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Abstract

In this thesis we first study a special class of squarefree monomial ideals, namely,

path ideals. We give a formula to compute all graded Betti numbers of the path ideal of

a cycle and a path. As a consequence we can give new and short proofs for the known

formulas of regularity and projective dimensions of path ideals of path graphs and cycles.

We also study the Rees algebra of squarefree monomial ideals. In 1995 Villarreal gave

a combinatorial description of the equations of Rees algebras of quadratic squarefree

monomial ideals. His description was based on the concept of closed even walks in a

graph. In this thesis we will generalize his results to all squarefree monomial ideals

by using a definition of even walks in a simplicial complex. We show that simplicial

complexes with no even walks have facet ideals that are of linear type, generalizing

Villarreal’s work.
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Chapter 1

Introduction

Let K be a field and consider a polynomial ring R = K[x1, . . . , xn] over K. A monomial

in R is a polynomial f of the form

f = x1
α1 · · · xnαn for (α1, . . . , αn) ∈ Nn.

If all ai ∈ {0, 1}, the polynomial f is called a squarefree monomial. An ideal I in R

is called a (squarefree) monomial ideal if I is generated by (squarefree) monomials. A

monomial ideal is called pure if the degrees of its generators are the same.

Monomial ideals have been investigated by many authors from several points of view.

One of the important aspects of these ideals is their application in exchanging information

between commutative algebra and combinatorics. In fact we can assign a squarefree mono-

mial ideal to a graph or a simplicial complex to make a dictionary between their algebraic

and combinatorial properties.

This thesis is divided into three parts. In Chapter 2 we introduce some basic theo-

rems and well-known results of finite free resolutions of finitely generated modules over

polynomial rings and Rees algebras of squarefree monomials. We also introduce some

combinatorial notions like simplicial complexes and their homology modules and graphs.

In Chapter 3 and Chapter 4 we study the minimal free resolution of a special class of

squarefree monomial ideals (path ideals). After that, in Chapter 5 we investigate the Rees

algebras of squarefree monomial ideals.

1.1 Path Ideals

Path ideals of a graph were first introduced by Conca and De Negri [14] in the context of

monomial ideals of linear type. Simply, path ideals are ideals whose monomial generators

correspond to vertices in paths of a given length in a graph. More precisely the path ideal

of a graph G, denoted by It(G), is defined as an ideal of R generated by the monomials of

1
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the form xi1xi2 · · · xit where xi1 , xi2 , . . . , xit is a path in G. The case t = 2 is called the

edge ideal of G, first introduced by Villarreal in [45].

In this thesis we are interested in the free resolutions of path ideals. In 2010 Bouchat,

Hà and O’Keefe [11] and He and Van Tuyl [21] studied invariants related to resolutions of

path ideals of certain graphs. Since edge ideals of graphs are a special class of path ideals

one approach may be to first consider edge ideals. In his thesis, Jacques [28] used beautiful

techniques to compute Betti numbers of edge ideals of several classes of graphs. In this

thesis we extend Jacques’s techniques to higher dimensions to compute Betti numbers of

path ideals of cycles and paths.

In Chapters 3 and 4 we consider the path ideal of a graph as a disjoint union of con-

nected components. We then use homological methods to glue these components back

together, and use Hochster’s formula (Corollary 3.1.2) to compute all top-degree graded

Betti numbers (Theorem 4.1.1).

We then use purely combinatorial arguments to give an explicit formula for all the

graded Betti numbers of path ideals of path graphs and cycles. As a consequence we can

give new and short proofs for the known formulas of regularity and projective dimensions

of path ideals of path graphs. Also, we can find the projective dimension and regularity of

path ideals of cycles.

1.2 Rees Algebras of Squarefree Monomial Ideals

Rees algebras are of special interest in algebraic geometry and commutative algebra be-

cause they describe the blowing up of the spectrum of a ring along the subscheme defined

by an ideal. The Rees algebra of an ideal can also be viewed as a quotient of a polynomial

ring. If I is an ideal of a ring R, we denote the Rees algebra of I by R[It], and we can

represent R[It] as S/J where S is a polynomial ring over R. The ideal J is called the

defining ideal of R[It].

Finding generators of J is difficult and crucial for a better understanding of R[It].

Many authors have worked to get a better insight into these generators in special classes of

ideals, such as those with special height, special embedding dimension and so on (cf. Fouli

and Lin [18], Morey [34], Muiños and Planas-Vilanova [35], Ulrich and Vasconcelos [41],

Villarreal [47], Vasconcelos [44]).

One of these classes of ideals is squarefree monomial ideals. An interesting approach
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for these ideals is to give a combinatorial criterion for minimal generators of J for a square-

free monomial ideal I . The simplest case of a squarefree monomial ideal is an edge ideal,

which is equivalent to a quadratic squarefree monomial ideal (squarefree monomial gener-

ated by monomials of degree 2). In 1995 Villarreal gave a combinatorial characterization of

irredundant generators of J for edge ideals of graphs by attributing irredundant generators

of Js to closed even walks in the graph G (cf. Villarreal [47]).

In Chapter 5, motivated by this work, we define simplicial closed even walks. We

prove that if Tα,β(I) is an irredundant generator of Js, then the generators of I involved

in Tα,β(I) form a simplicial even walk. We show that the class of simplicial even walks

includes even special cycles (cf. Berge [9], Herzog, Hibi, Trung and Zheng [23]), as they

are known in hypergraph theory.

By using the concept of the simplicial closed even walks we can give a necessary con-

dition for a squarefree monomial ideal to be of linear type (I is called of linear type if J can

be generated by its degree one elements). We also show that every simplicial closed even

walk contains a simplicial cycle. By using this new result we can conclude that every sim-

plicial tree is of linear type. This fact can also be deduced by the concept of M -sequences

from the work of Conca, De Negri [14] and Soleyman Jahan, Zheng [29].

The results of this thesis appear in [1], [2] and [3].



Chapter 2

Background

Throughout, we assume that K is a field and R = K [x1, . . . , xn] is a polynomial ring in n

variables.

2.1 Simplicial Complexes and Monomial Ideals

Let a = (a1, . . . , an) ∈ Nn be an integer vector. We set xa = xa11 · · · xann . A polynomial

f in R of the form f = xa where a ∈ Nn is called a monomial in R. The monomial f is

called squarefree if a ∈ {0, 1}n. An ideal I in R is called a squarefree monomial ideal

if I is generated by squarefree monomials.

One of the most useful techniques applied to connect commutative algebra to combina-

torics is assigning a squarefree monomial ideal to a graph or a simplicial complex to make

a dictionary between their algebraic and combinatorial properties. Here we need some

definitions of simplicial complex terminology.

Definition 2.1.1 (simplicial complex). An abstract simplicial complex on the vertex set

X = {x1, . . . , xn} is a collection ∆ of subsets of X satisfying

• F ∈ ∆, G ⊂ F =⇒ G ∈ ∆.

We set V(∆) = {x ∈ X : {x} ∈ ∆} and the elements of V(∆) are called the vertices

of ∆. The elements of ∆ are called faces of ∆ and the maximal faces under inclusion are

called facets of ∆. An element F ∈ ∆ of cardinality i+ 1 is called an i-dimensional face

of ∆. Note that ∅ is the only −1-dimensional face of ∆. We set

dim(∆) = max {dimF : F is a face of ∆}.

A simplicial complex is called pure if all dimensions of its facets are the same.

We denote the simplicial complex ∆ with facets F1, . . . , Fs by 〈F1, . . . , Fs〉. We call

{F1, . . . , Fs} the facet set of ∆, and it is denoted by Facets(∆). For i ∈ Z, let Ci(∆)

4
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denotes the set of all i-dimensional faces of ∆.

Example 2.1.2. The simplicial complex ∆ with V(∆) = {x1, x2, x3, x4} and Facets(∆) =

{F1, F2, F3} where F1 = {x1, x2, x3}, F2 = {x2, x4}, F3 = {x3, x4} is pictured below.

Figure 2.1: A simplicial complex with three facets

Here we also need the notation of subcollections of a simplicial complex and comple-

ment of a simplicial complex.

Definition 2.1.3 (subcollection of a simplicial complex). A subcollection of a simplicial

complex ∆ with vertex set X is a simplicial complex whose facet set is a subset of the

facet set of ∆. For Y ⊆ X , the induced subcollection of ∆ on Y , denoted by ∆Y , is the

simplicial complex whose vertex set is a subset of Y and facet set is

{F ∈ Facets(∆) : F ⊆ Y}.

Definition 2.1.4. Let ∆ = 〈F1, . . . , Fs〉 be a simplicial complex over the vertex set X . If

F is a face of ∆ and W ⊂ X , we define the complement of F in ∆ with respect to W to

be F c
W = W \ F and also the complement of ∆ with respect to W is defined as

∆c
W = 〈(F1)

c
W , . . . , (Fs)

c
W 〉.

Also if W $ X , then ∆c
W = (∆W )cW where ∆W is the induced subcollection of ∆ on W .

Remark 2.1.5. When W = X we will use ∆c to denote ∆c
W .

Example 2.1.6. In Example 2.1.2 simplicial complex Γ = 〈F1, F3〉 is a subcollection of

∆, such that V(Γ) = V(∆). However Γ is not an induced subcollection on its vertex set.

Also the following graph is ∆c.



6

Figure 2.2: Complement

For every squarefree monomial ideal we can assign two simplicial complexes.

Definition 2.1.7. Let R = K [x1, . . . , xn] be a polynomial ring over a field K, and I an

ideal in R minimally generated by squarefree monomials m1, . . . ,ms. One can associate

two simplicial complexes to I .

i. The Stanley-Reisner complex N (I) associated to I has vertex set V = {xi : xi /∈
I} and is defined as

N (I) = {{xi1 , . . . , xik} : i1 < i2 < · · · < ik,where xi1 · · · xik /∈ I}.

ii. The facet complex F(I) associated to I has vertex set {x1, . . . , xn} and is defined

as

F(I) = 〈F1, . . . , Fs〉 where Fi = {xj : xj|mi, 1 ≤ j ≤ n} for 1 ≤ i ≤ s.

Conversely to a simplicial complex ∆ one can associate two monomial ideals.

Definition 2.1.8. Let ∆ be a simplicial complex with vertex set x1, . . . , xn and R =

K [x1, . . . , xn] be a polynomial ring over a field K.

i. The Stanley-Reisner ideal of ∆ is defined as

N (∆) =

(∏

x∈F

x : F is not a face of ∆

)
.
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The quotient ring R/N (∆) is called the Stanley-Reisner ring of ∆ and is denoted

by K[∆].

ii. The facet ideal of ∆ is defined as

F(∆) =

(∏

x∈F

x : F is a facet of∆

)
.

Example 2.1.9. Consider the simplicial complex ∆ in Example 2.1.2. N (∆) and F(∆)

have been computed below.

Figure 2.3: Facet ideal and Stanley-Reisner ideal

Since we have

• F(F(I)) = I and N (N (I)) = I , for each squarefree monomial ideal I;

• F(F(∆)) = ∆ and N (N (∆)) = ∆, for each simplicial complex ∆

there is a one-to-one correspondence between monomial ideals and simplicial complexes

via each of these methods.

We can assign a dual to each simplicial complex. To prove some of our results we recall

the definition of this.

Definition 2.1.10 (Alexander dual). Let ∆ be a simplicial complex with vertex set X . The
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Alexander dual ∆∗ is defined to be the simplicial complex with faces

∆∗ = {F c
X : F is not a face of ∆}.

For the simplicial complex ∆ in Example 2.1.2, we have

∆∗ = 〈{x1}, {x2, x3}〉.

2.2 Simplicial Homology, Cohomology and Mayer-Vietoris Sequence

Simplicial homology modules of a simplicial complex are K-vector spaces that provide

information about the number of holes (cycles) contained in a complex.

Definition 2.2.1 (simplicial homology module). Let ∆ be a d-dimensional simplicial com-

plex onX . For each Γ ∈ Ci(∆), let eΓ denote the corresponding basis vector in the K-vector

space, KCi(∆) (it is a K-vector space generated by Ci(∆)). Consider the following sequence

0→ KCd(∆) δd−→ · · ·KCi(∆) δi−→ KCi−1(∆) δi−1−−→ · · · δ0−→ KC−1(∆) → 0 (2.2.1)

where, for all i = 0, 1, . . . , d, and Γ ∈ Ci(∆),

δi(eΓ) =
∑

j∈Γ

sign(j,Γ)eΓ\j.

If i > d or i < −1, then KCi(∆) = 0, and we define δi = 0. Take sign(j,Γ) = (−1)i−1 if j

is the i-th element of Γ when the elements of Γ are listed in increasing order.

Since δiδi+1 = 0, the sequence (2.2.1) is a chain complex, which is called the simplicial

chain complex of ∆ over K, and is denoted by SC(∆).

Example 2.2.2. For ∆ in Example 2.1.2 since we have dim(∆) = 2 and

C2(∆) = {{x1, x2, x3}}
C1(∆) = {{x1, x2}, {x1, x3}, {x2, x3}, {x2, x4}, {x3, x4}}
C0(∆) = {{x1}, {x2}, {x3}, {x4}}
C−1(∆) = ∅
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we have the following simplicial chain complex.

0 −→ K





1

−1
1

0

0





−−−−→ K5





−1 −1 0 0 0

1 0 −1 −1 0

0 1 1 0 −1
0 0 0 1 1





−−−−−−−−−−−−−−−−−−−→ K4

(
1 1 1 1

)

−−−−−−−−−−→ K −→ 0

For i ∈ Z, the i-th reduced homology module of ∆ over K is the K-vector space

H̃i(∆;K) = kernel(δi)/ image(δi+1).

Elements of kernel(δi) are called i-cycles and elements of image(δi+1) are called i-boundaries.

When K is clear from the context we use H̃i(∆) to denote H̃i(∆;K).

Theorem 2.2.3 (Proposition 5.2.3, [46]). The dimension of H̃0(∆;K) as a K-vector space

is one less than the number of connected components of ∆ .

Note that i-th reduced homology module of a simplicial complex ∆ when i > 1 pro-

vides information about the number of i-cycles contained in ∆.

Example 2.2.4. The simplicial complex in Example 2.1.2 is connected. Therefore from

Theorem 2.2.3 H̃0(∆;K) = 0. Also since the only non-zero cycle is a 1-cycle there is only

one non-zero homology module which is H̃1(∆;K) = K.

Now the question is how we can compute the homology modules of simplicial com-

plexes. One method that we use frequently is the Mayer-Vietoris sequence. This method

consists of splitting a simplicial complex into two subcollections, for which the homol-

ogy module might be more easily computed. The Mayer-Vietoris sequence is a long exact

sequence that relates the homology module of the simplicial complex to the homology

module of its subcollections. For more details see Hatcher [20] Chapter 2.

Theorem 2.2.5 (Mayer-Vietoris sequence). Suppose ∆ is a simplicial complex and ∆1 and

∆2 are two subcollections such that ∆ = ∆1∪∆2. We have the exact sequence of the chain

complexes

0→ SC(∆1 ∩∆2)→ SC(∆1)⊕ SC(∆2)→ SC(∆)→ 0
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which produces the following long exact sequence, called the Mayer-Vietoris sequence

· · · → H̃i(∆1 ∩∆2)→ H̃i(∆1)⊕ H̃i(∆2)→ H̃i(∆)→ H̃i−1(∆1 ∩∆2)→ . . . .

Definition 2.2.6 (Simplicial cohomology module). Let ∆ be a d-dimensional simplicial

complex on X with the simplicial chain complex SC(∆) as follows

0→ KCd(∆) δd−→ · · ·KCi(∆) δi−→ KCi−1(∆) δi−1−−→ · · · δ0−→ KC−1(∆) → 0 (2.2.2)

We define the dual of SC(∆) as follows and called it simplicial cochain complex of ∆,

0←
(
KCd(∆)

)∗ δd
∗

←−− · · ·
(
KCi(∆)

)∗ δ∗i←−
(
KCi−1(∆)

)∗ δi−1
∗

←−−− · · · δ0
∗

←−−
(
KC−1(∆)

)∗ ← 0

where
(
KCi(∆)

)∗
= HomK

(
KCi(∆),K

)
is the set of linear transformations from KCi(∆) to

K. For each φ ∈
(
KCi−1(∆)

)∗
the map δ∗i (φ) is defined as the composition of KCi(∆) δi−→

KCi−1(∆) φ−→ K.

It is straightforward to show that δi+1
∗δi

∗ = 0, so we can define H̃ i(∆;K), the i-th

reduced cohomology module of ∆, as the quotient

H̃ i(∆;K) = kernel(δi+1
∗)/ image(δi

∗).

Since we work with homology module and cohomology module with coefficients in

a field, by using the universal coefficient theorem for cohomology module (see [20]

Theorem 3.2) we have the following theorem.

Theorem 2.2.7 ([20], Page 198). Let ∆ be a simplicial complex and K be a field. Then we

have

H̃ i(∆;K) ∼= HomK(H̃i(∆;K),K) ∼= H̃i(∆;K).

Lemma 2.2.8 (Lemma 5.5.3, [12]). Let K be a field and ∆ ⊂ Σ be simplicial complexes

where Σ is a simplex on the vertex set X , |X | = d. Then

H̃i(∆;K) ∼= H̃d−3−i(∆∗;K). (2.2.3)

To prove some of our results we need the definition of a cone and its properties.
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Definition 2.2.9. Let ∆1 and ∆2 be two simplicial complexes on disjoint vertex sets V and

W. The join ∆1 ∗∆2 is the simplicial complex on V
⊔
W with faces F ∪G where F ∈ ∆1

and G ∈ ∆2.

The cone Cn(∆) of ∆ is the simplicial complex ω ∗∆, where ω is a new vertex.

Proposition 2.2.10 (Proposition 5.2.5, [46]). If ∆ is a simplicial complex we have

H̃i(Cn(∆)) = 0 for all i.

2.3 Minimal Free Resolutions and Betti Numbers

Definition 2.3.1 (graded rings and modules). A ring R with a decomposition R =
⊕

i∈Z

Ri

of Z-submodules of R is called a graded ring if

RiRj ⊂ Ri+j for all i, j ∈ Z.

For the graded ringR, theR-moduleM with a decompositionM =
⊕

i∈Z

Mi of Z-submodules

of M is called a graded module if

RiMj ⊂Mi+j for all i, j ∈ Z.

Every element x ∈ Mi is called homogeneous of degree i. A submodule N in M is

called homogeneous if N is generated by homogeneous elements. The graded module M

is called positive if Mi = 0 for every i < 0. Every Ri and Mi is an R0-module.

Example 2.3.2. Let K be a field. The polynomial ring R = K[x1, . . . , xn] in which we

have

R =
∞⊕

i=0

Ri

where Ri is the K-vector space generated by monomials of degree i is a positive graded

ring .

Definition 2.3.3 (graded maps). Let R be a graded ring and M,N be graded R-modules.

The R-homomorphism ψ : M −→ N is called graded of degree j if for each i ∈ Z, the
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map ψ sends every homogeneous element of degree i in M to a homogeneous element in

N of degree i+ j.

If ψ is graded of degree 0 then kernelψ and imageψ are graded R-modules.

Definition 2.3.4. Let R =
∞⊕

i=0

Ri be a positive graded ring and a ∈ N. The graded R-

module obtained by a shift in the graduation of R is given by

R(−a) =
∞⊕

i=a

R(−a)i.

where i-th graded component of R(−a) is R(−a)i = R−a+i.

Proposition 2.3.5 (Proposition 2.5.5 and Theorem 2.5.6, [46]). Let R =
∞⊕

i=0

Ri be a posi-

tive graded polynomial ring over a field K with maximal ideal m = R+ =
∞⊕

i=1

Ri and M

be a finitely generated positive graded R-module. Then there is an exact sequence, of finite

length, of graded free R-modules

0→
⊕

dp

R(−dp)βp,dp
δp−→ · · · δ2−→

⊕

d1

R(−d1)β1,d1
δ1−→
⊕

d0

R(−d0)β0,d0
δ0−→M (2.3.1)

where δi is graded of degree 0 and for each i = 1, 2, . . . , p we have

image (δi) ⊂ mRbi−1 for bi−1 =
∑

di−1

βi−1,di−1
.

Definition 2.3.6 (graded minimal free resolution). Let R be a positive graded polynomial

ring over a field K and M be a finitely generated positive graded R-module. Then, the

graded resolution of M by free modules described in Proposition 2.3.5 is called an N-

graded minimal free resolution of M .

We can see that a minimal graded free resolution is unique up to chain complexes

isomorphism (cf. Villarreal [46], Corollary 2.5.7), so we have the following corollary.

Corollary 2.3.7 (Betti numbers). The numbers βi,di in the minimal free resolution (2.3.1),

which we shall refer to as the i-th N-graded Betti numbers of degree di of M , are indepen-

dent of the choice of graded minimal finite free resolutions.
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Let R =
∞⊕

i=0

Ri be a positive graded polynomial ring over a field K and I ⊂ R be

a homogeneous ideal in R. There are two important invariants attached to I , which are

defined in terms of the minimal graded free resolution of R/I .

• projective dimension of R/I is defined as

pd(R/I) = max {i : βi,j(R/I) 6= 0 for some j}.

• regularity of I is defined as

reg(I) = max {j − i : βi,j(R/I) 6= 0 for some j}.

Definition 2.3.8 (syzygies). Let f1, . . . , fq ∈ R and F be a freeR-module and {e1, . . . , eq}
be a basis of F . Consider the following homomorphism

F −→ (f1, . . . , fq), ei 7→ fi.

The kernel of this homomorphism is called the syzygy module of f1, . . . , fq and we denote

it by Syz(f1, . . . , fq).

Example 2.3.9. Let I = (x2, y) be an ideal in the polynomial ring R = K[x, y]. The

following is the minimal free resolution of R/I .

0 −→ R(−3)




−y
x2





−−−−→ R(−2)⊕R(−1)

(
x2 y

)

−−−−−−→ R −→ R/I −→ 0

where β23 = β11 = β12 = 1. From this resolution we can see that pd(R/I) = 2 and

reg(R/I) = 1.

2.4 Graphs

A simple graph is a graph without multiple edges and loops. We give some definitions and

theorems from graph theory. For the most part we follow West [48].
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Definition 2.4.1. Let G = (V, E) be a graph where V is a nonempty set of vertices and E

is a set of edges. A walk in G is a list e1, e2, . . . , en of edges such that

ei = {xi, xi+1} ∈ E for each i ∈ {1, . . . , n− 1}.

A walk is called closed if its endpoints are the same i.e. x1 = xn. The number of edges of

a walkW is called length ofW and is denoted by `(W). A trial is a walk with no repeated

edges. A path in G is a walk with no repeated vertices or edges allowed. A closed path is

called a cycle.

Lemma 2.4.2 (Lemma 1.2.15 and Remark 1.2.16, [48]). Let G be a simple graph. Then

we have

• Every closed odd walk contains a cycle.

• Every closed even walk that has at least one non-repeated edge contains a cycle.

Definition 2.4.3 (unicyclic graphs and trees). A connected graph without a cycle is called

a tree. A graph which contains only one cycle is called a unicyclic graph.

We will make use of the following theorem. (cf. West [48]).

Theorem 2.4.4 (Theorem 2.1.4 and Corollary 2.1.5, [48]). Let G be a connected graph

with |V(G)| = n and |E(G)| = q. Then we have

• G is a tree if and only if q = n− 1.

• G is a unicyclic graph if and only if q = n.

Theorem 2.4.5 (Euler’s theorem). [Theorem 1.2.26, [48]] If G is a connected graph, then

the edges of G form a closed walk with no repeated edges if and only if the degree of every

vertex of G is even.

We can associate a quadratic squarefree monomial ideal to each simple connected

graph.

Definition 2.4.6 (edge ideal). Let G be a graph on the vertex set V = {x1, . . . , xn} with

edge set E = {e1, . . . , eq}. The edge ideal of G is defined as follows over the polynomial

ring K[x1, . . . , xn]:

I(G) = (xixj : {i, j} ∈ E).
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Note that if we consider the graph G as a 1-dimensional simplicial complex, then we

can easily imply that the edge ideal of G is the facet ideal of G as a simplicial complex.

Edge ideals were first defined by Villarreal in [45], and can be used to make a link

between combinatorial properties of a graph and algebraic properties of its edge ideal. For

instance the edge ideal of the following graph is

I(G) = (x1x2, x2x3, x3x4, x4x5, x1x5, x1x4, x3x5).

Figure 2.4: Edge ideal

2.5 Rees Algebras and Symmetric Algebras

First we need to recall the definition of Rees algebras. For more details see Huneke and

Swanson [27].

Definition 2.5.1. Let R be a Noetherian ring, I ⊂ R be an ideal and t be an indeterminate

over R. The following subring of R[t] is called Rees algebra of I .

R[It] =

{
n∑

i=0

ait
i : n ∈ N, ai ∈ I i

}
=

∞⊕

i=0

I iti.

Definition 2.5.2 (defining ideal of the Rees algebras). Let R be a Noetherian ring, I =

(f1, . . . , fq) be an ideal in R and t be an indeterminate. Consider the polynomial ring
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S = R[T1, . . . , Tq] where T1, . . . , Tq are indeterminates. For the Rees algebra R[It] =

R[f1t, . . . , fqt] we can defined the following homomorphism of algebras

ψ : R[T1, . . . , Tq] −→ R[It], Ti 7→ fit.

Let J be the kernel of ψ and then R[It] = S/J . The map ψ is graded of degree 0, so J is

graded and we have

J =
⊕

Ji

The ideal J is called the defining ideal of R[It] and its minimal generators are called the

Rees equations of I .

These equations carry a lot of information about R[It]; see for example Vasconce-

los [42] for more details.

We consider the linear homogeneous polynomials in J (i.e., J1). These polynomials

can be obtained from a presentation of I . To see this we need to state the definition of

symmetric algebras.

Definition 2.5.3. Let R be a Noetherian ring and I be an ideal in R which is given by the

following presentation.

Rp φ−→ Rq → I → 0, φ = (aij) ∈ Matrixq×p(R).

The symmetric algebra of I , denoted by S(I), is the quotient ring of the polynomial ring

R[T1, . . . , Tq] by the ideal A generated by the following linear polynomials

Fi = a1iT1 + · · ·+ aqiTq for 1 ≤ i ≤ p

It can be seen that A = (J1) ⊂ J (cf. Vasconcelos [43]). Therefore when J = (J1), the

Rees algebra and the symmetric algebra coincide.

Definition 2.5.4 (ideals of linear type). The ideal I is called to be of linear type if J =

(J1); in other words, the defining ideal ofR[It] is generated by linear forms in the variables

T1, . . . , Tq.

Ideals of linear type have been investigated by many authors (cf. Conca and De Ne-

gri [14], Costa [15], Fouli and Lin [18], Huneke [25] and [26]). Because of the following
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proposition complete intersection ideals are perhaps the most obvious class of ideals of

linear type.

Proposition 2.5.5 (Example 1.2, [43]). Let R be a Noetherian ring and I be an ideal in R.

If the ideal I is generated by a regular sequence f1, . . . , fq the Rees algebra of I is

R[It] ∼= R[T1, . . . , Tq]/I2

(
T1 . . . Tq

f1 . . . fq

)

where I2(∆) is an ideal which is generated by all 2× 2 minors of ∆.

Another famous class of ideals of linear type is the class of ideals generated by d-

sequences which was introduced by Fiorentini [17] and Huneke [26].

We have the following useful result from Herzog, Simis and Vasconcelos [22].

Theorem 2.5.6 (Proposition 2.4, [22]). Let I be an ideal in a Noetherian ring R and let I

be of linear type. Then for every prime ideal p containing I , the ideal Ip can be generated

by ht(p) elements (where ht(p) is height of p which is the maximum of the lengths of the

chains of prime ideals contained in p).

Corollary 2.5.7. Let I = (f1, . . . , fq) be a squarefree monomial ideal inR = K[x1, . . . , xn].

If I is of linear type, we have q ≤ n.

From Corollary 2.5.7 and Theorem 2.4.4 we can deduce the following corollary.

Corollary 2.5.8. Let G be a connected graph and I(G) be its edge ideal. If I(G) is of

linear type, then G is either a tree or a unicyclic graph.

Proof. Let V (G) = {x1, . . . , xn} be the vertex set of G and I(G) = (f1, . . . , fq) where

|E(G)| = q. Since I(G) is of linear type from Corollary 2.5.7 we have q ≤ n. On the

other hand since G is connected we can conclude q ≥ n− 1 so q ∈ {n− 1, n}. The claim

follows from Theorem 2.4.4.

Villareal showed that the converse of this corollary is also correct [47]. Here we prove

the converse in Corollary 5.3.10 with a different method.
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2.6 Simplicial Trees and Good Leaves

Good leaves were first introduced by X. Zheng in her PhD thesis [50]. To state the definition

of a good leaf we first need to recall the definition of a leaf. The following definition was

given by Faridi [16].

Definition 2.6.1 (leaves and simplicial forests). Let ∆ be a simplicial complex and F be a

facet of ∆. The facet F is called a leaf of ∆ if either F is the only facet of ∆ or else there

exists a facet G with G 6= F such that for all facets H 6= F we have H ∩F ⊂ G. The facet

G is called a joint of F .

A simplicial complex ∆ is called a simplicial forest if each of its subcollections has a

leaf. A connected simplicial forest is called a simplicial tree.

Example 2.6.2. In Figure 2.5 F1, F3 are leaves of ∆ and their joint is F2.

Figure 2.5: A simplicial tree

We now state the definition of a good leaf.

Definition 2.6.3 (Good Leaf). Let ∆ be a simplicial complex. A facet F of ∆ is a good

leaf of ∆ if F is a leaf of all subcollections of ∆ which contain F .

We also need the following useful property of a good leaf.

Lemma 2.6.4 (Lemma 3.10, [50]). Let ∆ be a simplicial complex and F be a facet of ∆.

The following conditions are equivalent

• F is a good leaf of ∆;

• The set {H ∩ F ;H ∈ Facets(∆)} is totally ordered by inclusion.

Example 2.6.5. In Figure 5.1a, F1, . . . , F4 are leaves of ∆ and their joint G is a solid

tetrahedron. However, since the subcollection Γ has no leaves, then F1, . . . , F4 are not

good leaves.
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(a) ∆ = 〈F1, F2, F3, F4, G〉 (b) Γ = 〈F1, F2, F3, F4〉 ⊂ ∆

Figure 2.6: Good leaf

The existence of a good leaf in every simplicial tree was proved by Herzog, Hibi, Trung

and Zheng in [23].

Theorem 2.6.6 (Corollary 3.4, [23]). Every simplicial tree contains a good leaf.

2.7 Higher Dimensional Cycles

We end this chapter by introducing three higher dimension cycles.

Definition 2.7.1. Let ∆ be a simplicial complex with at least three facets, ordered as

F1, . . . , Fq. Suppose
⋂
Fi = ∅. With respect to this order ∆ can be one of the follow-

ing:

(i) extended trail if we have

Fi ∩ Fi+1 6= ∅ i = 1, . . . , q mod q.

Extended trails come from the definition of a higher dimension cycle which is defined

by Berge [10].

(ii) special cycle [23] if ∆ is an extended trail in which we have

Fi ∩ Fi+1 6⊂
⋃

j /∈{i,i+1}

Fj i = 1, . . . , q mod q.
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Special cycles come from hypergraph theory and were first introduced by Lovász in

1979 (cf. [30]).

(iii) simplicial cycle [13] if ∆ is an extended trail in which we have

Fi ∩ Fj 6= ∅ ⇔ j ∈ {i+ 1, i− 1} i = 1, . . . , q mod q.

Simplicial cycles are related to simplicial trees and were first introduced by Caboara,

Faridi and Selinger [13].

We say that ∆ is an extended trail (or special or simplicial cycle) if there is an order on

the facets of ∆ such that the specified conditions hold on that order. Note that

{Simplicial Cycles} ⊆ {Special Cycles} ⊆ {Extended Trails}.

In the case of graphs the special and simplicial cycles are the ordinary cycles, but an ex-

tended trail in our definition is neither a cycle nor a trail (a walk without repeated edges) in

the case of graphs (but they are walks in the graph terminology). For instance, the graph in

Figure 2.7 is an extended trail, which is neither a cycle nor a trail, but contains one cycle.

Figure 2.7: Extended trail in a graph



Chapter 3

Resolutions of Path Ideals of Cycles and Paths

In this chapter we consider the path ideal of a graph as a disjoint union of connected compo-

nents. We then use homological methods to glue these components back together, and use

Hochster’s formula. In the next chapter we compute all graded Betti numbers, projective

dimension and regularity of path ideals of paths and cycles.

3.1 Betti Numbers of Squarefree Monomial Ideals

Every squarefree ideal can be viewed as a Stanley-Reisner ideal of a simplicial complex.

Then for computing the N-graded Betti numbers of a squarefree monomial ideal we only

need to use Hochster’s formula for Betti numbers of simplicial complexes (Betti numbers

of the Stanley-Reisner ring). We now state Hochster’s theorem.

Theorem 3.1.1 (Theorem 5.1, [24]). Let ∆ be a simplicial complex. For i > 0 the Betti

numbers βi,d of ∆ are given by

βi,d(K[∆]) =
∑

W⊂V(∆)
|W |=d

dimK H̃d−i−1(∆[W ];K)

where ∆[W ] = {F ∈ ∆ : F ⊂ W}.

Here we use an equivalent form of Hochster’s formula (cf. Corollary 5.12 of Miller and

Sturmfels [33]).

Theorem 3.1.2. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, and I be a

pure square-free monomial ideal in R. Then the N-graded Betti numbers of R/I are given

by

βi,d(R/I) =
∑

Γ⊂F(I)
|V(Γ)|=d

dimK H̃i−2(Γ
c
V(Γ))

where the sum is taken over the induced subcollections Γ of F(I) which have d vertices.

21
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Proof. Hochster’s formula says

βi,d(R/I) =
∑

W⊂V(N (I))
|W |=d

dimK H̃d−i−1(N (I)[W ])

where N (I)[W ] = {F ∈ N (I) : F ⊂ W}. On the other hand from Theorem 2.2.7 and

Lemma 2.2.8 we have

H̃d−i−1(N (I)[W ]) ∼= H̃ i−2(N (I)[W ]
∗) ∼= H̃i−2(N (I)[W ]

∗). (3.1.1)

Suppose m1,m2, . . . ,mr is a minimal monomial generating set for I and correspond-

ingly, F(I) = 〈F1, . . . , Fr〉. We now claim N (I)[W ]
∗ = (F(I)W )cW for W ⊂ V(N (I)).

F ∈ N (I)[W ]
∗ ⇐⇒ W \ F /∈ N (I)[W ]

⇐⇒ W\F /∈ N (I)

⇐⇒
∏

x∈W\F

x ∈ I = (m1,m2, . . . ,mr)

⇐⇒ ms|
∏

x∈W\F

x, for some s ∈ {1, . . . , r}

⇐⇒ Fs ⊂ W\F ⊂ W, for some s ∈ {1, . . . , r}
⇐⇒ F ⊂ W\Fs ∈ (F(I)W )cW , for some s ∈ {1, . . . , r}.

Now Hochster’s formula and (3.1.1) imply that

βi,d(R/I) =
∑

W⊂V(F(I))
|W |=d

dimKH̃i−2((F(I)W )cW ).

If we assume V(F(I)W ) 6= W then it is straightforward to show that (F(I)W )cW is a cone

and by Proposition 2.2.10 it contributes 0 to the sum. So we have

βi,d(R/I) =
∑

Γ⊂F(I)
|V(Γ)|=d

dimKH̃i−2(Γ
c
V(Γ)).

where the sum is taken over the induced subcollections Γ of F(I) which have d vertices.
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Based on Theorem 3.1.2, from here on all induced subcollections Γ = ∆Y of a simpli-

cial complex ∆ that we consider will have the property that Y = V(Γ).

3.2 Path Ideals and Runs

Definition 3.2.1 (path ideal and path complex). Let G = (X , E) be a finite simple graph

and t be an integer such that t ≥ 2. We define the path ideal of G, denoted by It(G) to

be the ideal of K[x1, . . . , xn] generated by the monomials of the form xi1xi2 · · · xit where

xi1 , xi2 , . . . , xit is a path in G. The facet complex of It(G), denoted by ∆t(G), is called the

path complex of the graph G.

We will be considering in this thesis a cycle Cn, or a path graph Ln on vertices

{x1, . . . , xn}.

Cn = 〈x1x2, . . . , xn−1xn, xnx1〉 and Ln = 〈x1x2, . . . , xn−1xn〉.

Example 3.2.2. Consider the cycle C7 with vertex set X = {x1, . . . , x7}

Figure 3.1: Cycle with 7 vertices

Then we have

I4(C7) = (x1x2x3x4, x2x3x4x5, x3x4x5x6, x4x5x6x7, x1x5x6x7, x1x2x6x7, x1x2x3x7)

∆4(C7) = 〈{x1, x2, x3, x4}, {x2, x3, x4, x5}, {x3, x4, x5, x6}, {x4, x5, x6, x7}, {x1, x5, x6, x7},
{x1, x2, x6, x7}, {x1, x2, x3, x7}〉.

We now focus on path ideals, path complexes, and their structures.
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Notation 3.2.3. Let i and k be two positive integers. For (a set of) labeled objects we use

the notation mod k to denote

xi mod k = {xj : 1 ≤ j ≤ k, i ≡ j mod k}

and

{xu1
, xu2

, . . . , xut
} mod k = {xuj

mod k : j = 1, 2, . . . , k}.

Note 3.2.4. Let Cn be a cycle on vertex set X = {x1, . . . , xn} and t < n. The facets of the

path complex ∆t(Cn) = 〈F1, . . . , Fn〉 can be labeled as

F1 = {x1, . . . , xt}, . . . , Fn−(t−1) = {xn−(t−1), . . . , xn}, . . . , Fn = {x1, . . . , xt−1, xn}

such that all indices are considered to be mod n and Fi = {xi, xi+1, . . . , xi+t−1} for all

1 ≤ i ≤ n. This labeling is called the standard labeling of ∆t(Cn).

Since for each 1 ≤ i ≤ n we have

Fi+1 \ Fi = {xt+i} and Fi \ Fi+1 = {xi},

it follows that |Fi \ Fi+1| = 1 and |Fi+1 \ Fi| = 1 for all 1 ≤ i ≤ n− 1.

Note 3.2.5. In this chapter and the next chapter when we work with the cycle Cn all indices

are considered to be mod n.

It is straightforward to show that each induced subgraph of a graph cycle is a disjoint

union of paths. Borrowing the terminology from Jacques [28], we call the path complex of

a path a “run”, and show that every induced subcollection of the path complex of a cycle is

a disjoint union of runs.

Definition 3.2.6. We define a run to be the path complex of a path graph. A run which has

p facets is called a run of length p and corresponds to ∆t(Lp+t−1) for some t. Therefore a

run of length p has p+ t− 1 vertices, for some t.

Example 3.2.7. Consider the cycle C7 on vertex set X = {x1, . . . x7} and the simplicial

complex ∆4(C7). The following induced subcollections are two runs in ∆4(C7)

∆1 = 〈{x1, x2, x3, x4}, {x2, x3, x4, x5}〉
∆2 = 〈{x1, x2, x6, x7}, {x1, x2, x3, x7}, {x1, x2, x3, x4}〉.
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Proposition 3.2.8 below shows that every proper induced subcollection of a path com-

plex of a cycle is a disjoint union of runs.

Proposition 3.2.8. Let Cn be a cycle with vertex set X = {x1, . . . .xn} and 2 ≤ t < n. Let

Γ be a non-empty proper induced connected subcollection of ∆t(Cn) on U $ X . Then Γ

is of the form ∆t(L|Γ|), where L|Γ| is the path graph on |Γ| vertices.

Proof. Suppose ∆t(Cn) = 〈F1, . . . , Fn〉 has the standard labeling and Γ = 〈Fi1 , . . . , Fir〉.
Note that there exists a facet Fa ∈ Γ for 1 ≤ a ≤ n such that Fa+1 /∈ Γ, because otherwise

Γ = ∆t(Cn). Therefore from Note 3.2.4 we have

{xa, xa+1, . . . , xa+t−1} ⊂ U and xa+t /∈ U. (3.2.1)

Let r be the largest non-negative integer such that xa−i ∈ U for 0 ≤ i ≤ r so that

xa−r−1,︸ ︷︷ ︸
/∈ U

xa−r, . . . , xa−1, xa, xa+1, . . . , xa+t−1,︸ ︷︷ ︸
∈ U

xa+t︸︷︷︸ .
/∈ U (3.2.2)

It follows that since Γ is an induced subcollection of ∆t(Cn) onU , Fa−r, Fa−r+1, . . . , Fa ∈
Γ. We now show that

Fi /∈ Γ for all i /∈ {a− r, a− r + 1, . . . , a}.

This follows from the fact that Γ is connected: if any Fi (except for a−r ≤ i ≤ a) intersects

some of the facets Fa−r, . . . , Fa, then it must contain xa−r−1 or xa+t (as otherwise it would

be one of Fa−r, . . . , Fa), and hence Fi /∈ Γ.

We have therefore shown that

Γ = 〈Fa−r, Fa−r+1, . . . , Fa〉.

Next we prove Γ = ∆t(L|U |). Without loss of generality we can assume that a− r = 1, so

that Γ = 〈F1, . . . , Fr+1〉. Since Γ 6= ∆t(Cn) we can say that r + 1 < n and therefore we

have

V(Γ) = {x1, x2, . . . , xr+t}.

Since Γ is induced and proper we have r + t < n, and therefore we can conclude that
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Γ = ∆t(L{x1,x2,...,xt+r}).

Lemma 3.2.9. Let Γ and Λ be two induced subcollections of ∆t(Cn) = 〈F1, F2, . . . , Fn〉
each of which is a disjoint union of runs of lengths s1, . . . , sr. Then Γ and Λ are isomor-

phic as simplicial complexes. In particular the two simplicial complexes Γc and Λc are

isomorphic and have the same reduced homology modules.

Proof. First we suppose ∆t(Cn) = 〈F1, F2, . . . , Fn〉 has the standard labeling. If we denote

each run of length si in Γ and Λ by Ri and R′
i, respectively, we have

Γ = 〈R1, R2, . . . , Rr〉 and Λ = 〈R1
′, R2

′, . . . , Rr
′〉

where, using the standard labeling, for 1 ≤ ji, hi ≤ n we have

Ri = 〈Fji , Fji+1, . . . , Fji+si−1〉 and Ri
′ = 〈Fhi

, Fhi+1, . . . , Fhi+si−1〉.

Then we have

V(Γ) =
r⋃

i=1

V(Ri) =
r⋃

i=1

{xji , xji+1, . . . , xji+si+t−2}

and

V(Λ) =
r⋃

i=1

V(Ri
′) =

r⋃

i=1

{xhi
, xhi+1, . . . , xhi+si+t−2}.

Now we define the function ϕ : V(Γ) −→ V(Λ) where

ϕ(xji+u) = xhi+u for 0 ≤ u ≤ si + t− 2.

Since ϕ is a bijective map between vertex set Γ and Λ which preserves faces, we can

conclude Γ and Λ are isomorphic. Therefore, the two simplicial complexes Γc and Λc are

isomorphic as well and have the same reduced homology module.

Therefore, in light of Proposition 3.2.8, Theorem 3.1.2 and Lemma 3.2.9 all the infor-

mation we need to compute the Betti numbers of ∆t(Cn), or equivalently the homology

modules of induced subcollections of ∆t(Cn), depend on the number and the lengths of the

runs.

Definition 3.2.10. For a fixed integer t ≥ 2, let the pure (t − 1)-dimensional simplicial
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complex Γ = 〈F1, . . . , Fs〉 be a disjoint union of runs of length s1, . . . , sr. Then the se-

quence of positive integers s1, . . . , sr is called a run sequence on Y = V(Γ), and we use

the notation

E(s1, . . . , sr) = Γc
Y = 〈(F1)

c
Y , . . . , (Fs)

c
Y〉.

3.3 Reduced Homologies for Betti Numbers

Let I = It(Cn) be the path ideal of the cycle Cn for some t ≥ 2. By applying Hochster’s

formula (Theorem 3.1.2), we see that to compute the Betti numbers of R/I , we need to

compute the reduced homology modules of complements of induced subcollections of ∆

which by Proposition 3.2.8 are disjoint unions of runs. This section is devoted to complex

homological calculations. The results here will allow us to compute all Betti numbers of

R/I (and more) in the sections that follow.

We make a basic observation.

Lemma 3.3.1. Let E1, . . . , Em be subsets of the finite set V where m ≥ 2 and suppose that

E = 〈(E1)
c
V , (E2)

c
V , ..., (Em)

c
V 〉.

i. Suppose V \
m⋃

j=2

Ej 6= ∅. If E1 = 〈(E1)
c
V 〉 and E2 = 〈(E2)

c
V , ..., (Em)

c
V 〉 then for

each i

H̃i(E) = H̃i(E1 ∪ E2) ∼= H̃i−1(E1 ∩ E2)
= H̃i−1(〈(E1 ∪ E2)

c
V , ..., (E1 ∪ Em)

c
V 〉)

= H̃i−1(〈(E2)
c
(V \E1)

, ..., (Em)
c
(V \E1)

〉).

ii. If Ea ⊂ Eb for some a 6= b, then E = 〈(E1)
c
V , . . . , (Êb)

c
V , . . . , (Em)

c
V 〉.

The decomposition E = E1 ∪ E2 described in part (i) is called a standard decomposi-

tion of E .

Proof. The proof of (ii) is trivial so we shall only prove (i). Since E1 is a simplex, we have

H̃i(E1) = 0. Also since V \
s⋃

i=2

Ei 6= ∅ we have E2 is a cone, so from Proposition 2.2.10

we conclude

H̃i(E2) = 0 for all i.
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By applying the Mayer-Vietoris sequence we reach the following exact sequence

· · · −→ H̃i(E1)⊕H̃i(E2) −→ H̃i(E) −→ H̃i−1(E1∩E2) −→ H̃i−1(E1)⊕H̃i−1(E2) −→ · · ·

which from E1 ∩ E2 = 〈(E1 ∪ E2)
c
V , ..., (E1 ∪ Em)

c
V 〉, implies that

H̃i(E1 ∪ E2) ∼=H̃i−1(E1 ∩ E2)
=H̃i−1(〈(E1 ∪ E2)

c
V , ..., (E1 ∪ Em)

c
V 〉)

and this settles our claim.

Proposition 3.3.2. Let Γ = 〈E1, . . . , Em〉 be a pure simplicial complex of dimension t− 1

on the vertex set V = {x1, . . . , xn} where 2 ≤ t ≤ n. Suppose the connected components

of Γ are runs of lengths s1, . . . , sr, and E = E(s1, . . . , sr). Let sj = (t + 1)pj + dj where

pj ≥ 0 and 0 ≤ dj ≤ t and 1 ≤ j ≤ r. Then for all i, we have

i. If sj ≥ t+ 2 then H̃i(E) ∼= H̃i−2(E(s1, . . . , sj − (t+ 1), . . . , sr));

ii. If dj 6= 1, 2 then H̃i(E) = 0;

iii. If sj = 2 and r ≥ 2 then H̃i(E) = H̃i−2(E(s1, . . . , sj−1, sj+1, . . . , sr));

iv. If sj = 1 and r ≥ 2 then H̃i(E) = H̃i−1(E(s1, . . . , sj−1, sj+1, . . . , sr)).

Proof. We assume without loss of generality thatE1, . . . , Em are ordered such thatE1, . . . , Esj

are the facets of the run of length sj , and they have the standard labeling

E1 = {x1, x2, . . . , xt}, E2 = {x2, x3, . . . , xt+1}, . . . , Esj = {xsj , xsj+1, . . . , xsj+t−1}.

We have E = 〈(E1)
c
V , (E2)

c
V , ..., (Em)

c
V 〉. Since x1 ∈ V \ ⋃m

i=2Ei there is a standard

decomposition

E = 〈(E1)
c
V 〉 ∪ 〈(E2)

c
V , . . . , (Em)

c
V 〉.

From Lemma 3.3.1 (i), setting V ′ = V \ {x1, x2, . . . , xt}, we have

H̃i(E) ∼= H̃i−1(〈(E2)
c
V ′ , . . . , (Em)

c
V ′〉). (3.3.1)
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If sj ≥ t+ 2 from (3.3.1) we have

H̃i(E)) = H̃i−1(〈{xt+1}cV ′ , (Et+2)
c
V ′ , . . . , (Em)

c
V ′〉) (3.3.2)

and since the following is a standard decomposition

〈{xt+1}cV ′〉 ∪ 〈(Et+2)
c
V ′ , . . . , (Esj)

c
V ′ , . . . , (Em)

c
V ′〉

from (3.3.2), Lemma 3.3.1 (i) and by setting V ′′ = V \ {x1, x2, . . . , xt+1}, we have

H̃i(E) ∼= H̃i−2(〈(Et+2)
c
V ′′ , . . . , (Esj)

c
V ′′ , . . . , (Em)

c
V ′′〉).

Now note that the connected components of 〈Et+2, . . . , Em〉 are runs of the following

lengths s1, . . . , sj − (t+ 1), . . . , sr, and therefore we can conclude that for all i

H̃i(E) = H̃i−2(E(s1, . . . , sj − (t+ 1), . . . , sr)).

This settles Part (i) of the proposition. Now suppose 1 ≤ sj < t+2. In this case by (3.3.1)

and Lemma 3.3.1 (i) and (ii) we see that

H̃i(E) ∼= H̃i−1(〈{xt+1}cV ′ , (Esj+1)
c
V ′ , . . . , (Em)

c
V ′〉) for all i. (3.3.3)

1. If sj ≥ 3 since xsj+t−1 ∈ V ′ \ (⋃m
i=sj+1Ei ∪ {xt+1}) the simplicial complex

〈{xt+1}cV ′ , (Esj+1)
c
V ′ , . . . , (Em)

c
V ′〉

is a cone and by Proposition 2.2.10 and (3.3.3) we have H̃i(E) = 0 for all i.

2. If sj = 2 and r ≥ 2, since xt+1 ∈ V ′ \ (⋃m
i=sj+1Ei) we have

〈{xt+1}cV ′〉 ∪ 〈(Esj+1)
c
V ′ , . . . , (Em)

c
V ′〉
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is a standard decomposition and then by Lemma 3.3.1 and (3.3.3) we have

H̃i(E) ∼= H̃i−2(〈(Esj+1)
c
V ′′ , . . . , (Em)

c
V ′′〉)

= H̃i−2(E(s1, . . . , sj−1, sj+1, . . . , sr)) for all i.

This settles Part (iii).

3. If sj = 1 and r ≥ 2 since E1 ∩ Eh = ∅ for 1 < h ≤ m, and from (3.3.1) we have

H̃i(E) ∼= H̃i−1(E(s1, . . . sj−1, sj+1, . . . , sr)) for all i.

This settles Part (iv).

To prove (ii), we use induction on pj . If pj = 0, then dj = sj ≥ 1. From above we know

that H̃i(E) = 0 if 3 ≤ sj ≤ t, and we are done. Now suppose pj ≥ 1 and the statement

holds for all values less than pj . We have two cases:

1. If sj < t+2, then since pj ≥ 1, we must have pj = 1, dj = 0, and sj = t+1. It was

proved above (under the case 3 ≤ sj < t+ 2) that H̃i(E) = 0.

2. If sj ≥ t+ 2, by (i) we have

H̃i(E) ∼= H̃i−2(E(s1, . . . , (t+ 1)(pj − 1) + dj, . . . , sr)) = 0 when dj 6= 1, 2.

This proves (ii) and we are done.

We conclude that for computing the homology module of the induced subcollections of

path complexes of cycles or paths the only cases which have to be considered are those of

runs of length 1 or 2. We now set about computing these.

Proposition 3.3.3. Let t ≥ 2 be an integer, α, β ≥ 0 and α + β > 0 and consider

E = E((t+ 1)p1 + 1, . . . , (t+ 1)pα + 1, (t+ 1)q1 + 2, . . . , (t+ 1)qβ + 2)

for nonnegative integers p1, . . . , pα and q1, . . . , qβ . Then

H̃i(E) =
{

K i = 2(P +Q) + 2β + α− 2

0 otherwise
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where P =
∑α

i=1 pi and Q =
∑β

i=1 qi.

From here on, we use the notation E(1α, 2β) to denote the complex E described in the

statement of Proposition 3.3.3 in the case where all the p’s and q’s are zero; i.e. the case of

α runs of length one and β runs of length two.

Proof. First we prove the two cases α = 0, β = 1 and α = 1, β = 0.

1. If α = 1, β = 0, then E ∼= 〈V \ {x1, x2, . . . , xt}〉 = {∅} where V = {x1, . . . , xt},
and therefore

H̃i(E) =
{

K i = −1
0 otherwise.

2. If α = 0, β = 1, then E ∼= 〈({x1, x2, . . . , xt})cV , ({x2, . . . , xt+1})cV 〉 = 〈{xt+1}, {x1}〉
where V = {x1, . . . , xt+1}. Since E is disconnected and the number of connected

components is 2, we have

H̃i(E) =
{

K i = 0

0 otherwise.

To prove the statement of the proposition, we use repeated applications of Proposition 3.3.2 (i),

p1 times to the first run, p2 times to the second run, and so on till qβ times to the last run as

follows.

H̃i(E) = H̃i(E((t+ 1)p1 + 1, . . . , (t+ 1)pα + 1, (t+ 1)q1 + 2, . . . , (t+ 1)qβ + 2))

∼= H̃i−2(E((t+ 1)(p1 − 1) + 1, . . . , (t+ 1)pα + 1, (t+ 1)q1 + 2, . . . , (t+ 1)qβ + 2))

...

∼= H̃i−2(P+Q)(E(1
α, 2β)) apply Proposition 3.3.2 (iv)

∼= H̃i−2(P+Q)−α(E(2
β)) apply Proposition 3.3.2 (iii)

∼= H̃i−2(P+Q)−α−2β+2(E(2)) apply Case 2 above

=

{
K i = 2(P +Q) + α + 2β − 2

0 otherwise

so we are done.
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An immediate consequence of the above calculations is the homology module of the

complement of a run, or equivalently, a path complex of any path graph.

Corollary 3.3.4. Let t, p and d be integers such that t ≥ 2, p ≥ 0, and 0 ≤ d ≤ t. Then

H̃i(E((t+ 1)p+ d)) =





K d = 1, i = 2p− 1

K d = 2, i = 2p

0 otherwise.

Proof. By Proposition 3.3.2 (ii), if d 6= 1, 2 the homology module is zero. In the cases

where d = 1, 2, the result follows directly from Proposition 3.3.3.

We end this section with the calculation of the homology module of the complement

of the whole path complex of a cycle; this will give us the top degree Betti numbers of the

path ideal of a cycle. We will first need a technical lemma.

Lemma 3.3.5. Let R = K [x1, . . . , xn] be a polynomial ring over a field K, and suppose

∆t(Cn) = 〈F1, F2, . . . , Fn〉 is the path complex of a cycle Cn with standard labeling. Let

a, k, s, t ∈ {1, . . . , n} be such that k ≤ t, and a+ s+ t− 1 < n. Suppose s = (t+1)p+ d

where p ≥ 0 and 0 ≤ d < t+ 1. Set V = {xa, xa+1, . . . , xa+s+t−1} and

E = 〈(Fa)
c
V , . . . , (Fa+s−1)

c
V , {xa+s+t−k, xa+s+t−k+1, . . . , xa+s+t−1}cV 〉.

Then for all i we have

H̃i(E) =





K d = 1, i = 2p

K k < t, d = k + 1, i = 2p+ 1

K k = t, d = 0, i = 2p− 1

0 otherwise.

Proof. Suppose a, k, s, t ∈ {1, . . . , n}. Without loss of generality we can assume a = 1 so

that V = {x1, . . . , xs+t} and

E = 〈(F1)
c
V , . . . , (Fs)

c
V , {xs+t−k+1, . . . , xs+t}cV 〉.
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Since xs+t /∈ Fh for 1 ≤ h ≤ s, E has standard decomposition

E = 〈(F1)
c
V , (F2)

c
V , . . . , (Fs)

c
V 〉 ∪ 〈{xs+t−k+1, xs+t−k+2, . . . , xs+t}cV 〉

and then from Lemma 3.3.1 (i) and (ii), setting V1 = V \ {xs+t−k+1, xs+t−k+2, . . . , xs+t},
we have

H̃i(E) ∼=H̃i−1(〈(F1)
c
V1
, (F2)

c
V1
, . . . , (Fs−k)

c
V1
, {xs−k+1, . . . , xs+t−k}cV1

, {xs−k+2, . . . , xs+t−k}cV1
,

, . . . , {xs−1, . . . , xs+t−k}cV1
, {xs, . . . , xs+t−k}cV1

〉)
=H̃i−1(〈(F1)

c
V1
, (F2)

c
V1
, . . . , (Fs−k)

c
V1
, {xs, . . . , xs+t−k}cV1

〉) (3.3.4)

We prove our statement by induction on |V | = s + t = (t + 1)p + d + t. The base case is

|V | = d+ t, in which case p = 0 and d = s ≥ 1. There are two cases to consider.

1. If 1 ≤ d ≤ k, then s ≤ k, and so by (3.3.4)

H̃i(E) = H̃i−1(〈{xs, . . . , xs+t−k}cV1
〉).

The simplex {xs, . . . , xs+t−k}cV1
is not empty unless s = d = 1, and hence we have

H̃i(E) =
{

K d = 1, i = 0

0 otherwise.

2. If d > k, we use (3.3.4) to note that since xs+t−k /∈ F1 ∪ . . . ∪ Fs−k, the following is

a standard decomposition

〈(F1)
c
V1
, (F2)

c
V1
, . . . , (Fs−k)

c
V1
, {xs, . . . , xs+t−k}cV1

〉.

Using Lemma 3.3.1 and (3.3.4) along with the fact that s = d ≤ t, we find that if

V2 = V \ {xs, . . . , xs+t}, then

H̃i(E) ∼= H̃i−2(〈{x1, . . . , xs−1}cV2
, {x2, . . . , xs−1}cV2

, . . . , {xs−k, . . . , xs−1}cV2
〉)

∼= H̃i−2(〈{xs−k, . . . , xs−1}cV2
〉).

Now the simplex {xs−k, . . . , xs−1}cV2
is nonempty unless s−k = 1, or in other words,
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d = s = k + 1. Therefore

H̃i(E) =
{

K d = k + 1, i = 1

0 otherwise.

This settles the base case of the induction. Now suppose |V | = s + t > d + t and the

theorem holds for all the cases where |V | < s+ t. Since |V1| = (s− k) + t < |V | we shall

apply (3.3.4) and use the induction hypothesis on V1, now with the following parameters:

k1 = t− k + 1, s1 = s− k = (t+ 1)p+ d− k and

d1 =

{
d− k d ≥ k

d− k + t+ 1 d < k
and p1 =

{
p d ≥ k

p− 1 d < k.

Applying the induction hypothesis on V1 we see that H̃i(E) = 0 unless one of the following

scenarios happens, in which case H̃i(E) = K.

1. d1 = 1 and i− 1 = 2p1.

(a) When d ≥ k and k 6= t, this means that d = k + 1 and i = 2p+ 1.

(b) When d < k, this means d−k+t+1 = 1 which implies that 0 ≤ d = k−t ≤ 0,

and hence d = 0, t = k and i = 2p1 + 1 = 2p− 1.

2. d1 = k1 + 1 and i− 1 = 2p1 + 1.

(a) When d ≥ k, this means that d− k = t− k + 1 + 1 and so d = t+ 2 which is

not possible, as we have assumed d < t+ 1.

(b) When d < k, this means that d− k + t + 1 = t− k + 1 + 1 and so d = 1 and

i = 2p1 + 2 = 2p.

We conclude that H̃i(E) = K only when d = 1 and i = 2p, or d = k + 1 and i = 2p + 1

and k < t, or d = 0 and i = 2p− 1 and k = t and H̃i(E) = 0 otherwise.

Theorem 3.3.6. Let 2 ≤ t ≤ n and ∆ = ∆t(Cn) be the path complex of a cycle Cn with

vertex set X = {x1, x2, . . . , xn}. Suppose n = (t+ 1)p+ d where p ≥ 0, 0 ≤ d ≤ t. Then
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for all i

H̃i(∆
c
X ) =





Kt d = 0, i = 2p− 2, p > 0

K d 6= 0, i = 2p− 1

0 otherwise.

Proof. If p = 0, then n = t and our claim is true, so we assume that p ≥ 1 and therefore

n ≥ t+ 1. We define the following simplicial complexes

E0 = 〈(F1)
c
X , (F2)

c
X , . . . , (Fn−t+1)

c
X 〉 = E(n− t+ 1)

Ek = Ek−1 ∪ 〈(Fn−k+1)
c
X 〉 for k = 1, 2, . . . , t− 1.

(3.3.5)

Note that ∆c
X = Et−1. We start with E0 and apply the Mayer-Vietoris sequence repeatedly

to calculate the homology modules of the Ek. Since E0 = E(n− t+ 1), we find

n− t+ 1 = (t+ 1)p+ d− t+ 1 =





(t+ 1)p+ 1 d = t

(t+ 1)p d = t− 1

(t+ 1)(p− 1) + d+ 2 d < t− 1

which by Corollary 3.3.4 implies that

H̃i(E0) =





K d = 0, i = 2p− 2

K d = t, i = 2p− 1

0 otherwise.

(3.3.6)

In order to to find the homology modules of Et−1 we shall recursively apply the Mayer-

Vietoris sequence as follows. For a fixed 1 ≤ k ≤ t − 1 we have the following exact

sequence,

H̃i(Ek−1 ∩ 〈(Fn−k+1)
c
X 〉)→ H̃i(Ek−1)→ H̃i(Ek)→ H̃i−1(Ek−1 ∩ 〈(Fn−k+1)

c
X 〉).(3.3.7)

We claim that for 0 ≤ k ≤ t− 2,

H̃i(Ek ∩ 〈(Fn−k)
c
X 〉) =





K d = 0, i = 2p− 3

K d = t− k − 1, i = 2p− 2

0 otherwise.

(3.3.8)
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Setting X ′ = X \ Fn−k = {xt−k, . . . , xn−k−1} we can write

Ek ∩ 〈(Fn−k)
c
X 〉 = 〈(F1)

c
X ′ , . . . , (Fn−t+1)

c
X ′ , (Fn−k+1)

c
X ′ , . . . , (Fn)

c
X ′〉. (3.3.9)

We now compute the (Fh)
c
X ′ = {xh, . . . , xh+(t−1)}cX ′ appearing in (3.3.9).

• When 1 ≤ h ≤ t− k, it is straightforward to show that

(Fh)
c
X ′ = {xt−k, xt−k+1, . . . , xt+h−1}cX ′ .

• When t− k + 1 ≤ h ≤ n− t− k − 1, then 2t− k ≤ h+ t− 1 ≤ n− k − 2, and so

(Fh)
c
X ′ = {xt−k, . . . , xh−1, xh+t, . . . , xn−k−1}.

• When n− k − t ≤ h ≤ n− t+ 1, then n− k − 1 ≤ h+ t− 1 ≤ n, and therefore

(Fh)
c
X ′ = {xh, . . . , xn−k−1}cX ′ .

• When h = n − j for 0 ≤ j ≤ k − 1, then t − k ≤ −j + (t − 1) ≤ t − 1 and so we

have

Fn−j = {xn−j, . . . , xn−j+(t−1)} = {xn−j, . . . , xn, x1, . . . , xt−j−1}

which implies that

(Fn−j)
c
X ′ = {xt−k, xt−k+1, . . . , xt−j−1}cX ′ .

From the observations above, (3.3.9) and Lemma 3.3.1 (ii) we see that

Ek ∩ 〈(Fn−k)
c
X 〉 = 〈{xt−k}, Ft−k+1, . . . , Fn−t−k−1, {xn−t+1, . . . , xn−k−1}〉cX ′ . (3.3.10)

We now consider the following scenarios.

1. Suppose p = 1. In this situation, n = t + d + 1 ≤ 2t + 1 which implies that
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n− t− k − 1 ≤ t− k. Therefore, (3.3.10) becomes

Ek ∩ 〈(Fn−k)
c
X 〉 = 〈{xt−k}, {xn−t+1, . . . , xn−k−1}〉cX ′ . (3.3.11)

(a) If d ≤ t− k− 2, then n− t+ 1 = t+ d+ 1− t+ 1 = d+ 2 ≤ t− k. As well,

since n ≥ t+ 1, we have n− k − 1 ≥ t− k.

It follows that in this situation, xt−k ∈ {xn−t+1, . . . , xn−k−1} which means that

(3.3.11) becomes Ek ∩ 〈(Fn−k)
c
X 〉 = 〈{xt−k}cX ′〉. Also note that X ′ = {xt−k}

only when d = 0. It follows that

H̃i(Ek ∩ 〈(Fn−k)
c〉) ∼=

{
K d = 0, i = −1
0 otherwise.

(b) If d > t − k − 2. In this situation, xt−k /∈ {xn−t+1, . . . , xn−k−1} which means

that we can apply Lemma 3.3.1 (i), with X ′′ = X ′ \ {xt−k} to find that for all i

H̃i(Ek ∩ 〈(Fn−k)
c〉) = H̃i−1(〈{xn−t+1, . . . , xn−k−1}〉cX ′′).

Moreover, X ′′ = {xn−t+1, . . . , xn−k−1} only when d = t − k − 1, and so we

have

H̃i(Ek ∩ 〈(Fn−k)
c〉) ∼=

{
K d = t− k − 1, i = 0

0 otherwise.

2. Suppose p ≥ 2. In this case it is straightforward to see that n − t − k − 1 > t − k
and n− t+ 1 > t− k.

Therefore, we can apply Lemma 3.3.1 (i) with X ′′ = X ′ \ {xt−k} to (3.3.10) to

conclude that for all i

H̃i(Ek ∩ 〈(Fn−k)
c
X 〉) = H̃i−1(〈Ft−k+1, . . . , Fn−t−k−1, {xn−t+1, . . . , xn−k−1}〉cX ′′).

Now we use Lemma 3.3.5 with values a = t − k + 1 and s = n − 2t − 1 =
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(p− 2)(t+ 1) + d+ 1 to conclude that

H̃i(Ek ∩ 〈(Fn−k)
c
X 〉) =





K d = 0, i = 2p− 3

K d = t− k − 1, i = 2p− 2

0 otherwise

This settles (3.3.8). We now return to finding H̃i(Et−1) by recursively using the Mayer-

Vietoris sequence to find H̃i(Ek).

1. If 0 < d < t, then by (3.3.8) we know that H̃i(Ek−1 ∩ 〈(Fn−k+1)
c
X 〉) is nonzero only

when i = 2p − 2 and k = t − d. We apply this observation and (3.3.6) to the exact

sequence (3.3.7) to see that

H̃i(Ek) = H̃i(Ek−1) = H̃i(E0) = 0 for 1 ≤ k ≤ t− d− 1.

Once again we use (3.3.7) to observe that

H̃i(Ek) =





0 1 ≤ k ≤ t− d− 1

H̃i−1(Ek−1 ∩ 〈(Fn−k+1)
c〉) k = t− d

H̃i(Et−d) t− d < k ≤ t− 1.

=

{
K k ≥ t− d, i = 2p− 1

0 otherwise.

We can conclude that in this case

H̃i(Et−1) =

{
K i = 2p− 1

0 otherwise.

2. If d = t, then by (3.3.8) we know that H̃i(Ek−1 ∩ 〈(Fn−k+1)
c
X 〉) is always zero. We

apply this fact along with (3.3.6) to the sequence in (3.3.7) to observe that

H̃i(Ek) ∼= H̃i(E0) =

{
K i = 2p− 1

0 otherwise
for k ∈ {1, 2, . . . , t− 1}.

3. If d = 0, then by (3.3.8) we know that H̃i(Ek−1 ∩ 〈(Fn−k+1)
c
X 〉) is zero unless
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i = 2p − 3, and from (3.3.6) we know H̃i(E0) is zero unless i = 2p − 2. Applying

these facts to (3.3.7) we see that

H̃i(Ek) = H̃i(E0) = 0 for i 6= 2p− 2.

When i = 2p− 2, the sequence (3.3.7) produces an exact sequence

0 −→
K︷ ︸︸ ︷

H̃2p−2(E0) −→ H̃2p−2(E1) −→
K︷ ︸︸ ︷

H̃2p−3(E0 ∩ 〈(Fn)
c〉) −→ 0.

Therefore

H̃i(E1) =

{
K2 i = 2p− 2

0 otherwise.

We repeat the above method, recursively , for values k = 2, 3, . . . , t− 1

0 −→
Kk︷ ︸︸ ︷

H̃2p−2(Ek−1) −→ H̃2p−2(Ek) −→
K︷ ︸︸ ︷

H̃2p−3(Ek−1 ∩ 〈(Fn−k+1)
c〉) −→ 0

and conclude that for 1 ≤ k ≤ t− 1

H̃i(Ek) =

{
Kk+1 i = 2p− 2

0 otherwise.

We put this all together

H̃i(Et−1) =





Kt d = 0, i = 2p− 2, p > 0

K d 6= 0, i = 2p− 1

0 otherwise

and this proves the statement of the theorem.



Chapter 4

Graded Betti Numbers of Path Ideals of Cycles and Paths

In this chapter we use combinatorial techniques to calculate Betti numbers of path ideals

of paths and cycles. We also compute projective dimension and regularity of path ideals of

cycles and paths. By Theorem 3.1.2 we only need to count induced subcollections.

4.1 The Top Degree Betti Numbers for Cycles

We are now ready to apply the homological calculations from the previous section to com-

pute the top degree Betti numbers of path ideals. If I is the degree t path ideal of a cycle,

then

βi,j(R/I) = 0 for all i ≥ 1 and j > ti; (4.1.1)

see Jacques [28], Theorem 3.3.4, for a proof.

By Theorem 3.1.2, to compute the Betti numbers of I of degree less than n, we should

consider the complements of proper induced subcollections of ∆ = ∆t(Cn). For degree n

we should consider ∆c.

Theorem 4.1.1 (top degree Betti numbers for cycles). Let p, t, n, d be integers such that

n = (t+ 1)p+ d, where p ≥ 0, 0 ≤ d ≤ t, and 2 ≤ t ≤ n. If Cn is a cycle over n vertices,

then

βi,n(R/It(Cn)) =





t d = 0, i = 2

(
n

t+ 1

)

1 d 6= 0, i = 2

(
n− d
t+ 1

)
+ 1

0 otherwise.

Proof. Suppose ∆ = ∆t(Cn). By Theorem 3.1.2 βi,n(R/It(Cn)) = dimK H̃i−2(∆
c
X ) and

the result now follows directly from Theorem 3.3.6.

40
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4.2 Eligible Subcollections

From Hochster’s formula we see that computing Betti numbers of degree less than n comes

down to counting induced subcollections of certain kinds.

Definition 4.2.1. Let i and j be positive integers. We call an induced subcollection Γ

of ∆t(Cn) an (i, j)-eligible subcollection of ∆t(Cn) if Γ is composed of disjoint runs of

lengths

(t+ 1)p1 + 1, . . . , (t+ 1)pα + 1, (t+ 1)q1 + 2, . . . , (t+ 1)qβ + 2 (4.2.1)

for nonnegative integers α, β, p1, p2, . . . , pα, q1, q2, . . . , qβ , which satisfy the following con-

ditions

j = (t+ 1)(P +Q) + t(α + β) + β

i = 2(P +Q) + 2β + α,

where P =
∑α

i=1 pi and Q =
∑β

i=1 qi.

The next theorem is similar to a statement proved for the edge ideal of a cycle by

Jacques [28].

Theorem 4.2.2. Let I = F(Λ) be the facet ideal of an induced subcollection Λ of ∆t(Cn).

Suppose i and j are integers with i ≤ j < n. Then the N-graded Betti number βi,j(R/I) is

the number of (i, j)-eligible subcollections of Λ.

Proof. Since F(I) = Λ from Theorem 3.1.2 we have

βi,j(R/I) =
∑

Γ⊂Λ,|V(Γ)|=j

dimK H̃i−2(Γ
c
V(Γ)

)

where V(Γ) is the vertex set of Γ and the sum is taken over induced subcollections Γ of Λ.

It is straightforward to show that each induced subcollection of Λ is an induced sub-

collection of ∆t(Cn), and can therefore be written as a disjoint union of runs. So from

Proposition 3.3.2 we can conclude the only Γ whose complements have nonzero homology

module are those corresponding to run sequences of the form (4.2.1). Such subcollections
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have j vertices where by Definition 3.2.6

j = ((t+ 1)p1 + t) + · · ·+ ((t+ 1)pα + t) + ((t+ 1)q1 + t+ 1) + · · ·+ ((t+ 1)qβ + t+ 1)

= (t+ 1)(P +Q) + t(α + β) + β. (4.2.2)

So

Γc
V(Γ)

= E((t+ 1)p1 + 1, . . . , (t+ 1)pα + 1, (t+ 1)q1 + 2, . . . , (t+ 1)qβ + 2)

and by Proposition 3.3.3 we have

dimK(H̃i−2(Γ
c
V(Γ)

)) =

{
1 i = 2(P +Q) + 2β + α

0 otherwise.
(4.2.3)

From (4.2.2) and (4.2.3) we see that each induced subcollection Γ corresponding to a run

sequence as in (4.2.1) contributes 1 unit to βi,j if and only if

j = (t+ 1)(P +Q) + t(α + β) + β

i = 2(P +Q) + 2β + α

it settles the claim.

Theorem 4.2.2 holds in particular for Λ = ∆t(Lm) and Λ = ∆t(Cn) for any integers

m,n. The following corollary is a special case of Theorem 4.2.2.

Corollary 4.2.3. Let I = F(Λ) be the facet ideal of an induced subcollection Λ of ∆t(Cn).

Then for every i, βi,ti(R/I), is the number of induced subcollections of Λ which are com-

posed of i runs of length one.

Proof. From Theorem 4.2.2 we have βi,ti(R/I) is the number of (i, ti)-eligible subcollec-

tions of Λ. With notation as in Definition 4.2.1 we have

{
ti = (t+ 1)(P +Q) + t(α + β) + β

i = 2(P +Q) + (α + β) + β ⇒ ti = 2t(P +Q) + t(α + β) + tβ

Putting the two equations for ti together, we conclude that (t− 1)(P +Q+ β) = 0. But β,
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P , Q ≥ 0 and t ≥ 2, so we must have

β = P = Q = 0⇒ p1 = p2 = · · · = pα = 0.

So α = i and Γ is composed of i runs of length one.

Theorem 4.2.2 holds in particular for Λ = ∆t(Lm) and Λ = ∆t(Cn) for any integers

m,n. Our next statement is in a sense a converse to Theorem 4.2.2.

Proposition 4.2.4. Let t and n be integers such that 2 ≤ t ≤ n and I = F(Λ) be the facet

ideal of Λ where Λ is an induced subcollection of ∆t(Cn). Then for each i, j ∈ N with

i ≤ d < n, if βi,j(R/I) 6= 0, there exist nonnegative integers `, d such that

{
i = `+ d

j = t`+ d

Proof. From Theorem 4.2.2 we know βi,j is equal to the number of (i, j)-eligible subcol-

lections of Λ, where with notation as in Definition 4.2.1 we have

{
j = (t+ 1)(P +Q) + t(α + β) + β

i = 2(P +Q) + (α + β) + β.

It follows that

j − i = (t− 1)(P +Q+ α + β) and ti− j = (t− 1)(P +Q+ β). (4.2.4)

We now show that there exist positive integers `, d such that i = `+ d and j = t`+ d.

{
i = `+ d

j = t`+ d
⇒ ` =

j − i
t− 1

and d =
ti− j
t− 1

.

From (4.2.4) we can see that i and j as described above are nonnegative integers.

Theorem 4.2.5. Let i, j be integers and i ≤ j < n and j ≤ it. Also suppose n = (t+1)p+d

and d < t+ 1. If βi,j(R/It(Cn)) 6= 0 we have j − i ≤ (t− 1)p, and i < 2p for d = 0 and

i ≤ 2p+ 1 for d 6= 0.
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Proof. By using Theorem 4.2.2 we know βi,j(R/It(Cn) is equal to the number of (i, j)-

eligible subcollections of ∆t(Cn). So if we assume βi,j(R/It(Cn)) 6= 0 we can conclude

there exists a (i, j)-eligible subcollectionC of ∆t(Cn) which is composed of runs of lengths

as described in (4.2.1). Therefore

j − i = (t− 1)(P +Q+ α + β) and ti− j = (t− 1)(P +Q+ β). (4.2.5)

It follows that j − i ≥ ti− j so

i(t+ 1) ≤ 2j ⇒ i ≤ 2

(
j

t+ 1

)
< 2

(
p(t+ 1) + d

t+ 1

)

so if d = 0 it follows that i < 2p and if d 6= 0 it follows that i ≤ 2p+ 1.

On the other hand since ∆t(Cn) has n facets and since there must be at least t facets

between every two runs in C, we have

n ≥ (t+1)P +(t+1)Q+α+2β+ tα+ tβ ≥ (t+1)(P +Q+α+β) =

(
t+ 1

t− 1

)
(j− i)

which implies that
j − i
t− 1

≤ p+
d

t+ 1

and since from (4.2.5) we have (j − i)/(t− 1) is an integer the formula follows.

We end this section with the computation of the projective dimension and regularity of

path ideals of cycles. The case t = 2 is the case of graphs which appears in Jacques [28].

Corollary 4.2.6 (projective dimension and regularity of path ideals of cycles). Let n, t, p

and d be integers such that n ≥ 2, 2 ≤ t ≤ n and n = (t + 1)p + d, where p ≥ 0 and

0 ≤ d ≤ t. Then

i. The projective dimension of the path ideal of a graph cycle Cn is given by

pd(R/It(Cn)) =





2p+ 1 d 6= 0

2p d = 0
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ii. The regularity of the path ideal of the graph cycle Cn is given by

reg(R/It(Cn)) =

{
(t− 1)p+ d− 1 for d 6= 0

(t− 1)p for d = 0
.

Proof. i. This follows from Theorem 4.1.1 and Theorem 4.2.5.

ii. By definition, the regularity of a module M is max{j − i : βi,j(M) 6= 0}. By

Theorem 4.2.5, and the observation above, if d = 0 then reg(R/It(Cn)) is

max{n− 2p, (t− 1)p} = max{(t+ 1)p− 2p, (t− 1)p} = (t− 1)p

and if d 6= 0 then reg(R/It(Cn)) is

max{n−2p−1, (t−1)p} = max{(t+1)p+d−2p−1, (t−1)p} = (t−1)p+d−1.

The formula now follows.

4.3 Some Combinatorics

Theorem 4.2.2 tells us that to compute Betti numbers of induced subcollections of ∆t(Cn)

we need to count the number of its induced subcollections which consist of disjoint runs

of lengths one and two. The next few pages are dedicated to counting such subcollections.

We use some combinatorial methods to generalize a helpful formula which can be found in

Stanley’s book [39] on page 73.

Lemma 4.3.1. Consider a collection of k points arranged on a line. The number of ways

of coloring all points red or green so that for all m red points there are at least t green

points on the line between each two consecutive red points is

(
k − (m− 1)t

m

)
.

Proof. First label the points from 1, 2, . . . , k from left to right, and let a1 < a2 < · · · < am

be the red points. For 1 ≤ i ≤ m − 1, we define xi to be the number of points, including
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ai, which are between ai and ai+1, and x0 to be the number of points which exist before a1,

and xm the number of points, including am, which are after am.

x0︷︸︸︷· · ·
x1︷ ︸︸ ︷• · · ·

x2︷ ︸︸ ︷• · · · • · · ·
xm−1︷ ︸︸ ︷• · · ·

xm︷ ︸︸ ︷• · · ·
1 a1 a2 a3 am−1 am n

If we consider the sequence x0, x1, . . . , xm it is not difficult to see that there is a one to one

correspondence between the positive integer solutions of the following equation and the

ways of coloring red m points of k points on the line with at least t green points between

each two consecutive red points.

x0 + x1 + · · ·+ xm = k x0 ≥ 0, xi > t, for 1 ≤ i ≤ m− 1, and xm ≥ 1.

So we only need to find the number of positive integer solutions of this equation. Consider

the following equation

(x0 + 1) + (x1 − t) + · · ·+ (xm−1 − t) + xm = k − (m− 1)t+ 1

where x0 + 1 ≥ 1, xi − t ≥ 1, for i = 0, . . . ,m − 1 and xm ≥ 1. The number of positive

integer solution of this equation is (cf. Grimaldi [19] page 29)
(
k−(m−1)t

m

)
.

Corollary 4.3.2. Let Cn be a graph cycle and let Rk be a run of length k of ∆t(Cn). The

number of induced subcollections of Rk which are composed of m runs of length one is

(
k − (m− 1)t

m

)
.

Proof. The run Rk has k facets, which following the standard labeling on the facets of

∆t(Cn) we can arrange in a line from left to right. To compute the number of induced

subcollections of Rk which are composed of m runs of length one, it is enough to compute

the number of ways which we can color m points of these k arranged points red with at

least t green points between each two consecutive red points. Therefore, by Lemma 4.3.1

we have the number of induced subcollections of Rk which are composed of m runs of

length one is
(
k−(m−1)t

m

)
.

Corollary 4.3.3. Let Cn be a graph cycle and with the standard labeling let Γ be a proper
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subcollection of ∆t(Cn) with k facets Fa, . . . , Fa+k−1. The number of induced subcollec-

tions of Γ which are composed of m runs of length one is

(
k − (m− 1)t

m

)
.

Proof. To compute the number of induced subcollections of Γ which are composed of m

runs of length one, it is enough to consider the facets Fa, . . . , Fa+k−1 as points arranged

on a path and compute the number of ways which we can color m points of these k ar-

ranged points with at least t uncolored points between each two consecutive colored points.

Therefore, by Lemma 4.3.1 we have the number of induced subcollections of Γ which are

composed of m runs of length one is
(
k−(m−1)t

m

)
.

Proposition 4.3.4. Let Cn be a graph cycle with vertex set X = {x1, . . . , xn}. The number

of induced subcollections of ∆t(Cn) which are composed of m runs of length one is

n

n−mt

(
n−mt
m

)
.

Proof. Recall that ∆t(Cn) = 〈F1, . . . , Fn〉 with standard labeling. First we compute the

number of induced subcollections of ∆t(Cn) which consist of m runs of length one and do

not contain the vertex xi for i ∈ {1, 2, . . . , n}.
There are t facets of ∆t(Cn) which contain xi, the remaining facets areFi+1, . . . , Fi+n−t,

and so by Corollary 4.3.3 the number we are looking for is

(
n− t− (m− 1)t

m

)
=

(
n−mt
m

)
. (4.3.1)

For each i ∈ {1, 2, . . . , n}, there is an induced subcollection which is composed of m runs

of length one not containing xi. Since from (4.3.1) for each i the number of these induced

subcollections is
(
n−mt
m

)
so there are n

(
n−mt
m

)
subcollections in all.

On the other hand for every subcollection there are n−mt vertices which do not belong

to it, so each subcollection is counted n −mt times. Hence the number of subcollections

which are composed of m runs of length one is n
n−mt

(
n−mt
m

)
.

We apply these counting facts to find Betti numbers in specific degrees; the formula

in (iii) below (that of a path graph) was also computed by Bouchat, Hà and O’Keefe [11]
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using Eliahou-Kervaire techniques.

Corollary 4.3.5. Let n ≥ 2 and t be an integer such that 2 ≤ t ≤ n. Then we have

i. For the cycle Cn we have

βi,it(R/It(Cn)) =
n

n− it

(
n− it
i

)
.

ii. For any proper induced subcollection Λ of ∆t(Cn) with k facets we have

βi,it(R/F(Λ)) =
(
k − (i− 1)t

i

)
.

iii. For the path graph Ln, we have

βi,it(R/It(Ln)) =

(
n− it+ 1

i

)
.

Proof. From Corollary 4.2.3 we have βi,it(R/I) in each of the three cases (i), (ii) and (iii)

is the number of induced subcollections of ∆t(Cn), Λ and ∆t(Ln), respectively, which are

composed of i runs of length 1. Case (i) now follows from Proposition 4.3.4, while (ii) and

(iii) follow directly from Corollary 4.3.3.

4.4 Induced Subcollections Which Are Eligible

The following Lemma is the core of our counting later on in this section.

Lemma 4.4.1. Let ∆t(Cn) = 〈F1, F2, . . . , Fn〉, 2 ≤ t ≤ n, be the standard labeling of the

path complex of a cycle Cn on vertex set X = {x1, . . . , xn}. Let i be a positive integer

and Γ = 〈Fc1 , Fc2 , . . . , Fci〉 be an induced subcollection of ∆t(Cn) consisting of i runs of

length 1, with 1 ≤ c1 < c2 < · · · < ci ≤ n. Suppose Σ is the induced subcollection on

V(Γ) ∪ {xcu+t} for some 1 ≤ u ≤ i. Then

|Σ| =
{
|Γ|+ t u < i and cu+1 = cu + t+ 1

|Γ|+ 1 u = i or cu+1 > cu + t+ 1
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Proof. Since Γ consists of runs of length one and each Fcu = {xcu , xcu+1, . . . , xcu+t−1} we

must have cu+1 > cu+ t for u ∈ {1, 2, . . . , i− 1}. There are two ways that xcu+t could add

facets to Γ to obtain Σ.

1. If cu+1 = cu + t+1 then Fcu , Fcu+1, . . . , Fcu+t+1 = Fcu+1
∈ Σ or in other words, we

have added t new facets to Γ.

2. If cu+1 > cu + t + 1 or u = i then Fcu+1 ∈ Σ, and therefore one new facet is added

to Γ.

So we are done.

The following propositions, which generalize Lemma 7.4.22 in Jacques [28], will help

us compute the remaining Betti numbers.

Proposition 4.4.2. Let ∆t(Cn) = 〈F1, F2, . . . , Fn〉, 2 ≤ t ≤ n, be the standard labeling

of the path complex of a cycle Cn on vertex set X = {x1, . . . , xn}. Also let i, j be positive

integers such that j ≤ i and Γ = 〈Fc1 , Fc2 , . . . , Fci〉 be an induced subcollection of ∆t(Cn)

consisting of i runs of length 1, with 1 ≤ c1 < c2 < · · · < ci ≤ n. Suppose W =

V(Γ) ∪ A ( X for some subset A of {xc1+t, . . . , xci+t} with |A| = j. Then the induced

subcollection Σ of ∆t(Cn) on W is an (i+ j, ti+ j)-eligible subcollection.

Proof. Since Γ consists of runs of length one and each Fcu = {xcu , xcu+1, . . . , xcu+t−1} we

must have cu+1 > cu + t for u ∈ {1, 2, . . . , i − 1}. The runs (or connected components)

of Σ are of the form Σ′ = ΣU where U ⊆ W , and can have one of the following possible

forms.

a. For some a ≤ i:

U = Fca ,

and therefore Σ′ = 〈Fca〉 is a run of length 1.

b. For some a ≤ i:

U = Fca ∪ {xca+t},

and therefore ca+1 > ca + t+ 1, so from Lemma 4.4.1 we have Σ′ = 〈Fca , Fca+1〉 is

a run of length 2.
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c. For some a ≤ i:

U = Fca ∪ Fca+1
∪ · · · ∪ Fca+r

∪ {xca+t, xca+1+t, . . . , xca+r−1+t}

and Fca+j
= Fca+j(t+1) for j = 0, 1, . . . , r and r ≥ 1. Then from Lemma 4.4.1 above

we know Σ′ is a run of length r + 1 + tr = (t+ 1)r + 1.

d. For some a ≤ i:

U = Fca ∪ Fca+1
∪ · · · ∪ Fca+r

∪ {xca+t, xca+1+t, . . . , xca+r+t}

and Fca+j
= Fca+j(t+1) for j = 0, 1, . . . , r and r ≥ 1, and ca+r+1 > ca+r + t + 1 or

a+ r = i. Then from Lemma 4.4.1 we have Σ′ is a run of length r + 1 + tr + 1 =

(t+ 1)r + 2.

So we have shown that Σ consists of runs of length 1 and 2 mod t+ 1.

Suppose the runs in Σ are of the form described in (4.2.1). By Definition 3.2.6 we have

|V(Σ)| = (t+ 1)p1 + t+ · · ·+ (t+ 1)pα + t+ (t+ 1)q1 + t+ 1 + · · ·+ (t+ 1)qβ + t+ 1

= (t+ 1)P + tα + (t+ 1)Q+ tβ + β

= (t+ 1)(P +Q) + t(α + β) + β.

On the other hand by the definition of Σ we know that, Σ has ti+ j vertices and therefore

ti+ j = (t+ 1)(P +Q) + t(α + β) + β.

It remains to show that i + j = 2(P + Q) + (α + β) + β. Note that if j = 0 then

β = P = Q = 0 and hence

j = 0 =⇒ P +Q+ β = 0. (4.4.1)

Moreover each vertex xcv+t ∈ A either increases the length of a run in Γ by one and hence

increases β (the number of runs of length 2 in Γ) by one, or increases the length of a run by

t+ 1, in which case P +Q increases by 1. We can conclude that if we add j vertices to Γ,

P +Q + β increases by j. From this and (4.4.1) we have j = P +Q + β. Now we solve
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the following system

{
ti+ j = (t+ 1)(P +Q) + t(α + β) + β =⇒ ti = t(P +Q) + t(α + β)

j = P +Q+ β =⇒ i = P +Q+ α + β

=⇒
{
i = P +Q+ α + β

j = P +Q+ β
=⇒ i+ j = 2(P +Q) + (α + β) + β.

It follows the claim.

Proposition 4.4.3. Let Cn be a cycle, 2 ≤ t ≤ n, and i and j be positive integers. Suppose

Σ is an (i + j, ti + j)-eligible subcollection of ∆t(Cn), 2 ≤ t ≤ n. Then with notation

as in Definition 4.2.1, there exists a unique induced subcollection Γ of ∆t(Cn) of the form

〈Fc1 , Fc2 , . . . , Fci〉 with 1 ≤ c1 < c2 < · · · < ci ≤ n consisting of i runs of length 1, and a

subsetA of {xc1+t, . . . , xci+t}, with |A| = j such that Σ = ∆t(Cn)W whereW = V(Γ)∪A.
Moreover if R = 〈Fh, Fh+1, . . . , Fh+m〉 is a run in Σ with |R| = 2 mod (t + 1), then

Fh+m /∈ Γ.

Proof. Suppose Σ consists of runs R′
1, R

′
2, . . . , R

′
α+β where for k = 1, 2, . . . , α + β

R′
k = 〈Fhk

, Fhk+1, . . . , Fhk+mk−1〉

V(R′
k) = {xhk

, xhk+1, . . . , xhk+mk+t−2}

hk+1 ≥ t+ hk +mk

and

mk =

{
(t+ 1)pk + 1 for k = 1, 2, . . . , α

(t+ 1)qk−α + 2 for k = α + 1, α + 2, . . . , α + β.
(4.4.2)

For each k, we remove the following vertices from V(R′
k)

xhk+t, xhk+2t+1, . . . , xhk+pkt+(pk−1) if 1 ≤ k ≤ α and pk 6= 0

xhk+t, xhk+2t+1, . . . , xhk+(qk−α+1)t+qk−α
if α + 1 ≤ k ≤ α + β

(4.4.3)

Let Γ = 〈R1, R2, . . . Rα+β〉 be the induced subcollection on the remaining vertices of Σ,
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where

Rk =

{
〈Fhk

, Fhk+t+1, . . . , Fhk+(t+1)pk〉 for 1 ≤ k ≤ α

〈Fhk
, Fhk+t+1, . . . , Fhk+(t+1)qk−α

〉 for α + 1 ≤ k ≤ α + β.
(4.4.4)

In other words Γ has facets

Fh1
, Fh1+t+1, . . . , Fh1+(t+1)p1 , Fh2

, Fh2+t+1, . . . , Fh2+(t+1)p2 , . . . , Fhα+β
, . . . , Fhα+β+(t+1)qβ .

It is straightforward to show that each Rk consists of runs of length one. Since Γ is a

subcollection of Σ, no runs of Rk and Rk′ are connected to one another if k 6= k′, and

hence we can conclude Γ is an induced subcollection of ∆t(Cn) which is composed of runs

of length one. From (4.4.4) we have the number of runs of length 1 in Γ (or the number of

facets of Γ) is equal to

(p1 + 1) + (p2 + 1) + · · ·+ (pα + 1) + (q1 + 1) + · · ·+ (qβ + 1) = P +Q+ α + β = i.

Therefore, Γ is an induced subcollection of ∆t(Cn) which is composed of i runs of length

1. We relabel the facets of Γ as Γ = 〈Fc1 , . . . , Fci〉. Now consider the following subset of

{xc1+t, . . . , xci+t} as A

α⋃

k=1,pk 6=0

{xhk+t, xhk+2t+1, . . . , xhk+pkt+(pk−1)}∪
α+β⋃

k=α+1

{xhk+t, xhk+2t+1, . . . , xhk+(qk−α+1)t+qk−α
}

by (4.4.3) we have:

|A| = (p1 + p2 + · · ·+ pα) + (q1 + 1 · · ·+ qβ + 1) = P +Q+ β = j.

Then if we set

W = (
i⋃

h=1

Fch) ∪ A

we have Σ = (∆t(Cn))W . This proves the existence of Γ, we now prove its uniqueness.

Let Λ = 〈Fs1 , Fs2 , . . . , Fsi〉 be an induced subcollection of ∆t(Cn) which is composed of i

runs of length 1 such that 1 ≤ s1 < s2 < · · · < si ≤ n. Also let B be a j- subset of the set
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{xs1+t, xs2+t, . . . , xsi+t} such that

Σ = (∆t(Cn))V(Λ)∪B. (4.4.5)

Suppose Λ = 〈S1, S2, . . . , Sα+β〉, such that for k = 1, 2, . . . , α + β, Sk is an induced

subcollection of R′
k which consists of yk runs of length one. By (4.4.5) we have yk 6= 0 for

all k. Now we prove the following claims for each k ∈ {1, 2, . . . , α + β}.

a. Fhk
∈ Λ. Suppose 1 ≤ k ≤ α + β. If pk = 0 we are done, so consider the case

pk 6= 0.

Assume Fhk
/∈ Λ. Since Fhk

is the only facet of Σ which contains xhk
we can

conclude xhk
/∈ V(Λ). From (4.4.5), it follows that xhk

∈ {xs1+t, xs2+t, . . . , xsi+t},
so

xhk
= xsa+t for some a. (4.4.6)

On the other hand we know

Fsa = {xsa , xsa+1, . . . , xsa+t−1}
Fsa+1 = {xsa+1, xsa+2, . . . , xsa+t}.

SinceR′
k is an induced connected component of Σ, by (4.4.6) we can conclude xhk

∈
Fsa+1 and Fsa , Fsa+1 ∈ R′

k. However, we know Fhk
is the only facet of R′

k which

contains xhk
and so Fsa+1 = Fhk

and then sa + 1 = hk. This and (4.4.6) imply that

t = 1 mod n, which contradicts our assumption 2 ≤ t ≤ n.

{
yk = pk + 1 for k = 1, 2, . . . , α

yk = qk−α + 1 for k = α + 1, α + 2, . . . , α + β.

We know that

y1 + y2 + · · ·+ yα+β = i

= P +Q+ α + β (4.4.7)

= (p1 + 1) + · · ·+ (pα + 1) + (q1 + 1) + · · ·+ (qβ + 1).
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Since we know for all k = 1, 2, . . . , α + β there exist mk facets in each R′
k, by

Corollary 4.3.3 we can conclude the number of ways of selecting yk runs of length

one in R′
k is equal to

(
mk−(yk−1)t

yk

)
. Then for all such k we have

(
mk − (yk − 1)t

yk

)
6= 0⇔ mk − (yk − 1)t ≥ yk ⇔ mk + t ≥ yk(t+ 1) (4.4.8)

and hence by (4.4.2) and (4.4.8) we have

There exists yk runs of

length one in R′
k

⇐⇒
{
yk ≤ pk + 1 for k = 1, 2, . . . , α

yk ≤ qk−α + 1 for k = α + 1, α + 2, . . . , α + β.

Putting this together with (4.4.7), we can conclude that

{
yk = pk + 1 for k = 1, 2, . . . , α

yk = qk−α + 1 for k = α + 1, α + 2, . . . , α + β.
(4.4.9)

b. If Fu ∈ Sk for some u and Fu+t+1 ∈ R′
k, then Fu+t+1 ∈ Sk. Assume Fu+t+1 /∈ Sk

and Fu+t+1 ∈ R′
k. Let

r0 = min{r : r > u, Fr ∈ Sk mod n}.

Since Sk consists of runs of length one we can conclude r0 ≥ u + t + 1. Since

r0 6= u+ t+ 1 we have r0 ≥ u+ t+ 2. But then

xu+t+1 /∈ V(Λ) ∪ {xs1+t, xs2+t, . . . , xsi+t}

and therefore xu+t+1 /∈ V(Σ) which is a contradiction.

Now for each k, by (a) we have Fhk
∈ Λ and from repeated applications of (b) we find that

Fhk+f(t+1) ∈ Sk for f =

{
1, 2, . . . , pk 1 ≤ k ≤ α

1, 2, . . . , qk−α α + 1 ≤ k ≤ α + β.

So Rk ⊆ Sk. On the other hand Sk consists of runs of length one, so no other facet of R′
k

can be added to it, and therefore Sk = Rk for all k. We conclude that Λ = Γ and we are
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therefore done. The last claim of the proposition is also apparent from this proof.

4.5 Betti Numbers of Degree Less Than n

We are now ready to compute the remaining Betti numbers.

Theorem 4.5.1. Let n, i, j and t be integers such that n ≥ 2, 2 ≤ t ≤ n, and ti + j < n.

Then

i. For the cycle Cn

βi+j,ti+j(R/It(Cn)) =
n

n− it

(
i

j

)(
n− it
i

)

ii. For the path graph Ln

βi+j,ti+j(R/It(Ln)) =

(
i

j

)(
n− it
i

)
+

(
i− 1

j

)(
n− it
i− 1

)

Proof. If I = It(Cn) (or I = It(Ln)), from Theorem 4.2.2, βi+j,ti+j(R/I) is the number

of (i+ j, ti+ j)-eligible subcollections of ∆t(Cn) (or ∆t(Ln)). We consider two separate

cases for Cn and for Ln.

i. For the cycleCn, supposeR(i) denotes the set of all induced subcollections of ∆t(Cn)

which are composed of i runs of length one. By propositions 4.4.2 and 4.4.3 there

exists a one to one correspondence between the set of all (i + j, ti + j)-eligible

subcollections of ∆t(Cn) and the set

R(i) ×
(
[i]

j

)

where
(
[i]
j

)
is the set of all j-subsets of a set with i elements. By Corollary 4.2.3 we

have |R(i)| = βi,ti and since |
(
[i]
j

)
| =

(
i
j

)
and so we apply Corollary 4.3.5 to observe

that

βi+j,ti+j(R/It(Cn)) =

(
i

j

)
βi,ti(R/It(Cn)) =

n

n− it

(
i

j

)(
n− it
i

)
.
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ii. For the path graph Ln, recall that

∆t(Ln) = 〈F1, . . . , Fn−t+1〉.

Let Λ = 〈Fc1 , Fc2 , . . . , Fci〉 be the induced subcollection of ∆t(Ln) which is com-

posed of i runs of length 1 and V(Λ) ⊂ X \ {xn}, so that it is also an induced

subcollection of ∆t(Ln−1). Also let A be a j - subset of {xc1+t, xc2+t, . . . , xci+t}. So

by Propositions 4.4.2 and Proposition 4.4.3 the induced subcollections on V(Λ) ∪ A
are (i + j, ti + j)-eligible and if one denotes these induced subcollections by B we

have the following bijection

B 


(
[i]

j

)
× {Γ ⊂ ∆t(Ln−1) : Γ is composed of i runs of length 1}. (4.5.1)

We make the following claim:

Claim: Let Γ be an (i+ j, ti+ j)-eligible subcollection of ∆t(Ln) which contains a

runR with Fn−t+1 ∈ R. Then Γ ∈ B if and only if |R| = 2 mod t+ 1.

Proof of Claim. Let Γ ∈ B and assume that Λ = 〈Fc1 , Fc2 , . . . , Fci〉 is the subcollec-

tion of ∆t(Ln−1) used to build Γ as described above. Then we must have ci = n− t.
Now, the runR contains Fn−t+1 and Fn−t.

If |R| > 2, then ci−1 = n− 2t− 1 and xci−1+t = xn−t−1 ∈ A and from Lemma 4.4.1

we can see that another t + 1 facets Fn−2t−1, . . . , Fn−t−1 are in R. If we have all

elements of R, we stop, and otherwise, we continue the same way. At each stage

t+ 1 new facets are added toR and therefore in the end |R| = 2 mod t+ 1.

Conversely, if |R| = (t + 1)q + 2 then let Λ = 〈Fc1 , Fc2 , . . . , Fci〉 be the unique

subcollection of ∆t(Ln) consisting of i runs of length one from which we can build

Γ. Since Fn−t−1 ∈ R, we must have ci = n− t or ci = n− t+ 1.

If ci = n − t, then we are done, since Λ will be subcollection of ∆t(Ln−1) and so

Γ ∈ B. If ci = n − t + 1, then R has one facet Fn−t+1 and if xci−1+t ∈ A, then by

Lemma 4.4.1 R gets an additional t + 1 facets. And so on: for each cu either 0 or

t + 1 facets are contributed to R. Therefore, for some p, |R| = (t + 1)p + 1 which

is a contradiction. This settles our claim.
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We now denote the set of remaining (i + j, ti + j)-eligible induced subcollections

of ∆t(Ln) by C. First we note that C consists of those induced subcollections which

contain Fn−t+1 and are not inB. Also, if j = i, then a (2i, (t+1)j)-eligible subcollec-

tion Γ of ∆t(Ln) would have no runs of length 1, as the equations in Definition 4.2.1

would give α = 0. So Γ ∈ C and we can assume from now on that j < i.

We consider Λ = 〈Fc1 , Fc2 , . . . , Fci−1
〉 ⊂ ∆t(Ln) which is composed of i − 1

runs of length 1 with V(Λ) ⊂ X \ Fn−t+1 ∪ {xn−t}. If A is a j-subset of the set

{xc1+t, xc2+t, . . . , xci−1+t}, we claim that the induced subcollection Γ on V(Λ)∪A∪
Fn−t+1 belongs to C.

Suppose R is the run in Γ which includes Fn−t+1. If |R| 6= 1 then ci−1 + t =

n − t which implies that ci−1 = n − 2t. By Lemma 4.4.1 we see that t + 1 facets

Fn−2t, Fn−2t+1, . . . , Fn−t are added to R. If these facets are not all the facets of R
then with the same method we can see that in each step t+1 new facets will be added

toR and since Fn−t+1 ∈ R we can conclude |R| = 1 mod t+ 1. Therefore Γ /∈ B.

Now we only need to show that Γ is an (i + j, ti + j)-eligible induced subcollec-

tion. By Proposition 4.4.2 the induced subcollection Γ′ on V(Λ) ∪ A is an (i −
1 + j, t(i − 1) + j)-eligible induced subcollection. Suppose Γ′ is composed of runs

R1,R2, . . . ,Rα′+β′ and then we have

{
t(i− 1) + j = (t+ 1)(P ′ +Q′) + t(α′ + β′) + β′

i− 1 + j = 2(P ′ +Q′) + 2β′ + α′
=⇒

{
i− 1 = P ′ +Q′ + α′ + β′

j = P ′ +Q′ + β′

(4.5.2)

So Γ consists of all or all but one of the runsR1,R2, . . . ,Rα′+β′ as well asR where

R is the run which includes Fn−t+1.

As we have seen |R| = 1 mod t+1. If we suppose |R| = 1 then we can claim that Γ

is composed of α = α′ +1 runs of length 1 and β = β′ runs of length 2 mod t+1,

and with P = P ′ and Q = Q′, by (4.5.2) we have Γ is an (i + j, ti + j)-eligible

induced subcollection. Now assume |R| = (t + 1)p + 1, so we have Fn−2t ∈ Λ and

xn−t ∈ A. Let R′ be the induced subcollection on V(R) \ Fn−t+1. Then we have

R′ is a run in Γ′ and since the only facets which belong to R but not to R′ are the t
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facets Fn−2t+2, . . . , Fn−t+1 we have

|R′| = (t+ 1)p+ 1− t = (t+ 1)(p− 1) + 2 (4.5.3)

Therefore we have shown the run in Γ which includes Fn−t+1 has been generated by

a run of length 2 mod (t + 1) in Γ′. Using (4.5.2) we can conclude Γ consists of

α = α′ + 1 runs of length 1 and β = β′ − 1 runs of length 2 mod t + 1. We set

P = P ′ + p and Q = Q′ − (p− 1), and use (4.5.3) to conclude that

{
P +Q+ α + β = (P ′ + p) + (Q′ − p+ 1) + (α′ + 1) + (β′ − 1) = i

P +Q+ β = (P ′ + p) + (Q′ − p+ 1) + (β′ − 1) = j.

Therefore Γ ∈ C as we had claimed.

Conversely, let Γ ∈ C then one can consider the induced subcollection Γ′ on

V(Γ)\Fn−t+1. Assume Γ is composed of runsR1,R2, . . . ,Rα+β , so that mod t+1,

Rh is a run of length 1 if h ≤ α and length 2 otherwise.

SupposeRh is the run which includes Fn−t+1. By our assumption we have |Rh| = 1

mod t + 1, so h ≤ α. If |Rh| = 1 then Rh /∈ Γ′ and therefore we delete one run of

length one from Γ to obtain Γ′, in which case Γ′ is (i− 1 + j, t(i− 1) + j)-eligible.

If |Rh| = (t + 1)ph + 1 > 1 then the t facets Fn−2t+2, . . . , Fn−t+1 ∈ Rh do not

belong to Γ′. So Γ′ consists of α + β runsR1, . . . , R̂h, . . . ,Rα+β,R′
h where

|R′
h| = (t+ 1)ph + 1− t = (t+ 1)(ph − 1) + 2.

Setting α′ = α − 1, β′ = β + 1, P ′ = P − ph and Q′ = Q + ph − 1 it follows

that Γ′ is (i− 1 + j, t(i− 1) + j)-eligible. By Proposition 4.4.3 there exists a unique

induced subcollection Λ =
〈
Fc1 , Fc2 , . . . , Fci−1

〉
of ∆t(Ln−t−1) which is composed

of i − 1 runs of length one and a j subset A of {xc1+t, . . . , xci−1+t} such that Γ′

equals to induced subcollection on V(Λ) ∪ A. So Γ is the induced subcollection on

V(Λ)∪A∪Fn−t+1. Therefore there is a one to one correspondence between elements
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of C and

(
[i− 1]

j

)
× {Γ ⊂ ∆t(Ln−t−1) : Γ is composed of i− 1 runs of length 1}

(4.5.4)

By (4.5.1), (4.5.4) and Corollary 4.3.5 (iii) we have

βi+j,ti+j(R/I) = |B|+ |C|

=

(
i

j

)
βi,ti(R/It(Ln−1)) +

(
i− 1

j

)
βi−1,t(i−1)(R/It(Ln−t−1)

=

(
i

j

)(
n− it
i

)
+

(
i− 1

j

)(
n− it
i− 1

)
.

So we are done.

Finally, we put together Theorem 4.2.2, Proposition 4.2.4, Theorem 5.1 of [1] and

Theorem 3.1.2. Note that the case t = 2 is the case of graphs which appears in Jacques [28].

Also note that βi,j(R/It(Cn)) = 0 for all i ≥ 1 and j > ti (cf. Jacques [28] 3.3.4).

Theorem 4.5.2 (Betti numbers of path ideals of paths and cycles). Let n, t, p and d be

integers such that n ≥ 2, 2 ≤ t ≤ n, n = (t+ 1)p+ d, where p ≥ 0, 0 ≤ d ≤ t. Then

i. The N-graded Betti numbers of the path ideal of the graph cycle Cn are given by

βi,j(R/It(Cn)) =





t j = n, d = 0, i = 2

(
n

t+ 1

)

1 j = n, d 6= 0, i = 2

(
n− d
t+ 1

)
+ 1

n

n− t
(
j−i
t−1

)
( j−i

t−1
ti−j
t−1

)(
n− t

(
j−i
t−1

)

j−i
t−1

)




j < n, i ≤ j ≤ ti, and

2p ≥ 2(j − i)
t− 1

≥ i

0 otherwise.
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ii. The N-graded Betti numbers of the path ideal of the path graph Ln are nonzero and

equal to

βi,j(R/It(Ln)) =

( j−i
t−1
ti−j
t−1

)(
n− t

(
j−i
t−1

)

j−i
t−1

)
+

( j−i
t−1
− 1

ti−j
t−1

)(
n− t

(
j−i
t−1

)

j−i
t−1
− 1

)

if and only if

(a) j ≤ n and i ≤ j ≤ ti;

(b) If d < t then p ≥ j − i
t− 1

≥ i/2;

(c) If d = t then (p+ 1) ≥ j − i
t− 1

≥ (i+ 1)/2.

Proof. We only need to make sure we have the correct conditions for the Betti numbers to

be nonzero.

i. When j < n, βi,j(R/It(Cn)) 6= 0⇐⇒

⇐⇒





j − i
t− 1

≥ ti− j
t− 1

n− t(j − i)
t− 1

≥ j − i
t− 1

⇐⇒





2j ≥ (t+ 1)i

n ≥
(
t+ 1

t− 1

)
(j − i)

⇐⇒





2j ≥ (t+ 1)i

(t+ 1)p+ d ≥
(
t+ 1

t− 1

)
(j − i)

⇐⇒





2j ≥ (t+ 1)i

p+
d

t+ 1
≥ j − i
t− 1

⇐⇒ 2p ≥ 2(j − i)
t− 1

≥ i as d < t+ 1

(4.5.5)
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ii. βi,j(R/It(Ln)) 6= 0⇐⇒

⇐⇒





j − i
t− 1

≥ ti− j
t− 1

n− t(j − i)
t− 1

≥ j − i
t− 1

or





j − i
t− 1

≥ ti− j
t− 1

+ 1

n− t(j − i)
t− 1

≥ j − i
t− 1

− 1

⇐⇒





2j ≥ (t+ 1)i

n ≥
(
t+ 1

t− 1

)
(j − i)

or





2j ≥ (t+ 1)(i+ 1)

n+ 1 ≥
(
t+ 1

t− 1

)
(j − i)

⇐⇒





2j ≥ (t+ 1)i

(t+ 1)p+ d ≥
(
t+ 1

t− 1

)
(j − i)

or





2j ≥ (t+ 1)(i+ 1)

(t+ 1)p+ d+ 1 ≥
(
t+ 1

t− 1

)
(j − i)

⇐⇒





2j ≥ (t+ 1)i

p+
d

t+ 1
≥ j − i
t− 1

or





2j ≥ (t+ 1)(i+ 1)

p+
d+ 1

t+ 1
≥ j − i
t− 1

⇐⇒ p+
d

t+ 1
≥ (j − i)

t− 1
≥ i/2 or p+

d+ 1

t+ 1
≥ (j − i)

t− 1
≥ i+ 1

2

(4.5.6)

Then since d < t + 1 and (j − i)/(t − 1) is an integer we can conclude that i ≤ 2p

when d 6= t and i ≤ 2p + 1 for d = t. Also we have j − i ≤ (t − 1)p for d 6= t and

j − i ≤ (t− 1)(p+ 1) for d = t.

We can now easily derive the projective dimension and regularity of path ideals of paths,

which were known before. The projective dimension of paths (Part i below) was computed

by He and Van Tuyl in [21] using different methods. The case t = 2 is the case of graphs

which appears in Jacques [28]. Part ii of the following Corollary reproves Theorem 5.3

in Bouchat, Hà and O’Keefe [11] which computes the Castelnuovo-Mumford regularity of

path ideal of a path. The case of cycles was done in section 4.1.

Corollary 4.5.3 (projective dimension and regularity of path ideals of paths). Let n, t, p

and d be integers such that n ≥ 2, 2 ≤ t ≤ n, n = (t + 1)p + d, where p ≥ 0, 0 ≤ d ≤ t.

Then
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i. The projective dimension of the path ideal of a path Ln is given by

pd(R/It(Ln)) =





2p d 6= t

2p+ 1 d = t

ii. The regularity of the path ideal of a path Ln is given by

reg(R/It(Ln)) =





p(t− 1) d < t

(p+ 1)(t− 1) d = t

Proof. By using Theorem 4.5.2 we know that if βi,j(R/It(Ln) 6= 0 then i ≤ 2p + 1 when

d = t and therefore pd(R/It(Ln)) ≤ 2p+1. On the other hand by applying Theorem 4.5.2

we have

β2p+1,n(R/It(Ln)) =

(
p+ 1

p

)(
p

p+ 1

)
+

(
p

p

)(
p

p

)
= 1 6= 0.

Then we can conclude that pd(R/It(Ln)) = 2p+ 1.

Now we suppose d 6= t. From (4.5.6) we can see that if βi,j(R/It(Ln)) 6= 0 then 2p ≥ i

and therefore pd(R/It(Ln)) ≤ 2p. On the other hand, by applying Theorem 4.5.2 again,

we can see that

β2p,p(t+1)(R/It(Ln)) =

(
p

p

)(
p+ d

p

)
+

(
p− 1

p

)(
p

p

)
=

(
p+ d

p

)
6= 0.

Therefore pd(R/It(Ln)) ≥ 2p and we have pd(R/It(Ln)) = 2p.

By definition, the regularity of a module M is max{j − i : βi,j(M) 6= 0}. By

Theorem 4.5.2, we know exactly when the graded Betti numbers of R/It(Ln) are nonzero,

and the formula follows directly from (4.5.6).



Chapter 5

Rees Algebras of Squarefree Monomial Ideals

In this chapter we investigate Rees equations of squarefree monomial ideals. We give a

criterion for examining ideals of linear type. Throughout this chapter we are working with

the polynomial ring R = K[x1, . . . , xn] over a field K.

5.1 Rees Algebras of Squarefree Monomial Ideals and Their Equations

Definition 5.1.1. For integers s, q ≥ 1 we define

Is = {(i1, . . . , is) : 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ q} ⊂ Ns.

Let α = (i1, . . . , is) ∈ Is and f1, . . . , fq be monomials in R and T1, . . . , Tq be variables.

We use the following notation for the rest of this paper. If t ∈ {1, . . . , s}

• Supp (α) = {i1, . . . , is};

• α̂it = (i1, . . . , ît, . . . , is) = (i1, . . . , it−1, it+1, . . . , is);

• Tα = Ti1 · · ·Tis and Supp (Tα) = {Ti1 , . . . , Tis};

• fα = fi1 · · · fis ;

• f̂αt
= fi1 · · · f̂it · · · fis =

fα
fit

;

• T̂αt
= Ti1 · · · T̂it · · ·Tis =

Tα
Tit

;

• αt(j) = (i1, . . . , it−1, j, it+1, . . . , is), for j ∈ {1, 2, . . . , q} and s ≥ 2.

Theorem 5.1.2. (D. Taylor [40]) Let f1, . . . , fq be the monomials in R. Then we have

Syz(f1, . . . , fq) =

〈(
lcm(fi, fj)

fi

)
ei −

(
lcm(fi, fj)

fj

)
ej : 1 ≤ i < j ≤ q

〉
.
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Definition 5.1.3. Let I = (f1, . . . , fq) be a monomial ideal, s ≥ 2 and α, β ∈ Is. We

define

Tα,β(I) =

(
lcm(fα, fβ)

fα

)
Tα −

(
lcm(fα, fβ)

fβ

)
Tβ. (5.1.1)

When I is clear from the context we use Tα,β to denote Tα,β(I).

Since products of monomials are again monomials the following theorem follows from

Taylor’s theorem.

Theorem 5.1.4. Let I = (f1, . . . , fq) be a monomial ideal in R and J be the defining ideal

of R[It]. Then for s ≥ 2 we have

Js = 〈Tα,β(I) : α, β ∈ Is〉 . (5.1.2)

Moreover, if m = gcd (f1, . . . , fq) and I ′ = (f1/m, . . . , fq/m), then for every α, β ∈ Is
we have

Tα,β(I) = Tα,β(I
′)

and hence R[It] = R[I ′t].

Proof. Let s ≥ 1 we set |Is| = N . If η ∈ Js from the definition of defining ideals we have

η =
N∑

i=1

aiTαi
∈ Js (5.1.3)

where (a1, . . . , aN) ∈ Syz(fα : α ∈ Is). On the other hand by using Theorem 5.1.2 we

have

(a1, . . . , aN) =
N∑

i=1

aiei =
∑

1≤i<j≤N

λij

(
lcm(fαi

, fαj
)

fαi

ei −
lcm(fαi

, fαj
)

fαj

ej

)

for λij ∈ R. Then we have

ai =
N∑

j=i+1

λij

(
lcm(fαi

, fαj
)

fαi

)
−

i−1∑

j=1

λji

(
lcm(fαi

, fαj
)

fαi

)
for i = 1, 2, . . . , N
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(empty sums are zero). Thus we have

N∑

i=1

aiTαi
=

N∑

i=1

N∑

j=i+1

λij

(
lcm(fαi

, fαj
)

fαi

)
Tαi
−

N∑

i=1

i−1∑

j=1

λji

(
lcm(fαi

, fαj
)

fαi

)
Tαi

=
∑

1≤i<j≤N

λij

(
lcm(fαi

, fαj
)

fαi

Tαi
− lcm(fαi

, fαj
)

fαj

Tαj

)

=
∑

1≤i<j≤N

λijTαi,αj
.

Then by (5.1.3) we can conclude

η ∈ 〈Tα,β : α, β ∈ Is〉 .

If I ′ = (f1/m, . . . , fq/m) then it follows that Tα,β(I) = Tα,β(I
′) for every α, β ∈ Is since

lcm(fα, fβ)

fα
=

lcm(fα/m, fβ/m)

fα/m
.

It settles the claim.

In light of Theorem 5.1.4, we will always assume that if I = (f1, . . . , fq) then

gcd (f1, . . . , fq) = 1.

We will also assume Supp (α)∩ Supp (β) = ∅, since otherwise Tα,β reduces to those with

this property. This is because if t ∈ Supp (α) ∩ Supp (β) then we have Tα,β = TtTα̂t,β̂t
.

For this reason we define

Js = 〈Tα,β(I) : α, β ∈ Is, Supp (α) ∩ Supp (β) = ∅〉 (5.1.4)

as an R-module. We have J = J1S + J2S + · · · .

Definition 5.1.5. Let I = (f1, . . . , fq) be a squarefree monomial ideal in R and J be the

defining ideal of R[It], s ≥ 2, and α = (i1, . . . , is), β = (j1, . . . , js) ∈ Is. We call Tα,β

redundant if it is a redundant generator of J , i.e.

Tα,β ∈ J1S + · · ·+ Js−1S.
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∆

Cα,β = Fi1 , Fj1 , . . . , Fis , Fjs .

Then (5.1.1) becomes

(5.2.1)

Tα,β(I) =


 ∏

degα(x)<degβ(x)

xdegβ(x)−degα(x)


Tα −


 ∏

degα(x)>degβ(x)

xdegα(x)−degβ(x)


Tβ

where the products vary over the vertices x of Cα,β .

Definition 5.2.3 (simplicial even walk). Let ∆ = 〈F1, . . . , Fq〉 be a simplicial complex and

let α = (i1, . . . , is), β = (j1, . . . , js) ∈ Is, where s ≥ 2. The following sequence of not

necessarily distinct facets of ∆

Cα,β = Fi1 , Fj1 , . . . , Fis , Fjs

is called a simplicial even walk, or simply “even walk,” if the following conditions hold

• For every i ∈ Supp (α) and j ∈ Supp (β) we have

Fi\Fj 6⊂ {x ∈ V(∆) : degα(x) > degβ(x)} and Fj\Fi 6⊂ {x ∈ V(∆) : degα(x) < degβ(x)}.

If Cα,β is connected, we call the even walk Cα,β is a connected even walk.

Remark 5.2.4. It follows from the definition, if Cα,β is an even walk then Supp (α) ∩
Supp (β) = ∅.

Remark 5.2.5. Even walk are a generalization of monomial walks in hypergraph theory

which is introduced by Petrović and Stasi [37]. They have used monomial walks to con-

tribute a combinatorial description of the toric ideal of a hypergraph. In fact they have

generalized a Villarreal’s work of the graph case [47]. (Villarreal’s description of toric

ideals of a graph have been proven with different techniques by Ohsugi and Hibi [36] and

Reyes, Tatakis and Thoma [38]).

Example 5.2.6. In Figures [5.1a] and [5.1b] by setting α = (1, 3, 5), β = (2, 4, 6) we have

Cα,β = F1, . . . , F6 is an even walk in [5.1a] but in [5.1b] Cα,β = F1, . . . , F6 is not an even
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walk because

F1\F2 = {x1, a1} = {x : degα(x) > degβ(x)}.

Remark 5.2.7. A question which naturally arises here is if a minimal even walk (an even

walk that does not properly contain an other even walk) can have repeated facets. The

answer is positive since for instance, the bicycle graph in Figure 5.2 is a minimal even

walk, because of Theorem 5.2.18 below, but it has a pair of repeated edges.

Figure 5.2: A minimal even walk with repeated facets

5.2.1 The Structure of Even Walks

Proposition 5.2.8 (structure of even walks). Let Cα,β = F1, F2, . . . , F2s be an even walk.

Then we have

(i) If i ∈ Supp (α) (or i ∈ Supp (β)) there exist distinct j, k ∈ Supp (β) (or

j, k ∈ Supp (α)) such that

Fi ∩ Fj 6= ∅ and Fi ∩ Fk 6= ∅. (5.2.2)

(ii) The simplicial complex 〈Cα,β〉 contains an extended trail of even length labeled

Fv1 , Fv2 , . . . , Fv2l where v1, . . . , v2l−1 ∈ Supp (α) and v2, . . . , v2l ∈ Supp (β).

Proof. To prove (i) let i ∈ Supp (α), and consider the following set

Ai = {j ∈ Supp (β) : Fi ∩ Fj 6= ∅}.

We only need to prove that |Ai| ≥ 2.

Suppose |Ai| = 0 then for all j ∈ Supp (β) we have

Fi\Fj = Fi ⊆ {x ∈ V(Cα,β) : degα(x) > degβ(x)}
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because for each x ∈ Fi\Fj we have degβ(x) = 0 and degα(x) > 0; a contradiction.

Suppose |Ai| = 1 so that there is one j ∈ Supp (β) such that Fi∩Fj 6= ∅. So for every

x ∈ Fi\Fj we have degβ(x) = 0. Therefore, we have

Fi\Fj ⊆ {x ∈ V(Cα,β) : degα(x) > degβ(x)},

again a contradiction and so we must have |Ai| ≥ 2 and we are done.

To prove (ii) pick u1 ∈ Supp (α). By using the previous part we can say there are

u0, u2 ∈ Supp (β), u0 6= u2, such that

Fu0
∩ Fu1

6= ∅ and Fu1
∩ Fu2

6= ∅.

By a similar argument there is u3 ∈ Supp (α) such that u1 6= u3 and Fu2
∩ Fu3

6= ∅. We

continue this process. Pick u4 ∈ Supp (β) such that

Fu4
∩ Fu3

6= ∅ and u4 6= u2.

If u4 = u0, then Fu0
, Fu1

, Fu2
, Fu3

is an even length extended trail. If not, we continue this

process each time taking

Fu0
, . . . , Fun

and picking un+1 ∈ Supp (α) (or un+1 Supp (β)) if un ∈ Supp (β) (or un ∈ Supp (α))

such that

Fun+1
∩ Fun

6= ∅ and un+1 6= un−1.

If un+1 ∈ {u0, . . . , un−2}, say un+1 = um, then the process stops and we have

Fum
, Fum+1

, . . . , Fun

is an extended trail. The length of this cycle is even since the indices um, um+1, . . . , un

alternately belong to Supp (α) and Supp (β) (which are disjoint by our assumption), and

if um ∈ Supp (α), then by construction un ∈ Supp (β) and vice-versa. So there are an

even length of such indices and we are done.
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If un+1 /∈ {u0, . . . , un−2} we add it to the end of the sequence and repeat the same

process for Fu0
, Fu1

, . . . , Fun+1
. Since Cα,β has a finite number of facets, this process has

to stop.

Corollary 5.2.9. An even walk has at least 4 distinct facets.

In Corollary 5.2.11, we will see that every even walk must contain a simplicial cycle.

The following theorem, which we prove directly can also be deduced from combining The-

orem 1.14 in Soleyman Jahan and Zheng [29] and Theorem 2.4 in Conca and De Negri [14].

Theorem 5.2.10. A simplicial forest contains no simplicial even walk.

Proof. Assume the forest ∆ contains an even walk Cα,β where α, β,∈ Is and s ≥ 2 is an

integer. Since ∆ is a simplicial forest so is its subcollection 〈Cα,β〉, so by Theorem 2.6.6

〈Cα,β〉 contains a good leaf F0. So we can consider the following order on the facets

F0, . . . , Fq of 〈Cα,β〉

Fq ∩ F0 ⊆ · · · ⊆ F2 ∩ F0 ⊆ F1 ∩ F0. (5.2.3)

Without loss of generality we suppose 0 ∈ Supp (α). Since Supp (β) 6= ∅, we can pick

j ∈ {1, . . . , q} to be the smallest index with Fj ∈ Supp (β). Now if x ∈ F0\Fj , by (5.2.3)

we will have degα(x) ≥ 1 and degβ(x) = 0, which shows that

F0\Fj ⊂ {x ∈ V (Cα,β); degα(x) > degβ(x)},

a contradiction.

Corollary 5.2.11. Every simplicial even walk contains a simplicial cycle.

An even walk is not necessarily an extended trail. For instance see the following exam-

ple.

Example 5.2.12. Let α = (1, 3, 5, 7), β = (2, 4, 6, 8) and Cα,β = F1, . . . , F8 as in Fig-

ure 5.3. It can easily be seen that Cα,β is an even walk of distinct facets but Cα,β is not an

extended trail.
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Figure 5.3: An even walk which is not an extended trail

The main point here is that we do not require that Fi ∩Fi+1 6= ∅ in an even walk which

is necessary condition for extended trails. For example F4 ∩ F5 6= ∅ in this case.

On the other hand, every even-length special cycle is an even walk.

Proposition 5.2.13 (even special cycles are even walks). If F1, . . . , F2s is a special cycle

(under the written order) then it is an even walk under the same order.

Proof. Let α = (1, 3, . . . , 2s − 1) and β = (2, 4, . . . , 2s), and set Cα,β = F1, . . . , F2s.

Suppose Cα,β is not an even walk, so there is i ∈ Supp (α) and j ∈ Supp (β) such that at

least one of the following conditions holds

Fi\Fj ⊆ {x ∈ V(Cα,β) : degα(x) > degβ(x)} (5.2.4)

Fj\Fi ⊆ {x ∈ V(Cα,β) : degα(x) < degβ(x)}.

Without loss of generality we can assume that the first condition holds. Pick h ∈ {i −
1, i+ 1} such that h 6= j. Then by definition of special cycle there is a vertex z ∈ Fi ∩ Fh

and z /∈ Fl for l /∈ {i, h}. In particular, z ∈ Fi\Fj , but degα(z) = degβ(z) = 1 which

contradicts (5.2.4).

The converse of Proposition 5.2.13 is not true: not every even walk is a special cycle.

(see Figure [5.1a] or Figure [5.3] which are not even extended trails). But one can show

that it is true for even walks with four facets.

Lemma 5.2.14. Let α = (1, 3), β = (2, 4) and Cα,β = (F1, F2, F3, F4) be an even walk

with distinct facets. Then Cα,β is a special cycle.
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Proof. By Proposition 5.2.8 we know F1, F2, F3, F4 is a extended trail. If it is not a special

cycle then, without loss of generality, suppose

F1 ∩ F2 ⊆ F3 ∪ F4. (5.2.5)

Since Cα,β is an even walk there is x ∈ F1 ∩ F4 such that

1 ≤ degα(x) ≤ degβ(x) ≤ 2.

Since there are only 4 facets, it follows that degα(x) = degβ(x) = 1. So x ∈ F1∩F2 which,

by (5.2.5), implies that x ∈ F3 ∩ F4. So degα(x) > 1 or degβ(x) > 1, a contradiction.

5.2.2 The Case of Graphs

We demonstrate that simplicial closed even walks in dimension 1 restricts to closed even

walks in graph.

Lemma 5.2.15. Let G be a simple graph and let C = ei1 , . . . , ei2s be a sequence of not

necessarily distinct edges of G where s ≥ 2 and ei = {xi, xi+1} and fi = xixi+1 for

1 ≤ i ≤ 2s. Let α = (i1, i3, . . . , i2s−1), β = (i2, i4, . . . , i2s). Then C is a closed even walk

if and only if fα = fβ .

Proof. (=⇒) This direction follows from the definition of closed even walks.

(⇐=) We can give to each repeated edge in C a new label and consider C as a multigraph

(a graph with multiple edges). The condition fα = fβ implies that every x ∈ V(C) has even

degree, as a vertex of the multigraph C (a graph containing edges that are incident to the

same two vertices). Theorem 2.4.5 implies that C is a closed even walk with no repeated

edges. Now we revert back to the original labeling of the edges of C (so that repeated edges

appear again) and then since C has even length we are done.

To prove the main theorem of this section (Theorem 5.2.18) we need the following

lemma.

Lemma 5.2.16. Let C = Cα,β be a 1-dimensional simplicial even walk and α, β ∈ Is. If

there is x ∈ V(C) for which degβ(x) = 0 (or degα(x) = 0), then we have degβ(v) = 0

(degα(v) = 0) for all v ∈ V(C).
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Proof. First we show the following statement.

ei = {wi, wi+1} ∈ E(C) and degβ(wi) = 0 =⇒ degβ(wi+1) = 0. (5.2.6)

where E(C) is the edge set of C.

Suppose degβ(wi+1) 6= 0. Then there is ej ∈ E(C) such that j ∈ Supp (β) and wi+1 ∈
ej . On the other hand since wi ∈ ei and degβ(wi) = 0 we can conclude i ∈ Supp (α) and

thus degα(wi) > 0. Therefore, we have

ei\ej = {wi} ⊆ {z : degα(z) > degβ(z)}

and it is a contradiction. So we must have degβ(wi+1) = 0.

Now we proceed to the proof of our statement. Pick y ∈ V(C) such that y 6= x. Since

C is connected we can conclude there is a path γ = ei1 , . . . , eit in C in which we have

• eij = {xij , xij+1
} for j = 1, . . . , t;

• xi1 = x and xit+1
= y.

Since γ is a path it has neither repeated vertices nor repeated edges. Now note that since

degβ(x) = degβ(xi1) = 0 and {xi1 , xi2} ∈ E(C) from (5.2.6) we have degβ(xi2) = 0. By

repeating a similar argument we have

degβ(xij) = 0 for j = 1, 2, . . . , t+ 1.

In particular we have degβ(xit+1
) = degβ(y) = 0 and we are done.

We now show that a simplicial even walk in a graph (considering a graph as a 1-

dimensional simplicial complex) is a closed even walk in that graph as defined in Defi-

nition 2.4.1.

Theorem 5.2.17. Let G be a simple graph with edges e1, . . . , eq. Let ei1 , . . . , ei2s be

a sequence of edges of G such that 〈ei1 , . . . , ei2s〉 is a connected subgraph of G and

{i1, i3, . . . , i2s−1} ∩ {i2, i4, . . . , i2s} = ∅. Then ei1 , . . . , ei2s is a simplicial even walk if

and only if

{x ∈ V(Cα,β) : degα(x) > degβ(x)} = {x ∈ V(Cα,β) : degα(x) < degβ(x)} = ∅
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Proof. (⇐=) is straightforward. To prove the converse we assume α = (i1, i3, . . . , i2s−1),

β = (i2, i4, . . . , i2s) and Cα,β is a simplicial even walk. We only need to show

degα(x) = degβ(x) for all x ∈ V(Cα,β).

Assume without loss of generality degα(x) > degβ(x) ≥ 0, so there exists i ∈
Supp (α) such that x ∈ ei. We set ei = {x, w1}.

Suppose degβ(x) 6= 0. We can choose an edge ek in Cα,β where k ∈ Supp (β) such

that x ∈ ei ∩ ek. We consider two cases.

(1) If degβ(w1) = 0, then since degα(w1) ≥ 1 we have

ei\ek = {w1} ⊆ {z ∈ V(G) : degα(z) > degβ(z)},

a contradiction.

(2) If degβ(w1) ≥ 1, then there exists h ∈ Supp (β) with w1 ∈ eh. So we have

ei\eh = {x} ⊆ {z ∈ V(G) : degα(z) > degβ(z)},

again a contradiction.

So we must have degβ(x) = 0. By Lemma 5.2.16 this implies that degβ(v) = 0 for every

v ∈ V(Cα,β), a contradiction, since Supp (β) 6= ∅.

Corollary 5.2.18 (1-dimensional simplicial even walks). Let G be a simple graph with

edges e1, . . . , eq. Let ei1 , . . . , ei2s be a sequence of edges of G such that 〈ei1 , . . . , ei2s〉 is a

connected subgraph of G and {i1, i3, . . . , i2s−1} ∩ {i2, i4, . . . , i2s} = ∅. Then ei1 , . . . , ei2s

is a simplicial even walk if and only if ei1 , . . . , ei2s is a closed even walk in G.

Proof. Let I(G) = (f1, . . . , fq) be the edge ideal of G and α = (i1, i3, . . . , i2s−1) and

β = (i2, i4, . . . , i2s) so that Cα,β = ei1 , . . . , ei2s . Assume Cα,β is a closed even walk in G.

Then we have

fα =
∏

x∈V(Cα,β)

xdegα(x) =
∏

x∈V(Cα,β)

xdegβ(x) = fβ,
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where the second equality follows from Lemma 5.2.15.

So for every x ∈ V(Cα,β) we have degα(x) = degβ(x). In other words we have

{x ∈ V(Cα,β) : degα(x) > degβ(x)} = {x ∈ V(Cα,β) : degα(x) < degβ(x)} = ∅,

and therefore we can say Cα,β is a simplicial even walk. The converse follows directly from

Theorem 5.2.17 and Lemma 5.2.15.

We will need the following proposition in the next sections.

Proposition 5.2.19. Let Cα,β be a 1-dimensional even walk, and 〈Cα,β〉 = G. Then every

vertex of G has degree > 1. In particular, G is either an even cycle or contains at least two

cycles.

Proof. Suppose G contains a vertex of degree 1 namely v. Without loss of generality we

can assume v ∈ ei where i ∈ Supp (α). So degα(v) = 1 and from Theorem 5.2.17 we

have degβ(v) = 1. Therefore, there is j ∈ Supp (β) such that v ∈ ej . Since deg(v) = 1

we have i = j and it is a contradiction since Supp (α) and Supp (β) are disjoint.

Note that from Corollary 5.2.11 G contains a cycle. Now we show that G contains at

least two distinct cycles or it is an even cycle.

Suppose G contains only one cycle Cn. Then removing the edges of Cn leaves a forest

of n components. Since every vertex of G has degree > 1, each of the components must

be singleton graphs (a null graph with only one vertex). So G = Cn. Therefore, by

Corollary 5.2.18 and the fact that Supp (α) and Supp (β) are disjoint, nmust be even.

5.3 A Necessary Criterion for a Squarefree Monomial Ideal to be of Linear Type

We are ready to state one of the main results of this thesis which is a combinatorial method

to detect irredundant Rees equations of squarefree monomial ideals. We first show that

these Rees equations come from even walks.

Lemma 5.3.1. Let I = (f1, . . . , fq) be a squarefree monomial ideal in the polynomial ring

R. Suppose s, t, h are integers with s ≥ 2, 1 ≤ h ≤ q and 1 ≤ t ≤ s. Let 0 6= γ ∈ R,

α = (i1, . . . , is), β = (j1, . . . , js) ∈ Is. Then
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(i) lcm(fα, fβ) = γfhf̂αt
⇐⇒ Tα,β = λT̂αt

T(it),(h) + µTαt(h),β for some monomials

λ, µ ∈ R, λ 6= 0.

(ii) lcm(fα, fβ) = γfhf̂βt
⇐⇒ Tα,β = λT̂βt

T(h),(jt) + µTα,βt(h) for some monomials

λ, µ ∈ R, λ 6= 0.

Proof. We only prove (i); the proof of (ii) is similar.

First note that if h = it then we have

lcm(fα, fβ) = γfα ⇐⇒ Tα,β = Tα,β (Setting µ = 1)

and we have nothing to prove, then without loss of generality we can assume that h 6= it.

If we have lcm(fα, fβ) = γfhf̂αt
, then the monomial γfh is divisible by fit , so there

exists a nonzero exists a monomial λ ∈ R such that

λ lcm(fit , fh) = γfh. (5.3.1)

By using (5.3.1) we have

Tα,β =

(
lcm(fα, fβ)

fα

)
Tα −

(
lcm(fα, fβ)

fβ

)
Tβ =

(
γfh
fit

)
Tα −

(
lcm(fα, fβ)

fβ

)
Tβ

Tα,β = λT̂αt
T(it),(h) +

(
λ lcm(fit , fh)

fh

)
T̂αt

Th −
(
lcm(fα, fβ)

fβ

)
Tβ. (5.3.2)

On the other hand note that since we have

lcm(fα, fβ) = γfhf̂αt
= γfαt(h), (5.3.3)

we can conclude lcm(fαt(h), fβ) divides lcm(fα, fβ). Thus there exists a monomial µ ∈ R
such that

lcm(fα, fβ) = µ lcm(fαt(h), fβ). (5.3.4)

By using (5.3.1), (5.3.3) and (5.3.4) we have

(5.3.5)

λ lcm(fit , fh)

fh
=
λ lcm(fit , fh)f̂αt

fαt(h)

=
γfhf̂αt

fαt(h)

=
lcm(fα, fβ)

fαt(h)

=
µ lcm(fαt(h), fβ)

fαt(h)

.
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Substituting (5.3.4) and (5.3.5) in (5.3.2) we get

Tα,β = λT̂αt
T(it),(h) + µTαt(h),β.

For the converse since h 6= it, by comparing coefficients we have

lcm (fα, fβ)

fα
= λ

(
lcm(fit , fh)

fit

)
= λ

∏

x∈Fh\Fit

x =⇒ lcm (fα, fβ) = λ


 ∏

x∈Fh\Fit

x


 fα

=⇒ lcm (fα, fβ) = λ0fhf̂αt

where 0 6= λ0 ∈ R. This concludes our proof.

Now we show that there is a direct connection between redundant Rees equations and

the above lemma.

Theorem 5.3.2. Let ∆ = 〈F1, . . . , Fq〉 be a simplicial complex , α, β ∈ Is and s ≥ 2 an

integer. If Cα,β is not an even walk then

Tα,β ∈ J1S + Js−1S.

Proof. Let I = (f1, . . . , fq) be the facet ideal of ∆ and let α = (i1, . . . , is) and β =

(j1, . . . , js) ∈ Is. If Cα,β is not an even walk, then by Definition 5.2.3 there exist it ∈
Supp (α) and jl ∈ Supp (β) such that one of the following cases is true

(1) Fjl\Fit ⊆ {x ∈ V(∆) : degα(x) < degβ(x)};

(2) Fit\Fjl ⊆ {x ∈ V(∆) : degα(x) > degβ(x)}.

Suppose (1) is true. Then there exists a monomial m ∈ R such that

lcm (fα, fβ)

fα
=

∏

degβ(x)>degα(x)

xdegβ(x)−degα(x) = m
∏

x∈Fjl
\Fit

x. (5.3.6)

So we have

lcm (fα, fβ) = mfα
∏

x∈Fjl
\Fit

x = m0fjl f̂αt
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wherem0 ∈ R. On the other hand by using Lemma 5.3.1 we can say there exist monomials

0 6= λ, µ ∈ R such that

Tα,β = λT̂αt
T(it),(jl) + µTαt(jl),β

= λT̂αt
T(it),(jl) + µTjlTα̂t,β̂l

∈ J1S + Js−1S (since jl ∈ Supp (β)).

If case (2) holds, a similar argument settles our claim.

Corollary 5.3.3. Let ∆ = 〈F1, . . . , Fq〉 be a simplicial complex and s ≥ 2 be an integer.

Then we have

J = J1S +

(
∞⋃

i=2

Pi

)
S

where Pi = {Tα,β : α, β ∈ Ii and Cα,β is an even walk}.

Theorem 5.3.4 (main theorem). Let I be a squarefree monomial ideal in R and suppose

the facet complex F(I) has no even walk. Then I is of linear type.

The following corollary, can also be deduced from combining Theorem 1.14 in Conca,

De Negri [29] and Theorem 2.4 in Soleyman Jahan, Zheng [14].

More precisely Conca and De Negri have showed thatM -sequence ideals (ideals which

are generated by M -sequences) are of linear type. More recently Soleyman Jahan and

Zheng proved that M -sequence ideals can be viewed as the facet ideal of a simplicial tree.

Thus from these two facts one can conclude that the facet ideal of trees are of linear type.

In our case, it follows directly from Theorem 5.3.4 and Theorem 5.2.10.

Corollary 5.3.5. The facet ideal of a simplicial forest is of linear type.

The converse of Theorem 5.3.2 is not in general true. For example see the following.

Example 5.3.6. Let α = (1, 3), β = (2, 4). In Figure [5.4] we see Cα,β = F1, F2, F3, F4 is

an even walk but we have

Tα,β = x4x8T1T3−x1x6T2T4 = x8T3(x4T1−x2T5)+T5(x2x8T3−x5x6T4)+x6T4(x5T5−x1T2) ∈ J1S.







Chapter 6

Conclusion

In this chapter we discuss some open problems and further work related to the topics cov-

ered in this thesis. These can be divided into two groups, questions related to path ideals

of cycles and paths and questions related to Rees algebras of squarefree monomial ideals.

For path ideals we would mainly like to investigate the arithmetic rank of these ideals for

cycles. For Rees algebras of monomial ideals, the equations of Rees algebra of quadratic

squarefree monomial ideals are known. The focus of my work is to find a combinato-

rial interpretation for equations of Rees algebras of squarefree monomial ideals of higher

degrees.

6.1 Path Ideals

Definition 6.1.1. Let I be an ideal in R, then the minimum number of elements of R that

generate I up to radical is called the arithmetic rank of I . More precisely the arithmetic

rank of I is

ara(I) = min
{
r : ∃a1, . . . , ar ∈ R;

√
I =

√
(a1, . . . , ar)

}
.

Finding the arithmetic rank of squarefree monomial ideals is inspired by the work of

Lyubeznik [31] in 80’s, who used Taylor’s resolution of monomial ideals to study questions

about cohomological dimensions.

The computation of the arithmetic rank of an ideal is a challenging problem. For this

reason researchers are developing bounds for the arithmetic rank of classes of ideals. The

simplest upper bound for the arithmetic rank of an ideal I is µ(I), the minimal number of

generators of I . By using Krull’s Principal Ideal Theorem [46], one can find a lower bound;

it is the height of the ideal I . Thus

ht(I) ≤ ara(I) ≤ µ(I).

81
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According to Lyubeznik’s result in [31], one can find a less obvious lower bound for

the arithmetic rank of squarefree monomial ideals. For a squarefree monomial ideal I we

have the following

ht(I) ≤ pd(R/I) ≤ ara(I) ≤ µ(I).

In 2000, Zhao Yan [49] showed that the inequality is sharp in some cases. The following

question arises immediately.

Question 6.1.2. For which classes of squarefree monomial ideals does pd(R/I) = ara(I)?

This is a broad question. Some classes of squarefree monomial ideals in which the

equality holds have been investigated (cf. [6], [4], [5], [8], [7]). The edge ideals of cycles

have also been investigated. Barile, Kiani, Mohammadi and Yassemi [8] showed that

ara(I2(Cn)) = pd(R/I2(Cn)),

where Cn is a graph cycle with n vertices. Now we can ask what happens for t 6= 2?

Regarding the arithmetic rank of path ideals of a cycle, Macchia [32] in his unpublished

work showed the following.

Lemma 6.1.3. Let Cn be a cycle graph over n vertices and let 2 ≤ t ≤ n. Then we have

ara(It(Cn)) ∈ {pd(R/It(Cn)), pd(R/It(Cn)) + 1} .

Since it is proved for t = 2 in [8] that ara(I2(Cn)) = pd(R/I2(Cn)), we have the

following open question.

Question 6.1.4. Let Cn be a graph cycle over n vertices and 2 < t ≤ n. Is it true to say

ara(It(Cn)) = pd(R/It(Cn))?

I have been able to show that for some values of t and n this equality holds. However,

there are still lots of unexamined cases.

6.2 Rees Algebras of Squarefree Monomial Ideals

Villarreal gave a combinatorial characterization of irredundant generators for edge ideals

of graphs [47] by attributing irredundant generators of Js to closed even walks. Motivated
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by this work I defined simplicial closed even walks in this thesis for simplicial complexes

to generalize graph case.

Earlier in this thesis I showed that if Tα,β(I) is an irredundant generator of Js, then the

generators of I involved in Tα,β(I) form a simplicial even walk. Our class of simplicial even

walks includes even special cycles (cf. Herzog et al. [23]) as they are known in hypergraph

theory.

Also in this thesis I showed that every simplicial closed even walk contains a simplicial

cycle (not necessarily of the same length). By using this new result we can conclude every

simplicial tree is of linear type.

Generally the converse of Theorem 5.3.2 is not correct. My goal is to further investigate

the structure of simplicial closed even walk so that I can give a more effective criterion to

replace Theorem 5.3.2.

Question 6.2.1. Find a more effective criterion to characterize squarefree monomial ideals

of linear type.

Fouli and Lin [18] used the line graphs of squarefree monomial ideals to give a simple

test for ideals of linear type. Here I improved their test as demonstrated in Theorem 5.3.8.

One can ask what happens for line graphs which contain an even cycle. In general we

can say nothing about linearity of I by using these line graphs. I am currently working on

improving Theorem 5.3.8.
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