscillate and Q→ 1.

Note that, when we plot the solution of the system (8.2.53) with cos(t), without the

shift in figure 8.2 it shows the solutions are different. However, when we plot the solu-

tion of the system (8.2.53) with the multiple scalar approximation (cos
(
t
(
1− 24

25
ε2
))

)

in figure 8.3 with the shift it works.
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Figure 8.2: Plot of the system (8.2.53) with a1 = 3, a2 = −1, ε = 0.3; c = 1, k = 2
with cos(t) without the shift

Figure 8.3: Plot of the system (8.2.53) with a1 = 3, a2 = −1, ε = 0.3; c = 1, k = 2
with cos(T ) = cos

(
t
(
1− 24

25
ε2
))

with shift.

Stability of Equilibrium Point P12

P12 exists when a2 < 0 (since W11 > 0); k >
√

3
2

and a2
2k2 < 2a1

3
(2k2 − 3) (because

y11 is real). Evaluating the linearization of the system (8.2.41) at P11 leads to three
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eigenvalues:

λ1 =
a2

√
6[3(a2

2k2 + 2a1)− 4k2a1]

4a1

, (complex with real part zero), (8.2.65a)

λ2 = −
a2

√
6[3(a2

2k2 + 2a1)− 4k2a1]

4a1

, (complex with real part zero) (8.2.65b)

λ3 =

√
3

3ka1c

(
4a1kc+

√
a1[4k2a1 − 3(a2

2k
2 + 2a1)]

)
(real), (8.2.65c)

and always positive which implies that P12 is not attractor.

Stability of Equilibrium Point P13,14

We did same analysis as we earlier for P11 and we found that there is oscillations

which implies that P13,14 are center.
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In table (8.3) we summarizes of all the eigenvalues and the stability of all the equi-

librium points

Pt Eigenvalues Sink

P1

(√
3(2c2+1)

3c
,−
√

3(4c2−1)
3c

,−
√

3(4c2−1)
3c

)
No Sink

P2

(
−
√

3(2c2+1)
3c

,
√

3(4c2−1)
3c

,
√

3(4c2−1)
3c

)
Sink if c < 1

2

P ∗3

(
0,−2

√
3(y∗−2)

3
,−
√

2k
√

1− c2y∗2 +
√

3
)

Sink in two cases if k >
√

3
2
, c < 1

2

1) 4c2 + 3
2k2

< 1 then the sink part is
1
c

√
1− 3

2k2
< y∗ < 2

1) 4c2 + 3
2k2

> 1 then the sink part is

−1
c

√
1− 3

2k2
< y∗ < 1

c

√
1− 3

2k2

P ∗4

(
0,−2

√
3(y∗−2)

3
,
√

2k
√

1− c2y∗2 +
√

3
)

No sink

P ∗5

(
0, −2

√
3(y∗+2)
3

,−(
√

2k
√

1− c2y∗2 +
√

3)
)

Sink conditions:

y∗ > −2, k any value sink:
(1) c < 1

2
→ −2 < y∗ < 1

c
,

(2) c > 1
2
→ −1

c
< y∗ < 1

c
.

P ∗6

(
0,−2

√
3(y∗+2)

3
,
√

2k
√

1− c2y∗2 −
√

3
)

If y∗ > −2 two sink cases:

1) If k <
√

3
2
: two cases:

(a) If c < 1
2

sink in −2 < y∗ < 1
c

(b) If c > 1
2

sink in −1
c
< y∗ < 1

c

2) k >
√

3
2
: three sink portions:

(a) c < 1
2
; 4c2 + 3

2k2
> 1 the only

is a sink is: −2 < y∗ < 1
c

√
1− 3

2k2

(b) c < 1
2

sink in
1
c

√
1− 3

2k2
< y∗ < 1

c

(c) c > 1
2

sink in two parts:

−1
c
< y∗ < −1

c

√
1− 3

2k2

and 1
c

√
1− 3

2k2
< y∗ < 1

c
.

Table 8.3: Eigenvalues of the equilibrium points (P1,2 and P ∗3,4,5,6) of the system
(8.2.5); the sinks conditions. We use the notation B = 3(a2

2k
2 + 2a1)− 4a1k

2.
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Pt Eigenvalues Sink

P7

(√
2kx7 −

√
3,
√

2kx7 −
√

3, 2
(√

2kx7 −
√

3
3

))
Sink if 3- cases:

1) a2 > 0, k <
√

2
3

a2
2k2 > 2a1(2k2 − 1)

2a1(1− 2k2)2 > a2
2k2(6k2 − 1).

2) a2 < 0, k <
√

2
3

a2
2k2 < 2a1(2k2 − 1)

3) a2 < 0, k >
√

2
3

a2
2 > 2a1

3k2
(2k2 − 3).

P8

(√
2kx8 −

√
3,
√

2kx8 −
√

3, 2
(√

2kx8 −
√

3
3

))
Sink if a2 < 0, k >

√
3
2

a2
2k2 > 2a1(2k2 − 1)

2a1(1− 2k2)2 > a2
2k2(6k2 − 1).

P9

(√
2kx9 +

√
3,
√

2kx9 +
√

3, 2
(√

2kx9 +
√

3
3

))
No Sink

P10

(√
2kx10 +

√
3,
√

2kx10 +
√

3, 2
(√

2kx10 +
√

3
3

))
No sink

P11

(
a2
√

6B
4a1

,−a2
√

6B
4a1

,−
√

3
3ka1c

(−4a1kc+
√
−a1B)

)
Center

P12

(
a2
√

6B
4a1

,−a2
√

6B
4a1

,
√

3
3ka1c

(4a1kc+
√
−a1B)

)
Center

P13

(
a2
√

6B
4a1

,−a2
√

6B
4a1

,−
√

3
3ka1c

(4a1kc+
√
−a1B)

)
Center

P14

(
a2
√

6B
4a1

,−a2
√

6B
4a1

,
√

3
3ka1c

(−4a1kc+
√
−a1B)

)
Center

Table 8.4: Eigenvalues of the equilibrium points (P7,8,9,10,11,12,13,14) of the system
(8.2.5); the sinks conditions. We use the notation B = 3(a2

2k
2 + 2a1)− 4a1k

2.

Numerical Solutions for the 4D System in (8.2.1) into the Future

We plot the 4D system in equations (8.2.1) for different values of the parameters near

each of the sink equilibrium points and we obtain the following figures:
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Point P2: We plot the 4D system in (8.2.1) and we obtain that P2 is a sink when

c < 1
2
.

Figure 8.4: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1/4, k = 1 with three dif-
ferent initial conditions: [[x(0) = cos(60) sin(45), y(0) = 4 sin(60) cos(45), Q(0) =
0.5,W (0) = cos(45)], [x(0) = cos(45) sin(30), y(0) = 4 sin(45) cos(30), Q(0) =
0.3,W (0) = cos(30)], [x(0) = cos(90) sin(30), y(0) = 4 sin(90) cos(30), Q(0) =
0.1,W (0) = cos(30)]]. Note that CC = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.4 that x→ 0, y → −4;Q→ −1
2

and W → 0

(which is P2 when c = 1
4
). Note that, we have the same figure when a2 < 0 and for

any value of k > 0.

PointP ∗3 : We plot the 4D system in (8.2.1) and we obtain that P ∗3 is a sink in two

cases:

• If c < 1
2
; k >

√
3
2
; 4c2 + 3

2k2
> 1 then the part of the line that is a sink is

−1
c

√
1− 3

2k2
< y∗ < 1

c

√
1− 3

2k2
.
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• If c < 1
2
; k >

√
3
2
; 4c2 + 3

2k2
< 1 then the part of the line that is a sink is

1
c

√
1− 3

2k2
< y∗ < 2.

Case(1): c < 1
2
; k >

√
3
2
; 4c2 + 3

2k2
> 1

Figure 8.5: Plot of the system (8.2.1) with a1 = 1 = a2, c = 0.45, k = 1.5
with three different initial conditions: [[x(0) = 0.9377499667, y(0) = 0.5, Q(0) =
0.99,W (0) = 0.3], [x(0) = 0.7921489759, y(0) = 1, Q(0) = 0.99,W (0) = 0.5], [x(0) =
0.9389355675, y(0) = −0.8, Q(0) = 0.99,W (0) = 0.2]]. Note that C(t) = x2 + c2y2 +
a1W

2as t→∞.

Discussion: We can see from figure 8.5 that x→ 0.99;−1.6 < y < 1.6;Q→ 1 and

W → 0 which corresponds to P ∗3 at c = 0.45.
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Case(2): c < 1
2
; k >

√
3
2
; 4c2 + 3

2k2
< 1

Figure 8.6: Plot of the system (8.2.1) witha1 = 1 = a2, c = 1
4
, k = 2 with three dif-

ferent initial conditions: [[x(0) = 0.7071067812, y(0) = 2.8, Q(0) = 0.99,W (0) =
0.1], [x(0) = 0.84330265417, y(0) = 2.15, Q(0) = 0.99,W (0) = 0.02], [x(0) =
0.8510434772, y(0) = 2.1, Q(0) = 0.99,W (0) = 0.01]]. Note that C(t) = x2 + c2y2 +
a1W

2as t→∞.

Discussion: We can see from figure 8.6 that x → 0.9; 3.13 < y < 2;Q → 1 and

W → 0 which which corresponds to P ∗3 at c = 0.25.

Point P ∗5 : We plot the 4D system in (8.2.1) and we obtain that P ∗5 is a sink in two

cases:

1. If c < 1
2

then −2 < y∗ < 1
c

is the only portion of the line of sink.

2. If c > 1
2

then P ∗5 is a sink in the whole line −1
c
< y∗ < 1

c
.
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Case (1): c < 1
2
:

Figure 8.7: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1
4
, k = 2 with three

different initial conditions: [[x(0) = 0.5, y(0) = 2.828427125, Q(0) = −0.99,W (0) =
0.5], [x(0) = 0.55, y(0) = 1.264911064, Q(0) = −0.99,W (0) = 0.3], [x(0) = 0.7, y(0) =
2.792848009, Q(0) = −0.99,W (0) = 0.15]]. Note that C(t) = x2 + c2y2 + a1W

2 as
t→∞.

Discussion: We can see from figure 8.7 that −4 < y < 4, Q → −1 and W → 0

which corresponds to P ∗5 . Note that we have the same figure for a2 < 0 and for any

value of k > 0.



184

Case(2): c > 1
2
:

Figure 8.8: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1
4
, k = 2 with three dif-

ferent initial conditions: [[x(0) = 0.5, y(0) = −0.7071067812, Q(0) = −0.99,W (0) =
0.5], [x(0) = 0.5, y(0) = 0.8124038405, Q(0) = −0.99,W (0) = 0.3], [x(0) = 0.5, y(0) =
−0.8529361055, Q(0) = −0.99,W (0) = 0.15]]. Note that C(t) = x2 + c2y2 + a1W

2 as
t→∞.

Discussion: We can see from figure 8.8 that −1 < y < 1, Q → −1 and W → 0

which corresponds to P ∗5 .

Point P ∗6 : We plot the 4D system in (8.2.1) and we obtain that P ∗6 is a sink in

several cases:

1. If k <
√

3
2
, we have two cases:

(a) If c < 1
2

the sink is in the portion −2 < y∗ < 1
c
.

(b) If c > 1
2

the sink is in the portion −1
c
< y∗ < 1

c
.

2. If k >
√

3
2
, we have two cases:
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(a) If c < 1
2
; 4c2+ 3

2k2
> 1. then the sink is in the portion−2 < y∗ < 1

c

√
1− 3

2k2
.

(b) If c < 1
2

the sink is in the portion 1
c

√
1− 3

2k2
< y∗ < 1

c

(c) If c > 1
2

the sink is in the two portion: −1
c
< y∗ < −1

c

√
1− 3

2k2
; 1
c

√
1− 3

2k2
<

y∗ < 1
c
.

Case (1a): when k <
√

3
2

and c < 1
2

Figure 8.9: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1
4
, k = 1

2
with

three different initial conditions: [[x(0) = −0.5, y(0) = 2.828427125, Q(0) =
−0.99,W (0) = 0.5], [x(0) = −0.5, y(0) = 3.411744422, Q(0) = −0.99,W (0) =
0.15], [x(0) = −0.5, y(0) = 1.549193338, Q(0) = −0.999,W (0) = 0.2]]. Note that
C(t) = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.9 that −2 < y < 4;Q → −1, and W → 0

which corresponds to P ∗6 .
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Case (1b): when k <
√

3
2

and c > 1
2

Figure 8.10: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1, k = 1
2

with
three different initial conditions: [[x(0) = −0.5, y(0) = −0.7071067812, Q(0) =
−0.8,W (0) = 0.5], [x(0) = −0.3, y(0) = −0.9055385138, Q(0) = −0.99,W (0) =
0.3], [x(0) = −0.5, y(0) = 0.8529361055, Q(0) = −0.79,W (0) = 0.15]]. Note that
C(t) = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.10 that −1 < y < 1;Q → −1 and W → 0

which corresponds to P ∗6 at c = 1.
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Case (2a): when k >
√

3
2
; 4c2 + 3

2k2
> 1 and c < 1

2

Figure 8.11: Plot of the system (8.2.1) with a1 = 1 = a2, c = 0.45, k = 2
with three different initial conditions: [[x(0) = 0.5, y(0) = 1.571348403, Q(0) =
−0.9,W (0) = 0.5], [x(0) = 0.3, y(0) = 2.012307808, 8, Q(0) = −0.99,W (0) =
0.3], [x(0) = 0.8, y(0) = 1.29094449, Q(0) = −0.9,W (0) = 0.15]]. Note that C(t) =
x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.11 that −2 < y < 2.3;Q → −1 and W → 0

which corresponds to P ∗6 at c = 1
2
.
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Case (2b): when k >
√

3
2

and c < 1
2

Figure 8.12: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1
4
, k = 2 with

three different initial conditions: [[y(0) = 3.815547143, Q(0) = −0.99, x(0) =
−0.3,W (0) = 0.01], [y(0) = 3.664096069, Q(0) = −0.9999, x(0) = −0.4,W (0) =
0.03], [y(0) = 3.919165217, Q(0) = −0.999, x(0) = −.2,W (0) = 0.003]]. Note that
C(t) = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.12 that x → 0.5; 2.3 < y < 4;Q → −1 and

W → 0 which corresponds to P ∗6 at c = 1
4
.
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Case (2c): when k >
√

3
2

and c > 1
2

Figure 8.13: Plot of the system (8.2.1) with a1 = 1 = a2, c = 2, k = 2 with three dif-
ferent initial conditions:[[x(0) = −0.2, y(0) = −.4898956522, Q(0) = −0.99,W (0) =
0.003], [x(0) = −0.3, y(0) = −0.4769693386, Q(0) = −0.99,W (0) = 0.001], [x(0) =
−0.25, y(0) = −.4841218855, Q(0) = −0.99,W (0) = 0.002]]. Note that C(t) =
x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.13 that 0.79 < y < 1;Q → −1 and W → 0

which corresponds to P ∗6 at c = 1.

P7 is a sink if there cases:

• If a2 > 0 and k <
√

3
2
; a2

2k2 + 2a1(1− 2k2) > 0 and a2
2k2(1− 6k2) + 2a1(1−

2k2)2 > 0.

• If a2 < 0, k <
√

3
2
; and a2

2k2 + 2a1(1− 2k2) < 0.

• If a2 < 0, k >
√

3
2
; and a2

2 > 2a1
3k2

(2k2 − 3); a2
2k2 + 2a1(1− 2k2) < 0



190

Point P7: We plot the 4D system in (8.2.1) and we obtain that P7 is a sink in there

cases:

Case(1): when a1 > 0; a2 > 0, k <
√

3
2

Figure 8.14: Plot of the system (8.2.1) with a1 = 1 = a2, c = 1, k = 0.45 with
three different initial conditions: [[x(0) = 0.45, y(0) = −0.8803408431, Q(0) =
0.99,W (0) = 0.15], [x(0) = 0.83, y(0) = −0.5487257967, Q(0) = 0.99,W (0) =
0.1], [x(0) = 0.5, y(0) = 0.8660253980, Q(0) = 0.9,W (0) = 0.15]]. Note that
C(t) = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.14 that x→ 0.6; y → 0;Q→ 1 and W → 0.8

which corresponds to P7 at c = 1; a1 = 1 = a2.
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Case(2): when a1 > 0; a2 < 0, k <
√

3
2

Figure 8.15: Plot of the system (8.2.1) with a1 = 1; a2 = −1
2
, c = 1, k = 0.75

with three different initial conditions: [[x(0) = 0.83, y(0) = −0.5395368384, Q(0) =
0.99,W (0) = 0.1], [x(0) = 0.5, y(0) = 0.8660253922, Q(0) = 0.99,W (0) =
0.0001], [x(0) = 0.45, y(0) = −0.86674675786, Q(0) = 0.9,W (0) = 0.15]]. Note that
C(t) = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.15 that x→ 0.4; y → 0;Q→ 1 and W → 0.6

which corresponds to P7 at c = 1; a1 = 1; a2 = −1
2
.
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Case(3): when a1 > 0; a2 < 0, k >
√

3
2

Figure 8.16: Plot of the system (8.2.1) with a1 = 1; a2 = −1, c = 1, k = 2 with three
different initial conditions: [[x(0) = 0.45, y(0) = 0.8803408431, Q(0) = 0.99,W (0) =
0.15], [x(0) = 0.15, y(0) = −0.8529361055, Q(0) = 0.99,W (0) = 0.5], [x(0) =
0.1, y(0) = 0.5916079783, Q(0) = 0.9,W (0) = 0.8]]. Note that C(t) = x2+c2y2+a1W

2

as t→∞.

Discussion: We can see from figure 8.16 that x→ 0.2; y → 0;Q→ 1 and W → 0.97

which corresponds to P7 at c = 1; a1 = 1; a2 = −1
2
.
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Point P8: We plot the 4D system in (8.2.1) and we obtain that P8 is sink when

a2 < 0 and k >
√

3
2
.

Figure 8.17: Plot of the system (8.2.1) with a1 = 1, a2 = −1, c = 1, k = 1
with three different initial conditions: [[x(0) = 0.9, y(0) = 0.3872983346, Q(0) =
0.99,W (0) = 0.2], [x(0) = 0.45, y(0) = 0.8803408431, Q(0) = 0.99,W (0) =
0.15], [x(0) = 0.15, y(0) = −0.8529361055, Q(0) = 0.9,W (0) = 0.5]]. Note that
C(t) = x2 + c2y2 + a1W

2 as t→∞.

Discussion: We can see from figure 8.17, y → 0; W → 0.8; x→ −0.6 and Q→ 1.

which corresponds to P8 at c = 1; a1 = 1; a2 = −1, k = 2.

Inflation:

Evaluating each of the equilibrium point in table (8.1) at the deceleration parameter

in equation (8.1.7) we obtain

1. q at P1:

q
∣∣
P1

=
1

2c2
> 0, (8.2.66)
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2. q at P2:

q
∣∣
P2

=
1

2c2
> 0, (8.2.67)

3. q at P ∗3 :

q
∣∣
P ∗3

= 2 > 0, (8.2.68)

4. q at P ∗4 :

q
∣∣
P ∗4

= 2 > 0, (8.2.69)

5. q at P ∗5 :

q
∣∣
P ∗5

= 2 > 0, (8.2.70)

6. q at P ∗6 :

q
∣∣
P ∗6

= 2 > 0, (8.2.71)

7. q at P7:

q
∣∣
P7

=

√
2a2k

2
√
B − (a2

2k
2 + 2a1) + 4a1k

2

(a2
2k2 + 2a1)

. (8.2.72)

8. q at P8:

q
∣∣
P8

=
−
√

2a2k
2
√
B − (a2

2k
2 + 2a1) + 4a1k

2

(a2
2k2 + 2a1)

. (8.2.73)

9. q at P9:

q
∣∣
P9

=

√
2a2k

2
√
B − (a2

2k
2 + 2a1) + 4a1k

2

(a2
2k2 + 2a1)

, (8.2.74)

10. q at P10:

q
∣∣
P10

=
−
√

2a2k
2
√
B − (a2

2k
2 + 2a1) + 4a1k

2

(a2
2k2 + 2a1)

, (8.2.75)
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11. q at P11:

q
∣∣
P11

= 2 > 0, (8.2.76)

12. q at P12:

q
∣∣
P12

= 2 > 0, (8.2.77)

13. q at P13:

q
∣∣
P13

= 2 > 0, (8.2.78)

14. q at P14:

q
∣∣
P14

= 2 > 0. (8.2.79)

There are three cases where P7 has inflationary attractor:

• If a2 > 0; k <
√

3
2
; 3a2

2k2 + 2a1(1− 2k2) > 0 and a2
2k2(1− 6k2) + 2a1(1−

2k2)2 > 0.

• If a2 < 0; k <
√

3
2
; 3a2

2k2 + 2a1(1− 2k2) < 0 and a2
2k2(1− 6k2) + 2a1(1−

2k2)2 < 0.

• If a2 < 0, k >
√

3
2
; and a2

2 > 2a1
3k2

(2k2 − 3); a2
2k2 + 2a1(1− 2k2) < 0.

All other equilibrium points do not have an inflationary solution since q positive at

each equilibrium points.



Chapter 9

Discussion

In part II of this thesis, we have studied spherically symmetric Einstein-Aether models

with a scalar field; whose potential depends on the time-like “Aether” vector field

through the expansion and shear scalars. These models are also solutions of the IR

limit of Horava gravity [19]. We used the 1+3 frame formalism [5, 44] to write down

the evolution equations for non-comoving scalar field spherically symmetric models.

We also introduced bounded normalized variables. The formalism is particularly

well-suited for numerical and qualitative analysis.

In particular, we considered the “spatially homogeneous Kantowski-Sachs models”.

We investigated a special case where we assumed

cθ ≡ c1 + 3c2 + c3 = 0, and a3 = 0, (9.0.1)

and analyzed the qualitative behaviour. First, we derived the general evolution equa-

tions in terms of expansion-normalized variables, which reduce to a five dynamical

system with two constraints. Second, one of the constraints allow us to eliminate one

variable (z) globally which leads to a four dimensional dynamical system with one

constraint. Third, we used the W− substitution, which leads to three dimensional

dynamical system. Finally, we have studied the local stability of the equilibrium

196
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points of the dynamical system, corresponding to physically realistic solutions. We

are especially interested in the possible inflationary behaviour of the models for dif-

ferent ranges of the parameters where a1 > 0, c > 0, k > 0 and a2 could be either

positive or negative signs.

For P1,2 and the lines of equilibrium points P ∗3,4,5,6, we have W equal to zero. There-

fore, we can not globally make a W− substitution to analyze the stability of such

an equilibrium points. Thus, to study the stability in the neighbourhood of these

equilibrium points we eliminate the variable y. We found that when c < 1
2
; k >

√
3
2
,

P2 is a sink and P ∗3 ; P ∗6 are sinks in the portion −2 < y∗ < 1
c

√
1− 3

2k2
. In addi-

tion, for any value of k, P ∗5 is a sink in two portion c < 1
2
; −2 < y∗ < 1

c
and

c > 1
2
; −1

c
< y∗ < 1

c
.

For the points P7,8,9,10,11,12,13,14, we used the W substitution to study the stability.

We found that when k <
√

3
2
, there is only the unique shear-free, zero curvature

(FLRW) inflationary future attractor at P7. When k <
√

3
2

point P8 does not exist.

For k >
√

3
2
, P8 is sink but not inflationary.

For P11,12,13,14, we found these equilibrium point have a pair of purely complex eigen-

values and the third eigenvalue is real. We analysis these points at the invariant

Q = 1, which leads to two dynamic system. Then, reduced to dynamic system with

one variable. Finally, we used the multiple scale method to analysis the approxima-

tion solution of reduce system and we found that there is oscillation. To illustrate this,

for instance, P11 have a pair of purely complex eigenvalue and the third eigenvalue is
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negative when these two conditions hold; c < 1
2

and 3(a2
2k2 + 2a1) < 4a1k

2(1− 4c2).

After plugging Q = 1, we studied the simplify differential equation

Y ′′+w2Y = ε(α1Y
2 +α2Y

′Y +α3Y
′2)+ε2(α4Y

3 +α5Y
′Y 2 +α6Y

′2Y +α7Y
′3), (9.0.2)

;where the parameters are defined earlier, using the multiple scale method and we

found that there is oscillations which implies that P11 is center, similarly for P13, P14.

In future work we shall investigate the general Kantowski-Sachs models when a3 6= 0

and cθ 6= 0. In particular, it would be of interest to determine whether or not these

model will have more inflationary solutions than the cases we have studied in this

part of the thesis.



Chapter 10

Conclusion

In this thesis we have investigated two applications of cosmological models in Einstein-

Aether models with scalar field, which are also solutions of the IR limit of Horava

gravity [32]. We used the 1+3 frame formalism [30, 44, 45] to write down the evolution

equations. In each of these two class of models, we derive the evolution equations

in terms of expansion-normalized variables, which reduce to a dynamical system.

Then, we study the local stability of the equilibrium points of the dynamical system

corresponding to physically realistic solutions. We are especially interested in the

possible inflationary behaviour of the models.

In the first application, we investigated the qualitative behaviour of isotropic and

Anisotropic model. In the isotropic model, we study two sub cases. In case (1) (i.e.,

V (φ, θ), µ = 0), we found there is we found that the equilibrium point P0 is a sink

but not inflationary and P3,4 are inflationary saddles. In case (1b) (i.e., V (φ, θ),

µ > 0), we found that if µ > µc there is an inflationary attractor at P4 and there is

inflationary sources at P3 but there is no inflationary saddle and P0 is attractor when

µ < µc.

For the Anisotropic model, we did three sub-cases. For case (2a) (i.e., V (φ, σ, θ),

199
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µ > 0 and ν 6= 0), we found that P4 is inflationary attractor when
√

6
√

4n2 + ν2 +

√
6ν − 6µ < 0. In the case (2b) ((i.e., V (φ, σ, θ), µ > 0 and ν = 0) ), we found that

P4 is an inflationary attractor when µ >
√

3
2
n. Finally, in case (2c) ((i.e., V (φ, σ, θ),

µ = 0 and ν 6= 0), we found that there is no any inflationary attractor equilibrium

point among the equilibrium point that we looked at it.

Possible future work related to this part is to look at the harmonic potential of the

following form

V (θ, φ, σ) =
1

2
n2φ2 + µθφ+ νσφ+ [a20θ

2 + a11θσ + a02σ
2], (10.0.1)

and investigate the inflationary behaviour of this model.

For the second application, we investigated spherically symmetric cosmological models

in Einstein-aether theory with scalar field. In particular, we consider special case

of the spatially homogeneous Kantowski-Sachs models using appropriate bounded

normalized variables, where we assume cθ = 0, a3 = 0. We found that there there

is only one inflationary attractor solution at P7 when k <
√

2
3
. Possible future work

related to this application is to look at the general Kantowski-Sachs models when

a3 6= 0 and cθ 6= 0.
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