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Abstract

A Complete Blood Count (CBC) is one of the most commonly deployed tests for

checking the overall medical condition of a human body. It results in a summary of

blood cell related measures allowing for a quick preliminary detection of common

diseases. Image based cytometry is a modern way of overcoming common efficiency

issues related to current gold standard method of Coulter Counter analysis.

This thesis describes a computer vision pipeline for measuring main components of

CBC based on methods with varied level of human influence in feature design. The low

quality input images are acquired from a prototype lensless microscope. Rule-based

approaches proved sufficient in cases of red blood cells and platelets analysis and their

configuration is explored in more details at the segmentation stage.

Leukocyte differentiation is a subproblem of CBC requiring more sophisticated

classification approach. The comparison of results based on rule-based, classical

and deep learning methods is presented. Support Vector Machines and k-Nearest

Neighbours were chosen as representatives of classical approaches. The deep learning

scheme has the advantage of finding quick solutions to complex problems involving

highly dimensional and hierarchical structure of underlying solutions. It also alleviates

the amount of work needed by human experts to design appropriate descriptors.

The results discussed here include promising enumeration and feature description

of the objects of interest. Their linear dependence with gold standard clinical results

proved their usability for point of care blood analysis. Classification results showed

superiority of convolutional neural networks in several important aspects. Further

analysis explored the learned parameters and analyzed wrongly classified cases in order

to understand better what kind of cytological objects are most fragile for particular

classifier and why.
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Chapter 1

Introduction

1.1 Objectives and scope of the thesis

The main goal of this study is to develop software for lensless microscopic device

capable of performing the Complete Blood Count (CBC) test in the Point Of Care

(POC device). The device is currently under the development process by Alentic

Microscience Inc., a startup company based in Halifax, Canada. The full hardware

design cannot be disclosed at this stage due to privacy issues. Their effort is put

particularly on solving the time and throughput problems of blood tests by letting

physician to make a test within only few minutes during patient’s first visit. By using

the hand-held device the health worker could prick the patient’s finger and collect as

little as 10μl of blood, which could be then mixed with diluent and transported onto

the image sensor. The images would be collected directly without lens by illuminating

sample with lights of chosen wavelengths.

The work presented in this thesis is a result of my cooperation with this company

and focuses on presenting the system pipeline purely from software perspective.

Research and development nature of the company triggered many design changes done

in parallel with system development. The effort was made to adapt for those changes

in parts particularly improving the results. In the other parts - the quality of the

data was kept at the level satisfactory for explanation and testing. Other issues are

mentioned below.

CBC test comprises of measures related to three main blood components - red

blood cells, white blood cells and platelets. From the computer vision perspective,

the blood sample image needs to be first pre-processed to remove noise and apply

algorithms for obtaining higher resolution by combining images with different angles

of illumination. Further, the image has to be segmented to get the probable locations

and coverage of specific types of cells. The features of found objects can be then

extracted and classification algorithms can then be used to differentiate between them.

1
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The main challenge is currently the limited resolution of the images which prevents

using most of the methods developed in the literature (Bikhet et al., 2000, Hiremath

et al., 2010, Young, 1972) directly. The other challenges include motion blur, magnified

by a long time of acquisition, stain attaching to other objects resembling cells, bubbles

and light reflections on the sensor surface. During the development of the system

reported here the quality of images was changing. For some of the tasks initial quality

provided the information needed to describe the concept and perform successful

analysis. For other ones, only after improving staining practice and acquisition

procedure the objects could be differentiated sufficiently to perform good analysis. As

the work on algorithms performing cell analysis was developed in parallel with image

enhancement the decision was made to show the results on both low quality images -

for simpler problems - and higher quality - for more complex ones, like finer leukocyte

differentiation. Different perspectives on the problem can also provide more insight

for further research on optimization.

The first part of experiments involves localizing, separating, counting and extracting

detailed features of red blood cells (erythrocytes) and platelets (thrombocytes). This

part is mostly focused on segmentation techniques in low quality data and later the

methods are slightly modified to obtain similar results using HQ data. The further

analysis here was done purely with rule-based approaches. Also the preliminary work

on white blood cell (leukocyte) detection is presented.

The second part provides much more extensive examination of WBC differentiation

problem using HQ information. It is often considered as a most informative part of the

test and provides the best field for testing state of the art classification methods. For

that the three popular approaches to medical image analysis are presented - rule-based,

classical and deep learning.

The best of obtained results are further correlated with gold standard measures, to

test their real usability. For each patient the gathered numbers specify enumeration

of the cells in questions - RBCs, Plts and two main types of WBCs - lymphocytes

and myeloids. The same data is gathered with current standard procedure from blood

analysis laboratory, using different blood samples of the same patients. The hope

is to prove the linear dependence between those two measures by obtaining high r2

coefficient of determination (i.e. squared Pearson correlation in this case).
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1.2 Complete Blood Count

One of the most popularly deployed tests for checking the overall medical condition

of a human body is the Complete Blood Count. This is a common medical test

panel measuring various components of the blood, resulting in summary which allows

easy detection of many general organism malfunctions. The most popular factors

include enumeration of the red blood cells (RBCs), platelets (Plts), most common

types of white blood cells (WBCs), and parameters usually calculated indirectly,

like hemoglobin concentration or hematocrit (volume percentage of RBCs in blood).

Different conditions affecting those parameters may include for example infection,

inflamation, coagulopathies, neoplasm or toxic substance exposure (George-Gay and

Parker, 2003). For example color intensity of the RBCs indicate the oxygenation level of

hemoglobin. Besides the parameters can indicate blood disorders directly, like anemia

related to RBCs and Hgb measures, leukocytosis, leukopenia and leukemia associated

with leukocyte measures and thrombocytosis and thrombocytophenia associated with

platelet measures. Among those often the most informative are leukocyte factors as

they constitute the blood defensive system and are very prone to direct changes in

response to unwanted substances appearing in the organism.

The current procedure for taking the test involves many steps and can take many

hours for return of the data. The throughput is also quite low. It happens often that

patient needs to wait for appointment to have his or her blood drawn. Later the

blood must be often transported to laboratory where automatic analyzer, like Coulter

counter, is used to perform CBC. This is costly, takes a lot of time and often doesn’t

provide enough details about cell morphology. Before the results are available the

patient is scheduled for the next visit - usually within couple of days.

1.3 Contribution

The contribution of this thesis is two-fold. First the pipeline for image based cytometry

was designed and demonstrated in the context of a complete blood count. The second

contribution is a proof of concept application and comparison to show that modern

machine learning algorithms can learn features from raw data to obtain similar or

better classification results than when features are selected by trained engineers.
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Although the recent literature shows superiority of this approach for commonly used

evaluation datasets, the thesis presents its performance in real world application. The

results showed that some of the measures are already clinically valid. Other ones will

need additional work, but are encouraging. I believe they will contribute to better

understanding of the processes driving the choice of the features, which are not always

directly interpretable by humans, and present advantages of algorithms making use of

them.

Segmentation of red blood cells was particularly successful. The violet color channel

allowed for easy application of automatic threshold. The clusters of touching cells

were separated using Hough transform and Voronoi diagram. The size histogram of

separated cells didn’t appear to augment well the one of freely moving cells, because of

occlusion and pressure from the side of surrounding cells which affected the final shape.

The decision was then made to use all of the cells for enumeration, but only freely

floating for extraction of other properties. After segmentation all of the parameters

were successfully extracted. Most of them appeared to be associated more with the

blood treatment and acquisition procedure than with computer vision processing.

Platelet enumeration was highly significant apart from one outlier. One of the

patient’s blood had unusual conditions which prevented accurate count using current

method and largely affected the linear dependency approximation with ground truth

data. This suggests the need for larger data collection to better understand the nature

of those conditions.

White blood cell analysis was based on comparison of three popular classification

algorithms. The parameters of rule-based approach were highly adjusted by expert

and gave very good correlation results with ground truth. kNN and SVM meth-

ods were used for quantification of classical approach results. Even though SVM’s

hyperparameters were optimized using grid search method, the accuracy obtained

for lymphocyte class was particularly low. This might be caused by morphological

similarity to both neighbouring classes - myeloids containing also small cells with large

nuclei and anomalies containing sometimes large platelets or contaminants resembling

lymphocytes. Convolutional neural networks proved superior in terms of time needed

for hyperparameters adjustment, accuracy and correlation with ground truth. Addi-

tional analysis of wrongly classified samples revealed small inconsistencies in initial
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labeling and showed a few cases indistinguishable even by human expert.

1.4 Outline

The thesis is divided into chapters defining extensive background knowledge on the

topic, hierarchy of computer vision methods used in the process, defined in order of

standard medical image analysis system, and experiments showing how those methods

where deployed to achieve the specified goals of RBC, WBC and Plt analysis.

The first chapter focuses on overview defining the main concept needed to un-

derstand the higher goals meant to be achieved by the systems. Those topics are

mainly drawn from physiology field. This is immediately followed by section providing

background and related work in the field of computer vision tackling problems of

image based cytometry from perspectives of microscopy, biomedical engineering, low

level computer vision and machine learning.

The next two chapters define all the programmatic tools and main methods used

in the application project. The chapter providing the algorithm overview is presented

in order specific for most of known computer vision systems. Beginning with algo-

rithms used for pre-processing and image enhancement, through segmentation, feature

extraction and finishing on different machine learning, particularly connectionits’,

approaches.

These methods are then of course applied in order specific for given application -

RBC, Plt or WBC analysis - and the process of deployment is described in experiments

and results chapter. Even though method overview chapter provides examples of

utilization of the algorithms on the same data, this chapter combines them together

and provides the final results of the analysis, producing full blood count.

I conclude with summary and discussion on those results and provide potential

future prospects for further research.



Chapter 2

Background analysis

2.1 Physiology background

2.1.1 Complete Blood Count

Complete Blood Count (CBC), also called Full Blood Exam (FBE) or Blood Panel, is

a test panel measuring the main properties of the cells in a patient’s blood. Such a

test panel (or profile) consists of a predetermined group of medical tests which aids

in diagnosis and treatment of different diseases. CBC is one of the most popular

procedures performed frequently and is capable of detecting such hematological diseases

like e.g. leukemias, anemias or inherited blood disorders.

Figure 2.1: CBC print-out example (Online resource, 2012a). The main parameters
meaning is described below. The second and fourth columns provide measures for
particular patient and their units. Further is the reference specifying the standard
ranges for humans.

The main types of cells in human bloodstream, which are measured by the process,

are leukocytes (white blood cells, WBC), erythrocytes (red blood cells, RBC) and

6
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thrombocytes (platelets). The fishbone diagram for the main types of measurements

is shown on Fig. 2.2.

Figure 2.2: CBC fishbone diagram

The smaller hematology instruments measure only the number of RBCs, WBCs

and platelets. Example of standard CBC print-out can be seen on Fig.2.1. The most

commonly used eight measures and calculated parameters (Turgeon, 2004) are:

• WBC - number of white blood cells

• RBC - number of red blood cells

• Hbg (Hemoglobin)

• Hct (Hematocrit) - (also Packed Cell Volume (PCV) or Erythrocyte Volume

Fraction (EVF)) volume percentage of red blood cells in blood.

• Mean Cell Volume (MCV) - measure of average red blood cell size (MCV = Hct
RBC

)

• Mean Cell Hemoglobin (MCH) - average hemoglobine per red blood cell (MCH =
Hgb
RBC

)

• Mean Cell Hemoglobin Concentration (MCHC) - measure of the concentration

of hemoglobin in a given volume of packed red blood cells (MCHC = MCH
MCV

)

• Plt - number of platelets

• Additional parameters - e.g. Erythtrocyte morphology (RDW), leukocyte his-

togram differential, erythrocyte sedimentation rate (ESR), main types of white

blood cells.
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The methods for obtaining those measurements are well described by Bain (2006)

and Turgeon (2004). They are divided into manual blood counts and automated

blood counts. The former involve using blood films with peripheral blood smears and

watching specimens with diluted blood under the microscope in counting chambers.

Manual counting is useful mostly when automated analyzers cannot reliably count

abnormal cells or differentiate their types correctly. Automated blood counts make use

of automated hematology analyzers. These are the medical laboratory instruments used

for measuring different types of blood cells together with their characteristics quickly

and with minimal human assistance. The samples can be processed one-by-one, in

batches or continuously (by time lapse analysis). The most popular analyzers are based

on flow cytometry, where machine puts a very small amount of the specimen through

tube narrow enough to not allow cells to overlap. While specimen flows through it,

the attached sensors perform different measurements for variety of elements in the

blood. Two main sensors being put in almost every analyzer are electrical impedance

(Coulter counter) sensor and laser-based optical sensor. First one is generally used

for counting and sizing particles suspended in electrolytes. It allows cells to pass

through electrical current to measure their impedance. The assumptions are made

that only one cell would go through it at the time and that bigger cells should cause

larger impedance. After that the reagent is usually added to lyse RBCs and leave only

WBCs, which are counted next together with platelets. WBC count is separated from

platelet count by measuring the height of the impedance peaks. Example measure of

RBC count is shown on Fig. 2.3. The number of cells of particular size is stated in

femtolitres.

Figure 2.3: Idealistic model of red blood cell distribution histogram

The optical techniques are mainly used to perform differential count of the popu-

lation of WBC. Diluted specimen is passed once at a time onto a laser beam. The
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measurements include reflectance, transmission and scattering of light. Results of

such differentiation are shown on Fig. 2.4, 2.5. Fig.2.6 shows more historical and

very standard WBC differentiation plot, where lymphocytes, monocytes, neutrophils,

eosinophils and debris can be distinguished easily.

Figure 2.4: RBC differentiation based on laser illumination of cells - signal correlation
plot (Online resource, 2012b)

Figure 2.5: WBC differentiation based on laser illumination of cells - signal correlation
plot (Online resource, 2012b)

The analyzers might also be based on digital imaging (image cytometry) technique

which performance developed very rapidly during the last years and offers certain

potential advantages including access to parameters not easily measured by flow
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Figure 2.6: Normal WBC differential plot showing volume against light scatter of the
cells (McClatchey, 2002)

cytometers.

Tab.2.1 shows current state of the art in performing differential blood counts and

should be base for further development of image analysis techniques. The analytic

goals specifies allowable error and state of the art current error being made in the

tests.

2.1.2 Differential WBC count

There are many diseases associated with amount of different types of leukocytes present

in blood. It is therefore very important to distinguish between them in CBC. The

main categories of white blood cells can be reviewed by looking at Tab. 2.2.

The possible samples are taken from low quality data set based on closest visual

appearance, size and approximated occurrence factor among WBCs. Fig. 2.7 shows

the example size distribution for WBCs, RBCs and platelets - in this order. The first

histogram at the first look gives us already a very important information. The two

peaks are visible. In healthy blood the first constitutes the lymphocyte and the second

myeloid (non lymphocyte) count, which consists mostly of neutrophils. This kind of

differentiation can be very important. Besides, the cell types have different specialties
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Parameter Analytic goal (error %) State of the art (error %)
CBC Count
Leukocytes 16.5 5.4 - 8.8
Erythrocytes 3.75 1.5 - 1.8
Hemoglobin 4.0 1.2 - 1.9

MCV 2.23 2.0 - 2.4
Platelets 6.32 5.2 - 9.8

Leukocyte Differential Count
Neutrophils 23.4 3.06 - 7.0
Lymphocytes 15.0 4.0 - 11.9
Monocytes 14.8 13.4 - 58.7
Eosinophils 26.0 16.0 - 37.3
Basophils 15.7 35.5 - 155.5

Reticulocyte count 13.0 8.9 - 41.3

Table 2.1: Analytic goals and state of the art (Buttarello and Plebani, 2008)

and abnormal distribution of one of those can carry more specific information about

particular disease or infection. For example lymphocytes can be differentiated as

B-cells, T-cells and natural killer cells. All of them work together to prevent infections

and regulate immune system. It is in oppose, for example, to neutrophils, which are

responsible for elimination of bacteria and fungi.

Figure 2.7: Volume distribution of WBCs, RBCs and Plts (Bain, 2006).
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One of the other challenges we encountered besides low resolution was cell jiggling

and random direction flow. This could be solved by image warping, although optimizing

deformation for each image can take a lot of time. Partial solution was presented

by Kozubek and Matula (2000). The authors used the Delaunay triangulation for

nearest neighbour and error detection. After that the calculation of motion vector was

performed separately for each ROI what reduced the resource utilization significantly.

2.3.2 Examples of image cytometry systems

Some of the latest approaches to different types of cell recognition in the microscopic

images include extracting them by predefined shape templates resembling those popular

for specific types of cells (Basu et al., 2013). Besides, Sui and Wang (2013) proposes

the use Support Band Filters (SBF), which allows to extract the support region

for template based on Convergence Index (CI) for accurate cell nuclei extraction.

It is a template matching based method. The other popular approach is based

feature extraction. The project by Vink et al. (2013) describes the way of recognizing

malaria by detecting the influenced RBCs with fluorescent light, Haar-like features

and supervised learning AdaBoost classification which requires manual marking of

training set in the beginning. The interresting approach is also presented by Wu et al.

(2013), where the authors develop a modified edge detection method where boundary

and region information are integrated with active contour algorithm.

To move further towards hematological computer vision systems , useful study was

made to classify different types of erythrocytes in patients with anemia by DAS et al.

(2012). The developed and compared methods can be used for differentiation of WBCs

as well - although they were used with light microscopy and low resolution images

are limited in terms of border description possibilities. Going through the system

levels first the gray world assumption was used to correct the illumination. After

that some of the most popular noise filtering algorithms were compared, including

median, Wiener, geometric mean, max and M3 filters, with use of MSE and SNR. The

geometric mean filter proved to be the best. The marker watershed algorithm was

used as the main segmentation technique. 25 object features were then extracted and

compared on their ”usefulness” for classification. At the same time different classifiers

were used, among which we can find multivariate logistic regression, RBF network,
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MLP, Naive Bayes and regression tree, and distinguish the first one as particularly

well suited even for the small amount of features. For all of them the F-measure and

information gain measure were used to choose the features and adjust parameters.

The work presented by Ongun et al. (2001a) is even more suited to our problem as

it deals directly with different types of leukocytes. For extracting the correct borders

it uses the popular active contours models. The algorithm is initialized using the

morphological operations and, after segmentation, the feature vector is created based

on nucleus shape, color and texture. This data is then passed to one of the following

classification algorithms: k-NN, learning vector quantization, MLP and SVM.

Similar works include ones by Bikhet et al. (2000) and Hiremath et al. (2010).

Both are using the light microscopy and obtain high resolution images. This eliminates

most of the problems and allows for reliable segmentation even using only gray-scale

images. The enhancement in both cases is performed by using simple (e.g. median)

filtering and histogram equalization. Some of the morphological operations are used

in the second case. Most usable features include shape descriptions and nucleus to

cytoplasm ratio. No sophisticated classification needs to be made in the end. In the

second case for example it is only the based on simple knowledge based rules where

parameters are adjusted based on training data.

Quite educational was also study of Young (1972), which explores similar approaches

using the analog camera. He later performs the thresholding and extracts features like

color, size, shape of the nucleus and size of the cytoplasm, for cluster analysis. It’s

interesting to see how good results (93% of accuracy in comparison to about 95%-99%

in other described studies) he achieves with low computational resources and simple

algorithm. This suggests two things. First - that problem was less complex than

it was initially thought. Second - the area of very low resolution recognition is less

explored, which creates a lot of space for image enhancement techniques and new

robust segmentation methods.

As the low resolution images often don’t provide enough information to distinguish

them even by humans the feature extraction method with unsupervised learning

techniques seems correct. To get the examples reliable enough for testing the hypothesis

we need the very accurate segmentation. The template matching methods are the

current state of the art and as we deal with few different cell categories it’s useful to
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get few most distinguishable templates. For that the PCA method was used in some

approaches (Yampri et al., 2006, Brunelli, 2009).

2.4 Related work in machine learning

Although almost no longer reported in cell counting research designs nowadays, the

rule-based approaches, like ones presented by Prewitt and Mendelsohn (1966), Young

(1972), Bikhet et al. (2000), are still often parts of common testing platforms and

proof of concept engineering designs. The reason they remain in the process is mainly

the clear representation of features, large control over internal classification processes

and achievement of often very good accuracy for very specific applications with

completely closed and stabilized environment. Unfortunately those methods suffer

with development time, adaptation to even small changes and therefore are often

useless for rapid prototyping during the design process. In the following chapters we

go through the development stages of such system using decision tree consisting of

carefully prepared IF...THEN... rules and report comparable high accuracy results for

our problem.

The other common solution to the problem of cell classification are what we call

classical methods, which can be mostly represented by different kinds of large margin

and instance based classifiers. Those are the ones which prevailed for most of the time

and usually consist of large number of easy to extract features, often categorized within

three modalities of color, shape and texture (Shi et al., 2013, Ongun et al., 2001b,

Ramoser et al., 2006). The first one is often based on transforming the image into

different color spaces (most often RGB, HSV and L*a*b*) and extracting statistical

moments of histograms (Shi et al., 2013, Xiong et al., 2010). We believe those kind of

features do not preserve much of the important information of the image by themselves.

Practically all the information about structures of the elements is lost and as we

are interested in distinguishing objects of very similar colors, those features are not

preferred. Shape analysis is recently dominated by active contours (or in general level

set) methods (Möller et al., 2014, Dzyubachyk et al., 2010). It is not surprising that

the energy-based contour delineating methods achieve high accuracy for fluorescent

and clear-edge images. They are also needed in cases where the shape of the outer

bound of the object is main classification feature. For our purposes none of the most
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popular approaches (Chan and Vese, 2001, Paragios and Deriche, 2002) perform well

out of the box as the borders of our objects are very blurry, inconsistent and the

visual features of cytoplasm are very similar to the background. Also most of the cells

in question are mostly circular, so the membrane layout is not as good feature as its

relation to nucleus. We could apply the method only to nuclei, but this wouldn’t tell

us anything about the total area, nor would one shape descriptor suffice to capture

many different kinds of nuclei. Last but not least recent analyses (Gurari et al., 2014)

show that level set methods need to be tuned to particular cases and our approach

here is to present method as general and automated as possible. The last types of

commonly used features are texture based and those usually involve measurements of

recurring patterns in the image or how much ”busy” the area is by applying the edge

detection methods or calculating the energy of the region. A lot of information about

direction of the recurring patterns can also be extracted by calculating the power

spectrum of the image. Shi et al. (2013) lists energy, entropy, contrast and divergence

as major texture features, but also Thibault et al. (2014) provides a good example of

custom designed texture-based features for cell analysis.

For our purposes we try to restrict ourselves to only one type of features, but to

choose those which can make the process as automated as possible - as we believe this

is the approach which would provide the most representative results for classic method

category. Further we propose combining texture and intensity based information

and make the classification rely purely on image moments, sometimes categorized as

morphometric features. Although recently forgotten within approaches to cell analysis,

it was successfully applied to WBC classification problem before (e.g. Ongun et al.

(2001b)), still contributes to other very similar problems Chevrefils et al. (2009) and is

well recognized within most of the common frameworks and textbooks (Hall et al.,

2009, Wu et al., 2010, Bankman, 2008). This method treats the full image as 2D joint

probability distribution and characterizes its statistical moments, like mean, standard

deviation and kurtosis. The nice thing about them is that they can be treated as

components of the image and thus can approximate it with desired accuracy. The

most popularly applied are, so called, Hu moments (Hu, 1962). However the author

derived only the first 7 moments and didn’t specify any clear algebraic base from

which the further functions for calculating them can be generated. Later this work
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was attempted by Flusser (2006). Based on the given formulas we implemented and

generated 11 transition, scale and rotation invariant moments and juxtaposed the

results obtained by their utilization with those obtained by Hu’s method. In the

following sections we name them ”Flusser moments”, after the name of the author.

On top of the feature extraction stage usually a shallow machine learning classifier

is applied. Most commonly this involves SVM (Dundar et al., 2011, Xiong et al., 2010,

Basavanhally et al., 2010), kNN (Ongun et al., 2001b, Ge et al., 2014), random forest

(Thibault et al., 2014) or MLP (Ongun et al., 2001b). As the first one is the most

common and second constitutes a good example of usually weaker approach we chose

those two as representatives for obtaining accuracy for automated classic approach.

We believe kNN classification is important as it provides a measure of how complex

the solution really is. As it doesn’t exploit hierarchy of the objects nor applicability

of different kernel spaces, it provides a popular bare base line for automatic solutions.

My main contribution from the machine learning perspective is to show the ad-

vantages of deep learning approaches to cytological classification. Deep convolutional

networks recently achieve the best performance on variety of natural image clas-

sification tasks including large international competitions on general (Krizhevsky

et al., 2012, Zeiler and Fergus, 2013) and domain-specific (Cireşan et al., 2013) tasks.

The work on CNNs goes back to 1980s beginning with famous Neocognitron model

(Fukushima, 1988) and later supported by very successful application to hand-written

digits recognition problem (LeCun et al., 1998). However their recent success is mainly

due to dawn of cheap and accessible GPGPU programming allowing for very fast

and efficient matrices manipulations and application of so called ”tricks of the trade”

targeting and attempting to solve very specific problems or inefficiencies in network

design, good examples of which would be use of dropout and rectified linear units.

The similar way of leukocyte classification using the Convolutional Neural Networks

(LeCun et al., 1998) was recently published by Habibzadeh et al. (2013). However my

work incorporates lower quality images for which the best effort was made to increase

this quality, rather than simulating it by reducing color depth and downsampling and

thus it is better representative of real world applications. This thesis also provides

more thorough analysis of the results and uses different methods to answer questions

about applicability of range of feature extraction approaches.



Chapter 3

Tools and related applications

3.1 Background

The chapter provides description of available tools, how they were used during the

development process and how they can facilitate further research. GUIs like ImageJ

provide a platform for quick testing of the application of certain popular transfor-

mation to the images. Libraries like OpenCV and those provided within toolboxes

for MATLAB language give access to much larger variety of tools, allow of rapid

development of pipelines and often incorporate more recent methods. Moreover the

machine learning frameworks, like Pylearn2, are community supported project directed

to researches, where often unstable, state of the art methods are available to the user.

The chapter finishes with small comparison of available fully fledged applications

attempting to solve similar problem to my. They are useful for getting initial ideas

and obtaining baselines.

3.2 ImageJ and Fiji

ImageJ (Schneider et al., 2012) is a Java based image processing application with

modular structure. It was developed mainly to aid medical image analysis research,

but is also widely used as a testing platform for any image analysis task. ”Fiji is just

ImageJ” is ”battery included” version (Schindelin et al., 2012), where many of freely

available plugins were incorporated to provide nicely structured extended standard

application. Few of those modules appeared to be crucial during our application

development.

Cell Counter is a popular ImageJ addition allowing for quick manual marking

of objects with different classes in the image and exporting their locations in XML

format. In our case it separated my work from the work of hematology expert who

was able to quickly gather the information necessary to obtain labeled training set

19
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and present it in a way easy for further automatic processing.

2D Fast Hartley Transform is an FFT counterpart allowing for operations only

in real space as oppose to complex space of original Fourier transform. The tools

based on it are irreplaceable for designing custom filters - especially for removing any

recurrently occurring unwanted pattern, like one presented on Fig.4.9.

Figure 3.1: WBC analysis with Fiji Weka plugin using low quality image

The Trainable Weka Segmentation plugin in Fiji is a pixel based classifier in which

user can specify random areas belonging to each of the chosen classes in the image and

obtain automatic classification of regions. This process can be done iteratively until

satisfactory results are reached. The feature vector consists of singular numbers each

representing either value of the pixel after certain image filtering (e.g. Gaussian, DoG,

Gabor, anisotropic diffusion) or local histogram derived statistics. After obtaining

feature vector informative enough for every pixel, the ones marked by the user are

used as an input to chosen classifier. This can be any classifier implemented in Weka.

The rest of the image is used as a test set and the results are presented to the user as

probability map of pixels belonging to given class. It can be further thresholded and

presented as segmentation (Fig.3.1).

This may sound like a perfect solution to our problem, but although it seams as

appealing I believe it has few disadvantages and eliminating them made our method

much faster and more robust. Besides limited number of features and classification

algorithms choices, the presented feature set is almost completely ignoring the spatial

information and thus is not dependent at all on shape, structure and only partially on
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size. For our application those are very important features and aiding classification by

descriptors like image moments, PCA/ICA components or even the raw pixel values,

like in case of deep neural network, provides a good alternative solution by its own.

The second important thing is that in most of the cases pixel based classification takes

a very long time and our problem can be solved much faster performing more basic

and faster initial segmentation and concentrating only on small regions of interest.

3.3 OpenCV

Open Source Computer Vision Library is a library of programming functions for real

time computer vision developed by Intel and maintained later by Willow Garage.

They define their main goals as (Wikipedia, 2012) :

• Advance vision research by providing not only open but also optimized code for

basic vision infrastructure.

• Disseminate vision knowledge by providing a common infrastructure that devel-

opers could build on, so that code would be more readable and transferable.

• Advance vision-based commercial applications by making portable, performance

- optimized code available for free with a license that did not require to be open

or free themselves.

The framework proved useful many times during the development process. Its main

advantage is that in combination with Python back-end it allows for rapid development

of stand-alone testing platforms. Fig.3.2 shows GUI of application developed as part

of the project for the purpose of quick comparison of segmentation methods applied

to blood images.

It also provides a good alternative for MATLAB in which different set of methods is

available and different development approach can be undertaken. Particular examples

used during development of this project include Voronoi diagram (not available in

previous versions of MATLAB), larger choice of pre-defined color spaces to view the

image, more efficient and providing more control watershed method and gradient based

morphological transform. OpenCV also provides built in open source implementation

of super resolution method by Farsiu et al. (2004). Unfortunately it is much slower

and less efficient than closed source MATLAB version provided by the authors.
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Figure 3.2: GUI developed as part of the thesis for testing variety of segmentation
methods available in OpenCV and MATLAB

3.4 MATLAB image processing and computer vision toolboxes

Most of the application development from image processing and segmentation per-

spective was done in Mathworks MATLAB. The environment, as OpenCV, provides a

large library of computer vision methods, which aid testing and rapid development.

During testing phase state of the art active contour methods were deployed for contour

analysis. Also Fig.4.13 shows a comparison of edge detection method available in

image processing toolbox, like ones based on Sobel filtering, Roberts, Prewitt, Canny

and Laplacian of Gaussians. Even though the basic version of Hough transform was

developed for the purpose of this thesis, the one included in IP toolbox appeared to

be faster and more accurate. The toolbox also provides a set of basic filters used

in the project, like median filtering for noise removal or Lanczos filter for resolution

enhancement. MATLAB environment also provides a great testing platform for many

computer vision methods developed as part of the outside research, like Farsiu et al.

(2004) superresolution, anisotropic diffusion, calculations on MRFs, superpixel seg-

mentation, gruph cuts and more basic like custom histogram adjustments, converting

between color spaces, data visualization and plotting the final results.

3.5 Pylearn2, Cuda Convnet and GPGPU programming

All of the classification tasks were performed using external tools other than ones

implemented in MATLAB. The last part of the thesis focuses on development of
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robust convolutional neural network for leukocyte differentiation. The real advent of

such networks began when they started to be trained using GPU architecture, mostly

implemented with CUDA library. This allowed to obtain the results in reasonable

time for multiple tests and better adjustment of hyperparameters. The most popularly

deployed, ready to use, CNN implementation was Cuda-Convnet by Krizhevsky

et al. (2012). The framework provides a lot of extensions to standard CNN, like

momentum, weight decay, different activation functions to choose (including rectified

linear), weights normalization, ways to initialize ones own weight matrices, splitting the

network and much more. Everything can be described within a simple configuration

file and examples are provided for networks winning famous ImageNet competition.

At the time of the first release this was also the most optimized publicly available

and open source code for training CNN and it earned itself places in other popular

machine learning frameworks like Pylearn2 (Goodfellow et al., 2013) or Caffe (Jia

et al., 2014). By itself the code is pretty self contained though and doesn’t provide

easy ways of extension.

The advantage of Pylearn2 is its modularity and specific design allowing for easy

interaction. The developers focus on researchers as the main target group, which allow

us to directly focus on solving certain problems by writing own extensions instead

of digging through low level parts of code and changing its whole structure. The

design pattern combines three most important machine learning modules - the dataset

- converting any data to common format, model - describing the actual network

architecture or other designs appropriate for variety of machine learning methods,

often specified within YAML configuration file, and algorithm - defining how the

model should be trained. In the application development I took advantage of both

frameworks, mostly to better visualize the results, search for inefficiencies, extend the

networks and test latest training approaches, and finally to develop my own models

and train them in the same fashion.

3.6 Popular cell analyzing applications

Besides mentioned frameworks there are many other great applications, often supplied

with fully fledged GUIs and created mainly for cell analysis, partially used in the
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development process and providing baselines for our approaches. Cell Profiler (Car-

penter et al., 2006) is definitely the most compound one. It is based on construction of

full pipelines (called recipes) for cell analysis from the set of available modules. This

can be thought of as a kind of specialized visual programming system. Many methods

are available for basic pre-processing and threshold-based segmentation, after certain

filtering, like Otsu’s method, basic adaptive threshold or mixture of Gaussians. More

advanced methods are also applied for edge and contour detection to aid in separation

and shape description. For that, among the others, the application provides Laplacian

of Gaussians filtering and energy based methods, especially geodesic active contours.

Pixcavator is based on applied algebraic topology and constructs a level set method

in this framework in order to find connected components in the image. This approach

works well when the image can be nicely filtered from noise before.

Cell Tracer (Wang et al., 2005) is a MATLAB-based application developed at Duke

University primarily to segment yeast and E.coli bacteria on very clear fluorescent

microscopy pictures. The main leverage for finding initial candidates is a range filter,

which can be very subjective to noise. Even though this noise is later partially filtered

by morphological operations, I found that the concave disk shape of the red blood

cells prevents some of the cells to be correctly recognized. Although in overall the

algorithm gave good results on our RBC low quality test image.

Cell Cognition Cecog Analyzer (Held et al., 2010) is another large application with

multiple components similar to Cell Profiler. It is based on VIGRA - general purpose

computer vision library and mainly just provides a user interface, where user can

specify functions parameters to be called on the input image. The selection of tools is

again matched directly with those needed for cell analysis. Although very powerful

and useful for bio-engineering, it doesn’t provide fully automated pipeline and can be

done with the same efficiency using other available scripting languages.

CellC (Selinummi et al., 2005) is a simple MATLAB software which worked best

in our RBC test. Even though it was meant to work on fluorescent images, just after

simple pre-processing on our side - choosing one or two of the HSV channels and

stretching the histogram - it achieved remarkable accuracy. The test consisted of

counting erythrocytes on small crop of a very poor quality image in which the cells

were first counted manually to provide a ground truth. The algorithm achieved 99%
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Figure 3.3: CellC GUI

accuracy on this task and the methods involved mainly adaptive thresholding for

initial count and marked watershed for cluster separation. Even though the image

was clear from other objects resembling red blood cells and didn’t contain anomalies

present on some of our other images (like moving objects or reflections), it provided a

very encouraging result which inspired further development of erythroctye analysis

part of our cytometry pipeline. GUI during our analysis process can be seen on Fig.3.3.

The other popular applications which had less direct influence on our process, but

still are worth noting here, are Ilastik (Sommer et al., 2011), Cell-ID and GemIdent

(Kapelner et al., 2007).



Chapter 4

Algorithms and methods

4.1 Background

This chapter provides derivations and detailed description of selected methods used

to facilitate or suggested as alternatives to achieve the final results. It is meant to

serve as a guide for implementing components of computer vision pipeline for cell

analysis. The results chapter highly depends on references to this chapter, whenever

more detailed explanation was needed. Additionally the derivations of equations not

directly needed for implementation, but providing insights into their motivation and

purpose, were presented in appendices.

The following sections are presented in order common for standard medical image

analysis system (as detailed on Fig.2.8). It starts with image processing methods

needed for noise removal and extraction of crucial information from the original images.

Then it switches to segmentation, where the description of all the methods needed

to extract the location and shape of the cells was presented with particular focus on

applications to red blood cell analysis. We concluded with features extraction - mainly

by image moment descriptors - and three popular approaches to classification.

4.2 Image pre-processing

4.2.1 Flat-field correction

Immediately after acquisition the images have uneven intensity. To correct for that

the pseudo flat field correction was used. In FFC we use flat field image collected

from camera (IFF ), which is usually the picture of background with even intensity we

want to correct to. Later we use it to correct the future images by applying:

IFFC =
Iorg
IFF

∗ g (4.1)
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Figure 4.1: Flat field correction

where Iorg is the original image, IFF is the collected flat field image, g is correction

factor equal to mean intensity of the brightest channel, which lifts all the other channels

to the same level. The latter called adjusting the image with gray world assumption.

It makes sure there is no color bias in direction of any particular channel. IFFC is the

output corrected image.

In pseudo FFC instead of acquiring the FF from camera we can create pseudo FF

by convolving the image with mean or median filter to obtain approximate background

values in each part of the image. The whole process can be seen on Fig.4.1.

4.2.2 Contrast enhancement

Contrast enhancement is usually done by histogram stretching or histogram equal-

ization. The former preserves most of the color information but makes the image

more clear for the human eye. The latter usually exposes salient features more than

the rest of the image. Following the examples we can see the original image and its

value histogram channel on Fig.4.2. The value channel is a pseudo-channel defined as

Iv = max(Ir, Ig, Ib).
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Figure 4.2: Original image

To get a stretched histogram we would cut off the chosen fraction (usually between

1% and 5%) of the highest and lowest intensities and treat them respectively as black

and white. Then we would distribute the other values evenly across the available

space. Fig.4.3 shows the result of slightly adjusted stretching where larger fraction of

intensities was cut off on the bright side to leave better visual differentiation of darker

cells.

Figure 4.3: Histogram stretch

To get most of the information from the picture we can equalize its intensities

which creates the histogram close to the uniform distribution. As the more frequent

intensities get more spread across the range it is easier to spot slight hidden differences

between them. The result on our image can be seen on Fig. 4.4. To get it we can

calculate the intensity probability distribution from histogram and the its cumulative

distribution function (cdf). Then we apply Ix,y := cdf(Ix,y) ∗ 255 to each pixel.

This gives us very unclear result as most frequent intensities constitute noisy

background. What we want is the opposite - suppress the changes in background,
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Figure 4.4: Histogram equalization. The histogram is uniform in a sense of having
cdf representing as even accumulation as possible. The constraint of limited sampling
prevents us from splitting the spikes.

thus reducing the noise, and make the more informative pixels more distinguishable.

This can be done for example by calculating cdf of the probability distribution of the

complement histogram - the one which shows the difference between the value and

maximum histogram value for each bin, leaving the empty bins as 0 to get the clearer

result. The image obtained with this approach can be seen on Fig.4.5.

Figure 4.5: Histogram with custom look up table

4.2.3 Denoising

Anisotropic diffusion

Anisotropic diffusion filtering by Perona and Malik (1990) in its numerical form

represents itself as an integration of the following PDE in the image space over time:

∂I(x, y, t)

∂t
= div(g(‖∇I‖)∇I) (4.2)
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where g(x) can be an arbitrary function and the whole equation represents constrained

heat flow in the image. The algorithm can be best understood via mathematical

framework of differential geometry. By treating the image as a 3 dimensional landscape

we can describe its properties continuously the same way we describe curves or surfaces.

The derivation and more detailed explanation of Eq.4.2 is presented in Appendix

A. The two common choices for g(x), which proved to be useful are g(∇I) = e(−(
‖∇I‖

κ
)2)

and g(∇I) = 1

1+(
‖∇I‖

κ
)2
. The former allows for specification of priority of high contrast

edges over low contrast and the latter of wide regions over smaller.

(a) (b)

Figure 4.6: Anisotropic diffusion with parameters κ = 20, λ = 0.25 and g(∇I) =
e(−(

‖∇I‖
κ

)2) after 5 iterations. Before (a) and after (b).

To implement this in the computer the following numerical scheme was proposed.

First we perform the discretization of the Laplacian operator:

λdiv(g(‖∇I‖)∇I)→ λ[cN∇NI + cS∇SI + cE∇EI + cW∇W I] (4.3)

where we calculate the gradient of the image in the four directions. λ in heat equation

is just a parameter specifying the speed of thermal diffusion and is usually set for 1 in

simulations. As in discrete form we have 4 directions, to keep the system stable we

usually set λ = 1
4
or lower for slower and possibly more accurate convergence. Next

we perform the integration over time:

Iτ+1
i,j = Iτi,j + λ[cN∇NI + cS∇SI + cE∇EI + cW∇W I]τi,j (4.4)

The gradients in discrete image can be obtained by simple difference:

∇{N,S,E,W}Ii,j = Ia,b − Ii,j (4.5)
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where {a, b} ∈ {(i− 1, i, i+1), (j − 1, j, j +1)} according to the direction, which gives

us 4 gradient images. The conduction coefficients can be computed as follows:

c{N,S,E,W},i,j = g(‖∇Iτa,b‖) (4.6)

with a, b ∈ {(i− 1
2
, i, i+ 1

2
), (j − 1

2
, j, j + 1

2
)} this time. The κ parameter in either of

g(x) function alternatives shown above can be adjusted by hand or automatically. One

of the methods for the latter is to adjust it as a specified factor (in %) of the integral

of the absolute values of calculated gradients. The implementation used in testing1

allows only for manual setting empirically suggested to be in the range [20, 100]. This

is the most important parameter regulating the spread of diffusion and thus behaviour

of the whole system.

The algorithm was used as an alternative median filtering as a denoising approach

for the presented method and the example results for low quality image can be seen

on Fig.4.6.

4.2.4 Resolution enhancement

As the current pixel size on the sensor is not enough to perform useful holistic analysis

we need to project the image onto a higher resolution space. Two popular approaches

to facilitate that are interpolation and super-resolution. The interpolation is usually

much faster but far less accurate. Below are described two efficient methods exploiting

those two approaches.

Lanczos filter

Lanczos filter is the interpolation method used in image transformations, like rotation

and scaling, claimed to keep the best compromise between low and high frequencies -

between sharpness an smoothness (Wikipedia, 2013a). It is based on convolving the

image with so called Lanczos kernel, which in 1D case consists of windowed dilated

normalized sinc function defined as:

sinc(x) =
sin(πx)

πx
(4.7)

1By Peter Kovesi from The University of Western Australia
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Figure 4.7: Lanczos kernel for window size a = 3

The window is centered on the coordinate system’s origin and its size is defined by

parameter a, specifically:

L(x) =

⎧⎪⎪⎨
⎪⎪⎩
sinc(πx)sinc(πx

a
) if −a < x < a.

0 otherwise.
(4.8)

as defined on Wikipedia (2013a). The example of a window can be seen on Fig.4.7.

Figure 4.8: Example application of Lanczos filter application

We are able to obtain the value between any discrete samples by applying:

S(x) =
�x�+a∑

i=�x�−a+1

siL(x− i) (4.9)

where si stands for sample. The example result can be seen of Fig.4.8.
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Super-resolution

Much more accurate method of resolution enhancement can be developed by recon-

struction of the image from multiple frames via algorithms used for denoising and

deconvolution. One of the method achieving good results out of the box was proposed

by Farsiu et al. (2004). In short it can be defined as an optimization of the following

equation:

X̂ = argmin
X

N∑
k=1

‖DFkHX − Yk‖pp +
P∑

l=−P

P∑
m=0

α|m|+|l|‖X − Sl
xS

m
y X‖1 (4.10)

where X is a 1D vector representing the image, N is the number of the images, Yk is

the vector representing input image, H represents assumed distortions, Fk is a motion

operator describing repositioning of each element of image X, D is downsampling

operation and the whole second term a Total Variation regularization term in which S

is an affine shift matrix. H is the model of the Point Spread Function (PSF) defined by

the user as matrix containing the filter description for each position in the image. In

my approached I used the default Gaussian filter with standard deviation σ = 1. The

parameters and derivation of this equation are explained in more details in Appendix

B. The optimization process was further proposed to be split up into two major steps:

1) Noniterative data fusion - finding a blurred HR image Ẑ = HX̂.

Ẑ = argmin
Z

N∑
k=1

‖DFkZ − Yk‖pp (4.11)

2) Iterative deblurring-interpolation.

X̂ = argmin
X

N∑
k=1

‖A(HX − Ẑ)‖pp +
P∑

l=−P

P∑
m=0

α|m|+|l|‖X − Sl
xS

m
y X‖1 (4.12)

where l +m ≥ 0. A is a diagonal matrix containing the square roots of the number of

frames that contributed to generation of each element of Ẑ.

The first step can be solved analytically by solving a differential equation:

∂

∂Z
[
N∑
k=1

‖DFkZ − Yk‖pp] = 0 (4.13)

which for p = 2 takes the form:

N∑
k=1

F T
k D

T (DFkZ − Yk) = 0 (4.14)
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and was proved (according to Farsiu et al. (2004)) to be the pixelwise average of

frames after registration.

In the second step the solution is found numerically by gradient descent method

with the update step defined as:

X̂n+1 = X̂n − β{HTAT sign(AHX̂n − AẐ)+

λ
P∑

l=−P

P∑
m=0

α|m|+|p|[I − S−m
y S−l

x ]sign(X̂n − Sl
xS

m
y X̂n)}

(4.15)

4.2.5 Artifact removal

Frequency domain filtering

While applying super-resolution algorithm to the images with increasing resolution

factor, at certain moment we start seeing the artifacts caused by this operation in

a form of frequent pattern visible on Fig.4.9. These are singularity points in which

no more information from the original images can be added. To still enjoy higher

resolution, e.g. to smooth the transitions between pixels for gradient based calculations,

we might want to remove them.

Figure 4.9: Super-resolution image with resolution enhancing factor too large to handle
and thus showing places where information cannot be retrieved.

Patterns with constant frequency are easily visible in frequency domain, i.e. after

applying Fast Fourier Transform to the image. To visualize the transform it is

a common practice to depict its spectrum |F (u, v)|, power spectrum |F (u, v)|2 or

logarithm of a spectrum ln(|F (u, v)|) (where |z| = |x+ iy| = √x2 + y2). The last one

usually brings up most details. No matter which one we choose, we can use it to easily
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design filter manually or automatically and later apply it to the original transform.

The example of such filtering with certain frequencies removed by black circles can be

seen on Fig.4.10.

Figure 4.10: Power spectrum of the image on Fig.4.9. The commonly occurring
patterns are represented as white dots. In upper left part manual mask was applied
to remove them.

To make this automatic its easier to operate on the spectrum parametrizing it

in polar coordinates with respect to its center. Following Gonzalez et al. (2004) we

can map the defined function S(r, θ) to two 1D profile functions allowing us to move

either by radius with summary of all angles or the other way around:

S(r) =
180o∑
θ=0o

Sθ(r) (4.16)

S(θ) =
R∑

r=0

Sr(θ) (4.17)

where θ is the angle, r is the radius, which can be measured in number pixels, and R

is the radius of the largest circle fitting into the image. The latter equation gives us

a possibility to look for the angles with high activity. Once we define them - either

manually or automatically, we can save them for filtering feature images from the same

source. The next step is to define their location of unwanted frequencies. This time we

can draw profiles for the specified angles using S(r, θ) and again look for higher peaks.
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To make it automatic it is usually enough to smooth the function with Gaussian filter

and collect locations of all of the local maxima (not counting the central one). After

getting the coordinates, we can filter them out in spectral image by multiplying with

small inhibiting Gaussian filters centered around them. After that we can apply the

inverse the FFT image and The final result can be inspected on Fig.4.11.

Figure 4.11: Image corrected by FFT filtering

4.2.6 Color space

Figure 4.12: L a b color space channels

It is valuable to notice what happen to the Fig.4.12 if we split it into separate

channels within Lab (more specifically CIE L*a*b*) space, where L stands for lightness

and a and b are two color components. Visually those components present themselves

as a trade off between blue and magenta (a) and between blue and green (b). This

space allow for easy separation of WBCs from the background by describing them as

low intensity objects which tend to have color closest to mixing of blue and magenta.
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It is usefull not only visually though. As we assume those cells to be extremal cases

in this color space, we can safely threshold them cutting off certain percentage of

histograms, thus not having to worry about lighting or contrast conditions. This

also shows that we were lucky in this case as those particular color values mixing

gave so good result. We might want to create our own color spaces for this kind of

visualization for other objects.

4.3 Segmentation and candidates extraction

After pre-processing stage the next step in object detection is to build segments of

connected pixels, where each of them covers maximally the specified object and doesn’t

cover anything else in the image. To do that we can start with simple thresholding,

which works particularly well if we obtain a good representation of the data from

the previous step, e.g. mentioned denoised and enhanced image in Lab color space

for WBC detection or violet image in case of RBCs. Unfortunately this kind of

segmentation is usually quite noisy and results in objects being split in many parts or

(especially in case of our cells) ending up connected in clusters labeled as the same

object. To correct for that cases utilization of methods presented below is proposed.

4.3.1 Hough transform

Red blood cells often appear in clusters and each cluster will be counted as one object.

This produces an unacceptable error in the count and the mean area measure. There

are often too many of them on the picture to safely discard them. One of the frequently

used approaches to deal with this problem is edge and contour detection. In order

to detect edges in the image we can choose among several common gradient based

techniques. The most popular ones can be compared on Fig.4.13 where 405nm violet

RBC image was used as an example. For further processing we usually stick with

Canny detector as it is most general. After doing that in most of the cases we see that

edges are broken or still represent clusters. To deal with both issues with help comes

the Hough transform, which is a simple contour searching method. It can be described

best in terms of finding the specified simple shape based on connected contours in

the image. By choosing circle as a model we are able to divide most of the shapes

comprising connected circles and join together those which got broken.
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(a) Original (b) Sobel (c) Prewitt (d) Roberts

(e) LoG (f) Canny (g) Hough

Figure 4.13: Edge detection with different methods.

For visualization purposes it is best to work with the simplest possible contours

- the lines. Treating y = mx + b as our model we initialize the algorithm with the

chosen range of slopes and biases so to cover the whole image with lines. After that we

build a matrix in which rows represent m and columns b settings. We then gradually

fill its bins with the number of binary points through which the line with particular

(m, b) parameters is passing. There is one obstacle in this approach though. We can’t

consider the case of x = const, thus we can’t measure commonly occurring segments

described by lines going directly from top to bottom. For that we need to parametrize

it in different way and the popular approach is ρ = xcosθ + ysinθ, where ρ is the

distance represented by magnitude of the normal vector beginning on the curve and

ending on the coordinate system’s origin and θ is the angle showing the negative slope

of the line (i.e. positive angles direct the line down from the x-axis). The matrix

which we would fill up then consists of ρ rows and θ columns and can be visualized as

in the example shown on Fig.4.14.

What we are searching for are the lines passing through the highest amount of

points in the image and thus for peaks in the shown matrix. Those within threshold

specified by us are then projected back to the image as the detected lines. Quite often

instead of projecting the parametrized line itself only the points which contributed

to its creation are shown, which allows for detecting particular edge segments in the



39

Figure 4.14: Example of Hough transform for line detection

image.

The Hough transform generalizes to any parametric curve. So we can try de-

tecting any shape which can be described by equation formulated as c(u1...un) =

{x1(u1...un)...xm(u1...un)}. Usually the simpler shapes are chosen though as the com-

putation becomes very expensive with higher number of parameters and simpler shapes

usually generalize to many types of objects. For example circle can be expressed as

(x− x0)
2 + (y − y0)

2 = r2. Here the parameters are x0, y0 and r instead of ρ and θ,

which is already a 3D case. It is harder and more expensive to visualize the transform

matrix, but the idea remains the same.

4.3.2 Voronoi diagram

Voronoi diagram is the result of applying the equation which can be best described as:

V oronoi(qi) = {x : ‖x− qi‖ ≤ ‖x− qj‖∀j ∈ S} (4.18)

where S = {q1...qn} ⊆ R2. So that it is a diagram dividing the space into convex

regions each representing all the points x which are closer to the generating point qi

than to any other point qj . One of the ways we can look at this is that we define a 2D

distance function fi(x) = ‖x− qi‖. As in our case each point x and qi is a 2D point

on the plane we can view this result as 3D cones perpendicular to the surface with

origin at point qi defining the closest distance to it from any other point x. At some

point the cones will start to intersect each other and, because each of them is exactly
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the same, projection of those intersections on the surface will create straight lines,

which define our diagram. Formally the regions can be viewed as the lower envelope

of the function, i.e. LF (x) = min
i

fi(x).

In the project pipeline the generating points were generated based on Hough

transform segmentation to decluster red blood cell clumps. The details of utilization

of the diagram are described in further sections.

4.4 Feature extraction

4.4.1 Size and nucleus - cytoplasm ratio

One of the important measures when dealing with WBCs are size and nucleus -

cytoplasm ratio. Below few methods are presented to deal with the task of boundary

tracking. Although examples are presented only for external contour, the attention

is put on approaches which can be directly applied to search for nucleus-cytoplasm

boundary. The main problems here are posed by cells which touch other objects

- especially those with similar color and intensity - like other cells or clumps of

floating stain. The other ones include lack of clear border between cytoplasm and the

background. The gradient is much more visible between cytoplasm and nucleus in

most of the cases.

Exploiting log-polar representation

Log-polar representation allows for easier visualization of the problems and data

manipulation. The following sections presents a simple method for contour tracking

developed as part of the project. The idea is that for highly symmetrical objects, like

our cells, all the edges which need to be detected are some approximations of the

straight lines. This is not true when the cells are not perfectly centered of course, so a

lot of effort must be put in ensuring this condition is met as well as possible. After

choosing the center, the set of equations converting from Cartesian coordinates to

log-polar are given by: ⎧⎪⎪⎨
⎪⎪⎩
ρ = log

√
x2 + y2,

θ = arctan y
x
if x > 0.

(4.19)

The result of such transformation for WBC can be seen on Fig.4.15.
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Figure 4.15: Line-fitting to the edge of WBC in log-polar coordinates

The line in the middle is the result of curve fitting - the main part of the algorithm.

First the profile sc, or cross section, of the image is drawn representing its intensity

values at each column c and treated as a 1D signal (separate for each channel). It is

then smoothed by convolution with Gaussian filter to reduce noise:

s′c = sc ∗ g(μ, σ) (4.20)

where s′c is the smoothed signal, g is the Gaussian filter and μ and σ are normal

distribution parameters defined by the user. Then - just by looking at the image - we

can specify that what we are looking for are usually very light regions (cytoplasm)

followed by dark regions (boundary, refraction shadow effect not visible as much in

higher resolutions). These can be modeled by sigmoid function σ(x) = 1
1+e−x . After

that we can convolve (or correlate - depending on the direction) the profile with this

model:

lc = s′c ∗ σ (4.21)

to obtain its most probable occurrence locations. We also need to specify the area

we are mostly interested in. This is done by multiplying the result with Gaussian

function having the mean in the mean boundary distance for WBC, based on previously

collected examples.

l′c = lcg(μb, σb) (4.22)

where μb and σb are probable locations and spread of the boundary. When we finally

obtain our corrected profile l′c, we look for peaks - which tell us where sigmoid function

fitted best (Fig.4.16).

The procedure is repeated for each profile in the image. All the time only the

highest peak is collected. This gives us a line similar to the one visible on Fig.4.15 but

full of outliers originating from profiles with not as clear boundary. In our case those





43

is not the case for the cells of smaller sizes with borders blending into background.

Although not as successful in its simplest form, the method might be a good starting

point as it is easily expandable and allows for simple incorporation of basic assumptions

about symmetrical objects.

Region growing

Slightly more accurate in the tests on leukocytes was the region growing method. It

defines the family of different algorithms with a simple idea behind. We start by

choosing single pixel on each of the objects of interest. Their locations are usually

found by initial segmentation. Those points are further called seeds. In our case the

centers of WBCs are chosen and as we keep samples of the centered cells on separate

patches, only one seed is chosen per image.

Following from there the algorithm looks at surrounding pixels (either 4 or 8 -

depending on chosen connectivity) and compares them with specified threshold values.

If pixel meets the condition it is included to the region. Usually the intensity in each

channel is used as a similarity measure, but it can be anything. Next we treat each of

the newly attached pixels as seeds and keep adding more and more of them to the

region until we use up all of the possibilities. It is a common approach to further treat

difference between pixel intensity and average region intensity as the measure. This

way the algorithm can adapt to small changes within the same object. For multi-seed

approach the addition criterion must be specified for joining the regions which come

across each other during the development of the process. Again usually the average

intensity is compared and the regions are either joined or stay split as separate objects.

For defining detailed boundaries of the cells the single-seed approach is needed.

Eaculidean difference between 2D vectors representing intensities in L and b channels

of Lab color space were used as a metric. To correct for illumination and contrast

changes we can adaptively adjust the threshold with step of 0.02 of the normalized

difference between regions until no more than 70% of the image is filled. After passing

this thresholds the experiment presented sudden jump in activity and filling of all the

background in most of the cases. The results of such approach for set of WBCs are

presented on Fig.4.18.
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Figure 4.18: Region growing results for set of WBCs

4.4.2 Image moments

Image moments can be thought of moments of 2D probability distribution which

is represented by image itself. It can be proved that calculating infinite amount of

moments we can obtain the exact reconstruction of the original distribution. Their

nice property is that they are sorted by the influence and thus often obtaining just

few of them is enough to make correct class discrimination. The properties and full

derivation of descriptors used for WBCs classification can be found in Appendix C.

The derived Hu moments (Hu, 1962) can be described for each channel by the following

equations:

I1 = ν20 + ν02

I2 = (ν20 − ν02)
2 + 4ν2

11

I3 = (ν30 − 3ν12)
2 + (3ν21 − ν03)

2

I4 = (ν30 + ν12)
2 + (ν21 + ν03)

2

I5 = (ν30 − 3ν12)(ν30 + ν12)[(ν30 + ν12)
2 − 3(ν21 + ν03)

2] + ν21 − ν03)(ν21 + ν03)

[3(ν30 + ν12)
2 − (ν21 + ν03)

2]

I6 = (ν20 − ν02)[(ν30 + ν12)
2 − (ν21 + ν03)

2] + 4ν11ν30 + ν12)(ν21 + ν03)

I7 = (3ν21 − ν03)(ν30 + ν12)[(ν30 + ν12)
2 − 3(ν21 + ν03)

2]− ν30 − 3ν12)(ν21 + ν03)

[3(ν30 + ν12)
2 − (ν21 + ν03)

2]

(4.23)

where νpq is a normalized central moment (Appendix C). The Flusser moments (Flusser

et al., 2009) can be generated from the following algebraic basis:

B = {Φ(p, q) ≡ cpqc
p−q
p0q0

: p ≥ q ∧ p+ q ≤ r} (4.24)

in which cpq is a complex moment (Appendix C). To obtain the final results the

following 11 moments were used per each channel:
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F1 = Φ(1, 1)

F2 = Φ(2, 1)

F3 = Re(Φ(2, 0))

F4 = Im(Φ(2, 0))

F5 = Re(Φ(3, 0))

F6 = Im(Φ(3, 0))

F7 = Re(Φ(2, 2))

F8 = Re(Φ(3, 1))

F9 = Im(Φ(3, 1))

F10 = Re(Φ(4, 0))

F11 = Im(Φ(4, 0))

(4.25)

(a) (b)

Figure 4.19: (a) Original image. (b) Hu moment invariant map

The last interesting thing is that they can be used also for segmentation. Although

it is computationally expensive (∼5min on Intel Core i7-2860QM 2.50GHz CPU) it

appears to be a very good way of looking for the objects with certain size and shape

in the image. Fig.4.19a shows the original image and Fig.4.19b arbitrary chosen (5th

Hu) moment invariant map, where for each pixel the value is obtained by calculating

the moment for patch (e.g. 100× 100 px) centered at that point. As we can see in

this space some of the objects are distinguished more clearly. Certainly the small

objects represented as contrastive specks with white center and black border, which

have similar shape - get closer to the cells. They can be easily filtered out through by
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color information. The main advantage however is that of increased distance between

cell and the debris or irregularly shaped stained objects, which might cause a lot of

trouble in other space (e.g. color space).

4.5 Classification

For classification we chose three different approaches based on the amount of time and

effort the trained engineer has to spend on designing and choosing the appropriate

features. Rule-based classifier can be any one based directly on manual choice of

descriptors easy to understand by humans, like color, shape and texture. Classic

classifier is one which automatically adjusts the decision boundaries on those chosen

features. The last one - deep learning - usually can operate on raw data and designs

features by itself as part of the process.

The whole classification process is focused purely on leukocyte classification. It’s

quite distinctive problem by itself as detection and initial segmentation of the objects

can be done very easily. But it is hard to later split them to different categories.

4.5.1 Rule-based classifier

During the development I tested few popular combinations of input features. Among

the others they involved shape analysis in a way similar to one described in the

beginning of the previous section. As on our LQ images WBCs have very similar sizes

it was important to obtain accurate boundary delineation. We hoped that this would

allow us to draw an accurate size histogram and splitting of bimodal distribution

would be a main feature discriminating lymphocytes from myeloids.

Our so far best performing rule based algorithm2 can be expressed in terms of

simple set of rules with thresholds usually organized and adjusted for particular

dataset. The ones used to present rule-based results in this thesis are shown below

using PROLOG-like description in predicative logic framework:

WBC(X) :-

cytoplasm_size(X) > MIN_LYMPH_SIZE_THRESH AND

NOT blob(X) AND

(

cytoplasm_size(X) > MAX_LYMPH_SIZE_THRESH OR

2Thanks to B.Sc. Paul Hollensen for deriving this procedure.
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nucleus_circularity(X) > NUC_CIRC_THRESH

).

lymphocyte(X) :-

WBC(X),

cytoplasm_size(X) < MAX_LYMPH_SIZE_THRESH OR

(

cytoplasm_size(X) < MIN_MYELOID_SIZE_THRESH AND

nucleus_size(X) / cytoplasm_size(X) > NUC_CYT_RATIO_THRESH AND

nucleus_circularity(X) > NUC_CIRC_THRESH

).

myeloid(X) :-

WBC(X) AND

NOT lymphocyte(X).

cytoplasm_size(X) :-

SUM(pix) FOR_ALL

(

contains(X, pix) AND

mean( [ pix[red], pix[green] ] ) < CYT_RED_GREEN_THRESH AND

best_fitting_disk(Y) AND

contains(Y, pix)

).

nucleus_size(X) :-

SUM(pix) FOR_ALL

(

contains(X, pix) AND

(

mean( [ pix[red], pix[green] ] ) < CYT_RED_GREEN_THRESH AND

best_fitting_disk(Y) AND

contains(Y, pix) AND

dark_blue(pix, DARK_BLUE_THRESH) AND

nucleus_centered_disk(Z) AND

NOT contains(Z, pix)

) OR

(

nucleus_centered_disk(Z) AND

contains(Z, pix) AND

dark_blue(X, DARKER_BLUE_THRESH)

)

).

blob(X) :-

SUM(pix) FOR_ALL

(

contains(X, pix) AND

boundary(Y, X) AND

contains(Y, pix) AND

mean( [ pix[red], pix[green] ] ) < DARKER_THAN_RBC_GRAY_THRESH

) >

0.2 * SUM(pix) FOR ALL

(

contains(X, pix) AND

boundary(Y, X) AND

contains(Y, pix)

).

Besides adjustable global color thresholds at different stages this procedure is

mainly based on fitting two largest possible circles covering most of the area occupied

by whole cell (cytoplasm and nucleus) and the other one by nucleus itself. Only
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pixels lying within those circles are later are considered as important features. Their

summarized interrelation constitutes a nucleus-cytoplasm ratio, which is in the end

used to draw a final decision boundary. The results of such segmentation for set of

cells from one patient can be seen on Fig.4.20.

Figure 4.20: Nucleus (white - color threshold; red - fitted circle) to cytoplasm (gray -
color threshold; green - fitted circle) ratio segmentation.

4.5.2 Classical analysis

Nearest neighbours classification consists of storing the training data set and then

during test phase comparing each sample with its closest, in terms of specified metric,

members of the stored data. Then the classification is made based on majority vote.

There are many methods for storing and comparing the data. One of the most common

data structure, which we believe suits our relatively low dimensional training set, is

KD-tree, which divides K dimensional space in binary fashion thus splitting data set

based on locations in the space and makes access time much faster. The splitting can

be stopped at certain level and all the samples falling within the leaf will be searched

using brute force method.

Support Vector Machine (Cortes and Vapnik, 1995) is a linear large margin classifier,

which attempts to find a function separating classes by mapping the original feature

vector to the space where problem is linearly separable and solving the following
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optimization problem:

min
w,ξ,b
{1
2
‖w‖2 + C

n∑
i=1

ξi}

s.t. (wTφ(xi) + b)yi ≥ 1− ξi, ξi ≥ 0

(4.26)

where w is the parameter weight vector, φ(xi) is some transform of input data sample

xi, yi is its label, C is the regularization parameter describing the influence of slack

variables ξi on the final output. The slack variables measure the distance of each

wrongly classified sample from the separating hyperplane and thus provide provide

a trade off between maximizing the distance from samples and actually separating

the classes. The lower then the parameter C is the less overfitting we will usually

get, but making it too low would cause the classifier to learn the wrong model. Using

Karush-Kuhn-Tucker conditions and Lagrange multipliers we can look on a problem

from different perspective and specify the dual optimization problem in terms of

maximizing:

L̃(λ) =
n∑

i=1

λi − 1

2

∑
i,j

λiλjyiyjφ(xi)
Tφ(xj)

s.t. 0 ≤ λi ≤ C
n∑

i=1

λixk = 0 ∀xk

(4.27)

where λi are Lagrange multipliers. The equation unveils the kernel function of the form:

K(xi, xj) ≡ φ(xi)
Tφ(xj). This function is chosen by the user usually as a hypothesis of

a form of the separating hyperplane projected onto the original feature space. In further

work we make use of radial basis function (RBF) of a form K(xi, xj) = e−γ‖xi−xj‖2 ,

where γ = 1
σ2 . It is the most general of popularly chosen kernels and one allowing for

highly nonlinear solutions in original data space.

SVM is considered a large margin classifier as it attempts to fit a hyperplane for

linear class separation, so that it isolates them keeping largest possible margin to all the

samples from both sides. When the classes are perfectly separable (wTφ(xi) + b)yi ≥ 1

defines the margins, so that no sample can lie closer to the hyperplane than that. The

weights w then define the distance between margins as 2
‖w‖ and to maximize it we need

to minimize ‖w‖ or 1
2
‖w‖2 without loss of generality. To allow for outliers here the

slack variable ξi was introduced which gives penalty to incorrectly classified samples
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according to how much they exceed ”their” margin. As no penalty is given to correct

samples this change can also be viewed as a hinge function (compare with softplus on

Fig.4.21). The problem specified this way is called soft margin classification.

4.5.3 Convolutional Neural Network

Convolutional Neural Networks emerged from the need of automatic feature extraction.

In classical computer vision most of the time is usually spent on finding appropriate

filters to exaggerate parts of the image, which seem particularly interesting for human

expert. The popular ones include Gaussian based low pass filters, Laplace or Sobel

high frequency edge detector, and more spatially localized wavelet filters, like Mexican

hat or Gabor. After filtering the processed images constitute a raw input to the

classification algorithm or, more often, are subjected to segmentation. The extracted

features describe objects in terms of basic symbolic measures like size, shape, color

or more advanced, like moment invariants. The other methods of dimensionality

reduction, like PCA or ICA, are also often applied. All those methods suffer from

need of laborious design and manual adaptation whenever environment changes. They

are also very biased towards our believes of what constitutes a set of good features

for given objects. The promise of CNNs is to avoid those manipulations and aid

researchers with tool capable learning appropriate feature extraction method using

example-based optimization.

Popular CNN design (LeCun et al., 1998) involves two types of layers distinguishing

it from regular MLP network: convolutional and pooling. The first one is responsible

for filters represented by its weights through the operation:

zk = φ(
∑
m

W k,m ∗ xm + bk) (4.28)

where k stands for kernel and m for channel index. zk is the output and xm the input

feature map (i.e. channel of the image). W is a weight matrix and b is the bias. φ

can be any type of activation function. The other variant of this layer exists in which

the weights are not shared across the location. It’s dubbed ”local” convolutional layer

and can be described as follows:

zk = φ(
∑
m

∑
i,j

∑
r,s

W̃ k,m
i,j,r,sx

m
i+r−1,j+s−1 + bk) (4.29)
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where i, j are indices of the input feature map and r, s over each kernel. This differs from

convolution in that here we have separate W for each i, j. Ã means fliplr(flipud(A))

or rot180(A) operation and therefore the equation represents correlation of rotated

matrix with upfollowing indicies, which is just different way of describing convolution.

Usually this layer is immediately followed by pooling layer and therefore it makes

sense to have φ to be a linear function (i.e. φ(x) = x). The pooling layer is nothing

more than specific way of downsampling the image in a way which preserves most of the

useful information from the input feature map. It helps to compress its dimensionality

and achieve higher translation invariance by extracting only the most important

information from the given region. For local neighbourhood of each pixel the most

popular methods include max pooling and average pooling. The first one is usually

more effective as it carries on only the information the network learned to exaggerate

most in given area. Pooling can be described as:

zm = φ(βmd(xm) + bm) (4.30)

where d is a downsampling function. The scaling factor of β is usually set up to 1.

Both methods are often simplified to create one conv-pooling layer of the form:

zk = φ(d(
∑
m

W k,m ∗ xm) + bk) (4.31)

The decision was made to use the rectified linear units as a form of activation

function:

φ(x) = max(0, x) (4.32)

As they are non-differentiable at 0, they are often approximated with softplus units

φ(x) = log(1 + ex) for mathematical analysis, which have an interesting property that

its derivative ∂φ
∂x

= 1
1+e−x results in logistic function. Both functions can be compared

on Fig.4.21.

Rectified linear units have certain advantages over other popularly used activation

functions, like sigmoid/logistic (φ(x) = 1
1+e−x ) or hyperbolic tangent (φ(x) = ex−e−x

ex+e−x ).

They enforce sparse activation by constantly switching off subset of output units.

They also achieve a type of intensity invariance in a sense that x ≤ 0 part of a function

is constant and linear part gets equally scaled for all the units with changing intensity

range. Therefore, even though scaling the data by their standard deviation is the
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Figure 4.21: Comparison of softplus and rectified linear functions

common practice, here we only center them around mean. Their other very important

feature is that they are resistant to the vanishing gradients problem (Maas et al., 2013)

and thus allow for easy training of much deeper architectures. This problem occurs in

saturating activation functions (like two mentioned before) when units get close to

boundaries of their codomains in higher layers thus causing much smaller gradients in

layers below. This results in slow convergence and higher probability of getting stuck

in local minima. Finally we also chose those kind of units because they resemble more

plausibly biological neurons, as mentioned by Glorot et al. (2011).

The weight optimization algorithm of choice is popular stochastic gradient descent

backpropagation (Rumelhart et al., 1988, Sutskever et al., 2013). To perform it in

general we apply delta rule at each layer in a form: W t+1 ← W t + ΔW t where

ΔW t = −ε ∂E
∂W t and E represents the error function. This can also be written in a

form ΔW t = −ε∑
i

∂Ei

∂W t , which defines batch gradient descent, where i is the batch

index. Stochastic version assumes approximation of gradient based on single example

and thus allows tracking of progress in more ’on-line’ manner, i.e. ΔW t = −ε ∂Ei

∂W t .

The mini-batch variation takes advantage of both methods, by treating subsets of full

batch as ’samples’ for gradient descent. This allows for lower resources utilization and

better convergence at the same time.

We view the training of our network as maximum likelihood estimation on stochastic

model defined by joint probability distribution over given training dataset:

L(W ;X, T ) =
∏
i

p(Y = t(i)|X = x(i);W ) (4.33)

where L is the likelihood function, T are target labels and X is the input data. Our

objective is to find ŴML = argmax
W

L(W ;X, T ). For computational reasons it is a
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common practice to use the negative log likelihood, normalized by number of samples,

as a loss function to minimize:

E(X, T,W ) = − 1

n

n∑
i=1

log p(Y = t(i)|X = x(i);W ) (4.34)

and as p(Y = t(i)|X = x(i);W ) =
∏
i
y(i)

t(i)

the loss function for one sample becomes:

E(X, T,W ) = −
n∑

i=1

t(i) log y(i) (4.35)

and is further accumulated and normalized across number of samples in a batch.

In all our models we use softmax function as our top layer activation function, i.e.:

yj = φ(WjX + b) =
eWjX+bj∑
k
eWkX+bk

(4.36)

where j is the class index. The choice of this function is motivated by its capabilities

to represent categorical probability distribution through normalization.

The gradient derivation of the specified functions used later in backpropagation

algorithm is detailed in Appendix D. In all of the following implementations of neural

networks in this paper we also use weight decay, parametrized by λ, and momentum

(e.g. Fischer and Igel (2012)), parametrized by η so our cost function becomes:

Ê = E − λW 2 + η(
∂Ê

∂W
)2 (4.37)

4.5.4 Pre-training and filter initialization

As the convolutional neural network highest accuracy on WBCs test set, in this section

we define a potential way of extending the algorithm for speeding up the training

process and learning more general filters. I admit though that this help most in the case

of larger number of unlabeled data which can be additionally harvested. This is not

the case of our dataset and therefore this part should be treated as additional practice

helping to improve the results for the reader who wishes to follow our approach.

The most basic filter initialization besides random is to design them manually. I

tried this approach and chose a set of those which seemed most sensible to me. I

chose different sizes and orientations of Gabor functions, because they are biologically
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plausible and this is the most common result in literature of learning neural networks

on natural images (Krizhevsky et al., 2012). And then I also chose different sizes of

DoG and radial basis functions, because they resemble cells in most of decomposition

approaches (like PCA or ICA) or filters learned by CNN in our previous approaches.

The set of filters can be seen on Fig. 4.22.

Figure 4.22: Hand crafted filters

The second option is unsupervised pre-training, which should in general help the

network to reduce dimensionality of the data more robustly. To get more details on

why this is truth, please follow Erhan et al. (2010). Restricted Boltzmann Machine

(Fischer and Igel, 2012), beside autoencoders, is the most common and modern method

for extracting important common features of objects within set of unlabeled images.

It results in a set of components, which describe those objects in similar fashion PCA

or ICA does. Recent development of convolutional RBM (Lee et al., 2009) allow us to

apply similar techniques to pre-train the filters for our convolutional neural network.

We decided to apply that technique only to the first layer and use longer fine tuning

after. Description of basics behind RBM is out of the scope of this paper. Please refer

to Fischer and Igel (2012) for more information.

The general energy equation of convolutional RBM is defined as follows (Lee et al.,

2009):
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E(v, h) = −∑
k

∑
ij

(hk
ij(W̃ ∗ v)ij + bkh

k
ij)− c

∑
ij

vij

s.t.
∑

ij∈Bα

hk
ij ≤ 1, ∀k, α

(4.38)

Inputs to visible and hidden layers are defined in similar way as in first layer of pure

CNN. And thus the same rule applies to the mode of convolution operation.

I(hk
ij) =

∑
m

vm ∗ W̃m,k (4.39)

I(vmij ) =
∑
k

hk ∗Wm,k (4.40)

Bernoulli hidden layer sampling uses probabilistic max pooling on top, which

contraints number of possible units which are on within certain window Bα to 1 (see

the constraint within energy function). Therefore the following conditional distribu-

tion of Gibbs sampling can be effectively viewed as simple multinomial distribution

enumerating all the possible configurations of nodes within a block (one per each

node) and p(pα = 0|v) defining situation when all of them are off (pα is here a state of

a pooling layer unit, rather than its probability).

p(hk
ij = 1|v) = p(v,hk

ij∈Bα
=1,hk

rs∈Bα\{(ij)}=0)

p(v)
=

∑
hk
rs∈Bα\{(ij)}

e
−E(v,hk

rs∈Bα\{(ij)})e
−E(v,hk

ij∈Bα
=1)

∑
grs∈Bα

e
−E(v,grs∈Bα)

=

e
I(hk

ij∈Bα
)
e
−E(v,hk

rs∈Bα\{(ij)})∑
gab∈Bα

e
−E(v,gab=1,gab∈Bα\{(ij)})+e−E(v,gab∈Bα

=0) =

e
I(hk

ij∈Bα
)
e
bv
∑

ij
vij∑

gab∈Bα
e
I(hk

ab∈Bα
)
e
bv
∑

ij
vij

+e
bv
∑

ij
vij

=

e
I(hk

ij
)

1+
∑

ab∈Bα
e
I(hk

ab
)

p(pα = 0|v) = 1

1 +
∑

ab∈Bα
eI(h

k
ab
)

(4.41)
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For sampling visible units we need to use Normal distribution (see Krizhevsky and

Hinton (2009) for more on that). To make the training easier we normalize the input

data and then use constant standard deviation σ = 1 for sampling.

p(vmij |h) = N(I(vmij ); 1) (4.42)

We use Contrastive Divergence for training. Positive and negative phases for CD-2

are calculated by:

< vh >≡ E[p(h|v) ∗ v] (4.43)

The last thing is sparsity constraint which helps a lot with training distinctive

filters - each representing different feature - and thus making the model more robust.

Here we use the method based on Kullback-Leibler divergence in which we specify

target sparsity, as the mean percentage of hidden nodes being on at a given time

(usually ρ = 0.05) and add the constraint to the cost function.

∑
j

DKL(ρ||ρ̂j) = ρlog
ρ

ρ̂j
+ (1− ρ)log(

1− ρ

1− ρ̂j
) (4.44)

The gradient for weights update can then be derived as ∂DKL(ρ||ρ̂j)
∂ρ̂j

= − ρ
ρ̂j

+ (1−ρ)
(1−ρ̂j)

.

4.5.5 Dropout

Dropout (Srivastava et al., 2014) is a simple yet powerful technique which consist of

dropping random connections during learning stage so that different ones get updated

in each epoch. The main parameter here is the target p specifying probability of

weights having non-zero value. It prevents overfitting by providing more general filters.

It can be thought of as an ensemble of networks, in which different network gets

trained each time we prune connections and we get an average network in the output.

For training such network different hyperparameters like learning rate and weights

range should be scaled appropriately.



Chapter 5

Experiments and Results

5.1 Image Preparation

All of the pictures were taken from full blood samples of 11 patients and 4 auxiliary

samples. The latter constitute of purified blood where all but one cell types were lysed

(i.e. broken down and removed). The remaining types of white blood cells in each of

those four samples were: lymphocytes, monocytes, myeloids and neutrophils. They

were created for training and validation purposes. As we didn’t obtain sufficient quality

to reliably distinguish monocytes and neutrophils, lymphocyte images were used to fill

lymphocyte class and all the other ones to fill the myeloid (i.e. non-lymphocyte) class.

Figure 5.1: Results of super-resolution. The 21 RGB images of low quality (left) are
transformed into image of 5 times larger resolution (right) conveying information
from all of them. De-blurring deconvolution, median filtering and pseudo flat field
correction have been applied as part of the process.

Five 200 Mpix images were collected of each patient’s blood. The initial low

resolution (LR) images were corrected with pseudo flat field and leveled to common

mean intensity (please see section 4.2.1 for method description). The pseudo flat field

was created by subsampling the image with step 4 and then filtering it with median

filter of size 8x8. The edge effect of filtering was removed by creating a mirror of the

edge parts for the time of processing. Often the average level intensity of each channel

57
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is chosen to be the maximum across the channels. Here however we wanted to have

the same level for each incoming image. As there was no higher reference point it

was set arbitrarily to IFFC = Iorg
IFF
∗ 280− 56, where 56 was common lower bound of

intensity histogram and 280 was chosen higher than intensity spectrum to provide

space for larger range. The high resolution was obtained by combining 21 LR noisy

images using popular super resolution algorithm (Farsiu et al., 2004) (see Fig.5.1)

described in more details in section 4.2.4.

Figure 5.2: Comparison of filtering of the original image (left) with median filter
(center) and anisotropic diffusion (right)

After resolution enhancement we perform additional small window 2x2 median

filtering to remove noise. Here anisotropic diffusion could be used instead to reduce

noise to even higher extend (Fig.5.2), but has a trade off of computation time.

Full super-resolution with filtering of HQ images took about 9 minutes on Corei7-

2860QM 2.50GHz CPU when using median filtering and about 17 minutes when using

anisotropic diffusion. No quantified results were obtained to measure the noisiness

of the images, however the background appeared smoother and edges well preserved

in case of anisotropic diffusion. The improvement appeared useful within acceptable

time for LQ data, but this wasn’t the case for HQ. Red blood cells were successfully

calculated even in LQ, for white blood cells the classification algorithms were used,

which are robust for noise level appearing in HQ, and platelets were represented

sometimes by so small speckles, that they couldn’t be reliably preserved during the

filtering.

The resulting super-resolution, denoised images allow for visual isolation of our

three main objects of interest - erythrocytes, thrombocytes and leukocytes. They are

presented on Fig.5.3 in the same scale.



59

(a) (b) (c)

Figure 5.3: Visuals of the main objects of interest cropped out from images after the
last step of pre-processing: (a) red blood cell / erythrocyte (b) platelet / thrombocyte
(c) white blood cell / leukocyte

5.2 Cell analysis and final results

The most important from the clinical point of view are correlations with state of the

art readings. As mentioned before, Coulter Counter was used to measure count factors

for each patients. The following sections describes in details experiments conducted

for measuring features of each type of blood cell. The counts obtained with computer

vision system are plotted against the Coulter Counter values and linear regression is

used to obtain the model of relation. Those correlation plots for each measurement

achieved with best performing methods are presented on figures below. Subsequently

the coefficients of determination (R2) are computed for each plot as:

R2 = 1−
∑

i(yi − fi)
2∑

i(yi − μy)2
(5.1)

where yi are observed relations, μy is their mean and fi are corresponding values of

fitted model.

5.2.1 Erythrocyte segmentation and analysis

As mentioned in section 4.3 the red blood cell analysis was based almost purely on

segmentation and basic feature extraction. The final pipeline for erythrocytes and

thrombocytes was implemented in MATLAB utilizing available image processing and

computer vision toolbox functions - mainly Hough transform, filtering, Otsu’s method

and all the plotting and visualization tools. The images were segmented using only

the violet channel (Fig.5.4). The main reason for not using other channels was that

the cells were moving during the acquisition process (∼ 2min) and so the objects

often didn’t overlay exactly across the channels. The smaller the objects were the
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more affected they were by the flow. After performing flat field correction in violet

channel, the initial segmentation was done by Otsu’s method (Fig.5.4b). Next the

system performs morphological closing followed by hole filling and obtains Fig.5.4c as

a result.

(a) (b)

(c)

Figure 5.4: (a) Violet channel of full blood image enhanced and prepared for RBC
segmentation. (b) Violet image threshold mask using Otsu’s method. (c) The same
mask after morphological closure and hole filling.

The connected components were later divided by size into singlets and clusters.

The results of this operation are shown on Fig.5.5. The histograms showing cell

sizes were drawn and the threshold was chosen as an average minimal point between

Gaussian representing singlet cells and one of doublets (Fig.5.6a) .

The group of clusters was then subjected to circular Hough transform. As the

detected edges were often noisy and were not giving good overall results (please see

section 4.3), the other approach was taken instead. The blobs of Fig.5.5 were left

without edge tracking and circles of only sizes close to RBCs were fitted. Each cluster

was considered separately - to avoid unnecessary overlap. An example of a patch with

circles detected is shown on Fig.5.7a. This detection is far from perfect. First of all

the cells have different sizes and the segmentation is usually not exactly circular. To

avoid location errors smaller circle size was chosen. Also the problem of overlapping
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(a) (b)

(c) (d)

Figure 5.5: (a) Singlet cells (b) Clusters of cells (c) Results of cluster separation (d)
Complete result of RBC segmentation. Separated clusters and singlet cells joined in
one image mask.

circles often occurs within patch. When the edge detection is skipped it is usually

caused by many models being fitted to the same cell. To fix that first the threshold is

set on certainty (number of positive pixels under the circle). Second the distances are

calculated between all of the circle centers and the neighbours. Then only one circle is

left within each neighbourhood and the rest is removed. As the model which stays is

chosen randomly, it often occurs that the result circles are not visually positioned in

the center of the wanted segment. The whole effort here is then put not on describing

the cells by circles - as this is often not accurate enough and causes too much error in

mean cell size calculations - but on marking each cell with disjoint pixel (e.g. circle

center) to facilitate the subsequent algorithms to divide those cells.

The found objects centers are then segregated and Voronoi diagram is applied for

cell separation. The result of circle centroids generating the diagram for cells can

be seen on Figs.5.7b and 5.7c. The backprojected results for clusters can be seen on

Fig.5.5c. After joining with initially obtained singlet cells the final result is visible on

Fig.5.5d and further overlaid on initial violet image on Fig.5.8.

The next step is a measurement of the area of each segment. Two thresholds
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Figure 5.6: Histogram of object sizes before declustering (a), singlet (non-clustered)
cells (b) and all red blood cells after declustering (c).

(a) (b) (c)

Figure 5.7: (a) Hough transform result (b) Voronoi diagram overlaid with cluster (c)
Separated RBC cluster

were set to exclude objects too small and too large to be cells. As the divided cells

from clusters are either squeezed or overlapping with other cells, their measures will

always be less accurate than those of singlet cells. Taking that into consideration two

measures were taken - one for the singlet cells (Fig.5.6a) and one for both singlet and

clustered cells (Fig.5.6b). To exploit obtained histogram I fitted Gaussian function by
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the same means we perform MLE on normal probabilistic distributions. From that

I obtained mean cell size and standard deviation of possible sizes. Just by looking

at them it can be seen how much error is introduced by this uneven measures. For

further applications the decision was made to calculate the size and other features

parameters based on the singlet cells approach and total counts based on all.

Finally CBC measures are obtained for RBC by combination of obtained values

and pre-defined constant values based on experiments done by the company. For

further description of those please refer to section 2.1.1.

dilution factor = 0.25

chamber height = 1.75

superres = 3

area =
area covered ∗ (1.1)2

superres2

RBC# = count

RBC Concentration =
count ∗ dilution factor

area ∗ chamber height

MCV = singlet cell mean

RDW =
singlet cell stdev

singlet cell mean

HCT = RBC Concentration ∗MCV

(5.2)

Figure 5.8: RBC segmentation. Violet channel of the image with overlaid borders
(red) of the segmented red blood cells.

For each of the RBC measures, median value was used across the images for each
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of 11 patients to reduce influence of outliers. Without ranges of standard values and

proper documentation, the obtained numbers do not convey enough information to

health worker, so they need to be further related to the standard ones (section 2.1.1).

This is accomplished by demonstrating the factors of linear dependence between those

two types of data. They are obtained by linear regression and the assessment of

quality of that fit is done by calculating the coefficient of determination. R2 values for

erythrocytes are presented on Fig.5.9 and further summarized in Tab.5.1. Section 5.3

provides further discussion and potential solution to some of the occurring problems.

(a) RBC (b) MCV

(c) RDW (d) MCH

(e) Hct

Figure 5.9: Squared Pearson correlation of total (a) RBC (b) MCV (c) RDW (d)
MCH (e) Hct count with Coulter Counter readings for given patients
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RBC MCV RDW MCH HCT
R2 0.81 0.53 0.95 0.20 0.80

Table 5.1: RBC R2 summary table. Juxtaposition of the R2 values of the correlation
plots on Fig.5.9.

5.2.2 Thrombocyte segmentation and analysis

A slightly different approach was taken for the case of platelets. The main difference

was utilization of probability map based on weighted combination of images filtered

or segmented in few popular ways.

First few examples of platelets, with morphology as distinctive as possible, was

picked manually from random cropped images. As this step is mostly to exploit color

based features, hue channel was calculated for each example and pixel values clustered

with k-means. This constituted 5 means (besides background), the values were saved

and used to calculate five probability maps for each image based on Euclidean distance

from them to each pixel. The additional layer was added based on simple thresholding

of violet channel - mainly to exclude examples of unusually looking red blood cells.

The next step was based on Laplacian of Gaussian filtering and then calculation

of Hough transform for each of RGB channels - mainly to find all the small circular

objects of sizes appropriate for platelets. Before incorporating this layer into the

process, found components were smoothed with dilation and Gaussian filtering. Then

the next layer was calculated with the same goal of finding small speckles - this

time equipped with difference of Gaussians filters. The aim here was similar to basic

template matching, where filter, or template, is cross correlated with the image to

give most probable positions of objects with similar shape.

In the end the layers were multiplied together (or added in logarithmic space to

avoid losing accuracy associated with small floating point numbers). The acquired

probability map was normalized, thresholded and subjected to morphological filtering

to remove noise and smooth the boundaries. The results can be seen on Fig.5.10.

Here again median count over the pictures for each patient was used and the final

Plt parameter results can be seen on the correlation plot presented on Fig.5.11. The

R2 value reached 0.28. The discussion on those results is further presented in section

5.3.
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Figure 5.10: Platelet segmentation. Original image (left), platelet probability map
(middle), segmented platelets (right).

Figure 5.11: Squared Pearson correlation of total platelet count with Coulter Counter
readings for given patients

5.2.3 Leukocyte classification

Previously defined classification methods are extensively tested on task of separating

three leukocyte classes based on set of cropped 121x121 4-channels color image patches.

Most of the original images were partially labeled with rough (non-centered) location

and type of the cell. This dataset includes samples of two main leukocyte types -

lymphocytes and myeloids, and one additional class of hard case non-leukocyte objects

with features similar to both. Example images from the set can be seen on Fig.5.12

and Fig.5.13.

Simple threshold of 10% of lowest values in histogram of b channel from L*a*b*

space followed by morphological opening was usually enough to produce good candi-

dates for CNN, but for rule-based approach we wanted to initially exclude as much

of anomalies as possible. It wouldn’t be fair to compare the classifiers after different

segmentation procedures and therefore the following approach was taken. First we

perform initial thresholding based on the difference between green and blue channels.

After that we remove particles close to each other leaving each time only one from close
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Figure 5.12: Representatives of examples of three classes in the dataset - anomalies,
lymphocytes and myeloids

(a)

(b)

Figure 5.13: Random WBCs examples displaying their (a) RGB and (b) fourth 405nm
violet channel

neighbourhood. And then we finish by applying size threshold. This produced marker

map for the image. This map is then matched with ground truth of human expert

(see Fig. 5.14). This is done by first extracting each patch by drawing 121x121 pixel

square around centroid of each segmented region. Then the attempt for correction of

centroid location is made by applying Otsu’s method in L*a*b* space. The dilation is

applied to it and if the largest connected component doesn’t occupy certain percentage

of the patch it is chosen as better candidate, the center point location is corrected and

new patch extracted from original image. The samples on the edge of the image are
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padded with gray values of mean intensity matching background, so they fit mentioned

square shape. After extracting each sample, the simple procedure is applied to check

which ground truth label location falls within the box. White blood cells are separated

enough on the image samples, so that getting two labels in one patch practically never

occurs.

Figure 5.14: Ground truth class and localization markers manually positioned by
expert.

Obtained in this way dataset consists of 8106 patches. 2440 are unlabeled, 628

are anomalies, 871 lymphocytes and 4167 myeloids. We further produce augmented

samples, mainly to balance it as the number of samples in each class is very uneven.

The transformations include 4 90o rotations, 2 mirror operations, 4 shifting operations

and as many as needed scaling of eigenvectors in RGB space, effectively changing

overall illumination, as described by Krizhevsky et al. (2012). The example result can

be seen on Fig. 5.15.

At the feature extraction stage we only extract 7 Hu moments and 11 Flusser

moments per channel for each sample. This constitutes input for training SVM and

kNN. Even though the TRS moments produce duplicates in augmented dataset, we

obtained better results when it was balanced in this crude way. Besides, used moments

are not contrast invariant and thus introduce small variety. CNN takes raw images as
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input, but rule-based system operates directly on segmented regions.

As the rule-based system was hand tuned for the whole data set, I don’t report

its accuracy. The correlation with Coulter Counter readings are used instead for

comparison with other methods. For all the other classifiers we perform patient based

cross validation (CV). The training set comprises of partially marked images of blood

from 9 patients. The non-labeled examples include misclassified or missed cells in

those images and all the examples from patients 10 and 11. In each classification

attempt we leave out patches of the patient and use them for testing. This results

in 30-fold CV. Only after the split the training set is subjected to augmentation.

The results are then used for Coulter Counter correlation and averaged for accuracy

comparison.

Figure 5.15: Data Augmentation by rotation, flipping, shifting and intensity modifica-
tion by PCA in RGB space.

Classification with kNN was based on KD tree search with leaf size 30. The

Euclidean metric was used for distance comparison. Implementation provided by

Pedregosa et al. (2011) was used for testing.

For SVM I chose a kernel to be Radial Basis Function (RBF). The simpler kernels,

like linear and polynomial gave worse results consistently in variety of tests during

the development process. I first split the whole dataset using 10% random samples as

a test set and then optimize hyperparameters C of cost function and γ of RBF kernel.

For that I used grid search provided by Chang and Lin (2011) modified in a way that

it doesn’t perform cross validation (because of time constraints). The optimization

is done in the space of C = [2−5, 215] and γ = [23, 2−15]. To make the search more

efficient the coarse grid is first used to find a rough region and the finer one for more

accurate tuning. The results are presented on Fig. 5.16 with best accuracy achieved

when using C = 0.125 and γ = 2. The accuracy doesn’t tell us the real performance

here though and thus we later perform patient based cross validation.

The architecture of convolutional neural network used can be seen on Fig. 5.17.
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of size 128. Pylearn2 framework (Goodfellow et al., 2013) was used to support the

implementation and all the time consuming operations (esp. nD convolution) were

performed on GPU. The learning rate was chosen to be 0.0001 and the generalization

(test set) learning curves for lymphocyte and myeloid classes are presented on Fig.5.18.

Learning curve for anomalies is not representative as it contains too few amount of

samples in the test set. Here and in the following result reports we arbitrary chose

one of the cross validation classifications as a representative (patient 2, image 4). Fig.

5.18c represents negative log likelihood value (without constraints) during the training

averaged over classes. Below on Fig.5.19 we can see 64 first layer filters learned during

the training.

(a) (b)

(c)

Figure 5.18: (a) Lymphocyte generalization curve. (b) Myeloids generalization curve.
(c) Mean negative log likelihood

For dropout setup we removed padding and weight decay. The probability of

nodes being on was set to 0.8 for each layer. Although the resulting filters look more
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(a) (b)

Figure 5.19: Filters trained with regular CNN (a) RGB (b) Violet.

convincing for human (Fig.5.20), the training takes longer time and accuracy achieved

by us was always the same or slightly worse than when training without dropout.

The cause for that might be less robustness to noise and too general filters, in case of

which they should be trained for even longer time. I report these results though as I

believe our problem is not complex enough to take advantage of this technique, but

readers may take advantage during their system development. The regular network

solves the problem with acceptable accuracy and the wrongly classified examples are

most of the time incorrectly labeled by human expert.

(a) (b)

Figure 5.20: Filters trained by CNN with dropout (a) RGB (b) Violet.
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Pre-initialization of filters in manual way had no effect on the final classification

results. We present filters of convolutional RBM on Fig.5.21. One can see the effect

of sparsity constraint, as the filters tend to be more diverse. They also seem to focus

more on details which might be of larger importance when classifying cells other than

blood, which depend more on morphology. Utilization of those filters to improve the

results is part of the future work.

Figure 5.21: RGB filters of convolutional RBM

We further asked what is the optimal number of convolutional layers needed for

correct classification and thus what is the hierarchical complexity of our data. In

each test we adjusted the number of filters and weights on fully connected layers to

nearly match 500000. The results can be seen on Fig. 5.22, where it appears that two

convolutional-maxpooling layers is enough. The fully connected layers stayed within

the network and we didn’t make any attempt to vary their number.

Table 5.2 presents an example confusion matrix (again for patient 2), showing the

influence of falsely classified samples on overall accuracy and also the actual unbalance

of the classes.

Anomaly Lymphocyte Myeloid
Anomaly 8 0 1

Lymphocyte 0 23 1
Myeloid 1 2 119

Table 5.2: Confusion matrix - predictions (top) vs actual class (left)

The final results of image based cross validation classification are presented on
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Figure 5.22: Best accuracy achieved on the network with randomly chosen training
and testing subsets with varied number of convolutional layers and same number of
weights

Fig. 5.23. The mean recall for each class was calculated rather than average accuracy

over all classes, as the test dataset was very unbalanced. To show if the results indeed

significantly differ from each other, also the variances were shown as error bars. Both

measures are given by equations:

μ
(c)
recall =

N∑
i=1

TP (c)(i)

N∑
i=1

(TP (c)(i) + FN (c)(i))

(σ
(c)
recall)

2 =
N∑
i=1

[(
TP (c)(i)

TP (c)(i) + FN (c)(i)
− μ

(c)
recall)

2 (TP (c)(i) + FN (c)(i))
N∑
i=1

(TP (c)(i) + FN (c)(i))
]

(5.3)

where c is the class, TP (c) are true positives and FN (c) of a given class. The iteration

is made over all (N) folds of image based validation.

The distinction was made for the input features. One can see that the hardest

class to make decision on correctly was lymphocyte, even though it’s not the one with

the smallest number of samples. I believe it comes from the fact that it usually lays

in between the other two in terms of morphology and visual appearance. Presented

convolutional neural network architecture exceeds other classifiers in terms of recall

for every category.

CNN results were further tested for statistical significance (Ojala and Garriga,
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Figure 5.23: Classification results comparison showing per-class recall of classical and
deep learning approaches.

2010) and ended up providing the p-value of 0.01. This value can be calculated as:

p =
|{D′ ∈ D̂ : e(f,D′)}|+ 1 ≤ e(f,D)}|+ 1

k + 1
(5.4)

where D′ belongs to a set D̂ of data in which labels were randomly permuted, D is

the one with original labeling and e computes the misclassification error given cost

function f . The idea is that any of random permutation after re-training shouldn’t

provide a better solution than for the original test. Usually 100 permutations are

performed and p-values of ≤ 0.05 are considered statistically significant.

The final counting results for WBC parameters are presented on Fig.5.24 and

further summarized in Tab.5.3. The further discussion of those results is done in the

next section.

WBC Lymphocyte Myeloid
R2 0.946 0.894 0.949

Table 5.3: Platelet R2 summary table (CNN)
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(a) WBC (b) Lymphocyte

(c) Myeloid

Figure 5.24: Squared Pearson correlation of total (a) WBC (b) Lymphocyte (c)
Myeloid count with Coulter Counter readings for given patients

5.3 Discussion on results

5.3.1 Erythrocyte

Treating Coulter Counter readings as a ground truth and comparing those correlations

directly with Tab.2.1 specifying acceptable accuracy errors we would see the obtained

parameters are not acceptable for clinical treatment at this stage. Visual inspection

however (e.g. Fig.5.8) seems to be contradictory to those conclusions. All of the

inspected images seem to have similar segmentation accuracy. Unfortunately there

was no way to quantify it with available resources and time constraints. The issues

however seem to be related mainly to the blood treatment. Many images had very

uneven density of cells across the image which suggests bad mixing with diluent or

uneven surface of the sensor or the chamber top the sample is covered with. The other

issues may be of more physiological nature. The intermediate solutions were proposed

to deal with few of them. We could correct the error of total RBC count by calculating

the number of other small objects in the solution. Even though they are subjected to

the same flow issues, they won’t change due to cases of hemoglobin loss, death and

disappearance before imaging, which also appear to be a common factor (Fig.5.25).
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The total count can be corrected by dividing it by the number of those objects. To

calibrate for uneven density we can measure the occurrence of the cells across the

image and mask out the regions where it is particularly low. Additionally the pipeline

includes an attempt to remove anomalies caused by erroneous data acquisition - e.g.

by over-heating the sensor. These are usually well-visible in pre-processed red color

channel. This channel is often acquired closest in time to violet, which reduces the

problem of object motion across channels. Example of such anomaly is presented on

Fig.5.26a. Simple thresholding is usually enough to get rid of those regions (Fig.5.26b).

As sometimes they cover a significant part of an image, the total area is excluded from

further processing and cover percentage saved for future correction.

Figure 5.25: Red blood cells fading due to death or loss of hemoglobin.

(a) (b)

Figure 5.26: (a) Anomaly caused by erroneous data acquisition and mask (b) for
removing those and similar areas from further processing.

The mean corpuscular volume (MCV) will need finer resolution and more accurate

border tracking in order to catch all the imperfections distinguishing the cells. Also the

distance of the cells from the sensor might be an issue and finer body reconstruction
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could help. It is interesting though how much this result differs from good result of

hematocrit (Hct) and almost perfect one of red cell distribution width (RDW), both

of which incorporate scaled MCV.

5.3.2 Thrombocyte

The correlation plot for platelets shows how unstable the R2 values can be. If we

removed the outlier patient 6 from it (marked red on Fig.5.11) the result would change

from 0.28 to 0.92. It would then approach the analytic goal (Tab.2.1) very closely. The

problem lies in unaccounted changes in platelet appearance in some cases - especially

patient 6 (Fig.5.27). The objects appear here more faded and pink instead of violet.

This patient had as well a particularly low number of platelets. We could potentially

correct for that by including those examples as additional k-means color intensity

cluster and adjust thresholds to let them in. This however would cause overfitting

and in overall poses a common problem when dealing with this kind of data. We are

unable to determine if patient 6 is truly an outlier or it just happened that there

are no other examples similar to it. More data from other patients would be needed

to verify that. The temporary solution is to normalize the final probability map, so

that those faded platelets get as much excitation as normal ones in other images.

We cannot however do that directly by dividing the map by maximum excitation as

sometimes anomalies (especially pink reflections and moving cells) happen to have

even higher probability and adjusting everything for them doesn’t solve the problem.

So we would have to exclude them first.

(a) (b)

Figure 5.27: Typical appearance of platelet (a) and faded platelet commonly occurring
within blood samples of patient 6 (b)
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5.3.3 Leukocyte

The results for WBCs were particularly successful. Comparison with Tab.2.1 shows

that they exceed the analytical goal error (please refer to section 2.1.1), so they could

be already used in clinical treatment. Tab.5.4 reports very comparable results for

rule-based classification. It shows low complexity of the problem, but doesn’t provide

a good alternative as it needs much of additional human effort to achieve the same

results as CNN. The time for manual adaptation of hyperparameters to each new type

of data is prohibitive in quickly changing environment. The parameter space is to

large and a structure inefficient to perform automatic optimization. Such classifier is

not adaptive - it does not change its structure when new types of objects appear in

the image or the environment is varied in other way. The additional comparison of

correlation results can be made with CNN trained on randomly selected (instead of

patient-based) patches from each patient and thus capturing the whole dataset and

more similar information to that available to rule-based classifier (Tab.5.5).

WBC Lymphocyte Myeloid
R2 0.935 0.93 0.937

Table 5.4: Rule-based classification

WBC Lymphocyte Myeloid
R2 0.948 0.919 0.952

Table 5.5: CNN after training on validation set

Fig. 5.28 represents small representative subset of examples the network classified

perfectly. Each sample has a small horizontal histogram on the left representing

probability of affiliation with each of the classes in the same way as in Krizhevsky

et al. (2012). The label on top specifies the true label and the legend on the left the

affiliated class, i.e. myeloid, lymphocyte or anomaly.

The next figure (Fig. 5.29) depicts few examples which are still recognized correctly,

but the network is very uncertain about this result. In some cases we can see why

that examples, like the first one, are similar to each classes. It is a contaminant, but a

circular blob of roughly 1
9
of a patch size in its center should create a strong response

for a lymphocyte as well. It is also understandable that moving red blood cells around
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terms of Euclidean distance in last fully connected layer nodes activations. They

are presented in rows on Fig. 5.30. It is well possible that those cells would be

wrongly classified by human as well. The first one is actually a myeloid, but because it

changed its position during the acquisition, it manifests most of the features common

to anomalies. The second one is probably a myeloid, but so small it resembles most

lymphocytes. The last two cases are very hard to determine.



Chapter 6

General discussion and future prospects

Given the data and methods a question of more general nature were considered. By

comparison of classifiers we asked which approach is faster and more accurate for

low resolution image classification - hand-crafted rules or machine learning? The

accuracy can be deducted from learning curve, validation and manual inspection of

the misclassified cells. Even though rule-based approach in case of leukocyte analysis

achieves very comparable results to convolutional neural network, it may indicate a

low complexity of the problem. However it doesn’t give back endless amount of hours

the trained engineer had to spend to obtain such good measures for this particular

dataset. As in real life experimental setups the data is subjected to very frequent,

sometimes drastic, changes, rule-based system doesn’t provide a solution anywhere

near practical.

The attempt was made to measure how complex the machine learning algorithm

needs to be in order to out-perform the rules created by the expert in terms of accuracy.

For that I prepared SVM and few popular network architectures with different amount

of layers and other kinds of modifications applied. I ordered them by complexity

and for each of them, supported by optimization algorithms (like grid search), I

spent similar amount of time attempting to tune the hyper-parameters in order to

achieve the best possible performance. The best results were obtained with 2- and 3

- convolutional layers neural networks and only those gave better correlations than

rule-based method. The tests presented in results chapter confirmed then that CNN

constitutes the state of the art classifier also for the problem of cell analysis with main

advantages of development time, minimal human involvement and better accuracy.

Achieving human or over-human performance takes usually a lot of effort in correct-

ing the architectures and tuning the hyper-parameters. In the world where visualizing

and understanding the trained models remains an open problem, researchers usually

have to spend longer time trying to find the underlying causes of misclassification.

82
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Often this is a matter of trial and error and results with only slight improvements.

We already know that human’s advantage is flexibility - we can combine simple rules

based on completely separate search assumptions - like setting thresholds on object

size or eccentricity (major to minor ellipse axis ratio). Adaptation to certain type of

features often results in changing the network architecture manually. The advantage

of networks though is learning more complex hierarchical recognition models, often

based on features which are less general and hard to be picked up by a human being.

Sometimes those features are rare within the set and human is likely to neglect them,

thus loosing this few important percents of accuracy. In the results chapter I provided

the visualization of filters and close-by examples especially for that purpose. It can be

easily seen that those features are not likely to be picked by human, however they

result in better accuracy than when more obvious ones are picked. Comparison of the

resulting accuracies of rule-based and deep learning methods suggest that we often

don’t know what kind of features are most appropriate and most optimal to describe

the set of natural images. It is because first of all we still don’t fully understand how

our brain processes this information, and second, because we learned to generalize to

high level features appropriate for all the objects around us, often biased by culture

and semantics we learned through our lifetimes.

The lack of explicit knowledge representation poses certain problems for the

networks to be picked as default classifiers for certain problems. Information like

that may be crucial especially in some medical areas where human life depends on it,

where the solution based on neural networks might not be acceptable due to higher

prediction uncertainty for unknown data. Usually producing the right examples in

sufficient amount for neural network is also costly and can be easily bypassed by

flexibility of human mind, which can pick up and implement discrimination based on

visible features given only few examples. However there are also many positive aspects

causing people to reach for neural networks more and more often. Among others this

includes robustness in presence of noise, high adaptability to new problems and the

fact that they are universal function approximators - so can be often quickly applied

without need of deeper understanding. The last feature is particularly important in

quickly changing testing environment of early versions of applications or research

studies.
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There are few things which might be recommended for future work. The detection

and localization of the red blood cells seems appropriate, but correlations with Coulter

Counter measures are still not acceptable from clinical point of view. It is important

to find the real factors responsible for this fact. First the blood samples are often

not spread evenly across the image sample, which causes sometimes huge deviations

from the actual counts. The attempt was made to correct for that fact by masking

empty regions of the region, but apparently more work has to be done on determining

accurate cell concentration in each part of the image. Also there appear to be a lot of

problems with clustered cells and including closure of occluded border for each cell -

so that it constitutes more circular shape - instead of just raw separation should help

in that case. As described in section 5.3 platelet analysis also has flaws in probability

map normalization. More research should be done on assuring that weighted values

have the same meaning in each picture. All correlation values for each parameter

should in general exceed the analytical goal (discussed in the results) in order for the

test to become clinically valid.

The future work could also include obtaining images of even better quality so that

the ground truth labels for other types of WBCs are obtained and can be incorporated

into classification process. RBM pre-training and dropout provide improvements on

classification of many types of natural images. I believe they will prove useful also in

our case in the very near future when more complex tasks are present and more data

are available.



Appendix A

Anisotropic diffusion

The following section specifies some of the background knowledge behind anisotropic

diffusion algorithm. Let us take few steps back and recall some of the important

aspects of differential geometry (more detailed descriptions can be for example found

in Alfred (1998) or Sapiro (2006)). By looking at the problem of smoothing from this

perspective we can see how the algorithm preserves the borders by modeling rough

contour of each object with strong boundary gradients. Each curve of a standard form

(e.g. ax+ by = c) can be described in a parametric form of C(t) = {x(t), y(t)}. When

we calculate the tangent of that form, dC
dt

= {dx
dt
, dy
dt
}, we get a vector (not a slope as

in the standard form), which directly represents the gradient at a particular point in

parametric space. This gradient can be normalized by its length
dC
dt

‖ dC
dt

‖ , which gives

us the reparametrization dC
ds

for which each gradient is a unit vector. It allows us to

travel along the curve with the same ”speed” and thus to calculate the arc length

between two arbitrary points sa,b =
b∫
a
‖dC

dt
‖dt→ s(α) =

α∫
0
‖dC

dt
(τ)‖dτ .

For our purpose we are interested in acceleration along the curve d2C
ds2

= κN , where

N is the unit vector representing direction of the normal at each point and κ is the

normal’s magnitude or curvature of the curve. Separating those terms simplifies

further calculations. As perpendicular vector for 2D case can be obtained by simple

rotation:

a⊥ =

⎛
⎝0 −1
1 0

⎞
⎠ a =

⎛
⎝−ay

ax

⎞
⎠ (A.1)

then N = [
dC
dt

‖ dC
dt

‖ ]
⊥. κ depends on the metric. As we operate in image space we assume

the Euclidean metric in which:

κ =
‖d2C

dt2
× [dC

dt
]⊥‖

‖dC
dt
‖3 (A.2)

Having the curvature and the acceleration vector at each point we are able to
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perform so called curve evolution and particularly the mean curvature flow in which

the curve grows or shrinks across the time on the 2D image based on the strength of

the gradients in local neighbourhood. By taking the advantage of strong relation of to

physics, we can describe it through a heat equation of the form:

dC

dτ
= ∇2C (A.3)

The evolution then happens accordingly to temperature, defined by the right side of

this equation, across the 3rd dimension and can be visualized as ”melting” or ”diffusing”

the curve. The same equation can be also define as:

dC

dτ
=

d2C

ds2
(A.4)

or

dC

dτ
= κN (A.5)

where τ is the time (not to confuse with the previous term t being a curve parameter).

The same philosophy can be further applied to surfaces in which C(u, v) =

{x(u, v), y(u, v), z(u, v)} and hence also to image surfaces in which z is the intensity

at a particular pixel (x, y). This allows us to specify the analogous heat equation:

∂I(x, y, τ)

∂τ
= ∇2I (A.6)

known also as the isotropic diffusion equation. Using definition of Laplacian this can

be alternatively represented as:

∂I(x, y, τ)

∂τ
= div(∇I) (A.7)

Interestingly enough the solution of this equation is equivalent to convolution of the

original image with Gaussian kernel Gτ of variance τ :

Iτ = I0 ∗Gτ (A.8)

where Iτ is the transformation of the image after time τ .

The anisotropic diffusion algorithm proposed by Perona and Malik (1990) offers

the following modification:

∂I(x, y, τ)

∂τ
= div(g(‖∇I‖)∇I) (A.9)
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in which the purpose of function g(x) is to stop image diffusion on some specified

conditions - usually involving height and consistency of the contours in the image.

The edge detection capabilities follow again from the geometry of the landscape and

can be easily observed by application of pure Laplacian filter to the image.



Appendix B

Super-resolution

As the task is to find the high resolution (HR) image based on collection of noisy LR

images, the standard way of dealing with it is to minimize the difference between

those images and our assumption about what happened to the original. The general

deconvolution stage can be modeled through filter h, which can represent different

artifacts like motion or blur, and the function to minimize would look like this:

min
X
‖h ∗X − y‖pp (B.1)

where p is the parameter for Lp normalization, X̂ is the original scene for which we are

looking and y is the distorted input image. To make this mathematical formulation

more general we usually represent convolution as a multiplication by matrix H in

which each column H.,j represents filter function within specified units shifted by j

times the specified descretization constant. Then:

min
X
‖HX − y‖pp (B.2)

allows us to easily extend this approach to different kinds of filtering including e.g.

affine transformations.

There is a problem with this formulation though. If we keep minimizing the

function, the image we are looking for will become more and more noisy as it is

approaching the given ones. This can be alleviated by the Total Variation (TV)

regularization term, which, in its simplest form, calculates the normalized gradient at

each point of the image. This causes the preservation of large gradients and smooths

the rapidly changing parts of the image, like those containing a lot of noise. We further

introduce the parameter λ for specifying the trade off between resemblance to filtered

version of the original scene and smoothness with detail preservation. Our equation

then takes the form:

min
X
‖HX − y‖pp + λ‖∇X‖q (B.3)
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where q is another norm parameter.

To get the original image we need to perform optimization on the equation involving

all of the LR images:

X̂ = argmin
X

N∑
k=1

‖HX − Yk‖pp + λ‖∇X‖q (B.4)

Fairly popular approach was described by Farsiu et al. (2004) and can be defined

by few modifications. Starting with:

X̂ = argmin
X

N∑
k=1

‖DFkHX − Yk‖pp + λ‖∇X‖q (B.5)

where D is a downsampling operation (by a factor r of resolution enhancement), Fk is

a redundant matrix describing the motion vector in terms of repositioning of each pixel

from the original image, which shows how much each of the input images must be

shifted to register them. H is a Point Spread Function (PSF) of the image projection

describing the blur factor. To make the minimization less computationally expensive

the specific limited gradient calculation method is presented which result in, so called,

Bilateral TV defined as:

ΥBTV (X) =
P∑

l=−P

P∑
m=0

α|m|+|l|‖X − Sl
xS

m
y X‖1 (B.6)

where l + m ≥ 0. Sb
a is an affine shift matrix by b pixels in direction of a. This

basically calculates the gradient between given pixel and its neighbours with spatially

lowered importance factor α. P defines the limits of this discrete calculation and in

Farsiu et al. (2004) was usually set up between 1 and 3. Please move to section 4.2.4

for further build up on this background.



Appendix C

Image moments

Moments, in mathematics, capture certain features of the shapes the distributions

of points drawn for any random variable form together. The most common are

probabilistic distribution moments, where first few can be described as a mean,

variance, skewness and kurtosis (or ’peakedness’). All together they can be described

with a function:

Mp =

∞∫
−∞

xpf(x)dx (C.1)

where f(x) describes the underlying distribution. For 2D functions the equivalents are

M10, M20, M30, M40 for x axis and M01, M02, M03, M04 respectively and the general

equation is:

Mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy (C.2)

where p and q are moment’s degrees. The whole idea behind using moments to describe

images is by applying the same rules to the whole image as we apply to probability

distributions. For example WBC resembles negative ’Mexican hat’ function in most

of the cases. To see what kind of features are emphasized by each moment it is best

to work through examples. The figures below show the 2D Gaussian projected to

the discrete image plane, as a representative function, to which different kinds of

transformations were applied to show their influence on some of the initial moments.

All of them are labeled either ’high’, ’negative high’, ’low’, ’negative low’. This

qualitative measure relates directly to the quantitative one of the moment itself. To

recall multivariate Gaussian function with correlation factor can be written as:

f(x, μ,Σ) =
1√

|Σ|(2π)d
e−

1
2
(x−μ)Σ−1(x−μ)T (C.3)
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where d = 2 is the number of dimensions, x is the variable vector, μ is the mean and

σ is the covariance matrix which can be defined as:

Σ =

⎛
⎝ σ2

11 −ρσ11σ22

−ρσ11σ22 σ2
22

⎞
⎠ (C.4)

where we introduce the correlation factor which extends our set of possible distribution

shape transformations. The Gaussian equation can now be written in its direct form

as:

f ′(x, μ, ρ) =
1

2πσ2
11σ

2
22(1− ρ2)

e
− 1

2σ2
11

σ2
22

(1−ρ2)
((x−μ1)2σ22+(y−μ2)2σ2

11−2(x−μ1)(y−μ2)ρσ11σ22)

(C.5)

Moment M00 is the volume under the function, which is always equal 1 in terms of

probability distribution and equal to sum of all the pixels in case of the image. Not to

make the redundant examples all the further ones will focus on the x-axis. The first is

about changing the mean of our distribution (Fig.C.1), so it is mostly responsible for

describing centroid of the object presented on the picture.

Figure C.1: 2D Gaussian distribution with varied moment M10 = μ1. Negative high
(left) and high values(right)

Second example represents the variance (Fig.C.2). Skewness in Gaussian case is

just telling us how asymmetrical is the function with respect to point 0 on the chosen

axis (Fig.C.3). As the moments are not normalized to the mean at that stage, simple

shift from the mean causes skewness to raise. For central moments the density of the

distribution must have been spread unevenly in order to obtain similar quantitative

result.



92

Figure C.2: 2D Gaussian distribution with varied moment M20. Low (left) and high
(right) values.

Figure C.3: 2D Gaussian distribution with varied moment M30.

It is interesting to see what happens if we look at some of the moments of mixed order.

Fig.C.4 shows us a contrast between high and low correlation. We could think of it as

a variance in correlation axis.

Moment M21 (Fig.C.5) builds on interrelation of basic moments related to single

axes.n We can try to describe it as skewness in each of the correlation axes (generated

by eigenvectors being more visible when the correlation factor reaches its extrema)

summed with correlation along y-axis. The equation defining it can be specified as

follows: M21 = μ2
1μ2 + σ2

11μ2 + 2ρμ1σ11σ22.

The next step after establishing the main functionality of descriptors is to make

them invariant to certain transformations. Usually we want the objects to have the
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Figure C.4: 2D Gaussian distribution with varied moment M11.

Figure C.5: 2D Gaussian distribution with varied moment M21.

same set of features after operations like translation, rotation and scaling. Moments

meeting those conditions are referred to as TRS moments.

Beginning with translation invariance the only thing we have to do is to make sure

we do our calculations with respect to centroid of the object, not the origin of the

coordinate system. It appears that those kind of moments are also very popular in

statistics and are called the central moments, defined as follows:

μpq =

∞∫
−∞

∞∫
−∞

(x− xc)
p(y − yc)

qf(x, y)dxdy (C.6)
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Transformation I1 I2 I3 I4 I5 I6 I7
original 6.6527 17.1070 24.9159 25.6290 51.2049 34.4602 51.3915
half size 6.6533 17.1048 24.8883 25.6236 51.2265 34.4249 51.3220
mirror 6.6527 17.1070 24.9159 25.6290 51.2049 34.4602 51.2954

2o rotation 6.6527 17.1067 24.9156 25.6290 51.2041 34.4602 51.3919

Table C.1: Image moments of examples on Fig.C.6 proving invariance of features
under specified transformations

where xc = M10

M00
and yc = M01

M00
are coordinates of the centroid. To further achieve

scaling invarinace we need to normalize the moments. The most intuitive is to use

M00 as a factor but any further moment can be used as well. This way we reach the

normalized central moment (or TS moment) as:

νpq =
μpq

μw
00

(C.7)

where w = p+q
2

+ 1 follows from the properties of algebraic scaling transformation.

The derivation of TRS moments is also based on solution to the system in which

original moments and moments after algebraic rotation remain the same, but is far

more complex and it won’t be presented in this report in details. The most commonly

used TRS moments are defined by Hu (1962) as presented in section 4.4.2.

As the original values are usually very small it is common practice to present them

by ln(Ip). For numerical computer calculations we also usually take the absolute of

that numbers, so to prevent any potential remains from complex space (imaginary part)

due to floating point precision error. On Fig.C.6 we can see an example of calculating

those moment invariants from sample image and comparison of the measured values.

Those moments though, even if most commonly used, are proved to be incomplete

and dependent on each other by Flusser et al. (2009). The authors propose new set of

moments and way to easy generate larger set. They start with distinction of geometric

moments (defined as raw moments above) and complex moments of a form:

cpq =

∞∫
−∞

∞∫
−∞

(x+ iy)p(x+ iy)qf(x, y)dxdy (C.8)

which is just another representation making rotation operations easier to describe. It

is worth mentioning that cpq = c∗qp (complex conjugate), which shows that it makes

sense to use only one set of those moments - either where p ≥ q or q ≥ p.
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Figure C.6: Examples of an image under transformations of scaling, mirroring, which
can be described with exactly the same moment invariants.

We can then define the same moments in polar coordinates as follows:⎧⎪⎪⎨
⎪⎪⎩
ρ = log

√
x2 + y2,

θ = atan2 y
x
if x > 0.

(C.9)

cpq =

∞∫
0

π∫
0

rp+q+1ei(p−q)θf(r, θ)dθdr (C.10)

where atan2 is a common variation of arctan (Wikipedia, 2014). If we want to rotate

the original image by angle α we get:

c′pq =
∞∫
0

π∫
0

rp+q+1ei(p−q)(θ−α)f(r, θ)drdθ = cpqe
−i(p−q)α (C.11)

so that any rotation in this space causes just a phase shift. To deal with this problems

Flusser et al. (2009) propose solution of the form:

B = {Φ(p, q) ≡ cpqc
p−q
p0q0

: p ≥ q ∧ p+ q ≤ r} (C.12)
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where p0, q0 are chosen parameters, so that p0 + q0 ≤ r and p0 − q0 = 1, and B is the

algebraic basis generating functions Φ(p, q) defining TRS moment invariants.

The authors then show how to present Hu moment invariants in terms of this basis.

Setting p0 = 2 and q0 = 1 we have:

I1 = Φ(1, 1)

I2 =
|Φ(2, 0)|2
Φ(2, 1)2

I3 =
|Φ(3, 0)|2
Φ(2, 1)3

I4 = Φ(2, 1)

I5 = Re(Φ(3, 0))

I6 = Re(Φ(2, 0))

I7 = Im(Φ(3, 0))

(C.13)

where it can be found that I3 =
I25+I27
I34

, so that it depends on the other moments and

can be safely removed. We also lack Im(Φ(2, 0)) without which we cannot fully recover

some of the raw moments from this set and thus it is incomplete. The following set of

6 moment invariants (for p0 = 2, q0 = 1) is designed to deal with this issues:

F1 = Φ(1, 1)

F2 = Φ(2, 1)

F3 = Re(Φ(2, 0))

F4 = Im(Φ(2, 0))

F5 = Re(Φ(3, 0))

F6 = Im(Φ(3, 0))

(C.14)

The original Flusser moments can be further normalized to make them invariant

to contrast (Flusser et al., 2009). First we need to make them scale invariant and for

that we need complex TS moment defined as:

c̃pq =
cpq

μ((p+q)/2)+1
(C.15)

then Flusser TRS moment is:

˜Φ(p, q) = c̃pq c̃q0p0
p−q (C.16)
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And finally contrast TRS invariant as:

Ψ(p, q) =
˜Φ(p, q)

|c̃pq|Φ̃p0q0

(p−q)/2
(C.17)



Appendix D

Backpropagation in Convolutional Neural Network

The gradients for backpropagation in convolutional neural network can be calculated

as follows. First - to make the notation simpler - it’s a common practice to factor out

the derivative of the internal activation function h(x). According to the chain rule:

ΔW l = −ε ∂E

∂W l
= −ε∂E

∂hl

∂hl

∂W l
(D.1)

where hl = W lZ l−1 + bl for each layer of our network. And thus ∂hl

∂W l = Z l−1. As

∂hl

∂bl
= 1 we gain another view of the gradient, which is often denoted as error function:

δl = ∂E
∂bl

= ∂E
∂hl

∂hl

∂bl
= ∂E

∂hl . After that our delta rule takes a simplified form of:

ΔW l = −εδlZ l−1 (D.2)

δout =
∂E

∂hout
j

=
∑
k

∂E

∂yk

∂yk
∂hout

j

(D.3)

∂E

∂yk
= − ∂

∂yk

∑
j

tj log yj = − ∂

∂y
tk log yk = − tk

yk
(D.4)

where k is index of a class.

∂yk
∂hout

j
= ∂

∂hout
j

e
hout
k∑

n

eh
out
n

=

∑
n

eh
out
n ∂

∂hout
j

e
hout
k −e

hout
k ∂

∂hout
j

∑
n

eh
out
n

[
∑
n

eh
out
n ]2

=
e
hout
k δ̂jk∑

n

eh
out
n
− e

hout
k∑

n

eh
out
n

e
hout
j∑

n

eh
out
n

=

yk(δ̂jk − yj)

∂E

∂hout
j

= yj − tj (D.5)

ΔW l
j = −ε(yj − tj)Z

l−1
j (D.6)
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for l = out.

For rectified linear units:

∂E

∂hl
j

=
∂max(0, hl

j)

∂hl
j

=

⎧⎪⎪⎨
⎪⎪⎩
0 if x ≤ 0,

1 if x > 0
(D.7)

For conv-pooling layer assume l + 1 as pooling and l as current layer. k would be

the filter index an m feature map index. Then:

δk,l+1 =
∂E

∂hn,l+2

∂hn,l+2

∂hk,l+1
=

∂E

∂hn,l+2

∂hn,l+2

∂Z l+1

∂Z l+1

∂hk,l+1
. (D.8)

As we usually choose sigmoid function as the activation function, this becomes:

δk,l+1 = (δn,l+2 ◦W k,l+2)Z l+1(1− Z l+1) (D.9)

where ◦ is either multiplication or correlation (i.e. convolution with rotated matrix

W̃ k,l+2) depending on the layer on top of the pooling one. It’s important to notice

that convolution would have to be done in ’opposite’ fashion than one used for forward

propagation, i.e. ’valid’ if ’full’ was used, ’full’ if ’valid’ was used and ’same’ if ’same’

was used.

For the convolutional layer:

δk,l =
∂E

∂hk,l+1

∂hn,l+1

∂hk,l
= δk,l+1 ◦ ∂d(Z

l) + b

∂hk,l
(D.10)

where ◦ is unknown operation at this stage. As the activation function between

convolutional and pooling layer is always linear in our models, this becomes:

δk,l = δk,l+1 ◦ ∂d(h
k,l) + b

∂hk,l
= δk,l+1 ⊗ 1u×u (D.11)

where ⊗ is Kronecker product and provides efficient implementation of upsampling

operation. The output is upsampled to the original size u× u. Following that we will

show in detail how to obtain ∂E
∂W l,k,m and how to implement it.

∂hk,l

W l,k,m
=

∂

∂W l,k,m
(W l,k,m ∗ Z l−1,m) (D.12)

The indices become more practical for implementation if instead we define V =

∂E

∂W̃ l,k,m
such that ∂E

∂W l,k,m = Ṽ . Then we have:
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∂

∂W̃ l,k,m
(W l,k,m ∗ Z l−1,m) =

∑
r

∑
s

∑
i

∑
j

W̃ l,k,m
r,s Z l−1,m

i+r,j+s (D.13)

∂hk,l

∂W̃ l,k,m
r,s

=
∑
i

∑
j

Z l−1,m
i+r,j+s (D.14)

∂E

∂W̃ l,k,m
=

∑
r

∑
s

∂E

∂W̃ l,k,m
r,s

=
∂E

∂hk,l

∂hk,l

∂W̃ l,k,m
r,s

=
∑
r

∑
s

∑
i

∑
j

δl,kr,sZ
l−1,m
i+r,j+s = δ̃l,k ∗ Z l−1,m

(D.15)

This is always a ’valid’ convolution.
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