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Abstract

Phylogeography is the study of how geographic and environmental factors affect
the evolution of organisms. Phylogeographic analysis combines evolutionary informa-
tion, often represented using phylogenetic trees, with geographic representations of
an observed data set. A key element of phylogeography is the use of branch lengths in
a tree, which correspond to accumulated evolutionary differences among organisms,
to generate an overall view of phylogenetic diversity in a region. Here we describe the
Geographically Coupled Phylogenetic Distance (GCPD), a new method for associat-
ing phylogenetic diversity with location information. The GCPD uses location-based
phylogeographic information to calculate a minimum spanning tree where locations
are vertices. Branch weights of this graph are then substituted from geographic dis-
tance to the phylogenetic distance between sites, creating quantitative location-based
representations of the phylogenetic difference between sites.

One application of the GCPD is in phylogeographic visualization. Density-equalizing
maps, also known as cartograms, can preserve geographic relationships and attributes
such as political divisions, but use map distortions to visualization quantitative data
such as election results or population distributions. We have adapted the Gastner-
Newman algorithm to create map distortions based on location rather than shape
data, which allows enhanced visualization of phylogeographic data. Our approach is
implemented in the GenGIS software package, and can be applied to all widely used
digital elevation and image formats.

We used the GCPD to generate cartograms of two biological data sets: a 2010
pandemic of Vibrio cholera and the diversity of the Californian salamander Aneides
lugubris. In the cholera data set, we were able to preserve the global context of the
outbreak, while highlighting the crucial regional patterns in two countries, Nepal and
Haiti, implicated in a crucial transmission event. GCPD highlighted the distribution
of phylogenetic groups (clades) of salamanders and showed differences between major
clades in terms of both geography and phylogeny. The implicit effects of restrictive
geographic boundaries such as valleys and mountain ranges were inferred in the dif-
fusion through the addition of phylogenetic information to the map. To accelerate
the creation of cartogram visualizations, we developed methods to simplify construc-
tion of the density matrix used to build the cartogram, which yielded improvements
in both run time and memory consumption. While interactive time calculations are
still not feasible for high-density maps, we have achieved up to two-fold increases in
running time.
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Chapter 1

Introduction

Using geography in epidemiological studies dates back to the beginning of the

profession itself. It was the late John Snow, credited as the father of modern epi-

demiology, who in 1854 discovered the cause of a Vibrio cholerae outbreak in Soho,

London [69]. He discovered the source of the outbreak by generating large amounts

of metadata through residential surveys combined with geography based analytics.

A disproportionate amount of cases were found to exist around one particular water

well, having found that the infected population either used this well solely, or were

exposed to it in some way. Here an extensive survey of the area as well as geographic

information was able to stop one of the deadliest cholera outbreaks London had ever

seen, as well as identify cholera as a waterborne disease.

Endemism is an important concept in biogeography that describes the tendency

of closely related individuals of a species or populations to cluster geographically.

Endemism can highlight groups of special interest, and is an important component

of conservation biology. Spatial relationships are important for many applications

in epidemiology and ecology including identifying species ranges, source tracking in

epidemics, and defining optimal conservation areas. These fields employ phylogenetic

trees to express the relationships between sets of taxa. The summation of the branch

lengths from the positions of both taxa of interest in the tree to the root provides

a quantitative representation of their difference. This measure is known as Phyloge-

netic Distance (PD), and allows for the relationships between leaves of the tree to

be quantitatively expressed. When PD is computed through the root of the tree it

can be normalized by the total length of the tree to produce a PD between 0 and 1

which communicates the proportion of the variation within the tree two taxa repre-

sent. Precise calculations of endemism and other spatial attributes require complete

1
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delineation of species’ ranges, but resource limitations often constrain the ability to

carry out comprehensive sampling. As such many studies are forced to rely on much

sparser data collection. For example, the case of an outbreak the flow of information

can be sporadic as cases are only known during treatment. Not all affected individuals

will seek treatment, and some individuals may be misdiagnosed [32].

Water supplies have already been shown to be a source of population level infec-

tion, such as in the case of the London cholera epidemic. In 1991 Reif et al. conducted

a study to investigate associations with negative health effects in Denver communi-

ties due to waste site runoff. A neurobehavioral study of 204 residents of the area

identified by proximity to the waste site showed positive correlations with neurolog-

ical disorders and reproductive health [61]. Geographic Information Systems (GIS)

have also been applied to epidemiological studies, such as the investigation of causal

relationships between landfill sites in the United Kingdom with birth anomalies [20].

This study drew upon location based data points for 19,196 landfill sites, though

detailed information on boundaries are unavailable. This study found only a slight

increase in likelihood for birth anomalies within these zones, and could not identify

a causal mechanism for health defects.

For many epidemiologists and ecological researchers, GIS is an essential informa-

tion display and analysis tool [43]. These systems can integrate natural and political

features, population information, time, and other attributes of a data set. Overlays,

geographic projections and interactive environments allow for deep exploratory anal-

ysis. One approach that is gaining widespread use is the density-equalizing map or

cartogram [47][56]. Cartograms reproject physical maps based on a set of attributes,

such that regions with large values for that attribute are emphasized. In the case of

ecological or epidemiological analysis, small regions may contain a large number of

observations that cannot be distinguished, while large areas of the map are devoid of

observations. Cartograms offer an opportunity to adjust the visualization to preserve

the global context of an analysis while emphasizing areas of particular focus.

To apply cartograms in a biodiversity setting, we have extended the Gastner-

Newman diffusion-based cartogram algorithm [27] to deal with point observations
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and incorporate phylogenetic information. The Gastner-Newman approach uses dif-

fusion, the concept in physics that a gas released in a volume will disperse to a uniform

distribution, to distort a geographic projection by a non-geographic property. Our im-

plementation of the algorithm in the GenGIS software package [59] introduces several

features not found in other popular GIS software such as ArcGIS [77], ScapeToad [3]

or the R package ggplot2 [76]. Firstly, these applications rely on vector maps to create

their projections. These vector maps use shape projections to represent geographic

regions separated by borders, and each enclosed region of the map is uniformly en-

coded with a value of interest. In the GenGIS implementation any flat image can

be used, from a map file to a simple flat image. This allows for non-geographic dis-

tortions to be made, such as diagrams of the human body or hospital floor plans.

Secondly, GenGIS uses location-based information, so that metadata can be added

and selected easily. Our approach allows new visual insights to be gained from visual

analysis of phylogenetic and geographic data. Although epidemiological data is a

primary driver of the work in this thesis, we also demonstrate the applicability of the

method to ecological data sets more generally.

1.1 Epidemiology

Epidemiology is the study of the effects, causes and patterns of health and disease

as they affect populations. Primarily here we will discuss epidemiology as it pertains

to physical health through the study and identification of infectious diseases. Environ-

mental epidemiology, which is concerned with the associations between environmental

exposure and health outcomes [57], also plays a role in pathogen management, as out-

breaks of disease are inevitably of a spatial nature, as can be seen by the 2014 West

African Ebola outbreak [73]. One of the most important roles of epidemiologists is

the identification and characterization of pathogenic organisms. Early successes with

serological approaches, a technique of identifying antibodies in blood samples in re-

sponse to viral attacks, provided early success despite the limited comparative power

of phenotypic approaches. Due to the limited number of antigenic genes responsible

for defining the serotype in a genome, as well as the potential for variance among

strains to make it impossible to select defining loci, the need for new techniques was
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apparent [75].

The advent of Next-Generation DNA sequencing (NGS) provided a solution to

many of the problems of serotyping by allowing the complete sequencing of pathogen

genomes. The advancement in NGS technologies has made whole-genome sequenc-

ing (WGS) widely accessible: Whereas in 2005 a single sequencing run could only

produce one gigabase of data, by 2014 this rate had increased more than a thousand

times, to 1.8 terabases in a single run. While in 2001 the first human genome re-

quired 15 years to sequence and cost nearly $3 billion (i.e., one billion nucleotides),

NGS technology had brought the cost down to $1000 a genome, completing approx-

imately two every hour [38]. With the introduction of NGS in epidemiology came

genome sequencing and digitization of sequenced pathogens, and the necessity of new

bioinformatics algorithms that can efficiently handle large-scale genomic data sets.

Large databases of previously sequenced genomes, such as GenBank [7] are essential

to comparative analyses of genetic content, allowing for genealogical estimates. These

archived sequences are commonly used as models for sequence alignment and quality

control. When large amounts of previously generated sequences are available they

provide historical and/or geographical context to newly generated sequences.

1.1.1 Example Applications of Genomic Epidemiology

In 2014 Western Africa was hit with the largest outbreak of Ebola Virus (EBOV)

ever seen. EBOV was one of five strains of the Ebola virus, which can have mortality

rates as high as 90% [23]. Of concern to epidemiologists was the origins of the current

Ebola strain. To analyse this outbreak 99 samples were sequenced from 78 individuals

in Sierra Leone and combined with previously sequenced Ebola cases [30]. Due to the

large amount of intrahost and interhost variation it was possible to characterize the

transmission of the virus. Through phylogenetic analysis it was established that the

most likely source of this Ebola outbreak was from a previous outbreak in Central

Africa in 2004, and that there was no ongoing human-reservoir exposure reintroducing

the disease into West Africa [29].

One of the interesting aspects of this outbreak was the ability to generate genomic
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sequences as the outbreak developed. This allowed for the spread of the Ebola virus

to be characterized both geographically and temporally using web based tools such as

Nextflu(ebola.nextflu.org). Pressure to identify the path of infection also pushed

the public release of this data, allowing different research groups to combine many

data sources. The authors of [6] created a chronological phylogeographic visualization

using 13 data sources. Phylogenies were creatued using augur(https://github.com/

blab/nextflu/tree/master/augur) and displayed with respect to time, region or

local branching index (LBI) [53]. Technologies which allow ad hoc sequence generation

and analysis continue to improve; for example the Nanopore sequencer used by the

European Mobile Laboratories to sample and release ongoing cases in only a few days

[26]. To address the need for rapid, repeatable analysis of large data sets, several

initiatives including Canada’s Integrated Rapid Infectious Disease Analysis (IRIDA)

network are being developed.

In 2010 an outbreak of Vibrio cholerae ravaged the already distressed nation of

Haiti after it had been hit by a devastating earthquake. This epidemic of cholera,

which had not been seen on the island nation previously resulted in approximately

600,000 cases and upwards of 7,500 deaths [4]. In order to investigate this outbreak 23

genomes were sequenced using the Illumina platform [41]. These sequences were taken

over a variety of time points and geographic locations within Haiti. They were then

compared against 85 different isolates of cholera retrieved from the National Center

for Biotechnology Information (NCBI). These 108 genomes were compared to identify

566 positions of variance in the genome (known as Single Nucleotide Polymorphisms

or SNPs) which were used to construct a phylogeny. After the phylogenies were

compared it was found that the Hatian strains of cholera were most closely related

with samples taken from Nepal, which itself grouped closely with samples from India

and Bangladesh.

1.2 Phylogenetics

Phylogenetics is the study of evolutionary relationships comparing heritable traits

across a set of biological entities. Deoxyribonucleic acid (DNA) and protein sequences

ebola.nextflu.org
https://github.com/blab/nextflu/tree/master/augur
https://github.com/blab/nextflu/tree/master/augur
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provide a great deal of information for phylogenetic analysis: as sequences mutate

over time, the rates of these changes can be estimated through observation, and

used to infer evolutionary history. While the size and content of genomes can vary

widely among organisms, the use of core genetic components such as 16S ribosomal

ribonucleic acid (rRNA) genes allow for distantly related organisms to be compared

due to the universal presence of the 16S gene in all living organisms, as well as its

stability within the genome. These exact properties however make rRNA unsuitable

for very closely related organisms, such as strains of pathogens. This is because 16S

genes have a high level of conservation, making them good for comparing distantly

related organisms but a poorer choice for closely related organisms. A whole genome

comparison approach is more suitable as it takes into account any changes which take

place in the genome.

Several methods exist to produce phylogenies, one of the most popular being

Maximum Likelihood (ML). This method was first applied to phylogeny creation by

Felsenstein in 1981 [24] , and since its first introduction has been a favoured statisti-

cal approach to creating phylogenies. Popular implementations of the ML approach

include RAxML [71] and PHYML [33] , which all seek to create more computation-

ally efficient implementations using heuristics. A competing approach for phylogeny

creation uses Bayesian statistics in order to create trees based upon observed rates of

transition between genetic characters. MrBayes [65] is a piece of software commonly

used to contrast different hypotheses about the relationships among taxa.

One pervasive problem of the microbial world is that microbial genomes are fluid

in their genetic make-up. Lateral Gene Transfer (LGT) is a process which allows

different bacteria to take up sequences from close and distant relatives, in addition

to the genetic material they inherit directly from their ancestors [70]. This hampers

attempts to place bacterial species in the evolutionary tree as one can never be sure if

two species appear closely related because of a recent speciation event, or an acquired

gene sequence. Problems also exist using gene content to compare organisms, as

comparing different genes can yield wildly different tree topologies. The adoption of

genome sequencing and more advanced methods of phylogenetic reconstruction can

address these problems. In particular using whole genomes to build phylogenetic trees
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does not rely on any one gene to construct the phylogeny, and can therefore produce an

overall pattern of similarity that may be more reflective of parent-offspring inheritance

[9].

Canada’s IRIDA project is an example of a resource that aims to automate the en-

tire genomic epidemiological pipeline, from pathogen isolation to phylogenetic analysis

and interpretation. IRIDA is concerned with assembling and annotating pathogenic

organisms for real time investigation. IRIDA seeks to facilitate the use of WGS in epi-

demiological studies by providing a centralized source of WGS compatible pipelines.

A key component of the project is the SNVPhyl pipeline, which uses the presence of

SNPs to create phylogenies. The whole process is automated as a Galaxy workflow

[60]. The goal of the IRIDA system is to be able to identify close relatives of outbreaks

as they happen in order to both identify what is the causative agent of an outbreak

as well as its most likely geographic origin.

1.3 Phylogeography

Phylogeography is the application of phylogenetic models of diversity in conjunc-

tion with the geographical locations of samples of a set of organisms. It aims to com-

bine these phylogenies and their geographic, environmental and temporal placement

to identify possible drivers for their evolution and current geographic distribution.

By addressing these questions phylogeography is able to address questions in public

health [1], species divergence [50], conservation studies [55], and other areas.

Often phylogeographic tools are developed for use in particular domains such as

conservation studies. Many of these tools were developed as extensions to existing

visualization solutions such as R [49] or ArcGIS. Online tools for geographic visu-

alization like CartoDB [17] focus on providing a robust suite of visualizations for a

general audience via web based tools. GEOPHYLOBUILDER is a tool that extends

ArcGIS to allow for phylogenetic information to be displayed, queried and analysed

[42]. A key advantage of this package is its ability to visualize and compare multiple

phylogenies. Tools like SPREAD [8] approach the problem of geographic diffusion
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(a) (b)

Figure 1.1: (b) An example of the SPREAD program visualizing the geographic

history of rabies in raccoons across the eastern seaboard under a continuous diffusion

model. Image taken from [8]. (a) A visualization of Ephippiger ephippiger, a European

Bushcricket, created with GEOPHYLOBUILDER such that individuals are the tips

of the tree, and are connected to the triangular sample locations. The phylogeny is

color coded by deep clades. Image taken from [42].

by using Bayesian models to predict the dispersion of species over time and geogra-

phy. SPREAD also allows statistical analysis to be performed from ancestral nodes

of the phylogenetic tree by accessing evolutionary information from all levels of the

tree. GenGIS is another stand-alone application used for phylogenetic analysis and

visualization [59]. Like SPREAD and GEOPHYLOBUILDER, GenGIS allows for

phylogenies to be displayed on a geographic space. It also allows for analytic tools

to access the weights of the phylogeny, as well as access to Python and R for com-

plex statistical analysis. GenGIS also offers several 2D and 3D tree visualizations,

including algorithms to optimize the layout of the tree relative to a set of geographic

points.

One problem in phylogeography is that it is limited largely to a fixed geographic

projection. This can become confusing for large amounts of dense geographic records,

creating a large amount of clutter in one geographic area. This problem is com-

pounded in phylogeography as location colouring is often used as an informative
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display, which for large amounts of divergent or encoded locations can result in dense

clustering of rainbow-like points, creating more confusion than explanation. GenGIS

differentiates between samples and locations [59], which limits the number of over-

lapping points necessary on a map, but offers visualizations like pie charts to display

the composition of each site.

1.4 Density-Equalizing Maps

Density-equalizing maps or cartograms are a form of map representation that ad-

just the traditional equal area map based on some quantitative variable of interest.

These map distortions can be achieved in many ways, with the earliest ones being pro-

duced by hand [19]. Later advances in technology allowed for mechanical approaches

to cartogram creation relying upon ball bearings to flex thin metal bands representing

political divisions [68]. The advancement of computer systems allowed for automatic

computational approaches to be developed. Waldo Tobler was the first researcher to

develop such a method, which overlayed the map with a discrete grid. By slightly

adjusting each grid cell with a linear function in concordance with the variable of

interest the map can be distorted over many iterations, producing a cartogram [74].

Henriques et al. and Sagar both define the cartogram error as

Relative Area Error =
|ADesired

j − ACurrent
j |

ADesired
j + ACurrent

j

, (1.1)

where ADesired
j is the expected position of geographic feature Aj under perfect dis-

tortion and ACurrent
j is its current position during cartogram iterations [67][37]. This

provides the error for different political boundaries within the global context. Gast-

ner and Newman provided a less specific error formula for each region, which can be

generalized to

Relative Error =
Area of Cartogram× Total Attribute of All Regions

Total Area of All Regions× Attribute of Region
− 1, (1.2)

[27]. Both methods of error calculation rely upon a vectored shape file representation

in order to have perfect knowledge of the desired effect of distortion, as well as the

area and attribute effects on each political border.
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Here I will introduce several prominent approaches for creating density equaliz-

ing maps in overview, Self Organizing Maps (SOM), mathematical morphology and

diffusion-based cartograms.

(a) (b)

(c) (d)

Figure 1.2: Examples of cartograms of the United States using population as the

variable of interest. (a) is a standard projection map, (b) is generated using Self

Organizing Maps, (c) is generated using mathematical morphometrics and (d) uses

diffusion [67]. All images taken from [37].

1.4.1 Self-Organizing Maps

A recent method for cartogram creation was developed by Henriques et al. in 2009.

This method known as CartoSOM uses SOMs in order to create accurate cartograms.

SOM is a method developed by Kohonen in the 1980s [44] which employs a Neural

Network (NN) in order to learn a mapping between an input space and an output

space such that higher dimensional data may be displayed in a human readable space

while retaining spatial relationships between individual points. Typically the output

space of a SOM is two dimensional [37].



11

CartoSOM starts by dispersing points uniformly throughout each unique geo-

graphic region. Regions are generally defined as political borders in practice. These

points are dispersed in accordance with a linear function, which represents the at-

tribute of interest. For example, if one is creating a cartogram based on population,

areas with larger populations will contain more points than those with smaller pop-

ulations. After this step a uniform grid is laid over the map, which makes up the

SOM. The training phase is then initialized such that the units of the SOM grid move

in the map, attempting to mimic the distribution of the points placed earlier. The

NN then applies a label to each node of the SOM based on the node’s location in the

map. Each node is then mapped back to its original position, morphing the area of

the map to reflect the variable in question rather than geographic area.

This approach has several limitations. Performance improvements to this method

have focused on parallelization alone, as opposed to algorithmic refinements, which

means that the run time of this approach is directly proportional to the amount

of threads it can be exposed to. SOMs also suffer from low-density magnification,

whereby areas of low interest are artificially inflated in order to keep them from

shrinking from the map. While this may or may not be of benefit to a given cartogram,

it needs to be taken into consideration. Algorithms do exist which can relieve some

of the bias applied by this magnification [5]. Figure 1.2 shows that SOM based

methods are at least competitive with other methods in creating recognizable and

representative cartograms.

1.4.2 Mathematical Morphology

One limitation of many traditional approaches to cartogram creation, such as

those proposed in [74] or [28], is that the global shape of a map is rarely preserved

after a transformation. As such it can become difficult for those not well versed in the

geographic position and ordering of a locality to intuitively recognize the subject of

a cartogram. Many methods rely on local shape preservation to convey this informa-

tion, such that enough of the political divisions preserve enough of their shape that

the global body is still identifiable. Mathematical morphology-based cartograms use
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the opposite approach, allowing local regions to morph significantly while keeping

the global shape intact. An example of this can be seen in Figure 1.2c where the

global projections of the US remains accurate, but California has wrapped around

surrounding states.

In practice the computation of mathematical morphology as related to map pro-

jections requires three steps: the definition of states or zones, the computation of

centroids, and finally the calculation of the cartogram. The first step is analogous

to the starting density in diffusion based cartograms, or the definition of a lattice

in cartograms proposed by Tobler [28][74]. In effect political divisions are largely

considered to be the most prudent choice, as they provide a human recognizable

boundary. Computing the centroids for each of these zones is performed using the

Minimal Skeletal Point (MSP) computation [67], which consists of creating a skeletal

network of points for each region. Each network is then pruned of exterior points

recursively until only one point, or one set of core points, is left. This area is defined

as the MSP, and is considered the centroid of each state. From here each centroid

is the seed location for Weighted Skeletonization By Influence Zones (WSKIZ). One

way to imagine this application is that each centroid is a lake, and that flood water

from each lake is allowed to propagate through the map according to the flow defined

by distribution of a target variable [67]. This allows for more dense areas to flow into

areas of low influence.

One of the significant advantages of this technique for cartogram creation is its

preservation of the global geographic shape being distorted. Unfortunately in order

to do this individual regions often lose recognizable shape. Conceptually this is an

obvious side-effect of the morphological approach, as the distribution of area behaves

like flood waters. Areas of high density will flow into areas of low density, conforming

to the boundaries of whatever shapes are around them.

1.4.3 Diffusion

Diffusion based density-equalizing maps are currently one of the most popular

cartogram algorithms in use. Developed by Gastner and Newman in 2004, this
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physics based approach has been adopted by ArcGIS, and is also available as a

C based package from Newman (http://www-personal.umich.edu/~mejn/cart/).

Like most techniques for cartogram creation, the diffusion-based approach is rooted in

the methodology created by Tobler [74], though improvements were made in both the

segmentation of the areas to warp, and the technique used to warp these segments.

The motivation for this approach in cartogram creation came from the limitations in

the approaches of the time, such as Tobler’s Rubber Band Cartograms, Gusein-Zade’s

Line Integral Method or Dougenik’s Contiguous Area Cartogram [37], which in terms

of both speed and accuracy were far from optimal solutions. By appropriating a cal-

culation for spatial distribution from elementary physics, an approach was created

which made significant advances to overcome these shortcomings [28].

Diffusion based cartograms are an application of the partial differential equation

for diffusion employed in physics [28]. The main principle of this algorithm is that

areas of high density are allowed to flow, or diffuse, into areas of low density. This

change in density coincides with a change in area representation, e.g. the farther an

areas density diffuses the larger it will be in the finished distortion. In practice the

Fast Fourier Transform (FFT), as well as the backtransform are applied to solve both

the population density function as well as the velocity function required to compute

the diffusion of a given area. This is accomplished by treating the density function as

a cosine Fourier transform, and solving the diffusion equation using the diagonal. By

employing this technique, despite increased computational complexity compared to

Tolber’s method, run time is accelerated enough to offset the additional complexity.

Despite the use of FFT, the algorithmic complexity of this implementation is at least

no worse than most other methods of cartogram creation developed in the 1980s and

1990s, as complexity is heavily tied to the dimensions of the map, or the dimensions

of a sub-sampled matrix representation [28]. It creates cartograms with levels of error

that are typically smaller than other algorithms such as those achieved by methods

proposed by Dorling, Sagar and Gausian-Zade [67][37].

The advantages of this approach to density-equalizing map creation are threefold:

execution speed, readability and spatial accuracy. By allowing users to choose a

trade off between density equalization and map readability via the scale of distortion,

http://www-personal.umich.edu/~mejn/cart/
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agreeable geographic representations are nearly guaranteed within a few iterations of

this technique. While the accuracy of a given projection relies heavily on the initial

density, the commonly used solution of using political regions offers a good trade-

off between readability and accuracy. By restarting the diffusion process on a fully

diffused cartogram for a population-based distortion of the United States of America,

Gastner and Newman managed to reduce relative errors in the worst performing

political boundaries from 20% and greater down to at most 3.5% [27]. They argue

that further iterations would continue to decrease the relative area accuracy of their

approach, but that for most applications 3.5% will be indistinguishable by the human

eye [27].

1.5 Overview

Here we present a method for reconciling geographic and phylogenetic information

for location-based observations. Locations are defined as unique positions on a map

or image, such as geographic coordinates. These locations correspond to one or more

organism observations and must also have a position in the phylogenetic tree in order

to have a non-zero score assigned to them. In cases where more than one sample

exists at a location all samples are compared against their neighbours. Our approach

differs from other phylogenetic measures at it incorporates a geographic backbone to

complement phylogenetic relationships. This backbone is used to distribute phyloge-

netic weights among neighbours. We then use these location-based scores to apply

a diffusion-based cartogram in order to emphasize areas with high or low scores de-

pending on the goal of the visualization. These areas will expand in the projection,

de-emphasizing low information portions of the map. Heuristic improvements, such

as a density matrix reduction, were introduced into the cartogram process in order

to decrease runtime and RAM consumption.



Chapter 2

Geographically Coupled Phylogenetic Distance and Map

Distortions

2.1 Quantifying the Relationship Between Phylogeny and Geography

Species diversity measures are important tools to describe the variety and relative

abundance of species [48]. Species richness, defined simply as the number of distinct

species present in a site or region, is one of the most commonly used approaches to

quantify diversity in ecology. Species richness is overly simplistic for many problems,

and suffers from over sampling problems [12] and comparison problems [31]. There

also exist a variety of statistical techniques to estimate richness in dense areas such

as rainforests [15][13][10].

Many measures have been developed to quantify diversity in different ways; this is

referred to as the diversity of diversity problem [48]. They are all primarily concerned

with reconciling two kinds of information, species richness and evenness, which con-

siders the relative abundance of species at different sites in addition to their presence

or absence. Endemism is a concept frequently applied to conservation studies to ac-

count for species diversity based on environmental uniqueness. Weigthed Endemism

(WE) is a common measure of endemism, which quantifies species richness in terms

of geographic distribution.

WE =
∑
t∈T

1

Rt

. (2.1)

WE works by partitioning a geographic space into a discrete grid. Abundance

records are then calculated for each cell of the grid. A WE score is then calculated

for cell. This score is calculated using the inverse summation for each taxon t’s range

R in the grid over all taxa T in the cell. In this way a taxon found only in one cell

15
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will have a WE of 1, and a taxon found in two cells will have a WE of 0.5. The larger

the WE the more unique a species is to the geographic region. WE was found to have

a high level of association with species richness for some species, which identified the

need for other methods to quantify endemism [16].

Phylogenetic Endemism (PE) is an extension of this idea and combines geographic

spread with phylogenetic information. Phylogeny is incorporated to account for prob-

lems of taxonomic classification. This is done by using the WE of all the taxa in a cell

to normalize their PD, thus quantifying how phylogenetically unique the organisms

in a cell are, as well as how ubiquitous they are to the environment.

PE =
∑
c∈C

Lc

Rc

, (2.2)

Where c is a single branch on the minimum spanning path C which joins the taxa

to the root of the tree. Rc is the union of all ranges Rt for each taxon descendent

from branch c [66]. By combining PD and WE, geographic sites can be compared

based on the number of evolutionarily distinct species they have, and the extent of

overlap between the most distinct species. This allows policy makers to create the

most beneficial areas of conservation by identifying the regions that contain the most

phylogenetically distinct species over a geographic range which contains a maximal

number of such species.

Such measures can be of considerable use in epidemiology as well, as phylogeo-

graphic measures can assess whether pathogen variants tend to be narrowly or widely

distributed. For example, avian influenza is a widely distributed strain of the in-

fluenza A virus which spreads largely through fecal contamination. Avian influenza

affects global populations of birds, especially the young, and spikes seasonally with

migration patterns [51]. In contrast Human Immunodeficiency Virus (HIV) is a much

more locally concentrated pathogen, spreading more slowly in populations through

sexual interaction. The disease is prevalent in Africa, affecting 20-30% of the residents

in the worst afflicted urban centres, with rates steadily climbing with age [2].

Richness counts were used in a study of global emerging infectious diseases (EID)

events, but no further phylogenetic information was incorporated [40]. Geographic
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visualization was limited to the distribution and count of cases at specific regions.

Patterns of infection were apparent by number of events, but not comparable. Lo-

cation based data has been used to estimate species ranges in ancient fossil records.

Species ranges were described by plotting each record on a map and creating a poly-

gon around each observed record [72]. This differs from other approaches in species

range calculations as it does not rely on any statistical inference of geographic diffu-

sion [22]. These records were used to investigate ancient species invasions, and found

such events correlated with sea-level depositional environment changes [64]. Phylo-

genetics and geography have been used to investigate patterns in plant distribution.

Here Donoghue et al. attempted to reconcile several phylogenetic approaches to infer

species deviation events. Initial clade sorting into geographic tracks was performed

based on sample distribution in major areas of endemism. Hypothetical divergence

events inferred from phylogenetic information were visualized using cladograms [18].

Our measure, the Geographically Coupled Phylogenetic Distance (GCPD), aims

to reconcile geographic information with phylogenetic trees to quantify the spread

and relatedness between samples using locations as proxies for geographic entities,

visualizations that can account for the uneven clutter in GIS visualizations from

biodiversity samples. This contrasts techniques such as a visual zoom by keeping the

global geographic context of the projection.

2.2 GCPD Overview

The GCPD relies on a given location set containing two kinds of information: a

phylogenetic tree with associated branch lengths that allow the calculation of PD and

location describing the position of each taxon. The coordinate system will typically

be geographic, but any two-dimensional coordinate system can be used. These two

types of information are reconciled over geographic space using a network structure

linking the taxa of interest as vertices. The edges between each pair of taxa are

used to combine the phylogenetic information stored at each, using the phylogenetic

information as weights. Through this process each location is assigned a value which

expresses the similarity or dissimilarity of the samples at the location display with
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: (a) A set of geographic locations representing the distribution of samples

in a space with an overlaid phylogram. (b) Creation of the Delaunay triangulation.

(c) Each branch in the triangulation is prescribed a weight based on the patristic

distance between all samples at each connected location. (d) A density equalizing

cartogram created using the Gastner-Newman method and GCPD. (e) outlines a

similar cartogram as (d), with one branch of the phylogenetic tree has been changed

to increase the distance between the taxa and the rest of the tree. (f) a cartogram

created using the same branch weights as (d) and 1-GCPD.
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Figure 2.2: An example of the PD calculation on a five-taxon tree. Here PD is

calculated between taxa t1 and t3 as well as t1 and t5. The PD of t1 and tc is

calculated as the sum of all branches in the path between t1 and t3.

their geographic neighbours.

2.2.1 Definition of GCPD

In order to incorporate geographic and phylogenetic components into one measure

a geographic scaffold which links all locations together must first be created (Figure

2.1b-c). This scaffold is used to represent the spatial relationships among all loca-

tions, which due to their discrete nature leave large swaths of uninformative area

between them. This empty space presents problems to many methods, such as en-

demism calculations [66], as they expect continuous metadata over the landscape. All

methods of cartogram creation presented above also expect continuous data, which

is available in data formats such as vector map files through large scale ecological

studies. Creating an all against all scaffold would be unwise as such a comparison,

while producing a robust graph, would create a uniform value for all locations. Such a

comparison would be likely to bury any phylogenetic relationship in noise. It is more

pertinent to use a measure which introduces the shortest paths between locations, as

they are more likely to be the true paths taken by species as their populations diffuse.
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This assumption is of course not guaranteed to be true as migration paths are not

guaranteed to be linear. For example glacial refugia[46] confine members of the same

species to small, disjoint areas, which is often followed by outward expansion when

the ice recedes. To identify shortest paths, Delaunay triangulations are deployed,

which are a dual graph of the Voronoi Tesselation, a method used to subset the area

of a plane into the largest possible fields from seeded centroids. A Voronoi Tesselation

is defined as

Rk = x ∈ X|d(x, Pk) <= d(x, Pj)∀j ̸= k (2.3)

where x is a position in metric space, d is some distance function (typical ge-

ographic examples employ Euclidean or Manhattan distances), K is the set of all

indices, (Pk)k∈K is a tuple of all sites within X, and Rk is the Voronoi region associ-

ated with site Pk. Another way of explaining Rk would be to say that it is the set of

all points in X whose distance to some site Pk is not greater that its distance to any

other site Pj, where j is any non k index.

The Delaunay triangulation is a useful extension of this algorithm, which instead

of finding maximal areas belonging to each point, finds optimal paths between points.

This is accomplished by creating edges between three points, i.e. a triangle, such that

the concentric circle whose circumference passes through all three points does not

pass through or contain any other point. The Delaunay triangulation possesses the

same properties as a Minimum Spanning Tree (MST), Gabriel Graph, and a Relative

Neighbourhood Graph [58]. Here the Delaunay triangulation is used for its MST

properties to create a scaffold over a set of locations. This undirected scaffold may be

thought of as a set of possible shortest paths which represent candidate transmission or

migration routes between sites. In the second step of GCPD, phylogenetic information

is added to the geographic scaffold. This integration allows geographic distance to

be balanced against phylogenetic distance, with regional effects dependent on the

correlation between these two properties.

Evolutionary history is incorporated using the patristic distance definition of PD.

The patristic distance of two samples is the sum of branch lengths in B (where B is
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the set of all branch weights) between any two leaf nodes i,j in the phylogenetic tree

taking the shortest path between each node. We then introduce an indicator variable

xij,k which is 1 if a branch b lies on the shortest path between nodes i and j, and 0

otherwise. The path between i and j does not need to pass through the root. This

can be expressed more formally as:

PDi,j =
∑
k

xij,kbk. (2.4)

Depending on whether the intention is to highlight the similarity or dissimilarity

between sites distance can be interpreted as 1-PD or PD respectively. The distinction

here is important, as using just PD will highlight samples which have less in common

in terms of sequence content, while 1-PD will assign larger values to two locations

containing highly similar evolutionary content. Using PD is suitable for applications

in conservation study such as endemism, while 1-PD is useful when trying to ascertain

similarity such as the case of pathogen outbreaks.

A similar approach was taken by [66],who normalized the PD of samples by the

geographic area covered by each taxon in order to identify the most important areas

for conservation. Our approach differs from theirs as PD is not taken as the sum of

all branch weights on a path through the root of the tree. We made this distinction

as Rosauer et al. [66] wanted PD to be consistent across all samples as a proportion

of the total length of the tree in a range between 0 and 1. In their case this also

forced the PD and PE measures to be on the same scale. We found this method to

be of little benefit as it forces paths between taxa which neighbour each other in a

phylogenetic tree to first pass through the root of the tree, significantly increasing

the amount of branches which need to be incorporated, and inflating the PD score of

such a path.

To add phylogenetic information to the triangulation, every edge in the triangu-

lation is given a weight corresponding to the PD of the taxa at each location, as seen

in Figure 2.1c. If multiple taxa exist at each location they must be combined. It is

possible here to select three options for combination: sum, local average and global

average. Summation provides the easiest interpretation, but places bias on locations

with more samples. The local average normalizes GCPD by the number of edges each
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node in the triangulation has respectively, so that locations with more branches are

down-weighted more heavily than those with fewer branches. This provides the best

measure for how phylogenetically homogeneous a given location is in its local area.

Alternatively global averaging normalizes the GCPD by the total number of edges in

the triangulation, so that each location is divided by the same value. This allows for

a representation of how important a given location is, and how strongly it affects the

overall network signal.

Input: L as the set of all geographic locations

MST = the Delaunay triangulation between all locations.

Result: GCPD scores for all locations

for Location1 in L do
T1 = the set of all taxa at Location1

neighbours = all neighbours of Location1 in the MST;

for Location2 in neighbours do
T2 = the set of all taxa at Location2

for ti in T1 do

for tj in T2 do

GCPD(Location1) += PD(taxai,taxaj)/2;

end

end

end

GCPD(Location1) = Norm( GCPD(Location1) );

end

Where PD is a function which computes the phylogenetic distance between any

two taxa. Norm() is defined as the user selected normalization function, which is

either a sum, local average or global average as previously defined. The PD between

any two taxa in this approach is divided in half so that each location can have a

portion of the effect of that relationship.
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2.2.2 Geographic Projection and Visualization

As the GCPD measure is aimed at quantifying evolutionary distance over geo-

graphic space, it makes sense to visualize this measure within a GIS framework. Re-

cent work in epidemiological visualization has shown that providing geographically

contextualized health based information creates a very real benefit to conveying the

effects of geography and transmission [57]. This same research found that by employ-

ing cartogram methods to present findings, policy decision makers were more likely to

understand the findings. Density-equalizing maps can have a similar representational

effect on GCPD to present the role different regions play in the phylogenetic spread

(Figure 2.1d).

The advantages of the diffusion-based approach to cartogram construction (see

1.4) make it the best option for GCPD-based transformations. By allowing a system

which is agnostic towards the projection of a given map this algorithm provides a

solution which works equally well for geographic formats as it does for flat images.

This allows for the production of distortions in various contexts, from traditional

phylogeographic approaches to epidemiological studies on flat images of hospitals, to

cross sectional environmental studies. This projection goal falls in line with design

goals of the GenGIS platform in supporting many different projection systems.

Diffusion based cartograms have been shown in shape file maps to preserve geo-

graphic features more than other approaches to cartogram creation[37]. As all of the

mentioned implementations expect data encoded shape files as inputs, the transition

to a location based information system will compromise some of this accuracy, as

geographic features are not encoded in a location based representation. Biodiversity

information stored in a location based system is typically sparse by nature as well,

only containing pertinent information in the points associated in the location file,

while vector shape files contain continuous metadata throughout each shape. This

means that empty areas of the map are a known quantity with a shape file, where as

in location based observations every cell that does not contain a location is naively

considered to be empty. When creating a cartogram from such information under a

shape file each region is prescribed one consistent value, creating uniform diffusion
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into the surrounding areas. Under a location based approach however no information

is known about the area, only the local point. This means that diffusion can only oc-

cur outwards from this point, with no information about border placement. As such

it makes sense to start with an approach which preserves global shape so warping

does not jeopardize the geographic context when the distortion is location based.

Diffusion based cartograms more readily address this problem as they rely upon

a density matrix interpretation of the map, where the number of rows in the matrix

equates to the height of the map Ly and number of columns the map width Lx. This

Lx by Ly matrix is the operational counterpart of the original map projection. The

boundary limits are defined automatically as the dimensions of the map, and the

number of divisions of the matrix upon each axis is based upon the underlying wire

frame in the raster map projection.

As our geographic representation is location based, this density matrix will be

filled in with the location points, such that the centrality of the points of interest can

be represented in the matrix, converting latitude and longitude into the corresponding

row and column in the density matrix. As these locations are discrete points they

will not belong to more than one cell of the matrix, which will typically produce a

sparse matrix. For the example of a 4050x2050 matrix (which is not an overly large

pixel density for a high quality map) containing 100 distinct locations less than one

thousandth of the cells will contain populated information. As the diffusion method

of cartogram creation expects richly populated information from a vectored image,

leaving the density matrix so sparsely populated would result in these points diffusing

very quickly into an overwhelmingly uniform space and ultimately producing very

little, if any, noticeable change in the map projection.

Due to this, the area around the informative cells should then be populated in ac-

cordance with some function f(x) which may be used to disperse this value of interest

in the density matrix. By increasing the number of cells holding values of interest

the amount of diffusion is increased. The tuning parameter which controls the diam-

eter of this dispersal is called location diameter. To provide further control over the

amount and quality of the distortion a variable multiplier is provided, which increases
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the values stored in each location. These act to further increase the amount of flow

within the cartogram. Each parameter effects the shape of the completed distortion

and is not informed by the geographic or phylogenetic information. Selections for

these parameters will differ with sample distribution and geographic features.

In order to account for the unpopulated portions of the density matrix the ”neutral

buoyancy” condition applied by Gastner and Newman is used [27]. The neutral

buoyancy condition automatically places a boundary of uniform population density

around the area of interest which stops the flow of diffusion, as its value is equivalent

to that of a fully diffused matrix. The neutral buoyancy condition prevents the release

of density into the areas beyond the borders of the map. This principle is similarly

applied to account for the empty ”sea” of density around the points of interest,

creating large areas of low resistance to absorb the diffusion and allow the map to

disperse.

2.2.3 Integrating Cartograms with GenGIS

Applying the Gastner-Newman method of cartogram creation requires significant

modifications to the data model in GenGIS. GenGIS typically integrates three types

of data: the map (which can be a raster file or image file), the locations and a phylo-

genetic tree. The map can be either a raster projection or a vectored shape file, or can

include both types of representation. Locations are made up of individual points on

the map primarily consisting of geographic coordinates. Finally the phylogenetic tree

is a Newick file representation of the phylogenetic relationships between the locations,

which may or may not contain informative branch lengths.

The Gastner-Newman algorithm requires a density matrix representation of a

map and its associated distortion values to create a cartogram. This density matrix

is used to create a model of how much each area of the map needs to move to

create uniform diffusion. This model is then fed individual (x,y) coordinates and

returns their transformed positions. In order to make this process compatible with the

information stored in GenGIS the grid representation which underpins the geographic

coordinates of the raster map is used as the basis for the number of divisions in the
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(a) (b)

(c)

(d)

Figure 2.3: Creation of the density matrix. (a) A base map with sample locations

indicated. In this example location counts will be used. (b) A coarse-grained empty

matrix overlaid onto the map. (c) A zoomed in cross section of the original map.

(d) Location count values added to the matrix using no location diameter or variable

multiplier effects. All cells of the matrix which do not contain locations are given a

value of neutral buoyancy.
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density matrix. The locations on the map are then translated onto their corresponding

positions in the matrix, and it is populated as described in Figure 2.2.2.

After the matrix is populated and the model of diffusion is created, each of the

GenGIS layers needs to be interpolated from its original positions to its diffused state.

The map layer is the most intuitive to interpolate, as the diffusion matrix is in its

native coordinate system. The location and vector layers need to be translated into

the map’s coordinate system before they can be interpolated as they rely on lati-

tude/longitude, UTM or pixel coordinates. The new positions need to be translated

back to the location and vector coordinate systems respectively after interpolation.

2.2.4 Diffusion-based Density-Equalizing Maps

The method of Gastner-Newman diffusion based cartogram creation which we

have adapted relies heavily upon Fick’s two laws of diffusion [28]. These laws serve

as a method in physics to model the flow of molecules in a confined container. The

objective of this diffusion is for the container to be filled in such a way that the density

of molecules is uniform throughout. Fick’s first law of diffusion states that diffusion

in two dimensions can be described as

J = −D∇φ, (2.5)

where J is the diffusive flux, D is the diffusion coefficient, φ is the concentration of

the substance per volume and ∇ is the gradient of diffusion. The steeper ∇ is the

faster the substance diffuses in time.

Fick’s second law is a combination of conservation of mass and Fick’s first law.

It is used to predict how the concentration of a substance changes over time as it

diffuses. It can be described as the partial differential equation

∂φ

∂t
= D

∂2φ

∂x2
, (2.6)

for a one dimensional space with a constant diffusion coefficient. Here t is time

and x is position. In two dimensions it can be generalized using Laplacian ∆ = ∇2

∂φ

∂t
= D∆φ. (2.7)
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In the general treatment of diffusion, the current state of flux can be described as

J = v(r, t)p(r, t), (2.8)

where v is a function of velocity, p is a function of density, and both functions operate

over position (r) and time (t).

As in the production of a cartogram we are not interested in any one state of the

diffusion process, but rather in running the process to convergence, time can be said

to approach infinity and D can be set to one without loss of generality. As diffusion

follows a gradient of least resistance, meaning that it always flows from areas of high

concentration to areas of low concentration, Fick’s first law can be generalized as

J = −∇p (2.9)

for the case of cartogram creation.

The diffusing population is also conserved locally so that

∇ · J +
∂p

∂t
= 0. (2.10)

By combining diffusion equation 2.9 with 2.11 and 2.8 we arrive at

∇2 − ∂p

∂t
= 0, (2.11)

and

v(r, t) = −∇p

p
, (2.12)

respectively.

The cartogram is created by solving 2.11 for p(r,t) for every position in the density

matrix starting from the original state, which is the initial observed population density

matrix. After this step velocity is calculated for each position at that time slice using

2.12. In this way the displacement r(t) of any point on the map at time t can be

calculated over the integral

r(t) = r(0) +

∫ t

0

v(r, t′)dt′. (2.13)

Integrating this equation as t → ∞ solves the cartogram.
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2.2.5 Applying the Fast Fourier Transform to Diffusion

The previously outlined approach is sufficient to solve the diffusion problem and

create a cartogram. The procedure is computationally demanding, and algorithmic

improvements are necessary to allow execution of cartograms in a reasonable time.

The Fourier series is a trigonometric infinite series used to approximate waveforms.

The Fourier transform [11] is an application of this series used to convert measure-

ments in time into measurements in frequency, and the inverse Fourier transform can

be used to reverse this operation. A wave of sound over time can be passed through

the Fourier transform and a graph of the results would display which frequencies

were present in the original wave and at what amplitudes. The Fourier transform is a

well-known method to solve partial differential equations (like the diffusion process),

quantum mechanics [52] and spectroscopy [21], for example. The transform was first

introduced to solve the heat equation given as

∂2y(x, t)

∂2x
=

∂y(x, t)

∂t
, (2.14)

which looks very similar to the one-dimensional case of Fick’s second law of dif-

fusion 2.6.

The equation for the Fourier transform can be represented as

F (v) =

∫ ∞

−∞
f(t)e−2πivtdt, (2.15)

for the forward transform and

f(t) =

∫ ∞

−∞
F (v)e2πivtdv, (2.16)

for the backtransform.

The full Fourier transform is not needed here, as F (v) is an even series where the

Fourier sine coefficients sum to 0. In this case the sine component of the calculation

can be dropped, and purely the cosine representation over an even F (v) can be used.

Neumann boundary conditions are also applicable to this problem, as the solution to

the equation is limited within the bounding box created by the width and height of



30

the map (Lx and Ly respectively). Considering these factors, the cosine base for the

Fourier transform with Neumann conditions is represented as

u(r, t) = A0 +
∑
n

cncos(
nπr

L
)e

−nkπ
L

2
t, (2.17)

where r and t are position and time respectively, k is a physical constant between 0

and N-1, and A0 is the mean of f(r). The initial conditions of c0 are defined as

cn =
2

L

∫ L

0

f(r)cos(
nπr

L
)dr, (2.18)

for this case.

The base Fourier transform is on its own not a sufficient improvement in speed

or algorithmic complexity, taking O(N2) over discrete time points. FFT is a much

faster method to compute the discrete Fourier transform, and outputs a vector of size

xk, just like the standard Fourier transform. FFT has a complexity of O(NlogN)

using the widely adopted Cooley-Tukey (CT) approach, used in such packages as

libFFTW[25]. The CT algorithm improves on the Fourier transform by splitting up

the input matrix between even and odd indices(n = 2m and n = 2m+1 respectfully).

These two matrices are then computed recursively as follows:

Xk =

N/2−1∑
m=0

x2me
−2πi
N

(2m)k +

N/2−1∑
m=0

x2m+1e
−2πi
N

(2m+1)k. (2.19)

By splitting up the original Fourier transform in this way the approach can be com-

puted in a parallel fashion, using the cosine solution to solve for density.

p(r, t) =
4

LxLy

∑
k

p̃(k)cos(kxx)cos(kyy)e
−k2t, (2.20)

where the sum is over all wave vectors k = (kx, ky) = 2π( m
Lx
, n
Ly
) with m and n

as non-negative integers. p̃(k) is the initial condition discrete cosine transform of

p(r, t) = 0

p̃(k) =
1

4
(δkx,0 + 1)(δky ,0 + 1)×

∫ Lx

0

∫ Ly

0

p(r, 0)cos(kxx)cos(kyy)dxdy, (2.21)
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where δi,j is the Kronecker symbol.

All of this leads towards the calculation of the velocity field for the diffusive

process, which is the end goal towards making this calculation more efficient. This

calculation is achieved by combining 2.20 and 2.12.

vx(r, t) =

∑
k kxp̃(k)sin(kxx)cos(kyy)e

−k2t∑
k p̃(k)cos(kxx)cos(kyy)e

−k2t
, (2.22)

vy(r, t) =

∑
k kyp̃(k)sin(kxx)cos(kyy)e

−k2t∑
k p̃(k)cos(kxx)cos(kyy)e

−k2t
. (2.23)

Run time for 2.20, 2.22 and 2.23 via FFT is O(LxLylog(LxLy)), in keeping with

the base analysis of FFT run times. This means that ultimately in the creation of a

cartogram the largest limiting factors in terms of run time will the size of the map

used, as opposed to the number of locations. An example of the effect of map size

can be seen in Table 2.1 where a 375x375 map takes slightly more than half the time

to distort compared to a 750x750 map. The process outlined here will continue until

all cells of the density matrix contain one uniform value and an equilibrium has been

reached.

2.3 Implementation-specific Runtime Improvements

Our original implementation of GCPD-based cartograms took several minutes to

process a high-resolution map(4050x2025 px). To increase the efficiency of cartogram

creation, we examined the source code in an attempt to introduce acceptable heuris-

tics. Profiler analysis showed that the main expenditures in terms of both function

calls and CPU utilization went to the calculation and lookup times for the velocity

function for diffusion. This is the process in cartogram creation which manages the

force and direction of the diffusion in the density matrix over time. Implementations

of this function already relied on caching, and it was the lookup times for values,

which occurred eight times per step of the diffusion, that dominated the running

time of the process. In order to optimize some of this process the velocity function

was stripped of any extraneous calculations. This includes an interpolation which
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averaged velocities of a 2x2 area in the density grid. This step was included to verify

diffusion did not occur outside of the borders; however, border violations were pre-

vented in a previous step of the diffusion calculation. Therefore this step could be

removed without affecting the generation of the final cartogram.

This velocity calculation was also called in two steps when performing the diffu-

sion. The first step performed a more large scale distortion, potentially causing a

larger amount of diffusion. After this initial calculation two more modest velocity

calculations were performed in order to fine tune the process. In order to reduce the

number of velocity calls a threshold of 0.001 was placed on the initial velocity step,

so that if only a small amount of diffusion occurred it was not tuned any further, as

this tuning would have a very small effect on the overall quality of the distortion.

One of the simplest improvements made to the original Newman cartogram im-

plementation was to remove a serialization step between the creation and distortion

of the density matrix and the interpolation step with the original map. This step

served two purposes in the original implementation, 1) to save the model so that it

could be run against future maps and 2) to transpose the matrix representation. As

reading and writing to hard disk is one of the most costly operations a computer

can make, this step accounted for a large expenditure in computational run time.

In fact for larger maps it could drastically increase the run time. Distortions using

the cholera pandemic data on a 4050x2025 px map containing 61 locations required

between 7 and 15 minutes using a single core of a 3.10GHz processor. Such lengthy

run-times may not be sufficient to support parameter optimization. By integrating

interpolation and distortion creation into one set of processes which share objects

and memory the run time of large maps is reduced. By removing this read/write step

RAM consumption was reduced as redundant objects containing the density matrix

could be removed. Increases in performance scale with the size of the map Table 2.1.

Furthermore the use of data structures was not always consistent, with frequent

switches from one-dimensional to two-dimensional arrays. These transformations

inflated runtime by having to convert from one form to the other. Furthermore there

is a cost to memory efficiency to store 4 arrays of thousands of points, as is the case
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(a) (b) (c)

Figure 2.4: Depictions of possible diffusion pathways of isolated sections of the density

matrix, where the subsections are not able to access the total area of the map creating

artificial borders. (a) represents the starting shape of the object to diffuse, with force

pushing towards the bottom right corner. (b) Pushing the path for diffusion into that

corner with moderate force, building up pressure on the bottom right corner. (c)

Applying a greater amount of force in the diffusion causes the diffusion to push back

along the borders of the segment.

with a typical map. As x86 applications such as the GenGIS platform have a memory

limit of 4 gigabytes, memory consumption is at a premium. As such these read/write

steps were removed and replaced with index calculations which accounted for the

expected orientation of the density matrix.

All of these improvements have been applied in the GenGIS implementation of

diffusion based cartograms. This method is referred to as “Full GenGIS” in Table 2.1

and accounted for improvements in runtime between this technique and the “Original

Gastner-Newman” approach.

One approach to speed-up the runtime that was considered but not applied was

divide-and-conquer. Divide-and-conquer is an approach where the computation is

split up into several subproblems (in this case, subsets of the map) and solved indi-

vidually. The individual parts are then reassembled into a solved whole. The specific

case of density matrix based diffusion poses a problem for this approach, as there

exist no natural divisions of the density matrix which can be hived off and calculated

independently. As diffusion relies upon the amount of force each cell in the density

matrix exerts upon the surrounding region, splitting regions up would create many
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small cartograms with pools of force along the borders. In some cases this force may

be coerced to diffuse along the borders, corralling diffusion into areas of the map that

would not otherwise have been affected had the original map not been subdivided.

Figure 2.4 shows possible examples of just such a scenario, with Figure 2.4c being the

worst case, which could cause disjoint sections of the map as well as producing large

regions of error.

Such a problem may be alleviated in divide in conquer if at every step of recombi-

nation the diffusion process was reintroduced to smooth over such areas of complica-

tion. For each recombination step there is no guarantee that any computation would

be saved due to the splitting of the density matrix. If high concentrations of density

accumulate on cell borders even more movement would be needed to reach a neutral

buoyancy. As the height and width of the density matrix are the bounding properties

in terms of computational complexity, and divide and conquer would require extra

diffusion steps at for recombination to reduce disjoint diffusion, it follows that divide

and conquer would not produce a logarithmic complexity in this case. Instead it is

much more likely that the runtime would increase to deal with the interpolation of

the borders.

2.3.1 Density Graph Reduction

Given that the biggest effect on the run time of a cartogram is the dimensions

of the image, an obvious way to speed up the operation is to distort a smaller map.

Simply reducing the size of the map however is not adequate, as it compromises the

quality of the initial projection. Intuitively a 720 px-wide image is not as clear as a

1480 px-wide image. Therefore rather than operating directly on the initial map the

density matrix is the target of reduction. This can be accomplished independently

of the map layer interpolation, which abstracts it away from any operation that is

exposed to users of the software.

The first step of the process is to choose a reduction percentage (RP) for the

density matrix. An initial density matrix is created based on the full map extents,

so that no information is lost when populating the initial matrix (Figure 2.5a). A
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reduced matrix is then created which is RP smaller than this initial matrix. A process

outlined in Figure 2.5 is then followed, where every width*RP and height*RP cells of

the matrix are collapsed into one cell of the reduced matrix (Figure 2.5b). This means

for a 33% reduction value, every 1.5x1.5 section of the original density matrix would be

summed together and placed in a cell of the reduced density matrix. Obviously a cell

can not be divided in half, so border cases would get values from both sides. During

this reduction step the density values for each of the original cells are combined in an

additive way, so that their corresponding cell in the reduced matrix is the sum of all

parts (Figure 2.5c). The diffusion process is then carried out on the reduced matrix

(Figure 2.6d), and as can be seen in Table 2.1, provides a decrease in run time even

for small initial matrices. After the diffusion is carried out the matrix reduction step

is reversed, replacing cells from the reduced matrix back into their original locations

(Figure 2.6e). During the restoration process the values are divided by the RP to

account for some of the value increase caused by the additive combination method.

In order to evaluate the affects of the heuristic improvements discussed here

against the original implementation of diffusion-based cartograms we compared the

run times and RAM consumption on three maps of different sizes (Table 2.1). Density

matrix reduction was compared separately in order to assess the performance of the

other approaches against the original implementation. RAM consumption was com-

pared in megabytes and excluded any memory consumed by GenGIS prior to starting

the cartogram process. In general run time and RAM consumption improves as more

of the heuristics discussed above are invoked. The one violation to this trend is in

the 375 x 375 map when comparing Pure Gastner-Newman with Full GenGIS, where

we see a quicker execution of the former. Due to the small nature of the map and

low execution speeds this variation may be due to scheduler interruption. RAM was

still observed to decrease between these two runs.
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Map Dim Technique Time(s) RAM(Mb) # Locations Min RAM Max RAM

Grid1 375 x 375

Pure Gastner-Newman 4.6 27.0 20 155.9 182.9

Full GenGIS 7.1 20.9 20 158.3 179.2

50% Reduction 4.4 13.0 20 165.3 178.4

Grid2 750 x 750

Pure Gastner-Newman 16.9 87.8 20 177.1 264.9

Full GenGIS 11.3 81.2 20 179.5 260.7

50% Reduction 3.2 18.9 20 167.9 186.8

Grid3 1500 x 1500

Pure Gastner-Newman 67.7 417.9 20 228.8 542.3

Full GenGIS 36.9 312.5 20 229.8 542.3

50% Reduction 11.5 81.1 20 223.2 304.3

Table 2.1: A comparison of 3 different maps and their run times under different cartogram scenarious. Gastner-Newman

refers to the default application of diffusion based cartograms as implemented in the Cart library [54]. Full GenGIS refers to

a distortion made with a full density matrix through the GenGIS application, and 50% Reduction refers to a distortion made

using a density matrix which has been reduced by half.
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(a)

(b)

(c)
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(d)

(e)

Figure 2.5: An overview of how the density matrix reduction effects the production of

a cartogram. (a) creation of the density matrix. (b) reduction of the density matrix,

in this case by 33% which results in every adjacent 3x3 section of the matrix being

condensed into once cell which is represented here by the yellow and red sections.

(c) the resulting map, 1/3 the size of the original. (d) diffusion of the reduced map,

creating a scale cartogram of the original map. (e) reversal of the initial reduction,

with each reduced cell restored to its initial position in the density matrix.



Chapter 3

Results

3.1 Visualizing Multi-locus Phylogeography of Aneides lugubris

California is one of the world’s top 25 hotspots for species diversity [63]. As such

it is a test pool for the effects of different ecological and environmental factors on a

diverse set of fauna. The California Floristic Province is home to 44 species of sala-

mander alone, 33 of which are endemic to the region according to AmphibiaWeb[45].

A high level of divergence among clades adds to clear phylogenetic distinctiveness

with generally low levels of geographic dispersion. Their endemic state and environ-

mental sensitivity may allow them to provide early warning of the effects of climate

change. Investigating sources of genetic breaks through geographic and phylogenetic

features may provide insight into processes which have shaped diversification of sala-

manders in the region. Reilly et. al. sequenced mtDNA (DNA from mitochondria,

small structures found in eukaryotic cells), commonly used for phylogenetic analysis

within species genes ND4 and cytochrome b. Sequences were taken from 35 samples

of Aneides lugubris over 26 locations and combined with 43 more samples from 27

locations retrieved from GenBank for a combined set of 78 samples from 53 locations

over 22 counties in California [62]. Samples were divided into 6 mtDNA clades using

a Bayesian analysis; the groupings roughly corresponded to Northern, SF Bay/Sierra

Nevada, Santa Cruz, Pinnacles, Central Coast and Southern areas of the state.

To create a visualization for this data set GCPD was applied using a global nor-

malization, quantifying how distinct each sample was phylogenetically. Cartograms

were created with a location diameter of 15 and a variable multiplier of 10, applying

no density matrix reduction. Applying our method provides much greater visual sep-

aration, providing greater horizontal displacement. Further separation is also created

39
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(a)

(b)

Figure 3.1: Projections of Aneides lugubris split into 6 mtDNA clades: North-

ern(Pink), SF Bay/Sierra Nevada(Blue), Santa Cruz(Green), Pinnacles(Yellow), Cen-

tral Coast(Orange) and Southern(Red). (b) is a cartogram made from the GCPD

values with two sites of interest marked: 1)Monterey Bay 2)Transverse Ranges.
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(c)

(d)

Figure 3.1: Projections of (a) and (b) without phylogenetic drop lines.
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between the clades identified by the mtDNA lineage. North-Easterly locations be-

longing to the SF Bay/Sierra Nevada clade are displaced inland, but maintain their

position, being bordered by a mountain range and river. This relative position is in-

teresting given that the diffusion process reduces what was once a significant portion

of land taken up by the rivers lowland into a mere sliver. While current conditions of

the valley are inhabitable, evidence suggests that this valley was once a lake[34]. The

most northerly locations belonging to the salamander outgroup are joined together

geographically with other locations from the northern and outgroup clades, which

highlights low edge weights in the MST. As this outgroup will have many connections

with surrounding locations on the geographic scaffold, its poor GCPD score keeps it

from having an effect on the final distortion.

The Monterey Bay area of California had been identified as a North-South break

along this region for many species in the area [63], possibly because of an ancient

river system which fed the area. The extensive distortion in the Monterey Bay area

after a cartogram lends visual evidence to this area as important in the evolution

of these salamanders, as the area of the bay and surrounding regions is drastically

increased (Figure 3.1b). A phylogenetic break is also present between the Southern

and Central clades caused by the east-west Transverse mountain range. Due to the

close proximity of these two clades it would be expected that the geographic network

used in GCPD would bring them together in diffusion. The effect of this mountain

range is evident in the phylogeny and reflected visually by the distinct diffusion of

each clade.

3.2 Illustrating local and global diversity patterns in pandemic Vibrio

cholerae

The GCPD algorithm was applied to the phylogenetic tree created by [41], where

the GCPD score of each location was normalized by its number of neighbours in the

Delaunay triangulation. Values ranged from 0 to 2.41 with the highest GCPD scores

associated with the island of Haiti. A cartogram was then applied for visualization,

using a location diameter value of 20 and variable multiplier value of 10 with no
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density matrix reduction. To analyse the effect of GCPD the absolute positions

of each location were recorded before and after the map was distorted. The most

important areas of the map after the distortion were in keeping with the findings from

[41] that some samples from Haiti and Nepal share a close phylogenetic relationship.

In order to compare the magnitude of this relationship in the distortion the dis-

tance between the location’s original position and distorted position were compared

against all other locations, shown in Figure 3.2. Furthermore Figure 3.3 shows the

relationship between all locations in terms of both how much they moved from each

other and the PD of each set. The change in position of many points is not unique, as

locations can have several samples associated with them. Each sample in this case will

share geographic coordinates, but have varying degrees of phylogenetic relatedness in

terms of PD. The difference between how far points moved during diffusion correlates

poorly with the GCPD score of those points (R2=0.02, p value=0.23), which is not

an unexpected result. The migration distance of a location on the map depends on its

relationship to areas of high diffusion/concentration. An example of this can be seen

in Figure 3.3, where the location in the Dominican Republic undergoes the greatest

shift (2006km). The source of this shift is the proximity of the Dominican Republic

with Haiti, which has a great deal of points which undergo a large magnitude shift.

This distortion then pushes the Dominican Republic farther away from its original

position. Furthermore it is important to note that not all points in this plot contain

a GCPD value, as their phylogenetic information was either unavailable or they were

never sampled. These positions were still affected by the diffusion under the same

effect which moved the Dominican Republic.

Clear clades were formed in Figure 3.3 between the Haitian and Nepalese samples

with very low PDs. Of these location to location relationships, those found in Haiti

formed the must uniform cluster over PD and dispersed well over area. Relationships

were also visible between the Haitian and Nepalese samples as several of the Nepalese

samples were visible in the Haitian cluster. These samples associate with samples from

the Bhanke District and Rupandehi district of Nepal, which related most closely with

Nepalese samples in the constructed phylogenetic tree.
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Figure 3.2: Migration distance of each location during cartogram construction. Points

highlighted in red and blue belong to Haiti and Nepal respectively, while pink corre-

sponds to Bangladesh and India.
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Figure 3.3: Comparison between the phylogenetic distance and the projected coordi-

nates. Here every point is not unique, as the leaves of the phylogenetic tree are used,

which may share a many to one relationship with a location. As such multiple points

will have the same shift in projection with different PD. Points are coloured based on

country association, Haiti(red), South Asia(blue) and other(gray).
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(a)

Figure 3.4: (a) An undistorted map of Vibrio cholerae data with an overlaid phylogeny showing the phylogenetic relationships

amongst strains from Haiti and the Dominican Republic (red), Nepal (blue), South Asia (pink) and other countries (gray).
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(b)

Figure 3.4: (b) A distorted map using GCPD, showing expansions in areas of high phylogenetic diversity.
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(c)

Figure 3.4: (c) A distorted map using GCPD as in Figure 3.5b with the departments coloured orange(Ouest),

green(Sud),brown(Centre) and red(Artibonite).
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3.3 Parameter Effect and Selection

As location diameter controls the area of the density matrix that is filled with

non-neutral values, this parameter controls the distortion on a more global scale al-

lowing locations with large density values to influence surrounding areas. The variable

multiplier by contrast accumulates density at individual locations, allowing for very

strong local diffusion. Figure 3.5a uses a value of 5 for both parameters, producing

a map which is minimally distorted in relation to the original. Figures 3.5b and 3.5c

show the effects of changing these parameters, by displaying their effect on the cholera

pandemic data set. Larger values for either parameter cause a higher rate of diffusion

and in turn more distortion.

When the Location Diameter is increased the density value of Haiti is applied

to the Dominican Republic, and a similar effect can be seen between Nepal and

India. This sort of distortion can be useful when geographic context is of importance

and keeps a balance between the distorted and original projections. In contrast, an

increase in the variable multiplier focuses the distortion much more locally. This

creates a more fine tuned distortion which focuses on the individual area solely. This

approach can be more useful for dense boundary regions where there exist many

political borders.

The different parameters controlling density map manipulation do not produce the

same maps. The location diameter parameter more strongly preserves the local shape

of a region while drawing out its global context. This can be seen when comparing

the natural ”L” like shape of Haiti between Figure 3.5b and Figure 3.5c. Due to the

variable multiplier map relying on the concentration of locations for its distortion, it

focuses much more strongly on the upper sections of Haiti around the Artibonite and

Ouest regions. This causes a ballooning of the upper region, while not expanding the

diameter of the lower portion in proportion to the rest of the map. This problem

of proportional swell is solved when location diameter is used, though it produces

different features. As location diameter is border agnostic it cannot tell the difference

between Haiti and the Dominican Republic in the density matrix and expands the

latter country as well. This may not be a desirable feature for maps with subtle or
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dense features. In such cases the variable multiplier is more appropriate, allowing for

growth based solely on these features.

3.4 Effect of Heuristic Density Reduction

While density matrix reduction achieves its goal of reducing the run time of the

diffusion calculation, it also creates a loss of information in the transition between

matrices. If this loss of information results in a large discrepancy between cartograms

its usefulness will be reduced, as distortion parameters that are tuned to a reduced

matrix may have different distortion effects on the full matrix.

In order to investigate the effect matrix reduction has on the distortion a world

map with the cholera pandemic data was selected as a test case. This map makes

an ideal test for this situation due to prominence of Haitian and Nepalese samples

generating large amounts of diffusion locally, while the rest of the map remains largely

unchanged. In order to record the differences in distortions between matrices a vector

file of political borders was distorted in conjunction with the map. The position of the

border was recorded before and after distortion, and in each case the displacement of

each point recorded. This created an accurate measure of how much each recognizable

shape distorts.
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(a)

(b)

(c)

Figure 3.5: The effects of parameter selection for the Vibrio cholerae pandemic using

GCPD. (a) A base projection using a location diameter of 5 and a variable multiplier

of 5. (b) A projection using a location diameter of 25 and a variable multiplier of 5.

(c) A projection using a location diameter of 5 and a variable multiplier of 25.
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(a) (b) (c)

Figure 3.6: Comparisons in the amount of diffusion between 3 different density matrix reduction values and a fully diffused map.

(a) compares the difference in political border placement of a 50% reduced density matrix versus full diffusion. (b) compares

the difference between political border placement of a 20% reduced density matrix against full diffusion. (c) compares the

difference between political border placement of a 10% reduced density matrix against full diffusion. Distances were compared

over the internal grid units of the raster map, which is scaled with a width of 2 and height of 1.2 for this map.
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(a)
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(b) (c)

Figure 3.7: (a) A comparison of the visual distortion produced by four different

values of density matrix reduction. Full density matrix (Black), 50% reduction density

matrix (Blue), 20% reduction density matrix (Red) and 10% reduction density matrix

(Orange) which is largely obscured by the red border. (b) A cross-section of the full

map showing distortion around the Haiti region. (c) A cross-section of the full map

showing distortion around the Nepal/India region.

In order to assess the effect of density-grid reduction on cartogram creation three

levels of reduction were selected, 10%, 20% and 50% respectively. In each case the

diffusion used a location diameter of 20 and a variable multiplier of 10. Run times

were not recorded for these comparisons as the time taken to write the differences in

each border point to disk has a large influence on the complete runtime. As there

is no ground truth in cartogram creation, there exists no “correct” distortion, so the

map created using the full density matrix was used to compare the quality of all

other distortions. All positions in the shape files of each respective reduced run were

compared against their corresponding position in the full density matrix distortion.

As the level of reduction was decreased the level of difference between reduced ma-

trix and full matrix results also decreased. This can be seen in Figure 3.6 when com-

paring Figure 3.6a with Figure 3.6c as the maximum amount of change has dropped

by half. Distances here were compared over the internal grid units of the raster map,

with a width of 2 and height of 1.2, which is consistent across a single map. All three

graphs share a similar pattern, with core elements of the shape staying very close to
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Min Max Avg StdDev

Full vs 50% 4.45·10−6 0.03 1.1·10−3 1.2·10−3

Full vs 20% 1.20·10−6 0.015 6.6·10−4 5.7·10−4

Full vs 10% 3.07·10−5 0.018 6.1·10−4 5.0·10−4

Table 3.1: A comparison between the Min,Max,Average and Standard Deviation for

three separate density matrix reduction values based upon differences in shapefile

position. Positions were taken of the internal Grid Units used by the raster maps,

consisting of a rectangular regions with a width of 2 and height of 1.2. The results of

diffusion using the full density matrix were used as a gold standard for comparison.

their original positions, while similar areas in all three consistently differ the most.

This is to be expected as the diffusion from location origins will have very little effect

on distant parts of the map. Figure 3.7a shows the differences in political borders

between the distortions created by all density matrices, with the majority of the po-

sitions agreeing at all levels. The area of highest dissimilarity is the Haiti/Dominican

Republic area of the map, which is highlighted in Figure 3.8b. Here we see the highest

level of discrepancy between the full density matrix run and the 50% reduced density

matrix, which trends generally towards the top left of the map in comparison. As

expected the reduction of the density matrix reduced the complexity of distinguishing

features on the 50% reduced map, creating a much more blocky outline. As the RP

was decreased however, more complex features of the map re-emerged.

From these results we conclude that while there is a difference in projections made

using different matrix reduction values, these differences do not seriously compromise

the quality of the overall projection. While the variability of different regions of maps

will depend on geography and the property driving the distortion, the process of re-

ducing the density matrix provides benefits in both run time and RAM consumption,

while still providing a tolerable representation of the final distortion. Its capacity to

draft cartograms to evaluate the effect of different parameters and variables in the

distortion with minimal drift from the full projection make it a valuable tool.
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Conclusion

We have developed the GCPD, a method to combine phylogenetic and geographic

information, by creating a Delaunay triangulation between all geographic points and

weighting this graph based on PD. By doing this a measure is created which quantifies

the phylogenetic diversity at each location. GCPD addresses some display limitations

of current phylogeographic techniques; for example, Daniel et al. used phylogenetic

and geographic information to reconstruct and visualize the spread of of H5N1 in-

fluenza lineages. Their approach involved overlaying a phylogenetic tree over a Google

Earth projection. One problem encountered in this approach was the ability to map

multiple terminal nodes of the tree to one location, such as Hong Kong [39]. In or-

der to overcome this problem they adjusted overlapping geographic coordinates from

overpopulated sites in an east to west line. Applying GCPD with a diffused visual-

ization would help handle the problem of highly dense sample locations without the

need to manually change location coordinates.

The two tunable cartogram parameters, location diameter and variable multi-

plier, are effective methods to control the amount of distortion created in the map.

These parameters are needed to build cartograms from raster rather than vector-

based maps. As we are appropriating it for discrete location-based observations a

way to distribute highly accurate point based information over a wider area was re-

quired. Location diameter propagates the value associated with each location over a

larger area, and provides geographic context to areas of import to the final distortion,

while the variable multiplier increases the values associated with each location, and

provides a highly local context to the final distortion. Depending on what parameter

is of interest in a projection, each of these parameters must be tuned in conjunction.

Other approaches to cartogram creation, such as the original Gastner-Newman,

56
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were more primarily concerned with the level of difference between the cartograms

they generated and the expected level of distortion [28][37][67]. The methods of eval-

uation employed in previous studies were concerned primarily with shape errors at a

local and global scale. These studies found that in general diffusion-based cartograms

performed within a margin of 1-2% of the proposed method in terms of error [37][67].

Sagar even proposed that their morphological approach was best, despite have gen-

erally higher levels of error [67], and creating misrepresentations of the target values

in some regions in order to preserve global shape without creating disjoint regions.

Here we showed how the reduction in the size of the density matrix used by the

diffusion-based cartogram created up to a 2x speed up in run times. This approach

also reduced the amount of memory required by the application when compared

against other diffusion cartograms. The largest difference between projections made

with the full density matrix and a reduced matrix only differed by 1.3% in terms of

geographic distance, a relatively small amount that is likely to be acceptable to the

majority of users. Our tests of density-map reduction used an original projection map

with a width of 4050 px and height of 2025 px. This meant that even fairly drastic

reduction in the density matrix resulted in a rich enough map that the discretization

process would not significantly alter the final result. While the results of this ex-

ample are expected to generalize to even moderately sized maps, and projections of

similar sizes are widely available from resources such as public domain raster and vec-

tor maps at different global scales http://www.naturalearthdata.com/ or the Oak

Ridge National Laboritory Distributed Active Archive Center which provides access

to data from NASA’s Earth Science Mission http://webmap.ornl.gov/wcsdown/ it

still merits mentioning that significantly smaller projection maps will be more affected

by a density matrix reduction. This is not necessarily a drawback as small maps (750

x 750 px) can be distorted in < 30 seconds.

4.1 Summary of Results and Conclusions

Using the GCPD we were able to visualize the spread of Vibrio cholerae in a

global pandemic. The use of GCPD in conjunction with a diffusion-based cartogram

http://www.naturalearthdata.com/
http://webmap.ornl.gov/wcsdown/
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created a visualization which mirrored results found by previous studies of the pan-

demic, that Nepalese samples of cholera resembled the Haitian strain most closely

in genealogy [36][14]. Further investigation found that Nepalese relief workers were

indeed the source of the outbreak, as they had travelled to Haiti without following

proper quarantine procedures. In this distortion we found no evidence for a correla-

tion when using a linear regression (r2=0.02, p value=0.23) between the distance a

location moved in the distortion and its GCPD value. This is the expected result, as

areas with high GCPD values will cause larger regions of diffusion, which will exert

a strong push upon peripheral points. This effect is increased with larger location

diameter values.

In this map we also show how the application of cartograms can be used to further

analysis. Typical projections of a world map place Haiti as far too small to visualize

the dense sampling of cholera within the region. The increase in area afforded Haiti

by the density-equalizing map allows for a differentiation of the different departments

of the country, while preserving the global context of the outbreak. The distortion

clarified the relationships between cholera lineages in specific regions of Haiti and

Nepal.

We also visualized the regional dispersion of endemic Aneides lugubris through the

California region. This region is of special interest in research due to the high level of

endemic species and its sensitivity to the ongoing effects of climate change [35]. Here

cartograms were combined with the GCPD measure to provide visual confirmation for

important geographic regions including Monterey Bay, a region which drew in many

species due to connected waterways, via the distribution of closely linked clades.

This method was also able to infer the effects of geographic barriers such as mountain

ranges and valleys via their effect on phylogenetic relatedness.
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4.2 Future Work

Many extensions and refinements of the GCPD can be envisioned. Although the

GCPD was developed with raster maps in mind, a variant approach could incorpo-

rate vector shape data and thus introduce a density matrix similar to those used by

vector based approaches, by using shape information to assign GCPD values to the

corresponding regions. This will change the basis of the distortion away from be-

ing location driven towards providing uniform distortions for political or geographic

boundaries. This modification will remove the local resolution, as observed in Fig-

ure 3.5c, while providing stronger signal to studies where boundaries rather than a

uniform grid, are the feature of interest.

The effects of the GCPD measure need to be explored further to evaluate their

effectiveness in non-epidemiological and visualization roles. Comparisons of GCPD

with measures of endemism for conservation study would be one possible avenue

of exploration. Comparing the correlation between endemism measures and GCPD

could yield high levels of overlap between the two measures, highlighting the potential

application of GCPD for conservation studies. This type of comparison would require

large scale data sets of species records to be geocoded into location based observation

data.

Trees are not the only representation used to show phylogenetic relationships.

Networks are becoming an increasingly popular tool for visualizing phylogenetic de-

scent, particularly because of their ability to handle LGT. Due to their popularity

and explanatory power extending the GCPD procedure to work with networks would

incorporate even more phylogenetic signal into the measure. This would aid in high-

lighting closely related highly connected regions, and increase the GCPD scores of

those locations. As one of the primary representations of a phylogenetic network is

a distance matrix, adapting the GCPD calculation to be compatible with arbitrary

matrices would also improve the usability of such a measure. This would allow for

geographic reconciliation between different distance based scores and the geographic

spread of observations.
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