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Abstract

Microorganisms interact with each other and the world around us, impacting every en-

vironment that they inhabit. DNA sequencing technology allows us to monitor entire

communities of microorganisms. Using taxonomic marker genes, the abundance of

thousands of microbial species can be tracked across time. Marker-gene data sets are

often very large, requiring data reduction techniques for effective analysis. The typ-

ical approach involves clustering the DNA sequences by sequence identity, grouping

similar sequences into operational taxonomic units. The emergence of marker-gene

data sets with a temporal component offers opportunities to cluster genes based on

temporal correlation rather than sequence identity; such an approach may be more

effective in revealing ecologically meaningful associations. In this work, we describe

an algorithm and software package for clustering marker-gene data based on time-

series profiles. We present an efficient, interactive, and cross-platform solution that

takes the user from raw sequence data to informative visualizations of the inferred

clusters. We validate our method on simulated data and apply it to several longitu-

dinal marker-gene data sets including faecal communities from the human gut, and

communities from a freshwater lake sampled over eleven years. Within the gut, the

segregation of the time series around a food poisoning event was immediately clear.

In the freshwater lake, an annual summer bloom seasonal dynamics were isolated and

highlighted by our method. We show that high sequence similarity between marker

genes does not guarantee similar temporal dynamics. As a result, clustering based

on sequence identity alone would hide many important patterns in these data sets.

Our algorithm and visualization platform bring these patterns back to the surface.

Finally, we demonstrate that multiple time series can be clustered simultaneously,

providing a unique way to visualize marker-gene data sets with both longitudinal and

cross-sectional components.
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Chapter 1

Introduction

1.1 Describing Microbial Community Structure with Marker Genes

Groups of microorganisms live, grow, and interact all around us, invisible to the

naked eye. These communities of microorganisms are more important than many

of us realize. For example, it has long been known that microbes play a very sig-

nificant role in greenhouse gas cycling [62], and more recent work has shown that

certain microbial communities can clean up anthropogenic environmental contami-

nation [45]. The links between microorganisms and certain diseases, such as malaria

and tuberculosis, have been clear for many decades, but new links are beginning to

form connecting microbial communities with a wide range of disorders such as de-

pression [24], obesity [42], asthma [49], and diabetes [80]. Much of the recent work

has been enabled by the decreased cost and increased reliability and throughput of

biological sequencing technologies (including DNA, RNA, and protein sequencing).

Using a combination of these techniques, it is now possible to assess what we refer to

as the “microbiome” of an environment; that is, the constituent microorganisms in

an environment, their genes and genomes, and the products of those genes and the

environment [87]. As a result of these technological improvements, the past several

years have seen a concerted push towards assessing and analyzing the microbial com-

munity composition of nearly every conceivable environment. These range from the

more obvious human-associated microbial communities (e.g., the Human Microbiome

Project [79]) to more obscure environments such as indoor rock-climbing walls [8],

inflatable children’s pools [66], and apple tree flowers [72].

The microbiome of an environment can be studied at many different levels. Each

level tries to answer a different question with a different approach:

• “who is there?”

– “Marker-gene” DNA sequencing to obtain a taxonomic profile

1
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• “what can they do?”

– “Metagenomic” sequencing of all DNA from an environment to capture

genes of entire microbial community

• “what are they doing?”

– “Transcriptomic” sequencing of RNA transcripts of the genes that are

actively being transcribed

– “Metametabolomic” identification of metabolites and other small molecules

• “who is doing what?”

– “Multi-omics” techniques that relate and connect the previously mentioned

components [25]

– Validation in the lab with cultures and biochemical assays

Marker-gene studies profile the taxonomic composition of the microorganisms from

an environment, and are a widely used approach to addressing the question of “who

is there?” (Figure 1.1). The first step after sample collection is to extract and

purify all DNA from an environmental sample (Figure 1.1B). A single gene or gene

fragment is isolated and amplified through a polymerase chain reaction step. The

choice of gene is influenced by a number of factors including presence in the taxonomic

groups of interest, specificity of DNA primers, gene copy number, and ability to

resolve evolutionary relationships [63]. After isolation and amplification, the genes

are sequenced (Figure 1.1D). The result is a set of alignable DNA sequences that

contain information that can be used to identify the taxonomic classifications of the

microorganisms in the environmental sample.

A common choice for microbial community profiling is a fragment of the 16S small

subunit ribosomal RNA (rRNA) gene [47]. This gene, which encodes RNA that makes

up a portion of the protein-building ribosome, is universally present in all bacteria

and archaea, contains both fast and slow-evolving portions (Figure 1.1C), is not often

transferred by lateral gene transfer, and is present in a single copy in most microor-

ganisms [63]. The slowly evolving, or conserved, portions provide a consistent genetic

“anchor” as a target for gene isolation and amplification that covers broad taxonomic
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Figure 1.1: Generating the data for microbial community analyses. A) A microbial
community consisting of four distinct taxa (noted by colour). B) The cells are lysed,
and the DNA contained within each cell is extracted. C) The marker gene (in this
case, a fragment of the 16S rRNA gene) is isolated and amplified, and all other DNA
is removed. Blue flanking regions represent conserved areas that are consistent across
a broad range of taxa. The dark red represents the hypervariable region where inter-
species variation is found (denoted by the green, blue, purple, and orange blocks).
D) The amplified gene region is sequenced, resulting in sequences from each of the
constituent taxa. These sequences can be compared against a reference database to
identify the taxa.
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groups, while the fast-evolving, or “hypervariable”, portions provide enough variation

between nucleotide sequences to have adequate information to differentiate microbial

taxa. Additionally, many reference data sets and alignments exist for the 16S gene

(e.g., [17, 60, 14, 39]), easing the task of taxonomic classification and phylogenetic

tree building. All data sets used in this thesis are sequences derived from 16S rRNA

gene fragments of microbial communities.

1.2 Longitudinal Microbial Community Analysis

Historically, the high cost of sequencing has influenced the number of environmental

samples that could be sequenced for a study. In the past decade the throughput of

DNA sequencers has rapidly increased, resulting in a significant decrease in the per-

kilobase cost of sequencing [73]. To decrease costs even further, protocols have been

developed to attach indices (or “barcodes”) to sequences that allow dozens or even

hundreds of samples to be sequenced in a single run in parallel and sorted in silico

[4, 29, 11]. Current microbiome studies often contain hundreds of sample points (for

example, 761 in [7], and 371 in [59]) which collectively contain millions of sequences.

With this increased sequencing capacity, researchers now have the opportunity to

look at a wider breadth of environments or to look at a single environment in greater

depth.

Microbial communities change over time, sometimes dramatically [70]. This could

correspond to a shift from health to disease, as in dysbiosis [56], a catastrophic event

like environmental contamination [5], or the forces of selection and drift [57]. As a

result, there is value in monitoring a single community across time. By recording

these shifts in community composition while they are occurring, we can come closer

to understanding their causes and their consequences.

Longitudinal studies make up a small proportion of all microbiome research to

date, but the quantity of incoming longitudinal microbial community studies is in-

creasing rapidly [26]. A recent meta-analysis by Shade et al. [70] provides an overview

and comparison of a selection of longitudinal marker-gene data sets. Notable longi-

tudinal microbiome studies are summarized in Table 1.1. There are diverse ranges

of time series lengths, ranging from hours to over a decade, and numbers of sam-

pling points, ranging from under ten to hundreds. In addition to this, sample points
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Table 1.1: Summary of notable longitudinal studies.

Study Environment Span Num. of Time Points
Per Time Series

Caporaso et al., 2011 [10] Human stool, skin 1 year 396

David et al., 2014 [16] Human stool 1 year 191-341

Vergin et al., 2013 [82] Ocean 9 years ∼108

Gilbert et al., 2013 [12] Ocean 6 years 72

McMahon et al., 2014 [51] Lake 11 years 96

Thaiss et al. [76] Mouse stool 48 hours 8

are often unevenly distributed across time, adding an additional challenge for the

analysis.

By the nature of longitudinal study design, observations at different time points

are not independent. There are often hundreds of thousands of observations which

in our case are DNA sequence abundance counts. These abundance values are from

thousands of species across hundreds of time points. Techniques from time-series

analysis can be applied to this type of data (many of which are summarized in [23]).

However, the magnitude of time-series marker-gene data often requires a more efficient

implementation of these techniques than what is readily available. A lack of scalability

with the implementations of statistical techniques remains a barrier to data analysis.

This is particularly acute in analyses such as those involving a time lag. An example of

this is identifying shifted time series by quantifying Granger causality [28], a measure

of how useful one time series is in predicting another. Run-time increases rapidly as

a function of the number of time points, as statistical tests are run for lagged (i.e.,

shifted) values of a time series.

1.3 Reducing Data Magnitude by Sequence Clustering

The magnitude of a typical marker-gene data set has increased in step with the capac-

ity of modern high-throughput DNA sequencers [65]. The Illumina HiSeq, released in

2011, is able to produce over 50 billion nucleotide base pairs per day, which accounts

for approximately 25 million 16S rRNA gene fragments sequences [11]. Newer models
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Figure 1.2: Visual representation of OTU clustering. Dots represent DNA sequences.
Blue dots are OTU cluster centroids. Dashed lines represent the 97% sequence identity
radius around the centroid. All sequences within the dashed lines belong to the same
OTU. Example sequences are shown on right, with matching nucleotides shown in
green and mismatches in red.

such as the Illumina HiSeq X promise up to 600 billion base pairs per day, or 2 billion

gene fragments [36]. As a result, strategies to reduce the magnitude of data are often

employed. The most common approach is to group marker genes together based on

their similarity. Data set size can be reduced by many orders of magnitude, depending

on the grouping method and the diversity of the sampled environment [13].

With 16S rRNA gene data sets, shared sequence identity of aligned sequences is

the most frequently used measure of similarity. A 97% identity threshold is the most

frequently used cut-off for defining groups of sequences that are similar. Sequences

that meet this criterion are grouped together and termed an “operational taxonomic

unit” (OTU, Figure 1.2). The OTU is used as a proxy for microbial species, the ex-

istence and nature of which is a highly debated topic [2]. A 97% identity cut-off was

selected because of strong correlation with results from more traditional DNA-DNA

hybridization experiments that are used to determine similarity of overall genetic

content between two microorganisms [75]. This method also has the benefit of re-

ducing noise in the data by grouping sequences containing errors (e.g., substitutions

are expected in ∼0.1% of DNA bases produced by the Illumina MiSeq platform [46])

together with the corresponding error-free sequence. There are dozens of algorithms

for clustering sequences into OTUs (for example, [19, 9, 43, 61, 52, 40, 33]), but they

all operate on the same principle of clustering sequences according to their pair-wise

sequence identity. As an example, the UPARSE algorithm is an efficient method for

creating OTUs from marker-gene data [19]. This greedy algorithm begins by sorting
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the sequences by abundance and removing sequences that are below a given abun-

dance threshold. The algorithm starts by aligning all sequences against the most

abundant sequence, creating an OTU that contains all sequences which have ≥97%

sequence identity to that sequence. The process is then repeated with the set of

sequences that have not yet been clustered. As a final step, the low abundance se-

quences that were initially removed are aligned with the OTU centroids, and are

added to the OTU if they meet the ≥97% sequence identity criterion.

1.3.1 Limitations of Clustering by Sequence Identity

Sequence identity-based marker-gene clustering has been the subject of recent criti-

cism. Other studies have analyzed the distribution of the sequences contained within

single OTUs and have discovered that there can be dramatic differences in the distri-

bution of sequences that share high sequence identity [78, 20]. Members of a sequence

identity cluster are closely related to one another, but evolutionary relatedness does

not imply phenotypic or ecological similarity. In particular, lateral gene transfer

events can generate two closely related strains with distinct phenotypes [58]. These

phenotypic differences can manifest in marker-gene data sets as highly similar se-

quences with very distinct distributions across the samples. For example, Eren et

al. (2013) identified strains of Pelagibacter that shared 99.57% pairwise sequence

identity of a fragment of the 16S rRNA gene, but had anti-correlating relative abun-

dances, with one strain adapted for colder seasons and another for warmer seasons.

Similarly, Tikhonov et al. (2015) found sequences with >99% sequence similarity

that had distinct temporal dynamics, but also sequences with <85% similarity with

nearly identical temporal dynamics.

These discrepancies should be a source of concern for biologists who are trying

to relate shift in microbial community composition to environmental changes. If the

member sequences of an OTU have distinct dynamics, clustering into OTUs risks

obscuring them. For example, if one strain is replaced by another closely related

strain of equal abundance, this event would go completely unnoticed. Since the OTU

abundance is the sum of the abundances of the member sequences, this replacement

would appear as an OTU with consistent abundance over time. The extent of this

type of within-OTU temporal discordance will vary greatly between data sets, so it is
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in the interest of each researcher to identify it in their own data and determine how

it may impact their conclusions.

1.4 An Alternative Approach to Sequence Clustering

These observed discrepancies within traditional sequence identity-based clusters, cou-

pled with a desire to reduce the magnitude of marker-gene data sets for the application

of statistical analyses, led us to develop an algorithm for the unsupervised clustering

of temporal profiles. Our approach measures the similarity between two sequences as

a function of their temporal dynamics, rather than the pairwise sequence identities.

This results in clusters of sequences that have coordinated increases and decreases in

relative abundance over time. These temporal clusters depend only on the distribu-

tion of the sequences over time and are therefore agnostic to the underlying phylogeny

and taxonomy of the sequences.

This approach is intended to complement traditional sequence identity clustering

rather than acting as a replacement. As we will discuss later, closely related sequences

most often follow similar temporal patterns. However, contrasting the two methods

can reveal interesting cases where the clustering approaches are not in agreement. By

reducing a large data set to its distinct temporal profiles, we can facilitate both the

application of computationally intensive statistical analyses and the visualization and

exploration of microbial temporal dynamics. Algorithms and statistical techniques

with poor scaling, such as computing Granger causality, can be run on an otherwise

prohibitively large data set after the redundancy has been removed using our method.

This approach also allows us to highlight the distinct temporal profiles within an OTU,

allowing the researcher to identify and visualize within-OTU temporal discordance.

1.4.1 Overview of Clustering Methods

Clustering algorithms are useful tools for reducing the size of data sets, and identifying

structure in data. Hastie et al. classify these methods into three general categories:

mode-seekers, mixture models, and combinatorial algorithms [34]. A mode-seeking

algorithm attempts to discover multiple distinct modes in an estimated probabil-

ity distribution function, and assigns individual observations (here, the time-series

profile for a given sequence) to the closest mode, resulting in a set of clusters. A
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mixture-model method attempts to fit the data to a set of pre-defined probability

distributions. The clusters are defined by the component probability distributions.

Both of these types of clustering methods require an understanding of the underlying

probability distributions of the data. The final type, combinatorial algorithms, do

not require knowledge of the probability distributions. In most microbiome studies,

the complete set of underlying processes that generate the data are not known. This

makes combinatorial algorithms ideal for clustering this type of data.

Combinatorial algorithms can be further divided into subcategories: partitioning

methods, hierarchical methods, grid-based methods, and density-based methods [30].

Partitioning methods take m data points and attempt to sort them into k clusters,

while minimizing the distance between points in a cluster. The data-point-to-cluster

relationship can be many-to-one, such as in the popular k-means algorithm [48], or

a many-to-many relationship, such as in fuzzy c-means [6]. The k-means algorithm

functions by greedy iterative descent, which is efficient, but may give only a locally

optimal solution, rather than the global optimum [34].

Conceptually, hierarchical methods generate a tree where the leaves represent the

individual data points, and the internal nodes represent the merging (or division) of

clusters. These methods do not require the number of clusters, k, to be specified.

Cutting the tree at a specified height generates a set of clusters at a given similarity

threshold. The tree is created with one of two basic methods: agglomerative or

divisive [34]. In the agglomerative case, the clusters are built from the bottom up,

and similar clusters are merged together iteratively. Conversely, the divisive method

is a top-down approach where clusters are iteratively split in a manner that maximizes

the between-group dissimilarity.

Grid-based clustering methods begin by discretizing the feature space [68]. The

density of points in each cell is calculated and sorted, and this is used to identify

cluster centers. Points are then added to the clusters by searching the neighbours of

their centers. The discretization of the feature space affects both the resolution of

the clusters and the runtime of the algorithm. This type of algorithm was designed

for large data sets, making it a good candidate for clustering marker-gene data sets.

Similar in concept are the density-based cluster methods. Clusters are defined

by areas of high data point density but, unlike grid-based methods, discretization
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of the feature space is not required. These methods detect areas of high density

that are surrounded by areas of comparably low density to identify clusters. Evenly

distributed random noise would most often exist in an area of low density, allowing

these methods to properly identify and remove these data points [21]. Density-based

methods can make use of any distance measure, making this class of algorithms very

flexible.

1.4.2 Unsupervised Clustering of Time Series

Longitudinal data exist in every field. The price of stocks and market trends, natural

phenomena from particle collisions to collisions of astral bodies, the electrical signal

from a heartbeat that is measured in less than a second, or the evolutionary history

of a species that spans hundreds of millenia. Time-series data are ubiquitous, and so

the clustering of similar time series has been the focus of other work in the past. Liao

(2005) provides an overview of solutions from across different fields. The first distinc-

tion between different methods is the data that are being clustered. In some cases, the

time series are being directly clustered by way of a pairwise distance that measures

the similarity between two time series. Distance measures used by others for this

purpose include the Euclidean distance, dynamic time warping [55], Kullback-Leibler

divergence, cross-correlation measures, and the short time-series (STS) distance [53].

In other cases, meaningful features are extracted from the time series and clusters

are generated based on those features. These features could be the Discrete Wavelet

Transform or Discrete Fourier Transform coefficients that correspond to the lower

frequencies, helping to eliminate the impact of higher frequency noise [54].

Many different classes of clustering algorithms have been applied to this problem

[44]. Fuzzy c-means has been used to cluster time series of functional MRI mea-

surements of brain activity, battle simulations, and microarray gene expression data,

while k-means has been used to cluster battle simulations and word recognition data.

Other groups have used an agglomerative hierarchical clustering approach to cluster

time series of retail sales patterns, earthquake data, wind tunnel flow velocities, and

power consumption trends. A hybrid hierarchical and density-based algorithm was

developed to cluster longitudinal gene expression profiles in a highly scalable fashion
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[37]. In the microbial genomics field, emergent self-organizing maps, a form of artifi-

cial neural network, have been harnessed to group metagenomic sequence fragments

that have similar distributions over time [18]. Grouping these sequences together

allows for more accurate microbial genome assembly. Each type of data has its own

distinct properties that helps dictate which algorithm should be used. There is no

universal solution, so we must think critically about the structure of marker-gene

data when selecting the most appropriate methods.

1.4.3 Longitudinal Marker-Gene Analysis Tools

While the bulk of existing time-series analysis tools have been developed for other

applications, a few have been designed specifically for longitudinal marker-gene data.

These include the extended local similarity analysis (eLSA) [88] and MC-TIMME [27].

eLSA computes the significance of the similarity between the time series of every pair

of OTUs, including time-lagged associations. It can also compute the significance

of the similarity between microbial time-series and environmental metadata. The

purpose of the tool is to create an association network that can be used to generate

hypotheses about interactions between microorganisms. It does not explicitly cluster

the data using its results, so it is not considered a clustering algorithm. However, its

results could easily be used to generate clusters using the association networks and

an appropriate algorithm such as Markov clustering [81]. While useful, it does not

adequately solve the problem of time-series clustering. The next tool, MC-TIMME,

uses Bayesian statistics to group microbial species together based on how well they

fit to a priori “prototype” time-series patterns. It can also aid in the design of

longitudinal studies by suggesting sampling schemes that focus efforts around time

points that require a higher certainty. This method is a model fitting method and

would best fit into the “mixture model” category of clustering algorithms. This

method is not ideal for the discovery of structure in marker-gene data sets as it

presupposes some knowledge of the microbial community dynamics – something that

we are unlikely to have.
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1.5 Our Contributions

In this chapter, we have discussed the basics of marker-gene sequencing, cluster-

ing algorithms, and time-series clustering. Clustering algorithms are used for the

reduction in magnitude of marker-gene data sets; a critical step that enables compu-

tationally complex analyses of the data to be carried out. While sequence identity

is typically used as the similarity criterion for clustering, we could also employ time-

series clustering on longitudinal data. In the subsequent chapter, we describe our

contribution: Ananke, an algorithm for clustering time-series profiles of microbial

marker-gene sequences. We describe the algorithm in detail, discuss how to assess

the resulting clusters, and demonstrate how our method facilitates the exploration of

large marker-gene data sets. In Chapter 3, we show the results of applying our al-

gorithm to biological data sets, including human-associated and environmental data.

We examine the properties of these data sets and discuss interesting patterns that

our method is able to highlight. We conclude in the final chapter with a discussion

on future work and possible extensions to the algorithm.



Chapter 2

Time-Series Clustering

Its name was Unaging Time (Chronos). . . . United with it was

Ananke . . . incorporeal, her arms extended throughout the

universe and touching its extremities.

The cosmogony according to Damascius [86]

This work addresses two problems for microbial marker-gene data sets: data re-

duction and structure discovery. Marker-gene data sets are often too large to permit

analyses to be performed directly on the unique sequences. These data sets can con-

tain hundreds of thousands of unique sequences spread across dozens or hundreds of

sample points. Investigating each sequence manually is not feasible, and in many

cases automated solutions have too high of a run-time or memory requirement to

be useful. Removing redundancy by clustering sequences with similar properties ad-

dresses our two problems simultaneously. Clustering the data allows us to aggregate

the sequences in such a way that we are processing hundreds, instead of hundreds

of thousands, of entities. Clustering by sequence identity into OTUs conserves the

information contained in the sequences, but we have discussed previously how it can

cause the loss of temporal information. Instead, we will cluster sequences by their

temporal patterns, preserving the temporal dynamics that are crucial to understand-

ing how microorganisms interact and respond to their environment and one another.

2.1 Problem Formulation

Our input data arem unique sequence strings with abundance data traced over n time

points, forming an m×n data matrix. Our required output is m cluster labels ranging

from 0 to k − 1 such that sequences with similar abundance count distributions are

grouped into the same cluster. Neither the number of clusters, k, nor the time-series

13
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similarity cut-off, represented by ϵ, are known a priori.

2.2 Ananke: A Time-Series Clustering Algorithm

We have named our algorithm Ananke after the cosmic deity of inevitability and

necessity from ancient Greek mythology. She is the consort of Chronos, the Greek

personification of time. Ananke is the “goddess who steers all things” [86], humans

and microorganisms alike. The Ananke software acts as a companion to time-series

data, allowing researchers to explore the temporal patterns that are buried in the

chaos of large next-generation sequencing data sets.

An overview of the algorithm is presented in Figure 2.1. The first stage is accepting

the input data. The algorithm requires two sets of data: the marker-gene sequences

and their sample identifiers in a standard FASTA file format, and a table file that

relates the sample identifiers to their respective time points. The input requirements

are kept intentionally minimal to ensure the software can be used without compli-

cated preprocessing steps. Sequence data can be filtered beforehand using the user’s

preferred quality filtering steps. This step is optional, though it is recommended, as

the removal of low-quality sequences will decrease run time for later stages.

The second stage is to tabulate the sequence data, thereby generating a time series

for each unique sequence. The sequences are represented by a hash, and counts for

each hash are maintained for each time point. These counts are stored as an m × n

matrix of integers in an HDF5 formatted file [77]. This is a binary file format that

indexes the data with B-trees, increasing the performance substantially over more

traditional storage methods such as ASCII-encoded tables.

The next stage is data filtering. Here we remove any time series that does not

meet either a presence, abundance, or proportion criterion. Since each data set is

unique, the user chooses their preferred filtering method and supplies their own filter-

ing thresholds. Presence filtering removes any time series that have non-zero counts in

fewer than a given proportion of time points. Abundance filtering removes any time

series with fewer than a given number of counts. Proportion filtering removes any

time series that does not represent at least a given proportion of the total count data.

There are a few reasons why data filtering is necessary. First, sequences that have

low information content would not contribute meaningfully to the clustering step.
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Figure 2.1: Overview of the Ananke algorithm. Steps are shown in blue, with details
displayed on the right.
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Removing these sequences will decrease run time and memory usage. In the case of

clustering by time-series patterns, “low information content” implies sequences that

are absent in the majority of sample points. It is also more likely that sequences that

are lower in abundance arose from sequencing error [41]. By filtering these sequences

out, we remove much of that error from the data. Finally, the clustering stage in-

volves generation of a pairwise distance matrix between sequences and filtering may

be necessary to allow this matrix to fit in main memory, especially in instances where

the data set is large and limited memory is available. The m × n data matrix is

filtered to become m∗ × n in size, where m∗ is the number of time series that meet

the user’s information content criteria.

The filtered data matrix must then be normalized. This step brings all of the

time series onto a common scale for the subsequent pairwise distance calculations.

The data are first normalized within-sample to control for discrepancies in sequence

depth between time points. This is done by division of the entries in each column by

the sum of that column. Next, the rows are Z-normalized by removing the row mean

and dividing by the row standard deviation. i.e.,

zi =
xi−x̄i

sxi

where zi is the i
th row of the data matrix, x̄i is the mean of the ith row, and sxi

is the

standard deviation of the ith row. The Z-score standardization is the recommended

procedure for the STS distance, described below [53]. This double-normalization

procedure is also used by Dick et al. (2009) to allow distance measures to be calculated

between time series when time point sampling is uneven [18].

The m∗ × n data matrix is clustered by an algorithm known as DBSCAN [21].

This method is a density-based algorithm that clusters by identifying core points and

their neighbours within a given distance threshold, ϵ. Clusters are generated over a

range of ϵ values, and the results for each parameter value are stored in the HDF5

data file. In Section 2.2.3 we discuss this clustering algorithm further and justify its

use for the problem of time-series clustering.

Once the clusters have been generated, additional metadata can be optionally

added to the HDF5 data file prior to visualization. Taxonomic classifications can be

generated for each unique sequence using the user’s preferred method and reference
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database. Similarly, the user can import their pre-existing sequence-based clustering

results. This information is utilized and displayed in the visualization component of

the software, Ananke-UI. This interactive tool displays data set statistics, plots the

time-series clusters as well as sequence-based clusters for contrast, and shows relevant

sequence metadata.

2.2.1 Data Storage

The choice of data storage method is critically important for this work. It impacts the

run time of the tabulation step and clustering algorithm, as the results are recorded

to disk. The data storage format is essential for ease of use. Our algorithm generates

different data sets of varying data types (i.e., matrix of integers for the time series,

vector of strings for the taxonomic classifications, etc.), and maintaining a single

file is critical for ensuring the data are consistent and avoiding problems with file

organization and version management. Despite the decreasing cost of disk space, a file

format that minimizes the size of the data file would be beneficial. Most importantly,

the primary use of our algorithm is for visualization and exploration of large data sets.

The data storage format must be capable of handling the retrieval of data from disk

efficiently. There must also be compatibility with the format across operating systems

and programming languages, since the clustering algorithm was written using Python

libraries, while the interactive user interface was built using R libraries. Therefore,

our requirements were a storage format that can efficiently retrieve subsets of the

data, stores the data in a binary or compressed format, can handle multiple data

sets and data types, and is compatible across a wide range of operating systems and

programming languages.

Common solutions from within the field did not meet our requirements. Data

are often stored as text files in a comma or tab-delimited format. While these can

be convenient because they are human readable and easily processed without addi-

tional libraries, it is slow to retrieve subsets of the data and is an inefficient use of

disk space. There is a file format designed specifically for marker-gene sequence data

known as the BIOM format [50]. While utilizing this format would have been ideal

for cross-compatibility with other software packages, its current implementation cre-

ates unacceptable performance issues. In particular, it maintains two redundant data
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structures for each sequence count matrix in parallel: a row-wise sparse matrix, and

a column-wise sparse matrix. When inserting new data to these structures, the inser-

tion in one direction is performed in constant time, while the insertion in the other

direction is O(N +m), where N is the number of non-zero counts. Our solution is to

adapt the HDF5-based BIOM format by removing this redundancy and adding more

flexible metadata storage. The HDF5 format meets all of our requirements: subsets

can be retrieved efficiently by way of B-tree indices, data are stored in a binary for-

mat, multiple data types and data sets can be stored in a single file, libraries exist for

Windows, Mac OS, and Linux/UNIX operating systems, and interface libraries exist

for both Python and R.

As with the BIOM format, them×n sequence count matrix is stored in compressed

sparse row format. This data structure stores only non-zero counts, reducing the

storage requirements from O(mn) integers to O(N +m) integers. This format stores

three vectors: the non-zero counts, their corresponding column indices, and pointers

to the beginning of each row. Using this format reduced the storage requirements by

between 95% and 97% for the data sets we explore in Chapter 3. This is critical for

reducing run time since retrieval of this data from disk can be a slow process on some

hardware. The full schema for our file format is shown in Figure 2.2.

2.2.2 Assessing Time-Series Similarity

As discussed in Section 1.4.2, there are many ways to measure the similarity between

a pair of time series. These range from simple measures such as the standard Pearson

or Spearman correlation coefficients and Euclidean distance, to much more complex

measures like local similarity analysis [88] and dynamic time warping [55], which are

both able to detect similarity even on a time lag. For our project, we needed to strike

a balance between sensitivity and computational scalability. We wanted a distance

measure that incorporates the temporal gradient, but is not so computationally com-

plex that it prohibits calculation of pairwise distances for tens of thousands of time

series (∼ 1× 109 pairs).

The distance measure that met these requirements was the STS distance [53]. This

distance measure was introduced by Möller-Levet et al. to compute the similarity of

microarray gene expression profiles. It was specifically designed for time series with
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Figure 2.3: A simple example of the differences between Euclidean distance and
the STS distance. A, B, and C represent time series of the abundance of individual
microbial marker genes. The Euclidean distance between A and B is the same as
the Euclidean distance between A and C: dEuclidean(A,B) = dEuclidean(A,C) = 34.
However, the STS distance between A and B is much smaller than that of A and C:
dSTS(A,B) = 6, dSTS(A,C) = 20. In addition to the magnitude of the difference, the
direction of change is important for the STS distance.

small numbers of time points. The squared distance between two time series, zi and

zj, is defined as:

d2STS =
n−1∑
k=0

(
zi,k+1−zi,k
tk+1−tk

− zj,k+1−zj,k
tk+1−tk

)2

where zi,j is the abundance at the jth time point of the ith time series, and tk is

the time point information (e.g., the number of days elapsed between when sampling

began and when the kth sample was taken).

This distance measure computes the slopes between each two adjacent time points

and then computes the sum of squared differences between pairs of slopes. By first

computing the slopes, this distance measure incorporates the temporal element, as

we required, and accounts for uneven sampling by considering the amount of time

elapsed between each two adjacent sample points. The STS distance provides a key

advantage over simpler measures like the Euclidean distance: it considers the direction

of change of the time series being compared. A simple example is given in Figure

2.3. Under the Euclidean distance, only the magnitude of the difference is important
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and the direction of the difference is not considered, so time series A and B have the

same Euclidean distance as A and C. However, the trajectory of these time series are

different: A and B are increasing then decreasing, while the converse is true for C.

If these were microbial taxa, we might hypothesize that the populations of taxa A

and B have responded positively to a change in the environment that lasts until time

point 5, while C has responded negatively. The Euclidean distance cannot account

for this important difference in trajectory, and as a result, we recommend using the

STS distance for the purpose of clustering time series.

Computation of the STS distance matrix is the most complex step of the Ananke

algorithm, both in terms of processing time and memory usage. The filtering step

reduces the number of sequences that are clustered from m to m∗ and is critical for

running the algorithm on systems without large amounts of memory. The run time

of each individual STS distance calculation is O(n), and there are O(m∗2) distances

to be calculated. The memory usage is also O(m∗2), as the STS between each pair

of sequences must be stored. The software performs the distance calculations using

multiple threads in order to reduce the run time.

2.2.3 Clustering Similar Time Series

We had a number of criteria to guide the selection of a suitable clustering method.

First, the method had to scale well for large data sets. Next, since the number of time-

series clusters in a given data set is difficult to estimate a priori, the method should

be parameterized using a distance measure cut-off rather than the number of clusters.

This ruled out many methods such as k-means and fuzzy c-means, the method used

by the creators of the STS distance [53]. Finally, the ideal method would be able to

identify and remove noise in order to avoid creating spurious clusters. These criteria

led us to select DBSCAN as our clustering method [21].

DBSCAN is a density-based clustering algorithm that searches for clusters by

identifying areas of contiguous high density surrounded by lower-density regions [21].

Points in the feature space are defined as either “core points” or “border points”

depending on the definition of two parameters: ϵ, the neighbourhood size parameter,

and MinPts, the minimum number of points within ϵ distance of a point to consider

it a core point. Border points are those within a distance of ϵ of a core point which
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Figure 2.4: An example of DBSCAN clustering with MinPts = 2. Points represent
sequences being clustered, with the distance between the points representing the level
of similarity between the sequences. Points that are closer together are more similar.
A) Dashed lines represent the ϵ neighbourhood around a point. Two points are
required in the ϵ neighbourhood to be defined as a core point. Blue points are core
points. Green points are border points. The grey point is labeled as noise by the
DBSCAN algorithm. B) The clusters resulting from the DBSCAN algorithm applied
to the points in A. Red and purple are separate clusters and grey is noise.
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do not have MinPts neighbours within a distance of ϵ (Figure 2.4A). Clusters are

the maximally connected sets of core and border points that are within ϵ of a core

point (Figure 2.4B). If a point is not a core point and is not within ϵ of a core point,

it is labeled as noise. An interesting property of this algorithm is that it is able to

generate non-convex clusters. The run time of the cluster algorithm is O(mlogm),

meaning it will scale well with large numbers of unique sequences [21].

The first parameter, MinPts, is fixed at 2. This was chosen to maximize the

amount of data that is clustered by excluding only singletons as noise. Singletons

are sequences with no other time series within a STS distance of ϵ. The algorithm

executes quickly on biological data sets, allowing clusters to be computed for large

ranges of the ϵ parameter. A default range is provided, but the user can choose any

range and step size that they require. The range of STS distances will be different

for each data set, since the distances depend on both the number of time points, n,

and the number of sequences per time point (also known as sequencing depth). It

is not possible to set a range of ϵ parameter values that will work in all cases, but

the software can be set to increase the parameter until the clustering results do not

change any further.

2.2.4 Multiple Time Series

In some cases, researchers will have several short time series from different areas. For

example, several people may be sampled weekly over the course of a month, or a river

may be sampled simultaneously at upstream and downstream locations. This study

design is known as “cross-sequential” [67] and combines the benefits of cross-sectional

and longitudinal study designs. One of the drawbacks to this type of study is that

the sampling effort is spread across several distinct time series, rather than being

focused on one. It is more difficult to detect and cluster temporal patterns when

the time series are very short (see Section 2.3.1). By concatenating the sequence

abundance time series from multiple environments, we add more information that

can be beneficial to the clustering step.

The implementation of this is straightforward. We can denote the number of

individual time series with P . The P time series are normalized within-sample as

with the single time series case. For the Z-score normalization of each time series, we
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use the within-time-series mean and standard deviation. That is,

zi =
xi−x̄ip

sxip

where p indexes the multiple time series, x̄ip is the mean of time series p, and sxip

is the standard deviation of time series p. Next, the STS distance is taken to be a

sum of the STS distances from the P time series:

d2STS =
P−1∑
p=0

np−1∑
k=0

(
zi,k+1−zi,k
tk+1−tk

− zj,k+1−zj,k
tk+1−tk

)2

where np is the number of time points in time series p. Since this is simply

a summation and is therefore commutative, the order in which the time series are

considered does not affect the distance measure.

2.3 Assessing Cluster Quality

It is a difficult task to evaluate the clusters generated by our algorithm. There are no

biological data sets where the ground-truth for the quantity and variety of temporal

dynamics is known. Sequence-based clustering can be evaluated by the use of mock

communities, where the proportion of each taxonomic group in the sample is known

[69]. As of this writing, a longitudinal mock community data set has not been created.

One solution is to use simulated data sets to assess the behaviour of the algorithm,

since they are generated with a known ground-truth. Insights into the algorithm’s

performance on biological data can be obtained by comparing with metadata such as

sequence-based clusters and taxonomic classifications.

2.3.1 Simulations

In order to assess the clusters that are output by the algorithm, artificial time series

were simulated, clustered by the algorithm, and compared against the ground-truth.

We generated artificial patterns of temporal variation that represent ecological events

or patterns that users may wish to identify in a large data set (Figure 2.5). Appear-

ance, disappearance, and conditional rarity [71] patterns may indicate a significant

change in the environment, so it is important that our method is able to cluster them

appropriately. Disappearance and appearance events are defined by a transition to
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Figure 2.5: Examples of the temporal patterns generated for the data simulations.
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or from, respectively, near-zero abundance. Conditionally rare organisms are those

that have a bimodal abundance distribution. The first mode is near-zero, with the

second mode centered on a positive value [71]. These can be thought of as transient

“blooms” where an organism occasionally increases from very low abundance to a

relatively high abundance. Periodic patterns are relevant when analyzing seasonal

changes in natural environments, so our method must be able to cluster sets of se-

quences that show multiple coordinated increases and decreases in the time series.

Time series that follow a normal distribution with lower variance represent organisms

that remain relatively consistent in abundance over time, while those with a high

variance represent noisy data. Normally distributed time series are more difficult to

cluster as they lack large slopes to influence the STS distance measure.

The simulated time series were generated as follows:

1. Set time series length parameter, n, and number of time series per cluster, r

2. Generate random values for the properties of the time series

• For disappearance, appearance, or conditionally rare time series, generate

a random time point between 1 and n at which the event will occur

• For periodic events, generate the period of the event and the starting

abundance (high or low)

3. Create a binary template of the time series (values are either high or low)

4. Repeat r times:

(a) For each data point in the template, xi, add random noise that follows a

normal distribution with mean xi and variance xi

10
+ 0.01

(b) Scale the entire time series by a factor generated from a Weibull distribu-

tion with k = 0.3

The parameters for the normally distributed random noise were chosen to create

time series that closely resembled that seen in biological data sets. The Weibull

distribution with parameter k = 0.3 was chosen for the scaling factor because of its

long tail. When applied to a group of time series that originated from the same

template, this resulted in many time series with low abundance and few with high
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abundance. This was done to mimic the “error cloud” sequence model, where an

abundant sequence correlates very well with many low abundance sequences that are

the result of errors from the DNA amplification step or errors from sequencing [78].

Data were simulated for time series lengths n = 5, 10, 25, 100, 250, 500, 1000 and

number of time series per cluster r = 100. The clusters were scored by comparing the

predicted cluster labels against the ground-truth using the adjusted mutual informa-

tion (AMI) score. This score is a chance-corrected version of the mutual information

(MI) score, which measures the dependence between two variables. In our case, the

MI score measures how much information could be obtained about the ground-truth

from the predicted clusters. The mutual information between two clustering results,

U and V, is defined as [83]:

MI(U, V ) =
R∑
i=1

C∑
j=1

nij

N
log

nij/N

aibj/N2

where R is the number of clusters in U , C is the number of clusters in V , nij is the

number of marker-gene abundance time series that are common to the clusters Ui and

Vj, ai is
∑

j nij, bj is
∑

i nij, and N is
∑

ij nij. The chance correction is calculated as

follows:

AMI(U, V ) = MI(U,V )−E(MI(U,V ))
max(H(U),H(V ))−E(MI(U,V ))

where E(X) is the expectation of X, and H(U) is the entropy of U , defined as

H(U) = −
R∑
i=1

ai
N
log ai

N
. The AMI score is in the range [0, 1], where 0 implies no shared

information between the two clustering results, and 1 implies that the clusters are

identical. The clusters generated by our algorithm matched the ground truth well

even for very short time series, but the AMI decreased as the number of time points

increased past 100 (Figure 2.6). Our algorithm yielded average AMI scores > 0.8 on

time series with as few as ten time points. However, the AMI scores were considerably

lower for time series of length 500 (median AMI = 0.67) and 1000 (median AMI =

0.64). The drop in AMI scores for longer time series is a consequence of the STS

distance metric. For longer time series, the sum of small differences (which are a

result of random noise added to each point) can overwhelm the effect of the true

pattern. To reduce the impact of random noise, longer time series could be smoothed

by averaging over a sliding window. This would reduce the magnitude of the slopes
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Figure 2.6: Adjusted Mutual Information score for the clustering results of the arti-
ficial data. The boxes denote the lower quartile, median, and upper quartile of ten
replicates. Individual points are outliers that fall outside of 1.5 times the inter-quartile
range.

that are due to random noise, resulting in a smaller cumulative impact on the distance

measure.

In the majority of the simulations, the low-variance and high-variance normally

distributed time series were flagged by the clustering algorithm as noise. These two

types of temporal patterns were often placed into the same cluster, which prevented

our method from achieving a perfect AMI score of 1. Since there is no large slope

consistently present in these simulated patterns, the STS distance measure is not

given enough information to separate the low-variance from the high-variance group.

2.3.2 Assessing Clusters in Biological Data

Simulations are a useful way to assess algorithms in a controlled fashion, but simulated

data can only approximate biological data sets. There are many important differences

between our simulations and biological data sets, most importantly the number and

variety of temporal patterns, and the characteristics of random noise. It is useful to

have a way to check the clusters even when no ground-truth is known in order to

ensure that the behaviour of the algorithm is as expected. This can be accomplished

by analyzing the sequence metadata and contrasting it with the clusters. In particular,
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the taxonomic classifications of each sequence are useful for this task.

For this work, we consider each sequence as both a time series and as a series

of DNA nucleotides. As discussed in Chapter 1, these DNA nucleotides can contain

enough information to identify the taxonomy of the microorganism that contained

the sequence in its genome. This is accomplished by comparing each DNA sequence

to a reference data set and inferring the closest match. While this process is less

accurate for novel microorganisms and those which might challenge our hierarchical

Linnaean classification system, it is, in general, an accurate process (>89% accuracy

at the genus level with 400bp 16S rRNA gene fragments [85]). For our work, we used

the Näıve Bayes classifier from the Ribosomal Database Project (version 2.2) [14]

in conjunction with the GreenGenes reference data set (August 2013 revision) [17].

Each unique sequence was classified by comparing the composition of all 8-mers (eight

letter nucleotide subsequences) within each query sequence against the 8-mers of the

sequences in the reference data set. The sequences were classified at seven taxonomic

levels: kingdom, phylum, class, order, family, genus, and species. A ≥60% posterior

probability was required at each level. The taxonomic classifications are stored in the

data file and can be retrieved through Ananke-UI.

A time-series cluster is a group of DNA sequences that show similar abundance

patterns over time. Sequences may show comparable distributions over time because

they are sequencing or amplification errors associated with a more abundant sequence,

or they may have originated in microorganisms that are closely related and there-

fore have similar phenotypic traits, allowing them react to environmental changes in

similar ways. In either of these cases, one would expect that the taxonomic classi-

fications of these sequences would be in agreement, especially at higher taxonomic

levels. Therefore, our intuition is that many time-series clusters will have homoge-

neous taxonomic compositions, with greater homogeneity at higher taxonomic levels

such as domain and phylum. Exceptions to this will certainly exist; for example, if

two distantly related microorganisms are in a cooperative relationship their temporal

dynamics may be in lockstep despite different taxonomic classifications. However, it

is anticipated that the majority of time-series clusters will be taxonomically homo-

geneous, especially at small ϵ values. It is important to note that this intuition does
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not extend to the converse scenario. A group of taxonomically consistent microorgan-

isms is not necessarily going to be temporally homogeneous. This is especially true

at higher taxonomic levels, but even at lower taxonomic levels, inter-strain diversity

can be enough that even closely related taxa demonstrate different phenotypes (and

therefore different temporal dynamics).

Taxonomic homogeneity was assessed by calculating the Simpson index of each

time-series cluster. The Simpson index is the probability that any two sequences

chosen at random will belong to the same taxonomic group [74]. Mathematically,

this is defined as:

N∑
i=1

p2i

where N is the number of distinct taxa and pi is the proportion of the sequence

abundance that belongs to taxon i. This was calculated at each of the seven taxo-

nomic levels. In general, average Simpson indices were > 0.9, suggesting high levels

of taxonomic homogeneity within time-series clusters. Detailed results for each indi-

vidual data set are shown in Chapter 3.

2.4 Data Exploration and Visualization

The objectives of this algorithm are to reduce the magnitude of marker-gene data sets

and to facilitate the discovery of temporal structure within the data. By collapsing

the data down to the distinct temporal patterns, our time-series clustering algorithm

accomplishes both of these goals. The next task is to ascribe biological meaning to

these clusters. That is, we want to determine the biological processes or environ-

mental influences that might explain the temporal abundance patterns. Automated

computational methods are certain to play a role in this task, but we must not dis-

count the researcher’s intimate knowledge of the environment that they are studying.

Allowing the domain expert to interactively explore and visualize the data is critical

for discerning the biological significance of the time-series clusters.
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Figure 2.7: An example of the Ananke-UI showing a time-series cluster. A) Control
for selecting ϵ clustering parameter. B) Selection box for time-series cluster. C) Time
series without normalization. D) Time series normalized within each time point. E)
Time series normalized within time series. F) Time series normalized both within
time points and within time series. G) Interactive table displaying the metadata for
each sequence, including the abundance, sequence-based cluster number, taxonomic
classification, and sequence hash.
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2.4.1 Ananke-UI

We developed an interactive interface called Ananke-UI using the R language’s Shiny

library [64]. Our user interface enables exploration of the time-series clusters, pre-

senting them alongside available sequence metadata (Figure 2.7). The web-based,

cross-platform utility allows parameters and values to be selected by the user and

related visualizations update automatically. The granularity of the clusters can be

modified by selecting a new ϵ clustering parameter (Figure 2.7A). This requires no

additional computations, as the clusters are pre-computed for a range of ϵ values

and are simply read from the data file. Clusters can be easily cycled through with a

drop-down menu (Figure 2.7B), and the time-series plots are automatically generated

(Figure 2.7C-F). Four time-series plots are displayed to allow the user to compare

the effects of different normalization schemes. Some of the plots (Figure 2.7C-D) em-

phasize the differences in relative abundance of the sequences, while others (Figure

2.7E-F) place all sequences on the same scale to make the temporal dynamics clear.

Relevant metadata are presented in a sortable and filterable table (Figure 2.7G).

These metadata include the total abundance of each sequence, the sequence-based

clustering values (if available), the taxonomic classification (if available), and the

unique sequence identifier.

It is also possible to use Ananke-UI to display the sequence-based clusters (i.e., the

OTUs). In this case, the sequences are coloured according to the time-series cluster to

which they belong. An option exists to exclude from the plot all sequences that were

classified as noise by the clustering step, as they may interfere with the visualization.

This colouring is meant to draw attention to OTUs that contain multiple distinct

temporal patterns. For example, the Clostridiales OTU in Figure 2.8 contains two

distinct temporal dynamics in spite of their high sequence identity. Around time

point 50, three of the sequences respond positively to a change in the environment

and are able to increase in abundance relative to a fourth sequence which subse-

quently decreases in abundance below detection. It is important to detect this type

of inconsistency within an OTU as it could impact the conclusions of analyses based

on OTUs. If a data set contains a large amount of temporal inconsistency within

OTUs, it could signify that the 97% sequence identity threshold is too broad, and a

98%, 99%, or 100% sequence identity threshold may be more suitable.
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Figure 2.8: An example of the Ananke-UI showing an OTU defined by 97% sequence
identity. Individual sequences are coloured by their time-series cluster. This OTU
contains sequences that follow two distinct temporal patterns (red and blue).



34

2.4.2 Time-Series Cluster Granularity

With sequence identity-based clustering methods, a static cut off can be used across

different data sets. As discussed previously, 97% sequence identity is the most com-

mon criterion used to define sequence-based clusters such that the resulting OTUs

can be used as a proxy for microbial species. This particular value is backed up by

correlations to the time it takes for 70% DNA-DNA hybridization, an assay used to

determine how closely related two microorganisms are [75]. The time-series clusters

are based on the ϵ clustering parameter of the DBSCAN algorithm. This parameter

defines the radius of the neighbourhood around a point in which we search for addi-

tional points to form a cluster [21]. We define similarity between two time series with

the STS distance measure, so the ϵ parameter is also expressed as a STS distance.

This distance depends on the number of time points as well as the sample sequence

depth. Additionally, each user has different research questions that will not all be an-

swerable with a static distance cut-off. As a result, we recommend that users explore

various ϵ values and select the values that best suit their research questions.

The ϵ parameter allows the user to control time-series cluster granularity. As

this value is increased, the neighbourhood around points grows larger, the clusters

more coarse, and the time series contained within a given cluster become more dis-

similar. Conversely, as the value is decreased, the time series contained within a

given cluster become more similar (Figure 2.9). The level of granularity is controlled

through Ananke-UI by selecting the desired ϵ value in a numerical input box. The

pre-computed clusters are read from the data file and presented to the user.

As a function of ϵ, the number of time-series clusters follows a regular pattern. At

low ϵ values, there are few time-series clusters. As ϵ is increased, the number of clusters

increases. After a certain point, a maximum number of clusters is obtained and

increasing ϵ further will decrease the number of clusters. This results in a generally

concave downwards shape for the number of time-series clusters as a function of ϵ.

For low ϵ values, since the neighbourhood around each point is small, most time

series have no neighbours within a STS distance of ϵ and are labeled as noise. The

increased number of sequences labeled as noise results in a small number of time-series

clusters. As ϵ is increased, the radius around each time series grows, often moving

them from the noise designation into a time-series cluster. As ϵ increases, the clusters
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Figure 2.9: Demonstration of the effect of the ϵ cluster parameter. Normalized
time-series clusters from two orders of Bacteria, A) Actinomycetales and B) Acidimi-
crobiales. The red area highlights an area of the time series that differs significantly.
C) As ϵ is increased, the clusters become more coarse. The two time-series clusters
merge into one.
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begin to merge with one another, resulting in an eventual decreasing trend for the

number of clusters. We recommend that the user begins exploring their data with the

ϵ value at which the largest number of clusters is obtained. This value will provide a

good separation of time series, as well as a balance between the number of sequences

labeled as noise and the number of sequences in large, dense clusters that are difficult

to analyze.



Chapter 3

Application to Biological Data Sets

In this chapter, we demonstrate the utility of the Ananke algorithm by applying it

to biological data sets. Four diverse data sets were selected and processed using the

algorithm described in the previous chapter. Two of the data sets contain a single

time series each, and the final data sets contains multiple time series. The single time

series studies are derived from human stool and a freshwater lake, while the multiple

time series data originate from the stool of 43 human subjects. The data sets vary

in number of time points, length of each time series, and sequence depth, allowing

us to assess the algorithm across various experimental parameters. As discussed

in Section 2.3.2, the taxonomic classifications for the sequences were generated by

the Ribosomal Database Project’s näıve Bayesian classifier (version 2.2) [14] trained

against the GreenGenes reference set (August 2013 revision) [17]. Sequence identity-

based clusters were computed by UPARSE [19], described briefly in Section 1.3, at a

97% sequence identity threshold with a minimum sequence abundance of two. These

methods were chosen because they are frequently used in microbiome studies. This

allows for us to contrast our time-series clusters with realistic taxonomic classifications

and sequence-identity clusters.

3.1 A Year of Faecal Samples

We first demonstrate our time-series clustering algorithm on the faecal microbial data

set from David et al. (2014) [16]. The data are 16S rRNA gene fragments taken from

one person at 191 time points over 318 days. During the sampling period the subject

contracted a food borne illness that resulted in a significant shift in the microbial

composition of their stool. As a result, the data contains a variety of temporal

patterns that make it an ideal test set for our algorithm.

The data set contains 26,250,106 total and 1,200,847 unique sequences. To reduce

the magnitude of the data, they were filtered to include only sequences which appeared

37
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Figure 3.1: Data set statistics for the faecal data. A) Number of time-series clusters
vs. ϵ. B) Proportion of data labeled as noise vs. ϵ. C) Histogram of log cluster size
by total number of sequences. D) Histogram of log cluster size by number of unique
sequences.
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Figure 3.2: Selected time-series clusters of microbial communities from human faecal
samples that coincide with the food-borne illness event around day 159. A) Two se-
quences from the family Coriobacteriaceae present only before the event. B) A cluster
of seventeen sequences that increase in relative abundance during the food poisoning
incident, many belonging to Enterobacteriaceae. C) Nine sequences belonging to the
family Lachnospiraceae, the most abundant classifying to Clostridium citroniae. D)
Three sequences classifying to the family Enterobacteriaceae that are coincident with
the food poisoning event and also observed in high relative abundance earlier in the
time-series. E) 25 sequences, the majority of which classified to Ruminococcus bromii.

in ≥15% of time points, reducing the data to 23,533,503 sequences and 14,743 unique

sequences. While this drop in unique sequences was significant, only the sequences

with low information content were removed and∼90% of the overall data was retained.

A maximum of 157 time-series clusters was found at ϵ=5.4, with an average cluster

size of 149,894 total sequences and 94 unique sequences. At that ϵ value, 17.6% of

the sequence data were labeled as noise.

The subject experienced food poisoning diagnosed to be the result of Salmonella

sp. just before day 159. The authors of the study showed that the food poisoning

event divides the faecal microbial community into three clear segments from days

0-144, 145-162, and 163-240. Once clustered by time series, this segregation is readily

apparent (e.g., Figure 3.2A-C). Some sequences seem to disappear completely from

the environment after the event, such as a cluster of Coriobacteriaceae sequences (Fig-

ure 3.2A). Other clusters that were only present in extremely low abundance before

the illness, such as a group of sequences classified as Clostridium citroniae, appear to
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Figure 3.3: Two time-series clusters of sequences that classify to Akkermansia
muciniphila. One cluster is present only before day 72 (A), while the other is present
after day 72 (B).

successfully gain a foothold in the environment (Figure 3.2C). During the food poison-

ing event, 17 conditionally rare sequences show a large increase in relative abundance

(Figure 3.2B). The two most abundant sequences in this spike classify to Enterobacte-

riaceae (the family containing Salmonella sp.) and Haemophilus parainfluenzae. The

remaining sequences belonged to various taxonomic groups including the genera Leu-

conostoc, Weissella, Lactococcus, and Turicibacter from the class Bacilli, Clostridium,

and Veillonella from the class Clostridia, and two sequences from the genus Acineto-

bacter. A large increase of three abundant Enterobacteriaceae sequences was seen at

the time of the food poisoning (Figure 3.2D), but these sequences had also been ob-

served earlier in the subject’s time points and were assigned to a different time-series

cluster.

In addition to the changes induced by the food poisoning event, our method also

highlighted several smaller changes in the community that were not noticed by the

original authors. Between days 100 and 160, a sudden rapid increase in Ruminococ-

cus bromii sequences is observed (Figure 3.2E). This species is known to play an

important role in the degradation of resistant starch [90, 1], hinting at a dietary

cause for the increase in relative abundance. These Ruminococcus bromii sequences
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Table 3.1: Average Simpson Index for faecal time-series clusters at ϵ=5.5

Taxonomic Level Average Simpson Index
Phylum 0.99
Class 0.99
Order 0.99
Family 0.97
Genus 0.92
Species 0.93

are no longer detected in the environment after the food poisoning event. Another

event highlighting through time-series clustering occurs at day 72 when several Akker-

mansia muciniphila sequences fall below detectable levels (Figure 3.3A). They are

immediately replaced by new sequences that are classified to the same species (Fig-

ure 3.3B). Akkermansia muciniphila has been linked to obesity [22], diabetes [31],

and autism [84]. Further research is required to determine why this replacement oc-

curred and what are the impacts on the host. Our time-series clustering algorithm

aids researchers in discovering subtle events like these that could be critical to our

understanding of how microbial communities relate to disease.

As discussed in Section 2.3.2, we used the Simpson index to assess the cluster

quality. Our assumption is that the majority of time-series clusters will contain taxa

with a similar capacity to respond to changes in the environment and as a result

they are likely to have high taxonomic homogeneity. We see that our assumption of

taxonomic homogeneity of time-series clusters is true for the faecal data set, where

the Simpson index was ≥0.99 for taxonomic levels above family, and 0.93 for the

lowest taxonomic level, species (Table 3.1). Note that the Simpson index calculation

includes only sequences which had a classification with ≥60% posterior probability

at the indicated taxonomic level. This means that some data is excluded from the

calculation at species level, explaining why the Simpson index is higher than that of

the genus level. The clusters that do not demonstrate taxonomic homogeneity are

often the largest clusters, which can contain sequences that share a large coordinated

increase or decrease in abundance but are otherwise unrelated. Other taxonomically

heterogeneous clusters have sequences with taxonomic classifications that agree at

broader taxonomic levels, but the sequence-based classifications are not in agreement
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Figure 3.4: A 97% sequence-identity cluster (OTU) of sequences belonging to Fae-
calibacterium prausnitzii. This OTU contains sequences belonging to two time-series
clusters that demonstrate different temporal dynamics, coloured red and blue.

at finer taxonomic levels. This may be because these organisms are distinct accord-

ing to their 16S rRNA genes, but demonstrate similar phenotypic traits under the

observed environmental conditions.

Researchers frequently use 97% OTUs as the base ecological unit when making

inferences about a microbial community. We have discussed previously that these

OTUs can contain temporal inconsistencies (see Section 1.3.1), where the sequences

contained in a 97% sequence identity cluster may not have the same distributions

across time. This implies that there are multiple phenotypically distinct organisms

that are being grouped into the same OTU. Biological data sets show that this is not

an uncommon phenomenon. For example, one OTU of the species Faecalibacterium

prausnitzii showed two clear temporal patterns, situated around the occurrence of the

food poisoning event (Figure 3.4). Despite the marker-gene sequences having high

identity, the microorganisms demonstrate very distinct behaviours after the event,

with one set becoming very low abundance while the other increases in abundance.

The relationship between time-series clusters and OTUs is not straightforward. Some

OTUs contain multiple time-series clusters, but the converse can be true as well (e.g.,

Figure 3.5). This can make it difficult to unravel the discrepancies between these two

clustering approaches.
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Figure 3.5: A demonstration of the relationship between time-series and sequence-
based clusters from the year of faecal samples data set. A) and B) 97% sequence
identity clusters (OTUs) of Bacteroides plebeius sequences. C) and D) Time-series
clusters of Bacteroides plebeius sequences. Red sequences belong to time-series cluster
31, while blue sequences belong to time-series cluster 8. Sequences from both time-
series clusters are present in both OTUs and vice versa.
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Figure 3.6: Data set statistics for the Lake Mendota data. A) Number of time-series
clusters vs. ϵ. B) Proportion of data labeled as noise vs. ϵ. C) Histogram of log
cluster size by total number of sequences. D) Histogram of log cluster size by number
of unique sequences.

3.2 Lake Mendota, Wisconsin

The second biological time-series data set we analyzed is from Lake Mendota in

Wisconsin, USA. This is a eutrophic lake that freezes each winter and thaws each

spring [89]. The microbial communities follow strong seasonal trends that are ideal

candidates to capture and investigate with our time-series clustering algorithm. The

data set spans eleven years (2000-2011), with 96 samples of 16S rRNA gene fragments

in total [51]. Samples were taken monthly while the lake was thawed, generally

between March and November.

There were 45,094,125 total and 3,058,149 unique sequences. For time-series clus-

tering, the data were filtered to only include sequences which appeared in ≥20% of
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Figure 3.7: Two superimposed time-series clusters of Flectobacillus (purple) and
Synechococcus (orange) sequences displaying clear seasonal dynamics and peaking in
different seasons. B) A time-series cluster of Actinomycetales sequences displaying
persistence through multiple seasons.

Table 3.2: Average Simpson Index for lake time-series clusters at ϵ=5.5

Taxonomic Level Average Simpson Index
Phylum 0.96
Class 0.95
Order 0.94
Family 0.94
Genus 0.95
Species 0.99

time points, reducing the data to 37,796,894 sequences and 38,204 unique sequences.

As this data set was larger than the faecal data from the previous section, a more

stringent filter of 20% (vs. 15% for the faecal data) was required for the pairwise dis-

tance matrix to fit in memory. A maximum of 626 time-series clusters was found at

ϵ=0.16, with an average cluster size of 60,378 total sequences and 61 unique sequences

(Figure 3.6). 31% of the data were labeled as noise at this ϵ value. This maximum

number of clusters is in contrast to a recent analysis of this data set that grouped

97% OTUs from these sequences into only 14 clusters based on their annual peak

[15]. Our clustering was based on the entire time series instead of a single temporal

feature, which resulted in many additional clusters.
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Figure 3.8: Two examples of taxonomically heterogeneous time-series clusters. Green
lines are sequences classified as chloroplasts, and blue lines are sequences classified
as mitocondria. A) Time-series cluster of sequences from two organelles of the green
algal class Trebouxiophyceae. B) Time-series cluster of sequences from two organelles
of the diatom Thalassiosira pseudonana.

When clustered by time series, the seasonal dynamics within this freshwater lake

are brought to the surface. For example, sequences classifying to the photosynthetic

cyanobacterial genus Synechococcus were seen to bloom every year around August,

whereas sequences from the genus Flectobacillus increased in relative abundance in

May of each year (Figure 3.7A), anti-correlating (r = -0.25, p = 0.01) with the Syne-

chococcus sequences. Other microorganisms are more persistent through multiple

seasons and rarely fall below the detection limit, such as a cluster of Actinomycetales

sequences (Figure 3.7B).

As before, we used the Simpson index to evaluate the taxonomic homogeneity

of recovered clusters. The majority of the time-series clusters were taxonomically

homogeneous, especially at higher taxonomic levels, with an average Simpson index

of 0.96 at the phylum level and 0.95 at the genus level at ϵ=0.16. Two examples of

taxonomically heterogeneous time-series clusters are shown in Figure 3.8. The first

contained three sequences that classified to two different groups: chloroplast from the

green algal class Trebouxiophyceae, and “Rickettsiales; mitochondria” (Figure 3.8A).

The two chloroplast sequences were four times more abundant than the mitochon-

drial sequence, which, when compared to a broader database, was found to have the

highest similarity to sequences from the class Trebouxiophyceae. In Figure 3.8B, we

see chloroplast and mitochondrial sequences classified to the diatom Thalassiosira
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pseudonana have been clustered together by our algorithm. While the presence of

these eukaryotic sequences in a data set targeting bacteria and arhaea is not surpris-

ing [35, 32], it is a good validation of our method to see that sequences from two

organelles of a single taxonomic group follow are properly clustered together.

Like the faecal data set, temporal inconsistencies were a common occurrence with

the OTUs of the lake data set. A clear example of temporal discordance from the

freshwater lake data is demonstrated by sequences contained within a 97% sequence

identity Sediminibacterium OTU that exhibits two distinct temporal patterns (Figure

3.9A). Both groups of sequences spike at consistent times each year, the first in

late June to early August and the other in late August to early October. This

could mean that this OTU includes two distinct types that favour slightly different

seasonal conditions. Traditional OTU clustering would have added the abundances of

these sequences together and completely obscured the dynamic our clustering method

reveals.

While the majority of our OTUs were temporally consistent, discordance was seen

more frequently in certain taxonomic groups. These groups included Actinomycetales

ACK-M1, Chlorobi OPB56, Fluviicola, and Sedminibacterium. This difference could

be due to variation in sequence divergence of the hypervariable region, or different

processes affecting the functional diversity of these groups. By presenting the relevant

sequence metadata alongside the temporal clusters, our user interface helps highlight

taxonomic groups that display multiple distinct temporal patterns despite high nu-

cleotide identity. Frequent temporal discordance within the OTUs of a taxonomic

group of interest could hint at undetected diversity and may motivate the selection

of a different 16S rRNA gene region for future work.

Within both the lake and the faecal data, it was clear that sequence similarity

does not guarantee temporal similarity (for example, Figure 3.4 and Figure 3.9A).

In the lake data set, we found further evidence that temporal similarity does not

imply sequence similarity. As an example, we identified an OTU classified to Actino-

mycetales ACK-M1 that displayed three distinct temporal patterns (Figure 3.9B-E).

Two of the time-series clusters (numbers 105 and 214) contained sequences that were

all classified to the same group, Actinomycetales ACK-M1 (Figure 3.9C-D). Despite

the taxonomic similarity, these time-series clusters spanned 27 and 13 (respectively)
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Figure 3.9: Examples of temporal discordance within 97% sequence-identity OTUs in
Lake Mendota. A) Sequences from a single 97% sequence identity cluster classified to
Sediminibacterium, coloured by time-series cluster to highlight temporal discordance.
One group of sequences (green) consistently blooms just before a second group (pur-
ple). B) A second example of temporal discordance within an OTU. Three distinct
temporal patterns were observed in this 97% sequence identity cluster, classified to
Actinomycetales ACK-M1. The five most abundant sequences are shown, coloured
by time-series cluster. C-E) The time-series clusters for each of the three distinct
patterns seen in the Actinomycetales ACK-M1, along with the number of OTUs and
sequences belonging to each cluster.
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Figure 3.10: Data set statistics for the elder care faecal data. A) Number of time-
series clusters vs. ϵ. B) Proportion of data labeled as noise vs. ϵ. C) Histogram of
log cluster size by total number of sequences. D) Histogram of log cluster size by
number of unique sequences.

distinct 97% sequence-identity OTUs. The third cluster (number 44) contained se-

quences that classified to six distinct phyla (Figure 3.9E). The spike in abundance

around day 1,500 appears to be the primary driver of this cluster. It is unclear whether

this spike in abundance is due to some shared trait between very distant strains, con-

tamination, or an artefact from the sequencing or normalization processes.

3.3 Multiple Time Series: Elder Care Facility Faecal Samples

The multiple time series data set is faecal samples from subjects at an elder care

facility. Samples were collected from 43 patients over the span of a month. Each

subject was sampled between two and five times, for 182 total time points. There

were 3,603,610 total sequences and 2,015,820 unique sequences in the data set. After
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Table 3.3: Average Simpson Index for elder care faecal time-series clusters at ϵ=6.4

Taxonomic Level Average Simpson Index
Phylum 0.98
Class 0.97
Order 0.97
Family 0.96
Genus 0.95
Species 0.96

filtering out sequences present in fewer than 5% of sequences, 827,958 sequences and

15,704 unique sequences remained. The maximum number of time-series clusters was

210 at ϵ=6.4. At this ϵ value, the average number of sequences per cluster was 3,943,

the average number of unique sequences per cluster was 75, and 48% of the sequences

were labeled as noise.

For this data set, the taxonomic homogeneity of the time-series clusters was high

(Table 3.3). However, the number of sequences that were labeled as noisy was signif-

icantly higher in this data set than the previous two (48% vs. 31% and 17%). That

is, there was a lower proportion of sequences that were successfully clustered at the

ϵ value that showed the highest separation of the data. This suggests that the data

were harder to cluster. In addition, the clusters tended to be very sparse, showing

detectable abundance only in a small number of the subjects’ time-series (e.g., Figure

3.11). In this time-series cluster, we see that most of the subjects have no detectable

occurrence of these sequences. We also see that while the sequences associate clearly

across time within some subjects, this is not true for all subjects.

Using our method with multiple time series, we can get a hint of the genetic

diversity of an organism and the distribution of strains across sample sites. By con-

trasting the sequence-identity clusters with the time-series clusters, we can identify

those strains which are differentially abundant across sites. For example, a sequence-

identity cluster of Akkermansia muciniphila was colour-coded by time-series clusters

to reveal which subjects shared strains in common (Figure 3.12). Subjects that share

the same colours in their time-series plots have the same sequences present in their

faecal samples. At least three main groups of strains are revealed to be contained



51

Figure 3.11: A sparse time-series cluster of Bacteroides caccae sequences.



52

Figure 3.12: Time-series of an OTU of Akkermansia muciniphila across 43 subjects.
Time-series are coloured by time-series clusters at ϵ = 5.
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within this OTU and shared between subjects at the care facility. This type of vi-

sualization is useful as it provides a sub-OTU level of detail at a glance. In cases

where a 97% sequence-identity OTU is too coarse, this plot uncovers the fine-grained

distribution patterns that may be hidden from view.

3.3.1 Complications for Multiple Time Series

Clustering with multiple time series is a more difficult challenge than with one con-

tiguous time series. The proportion of noise is much higher in the multiple time series

data set (Figures 3.10B). The distribution of cluster size is much more narrow (Fig-

ures 3.10C-D). There are many more small clusters composed of relatively few unique

sequences. However, the high taxonomic homogeneity suggests that the clusters that

are generated are not spurious.

There are several reasons why clustering with multiple time series results in lower

quality clusters. First, each environment has its own distinct microbial strains. This

results in very sparse time series where many sequences are present only in one time

series and absent in the others. This sparsity results in dense clusters for each time

series. It also makes it difficult to cluster across time series, as there must be overlap

between the time series for the clusters to be able to form. A possible solution to this

problem is a very conservative pre-clustering based on sequence identity. This will

add together the different strains from different environments, reducing the sparsity

of the data.

When the sequences originate from multiple different environments, there are dis-

tinct environmental and microbial contexts that can be detrimental to the clustering

process. As an example, suppose we have three microbial species that we will call x,

y, and z, represented across two environments (Figure 3.13). In the first environment,

x and y follow the same distribution, and z is not present. In the second environment,

z is present and harms y, but not x. Although x and y would form a time-series clus-

ter in the first environment, it would not in the second environment. This is only a

simple example; the problem compounds with thousands of microbial strains spread

across many different time series.

Another shortcoming of using multiple short time series is the difficulty of inter-

pretation of the results. Time-series clusters from a single, long, contiguous time
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Figure 3.13: An example of how the microbial context of two distinct environments
may influence time-series clustering with multiple time-series. The interactions be-
tween the taxa are represented by the three coloured circles. In Environment 1, taxon
z is not present, so no interactions occur. In Environment 2, taxon z decreases the
abundance of taxon y.

series are straightforward to interpret. Major events that affect the microbial com-

munity composition are clearly visible in the time-series plots. Changes to baseline

abundance levels are evident in the time-series clusters (e.g., Figure 3.3). With many

short time series it can be difficult to establish what the baseline is, so detecting

changes may not be possible. In the case of the elder care faecal data, there was no

intervention and little dynamic metadata. As a result, there were no specific events

to monitor or analyze. This made the data difficult to interpret as we could not link

a change in abundance of a specific taxon with any event.

In general, multiple time-series clustering produces useful results and allows for

the contrasting of multiple sets of longitudinal data. In particular, it is useful to

contrast time-series patterns with sequence-identity clustering to identify strains that

are present across different environments (e.g., Figure 3.12). However, in light of

the weaknesses we have described in this section, we caution that our method may

not provide useful results for all longitudinal data sets. Longer time series and more

evenly spaced time points contribute to more successful clustering, visualization, and

interpretation.



Chapter 4

Conclusions

In this work, we describe a novel algorithm for the clustering of microbial marker-gene

sequence data. The goals of this algorithm are to reduce the magnitude of data and

to aid in the discovery of temporal structure in the data. With careful consideration

of data structures, distance measures, clustering algorithms, we developed a fast and

scalable method that is able to meet these goals. Our approach differs from traditional

methods by clustering the temporal distribution patterns of each unique sequence

rather than clustering the DNA sequences directly. This introduces new challenges,

such as the parameterization of the clustering process and processing data sets that

contain multiple time series, but provides the benefit of reducing data magnitude

significantly while minimizing the loss of temporal dynamics. Our method distills

high dimensional time-series data down to its essential temporal patterns, facilitating

the exploration of microbial marker-gene data sets.

Ananke and Ananke-UI are effective tools for exploring microbial marker-gene

data. We have created an efficient, interactive, and cross-platform solution for the

deep exploration of large marker-gene sequence data sets. The clustering step is

able to reduce data sets by several orders of magnitude from tens of thousands of

unique time series down to hundreds, making manual exploration of marker-gene

data feasible. We present the time-series clusters and relevant metadata to the domain

expert, which facilitates their efforts to unravel the complicated dynamics of microbial

communities. We developed our method with this expert in mind, with a focus on

ease of use and speed. This work represents a complete workflow from raw data to

visualization, eliminating the barriers present in similar bioinformatics tools.

4.1 Comparisons to Existing Tools

We have briefly discussed other tools that are designed to process longitudinal marker-

gene sequence data (see Section 1.4.3). Our method differs from these tools in key
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ways. MC-TIMME is a powerful tool that serves a similar purpose: to cluster se-

quences that share similar temporal distributions [27]. The key difference between

our methods is the input requirement. MC-TIMME requires the user to know much

more information about the temporal dynamics in their environment a priori. This

information is used to generate template time series that the queries from the bio-

logical data can be matched to. In contrast, our method is completely unsupervised

and requires no information from the user about the temporal dynamics. By design,

our method requires neither the shapes nor the number of distinct temporal patterns.

This allows users to cluster data from environments where all variables cannot be

controlled and unknown influences can affect the temporal patterns.

We also discussed eLSA, a tool for computing the similarity of time series. The goal

of this tool is to generate association networks using local similarity scores between

time series. While it is not designed to explicitly generate time-series clusters, setting

a minimum similarity threshold to an association network will create clusters that can

be used in a similar fashion. eLSA has several key advantages over our method. First,

it is able to detect time-lagged associations between microbial species. This is very

useful, as time-lagged associations can indicate that microorganisms are interacting

in some fashion. It can also detect local similarity between two time series, in contrast

to our method which requires global similarity across all time points. Local similarity

detection could identify two time series that are synchronized only until a change in

the environment occurs. If the environmental change is known, it could shed light on

the adaptation that occurred in the more successful microorganism. Local similarity

analysis could also provide a more sensitive way to cluster time series, but it should

be noted that there are some who argue that it can generate meaningless clusters if

not done with care [38]. The drawback to time-lagged and local similarity analysis is

the high computational complexity. eLSA is typically run on small subsets of OTUs,

not the much larger set of unique sequences that our algorithm can process. However,

our method and eLSA complement one another well. Our method can act as a data

reduction step that does not compromise the quality of the temporal patterns. The

time-series clusters can be used as input to eLSA, resulting in a very significant

decrease in run time.
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4.2 Extensions and Future Work

Our work has the potential to be extended to several other applications. Time is not

the only gradient that we can sample microbial communities along. Distance, pH, and

other variables can be used in an analogous way to time as the independent variable.

This affects only the interpretation of the results and will work immediately without

any changes to the algorithm. Further, microbial marker-gene data sets are not the

only high dimensional time-series data. Our algorithm could be used to cluster any

set of time series with only minor changes to the software. As an example from the

field of metagenomics, our method could be used to cluster metagenomic fragments

to aid in genome assembly, in a similar fashion to the work by Dick et al. (2009) [18].

While our comprehensive tool can take the user from raw sequence data to infor-

mative visualizations, there are still some improvements to be made. The algorithm is

currently limited by the amount of available memory. The pairwise distances between

time series are stored in memory which can limit the number of unique sequences to

∼30,000 on a system with 16GB of RAM. While we aim to only filter out time series

with low information content, it would be beneficial if we could minimize the amount

of data that is lost. A solution to this problem is an out-of-core implementation of

DBSCAN that reads distances from our HDF5 data file.

The next issue to address is the degradation of cluster quality for long time series,

as determined by the simulated data (Figure 2.6). Smoothing longer time series by

averaging over a sliding window could help reduce noise that accumulates in the STS

distance computation and overwhelms real signal. We will also investigate additional

distance measures, such as those described in Section 1.4.2, to determine if gains can

be made in cluster quality for longer time series. Next, we note that some data sets

have a high proportion of data labeled as noise by DBSCAN. By using alternative

forms of DBSCAN, such as the OPTICS algorithm [3], we can eliminate the need to

search for an appropriate ϵ parameter for a given data set. This algorithm selects

locally variable ϵ values rather than using a global parameter. This change allows

sparse areas to use higher ϵ values to reduce the number of time series that are

considered noise.

Our method discovers structure in the data that we aim to exploit with future

work. Time-series clusters represent temporally cohesive units that we can use for
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downstream analyses of marker-gene data. Using these clusters with techniques from

time-series analysis and machine learning, we can model, predict, and draw inferences

from these microbial communities in an automated way. These analyses can be in-

corporated into the existing Ananke framework, making this work a solid foundation

for future research.
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