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Abstract

Phylogenetic software and techniques from natural language processing can be ap-

plied to the analysis of the structure of academic disciplines. This is possible through

a synchronic analysis based on comparisons of the conceptual apparatuses of disci-

plines, as they are represented in the terminological characteristics of representative

discourses. This empirical approach enjoys a superior justificatory status to merely

intuitive representations. Finally, this work helps place one of the oldest structural-

ist problems in the philosophy of science in the scientific context it deserves: “How

should we represent the relationship between disciplines?”
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Chapter 1

Introduction

To understand complex conceptual phenomenon we often represent our understand-

ing of it in a geometric structure, expecting some things to hold by analogy. The

simplest case is a binary opposition, and beyond dichotomy we find a hierarchy of

structural representations. To construct these we often rely on our intuitions, and

in doing this I believe we often falsify the very phenomena we are attempting to

understand. We make the phenomena into a picture of our preexisting intuitions.

We should not do this. Instead, as I will show, we should employ the empirical, log-

ical, mathematical, and computational resources available to us when constructing

representations of conceptual phenomena. My contribution to this task is at one

of the highest levels of generality: the organization of disciplinary knowledge into

structural representations of science.

Structural representations of science are ubiquitous. We use them in our ev-

eryday speech, often talking about branches of science or neighbouring disciplines

(§ 2.5 Common Language Roots). We use them in pedagogy, explaining the com-

plexities of the life sciences by means of a hierarchy of entities—from the minuscule

biological molecules up to the bustling societies of which we are but parts (§ 1.1

Linear Hierarchy). And occasionally we use them to construct our identities as re-

searchers, locating ourselves in the hierarchy or on one of the many leaves of the tree

of knowledge (§ 1.2 Tree-like Hierarchies).

Our ontology of structural representations of science is quite limited (§ 1.1 Repre-

sentations of the Structure of Science). Our claims about these structures, our place

in them (§ 2.5), are driven mostly by our untutored intuitions about scientific relat-

edness. Empirical evidence justifying the use of these structures, or the structural

representations themselves, is hardly brought to bear on the topic (§ 2.3 Possibility

of a Computational Analysis). So our folk- philosophy of disciplinary organization

is in need of justification using more than folk-intuitions.
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Structural representations of knowledge are canonically construed as either, i)

models of our understanding or, ii) ontological depictions of the relationships be-

tween disciplines and their worldly domains of study (§ 3.2 The Meaning of Struc-

tural Representations of Knowledge). As well as being a source of equivocation in

discussions about the structure of knowledge, these two positions do not generally

lend themselves to an empirical approach. In order to empirically answer questions

about the structures of knowledge I have taken a middle ground between these purely

conceptual and ontological stances; I investigate structure using discourse as a proxy

(§ 2.1 Justification of a Discursive Analysis).

I explicate the most common structural representations of science: linear hier-

archies, branching trees, reticulated trees, networks and rhizomes (§ 1.1-1.5 Repre-

sentations of the Structure of Science). These five types of representation cover the

range of possibilities for structural representations while neglecting trivial ones (Ex/

disjoint and unrelated points, or symmetric polygons). For each structure I present

some history of its use, some philosophical analysis of its role in representation, and

finally some mathematical and computational methods to generate them. This latter

part is done with computational text-analysis tools drawn from natural language pro-

cessing and structural representation tools from molecular phylogenetics. Combined,

these allow the analysis and representation of text data drawn from encyclopaedias

and academic journal articles (§ 5. Methods).

After generating representations there remains the tasks of comparing them:

to each other statistically, and to our intuitions. Data extracted from academic

discourse—in the form of hyperlinks, keywords or whole text—can be forced into

any of the common structures (§ 3.2) but nonetheless will dictate which of the range

of structures is best. The common structures of knowledge themselves form a kind

of hierarchy: each structure is able to account for variation in the data that the for-

mer could not. Put another way, each structure is able to represent features of the

architecture of knowledge inaccessible to the former (Ex/ there are obvious features

of tree-like representations that cannot be captured in any linear ordering).

Through statistical assessment of the fit between different representations, and

different types of representations, I show that the linear hierarchical model is incor-

rigibly näıve, the tree-like models are improvements, and networks are usually best

2



(§ 5.9 Statistical Evaluation of Structures, § 6 Results). While this trend does not

hold in every dataset considered, it does obtain in large or realistically complex ones.

There are reasons to prefer a representation other than its ability to precisely fit

complex data. Aesthetic and pragmatic costs of complex diagrams often obscure the

nature of the data one tried so hard to accurately represent. So this computational

analysis will throughout be paired with a philosophical one (§ 2.4).

Placing this work in relation to other disciplines of science is itself a philosophical

difficulty (§ 7, Two Analogies: 1916 and 1977). Were the analysis here directed

only at biological literature one might well call it biological informatics. While the

title informatics fits, the application of this approach to discourse clearly enjoys

bibliometrics status. Beyond methodology, my concern is to explicate the debate

about the representation of structure of science from an empirical standpoint; clearly

a pursuit in the philosophy of science. Perhaps it is best to follow the title of Paul

Thagard’s 1988 book (Thagard 1993), in writing if not in spirit, and say that this

work is some sort of ”Computational Philosophy of Science”.

Representations of the Structure of Science

In the following portion of this chapter I elaborate on the range of possible struc-

tural representations of science, noting their historical underpinnings, fundamental

characteristics and role in representations of different types.

1.1 Linear Hierarchy

Definition: an arrangement of entities along a spectrum or axis. May be polarized

to indicate the extent to which entities possess a property.

The most commonly held belief about academic organization is as follows: con-

cepts are grouped into disciplines, and disciplines are arranged in a hierarchy1. Take,

for example, a hierarchy beginning at mathematics or logic and progressing through

1It has been noted by Dr. W. F. Doolittle that this structural arrangement might be more natu-
rally termed a spectrum than a hierarchy. Indeed, a spectrum does not have the same connotation
of privileging one pole over the other. Nonetheless many lay conceptions of the hierarchy of science
do come with privilege given to physics, or mathematics, for example.
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physics and psychology to sociological and anthropological2 study. The linear ar-

rangement of disciplines is often conceived as reflecting an increasing complexity of

subject matter or decreasing consensus amongst researchers—an idea that is usu-

ally attributed to Auguste Comte (1835).This intuitive model of the organization

of knowledge has received a great deal of support and criticisms—embodied in the

currently unfashionable “hard-soft” distinction amongst the sciences.

Daniele Fanelli and Wolfgang Glänzel (2013) even recently claimed to have “con-

clusively proved” that a linear-hierarchy—what they call a Hierarchy of Science

or HOS— is the structure of scientific organization. They attribute this trend—

observed in a series of metrics of consensus applied to articles grouped by discipline—

to a gradual change in complexity of subject matter up the hierarchy. This general

Comtian presumption seems problematic in three ways. Firstly, while few would dis-

agree that arrangements of matter increase in complexity (however operationalized)

with the scale at which they are observed, it is highly questionable whether such an

increase can be directly related to fields of study—many of which incorporate data

from a range of scales and degrees of physical complexity (Dupré 1983). Secondly, it

seems at least possible, if not likely, that a discipline should be concerned with highly

complex entities, yet nonetheless researchers in the field tend to reach consensus and

vice versa; perhaps because they happen to use similar methods. Finally, it is hard to

ignore the danger of reductionism that comes along with any linear ranking: aligning

theoretical or explanatory scales of complexity with physical ones (see Kitcher 1984).

Regardless of our tastes for reductionism, we can question whether or not some-

thing as abstract as a structural representation of knowledge can even be “conclu-

sively proved”. Indeed, all of the structural representations I will discuss here come

with their own set of techniques for obtaining them from data, techniques that are

more or less open ended as regards the kind of structures that could be obtained

therefrom. The metrics applied by Fanelli and Glanzel (2013) have two possibilities:

linear hierarchy or not (see methods § 5.8 for discussion of a relatively open ended

approach).

2This point is commonly unrecognized anthropocentrism.
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1.2 Tree-like Hierarchy

Definition: an arrangement of entities along a set of paths of successive

bifurcations. The paths may be undirected, giving an unrooted tree, or all directed

away from a given entity, giving a rooted tree. Depth within the tree may indicate

inclusion within deeper entities, giving an inclusive hierarchy, or difference from

deeper entities, giving an exclusive hierarchy.

Examining the bureaucratic organization of academic institutions we commonly

find a tree-like (AKA arborescent) inclusive hierarchy; e.g. philosophy and social

science are nested under humanities with biochemistry and histology under natural

sciences. As well as for its likeness to institutional organization, one might prefer

such a structure on historical grounds: the branching of disciplines off of ancestors.

Perhaps from a western perspective we might imagine placing the apex—root—of the

tree somewhere in the geometry or philosophy of ancient Greece. Circa 17503, Jean

le Rond d’Alembert and Denis Diderot4 published a tree-like classification of human

knowledge ( “Systême Figuré des Connoissances Humane”) in the ‘Encyclopédie, ou

dictionnaire raisonné des sciences, des arts et des métiers’ (Dederot and d’Alembert

1772). In this tree of knowledge the branching pattern was explicitly organized by

human reason as opposed to by nature or theological dicta (Darnton 2009). Inter-

estingly, the tree-like representation is almost a perfect binary branching tree, aside

from one reticulation in a branch that appears to be connected to both “Narrative”

and “Drama”.

Tree-like classifications are also often presumed to align with levels of emergence

or scales of complexity. In his attack on reductionism—and thus on the linear-

hierarchy—Dupré notes the slight superiority of a treelike-hierarchy.

One striking oversimplification is that macro-physics has been entirely

excluded. Molecules do not only go to make up cells, but also many

complex non-living structures. At least science should be viewed as a

branched tree to accommodate gravitation, electromagnetism, cosmology,

geology, and so on; though it is in fact not clear how even these branches

should be rooted in microphysics. (Dupré 1983)

350 years before Comte’s hierarchy, between 1751 and 1772.
4For analysis of Diderot’s philosophical contributions see Brewer (2006).
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It may be a ubiquitous human tendency5 to classify both natural and concep-

tual things in groups subordinate to groups (as opposed to disjoint classifications).

Nonetheless, unlike in biological systematics where evolution gives us a natural rea-

son to expect broadly tree-like categorizations, disciplinary organization has no such

unifying explanation. The relations of ancestry and descent between organisms,

genomes, instantiate a process that tends to generate variants that are differ from

their parents by a small margin over long periods of time. Thus one can, in many

cases, treat differences between genomes as approximating times or orders of di-

vergence amongst biological entities. No such assumptions about change are as

universally acceptable when the entities in question are disciplines, texts, or other

knowledge resources. If horizontal gene transfer is a problem for grand-scale trees in

genomics, then horizontal concept transfer 6 is an even more serious problem for even

less grand-scale trees of conceptual apparatuses. Indeed, while linguistic applica-

tions of phylogenetics, such as glottochronology, may have some merit (see Heggarty

2006), the attempt to assign historical meaning to tree-like analyses of disciplines

(within a language) is a different matter.

I believe this anti-genealogical point will hold regardless of whether we treat disci-

plines as historical entities, conceptual structures, or organizations of the emergence

of nature. Likewise, we have no more reason to suppose that a treelike-hierarchy

should correspond to the emergence or complexity of nature than a linear-hierarchy.

The best we can expect in any case is that one will better suit our needs and be more

or less reflective of the organization present in our discourse. In general, in lieu of

some privileged access to metaphysical or ontological reasons for disciplinary organi-

zation, the patterns we observe in structural representations of science should instead

depend on our writing practices and the organization we impose on our discourse.

1.3 Reticulated Tree-like Hierarchy

Definition: an arrangement of entities along paths with bifurcations and

intersections. All paths are directed away from a given entity, giving a reticulated

5Indeed, in biological systematics it was a discovery that organisms could be classified this way.
6While the horizontal transfer of concepts between languages is properly called ‘word borrowing’

(Heggarty 2006), such transfers between other knowledge resources, disciplines, etc., seem deserving
of a coinage.

6



rooted tree. The extent of intersection between entities may indicate the extent to

which entities share a property.

Consider again Dupré’s (1983) speculation on the structural representations of

science. When he offers up the problematic place of Ecology for explanatory reduc-

tionism he also offers up a challenge to consider structural representations beyond

the branching tree,

Ecology is in fact a particularly interesting case... Not only do ecologi-

cal systems typically combine elements from at least three levels: mul-

ticellular organisms, single cells, and molecules (as nutrients in the en-

vironment), but the understanding of such systems also involves such

factors as climate and geology, which would have to be assigned to paral-

lel branches [of the tree of knowledge]. Whether a plausible model could

be constructed to take account of all these complexities is a question I

shall leave open, though it would certainly not be as simple a task as is

sometimes supposed. (Dupré 1983)

Ecology is not alone. Many factors serve to complicate the hierarchical picture,

including some post-modern analyses of the genesis of disciplines highlighting the

sharing of concepts and methods during their growth (Lenoir 1993; Foucault 1970;

Keller 1991). This type of analysis is often referred to as genealogical, by analogy,

and after Foucault’s use and expansion of a similar concept in Nietzsche’s 1887

Genealogy of Morals (Nietzsche 1956). These analyses bring to light the frequency

of interdisciplinary mechanisms of disciplinary change and transfer. Instances of

horizontal transfer of concepts and methods between disciplines suggest at least some

reticulation in any hierarchical structure of disciplines, and cast further doubt on

the rigid separation of academic departments—the conceptual apparatuses of those

departments—by emphasizing the essentially interdisciplinary (and non-disciplinary)

nature of their origin.

Complication of the search for a structure of disciplinary relations does not stop at

genealogy. Many theorists (see Hoskin & Macve 1986) up to the present have exam-

ined disciplines as political structures—equipped with a power-dynamic and various

modes through which knowledge, and thus discourse, is generated and authorized.
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This politico-economic view suggests that concept-association in and between disci-

plines is often independent of theoretical difference, and depends instead on a series

of historic contingencies and human power struggles for intellectual authority and

financial support.

The notion of disciplines combining information from “parallel branches”, “the-

oretically independent” concept association, along with the “horizontal transfer” of

concepts, are surely tree-violating aspects of the representation of the structure of

disciplines: they induce reticulation. Indeed, devising a plausible model of science

that accounts for these events is both difficult to do (as Dupré pointed out in the

case of Ecology), and difficult to motivate. A parallel problem has emerged in molec-

ular phylogenetics with the growing knowledge of the extent of horizontal transfer of

genes between organisms: likewise violating the strict gene trees representing stan-

dard Darwinian descent with modification. I believe the analogy here indicates what

such a plausible model might look like, since the software developed to model reticula-

tion in gene trees can be transferred to reticulations of a more conceptual nature (see

§ 3.1 General Notion of an Empirical Structure of Knowledge; § 5.10 Visualization)

One could argue that I have taken too many liberties in naming structures as tree-

like instead of, i) wholly a network with a root or, ii) wholly a tree with insignificant

reticulations. That issue is a current matter of debate in the philosophy of phylo-

genetics surrounding the tree of life. Consider the position of David A. Morrison

(2014) on the issue in that domain,

[A] “tree with reticulations is a network...therefore a network will be a

better metaphor, model, and heuristic for phylogenetics, in the sense

that it will be more inclusive and more powerful. This distinction be-

tween tree and network in the face of reticulations is not a semantic

one. The tree metaphor/model/heuristic pre-supposes tree-like data,

whereas the network allows the data to determine the tree-likeness of

the metaphor/model/heuristic—some networks are more tree-like than

are others. (Morrison, 2014)

While not entirely semantic, the distinction seems to be one of preference when it

comes to terminology, and prudence when it comes to analysis. Non-treelike data can

be forced into representations as trees, and vice versa. So long as the methodology
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involved in generating a structure allows the data to determine the tree-likeness of the

representation, it seems arbitrary from a modelling perspective whether the represen-

tation is described as a ‘tree with reticulations’ or a ‘tree-like network’ (presuming

it has reticulations at all). Now, it may be true that the ‘tree with reticulations’

view has a tendency to undervalue those reticulations when treated as a metaphor

or heuristic, but it is hardly the fault of the representation or model that its proper

name is metonymic with one having less rhetorical force.

1.4 Networks and Graphs

Definition of Network: an arrangement of entities along paths with bifurcations and

intersections. Not all paths are directed away from any given node. Extent of

intersection between entities may indicate the extent to which entities share a

property.

Definition of Graph: a mathematical object consisting of two sets called its nodes

and its edges. Nodes may be connected by edges given some rule, and both nodes

and edges may possess additional attributes identifying them as particular entities.

If we entirely reject the assumption that our representation of the structure of

disciplines need be hierarchical we arrive at the notion of networks of disciplines, i.e.

a reticulated non-hierarchical tree. The mathematical or computational corollary of a

network of relations between individuals is a graph with nodes representing objects

and edges representing relations. Connections between nodes are made based on

some set of rules, and attributes can be added such as edge weights or node labels7.

For example, we might have a rule that we connect two nodes representing people in a

social group just in case they are friends on some form of social media, thus generating

a social network or friendship graph. We might also have a rule that we connect

two nodes representing publications in a database if they share a common author,

keyword or if one is cited by the other—thus generating an authorship, conceptual

or citation graph of the database. It is of course possible to have more than one

7Indeed, all preceding structures can be defined as particular types of graphs, but it would be
unfair in the context of the origin and use of these structure to reduce them all to the mathematically
precise definitions given in graph theory.
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rule involved in generating a graph, more than one type of node (publications and

authors) and more than one type of edge (citation and co-authorship). (For some

indication of the problems to which concept-graphs can be applied see § 2.3 The

Possibility of a Computational Analysis).

Unfortunately for historical context, since networks and graphs are the most gen-

eral type of structural representation involving lines (edges), points (nodes) and

labels (attributes), it is difficult to disentangle its history from that of less general

structures. John F. Sowa (2006), a theorist engaged with the use of semantic net-

works within artificial intelligence, for instance pinpoints the “oldest known semantic

network” in precisely the same place I pinpoint the oldest tree of knowledge: the Tree

of Porphyry.

Indeed, while historical context is perhaps lacking, logical analysis is surely not.

Plenty of logical structures count as network type representations of conceptual infor-

mation, such as Frege’s Begriffsschrift (concept-writing) or Pierce’s relational graphs

(Sowa 2006, Frege 1879). But in the present connection, I will confine myself to large

scale quantifiable relations between discourse-level conceptual objects, and not to for-

malisms of more sentence-level aspects of conceptual relatedness. So I will confine

my comments on the diversity of network representations to those structures with

more general applicability.

One such structure worthy of historical note is the citation graphs of EigenFactorR⃝,

used for “mapping the structure of academic research” (EigenFactorR⃝ 2015). Perhaps

more widely known for their journal rating system, EigenFactorR⃝ has also contributed

to the visualization of citation data (Accessible from EigenFactorR⃝ citation graph).

Network representations are powerful tools to be sure, but only ever as powerful as

the data used to generate them and the rules that establish their connections. Cita-

tions are indeed a powerful form of data, but they are but one of many different kinds

of data that one could use to draw connections, and so I do not think they deserve

special status as the decisive factor in determining the structure of knowledge.

Networks and graphs have the following virtues. There is a convergence of on-

tological, discursive and conceptual representational goals. Networks are preferred

as ontological representation for the same reason they are preferred as conceptual or
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discursive representations: they are capable of representing complex interdependen-

cies. If one is not inclined towards viewing the natural world, texts or disciplines as

having a simple, independent existence, then networks meet the desiderata.

Unlike trees or linear representations, networks are necessarily non-hierarchical.

Indeed, the only property of networks that resembles hierarchy is “directedness”,

or the direction of edges within a graph. While the combination of many directed

edges within a graph can impact the “flow”, the combination of these individual

directions need not induce any global network polarization (see EigenFactor map

equation method for more precise notion of probabilistic flow through a graph).

This lack of global polarization also makes reading unjustified historical narratives

into networks at least unlikely if not nonsensical; not to say that historical narratives

are not involved in explanations of network characteristics.

As well as lacking certain philosophically suspect features of less general repre-

sentations, networks are also amenable to additional analysis on the basis of their

modularity. While there are a multitude of distinct methods of computing the mod-

ularity of groups within a network, an informal motivation and definition will suffice

for the present purpose.

[I]f the number of edges between groups is significantly less than we expect

by chance, or equivalent if the number within groups is significantly more,

then it is reasonable to conclude that something interesting is going on.

...

The modularity is, up to a multiplicative constant, the number of edges

falling within groups minus the expected number in an equivalent network

with edges placed at random. (Newman 2006)

So while of course the interest one might have in a module (AKA ‘group’ or ‘commu-

nity’) will depend on our confidence in the procedure used to generate the graph, one

can nonetheless use the intuitiveness of the modules defined on a graph as an indica-

tion of the confidence one ought to have in a graph structure. Moreover, since in the

present connection the nodes in the graph are the same as the leaves on the tree, one

can compare the modularity within a graph to the domain architecture of the tree

(see § 5.7, 6). So as well as being a structure in its own right networks—graphs—can

be used as tools for the analysis of other structures.
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1.5 Rhizomes

Definition: a graph or sub-graph in which every node is connected to every other

node by at least one edge (directly). There may be more than one edge between

nodes and edges may have different attributes, resulting in local distinctions between

node connectivity. Known as a maximal-clique when the largest such sub-graph in a

graph.

Trees and webs are not the only biological metaphors proposed as models of

linguistic and conceptual structure. Deleuze and Guattari (1980) introduced the

concept of a rhizome to explain an anti-genealogical, non-treelike, structure organiz-

ing a variety of things from linguistic phenomena to symbiotic relationships between

animals. In A Thousand Plateaus Deleuze and Guattari outline some approximate

characteristics of rhizomes. Of interest here in distinguishing rhizomes from networks

is the principle of connection.

[A]ny point of a rhizome can be connected to anything other, and must

be. This is very different from the tree or root, which plots a point, fixes

an order. Deleuze & Guattari (1980)

The principle of connection clearly establishes rhizomes as a limiting case of

networks and graphs—the case where the entire network or graph is amaximal clique.

A clique is a complete sub-graph, i.e. a subgraph where every node is connected to

every other, and a maximal clique is just a clique where it is impossible to add any

other nodes from the graph into the clique. Identifying such structures has been

problematic in graph theory—due to the computational burden of doing so—but

is also fruitful within applications of graph theory. Depending on how they are

constructed, rhizomes can have some interesting properties. Bapteste et al (2012),

for instance, created networks from BLAST8 searches, drawing edges only between

high scoring homologues, and used the presence of maximal cliques as a proxy for

those sub-graphs that were amenable to more traditional phylogenetic analysis.

Wikipedia hyperlinks are not rhizomatic in general—there are pages to which

no other page is directly hyperlinked (Zlatić et al. 2006). Nonetheless, we expect

8BLAST is a phylogenetics application that searches a database for homologues—sequences
related by descent—when given a query sequence
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a higher degree of connection amongst the large and interconnected pages typically

devoted to encyclopedic entries on academic disciplines. No discipline is an island.

Moreover, if a metric is employed that accounts for more than hyperlinks between

pages, or co-occurrence of word tokens, when drawing connections between points, we

might expect the entirety of Wikipedia to demonstrate such a structure (see Table

4 for demonstration of the rhizomatic character of a set of canonical disciplines).

Masucci et al. (2011) actually take this type of structure for language as a given at

the commencement of their study into the modularity and topology of the ‘semantic

space’ of Wikipedia.

The important distinctions between rhizomes and networks are firstly, but not

only, historical: rhizomes originated in and had the most uptake amongst continen-

tal philosophers, while graph and network are the popular terms amongst mathe-

maticians and scientists respectively. Nonetheless the original use of ‘rhizome’ as a

descriptive term for structural connections is conceptual: Deleuze and Guattari’s use

of the term is explicitly with reference to the organization of concepts. The more

abstract, mathematical, or scientific use of ‘fully connected network’ or ‘maximal

clique graph’ fail to have this necessarily linguistic, conceptual, connotation.

The Hierarchy

This concludes the discussion of those potential structures for knowledge that I

believed were worthy of a full length treatment. Nonetheless, for the sake of com-

pleteness I believe I should very briefly outline the entire hierarchy of structural

representations. In general, a structural representation must have some dimension

and connectivity, so a hierarchy can be established on the basis of increases in these

features. Trivially we can imagine a singularity view of knowledge were all facts are

represented as co-located in a zero-dimensional point without any potential for dif-

ference or connectivity. We can then add more such singularities and obtain a binary,

trinary, etc., representation of wholly distinct domains of knowledge—separate and

each of dimension zero, these representation are necessarily disorganized. Adding a

full dimension brings us to linear representations, these being hierarchical and having

the potential for connections to adjacent points on the line. When we move to two

dimensions and a connectivity of maximum 3 we obtain trees. Increasing the connec-

tivity indefinitely, relaxing all constraints on connectivity, gives reticulated trees and

13



networks. When min connectivity is equal to the number of elements of knowledge

we obtain rhizomes. Finally, if we allow representations in three dimensions (that

necessarily require three, since any tree can be represented in three if one pleases),

and drop the requirement for connectivity, we step into the world of 3D-clustering

approaches.

1.6 Expectations and Limitations

Already we have a series of hypotheses available for structural representations: the

domains of humanities, social and natural sciences, linear hierarchies, treelike hi-

erarchies, genealogical networks, and rhizomes; a significant improvement over the

null-hierarchy dichotomy of Fanelli and Glänzel (2013). Yet we expect a different

structure of disciplinary relations depending on whether we examine the historical

genesis of a set of disciplines—the genealogy of its practitioners and concepts—or

we perform comparisons on current discourses. Genealogy has been corrupted by

inter-discipline concept transfers. This interest relativity is especially important to

observe in this case. I am not attempting to conduct any sort of “computational

genealogy” of disciplines—although that is not to say that various analyses might

not reflect aspects of genealogy as they are presented in discourse9.

The analysis presented below is based on synchronic comparisons of the current

conceptual apparatus of disciplines, as they are represented in the terminological

characteristics of representative discourses. Anything more (genealogical, historical,

ontological, or geographic) requires additional theoretical assumptions.

Setting aside the idealized notion that any conceptual structure will exactly follow

a hierarchy or the branching pattern of a tree, we can instead consider the degree to

which we expect them to be tree-like. As its name perhaps suggests, tree-likeness is

not itself an exact notion, so an exact method has been developed (§ 5.9 Statistical

Evaluation of Structures) to assess the distortion of data when a tree structure is

imposed upon it.

The genealogy of practitioners might be expected to tend more towards a treelike

9An early test analysis was done on the set of Wikipedia pages for countries, this analysis showed
domains, clusters, corresponding not only to geographical proximity but also historical relatedness
(the presence or absence of colonialism). Nonetheless, this is no grounds for claiming the analysis
itself was “historical”, “geographic”, or “colonial”.
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structure than would a conceptual map, but reticulation can occur from horizontal

practitioner transfer as much as by horizontal concept transfer. Researchers rise up

through an education system and gain training from predecessors in a particular

field, and work roughly within the bounds of that field, employing its terms and

methods. On occasion they branch off from their cohort and begin working within

a new or underdeveloped field. Here the metaphor of ‘branching’ takes on a quite

literal character. Nonetheless, researchers often move between fields and can occupy

a position in many otherwise independent fields (meanwhile transferring concepts

horizontally between discourses). Thus even this genealogy of practitioners cannot

avoid some blurring and reticulation.

The conceptual apparatus of disciplines should likewise be expected to show sig-

nificant reticulation. Researchers do not devise an entirely new set of methods, terms,

and concepts when they begin working in a new field—when a new discipline begins

to be conceptualized—nor do they merely modify the conceptual apparatus of some

ancestral discipline. Instead they borrow, steal, or reinvent many components from

other neighbouring or distant fields of study10.

Foucault, in “L’Archéologie du Savoir” (1969), addresses the topic of concomi-

tance or “the configuration of statements from quite different domains to different

types of discourse” (Lenoir 1993, pg.74).

Thus the field of concomitance of the Natural History of the period of

Linnaeus and Buffon is defined by a number of relations with cosmology,

the history of the earth, philosophy, theology, scripture and biblical exe-

gesis, mathematics (in the very general form of a science of order); and

all these relations distinguish it from both the discourse of the sixteenth

century naturalists and of the nineteenth century biologists. (Foucault

1969)

One can already see in this kind of analysis the network-like characteristic of such

10It is important to emphasize again the metaphors we use to characterise differences in subject
matter, since from them it is apparent that our folk-philosophical conception of disciplines is well
engrained.
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associations, and, in the style11 of Foucault, a purely discourse-based method of ana-

lyzing the concomitant disciplines associated with a given discipline of interest. And

this concomitance is just the first source of non-treelike descent with modification. I

expect that any discourse-based analysis that is sufficiently rich in its appreciation

of the complex interactions between disciplines will need to account for reticula-

tion and “horizontal transfer” when constructing a representation of the structure of

disciplines. That is, I expect that more complex sets of discourse will generally re-

quire networks—an expectation that has been borne out, at least, within the results

presented here (see § 6.).

When it comes to investigating concepts by means of text-tokens of words, it is

prudent to acknowledge from the onset that a few assumptions are required to begin

such analysis. First is the assumption that concepts can be roughly identified by the

occurrence of named entities. The primary complication here is that, homographs,

heteronyms and homonyms cannot be identified without context specific information

that is not present in the mere token (for a more complete list of factors that com-

plicate this analysis and their effect on measures of conceptual divergence see Table

1). Second is the assumption that co-occurrence of terms can roughly be identified

with their correlation. The complication is that often co-occurrence is random or

actually indicates dissonance; although there is no denying that dissonant concepts

are nonetheless related by their dissonance. Nonetheless, it should be noted that if

word tokens are bad proxies for concept use, then it is not clear to me what a good

proxy for concept use could be.

Neither the local nor global structure of our discourse can or should be determined

a priori—instead we should be looking for an approach that is both empirical and

open to a wide range of potential structures. Some phylogenetics software (like

SplitsTree) falls into this category of open-ended approaches that allow one to obtain

many different types of structural representations from the same data.

It was precisely the absence of possible alternative structures that I take to be

the greatest mark against Fanelli and Glänzel (2013)—their analyses applied linear

metrics to journal articles to see if they would display a certain linear ordering (as

11Foucault had a particular interest in confining his philosophical remarks on history to what
could be gleaned directly from written texts, and in this sense a text based analysis is, in a way, in
keeping with his method.

16



opposed to a binary ordering or no ordering at all), and thus considered only a small

portion of the range of possible structural hypotheses.

Indeed a variety of confounding issues obtain even in the search for an exact ter-

minology for structural representations. In the case of any hierarchical arrangement

Ernst Mayr points out that ‘hierarchy’ is in fact ambiguous between two distinct

notions.

Most classifications, whether of inanimate objects or of organisms, are

hierarchical. There are ‘higher’ and ‘lower’ categories, there are higher

and lower ranks. What is usually overlooked is that the use of the term

‘hierarchy’ is ambiguous, and that two fundamentally different kinds of

arrangements have been designated as hierarchical. A hierarchy can be

either exclusive or inclusive. (Mayr 1982, p. 205)

An exclusive hierarchy is one where the lower members are not included as parts of

higher ones—such as the ordering of military ranks—whereas an inclusive hierarchy

does have its lower members included as parts of its higher ones. Certainly the

conceptual apparatuses of disciplines are neither: they are neither entirely nested

within one another, nor are they entirely disjoint domains. So if the relationship

between disciplines can be considered hierarchical at all, it will have to be a varied

mixture of exclusive and inclusive types. But (as will be described in § 5.5) the

very fact that there exists variation in the overlap of the conceptual apparatuses of

disciplines provides a means of empirically constructing hierarchical representations.
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Chapter 2

Motivation

In this chapter I will attempt to clarify in turn the roles and interdependencies of non-

conceptual facts, discourses, computation, philosophy and common-language within

analyses of the representation of the structure of science.

2.1 Material Aspects of Disciplines

Timothy Lenoir, in The Discipline of Nature and the Nature of Disciplines (Lenoir

1993), addresses the role of disciplines in stabilizing scientific practice.

Within this complex of issues generated by the disunity of science, dis-

ciplines emerge as a crucial site; for as laboratories and sites of appren-

ticeship are essential for organizing and reinforcing the economies of skill

necessary for conducting science locally, disciplines are the structures in

which these skills are assembled, intertwined with other diverse elements,

and reproduced as a coherent ensemble suitable for the conduct of stable

scientific practice more globally. (Lenoir 1993)

Indeed, I shy away from introducing Lenoir’s opposition of the local-laboratory and

global-discipline into my own analysis, since I doubt that we can evidence a sepa-

ration between local-laboratory-discourse and global-discipline-discourse (see § 2.2

Justification for a Discursive Analysis). But at least such characterizations of sci-

entific disciplines—by opposition with the laboratory component of training—enjoin

us to take seriously the non-conceptual characteristics of disciplines, such as practi-

tioners and resources.
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In general, we can be confident that every extant1 discipline will have practition-

ers: working members of a community of academics who strive either for the elab-

oration of knowledge within the purview of the discipline2, or who seek a complete

reorganization or elimination of the boundaries of knowledge therein. It is neither

necessary that each academic practitioner be categorized by their place within a spe-

cific discipline, nor that an academic from some given discipline or other be incapable

of also participating in a quite distantly related discipline3.

Every discipline will have a set of resources that help further the work of prac-

titioners therein. Resources are often introduced from outside and specialized for

the tasks specific to the practitioners of a given group, or a discipline forms around

the use of a resource, instead of a resource being acquired to suit the needs of a

discipline4. This dependence on resources is most obvious in the case of the physi-

cal apparatuses of experimental sciences: everything from Petri dishes to the Large

Hadron Collider are reminders of the material and financial resource dependence of

scientific disciplines. Yet the dependence of a disciplinary community on grants,

access to information, graduate students and finally a working environment5 are

universal.

Together these material considerations highlight some of the common points

raised by those who criticize a theory-dominated approach to the study of disci-

plines.

1Certainly there are disciplines that have died out, or been so heavily supplanted by their
modernizations that they truly possess no practitioners, resources, etc. In these cases we are
dealing with an historical discipline, or, a living fragment of an historical discipline.

2Researchers often have no prior intention of ‘furthering a discipline’ with their research, but the
process of categorization following the consumption of their work often ensures that it is interpreted
as such, i.e. it is often only long after research has taken place that some work becomes canonized as
a major contribution to some field or other. Consider the “foundational” work on Turing machines
in light of the apparatus of modern computer science.

3Considering that disciplines often get their names by having diverged or merged with other dis-
ciplines or branches of inquiry, it seems overly simplistic to suppose that any two disciplines should
be completely opposed or cut off from each other. Indeed, I believe this is sufficient motivation
to consider the relationships between disciplines as greater and lesser degrees of relatedness rather
than as opposition or contradiction.

4Aquaculture being an example.
5Resource is such a general category. We might imagine the more sophisticated social theorists

interjecting that academic life as a whole, and thus disciplinary structure, depend on a whole
political and economic climate. The interesting question here is how and where the specifics of
the politico-economic climate influence changes in which disciplines are fostered in an academic
community. Western liberal-democracy was sufficient to allow ‘Religious Studies’ in public schools
and universities to include Taoism, whereas its practice elsewhere is undeniably more parochial.
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2.2 Justification for a Discursive Analysis

The point of departure, from a merely verbal analysis, is concept use within a dis-

course. It seems quite natural to identify disciplines by the concepts used by their

practitioners instead of, perhaps, by their tools and other accoutrements. But as

we have seen above (§ 1.2-1.5) there are plenty of reasons to see it as necessary to

include other entities than concepts in our analysis of disciplines. So we have good

reason to believe that a merely conceptual (theory-dominated) analysis of disciplines

is insufficient, but I also think we have good reasons to believe that a discourse-based

analysis is not merely conceptual.

Rejections of a theory-dominated approach to studying disciplinary relations

often cite the overwhelming influence of non-conceptual (i.e. material) factors—

practitioners, political climates, and resources (Lenoir 1993; Keller 1991; Hoskin and

Macve 1986). Yet a clear line between conceptual and non-conceptual influences does

not exist within discourses: names of practitioners, theoretical concepts, descriptions

of resources and methods all appear within the discourses associated with disciplines.

So analyses based on discourse cannot necessarily be derided as merely theoretical

investigations—devoid of practical and historical weight—since non-theoretical terms

form a central part of discourse.

In short, it is not as if discourse, consisting only of words, described only concepts

and left out mention of the non-conceptual foundations of disciplinary life. Non-

conceptual terms appear within and help to structure disciplinary discourse. Thus

they, as much as theory, aid in the quantification of difference between disciplines.

2.3 The Possibility of a Computational Analysis

There is plenty of precedent for application of structural metaphors as models of

scientific data. The case here examined is no different in that respect—even given

the obviously historical, political, philosophical, and conceptual underpinnings of

disciplinary organization.

We are all exposed, dogmatically at first, to the basic concepts and particu-

lars of practice that are presumed to characterize disciplines—the divisions of the

school systems ensure this. Yet there are examples abound of interesting phenomena
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that do not fit nicely into the näıve systems6 thus far considered. The question of

‘the subject matter of discipline X’, then becomes a matter not of rigid disciplinary

boundaries—separating disciplines from each other and so too their subdisciplines—

but of distributions of lay concepts, terms of art specific to disciplines, and a network

of shared and interrelated concepts.

On this last point—the network of concepts—one can easily interpret such a

phrase as mere metaphor. Yet with advancements in phylogenetic tree construction,

network analysis, text-mining and natural language processing, we can now begin

investigating to what degree such a metaphor serves as an interesting and useful aim

of computational analysis. What would an empirical tree of knowledge look like?

What networks can be drawn from the interrelation of concept use amongst disci-

plines? What groups can be defined or clarified by searching through such networks?

And what conclusions can be drawn by statistically evaluating these networks? All

are questions now answerable on grounds more empirical than philosophical or philo-

logical.

The mixed empirical-philosophical nature of the questions here posed is certainly

reminiscent of the experimental philosophy movement—at least, in as much as phi-

losophy is not usually empirical and computational text-analysis is. Yet a quasi-

empirical approach to philosophical questions may be all they have in common:

experimental philosophers have traditionally be concerned with uncovering people’s

moral intuitions, underlying facts about consciousness, or their beliefs about refer-

ence (Knobe and Nichols 2008). The analysis here has far different applications.

2.4 The Utility of a Philosophical Analysis

The notion of a science of science—or at least a computer science of the structure

of science—ought to invoke in us the same visceral opposition to inbreeding that we

experience in familial relations; except in this case it is an inbreeding of intuitions.

There is a danger of scientific intuitions about the structure of science becoming

self-justifying and serving as the basis of quasi-empirical models of the structure of

science. It is precisely this limitation in the number of possible results of a model

6An instance of quantum mechanics being required for explanations of a model of photosynthesis
in grass plants comes to mind.
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of the structure of science (exemplified by Fanelli and Glänzel (2013) and again by

Colin Allen in the Indiana Philosophy Ontology project in § 4.1) that has lead to my

current more open-ended approach.

Another source of opposition (to philosophy of science generally) is embodied in

the phrase, “Philosophy of science is as useful to scientists as ornithology is to birds”,

that is usually attributed to Richard Feynman. I take this analogy to roughly express

the following criticism: scientists are doing just fine on their own, so philosophers

don’t really need to step in and do anything7. But this argument from analogy

is surely flawed on both ends. Conservation of bird species requires ornithological

expertise, and scientists are certainly not self sufficient even now8. If we are going

to properly conduct interdisciplinary research we ought to do so with more than our

untutored intuitions about scientific relatedness.

The problem of the structure of knowledge began in philosophy, was specialized

as the structure of science by philosophers of science, and most recently taken up

by bibliometricians and scientometricians again as the web or hierarchy of the sci-

ences. That an old problem has seen new variations, had new techniques brought

to bear upon it, is certainly no reason to turn away from the context of the original

formulation: fostering an understanding of knowledge writ large.

2.5 Common-Language Roots for Structures of Knowledge

Were it not for the structural implications of our everyday parlance one would be

tempted to think of structural representations of knowledge as nothing more than a

simplification of our understanding, a cartoon sketch of our understanding, a biblio-

metricist’s fancy, or best fit for creating clever info-graphics to place on the front of

secondary school Science textbooks.

7Of course, we could also interpret this quote as attempting to solidify the same respect and
grandeur for ornithology as is possessed by the preceding two thousand years of philosophy.

8For example, consider the recent case of ENCODE (Doolittle et al. 2014), a multimillion dollar
research enterprise devoted to finding all the functional elements in the human genome. ENCODE
suffered serious backlash, from scientists and philosophers, about the ignorance of the project leaders
of the philosophical analysis of the concept of function. I see this as a case where philosophers have
successfully critiqued a major scientific project and showed that the working scientists were not
self sufficient: they should have outsourced their conceptual analysis of the notion of function they
were implicitly working with.
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But we do employ structure-of-knowledge talk daily, and to various degrees of so-

phistication. Certainly nobody moves though the education system without hearing

the likes of,

What branch of science does she work in?

Then she progressed to work in a neighbouring discipline.

No, entomology has nothing to do with words, it is a subdiscipline of

biology!

Well...I guess my thesis is kind of interdisciplinary.

One will also hear the terms ‘multi-disciplinary’, ‘transdisciplinary’ and even ‘nondis-

ciplinary’ being tossed about.

Each of these references to disciplinary organization comes equipped with presup-

positions about structure, or at least has implicit, characteristic, structural implica-

tions. Branching can obviously be likened to a tree model (hierarchical or otherwise),

neighbouring and interdisciplinarity can be taken at least to imply notions of rela-

tive differences in distance (another structural metaphor) amongst disciplines, and

notions of super- and sub-disciplines have obvious hierarchical connotations. Given

these roots, I believe it would be a failure in our understanding of common language

were we to neglect a precise treatment of the structure of knowledge.
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Chapter 3

Structures

3.1 General Notion of an Empirical Structure of Knowledge

An empirical structure of knowledge can be formalized in a way that makes clear

the procedure for its construction. In general, an empirical structure for knowledge

is as follows. First we gather a set K of elements of knowledge, and assign an n-ary

relation Rn to all elements of K; giving a set of relations Rn(K). Now, to obtain a

representation ofK, we will need a function that projects the relations in Rn(K) onto

a diagram D; call this function P () and call the resulting P (Rn(K)) a representation

of K.

Now, it is clear from this generalization that there are many different choices of

Rn and P relative to which we can obtain a representation of a given K. One of

the methods I have employed took the trinary relation of Distance Dki,kj,di (see § 5.5
Distance Metrics) as Rn, and some algorithm (NJ, UPGMA, or Bio-NJ; see § 5.10

Visualization, § 6 Results) or piece of phylogenetics software for mapping distances

onto trees as a function P . But there are still plenty of different distance relations we

might choose, and at that, plenty of ways to transform these relations after they have

been obtained (see § 5.9 Statistical Evaluation of Structures). Indeed, the choice of

P is also a choice of a type of diagram D, and some choices of P will give different

types of diagrams depending on Rn (e.g. using SplitsTree to generate a phylogenetic

splits-net can give diagrams that are trees, more or less tree-like, or those that more

closely resemble networks). Nonetheless, if K is empirical data, Rn depends on K,

and P depends on Rn, then the resulting representation of K will be empirical in

the most straightforward way.

At this level of generality we can state some facets of the notion of conceptual

relatedness more exactly (See § 6.). But I believe the most striking advantage is the

separation of the method for generating structures into three discrete parts (See §
5.1 Notes on General Method).
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3.2 The Meaning of Structural Representations of Domains of

Knowledge

The possible meanings of structural representations are more varied than the rep-

resentations themselves. Some seek to capture notions of differences in the scale

of theoretical entities, others reflect the organization of departments in academic

institutions—the historical splitting of disciplines into subdisciplines—and others

still (of paramount interest to me) attempt to model the relations between the con-

ceptual apparatuses of distinct disciplines.

The significance of structural representations is a function of how they are used.

Surely some people want them to be ontological—based on the ontological com-

mitments of theories—and thus representations that capture differences in scale (or

possible theoretical reductions) are put forth. Likewise, some want the structure to

indicate the interdisciplinary relationships that obtain between sciences and thus pre-

fer networks that graph the citations between major journals (such as EigenFactor).

I am interested in addressing pre-existing philosophical intuitions about conceptual

structures. All of these representational goals structure our understanding of sci-

entific knowledge, yet to entirely different ends. So it would be a fool’s errand to

analyse these structures, offered for different uses, as if they were aiming at the same

truth, mutually consistent, or subject to the same critique.

Put another way, structural representations of knowledge are model dependent

and interest relative. And while it is just these features of structural representations

that make them useful, they also open the door widely to equivocation: one would

be rather disappointed to find out that, far from supporting any sort of hierarchy

of consensus or complexity, the work of Fanelli and Glänzel (2013) supports only a

hierarchy of writing practices1!

There is a reciprocal relationship between our understanding of domains of knowl-

edge and the patters of structural representation. Take the following as an example.

One could set out to find the most appropriate hierarchical relationship to represent

the differences in scale amongst the natural sciences, only to find that the disciplines

1While this might be an all too literal interpretation of the HOS according to Fanelli and Glänzel
(2013), one can hardly be blamed for taking a deflationary and excessively flat stance in an area that
is such a mix of odd justifications for philosophical ideas and untutored lay intuitions of scientific
practice.
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often employ entities from a diverse range of scales—thus necessitating a branched

hierarchy. Similarly, one could work backwards from a set of theoretical entities

arranged hierarchically by scale to a set of gerrymandered disciplines that mention

only those entities within a specified range—thus necessitating a radical divergence

from more traditional disciplinary boundaries. In general this is just a consequence

of the ability to both fit data to a structure and reciprocally to simulate data to

fit a predefined structure (it is common practice within phylogenetics to both fit

phylogenetic trees to data, and to simulate data to fit a predefined phylogenetic

tree). This reciprocal relationship affects not only the modelling of structures but

also our folk-philosophy of them. It is easy to project some näıve structure onto the

whole of science without first examining the status quo of science to see if the fit

is Procrustean. It is exactly this kind of false prioritization of structures over data

(Fanelli and Glänzel 2013; Buckner et al. 2011) that I see fit to criticize amongst

philosophers who have constructed structures by consulting their intuitions (Compt

1835).
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Chapter 4

Data Sources

4.1 Wikipedia

The most common objection to Wikipedia as an academic reference is its supposed

inaccuracy. Wikipedia is not peer reviewed in the same way that academic jour-

nal articles are: Wikipedia has a large group of editors who check, cross-reference,

newly made changes to articles, while major journals tend to require review and

acceptance by a small group of professionals within the discipline of the article1.

Unlike peer-reviewed articles, which are subjected to an intensive editing process by

their committed authors before final publication, Wikipedia articles are in a state of

flux of partial responsibility; pages are constantly being added to, edited, and even

vandalized. Certainly these are the prices paid for being public.

It is important not to run two issues together: Wikipedia’s legitimacy as an aca-

demic reference and its use as a research tool (or source of personal background

information). Indeed, if we prefer peer-review, we do not need to take Wikipedia’s

word for anything—there is a large, and growing, quantity of peer-reviewed scholar-

ship that has taken up the task of analyzing Wikipedia.

A debate between Encyclopædia Britannica (EB) and Nature highlighted the

extent to which the legitimacy of Wikipedia has become a matter of scholarly debate.

Nature claimed that Wikipedia and EB have unequal yet comparable numbers of

errors in their entries about scientific topics (Giles J. 2005), while EB claimed that

Nature’s study was “Fundamentally Flawed” (Encyclopædia Britannica, Inc. 2006).

To my mind, and for the present purpose, the average number of errors present in

Wikipedia articles is irrelevant. Indeed, whether or not Wikipedia is frequently in

error, it still represents the view of a large number of contributing authors (at least

1This is not to say that just being a journal puts a resource necessarily on better footing;
examples abound of predatory publishing practices are an obvious case where journal legitimacy
can be taken falsely for granted.
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10,000 “Wikipedian” editors with more than 14,000 edits each (as of January, 2016));

and large groups are expected to make errors.

Instead of the number of errors on Wikipedia one might instead be concerned with

the relationship between articles and sources. Finn Årup Nielsen (2008) published a

report on the number of citations of journal articles on scientific Wikipedia entries.

Nielsen concludes that,

An increasing use of structured citation markup and good agreement

with the citation pattern seen in the scientific literature though with a

slight tendency to cite articles in high-impact journals such as Nature

and Science. These results increase confidence in Wikipedia as a good

information organizer for science in general. (Nielsen 2008)

And even more optimistically,

[U]se of structured scientific citations in Wikipedia will very likely con-

tinue to grow and increasingly benefit researchers that look for well-

organized pointers to original research. [ibid]

Today, seven years later, we can hope that this trend has continued without ebbing

significantly.

4.2 Stanford Encyclopedia of Philosophy

SEP perhaps occupies a milieu between the justificatory status of Wikipedia and

peer reviewed articles. Certainly in the domain of encyclopedias of philosophy, given

the scope and constant updating of articles, SEP is the ultimate (Buckner et al.

2011). While the format for SEP articles is undeniably encyclopedic, the articles are

commissioned from professionals in the field, and reviewed by a competent editorial

board and peers (The Stanford Encyclopedia of Philosophy, Editorial Practices).

Compared to most Wikipedia articles on philosophical topics, SEP articles are

quite long and, one could argue (from more than authority), more detailed. Nonethe-

less, while Wikipedia articles are hyperlinked and SEP articles possess only a small

number of “related topics”, this poses no significant problem for the analysis of SEP

(see § 5.2-5.4, 6.), since parsing and filtering methods can be used that extract a

more significant stock of keywords from the body of the article.
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Prior work has been done on mapping SEP by the Indiana Philosophy Ontology

(InPhO) project, directed by Colin Allen at the University of Indiana. As well as

some Latent Dirichlet Allocation (LDA) based topic modelling that is beyond the

scope of this thesis, the InPhO also offers a “taxonomy” or “computational ontology”

of philosophy. Buckner et al. (2011), members of InPhO, characterize the ontology

as follows,

‘[C]omputational ontology’ denotes a formally-encoded specification of

the concepts relevant to a subject domain (including their properties and

relations between them) and a hierarchical classification of those concepts

into categories and subcategories. (Buckner et al. 2011)

And indeed their taxonomy is hierarchical: a perfect dichotomously branching tree.

And while some of the methods involved in generating this taxonomy are certainly

more advanced than the simple set theoretic analyses presented here (see § 5.5),

they lack the open-ended potential to generate alternative structures enjoyed by

phylogenetic (network) analyses (see § 1.6, 3.1). Indeed, their methods suffer from

the same problem as Fanelli and Glänzel (2013)—they fail to consider the range

of possible structural representations of knowledge—yet at one higher level: they

include trees but neglect reticulated trees.

4.3 Encyclopedia as Approximations of Disciplinary Discourse

It is obvious that encyclopedic articles pale in breadth when compared to the swaths

of literature available from journals, books and databases. Nonetheless an ency-

clopaedia has two features that lend themselves specifically to the study of the orga-

nization of knowledge at the level of disciplines: labelling and connection.

When attempting to find a way to classify texts, categorize them, often a major

obstacle is finding sources of text that are already labelled with a given classifica-

tion. For example, if we sought to classify a set of ancient texts by author, one

way to begin this analysis would be to obtain a set of documents of known au-

thorship. Now, my aim here is not particularly the classification of discourses into

disciplinary categories—not to say that the methods employed here might not be

used to that end—but examination of the relationships between already classified
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discourses. Wikipedia authors are engaged in active and often heated debate about

how to categorize and organize their pages, titles and subsections, and authors of

SEP are commissioned to write on a specialized topic. This puts Wikipedia and SEP

pages in the special position of being entirely labeled discourses. And while many

journals do add categories to their search function, or have users label pages by

keyword (notably, PLOS ONE), these categories are either sparse or not necessarily

amenable to disciplinary organization; e.g. on PLOS ONE ‘bacterial genetics’ is a

subject area, but so is ‘biomarkers’, something I would perhaps call a “topic” but

not a discipline2.

Journal and encyclopaedia articles are both structured to include connections

between them: citations in the case of journal articles, and often hyperlinked text in

online encyclopaedia (see § 1.4, 1.5). In much the same way that citation analysis can

infer relationships from connections drawn by citations between articles, hyperlinks

serve as evidence of a conceptual connection between hyperlinked discourses. But the

conceptual waters are muddy in both camps. Journals articles in different disciplines

often have different citation practices3, some authors cite others merely out of respect

(politics) or lack thereof, and even experienced authors do not cite all relevant work.

Similarly, Wikipedia pages are hyperlinked to disproportionate degrees by different

authors, similar political linking practices exist, and often many irrelevant things are

linked merely for completeness.

2Certainly the reasoning for classifying academic journal articles by publication is pragmatic:
researchers do not go out in search of all the articles within a discipline but instead seek specific
sources to advance their research or justify it. So disciplinary organization is not, nor need it be,
sufficiently fine grained in those contexts.

3This fact is one of the things that Fanelli and Glänzel (2013) used as a means of making
structural distinctions between disciplines.
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Chapter 5

Methods

5.1 Notes on General Method

Philosophers and philologists have traditionally studied the relationships between

disciplines historically or by consulting their intuitions. Instead of historicism or

private scholarly intuitions, my methods attempt to account for public discourse and

thus public intuitions. In this respect I share the inclinations of bibliometric analysts

(Fanelli and Glänzel 2013), co-word analysts (Qin 1993., Callon, Courtial and Laville

1990), network theorists (Zlatić et al. 2006., Masucci et al. 2011), and the use of

statistical assessments of publicly generated data can be considered in the spirit of

experimental philosophy.

The general notion of a representation of a structure of knowledge (developed

in § 3.1) can be transferred to the structure of disciplines when the “elements of

knowledge” analysed are taken to be representative of disciplines. This process can

be broken down into three parts.

Gathering Disciplinary Discourses

The problem of choosing which discourses were to count as disciplines was tackled

in three ways: 1) by defaulting to the opinion of the Wikipedian editors and simply

gathering disciplines from curated lists, 2) by choosing small canonical sets that I

believe everyone agrees are genuine disciplines then expanding on these in turn, and

3) by algorithmically gathering pages that were close to a given page in the network

of wikipedia, then filtering these pages based on common disciplinary markers like

ending in ‘omics’ or ’logy’. (See § 7, Ontology).

I began by gathering a corpus of discourses for a set of disciplines and extracting

keywords from the text—relevant text being that which is not expected to appear

in all sources. Keywords obtained from hyperlinks should be expected to contain

a variety of theoretical terms relevant to the discipline in question, but also names
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of famous practitioners and commonly employed resources. So the elements of the

set of knowledge K were always broken down into lists of keywords and associated

disciplinary titles.

Defining Relationships Between Discourses

I employed a set of distance metrics, to give an approximation of the difference

between all pairs of discourses. Not all relations of distance are equal in the eyes of

human intuition, as I show below (§ 6.), many distance metrics gave wildly unintuitive

results, or latched onto features of keywords that were wholly irrelevant to their

conceptual relatedness.

The ternary relation of distance Dki,kj,di was not the only relation, defined on the

set of discourses, used in representations; keyword co-occurrence relations were also

investigated. Graphs were constructed where vertices were keywords or disciplines,

and edges were drawn whenever disciplines shared particular keywords. This basic

ternary relation1 in turn allowed the definition of relations of even higher-arity (i.e.

Rn) on the set of disciplines, such as the computation of various kinds of graph

modularity (§ 5.6-5.7).

Mapping Relationships onto Diagrams

Distance data was mapped onto simple linear hierarchies by extracting distance

matrix columns and ordering each by distance from 0. Distance information was also

passed though software (SplitsTree) that constructs phylogenetic trees and networks,

using standard tree and network building algorithms (NJ, UPGMA, Bio-NJ). This

allowed a visualization of the conceptual relatedness between all members of the cor-

pus of disciplinary discourses, comparison of distance metrics, and of local branching

and global domain architecture.

Similarly, domain structure computed on word co-occurrence graphs was mapped

onto trees to allow comparison of modularity and domain architecture. Co-occurrence

graphs and modularity results were themselves represented on hive-plots (§ 5.10).

1“discipline i and j share term x”, or {x ∈ Ci ∧ x ∈ Cj} where Ci is the set of concepts for
discipline i
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5.2 Web Parsing

Data was algorithmically gathered from Wikipedia pages chosen from the set pages

on a Wikipedia-official list of academic disciplines. Early analyses were conducted

by parsing out the “list of academic disciplines and subdisciplines”, extracting sub-

sections of the disciplines, their subdisciplines, and gathering page data from them.

This method was in a way too much and too little: while it often gave discipline

sets that were too large to be visually represented with any clarity, it also neglected

some important subdisciplines (such as “functional genomics”), so more hand-picked

discipline choosing methods were preferred (see § 5.4).

Parsing methods were easily transferable to non-Wikipedia sources like SEP, with

the minor exception that SEP does not contain hyperlinks in the body of the text.

Instead SEP has a series of “related topics” listed at the bottom of each page, so

any link to a “topic” was treated as roughly analogous to page for a philosophical

discipline2.

5.3 Keyword Extraction

The hyperlink for each discipline included in the Wikipedia analysis was followed

(”crawled”) and each link on the page was gathered, stripped of superfluous char-

acters, and saved as a keyword associated with the discipline in question. Using

hyperlinks as keywords has three advantages: they are Unique, Univocal and Ubiq-

uitous. Respectively, there is usually only one hyperlink of a given name per page,

they always lead to exactly one page and never to two or more, and there are usually

plenty of them to be used in the analysis.

Yet no matter how well hyperlinked a page is, there will always be words that

deserve a hyperlink that do not receive one. To catch these words, and in hopes of

extracting more relevant keywords, I also employed a full text analysis. Full text

from pages was extracted using BeautifulSoup4 ( c⃝1996-2016 Leonard Richardson),

and was tokenized and had stop words removed using NLTK (Bird et al. 2009). The

2Although this fragmentation of SEP into many philosophical subdisciplines is perhaps philo-
sophically suspect, there is no resource managed through SEP to collect and demarcate “official”
subdisciplines. But, moreover, most entries on SEP can be considered sufficiently general to enjoy
the same sui generis status as articles on subdisciplines of, say, biology. I cannot imagine a very
convincing argument that ‘Oology’ is a discipline while ‘Animalism’ is not.
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process of tokenization and filtering were similar when academic journal articles were

used, except the PDF parser PDF2TEXT was used to convert articles to plain text

format.

5.4 Choosing Datasets

To avoid the representational burden of large collections of disciplines—some truly

uninteresting—I have restricted many analyses to data subsets: the FEGC and FEG

datasets (see Methods § 5.8), and three canonical sets (two slightly more expanded,

see Table 5.1). When an alternative dataset is employed this will be explicit. The

Canonical and Canonical+ datasets were chosen by hand to reflect a reasonable dis-

tribution of disciplines, while the Canonical++ dataset was gathered algorithmically

from a page containing an outline of the disciplines covered on Wikipedia (Avail-

able at Wikipedia: Outline of Disciplines, Xs indicate absent disciplines). The FEG

dataset was gathered by crawling the pages for ‘Functional Genomics’, ‘Genomics’

and ‘Evolutionary Biology’ and extracting potential disciplines, whereas in FEGC

‘Chemistry’ was added as an expected outlier.

Any data set could be used in theory, as long as there is a Wikipedia, SEP page,

or a convertible PDF available. In fact, any combination of these data sources could

be used together if desired.

5.5 Distance Metrics

The distance metric employed was a ‘harmonic mean of conceptual divergence’—an

average of the magnitudes of keyword set differences. That two disciplines diverge

from each other is perhaps a misnomer, since we might falsely interpret this to

mean they were once quite similar and have since grown different, while this set

theoretic metric is ahistorical. Nonetheless the notion of divergence does capture the

fact that different encyclopaedic articles on disciplines often show some variable and

characteristic degrees of overlap and distinction. This is precisely the sense in which

the absence of a strictly inclusive or exclusive hierarchy allows the construction of

representations (§ 1.6).

The conceptual divergence between each discipline Uij was calculated, as below,
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Table 5.1: Canonical, Canonical+ and (truncated) Canonical++ datasets.

Canonical Canonical+ Canonical++

Sociology Sociology Sociology
Psychology Psychology Psychology
Philosophy Philosophy Philosophy
Anthropology Anthropology Anthropology
Physics Physics Physics
Biology Biology Biology
Cosmology Cosmology XXXXXXX
Quantum mechanics Quantum mechanics Quantum mechanics
Chemistry Chemistry Chemistry
Geology Geology XXXXXXX
Biochemistry Biochemistry Biochemistry

Logic Logic
Mathematics Mathematics
Meteorology Meteorology

Humanities
History
Linguistics
Visual arts
Religious studies
Cultural studies
Economics
Gender and sex studies
Journalism
Computer science
...

with Cj being the set of concepts gathered as hyperlinks from discipline j.

Uij = {x | x ∈ Ci ∧ x /∈ Cj} (5.1)

The ratio Xij of the size of the conceptual divergence to that of the initial concept

set was taken, essentially giving a measure of the proportion of Ci that makes up the

difference with Cj,

Xij =
|Uij|
|Ci|

(5.2)

Finally, the he harmonic mean Hij was calculated for each discipline pair as below.

This gave a symmetric measure of distance, i.e. one where Hij = Hji

Hij =
2 ·Xij ·Xji

Xij +Xji

(5.3)
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5.6 Network Construction

Networks were constructed using iGraph (Csardi and Nepusz 2006) and followed two

closely related methods—distinguished by what was to count as a node in the graph.

In the first type (Gc), nodes included both keywords and the name of each page from

which keywords were gathered (disciplines). Nodes for keywords were iteratively

connected first to the page on which they were gathered, then to any other page

on which they appeared—thus disciplines were connected via their keywords. In

the second type (Gt), nodes included only the names of each page (disciplines) and

nodes were connected whenever they shared a keyword—thus disciplines were directly

connected. For each keyword shared between disciplines i and j in a Gt the weight

of the edge eij was increased by one.

5.7 Network Evaluation

For smaller graphs like Gt when less than 100 disciplines were included, the optimal

modularity method offered by iGraph could be used. But larger graphs like Gc or any

Gt with more than 100 nodes would exceed time constraints, so weaker but sufficient

methods such as the “Community Edge Betweenness” or “Fast-Greedy” clustering

algorithms were used (Girvan and Newman 2002).

Modules were mapped onto trees as follows. Once tree image files were converted

into SVG format, the leaves whose name corresponds to each member of a module

were identified and coloured according to a randomly selected colour palate. The

coloured trees and splits networks were then statistically assessed for the similarity

of their domain architecture and modularity.

See § 5.7 (Statistical Evaluation of Keyword Datasets) below for details on how

networks were used to statistically evaluate the importance of specific keywords, also

see § 5.9 (Statistical Evaluation of Structures).

5.8 Statistical Evaluation of Keyword Datasets

Keywords were stored in lists associated with the page on which they were gath-

ered. This allows a barrage of standard statistical measures to be applied to the

sizes of these lists—ex. ‘Functional genomics’ has 56 hyperlinked keywords while
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‘Evolutionary biology’ has 167. Thus as with any standard numeric dataset one can

calculate the mean, median, standard deviation, variance, quartiles, maximum and

minimum, and compare these values between datasets—as a measure of the quality

of data gathered or differences in the effectiveness of crawling methods.

Yet the nature of this analysis allows some non-standard measures to be applied.

For example, when looking at an entire dataset of keywords, it is of interest to

examine which keywords from each list are shared between lists: the informative

subset. A keyword ti from a list of keywords Ci is informative for discipline i just

in case ti is also contained in some Cj for the same dataset (where j ̸= i). For

the FEGC dataset, 41 of the keywords of ‘Functional genomics’ were informative

while 141 were for ‘Evolutionary biology’. This leads to a set of related statistical

notions such as the informative average, informative standard deviation, informative

variance, informative fraction, etc.

Since the informative elements of each list are relative to the elements of every

other list in the dataset—to be informative a term must be shared with at least one

other page—the informative fraction (inffr(di)) of keywords for a given page (di) will

change depending on the method of collection. An informative fraction close to 1 indi-

cates that the page was crawled along with other closely related pages, while an infor-

mative fraction close to zero indicates little relation to other pages in the dataset—ex.

for the FEGC dataset, inffr(‘Functional genomics’) = 0.732, inffr(‘Evolutionary biol-

ogy’) = 0.844, inffr(‘Genomics’) = 0.690, while inffr(‘Chemistry’) is only 0.229. When

‘Chemistry’ is left out of the crawling dataset (the FEG dataset), inffr(‘Genomics’)

increases to 0.694, and when ‘Biochemistry’ is added to the dataset (BFEGC) there

is an increase to inffr(‘Chemistry’) = 0.280.

The construction of networks also allowed statistical evaluation of keyword datasets.

After a graph is constructed (Gc or Gt), it is possible to compute the betweenness

centrality, g(vi), of each node (v)—a measure of the number of shortest paths from

every node to every other that passes through that node. We can think of g(vi) as a

measure of the importance of v in connecting Gx. g(vi) values are easier to interpret

when normalized in the following way,

gnormalized(vi) =
g(vi)−minG(v)

maxG(v)−minG(v)
(5.4)

Where G(v) is the set of all g(vi), this procedure ensures that gnormalized(vi) ∈ [0...1].
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Table 5.2: g(vi) values for sample of FEGC and FEG datasets

Datasets

Disciplines FEGC FEG

Functional Genomics 0.1387 0.1485
Evolutionary Biology 0.6314 0.6733
Genomics 0.9665 0.9934
Chemistry 0.1437 NA

For example, Table 5.2 shows the differences in gnormalized(vi) (hereafter just g(vi))

after the removal of ‘Chemistry’ form the FEGC dataset. The betweenness of each

major node increased after the removal of ‘Chemistry’, i.e. these nodes became

relatively more important in connecting the network in the absence of ‘Chemistry’.

5.9 Statistical Evaluation of Structures

Evaluation of SplitsTree Structures

In order to generate a SplitsTree structure (tree, reticulated tree, network) from

a matrix of distance data is it necessary to skew the values of the matrix3 so that

the final branch length between two taxa of the structure will be different from the

value entered into the original matrix. Consider a matrix like the following, where

dij is the distance between disciplines i and j, and dkk = 0.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 d12 d13 d14 d15

d21 0 d23 d24 d25

d31 d32 0 d34 d35

d41 d42 d43 0 d45

d51 d52 d53 d54 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
When this matrix is represented, as a tree for example, one can follow the branch

lengths within the tree to reconstruct the distance matrix. The recovered distance

∆dij will differ from dij, giving a matrix as follows.

3Unless the matrix is already perfectly tree-like, network-like, etc.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆0 ∆d12 ∆d13 ∆d14 ∆d15

∆d21 ∆0 ∆d23 ∆d24 ∆d25

∆d31 ∆d32 ∆0 ∆d34 ∆d35

∆d41 ∆d42 ∆d43 ∆0 ∆d45

∆d51 ∆d52 ∆d53 ∆d54 ∆0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since the two matrices will be the same size, one can vectorize both and plot ∆dij

Vs dij to obtain a graph for regression analysis. Vectorization proceeds as follows.

A matrix can be represented as a list of lists: each row of the matrix is treated as a

list entry with index equal to the ordering of rows—although this is arbitrary, it only

matters that one use the same ordering/vectorization for both . After obtaining a

list of lists the vector is obtained by transferring the elements to a new list in order.

One can then plot the set of ordered pairs < xi, yi > where x is from the original

matrix and y is from the distorted matrix and i is the index of both list values. If

the matrix did not need to be distorted at all, then xi = yi for all i (R
2 = 1), and if

not, then the R2 value will give an indication of degree of distortion.

A possible problem with measuring the correlation between matrices this way is

that it assumes the independence of distances when calculating the p-value of the

correlation4. A statistical test called the Mantle test (first described in Mantle 1967)

accounts for this dependence. So the p-value measured by regression will be lower

than that measured by the Mantle test, but the R2 value itself will be identical

(see Figure 10 and Figure 11 for a comparison of both statistics). Nonetheless,

the p-values for both results usually far exceed the requirements for a statistically

significant test so, when no significant difference will result, only the p-value from

regression will be reported.

Evaluation of Linear Hierarchies

Once a distance matrix is obtained it is possible to examine a set of linear or-

derings. Since the distance matrix specifies the distance between every pair of disci-

plines, it is possible to extract just the set of distances between every discipline and

4An assumption that is obviously violated. To change the distance between x and y would
require adding keywords to either x or y, and this could change the distance between them and
some other discipline z.
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a discipline of interest, a single row of the matrix, then arrange these disciplines in

ascending order. Since every column will have one discipline compared to itself, a

distance of zero, that discipline becomes a pole—a discipline at the bottom or top of

the hierarchy.

To evaluate these hierarchies one can reconstruct a distance matrix from only

the distances present within the single column of the matrix used to generate the

hierarchy: a significant loss in information to be sure. Hierarchies can then be ranked

by the R2 value of their vectorized matrix plotted against the vector of the original

matrix (Table 5).

Evaluation of Fit Between Modularity and Structure

Since modularity results are not guaranteed to agree with the domain architecture

or distances represented in trees (see Figure 23) a method of assessing the fit between

modularity and trees was developed.

Perhaps the simplest method of assessing the fit between structures and a mod-

ularity result is counting the number of Sub-tree Pruning and Re-graft (SPR) op-

erations needed to put the members of each module within the same domain—and

perhaps relativizing this count to the total number of leaves on the tree to give a

distance measure (RSPR). For example, a tree with 10 leaves and 1 leaf not branch-

ing from within a domain consisting only of members of its assigned module would

have an RSPR = 0.10. Unfortunately, this method is sensitive only to the topology

of the tree and not to its metric aspects: SPRs do not account for branch lengths.

One method that is sensitive to branch lengths when assessing module fit is the

subtype diversity ratio5 of a module (SDRm), which can be defined as the ratio of

the mean within-module (within-subtype) pairwise distance to the mean between-

module pairwise distance (Rambaut et al. 2001).

SDRm =

∑n
i,j dij∑n
i,k dik

· N
∗

N
: for leaves i, j in module m ∈ M and k not in m (5.5)

Where N is the number of pairwise combinations of elements of m and N∗ is the

number of pairwise combinations of elements between m and all other modules6.

5A measure originally developed to assess the fit between HIV viral subtypes and viral phyloge-
nies.

6More precisely, N = |m×m|, and N∗ =
∑n

k |m× k| for k ∈ M s.t. k ̸= m.
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The SDRm is a measure of how “tightly” m is clustered relative to the rest of the

tree, when SDRm is low, the module is tight, when it is high it is loose or sparse.

In an inversion of the unfortunateness seen in the RSPR method, the SDR method

accounts only for the metric aspects of the tree and not for its topology—the SDR

of a module will be the same regardless of the branching pattern of the tree, so long

as the distances remain the same.

A method was developed that measures the ratio of the Distance Separating

Elements of a module (DSE) from a domain to the Total (non-leaf) Intramodule

Distance (TID) between internal nodes in a module to account for both the metric

and topological aspects of trees when assessing the fit of modularity results. As such,

this is a measure of the Topological and Metric Disagreement for a module (TMDm)

of a tree from a modularity result. To my knowledge this method is original.

When sβα is defined7 as the length of the split separating the sets of leaves α and

β, TMDm can be defined as follows,

TMDm =
DSEm

TIDm

(5.6)

DSEm =
∑

sβα : for α, β ⊈ m and α ∩m ̸= ∅ and β ∩m ̸= ∅ (5.7)

TIDm =
∑

sδγ : for |γ| ≠ 1 ̸= |δ| and γ ∩m ̸= ∅ and δ ∩m ̸= ∅ (5.8)

I will explain each of the side conditions in turn. Firstly, for theDSEm, specifying

that both α and β must not be subsets of m ensures that one does not sum those

splits that are parts of domains consisting entirely of members of a module8, as

these splits do not separate elements of the module. That the intersection of the

module m and the sets (α, β, δ, γ) that each split separates must be non-empty is to

specify that one only sum those splits that separate members of the module under

consideration—that is, one only sum those splits that are between members of a

module. Finally, for TIDm, that |γ| and |δ| cannot equal 1 ensure that no leaf split

7For a concrete example, s
{everything else}
{‘Biology′} would be the length of the terminal branch with

‘Biology’ as a leaf.
8For lack of a better term, and in the spirit of the term ‘monophyletic’ perhaps one could call

these domains ‘monomoduletic’.

41



is counted. This last condition is important since a leaf would always disagree with

a module if there were more than one element of the module and it was a member

of the module.

These conditions together ensure that the TMDm is a distance measure: when no

elements of a module are within the same domain (monophyletic group) TMDm = 1

and when all are “monomoduletic” TMDm = 0. Variation emerges between these

extremes that indicate the degree of fit between a modularity result and a tree

consisting of elements of that module.

Together, SPR, SDRm and TMDm can give us a picture—along various axes

of analysis—of the fit between a modularity result and the structures it is mapped

onto.

5.10 Visualization

Distance matrices can be fed, once converted to NEXUS format, into software used to

generate phylogenetic trees. SplitsTree is one such piece of software that generates

phylogenetic networks, or a splits-net, by the method of split decomposition (see:

Bandelt and Dress 1992; Huson and Bryant 2006; Dopazo et al. 1993).

SplitsTree can also be used to generate rooted and unrooted bifurcating trees

(hierarchical and non-hierarchical trees). To generate trees, SplitsTree has the option

of using two different algorithms, each with their own set of underlying assumptions.

UPGMA

The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm

(Sokal and Michener 1958) is a currently unpopular hierarchical clustering method

for constructing phylogenetic trees. This is because UPGMA assumes a constant rate

of evolution, sequence diverge—an assumption that, presumably, is often violated.

The algorithm functions by first joining the closest elements in the distance matrix

and making them sister taxa within the tree with identical branch lengths equal to

half their distance. Then secondly calculating a new matrix by taking the mean

of the pairwise distance between the joined elements and everything else. So for a

distance matrix with disciplines i...n where the distance dij was the smallest, i and j

would be merged into īj, and the new distance matrix would be calculated as follows,
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dījk =
dik + djk

2
(5.9)

Neighbour Joining

The Neighbour Joining (NJ) algorithm, and its variants (Bio-NJ), all contain the

underlying assumption that rates of evolution might differ between sister taxa. This,

to my mind, is a much more realistic assumption for both DNA sequence evolu-

tion and the differences that emerge between discourses in the process of generating

knowledge. There seems to be no reason to assume that since two disciplines are

most closely related, that they are just as different from their nearest relative9.

The mathematical properties of NJ are too complex to reiterate here (see Saitou

and Nei 1987). But, similarly to UPGMA, NJ is a bottom up hierarchical classifi-

cation algorithm that takes a distance matrix, except first modifies it, then chooses

the nearest neighbours to join by a new node in a star tree. Then a separate cal-

culation is preformed to decide the branch lengths between now sister taxa, before

recalculating the modified distance matrix.

So, excluding linear hierarchies and rhizomes, SplitsTree allows us to visualize

the structures outlined in § 1.2-1.4, providing a means of comparison between our

intuitions and the encyclopedic data.

D3 Graph Visualizations

Networks were represented using the D3 graph visualization JavaScript library

(Botstock et al. 2011). Since the relevant graphs were too large to be meaningfully

displaying in a simple network or force directed graph, an approach based on the

hive-plot of Krzywinski et al. (2012) was used. These plots avoid the problem of

computing the optimal layout for a graph (and hoping that clusters appear clustered)

by stipulating that clusters of related nodes lie in radial axes, with connections

between nodes of different clusters shown as edges between axes and within-cluster

connections compressed along the axis (see Figure 27). The size of nodes vi are

represented proportional to g(vi) and edge widths as |{x | x ∈ Ci ∧ x ∈ Cj}|.

Rooting Trees and Networks

Trees and networks were rooted both by hand and automatically by SplitsTree. In

9Indeed, this does not seem like the kind of thing about which one would usually even have
intuitions prior to seeing the results of using algorithmic methods of classification.
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UPGMA trees the root was placed at the midpoint of the tree (due to the assumption

of equal rates of evolution), while in NJ trees the root was placed next to the last

taxon to be resolved in the tree during hierarchical clustering. This taxon will be the

one that never had the smallest distance to another taxa during tree construction.

Both of these methods derive from assumptions about sequence divergence, and I am

very skeptical that they can be justified in any analogous way when the input data is

not evolved sequences but encyclopedic texts (but see § 7). It seems the roots serve

only to highlight the possibility for a polarized process of disciplinary organization:

a possibility that I believe will be unrealized most often, but certainly not impossible

in specific cases.

Consider also the issue of interpreting internal nodes and splits,

There is an important difference between phylogenetic trees and more

general split networks: Any rooted tree has a direct interpretation in

evolutionary terms: the leaves represent taxa and the internal nodes rep-

resent speciation events. In a (possibly rooted) split network, the internal

nodes do not have such a direct interpretation. Instead, split networks

must be viewed on a more abstract level as networks giving a visual

representation of incompatible signals, that is, showing how “tree-like”

or “certain” parts of a phylogeny are. (Huson and Bryant (2006) User

Manual for SplitsTree4 V4.6 )

Here an analogy with sequence diverge seems more appropriate: in a tree the in-

ternal nodes represent major differentiations in conceptual structure, while in a split

network the internal structure represents unresolved conceptual signals, or estimates

of how certain we can be in differentiations in conceptual structure.
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Chapter 6

Results

Wikipedia

Table 5 presents the top 3 results of a linear ordering of the canonical set of

disciplines. Although all the best results have p-values << 0.05, the value of the

regression of the distorted and original matrices don’t show correlation. This was to

be expected since constructing a linear ordering in this way significantly reduces the

amount of information used from the original distance matrix1.

Figure 1 depicts a simple tree representation of the distances computed by an-

alyzing Wikipedia pages for the canonical set of disciplines. In ascending order it

appears almost exactly to match the intuitive linear hierarchical structures. In fact,

appart from cosmology, it appears quite similar to what one might expect from a

branching hierarchy of physical reductionism (the scale of the entities in question

roughly increases as you move away from the root).

To obtain a result that so closely matches our intuitions about the conceptual or-

ganization of disciplines is surprising—indeed, amongst so much philosophical doubt,

to obtain a result by empirical means that agrees with a priori philosophical specu-

lation is always quite surprising. But this image is only part of the picture: it was

generated using a particular set of input disciplines, a particular algorithm (namely

UPGMA, see Sokal and Michener 1958), and parameters (tree must be rooted, un-

weighted). So it would be unfair and unrealistic to insist that this tree (these meth-

ods) be given special status just on the grounds that it (they) agrees with some

common intuitions; especially since the R2 value (0.477) is so low compared to other

trees given the same dataset. Indeed, subtle changes in the choices of parameters

here can give widely different trees.

1Certainly the methods of linearizing used by Fanelli and Glänzel (2013) were more advanced
than the simple matrix manipulations presented here. Nonetheless, since the linear representa-
tions were constructed with the same distance matrices used in (reticulated) trees, they should be
considered as the proper point of departure.
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For example, Figure 2 was generated using the same dataset, algorithm, and

having the same topology, but allowing the use of weights when computing the tree.

The difference in branch lengths—most prominent in the case of Geology—indicates

a greater difference in linked terminology than made apparent by the previous tree,

and likewise the close proximity of quantum mechanics and general physics was

underrepresented in the previous tree2.

In Figure 3 the Neighbour-Joining algorithm was used, and it is once again un-

weighted. The bifurcation between the branch containing biology and that contain-

ing philosophy is significantly more pronounced than in either Figure 1 or Figure 2.

Figure 3 is hardly in agreement with the expectations of physical reductionism—at

least, significantly less so than Figure 1. This is not a mark against it. Indeed, this

kind of major bifurcation in the tree seems to be what Dupré had in mind when

he suggested branching to accommodate the split between micro- and macrophysics

(See § 1.2, Tree-Like Hierarchy). It still does accord with a quite natural division of

disciplines into physical, life, and social sciences, although viewing the tree in rooted

form perhaps obscures this interpretation.

Examining the unrooted version in Figure 4, one can clearly see three branches

with intuitively physical, life and social science leaves (again, excluding geology,

which here as elsewhere appears to be the nonconformist). Amongst those with

some familiarity in looking at phylogenetic trees, there is an immediate temptation

to interpret something more than clustering into rooted trees, i.e. polarized relations

of ancestry and descent. The use of an unrooted tree makes more sense when there

is no intention of displaying historical information; Figure 4 and its kind are more

obviously being used to represent clustering of similarity, distance, amongst the data

represented by the leaf disciplines.

While in Figures 1-3 the root was chosen automatically, the root could also be cho-

sen manually. The root will automatically appear adjacent to the most distant leaf,

the outgroup, so one can choose the location of the root by choosing the outgroup.

Taking the same parameters as given for Figure 3 and manually setting the out-

group to philosophy places the root of the tree adjacent to this leaf—consequentially

producing the structural arrangement of the canonical disciplines seen in Figure 5.

2R2 values for both trees are the same since they are calculated from the weighted version of
the tree.
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Setting aside intentional parameterizations overemphasizing the importance of

philosophy, that this kind of tree manipulation is possible in general has interesting

parallels in how we construct trees that seems intuitive to us. It is always possible, if

we do not like the hierarchical arrangement that presents itself, to turn the tree on its

head and produce the contrary hierarchy (as often happens when people stumbling

over the linear-hierarchical model begin to ask whether, with respect to mathematics

perhaps, the hierarchy starts or ends there). Nonetheless, this structural manipula-

bility should not be taken with much pessimism: in order to avoid arbitrariness one

need only be reasonably explicit about the parameters used and modifications made.

As well as being able to manipulate the outgroups of existing trees one can add

leaves to existing trees—almost ad infinitum. Figure 6 was generated for the FEGC

dataset mentioned above (Methods § 5.4); it is a cladogram drawn in a slanted fashion

for readability. But before we examine large-scale representations, let us consider the

slightly less expanded set of disciplines in Figure 7 and Figure 8.

Figure 8 was produced using the same experimental set up as in Figure 7 (a phylo-

gram, with outgroup chosen automatically, generated using the UPGMA algorithm),

yet uses the Canonical+ dataset (it has additional leaves for ‘Logic’, ‘Mathematics’,

‘Archaeology’ and ‘Meteorology’). Interestingly, the addition of both philosophy and

logic to the mix resulted in the tree being automatically rooted closer to philosophy—

possibly due to the close similarity of philosophy and logic and their mutually signif-

icant difference from most other disciplines. Also, the close grouping of archaeology

and anthropology seems to make intuitive sense.

Unfortunately, neither of these UPGMA trees are well supported (R2 = 0.477 and

R2 = 0.355 respectively) when compared to the same setup when the Neighbour-

Joining algorithm was used3 (Figure 8-1, R2 = 0.771). Figure 9 also shows a, to

my mind more intuitive, grouping of anthropology and archaeology with sociology

and psychology, as well as a more obvious natural science domain and an deeper

branching physical sciences domain.

Consider the Canonical+ set represented as a rooted tree (Unweighted, NJ algo-

rithm) generated using hyperlinked keyword data in Figure 10, compared to when

distance was measured relative to the set of keywords gathered from the entire

3Indeed, both have far higher R2 values than any linear ordering
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Wikipedia page in Figure 11. Notable differences between Figure 10 and Figure

11 include that geology and meteorology are now sisters, the domain containing

physics and the one containing biochemistry are now sisters, the domain containing

psychology has moved lower in the tree, and logic has remained the outgroup.

As perhaps is to be expected, the total number of non-trivial (non-stop) words

on a given Wikipedia page shows a significant increase compared to just the set of

hyperlinked keywords. Table 2 summarizes the differences between the number of

keywords in the Canonical+ dataset. On merely the grounds that more keywords

ought to provide a better picture of the relationships between discourse, we have

reason to believe that Figure 11 is a better tree, approximation, of the structure of

discursive relationships than Figure 10.

While Table 2 summarized the absolute differences between the number of key-

words associated with each discipline in the Canonical+ set, we can also examine

the fraction of these keywords that are shared between members of the set in Table

3, i.e. the informative fraction inffr(i) for i ∈ Canonical+. In all cases, for each

discipline, the inffr increased when whole page text was extracted and processed

to obtain keywords. The most significant increase in inffr can be seen in ‘Geology’

and ‘Meteorology’, perhaps giving us greater confidence in Geology being a sister

discipline of Meteorology (Figure 11) than in its branching at the base of the clade

containing Anthropology and Archaeology (Figure 10). On average, there was a 40%

increase in the fraction of informative terms in each keyword dataset.

As well as wanting to know how many informative keywords are contained in each

discipline, we should also know how important a given discipline is in the set. A good

proxy for importance is betweenness centrality; g(v) for discipline v in a graph Gx

(A Gt graph is used here, see § 5.8 Statistical Evaluation of Keyword Datasets).

Table 4 presents the g(v) values for the Canonical+ dataset when hyperlinks are

used, and well when full text is extracted. Biology, Chemistry, and Physics indeed

obtain the highest g(v) values—are most important in connecting the network—

while Philosophy, Cosmology, Logic, Biochemistry, and Sociology all have g(v) = 0.

Interestingly, when full text is used, g(v) = 0 for all v ∈ Gwholepage
t . This could

only happen if every discipline node was connected to every other node directly4,

4This result obtains even when terms in the intersection of all discipline keyword sets are excluded
from the analysis, i.e. everything is connected to everything else, but not because every keyword
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i.e. Gwholepage
t is a rhizome (see § 1.5, Rhizomes). The rhizomatic character of

Gwholepage
t makes it impossible to draw distinctions between disciplines based on g(v)

values since the graph is unweighted. Nonetheless, by all other metrics considered

(keyword density, inffr) the underlying dataset for Gwholepage
t is better than a mere

hyperlink based analysis.

Once we are confident that we have obtained a structural representation worth

supporting, we can begin to treat it as data in its own right. Say we are debating

whether biochemistry is more biological, or more chemical. Indeed, this debate could

go on for some time, since the question is not precisely formed (e.g. it is unclear

whether we mean to debate the theoretical entities involved, or the similarity of

methods). If the question is then recast as one about the proximity within some

structural representation of a knowledge base, we can precisely specify the factors

involved in determining this proximity (See § 3.1 General Notion of an Empirical

Structure of Knowledge). In this case K, the knowledge base, is the Canonical+

data set, the relation Rn is the set theoretic distance metric (described in § 5.5

Distance Metrics), and P () is the Neighbour-Joining algorithm in conjunction with

the software SplitsTree. Given this representation of K we can say, from looking

at the resulting diagram Figure 11, that biochemistry is indeed closer to biology

than to chemistry; they are sisters, and this suffices when we are not concerned

with branch lengths. Indeed, while this might not satisfy our desire for a more

deeply philosophical or historical answer to the question of the relationship between

these disciplines, it certainly enjoys an exactness not possible from oral debates on

methodology or theoretical entities.

While the tree in Figure 11 was preferred to that in Figure 10 for reasons pertain-

ing to the keyword dataset used in its construction, both are trees and are limited by

the constraints imposed by tree topology. It might be expected on principle that a

network, like those depicted in Figures 14/15, would be better representations of the

hyperlink distance data. This was not observed5. The R2 values for for the Canon-

ical+ Full Text dataset (Figure 11, R2 = 0.881), hyperlink splits network (Figure

set has the same term in it.
5This result was so surprising that it was necessary to confirm the method was working on

artificially non-treelike data. This gave R2
network = 1.0 while R2

tree = 0.25, confirming that indeed
network-like data would give a higher R2 when represented as a network
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15, R2 = 0.877) are not significantly different6. This indicates that the Canonical+

hyperlink keyword dataset is not sufficiently network-like to reject the tree represen-

tation.

In contrast, when the full text from each Wikipedia page is used as a key-

word dataset (“Whole Page Parsing”), networks indeed show a better R2 value.

The Canonical+ full text dataset (Figure 11), the rooted splits network (Figure

18), and unrooted splits network (Figure 19) are significantly different7 (R2 =

0.886, 0.936, 0.936 respectively). So full text extraction generates distance matrices

that are significantly more network like than hyperlink data alone8.

SEP

SEP does not have in-text hyperlinks—instead employing an often rather small

set of hyperlinked “Related Topics” at the bottom of each article. Because of this

it was often impossible to obtain any meaningful distance measure from hyperlinks

alone, necessitating an extraction and analysis of non-hyperlinked keywords from the

text body.

Consider Figure 12. The set of articles included in figure 12 were chosen by hand

to reflect a distribution of current philosophy research areas, with an emphasis on

philosophy of biology. This star-tree tells us almost nothing about the relationships

between this set of disciplines, and certainly nothing about the differences between

those articles that all branch from the internal node. It is possible to analyse the

same pages by extracting full-text from the body of the article and parsing it into

keywords instead of relying merely on the related topics section. Figure 13 is the

product of such a full-text analysis—an analysis that clearly shows more distinctions

than was accomplished using hyperlinks alone9. Of note are the sisterhood of both

6Using a ∆R2 ≥ 0.01 as cutoff for significance.
7Rooted and unrooted networks will always have the same R2 value, since rooting does not

distort the underlying splits network.
8Of course, the set of hyperlinks on a page is a subset of the total set of non-stop words on a page,

so the full text extraction does incorperate all the information present in that of the hyperlinks,
and some extra.

9Statistical comparison of these two trees is deceiving. While Figure 12 does indeed have a
higher R2 than Figure 13, this is because the majority of distances in the matrix generating Figure
11 are 1.0, i.e. Uij = ∅. So, Figure 12 is certainly a better representation of its distance matrix,
but it is a better representation of a far worse dataset.
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ethics disciplines, the sisterhood of modal logic and philosophy of mathematics, and,

to me, the automatic rooting with the philosophy of biology as outgroup.

Journal Articles: Two Cases Close to Home

The analyses above can be applied to much more local sources of discourse. Figure

20 and Figure 21 were constructed from well cited journal articles written by members

of the Comparative Genomics and Evolutionary Bioinformatics group (CGEB), while

Figure 22 and Figure 23 were constructed from a selection of publications from full

time faculty of the Dalhousie Philosophy Department (DPD) and, for outliers some

recent work by my supervisors and colleagues in the Philosophy of Genomics (i.e.

Doolittle, Mariscal, Booth and Brunet).

Figure 21 has a higher R2 value than Figure 20, indicating, as now seems typical

for larger and thus more complex datasets, that the network representation is pre-

ferred in this case. In either representation one can see a domain corresponding to

most of those members of CGEB that are more closely associated with bioinformatics

than genomics (namely the domain top right containing ‘Blouin’ and ‘Beiko’). But

in Figure 21 the domain is now, more intuitively, represented to exclude ‘Harding’, a

member of CGEB who is arguably less affiliated with bioinformatics and more with

genomics. Moreover, ‘Doolittle’ is ever the outlier.

The network representation of the DPD is again preferred. Some faculty members

cluster better with themselves than with others (‘Abramson’, ‘Macintosh’, ‘Schotch’,

‘Jeffers’, ‘Sherwin’ and ‘Borgerson’), while others have their articles split between

different domains of the tree (‘Meynell’, ‘Vinci’, ‘Campbell’ and ‘Hymers’). Indeed,

this result is probably as affected by sample size and bias than the (in)constancy

of each individual’s writing, but it does provide some intuitive confidence in the

domain-level classifications that we can’t obtain from the tree-level R2 statistic. The

domain containing ‘Borgerson’ and ‘Sherwin’ is of note, since it seems to correspond

well to those authors using bioethical terminology. In Figure 23 this “Bioethics”

domain shows a high degree of connection to the “Philosophy of Genomics” papers

(‘BrunetDoolittle’, ‘MariscalDoolittle’ and ‘BoothDoolittle’) and those of ‘Meynell’

and ‘Campbell’, perhaps attributable to the use of biological terminology in each.

Finally, the analysis of the DPD clearly shows the distinct representational ca-

pacities of trees and networks. Bottom right in Figure 22 the paper titled ‘Meynell 1’
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is represented as if it were an ancestor10 of ‘Campbell 2’, a clearly impossible state of

affairs under most interpretations of ancestry and normal writing processes (not to

say manuscripts do not occasionally form a kind of revision-lineage). This paradoxi-

cal situation disappears once we ascend the representational hierarchy to a structure

(network) with sufficient capacity to represent small differences. Figure 22 shows

both papers as closely related yet implies no such absurd relations of ancestry.

Mapping Modularity

Figure 24 presents a mapping the results of optimal modularity on a Gt graph

onto a tree (NJ, Whole Page Parsing, Weighted). The tree shows 3 out of 5 sister taxa

as falling within the same cluster for clustersm0 andm1, as well as Logic-Philosophy-

Mathematics and Physics-Quantum Mechanics-Cosmology domains. Unexpectedly,

the cluster containing Biology and Biochemistry does not contain Chemistry and

does include Anthropology and Archaeology.

The tree requires only a few subtree pruning and regraft operations to restore

complete module-domain isometry, having an RSPR(tree) = 0.2. Both the SDR

and TMD agree with visual inspection: both indicate that m0 is the best cluster,

while m2 is the worst and m1 falls between them. Overall, both of the more sophisti-

cated methods evaluate the tree far less charitably than the RSPR. This is perhaps

to be expected, since m2 is so sparsely strung throughout the tree, and since every

module has at least 1 node deviating from the ideal of monomodularity.

Comparing Figure 24 to Figure 25-26, one can see that small differences between

modularity and domain architecture tend to wash out in larger trees11. Figure 26

shows an almost negligible RSPR(tree) = 0.081, and the overall SDR(tree) and

TMD(tree) both show improvements over those of Figure 24. Together, these re-

sults both confirm the visually apparent divide between the natural (m1) and social

sciences (m0) present in this representation. This result adds weight to the claim

that whether one i) considers merely the terminological overlap of discourses or ii)

considers the groups formed by more advanced networks of inter-discourse termi-

nological connection, one obtains a very similar result12. (See also Figures 28-29,

10The same result obtains with ‘Vinci 2’ and ‘Vinci 3’.
11Figure 25 is indeed a better representation of the underlying data than Figure 26, although

since TMD(tree) is calculated with respect to trees, Figure 24 must be compared to Figure 26.
12Figures 25-26 were analysed using the FastGreedy modularity algorithm of iGraph, see Figure
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discussed below)

Network Representation

While networks can be drawn from the same type of distance data used to gen-

erate trees and hierarchies, they can also be used to represent the presence-absence

data (used to calculate distance) directly. Since these data structures are often quite

large in comparison to a simplified distance matrix, some limiting of the data is

required before representation. Hive plots are used over conventional force-directed

graphs to more clearly display inter-cluster structure, multiple connections between

nodes are represented as thickness of the edge, and often an edge weight cutoff is

employed to reduce the number of edges shown. Both of these parameters are spec-

ified in each figure caption. While there are plenty of interesting features of the

following networks, I will attempt to confine myself to comments on their usefulness

qua representation and to comparisons between other representations.

Taking Figure 27 as an example, it represents the Canonical+ dataset (as in

Figures 8-11, 14-19). Comparing to Figure 24, which shows modularity mapped

onto a tree-structure, the inter-module connections displayed in the hive plot can

help us understand why the mapping of modularity onto a tree does not meet the

ideal of monomodularity. We can see the connections between Sociology/Psychology

(m0) and Anthropology/Archaeology (m2), partially explaining why the former two

appear at the base of a branch containing the latter two in Figure 24.

The hive plot also facilitates quick comparison of connections to our intuitions.

While the connection of Philosophy to Archaeology, Anthropology, Physics, and

Cosmology seem obvious given the status of the former two as humanities and the

physics-centrism of the philosophy of science, the connection to Meteorology strikes

one as odd. In fact, this connection can be traced to the fact that meteorological

writing began both in the Upanishads and with Aristotle, but only a cursory look at

Figure 27 reveals that at least some (perhaps unintuitive) explanation of connection

is required.

34 for a representation employing optimal modularity and subclustering. Both representations show
a similar natural-science social-science divide, although Figure 34 does this in an albeit less binary
way.
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Hierarchical clustering of large datasets can also be usefully displayed on a hive

plot. For comparison, consider Figures 28 and 29, which display the clustering and

subclustering of the large FEGC dataset mapped onto a phylogenetic tree13. With

a TMD(treefig28) = 0.547 and TMD(treefig29) = 0.598 it is apparent that here the

subclustering is a worse fit to the tree. Nonetheless, one subcluster does achieve the

ideal of monomodularity (TMD(mfig29
5 ) = 0.0) not present in its supercluster. The

following is an overview of the subclustering results with clusters (Figure 28) on the

right and their subclusters (Figure 29) and intuitive names on the left (for TMD(mi)

see figure legend).

m0 =⇒

⎧⎨⎩m0 Genomics / Proteomics

m1 Biology Subdisciplines
(6.1)

m1 =⇒

⎧⎨⎩m2 Evolution

m3 Paleontology
(6.2)

m2 =⇒

⎧⎨⎩m4 Outliers

m5 Ecology
(6.3)

While the above schema in conjunction with Figures 28-29 are simple enough, a

summary of the clustering results are much more clearly presented in a hive plot,

which represents clustering and subclustering simultaneously. In Figure 30 clusters

are plotted along three radial axes, and the subclusters are plotted as coloured seg-

ments of each axis—no supplementary description is necessary.

Keeping in mind how the FEGC dataset was obtained (§ 5.4), it is interesting that
Ecology related pages were so prominent that they emerged as dominating one of

the main clusters (Figure 30, left). And while the main Ecology cluster has captured

the outliers (including Chemistry) the subclustering in that axis shows a clear split

between the two. The top axis also shows an interesting split between the ‘omics’

disciplines and a large cluster of subdisciplines of biology, and the rightmost cluster

shows clearly the disproportionate relative size of the subclusters of mfig28
2 .

Besides mere ease of representation for clusters, a hive plot informs in ways not

available from a (reticulated) tree. Since g(vi) for each node is represented as the

13Albeit, not a very well scoring tree, but it suffices for the explanation at hand.
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size of each node, the most central nodes (g(vi) ≫ 0) in each cluster can be identified

with relative ease (as diagrammed below).

m0
g(vi)≫0−−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Molecular Biology

Chemical Biology

Metagenomics

Systems Biology

Genomics

(6.4)

m1
g(vi)≫0−−−−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mathematical and Theoretical Biology

Structural Biology

Cell Biology

Computational Biology

Microbiology

(6.5)

m2
g(vi)≫0−−−−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Evolutionary Developmental Biology

Evolutionary Biology

Evolutionary Psychology

(6.6)

m3
g(vi)≫0−−−−→

{
Paleontology (6.7)

m4
g(vi)≫0−−−−→

⎧⎨⎩Zoology

Astrobiology
(6.8)

m5
g(vi)≫0−−−−→

⎧⎨⎩Ecology

*Glossary of Ecology
(6.9)

Of course, each of the main clusters can be further decomposed into plots showing

internal connections, i.e. intra-cluster presence-absence data. These decompositions

are presented for each axes in Figures 31-33. While Figure 31, (m0 and m1) is quite

densely connected, one can now see more clearly the connections that ensure, for

instance, that g(’Systems Biology’) ≫ 0. Figure 32 (m2 and m3) shows a general

increase and equalization of g(vi) values for each node excluding, understandably,
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the more niche disciplines of ‘History of Paleontology’ and ‘Biosocial Criminology’.

In Figure 33 (m4 and m5) there has been an increase in the g(vi) of both ‘Ma-

rine Biology’ and ‘Population Ecology’ as compared to their centrality within the su-

percluster, indicating a more significant importance in establishing within-discipline

connections. Interestingly, most subclusters show the same nodes with high g(vi) as

appear within the superclusters, demonstrating that disciplines that are important

between disciplinary groups tend to be important within them as well (But see the

case of Philosophy and Psychology presented in Figures 34-35 and discussed below).

Let us finally turn our attention to the network representation of our largest

canonical dataset in Figure 34. Firstly, the nodes with g(vi) ≫ 0 were often those

included in the manually chosen Canonical dataset, although Canonical++ does not

contain everything in the Canonical dataset (See Table 6). This provides some post

facto justification for the choice of the Canonical set to begin with, and indicates

another set of interest for future study, namely, the subset of Canonical++ where

g(vi) ≫ 0.

The most striking feature of this network is the predominance of “top-down”

connections (connections between pages about large groups of disciplines and their

subdisciplines) between the left cluster and the top and right clusters. This group

of connections far outweighs the number of connections between clusters roughly

corresponding to natural (right) and social-sciences (top), lending further support to

a pre-theoretic “two-domains” view of disciplines (See also Figures 25-26).

Subclustering of the right cluster shows a division between natural and pure-

sciences, separating, for instance, ‘Physics’ and ‘Chemistry’ from ‘Computer Science’

and ‘Mathematics’. The uppermost cluster divides roughly into applied, public sec-

tor, and pure humanities in descending order. Figure 35 shows the subclustered hive

plot of this cluster. Of immediate note is that while ‘Psychology’ shows a higher

centrality than ‘Philosophy’ in the superclusters of Figure 34, this relationship is re-

versed in the subclusters of Figure 35, indicating that while ‘Psychology’ is important

for establishing connections with disciplines outside of the humanities, ‘Philosophy’

is important for establishing them within.

While there are a variety of other possible analyses of the types described above,
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these analyses were chosen for their relative simplicity, intuitiveness, and their ex-

emplification of the representational capacities of the structures of interest. Indeed,

we have come a long way from the expressive power of intuitive hierarchical repre-

sentations of the sciences.
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Chapter 7

Conclusion

After so many representations have been offered, it would perhaps be desired to

put my faith in one in particular. It would be easy enough to simply choose the

representation (from the set offered) with the best fit between representation and

data (it is Figure 19), or the one with the most expressive power (it is Figure 34).

But this desiderata is complicated by external issues of ontology and internal issues

of quality that are themselves informed by the analyses offered here (“What do we

add to the list of disciplines?” / “What do we analyse as a proxy for Disciplines?”

/ “How good is this proxy?”).

Ontology

I have done my best to avoid any pontification about which discourses are dis-

ciplines, and which are not. I have partially circumvented this ontological problem

by choosing “canonical” sets to work with and directing my analysis towards those

in isolation. Nonetheless, this tactic was meant to circumscribe the problem of the

structure of science within such a narrow, admittedly general and arbitrary, view of

disciplines that analysis was possible—it was not meant as a decisive selection of the

actual domain of the problem.

I prefer a much more deflationary approach to the ontological problem: disci-

plines are the things people work within when they create discourses that cluster

better with themselves than with other discourses. These may descend (like species)

from a lineage of work, or they might not. They might be given common and familiar

names (‘Ecology’, ‘Computer Science’), or they might not (‘Developmental Evolu-

tionary Psychology’, ‘Biological Steganography’). But in any case, the “structure

of disciplines” or “structure of science” will depend on a prior selection of disci-

plines in general (and science in particular) that is well beyond the scope of any

representational technique here deployed.

58



It would, all ontological issues considered, perhaps be better to insist that there

really isn’t such as thing as the structure of disciplines, or science. Instead, what

can be offered, are structural representations of particular collections of scientific

discourse—representations that are notwithstanding changes in language, new devel-

opments, and the plethora of conceptual and terminological ambiguities. While this

may be unsatisfying, it is a degree more realistic than any Comptian hierarchy with

gerrymandered disciplinary boundaries and deceptively simple orderings. In such a

deflated and sufficiently weakened context, I feel confident that the representational

and evaluative procedures applied here have generated many good representations.

Quality

Given any tree of disciplines examined here, it is possible to construct a natural

language yet artificialy designed discourse that is sister to any given discipline1. Not

to mention the fact that completely random collections of terms will have some

structural relationship between them. This is hardly the kind of discourse about

which we might want to form structural representations, not the meat of structural

theorizing. But such artificial cases are not entirely different from the ways in which

encyclopedic discourses are constructed in the public sphere2.

Of course, Wikipedia and like encyclopedia serve as sources of disciplinary dis-

course in the same way that D. melanogaster serves as a source of human gene

homologs. Wikipedia is a model case, capturing some of the simple relationships

that would be difficult if not impossible (or immoral3) to study in the more com-

plicated discursive context. Analyses of journal articles and SEP do circumvent

some of the limitations of Wikipedia, but we must recognize that choosing structural

representations involve choosing data of a given and limited quality.

Statistical assessment, here as everywhere, does allow us to make more fine

grained distinctions between the quality of datasets. Having more or larger informa-

tive fraction of keywords, being rhizomatic in terminological overlap and having a

1Taking the nearest discipline d′ to d, a discourse for a discipline sister to d could be constructed
by a) removing any sentence in the discourse of d′ that contained a term not in d and contained no
term in d, or b) by adding a sentence to d with terms not already contained in d numbering less
than those differing in d′.

2Indeed, it would be an entirely different project to attempt to quantify the amount of copy-
and-paste sentence- or paragraph-transfers have affected the structure of Wikipedia.

3It would be nice to have every publication, unfinished or rejected manuscript, digitized lab
bench notebook and private email.
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high betweenness centrality for major disciplines are certainly well developed statis-

tical notions of data quality. Indeed, it makes little sense to be any more confident

in a representation than in the quality of the data used in its construction.

Two Analogies: 1916 and 1977

“[I]f I have succeeded in assigning linguistics a place among the sciences, it is

because I have related it to semiology.”

F. de Saussure (1916), Cours de Linguistique Générale

Regardless of the correctness of the above, the more general claim that fashion-

ing a place for a discipline in the sciences depends on finding its relations to other

sciences is unquestionable—and perhaps even follows metaphorically from the ex-

pression ‘a place for ’. So what of disciplinology? Allowing me some liberalities with

the demarcation of disciplines, I would say that the project undertaken here is one

of many that could be grouped under the heading of disciplinology; structural disci-

plinology is one of disciplinology’s sub-disciplines4. And disciplinology itself seems a

sort of philosophy of science or bibliometrics.

So, if I have succeeded in assigning disciplinology a place in philosophy, it is

because I have related it the philosophy of science. And if I have succeeded in

assigning disciplinology a place in the sciences, it is because I have related it to

bibliometrics.

***

“Phylogenetic relationships cannot be reliably established in terms of noncomparable

properties. A comparative approach that can measure the degree of difference in

comparable structures is required...Thus, comparative analysis of molecular

sequences has become a powerful approach to determine evolutionary

relationships...To determine relationships covering the entire spectrum of extant

living systems, one optimally needs a molecule of appropriately broad distribution”

Carl R. Woese and George E. Fox (1977), Phylogenetic structure of the prokaryotic

domain: The primary kingdoms

4Other subdisciplines perhaps include more traditional bibliometrics, questions of inter-
disciplinary exchange and theoretical reductionism, questions dealing with the concept use specific
to disciplines or inter-disciplinary conceptual difference.
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Removing ‘Phylogenetic’ from the above and leaving “relationships cannot be

reliably established in terms of noncomparable properties”, we are left with a truism

about (structural) relationships5. Furthermore, when the relationships in question,

or the representation desired, is significantly variable one requires comparisons to

come in degrees of difference. Thus, when qualitative analysis fails to provide an

understanding of the relationships between disciplines, a more molecular approach is

required to establish relations. Finally, when the desired comparisons span the entire

spectrum of extant systems, one requires data of appropriately broad distribution.

All disciplines will have a variety of qualitative features. But the discourses that

end up represented in encyclopedic repositories are indeed of appropriately broad

distribution, their sequence constraints (what Woese and Fox needed) makes them

sufficiently “molecular.” They can be compared, and these comparisons come in

degrees.

Together I think these analogies highlight the key contributions of this project: I

carved out a place for disciplinology on the bibliometric side of bioinformatics, and I

have done so with methods that, I like to think, would have appealed to the pioneers

of phylogenetic bioinformatics itself.

Intuition Revisited

Surely only the most post-modern amongst us will be inclined to say something

like, “Disciplines are nothing but texts”. So, when we interpret structural repre-

sentations, like those I have shown today, as representing disciplines, concepts, or

researchers we have to take this with a thick grain of salt. Nonetheless, when com-

pared with attempts to derive such structures from memory, our intuitions about

relatedness, complexity or consensus, I think it is obvious that an empirical ap-

proach enjoys a different standard of justification—if for no other reason than that

empirically derived structures can be assessed statistically and compared with new

data as it arrives.

With all the intuition-bashing I have been doing, it should be noted how fortunate

it is that some features of the representations presented did indeed agree with some

5As Beiko notes, relationships can indeed be established between two entities even if they share
no comparable properties as long as they share properties through other entities: establishing
relationships transitively. Nonetheless, the fact remains that these intermediate comparisons do
depend on the comparability of properties.
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of our intuitions—no quantity of statistical data would be able to convince us that

quantum mechanics is more closely related to 18th century art than to chemistry, or

that sociology and biochemistry are sisters. And when we see the natural sciences

group together to the exclusion of the social sciences, I think this gives us confidence,

if not reason, to believe that there is indeed something natural about this grouping.

Moreover, it is only once we begin to trust the representation to some extent that

we can start picking out oddities (since without some faith, everything seems odd).

Counter-intuitive, odd results are what trigger a closer investigation to see if there

is a genuinely interesting reason for such an oddity to emerge.

Indeed, in demoting intuitive structures I did not mean to imply that something

just being empirical is sufficient to make it better. Recall that, in connection with the

canonical set of disciplines, I have only presented one kind of data, analyzed using one

kind of distance metric, and although it was represented in many different structures,

only one kind of phylogenetic analysis was used for each. Different data, distance

metrics, and phylogenetic approaches can give mildly to wildly different answers—in

fact, my early work on this project was mostly spent toiling around in the sandbox

of algorithms, tools and data sources to find ones that did gave intuitive results! Put

more concisely, structural representations of knowledge are model-dependent and

interest-relative, and while this is what makes them useful, it is also what makes

them difficult to interpret. Nonetheless, an empirical approach does enjoy certain

“virtues of discovery”, namely, that without an empirical approach one is not likely

to find oddities6 and irregularities that are unexpected given ones current stock of

intuitions.

I hope to have convinced you that we are in a far more complex situation than one

might be led to believe by intuitive hierarchical, disunity, or disorderly pictures—

pictures of knowledge in general and science in particular. Nonetheless I believe

there has been more disagreement than is necessary, since equivocation between,

or dismissiveness of, different representational goals is often the cause. When our

6For example, early work on a larger collection of disciplines and concepts showed a connection
between Demonology, dance and vegetarianism. Further investigation revealed that this was due
to a mutual connection to Porphyry of Tyre, who wrote on all three topics and happens to be the
locus of the first “Trees of Knowledge.” The connection between Meteorology and Philosophy in
Figure 27, produced by the Meteorological writings of Aristotle and in the Upanishads, would also
qualify as such an oddity.
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goals are clear, our methods appropriate, and means of evaluation and adjudication

are offered, we can obtain good representations of the structure of knowledge that I

believe help us understand the architecture of the complex conceptual world in which

we live.
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Appendix A

Figures

Figure A.1: Dataset: Canonical, Parameters: Unweighted, Rooted, Algorithm: UP-
GMA, Evaluation : slope = 0.501, R2 = 0.477, pvalue = 5.28e09
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Figure A.2: Dataset: Canonical, Parameters: Weighted, Algorithm: UPGMA,
Evaluation : slope = 0.501, R2 = 0.477, pvalue = 5.28e09
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Figure A.3: Dataset: Canonical, Parameters: Unweighted, Algorithm: Neighbour-
Joining (NJ), Evaluation : slope = 0.969, R2 = 0.712, pvalue = 5.82e16
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Figure A.4: Dataset: Canonical, Parameters: Unweighted, Unrooted, Algorithm:
NJ, Evaluation : slope = 0.969, R2 = 0.712, pvalue = 5.82e16
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Figure A.5: Dataset: Canonical, Parameters: Unweighted, Manually Rooted in Phi-
losophy, Algorithm: NJ, Evaluation : slope = 0.969, R2 = 0.712, pvalue = 5.82e16
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Figure A.6: Dataset: FEGC, Parameters: Slanted Cladogram, Algorithm: UPGMA,
Evaluation : slope = 0.729, R2 = 0.388, pvalue = 0.0
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Figure A.7: Dataset: Canonical, Parameters: Phylogram, Algorithm: UPGMA,
Evaluation : slope = 0.501, R2 = 0.477, pvalue = 5.28e09
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Figure A.8: Dataset: Canonical+, Parameters: Phylogram, Algorithm: UPGMA,
Evaluation : slope = 0.213, R2 = 0.355, pvalue = 2.08e11
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Figure A.9: Canonical+, Parameters: Phylogram, Algorithm: NJ, Evaluation :
slope = 1.005, R2 = 0.771, pvalue = 8.64e35
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Figure A.10: Dataset: Canonical+, Parameters: Unweighted, Algorithm: NJ
Evaluation : slope = 1.005, R2 = 0.771, pvalue = 8.64e35 (Mantle test results:
R2 = 0.771, pvalue = 0.001)
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Figure A.11: Dataset: Canonical+, Parameters: Unweighted, Whole Page Parsing,
Algorithm: NJ, Evaluation : slope = 1.025, R2 = 0.872, pvalue = 8.93e48 (Mantle
test results: R2 = 0.872, pvalue = 0.001)
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Figure A.12: Dataset: SEP-PhilBio, Parameters: Weighted, Algorithm: NJ,
Evaluation : slope = 1.03, R2 = 0.892, pvalue = 1.21e32

75



Figure A.13: Dataset: SEP-PhilBio, Parameters: Weighted, Whole Page Parsing,
Algorithm: NJ, Evaluation : slope = 0.974, R2 = 0.785, pvalue = 4.68e23
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Figure A.14: Dataset: Canonical+, Parameters: Weighted, Rooted Algorithm: Split-
sNetwork, Evaluation : slope = 1.026, R2 = 0.877, pvalue = 9.40e49
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Figure A.15: Dataset: Canonical+, Parameters: Weighted, Algorithm: SplitsNet-
work, Evaluation : slope = 1.026, R2 = 0.877, pvalue = 9.40e49
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Figure A.16: Dataset: Canonical+, Parameters: Weighted, Algorithm: SplitDecom-
position, Evaluation : slope = 0.840, R2 = 0.457, pvalue = 2.33e15
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Figure A.17: Dataset: Canonical+, Parameters: Weighted, Whole Page Parsing,
Algorithm: NJ, Evaluation : slope = 1.024, R2 = 0.872, pvalue = 8.93e48
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Figure A.18: Dataset: Canonical+, Parameters: Weighted, Whole Page Pars-
ing, Rooted Algorithm: SplitsNetwork, Evaluation : slope = 1.007, R2 = 0.936,
pvalue = 2.92e63
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Figure A.19: Dataset: Canonical+, Parameters: Weighted, Whole Page Parsing,
Algorithm: SplitsNetwork, Evaluation : slope = 1.007, R2 = 0.936, pvalue =
2.92e63
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Figure A.20: Dataset: CGEB Papers, Parameters: Weighted, Whole Page Parsing,
Algorithm: NJ, Evaluation : slope = 1.03, R2 = 0.778, pvalue = 0.001
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Figure A.21: Dataset: CGEB Papers, Parameters: Weighted, Whole Page Parsing,
Algorithm: SplitsNetwork, Evaluation : slope = 1.022, R2 = 0.852, pavlue = 0.001
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Figure A.22: Tree of Dalhousie Philosophy Department: R2 = 0.798
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Figure A.23: Network of Dalhousie Philosophy Department: R2 = 0.83
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Figure A.24: Dataset: Canonical+, Parameters: Optimal Modularity, Weighted,
Whole Page Parsing, Algorithm: NJ. Evaluation : slope = 1.005, R2 = 0.771
RSPR(tree) = 3/15 = 0.2
SDR:
SDR(m0) = 0.533
SDR(m1) = 0.901
SDR(m2) = 1.128
SDR(tree) = 0.854
TMD:
TMD(m0) = 0.187
TMD(m1) = 0.533
TMD(m2) = 0.605
TMD(tree) = 0.441
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Figure A.25: Dataset: Canonical+, Parameters, Optimal Modularity, Weighted
Whole Page Parsing, Algorithm: SplitsNetwork. Shows approximate natural Vs
social science division and network representation is preferred. Evaluation : slope =
1.028, R2 = 0.76
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Figure A.26: Dataset: Canonical++, Parameters, Optimal Modularity, Weighted
Whole Page Parsing, Algorithm: NJ. Shows approximate natural Vs social sci-
ence division. Network representation is preferred. Evaluation : slope = 1.117,
R2 = 0.718
RSPR(tree) = 4/49 = 0.081
SDR:
SDR(m0) = 0.832
SDR(m1) = 0.903
SDR(tree) = 0.868
TMD:
TMD(m0) = 0.384
TMD(m1) = 0.409
TMD(tree) = 0.396
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Figure A.27: Hive plot of Canonical+ dataset with modularity computed using
iGraph optimal modularity and connections between nodes filtered to include only
connections with weight ≥ 10, and thickness = 2

√
weight (default unless otherwise

specified)
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Figure A.28: Dataset: FEGC, Parameters: Slanted Cladogram, Algorithm: UP-
GMA, Evaluation : slope = 0.729, R2 = 0.388, pvalue = 0.0
TMD(m0) = 0.226
TMD(m1) = 0.745
TMD(m2) = 0.672
TMD(tree) = 0.547
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Figure A.29: Dataset: FEGC, Parameters: Slanted Cladogram, Algorithm: UP-
GMA, Evaluation : slope = 0.729, R2 = 0.388, pvalue = 0.0
TMD(m0) = 0.548
TMD(m1) = 0.513
TMD(m2) = 0.708
TMD(m3) = 0.816
TMD(m4) = 1.000
TMD(m5) = 0.000
TMD(tree) = 0.598
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Figure A.30: Hive plot of FEGC dataset, optimal modularity and subclustering,
default filtering.
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Figure A.31: Hive plot of subclustering of top cluster for Figure 30
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Figure A.32: Hive plot of subclustering of right cluster for Figure 30
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Figure A.33: Hive plot of subclustering of left cluster for Figure 30
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Figure A.34: Hive plot of subclustering of Canonical++ dataset
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Figure A.35: Hive plot of subclustering of Canonical++ dataset, top cluster, Weight
greater than or equal to 5
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Appendix B

Tables
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Table B.2: Summary of differences between number of hyperlinked and whole page
keywords in Canonical+ dataset.

Disciplines Hyperlinked Keywords Whole Page Keywords Difference

Cosmology 311 1242 931
Meterology 349 1942 1593
Logic 351 1818 1467
Biochemistry 355 1382 1027
Mathematics 435 1719 1284
Biology 464 1810 1346
Archaeology 510 2689 2179
Chemistry 531 1747 1216
Geology 532 1966 1434
Philosophy 679 3095 2416
Quantum mechanics 738 2184 1446
Psychology 760 4016 3256
Physics 805 1814 1009
Sociology 814 3195 2381
Anthropology 1081 2977 1896

Table B.3: Summary of the differences in the fraction of informative keywords for
the Canonical+ dataset when hyperlinked and whole page text is used.

Disciplines inffr(Canonical+) inffr(Canonical+WholePage) ∆

Anthropology 0.321626617 0.646210597 0.32458398
Archaeology 0.390196078 0.69910847 0.308912391
Biochemistry 0.211267606 0.722865412 0.511597807
Biology 0.321888412 0.73814774 0.416259328
Chemistry 0.338432122 0.781017724 0.442585602
Cosmology 0.321656051 0.753968254 0.432312203
Geology 0.127819549 0.671573604 0.543754055
Logic 0.455840456 0.821428571 0.365588116
Mathematics 0.337931034 0.799537839 0.461606805
Meterology 0.171428571 0.672230653 0.500802081
Philosophy 0.393603936 0.71319797 0.319594034
Physics 0.61242236 0.843148046 0.230725686
Psychology 0.171052632 0.639103362 0.468050731
Quantum mechanics 0.516260163 0.788197621 0.271937459
Sociology 0.224815725 0.713347921 0.488532196
Average 0.327749421 0.733538919 0.405789498
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Table B.4: Normalized and Non-Normalized betweenness centrality measures for
the Canonical+ dataset using only hyperlinked keywords in a Gt graph. A graph
for the full text extraction Gwholepage

t was also constructed. Values of 0 indicate
that discipline was never included in the shortest path between any other pair of
disciplines, i.e. Gwholepage

t is a rhizome.

Disciplines g(vi) gnormalized(vi) g(vi) for G
wholepage
t

Biology 0.928616697 1 0.0
Chemistry 0.752338958 0.81017169 0.0
Physics 0.632818977 0.681464138 0.0
Psychology 0.360443016 0.38815048 0.0
Mathematics 0.342500582 0.3688288 0.0
Quantum mechanics 0.341631702 0.367893129 0.0
Archaeology 0.251035747 0.270333011 0.0
Anthropology 0.235992821 0.254133726 0.0
Meterology 0.088453801 0.095253296 0.0
Geology 0.066167698 0.071254047 0.0
Logic 0 0 0.0
Cosmology 0 0 0.0
Biochemistry 0 0 0.0
Sociology 0 0 0.0
Philosophy 0 0 0.0
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Table B.5: Top 3 linear hierarchical ordering ranked by R2. Discipline acting as pole
appears uppermost and boldface. R2 and pavlue for each regression analysis listed
above each column.

1st 2nd 3rd

R2 = 0.103, p = 0.016 R2 = 0.087, p = 0.028 R2 = 0.072, p = 0.046

Sociology Physics Biochemistry
Psychology Quantum mechanics Biology
Philosophy Cosmology Chemistry
Anthropology Chemistry Physics
Physics Philosophy Quantum mechanics
Biology Psychology Anthropology
Cosmology Biology Geology
Quantum mechanics Sociology Psychology
Chemistry Geology Sociology
Geology Anthropology Philosophy
Biochemistry Biochemistry Cosmology

Table B.6: Comparison of Canonical dataset and highly central nodes in Canoni-
cal++. When page does not appear in Canonical++ it is marked NA, and when
g(vi) ≫ 0 it is marked with a series of Xs.

Canonical Dataset g(vi) ≫ 0 for vi ∈ Canonical++

Cosmology NA
Geology NA
Philosophy XXXXXXX
Chemistry XXXXXXX
Biochemistry XXXXXXX
Sociology Sociology
Psychology Psychology
Anthropology Anthropology
Physics Physics
Biology Biology
Quantum Mechanics Quantum Mechanics

Meteorology
Mathematics
Computer Science
Agriculture
Geography
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