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Abstract

Network graphs from Online Social Networks (OSNs) — representing network par-
ticipants, and their relationships and interactions — are now readily available to re-
searchers, and are an area of significant investigation. Visual layouts of these graphs
are a common tool to help understand a network’s underlying structure, form hypothe-
ses, and communicate results. Force-directed placement is a layout method known to
produce visualizations that contain a high level of useful information. However, pro-
ducing an acceptable visualization can take an unreasonable amount of time, as OSNs
can be very large, and existing layout techniques are computationally expensive.

In this work we propose a distributed computing method to speed up the com-
pletion time of social network graph layout. Using a commodity computer cluster,
additional CPU resources can be allocated to the layout task. Our method builds
upon existing graph layout techniques in the literature, and puts forward a graph par-
titioning scheme well-suited to graphs with small-world, scale-free network properties;
properties that are naturally occurring in social networks.

We implement our method within the Hadoop distributed computing framework,
and evaluate it for speedup and layout correctness on real-world social network graphs.
Our results indicate that our method provides good speedup as computing resources

are added, and that the resulting layouts correlate highly with their gold standards.
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Chapter 1

Introduction

Online Social Networks (OSNs) are currently among the most popular websites on
the Internet[3], connecting and facilitating communication for millions of people. A
good deal of the public interactions between users of many of these websites can be
freely obtained in machine-readable format through an API. Researchers can ana-
lyze these data to learn about specific social structures, or make discoveries about
broader social phenomena[58]. A research method commonly used for this work is
Social Network Analysis (SNA). SNA is concerned with understanding social relation-
ships through network analysis and graph theory[28]. Social networks are represented
as a graph structure, with vertices as the members of the network and edges as their
relationships. Graph properties, such as degree distribution, or metrics calculated
through graph traversal, such as centrality, offer insight into how the social network
is organized. SNA may help us discover important network members, communities,
communication channels, or many other social occurrences relevant to “social psychol-
ogy, social anthropology, communication science, organizational science, economics,

geography and, especially, sociology.”[28]

Social network graphs are commonly visualized to aid in analysis. A diagram of
the network’s actors and their relationships (also known as a sociogram[18]) can help
reveal information about the network’s structure that may be difficult to determine
through quantitative methods alone. These visualizations are useful to “form hy-
potheses and communicate results.”[18] Figure 1.1 is an example of a visualization
of a Facebook friendship network (NB: the terms ‘visualization’ and ‘drawing’ are
both used in the literature, and likewise used interchangeably within this thesis).
Nodes represent Facebook users, with edges between them representing friendships.
Closer node distances within the diagram represent stronger relationships. This draw-

ing reveals a network with eight densely connected clusters, each relatively weakly
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interconnected. The node’s color helps to distinguish its cluster membership. Vi-
sualizations can be used as starting point to quickly form a hypothesis about the
network’s social structure; for example, clusters may represent people with varying

political ideologies, geographic localities, group memberships, or other properties.

. ¥
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Figure 1.1: An example of a social network visualization, representing Facebook
friendships. The particular layout algorithm used reveals eight distinct clusters of
users, each weakly interconnected. This figure was generated using Gephi[7] software,
with Facebook network data from McAuley & Leskovec]1].

Many different algorithms and techniques, implemented in a variety of software
packages, are available to visualize social networks[14]. Often different techniques
produce visualizations that can vary significantly in appearance, optimized for what
its author considers to be the best layout for certain tasks[23]. For example, one
algorithm may attempt to reduce overlap of large clusters, while another may work
at a smaller scale and aim to reduce node overlap or edge crossings. Most visualization
techniques used with OSNs employ a variant of force-directed graph layout[18]. The
positions of nodes in the drawing are determined by applying attracting forces between

edges and repelling forces between nodes|[24].



1.1 Problem

While drawing social graphs can be useful, many existing techniques are not well-
suited to visualizing very large networks. Most cannot visualize networks larger than
several tens of thousands of nodes on typical commodity hardware. Many OSNs now
have hundreds of millions of active users. It is relatively easy for researchers to obtain
network datasets containing millions, or even billions of nodes and edges, but it is
currently problematic or impossible to visualize them.

Naive force-directed graph drawing has a high run time complexity of O(|V|> +
|E|), where the work is dominated by the calculation of forces between each pair
of vertices. Extensive prior work has been done to overcome various technical and
algorithmic speed limitations of graph layout techniques. Algorithms exist with con-
siderably reduced time complexity, some taking advantage of parallel computing on
multi-core computers, which helps reduce the total time needed to draw a graph.
However, there are currently gaps in prior work to bring graph layout to distributed
computing architectures. Distributed algorithms allow the size of the problem to
scale beyond the CPU and memory bounds of a single machine, simply by adding
additional computers to a networked cluster as the size of the work grows. Prior
work may be limited in this area for several reasons: graph problems are difficult
to translate to a distributed environment, as we will see in the next Chapter; and,
researcher access to large social network data and distributed computing is a recent

occurrence.

1.2 Contributions

This project presents a new distributed algorithm and software implementation that
allows for the visualization of much larger networks than is possible using exist-
ing, non-distributed methods. The implementation is built on Hadoop, a popular
framework that eases the management and programming of distributed clusters[32].
By leveraging the unique properties of social networks in particular, a good graph
partitioning can be obtained, reducing communication overhead that can otherwise
dramatically limit performance in a distributed environment. With this graph par-

titioning technique, and building on existing layout techniques from the literature,
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visualizations of very large networks can be completed in a more reasonable time by

scaling the available computing resources.

The primary contributions of this work are:
1. A graph partitioning scheme well-suited to social graphs; and

2. A multilevel distributed layout technique, building upon prior work, leveraging

this graph partitioning.

In evaluating this work, two key questions arise:
1. Does the distributed algorithm and implementation perform and scale well?
2. Is the resulting visualization correct?

Therefore, two evaluations were undertaken. First, a speedup test was performed
to measure graph drawing time and scalability, controlling for a variety of real-world
social graph inputs and distributed cluster conditions. Second, layout correctness was
evaluated by sampling FEuclidean distances between pairs of nodes, and testing for
correlation between the layout distances generated by this distributed system, and
the original layout algorithm upon which this work is based. Given the nature of this

work, evaluation of the claims is empirical.

Results of our evaluation show that our method achieves speedup on our cluster,
and that layout results correlate with the non-distributed version across our test

datasets.

1.3 Thesis Structure

The remainder of this thesis document contains 4 chapters, as follows. In Chapter
2, we will review prior work necessary to understand graph drawing, social network
graph structure, and distributed computing as they apply to visualizing large social
networks. We will detail several specific works that will become the foundation of our
system design. Chapter 3 will describe the algorithmic and implementation design of

our system. We will present our evaluation methodologies and results in Chapter 4.
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Finally, we will conclude this thesis in Chapter 5, with a discussion on the system’s

implications and possibilities for future work.



Chapter 2

Background

Graph drawing is a wide-reaching field that has produced a significant body of lit-
erature. Graph drawing deals with the automated layout of graph data structures.
Graphs serve an enormous breadth of application domains; drawing them can, accord-
ing to Sugiyama[50], help solve “extremely difficult problems in human cognition...”
The Handbook of Graph Drawing and Visualization[52] explores graph visualization’s
use in understanding “biological networks, computer security, data analytics, educa-

tion, computer networks, and social networks.”

While graph drawing is relevant and useful to many areas, this work is only
interested in drawing social network graphs. Social networks exhibit several unique
properties that we will attempt to leverage to develop a scalable distributed drawing
algorithm. We will review these properties first in this chapter. Unless otherwise
specified, any further references to graphs or networks will imply social networks

with these characteristics.

Force-directed layout methods are most commonly used to draw social network
graphs; we will review the number of advantages they provide over other techniques.
As force-directed layout is a computationally expensive task, we will next assess some
of the existing techniques to improve its run-time performance. We will also briefly
explore alternative techniques to improve the drawing of large graphs. We will justify
why we also want to be able to draw large graphs using conventional force-directed

visualization methods.

Finally, we will examine work relevant to speeding up or scaling up the drawing
of large graphs through distributed computing. Distributed computing allows the
reduction of processing time, or the size of the data to grow as necessary, by adding
resources to a networked, distributed computer cluster. While this can be useful to
layout large graphs, our investigation finds that there has been little work in this area

so far.



2.1 Social Network Graphs

Naturally forming human social networks exhibit several unique graph properties[19].
At a high level we can think of these graphs as appearing sparse, but with densely
connected local clusters, similar to the network in Figure 1.1 in the previous chapter.
We will explore two concepts to formally understand this: the ‘small-world’ network,

and the ‘scale-free’ network.

2.1.1 Small-world Networks

Watts and Strogatz[59] describe the connection topology of small world networks,
of which social networks are a subset, as “somewhere between” completely regular
and completely random. They are highly clustered, but also contain a percentage
of random edges, or short-cuts, between distant nodes. This was first demonstrated
by Travers and Milgram’s 1969 “small world” experiment[55], giving networks with
this property their name. Figure 2.1 shows how the Watts and Strogatz model can
be applied to a regular, clustered network to produce a small world network. In a
human social network, the demonstrated random edge rewirings occur naturally to

varying degrees.

Probability 0 > p < 1
to randomly
rewire edges

Figure 2.1: Starting with a regular network where nodes are connected to their k
nearest neighbors (here k& = 4), a small-world network can be created by randomly
rewiring edges with probability 0 < p < 1. When p = 1, the network becomes a fully
random network. Adapted from Watts and Strogatz[59].

Small-world networks can be quantified by two properties: characteristic path
length, L, and clustering coefficient, C. L, a global property, indicates the average
of the shortest path lengths between each pair of vertices in the graph. In a small

world network, the value of L drops compared to a regular network, as shortcuts are
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introduced. C'is a local property representing the cliquishness of a neighborhood.
For each vertex, v, C' represents the ratio of total possible edges of v’s neighbors,
versus the number of edges that actually exist. When C' = 1 all neighbors of v have
edges between them. For example, in a social friendship network, C' will be high when
most of your friends know each other. In small world networks, the graph’s average

clustering coefficient is much greater than in a random network.

2.1.2 Scale-free Networks

Social networks also exhibit unique degree distribution properties, known as a scale-
free network. Scale-free networks, described by Amaral et al.[4], have a degree distri-
bution that follows a power law decay. That is, many vertices in a scale-free network
have few connections, while few vertices are very highly connected. Figure 2.2 demon-
strates this distribution in a real-world social network. Figure 2.3 visualizes a typical
scale-free network structure, where several “hubs”[58] are much better connected than

other nodes.

A scale-free network can also be understood by a preferential attachment model.
Vertices in a growing network are more likely to connect to nodes that are already

highly connected.

Small-world, scale-free properties have been shown to appear in very large OSNs.
Work examining MySpace and other websites in [36] and [45], while limited at the
time to relatively small scale data collection and analysis, showed them to be small-
world, scale-free networks. In 2011, Facebook’s entire network graph, containing
over 720 million vertices and 68.7 billion edges, was analyzed and shown to have
these structural characteristics[56]. Bakhshandeh and Samadi’s[5] analysis of Twitter

showed a small-world network with a characteristic path length of 3.43.

We can take advantage of this structure of social networks — many large, dense
clusters that are relatively weakly interconnected — as a starting point to divide our

layout workload. We will develop this idea more deeply in the coming chapters.



[ likes -

in degree

Figure 2.2: An example of a social network, ‘likes’ on Instagram photos, exhibit-
ing a scale-free in-degree distribution. Data was collected from the Instagram pub-
lic API. Methodology: A ‘likes’ network — where edges indicate that a user
likes another user’s photo — was constructed by collecting data from Instagram’s
/users/user-id/media/recent API endpoint, where user-id is randomly sampled
(user-ids are sequential). The in-degree distribution of the resulting network was
calculated with Pegasus|34].

2.2 Graph Drawing

The essential goal of graph drawing is to embed a graph structure into a space
— typically a 2D plane, sometimes a 3D space — such that the resulting dia-
gram conveys a high level of information about the graph. Sugiyama argues that
“a good drawing gives a high possibility of quickly and accurately communicating

the meaning of a diagram, but a bad drawing gives a high possibility of confusion
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Figure 2.3: This visualization shows a typical structure of a scale-free network. The
three red nodes have the highest degree, and are the ‘hubs’ of the network.

or misunderstanding.” [50] However, the criteria for good layout embedding varies

widely.

Social networks graphs are commonly drawn using a class of algorithms called
force-directed layout (also known as spring embedders)[18]. Force-directed layout
involves applying attracting forces between graph edges, and repelling forces between
nodes. Figure 2.4 illustrates these forces. Graphs drawn this way naturally tend to

reduce overlap, appear symmetrical, and are overall “aesthetically pleasing.”[24]

Other techniques to draw graphs do exist, such as dimensionality reduction ap-
proaches including t-SNE[21] (¢-Distributed Stochastic Neighbor Embedding), and
MDS[10] (Multidimensional Scaling). While both have been applied with success
to drawing social network graphs, they do have disadvantages. t-SNE tends to get
trapped in local minima, while MDS can have difficulty in reaching a stable, globally
optimal layout. That is to say, these techniques do not produce a layout as precise
as force-directed with possibly negative effects on how a graph visualization is inter-
preted. Therefore, we contend that improving force-directed drawing of large social

networks remains worthwhile.
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Figure 2.4: This diagram shows the attracting and repelling forces applied to a small
graph during force-directed layout. The edges (green) attract, while the nodes repel
(forces shown in red). The resulting graph layout is naturally symmetrical.

The large variety of force-directed implementations differ in their specific cal-
culation of attracting and repelling forces. The calculations are typically based
on a physical metaphor; for example, spring energy (Hooke’s law), or electrical
charge (Coulomb’s law). Several force-direct layout algorithms in popular use in-

clude: Fruchterman-Reingold[20], ForceAtlas2[31], LGL[2], and SFDP[30].

Each version strives for different aesthetics. Fructerman-Reingold aims to generate
drawings with uniform edge lengths. It is the earliest work listed, and may not be
well-suited to meaningfully representing very large graphs. ForceAtlas2 provides more
advanced layout heuristics, and several optimizations for faster layout of larger graphs
than Fruchterman-Reingold. LGL (Large Graph Layout) is designed to draw larger
graphs, in particular to emphasize dense clusters. Finally, SFDP (Scalable Force-
directed Placement) provides the most advanced set of layout heuristics of these
methods, that are particularly well-suited to drawing large graphs. SFDP will serve

as a basis of this work, and we will examine its details more closely in Chapter 3.
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2.2.1 Force-directed Drawing Improvements

Since unoptimized force-directed layout must calculate the interaction forces for every
edge and between every pair of nodes, a significant aspect of designing these algo-
rithms is to reduce their run-time complexity. Given that nodes with a large distance
between them will produce negligible interaction forces, as these forces often decay
quickly, many algorithms reduce complexity by ignoring these forces.

Fruchterman-Reingold provides an option to partition the input graph into a sim-
ple, equivalently sized ‘grid’. Nodes that lie outside the neighboring grid squares are
rejected during the force computation. This approach improves performance only for
graphs of uniform distribution, therefore excluding many real-world networks.

Partitioning the graph to allow better balancing for arbitrary graphs is possi-
ble through techniques such as Fast Multipole Method (FMM)[61], and Barnes-Hut
Oct-tree[6]. Barnes-Hut optimization is used in ForceAtlas2 and SFDP. Similar to
Fruchterman-Reingold, Barnes-Hut divides the graph space into cells, however each
of these cells is then “recursively divided into eight subcells whenever more than one
particle is found to occupy the same cell.” [6] The resulting partitioning, suitable to a
variety of graph structures, can be seen in Figure 2.5.

Another optimization category is multilevel layout[24]. By simplifying the graph
during initial layout, large groups of vertices can be moved at once, rather than
calculating forces for each individually. SFDP employs this alongside Barnes-Hut.
The graph is first coarsened by collapsing pairs of adjacent vertices. The resulting
simplified graph, often comprising ~50% fewer vertices, is laid out. With better than
random starting positions from this grouped layout, individual vertex positions can
now be calculated with a reduced cost. Overall this approach allows the full graph
can be laid out more quickly and with higher quality.

Some implementations of SFDP and several other algorithms reduce processing
time through parallel computing. Calculation of node forces can be done in parallel
on mutli-core CPUs or GPUs. This works well on shared-memory computers due to
relatively low main memory or cache access times. Concurrent calculations requiring
a piece of shared data can access it with little performance penalty. This does not
translate well to distributed computer architectures. Concurrent calculations may

require the same data in memory, but exist on separate machines within the cluster.
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Figure 2.5: A graph with a number of vertices are shown. The red vertex is under
consideration to calculate attracting and repelling forces for force-directed layout.
The graph is partitioned by Barnes-Hut octree (blue outline). Distant particles in
the three large surrounding quadrants can be ignored as their force effect is negligible.
The force from the vertex in the second level of the tree must be calculated, while the
third level vertices can be approximated together. Overall the number of calculations
is reduced considerably. Summarized from [16].

A network request for this data is several orders of magnitude slower than a request to
main memory or cache. Therefore, a large challenge of distributed algorithm design,

and of this thesis work, is to reduce or eliminate network communication overhead.

2.2.2 Visualization of Large Graphs

Beyond computational difficulties, drawing large graphs poses other challenges.
With a high number of nodes and edges to draw, a visualization of a large net-
work may become incomprehensible. Images that become too cluttered may lose
their meaning. This is known as a “hairball”[23] drawing; an example is shown in
Figure 2.6. Edge-bundling[29] can help to reduce visual clutter by combining over-

lapping edges into thicker lines to represent the relative strength of the relationships
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between node clusters. Likewise, clusters of similar nodes can be visually combined.
More novel node representation techniques, such as a Nodetrix[27], have also been
developed. As these methods involve some loss of information, the effect on a re-

searcher’s ability to interpret a visualization is unclear.

Figure 2.6: This is the same Facebook network of Figure 1.1, but drawn using a
force-directed layout algorithm with parameters that are not optimal for a network of
this size. The nodes and edges overlap to create a “hairball” that is no longer useful
toward understanding the network structure.

Instead, visualizing a smaller sample may appear to be a viable solution to working
with intractably large networks. However, this poses its own set of difficulties. As
shown by Stumpf et al.[49], “subnets of scale-free networks are not scale-free.” That
is, taking a random sample of a scale-free social network will give a sample that lacks
the structure of its full graph. The degree distribution of the sample will not be scale-
free. A visualization of this sample may therefore be inaccurate or misleading. Even
where the researcher is aware of this problem, properly taking a sample can be very
difficult, according to Stumpf et al.: “unless sampling reverses the sequence of events

by which networks were generated, the subnet will not have a scale-free distribution.”
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We believe this work towards scalably drawing complete, large social networks
is therefore useful. Where force-directed drawing of large networks can be done
while maintaining comprehensibility, we can avoid current challenges of potential
loss of detail with alternative drawing techniques, or possibly troublesome sampling

methods.

2.3 Distributed Computing

In general there are three unique challenges to parallelizing, and in turn distributing

graph algorithms, per Lumsdaine et al.[41], summarized here:

e Data-driven: Graph problems are typically data-driven. It is often not pos-
sible to divide graph work up by partitioning sections of the code itself across

the cluster.

e Unstructured/poor locality: General graphs often represent vertices with
relationships that are unstructured. It is difficult to divide an arbitrary graph
up to ensure balanced workload and good locality (where the graph partition

resides primarily in the same computer where the work takes place).

e High data access overhead: Graph problems often involve much traversal,
resulting in high memory access or communication overhead that can be a

challenge to reduce.

To help address this complexity, Malewicz et al. introduced the Pregel program-
ming model[42]. It is designed as a distributed, parallel system specifically for graph
work. During a “superstep”, for a partition of the graph, each parallel worker performs
calculations for a single vertex. Messages are passed at the end of each superstep,
during a synchronization step, with any changes to the graph’s state. The program-
mer only needs to implement a single compute() method, and is exposed only to a
view of a single vertex, its neighbours, and any incoming messages. Pregel relieves the
programmer of workload balancing, implements data-driven computation, and helps
to minimize communication overhead.

The Pregel model has been implemented in a number of open source software
packages[25], such as GraphLab, GraphX, and Giraph[11]. Giraph has the appeal-

ing feature of being implemented on the Hadoop distributed computing platform.
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Hadoop provides a distributed file system, and handles distributed workload assign-
ment and many other aspects of distributed cluster management. As Hadoop provides
an extensive toolkit, is in widespread use, and accessible to researchers[26], we will
be working with the Hadoop and Giraph frameworks in this work. Further details on

these frameworks will be presented in the Method chapter.

2.3.1 Prior Distributed Graph Drawing Work

We were able to find two relevant papers describing methods to bring force-directed
graph layout to parallel or distributed memory architectures; work by Tikhonova &
Ma[53] in 2008, and more recent work by Yunis et al. in 2014[61]. While these papers
share some foundations with our method, they do differ in important ways.

Tikhonova & Mal[53] assign vertices to processors by their degree, to help achieve
better data locality. High degree vertices are grouped together, and a distributed,
but otherwise standard Fruchterman-Reingold layout is performed. This provides a
coarse graph layout, which is iteratively improved by adding groups of lower degree
vertices.

This method was designed for Cray supercomputer systems; machines that pro-
vide extremely high-speed interconnections (504 Gbps) within their clusters. Con-
sequently, the authors seemed less concerned about inter-machine communication
overhead. Our method, designed to minimize inter-machine communication, should
be better suited to a Hadoop environment typically composed of commodity hardware
with much slower, Ethernet-based interconnections.

The more recent work by Yunis et al. implements a graph partitioning based
on Fast Multipole Method (FMM). FMM is similar in principle, but more sophis-
ticated than the Barnes-Hut method previously described. The authors claim good
speedup and performance on single CPUs and GPUs. While their library will run on
distributed clusters, this was not evaluated, and they warn that process communica-
tion “takes a significant amount of time,” suggesting that it would not immediately
translate well to a distributed memory environment.

Finally, unlike our method, neither previous algorithm is specifically designed
to draw scale-free, small-world networks, including social networks. Tikhonova &

Ma suggest “Additional structural information about a graph is sometimes known in
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advance. ... With this knowledge, an algorithm designed to perform well on a specific
type of graph can be used to produce more aesthetically pleasing layouts and result

in better running times.”



Chapter 3

Method

Our method is built on two key concepts. First, that social networks exhibit properties
that may allow them to be well partitioned for certain tasks. Second, that we can use
this partitioning to achieve good distributed speedup for a multilevel force-directed
layout method.

This section will first formally describe the algorithms of our method. Next we will
explain how we implemented these algorithms using a number of distributed graph

processing technologies.

3.1 Algorithms

Our overall method is described in Algorithm 1, below. Referenced within Algorithm 1

are two additional algorithms that we will subsequently look at in further detail.
The algorithms below indicate their input and output conditions, the procedure’s

steps in pseudocode, and, where applicable, indications of any steps to be run in

parallel or across a distributed cluster.

18
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Algorithm 1 Distributed force-directed graph layout

Input: A graph, G = (V, E)
Output: Coordinate vectors (x,y) = {x;, y;|t € V'}
1: C « distributedLouvainModularity(G) {Algorithm 2}
Each cluster node runs the following, with C' shared across all nodes:
2: for community subgraphs ¢ in C' do
if |c| > Top 20% then
4: layout. < parallelSFDP(c)

@

{20% value was found empirically — see algo. description}
5. else
6 layout. - random initial layout of ¢
7. end if
8: end for

Master node runs the following:

(x,y) < parallelSFDP (layoutc)

©
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Algorithm 2 Distributed Louvain modularity community detection

Input: A graph, G = (V, E)

Output: Community memberships C' = {C;]i € V'}
1: C' + Random initial communities
2: while vertices changing communities > 0 do

3 for vertex v € V do
4. AQW% =0

5: for all neighboring communities ¢(v) do

6: Q) = modularity(v, c) {See Equation 3.1}

7 if AQ > AQpre, then

8: v. = ¢ {Change communities if resulting modularity is increased}
9: AQprev = AQ
10: end if
11: end for

12: end for
13: G = G, compressed to new communities

14: end while
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Algorithm 3 Parallel Scalable Force-Directed Placement (SEDP)
Input: A graph, G = (V, E), initial coordinates © = {z;|i € V}, and maximum

iterations, m
Output: Coordinate vectors x = {x;|i € V'}
1: while not converged and iterations < m do

2.  for vertex v € V do

3: = Barnes-Hut Tree of v’s neighbors

4: Calculate new coordinates for x:

5: {Repulsive forces of close vertices} (Electric model)
6: {Attractive forces of v’s edges} (Spring model)

7 {Inter-group attractive forces (depth of ) > empirical ‘far’ distance)}
8: {Inter-group repulsive forces}

9: {Intra-group attractive forces}

10: Calculate Aenergy (adaptive cooling model)

11: if Aenergy =0 then

12: converged = true

13: end if

14: end for
15: end while

Algorithm 1 takes a graph as input, and produces 2D coordinates for each vertex.

Step 1 assigns each vertex a community through a distributed Louvain modularity
process|[8], distributedLouvainModularity(), described in Algorithm 2. The algorithm
as it is described is identical to a non-distributed Louvain modularity. It is only the
implementation within a distributed graph framework, described later, that allows
this algorithm to run in parallel in a distributed computing cluster. Nonetheless,
we chose to specify the algorithm as “distributed” Louvain modularity as it is very
important to run this stage over the distributed cluster in order to attain good speedup
overall.

Next, the largest of these communities are laid out with parallelSFDP(). Our
criterion to determine the largest communities is to take the top 20% by size. As
community size also follows a power-law distribution, we have found that the top

20% of communities are likely to contain the majority of the graph’s nodes. SFDP,
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Scalable Force Directed Placement, is an optimized force-directed layout algorithm by
Hu[30], and described in Algorithm 3 in a greatly simplified form. It runs on mutli-
core computers, with vertex pair force calculations computed in parallel. In our
distributed version, multiple communities are laid out in parallel across the cluster.
Communities that fall below the specified size threshold, including isolated vertices,
are assigned random initial positions.

All position information is now aggregated to a single machine. parallelSFDP()
is run again on the entire graph, seeded with this position data.

The key concept behind our method is that by seeding the final layout step with
starting coordinates that are much better than random, the number of iterations
required to achieve global layout stability is greatly reduced.

Despite the added overhead of pre-processing the graph with Louvain modularity,
and calculating the layout more than once, speedup can still attained by laying out the
graph’s major communities in parallel across the distributed cluster (when sufficient

graph data and computing resources are available).

3.2 System Implementation

The system is built on a number of recent technologies that have been developed
to ease the creation of distributed graph tasks. Here we will look at the technical
challenges we faced, explore technologies designed to help overcome these challenges,

and describe how we use these technologies to implement our system.

3.2.1 System Frameworks

As discussed in the Background chapter, designing distributed algorithms for graphs
is more difficult than for many other data structures. Programming these algorithms
pose their own challenges as well.

Developing any distributed system requires careful consideration of many well
studied problems, including communication, coordination, workload balancing, and
others. One software framework built to address many of these problems is Hadoop.
The Giraph framework further extends Hadoop to facilitate distributed graph pro-

cessing. These two frameworks form the foundation of our implementation.
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Framework 1: Hadoop

Hadoop is a collection of open source software packages, primarily written in Java,
to help make the creation of distributed systems and software easier[32]. A Hadoop
cluster automatically and transparently handles communication, coordination and
workload management, graceful entry and failure of nodes in the cluster, and distri-
bution and replication of data across the cluster. This leaves the programmer free to
focus on the task of implementing their distributed algorithm.

The creation of Hadoop was inspired by Dean & Ghemawat’s MapReduce[15].
MapReduce is a programming paradigm in which a programmer implements only
two methods: Map(), and Reduce(). These two steps can model a wide variety of
distributed algorithms. Map() processes key/value pairs within the data, in paral-
lel, creating intermediate values. Intermediate values are shuffled and transparently
distributed to reducers. Reduce() merges all intermediate values of the same key.
The concept can be thought of similarly to a massively parallel divide and conquer
algorithm. MapReduce is implemented in Hadoop, with various improvements, under
the name YARN, which also encompasses the task scheduling system.

Hadoop Distributed File System (HDFS) handles file replication and distribution
across the cluster. Files added to HDFS are automatically split into ‘chunks’ and
distributed to the cluster’s datanodes. Redundancy can (optionally) be achieved
through chunk replication. The cluster’s namenode manages access and references to
files. HDF'S is accessed through the command line in much the same way as a standard
unix file system, or through Hadoop-based programming frameworks through built-in
APIs.

Hive and Impala are software packages used in this work that also fall under the
Hadoop umbrella. Hive allows structured files (e.g. CSV or TSV files) residing in
HDEFES to be represented and queried as though they were relational database tables.
Queries are written in HiveQL, an extensive subset of standard SQL. Queries are
translated into MapReduce jobs and run across the distributed cluster. Hive allows
the programmer to quickly implement otherwise complicated MapReduce tasks in a
familiar and concise query language. Impala is a further extension of Hive, using Hive
tables, but bypassing MapReduce all together to implement a custom-made, and much

faster query engine. Impala/Hive tables are used throughout our implementation to
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manage data between the algorithm’s steps.

Framework 2: Giraph

Hadoop provides many advantages to distributed systems builders. However, it is not
well-suited to working with graph data. MapReduce is a slow and difficult framework
in which to implement graph algorithms[33]. The Giraph framework was created to
help resolve these issues through two primary means: a new programming and data
processing model, and HDFS-based graph data storage and representation.

Giraph’s programming and processing model is an implementation of Pregel[42], a
scalable graph processing infrastructure that is in turn based on the well-known Bulk
Synchronous Parallel (BSP) model[22]. The programmer only needs to implement a
single compute() method, and is exposed only to a view of a single vertex, its neigh-
boring edges, and any incoming messages. During a “superstep”, for a partition of the
graph, each parallel worker performs calculations for a single vertex, based on its view
of neighboring edges, or data in any incoming messages. Messages are passed at the
end of each superstep with any changes to the graph’s state. Pregel/Giraph relieves
the programmer of complicated communication overhead and workload balancing.

Giraph provides the functionality to automatically load graphs from HDFS into
memory from several predefined formats, including edge lists and adjacency lists, or

through a custom format specification.

3.2.2 System Steps

Figure 3.1 shows a high-level diagram of the system’s components. From input of the
graph edge list, the flow of our method is followed through the four numbered steps
in the diagram. For each step, described in detail in the sections below, parentheses
indicate the technologies used to implement it. Steps take place either over a dis-
tributed cluster, or on a single computer, as specified. Finally, our method ends with

the output of a completed network visualization.

Step 1: Graph Partitioning

The first stage of our method is to pre-process the graph. As we have established,

social network graphs typically exhibit small-world, scale-free properties. In practical
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Social Network Graph
(Edge List)

Distributed Cluster

4
@ Graph partitioning by Louvain Modularity
(Hadoop / Giraph)
@ Subgraph layout on each cluster machine
(Parallel SFDP)

l

Initial Vertex
Positions

Single Computer

@ Full graph layout with subgraph position seeding
(Parallel SFDP)

v

@ Produce image of network visualization
(Graph-tool)

Network Visualization
(Vector/Raster Image)

Figure 3.1: This diagram shows the flow of steps taken by our method to produce
a social network visualization from a graph input. Technologies used to implement
each step are shown in parentheses.

terms, they consist of many densely connected clusters that are relatively weakly
interconnected. Partitioning the graph into these clusters cuts far fewer edges than a

random or uniform partitioning.

To detect these clusters we can choose from many existing algorithms in the com-

munity detection literature; Fortunato provides an extensive survey[17].
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Ultimately we chose Louvain modularity by Blondel et al.[8], for a variety of rea-

sons:

e Fast: Foremost in our choice, Louvain modularity is very fast. Its expected

run-time is O(|V |log|V]).

e Unsupervised: Unlike other algorithms, Louvain does not require the number
of communities within a network to be known in advance, which would be

infeasible for arbitrary graphs.

e Non-overlapping: While a vertex in a real-world graph may belong to more
than one community, Louvain presents non-overlapping communities. This fits

well with our use case of simple graph partitioning.

e Low resolution: Modularity has a tendency to create large communities. This
is ideal in our case, as fewer communities to process in later steps of our method

will decrease distributed run-time overhead.

Louvain modularity does have weaknesses, primarily its instability. The detected
communities in a graph vary over iterations of the algorithm. Modularity is a greedy,
randomized algorithm. Vertices may be placed into a community due only to ran-
domness. This can account for our method’s variance in layout correctness, as shown
in the following chapter.

Nonetheless, we believe Louvain’s speed advantage outweighs any negative im-
pact on layout correctness, as detailed in the Evaluation Chapter. The Future Work
section briefly discusses further investigation of the impact the choice of community

detection algorithm has on layout results.

The Louvain method is an optimization of general modularity-based community de-

tection, where modularity (@) is defined in Equation 3.1 as:

klkj] d(ciy ) (3.1)

1
= — YA —
¢ 2m Y { T 2m
Q) is a value between -1 and 1, comparing the the density of the edges within a

community to those outside of it. A;; is the edge weight between nodes ¢,j. m is

the number of edges in the graph. k is the node’s degree. d(c;, ¢;) is the Dirac delta
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function[35] of communities, ¢. Optimizing for higher modularity places vertices in

their most well clustered communities.

Louvain modularity begins by assigning each vertex its own random community.
At each iteration a community may move to a neighboring community with a higher
modularity value. After all communities have been updated the graph is compressed
to represent each community as a single vertex. The stages repeat until no further

modularity improvements are attained.

Our method runs Louvain modularity over a distributed cluster, providing greater
speedup and scalability. The general algorithm is described above in Algorithm 2,
and is implemented in Giraph and MapReduce. This implementation uses a sub-
set of previous open source work in Sotera Defence’s Distributed Graph Analytics

package|[48].

Stage 1 of the algorithm is implemented in Giraph. Graph data is loaded into
memory, and each node is assigned a unique initial community ID. Isolated vertices
halt and remove themselves from further calculation. The graph’s total edge weight
is calculated, as required by the modularity function (@, Equation 3.1). At each
superstep the compute() function receives the current vertex’s neighbors’ community
membership and ¥ values (sums of edges within and to that vertex’s community).
For each potential community move, change in modularity (AQ) is calculated. The
vertex moves to the community with the highest increase in AQ. When no further

change in modularity occurs, the vertex votes to halt.

Stage 2 of the algorithm occurs once all vertices have voted to halt the Giraph
job. The Giraph task produces an updated edge list with new community membership
values for each vertex. A MapReduce task compresses this graph to represent each
community as a single vertex. Map() aggregates vertices by community ID. Reduce()
outputs a new edge list. The reducer’s current community is compressed to be repre-
sented by a single vertex, with edges internal to the community removed. Vertex-level

community membership is preserved separately for later use by our method.

The compressed graph is given as input to the Stage 1 Giraph program to further
improve modularity. Stages 1 and 2 are run repeatedly until no further modularity

improvements occur.
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Step 2: Sub-graph Layout

Our graph is now partitioned into large communities. Edge lists are retrieved for each
community’s graph, and stored in HDF'S. Edges to vertices outside of the community
will be cut.

A Python script on the cluster’s master node organizes sending each community,
one at a time, to a single cluster node for processing. Only the largest community
subgraphs are laid out at this stage. Communities that meet this criteria are those
within the top 20% by size. This value was chosen empirically. As community size
follows a power-law distribution, the top 20% of communities are likely to contain the
majority of the entire graph’s vertices. All computing resources of each compute node
are dedicated to parallel SFDP layout of its current sub-graph. The SFDP algorithm
is implemented in OpenMP C++, facilitating shared-memory parallelization of vertex
pair force calculations.

The output of this stage are x,y coordinates for each vertex in each processed

community. These are stored in a Hive/Impala table for use in the next stage.

Step 3: Metagraph Layout

The next step begins when each significant community has been laid out. Coordinate
lists for these communities, which are currently stored in HDFS, are aggregated to
the master node.

The precomputed coordinates from these communities are used as the starting
coordinates for a final run of SFDP layout for the entire graph. Where a node was
not part of one of the communities precomputed across the cluster, it is given a
random z,y starting position.

Nodes that were clustered together during the Louvain modularity step should
also appear close together in a force-directed layout. We will use this idea to reduce
the number of calculations needed during the final overall layout. The maximum
number of iterations for pairs of precomputed vertices (tracked in a hashtable) may
be capped at this stage. This maximum iteration value can be found empirically as
a tradeoff between completion time and layout quality, and may be set to infinity.
Global layout stability may occur before this cap is reached for graphs where the

modularity partitioning is particularly well matched to the final layout positions.
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During design of the method, an experimental cap of 10,000 iterations was rarely
reached. Therefore, an unlimited maximum iteration value was set for our evaluations.
However, further investigation of the effect of an iteration cap on completion time

may be worth undertaking in future work.

Step 4: Image Generation

At this step we have 2D coordinates for every vertex in the graph, from which
we can generate a vector or raster image — the final visualization of the network.
graph-tool[46] is a Python package that allows creation of graph visualizations from
existing coordinate files. It has extensive features to customize the appearance and
styling of the visualization, including node size and color, and edge-bundling tech-
niques.

The main goal of this thesis is the method to generate the layout coordinates;
determining the best appearance of the visualizations is beyond the scope of this
work. However, graph-tool provides a simple way to see basic results of our method.
The Conclusion & Future Work chapter discusses possibilities to expand on this last
stage.

graph-tool is not distributed, it runs on a single computer, but it is written
in OpenMP C++ for parallel mutli-core performance. Generating images for large
graphs takes negligible time compared to the process of generating the layout coor-
dinates themselves. However, it should be noted that creating static raster images,
such as JPEGs, is recommended for large graphs. While graph-tool provides the
ability to create vector images, such as SVG and PDF formats, these are significantly
slower to generate, and the resulting file may be too large to open and view.

An example of a network visualization image made with our method is in Fig-
ure 3.2. This is the Gowalla network, as described in the datasets section of the

Evaluation chapter.
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Figure 3.2: A visualization of the Gowalla network (described in the Evaluation
chapter). Nodes are colored according to their community membership. We chose
not to draw edges to improve clarity.
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Figure 3.3: A visualization of our Facebook dataset (described in the Evaluation
chapter; a different Facebook dataset than is shown in Figure 1.1). A large num-
ber of vertex pairs, isolated vertices, and smaller communities were originally in the
periphery of this visualization. They were omitted due to space constraints.
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Figure 3.4: A visualization of our Slashdot test network (described in the Evaluation
chapter). While we again omit drawing edges at the fully zoomed out level, we include
for demonstration a zoomed in view of individual nodes and edges.
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Figure 3.5: A visualization of our random Erdds-Rényi network shows that a highly
symmetrical layout was produced.



Chapter 4

Evaluation

We ran several experiments to evaluate our method. This chapter first describes
the data used in our testing. We worked with social network graph data that was
both publicly available and previously used in other research, and two algorithmically
generated datasets.

Next, we describe the methodologies used to evaluate the effectiveness of our
method. In determining “effectiveness”, we have two objectives to satisfy: that our
method is scalable in a distributed computing environment, and that our generated
layout reproduces a layout similar to the non-distributed SFDP algorithm previously
evaluated in the literature.

Finally, we show the results from the tests we ran on our lab’s 3-node Hadoop
cluster. We discuss the results, general observations, and several findings and conclu-
sions that can be drawn from our testing. We also discuss some of the practical and

methodological limitations of our evaluation.

4.1 Data Sets

We chose to test our method primarily by laying out real-world social network graphs.
Graph data from online social networks is readily available, both in repositories of
previously collected data, as well as through open APIs where social graphs can be
programmatically downloaded. The data we used was primarily from existing sources,

and was previously used in other academic studies.

Table 4.1 lists all of the datasets used, as well as several properties important to under-
standing their overall structure. All of our graph datasets are from the KONECT|37]
repository at the University of Koblenz—Landau, except for the Pokec network from
the SNAP[39] repository at Stanford University, and our two generated datasets.

The graph properties included in Table 4.1 are: order, size, clustering coefficient
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Dataset Source Order Size CC (%) | CPL
Facebook KONECT | 63,731 817,035 14.8 4.31
Flickr KONECT | 2,302,925 | 33,140,017 | 10.8 5.46
Pokec SNAP 1,632,803 | 30,622,564 | 10.9 5.2
Gowalla KONECT | 196,591 950,327 2.35 4.43
Slashdot KONECT | 79,120 515,397 2.37 3.99
Erdés-Rényi | Generated | 5000 6,249,491 | 50.0 0.5
Lattice Generated | 40,000 79600 0.0 132.33
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Table 4.1: Datasets used in our evaluation, with descriptive properties; Size, Order,
Clustering Coefficient (CC), and Characteristic Path Length (CPL).

(abbreviated as CC), and characteristic path length (CPL)'. These properties are

defined as follows:
Order and size refer to the number of vertices and edges in the graph, respectively.

Clustering coefficient, C'C', previously discussed in the Background chapter, is a
measure of how much the nodes in a graph tend to cluster together. At the vertex
level, ¢ represents the ratio of possible edges of the vertex’s neighbors, versus the
number of edges that actually exist. When ¢ = 1 all neighbors of that vertex have
edges between them. In Table 4.1, C'C' is the average clustering coefficient for each
vertex in the graph. This average can help us to gauge how closely connected the
communities are in a social network. Such gauging is important to consider in rela-
tion to our work, as our method relies on community detection-based clustering to
partition the workload. The clustering coefficient will affect the size and number of

clusters detected, which may impact the speed and scalability of our method.

Characteristic path length, CPL, is a property of the entire graph for the average
of the shortest path lengths between each pair of vertices. This property can be used
as an indication of a small-world network. CPL is low in small-world networks, as
shortcuts are frequently present between nodes. This is the case for all of our test

social network datasets.

IProperties for KONECT-sourced datasets where included in the repository. We calculated the
properties of the Pokec network using PEGASUS[34], a Hadoop-based analysis tool for large graphs.
We calculated descriptive statistics of our generated datasets with the open source KONECT toolbox
for Matlab.



36

4.1.1 Ciriteria for Inclusion

Our method is designed for social networks — specifically small-world, scale-free
networks — and, in general, we expect these networks to exhibit lower clustering
coefficients (often between 2-15%), and low characteristic path lengths (often 4-6).
The majority of the networks in the KONECT and SNAP repositories had these
characteristics. However, we excluded some specialized networks that fell greatly
outside this range. For example, Choudhury et al.[13] collected a Twitter network
graph by sampling the entire network’s interactions with a relatively small number
of other users. The result is a graph with a very low clustering coefficient of 0.06.
This dataset, and others like it, would likely not be an ideal candidate for a good
distributed division of work in our layout method.

Next, we narrowed our choice of graphs by their size and order. To demonstrate
an effect on speedup, we wanted a collection of graphs of varying sizes. We found
empirically that datasets greater than several million or tens of millions of nodes or
edges took unreasonably long to layout on our cluster to test, and could be excluded.
Likewise, datasets smaller than several tens of thousands of nodes or edges were not
worth testing as the overhead from Hadoop’s start-up phase dominated computation

time, and eliminated any possible speedup.

Let us look at each dataset more closely to discuss the source of the data, and how
it is appropriate for our evaluation:

Facebook: From Viswanath et al.[57], this dataset is a friendship activity network
collected in 2009 from Facebook users in New Orleans. It was originally collected to
understand how Facebook users interact with each other over time. This graph is
among the smallest in our set, and is relatively highly clustered due to its geographic
homogeneity.

Flickr: From Mislove et al.[44], this large dataset is a friendship network from
Flickr, a photo hosting website with social networking features. The dataset was
originally collected in 2008 over a period of three months. It was used to study the
growth of online networks.

Pokec: From Takac and Zabovsky[51] in the SNAP repository, this dataset rep-

resents friendships on a popular Slovakian social network. This is the second largest
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dataset used in our evaluation. It was collected in 2012 to preserve the network’s
entire structure. The clustering coefficient and characteristic path length are similar

to the slightly larger Flickr network.

Gowalla: From Cho et al.[12], this dataset is a friendship network on the now-
defunct social location-sharing network Gowalla. It was collected in 2011 to study
the relationship between social networks and geographic movement. It is around the

same size as the Facebook dataset, but has a very low clustering coefficient.

Slashdot: From Kunegis et al.[38], this is both a “friend” and “foe” network
from the online social network Slashdot, collected in 2009. Although the network was
originally used to study social network metrics that contain negative edges (a “foe”),
these do not have any impact within our layout method. This network exhibits a low

clustering coefficient.

For the two generated networks, we used the following approaches:

Erd6és-Rényi: An Erdds-Rényi graph (a random graph) was generated for use in
the speedup test. We hypothesize that this network will not perform well, as it is
not a small-world, scale-free graph. Our method’s community detection stage should
produce communities that correspond no better than random chance to a node’s final
layout position. The graph was generated with 50,000 nodes, with a probability of

random graph edge formation of p = 0.5.

Lattice: A 200x200 lattice network was generated as part of our layout cor-
rectness test. A lattice should ideally layout in a perfect square formation, so any
distortions caused by our algorithm’s characteristics will become visually apparent.

This will be explained in further detail in the Layout Correctness results.

Taken together, these datasets represent a diverse collection of real-world social net-
works that can realistically resemble typical use cases of our system. They span a

wide range of characteristics that are important to consider in a thorough evaluation.

By using real-world datasets our results have context that is helpful for basic
validation throughout the design and evaluation of our system. For example, we can

quickly verify that a layout prominently shows a large community we know to exist
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in a network. The two remaining generated datasets help us to ensure our results are

consistent with our hypotheses.

4.2 Evaluation Methods & Results

We will evaluate our method with three approaches. First, we start the evaluation
with an analysis of our algorithm’s complexity, to get a general assessment of the
proposed method’s performance. We then follow with quantitative tests: a speedup
test, and a layout correctness test. This section will describe each of these tests and
their results.

The evaluation methods we use each have a basis in the literature. The speedup
test is the de facto evaluation method used widely in distributed and parallel com-
puting literature, including in work based on Hadoop and Giraph. The test was
employed in recent Hadoop-based work by Schumacher et al.[47] on distributed gene
sequencing, and Giraph-based work by Mertella et al.[43] evaluating a general purpose
partitioning algorithm, to name only a few.

Our layout correctness test is a synthesis of different approaches taken in graph lay-
out evaluation literature. Maaten & Hinton[21] evaluate their layout method in part
by comparing pairwise Euclidean distances between test datasets of different dimen-
sionality. Bourqui et al.[9] suggest in future work correlating their layout method’s
Euclidean distances to graph theoretic distance. Our layout correctness test draws
from both in correlating Euclidean distance between our distributed layout method

and the non-distributed method upon which it is built.

4.2.1 Complexity Analysis

In a naive, non-optimized force-directed layout, computational complexity is domi-
nated by the calculation of forces between each pair of vertices: O(|V|* +|E|), where
|V| is the graph size, and |E)| is its order. While our method distributes its workload
across a cluster, it must also considerably reduce this cubic running time to be effec-
tive. As our method is based on the SFDP layout algorithm, we use it as the starting
point of our analysis.

SEDP employs two approaches to reduce complexity: multilevel layout, and Barnes-

Hut approximation. Multilevel layout collapses edges, grouping adjacent vertices, to
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allow sections of the graph to be moved at once initially. Barnes-Hut subdivides
the graph space into a tree, allowing distant vertices to be ignored or treated as
a group when calculating attraction or repulsion forces. SFDP is known to run at
O(|V]log|V] + | E]).

Because our approach is based off SFDP, we can expect the same complexity for
the layout of individual components of the network, keeping in mind that this is
performed in parallel across our cluster of size P: O(W).

We also must account for the complexity of the pre-processing stage of our method;
Louvain modularity calculation that is estimated as O(|V'|log|V'|). As Louvain is run
in distributed mode, the complexity is also divided by P.

The SFDP and Louvain components are the main factors in calculating the overall
complexity; however, we must also account for the complexity of the final stage —
metagraph layout. The complexity of the final stage depends greatly on how well the

Louvain partitioning correlates with the final layout position. We assume a coefficient

to our P value, X, where 0 < X < 1 depending on the strength of this correlation.
O((IVIloglV|)+(|V|log|V|+|E|))
PxX :

The overall complexity of our method becomes

In short, despite the additional steps such as the pre-processing of Louvain modu-
larity, due to the distributed nature of our method we can expect an improved result.
As the estimated complexity makes several assumptions, we need to run an empirical

test.

4.2.2 Speedup Test

The speedup test is designed to test if our method effectively utilizes the distributed
computing resources made available to it. Good speedup ensures the time taken to
complete a task decreases near-linearly as resources are added, while similarly scale-
up ensures the size of the data possible to process increases. The methodology of the
speedup test and its variables and measurements will be described.

The speedup test measures the time taken to complete a given task as several
variables are controlled, including the cluster size, and the input data. A distributed
task is generally considered to have good speedup if the measured time follows a linear
or near-linear decrease as the cluster size increases.

However, due to many external factors, including randomness in CPU scheduling
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and communication latency, the time taken to compute a task can vary widely be-
tween tests. Touati et al.[54] describe a rigorous framework for a statistically valid
speedup test, the overall guidelines of which we follow. Tests are run repeatedly and

checked for statistical significance.

Implementation of our speedup test is structured as follows:

The independent variables are:

e I1: Number of compute nodes in the cluster (1-3)

e I2: Input graph (with varying properties)
The test conditions cover each combination of independent variables. For each con-
dition we are measuring these dependent variables:

e D1: Elapsed time (wall clock time in seconds)
— Measured with the Linux time function
e D2: Relative speedup value

— Measured as: timeqiginal/times,

— In other words: the ratio of the original time to run the test with 1 node

to the time to run the test with n nodes.

Additionally, several other variables are recorded for informational purposes, includ-
ing memory usage and any occurrences of memory paging, as these give a general

indication that the program is running efficiently.

Test Environment

Our implementation and evaluation ran on a small three computer Hadoop cluster
in our lab. The cluster was dedicated to the evaluation, with no other users or tasks
running except for ours. Our method is almost entirely CPU-bound, and increasing
cluster size benefits the processing speed primarily through additional processing
capacity. RAM and disk space requirements are mostly inconsequential, as even our
largest test datasets do not require more than a few gigabytes to store. Each of the

three nodes consisted of identical high-end hardware, with the following features:
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e CPU: 2x Intel Xeon E5-2690, running at 2.9GHz
— Each with 8 hyper-threaded cores, for a total of 32 logical cores per node

RAM: 64GB

Hard disk: 1TB at 10k RPM

Gigabit dedicated ethernet inter-connect
With the following software:

e OS: Ubuntu 14.10 LTS

e Java Runtime 8

e Cloudera Hadoop Distribution 5.4

— Apache Hadoop 2.6
— Apache Hive 1.1

— Impala 2.2
e Apache Giraph 1.1.0

The speedup test was run on the test datasets at least three times per condition,
and the median run time was taken. Running the test three times helps to reduce
any effects of variance, while still being a small enough number of rounds to com-
plete testing within the time constraints of this work. The breakdown of median run
times (wall clock seconds) per condition (cluster nodes x datasets) is shown in Ta-
ble 4.2. The median run time was tested for significant variance across nodes with a
Mann-Whitney test. This test methodology follows Touati et al.’s recommendations.
Median runtime is chosen instead of average as it is less sensitive to outliers.

The relative speedup value (time;_poge/timen_nodes) for each dataset is charted in
Figure 4.1. A linear speedup, shown as a dashed line, represents the perfect condition
— each additional computer is used to its full potential to reduce the run time.

Speedup was attained for all datasets, to varying degrees. A Mann-Whitney test
verified that median run times varied significantly across the number of cluster nodes

(0.05 < p < 0.025). As expected, social network datasets performed much better than
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Dataset T run time | T run time | £ run time | T run time
non-Dist. 1 node 2 nodes 3 nodes
Facebook 585.013 907.27 630.24 408.143
Flickr 724,322 1,166,158 728,839 477,934
Pakec 577,312 929,885 598,767 366,861
Gowalla 1331.74 2182.84 1774.67 1160.64
Slashdot 656.24 1023.36 793.3 503.94
Erdés-Rényi | 1361.27 3173.21 2688.98 2234.5

Table 4.2: Median (Z) run times in seconds for each dataset for the non-distributed
version, and the distributed version varied by nodes in the Hadoop cluster.

Relative Speedup by Number of Cluster Nodes - Distributed Layout
Linear » Facebook # Gowalla Slashdot — Random + Flickr < Pokec

25

2 3
Cluster Nodes

Figure 4.1: This chart shows the median relative speedup of each dataset as nodes
are added to our test cluster. The dashed line represents perfect linear speedup.

the random graph. In all cases, speedup was sub-linear, with an initial indication that
datasets with higher clustering coefficient seemingly performed better (although this

cannot be shown with statistical significance).

The random graph performed very poorly in terms of speedup, with 3 computers
performing the layout only ~1.4x faster than 1 computer. This can be attributed to
a poor graph partitioning. Community detection would not find meaningful clusters
in this dataset, as the degree distribution would be close to a normal distribution.
The sub-graph layout stage would not meaningfully improve the initial starting co-

ordinates, and so the metagraph layout stage does not complete faster.

In many cases the standard non-distributed SFDP layout time was only matched

or beaten by the distributed method after the cluster size reached 3 nodes. At first
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this may seem to reflect poorly upon our method’s performance, but we believe this
is not the case. The distributed method does add communication and coordination
overhead from Hadoop and Giraph, in terms of communication and coordination;
however, the largest additional processing time comes from running Louvain modu-
larity. Community detection, often performed with Louvain modularity, is in fact a
very common task to run on social network data[l4][17]. For example, it is useful
to color nodes graph visualizations, such as in Figure 3.2. It is plausible that users
of non-distributed SFDP would run community detection on their data anyway, in
which case our method would likely outperform even on a 2-node cluster. Further,
we believe that a positive speedup curve would continue on a larger cluster, in which
case graphs could be processed much quicker, even if the user does not find the data

from the Louvain modularity step useful.

Limitations

The biggest limitation of our speedup evaluation is the relatively small size of our
Hadoop cluster. We hypothesize, but cannot claim, that any speedup exists for our
method beyond a 3 node cluster. Even had we had access to a larger test cluster, our
evaluation is very time consuming across all conditions, and we would need to reduce
the number or size of the datasets used. We believe our work shows good findings

across a breadth of realistic datasets, for an initial validation of our method.

4.2.3 Layout Correctness Test

The layout correctness ensures that the visualization generated by our method is “use-
ful”. In that, we mean that the readers of a graph drawing will be able to accurately
assess important aspects of its structure, and attain key information. As the non-
distributed SEFDP algorithm this work expands upon has already been evaluated for
usefulness, we directly compare our method against it as a gold standard. Although
testing for layout usefulness could be evaluated through a human study, this can be
difficult, and often a layout is evaluated through quantitative means. SFDP’s origi-
nal paper tests a wide variety of graphs for aspects including folding, and symmetry.
The author subjectively compares to existing layout methods, and finally concludes

R

“[SFDP] is demonstrated to be ... of high quality for large graphs ...” and “gives
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better drawings for some difficult problems.” [30]

While our method should produce layouts very similar to SFDP, we expect it to
vary from the non-distributed implementation. Such variance is due to our method’s
assumption that modularity-based graph partitioning will correlate highly with the
final vertex positions in scale-free, small-world network graphs. As such, our method’s
final meta-graph layout step expects a stable layout to be found more quickly, and
significantly reduces the number of iterations performed. However, it is improbable
that the graph partition and final layout will correlate perfectly, and a certain per-
centage of vertices will not move to their stable positions before the final layout stage

is terminated.

Implementation of our layout correctness test is structured as follows:

The independent variables are:
e I1: Input graph (with varying properties)
e I1: Mode: distributed (our method) vs. non-distributed SFDP

The test conditions cover each input graph, I1, for each algorithm mode, 12, while

the dependent variable is measured:
e D1: Median Euclidean distance correlation, over 10% sample of vertex pairs

We run the tests conditions three times per dataset, to account for the inherent ran-
domness of the layout method. A higher number of test rounds may be appropriate;
however, three was chosen due to the long length of time each test takes to complete.
The dependent variable takes the median of these test results. Due to the large size
of the graphs, vertex pairs are sampled. The tests were run on our Hadoop cluster us-

ing all three compute nodes, as the size of the cluster should not impact layout quality.

Table 4.3 indicates the Pearson correlation coefficients for each dataset between our
distributed layout and the non-distributed SFDP algorithm.

Correlation for each dataset was tested with a Fisher transformation test, finding
significant correlation (p < 0.001) between algorithm modes. Figures 4.2 and 4.3 show
the correlation charts for the Facebook and Erdés-Rényi datasets, and are helpful

examples in understanding this test and its results.
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Dataset Correlation Coefficient
Facebook 0.982947
Flickr 0.987111
Pokec 0.988974
Gowalla 0.993661
Slashdot 0.979822
Erdés-Rényi | 0.071922

Table 4.3: Pearson correlation coefficients of pairwise Euclidean distances between
distributed and non-distributed layout for each test dataset

The Facebook correlation chart in Figure 4.2 is typical to the other social net-
work datasets. The Euclidean distance distribution is bimodal, representing nodes
belonging to the denser clusters of the network, and all other nodes, as we expect
from our understanding of small-world, scale-free networks. This can be seen in the
chart. The lower left has many values that do not vary greatly — these are nodes
that ‘live’ within denser clusters. All other nodes that are not as densely connected
to the graph appear in the upper right of the chart. Their distances vary more widely

due to the randomness of their starting layout positions.

The Erdos-Rényi correlation chart in Figure 4.3 is considerably different. While
correlation exists, it is much weaker. As no distinct clusters exist in this graph — due
to its approximately normal degree distribution — the layout is highly randomized

and varies considerably between runs.

Finally, a small additional test was performed on the lattice network to help illustrate
the variance in layout introduced by our method. As we loosely partition the graph
to set initial coordinates, we effectively lock large portions of the graph’s vertices into
a more limited space (to reduce calculation cost). Although we see that our layout
is still of high quality, this introduced minor distortions around the periphery of the
visualization. These can be seen visually in the lattice drawing of Figure 4.4. SFDP

itself also contributes partially to this distortion.

We show that our method produces layout results that correlate highly with the

non-distributed SFDP implementation. We use a Fisher transformation to test for
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Figure 4.2: Vertex pair Euclidean distance correlation between layouts generated with
distributed and non-distributed SFDP methods, for the Facebook graph. The dashed
line is the correlation best fit.

correlation. Because SFDP, and consequently our method, are randomized algo-
rithms; we must generate layouts a number of times with each method, for each of

our datasets, to attain statistical power.
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Figure 4.3: Vertex pair Euclidean distance correlation between layouts generated
with distributed and non-distributed SFDP methods, for the Erdés-Rényi graph.
The dashed line is the correlation best fit.
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Figure 4.4: A lattice graph is laid out with our method on a 3 node cluster. Ideally
the lattice will display as a perfect square in a force-directed layout. However, due
to the variance between the graph’s Louvain partitioning and the final layout posi-
tion (exacerbated by not being a small-world, scale-free network), a distinct warping
occurs. SEDP itself introduces some warping as well.



Chapter 5

Conclusion

In this work we developed a distributed computing method to generate force-directed
layouts of large social network graphs. Problems in many fields can be expressed as
graphs, and visual layouts of these graphs are helpful to researchers in understand-
ing their underlying structure, in order to form hypotheses and communicate results.
Notably, graph data from Online Social Networks (OSNs), now readily available to
researchers, are an area of considerable research. However, these networks can easily
be very large and difficult to work with. Existing layout and visualization techniques
that work only on a single computer are often unable to handle data of this size
in a reasonable time, if at all. Other approaches to work with large graphs may
be problematic. Sampling a social network leads to the loss of its scale-free degree
distribution — a key property of these networks. Dimensionality reduction based
approaches to graph drawing are often limited in the precision of their layouts, pos-
sibly leading to issues in interpreting graph drawings made in this way. Therefore,
a method to generate complete force-directed layouts of large social networks graphs

would be a valuable contribution to the literature.

Our method takes advantage of distributed computing to allow resources to scale
with the problem size. A complete force-directed layout and visualization task can be
completed on larger data, in a more reasonable time, by adding computers as they are
needed to a distributed cluster. To divide work between computers in the cluster, our
method first partitions the graph through community detection. Our method is based
on the theory that social networks follow small-world, scale-free graph characteristics:
they consist of dense clusters, relatively weakly interconnected with the rest of the
graph. Louvain modularity community detection provides a rough initial detection
of these clusters, that should correlate highly with their final layout position in the
graph drawing. By computing the layout of these community subgraphs in parallel

across the cluster, we provide better than random initial starting positions for large
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portions of the graph. A stable global layout can now be calculated at a much lower

cost.

We implemented our method with the Giraph and Hadoop frameworks. Giraph
facilitates running graph processing tasks on Hadoop, a widely used ecosystem of soft-
ware to manage and implement programs on distributed clusters. Louvain modular-
ity is implemented in the Giraph and MapReduce programming paradigms. Hadoop
Oozie and Impala manage distributed graph layout, and graph data storage and com-
munication. Our work extends and makes use of the SFDP, Scalable Force Directed

Placement, layout algorithm by Hu[30], a layout technique designed for large graphs.

We evaluated our work through two main studies; a speedup test, and a layout
correctness test. The speedup test provides a critical standard in distributed com-
puting work; that as new resources are added to the cluster our task’s run time
decreases near-linearly. While some communication overhead occurs, a near-linear
speedup assures that our resources are effectively put to use. Secondly, as well as
performing acceptably, our method must produce useful output. The SFDP algo-
rithm, that this work extends to a distributed architecture, produces graph layouts
that have been extensively evaluated for usefulness and readability. The layout cor-
rectness test correlates our method’s layout, by vertex pair Euclidean distance, with

the same non-distributed SFDP output.

The results from the speedup test showed sub-linear, but good speedup for each
social network test dataset. Our testing used a relatively small 3-node distributed
cluster; nonetheless, our work shows speedup across a breadth of realistic datasets, for
a good initial validation of our method. Likewise, the layout correctness test showed a

high correlation between our method’s output and that of the non-distributed version.

Our method opens up many possibilities for future work beyond the scope of this
thesis. These can be thought of in two categories; work to improve upon our method,

and work to further evaluate it.

Technology related to distributed graph processing is improving rapidly, pushed both
by social media companies and academia. Even during the development of this thesis,

new technologies and improvements to existing techniques have emerged. Alternatives
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to Giraph and Hadoop may be evaluated for potential improvements to scalability
and speedup. These include GraphX by Xin et al.[60], and Distributed GraphLab by
Low et al.[40].

In addition to technology and implementation work, exploration into algorithmic
improvement of our method is possible. Alternatives to Louvain modularity and
SFDP, that our method uses for graph partitioning and layout respectively, can be

considered.

Louvain modularity is inherently unstable compared to other community detec-
tion techniques; detected communities in a graph can vary over different runs of the
algorithm. Louvain’s natural tendency to form large communities results in vertices
being added to communities purely due to randomness. While we justified the speed
of Louvain as outweighing this weakness, other graph partitioning methods may be
appropriate and should be further evaluated for their trade-offs of speed and layout
quality. Fortunato[17] provides a very extensive survey of community detection and

graph partitioning methods.

There is great potential for more in depth evaluation and study of our method. In
particular a more controlled experimental design is possible by testing with generated
datasets. While our work focused on showing an initial and practical demonstration
of our method with real-world datasets, algorithmically generated data can be more
precisely manipulated. Detailed effects of clustering coefficient and other graph prop-

erties on layout quality and speedup could be revealed.

Our available computing resources limited our speedup study to a three node
cluster. Further evaluation on larger Hadoop clusters would reveal how our method’s
speedup behaves as communication and coordination needs increase. A larger cluster
would allow larger datasets to be laid out and evaluated than we were able to test,

due to time limitations.

Finally, we propose that this thesis work could be applied to tasks beyond network
layout and visualization. This work can be thought of as a starting framework for
other scale-free distributed graph processing tasks. Other divide and conquer-like

algorithms, where large subgraphs can be manipulated independently in parallel and



finally recombined, may be ideal candidates.
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