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ABSTRACT 

Projected changes in the hydrological cycle have raised significant concern over future 

water availability and the sustainability of the world’s terrestrial ecosystems. In Chapter 

2, I used a recently compiled dataset of observed terrestrial evapotranspiration (ET) to 

estimate global fields of ET as a function of land-cover (LC) type and meteorological 

variables. I determined the primary driving variables to be temperature, precipitation and 

short-wave radiation through statistical analysis and found that these relationships varied 

by LC type. In Chapter 3, I analyzed global climate model data to examine projected 

changes in the terrestrial hydrological budget; in particular, the regional balance between 

precipitation, runoff, and evapotranspiration. To diagnose hydrologically significant 

change, I applied the concept of ‘climate departure’ which compares the size of the 

projected trend to the magnitude of historical variability. I then used the climate departure 

analysis to test and demonstrate support for the controversial hypothesized pattern of 

change, known as ‘wet-get-wetter, dry-get-drier’ (WWDD), whereby regions with 

characteristically high (low) available water receive more (less) precipitation input under 

climate change. In particular, I develop a spatial meta-analysis framework across 

individual models which demonstrates stronger support for WWDD than previously 

recognized. The results of this thesis provide new insights into the observed drivers of 

hydrological flux (Chapter 2) and model-based projections of future change (Chapter 3). 

Such knowledge is critical for understanding the hydrological consequences of 

environmental change now and into the future.  
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CHAPTER 1 INTRODUCTION 

1.1 PROBLEM STATEMENT AND BACKGROUND 

The Earth’s upper crust and atmosphere contain approximately 1.4 x 106 km3 of water 

that is distributed among the oceans, land, air and sub-surface (Bonan 2010). Due 

primarily to the heterogeneous distribution of temperature that varies around the freezing 

point of water within the Earth System (which allows water to exist in liquid, solid and 

gas phases) (Elsner et al. 2010), water evaporates from open water and soil and transpires 

from plant tissues (i.e., evapotranspiration) on the earth surface and is precipitated 

throughout the troposphere, giving rise to a vertical return flux which completes a 

planetary scale hydrological cycle that continuously moves water between Earth’s 

hydrological reservoirs (Brutsaert 2008).When evaporation occurs, energy is absorbed as 

latent heat in the phase transition and is subsequently released to the atmosphere during 

precipitation (Monteith 1965). In many areas of the world (particularly wet areas), this 

latent heat flux via evapotranspiration can account for more than 50% of the  incident 

radiative energy input from the sun absorbed at the surface (Teuling et al. 2010), 

representing a dominant energy flux in the climate and Earth System. Due to the 

importance of water and surface energy budgets for a broad range of environmental 

processes, understanding drivers and patterns of hydrological flux is of is of great societal 

importance.  

Because water is approximately conserved on Earth over annual scales, hydrological 

fluxes can be described within the context of a hydrological budget. The primary 

terrestrial fluxes in the water budget are precipitation (denoted hereafter P), 

evapotranspiration (ET) and runoff (R). P exceeds ET over much of the land surface, with 

approximately 1.1 x105 km3 of water falling on the global land surface as P, and 7.1 x104 

km3 of water returning as terrestrial ET, with the excess R to stream and rivers that 

supply the ocean (Bonan 2010). The terrestrial water budget can thus be defined by the 

following hydrological budget equation  

ΔS = P-ET-R,                        (1) 

where ΔS represents the change in water storage, P is precipitation, ET is actual 

evapotranspiration (‘actual’ is the amount of water actually removed from the surface, as 
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opposed to ‘potential’: the amount of water that would evaporate if there was no limit to 

water supply) and R is runoff (Bonan 2010).  

The globally integrated, annual-scale water budget is approximately balanced (Brutsaert 

2008); however, regional budgets are often strongly out of balance, which determines 

local water storage, and thus regional economic potential, ecosystem functioning, and the 

availability of ecosystem services (Palmer et al. 2008). In areas where P is much greater 

than ET, we find wet climates (e.g., West Coast Canada), while conversely we find dry, 

arid conditions where P is close to (e.g., Mojave Desert), equal, or in rare instances, less 

than ET. Often water budgets are also altered to meet human needs.  

On ecological and evolutionary time scales, regional patterns of this water balance give 

rise to distinct ecological biomes (Chapin et al. 2002) with biota specifically adapted to 

the hydrological conditions. In turn, biota also impact the water cycle; for example, by 

transpiring subterraneous water (Čermák and Prax 2009) that would otherwise be 

unavailable to evaporation. Furthermore, any future changes in the water balance not only 

impact the distribution of available water for humans, but also impact ecosystem 

functioning and the distribution of vegetation which may have broader societal and 

economic consequences (Arnell 2004).  

Of all the major global-scale hydrological fluxes in Equation (1), ET is the least 

understood due to the complexity and nonlinearities of the governing systems, and lack of 

reference observations (Mueller et al. 2011). Evaporation is primarily controlled by 

meteorological processes (e.g., the amount of energy available), while transpiration is 

controlled by both meteorological processes and photosynthesis rates, determined by 

plant physiology (Bonan 2010). Transpiration occurs through the stomata of plants which 

are small (~1 mm) openings on the surface of leaves which flux CO2 into H2O and O2 out 

of the plant interior. Due to the above mentioned regions the principle drivers of ET are 

still highly uncertain, and predictors likely vary in importance based on regional 

conditions and local vegetation (Sterling et al. 2013). For example, increased solar 

radiation generally increases ET as there is increased available energy to evaporate water. 

However, under the same conditions, different plant species may respond to solar 

radiation in different ways (Caldwell et al. 2007); for example, one species may increase 
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leaf area in response to enhanced solar input, while another plant species (perhaps with 

shorter roots) may quickly wilt and shut down transpiratory flux. Other metrological 

factors such as wind speed and the vapour pressure gradient are also important as dry air 

exerts a greater evaporative demand, while wind is able to move saturated air away 

quickly, allowing for increased flux (Yin et al. 2010). 

In addition to basic uncertainties in the drivers of flux (particularly ET; Mueller et al., 

2011), climate change due to the accumulation of  greenhouse gases in the atmosphere 

has the potential to fundamentally alter the global hydrological budget and regional 

hydrological balances. It is predicted that the water holding capacity of the lower 

atmosphere (troposphere) will increase approximately 7% for every 1 degree Kelvin rise 

in temperature (Lambert and Webb 2008). This is predicted to cause increased 

evaporation in wet areas and increased aridity in dry areas. It is therefore expected that 

changes in the terrestrial water budget will be spatially non-uniform, with an increased 

disparity of P between already wet and dry areas and seasons (IPCC 2013). However, the 

temporal timing and spatial pattern of change in regional water balances is poorly known 

(Greve and Seneviratne 2015) which severely limits our ability to regionally forecast 

future hydrological change.  

1.2 RESEARCH PROBLEM 

The broad objective of this thesis is to advance our understanding of the terrestrial 

hydrological cycle by better understanding drivers of hydrological flux and how the 

hydrological balance may change in the future. In my first research chapter (Chapter 2), I 

use a recently assembled empirical, global-scale database of observed terrestrial ET and 

meteorological/ecological variables to better understand and quantify the primary drivers 

of ET at the regional scale and how these drivers depend on the vegetation and land-

cover in those ecosystems. The general approach of this chapter is statistical where I test 

predictive models constructed from a suite of candidate independent variables, rank their 

importance, and diagnose how these relationships vary spatially across the land surface. 

In the second research chapter (Chapter 3), I analyze output from computer simulations 

of the Earth System and examine future trends in the terrestrial hydrological budget (P, R, 

ET) with a focus on the regional balance of these terms. In particular, I examine how 
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future changes compare with historical variability, as well as testing if a popular 

characterization of predicted trends (wet gets wet, dry gets drier) holds true under two 

simulated climate change scenarios. 
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CHAPTER 2 GLOBAL PATTERNS OF ANNUAL 

EVAPOTRANSPIRATION WITH LAND-COVER TYPE: KNOWLEDGE 

GAINED FROM A NEW OBSERSVATION BASED DATABASE 

 

2.1 ABSTRACT 

The process of evapotranspiration (ET) plays a critical role in the Earth System, driving 

key land-surface processes in the energy, water and carbon cycles. Land-cover (LC) 

exerts multiple controls on ET, yet the global distribution of ET by LC and the related 

physical variables are poorly understood. The lack of quantitative understanding of global 

ET variation with LC begets considerable uncertainties regarding how ET and key land-

surface processes will change alongside ongoing anthropogenic LC transformations. Here 

we apply statistical analysis and models to a new global ET database (GETA 2.0) to 

advance our understanding of how annual actual ET varies with LC type. We derive one-

degree resolution global fields for each LC using linear mixed effect models (LMM) that 

use geographical and meteorological variables as possible independent regression 

variables; the fields then are disaggregated by five-minute LC rasters. Our inventory of 

ET observations reveals important gaps in spatial coverage that overlie hotpots of global 

change. There is a bias in the spatial distribution of observations with more in mid 

latitudes and fewer in the high latitudes; LCs with large areas in the high latitudes such as 

lakes, wetlands and barren land are poorly represented. From the distribution of points, as 

well as the uncertainty analysis completed by bootstrapping, we identify high priority 

regions in need of more data collection. Our analysis of the GETA 2.0 database provides 

new insights into how ET varies globally, providing new empirical estimates of global 

ET rates for a broad range of LC types. Results reveal that different LC types give rise to 

distinct global patterns of ET. Furthermore, zonal ET means among LCs reveal new 

patterns: LCs with a higher evaporation component show higher variability of ET at the 

global scale, and LCs with dispersed rather than contiguous global locations have a 

higher variability of ET at the global scale. The zonal means also suggest that ET rates in 

low-latitudinal bands may be more sensitive to change than in higher latitude bands. 

Results from this study indicate two major advancements are required to improve our 

ability to predict how ET will vary with global change. First, further collection of ground 
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observations of ET is needed to fill gaps in LC type and spatial location identified in this 

paper. Second, LC types need to be de-aggregated into finer categories to better 

characterize ET to reduce uncertainty, as the aggregation of heterogeneous LC types into 

one group weakens the relation to predictor variables; this will require the development 

of higher-resolution LC databases. 

2.2 INTRODUCTION 

Evapotranspiration (ET), the land-surface flux of the water cycle, is a critical process in 

the Earth System that drives land-atmosphere interactions for three major global cycles, 

the energy, water, and carbon cycles, directly and indirectly affecting surface 

temperature, plant productivity, and water availability. Accurate global-scale estimates of 

ET are thus critical for better understanding of climatological (Shukla and Mintz 1982), 

hydrological (Mueller et al. 2013), and carbon interactions (Jasechko et al. 2013). 

However, estimations of ET made by process-based models are uncertain due to the 

complexity and nonlinearity of the systems governing ET as well as the lack of reference 

observations to validate the estimates (Mueller et al. 2011). Thus, independent global 

spatial fields of ET are needed for validation of Land Surface Models (LSMs), and to 

increase our understanding of the spatial patterns in the water cycle (Boé and Terray 

2008, Seneviratne et al. 2010, Mueller et al. 2011). 

Land-cover (LC) type directly influences the four major pathways that drive ET, through: 

a) water availability, b) energy availability, c) photosynthesis rates, and d) atmospheric 

moisture gradient (Sterling et al. 2013). LC change alters water availability at the land 

surface by changing rooting depth, changing soil properties that retain moisture, and by 

directly removing or adding water to the surface through inundation, draining and 

indirectly through irrigation. LC change alters energy availability by changing the albedo 

and the thermal inertia of the surface. LC change alters the atmospheric moisture gradient 

by altering the surface roughness and therefore surface turbulent exchange. Lastly, LC 

change directly alters photosynthesis rates by changing leaf area, stomatal density, water 

use efficiency (e.g., C3 to C4 plants) and nutrient availability. 

While ET is challenging both to model and to observe, there are a range of ET datasets 

that have advanced our understanding of this important flux: diagnostic observation-
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based datasets, reanalyses, and uncoupled or coupled land surface models (LSMs), with 

each having its own biases and limitations (Mueller et al. 2011, 2013). These datasets are 

useful in establishing global patterns of ET and determining how the patterns vary by 

climate type, but are not designed to estimate ET for individual LC types. To date, there 

is no available database designed to test the response of ET to LC change, particularly 

one that covers a broad range of LC types. Thus, the characterization of ET rates and 

patterns among different LC types has remained elusive. 

Here we use a new assembly of information on point-based estimates of ET for discrete 

LC types to gain new insights on how ET varies with a broad range of LC types. We 

create and employ a database of point-based estimates of annual actual ET types 

(ET_OBS) and generate global fields of ET (ET_LMM) from these observations 

generated with a linear mixed effect model using meteorological and geographical 

predictors. We examine the following questions:  

1 What are the patterns in available information from ET observations among LC 

types? 

2 What are the global patterns of annual actual ET for different LC types?  

3 What are the patterns of uncertainties for global predictions of ET using a statistical 

model among LC types? 

2.3 METHODS 

2.3.1 GETA 2.0 Database 

The GETA 2.0 (Global ET Assembly 2.0) database is a new global-scale dataset of 

annual actual ET rates classified by LC type (Table 2.1). The GETA 2.0 database 

comprises 2363 points across the globe representing 16 LC types (Table 2.1). GETA 2.0 

has improved from its first version (in Sterling et al. 2013) through the addition of over 

800 more data points. The ET values in the GETA 2.0 database (ET_OBS) include 

estimates covering the period 1850 to 2010, with records varying in length from 1 to 107 

years. Data are collected with a variety of methods, including eddy covariance, energy 

balance, soil moisture balance, and water balance methods, over spatial scales ranging 

from plot studies to larger catchments. Criteria for inclusion in the database are that the 

data points were published in government or scientific literature, represent annual actual 



8 

 

ET, represent ET for a single LC type, and be representative of a specific location on the 

planet. This approach follows fundamental work begun by Helmut Lieth in the 1960s 

(Lieth 1972), later furthered by Olson (Olson 1975) and Atjay and coworkers (Ajtay et al. 

1979), that determined characteristic net primary productivity (NPP) fluxes for the major 

ecosystems of the world based on a database of point observations from around the globe. 

Table 2.1 LC type and annual actual ET estimation (m/yr). Type refers to LC type, 

whether natural (N) or anthropogenic (A). ET_LMM refers to ET statistics 

derived from the ET_LMM method. ET_OBS refers to ET statistics 

derived from the GETA 2.0 point observations. 

LC type Symbol Type ET_LMM (m/yr) ET_OBS (m/yr)  

 
  

 

Max Range Mean Std. Max Range Mean Std. 

Difference of 

Mean ET 
(ET_OBS-

ET_LMM) 

Evergreen broadleaf forest EBF N 1.56 1.22 1.21 0.16 3.28 3.15 1.2 0.39 0.01 

Deciduous broadleaf forest DBF N 1.19 0.84 0.75 0.2 2.41 2.26 0.71 0.35 0.04 
Evergreen needle leaf forest ENF N 1.34 1.2 0.39 0.16 1.5 1.41 0.56 0.27 -0.17 

Deciduous needle leaf forest DNF N 0.6 0.44 0.28 0.05 1.95 1.84 0.47 0.47 -0.19 

Mixed forest1 MXF N 1.39 1.26 0.34 0.18 2.84 2.66 0.66 0.35 -0.32 

Savannah SAV N 1.31 1.15 0.78 0.24 3.18 2.91 0.88 0.48 -0.1 

Grassland GRS N 1.27 1.19 0.42 0.15 2.24 2.23 0.58 0.42 -0.16 

Shrubland2 SHR N 0.93 0.92 0.31 0.13 0.97 0.9 0.39 0.22 -0.08 

Barren land BAR N 1.04 1.04 0.07 0.07 1.67 1.66 0.32 0.3 -0.25 

Wetlands WTL N 1.94 1.82 0.83 0.51 4.01 3.81 1.06 0.64 -0.23 

Lakes and Resevoirs3 LAK A/N 2.59 2.46 0.56 0.39 3.58 3.45 1.61 0.74 -1.05 

Irrigated cropland CRI A 1.5 1.11 0.93 0.25 4.6 4.3 1.14 0.79 -0.21 

Non-irrigated cropland4 CRN A 1.45 1.45 0.65 0.3 1.83 1.66 0.62 0.35 0.03 

Tree plantations TPL A 1.37 1.17 0.67 0.37 2.5 2.37 0.83 0.4 -0.16 

Grazing GRZ A 1.66 1.66 0.66 0.32 2.69 2.57 0.77 0.52 -0.11 

Urban and built-up HMO A 1.18 1.13 0.48 0.17 1.13 1.02 0.52 0.23 -0.04 

1. These are forest areas with mixed species (deciduous and evergreen). 
2. Combined closed shrub land and open shrub land. 

3. Includes both lakes and inundated lands, grouped together because of their shared properties.  

4. The cropland dataset contains locations in desert areas which are likely erroneous. We did not remove these cells in our global 
ET field generation. This layer was modified to not include irrigated cropland cells. 

 

GETA 2.0 includes both natural and anthropogenic LCs (Table 2.1). The LC classes were 

chosen to closely link to plant functional types commonly used in LSMs and to follow 

the IPCC classification scheme (Sterling and Ducharne 2008). The LC rasters have a 

five-minute resolution, enabling the identification of individual wetlands and urban areas, 

as well as major topographic and physical drivers of the local climate.  
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2.3.2 Model Development 

2.3.2.1 Independent Predictors 

Predictors that are independent of LC type were used to model global ET fields for each 

LC type. We used predictors from the NCC (NCEP/NCAR Corrected by CRU) 53-year 

(1948 to 2000), 6-hour, meteorological forcing dataset (Ngo-Duc et al. 2005), an 

elevation dataset (United States Geological Survey 1997), and latitude and longitude. The 

annual average values of seven meteorological predictors (Table 2.2) were extracted from 

the NCC dataset. The half-century timeframe of NCC captures the same timeframe in 

which most of the ET observational data were collected. Like other atmospheric forcing 

datasets, the NCC dataset is designed to describe the overlying meteorology for a variety 

of LC types at a particular location on the surface, and can be considered independent 

from LC type. It should be noted, however, that these atmospheric forcing datasets are 

based upon data from meteorological stations located on the surface that are typically 

situated on grass plots, so the atmospheric forcing data would be representative more of 

grass plots than any other LC type. As it is not realistic to situate meteorological stations 

in all the LCs for the areas that they are to represent this problem is not avoidable; 

although, having meteorological stations located in uniform land surface types makes it 

easier to interpret possible effects than would be the case if they were situated in varying 

LC types. There are 381 GETA 2.0 data points located on large lakes, coastal zones and 

islands that fall in cells not covered by rasters of the independent predictors. For points 

that lie on the boundary or within one degree of the NCC raster we manually moved the 

ET points to the nearest NCC cell from which the information was gathered for the 

statistical modelling of ET. For the case of large lakes, such as Lake Chad, Lake Superior 

and the Aral Sea that do not have dataset coverage, the elevation and NCC forcing 

datasets were interpolated using the nearest neighbour value at the coastline for each cell. 

Small oceanic islands did not have overlying meteorological data, and ET_OBS on such 

islands and points that were classified generally as forests were not included in the linear 

mixed effect modelling. Thus, of the 2363 GETA data points, 2248 were used to model 

the global ET_LMM fields. 
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Table 2.2 Independent variables tested as model predictors of ET. 

Variable 
Name 

Description Units Source 

Precipitation Combined rainfall and snowfall rate kg/m Ngo-Duc et al., 2005 

Tair Near surface air temperature at 2 m K Ngo-Duc et al., 2005 

Qair Near surface specific humidity at 2 m Kg/kg Ngo-Duc et al., 2005 

Wind Near surface wind speed at 10 m m/s Ngo-Duc et al., 2005 

Purf Surface Pressure Pa Ngo-Duc et al., 2005 

Swdown Surface incident shortwave radiation W/m2 Ngo-Duc et al., 2005 

Lwdown Surface incident long wave radiation W/m2 Ngo-Duc et al., 2005 

Elevation Land elevation m USGS, 2013 

Lat Latitude Degrees NA 

Long Longitude Degrees NA 

 

2.3.2.2 Modelling Global Fields of ET 

Statistical relationships were tested between ET_OBS and the independent predictors to 

first choose the primary independent variables and use these relationships to predict 

global fields of ET for each LC type. Our modeling framework was based on the linear 

mixed effects model (LMM) which allows for the statistical analysis of grouped data 

(Pinheiro and Bates 2000). The random effects take the form of LC-specific deviations to 

the overall slope between independent variables and ET, as described below.  

We divided ET_OBS values into groups by LC type and then chose the predictors in a 

forward stepwise fashion using the Bayesian Information Criterion (BIC) (Kadane and 

Lazar 2004), where the ‘best’ model is the one that minimizes the BIC criterion. This 

criterion determined that precipitation, temperature, and shortwave radiation were the 

primary predictors, with precipitation and temperature having random effects (Figure 

2.1). Spatial autocorrelation of the model was also tested using the Moran’s I statistic and 

was found to be significant at the 0.05 level, therefore we updated the model to include a 

spherical covariance model based upon the Haversine distance for the model residuals 

within the ‘nlme’ package in R (Pinheiro and Bates 2000).  
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The best fit model followed (Equation 2.1):  

ln(𝐸𝑇) =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑎𝑙𝑙 + 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐿𝐶 + (𝑇𝐶𝑎𝑙𝑙 + 𝑇𝐶𝐿𝐶) ∗ 𝑇𝑎𝑖𝑟 +  (𝑃𝐶𝑎𝑙𝑙 + 𝑃𝐶𝐿𝐶) ∗

𝑃𝑟𝑒𝑐𝑖𝑝 + 𝑆𝐶𝑎𝑙𝑙 ∗ 𝑆𝑊          

          Equation 2.1  

where TCall is the fixed intercept for Temperature, TCLC is the random effect for 

temperature, Tair is air temperature, PCall is the fixed effect for precipitation, PCLC is the 

random effect for precipitation, Precip is precipitation, SCall is the fixed effect for SW, 

shortwave radiation; all of these parameters are normalized to z-score values. We verified 

there was no violation of model assumptions by checking both the homogeneity of the 

variance as well as the normality of the residuals within LC.  

The robustness of the random effect estimates was investigated by subsetting the data and 

fitting individual linear models for each LC. All coefficients were of comparable 

magnitude and direction than the random effects estimated here.  

To assess the robustness of the model predictions, we performed “leave one out cross 

validation” (LOOCV) (Hastie et al. 2001).We iterated the LOOCV algorithm 200 times 

and assessed predictive skill explicitly by LC type. The mean cross validation error 

showed a root mean squared error of 0.44 [lnET], but ranged nearly threefold between 

LCs (.339-.803 [lnET]). Histograms of the cross validation error are symmetric, 

indicating that the model predictions are unbiased despite high variance for some LCs. 

Next, we masked the global fields of ET that were generated by the models to the 5-

minute cells in which the LCs appear. (Note that the one-degree resolution of the 

ET_LMM predictions for each LC type does not change with this step, but shows where 

the LCs with this one-degree resolution ET are located within the cell). An implicit 

assumption here is that the major drivers of ET at the global scale that are not 

encompassed in the determination of the LC location are changing at a spatial rate that 

can be represented by a 1-degree grid (e.g., insolation, precipitation, relative humidity). 

While some of the finer-scale variations in topography and soils may be captured in the 

5-minute LC rasters themselves, the underlying resolution of the ET_LMM rasters 

remains at 1-degree.  
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Figure 2.1 Linear mixed effect model slopes by predictor. Slopes of two random 

 effects (i.e. slopes that vary by land- cover -precipitation (blue) and air 

temperature (green)) and fixed slope (common to all land-covers - 

shortwave radiation (red)). The fixed effect is displayed by the dotted line, 

with the additional random effect shown by the dot. Lighter shading 

indicated the bootstrapped confidence interval, where the horizontal line is 

the mean of the bootstrapped confidence interval. 

We chose 5-minute presence/absence LC rasters used to mask ET_LMM that were 

derived potential and anthropogenic vegetation rasters from Ramankutty and Foley 

(1999) and Sterling and Ducharne (2008), except for tree plantations which was derived 

from Erb et al. (2007). We converted percent cover to presence/absence at the 5-minute 

resolution of tree plantations by preserving the area (Kröger 2012), assuming a linear tree 

plantation expansion rate between 1990 and 2010, with an estimate of 221.12 million 

hectares of tree plantations globally. The relatively fine resolution is an advantage of 

these LC rasters as they capture local features important in terms of climate and water 

budgets such as individual lakes and wetlands; however, the rasters used to mask 
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ET_LMM fields did not overlie neatly with the ET_OBS points, as there are cases where 

ET_OBS measurements were made in cells in which the LC measured was not the 

dominant LC; 58% of ET_OBS points did not align directly with the overlying LC raster. 

As we verified that the original LC classification of the ET_OBS points was correct, we 

included the 58% of ET_OBS that did not align with the overlying LC raster in the 

modelling of ET as these points represent a finer resolution LC not captured in the 5-

minute rasters, rather than an error in LC classification. 

To determine confidence intervals for the model coefficients and global predictions, we 

performed bootstrapping by randomly sampling the raw ET values within LC groups and 

then refit the model to generate bootstrap distributions of model coefficients and 

predictions (Efron and Tibshirani 1994). This was completed 1000 times to generate a 

distribution of possible values. We generated the distribution of estimates and the 

predicted ET rates 95% confidence interval by extracting the 0.025th and 0.975th quantiles 

of the bootstrapped data predictions. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Patterns in Available Information on Annual ET 

There is a marked variation of coverage of ET observations (ET_OBS) both spatially and 

by LC type (Figure 2.2, 2.3); some LCs and regions in the globe have much fewer ET 

observations than others. Most ET observations are in forested environments (57.5 % of 

estimates, Figure 2.2), and of these most are in evergreen broadleaf and evergreen needle 

leaf forests; the exception is deciduous needle leaf forests, which have the fewest ET 

measurements of all LC types and also has a limited global extent, predominantly in 

Siberia. Barren lands and savannah have the fewest ET estimates next to deciduous 

needle leaf forest, followed by urban lands. As a group, anthropogenic LCs have lower 
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ET coverage than the natural LCs (Figure 2.2). 

 

Figure 2.2 Count and density of ET measurements (ET_OBS) by LC. Count of points 

in the GETA 2.0 database for each LC shown in dark blue using the left 

axis, and the density of points for each land-cover (light blue) calculated 

per km2 on the right axis (x 10-4).  

The spatial distribution of ET observations varies markedly across the globe (Figure 2.3). 

Few data points are found in Central Asia and Western Africa. Western Europe and the 

United States have the densest coverage of ET measurements.  

Regions with lower ET_OBS coverage intersect key global hotspots. South East Asia is a 

hotspot for change in ET with LC change (Sterling et al. 2013, Boisier et al. 2014), for 

correlation of summer temperature and ET (Seneviratne et al. 2006) and for high threat to 

Human Water Security (HWS) (Vorosmarty et al. 2010). Equatorial Africa is a hotspot of 

ET change due to LC change (Sterling et al. 2013, Boisier et al. 2014), a high risk to 

HWS (Vorosmarty et al. 2010), and projected early temperature departure from 

atmospheric CO2 increase (Mora et al. 2013). Other areas with poor ET coverage that 

intersect areas of high threat to HWS and change in ET from LC change include western 

South America, India, Eastern China and Afghanistan, Western Australia, Central 

America, East Africa, European Russia, Western Asia and Southern Europe. 
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Figure 2.3 Global patterns of ET_OBS density for all LCs, as derived from the  

 GETA 2.0 database. Circles represent the density of ET_OBS where  

 “Highest” represents 1.26 points per 7.5 degree search radius and “None”  

 represents zero data points per 7.5 degree search radius and “None”  

 represents the zero data points per 7.5 degree search radius. 

Our statistical model predicts that the LCs for which temperature greatly contributes to 

higher ET_LMM values, precipitation does not and vice versa (Figure 2.1, Table 2.3). 

This relationship follows the theoretical moisture versus energy-limited status of LC 

types (e.g., Creed et al. 2014). For example, the ET_LMM rates for barren lands (BAR, 

often moisture limited) increase with increasing precipitation, with almost no change with 

increasing temperature. Conversely, ET_LMM rates for wetlands and irrigated 

agriculture (by definition energy limited) increase with temperature, with almost no 

change with increasing precipitation. ET reacts to a more equal combination of 

precipitation and temperature drivers for forests, savannah, non-irrigated agriculture, tree 

plantations, grazing lands and urban lands.  
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Table 2.3 Regression coefficients estimated using a linear mixed model with spatial 

correlation. These estimates are for log ET across the globe; rasters used 

for prediction have been log transformed and standardized (z-scores) so 

that the slopes are directly comparable between predictors and within LCs. 

  Intercept Random Effect Fixed Effect 

    Tair  Precip SW 

All 0.64 1.19 1.2 1.14 

EBF 1.2 0.95 1.00 NA 

DBF 1.04 0.97 0.93 NA 

ENF 1.07 1.03 1.01 NA 

DNF 1.06 1.04 0.96 NA 

MXF 0.99 1.00 1.04 NA 

SAV 0.94 1.00 1.00 NA 

GRS 0.84 0.92 1.09 NA 

SHR 0.71 0.89 1.11 NA 

BAR 0.55 0.85 1.44 NA 

WTL 1.3 1.15 0.82 NA 

LAK 1.54 1.17 0.8 NA 

CRI 1.26 1.06 0.85 NA 

CRN 0.98 0.99 1.03 NA 

TPL 1.07 1.03 0.95 NA 

GRZ 1.03 0.97 1.08 NA 

HMO 0.83 1.01 1.02 NA 

2.4.2 Global ET Means for Individual LCs 

Our analysis reveals that the order in which terrestrial biomes have the highest to lowest 

ET follows the established order of biome NPP ranking (Lieth 1975, Olson et al. 1983, 

Saugier et al. 2001). The mean annual ET rates (for both ET_OBS and ET_LMM) are 

highest for evergreen broadleaf forest, irrigated croplands, and wetlands and are lowest 

for barren land (Figure 2.4, Table 2.1). The majority of ET_OBS lie between 0.30 and 1.5 

m/yr (Figure 2.4), with the observed mean equal to 0.84 m/yr and the median equal to 

0.69 m/yr. 
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Figure 2.4 Mean (point) and standard deviation (line) for observed (blue) and 

standard error of annual ET values by land-cover. Observed ET values 

(ET_OBS) represent point observations of ET from the GETA 2.0 

database and mixed effect model estimated (ET_LMM - red) represents 

ET of global fields generated by a statistical model from ET_OBS. 

The data show that many LC types have significantly different global annual average 

observed ET (ET_OBS) from other LCs. Of the 120 different comparisons of ET_OBS 

LC types, 70 (58.3%) are significantly different at α = 0.05 using Tukey’s mean 

comparison test (Table 2.4). Non-irrigated agriculture and deciduous broadleaf forests are 

the LCs with the fewest significant differences from other LC types, these LCs have ET 

values in the middle range of ET (0.25 to 1.0 m/yr), with means between 0.6 to 0.7 m/yr. 

Lakes have a significantly higher ET rate than all other LC types. 

 

 

 



18 

 

Table 2.4 Tukey’s Mean comparison test p-values for testing whether mean  

 observed values of ET (ET_OBS) significantly varies by land-cover (LC).  

 Significance at alpha = 0.05 level is noted by bold typeface. 

 EBF DBF ENF DNF MXF SAV GRS SHR BAR WTL LAK CRI CRN TPL GRZ HMO 

EBF                  

DBF 0.00                 

ENF 0.00 0.00                

DNF 0.00 0.57 1.00               

MXF 0.00 1.00 0.55 0.90              

SAV 0.00 0.62 0.00 0.05 0.21             

GRS 0.00 0.33 1.00 1.00 0.99 0.01            

SHR 0.00 0.00 0.11 1.00 0.00 0.00 0.14           

BAR 0.00 0.00 0.05 1.00 0.00 0.00 0.05 1.00          

WTL 0.36 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00         

LAK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00        

CRI 1.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 1.00 0.00       

CRN 0.00 0.98 1.00 0.99 1.00 0.18 1.00 0.15 0.05 0.00 0.00 0.00      

TPL 0.00 0.34 0.00 0.05 0.04 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10     

GRZ 0.00 1.00 0.01 0.31 0.89 1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.80 1.00    

HMO 0.00 0.42 1.00 1.00 0.92 0.02 1.00 0.98 0.74 0.00 0.00 0.00 1.00 0.01 0.19   

 

However, the ET comparisons based on ET_OBS data are limited by the spatial coverage 

of the observations. Most ET observations are located in mid-latitudes, and LCs with 

large areas in higher latitudes (e.g., lakes, wetlands and barren lands) are more poorly-

represented by the current ET observations. As a result, the mean global average ET for 

these LCs derived from ET_OBS is too high. For these LCs, ET_OBS is higher than the 

ET_LMM mean (Table 2.1, Figure 4), as expected because ET_LMM covers the high-

latitudes. The difference in maximum value for the ET_OBS and ET_LMM is greatest 

for lakes, barren lands and wetlands, as expected.  

For other LCs, the means of ET_OBS and ET_LMM are similar, such as for evergreen 

broadleaf forest, deciduous broadleaf forests, savannah, shrub land, irrigated agriculture 

and urban lands; the location of these LCs tend to be in the mid- to low- latitudes for 

which there is better representation in ET_OBS. In general, the model predictions 
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(ET_LMM) are well within one standard deviation ET_OBS for most LCs (Table 2.1, 

Figure 2.4).  

The GETA 2.0 ET estimates for individual LCs correspond well with another estimate 

(Rockström et al. 1999) that summarized mean ET for LC types, although comparisons 

are challenging because of lack in congruency in LC classes among studies. For the four 

LC types that are congruent with GETA 2.0 types, the Rockström et al. (1999) mean 

annual ET estimates fall within the ranges of ET_OBS and ET_LMM. We found a 9.57% 

median cell specific difference between results generated by a multi-tree ensemble (Jung 

et al. 2010) and ET_LMM, calculated at a half-degree resolution; the largest differences 

occurred at locations with wetlands, which was included in ET_LMM but not in Jung et 

al. (2010), and in these locations the ET_LMM was greater than the ET prediction in 

Jung et al. (2010).  

Global ET_LMM fields project a cumulative total ET (TET) of 70,600 km3/yr for a globe 

covered with potential vegetation), and wetlands (Figure 5). This value coheres with the 

range of published estimates of TET (73,000 km3/yr (Arora 2001); 71,000 km3/yr 

(Baumgartner et al. 1975); 72,900 km3/yr (Berner 1987); 60,000 to 85,000 km3/yr 

(Haddeland et al. 2011); 62,800 km3/yr (Mu et al. 2011); 75,000 km3/yr (Oki 1999); 

56,000 to 84,000 km3/yr (Rockström et al. 1999); and 64,500 to 72,000 km3/yr (Mueller 

et al. 2013). Our analysis includes major lakes, not included in many other analyses, 

which may explain why our estimate lies on the higher end of the range of projected 

TET. 
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Figure 2.5 Linear Mixed Effect Model predicted rates of ET (ET_LMM) (m/yr) of  

 global annual actual ET projections for potential vegetation (listed as  

 Natural in Table 1) with wetland overlay. Grey indicates areas  

 permanently covered by ice or large lakes. ET_LMM maps for individual  

 anthropogenic land-covers are presented in Appendix A.3. 

2.4.3 Zonal Patterns of ET 

The modelled ET (ET_LMM) results show that different LC types have different zonal 

patterns of ET (Figure 2.6). LCs differ in rates as well as the shape and variability of their 

zonal ET means. Results indicate that lakes have the highest mean ET rates at almost all 

latitude bands, while deciduous needle leaf forest have the lowest (Table 2.1, Figure 2.6). 

Of LCs that extend across majority of the latitude bands, barren lands and shrub lands 

have the lowest values.  
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Figure 2.6 Zonal patterns of ET_LMM for LC types. The line represents the zonal 

mean, and the lighter area represents the 95% confidence interval derived 

from bootstrapping. Green represents potential vegetation (DBF, DNF, 

ENF, GRS, MXF, SAV, SHR, EBF, and WTL, as listed as Natural in 

Table 1), and red represents anthropogenic vegetation (CRI, CRN, GRZ, 

HMO, TPL, BAR and LAK, (here classified as anthropogenic although it 

is a mix of natural lakes and anthropogenic reservoirs)), See Table 1 for 

abbreviations). The black line plots represent the number of observations 

at that latitude.  

The most common zonal pattern of ET shows a higher mean ET rate around the equator 

that declines with increasing latitude, but the shape of this relation varies with LC type. 

The zonal patterns reveal that LCs with highest available surface water (evergreen 

broadleaf forest, lakes and wetlands) also have the largest increases in ET with latitude 

towards the equator (Figure 2.6). In contrast, LCs with the lowest amount of available 

surface water (grasslands, shrub lands and barren land) have the smallest increases in ET 
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with latitude towards the equator. The common zonal ET shape is consistent with another 

study that showed for ET rates for all LCs lumped together peaking at about zero degrees 

latitude (Zeng et al. 2012). 

The zonal plots suggest that the expected response of ET to a particular LC change is not 

the same across all latitudinal bands. For example, results suggest that conversion of 

wetlands to grazing land may decrease annual ET at the mid- and lower latitudes and the 

difference is most significant in the mid-latitudes (Figure 2.6). Results suggest that a 

change from evergreen broadleaf forest to urban lands may cause the greatest reductions 

in ET nearer the equator as compared with higher latitude bands. Similarly, results 

suggest that a change from shrub land to lakes would cause the greatest increases in ET in 

the low latitudes. While the zonal plots suggest likely changes to ET resulting from a 

variety of LC changes in particular latitude bands, given the lack of sufficient data in 

some latitudes and uncertainties of the ET_LMM model in these regions, further 

investigation is needed to verify these observations.  

Results suggest that the global-scale pattern of a LC location, whether dispersed or 

contiguous, impacts zonal ET variability. Results show that LCs that have more 

contiguous global locations (e.g., non-irrigated croplands, deciduous broadleaf forests 

and shrub lands, Figure 2.5) have smoother zonal curves with less variability among 

latitude bands. In contrast, LCs with dispersed global locations (e.g., lakes, irrigated 

agriculture, tree plantations, and urban lands, Figure 2.5) have higher variability in mean 

zonal ET in adjacent latitude bands (Figure 2.6). Thus LCs with larger contiguous areal 

locations are expected to have more gradual changes in climate among adjacent cells, and 

more direct feedback over their overlying meteorology than do LCs with dispersed 

locations. Zonal ET_LMM confidence intervals are largest around the equator and 20-30 

⁰N, corresponding with the latitudinal belt that includes a large range of climate types 

(e.g., deserts in Africa and tropical forests in SE Asia). 

Results also indicate differences in global scale ET variability can also be explained by 

relative roles of vegetation among LC types. LC’s for which ET is dominated by one of 

energy or moisture limitations (barren land, wetlands, and lakes, Figure 1) have more 

variability in their zonal patterns with wider confidence intervals around the mean 
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(Figure 2.6). In contrast, LCs for which ET is governed through a more equal 

combination of water availability and energy (such as evergreen needle leaf forest, 

savannah, and non-irrigated cropland, Figure 2.1) can be considered to be more 

vegetation-dominated; these LCs have lower variability in their zonal patterns with 

smaller confidence intervals around the mean (Figure 2.6). The first group of LCs are 

expected to have a greater role of evaporation in ET, as these LCs have more open water 

and bare soil; thus, a possible explanation for higher ET variability of these LCs is that 

they can occur in a much wider variety of climates than the vegetation-dominated LCs, 

and are therefore exposed to a larger range of conditions in the ET drivers. Indeed, we 

observe that the ranges of the independent predictors (shortwave radiation, precipitation 

and air temperature), normalized by the LC area, are greatest for lakes, followed by urban 

areas and wetlands, and that barren lands have the largest temperature and shortwave 

radiation range of all the LCs. For the “vegetation-dominated” LCs, the lower variability 

in global ET can be explained by a smaller range of climate conditions experienced per 

unit area of the LC, and thus these vegetation dominated LCs are exposed to a lower 

range of ET drivers. These relationships imply that LCs dominated by energy or moisture 

limitations will have more uncertainty in their projections with a statistical model from 

than vegetation-dominated LCs with more balanced energy and moisture limitations to 

ET. An exception to this observation are evergreen broadleaf forest (Figure 2.6) which is 

governed by a balance of both energy and moisture limitations also has a wide confidence 

interval; the higher than expected variability of evergreen broadleaf forest may be due to 

its very high ET rates or to its lower percentage of interception compared to other forest 

types (following Miralles et al. (2010)). Further research using more refined LC classes is 

needed to examine these hypotheses. 

2.4.5 Uncertainties in ET for Individual LC Types 

The bootstrapping results are consistent with those from cross-validation and indicate that 

the parameter estimates are relatively insensitive to error in the data. Again, the bootstrap 

distributions showed good symmetry which indicates that the fitted relationships are 

unbiased. Taken together, the two model diagnostics indicate relatively high variance 
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(largely due to sparse sampling), yet also indicate unbiased parameter estimates and 

predictions which indicate a robust underlying physical signal. 

Confidence intervals generated using the bootstrapped models indicate that the largest 

uncertainties in the ET_LMM predictions lie in Africa and northern latitudes (Figure 2.7). 

These uncertainties qualitatively agree with the density of points generated from 

ET_OBS in that the lowest uncertainties are located in areas with the most points, such as 

North America and Europe (Figure 2.7), and the largest uncertainties lie in predictions of 

Africa, Southern Asia, South America and far northern locations. In terms of LC type, the 

largest uncertainties are associated with barren lands and wetlands (Figure 2.7). 

 

Figure 2.7 Confidence interval size for estimated rates of ET from the mixed effect 

model (ET_LMM) generated from 1000 bootstrapped datasets. 

Reliability of ET_LMM predictions also varies with LC type due to varying levels of 

extrapolation in the model resulting from predictors being used outside of the ET_OBS 

range. We have mapped the regions of coverage for each LC type to identify the locations 

for which the ET predictions are less certain (Appendix A.3); some of the LCs have 

poorer coverage of the independent predictors by ET_OBS, leading to less accurate 

predictions in ET_LMM. In particular, barren land is not well covered by the predictor 

ranges, resulting in less certain ET predictions outside of the predictor ranges in Northern 
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Africa, Tibet, the Arctic and the Altiplano. These maps also serve to identify where 

further data collection is needed so that ET fluxes of the LCs can be better understood.  

At some locations the estimates of ET_LMM result in greater rates than the input 

precipitation (this is not found for energy limitations). Predictions for these areas yield 

greater annual rates of ET than precipitation (see Appendix A.1 for a map of regions 

where ET > precipitation), although we chose not to adjust ET_LMM values as they are 

still assumed to be the best estimate from this particular model. However, we recognize 

that this is a limitation of the statistical model, which is not inherently constrained by 

physical limitations (water and energy). On the other hand, it may actually be possible for 

ET to exceed P for certain LCs (i.e., wetlands, lakes and inundated lands, and irrigated 

agriculture), due to water inputs from other regions (either anthropogenic or natural). 

Opposed to artificially augmenting the current model by imposing a maximum ET rate 

(which would violate the assumption of normally distributed model errors), we suggest 

explicit incorporation of physical limitations as a way to potentially improve the 

statistical parameterization in future work.  

As mentioned earlier, the LC type of 58% of the ET_OBS points did not align with the 

dominant LC type in the LC raster. This discrepancy will not add error to the ET_LMM 

estimates, because the true LC type is considered to be the LC linked with the ET_OBS 

and is the one used in the LMM; however, this discrepancy does affect the ET_LMM 

results in that the masked ET_LMM cells will not extend over all the cells in which the 

LC occurs, to address this, the unmasked ET_LMM raster may be masked to a different 

LC raster. ET in ocean archipelagos is not well represented in the analysis, due to gaps in 

coverage of the independent predictors. Advances in atmospheric forcing datasets to 

cover ocean archipelagos are needed to address this limitation. 

Taken together, our results show several pathways through which the uncertainty in 

global modelled annual average values of ET (ET_LMM) relates with LC type. LCs with 

the highest uncertainty in ET_LMM projection are those that have dispersed locations 

(Figure 2.5), lower point and density of coverage (Figure 2.2, 2.3), larger areas with 

climate conditions outside the ET_OBS range (Appendix A.3), and have a greater role of 

evaporation in ET. In contrast, LCs with the lowest uncertainty have more contiguous 
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locations, higher point and density of coverage, smaller areas with climate conditions 

outside the ET_OBS range, and are vegetation-dominated. For example, lakes and barren 

lands have a relatively high uncertainty in ET predictions and this may be explained by 

three things: 1) lakes and barren lands have greater decoupling of LC location from 

climate variables (i.e., these two LCs can occur in a greater range of climates than can 

tropical evergreen forest, for example), 2) lakes in particular have a spatial pattern that is 

comprised of disparate sub-units (i.e., more patchy) which would increase the range of 

conditions in the climate drivers that affect the LC, and 3) lakes and barren lands have 

more extensive extrapolation of ET_LMM beyond the range of predictor variables 

compared with other LC’s, due to absence of measurements in key climate locations 

(such as the arctic barren lands), as shown in Appendix A.3. Future work is also 

recommended to extend this analysis to cover sub-annual variation, finer spatial scales, 

climate sub-types of LC classes, and the impact of successional stages on ET. 

It should be noted that the one-degree ET rasters may be masked by other LC maps apart 

from the ones used for this study. Other studies that may want to compare, for example, 

global land surface model output of ET may use the map used in their global land surface 

model to mask the ET_LMM; but it should be kept in mind that the original ET data are 

at a one-degree resolution. 

2.5 CONCLUSIONS 

Our assembly and statistical analysis of the novel GETA 2.0 database provide a new 

characterization of global ET patterns for a broad range of LCs, building upon existing 

knowledge in other databases that do not classify ET by LC type. Our results show that 

LCs have distinctly different means and zonal patterns. Lakes have the highest ET rates 

across all latitude bands, although the high latitudes are particularly uncertain.  

The one-degree global fields of ET produced here (ET_LMM) are useful as a reference 

for process-based model estimates of ET because they are derived from statistical 

modelling of observations, and therefore do not rely on the same assumptions used in 

deterministic land surface and climate models. Furthermore, information presented here 

on ranges of ET observations for individual LC types (Table 2.1, Figure 2.3) can be used 
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to support decisions on whether modeled ET outliers can be excluded based on physical 

considerations (e.g., McCabe et al. 2008).  

Results suggest that ET may be more sensitive to LC change in some latitude bands than 

others. Changes to ET from LC change appear to be largest in the tropical latitude bands, 

particularly associated with differences between ET in LCs with high and low water 

availability. This finding suggests that land use planning should be particularly careful in 

the tropics because of the possibility of heightened impacts to the Earth System in these 

latitude bands; further study of these observations is recommended.  

Our analysis suggests two fundamental LC characteristics affect global ET variability: 

contiguous LCs display smaller ET variability than dispersed LCs; and LCs that have a 

heightened role of evaporation in ET have higher variability in global ET than 

vegetation-dominated LCs. More work to further explore these hypotheses is needed to 

advance our ability to predict changes to ET with global change. 

Our inventory of annual actual ET observations reveals regions and LC types where 

estimates are most lacking, and many of these are within key global change hotspots in 

the Arctic, Africa and central Asia. Further some LCs have much sparser ET observations 

than others. Anthropogenic LCs, including grazing land, non-irrigated croplands, and 

urban areas, are among the most poorly represented LCs by ET observations. We 

recommend that anthropogenic LCs be targeted for future monitoring of ET. Many 

anthropogenic LCs also face higher heterogeneity of overlying meteorological conditions 

within their LC type, related to a greater role of evaporation in ET (e.g., reservoirs), 

increased spatial dispersion (e.g., urban areas), or a combination of these factors (e.g., 

irrigated cropland). Thus it is particularly challenging to reliably project ET in 

anthropogenic LCs at the global scale. An added challenge is that anthropogenic LCs are 

also difficult to parameterize in process-based models because of their within-class 

heterogeneity. Division of LCs into subclasses for future modelling will help to reduce 

the heterogeneity needed to better define characteristic the land surface fluxes in these 

LCs.  

Resolution is an important characteristic in any global projection of ET. For example, 

local high and low values of ET cancel out with coarser spatial resolutions leading to 
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underestimation of ET gradients within continents (Mueller et al. 2011). Because the 

ET_LMM generated here represents only a single climate within a grid cell, and because 

the ET_LMM was generated by 1-degree results disaggregated to 5 minutes by LC 

rasters, the range and variability in LC types and ET rates will always be lower in the 

model than in the real world, where diverse microclimates can harbour a greater variety 

of ET rates and LC types. A finer resolution scheme that accounts for more heterogeneity 

will allow for improved representation of the diversity of microclimates but will 

inevitably fall short of representing all possible microclimates and LCs. 

Issues related to LC change will grow in complexity, as our land surface accumulates a 

more complicated history of varying types of LC change all while adjusting to changes in 

overlying meteorology. As LC change continues, anthropogenic LCs will play an 

increasingly significant role in overall global ET rates; because of the particular 

uncertainties in estimating ET for anthropogenic LCs, advances in modelling and 

observation networks of ET in human dominated areas are urgently needed. Continued 

advances in understanding how ET varies spatially and with LC type are necessary to 

improve predictions and mitigation actions for the future. The findings here on 

characteristic ET rates and global patterns with LC type improve our quantitative 

understanding of the spatial patterns in the water cycle and how ET will change with 

ongoing anthropogenic transformations; this fundamental information is needed for us to 

better understand how the earth’s energy balance, carbon cycle, and water cycle will 

respond to global change.  
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CHAPTER 3 FUTURE PROJECTIONS OF DEPARTURE AND 

TERRESTRIAL WETTING AND DRYING IN THE CONTEXT OF 

HISTORICAL VARIABILITY 

3.1 ABSTRACT 

The hydrological cycle plays a critical role in the Earth System by driving key land-

surface processes in the energy and carbon cycles, and determines the amount of 

available water for human and ecological use. Here we analyse Global Earth System 

Model output from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for the 

terrestrial hydrological variables of precipitation, evapotranspiration (ET), and runoff to 

increase our understanding of how the terrestrial hydrological cycle may change under 

climate change. We estimate annual average rates for these variables at 0.5 degree cells 

between the years 2006 - 2100, and determine where predicted rates exceed the bounds of 

historical variability (1860-2005) using the concept of climate departure. We then 

determine if the historically wettest and driest locations (determined by historically 

averaged quantiles of the respective variables) are predicted to become wetter or drier in 

the future. Our analysis focuses on both the multi-model mean and inter-model 

variability. Results indicate strong disparities in departure dates among models, although 

we find that ET consistently departs first among the variables analysed. We also find that 

individual models strongly support the WWDD pattern (> 65% of the time). Of the 58 

simulations used in calculating the predicted rates of change in flux (29 models x 2 future 

scenarios), 54 exhibit the WWDD pattern. Support for WWDD was also found across a 

continuum of historical wet/dry classifications, indicating that an extended WWDD 

framework may better describe future projections, where the wettest (driest) areas get 

wettest (driest), while intermediate wet (dry) regions show intermediate future trends, and 

so on. Finally, we determine that further work into inter-model variability is needed to 

provide robust estimates of future trends of the hydrological cycle.  

3.2 INTRODUCTION 

The terrestrial hydrological cycle plays a critical role in the Earth System by shaping the 

structure and functioning of terrestrial ecosystems, governing available water, and by 

regulating land surface energy budgets. Land inputs of water due to precipitation (P) are 
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partitioned into evapotranspiration (ET), runoff (R) and infiltration to soil moisture and 

groundwater. The relative magnitude and spatial pattern of these fluxes thus determines 

local water budgets and ultimately the quantity and distribution of available water for 

human use (Bonan 2010). Continued increases in radiative forcing due to greenhouse gas 

emissions is expected to alter regional hydrological budgets over the land surface, with 

increasingly severe alteration to regional budgets predicted over the 21st century due to 

ongoing greenhouse gas emissions (IPCC 2013). For example, Global Climate Models 

(GCMs) presented by the recent Intergovernmental Panel on Climate Change’s Fifth 

Assessment (AR5) predict increasing precipitation in high northern locations and strong 

increases in subsequent runoff (between 1950-2010), while simultaneously predicting 

strong decreases in precipitation over southern Europe, the Middle East and southern 

Africa. These predictions indicate large regional variability that arises due to regionally-

specific climate dynamics, vegetation, and land-use, among other factors (IPCC 2013 

Chapter 2.5), which interact to govern regional hydrological budgets. Furthermore, 

variability among model predictions makes understanding the robustness of these 

predictions very challenging. Thus diagnosing the dominant patterns of change in these 

fluxes and how they may vary regionally is still a major challenge for global hydrology in 

order to develop a consistent picture of future change.  

In terms of globally integrated quantities, total global P is generally expected to increase 

due to larger atmospheric water content, primarily as a function of increased temperature 

(Lambert and Webb 2008, Lu and Cai 2009). These projected P increases will cause 

greater available water for land ET and thus ‘accelerate’ the global hydrological cycle. 

However, effects of climate change on the third major flux, ET, are debated. This is due 

to large uncertainties with respect to the ways plant physiology and species composition 

will change under evolving environmental conditions. For example, transpiration may be 

deceased through water use efficiency (Kimball and Idso 1983),  or transpiration may be 

enhanced due to increased leaf area due to fertilization from CO2 (Piao et al. 2007, 

Gerten 2013).  

Spatially variable magnitudes and interactions among these hydrological processes make 

understanding predicated trends in global-scale hydrological budgets challenging. 
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Previous research has looked at the predicted trends of individual hydrologic variables 

globally (for example, P (Zhang et al. 2007), R (Alkama et al. 2013), and ET (Douville et 

al. 2013)), while few have examined combined projections in terms of the balance of the 

hydrological budget and how this balance may vary regionally. An exception is the recent 

study by Dirmeyer et al. (2014) who recently analyzed 10 Coupled Model 

Intercomparison Project Phase 5 (CMIP5) models, focusing on trends in hydrological 

extreme events of R, P and soil moisture. They found an expected increase in droughts, 

with little increase in floods under the RCP4.5 climate change scenario, while they found 

an increase in both floods and droughts under the RCP8.5 scenario.  

One innovative method for understanding climate change in the context of historical 

variability was introduced by Mora et al. (2013). They examined GCM output from the 

CMIP5 using the concept of ‘climate departure’, defined as the date by which a climate 

variable exceeds the bounds of historical variability (following Mora et al. 2013 see 

Methods below). Their analysis methods were based on the idea that many regions of the 

world have bounded climate oscillations; therefore, any climatologically significant 

(opposed to statistically significant) trend must exceed the limits defined by natural 

oscillations specific to a particular region. This concept has provided a simple yet 

powerful way to understand future climate change in the context of characteristic 

historical variability within a particular region. This distinction of the term ‘significant’ is 

important because statistically significant (opposed to climatologically significant) trends 

can be difficult to interpret in the context of natural climate oscillations (see Wunsch 

1999 for a discussion of statistical significance of climate trends in the context of natural 

oscillations). This quantification is also important at a societal level as regionally-specific 

infrastructure is more likely adapted to historical variability, making it more important to 

understand changes in this historical context, rather than the absolute magnitude of 

trends. The analysis of Mora et al. (2013) focused on a broad suite of climate variables 

(including P over the ocean, global evaporation, and terrestrial transpiration); however, 

their results were primarily reported in terms of globally integrated trends with respect to 

the combined marine and terrestrial response. They also constrained departure dates to 

the year 2100 when none occurred, and this method was criticized in the literature 
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(Hawkins et al. 2014). Here we perform a more in-depth, spatially explicit departure 

analysis that focuses on regional and inter-model variability.  

A major hypothesized pattern of future hydrological change is known as ‘wet get wetter, 

dry get drier’ (WWDD) (Chou et al. 2009, 2013, Allan et al. 2010, Greve et al. 2014, 

Greve and Seneviratne 2015). This pattern suggests an intensified hydrological cycle, 

predicted on account of enhanced convective precipitation due to high surface 

temperatures, leading to increased precipitation in wet and convectively active areas of 

the world and less future precipitation in drier subsidence regions (Held and Soden 2006, 

Chou et al. 2009). Several studies have provided support for seasonal patterns of WWDD 

over the land and ocean, with model based studies (Chou et al. 2009) and observational 

studies (Liu and Allan 2013). Importantly, most previous work has focused on combined 

land and ocean results. For example, Held and Soden (2006) point out that their work 

supporting WWDD in the tropics was dominated by a strong WWDD signal over the 

ocean. Recent work (Greve and Seneviratne 2015), has used CMIP5 model predictions to 

refute the WWDD mechanism based on a statistical significance framework. Their study 

used potential ET and aridity to quantify wet and dry areas, as opposed to actual ET due 

to a suggested difficulty in interpreting P-ET (actual) over land because the quantity is 

positive almost everywhere (and thus defined as ‘wet’ within their scheme). While it is 

true that P-ET > 0 over land cannot be used to determine the “wet” land areas, P-ET can 

still be used as a valuable metric to determine historically wet and dry areas if grouped by 

quantiles, similar to Allan et al. (2010). Furthermore, Greve and Seneviratne 2015 

analyzed the multi-model mean of 30 CMIP5 models, and did not establish whether 

WWDD was supported within individual models. Individual model analysis may be 

crucial because individual models may locate wet and dry areas in different regions of the 

world, meaning that the multi-model average wet and dry regions may simply be an 

artifact of spatial averaging and have little hydrological significance.  

Here we further test the WWDD pattern in CMIP5 output in the specific context of 

climate departure. We first seek to establish spatially explicit climate-departure statistics 

for each flux in the terrestrial hydrological budget (P, R and ET) and characterize model-

model variability. We then apply this framework with respect to wet and dry areas of the 
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world (determined by P-ET) and contrast the resulting WWDD patterns with previous 

work based on statistical significance. We also utilize a simpler alternative definition of 

wet and dry areas based on historical quantiles of P-ET (actual). We use simulations over 

the ‘historical’ period (1850-2005) to characterize contemporary wet and dry areas, and 

two future climate change scenario simulations (representing two levels of future climate 

forcing between 2006-2100) of ET, R, and P to answer the following questions in the 

context of modern GCMs:  

What are the projected future trends for terrestrial ET, R, and P at the regional and 

global scales? 

Do predicted rates of ET, R, and P exceed the historical (1860-2005) bounds of 

variability? Do CMIP5 models predict a common departure in the terrestrial water cycle 

variables before 2100? Does hydrological climate departure depend on the degree of 

climate forcing? Are there regions or scenarios that have the most similarity between 

models? 

Do CMIP5 models predict patterns of WWDD when analyzed using hydrological 

departure (note here that we use the term ‘wet’ to represent the large relative magnitude 

for each variable, while we recognize this may not correspond to area intuitively thought 

of as ‘wet’) and slope analysis calculated on historic quantiles of wet and dry regions? 

Does the departure analysis suggest different patterns of WWDD than previous analyses? 

Do patterns of WWDD depend on the degree of climate forcing? Does support of 

WWDD depend on the magnitude of quantiles of wet vs. dry? Do the extreme wet and 

dry areas, defined as the most extreme quantiles (e.g., 5% wettest (driest)) behave 

differently than the moderately wet and dry areas (e.g., 40% wettest (driest))?  

Do individual models simulate variable patterns of wet and dry? 

Classifying this as an uncertainty analysis, how does model-model variability compare to 

the multi-model mean? And does this influence our conclusions regarding WWDD?  
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3.3 METHODS 

3.3.1 Data 

We analyzed historical (1860-2005) and future projections (2006-2100) within the 

CMIP5 ensemble for the following global-scale, spatially explicit, simulated hydrological 

field variables: actual evapotranspiration (ET), runoff (R) and total precipitation (P). We 

did not include ground water, as its role has previously proven to be negligible in year-to-

year changes when compared to P, R, and ET in CMIP5 simulations (Greve and 

Seneviratne 2015). We included CMIP5 models which simulate the selected variables for 

our analysis (models listed in Appendix B.1). For future predictions we examined two of 

three climate scenarios specified by Representative Concentration Pathways (RCPs) 

(Meinshausen et al. 2011; Taylor et al. 2011). These RCPs simulate the Earth System 

response to different prescribed levels of future CO2 emissions that represent an effective 

radiative forcing of i) high future emissions (or ‘business-as-usual’) giving a CO2 

equivalent radiative forcing of 8.5 Wm-2 (RCP8.5); ii) a midrange mitigation scenario 

where CO2 emissions are reduced to give a projected radiative forcing of 4.5 Wm-2 

(RCP4.5); and iii) an aggressive emission mitigation scenario (RCP2.5) which is now 

generally considered unfeasible (van Vliet et al. 2009) and was therefore not included in 

the analysis. The three variables of interest were downloaded from the Earth System Grid 

Federation. The model grid resolution varied (0.75 – 3.75 degrees) so we interpolated the 

data onto a common 0.5 degree grid using bilinear interpolation.  

3.3.2 Hydrological Climate Departure 

The departure analysis is based on the methods first introduced by Mora et al. (2013). For 

each region, they computed the maximum and minimum value for a variable during a 

historic time series, and then determined whether future simulations exceed the historic 

bounds when subjected to future emission scenarios (Figure 3.1). They identified the first 

occurrence in time for each variable within each scenario that exceeded the historical 

bounds as well as the time of permanent departure (until 2100). Here we applied the same 

method, where ‘permanent departure’ is defined as the first year that all subsequent years 

are outside of the bound of historic variability (1860-2005) until 2100. However, a main 

difference from our analysis and the analysis in Mora et al. (2013) is the determination of 



35 

 

the multi-model date of departure. Mora et al. (2013) used the average across models, 

assuming a departure of 2100 when none occurred; this approach has been criticized for 

calculating a `pseudo departure`, where variables that do not depart from the historic 

bounds are given a year of 2100 and for using statistical inference methods that assume 

climate simulations are statistically independent (Hawkins et al. 2014). Instead, we 

calculated the departure year at the 25th percentile across models (further described as 

‘25% model agreement’), while no year was applied to locations and models that did not 

depart. To capture uncertainty in departure, we report the year where 25 and 50 % of 

models agree. 

 

Figure 3.1 An example of estimating the first and final departure from the mean. 

Annual precipitations for an example grid cell of a single model (0.5 

degree x 0.5 degrees) exceeds the historical bounds (yellow) for the first 

time (2007, purple), and permanently until 2100 (2076, teal). 

3.3.3 Wet-get-wetter, dry-get-drier (WWDD) 

To test and compare WWDD patterns, we first characterized the global land surface into 

wet and dry areas on the basis of the simulated quantiles of each respective variable (P, 

R, and ET) within the historical simulations. To avoid using a single quantitative 

threshold (as in Allan et al. 2010) we computed a range of thresholds and designate 

individual cells as dry (wet) depending on whether they fall within the lowest (highest) 

global 5, 10, 15, 20, 25, 30, and 40% quantiles of P - ET (a measure of local water 

availability - Greve and Seneviratne 2015) based on historical variability. By using a 
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range of quantile values we extend previous analyses by testing WWDD along a 

continuum of wetness and dryness. This allows us to test whether the historically extreme 

and moderate regions of P-ET behave differently in future climate regimes. This 

‘continuum’ WWDD framework also serves as a sensitivity analysis in terms of how 

WWDD conclusions depend on the specific wet/dry threshold used.  

We then quantify and compare WWDD patterns in two ways: i) departure, and ii) linear 

trends (using P-ET). For departure, we computed the percentage of the total wet (dry) 

area determined by the historic quantiles that depart in a wet (dry) direction, or not at all 

for all models (2006-2100). Secondly, the linear trend analysis determined whether wet 

and dry regions have a positive or negative slope with respect to time (2006-2100) in 

future simulations. For each quantile bin of P-ET we computed the spatially averaged 

future slope and determined whether its magnitude is dependent on the wetness/dryness 

quantile used, thus testing the continuum of WWDD. Note that unlike the departure 

analysis, which classifies regions into wetter, drier, or no departure, the slope analysis of 

P-ET categorizes regions as only becoming wetter or drier, and does not have a “no 

change” classification akin to the ‘no departure’ in the departure analysis. 

3.3.4 Uncertainty Analysis 

The uncertainty analysis focuses on model-model variability. We adopt a simple 

‘location-independent’ metric to test WWDD by which we calculate as the proportion of 

area that confirms/denies WWDD within models, and then take the standard deviation of 

the proportion across models, thus defining a WWDD statistic that is independent of the 

actual wet/dry locations within individual models.  

3.4  RESULTS  

3.4.1 Hydrological Climate Departure Analysis 

In the mean global departure analysis P, R, and ET have a positive trend (Figure 3.2), 

showing predicted intensification of the terrestrial hydrological cycle and is consistent 

with an increased trend reported in the IPCC AR5 for P, ET, and R (Alkama et al. 2013). 

All variables under both forcing scenarios exceed the historic bounds by the year 2068, 

with ET for RCP4.5 (2013), RCP8.5 (2009) departing first, followed by P for RCP4.5 

(2027), RCP8.5 (2034), then R for RCP4.5 (2068) and RCP8.5 (2036). For each variable, 
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we see that the RCP8.5 scenario exhibits a steeper predicted trend than RCP4.5 (P was 

1.8 x more quickly, R was 3.3 x, and ET 1.2 x – Table 3.1), and that all variables and 

scenarios exceeded historic bounds in terms of the global average before 2100 (as marked 

on Figure 3.2). We see that the trend appears to be fairly linear between 2006-2100 for all 

variables and RCP scenarios, and that the RCP4.5 trends are weaker than RCP8.5. 

 

Figure 3.2 Historical (green) and projected, RCP4.5 (purple) and RCP8.5 (red) multi- 

model global land averages between 1860-2100 for Precipitation, Runoff, 

and Evapotranspiration. Years indicate the year of first year of permanent 

departure until 2100. 
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Table 3.1 Slopes of predicted mean global trends ((mm/year) year-1) for all variables 

under RCP4.5 and RCP8.5 scenarios. 

 RCP4.5 RCP8.5 

Precipitation 4.06 7.24 

Runoff 0.40 1.31 

Evapotranspiration 2.92 3.88 

 

The terrestrial hydrological departure analysis shows that all variables (P, R, ET and P-

ET) have some locations of permanent departure until 2100 (Figure 3.3) under 25% 

model agreement, with all variables under the RCP4.5 and RCP8.5 scenarios departing in 

more than 19% of the global land area (Table 3.2). The earliest year of departure in the 

water cycle occurs for ET in the year 2022 under the RCP8.5 simulation. For all 

variables, more locations depart under the RCP8.5 scenario than RCP4.5. ET showed the 

smallest difference between scenarios (1.3x), and precipitation showed the largest (2.3x).  

Similar to the global average (Figure 3.2), we find that ET has the largest percent of 

global land area that departs from historic bounds (69.83% and 92.39% for RCP4.5 and 

RCP8.5, respectively), while, conversely, precipitation (33.89% and 77.30%) has the 

least (Table 3.2) under 25% model agreement. This pattern of departure by land area 

where ET > P > R does not hold for the 50th percentile, where we find ET > R > P (Table 

3.2). At 25% model agreement, the most prominent spatial trend in the departure analysis 

is a consistent lack of departure across models across the Sahara desert, and Australia. 

This feature is consistent for all variables but largely disappears in the RCP8.5 scenario. 

At 50% model agreement, there are clear patterns of departure in northern latitudes for 

runoff and precipitation, while ET has no similar pattern (Appendix B.2). For all 

variables, there is higher model agreement of departure under the RCP8.5 scenario, with 

each individual variable (P, R, ET) having at departure in more than 75% of the global 

land area under 25% model agreement, and the ET has the highest proportion of models 

that depart in the most locations (Figure 3.4).  
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Figure 3.3 Date of historic departure when 25% of models agree for a) precipitation 

RCP4.5, b) precipitation RCP8.5, c) runoff RCP4.5, d) runoff RCP8.5, e) 

evapotranspiration RCP4.5, f) evapotranspiration RCP8.5, g) 

precipitation-evapotranspiration RCP4.5, and h) precipitation-

evapotranspiration RCP8.5. 

Table 3.2 Percentage of land area that departs up to 2100, as determined by the 25th  

percentile, and 50th percentile of model agreement estimates. Bolded are 

the largest percentages for each scenario and quantile.  

 

 

 

 

 25th percentile 50th percentile 

 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Precipitation 33.9 77.3 4.1 24.3 

Runoff 35.1 78.8 0.2 11.4 

Evapotranspiration 69.8 92.4 26.2 50.6 

Precipitation-ET 19.4 57.8 0.8 13.5 
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The conclusions of this departure analysis (at 25% model agreement) vs. Mora et al.’s 

(2013) show some qualitative similarities, although results look very different at 50% 

model agreement (where Mora et al. (2013) show unanimous departure, and our analyses 

show very little). For ET, results are similar to the prediction in Mora et al. (2013) for 

evaporation on land where earliest departure is found at higher latitudes and the lowest 

departure in Africa; results differ when examining the 50% model agreement, where 

Mora et al. (2013) showed departure at all locations in the globe with many locations 

departing before 2080 under RCP8.5, we only found departure at (26.15%, 50.63% for 

RCP4.5 and RCP8.5, respectively) at some locations. The years of departure look similar 

between predicted ET results and Mora et al.’s (2013) departure of transpiration at 

northern locations, although again departure of transpiration was found at all of the 

locations (in Mora et al.’s (2013) analysis), while our analysis showed much fewer 

locations un under the 25% and 50% model agreement scenarios calculated here. These 

differences are due to the different definitions of departure. In Mora et al. (2013) they 

included variables that did not depart, giving them a value of 2100, while we computed 

the mean year at a given percentage of model agreement. Despite that many models 

simulate departure, there are a large percentage of models that simulate little to no 

departure. For example, our approach projects that no hydrological variable will depart 

for 100% of the global land area, whereas Mora et al. (2013) predict all locations will 

permanently depart. Hawkins et al. (2014) argue that limiting the upper bound to 2100 

sets an artificial departure date, which is shown by how fewer locations depart using our 

25% agreement method with allowable NA values.  
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Figure 3.4 Proportion of models for each variable that have a date of permanent  

climate departure for a) precipitation RCP4.5, b) precipitation RCP8.5, c) 

runoff RCP4.5 and d) runoff RCP8.5, e) evapotranspiration RCP4.5, f) 

evapotranspiration RCP8.5. 

3.4.2 Wet-get-wetter, dry-get-drier Analysis 

The mean historical quantiles for the hydrological variables (P, R, ET) show similar 

spatial trends with respect to one another (Figure 3.5), with the driest (where dry 

represents the smallest magnitude of flux) region through the equator in Africa, central 

North America, and Australia. The wettest regions are located throughout Asia, South 

America, Central Africa and the coasts.  

Both the departure and slope analysis show support for the WWDD hypothesis (Figure 

3.6). The WWDD departure analysis supports the WWDD hypothesis (Figure 3.6a-d), 

with more than 40% of the wet quantiles exhibiting WW patterns for all variables, and 

more than 25% exhibiting DD patterns for P, R and ET. These rates are similar to those 

reported in (Greve and Seneviratne 2015), where both find support for WW in ~60 % of 

locations (Greve and Seneviratne 2015), although they went on to test the significance of 

these trends and subsequently rejected WWDD. For reasons discussed below, statistical 
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significance testing may be difficult to interpret in the context of diverse climate 

oscillations in particular regions. Furthermore, the resulting p-values from the analysis 

may also be difficult to interpret since there is no true statistical sampling (which p-

values are based upon) when analyzing the output of a deterministic simulation. This 

point does not seem to have been picked up in the CMIP5 literature, but seems important 

and may warrant follow-up analysis and discussion. When interpreting trends in the 

context of the region-specific maxima and minima, results seems to more strongly 

support WWDD and do not depend on the interpretation of statistical p-values. 

We find that there is some support for WWDD under the WWDD slope analysis (Figure 

3.6f) with more than 50% of the areas exhibiting patterns of WW and DD under both the 

RCP4.5 and 8.5 scenarios.  

 

Figure 3.5 Wet and dry quantile plots base on the historic (1860-2005) average, 

where 5%W is the 5% wettest quantile, and 5% dry is the 5% driest  

quantiles for a) precipitation, b) runoff, c) evapotranspiration and d) 

precipitation-evapotranspiration. 

The predicted slope is largest for the historically wettest quantiles, and incrementally 

decreases for the driest quantiles (Figure 3.6f, hereafter called the ‘averaged model 

slope’) for P-ET. We also see that the most negative slope (the largest decrease) is found 

in the driest regions globally (Figure 3.6f). We find that there are patterns WWDD at all 

quantiles (Figure 3.6f) where the most extreme wet (dry) areas have the most positive 

(negative) average global slopes.  
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Figure 3.6 WWDD testing using the departure analysis (a) precipitation, b) runoff, c) 

evapotranspiration and d) precipitation-evapotranspiration) categorized by 

wet with wet departure (WW), wet with dry departure (WD), wet with no 

departure (WN), dry with dry departure (DD), dry with wet departure 

(DW) and dry with no departure (DN). Slope prediction analysis is 

completed for e) precipitation-evapotranspiration calculated on the 

historical 25% wettest and driest quantiles f) and mean slope of 

precipitation-evapotranspiration calculated on the suite of quantiles. 

In testing the continuum WWDD pattern, we found that the magnitude of the spatially 

averaged slope was approximately linearly related to the quantile of P – ET over which 

we spatially averaged (Figure 3.6 f). All wet and dry quantiles showed similar patterns, 

with a slight decreasing trend in support for WWDD as quantiles increased.  

3.4.3 Uncertainty Analysis 

Most individual (54/58) projections (29 models under two forcing scenarios) exhibit 

WWDD trends as determined by the slope analysis, although there are a large range of 

magnitudes and distributions (Figure 3.7). Some models have much higher rates of P-ET, 

which may heavily weight the mean of model predictions. In particular, CCSM4, 
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CESM1-BGC, CESMI-CAM5, IPSL-CM5A-LR, IPSL-CM5A-MR, NorESM1-M and 

NORESM-MA exhibit a mean slope that is nearly double the mean slope of the 

remaining models (Figure 3.7). Some (5/58) individual models diverge from the expected 

WWDD pattern, with slopes for RCP4.5 and RCP8.5 predictions that have a different 

sign (ACCESS1-3, BNU-ESM, IPSL-CM5B-LR (for RCP4.5) (Figure 3.7)). For all 

models, the wet quantiles have a larger mean slope magnitude than the dry quantiles. For 

all quantiles in all models, the RCP8.5 slope magnitude is larger than the RCP4.5 

magnitude, except for MRI-CGCM3. Of relevance to the inter-model analysis, the spatial 

distribution of the historic quantiles vary greatly between models, for (Supplement B.4) 

for both the historical 25% quantiles and the linear trend for both RCP4.5 and RCP8.5 

(Figure 3.7).  

All models under both RCP scenarios have a negative slope except for four (Figure 3.7b); 

specifically CSIRO-Mk3 (RCP4.5 and RCP8.5), BNU-ESM RCP4.5 and ACCESS1-3 

RCP8.5. ACCESS1-3 and BNU-ESM were already identified as unusual with respect to 

the opposite sign of the slopes for RCP4.5 and RCP8.5 scenarios, and CSIRO-Mk-6-0 

clearly does not follow the WWDD pattern in the wet quantiles (Figure 3.7 b). The 

standard error on the slope of quantile change is greater for RCP8.5 in 28/29 models, as 

well as being the more negative value in 25/29 models (Figures 3.7b). Overall, we find 

that most models (54/58) do exhibit the WWDD pattern for RCP4.5 and RCP8.5, 

indicating that the WWDD pattern is consistently present in global terrestrial CMIP5 

simulations, although there are key differences between the models with respect to the 

magnitudes of slopes.  
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Figure 3.7 a) Trends in P-ET for 29 models shown with mean slope (predicted rate of change) of areas within the historic quantiles 

 for RCP4.5 and RCP8.5 (2006-2100). b) Meta-analysis of the predicted slopes (of trends in 3.7 a) for RCP4.5 and 

RCP8.5 by model. 
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3.5 DISCUSSION AND CONCLUSION 

Our analysis of CMIP5 model output for the terrestrial hydrological cycle provides a 

characterization of future hydrological budgets. We built upon existing research that 

examined these trends at the global scale which focused on the multi-model mean (Mora 

et al. 2014, Greve and Seneviratne 2015). Our analysis provided an expanded analysis of 

hydrological projections, focusing on inter-model variability and placing future 

projections in the context of historical variability using the concept of climate departure. 

We found that the departure analysis was a simple way of quantifying the predicted 

change for hydrological variables as well as a method that could be simply applied to test 

the WWDD hypothesis. Our results found stronger support across models (54/58 models 

support WWDD) for WWDD than previous results that used model means based solely 

on statistical significance.  

We also found that there was not globally uniform agreement of departure among 

models, as shown in (Mora et al. 2013) using their controversial alternative definition of 

departure. In fact inter-model variability (in terms of both spatial pattern and absolute 

magnitude of change) was a primary characteristic of our results, indicating that the 

multi-model mean is not representative of individual projections. Fundamentally, this 

suggests that we collectively lack fundamental understanding of how the terrestrial water 

cycle may change in the future.  

In terms of WWDD, we used an expanded departure framework to demonstrate stronger 

support for WWDD than did previous analyses. We believe the conclusions were 

different from previous studies that did not fund support for WWDD (Greve and 

Seneviratne 2015) for two primary reasons: one is that we utilized a within-model statistic 

(% of area that confirms/denies WWDD) that is independent of the spatial location of wet 

and dry regions and the absolute magnitude of change when comparing across models. 

Secondly, we analyzed ‘significance’ in the context of historical variability, as opposed to 

statistical p-values. Finally, by using a continuum of wet/dry definitions we were able to 

find support for across a continuum of quantiles which provides an extended WWDD 

framework where the spatially averaged slope was approximately linearly related to the 
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quantile over which we spatially averaged. We believe this provides additional support 

for the WWDD pattern.  

Overall, our analysis suggests that there are fundamental structural uncertainties in our 

climate models that represent regional hydrological budgets into the future. Models 

appear highly variable in terms of the location and magnitude of change. However, we 

gleaned general patterns find that the WWDD is generally consistent across models, 

despite very little agreement as to where WWDD occurs. We thus suggest that inter-

model comparison of future projections continue to be a central focus of hydrological 

research.  

There are three limitations to this analysis. The first is the duration of the historical time 

scales. Longer durations (currently 1860-2005) would potentially increase the magnitude 

of the historical climate oscillations and make future projections more sensitive to 

departure. Following Mora et al. (2013) and Greve and Seneviratne (2015) we opted to 

use the core models to be consistent with the literature and we used the most models 

possible. Another limitation is the possibility that all models are not independent. Many 

models may share some underlying code and therefore not represent the same quantity of 

information as two independently developed models. While we do not infer statistical 

significance and therefore do not assume statistical independence, we do treat each model 

equally in calculating proportional model agreement and other results. Lastly, for this 

study we looked at annual trends, which may not tell a complete picture of hydrological 

climate change. Further work is recommended to examine seasonal and monthly trends to 

determine if climate departure and WWDD exist at a finer temporal scale.  

Developing a clear physical picture of hydrological change into the future is fundamental 

for understanding local priorities and developing effective policy solutions. 

Encouragingly, inter-model comparison of Earth System models has already been cited as 

a central focus in hydrology and elsewhere, and a sixth phase of the Coupled Model 

Intercomparison Project (CMIP6) is already planned (Meehl et al. 2014). These models 

will be further gauged for their consistency in simulating regional hydrological budgets in 

an ongoing effort to understand and improve our quantitative understanding of the 

impacts of climate change.  
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CHAPTER 4 CONCLUSION 

In this thesis, I examined and quantified two aspects of the global-scale hydrological 

budget. In Chapter 2, I focused on an empirical analysis of ET to better understand and 

quantify the drivers of ET and how these relationships vary with respect to LC types. 

This analysis advanced our understanding of global ET dynamics by synthesizing and 

modelling a new ET database of previously published observations. By explicitly 

accounting for LC type in the statistical models, the fits were better able to account for 

global ET variability and revealed significant global variation in its primary drivers as a 

function of LC type. In particular, we found that the effect of temperature, precipitation, 

and shortwave radiation were the most important set of predictors across all land types 

and that the effect of temperature and precipitation depended significantly on LC type, 

with precipitation having the strongest effect in barren lands and temperature having the 

strongest effect in lakes and inundated areas. These results will help us further constrain a 

highly uncertain global flux and better understand the consequences of LC change on the 

hydrological cycle which is occurring throughout the world.  

In Chapter 3, I focused on future projections and analyzed computer model simulations of 

the future hydrological budget using output from an ensemble of global-scale earth 

models (i.e. CMIP5). Here I specifically structured the analysis of CMIP5 data to focus 

on future hydrological projections in the context of historical variability using the climate 

departure analysis first presented by Mora et al. (2013). The primary results here were 

strong regional variability in hydrological departure; in particular, a dichotomous 

departure response for wet vs. dry areas of the land surface. I found that wet areas of the 

world are predicted to depart their historical climate regime by getting wetter 21 times 

more often than getting drier, and that dry climates are predicted to depart their historical 

regime by getting drier 18 times more often than by getting wetter (for P-ET under 

RCP4.5). This result is in contrast to other analyses of Earth System models that looked 

at absolute trends in hydrological variables and found weaker support for the wet-get-

wetter, dry-get-drier pattern (WWDD) than those found here. This comparison 

highlighted the importance for understanding natural climate variability in estimating 

hydrologically significant change over time. We further showed that the WWDD pattern 

exists over a continuum of wet/dry definitions for the land surface. This added further 
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robustness to the patterns previously seen in analyses of climate models and thus 

strengthens our confidence of this trend into the future, due to the robustness, and support 

of multiple models. However, a strong conclusion from the analysis was that CMIP5 

models exhibit inconsistent spatial locations of wet and dry areas and large variations in 

the absolute magnitude of predicted change. Only when a location- and magnitude-

independent statistic was applied did the WWDD pattern appear more consistently.  

In terms of future work, Chapter 2 highlighted a general need for greater global coverage 

of empirical evapotranspiration observations. Specifically we found that the Arctic, 

Africa and central Asia are underrepresented in the ET observational literature. Chapter 2 

also highlighted the importance of variations in ET by LC, and future work should further 

investigate and resolve patterns of ET by LC in observations and models so to better 

understand the hydrological consequences of LC change. Chapter 3 motivates significant 

further work into analyzing and reconciling inter-model variability in hydrological 

predictions. We recommend that future studies using CMIP5 and the future CMIP6 

database diagnose global patterns of change by examining inter-model contrasts, as 

opposed to the multi-model mean, because fundamental model-model disagreement 

exists and must be reconciled before developing a consistent picture of future 

hydrological change.  

In conclusion, the balance of the hydrological budget plays a fundamental role in 

governing planetary surface energy budgets, structuring terrestrial ecosystems, and 

ultimately determining the prosperity and sustainability of human society. The research in 

this thesis has provided an empirical and model-based analysis of regional variability in 

hydrological budgets at the global-scale. In doing so, this research aids in understanding 

the balance of regional hydrological budgets, the drivers of these fluxes, and how they 

may change into the future. As climate continues to evolve over the 21st century, changes 

to the hydrological cycle are expected to predict strong, yet highly uncertain, regional 

variability that will impact local communities and economies in diverse ways. This thesis 

expands our understanding of these changes and helps us place future change in the 

context of recent natural variability.  
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APPENDIX A 

A.1. GETA 2.0 Point Locations 

 

 

Figure A.1 Location of GETA 2.0 points, classified by rates of ET (m/yr). 
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A.2. Precipitation bounds on ET 

 

 

Figure A.2 Areas where predicted rates of ET (ET_LMM) are greater than averaged  

 precipitation (53-yr annual forcing dataset).  
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A.3. Spatial Prediction Uncertainties by Independent Predictor Variables 

 

Figure A.3 Range of LC’s (red) and intersection of independent predictors (blue dots) where there is coverage of all three  

(temperature, precipitation, short wave radiation). a. ENF, b. DBF, c. ENF, d. DNF, e. MXF, f. SAV, g. GRS, h. SHR, 

i. BAR, j. WTL, k. LAK, l. CRI, m. CRN, n. TPL, o. GRZ, p. HMO.  
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 APPENDIX B 

B.1. CMIP5 Models Used in Departure and WWDD Analysis 

Table B.1 Models used in analysis for precipitation (Precip), Runoff (Runoff),  

 Evapotranspiration (ET), and Precipitation-ET (P-ET). 

Center Country Model Precip Runoff ET P-ET 

Commonwealth Scientific and Industrial Research 
Organisation 

Australia ACCESS1-0 X X X X 

ACCESS1-3 X X X X 

Beijing Climate Center, China Meteorological 
Administration 

China bcc-csm1-1-m X X X X 

bcc-csm1-1 X X X X 

College of Global Change and Earth System Science, Beijing 
Normal University 

China BNU-ESM X X X X 

Canadian Centre for Climate Modelling and Analysis Canada CanESM2 X X X X 

National Center for Atmospheric Research United States CCSM4 X X X X 

National Science Foundation United States CESM1-BGC X X X X 

CESM1-CAM5 X X X X 

Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy CMCC-CM X  X X 

CMCC-CMS     X  

Centre National de Recherches Meteorologiques / Centre 
Europeen de Recherche et Formation Avancees en Calcul 
Scientifique 

France CNRM-CM5 X X X X 

Commonwealth Scientific and Industrial Research 
Organization with Queensland Climate Change Centre of 
Excellence 

Australia CSIRO-Mk3-6-0 X X X X 

EC-Earth Consortium Europe EC-EARTH   X X  

First Institute of Oceanography China FIO-ESM X      

NOAA Geophysical Fluid Dynamics Laboratory United States GFDL-CM3  X X X X 

NASA Goddard Institute for Space Studies United States GISS-E2-H-CC X X X X 

GISS-E2-H X X X X 

GISS-E2-R-CC X X X X 

GISS-E2-R X X X X 

National Institute of Meterological Research/Korea 
Meterological Administration 

Korea HadGEM2-AO X X X X 

Met Office Hadley Centre UK HadGEM2-ES X   X X 

Institute for Numerical Mathematics Russia inmcm4 X X    

Institut Pierre-Simon Laplace France IPSL-CM5A-LR X X X X 

IPSL-CM5A-MR X X X X 

IPSL-CM5B-LR X X X X 

 Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University 
of Tokyo), and National Institute for Environmental Studies 

Japan MIROC-ESM-CHEM X X X X 

MIROC-ESM X X X X 

 Atmosphere and Ocean Research Institute (The University 
of Tokyo), National Institute for Environmental Studies, 
and Japan Agency for Marine-Earth Science and 
Technology 

Japan MIROC5 X X    

Max Planck Institute for Meteorology Germany MPI-ESM-LR X X X X 

MPI-ESM-MR X X X X 

Meteorological Research Institute Japan MRI-CGCM3 X X X X 

Norwegian Climate Centre Norway NorESM1-M X X X X 

NorESM1-ME X X X X 

Total     32 30 31 29 
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B.2. Departure at 50% model agreements 

 

Figure B.1 Date of historic departure when 50% of models agree for a) precipitation 

RCP4.5, b) precipitation RCP8.5, c) runoff RCP4.5, d) runoff RCP8.5, e) 

evapotranspiration RCP4.5, f) evapotranspiration RCP8.5, g) 

precipitation-evapotranspiration RCP4.5, and precipitation-

evapotranspiration RCP8.5. 
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B.3. WWDD Slope Analysis across continuum of slopes 

 

 

Figure B.2 Direction of change for the historically wettest and driest quantiles (a. 5%, 

b. 10%, c. 15%, d. 20%, e. 25%, f. 30%, g. 40%) completed using a slope 

analysis for P-ET for RCP4.5 (red) and RCP8.5 (blue).  
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B.4. WWDD Slope Analysis 

 

 

Figure B.3 Direction of change for the historically 25% wettest and driest quantiles 

determined by P-ET. Completed using slope analysis for P-ET for RCP4.5 

(left) and RCP8.5 (right). 
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B.5. Historic Quantiles by Model 

 

Figure B.4 Historical quantiles of wet (green) and dry (yellow), defined as P-ET, 

regions determined by the 25% top wettest and driest quantiles between 

1860 and 2005.  


