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Abstract 

The apelin receptor (AR or APJ) is a class A (rhodopsin-like) G-protein coupled 
receptor (GPCR) with wide distribution throughout the human body. Activation of AR by 
its cognate peptidic ligand, apelin, induces diverse physiological effects including 
vasoconstriction and dilation; strengthening of heart muscle contractility; angiogenesis; 
and, regulation of energy metabolism and fluid homeostasis. Recently, another 
endogenous peptidic activator of the AR, Toddler/ELABELA, was identified as having a 
crucial role in zebrafish embryonic development. The AR is also implicated in several 
pathologies, including cardiovascular disease, diabetes, obesity and cancer, making it a 
promising therapeutic target. Despite its established importance, the precise roles of AR 
signalling remain poorly understood. Moreover, little is known about the mechanism by 
which peptides activate the AR. Additional complexity arises because the AR is 
modulated by two endogenous peptide ligands, both of which appear to have multiple 
bioactive isoforms of varying length. This is compounded by the fact that the various 
apelin and Toddler/ELABELA isoforms are differently distributed and produce distinct 
cellular effects. This work aims to identify functionally critical amino acid residues on 
the extracellular face of the AR, as this region may contribute to the specificity and 
affinity of apelin binding, and to larger conformational changes preceding AR activation 
and internalization.  

Alanine-substitution mutants of negatively charged and aromatic residues in the  
N-terminus and extracellular loops 1 and 2 of the AR were prepared. Apelin-13-induced 
activation of the wild-type (WT) AR and mutants was then evaluated in HEK293A cells 
using western blotting to measure extracellular-signal-regulated kinase (ERK) activation. 
These studies revealed several mutations of interest. In particular two N-terminal 
mutants, E20A and D23A, previously shown to have reduced apelin-binding affinity and 
internalization, exhibit maximal apelin-induced ERK activation comparable to the WT 
AR. This suggests that the binding affinity and ability of apelin to activate downstream 
signalling via the AR are two separate parameters. Lastly, one element of this work was 
the production and purification of recombinant apelin-36, to be used in future structural 
and functional studies of AR ligand-binding and activation.   
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Chapter 1:  Introduction  

1.1 G-Protein Coupled Receptors 
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1.5.2 Scope of Apelin Functionality 
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Table 1.1 Sequences of human apelin and Toddler/ELABELA, the endogenous peptide 

ligands of the AR.

Preproapelin 
(Apelin-77) 

MNLRLCVQALLLLWLSLTAVCGGSLMPLPDGNGLEDGNVRHLVQPRGSRNGPGPWQGGRRKF
RRQRPRLSHKGPMPF 

Proapelin 
(Apelin-55) 

GSLMPLPDGNGLEDGNVRHLVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF 
Apelin-36 LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF 
Apelin-17 KFRRQRPRLSHKGPMPF 
Pyr-apelin-13 Pyr–RPRLSHKGPMPF 
Apelin-13 QRPRLSHKGPMPF 
Apelin-12 RPRLSHKGPMPF 

Preprotoddler 
(Toddler-54)

MRFQQFLFAFFIFIMSLLLISGQEPVNLTMRRKLRKHNCLQRRCMPLHSRVPFP 
Protoddler 
(Toddler-32) 

QEPVNLTMRRKLRKHNCLQRRCMPLHSRVPFP 
Toddler-22a KLRKHNCLQRRCMPLHSRVPFP 
Toddler-11 CMPLHSRVPFP 
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Chapter 2:  Production and Purification 

of Recombinant Apelin-36 

2.1 Introduction 







2.2 Materials and Methods  

2.2.1 Materials 



2.2.2. Cloning and Expression of 6xHis-SUMO-Apelin-36 
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2.2.3 Initial Purification of Apelin-36 

2.2.4 Expression and Purification of 6xHis-SUMO Protease 



2.2.5 Cleavage and Final Purification of Apelin-36 



2.3 Results and Discussion 





2.1 The reaction composition and thermocycling conditions used for PCR 
amplification of apelin-36.
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2.2 Parent masses of apelin-36 (natural abundance), corresponding to individual 
multiply charged mass spectrometry peaks shown in Figure 2.6. Each parent mass is 
calculated by multiplying the peak value by the corresponding charge, then subtracting 
the value of that charge to correct for the addition of protons.  



2.3 Parent masses of apelin-36 (13C- and 15N-enriched), corresponding to 
individual multiply charged mass spectrometry peaks shown in Figure 2.6. Each parent 
mass is calculated by multiplying the peak value by the corresponding charge, then 
subtracting the value of that charge to correct for the addition of protons.  



 
Figure 2.1 Schematic representation and amino acid sequence (open reading frame 
translated from Table 2.2) of 6xHis-SUMO-apelin-36. The 6xHis, SUMO, and apelin-36 
elements of the sequence are colour-coded to match the schematic representation. 



Figure 2.2 SDS-PAGE analysis demonstrating successful expression and initial Ni2+-
NTA affinity purification of 6xHis-SUMO-apelin-36. The BLUeye prestained protein 
ladder (Froggabio) is shown in lane 3. Lanes 1 and 2 contain BL-21 (DE3) E. coli cell 
pellets, 3 hours after induction with 0.5 mM IPTG (1) and without induction (2). Lanes 4, 
5, and 6 show the Ni2+-NTA column flow-through, and fractions from two 10 mL washes 
(20 mM imidazole), respectively. Lanes 7-12 contain samples from 6 x 1 mL elutions, 
and lane 13 contains a sample from a final 7 mL elution. All elutions were performed at 
300 mM imidazole. SDS-PAGE was performed using a 15% acrylamide gel, with 
electrophoresis at 170 V for 70 minutes. Bands were visualized using Coomassie Blue 
stain. 
 



 
Figure 2.3 SDS-PAGE analysis demonstrating successful enzymatic cleavage of 6xHis-
SUMO-apelin-36 by SUMO protease. The PageRuler prestained protein ladder (Bio-Rad) 
is shown in lane 1. Cleaved 6xHis-SUMO-apelin-36 is shown in lane 2, and the 
uncleaved sample is shown in lane 3. 6xHis-SUMO-apelin-36 Ni2+-NTA elution fractions 
were combined and incubated for 4 hours at RT with 100 µL recombinant 6xHis-
SUMOprotease and 1 mM DTT in Ni2+-NTA elution buffer. SDS-PAGE was performed 
using a 15% acrylamide gel, with electrophoresis at 170 V for 70 minutes. Bands were 
visualized using Coomassie Blue stain. 

 



 









Chapter 3:  Studying the Extracellular 

Face of the AR 

3.1 Introduction 





3.2 Materials and Methods  

3.2.1 Materials 



3.2.2 Site-Directed Mutagenesis of the AR 



3.2.3 Cell Culture, AR Gene Transfection, Apelin Stimulation, 
and Preparation of Lysates 



3.2.4 Resolution of Lysate Proteins by SDS-PAGE and Western 
Blotting Analysis 



3.2.5 Statistical analysis 

y= EC50

(Emax - 1)x +1



3.3 Results And Discussion 

3.3.1 Functional Characterization of Mutants of the EC Face of 
the AR   











3.3.2 Effect of Apelin-13 Concentration on Detection of Altered 
ERK Activation. 

















3.3.3 Caveats Concerning the Study of Exogenous Proteins in 
Cell Culture 



3.3.4 Limitations in the Quantification of pERK Western Blots 







3.3.5 Conclusions and Future Directions 









3.1 Mutagenic primer sequences used for site-directed mutagenesis of the AR.

ACCACCGGGGACTTGGCAA
ACACCACTAAGGTG 

CACCTTAGTGGTCTTTGCCA
AGTCCCCGGTGGT 

ACTAAGGTGCAGTGCGCAA
TGGACTACTCCATG 

CATGGAGTAGTCCATTGCGC
ACTGCACCTTAGT 

CAGTGCTACATGGACGCTT
CCATGGTGGCCACT 

AGTGGCCACCATGGAAGCGT
CCATGTAGCACTG 

GCCACTGTGAGCTCAGCTT
GGGCCTGGGAGGTG 

CACCTCCCAGGCCCAAGCTG
AGCTCACAGTGGC 

AGCTCAGAGTGGGCCGCTG
AGGTGGGCCTTGGG 

CCCAAGGCCCACCTCAGCGG
CCCACTCTGAGCT 

TCAGAGTGGGCCTGGGCAG
TGGGCCTTGGGGTC 

GACCCCAAGGCCCACTGCCC
AGGCCCACTCTGA 



3.2 The reaction composition and thermocycling conditions used for PCR 
amplification of apelin-36.
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3.4 Mean EC50 and Emax values for the WT AR and mutants E20A, D23A, and 
E174A, 





 
Figure 3.2 Functional analysis of 3xHA-AR N-terminal mutants. For the WT AR, N-
terminal mutants, and the WT AT1R (negative control), the fold change in (apelin-13-
induced) ERK phosphorylation was determined (B). Representative western blots for 
each receptor are shown in (A). Cells were treated with 1 µm apelin-13 for 4 minutes. 
Error bars indicate standard error, determined from the mean of three or more 
experiments (n >= 3). * indicates significant difference from the WT AR (***=p<0.001). 
Bar graphs were produced using Graphpad’s Prism 6 software.

  



 
Figure 3.3 Functional analysis of 3xHA-AR ELl mutants. For the WT AR, EL1 mutants, 
and the WT AT1R (negative control), the fold change in (apelin-13-induced) ERK 
phosphorylation was determined (B). Representative western blots for each receptor are 
shown in (A). Cells were treated with 1 µm apelin-13 for 4 minutes. Error bars indicate 
standard error, determined from the mean of three or more experiments (n >= 3). * 
indicates significant difference from the WT AR (*=p<0.05; ***=p<0.001). Bar graphs 
were produced using Graphpad’s Prism 6 software.  
  



Figure 3.4 Functional analysis of 3xHA-AR EL2 mutants. For the WT AR, EL2 mutants, 
and the WT AT1R (negative control), the fold change in (apelin-13-induced) ERK 
phosphorylation was determined (B). Representative western blots for each receptor are 
shown in (A). Cells were treated with 1 µm apelin-13 for 4 minutes. Error bars indicate 
standard error, determined from the mean of three or more experiments (n >= 3). * 
indicates significant difference from the WT AR (*=p<0.05; **=p<0.01; ***=p<0.001). 
Bar graphs were produced using Graphpad’s Prism 6 software.



Figure 3.5 -response experiments for apelin-13-induced ERK activation mediated 
by the WT 3xHA-AR. ERK activation is reported as the fold change in (apelin-13-
induced) ERK phosphorylation. Cells were treated with varying concentrations of apelin-
13 (10-11 M – 10-6 M) for 4 minutes. A representative western blot is shown above. Dose-
response plots were produced using Graphpad’s Prism 6 software, with the zero-dose 
baseline response plotted in a non-logarithmic form. 



 
Figure 3.6 -response experiments for apelin-13-induced ERK activation mediated 
by the E20A 3xHA-AR mutant. ERK activation is reported as the fold change in (apelin-
13-induced) ERK phosphorylation. Cells were treated with varying concentrations of 
apelin-13 (10-11 M – 10-6 M) for 4 minutes. A representative western blot is shown above. 
Dose-response plots were produced using Graphpad’s Prism 6 software, with the zero-
dose baseline response plotted in a non-logarithmic form.



 
Figure 3.7 -response experiments for apelin-13-induced ERK activation mediated 
by the D23A 3xHA-AR mutant. ERK activation is reported as the fold change in (apelin-
13-induced) ERK phosphorylation. Cells were treated with varying concentrations of 
apelin-13 (10-11 M – 10-6 M) for 4 minutes. A representative western blot is shown above. 
Dose-response plots were produced using Graphpad’s Prism 6 software, with the zero-
dose baseline response plotted in a non-logarithmic form.



  
Figure 3.8 -response experiments for apelin-13-induced ERK activation mediated 
by the E174A 3xHA-AR mutant. ERK activation is reported as the fold change in 
(apelin-13-induced) ERK phosphorylation. Cells were treated with varying 
concentrations of apelin-13 (10-11 M – 10-6 M) for 4 minutes. A representative western 
blot is shown above. Dose-response plots were produced using Graphpad’s Prism 6 
software, with the zero-dose baseline response plotted in a non-logarithmic form.

  



 
Figure 3.9 -response experiments for apelin-36-induced ERK activation mediated 
by the WT 3xHA-AR. ERK activation is reported as the fold change in (apelin-36-
induced) ERK phosphorylation. Cells were treated with varying concentrations of apelin-
36 (10-11 M – 10-6 M) for 4 minutes. A representative western blot is shown above. Dose-
response plots were produced using Graphpad’s Prism 6 software, with the zero-dose 
baseline response plotted in a non-logarithmic form.



Chapter 4:  Conclusion 

4.1 Summary of Findings 
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